## BAB IV HASIL DAN PEMBAHASAN

## 4.1 Hasil

Penelitian ini menghasilkan sebuah klasifikasi dan sebuah informasi dalam penentuan lokasi promosi mahasiswa baru pada IIB Darmajaya Lampung. Dalam pengklasifikasian menggunakan tiga algoritma yang setaraa yaitu, *decision tree, naïve bayes,* dan *k-nearest neighbor* dengan menggunakan ketiga algoritma tersebut diharapkan mendapatkan algoritma yang memiliki nilai akurasi yang cukup baik sehingga informasi yang dihasilkan dapat digunakan sebagai bahan pertimbangan bagian pemasaran untuk melakukan promosi pada tahun-tahun berikutnya.

### 4.1.1 Objek Penelitian

Penelitian ini menggunakan data mahasiswa baru pada tahun 2016 hingga 2020 dengan semua jurusan. Data yang gunakan merupakan data yang terisi lengkap dalam basis data. Penelitian ini dilakukan di bagian pemasaran IIB Darmajaya Lampung, karena selama ini bagian pemasaran IIB Darmajaya menentukan lokasi promo secara manual dan kurang tepat sasaran.

### 4.1.2 Pengumpulan Data

Pengumpulan data dilakukan dengan meminta izin secara tertulis terlebih dahulu kebagian ICT Darmajaya, setelah mendapat balasan dari pihak terkait maka diizinkan untuk melakukan penelitian di bagian pengolahan data, dalam hal ini bagian ICT dan BAAK (Biro Admistrasi Akademik Kemahasiswaan) Darmajaya. Kemudian data yang diminta diberikan melalui surat elektronik (electronic mail), data yang diterima berjumlah 1 file yang berisikan data mahasiswa baru tahun 2016 hingga 2020.

Jumlah data yang didapat 5685 record terdiri dari beberapa kolom atau variabel yaitu:

- 1. Nama
- 2. Jurusan
- 3. Jenis Kelamin

- 4. Kabupaten
- 5. Kecamatan
- 6. Sekolah
- 7. Pekerjaan Orang Tua

Jumlah data mahasiswa yang didapat 5685 mahasiswa namun, tidak semua data memiliki record atau tidak terekam dengan baik.

### 4.1.3 Pre-Processing Data

*Pre processing* merupakan tahapan awal dari Data *Mining*, pada tahapan ini data diolah menjadi data yang berkualitas agar data dapat diolah ketahapan selanjutnya. Dalam tahapan ini terdapat proses yang sangat penting dan teliti karena tahapan *pre processing* membutuhkan data yang benar dalam formatnya, konsisten dalam penulisan, tidak ada duplikasi data, tidak ada data yang kosong, dan sebagainya. Data yang tidak berkualitas maka akan mengkasilkan informasi yang tidak akurat. Data mentah yang sudah diterima terdapat banyak data yang kurang bagus, seperti nilai angka yang error karena format yang salah, kehilangan salah satu huruf (typo), singkatan yang tidak konsisten, duplikasi data, data yang dibutuhkan berada di file yang berbeda. Dalam tahapan ini beberapa proses yaitu:

#### 4.1.3.1 Data Reduction

Data reduction merupakan proses yang bertujuan untuk mengurangi atau mereduksi, atribut, dimensi, atau sejumlah data yang tidak dibutiuhkan. Data reduction sangat dibutuhkan untuk mendapatkan atribut yang saling berkaitan.

Dalam penelitian ini atribut atau variabel yang dibutuhkan terdiri dari nama, kabupaten atau kota, pekerjaan orang tua, jumlah alumni yang mendaftar di IIB Darmajaya, dan asal sekolah mahasiswa baru. Dalam file yang diterima oleh peneliti maka dilakukan analisa kemudian mengasilkan banyak atribut yang tidak dibutuhkan dalam penelitian ini. Peneliti mengurangi atribut jenis kelamin, jurusan, tahun akademik dan kecamatan, penulis mereduksi atribut tersebut berpendapat bahwa atribut tersebut tidak terlalu berpengaruh terhadap proses pengklasifikasian.

Setelah melakukan reduksi atribut dilakukan reduksi data mahasiswa baru

angkatan 2016 dan 2017. Sehingga hasil akhir dari proses reduksi mendapatkan data mahasiswa baru tahun 2018, 2019, dan 2020 dengan jumlah 1281 data mahasiswa.

### 4.1.3.2 Data Cleaning

Data Cleaning merupakan proses dalam mengisi missing value atau isian yang hilang, meminimalisir terjadinya penumpukan data atau duplikasi data dan mengcek kembali data yang tidak konsisten.

Proses cleaning peneliti menggunakan aplikasi *Microsoft Excel* dengan memfilter kolom satu perasatu dan mecari data yang kosong atau missing. Kolom sekolah terdapat banyak data yang tidak ter-record dengan baik, sehingga banyak data yang tidak dapat digunakan. Sebagai contoh pada kolom sekolah tahun 2016 dan 2017 tidak ada satupun asal sekolah yang tersimpan oleh database IIB Darmajaya sehingga data tersebut tidak dapat digunakan sebagai data set. Penulis mengunakan data 3 tahun terakhir yaitu, 2018,2019, dan 2020.

## 4.1.3.3 Perubahan Data

Perubahan data atau data transformasi merupakan proses perubahan data agar mendapatkan data yang berkualitas dan sesuai dengan yang dibutuhkan. Dalam tahapan ini peneliti melakukan tranformasi data yang berdasar hasil wawacara (06/01/2021) dengan kepala bagian pemasaran IIB Darmajaya dengan hasil sebagai berikut:

| Kabupaten/Kota                | Dalam Kota |
|-------------------------------|------------|
| Kabupaten Lampung Barat       |            |
| Kabupaten Lampung Selatan     |            |
| Kabupaten Lampung Tengah      |            |
| Kabupaten Lampung Timur       |            |
| Kabupaten Lampung Utara       |            |
| Kabupaten Mesuji              | Tidak      |
| Kabupaten Pesawaran           |            |
| Kabupaten Pesisir Barat       |            |
| Kabupaten Pringsewu           |            |
| Kabupaten Tanggamus           |            |
| Kabupaten Tulang Bawang       |            |
| Kabupaten Tulang Bawang Barat |            |
| Kabupaten Way Kanan           |            |

 Tabel 4.1 Transformasi kabupaten dan kota.

| Kota Bandar Lampung | Iya |
|---------------------|-----|
| Kota Metro          |     |

### **Tabel 4.2** Penghasilan Orang tua

| Pekerjaan Orang Tua | Kelompok Penghasilan |
|---------------------|----------------------|
| Anggota Dewan       |                      |
| Pegawai BUMN        | Tinggi               |
| Pensiunan           |                      |
| PNS                 |                      |
| Wiraswasta          | Sedang               |
| TNI/Polri           |                      |
| Guru                |                      |
| Karyawan            |                      |
| Petani              | Rendah               |
| Swasta              |                      |

## Tabel 4.3 Asal Sekolah.

| No.  | Asal Sekolah                   | Kelompok Asal Sekolah |
|------|--------------------------------|-----------------------|
| 1.   | Sman Bhakti Mulya Bunga Mayang | Negeri                |
| 2.   | Sman Ketibung                  | Negeri                |
| 3.   | Smas Al Huda                   | Swasta                |
| 4.   | Smas Assalam                   | Swasta                |
| 5.   | Smas Bhakti Mulya              | Swasta                |
| 6.   | Smas Bpk Penabur               | Swasta                |
| 7.   | Smas Darul Fikri               | Swasta                |
| 8.   | Smas It Ar Raihan              | Swasta                |
| 9.   | Smas It Baitul Muslim          | Swasta                |
| 10.  | Sman 10 Bandar Lampung         | Negeri                |
|      |                                |                       |
| 304. | Man 2 Bandar Lampung           | Negeri                |

Dalam pengelompokan total alumni menggunakan aturan sebagai berikut:

- a. jika asal sekolah berada di dalam kota menggunakan 3 tingkatan yaitu, ≥15,
   ≥9 dan ≤8.
- b. jika asal sekolah berada di luar kota menggunakan 3 tingkatan yaitu, ≥12, ≥7 dan <7.</li>

| No. | Asal Sekolah         | Jumlah Alumni | Hasil Pengelompokan |
|-----|----------------------|---------------|---------------------|
| 1.  | Smk Trisakti Jaya    | 2             | ≤7                  |
| 2.  | Smk Yadika Pagelaran | 7             | ≤7                  |

### Tabel 4.4 Total Alumni

| 3.   | Smkn 1 Abung Selatan  | 3    | ≤7    |
|------|-----------------------|------|-------|
| 4.   | Smkn 1 Banjit         | 3    | ≤7    |
| 5.   | Smkn 1 Bukit Kemuning | 3    | ≤7    |
| 6.   | Smkn 1 Gadingrejo     | 3    | ≤7    |
| 7.   | Smkn 1 Kalianda       | 8    | ≤8    |
| 8.   | Smkn 1 Kotabumi       | 5    | ≤7    |
| 9.   | Smkn 1 Metro          | 2    | ≤7    |
| 10.  | Smkn 1 Ngambur        | 2    | ≤7    |
|      |                       | •••• | ••••• |
| 304. | Sman 3 Metro          | 11   | _≤8   |

Tabel 4.5 Hasil Transformasi

| No.   | Nama              | Dalam Total |        | Penghasilan | Asal    |
|-------|-------------------|-------------|--------|-------------|---------|
|       |                   | Kota        | Alumni | Orang Tua   | Sekolah |
| 1.    | Aldo Erlansyah    | tidak       | ≥7     | sedang      | swasta  |
| 2.    | Aldo Fernando     | iya         | ≥9     | sedang      | swasta  |
| 3.    | Aldo Kusuma Natta | iya         | ≥15    | sedang      | swasta  |
| 4.    | Aldo Valerio S    | iya         | ≥15    | sedang      | swasta  |
| 5.    | Aldy Bagus P.     | iya         | ≥15    | sedang      | negeri  |
| 6.    | Alfachrie Rachman | iya         | ≥15    | sedang      | negeri  |
| 7.    | Alfayet Rifki A.  | iya         | ≤8     | sedang      | swasta  |
| 8.    | Alfin Rifaldo     | tidak       | <7     | sedang      | negeri  |
| 9.    | Alfira Dewi R.    | tidak       | <7     | rendah      | negeri  |
| 10.   | Alfito Dinova     | tidak       | <7     | sedang      | negeri  |
|       |                   |             |        |             |         |
| 1281. | Zuzlifatul Adnan  | tidak       | <7     | rendah      | negeri  |

## 4.1.3.4 Penentuan Label

Dalam pentuan label pada penelitian ini, menggunakan dasar sebagai berikut:

Dalam Kota

Sangat Potensi, jika lokasi sekolah berada di dalam kota dan jumlah alumni  $\geq 15$ .

Pontensi, jika lokasi sekolah berada di dalam kota dan jumlah alumni ≥9, atau jumlah alumni ≤8 namun berasal dari sekolah negeri, atau jumlah alumni ≤8 tetapi penghasilan orang termasuk kedalam golongan sedang.

Kurang Potensi, jika lokasi sekolah berada di dalam kota, jumlah alumni ≤8 dan penghasilan orang tua tinggi, atau penghasilan orang tua rendah serta berasal dari sekolah swasta.

Luar Kota

Sangat Potensi, jika lokasi sekolah berada di luar kota dan jumlah alumni  $\geq 12$ .

Pontensi, jika lokasi sekolah berada di luar kota dan jumlah alumni ≥7, atau

jumlah alumni <7 namun penghasilan orang tua dalam kategori sedang, atau jumlah alumni <7, penghasilan orang tua rendah, namun berasal dari sekolah negeri.

Kurang Potensi, jika lokasi sekolah berada di luar kota, jumlah alumni <7 dan penghasilan orang tua tinggi, atau jumlah alumni <7 penghasilan orang tua rendah serta berasal dari sekolah swasta.

Berdasarkan aturan-aturan di atas maka didapat hasil data dari pre-*processing* sebagai berikut:

| No.   | Nama             | Dalam | Total  | Total Penghasilan |         | Ket. |
|-------|------------------|-------|--------|-------------------|---------|------|
|       |                  | Kota  | Alumni | Orang Tua         | Sekolah |      |
| 1.    | Aldo Erlansyah   | tidak | ≥7     | sedang            | swasta  | Р    |
| 2.    | Aldo Fernando    | iya   | ≥9     | sedang            | swasta  | Р    |
| 3.    | Aldo Kusuma N.   | iya   | ≥15    | sedang            | swasta  | SP   |
| 4.    | Aldo Valerio S   | iya   | ≥15    | sedang            | swasta  | SP   |
| 5.    | Aldy Bagus P.    | iya   | ≥15    | sedang            | negeri  | SP   |
| 6.    | Alfachrie R.     | iya   | ≥15    | sedang            | negeri  | SP   |
| 7.    | Alfayet Rifki A. | iya   | ≤8     | sedang            | swasta  | Р    |
| 8.    | Alfin Rifaldo    | tidak | <7     | sedang            | negeri  | Р    |
| 9.    | Alfira Dewi R.   | tidak | <7     | rendah            | negeri  | Р    |
| 10.   | Alfito Dinova    | tidak | <7     | sedang            | negeri  | Р    |
|       | •••••            |       |        | ••••              |         |      |
| 1281. | Zuzlifatul Adnan | tidak | <7     | rendah            | negeri  | Р    |

Tabel 4.6 Hasil Pelabelan

Keterangan:

| SP | : | Sangat Potensi. |
|----|---|-----------------|
|----|---|-----------------|

- P : Potensi
- KP : Kurang Potensi

## 4.1.4 Penerapan Algoritma Decision tree Menggunakan Microsoft Excel

Penerapan algoritma *Decision tree* menggunakan *Microsoft Excel* mebutuhkan beberapa tahapan, untuk mempermudah penghitungan nilai *entropy* maka dilakukan pengelompokan data dari keselurahan, sehingga didapat data sebagai berikut:

Tabel 4.7 Pengelompokan data untuk perhitungan nilai Entropy

|        | Sangat  |         |                |
|--------|---------|---------|----------------|
| jumlah | potensi | Potensi | Kurang Potensi |

| Total       |        | 1281 | 798 | 374 | 110 |
|-------------|--------|------|-----|-----|-----|
|             |        |      |     |     |     |
| Dalam kota  | ya     | 686  | 514 | 143 | 29  |
|             | tidak  | 595  | 13  | 502 | 80  |
|             |        |      |     |     |     |
|             | tinggi | 53   | 28  | 10  | 15  |
| Penghasilan | sedang | 878  | 418 | 460 | 0   |
|             | rendah | 359  | 81  | 175 | 94  |
|             |        |      |     |     |     |
| Sekolah     | swasta | 452  | 210 | 139 | 103 |
|             | negeri | 829  | 317 | 506 | 6   |
|             |        |      |     |     |     |
|             | ≥15    | 424  | 424 | 0   | 0   |
|             | ≥9     | 129  | 0   | 129 | 0   |
| Total       | ≤8     | 133  | 90  | 14  | 29  |
|             | ≥12    | 13   | 13  | 0   | 0   |
|             | ≥7     | 127  | 0   | 127 | 0   |
|             | <7     | 455  | 271 | 375 | 80  |

Setelah dilakukan pengelompakan, maka tahapan selanjutnya yaitu, menentukan akar dari pohon berdasarkan nilai *index entropy* terendah atau menghitung nilai *gain* yang tertinggi dari masing-masing atribut.

Nilai *indek entropy* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (2) yaitu:

a. Formula untuk mendapatkan entropy

=((-jumlah sangat potensi / total keseluruhan)\*IMLOG2(jumlah sangat potensi / total keseluruhan)+( -jumlah potensi / total keseluruhan)\*IMLOG2(jumlah potensi / total keseluruhan)+( -jumlah kurang potensi / total keseluruhan)\*IMLOG2(jumlah kurang potensi / total keseluruhan))

Setelah dilakukan perhitungan nilai *entropy* maka akan didapat data sebagai berikut:

Tabel 4.8 Hasil Perhitungan nilai entropy pertama

|              | Jumlah | Sangat<br>potensi | Potensi | Kurang<br>potensi | Entropy    |
|--------------|--------|-------------------|---------|-------------------|------------|
| Total        | 1281   | 798               | 374     | 110               | 1,24805047 |
| Dalam kota   |        |                   |         |                   |            |
| ya           | 686    | 514               | 143     | 29                | 0,97653405 |
| tidak        | 595    | 13                | 502     | 80                | 0,7166201  |
| Penghasilan  |        |                   |         |                   |            |
| tinggi       | 53     | 28                | 10      | 15                | 1,45568314 |
| sedang       | 878    | 418               | 460     | 0                 | 0          |
| rendah       | 359    | 81                | 175     | 94                | 1,49616397 |
| Sekolah      |        |                   |         |                   |            |
| swasta       | 452    | 210               | 139     | 103               | 1,52320126 |
| negeri       | 829    | 317               | 506     | 6                 | 1,01652142 |
| Total Alumni |        |                   |         |                   |            |
| ≥15          | 424    | 424               | 0       | 0                 | 0          |
| ≥9           | 129    | 0                 | 129     | 0                 | 0          |
| ≤8           | 133    | 90                | 14      | 29                | 1,20226592 |
| ≥12          | 13     | 13                | 0       | 0                 | 0          |
| ≥7           | 127    | 0                 | 127     | 0                 | 0          |
| <7           | 455    | 271               | 375     | 80                | 1,116114   |

Setelah mendapatkan nilai *entropy* maka dilanjutkan dengan menghitung nilai *gain*. Nilai *gain* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (3) yaitu:

b. Formula untuk mendaptkan nilai gain

=(*entropy* total-((jumlah iya / total keseluruhan)\**entropy* ya)-((jumlah tidak / total keseluruhan)\**entropy* tidak)

=(G3)-((C4/C2)\*G4)-((C5/C2)\*G5)

Sehingga didapat nilai gain sebagai berikut:

|            | Jumlah | Sangat<br>Potensi | Potensi | Kurang<br>Potensi | Entropy    | Gain     |
|------------|--------|-------------------|---------|-------------------|------------|----------|
| Total      | 1281   | 798               | 374     | 110               | 1,24805047 |          |
| Dalam Kota |        |                   |         |                   |            | 0,392241 |
| Ya         | 686    | 514               | 143     | 29                | 0,97653405 |          |
| Tidak      | 595    | 13                | 502     | 80                | 0,7166201  |          |

Tabel 4.9 hasil perhitungan nilai gain node 1

| Pengh   | nasilan |     |     |     |     |            | 0,768523 |
|---------|---------|-----|-----|-----|-----|------------|----------|
| Tin     | ıggi    | 53  | 28  | 10  | 15  | 1,45568314 |          |
| Sed     | lang    | 878 | 418 | 460 | 0   | 0          |          |
| Ren     | ndah    | 359 | 81  | 175 | 94  | 1,49616397 |          |
| Sek     | olah    |     |     |     |     |            | 0,052747 |
| Sw      | asta    | 452 | 210 | 139 | 103 | 1,52320126 |          |
| Ne      | geri    | 829 | 317 | 506 | 6   | 1,01652142 |          |
| Total A | Alumni  |     |     |     |     | ·          | 1,123225 |
|         | ≥15     | 424 | 424 | 0   | 0   | 0          |          |
|         | ≥9      | 129 | 0   | 129 | 0   | 0          |          |
|         | ≤8      | 133 | 90  | 14  | 29  | 1,20226592 |          |
|         | ≥12     | 13  | 13  | 0   | 0   | 0          |          |
|         | ≥7      | 127 | 0   | 127 | 0   | 0          |          |
|         | <7      | 455 | 271 | 375 | 80  | 1,116114   |          |

Setelah mendapatkan nilai *gain* dari data tersebut, maka dapat dilihat nilai *gain* yang terbesar. Nilai *gain* yang terbesar akan menjadi node pertama. Berdasarkan data di atas, nilai *gain* terbesar terletak pada variabel total alumni.

Dalam menentukan node berikutnya, maka dapat dibuat tabel kembali untuk menentukan nilai *entropy* dan *gain* pada varibel total alumni.

|                 |        | Jumlah | Sangat<br>Potensi | Potensi | Kurang Potensi |
|-----------------|--------|--------|-------------------|---------|----------------|
| Total           |        | 1281   | 798               | 374     | 110            |
| Dalam Kota      |        |        |                   |         |                |
|                 | Iya    | 133    | 90                | 14      | 29             |
|                 | Tidak  | 0      | 0                 | 0       | 0              |
| Penghasilan Ora | ng tua |        |                   |         |                |
|                 | Tinggi | 8      | 0                 | 0       | 8              |
|                 | Sedang | 90     | 90                | 0       | 0              |
|                 | Rendah | 35     | 0                 | 14      | 21             |
| Sekolah         |        |        |                   |         |                |
|                 | Negeri | 40     | 24                | 14      | 2              |
|                 | Swasta | 93     | 66                | 0       | 27             |

 Tabel 4.10 Pengelompokan data perhitungan nilai Entropy perulangan kedua

Setelah dilakukan pengelompakan, maka tahapan selanjutnya kembali menentukan nilai entropy. Nilai entropy dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (2). Setelah dilakukan perhitungan nilai entropy maka akan didapat data sebagai

berikut:

|          |           | Jumlah | Sangat<br>Potensi | Potensi | Kurang<br>Potensi | entropy    |
|----------|-----------|--------|-------------------|---------|-------------------|------------|
| Total    |           | 1281   | 798               | 374     | 110               | 1,24805047 |
| Dalam K  | ota       |        |                   |         |                   |            |
| Iya      |           | 133    | 90                | 14      | 29                | 1,202266   |
| Tidak    |           | 0      | 0                 | 0       | 0                 | 0          |
| Penghasi | lan Orang | tua    |                   |         |                   |            |
| Tinggi   |           | 8      | 0                 | 0       | 8                 | 0          |
| Sedang   |           | 90     | 90                | 0       | 0                 | 0          |
| Rendah   |           | 35     | 0                 | 14      | 21                | 0          |
| Sekolah  |           |        |                   |         |                   |            |
| Negeri   |           | 40     | 24                | 14      | 2                 | 1,188376   |
| Swasta   |           | 93     | 66                | 0       | 27                | 0          |

Tabel 4.11 Hasil Perhitungan Nilai entropy perulangan kedua

Setelah mendapatkan nilai *entropy* maka dilanjutkan dengan menghitung nilai *gain*. Nilai *gain* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (3). Sehingga didapat nilai *gain* sebagai berikut:

|                 |        | Sangat  |         | Kurang  |            |          |
|-----------------|--------|---------|---------|---------|------------|----------|
|                 | Jumlah | Potensi | Potensi | Potensi | entropy    | gain     |
| Total           | 1281   | 798     | 374     | 110     | 1,24805047 |          |
| Dalam Kota      |        |         |         |         |            | 1,123225 |
| Iya             | 133    | 90      | 14      | 29      | 1,202266   |          |
| Tidak           | 0      | 0       | 0       | 0       |            |          |
| Penghasilan Ora | ng tua |         |         |         |            | 1,24805  |
| Tinggi          | 8      | 0       | 0       | 8       | 0          |          |
| Sedang          | 90     | 90      | 0       | 0       | 0          |          |
| Rendah          | 35     | 0       | 14      | 21      | 0          |          |
| Sekolah         |        |         |         |         |            | 1,210943 |
| Negeri          | 40     | 24      | 14      | 2       | 1,188376   |          |
| Swasta          | 93     | 66      | 0       | 27      | 0          |          |

Tabel 4.12 Hasil perhitungan nilai Gain node 1.1

Setelah mendapatkan nilai *gain* dari data *di atas*, maka dapat dilihat nilai *gain* yang terbesar. Nilai *gain* yang terbesar akan menjadi node kedua. Berdasarkan data di atas, nilai *gain* terbesar terletak pada variabel penghasilan orang tua.

Dalam menentukan node berikutnya, maka dapat dibuat tabel kembali untuk menentukan nilai *entropy* dan *gain* pada varibel penghasilan orang tua.

|            |        |        | Sangat  |         | Kurang  |
|------------|--------|--------|---------|---------|---------|
|            |        | Jumlah | Potensi | Potensi | Potensi |
| Total      |        | 1281   | 798     | 374     | 110     |
| Dalam Kota |        |        |         |         |         |
|            | Iya    | 133    | 90      | 14      | 29      |
|            | Tidak  | 0      | 0       | 0       | 0       |
| Sekolah    |        |        |         |         |         |
|            | Negeri | 40     | 24      | 14      | 2       |
|            | Swasta | 93     | 66      | 0       | 27      |

**Tabel 4.13** Pengelompokan data perhitungan nilai *Entropy* perulangan ketiga

Setelah dilakukan pengelompakan, maka tahapan selanjutnya kembali menentukan nilai *entropy*. Nilai *entropy* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (2).

Setelah dilakukan perhitungan nilai *entropy* maka akan didapat data sebagai berikut:

|            | Jumla | Sangat  | Potens | Kurang  | entropy   |
|------------|-------|---------|--------|---------|-----------|
|            | h     | Potensi | i      | Potensi |           |
|            |       |         |        |         | 1,2480504 |
| Total      | 1281  | 798     | 374    | 110     | 7         |
| Dalam Kota |       |         |        |         |           |
| Iya        | 133   | 90      | 14     | 29      | 1,202266  |
| Tidak      | 0     | 0       | 0      | 0       | 0         |
| Sekola     |       |         |        |         |           |
| h          |       |         |        |         |           |
| Negeri     | 40    | 24      | 14     | 2       | 1,188376  |
| Swasta     | 93    | 66      | 0      | 27      | 0         |

Tabel 4.14 Hasil perhitungan nilai Entropy perulangan ketiga

Setelah mendapatkan nilai *entropy* maka dilanjutkan dengan menghitung nilai *gain* kembali, Nilai *gain* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (3). Sehingga didapat nilai *gain* sebagai berikut:

|            | Jumlah | SP  | Р   | KP  | entropy    | gain     |
|------------|--------|-----|-----|-----|------------|----------|
| Total      | 1281   | 798 | 374 | 110 | 1,24805047 |          |
| Dalam Kota |        |     |     |     |            | 1,123225 |
| Іуа        | 133    | 90  | 14  | 29  | 1,202266   |          |
| Tidak      | 0      | 0   | 0   | 0   | 0          |          |
| sekolah    |        |     |     |     |            | 1,210943 |
| Negeri     | 40     | 24  | 14  | 2   | 1,188376   |          |
| Swasta     | 93     | 66  | 0   | 27  | 0          |          |

Tabel 4.15 Hasil perhitungan nilai Gain node 1.1.1

Setelah mendapatkan nilai *gain* dari data *di atas*, maka dapat dilihat nilai *gain* yang terbesar. Nilai *gain* yang terbesar akan menjadi node ketiga. Berdasarkan data di atas, nilai *gain* terbesar terletak pada variabel sekolah.

Tahapan selanjutnya yaitu penentuan node 1.2 Berdasarkan tabel 4.8 node 1.2 terletak pada variabel total alumni (<7).

Dalam penghitungan nilai entropy dan gain dapat dibuat tabel sebagi berikut:

|                       | Jumlah | Sangat Potensi | Potensi | Kurang Potensi |
|-----------------------|--------|----------------|---------|----------------|
| Total                 | 1281   | 798            | 374     | 110            |
| Dalam Kota            |        |                |         |                |
| Іуа                   | 0      | 0              | 0       | 0              |
| Tidak                 | 455    | 271            | 104     | 80             |
| Penghasilan Orang tua |        |                |         |                |
| Tinggi                | 7      | 0              | 0       | 7              |
| Sedang                | 271    | 271            | 0       | 0              |
| Rendah                | 177    | 0              | 104     | 73             |
| Sekolah               |        |                |         |                |
| Negeri                | 295    | 187            | 104     | 4              |
| Swasta                | 160    | 84             | 0       | 76             |

Tabel 4.16 Pengelompokan data perhitungan nilai Entropy perulangan ke-4

Setelah dilakukan pengelompakan, maka tahapan selanjutnya kembali menentukan nilai *entropy*. Nilai *entropy* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (2). Setelah dilakukan perhitungan nilai entropy maka akan didapat data sebagai berikut:

|                   | Jumlah | Sangat Potensi | Potensi | Kurang Potensi | entropy  |  |  |
|-------------------|--------|----------------|---------|----------------|----------|--|--|
| Total             | 1281   | 798            | 374     | 110            | 1,24805  |  |  |
| Dalam Kota        |        |                |         |                |          |  |  |
| Iya               | 0      | 0              | 0       | 0              | 0        |  |  |
| Tidak             | 455    | 271            | 104     | 80             | 1,372882 |  |  |
| Penghasilan Orang | tua    |                |         |                |          |  |  |
| Tinggi            | 7      | 0              | 0       | 7              | 0        |  |  |
| Sedang            | 271    | 271            | 0       | 0              | 0        |  |  |
| Rendah            | 177    | 0              | 104     | 73             | 0        |  |  |
| Sekolah           |        |                |         |                |          |  |  |
| Negeri            | 295    | 187            | 104     | 4              | 1,0313   |  |  |
| Swasta            | 160    | 84             | 0       | 76             | 0        |  |  |

Tabel 4.17 Hasil perhitungan nilai Entropy perulangan ke-4

Setelah mendapatkan nilai *entropy* maka dilanjutkan dengan menghitung nilai *gain* kembali. Nilai *gain* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (3). Sehingga didapat nilai *gain* sebagai berikut:

|                       | Jumlah | SP  | Р   | KP  | entropy  | gain     |
|-----------------------|--------|-----|-----|-----|----------|----------|
| Total                 | 1281   | 798 | 374 | 110 | 1,24805  |          |
| Dalam Kota            |        |     |     |     |          | 0,760415 |
| Іуа                   | 0      | 0   | 0   | 0   | 0        |          |
| Tidak                 | 455    | 271 | 104 | 80  | 1,372882 |          |
| Penghasilan Orang tua |        |     |     |     |          | 1,24805  |
| Tinggi                | 7      | 0   | 0   | 7   | 0        |          |
| Sedang                | 271    | 271 | 0   | 0   | 0        |          |
| Rendah                | 177    | 0   | 104 | 73  | 0        |          |
| Sekolah               |        |     |     |     |          | 1,010554 |
| Negeri                | 295    | 187 | 104 | 4   | 1,0313   |          |
| Swasta                | 160    | 84  | 0   | 76  | 0        |          |

Tabel 4.18 Hasil perhitungan nilai Gain node 1.2

Setelah mendapatkan nilai *gain* dari data *di atas*, maka dapat dilihat nilai *gain* yang terbesar. Nilai *gain* yang terbesar akan menjadi node kedua. Berdasarkan data di atas, nilai *gain* terbesar terletak pada variabel penghasilan orang tua.

Tahapan selanjutnya yaitu penentuan node 1.2.1 Berdasarkan tabel 4.18 penghitungan nilai *entropy* dan *gain* dapat dibuat tabel sebagi berikut:

|            | Jumlah | Sangat<br>Potensi | Potensi | Kurang Potensi |
|------------|--------|-------------------|---------|----------------|
| Total      | 1281   | 798               | 374     | 110            |
| Dalam Kota |        |                   |         |                |
| Іуа        | 0      | 0                 | 0       | 0              |
| Tidak      | 455    | 271               | 104     | 80             |
| Sekolah    |        |                   |         |                |
| Negeri     | 295    | 187               | 104     | 4              |
| Swasta     | 160    | 84                | 0       | 76             |

**Tabel 4.19** Pengelompokan data perhitungan nilai *Entropy* perulangan ke-5

Setelah dilakukan pengelompakan, maka tahapan selanjutnya kembali menentukan nilai *entropy*. Nilai *entropy* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (2). Setelah dilakukan perhitungan nilai *entropy* maka akan didapat data sebagai berikut:

 Tabel 4.20 Hasil perhitungan nilai Entropy perulangan ke-5

|            | Jumlah | Sangat<br>Potensi | Potensi | Kurang<br>Potensi | entropy  |
|------------|--------|-------------------|---------|-------------------|----------|
| Total      | 1281   | 798               | 374     | 110               | 1,24805  |
| Dalam Kota |        |                   |         |                   |          |
| Іуа        | 0      | 0                 | 0       | 0                 | 0        |
| Tidak      | 455    | 271               | 104     | 80                | 1,372882 |
| Sekolah    |        |                   |         |                   |          |
| Negeri     | 295    | 187               | 104     | 4                 | 1,0313   |
| Swasta     | 160    | 84                | 0       | 76                | 0        |

Setelah mendapatkan nilai *entropy* maka dilanjutkan dengan menghitung nilai *gain* kembali, Nilai *gain* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (3). Setelah dilakukan perhitungan nilai *entropy* maka akan didapat data sebagai berikut:

Tabel 4.21 Hasil perhitungan nilai Gain node 1.2.1

|            | Jumlah | SP  | Р   | KP  | entropy  | gain     |  |
|------------|--------|-----|-----|-----|----------|----------|--|
| Total      | 1281   | 798 | 374 | 110 | 1,24805  |          |  |
| Dalam Kota |        |     |     |     |          | 0,760415 |  |
| Iya        | 0      | 0   | 0   | 0   | 0        |          |  |
| Tidak      | 455    | 271 | 104 | 80  | 1,372882 |          |  |
| Sekolah    |        |     |     |     |          |          |  |
| Negeri     | 295    | 187 | 104 | 4   | 1,0313   |          |  |
| Swasta     | 160    | 84  | 0   | 76  | 0        |          |  |

Berdasarkan tabel di atas maka node 1.2.1 terletak pada variabel sekolah.

## 4.1.5 Hasil Penerapan Algoritma Decision tree Menggunakan Microsoft Excel

Setelah dilakukan perhitungan manual menggunakan *Microsoft Excel* maka hasil dari algoritma *Decision tree* dapat digambarkan sebagai berikut:



Gambar 4.1 Hasil Agoritma Decision tree Menggunakan Microsoft Excel

## 4.1.6 Penerapan Algoritma Naïve Bayes Menggunakan Microsoft Excel

Dalam penerapan algoritma naïve bayes data yang di gunakan sebagai data trening yaitu 70% dan 30% akan digunakan sebagai data *testing*.

$$\frac{70}{100} \times 1281 = 896,7$$

Berdasarkan perhitungan di atas maka data trening yang akan digunakan berjumlah 897 *record* dan sisanya akan digunakan sebagai data *testing*.

Tahapan selanjutnya yaitu menghitung jumlah label, untuk mempermudah perhitungan maka dapat dibuat tabel sebagai berikut:

| Label   | Jumlah Data | Jumlah Seluruh Data | Hasil |
|---------|-------------|---------------------|-------|
| P(Y=SP) | 625         | 897                 | 0,69  |
| P(Y=P)  | 217         | 897                 | 0,24  |
| P(Y=KP) | 55          | 897                 | 0,06  |

 Tabel 4.22
 Menghitung jumlah label

Tabel 4.23 Mencari peluang dari variabel dalam kota

| Dalam Kota | SP  | Р   | KP |
|------------|-----|-----|----|
| Iya        | 514 | 143 | 29 |
| Tidak      | 111 | 74  | 26 |
| Total      | 625 | 217 | 55 |

Berdasarkan tabel di atas, maka dapat dihutung masing-masing label dengan menggunakan rumus peluang:

Perhitungan untuk kolom peluang sangat potensi P(SP)

$$\frac{514}{625} = 0,82$$
$$\frac{111}{625} = 0,18$$

Perhitungan untuk kolom peluang potensi P(P)

$$\frac{143}{217} = 0,66$$
$$\frac{74}{217} = 0,34$$

Perhitungan untuk kolom peluang kurang potensi P(KP)

$$\frac{29}{55} = 0,53$$

$$\frac{26}{55} = 0,47$$

Hasil perhitungan peluang dari varibel dalam kota, dapat di buat tabel sebagai berikut:

| Dalam Kota | SP  | Р   | KP | P(SP) | P(P) | P(KP) |
|------------|-----|-----|----|-------|------|-------|
| Iya        | 514 | 143 | 29 | 0,82  | 0,66 | 0,53  |
| Tidak      | 111 | 74  | 26 | 0,18  | 0,34 | 0,47  |
| Total      | 625 | 217 | 55 |       |      |       |

Tabel 4.24 Hasil peluang dari variabel dalam kota

| Total Alumni | SP  | Р   | KP |
|--------------|-----|-----|----|
| ≥15          | 424 | 0   | 0  |
| ≥9           | 0   | 129 | 0  |
| ≤8           | 90  | 14  | 29 |
| ≥12          | 4   | 0   | 0  |
| ≥7           | 0   | 48  | 0  |
| <7           | 107 | 26  | 26 |
| Total        | 625 | 217 | 55 |

 Tabel 4.25 Mencari peluang dari variabel total alumni

Berdasarkan tabel di atas, maka dapat dihutung masing-masing label dengan menggunakan rumus peluang:

Perhitungan untuk kolom peluang sangat potensi P(SP)

$$\frac{424}{625} = 0,68$$
$$\frac{0}{625} = 0,00$$
$$\frac{90}{625} = 0,14$$
$$\frac{4}{625} = 0,01$$

$$\frac{0}{625} = 0,00$$
$$\frac{107}{625} = 0,17$$

Perhitungan untuk kolom peluang potensi P(P)

$$\frac{0}{217} = 0,00$$
$$\frac{129}{217} = 0,59$$
$$\frac{14}{217} = 0,06$$
$$\frac{0}{217} = 0,00$$
$$\frac{48}{217} = 0,22$$
$$\frac{26}{217} = 0,12$$

Perhitungan untuk kolom peluang kurang potensi P(KP)

$$\frac{0}{55} = 0,00$$
$$\frac{0}{55} = 0,00$$
$$\frac{29}{55} = 0,53$$
$$\frac{0}{55} = 0,00$$
$$\frac{0}{55} = 0,00$$
$$\frac{26}{55} = 0,47$$

Hasil perhitungan peluang dari varibel total alumni, dapat di buat tabel sebagai berikut:

| Total Alumni | SP  | Р   | KP | P(SP) | P(P) | P(KP) |
|--------------|-----|-----|----|-------|------|-------|
| ≥15          | 424 | 0   | 0  | 0,68  | 0,00 | 0,00  |
| ≥9           | 0   | 129 | 0  | 0,00  | 0,59 | 0,00  |

Tabel 4.26 Hasil peluang dari variabel total alumni

| $\leq 8$ | 90  | 14  | 29 | 0,14 | 0,06 | 0,53 |
|----------|-----|-----|----|------|------|------|
| ≥12      | 4   | 0   | 0  | 0,01 | 0,00 | 0,00 |
| ≥7       | 0   | 48  | 0  | 0,00 | 0,22 | 0,00 |
| <7       | 107 | 26  | 26 | 0,17 | 0,12 | 0,47 |
| Total    | 625 | 217 | 55 |      |      |      |

Tabel 4.27 Mencari peluang dari variabel pengasilan orang tua

| Penghasilan orang tua | SP  | Р   | KP |
|-----------------------|-----|-----|----|
| Tinggi                | 27  | 9   | 11 |
| Sedang                | 520 | 130 | 0  |
| Rendah                | 78  | 78  | 44 |
| Total                 | 625 | 217 | 55 |

Berdasarkan tabel di atas, maka dapat dihutung masing-masing label dengan menggunakan rumus peluang:

Perhitungan untuk kolom peluang sangat potensi P(SP)

$$\frac{27}{625} = 0,04$$
$$\frac{520}{625} = 0,83$$
$$\frac{78}{625} = 0,12$$

Perhitungan untuk kolom peluang potensi P(P)

$$\frac{9}{217} = 0.04$$
$$\frac{130}{217} = 0.60$$
$$\frac{78}{217} = 0.36$$

Perhitungan untuk kolom peluang kurang potensi P(KP)

$$\frac{11}{55} = 0,20$$
$$\frac{0}{55} = 0,00$$

$$\frac{44}{55} = 0,80$$

Hasil perhitungan peluang dari varibel penghasilan orang tua, dapat di buat tabel sebagai berikut:

| Penghasilan<br>orang tua | SP  | Р   | KP | P(SP) | P(P) | P(KP) |
|--------------------------|-----|-----|----|-------|------|-------|
| Tinggi                   | 27  | 9   | 11 | 0,04  | 0,04 | 0,20  |
| Sedang                   | 520 | 130 | 0  | 0,83  | 0,60 | 0,00  |
| Rendah                   | 78  | 78  | 44 | 0,12  | 0,36 | 0,80  |
| Total                    | 625 | 217 | 55 |       |      |       |

Tabel 4.28 Hasil peluang dari variabel penghasilan orang tua

 Tabel 4.29
 Mencari peluang dari variabel asal sekolah

| Asal Sekolah | SP  | Р   | KP |
|--------------|-----|-----|----|
| Negeri       | 384 | 165 | 5  |
| Swasta       | 241 | 52  | 50 |
| Total        | 625 | 217 | 55 |

Berdasarkan tabel di atas, maka dapat dihutung masing-masing label dengan menggunakan rumus peluang:

Perhitungan untuk kolom peluang sangat potensi P(SP)

$$\frac{384}{625} = 0,61$$
$$\frac{241}{625} = 0,39$$

Perhitungan untuk kolom peluang potensi P(P)

$$\frac{165}{217} = 0,76$$
$$\frac{52}{217} = 0,24$$

Perhitungan untuk kolom peluang kurang potensi P(KP)

$$\frac{5}{55} = 0,09$$

$$\frac{50}{55} = 0,91$$

Hasil perhitungan peluang dari varibel asal sekolah, dapat di buat tabel sebagai berikut:

| Asal Sekolah | SP  | Р   | KP | P(SP) | P(P) | P(KP) |
|--------------|-----|-----|----|-------|------|-------|
| Negeri       | 384 | 165 | 5  | 0,61  | 0,76 | 0,09  |
| Swasta       | 241 | 52  | 50 | 0,39  | 0,24 | 0,91  |
| Total        | 625 | 217 | 55 |       |      |       |

Tabel 4.30 Hasil peluang dari variabel asal sekolah

Setelah mencari peluang dari setiap label dan varibel maka tahapan selanjutnya menghitung probabilitas dari setiap record dari data testing. Nilai peluang pada algoritma naïve bayes dapat juga ditentukan menggunakan formula pada Microsoft Excel, yang merupakan penerjemahan dari Persamaan (4). Tabel-tabel yang telah dibuat sebelumnya dimasukan kedalam Microsoft Excel sehingga akan tampil seperti gambar di bawah ini:

|    | A                     | В   | С   | D  | E     | F    | G     | н | I       | J              | к                 |
|----|-----------------------|-----|-----|----|-------|------|-------|---|---------|----------------|-------------------|
| 1  | Dalam Kota            | SP  | Р   | KP | P(SP) | P(P) | P(KP) |   | Label   | Jumlah<br>Data | Jumlah Seluruh Da |
| 2  | Iya                   | 514 | 143 | 29 | 0,82  | 0,66 | 0,53  |   | P(Y=SP) | 625            | 897               |
| 3  | Tidak                 | 111 | 74  | 26 | 0,18  | 0,34 | 0,47  |   | P(Y=P)  | 217            | 897               |
| 4  | Total                 | 625 | 217 | 55 |       |      |       |   | P(Y=KP) | 55             | 897               |
| 5  |                       |     |     |    | •     |      |       |   |         |                |                   |
| 6  | Total Alumni          | SP  | Р   | KP | P(SP) | P(P) | P(KP) |   |         |                |                   |
| 7  | ≥15                   | 424 | 0   | 0  | 0,68  | 0,00 | 0,00  |   |         |                |                   |
| 8  | ≥9                    | 0   | 129 | 0  | 0,00  | 0,59 | 0,00  |   |         |                |                   |
| 9  | ≤8                    | 90  | 14  | 29 | 0,14  | 0,06 | 0,53  |   |         |                |                   |
| 10 | ≥12                   | 4   | 0   | 0  | 0,01  | 0,00 | 0,00  |   |         |                |                   |
| 11 | ≥7                    | 0   | 48  | 0  | 0,00  | 0,22 | 0,00  |   |         |                |                   |
| 12 | <7                    | 107 | 26  | 26 | 0,17  | 0,12 | 0,47  |   |         |                |                   |
| 13 | Total                 | 625 | 217 | 55 |       |      |       |   |         |                |                   |
| 14 |                       |     |     |    | -     |      |       |   |         |                |                   |
| 15 | Penghasilan orang tua | SP  | Р   | KP | P(SP) | P(P) | P(KP) |   |         |                |                   |
| 16 | Tinggi                | 27  | 9   | 11 | 0,04  | 0,04 | 0,20  |   |         |                |                   |
| 17 | Sedang                | 520 | 130 | 0  | 0,83  | 0,60 | 0,00  |   |         |                |                   |
| 18 | Rendah                | 78  | 78  | 44 | 0,12  | 0,36 | 0,80  |   |         |                |                   |
| 19 | Total                 | 625 | 217 | 55 |       |      |       |   |         |                |                   |
| 20 |                       |     |     |    | -     |      |       |   |         |                |                   |
| 21 | Asal Sekolah          | SP  | Р   | KP | P(SP) | P(P) | P(KP) |   |         |                |                   |
| 22 | Negeri                | 384 | 165 | 5  | 0,61  | 0,76 | 0,09  |   |         |                |                   |
| 23 | Swasta                | 241 | 52  | 50 | 0,39  | 0,24 | 0,91  |   |         |                |                   |
| 24 | Total                 | 625 | 217 | 55 |       |      |       |   |         |                |                   |

0,06

Gambar 4.2 Hasil perhitungan peluang dari setiap variabel menggunakan Microsoft Excel

Setelah tampil seperti pada gambar 4.2 kemudian memasukan data *testing* pada file dan *sheet* yang sama, tepat pada bagian bawa tabel asal sekolah, untuk mempermudah perhitungan manual pada *Microsoft Excel*.



Gambar 4.3 Cara perhitungan naïve bayes menggunakan Microsoft Excel

Nilai probabilitas pada algoritma naïve bayes dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (4).

# =\$L\$2\*VLOOKUP(B27;\$A\$2:\$G\$3;5;)\*VLOOKUP(C27;\$A\$7:\$G\$12;5;)\*VLO OKUP(D27;\$A\$16:\$G\$18;5;)\*VLOOKUP(E27;\$A\$22:\$G\$23;5;)

Kolom L baris ke2 merupan probabilitas dari label sangat potensi, kemudian menggunakan perulangan dan memasukan cell B27, dan diikuti cell A2 hingga G3, angka 5 di atas merupakan petunjuk bahwa probabilitas sangat potensi dari setiap variabel berada di kolom ke-5 dan di tutup dengan tanda kurung, formula di atas di lakukan perulangan sebanyak variabel yang ada, kemudian tekan enter. Nilai probabilitas dari data *testing* akan muncul kemudian ditarik kebawah, sehingga setiap record dari data *testing* akan terisi otomatis, untuk perhitungan cell I27 cukup mengganti angka 5 di atas menjadi angka 6, dikarenakan probabilitas potensi dari setiap variabel berada di kolom 6, dan mengganti cell L2 menjadi L3, dikarenakan probabilitas dari label pontesi keseluruhan terletak pada

cell L3, peraturan ini dapat di lakukan juga untuk menghitung probabilitas dari label kurang potensi.

### 4.1.7 Hasil Algoritma Naïve Bayes Menggunakan Microsoft Excel

Setelah dilakukan perhitungan peluang dari masing-masing variabel maka dari nilai peluang tersebut, data *testing* dapat diklasifikasikan berdasarkan nilai peluang tertinggi, sehingga dapat di simpulkan sebagaimana tabel di bawah ini:

| No       | dalam<br>kota | total<br>alumni | penghasilan<br>orang tua | asal<br>sekolah | Lab<br>el | Sangat<br>Potensi | Poten<br>si | Kurang<br>Potensi | Hasil<br>predik<br>si |
|----------|---------------|-----------------|--------------------------|-----------------|-----------|-------------------|-------------|-------------------|-----------------------|
| 1.       | tidak         | ≥7              | sedang                   | negeri          | Р         | 0,00%             | 0,82<br>%   | 0,00%             | Р                     |
| 2.       | tidak         | <7              | sedang                   | swasta          | SP        | 0,67%             | 0,14<br>%   | 0,00%             | SP                    |
| 3.       | tidak         | <7              | rendah                   | swasta          | KP        | 0,10%             | 0,08<br>%   | 0,98%             | KP                    |
| 4.       | tidak         | <7              | sedang                   | swasta          | SP        | 0,67%             | 0,14<br>%   | 0,00%             | SP                    |
| 5.       | tidak         | <7              | sedang                   | swasta          | SP        | 0,67%             | 0,14<br>%   | 0,00%             | SP                    |
| 6.       | tidak         | ≥7              | sedang                   | negeri          | Р         | 0,00%             | 0,82<br>%   | 0,00%             | Р                     |
| 7.       | tidak         | <7              | sedang                   | negeri          | SP        | 1,07%             | 0,45<br>%   | 0,00%             | SP                    |
| 8.       | tidak         | <7              | sedang                   | negeri          | SP        | 1,07%             | 0,45<br>%   | 0,00%             | SP                    |
| 9.       | tidak         | <7              | rendah                   | negeri          | Р         | 0,16%             | 0,27<br>%   | 0,10%             | Р                     |
| 10.      | tidak         | <7              | sedang                   | negeri          | SP        | 1,07%             | 0,45<br>%   | 0,00%             | SP                    |
|          |               |                 |                          |                 |           |                   |             |                   |                       |
| 38<br>4. | tidak         | <7              | sedang                   | negeri          | SP        | 1,07%             | 0,45<br>%   | 0,00%             | SP                    |

Tabel 4.31 Hasil perhitungan naïve bayes menggunakan Microsoft Excel

Berdasarkan tabel di atas maka dapat dilihat presentase dari setaiap baris, presentase teringgi merupakan hasil keputusan dari data *testing* sersebut. Contoh, pada data *testing* ke-1 menujukan presentase tertinggi terletak pada kolom potensi, dengan peluang 0,82% sehingga data *testing* ke-1 masuk kedalam klasifikasi potensi.

# 4.1.8 Penerapan Algoritma K- Nearest Neighbor Menggunakan Microsoft Excel

Penerapan algoritma *K-nearest neighbor* dibutuhkan tranformasi data dari kategorikal menjadi numerikal untuk mempermudah proses perhitungan. Proses tranformasi dapat dilihat pada tabel di bawah ini:

| Dalam Kota | Hasil Transformasi |
|------------|--------------------|
| Iya        | 1                  |
| Tidak      | 2                  |

 Tabel 4.32
 Tranformasi variabel dalam kota Algoritma K- Nearest Neighbor

Tabel 4.33 Tranformasi Variabel Total Alumni Algoritma K- Nearest Neighbor

| Total Alumni | Hasil Transformasi |
|--------------|--------------------|
| ≥15          | 115                |
| ≥9           | 19                 |
| _≤8          | 18                 |
| ≥12          | 212                |
| ≥7           | 28                 |
| <7           | 27                 |

Angka 1 pada hasil tranformasi melambangkan dari dalam kota, dan angka 2 melambangkan luar kota. Sebagai contoh 115, 1 melambangkan dalam kota dan 15 melambangkan lebih dari 15 alumni yang telah mendaftar di kampus Intitut Informatika dan Bisnis Darmajaya.

Tabel 4.34 Tranformasi variabel penghasilan Algoritma K- Nearest Neighbor

| Penghasilan Orang Tua | Hasil Transformasi |
|-----------------------|--------------------|
| Rendah                | 1                  |
| Sedang                | 2                  |
| Rendah                | 3                  |

| Tabel 4 | 4.35 | tranformasi | Asal | Sekolah | Algoritma | <i>K</i> - | Nearest | Neighbor |
|---------|------|-------------|------|---------|-----------|------------|---------|----------|
|         |      |             |      |         | 0         |            |         | 0        |

| Penghasilan Orang Tua | Hasil Transformasi |
|-----------------------|--------------------|
| Negeri                | 1                  |

| Swasta | 2 |
|--------|---|
|        |   |

setelah dilakukan tranformasi dari kategorikal menjadi numerikal dari setiap variabel, maka tahapan selanjutnya mamasukan hasil tranformasi kedalam software *Microsoft Excel*, sehingga akan tampil seperti gambar di bawah ini:

| I |                            |           |       |                  |          |           |   |   |            |
|---|----------------------------|-----------|-------|------------------|----------|-----------|---|---|------------|
| Į | H46 ▼ : × ✓ f <sub>x</sub> |           |       |                  |          |           |   |   |            |
| I | A                          |           |       |                  |          |           |   | н | <u>і</u> і |
| İ | 1 nama                     | dalam kot | total | penghasilan ortu | sekolah  | keteranga | n |   |            |
| İ | 2 AARON ANG SAPUTRA        | 1         | 18    | 2                | 2        | 2         |   |   |            |
| I | 3 ABDATA DENIS TARADIKA    | 1         | 19    | 2                | 1        | 2         |   |   |            |
| I | 4 ABDUL HAMID              | 1         | 115   | 2                | 1        | 3         |   |   |            |
| I | 5 ABDULLATIF ANGGA SAPUTRA | 2         | 27    | 1                | 2        | 1         |   |   |            |
| I | 6 ABDURAHMAN M SYARAFI     | 1         | 115   | 2                | 2        | 3         |   |   |            |
| I | 7 ABIZAL RAHMADAN          | 1         | 19    | 2                | 1        | 2         |   |   |            |
| I | 8 ACHMAD RIDO DINATA       | 2         | 27    | 2                | 2        | 2         |   |   |            |
| I | 9 ACHMAD RIYANSYAH         | 1         | 115   | 2                | 1        | 3         |   |   |            |
| I | 10 ACHMAD YUSTAN THORIQ    | 1         | 115   | 2                | 1        | 3         |   |   |            |
| I | 11 ADAM PUTRASYAWALDI      | 1         | 19    | 2                | 2        | 2         |   |   |            |
| I | 12 ADANG TARUNA            | 2         | 27    | 2                | 1        | 2         |   |   |            |
| ļ | 13 ADE DEL ALVI            | 1         | 115   | 1                | 1        | 3         |   |   |            |
| I | 14 ADE KURNIASIH           | 2         | 27    | 2                | 1        | 2         |   |   |            |
| ļ | 15 ADE SAPUTRO             | 2         | 27    | 2                | 1        | 2         |   |   |            |
| Į | 16 ADE SETIYAWAN           | 1         | 115   | 2                | 1        | 3         |   |   |            |
| I | 17 ADELIA ALICA RIANDA     | 1         | 19    | 2                | 2        | 2         |   |   |            |
| Į | 18 ADELILA PUTRI           | 1         | 115   | 3                | 1        | 3         |   |   |            |
| Į | 19 ADELLA MARSHA SAFIRA    | 1         | 115   | 2                | 1        | 3         |   |   |            |
| ļ | 20 ADELLIA ERWAN           | 2         | 28    | 2                | 1        | 2         |   |   |            |
| Į | 21 ADHELYA VIRANTI         | 1         | 115   | 2                | 1        | 3         |   |   |            |
| ļ | 22 ADHIT ARI SAPUTRA       | 1         | 115   | 3                | 2        | 3         |   |   |            |
| 1 |                            | 6         | 20    | 5                | <b>1</b> | 6         |   |   |            |

Gambar 4.4 Hasil Tansformasi KKN menggunakan Microsoft Excel

Setelah tampil seperti gambar 4.4 tahapan selanjutnya yaitu penentuan sampel yang akan dijadikan data *training* dalam perhituangan manual atau perhitungan menggunakan *Microsoft Excel*. Dalam penentuan data *testing* secara acak maka menggunakan formula =RAND() kemudian setelah semua data mendapat nilai dari formula ini, maka semua nilai di block dan menekan tombol CTRL+C kemudian menekan PASTE yang teletak di sebelah kiri atas, terlihat pada gambar:

| ⊟ ॸऀॱ ॓ॱ Ŧ                   |                                |              |                | B                                            | 300k1.xlsx - Excel ( | Product Activation   | Failed)                              |
|------------------------------|--------------------------------|--------------|----------------|----------------------------------------------|----------------------|----------------------|--------------------------------------|
| File Home In                 | sert Page Layout               | Formulas Dat | ta Review      | View Help                                    | Q Tell me what       | t you want to do     |                                      |
| Paste                        | • 11 •<br><u>⊔</u> •   ⊞ •   ⊘ |              | = »<br>= = € = | <mark>ۇ</mark> 후 Wrap Text<br>편 Merge & Cent | ter ~ 🚰 ~ %          | • • 0.00<br>• • 0.00 | Conditional Form<br>Formatting ~ Tab |
| Paste                        | Font                           |              | Alignme        | ent                                          | l⊠ Nu                | umber 🗔              | Style                                |
| 💼 💃 🕏                        | $\times \checkmark f_x$ A      | CAK          |                |                                              |                      |                      |                                      |
| 💼 🛱 😰                        | C D                            | E            | F G            | н                                            | I J                  | К                    | L M                                  |
| Paste Values                 | 28 2                           | 1 2          | 0,98871        | 4                                            |                      |                      |                                      |
| <b>^</b>                     | 115 2                          | 1 3          | 0,98969        | 5                                            |                      |                      |                                      |
| 123 123 123                  | 27 2                           | 2 2          | 0,9898         | 9                                            |                      |                      |                                      |
| Other Paste Options          | 19 2                           | 2 2          | 0,99070        | 2                                            |                      |                      |                                      |
| 🧏 👝 🗔 👼                      | 115 1                          | 1 3          | 0,99098        | 7                                            |                      |                      |                                      |
| Paste Special                | 28 2                           | 1 2          | 0,99101        | 2                                            |                      |                      |                                      |
| ZOB LALA NUK 1               | 115 2                          | 1 3          | 0,99233        | 8                                            |                      |                      |                                      |
| 269 CANDRA N2                | 212 2                          | 1 3          | 0,99264        | 6.                                           |                      |                      |                                      |
| 270 SELLY DES <sup>1</sup> 1 | 18 1                           | 1 2          | 0,99396        | 4                                            |                      |                      |                                      |
| 271 YUDO 2                   | 27 2                           | 1 2          | 0,99447        | 2                                            |                      |                      |                                      |
| 272 Deasy Gay 1              | 18 2                           | 2 3          | 0,99461        | 4                                            |                      |                      |                                      |
| 273 MUHAMM1                  | 19 1                           | 1 2          | 0,99562        | 2                                            |                      |                      |                                      |
| 274 DHIAN VE 1               | 115 2                          | 1 3          | 0,99571        | 7                                            |                      |                      |                                      |
| 275 RABEKKA 2                | 28 2                           | 1 2          | 0,99574        | 5                                            |                      |                      |                                      |

Gambar 4.5 Proses Sampling KKN menggunakan Microsoft Excel

Tahapan selanjutnya yaitu *block* semua angka dan data dengan menekan tombol CTRL+A dan pilih tools DATA yang berada di bagian atas, kemudian SHORT dan pilih yang ACAK dan tekan OK, maka akan tampil:

|                                                       | 🖂 Ruler 🗹 Formula B                     | ar Q      |                | Q                  |                   |                          | Split     |
|-------------------------------------------------------|-----------------------------------------|-----------|----------------|--------------------|-------------------|--------------------------|-----------|
| Normal Page Break Page Custom<br>Preview Layout Views | 🗌 Gridlines 🗹 Headings                  | Zoor      | n 100% Z<br>Se | oom to<br>election | New Arr<br>Window | ange Freeze<br>All Panes | , Dunhide |
| Workbook Views                                        | Show                                    |           | Zoom           |                    |                   |                          | W         |
|                                                       |                                         | _         | _              | _                  | _                 | _                        | _         |
| 140 • X V                                             | Ĵx                                      |           |                |                    |                   |                          |           |
| A                                                     |                                         | В         | с              | D                  |                   |                          |           |
| 1 nama                                                |                                         | dalam kot | total          | penghasi           | l sekolah         | keteranga                | ACAK      |
| 2 AGUNG ROMADHON                                      |                                         | 2         | 28             | 1                  | 1                 | 2                        | 0,000476  |
| 3 SAPRI SETIAWAN                                      |                                         | 2         | 27             | 2                  | 1                 | 2                        | 0,001559  |
| 4 SALSABILLA ANANDA PUTRI                             |                                         | 1         | 115            | 2                  | 1                 | 3                        | 0,001988  |
| 5 NICOLAS YUDA DINATA                                 |                                         | 2         | 27             | 2                  | 1                 | 2                        | 0,002007  |
| 6 YUSRON DAROZAT                                      |                                         | 2         | 27             | 1                  | 2                 | 1                        | 0,002023  |
| 7 AHMAD MURDIFIN                                      |                                         | 1         | 19             | 2                  | 1                 | 2                        | 0,004098  |
| 8 FARREL IRGIA REVA                                   |                                         | 2         | 27             | 2                  | 1                 | 2                        | 0,004192  |
| 9 ANITA SARI DWIYANI                                  |                                         | 2         | 28             | 2                  | 1                 | 2                        | 0,00492   |
| 10 SYALSA ENGELICHA AGUSTIN                           |                                         | 2         | 27             | 2                  | 2                 | 2                        | 0,006791  |
| 11 DERJA ROBBANI                                      |                                         | 1         | 115            | 2                  | 1                 | 3                        | 0,007037  |
| 12 RODHI FAISAL MUFID                                 |                                         | 2         | 27             | 1                  | 1                 | 2                        | 0,007599  |
| 13 MAYA WIRLINDA KURNIAWAT                            | l i i i i i i i i i i i i i i i i i i i | 2         | 27             | 1                  | 2                 | 1                        | 0,007632  |
| 14 ADELLIA ERWAN                                      |                                         | 2         | 28             | 2                  | 1                 | 2                        | 0,007658  |
| 15 EDO PRATAMA PUTRA ARISDA                           |                                         | 2         | 27             | 1                  | 1                 | 2                        | 0,007733  |
| 16 PUTRI WULANDARI                                    |                                         | 1         | 115            | 2                  | 2                 | 3                        | 0,008078  |
| 17 ANNISA YULIA ZARA TINI                             |                                         | 2         | 27             | 2                  | 1                 | 2                        | 0,008573  |

Gambar 4.6 Hasil Sampling KKN menggunakan Microsoft Excel

Berdasarkan gambar *di atas* maka didapat 15 sample secara acak yang akan dijadikan data latih atau data *training* sebagai berikut:

| Nama                     | Dalam<br>Kota | total | Penghasilan<br>Orang Tua | Sekolah | Ket. |
|--------------------------|---------------|-------|--------------------------|---------|------|
| Agung Romadhon           | 2             | 28    | 1                        | 1       | 2    |
| Sapri Setiawan           | 2             | 27    | 2                        | 1       | 2    |
| Salsabilla Ananda Putri  | 1             | 115   | 2                        | 1       | 3    |
| Nicolas Yuda Dinata      | 2             | 27    | 2                        | 1       | 2    |
| Yusron Darozat           | 2             | 27    | 1                        | 2       | 1    |
| Ahmad Murdifin           | 1             | 19    | 2                        | 1       | 2    |
| Farrel Irgia Reva        | 2             | 27    | 2                        | 1       | 2    |
| Anita Sari Dwiyani       | 2             | 28    | 2                        | 1       | 2    |
| Syalsa Engelicha Agustin | 2             | 27    | 2                        | 2       | 2    |
| Derja Robbani            | 1             | 115   | 2                        | 1       | 3    |
| Rodhi Faisal Mufid       | 2             | 27    | 1                        | 1       | 2    |
| Maya Wirlinda K.         | 2             | 27    | 1                        | 2       | 1    |
| Adellia Erwan            | 2             | 28    | 2                        | 1       | 2    |
| Edo Pratama Putra A.     | 2             | 27    | 1                        | 1       | 2    |
| Putri Wulandari          | 1             | 115   | 2                        | 2       | 3    |

 Tabel 4.36 Data Training Algoritma K- Nearest Neighbor

Setelah mendapatkan data training di atas maka, akan di lakukan data testing:

 Tabel 4.37 Data Testing Algoritma K- Nearest Neighbor

| Nama                 | Dalam<br>Kota | Total | Pengahasilan<br>Orang Tua | Asal<br>Sekolah | Ket. |
|----------------------|---------------|-------|---------------------------|-----------------|------|
| Annisa Yulia Zara T. | 2             | 27    | 2                         | 1               | ?    |

Dalam penentuan variabel keterangan pada data *testing di atas* maka tahapan pertama yaitu menentukan *Euclidean distance*.

Nilai *Euclidean distance* dapat juga ditentukan menggunakan formula pada *Microsoft Excel*, yang merupakan penerjemahan dari Persamaan (1) yaitu:

 $= SQRT((B2-\$B\$18)^{2}+(C2-\$C\$18)^{2}+(D2-\$D\$18)^{2}+(E2-\$E\$18)^{2})$ 

Dapat dijelaskan bahwa cell B2 dikurang dengan cell B18 yang berupakan data

*testing* kemudia di pangkatkan dengan 2, dan ditambah dengan cell C2 yang merupakan data trening dan di kurang cell C18 yang merupakan data *testing*, di lakukan perulangan sebanyak varibael yang ada sebnyak data *testing*, kemudian dapat di hasilkan nilai *Euclidean distance* dari setiap data *testing* yang ada, dalam penelitian ini menggunakan K=3 sehingga K3 yang mendekati yaitu *kluster* dari variabel data *testing*.

dapat dilihat pada gambar dibawah ini nilai *Euclidean distance* dari setiap data *record*:

| SI | JM 🔹 : 🗙 🗸               | <i>f</i> ∗ =SQ | RT( <mark>(B2-\$B</mark> \$ | 518)^2+(C2- | -\$C\$18)^2+ | +(D2-\$ <b>D\$1</b> 8 | )^2+(E2-\$B | <mark>\$18)</mark> ^2) |  |
|----|--------------------------|----------------|-----------------------------|-------------|--------------|-----------------------|-------------|------------------------|--|
|    | A                        | В              | с                           | D           | E            | F                     | G           | н                      |  |
| 1  | nama                     | dalam kot      | total                       | penghasil   | sekolah      | keteranga             | n           | DISTANCE               |  |
| 2  | AGUNG ROMADHON           | 2              | 28                          | 1           | 1            | 2                     |             | \$18)^2)               |  |
| 3  | SAPRI SETIAWAN           | 2              | 27                          | 2           | 1            | 2                     |             | 0                      |  |
| 4  | SALSABILLA ANANDA PUTRI  | 1              | 115                         | 2           | 1            | 3                     |             | 88,00568               |  |
| 5  | NICOLAS YUDA DINATA      | 2              | 27                          | 2           | 1            | 2                     |             | 0                      |  |
| 6  | YUSRON DAROZAT           | 2              | 27                          | 1           | 2            | 1                     |             | 1,414214               |  |
| 7  | AHMAD MURDIFIN           | 1              | 19                          | 2           | 1            | 2                     |             | 8,062258               |  |
| 8  | FARREL IRGIA REVA        | 2              | 27                          | 2           | 1            | 2                     |             | 0                      |  |
| 9  | ANITA SARI DWIYANI       | 2              | 28                          | 2           | 1            | 2                     |             | 1                      |  |
| 10 | SYALSA ENGELICHA AGUSTIN | 2              | 27                          | 2           | 2            | 2                     |             | 1                      |  |
| 11 | DERJA ROBBANI            | 1              | 115                         | 2           | 1            | 3                     |             | 88,00568               |  |
| 12 | RODHI FAISAL MUFID       | 2              | 27                          | 1           | 1            | 2                     |             | 1                      |  |
| 13 | MAYA WIRLINDA KURNIAWATI | 2              | 27                          | 1           | 2            | 1                     |             | 1,414214               |  |
| 14 | ADELLIA ERWAN            | 2              | 28                          | 2           | 1            | 2                     |             | 1                      |  |
| 15 | EDO PRATAMA PUTRA ARISDA | 2              | 27                          | 1           | 1            | 2                     |             | 1                      |  |
| 16 | PUTRI WULANDARI          | 1              | 115                         | 2           | 2            | 3                     |             | 88,01136               |  |
| 17 |                          |                |                             |             |              |                       |             |                        |  |
| 18 | ANNISA YULIA ZARA TINI   | 2              | 27                          | 2           | 1            | ?                     |             |                        |  |
| 19 |                          |                |                             |             |              | -                     |             |                        |  |

Gambar 4.7 Hasil Nilai Euclidean distance menggunakan Microsoft Excel

Setelah mendapatkan nilai *Euclidean distance* dari setiap *record* data *testing* yaitu penentuan rangking dari *record* yang ada, dalam penelitian ini menggunakan K=3 yang artinya 3 nilai yang mendekati merupan hasil dari klasifikasi data *testing*, untuk mendapatkan rangking dari *Euclidean distance* dapat mengunakan formula:

### =RANK(H2;\$H\$2:\$H\$16;1)

H2 atau *cell* H2 merupakan nilai *euclidean distance* dari *record* data *testing* pertama, kemudian *cell* H2 hingga H16 merupakan nilai *euclidean distance* dari setiap *record* data *testing*, dapat di lihat hasil rangking pada gambar di bawah ini:

| С  | lipboard | L2     |       |        | Font  |                |         |           |      |                       | Alignme | ent       | 5  | a Nu     | ımber    | 5   |
|----|----------|--------|-------|--------|-------|----------------|---------|-----------|------|-----------------------|---------|-----------|----|----------|----------|-----|
| S  | UM       | Ŧ      |       | ×      | ~     | f <sub>x</sub> | =RA     | NK(H2;\$F | ł\$2 | 2:\$H\$16; <b>1</b> ) |         |           |    |          |          |     |
|    | 1        |        | A     |        |       |                | В       | с         |      | D                     | E       | F         | G  | н        | I        | J   |
| 1  | nama     |        |       |        |       | dal            | lam kot | total     |      | penghasil             | sekolah | keteranga | an | DISTANCE | RANK     |     |
| 2  | AGUNG    | ROM    | ADH   | DN     |       | 2              |         | 2         | 8    | 1                     | 1       | 2         |    | 1,414214 | H\$16;1) |     |
| 3  | SAPRI S  | ΕΤΙΑΝ  | VAN   |        |       | 2              |         | 2         | 7    | 2                     | 1       | 2         |    | 0        | 1        | í – |
| 4  | SALSAB   | ILLA A | NAN   | IDA PU | ITRI  | 1              |         | 11        | 5    | 2                     | 1       | 3         |    | 88,00568 | 13       |     |
| 5  | NICOLA   | S YUD  | A DI  | NATA   |       | 2              |         | 2         | 7    | 2                     | 1       | 2         |    | 0        | 1        |     |
| 6  | YUSRON   | N DAR  | OZAT  | Г      |       | 2              |         | 2         | 7    | 1                     | 2       | 1         |    | 1,414214 | 9        |     |
| 7  | AHMAD    | MUR    | DIFIN | N      |       | 1              |         | 1         | 9    | 2                     | 1       | 2         |    | 8,062258 | 12       |     |
| 8  | FARREL   | IRGIA  | REV   | Α      |       | 2              |         | 2         | 7    | 2                     | 1       | 2         |    | 0        | 1        |     |
| 9  | ANITA S  | ARI D  | WIY/  | ANI    |       | 2              |         | 2         | 8    | 2                     | 1       | 2         |    | 1        | 4        |     |
| 10 | SYALSA   | ENGE   | LICH. | A AGU  | STIN  | 2              |         | 2         | 7    | 2                     | 2       | 2         |    | 1        | 4        |     |
| 11 | DERJA F  | OBBA   | NI    |        |       | 1              |         | 11        | 5    | 2                     | 1       | 3         |    | 88,00568 | 13       | ĺ   |
| 12 | RODHI    | AISA   | LMU   | FID    |       | 2              |         | 2         | 7    | 1                     | 1       | 2         |    | 1        | 4        |     |
| 13 | MAYA V   | VIRLIN | IDA I | (URNI) | AWATI | 2              |         | 2         | 7    | 1                     | 2       | 1         |    | 1,414214 | 9        |     |
| 14 | ADELLIA  | A ERW  | AN    |        |       | 2              |         | 2         | 8    | 2                     | 1       | 2         |    | 1        | 4        | ĺ   |
| 15 | EDO PR   | АТАМ   | A PU  | TRA A  | RISDA | 2              |         | 2         | 7    | 1                     | 1       | 2         | ]  | 1        | 4        |     |
| 16 | PUTRI V  | VULAN  | NDAF  | RI 👘   |       | 1              |         | 11        | 5    | 2                     | 2       | 3         | ]  | 88,01136 | 15       |     |
| 17 |          |        |       |        |       |                |         |           |      |                       |         |           | _  |          |          |     |
| 18 | ANNISA   | YULI   | A ZAF | RA TIN | I     | 2              |         | 2         | 7    | 2                     | 1       | ?         |    |          |          |     |
| 10 |          |        |       |        |       |                |         |           |      |                       |         |           | -  |          |          |     |

Gambar 4.8 Hasil Rangking Algoritma K- Nearest Neighbor

## 4.1.9 Hasil Algoritma K- Nearest Neighbor Menggunakan Microsoft Excel

Setelah dilakukan perhitungan nilai *euclidean distance* dan perangkingan maka data *testing* dengan nama Annisa Yulia Zara Tini yang berada di luar kota dengan kode numerik 2 dan total alumni kurang dari tujuh dengan kode numerik 27 penghasilan orang tua dalam kategori sedang di tujukkan dengan kode numerik 2 dan asal sekolah negeri ditunjukkan dengan kode numerik 1, termasuk kedalam klasifikasi lokasi promosi potensi ditujukkan dengan kode klasifikasi numerik 2, secara terperinci dapat di lihat pada gambar 4.8 rangking 1 terlihat lebih dari 2 dengan menggunakan aturan awal yaitu K=3.

## 4.1.10 Penerapan Algoritma Decision tree menggunakan Rapid Minner

Tahapan pertama untuk menggunakan *Rapid miner 9.8* yaitu melakukan instalasi terlebih dahulu kedalam perangkat yang akan digunakan, jika *software Rapid miner 9.8* sudah terinstalasi, maka tahapan selanjutnya, melakukan *import* data seperti yang telihat pada gambar di bawah ini:

| <u>File Edit Process View Connections Settings</u> | Extensions Help                                                          |
|----------------------------------------------------|--------------------------------------------------------------------------|
|                                                    | nport Data - Where is your data?                                         |
| Repository ×                                       | Where is your data?                                                      |
| Training Resources (connected)                     |                                                                          |
| Samples                                            |                                                                          |
| Community Samples (connected)                      | My Computer Education Database                                           |
| Local Repository (Local)                           |                                                                          |
| robbyprakatek (Local)                              | Import data from file-based data sources like Excel, CSV, SAS or Access. |
| DB (Legacy)                                        | Get support for more data sources from the RapidMiner Marketplace!       |
|                                                    |                                                                          |
| Operators ×                                        |                                                                          |
| Search for Operators                               |                                                                          |
| Data Access (58)                                   |                                                                          |

Gambar 4.9 Import data kedalam Rapid miner 9.8

Setelah tampilan terlihat seperti gambar 4.9 maka tekan opsi *My Computer*, karena data yang akan di olah terletak pada komputer, kemudian pilih *file* sesuai dengan *file* data yang tersimpan dan yang akan diolah.

Tahapan selanjutnya yaitu menyeleksi atau memperbaik atribut dari setiap variabel. Dalam penyeleksian dapat dilihat pada gambar di bawah ini:

|                                        | ŗ | Impo | rt Data - Format your co | Docian<br>blumns. | D      | aquita T      | urbo | Prop A      | ita Madal | Doniormonto | Horo 💌         |   | × |
|----------------------------------------|---|------|--------------------------|-------------------|--------|---------------|------|-------------|-----------|-------------|----------------|---|---|
| Repository ×                           |   |      |                          |                   |        | Format y      | ou   | r column:   | s.        |             |                |   |   |
| Training Resources (connected) Samples |   |      | Replace errors wi        | ith missing valu  | ies () | )             |      |             |           |             |                |   |   |
| Community Samples (connected)          | D |      | nama 💠 🔻                 | dalam kota        | ۰.     | total         | ۰.   | 🕶 penghasil | a 🕸 🔻     | sekolah 🔹 🔻 | keterangan 🌩   | • |   |
| Local Repository (Local)               |   |      | polynominal              | polynominal       | Ch     | ange Type 🔹 🕨 | 1    | polynominal | 1         | polynominal | polynominal    |   |   |
| robbyprakatek (Local)                  |   | 1    | AARON ANG SAP            | iva               | Ch     | ange Role     |      | binominal   |           | swasta      | potensi        |   | ~ |
| DB (Legacy)                            |   | 2    | ABDATA DENIS T           | iva               | Re     | name column   |      | real        |           | negeri      | potensi        | - |   |
|                                        |   | 3    | ABDUL HAMID              | iva               | Ex     | clude column  |      | integer     |           | negeri      | sangat potensi |   |   |
|                                        |   | 4    | ABDULLATIE AN            | tidak             |        | <7            |      | date time   |           | swasta      | kurang potensi |   |   |
|                                        |   | 5    | ABDURAHMAN M             | iva               |        | ≥15           |      | data        |           | swasta      | sangat potensi |   |   |
| 0                                      |   | 6    | ABIZAL RAHMAD            | iva               |        | 29            |      | uale        |           | negeri      | potensi        |   |   |
| Operators ×                            |   | 7    | ACHMAD RIDO D            | tidak             |        | <7            |      | sedang      |           | swasta      | notensi        |   |   |
| Search for Operators                   |   | 8    | ACHMAD RIVANS            | iva               |        | >15           |      | sedang      |           | negeri      | sangat notansi |   |   |
|                                        |   | 0    |                          | ivo               |        | 546           |      | andong      |           | negeri      | conget potensi |   |   |
| Data Access (58)                       |   | 9    | ACHMAD TOSTA             | iya .             |        | 210           |      | seually     |           | inegen      | sangar potensi |   |   |
| Biending (82)                          |   | 10   | ADAM PUTRASY             | iya               |        | ≥9            |      | sedang      |           | swasta      | potensi        |   |   |
| Cleansing (28)                         |   | 11   | ADANG TARUNA             | fidak             |        | <7            |      | sedand      |           | neaeri      | potensi        |   |   |

Gambar 4.10 Proses Seleksi Atribut dari setiap Variabel

Dalam gambar 4.10 dapat dilihat bahwa variabel dalam kota terisi atribut secara otomatis, namun atribut tersebut tidak sesuai dengan yang diharapkan, cara untuk merubahnya yaitu menekan simbol segitiga yang berada tepat di sabelah nama varibel tersebut, kemudian pilih *Change Type*, dan pilih *Binominal*, dikarenakan

*record* data hanya memiliki 2 pilihan yaitu, ya dan tidak. Varibel total untuk atribut datanya mengunakan *Polynominal* dikarenakan record yang ada pada varibel tersebut memiliki lebih dari 2 pilihan, seleksi atribut ini dilakukan pada semua varibel atau kolom yang ada, sehingga atribut yang di pilih sesuai dengan *record* dari masing-masing varibel tersebut.

Langkah berikutnya yaitu menentukan label, dari data *training*. Tahapan dalam menentukan label dapat dilihat pada gambar di bawah ini:



Gambar 4.11 Penentuan Label dari Data Training

Dalam Gambar 4.11 dapat dijelaskan bahwa untuk memilih atribut label dapat menekan simbol segitiga yang berada tepat di samping nama varibel, kemudian pilih *change role* dan pilih label. Setelah *menentukan* label maka di lanjutkan menyimpan data pada *rapid miner*, pada bagian ini data disimpan pada *local repository*, kemudian pilih data.

Langkah berikutnya yaitu penerapan alogritma *decision tree*, pada tahapan ini pilih *design*, kemudian pilih data yang telah disimpan pada *local repository*, kemudian cari algoritma *decision tree* pada bagian *operators*, dan masukan kedalam *design*, serta hubungkan dari data, algoritma, dan outout, tampilan desin akan seperti gambar dibawah ini:



Gambar 4.12 Design dari Decision tree menggunakan Rapid miner

Setelah tampilan sudah seperti pada gambar 4.12 maka langkah berikutnya yaitu menjalankan *design* yang sudah dibuat, dengan cara menekan simbol *run* yang ada pada *tools* bagian atas, sehingga hasil dari algoritma *decision tree* dapat dilihat pada gambar di bawah ini:



Gambar 4.13 Output dari decision tree menggunakan rapid miner

Berdasarkan gambar di atas dapat dijelaskan bahwa node pertama merupakan

variabel total alumni, jika alumni lebih dari 12 dan 15 maka dapat disimpulkan bahwa asal sekolah tersebut sangat potensi, namun jika alumni lebih dari 9 dan lebih dari 7 maka asal sekolah mahasiswa tersebut masuk dalam kelompok potensi, dan jika alumni kurang dari 7 dan 9 maka dilihat kembali pengasilan orang tua, jika berpengasilan tinggi maka masuk kedalam kelompok kurang potensi, dan jika penghasilan orang tua sedang masuk kedalam potensi dan jika pengasilan orang tua rendah maka dapat dilihat kembali asal sekolah mahasiswa tersebut, jika berasal dari sekolah negeri maka masuk kedalam kelompok potensi dan jika berasal dari sekolah swasta maka masuk kedalam kelompok kurang potensi, namun ada variabel yang tidak muncul yaitu variabel dalam kota, varibel tersebut tidak muncul dikarenakan nilai *gain* terlampau kecil, yang berarti varibael tersebut tidak terlalu berpengaruh dalam pohon keputusan.

### 4.1.11 Penerapan Algoritma Naïve Bayes menggunakan Rapid Minner

Tahapan pertama untuk menggunakan *Rapid miner* 9.8 yaitu melakukan instalasi terlebih dahulu kedalam perangkat yang akan digunakan, jika *software Rapid miner* 9.8 sudah terinstalasi, maka tahapan selanjutnya, melakukan *import* data seperti yang telihat pada gambar di bawah ini:



Gambar 4.14 Import data kedalam Rapid miner 9.8

Setelah tampilan terlihat seperti gambar 4.14 maka tekan opsi *My Computer*, karena data yang akan di olah terletak pada komputer, kemudian pilih *file* sesuai dengan *file* data yang tersimpan dan yang akan diolah.

Tahapan selanjutnya yaitu menyeleksi atau memperbaik atribut dari setiap variabel. Dalam penyeleksian dapat dilihat pada gambar di bawah ini:

|                                                            | Imp | ort Data - Format your co | Docian<br>olumns.         | Doculto                                        | Turbo Bron A                                      | uto Model              | Doploymente                | Hara - X       |
|------------------------------------------------------------|-----|---------------------------|---------------------------|------------------------------------------------|---------------------------------------------------|------------------------|----------------------------|----------------|
| Repository ×                                               |     |                           |                           | Forma                                          | at your column                                    | s.                     |                            |                |
| Training Resources (connected)     Samples                 |     | Replace errors w          | ith missing valu          | Jes ①                                          |                                                   |                        |                            |                |
| Community Samples (connected)     Local Repository (Local) | D   | nama 💠 🔻<br>polynominal   | dalam kota<br>polynominal | <ul> <li>total</li> <li>Change Type</li> </ul> | <ul> <li>penghasi</li> <li>polynominal</li> </ul> | la ≎ <del>-</del><br>⊮ | sekolah 🎄 🔻<br>polynominal | keterangan     |
| robbyprakatek (Local)                                      | 1   | AARON ANG SAP             | iya                       | Change Role                                    | binominal                                         |                        | swasta                     | potensi ^      |
| DB (Legacy)                                                | 2   | ABDATA DENIS T            | iya                       | Rename colur                                   | mn real                                           |                        | negeri                     | potensi        |
|                                                            | 3   | ABDUL HAMID               | iya                       | Exclude colum                                  | nn integer                                        |                        | negeri                     | sangat potensi |
|                                                            | 4   | ABDULLATIF AN             | tidak                     | <7                                             | date_time                                         |                        | swasta                     | kurang potensi |
|                                                            | 5   | ABDURAHMAN M              | iya                       | ≥15                                            | date                                              |                        | swasta                     | sangat potensi |
| Operators ×                                                | 6   | ABIZAL RAHMAD             | iya                       | ≥9                                             | time                                              |                        | negeri                     | potensi        |
|                                                            | 7   | ACHMAD RIDO D             | tidak                     | <7                                             | sedang                                            |                        | swasta                     | potensi        |
| Search for Operators                                       | 8   | ACHMAD RIYANS             | iya                       | ≥15                                            | sedang                                            |                        | negeri                     | sangat potensi |
| Data Access (58)                                           | 9   | ACHMAD YUSTA              | iya                       | ≥15                                            | sedang                                            |                        | negeri                     | sangat potensi |
| Blending (82)                                              | 10  | ADAM PUTRASY              | iya                       | ≥9                                             | sedang                                            |                        | swasta                     | potensi        |
| Cleansing (28)                                             | 11  | ADANG TARUNA              | tidak                     | <7                                             | sedano                                            |                        | neaeri                     | potensi        |

Gambar 4.15 Proses Seleksi Atribut dari setiap Variabel

Dalam gambar 4.14 dapat dilihat bahwa variabel dalam kota terisi atribut secara otomatis, namun atribut tersebut tidak sesuai dengan yang diharapkan, cara untuk merubahnya yaitu menekan simbol segitiga yang berada tepat di sabelah nama varibel tersebut, kemudian pilih *Change Type*, dan pilih *Binominal*, di karena *record* data hanya memiliki 2 pilihan yaitu, ya dan tidak. Varibel total untuk atribut datanya mengunakan *Polynominal* dikarenakan record yang ada pada varibel tersebut memiliki lebih dari 2 pilihan, seleksi atribut ini dilakukan pada semua varibel atau kolom yang ada, sehingga atribut yang di pilih sesuai dengan *record* dari masing-masing varibel tersebut.

Langkah berikutnya yaitu menentukan label, dari data *training*. Tahapan dalam menentukan label dapat dilihat pada gambar di bawah ini:

|                                                             | Impo | rt Data - Format your co | Docian<br>olumns.                          | Paquita             | Turba Drap Auto Ma          | dal Daplayments | More = ×       | Ĩ |
|-------------------------------------------------------------|------|--------------------------|--------------------------------------------|---------------------|-----------------------------|-----------------|----------------|---|
| Repository ×                                                |      |                          |                                            | Format              | your columns.               |                 |                |   |
| Training Resources (connected)     Samples                  |      | Replace errors w         | ith missing values                         | <b>3</b> ①          |                             |                 |                |   |
| Community Samples (connected)      Local Repository (Local) | D    | nama 🌣 🔻<br>polynominal  | dalam kota 🏚<br>polynominal<br>Change role | total               | penghasila ¢<br>polynominal | sekolah & -     | keterangan 🎄 👻 |   |
| <ul> <li>DB (Legacy)</li> </ul>                             | 1    | AARON ANG SA             | Please                                     | e enter the new rol | e:                          |                 | potensi ^      |   |
|                                                             | 3    | ABDUL HAMID              |                                            |                     |                             |                 | sangat potensi |   |
|                                                             | 4    |                          | ter value                                  |                     |                             | •               | kurang potensi |   |
|                                                             | 5    | ABDURAHMAN lab           | el                                         |                     |                             |                 | sangat potensi |   |
| Operators ×                                                 | 6    | ACHMAD RIDO              | ght                                        |                     |                             |                 | potensi        |   |
| Search for Operators                                        | 8    | ACHMAD RIYANS            | iya                                        | ≥15                 | sedang                      | negeri          | sangat potensi | 1 |
| Data Access (58)                                            | 9    | ACHMAD YUSTA             | iya                                        | ≥15                 | sedang                      | negeri          | sangat potensi |   |
| Blending (82)                                               | 10   | ADAM PUTRASY             | iya                                        | ≥9                  | sedang                      | swasta          | potensi        |   |
| Cleansing (28)                                              | 11   | ADANG TARUNA             | tidak                                      | <7                  | sedang                      | negeri          | potensi        |   |

Gambar 4.16 Penentuan Label dari Data Training

Dalam Gambar 4.15 dapat dijelaskan bahwa untuk memilih atribut label dapat menekan simbol segitiga yang berada tepat di samping nama varibel, kemudian pilih *change role* dan pilih label. Setelah *menentukan* label maka di lanjutkan menyimpan data pada *rapid miner*, pada bagian ini data disimpan pada *local repository*, kemudian pilih data.



Gambar 4.17 Design penerapan naïve bayes menggunakan rapid miner

Langkah berikutnya yaitu penerapan alogritma *naïve bayes*, pada tahapan ini pilih *design*, kemudian pilih data yang telah disimpan pada *local repository*, selanjutnya dalam *operators* gunakan *split data*, yang berguna untuk menentukan

data *testing* dan trening, dalam *split data* menggunakan perbadingan 70% dan 30%. Tahapan berikutnya cari algoritma *naïve bayes* pada bagian *operators*, dan masukan kedalam *design*, yang terakhir yaitu masukan *apply model* kedalam *design* untuk mendapatkan nilai *confidence* serta hubungkan dari data, *spit data*, algoritma *naïve bayes*, *apply model* dan *output*, tampilan *design* dapat di lihat pada gambar 4.16 di atas.

Setelah tampilan sudah seperti pada gambar 4.16 maka langkah berikutnya yaitu menjalankan *design* yang sudah dibuat, dengan cara menekan simbol *run* yang ada pada *tools* bagian atas, sehingga hasil dari algoritma *naïve bayes* dapat dilihat pada gambar di bawah ini:

| Row No. | keterangan     | prediction(keterangan) | confidence(potensi) | confidence(sangat potensi) | confidence(kurang potensi) | nama         | dalam kota | a      |
|---------|----------------|------------------------|---------------------|----------------------------|----------------------------|--------------|------------|--------|
| 1       | kurang potensi | kurang potensi         | 0.000               | 0.000                      | 1.000                      | ABDULLATIF   | tidak      | ^      |
| 2       | sangat potensi | sangat potensi         | 0.000               | 1.000                      | 0.000                      | ACHMAD YU    | iya        |        |
| 3       | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | ADE KURNIA   | tidak      |        |
| 4       | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | ADELIA ALIC  | iya        |        |
| 5       | sangat potensi | sangat potensi         | 0.000               | 1.000                      | 0.000                      | ADHIT ARI SA | iya        |        |
| 6       | kurang potensi | kurang potensi         | 0.007               | 0.000                      | 0.993                      | ADI PRASET   | tidak      |        |
| 7       | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | ADI SYUMAN   | iya        |        |
| 8       | sangat potensi | sangat potensi         | 0.000               | 1.000                      | 0.000                      | ADILLA SETY  | iya        |        |
| 9       | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | ADITYA PAN   | tidak      |        |
| 10      | sangat potensi | sangat potensi         | 0.000               | 1.000                      | 0.000                      | AELY GUSNITA | iya        |        |
| 11      | sangat potensi | sangat potensi         | 0.000               | 1.000                      | 0.000                      | AGUNG PRIM   | iya        |        |
| 12      | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | AHMAD ARD    | iya        |        |
| 13      | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | AHMAD IRPA   | iya        |        |
| 14      | potensi        | potensi                | 1.000               | 0.000                      | 0.000                      | AJENG BELL   | iya        |        |
|         |                |                        |                     |                            |                            |              |            | $\vee$ |

Gambar 4.18 Output dari Naïve bayes menggunakan rapid miner

Berdasarkan gambar di atas dapat dijelaskan bahwa data *testing* atas nama Abdullatif Angga Saputra memiliki nilai *confidence* sangat potensi sebesar 0,000 dan nilai *confidence* potensi 0,000 serta nilai *confidence* kurang potensi sebesar 1,000 sehingga atas nama Abdullatif Angga Saputra dapat di kelompokan dalam lokasi promosi kurang potensi.

#### 4.1.12 Penerapan Algoritma K- Nearest Neighbor menggunakan Rapid Miner

Tahapan pertama untuk menggunakan *Rapid Miner 9.8* yaitu melakukan instalasi terlebih dahulu kedalam perangkat yang akan digunakan, jika *software Rapid Miner 9.8* sudah terinstalasi, maka tahapan selanjutnya, melakukan *import* data seperti yang telihat pada gambar di bawah ini:

| Eile     Edit     Process     View     Connections     Settir                                                                                       | gs Extensions <u>H</u> elp<br>Import Data - Where is your data?                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Repository X                                                                                                                                        | Where is your data?                                                                                                                                                    |
| Training Resources (connected)     Samples     Community Samples (connected)     Local Repository (Local)     Tobbyprakatek (Local)     DB (Legacy) | My Computer Database<br>Import data from file-based data sources like Excel, CSV, SAS or Access.<br>Get support for more data sources from the RapidMiner Marketplace! |
| Operators × Search for Operators Data Access (58)                                                                                                   |                                                                                                                                                                        |

Gambar 4.19 Import data kedalam Rapid miner 9.8

Setelah tampilan terlihat seperti gambar 4.19 maka tekan opsi *My Computer*, karena data yang akan di olah terletak pada komputer, kemudian pilih *file* sesuai dengan *file* data yang tersimpan dan yang akan diolah.

Tahapan selanjutnya yaitu menyeleksi atau memperbaik atribut dari setiap variabel. Dalam penyeleksian dapat dilihat pada gambar di bawah ini:

|                                            | Imp | ort Data - Format your co | Docian<br>olumns. | - D    | oculto T      | urbol | Drop Ai    | ita Madal | Doploymonto | Horo T         |   |
|--------------------------------------------|-----|---------------------------|-------------------|--------|---------------|-------|------------|-----------|-------------|----------------|---|
| Repository ×                               |     |                           |                   |        | Format y      | our   | column     | s.        |             |                |   |
| Training Resources (connected)     Samples |     | Replace errors w          | ith missing valu  | ies () | )             |       |            |           |             |                |   |
| Community Samples (connected)              | D   | nama 💠 🔻                  | dalam kota        | ۰.     | total         | φ.,   | penghasil  | a 🕸 🔻     | sekolah 🔹 👻 | keterangan 🌩 👻 |   |
| Local Repository (Local)                   |     | polynominal               | polynominal       | Ch     | ange Type 🔹 🕨 | 🗸 p   | olynominal | 1         | polynominal | polynominal    |   |
| robbyprakatek (Local)                      | 1   | AARON ANG SAP             | iya               | Ch     | ange Role     | t     | oinominal  |           | swasta      | potensi ^      |   |
| DB (Legacy)                                | 2   | ABDATA DENIS T            | iya               | Re     | name column   | r     | eal        |           | negeri      | potensi        |   |
|                                            | 3   | ABDUL HAMID               | iya               | Exc    | clude column  | i     | nteger     |           | negeri      | sangat potensi | 1 |
|                                            | 4   | ABDULLATIF AN             | tidak             | -      | <7            |       | late time  |           | swasta      | kurang potensi |   |
|                                            | 5   | ABDURAHMAN M              | iya               |        | ≥15           |       | iate       |           | swasta      | sangat potensi |   |
| Operators ×                                | 6   | ABIZAL RAHMAD             | iya               |        | ≥9            | 1     | ime        |           | negeri      | potensi        |   |
|                                            | 7   | ACHMAD RIDO D             | tidak             |        | <7            |       | sedang     |           | swasta      | potensi        |   |
| Search for Operators                       | 8   | ACHMAD RIYANS             | iya               |        | ≥15           |       | sedang     |           | negeri      | sangat potensi |   |
| Data Access (58)                           | 9   | ACHMAD YUSTA              | iya               |        | ≥15           |       | sedang     |           | negeri      | sangat potensi |   |
| Blending (82)                              | 10  | ADAM PUTRASY              | iya               |        | ≥9            |       | sedang     |           | swasta      | potensi        |   |
| Cleansing (28)                             | 11  | ADANG TARUNA              | tidak             |        | <7            |       | sedand     |           | negeri      | potensi        |   |

Gambar 4.20 Proses Seleksi Atribut dari setiap Variabel

Dalam gambar 4.20 dapat dilihat bahwa variabel dalam kota terisi atribut secara otomatis, namun atribut tersebut tidak sesuai dengan yang diharapkan, cara untuk merubahnya yaitu menekan simbol segitiga yang berada tepat di sabelah nama

varibel tersebut, kemudian pilih *Change Type*, dan pilih *Binominal*, di karena *record* data hanya memiliki 2 pilihan yaitu, ya dan tidak. Varibel total untuk atribut datanya mengunakan *Polynominal* dikarenakan record yang ada pada varibel tersebut memiliki lebih dari 2 pilihan, seleksi atribut ini dilakukan pada semua varibel atau kolom yang ada, sehingga atribut yang di pilih sesuai dengan *record* dari masing-masing varibel tersebut.

Langkah berikutnya yaitu menentukan label, dari data *training*. Tahapan dalam menentukan label dapat dilihat pada gambar di bawah ini:



Gambar 4.21 Penentuan Label dari Data Training

Dalam Gambar 4.21 dapat dijelaskan bahwa untuk memilih atribut label dapat menekan simbol segitiga yang berada tepat di samping nama varibel, kemudian pilih *change role* dan pilih label. Setelah *menentukan* label maka di lanjutkan menyimpan data pada *rapid miner*, pada bagian ini data disimpan pada *local repository*, kemudian pilih data.



Gambar 4.22 Design penerapan K- Nearest Neighbor menggunakan rapid miner

Langkah berikutnya yaitu penerapan alogritma *k- nearest neighbor*, pada tahapan ini pilih *design*, kemudian pilih data yang telah disimpan pada *local repository*, selanjutnya dalam *operators* gunakan *split data*, yang berguna untuk menentukan data *testing* dan trening, dalam *split data* menggunakan perbadingan 70% dan 30%. Tahapan berikutnya cari algoritma *k- nearest neighbor* pada bagian *operators*, dan masukan kedalam *design*, yang terakhir yaitu masukan *apply model* kedalam *design* untuk mendapatkan nilai *confidence* serta hubungkan dari data, *spit data*, algoritma *naïve bayes, apply model* dan *output*, tampilan *design* dapat di lihat pada gambar 4.22 di atas.

Setelah tampilan sudah seperti pada gambar 4.21 maka langkah berikutnya yaitu menjalankan *design* yang sudah dibuat, dengan cara menekan simbol *run* yang ada pada *tools* bagian atas, sehingga hasil dari algoritma *naïve bayes* dapat dilihat pada gambar di bawah ini:

| Row No.               | keterangan            | prediction(k     | confidence(         | confidence( | confidence( | nama        | dalam kota | total | penghasilan |
|-----------------------|-----------------------|------------------|---------------------|-------------|-------------|-------------|------------|-------|-------------|
| 1                     | potensi               | potensi          | 1                   | 0           | 0           | AARON ANG   | iya        | ≥9    | sedang      |
| 2                     | potensi               | potensi          | 1                   | 0           | 0           | ABDATA DEN  | iya        | ≥9    | sedang      |
| 3                     | sangat potensi        | sangat potensi   | 0                   | 1           | 0           | ABDUL HAMID | iya        | ≥15   | sedang      |
| 4                     | kurang potensi        | kurang potensi   | 0                   | 0           | 1           | ABDULLATIF  | tidak      | <7    | rendah      |
| 5                     | sangat potensi        | sangat potensi   | 0                   | 1           | 0           | ABDURAHMA   | iya        | ≥15   | sedang      |
| 6                     | potensi               | potensi          | 1                   | 0           | 0           | ABIZAL RAH  | iya        | ≥9    | sedang      |
| 7                     | potensi               | potensi          | 1                   | 0           | 0           | ACHMAD RID  | tidak      | <7    | sedang      |
| 8                     | sangat potensi        | sangat potensi   | 0                   | 1           | 0           | ACHMAD RIY  | iya        | ≥15   | sedang      |
| 9                     | sangat potensi        | sangat potensi   | 0                   | 1           | 0           | ACHMAD YU   | iya        | ≥15   | sedang      |
| 10                    | potensi               | potensi          | 1                   | 0           | 0           | ADAM PUTRA  | iya        | ≥9    | sedang      |
| 11                    | potensi               | potensi          | 1                   | 0           | 0           | ADANG TAR   | tidak      | <7    | sedang      |
| and the second of the | at dat site at so the | en en de diverse | a de la compañía de |             |             |             |            |       |             |
|                       |                       |                  |                     |             |             |             |            |       |             |
|                       |                       |                  |                     |             |             |             |            |       |             |
|                       |                       |                  |                     |             |             |             |            |       |             |

Gambar 4.23 Output dari K- Nearest Neighbor menggunakan rapid miner

Berdasarkan gambar di atas dapat dijelaskan bahwa data *testing* atas nama Aaron Ang Saputra memiliki nilai *confidence* sangat potensi sebesar 0 dan nilai *confidence* potensi sebesar 1 serta nilai *confidence* kurang potensi 0 sehingga atas nama nama Aaron Ang Saputra dapat di kelompokan dalam lokasi promosi potensi.

## 4.1.13 Cross Validation

Dalam Cross Validation, jumlah tetap lipatan/partisi dari data ditentukan sendiri. Cara standar untuk memprediksi error rate dari teknik pembelajaran dari sebuah sampel data tetap adalah dengan menggunakan *tenfold cross validation*.

a. Akurasi

akurasi menggambarkan seberapa akurat model dapat mengklasifikasikan dengan benar, atau dalam pengertian lain akurasi merupakan tingkat kedekatan nilai prediksi dengan nilai aktual (sebenarnya).

b. Presisi

Menggambarkan tingkat keakuratan antara data yang diminta dengan hasil prediksi yang diberikan oleh model, atau dapt disimpulkan bahwa presisi merupakan dari semua kelas positif yang telah diprediksi dengan benar, berapa banyak data yang benar-benar postif.

c. Recall

Recall merupakan keberhasilan model dalam menemukan kembali sebuah

informasi, maka recall dapt disimpulkan rasio prediksi benar positif dibandingkan dengan keseluruhan data yang benar positif.

## 4.1.13.1 Cross Validation pada algoritma Decision tree

Dataset yang telah tersimpan dalam *rapid miner* dapat digunakan kembali untuk tahapan *cross validation*. Tahapan pertama dataset dimasukan kedalam proses, kemudian gunakan operator *cross validation*, dengan ketentuan *10-fold cross validation* hal ini meruk dengan penetian terdahulu (Saifudin, 2017) susunan *cross validation* dapat dilihat di bawah ini:



Gambar 4.24 Susunan Cross Validation algoritma Decision tree

Dalam melatih dan menguji pemodelan *Cross Validation* menggunakan tiga operator yaitu, pada bagian *training* digunakan untuk algoritma *decision tree*, dan untuk bagian *testing* digunakan fitur *Apply Model* yang berguna untuk untuk menampilkan *confusion table*, dan operator *performance* digunakan untuk menampilkan hasil dari *accuracy, precition,* dan *recall*.



Gambar 4.25 Susunan operator pada algoritma Decision tree

Kemudian jika tampilan sudah seperti pada gambar 4.24 maka dapat dijalankan dengan menakan fitur *run* yang ada pada bagian kiri atas.

| pred. potensi 374<br>pred. sangat potensi 0 | 0         | 0       |         |
|---------------------------------------------|-----------|---------|---------|
| pred. sangat potensi 0                      |           |         | 100.00% |
|                                             | 798       | 0       | 100.00% |
| pred. kurang potensi 0                      | 0         | 109     | 100.00% |
| class recall 100.00%                        | 6 100.00% | 100.00% |         |

Gambar 4.26 Hasil Cross Validation algoritma Decision tree

Dalam gambar 4.26 dapat di lihat bahwa algoritma *decision* memiliki nilai akurasi sebesar 100% hal ini dapat dibuktikan dengan perhitungan manual dengan rumus persamaan (5)

$$Accuracy = \frac{374 + 798 + 109}{374 + 798 + 109} = \frac{1281}{1281} \times 100\% = 100\%$$

nilai presisi untuk prediksi label potensi sebesar 99,20% hal ini dapat dibuktikan

dengan perhitungan manual dengan rumus persamaan (6)

$$Presisi = \frac{374}{374+0} = \frac{374}{374} \times 100\% = 100\%$$

serta nilai *recall* untuk prediksi label potensi sebesar 97,98% hasil tersebut dibuktikan dengan perhitungan manual dengan rumus persamaan (7)

$$Recall = \frac{374}{374+0} = \frac{374}{374} \times 100\% = 100\%$$

Hasil tersebut menggunakan ketentuan *criterion gain ratio*, *apply pruning* dengan *confidence* 0,1 dan *apply prepruning* 0,01 dan *maximal depth* 10 serta *cross validation number of folds* sebesar 10 dan *sampling type automatic*.

### 4.1.13.2 Cross Validation pada algoritma Naïve Bayes

Dataset yang telah tersimpan dalam *rapid miner* dapat digunakan kembali untuk tahapan *cross validation*. Tahapan pertama dataset dimasukan kedalam proses, kemudian gunakan operator *cross validation*, dapat dilihat pada gambar di bawah ini:



Gambar 4.27 Susunan Cross Validation algoritma Naive bayes

Dalam melatih dan menguji pemodelan *Cross Validation* menggunakan tiga operator yaitu, pada bagian *training* digunakan untuk algoritma *naïve bayes*, dan untuk bagian *testing* digunakan fitur *Apply Model* yang berguna untuk untuk

ΘΘ Process ► Cross Validation ► 2  $\odot$ 4 Training Testing Naive Baves Apply Model Performance mod mod tra tra mod e mod lab lab per tes % tes per exa 🗋 thr ( d uni mod per exa 🗋 th per

menampilkan *confusion table*, dan operator *performance* digunakan untuk menampilkan hasil dari *accuracy*, *precition*, dan *recall*.

Gambar 4.28 Susunan operator pada algoritma Naïve Bayes

Kemudian jika tampilan sudah seperti pada gambar 4.28 maka dapat dijalankan dengan menakan fitur *run* yang terletak pada bagian kiri atas.

|                     | true potensi | true sangat potensi | true kurang potensi | class precision |
|---------------------|--------------|---------------------|---------------------|-----------------|
| ed. potensi         | 370          | 185                 | 4                   | 66.19%          |
| red. sangat potensi | 4            | 613                 | 2                   | 99.03%          |
| red. kurang potensi | 0            | 0                   | 103                 | 100.00%         |
| ass recall          | 98.93%       | 76.82%              | 94.50%              |                 |

Gambar 4.29 Hasil Cross Validation algoritma Naïve Bayes

Dalam gambar 4.29 dapat di lihat bahwa algoritma *naïve bayes* memiliki nilai akurasi sebesar 84,78% hal ini dapat dibuktikan dengan perhitungan manual dengan rumus persamaan (5)

$$Accuracy = \frac{370+613+103}{370+185+4+4+613+2+103} = \frac{1086}{1281} \times 100\% = 84,78\%$$

nilai presisi untuk prediksi label potensi sebesar 99,20% hal ini dapat dibuktikan dengan perhitungan manual dengan rumus persamaan (6)

$$Presisi = \frac{370}{370 + 185 + 3} = \frac{370}{559} \times 100\% = 66,18\%$$

serta nilai *recall* untuk prediksi label potensi sebesar 97,98% hasil tersebut dibuktikan dengan perhitungan manual dengan rumus persamaan (7)

$$Recall = \frac{370}{370+4} = \frac{370}{374} \times 100\% = 98,93\%$$

hasil tersebut dengan ketentuan cross validation number of folds sebesar 10 dan sampling type automatic.

### 4.1.13.3 Cross Validation pada algoritma K- Nearest Neighbor

Dataset yang telah tersimpan dalam *rapid miner* dapat digunakan kembali untuk tahapan *cross validation*. Tahapan pertama dataset dimasukan kedalam proses, kemudian gunakan operator *data split* untuk menentukan jumlah data trening dan data *testing* yang akan digunkan, dalam penelitian mengunakan rumus perbandingan 0,7 data trening dan 0,3 data *testing*, kemudian tahapan berikutnya menggunakan *cross validation*, dapat dilihat pada gambar di bawah ini:



Gambar 4.30 Susunan Cross Validation algoritma K-Nearest Neighbor

Dalam melatih dan menguji pemodelan *Cross Validation* menggunakan tiga operator yaitu, pada bagian *training* digunakan untuk algoritma *k-nearest neighbor*, dan untuk bagian *testing* digunakan fitur *Apply Model* yang berguna untuk untuk menampilkan *confusion table*, dan operator *performance* digunakan untuk menampilkan hasil dari *accuracy, precition,* dan *recall*.



Gambar 4.31 Susunan operator pada algoritma K-Nearest Neighbor

Kemudian jika tampilan sudah seperti pada gambar 4.31 maka dapat dijalankan dengan menakan fitur *run* yang terletak pada bagian kiri atas.

| Table View     Plot View                           |              |                     |                     |                 |  |  |  |  |
|----------------------------------------------------|--------------|---------------------|---------------------|-----------------|--|--|--|--|
| accuracy: 99.61% +/- 0.76% (micro average: 99.61%) |              |                     |                     |                 |  |  |  |  |
|                                                    | true potensi | true sangat potensi | true kurang potensi | class precision |  |  |  |  |
| pred. potensi                                      | 374          | 3                   | 0                   | 99.20%          |  |  |  |  |
| pred. sangat potensi                               | 0            | 795                 | 2                   | 99.75%          |  |  |  |  |
| pred. kurang potensi                               | 0            | 0                   | 107                 | 100.00%         |  |  |  |  |
| class recall                                       | 100.00%      | 99.62%              | 98.17%              |                 |  |  |  |  |

Gambar 4.32 Hasil Cross Validation algoritma K-Nearest Neighbor

Dalam gambar 4.32 dapat di lihat bahwa algoritma *k-nearest neighbor* memiliki nilai akurasi sebesar 99,61% hal ini dapat dibuktikan dengan perhitungan manual dengan rumus persamaan (5)

$$Accuracy = \frac{374 + 395 + 107}{374 + 3 + 795 + 2 + 107} = \frac{1276}{1281} \times 100\% = 99,61\%$$

nilai presisi untuk prediksi label potensi sebesar 99,20% hal ini dapat dibuktikan dengan perhitungan manual dengan rumus persamaan (6)

$$Presisi = \frac{374}{374+3} = \frac{374}{377} \times 100\% = 99,20\%$$

serta nilai *recall* untuk prediksi label potensi sebesar 97,98% hasil tersebut dibuktikan dengan perhitungan manual dengan rumus persamaan (7)

$$Recall = \frac{374}{374+0} = \frac{374}{374} \times 100\% = 100\%$$

Hasil tersebut berdasarkan ketentuan K=5 dan weighted dengan type mixed measures, dan mixed measure mixed euclidean disatance, serta *cross validation number of folds* sebesar 10 dan *sampling type automatic*.

### 4.2 Pembahasan

Penelitian ini menggunakan tiga algoritma yaitu, *decision tree, naïve bayes, dan knearest neighbor*. Ketiga algoritma tersebut memiliki nilai akurasi yang berbedabeda, untuk algoritma *decision tree* memiliki nilai akurasi sebesar 100% dan dan yang kedua yaitu algoritma *k-nearest neighbor* memiliki nilai akurasi 99,61% serta yang terakhir yaitu algoritma *naïve bayes* mendapatkan nilai akurasi 84,78%. Berikut tabel dari hasil pengukuran akurasi, presisi, *recall* dari ketiga algoritma tersebut yaitu:

| Algoritma          | Akurasi | Presisi | Recall |
|--------------------|---------|---------|--------|
| Decision tree      | 100%    | 100%    | 100%   |
| K-Nearest Neighbor | 99,61%  | 99,20%  | 100%   |
| Naïve Bayes        | 84,78%  | 66,18%  | 98,93% |

Tabel 4.39 Hasil Pengukuran Algoritma

berdasarkan tabel 4.39 maka dapat dilihat algoritma yang memiliki nilai akurasi, presisi, *recall*, yang cukup baik yaitu algoritma *decision tree*, namun pada penerapan algoritma *decision tree* variabel luar kota tidak dapat terbaca oleh *rapid miner*, setelah di analisa manual menggunakan *microsoft excel* variabel luar kota memiliki nilai *gain* yang cukup rendah, sehingga variabel luar kota dianggap tidak berpengaruh oleh pengolahan hasil *rapid miner*.