
 Journal of Universal Computer Science, vol. XX, no. X1 (2023), XXXX-XXXX

submitted: 1/1/2021, accepted: 2/2/2021, appeared: 3/3/2021 CC BY-ND 4.0

ANDROID GEOTAGGING HAVERSINE

ALGORITHM MODEL FOR NEARBY

ENVIRONMENTAL CLEANING ROUTE SEARCH

Riko Herwanto
Institut Informatika dan Bisnis Darmajaya, Bandar Lampung, Lampung, Indonesia

https://orcid.org/ 0000-0001-7452-5107 , rikoherwanto@darmajaya.ac.id

Nisar Zaidal
 Institut Informatika dan Bisnis Darmajaya, Bandar Lampung, Lampung, Indonesia

nisar@darmajaya.ac.id

Chairani Fauzi

 Institut Informatika dan Bisnis Darmajaya, Bandar Lampung, Lampung, Indonesia

chairani@darmajaya.ac.id

Muhammad Yogi
 Institut Informatika dan Bisnis Darmajaya, Bandar Lampung, Lampung, Indonesia

1911911010156.1911010156@mail.darmajaya.ac.id

Abstract: The environment is a global problem due to too many people, insufficient natural

resources, and careless use of nature. Garbage is the leftover stuff that people throw away, and

Indonesia's total waste was 65.8 million tons in 2017 and 752 million tons in 2018. This research

uses the Haversine algorithm and geotagging to create an app that makes it easier to find trash

cans based on the closest route. Distance testing is required to determine the accuracy of

calculating distances, and interface testing results use the black box testing method. Data-source

direct roles can make applications faster and make it easier for the user to determine the place

waste desired by environmental cleaners. The distance calculation using the haversine method is

84% of the actual distance, and the average difference is 112.522 meters.

Keywords: Geo-Tagging, Haversine, Mobile, Sort-Route,

Categories: D.3.3, F.2.1, G.1.6, H.1.1, H.2.3, H.2.8, L.3.1.

1 Introduction

The environment is now a global problem that everyone cares about. The environment

is worsening because there are too many people, insufficient natural resources, and

careless use of nature. People's careless actions toward the environment are at the root

of many of the problems in the global and national environments. This is based on many

years of research and observation. Most environmental damage is caused by people's

actions that put humans outside nature and nature at the center of the natural system.

[1].

The higher the level of public consumption, the faster the economy grows.

People do not just use and consume natural resources to live and meet their needs

anymore; they do more than that. This means that there are a lot of unused items that

can hurt the environment. Garbage is the leftover stuff people throw away, so the

https://orcid.org/0000-1234-0000-0002
mailto:chairani@darmajaya.ac.id

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

problem of garbage is often spread around carelessly. Carelessly throwing away trash

can endanger people's lives in many ways, like by causing flooding, a dirty

environment, air pollution, and so on. [2]. According to our observations and

conversations with other officers, the primary issue with environmental cleanliness is

that individuals do not comprehend why environmental cleaning activities are

necessary. The location of the trash can is based on the route of the environmental

cleaner, which is the closest route[3]. Officials in charge of waste need to know where

waste is based on the closest route, but environmental officers do not have this

information. Based on the problems that environmental officers face, the search method

can be used to find the closest route for cleaning up the environment through the use of

the Haversine algorithm and geotagging[4]. The Haversine algorithm is used in

applications that give information about shortest-distance navigation. Geotagging adds

data position information to GPS in the form of latitude and longitude information in

an image. Here are some benefits of this research:

Environmental cleaners want to make an app that makes it easier to find trash

cans based on the closest route. Helping people who clean up the environment find

where trash is based on the shortest route the cleaner wants

2 Literarure Review

2.1 Haversine Algorithm

Haversine is an integral equation in navigation systems [5]. Later, the

Haversine formula calculates the shortest distance between two points,

such as longitude and latitude, on a ball [6]. Haversine is an application

of the concept of trigonometry, which is part of geometry. The Haversine

formula is an essential navigational equation that shows the great circle

distance between two points (latitude and longitude) on the surface of a

sphere (the earth) as a function of longitude and latitude. The use of this

method is correct, disregarding the surface height of hills and the depth

of valleys[7].

Haversine is an integral equation in navigation systems. Later,

the Haversine formula calculates the shortest distance between two

points, such as longitude and latitude, on a ball. Haversine is an

application of the concept of trigonometry, which is part of geometry.

The Haversine formula is an essential navigational equation that shows

the great circle distance between two points (latitude and longitude) on

the surface of a sphere (the earth) as a function of longitude and latitude.

Although the method does not take into account the topography (i.e., the

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

height of hills and the depth of valleys), it is nevertheless entirely

accurate[8].

Figure 2. 1 The Haversine Pattern

Figure 2.1 illustrates the Haversine formula pattern described in

spherical trigonometry. Where this equation is fundamental in

navigation, this Haversine formula will produce the shortest distance

between two points. This formula was originally used for the main

problems of nautical astronomy. Harvesine is used to determine the

distance between stars[8]. First used by Josef de Mendoza y Rios in

1801, and Jamez Andrew discovered this formula in 1805. The term

"haversine" itself was coined or named in 1835 by Prof. James Inman.

Assuming that the earth is perfectly spherical with a radius of 6.3671 km

and that the locations of the two points on the spherical coordinates

(latitude and longitude) are lon1, lat1, and lon2, lat2, the Haversine

formula can be written as follows:

The Haversine formula is the first equation to consider when

calculating distances on a sphere[9]. The word "Haversine" comes from

the function:

𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆 (𝛉) = 𝒔𝒊𝒏𝟐 (
𝛉

𝟐
) …………………………………(1)

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

The following equation where φ is latitude, λ is longitude, and R

is earth's radius (mean radius = 6,371km) is how we translate the above

formula to include latitude and longitude coordinates. Note that angles

need to be in radians to pass to trig functions:

𝒂 = 𝒔𝒊𝒏𝟐 (𝛗𝐁 −
𝛗𝐀

𝟐
) + 𝐜𝐨𝐬 𝛗𝐀 × 𝐜𝐨𝐬 𝛗𝐁 × 𝒔𝒊𝒏𝟐 (𝛌𝐁 −

𝛌𝐀

𝟐
) (2)

𝒄 = 𝟐 × 𝐚𝐭𝐚𝐧 𝟐 (√𝒂, √(𝟏 − 𝒂)) ………………………………..(3)

𝒅 = R × c ………………….…………………………………..(4)

2.2 Geo-Tagging

(Wong, Law, and Li 2017)) say that "geotagging," which is also called "geo-

referencing," is the process of adding metadata to images and videos that tells where

they were taken. This process can help users find various kinds of information about a

location. (Mandal et al. 2022), manual geotagging is a method where information about

the location is added manually by inputting specific coordinates or selecting a location

when uploading media to the internet. The level of accuracy of this geotagging method

depends on the tools used or the GPS receiver to obtain accurate coordinates (Basyir et

al. 2018)

Google Map API is a tool or service provider provided by a technology called

Google to its users so they can take advantage of Google Maps when developing an

application being built(Alkan and Celebi 2019). The Google Maps API also has

different ways to get data and add contacts through different service providers, and it

lets more than one user access the data (Lee, Arisandi, and Wasino 2020). Build

enterprise systems within applications.

3 Research Methodology

Research design is a concept or image of the research to be carried out. The description

of the research flow can be seen in Figure 3.

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Observation and Data
Collection

System Analysis Implementation Running Application

Making Rules

Maintaining

Figure 3.1. Research Design

Observation and Data Collection.

Observation and data collection are functions for data collection where the researcher

records all information gathered throughout the research, which is a method of

gathering data by direct observation of situations or occurrences in the field.

System Analysis

After consulting with users, the system's services, limitations, and goals are determined

at this stage. Everything is defined in detail and made into a system specification from

the observations and data collection done by the researcher.

Making Rules.

The rule-making process provides the hardware or software requirements by providing

the entire system's architecture. System design involves identifying and describing

system abstractions.

Implementation.

At this stage, system design is realized as a program or program unit. Unit testing

involves verifying whether each unit meets system specifications.

Running Application

After the program units have been designed, they will be tested to run applications that

involve verification to ensure each unit meets the system specifications.

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Maintaining

Maintenance installed the system and used it in practice. Maintenance means fixing

errors not found in the previous stage, improving the system unit's implementation, and

improving the services the system offers as new needs are found.

Combining the Haversine Algorithm with Geotagging involves several steps:

1. Collecting geographical data: The first step is to collect geographical data,

such as latitude and longitude coordinates, for each location that you want to

include in your application or service. This data can be obtained from GPS

devices, maps, or other sources[10].

2. Implementing the Haversine Algorithm: The next step is to implement the

Haversine Algorithm in your application or service. The Haversine Algorithm

uses the latitude and longitude coordinates to calculate the distance between

two points on the surface of a sphere the code for the Haversine Algorithm is

in your preferred programming language [11].

Here is a simple Python implementation of the Haversine algorithm with

geotagging:

import math

def haversine(lat1, lon1, lat2, lon2):
 """
Calculates the distance between two points on the earth using
the Haversine formula.
 """
 R = 6371 # Earth's radius (in km)
 dLat = math.radians(lat2 - lat1)
 dLon = math.radians(lon2 - lon1)
 a = math.sin(dLat/2) * math.sin(dLat/2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dLon/2) * math.sin(dLon/2)
 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
 d = R * c
 return d

def get_distance(point1, point2):
 """
 Calculates the distance between two points on the earth using
the Haversine formula.
 """
 lat1, lon1 = point1['latitude'], point1['longitude']
 lat2, lon2 = point2['latitude'], point2['longitude']
 return haversine(lat1, lon1, lat2, lon2)

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Example usage
point1 = {'latitude': 37.7749, 'longitude': -122.4194}
point2 = {'latitude': 51.5074, 'longitude': -0.1278}

distance = get_distance(point1, point2)
print(f"Distance between points: {distance} km")

3. Storing geographical data: After collected the geographical data and

implemented the Haversine Algorithm, the next step is to store the data in a

database or other data storage system. Use a NoSQL database, such as

MongoDB or Cassandra, or a relational database, such as MySQL or

PostgreSQL, to store the data .

4. Adding Geo Tagging: The final step is to add Geo Tagging to your application

or service. Use the latitude and longitude coordinates to add geographical

identification metadata to various media such as photos, videos, and websites.

By following these steps, we can combine the Haversine Algorithm with Geo

Tagging to create location-based services and applications that can accurately

determine the distance between two points and associate that information with specific

media or other data.

To calculate the accuracy of combining the Haversine Algorithm with Geo

Tagging [12], we compare the results obtained from the combination to actual ground

truth data. Here is a general outline of how you could do this:

1. Obtain ground truth data: This involves obtaining accurate, real-world data for

the locations you want to compare with your results. We obtain this data

through various means, such as field surveys, GPS measurements, or by using

a known, accurate reference location.

2. Use the Haversine Algorithm with Geo Tagging: Calculate the distances

between the locations using the Haversine Algorith (Placeholder2) m with the

geo-tagged coordinates.

3. Compare the results with the ground truth data: Compare the results obtained

from the Haversine Algorithm with the ground truth data. This can be done by

calculating the difference between the two sets of data.

4. Calculate the accuracy: To calculate the accuracy, you can use a metric such

as the Root Mean Squared Error (RMSE), which measures the average

deviation of the results from the ground truth data. A low RMSE value

indicates a high accuracy, while a high RMSE value indicates a low

accuracy.

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

5. Repeat the process: Repeat the process multiple times with different sets of

data to obtain an average accuracy value.

By following this process, you can calculate the accuracy of combining the

Haversine Algorithm with Geo Tagging. The specific steps and details may vary

depending on the data you have available and the specific use case you have in mind,

but this provides a general idea of how you could calculate the accuracy of combining

these two technologies [13].

4 Result

Distance testing is required in this study to determine the accuracy of calculating

distances using the Haversine method. The test is carried out by comparing the

calculation of the distance between the Haversine calculations and the calculations

provided by the Google Maps application.

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Figure 4.1. Design Interface

Interface Testing Results

The test results use the black box testing method. Black box testing consists of five

components: menu and button function tests, interface tests, loading performance and

behavior tests, structure and database tests, and initiation and termination tests.

Application testing is carried out with three devices with different specifications and

screen sizes.

Test structure and database

The data structure matches the current database, where the system can show the

user's name, address, photo, longitude, latitude, and other information so that it

can be shown that the structure of the database is in line with that relationship

design.

Test initiation and termination

The system can initiate the appropriate login process and create data according

to the user logged in. In addition, logging out of the system also goes according

to plan because it immediately deletes all existing sessions.

Results of the Distance Test

Distance testing is required in this study to determine the accuracy of calculating

distances using the Haversine method. The test is carried out by comparing the

calculation of the distance between the Haversine calculations and the calculations

provided by the Google Maps application[14].

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Table 1. Result Measuring

From the test above, it can be seen that the calculation using haversine has a low level

of accuracy if the road is curved. The Google Maps application could also have a better

accuracy value for distance calculations[15], even though the calculation has been done

using calculations based on the path traversed.

5 Conclusions

Data-source direct roles can make applications faster. Develop and make it easier for

the user to determine the place waste desired by environmental cleaners. In determining

the position of the nearest garbage can, the haversine technique provides a more precise

distance estimate than previous approaches. The distance is 84% of the actual distance,

and the average difference is 112.522 meters.

Future Work

In near future, this research can be connected with RFID or IoT technology by forming

a waste disposal management which is usually implemented in the concept of smart-

village or smart-city.

1 2 3 4 5 6 7 8 9 10
HAVERSINE 400 420 430 440 455 460 465 470 475 500

GOOGLE MAPS 445 465 475 485 500 505 510 515 520 545

DIFFERENT 45 45 45 45 45 45 45 45 45 45

HAVERSINE 545 600 655 710 765 820 875 930 985 1,040

GOOGLE MAPS 600 655 710 765 820 875 930 985 1,040 1,095

DIFFERENT 55 55 55 55 55 55 55 55 55 55

HAVERSINE 550 600 650 700 750 800 850 900 950 1,000

GOOGLE MAPS 600 650 700 750 800 850 900 950 1,000 1,050

DIFFERENT 50 50 50 50 50 50 50 50 50 50

HAVERSINE 300 355 410 465 520 575 630 685 740 795

GOOGLE MAPS 355 410 465 520 575 630 685 740 795 850

DIFFERENT 55 55 55 55 55 55 55 55 55 55

HAVERSINE 625 665 705 745 785 825 865 905 945 985

GOOGLE MAPS 665 705 745 785 825 865 905 945 985 1,025

DIFFERENT 40 40 40 40 40 40 40 40 40 40

HAVERSINE 700 750 800 850 900 950 1,000 1,050 1,100 1,150

GOOGLE MAPS 750 800 850 900 950 1,000 1,050 1,100 1,150 1,200

DIFFERENT 50 50 50 50 50 50 50 50 50 50

HAVERSINE 550 595 640 685 730 775 820 865 910 955

GOOGLE MAPS 595 640 685 730 775 820 865 910 955 1,000

DIFFERENT 45 45 45 45 45 45 45 45 45 45

HAVERSINE 600 650 700 750 800 850 900 950 1,000 1,050

GOOGLE MAPS 650 700 750 800 850 900 950 1,000 1,050 1,100

DIFFERENT 50 50 50 50 50 50 50 50 50 50

ROUTE METHODS
POINTS

ACCURACY

A-B 89%

B-C 85%

C-D 84%

D-E 90%

H-I 83%

E-F 79%

F-G 81%

G-H 83%

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

Acknowledgements

This work would not have been possible without the support of the Darmajaya Institute

of Informatics and Business. I am especially indebted to fellows lecturer at Department

of Informatics Technology, who have been supportive of my goals and who worked

actively to provide me with the protected academic time to pursue those goals.

References

[1] M. J. Ismail, “MENJAGA KEBERSIHAN DI SEKOLAH,” vol. 4, no. 1.

[2] S. Hidayatuloh, N. S. Pratami, S. Informasi, and T. Selatan, “RANCANG BANGUN

SISTEM TRANSAKSI TABUNGAN UNTUK PENGELOLAAN SAMPAH

BERBASIS WEB (STUDI KASUS : BANK SAMPAH SAHITYA FAKULTAS

SAINS DAN TEKNOLOGI UIN SYARIF,” vol. 22, no. 2.

[3] E. Winarno, W. Hadikurniawati, and R. N. Rosso, “Location based service for presence

system using haversine method,” Proc. - 2017 Int. Conf. Innov. Creat. Inf. Technol.

Comput. Intell. IoT, ICITech 2017, vol. 2018-Janua, pp. 1–4, 2018, doi:

10.1109/INNOCIT.2017.8319153.

[4] A. R. F. Rabbani and A. R. Pratama, “Aplikasi Sistem Jemput Sampah Berbasis Android

untuk Rumah Kos dan Area Sekitar Kampus,” J. Sains dan Inform., vol. 7, no. 1, pp.

67–76, 2021, doi: 10.34128/jsi.v7i1.299.

[5] M. Furqan, “MFQ- 2017-2,” 2017.

[6] I. Yang, W. H. Jeon, and J. Moon, “A study on a distance based coordinate calculation

method using Inverse Haversine Method,” J. Digit. Contents Soc., vol. 20, no. 10, pp.

2097–2102, 2019, doi: 10.9728/dcs.2019.20.10.2097.

[7] D. Ikasari, W. Ikasari, and R. Andika, “Implementation of Haversine Formula to

Determine the Shortest Path Using Web Based Application for a Case Study of High

School Zoning in Depok,” Am. J. Softw. Eng. Appl., vol. 10, no. 2, p. 19, 2021, doi:

10.11648/j.ajsea.20211002.11.

[8] T. C. Formula, “[January,” vol. 64, no. 1, pp. 38–40, 2015.

[9] D. A. Prasetya, P. T. Nguyen, R. Faizullin, I. Iswanto, and E. F. Armay, “Resolving the

shortest path problem using the haversine algorithm,” J. Crit. Rev., vol. 7, no. 1, pp. 62–

64, 2020, doi: 10.22159/jcr.07.01.11.

[10] R. N. Yuniar, P. A. Kencan, E. Ruth, and A. H. S. Budi, “Analysis of estimated busses

arrival time on public transportation using real-time monitoring,” IOP Conf. Ser. Mater.

Sci. Eng., vol. 850, no. 1, 2020, doi: 10.1088/1757-899X/850/1/012026.

[11] A. Rahimi, T. Cohn, and T. Baldwin, “Pigeo: A Python geotagging tool,” 54th Annu.

Meet. Assoc. Comput. Linguist. ACL 2016 - Syst. Demonstr., no. 4, pp. 127–132, 2016,

doi: 10.18653/v1/p16-4022.

[12] H. Alkan and H. Celebi, “The Implementation of Positioning System with Trilateration

of Haversine Distance,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC,

vol. 2019-Septe, pp. 1–6, 2019, doi: 10.1109/PIMRC.2019.8904289.

[13] I. Setyorini and D. Ramayanti, “Finding Nearest Mosque Using Haversine Formula on

Android Platform,” J. Online Inform., vol. 4, no. 1, p. 57, 2019, doi:

10.15575/join.v4i1.267.

Musterfrau A., Mustermann M.: J.UCS Sample Paper...

[14] R. S. Abhi Krishna and S. Ashok, “Automated land area estimation for surveying

applications,” 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 1–5, 2020, doi:

10.1109/INCET49848.2020.9154042.

[15] G. T. S. Lee, D. Arisandi, and Wasino, “Travel App - showing nearest tourism site using

Haversine formula and directions with Google Maps,” IOP Conf. Ser. Mater. Sci. Eng.,

vol. 852, no. 1, 2020, doi: 10.1088/1757-899X/852/1/012161.

