BAB II

TINJAUAN PUSTAKA

2.1 Landasan Teori

2.1.1 Kecerdasan Buatan

Kecerdasan buatan adalah suatu bidang ilmu komputer yang sangat diperlukan dalam mengaplikasikan komputer cerdas. Kecerdasan buatan yang dalam bahasa asing Artificial intelligent ini, mempunyai arti: "intelligence" adalah bahasa Latin "intelligo" yang memiliki arti "saya paham". Sehingga arti intelligence adalah suatu kehandalan dalam mengerti dan melaksanakan aksi. Kecerdasn buatan muncul pada era 1940 an, meskipun pada zaman Mesir kuno sudah dapat diketahui perkembangan ini ada. Menurut Knight dan Rich Kecerdaan buatan / AI merupakan suatu bagian dari Computer science yang memahami tentang upaya untuk menciptakan komputer sebagaimana apa yang dapat dilakukan oleh manusia bahkan lebih baik dari itu. Kesimpulannya yaitu kecerdasan buatan adalah cabang ilmu komputer yang membahas tentang penangkapan, pemodelan, dan penyimpanan kecerdasan manusia ke dalam sebuah teknologi informasi yang nantinya dapat dimanfaatkan untuk pengambilan keputusan (Jamaaluddin & Indah, 2021).

2.1.2 Clustering

Madhu Yedha mendefenisikan *clustering* sebagai proses pengorganisasian objek data ke dalam set kelas yang saling berhubungan, yang disebut *cluster*. *Clustering* merupakan contoh dari klasifikasi tanpa arahan *(unsupervised)*. Klasifikasi merujuk kepada prosedur yang menetapkan objek data set kelas. *Unsupervised* berarti bahwa pengelompokkan tidak tergantung pada standar kelas dan pelatihan atau training.

Menurut Deka, Clustering merupakan salah satu teknik data

mining yang digunakan untuk mendapatkan kelompok-kelompok dari objek-objek yang mempunyai karakteristik yang umum di data yang cukup besar. Tujuan utama dari metode *clustering* adalah pengelompokan sejumlah data atau objek ke dalam *cluster* atau grup sehingga dalam setiap cluster akan berisi data yang semirip mungkin. *Clustering* melakukan pengelompokkan data yang didasarkan pada kesamaan antar objek (Nur Khormarudin, 2016).

2.1.3 Logika Fuzzy (Fuzzy Logic)

Logika fuzzy (fuzzy logic) adalah metodologi sistem kontrol pemecah masalah, yang cocok untuk diimplementasikan pada sistem yang sederhana dan sistem yang kecil. Metodologi ini dapat diterapkan pada perangkat keras, perangkat lunak, atau kombinasi keduanya. Dalam logika klasik dinyatakan bahwa segala sesuatu bersifat biner, yang artinya adalah hanya mempunyai dua kemungkinan, "Ya atau Tidak", "Benar atau Salah", "Baik atau Buruk", dan lain-lain. Pada Logika Fuzzy kemungkinan nilai keanggotaan berada diantara 0 dan 1 (A. Setiawan et al., 2018).

2.1.4 Konsep Logika Fuzzy

Sistem Fuzzy ditemukan pertama kali oleh Prof. Lotfi Zadeh pada tahun 1960 di Universitas Calofornia. Sistem ini diciptakan karena *boolean logic* tidak mempunyai ketelitian yang tinggi, hanya mempunyai logika 0 dan 1 saja (A. Setiawan et al., 2018). Secara umum ada beberapa konsep sistem logika fuzzy, sebagai berikut dibawah ini :

- 1. Himpunan tegas yang merupakan nilai keanggotaan suatu item dalam suatu himpunan tertentu.
- 2. Himpunan fuzzy yang merupakan suatu himpunana yang digunakan untuk mengatasi kekakuan dari himpunan tegas.
- 3. Fungsi keanggotaan yang memiliki interval 0 sampai 1.
- 4. Variabel *linguistic* yang merupakan suatu variabel yang memiliki

nilai berupa kata-kata yang dinyatakan dalam bahasa alamiah dan bukan angka.

- 5. Operasi dasar himpunan fuzzy merupakan operasi untuk menggabungkan dan atau memodifikasi himpunan fuzzy.
- 6. Aturan (rule) *if-then* fuzzy merupakan suatu pernyataan *if-then*, dimana beberapa kata-kata dalam pernyataan tersebut ditentukan oleh fungsi keanggotaan.

2.1.5 Istilah-Istilah dalam Logika Fuzzy

Ada beberapa istilah dalan logika fuzzy yaitu sebagai berikut :

1) Variabel Fuzzy

Variabel *fuzzy* merupakan variabel yang hendak dibahas dalam suatu sistem *fuzzy*. Contoh: Umur, Temperatur, Permintaan, Persediaan, Produksi, dan sebagainya.

2) Himpunan *Fuzzy*

Misalkan X semesta pembicaraan, terdapat A di dalam X sedemikian sehingga :

$$A = \{ x, \mu A[x] \mid x \in X, \mu A : x \rightarrow [0,1] \}$$

Suatu himpunan fuzzy A di dalam semesta pembicaraan X didefinisikan sebagai himpunan yang bercirikan suatu fungsi keanggotaan μA , yang mengawankan setiap $x \in X$ dengan bilangan real di dalam interval [0,1], dengan nilai $\mu A(x)$ menyatakan derajat keanggotaan x di dalam A.

Himpunan fuzzy merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy. Misalkan X=Umur adalah variabel fuzzy. Maka dapat didefinisikan himpunan "Muda", "Parobaya", dan "Tua".

3) Semesta Pembicaraan

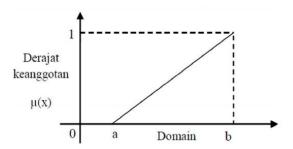
Semesta pembicaraan adalah keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy. Semesta pembicaraan merupakan himpunan bilangan real yang senantiasa naik (bertambah) secara monoton dari kiri ke kanan. Nilai semesta pembicaraan dapat berupa bilangan positif maupun negatif. Adakalanya nilai semesta pembicaraan ini tidak dibatasi batas atasnya.

Contoh: semesta pembicaraan untuk variabel umur: $[0,+\infty)$ Sehingga semesta pembicaraan dari variable umur adalah $0 \le \text{umur} < +\infty$. Dalam hal ini, nilai yang diperbolehkan untuk dioperasikan dalam variable umur adalah lebih besar dari atau sama dengan 0, atau kurang dari positif tak hingga.

5. Domain

Domain himpunan fuzzy adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy. Seperti halnya semesta pembicaraan, domain merupakan himpunan bilangan real yang senantiasa naik (bertambah) secara monoton dari kiri ke kanan. Nilai domain dapat berupa bilangan positif maupun negatif.

6. Fungsi Keanggotan

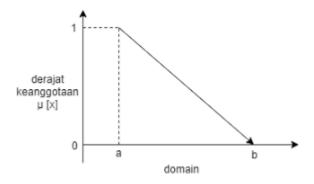

Fungsi keanggotaan (membership function) adalah suatu kurva yang menunjukan pemetaan titik input data ke dalam nilai keanggotaannya (sering juga disebut dengan **derajat keanggotaan**) yang memiliki interval antara 0 sampai 1.

Dalam himpunan fuzzy terdapat beberapa representasi dari fungsi keanggotaan, salah satunya yaitu representasi linear. Pada representasi linear, pemetaan input ke derajat keanggotaannya digambarkan sebagai suatu garis lurus. Bentuk ini paling sederhana dan menjadi pilihan yang baik untuk mendekati suatu konsep yang kurang jelas. Ada 2 keadaan himpunan fuzzy yang linear, yaitu representasi linear naik dan representasi linear turun.

a. Representasi linear NAIK

Pada representasi linear NAIK, kenaikan nilai derajat keanggotaan himpunan fuzzy ($\mu[x]$) dimulai pada nilai domain

yang memiliki derajat keanggotaan nol [0] bergerak ke kanan menuju ke nilai domain yang memiliki derajat keanggotaan lebih tinggi.

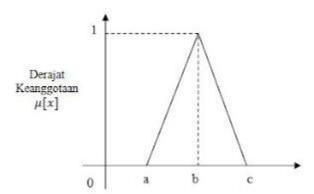

Gambar 2.1 Grafik Representasi Linear Naik

Rumus Representasi Linear Naik:

$$\mu[x,a,b] = \begin{cases} 0; & x \le a \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ 1; & x \ge b \end{cases}$$

b. Representasi Linear TURUN

Sedangkan pada representasi linear TURUN, garis lurus dimulai dari nilai domain dengan derajat keanggotaan himpunan fuzzy ($\mu[x]$) tertinggi pada sisi kiri, kemudian bergerak menurun ke nilai domain yang memiliki derajat keanggotaan himpunan fuzzy lebih rendah (A. Setiawan et al., 2018).

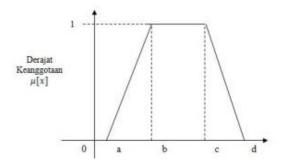

Gambar 2.2 Grafik Representasi Linear Turun

Rumus Representasi Linear Turun:

$$\mu[x,a,b] = \begin{cases} \frac{(b-x)}{(b-a)}; & a \le x \le b \\ 0; & x \ge b \end{cases}$$

c. Representasi Kurva Segitiga

Representasi kurva segitiga merupakan pemetaan *input* ke derajat keanggotaannya yang digambarkan dengan bentuk segitiga dimana pada dasarnya bentuk segitiga tersebut adalah gabungan antara 2 garis (linear). Nilai-nilai disekitar b memiliki derajat keanggotaan turun yang cukup tajam (menjauhi 1). Berikut representasi fungsi keanggotaan untuk kurva segitiga :


Gambar 2.3 Representasi Kurva Segitiga

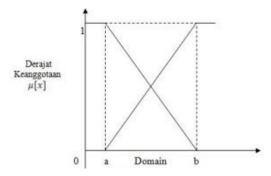
Rumus Representasi Kurva Segitiga:

$$\mu[x,a,b] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ \frac{(c-x)}{(c-b)}; & b \le x \le c \end{cases}$$

d. Representasi Kurva Trapesium

Kurva trapesium pada dasarnya menyerupai bentuk segitiga, hanya saja ada beberapa titik yang memiliki nilai keanggotaan 1. Representasi fungsi keanggotaan untuk kurva trapesium yaitu :

Gambar 2.4 Representasi Kurva Trapesium


Rumus Representasi Kurva Trapesium:

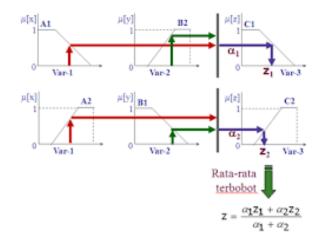
$$\mu[x, a, b, c, d] = \begin{cases} 0; & x \le a \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ 1; & b \le x \le c \\ \frac{(d-x)}{(d-c)}; & c \le x \le d \\ 0; & x \ge d \end{cases}$$

e. Representasi Kurva Bentuk Bahu

Daerah yang terletak ditengah-tengah suatu variabel yang direpresentasikan dalam bentuk segitiga, pada sisi kanan dan kirinya akan naik turun. Tetapi terkadang salah satu sisi dari variabel tersebut tidak mengalami perubahan. Himpunan *fuzzy* "bahu", bukan segitiga, digunakan untuk mengakhiri variabel suatu daerah *fuzzy*. Bahu kiri bergerak dari benar ke salah, demikian juga bahu kanan bergerak dari salah ke benar.

Representasi fungsi keanggotaan untuk kurva bahu yaitu:

Gambar 2.5 Representasi Kurva Bahu


Rumus Representasi Kurva Bahu:

$$\mu[x, a, b] = \begin{cases} 0; & x \le b \\ \frac{(b-x)}{(b-a)}; & a \le x \le b \\ 1; & x \ge a \\ 0; & x \le a \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ 1; & x \ge b \end{cases}$$

2.1.6 Fuzzy Inference System (FIS) Tsukamoto

Metode fuzzy Tsukamoto merupakan perluasan dari penalaran monoton. Pada metode Tsukamoto, setiap konsekuen pada aturan yang berbentuk IF-THEN harus direpresentasikan dalam suatu himpunan fuzzy dengan fungsi keanggotaan monoton.

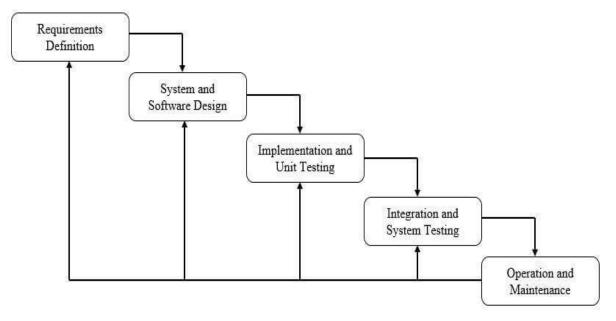
Pada metode Tsukamoto, implikasi setiap aturan berbentuk implikasi "Sebab-Akibat"/Implikasi "Input-Output" dimana antara anteseden dan konsekuen harus ada hubungannya. Setiap aturan direpresentasikan menggunakan himpunan-himpunan fuzzy, dengan fungsi keanggotaan yang monoton. Kemudian untuk menentukan hasil tegas (*Crisp Solution*) digunakan rumus penegasan (defuzifikasi) yang disebut "Metode rata-rata terpusat" atau "Metode defuzifikasi rata-rata terpusat (*Center Average Deffuzzyfier*) (A. Setiawan et al., 2018).

Gambar 2.6 Inferensi dengan Metode Tsukamoto

Fuzzy tsukamoto sangat berguna dalam membantu dalam menentukan perhitungan nilai yang lebih detail. Fuzzy tsukamoto sering digunakan dalam menentukan nilai perhitungan matematis dengan sangat sederhana dan mudah di mengerti terhadap data – data yang ada.

Fuzzy tsukamoto banyak digunakan untuk nilai yang memiliki rentang nilai. Beberapa tahapan implementasi metode tsukamoto adalah sebagai berikut :

- a. Fuzzyfikasi
- b. Pembentukan basis pengetahuan Fuzzy (rule dalam bentuk IF ... THEN)
- c. Mesin Inferensi


Menggunakan fungsi implikasi MIN untuk mendapatkan nilai α -predikat tiap-tiap rule (α 1, α 1, α 1,... α n).

d. Defuzzyfikasi

Menggunakan metode rata-rata (Average).

2.1.7 Metode Pengembangan Perangkat Lunak Waterfall

Sebuah pendekatan pengembangan perangkat lunak sistematik dan sekuensial. Disebut juga "Classic Life Cycle". Disebut waterfall (berarti air terjun) karena memang diagram tahapan prosesnya mirip dengan air terjun yang bertingkat (Nawawi, 2017). berikut diagram tahapan metode *waterfall*.

Gambar 2.7 Metode Waterfall

Aktivitas Waterfall Model:

1. Requirements analysis and definition

Mengumpulkan kebutuhan secara lengkap kemudian dianalisis dan didefinisikan kebutuhan yang hasrus dipenuhi oleh program yang akan dibangun.

2. System and software design

Desain dikerjakan setelah kebutuhan selesai dikumpulkan secara lengkap.

3. *Implementation and unit testing*

Desain program diterjemahkan ke dalam kode-kode dengan menggunakan bahasa pemrograman yang sudah ditentukan. Program yang dibangun langsung diuji.

4. Integration and system testing

Penyatuan unit-unit program kemudian diuji secara keseluruhan (system testing).

5. *Operation and maintenance*

Mengoperasikan program dilingkungannya dan melakukan pemeliharaan, seperti penyesuaian atau perubahan karena adaptasi dengan situasi sebenarnya.

Keunggulan dari metode pengembangan perangkat lunak waterfall:

- 1. Software yang dikembangkan dengan metode ini biasanya menghasilkan kualitas yang baik.
- Dokumen pengembangan sistem sangat terorganisir, karena setiap fase harus terselesaikan dengan lengkap sebelum melangkah ke fase berikutnya.

Kekurangan dari metode pengembangan perangkat lunak waterfall:

- 1. Perubahan sulit dilakukan karena sifatnya yang kaku.
- 2. Karena sifat kakunya, model ini cocok ketika kebutuhan dikumpulkan secara lengkap sehingga perubahan bisa ditekan sekecil mungkin. Tapi pada kenyataannya jarang sekali konsumen/pengguna yang bisa memberikan kebutuhan secara lengkap, perubahan kebutuhan adalah sesuatu yang wajar terjadi.
- 3. *Waterfall* pada umumnya digunakan untuk rekayasa sistem yang besar dimana proyek dikerjakan di beberapa tempat berbeda, dan dibagi menjadi beberapa bagian sub-proyek.

2.1.8 Black-Box Testing

Black-box testing merupakan sebuat metode pengujian perangkat lunak yang menguji dari segi spesifikasi fungsionalitas tanpa menguji desain dan kode program. Pengujian pada Black-Box dilakukan dengan membuat uji coba semua fungsi yang terdapat di dalam perangkat lunak apakah berjalan sesuai dengan spesifikasi yang dibutuhkan (Arfida & Waseso, 2022).

2.1.9 *Website*

Website merupakan kumpulan halaman digital yang berisi informasi berupa teks, animasi, gambar, suara dan video atau gabungan dari semuanya yang terkoneksi oleh internet, sehingga dapat dilihat oleh seluruh siapapun yang terkoneksi jaringan internet (Sari & Abdilah,

2019) . Jenis Kategori Website:

a. Web Statis

Merupakan website yang mempunyai halaman yang tidak berubah. Perubahan suatu halaman dilakukan secara manual dengan mengedit code yang menjadi stuktur dari website tersebut.

b. Web Dinamis

Merupakan website yang secara terstruktur diperuntukan untuk diupdate sesering mungkin. Biasanya disediakan halaman backend untuk melakukan perubahan konten dari website tersebut. Contohnya: web portal, web berita, dll.

c. Web Interaktif

Merupakan website yang berinteraksi antara penggunanya. Biasanya berupa forum diskusi maupun blog. Dimana adanya moderator sebagai pengatur alur diskusi.

2.2 Penelitian Terdahulu

Tabel 2.1 Perbandingan Penelitian Terdahulu

No	Nama Peneliti dan Tahun	Judul	Metode	Variabel	Hasil
1.	(Syafrinal et	Implementasi	Fuzzy	1. Lokasi	Aplikasi ini dapat
	al., 2022)	Fuzzy	Tsukamoto	2. Fasilitas	digunakan untuk
		Tsukamoto		3. Pelayanan	menentukan objek
		Untuk		4. Hasil	wisata terbaik
		Menentukan			khususnya di Kota
		Objek Wisata			Sabang dengan
		Terbaik di			tingkat akurasi tinggi
		Kota Sabang			dan dapat digunakan
		Berbasis Web			sebagai acuan
					wisatawan untuk

						menentukan objek
						wisata yang akan
						dipilih.
2.	(Mariko &	Sistem	Fuzzy	1.	IPK	Akurasi sistem yang
	Yaqin, 2019)	Pendukung	Tsukamoto	2.	Prestasi	diperoleh sebesar 80%
		Keputusan		3.	Penghasilan	yang berati bahwa
		Penentuan			Orang Tua	sistem tersebut dapat
		Calon		4.	Kelayakan	digunakan dalam
		Penerima				menentukan keputusan.
		Beasiswa				Sistem pendukung
		Prestasi di				keputusan yang dibuat
		Universitas				dapat dijadikan sebagai
		Amikom				pedoman petugas untuk
		Yogyakarta				mebantu menyeleksi
						calon penerima beasiswa
						prestasi Universitas
						Amikom.
3.	(Pratama &	Penentuan	Fuzzy	1. Pos	sitif	• Metoda Fuzzy
	Atmojo, 2022)	Status	Tsukamoto	2. Sus	spek	Inference System
		Penularan		3. Pro	oblable	(FIS) Tsukamoto bisa
		COVID-19 di				dipakai guna
		Jawa Timur				memastikan status
		Menggunakan				Status risiko
		Metode Fuzzy				penularan COVID-19
		Tsukamoto				dalam semua area di
						Jawa Timur dengan
						pada umumnya
						persentase kesesuaian
						status dengan data
						asli/aktual sebesar

					95,51%.
4.	(Nurfiah et al.,	Penerapan	Fuzzy	1. Fasilitas	• Metode Fuzzy
	2022)	Metode Fuzzy	Tsukamoto	2. Driver	Tsukamoto dapat
		Tsukamoto		3. Penumpang	diimplementasikan
		Pada Sistem		4. Lama Sewa	untuk studi kasus
		Pemesanan			menentukan harga
		Travel			sewa kendaraan.
5.	(Ahmad et al.,	Penerapan	Fuzzy	1. Penghasilan	• Metode Fuzzy
	2019)	Metode Fuzzy	Tsukamoto	2. Lama Menjadi	Tsukamoto mampu
		Tsukamoto		Anggota	menentukan
		untuk		3. Sisa Pinjaman	kelayakan
		Menentukan		Sebelumnya	peminjaman di KPRI
		Kelayakan		4. Jumlah Pinjaman	Warga Bina Karya
		Peminjaman		5. Jumlah Angsuran	berbasis web.
		pada Koperasi			Sehingga
		(Studi Kasus			mempermudah
		di KPRI			pengurus dalam
		Warga Bina			menentukan
		Karya)			kelayakan pinjaman
					agar lebih cepat dan akurat.
					Perhitungan otomatis
					dari sistem yang
					dikembangkan dapat
					menghasilkan output
					yang sama dengan
					perhitungan secara
					manual, sehingga
					secara teoritis
					perhitungan otomatis

6.	(Ramadhanty & Puspitasari,	Sistem Informasi	Fuzzy Tsukamoto	Usia Kelahiran Berat Bayi	dari sistem ini dapat dipertanggung jawabkan kebenarannya. • Metode Fuzzy Tsukamoto dapat
	2022)	Diagnosis Ikterus Neonatorum Menggunakan Metode Fuzzy Tsukamoto		3. Derajat Kuning (Ikterius)	diterapkan pada penelitian ini karena sesuai dengan karakter dari fuzzy yaitu dapat digunakan untuk data yang bernilai ambigu atau sangat fleksibel sehingga menerima toleransi terhadap data-data yang tidak sepenuhnya benar dengan tingkat akurasi 80% berdasarkan hasil verifikasi oleh pakar.
7.	(H. Setiawan, 2020)	Prediksi Kebutuhan Alat Tulis Kantor Dengan Metode Fuzzy Logic Tsukamoto di	Fuzzy Tsukamoto	 Variabel Permintaan Variabel Persediaan Variabel Pembelian 	Dapat membantu proses pencatatan keluar masuknya persediaan barang alat tulis kantor di BPR Dana Mulia Sejahtera sehingga lebih mudah dan cepat.

		BPR Dana			•	Penambahan jenis
		Mulia				persediaan barang
		Sejahtera				ATK yang terus
						bertambah tidak
						terlalu mempengaruhi
						performa sistem,
						dikarenakan ruang
						penyimpanan sistem
						teratur.
					•	Dapat mempermudah
						dalam pencarian
						barang, walaupun
						terdapat jumlah dan
						beragam persediaan
						alat tulis.
					•	Telah menerapkan
						sistem prediksi
						sehingga mampu
						menghindari hal-hal
						yang dianggap kurang
						efisiennya barang,
						misalnya dengan
						pengeluaran barang
						dan pembelian barang
						yang tidak akurat.
8.	(Salendah et	Penentuan	Fuzzy	1. Uang Kuliah	•	Metode Fuzzy
	al., 2022)	Beasiswa	Tsukamoto	Tunggal (UKT)		Tsukamoto berhasil
		Dengan		2. Indeks Prestasi		diterapkan pada
		Metode Fuzzy		Kumulatif (IPK)		sebuah website dan
		Tsukamoto		3. Perolehan Beasiswa		dapat menghitung
	l				<u> </u>	

		Berbasis Web			jumlah perolehan
		Scholarship			beasiswa yang
		Determination			diterima oleh calon
		Using Web			penerima beasiswa
		Based Fuzzy			berdasarkan variabel
		Tsukamoto			masukan IPK dan
	(C	Method	Б	1 171 ' D . D .	UKT.
9.	(Suartana &	Aplikasi	Fuzzy	1. Nilai Rata-Rata	• Fungsionalitas dari
	Elfianty,	Rekomendasi	Tsukamoto	Pengetahuan	aplikasi rekomendasi
	2023)	Pemilihan		2. Rata-Rata	pemilihan siswa
		Siswa		Keterampilan	berprestasi di SMA
		Berprestasi di		3. Nilai Absensi	Negeri 06 Seluma
		Sekolah		4. Prestasi Akademik	berjalan dengan baik
		Menengah		5. Prestasi Non	sesuai dengan harapan
		Atas Negeri		Akademik	dan mampu
		06 Seluma		6. Catatan Bimbingan	menganalisis data
		Melalui		Konseling	penilaian siswa
		Pendekatan			melalui metode Fuzzy
		Fuzzy			Tsukamoto untuk
		Tsukamoto			mendapatkan
					rekomendasi siswa
					berprestasi.
					Berdasarkan hasil
					demo program yang
					telah dilakukan di
					SMA negeri 05
					Seluma, didapatkan
					hasil bahwa aplikasi
					ini dapat membantu
					pihak sekolah dalam
					Pinak Sekolan dalam

					memberikan
					informasi
					rekomendasi siswa
					berprestasi per tahun
					ajaran.
10.	(Ragestu	& Penerapan	Fuzzy	1. Rata-Rata Raport	Hasil keputusan
10.	Sibarani,	Metode	Tsukamoto	2. Total Absensi	_
			Tsukamoto		digunakan untuk
	2020)	Fuzzy		3. Nilai Kebripadian	membantu kepala
		Tsukamoto		4. Nilai	sekolah dan wali
		Dalam		Ekstrakulikuler	kelas dalam
		Pemilihan			penentuan predikat
		Siswa			siswa teladan dengan
		Teladan di			tidak mengandalkan
		Sekolah			nilai absensi dan nilai
					rata-rata rapor saja,
					serta hasil yang
					didapatkan lebih tepat
					dan efisien karena
					terdapat variabel-
					variabel tertentu.
					Metode ini juga
					dapat memberikan
					rekomendasi yang
					cepat dan dapat
					dipercaya.