BAB II

TINJAUAN PUSTAKA

2.1 E-modul

Pengembangan pembelajaran adalah hal yang penting dalam pendidikan. Pada revolusi industri 4.0 teknologi memiliki peranan yang cukup penting untuk mewujudkan sistem belajar yang inovatif dan modern yaitu dengan adanya elearning merupakan salah satu wujud dari kemajuan teknologi pendidikan. Salah satu media yang cocok digunakan saat dilaksanakannya pembelajaran jarak jauh adalah *e-modul* yaitu modul dengan bentuk fisik yang berbeda dengan modul cetak, komponen modul cetak diolah sedemikian rupa sehingga bertransformasi menjadi bentuk elektronik.(Nita, 2020)

Penggunaan *e-modul* menjadikan siswa tertarik dalam proses belajar, sebab dapat diakses kapanpun dan kondisi dimanapun didukung dengan alat yang memadai, dan tidak menyulitkan siswa, guru juga mudah untuk melaksanakan kegiatan pengajaran walaupun berbeda tempat dengan peserta didik. *E-modul* dijadikan sebagai sarana dalam pembelajaran yang mencakup materi, metode, dan disediakan pula evaluasi pembelajaran yang dirancang praktis sehingga menarik minat belajar siswa. (Hutapean, 2019)

2.2 Mata Kuliah Peminatan Mobile technology

Mobile technology adalah jenis teknologi di mana pengguna menggunakan telepon seluler untuk melakukan tugas-tugas yang berhubungan dengan komunikasi, seperti berkomunikasi dengan teman, kerabat, dan lain-lain. Digunakan untuk mengirim data dari satu sistem ke sistem lainnya. Berikut beberapa keunggulan dari mobile technology: 1) Menyediakan komunikasi dan Informasi kapan saja dan dimana saja, 2) Tidak harus terpaku di satu tempat karena keterbatasan kabel, 3) Pengguna dapat mengakses Internet dari perangkat Mobile.

Institut Informatika dan Bisnis Darmajaya memiliki beberapa pilihan peminatan salah satunya adalah *Mobile technology* yang mana pada semester 4 sudah dapat

memilih mata kuliah yang berhubungan dengan pilihan tersebut. Berikut adalah tabel mata kuliah dari peminatan *Mobile technology*

Tabel 2. 1 Distribusi Mata Kuliah Peminatan Mobile technology

No.	Mata kuliah	Total sks	semester
1	Mobile programming	4	Semester 4
2	Mobile technology dan IoT	4	Semester 5
3	Mobile Security	4	Semester 5
4	Advance Mobile Programming	4	Semester 5
5	Mobile Game	4	Semester 6
6	Distributed System	4	Semester 6
7	Mobile Architecture	4	Semester 6
8	Wireless and Mobile Communication	4	Semester 7
9	Mobile and Digital Forensic	4	Semester 7

2.3 Algoritma (Fisher Yates Shuffle)

Fisher-Yates shuffle (dinamai penemu Ronald Fisher dan Frank Yates). Algoritma ini, juga dikenal sebagai Knuth Shuffle (setelah Donald Knuth), adalah sebuah algoritma yang digunakan untuk secara acak mengubah urutan data input yang diberikan untuk menghasilkan permutasi acak dari kumpulan data yang terbatas. Sebaliknya, varian pengacakan Fisher-Yates yang dikenal sebagai algoritma Sottolo dapat digunakan untuk menghasilkan siklus acak dengan panjang n. Proses pengocokan Fisher-Yates dasar mirip dengan mengambil tiket bernomor acak di dalam taksi atau mengambil kartu dalam permainan.

Algoritma pengacakan *Fisher Yates* adalah Algoritma pengocokan yang lebih baik dan lebih baik untuk mengacak angka tanpa menghabiskan banyak waktu pengocokan. Algoritma acak Fisher Yates mencakup dua metode: asli dan modern. Meskipun peneliti lain telah mengatakan bahwa pertanyaan yang dihasilkan berbeda dan ada berbagai jenis pengacakan atau algoritma pengacakan untuk memberikan teknik pengacakan sedemikian rupa sehingga dapat dihasilkan tanpa

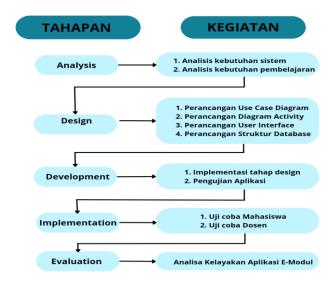
pengulangan atau duplikasi, algoritma pengacakan adalah algoritma *Fisher-Yates* shuffle.

Algoritma *Fisher-Yates* dipilih karena dianggap sebagai metode pengacakan yang lebih baik atau cocok untuk pengacakan numerik, memiliki waktu eksekusi yang lebih cepat, dan waktu implementasi pengacakan yang lebih sedikit. Namun, ketika mengembangkan *e-modul* ini, algoritma ini diimplementasikan menggunakan metode mutakhir. Metode modern dipilih karena secara khusus digunakan untuk pengacakan dalam sistem komputer, karena hasil pengacakan bisa lebih bervariasi. Imam dkk (2016) dalam menyatakan bahwa metode *Fisher Yates* secara umum adalah:

- 1. Tuliskan angka dari 1 sampai n
- 2. Isi nilai k dengan bilangan acak antara 0 hingga i+1 bulatkan kebawah
- 3. Hitung dari *low end*, gantikan nilai k dan tuliskan di tempat lain
- 4. Ulangi dari langkah 2 sampai semua nomor digantikan
- 5. Urutan angka yang tertulis di langkah 3 sekarang permutasi acak dari nomor asli.
- 6. Dalam versi modern yang digunakan saat ini, angka yang dipilih tidak dicoret, tempatnya ditukar dengan angka terakhir dari nol yang dipilih. Berikut adalah contoh kerja dari versi modern. *Range* adalah urutan bilangan yang tidak dipilih, *roll* adalah bilangan acak yang dipilih, *scratch* adalah daftar bilangan yang tidak dipilih, *result* adalah hasil permutasi yang akan didapatkan.

Tabel 2. 2 Contoh Perhitungan Algoritma Fisher Yates Shuffle

Range (M)	Roll (N)	Scratch	Result
		12345	
1-5	3	12 5 4	3
1-4	1	4 25	3 1
1-3	2	25	3 1 2
1-2	2	4	31 25
		Hasil Pengacakan	43125


(Sumber: (Ekojono, et al., 2018))

Pengacakan adalah sangat penting untuk banyak website. Tampaknya sederhana, tetapi jika tidak dilakukan dengan benar, pengacakan dapat berdampak negatif pada website. Untuk itu diperlukan algoritma yang baik terutama dalam hal keacakan. Dalam hal ini pengacakan menggunakan algoritma Fisher-Yates dapat dijadikan standar untuk diterapkan pada website yang menggunakan metode pengacakan.

2.4 Metode Perangkat Lunak

2.4.1 Model Pengembangan Research & Development R&D

Model proses perangkat lunak adalah representasi dari proses pengembangan perangkat lunak. Setiap model proses perangkat lunak dapat menggambarkan proses dari sudut pandang tertentu dan dengan demikian memberikan informasi tentang proses yang sedang dijalankan. Model proses pengembangan modul elektronik dibuat dengan menggunakan model *Research and Development* dengan model ADDIE. Model ADDIE sendiri memiliki arti sebagai desain atau model pembelajaran yang dapat mengembangkan proses sains. Pada model ini terdapat 5 tahapan yang dilakukan yaitu *Analysis* (Analisis), *Design* (desain), *Development* (pengembangan), *Implementation* (implementasi), dan *Evaluation* (evaluasi). Tahapan dari model pengembangan perangkat lunak ini dapat dilihat pada gambar 2.1

Gambar 2. 1 Metode Pengembangan Research and Development (Pressman, 2010).

Tahap-tahap dari model pengembangan Research and Development yaitu:

a. Analysis (analisis)

Analisis adalah teknik menganalisis pengembangan produk (model, metode, media, bahan ajar) baru dan menganalisis kelayakan serta syarat-syarat pengembangan produk.

b. *Design* (desain/perancangan)

Desain adalah proses sistematik yang dimulai dari merancang konsep dan konten di dalam produk tersebut

c. Development (Pengembangan)

Development (pengembangan) adalah kegiatan realisasi rancangan produk yang sebelumnya telah dibuat.

d. Implementation (implementasi)

Implementasi adalah kegiatan untuk memperoleh umpan balik terhadap produk yang dibuat/dikembangkan..

e. Evaluation (Evaluasi)

Evaluasi adalah tahap akhir atau tahap untuk mengukur kelayakan dari suatu produk yang sudah dibuat.

2.5 Flowchart

Flowchart adalah sebuah diagram yang menjelaskan alur proses dari dalam sebuah program. Dalam membangun sebuah program, flowchart berperan penting untuk menerjemahkan proses berjalannya sebuah program agar lebih mudah untuk dipahami. Adapun penjelasan terkait simbol-simbol yang digunakan pada flowchart dapat dilihat pada tabel 2.3

Tabel 2. 3 Simbol-simbol Flowchart

No.	Symbol	Keterangan
1		Terminator: symbol yang menyatakan awal/akhir suatu program.
2		Proces: symbol yang menyatakan suatu proses yang dilakukan computer.
3		Decision: symbol yang menunjukan kondisi tertentu yang akan menghasilkan dua kemungkinan jawaban, yaitu ya dan tidak.
4		Flow: symbol yang digunakan untuk menggabungkan antara symbol yang satu dengan symbol yang lain. Symbol ini disebut juga dengan connecting line

2.6 Unified Modeling Language (UML)

Unified Modeling Language (UML) adalah salah satu standar bahasa yang banyak digunakan di dunia industri untuk mendefinisikan requirement, membuat analisis dan desain, serta menggambarkan arsitektur dalam pemograman berorientasi objek (Maarif & Mulya, 2020). UML muncul karena adanya kebutuhan pemodelan visual untuk men-spesifikasikan, menggambarkan, membangun, dan dokumentasi dari sistem perangkat lunak. Penggunaan UML tidak terbatas pada metodologi tertentu, meskipun pada kenyataannya UML paling banyak digunakan pada metodologi berorientasi objek

2.6.1 Use Case Diagram

Use Case diagram merupakan pemodelan untuk kegiatan pada sistem yang akan dibuat (Yuliana & Yulmaini, 2016). Use Case diagram merupakan deskripsi peringkat tinggi bagaimana perangkat lunak (website) akan digunakan oleh penggunanya (Arfida & Wibowo, 2018). Use Case Diagram memiliki fungsi yaitu menentukan fitur apa yang harus disediakan oleh sistem dan mendeklarasikan fungsi tersebut dari sudut pandang pengguna sistem.

Adapun penjelasan terkait simbol-simbol yang digunakan pada use case diagram dapat dilihat pada tabel 2.4 :

Tabel 2. 4 Use Case Diagram

No.	Symbol	Keterangan
1		Use Case: Fungsionalitas yang
	Nama Use Case	disediakan sistem sebagai unit-
		unit yang saling bertukar pesan
		antar unit atau aktor, biasanya
		dinyatakan dengan mengguna-
		kan kata kerja diawal frase nama
		use case
2	_	Aktor: Seseorang yang
	<u> </u>	berinteraksi dengan sistem
		informasi yang akan dibuat diluar
		sistem informasi yang akan
	· ` `	dibuat itu sendiri. Terkadang
	Actor	simbol aktor tidak selalu
		diartikan sebagai seseorang
		melainkan dapat berupa sebuah
		nama benda, perangkat, dan
		sistem
3	─	Generalization: Hubungan
		generali-sasi dan spesialisasi
		(umum- khusus) antara dua buah
		use case dimana fungsi yang satu
		adalah fungsi yang lebih umum
		dari lainnya

2.6.2 Activity Diagram

Activity Diagram menggambarkan rangkaian aliran dari aktivitas yang digunakan untuk menjelaskan aktivitas yang dibentuk dalam suatu operasi. Pada sistem ini, activity diagram menunjukkan aktifitas sistem dalam bentuk kumpulan aksi-aksi, bagaimana masing-masing aksi tersebut dimulai, keputusan yang mungkin terjadi hingga berakhirnya aksi (Maarif & Mulya, 2020). Activity diagram menggambarkan aliran kerja (workflow) atau aktivitas dari sebuah sistem bukan apa yang dilakukan aktor, melainkan apa yang dilakukan oleh sistem (Rosa A. S & Shalahuddin, 2015). Adapun penjelasan terkait simbol-simbol yang digunakan pada *activity diagram* dapat dilihat pada tabel 2.5

Tabel 2. 5 Activity Diagram

No.	Symbol	Keterangan		
1		Status awal aktif sistem (Initial):		
		Merupakan sebuah diagram aktivasi		
		memiliki sebuah status awal.		
2	Aktivitas	Aktivitas yang dilakukan sistem,		
	Akuvitas	aktivitas biasanya diawal dengan sebuah		
		kata kerja.		
3		Percabangan (Decision): asosiasi		
		percabangan dimana jika ada pilihan		
		aktivitas lebih dari satu.		
4		Penggabungan (Join): asosiasi		
		penggabungan dimana lebih dari satu		
		aktivitas digabungkan menjadi satu.		
5		Swimlane: Memisahkan organisasi		
		bisnis yang bertanggung jawab terhadap		
		sebuah aktivitas yang terjadi		

6	Status akhir yang dilakukan sistem
	(Final): Merupakan sebuah diagram
	aktivitas yang memiliki sebuah status
	akhir.

2.7 Penelitian Terdahulu

Penelitian ini terinspirasi dan mereferensi penelitian-penelitian terkait.

Tabel 2. 6 Penelitian Terdahulu

No	Identitias Jurnal	Metode	Pengujian	Hasil
1	E-modul Berbasis	Menggunakan	Teknik analisis	Dalam penelitian
	Android sebagai	metode	menggunakan uji	dan pengembangan
	Pendukung	Research and	validitas dan uji	ini menghasilkan
	Pembelajaran	Development	independent	produk berupa E-
	Daring dan Upaya	yang berupa	sample t-test.	modul berbasis
	untuk	data kualitatif	Teknik analisis	Android pada Mata
	Meningkatkan	dan data	data selanjutnya	pelajaran
	Hasil Belajar	kuantitatif.	ialah uji	Administrasi
	Peserta Didik		independent	Umum untuk
	(Dewi Masruroh		sample t-test dan	semester genap
	dan Yuli Agustina,		perolehan data	kelas X OTKP. E-
	2021)		diuji dengan	modul yang
			bantuan IBM	dikembangkan
			SPSS Statistic	memiliki kapasitas
			v.23.	penyimpanan yang
				rendah yaitu 8,5
				MB dan dapat
				diakses secara
				online melalui
				smartphone dengan

				sistem operasi
				android.
2	Pengembangan	Metode dalam	Menggunakan	Hasil penelitian
	Modul Elektronik	penelitian ini	validasi ahli	adalah berupa
	(e-modul) Interaktif	menggunakan	media dan materi.	produk <i>e-modul</i>
	Pada Mata	pendekatan	Teknik analisis	interaktif pada
	Pelajaran Kimia	kuantitatif	data untuk	mata pelajaran
	Kelas XI IPA SMA	dengan	mengetahui	kimia kelas XI IPA
	(Nita Sunarya H	Research and	keefektifan	SMA pada mata
	dan Ali Muhtadi,	Development.	penggunaan <i>e</i> -	pelajaran kimia
	2020)		modul dengan	dihasilkan berupa
			melihat nilai gain	modul elektronik
			skor.	(e-modul) materi
				kimia asam basa,
				disajikan dalam
				kepingan Compack
				Disk (CD) yang
				dapat digunakan
				sebagai sumber
				belajar baik secara
				mandiri maupun
				dalam proses
				pembelejaran
				didalam kelas.
	Pengembangan E-	Penelitian ini	Pengujian	<i>E-modul</i> berbasis
	modul Berbasis	menggunakan	dilakukan dengan	digital flipbook
	Digital Flipbook	model	menguji	layak secara teoritis
	untuk	penelitian 4D.	keterbacaan <i>e</i> -	dengan hasil
	Mempermudah		modul dengan	validasi sebesar
	Pembelajaran Jarak		menghitung	0,91 termasuk

	Jauh di SMA		jumlah susku	kategori valid dan
	(Kalimatus		kata.	layak secara
	Sa'diyah, 2021)			empiris dengan
				hasil uji
				keterbacaan berada
				di level 10 yang
				sesuai dengan kelas
				10 serta respon
				peserta didik
				mendapat nilai
				rata-rata sebesar
				82% pada
				pernyataan postif
				termasuk kategori
				sangat valid dan
				pada pernyataan
				negatif mendapat
				nilai rata-rata 39%
				yang termasuk
				kategori kurang
				valid.
3	Pengembangan e-	Metode yang	Melalui validasi	Dihasilkan bahwa
	modul IPA	digunakan	ahli, uji coba	e-modul IPA
	Berbasis Problem	adalah model	terbatas dan revisi	berbasis problem-
	Based Learning	pengembangan	hasil validasi ahli	based learning
	untuk	ADDIE.	maupun uji coba	layak digunakan
	Meningkatkan		terbatas.	dari segi materi
	Literasi Sains			maupun media
	Siswa			dengan kategori
				sangat baik.

4	Pengembangan e-	Metode yang	Pengujian	<i>E-modul</i> interaktif
	modul Interaktif	digunakan	dilakukan dengan	berbasis Android
	Berbasis Android	adalah metode	uji media dan	yang
	pada Mata Kuliah	R&D.	materi.	dikembangkan
	Strategi Belajar			sudah efektif
	Mengajar (Ricu			digunakan untuk
	Sidiq dan Najuah,			meningkatkan hasil
	2020)			belajar mahasiswa
				dalam proses
				pembelajaran. Hal
				ini dapat dilihat
				dari analisis hasil
				belajar mahasiswa
				dengan
				menggunakan
				media
				pembelajaran
				berbasis Android
				lebih efisien,
				dimana diperoleh
				nilai posttest lebih
				besar dibanding
				pretest.
5	Pengembangan e-	Metode yang	Pengujian melalui	E-modul
	modul	digunakan	validasi adli	pembelajaran
	Pembelajaran	adalah	media dan ahli	interaktif berbasis
	Interaktif Berbasis	Research and	materi.	Flip PDF
	Flip PDF	Development.		Corporate Edition
	Corporate Edition			yang
	Pada Mata Kuliah			dikembangkan
				sudah efektif
	ı	ı	ı	1

	Manajemen Diklat			digunakan untuk
	(Zinnurain, 2021)			meningkatkan hasil
				belajar mahasiswa
				dalam proses
				pembelajaran. Hal
				ini dapat dilihat
				dari analisis hasil
				belajar mahasiswa
				dengan
				menggunakan <i>E</i> -
				modul
				pembelajaran
				interaktif berbasis
				Flip PDF
				Corporate Edition
				lebih efisien,
				dimana diperoleh
				nilai posttest lebih
				besar dibanding
				pretest.
6	Pengembangan <i>e</i> -	Model	Pengujian	Pada produk e-
	modul Interaktif	pengembangan	dilakukan dengan	modul terdapat
	Materi Sistem	menggunakan	3 tenaga ahli	berbagai keunikan
	Bilangan Untuk	dick and	yakni dokter,	tersendiri,
	Mendukung	Carey.	megister dan	sehingga
	Pembelajaran		teman sejawat.	ketertarikan dan
	Siswa Sekolah			keingintahuan
	Menengah			siswa dapat
	Kejuruan (Abd			dirangsang untuk
	Rohman, Mustaji			keberhasilan
				ketercapaain
	<u> </u>	I	I	I

				kegiatan penelitian
	Rangka Batang di	Development.	validasi	dipakai dalam
	pada Materi	Research and	materi serta	bahan ajar yang
	modul Interaktif	adalah	ahli media dan	pembelajaran dan
	Bahan Ajar <i>e</i> -	digunakan	dilakukan dengan	perangkat
7	Pengembangan	Metode yang	Validasi	Kelayakan
				materi tersebut.
				mempelajari
				setelah
				mengetahui hasil
				siswa dapat
				interaktif sehingga
				dilakukan secara
				tes formatif yang
				berupa latihan dan
				pembelajaran
				evaluasi
				animasi, serta ada
				video, audio, dan
				karena terdapat
				secara interaktif
				materi disajikan
				modul interaktif,
				mempelajari <i>e-</i>
				setelah
				pembelajaran
				terdapat tujuan dari
				cara menggunakan,
				adanyapanduan
	Fatirul, 2021)			diantaranya yaitu
	dan A. Noor			pembelajaran,

SMK Negeri 5	kelayakan bahan	ini diketahui dari
Surabaya	ajar.	hasil validasi yang
		dikoreksi oleh 2
		validator yaitu
		Dosen Teknik Sipil
		Universitas Negeri
		Surabaya dan Guru
		SMKN 5 Surabaya.
		Perangkat
		pembelajaran yang
		telah divalidasi
		berupa silabus dan
		RPP, sedangkan
		untuk bahan
		ajarnya berupa <i>e-</i>
		modul interaktif.