
BAB III METODOLOGI PENELITIAN

3.1 Tahapan Penelitian

Pada tahap awal penelitian ini, langkah-langkah metodologis yang akan diikuti telah dirinci dalam sebuah diagram alur untuk memberikan pandangan visual yang jelas terhadap tahapan pengembangan sistem informasi puskesmas berbasis Android. Diagram ini memberikan gambaran rinci tentang perjalanan penelitian, dimulai dari identifikasi kebutuhan hingga implementasi di lingkungan produksi. Melalui pendekatan metode pengembangan sistem Extreme Programming (XP), tahapan alur penelitian terlihat pada gambar 3.1.

Gambar 3.1 Tahapan Penelitian

3.2 Metode Extreme Programming

Extreme Programming mengarah ke pendekatan berorientasi objek dan sesuai digunakan ketika adanya requirements yang kurang dipahami maupun terjadinya perubahan requirements yang cepa. Terdapat empat tahapan yang harus dikerjakan pada metode Extreme Programming (XP) yaitu perencanaan, perancangan, coding, dan testing.

3.2.1 Perencanaan

3.2.1.1 Pengumpulan Data

Penelitian dilakukan di Puskesmas Rebang Tangkas. Pengumpulan data dilakukan dengan menggunakan teknik observasi dan wawancara. Selain itu, dilakukan juga studi pustaka terhadap bahasan mengenai sistem yang akan dibangun. Adapun pengumpulan data adalah sebagai berikut :

a. Observasi

Observasi merupakan metode pengumpulan data untuk mendapatkan data primer dan informasi dengan melakukan pengamatan secara langsung pada objek yang akan diteliti. Observasi dilakukan dengan cara pengamatan secara langsung ke lapangan untuk lebih mempermudah dalam proses pengumpulan data primer. Observasi dilakukan untuk mendapatkan data alur sistem berjalan tentang layanan kesehatan di Puskesmas Rebang Tangkas seperti layanan ambulan, layanan antrian, rekam medik, dan kontrol.

b. Wawancara

Pengumpulan data dengan teknik wawancara dilakukan dengan cara mengajukan beberapa pertanyaan terkait layanan kesehatan di Puskesmas Rebang Tangkas.

3.2.1.2 Analisis Sistem Berjalan

Analisis sistem berjalan dapat memberikan wawasan tentang prosedur dan proses yang dilakukan tanpa bantuan teknologi atau sistem informasi otomatis. Berikut adalah analisis sistem manual untuk layanan puskesmas, mencakup ambulan, antrian, rekam medik, dan layanan kontrol yang terlihat pada tabel 3.1.

Tabel 3.1 Analisis Sistem Berjalan

No	Layanan	Proses	Analisis
1.	Ambulan	- Panggilan darurat dicatat	- Potensi kesalahan
		oleh petugas puskesmas	dalam pencatatan
		secara manual	informasi panggilan
		- Pemberian petunjuk lokasi	darurat.
		secara verbal - Bergantung pada	
		ketepatan petugas	
			dalam memberikan
			petunjuk lokasi.


No	Layanan	Proses	Analisis
2.	Antrian	- Pasien mendaftar secara	- Ketergantungan pada
		langsung dengan petugas	kecepatan dan
		pendaftaran puskesmas	ketepatan petugas
		- Informasi pendaftaran	pendaftaran.
		dicatat dalam buku catatan	- Potensi kesalahan
		atau formulir kertas	pencatatan dan waktu
			tunggu yang lama
3.	Rekam Medik	- Rekam medik pasien	- Potensi kehilangan atau
		disimpan dalam bentuk	kerusakan data fisik
		kertas	- Kesulitan dalam
		- Pencarian data	mengakses dan
		memerlukan waktu yang	mengelola rekam
		lama	medik secara cepat
4.	Kontrol	- Pemeriksaan dan	- Diperlukan waktu lebih
		diagnosis dilakukan oleh	lama untuk
		dokter secara langsung.	mendapatkan hasil
		- Jadwal pemeriksaan diatur	pemeriksaan
		oleh petugas administrasi	- Pengaturan jadwal
			mungkin tidak optimal
			dan memerlukan
			koordinasi yang
			intensif

3.2.2 Perancangan

3.2.2.1 Use Case Diagram

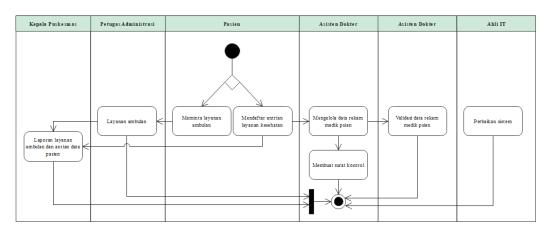
Perancangan *use case diagram* sistem informasi layanan kesehatan Puskesmas Rebang Tangkas yang diusulkan terlihat pada gambar 3.2. Petugas administrasi memasukkan data master yang terdiri dari dokter, poli, dan asisten dokter/petugas serta dapat mengelola layanan antrian. Pasien melakukan pendaftaran anltrian layanan yang kemudian akan dipanggil oleh asisten dokter untuk cek pengobatan oleh dokter. Asisten dokter memasukkan data rekam medik pasien yang nantinya divalidasi oleh dokter. Jika pasien membutuhkan kontrol lanjutan, maka asisten dokter akan membuat surat kontrol. Pasien juga dapat melakukan permintaan

panggilan ambulan yang nanti dikelola oleh petugas administrasi, yang kemudian petugas ambulan akan datang ke lokasi pengguna. Ahli IT disini dapat melakukan perbaikan sistem jika sistem terjadi masalah. Kepala puskesmas dapat melihat laporan data antrian layanan dan layanan ambulan.

Gambar 3.2 Perancangan Use Case Diagram

Pendefinisian aktor dan *use case* merupakan langkah penting dalam analisis kebutuhan dan perancangan sistem. Aktor, sebagai entitas yang berinteraksi dengan sistem, dan *use case*, sebagai representasi fungsionalitas yang diinginkan, memainkan peran krusial dalam membentuk kerangka kerja sistem yang efektif dan responsif. Pendefinisian aktor dan *use c*ase pada perancangan *use case diagram* di atas terlihat pada tabel di bawah ini.

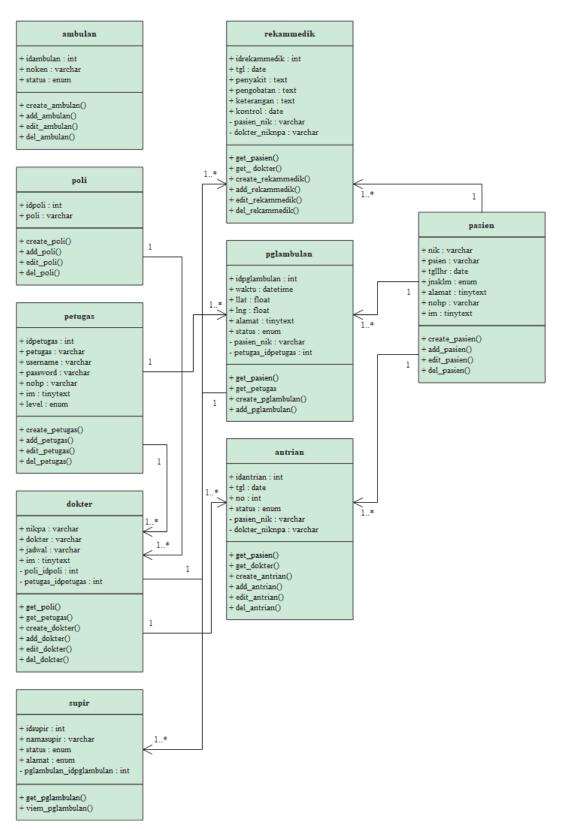
Tabel 3.2 Pendefinisian Aktor dan Use Case


Pen	Pendefinisian Aktor			
No	Aktor	Deskripsi		
1	Pasien	Orang yang dapat melakukan pendaftaran antrian		
		layanan dan permintaan ambulan pada aplikasi		

2	Asisten Dokter	Orang yang dapat mengelola data rekam medik
		dan surat kontrol
3	Petugas Administrasi	Orang yang mengelola layanan ambulan
4	Kepala Puskesmas	Orang yang dapat melihat laporan layanan
		ambulan
5	Dokter	Orang yang memvalidasi data rekam medik
6	Ahli IT	Orang yang mengelola perbaikan sistem
Pen	definisian <i>Use Case</i>	
No	Use Case	Deskripsi
1	Antrian Layanan	Proses dimana pasien dapat melakukan
		mendaftarkan antrian layanan Puskesmas
2	Rekam Medik	Proses dimana asisten dokter dapat mengelola
		data rekam medik
3	Surat Kontrol	Proses dimana asisten dokter dapat mengelola
		data surat kontrol pasien
4	Permintaan Ambulan	Proses dimana pasien dapat melakukan layanan
		permintaan ambulan
5	Layanan Ambulan	Proses dimana petugas administrasi dapat
		mengelola data layanan ambulan
6	Laporan layanan	Proses dimana kepala puskesmas dapat melihat
	ambulan dan antrian	data laporan layanan ambulan dan antrian pasien
	data pasien	
7	Validasi Rekam Medik	Proses dimana dokter dapat melakukan validasi
		rekam medik
8	Maintenance Sistem	Proses dimana ahli IT melakukan perbaikan
		sistem

3.2.2.2 Activity Diagram

Activity diagram adalah alat visual yang sangat berguna dalam menganalisis dan mendokumentasikan aktivitas atau alur kerja dalam suatu sistem atau proses. Diagram ini membantu untuk memahami secara jelas serangkaian tindakan atau aktivitas yang terjadi, serta hubungan dan ketergantungan antaraktivitas tersebut. Dengan menggunakan simbol-simbol, activity diagram memodelkan aktivitas-aktivitas sebagai node dan menggambarkan hubungan


antaraktivitas dengan menggunakan panah. Perancangan *activity diagram* sistem informasi layanan kesehatan Puskesmas Rebang Tangkas yang diusulkan terlihat pada gambar di bawah ini.

Gambar 3.3 Perancangan Activity Diagram

3.2.2.3 Class Diagram

Class diagram adalah salah satu elemen penting dalam Unified Modeling Language (UML) yang digunakan untuk memodelkan struktur statis dari suatu sistem atau aplikasi. Diagram ini memberikan representasi visual yang kuat tentang entitas-entitas (class) dalam sistem beserta hubungan dan propertinya. Class diagram membantu dalam merancang dan memahami struktur objek dalam suatu perangkat lunak. Perancangan class diagram pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas yang diusulkan terlihat pada gambar di bawah ini.

Gambar 3.4 Perancangan Class Diagram

Class diagram pada gambar di atas terdiri dari 9 *class* dan disetiap *class* terdiri dari nama *class*, atribut, dan operasi. Tabel master terdiri dari tabel ambulan, tabel dokter, tabel petugas, dan

tabel poli. Tabel transaksi terdiri dari tabel rekam medik, tabel antrian, dan tabel pglambulan. Adapun detil dari atribut yang ada pada tiap *class* adalah sebagai berikut :

a. Ambulan

Class ambulan digunakan untuk menyimpan data ambulan. Adapun penjelasan dari class ambulan terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : ambulan

Primary Key : idambulan

Tabel 3. 3 Penjelasan Atribut Ambulan

field_name	type	length	keterangan
idambulan	int	default	id ambulan
noken	varchar	9	no kendaraan
status	enum	'0', '1'	status

b. Rekam Medik

Class rekam medik digunakan untuk menyimpan data rekam medik. Adapun penjelasan dari *class* rekam medik terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : rekam medik

Primary Key : idrekammedik

Foreign Key : pasien_nik

dokter_niknpa

Tabel 3. 4 Penjelasan Atribut Rekam Medik

field_name	type	length	keterangan
idrekammedik	int	default	id rekam medik
tgl	date	default	tanggal
penyakit	text	default	penyakit
pengobatan	text	default	pengobatan
keterangan	text	default	keterangan
kontrol	date	default	kontrol
pasien_nik	varchar	16	nik pasien
dokter_niknpa	varchar	18	niknpa dokter

c. Poli

Class poli digunakan untuk menyimpan data poli. Adapun penjelasan dari *class* poli terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : poli Primary Key : idpoli

Tabel 3. 5 Penjelasan Atribut Poli

field_name	type	length	keterangan
idpoli	int	default	id poli
poli	varchar	25	poli

d. Dokter

Class dokter digunakan untuk menyimpan data dokter. Adapun penjelasan dari *class* dokter terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : dokter *Primary Key* : niknpa

Foreign Key : poli_idpoli

petugas_idpetugas

Tabel 3. 6 Penjelasan Atribut Dokter

field_name	type	length	keterangan
niknpa	varchar	18	niknpa dokter
dokter	varchar	60	nama dokter
jadwal	varchar	7	jadwal praktek
im	tinytext	default	foto
poli_idpoli	int	default	id poli
petugas_idpetugas	int	default	id petugas

e. Pasien

Class pasien digunakan untuk menyimpan data pasien. Adapun penjelasan dari *class* pasien terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : pasien

Primary Key : nik

Tabel 3. 7 Penjelasan Atribut Pasien

field_name	type	length	keterangan
nik	varchar	16	nik pasien
pasien	varchar	60	nama pasien
tgllhr	date	default	tanggal lahir
jnsklm	enum	'l', 'p'	jenis kelamin
alamat	tinytext	default	alamat
nohp	varchar	16	nomor hp
im	tinytext	default	foto

f. Petugas

Class petugas digunakan untuk menyimpan data petugas. Adapun penjelasan dari class petugas terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : petugas

Primary Key : idpetugas

Tabel 3. 8 Penjelasan Atribut Petugas

field_name	type	length	keterangan
idpetugas	int	default	id petugas
petugas	varchar	60	nama petugas
username	varchar	16	username
password	varchar	16	password
nohp	varchar	16	nomor hp
im	tinytext	default	foto
level	enum	'admin', 'asisten', 'ambulan'	level

g. Antrian

Class antrian digunakan untuk menyimpan data antrian. Adapun penjelasan dari class antrian terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : antrian

Primary Key : idantrian

Foreign Key : pasien_nik

dokter_niknpa

Tabel 3. 9 Penjelasan Atribut Antrian

field_name	type	length	keterangan
idantrian	int	default	id antrian
tgl	date	default	tanggal
no	int	default	nomor
status	enum	'0', '1'	status
pasien_nik	varchar	16	nik pasien
dokter_niknpa	varchar	18	niknpa dokter

h. Pgl Ambulan

Class pgl ambulan digunakan untuk menyimpan data pgl ambulan. Adapun penjelasan dari *class* pgl ambulan terlihat pada tabel di bawah ini.

Nama Database : sipuskesmasrt

Nama Tabel : Pgl ambulan

Primary Key : idpglambulan

Foreign Key : pasien_nik

petugas_idpetugas

Tabel 3. 10 Penjelasan Atribut Pgl Ambulan

field_name	type	length	keterangan
idpglambulan	INT	default	Id panggil ambulan
waktu	DATETIME	default	Waktu
llat	FLOAT	10, 7	Garis lintang
lng	FLOAT	10, 7	Garis bujur
alamat	TINYTEXT	default	Alamat
status	ENUM	'0', '1', '2'	Status
pasien_nik	VARCHAR	16	Nik pasien
petugas_idpetugas	INT	default	Id petugas

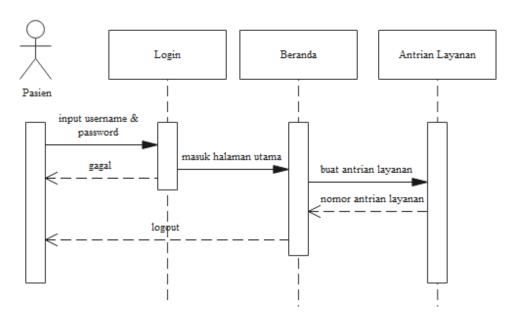
i. Supir

Class supir digunakan untuk menyimpan data supir. Adapun penjelasan dari class siupir terlihat pada tabel di bawah ini.

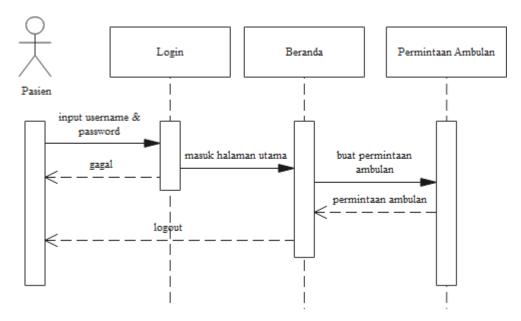
Nama Database : sipuskesmasrt

Nama Tabel : supir

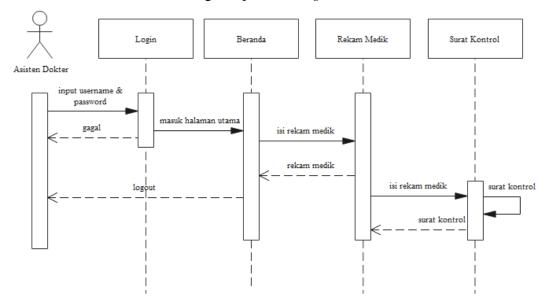
Primary Key : idpelanggan

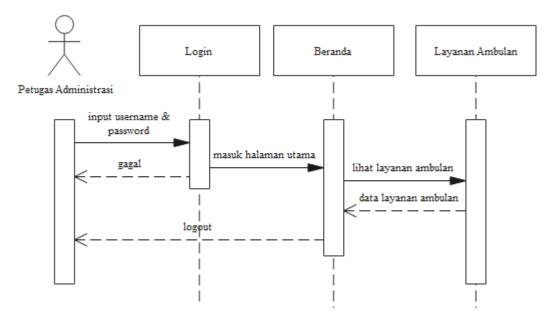

Foreign Key : petugas_idpetugas

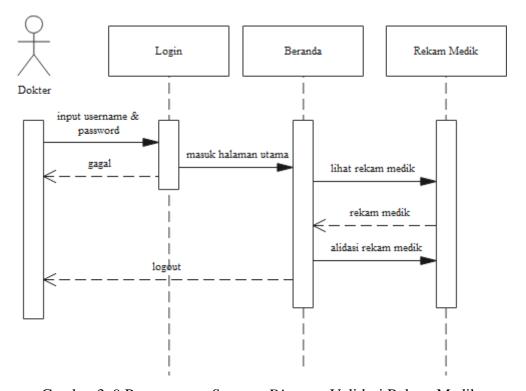
Tabel 3. 11 Penjelasan Atribut Supir

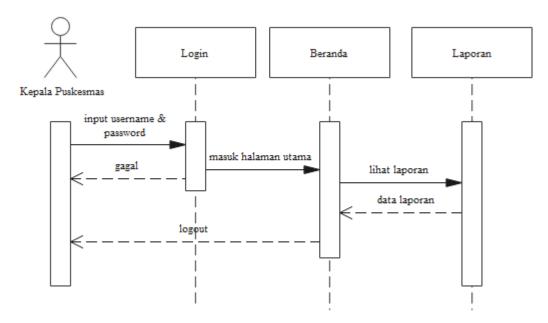

field_name	type	length	keterangan
idsupir	int	default	id supir
namasupir	varchar	60	nama
status	enum	'0','1'	status
alamat	enum	default	alamat
pglambulan_idpglambulan	int	default	id pgl ambulan

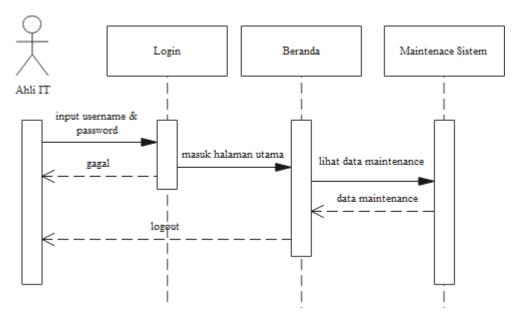
3.2.2.4 Squence Diagram


Sequence diagram adalah jenis diagram yang digunakan dalam rekayasa perangkat lunak untuk menggambarkan interaksi antara objek dalam sistem dalam urutan waktu. Diagram ini biasanya digunakan untuk memodelkan skenario interaksi yang terjadi antara objek-objek dalam sistem. Perancangan squence diagram pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas yang diusulkan terlihat pada gambar di bawah ini.


Gambar 3. 5 Perancangan Squence Diagram Antrian Layanan


Gambar 3. 6 Perancangan Squence Diagram Permintaan Ambulan


Gambar 3. 7 Perancangan Squence Diagram Rekam Medik dan Surat Kontrol


Gambar 3. 8 Perancangan Squence Diagram Layanan Ambulan

Gambar 3. 9 Perancangan Squence Diagram Validasi Rekam Medik

Gambar 3. 10 Perancangan Squence Diagram Laporan Data Antrian dan Layanan Ambulan

Gambar 3. 11 Perancangan Squence Diagram Maintenance Sistem

3.2.2.5 Interface Aplikasi

Desain *interface* merujuk pada proses perencanaan dan pembuatan antarmuka yang memfasilitasi interaksi antara pengguna dengan suatu sistem atau aplikasi. Perancangan antarmuka sistem informasi layanan kesehatan Puskesmas Rebang Tangkas yang diusulkan adalah sebagai berikut :

a. Beranda Asisten

Perancangan beranda asisten pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.12.

Gambar 3.12 Perancangan Interface beranda Asisten Dokter

b. Form Rekam Medik

Perancangan *form* rekam medik yang diakses oleh asisten dokter pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.13.

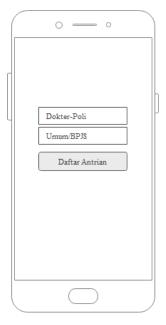
Gambar 3.13 Perancangan Interface Form Rekam Medik Oleh Asisten Dokter

c. Form Pendaftaran Pasien

Perancangan *form* pendaftaran pasien yang diakses oleh pasien pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.14.

Gambar 3.14 Perancangan Interface Form Pendaftaran Pasien Oleh Pasien

d. Beranda Pasien


Perancangan beranda pasien yang diakses oleh pasien pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.15.

Gambar 3.15 Perancangan *Interface* Beranda Pasien

e. Form Antrian Pasien

Perancangan *form* antrian pasien oleh pasien pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.16.

Gambar 3.16 Perancangan *Interface Form* Antrian Pasien Oleh Pasien

f. Beranda Dokter

Perancangan beranda dokter yang diakses oleh dokter pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.17.

Gambar 3. 17 Perancangan Interface Beranda Dokter Oleh Dokter

g. Beranda Petugas Administrasi

Perancangan beranda petugas administrasi yang diakses oleh petugas administrasi pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.18.

Gambar 3.18 Perancangan Interface Beranda Petugas Administrasi

h. Beranda Kepala Puskesmas

Perancangan beranda kepala puskesmas yang diakses oleh kepala puskesmas pada sistem informasi layanan kesehatan Puskesmas Rebang Tangkas berbasis Android terlihat pada gambar 3.19.

Gambar 3. 19 Perancangan Interface Beranda Kepala Puskesmas

3.3 Coding

Setelah dilakukan pembuatan pemodelan sistem, tahap selanjutnya adalah pembuatan program menggunakan aplikasi *Android Studio* dengan bahasa pemograman *Kotlin*. Untuk penyimpanan data dilakukan menggunakan *MySQL*

3.4 Testing

Stelah dilakukan pembuatan program, tahap implementasi dibarengi dengan pengujian agar supaya sistem atau aplikasi yang dibuat berjalan sebagaimana semestinya dan sesuai dengan fungsinya.