
BAB III METODOLOGI PENELITIAN

3.1 Alur Penelitian

Setelah melakukan pengumpulan data dan menentukan metode selanjutnya adalah tinggal melakukan uji coba dari hasil data yang sudah dikumpulkan. Selanjutnya data dari hasil penelitian akan dianalisis dengan cara melakukan verifikasi dan validasi data hingga akan menghasilkan output analisis yang memiliki tingkat akurasi yang tinggi.

Gambar 3.1 Alur Penelitian Analisis Sentimen

3.2 Implementasi Penelitian

Selama meneliti peneliti memerlukan beberapa perangkat lunak (*software*) dan perangkat keras (*hardware*) yang diperlukan untuk mencapai dan membantu penelitian untuk mencapai tujuan yang sudah ditetapkan, diantaranya adalah:

- OS Windows 10
- Aplikasi Jupyter Notebook
- Laptop Lenovo AMD Athlon Gold 8 GB
- Bahasa Pemrograman Python

3.2 Pengumpulan Data

Selama pengumpulan data, peneliti akan mengumpulkan data dengan mencari referensi jurnal yang terkait dengan topik penelitian ini. Pengumpulan data juga dilakukan dengan cara menangkap tweet dengan cara mendapatkan data secara langsung (Crawl) Twitter menggunakan API (Application Interface) pada Twitter.(Legianto, 2019)

Gambar 3.2.1 Pengumpulan Data menggunakan Rapidminer

3.3 Preprocessing

Setelah mendapatkan data, yang harus Anda lakukan adalah membersihkan data. Pembersihan dilakukan dengan menghilangkan noise, menghapus data duplikat, memeriksa data untuk ketidakkonsistenan, dan memperbaiki kesalahan dalam data, seperti kesalahan ketik.

Pada tahap ini data akan dibagi menjadi data testing dan data training dengan rasio 80% untuk data testing dan 20% data training dan didapatkan hasil :

Tabel 3.3.1 Pembagian Data Testing dan Data Training

Jumlah Data (N)	Data Testing (N x 20%)	Data Training (N x 80%)
704	141	563

3.3.1 Cleansing Data

Tahap Cleansing data dilakukan sebagai tahap awal yang sangat penting dalam penelitian ini. Hal ini dikarenakan data yang didapatkan dari Twitter masih dalam bentuk teks yang tidak sesuai kaidah dan tidak lengkap. Normalisasi adalah proses penskalaan nilai atribut dari data sehingga terletak pada rentang tertentu(Nasution et al., 2019).

Selain itu pada tahap normalisasi juga dilakukan secara *Cleaning data* menggunakan pemrograman Python, hal ini bertujuan untuk memastikan isi dari data tersebut. *Cleaning data* yang akan menghapus atribut-atribut yang tidak diperlukan di dalam data seperti, tanda baca, emot ikon, angka dan lain-lain. Atribut-atribut yang akan dihapus contohnya "@[A-Za-z0-9]+, [0-9]+, #, [^\w], '__', [\n]+, :, 'RT[\s]+, ^https?:\/\v.[\r\n], ^http?:\/\v.[\r\n]".

```
def cleanTweet(text):
    text = re.sub(r'@[A-Za-z0-9]+', '', text)
    text = re.sub(r'[0-9]+', '', text)
    text = re.sub(r'#','',text)
    text = re.sub(r'[^\w]', ' ', text)
    text = re.sub(r'_', ' ', text)
    text = re.sub(r'[\n]+', '', text)
    text = re.sub(r':', '', text)
    text = re.sub(r':', '', text)
    text = re.sub(r'RT[\s]+', '', text)

    return text

df['clean_tweets'] = df['Text'].apply(cleanTweet)

df.head()
```

Gambar 3.3.1.1 Cleansing Data dengan Python

Tabel 3.3.1.1 Hasil Sebelum dan sesudah di Cleansing

No	Data Awal	Cleansing data
1.	Pemerintah melobi berbagai pihak agar RKUHP	Pemerintah melobi
	segera disahkan. Pasal yang mengancam demokrasi	berbagai pihak agar
	dan hak privat dipertahankan. #MajalahTempo	RKUHP segera disahkan
	https://t.co/fZyE7WMTEo,"1552487543077163008	Pasal yang mengancam
		demokrasi dan hak privat
		dipertahankan
		https://t.co/fZyE7WMTEo
		"1552487543077163008"
2.	Pada 6 Juli lalu, Pemerintah melalui Kementerian	Pada Juli lalu Pemerintah
	Hukum dan HAM resmi menyerahkan draf RKUHP	melalui Kementerian
	ke DPR. Penyusunan draf RKHUP yang sudah	Hukum dan HAM resmi
	berlangsung sejak lama dan sempat batal disahkan	menyerahkan draf RKUHP
	pada 2019 lalu ini, menimbulkan kritik dari banyak	ke DPR Penyusunan draf
	pihak.	RKHUP yang sudah
	https://t.co/NEEjKm10d4,"1549344544243986432"	berlangsung sejak lama dan
		sempat batal disahkan pada

2019 lalu ini menimbulkan
kritik dari banyak pihak
https://t.co/NEEjKm10d4
"1549344544243986432"

3.3.2 Labeling Data

Labeling data adalah tahap memberikan label pada setiap data yang sudah dibersihkan atau telah melalui Cleansing data. Dalam penelitian ini data akan dilabeli melalui Natural Language Processing yang ada di Library Python yaitu Textblob.

Proses Labeling melalui Textblob hanya bisa dilakukan dalam Bahasa inggris jadi dalam melakukan Labeling data yang sudah melalui tahap cleansing data akan diterjemahkan terlebih dahulu kedalam Bahasa inggris sebelum melakukan Labeling pada data. Proses Labeling juga dilakukan dengan berkonsultasi kepada ahli Bahasa yaitu Bapak Dr. Muhammad Sukirlan, M.A. selaku kepala UPT Bahasa di Unila, dan didapatkan hasil bahwa:

Tabel 3.3.2.1 Penjelasan Masing-Masing Label

No.	Sentimen	Penjelasan		
1.	Negatif	Pernyataan yang sangat tidak mendukung terhadap		
		konten yang dimaksudkan.		
2.	Netral	Pernyataan yang tidak termasuk dalam mendukung		
		dan setuju terhadap konten serta tidak termasuk		
		kedalam pernyataan yang menentang atau tidak		
		mendukung konten.		
3.	Positif	Pernyataan yang sangat mendukung atau mengajak		
		terhadap konten yang dimaksudkan.		

Menurut Bapak Dr. Muhammad Sukirlan, M.A. labeling dilakukan dengan

melihat kata kerja, kata bantu, kata sifat dan juga kata sambung di kalimatnya, contoh beberapa kata yang bisa diindikasikan sebagai kata yang negatif atau positif:

Tabel 3.3.2.2 Contoh Kata Negatif dan Kata Negatif

Positif	Negatif
Senang	Benci
Ayo	Tua
Dukung	Tidak
Ajak	Tertindas
Percaya	Khawatir
Perlu	Bukan
Menaati	Melanggar

Beliau juga mengatakan bahwa jika ada kata Positif namun diawali dengan kata "Tidak" maka kata tersebut akan berlabel Negatif, begitu juga sebaliknya jika ada kata Negatif yang diawali dengan kata "Tidak" maka kata tersebut akan berlabel Positif, sedangkan untuk kata Netral beliau mengatakan bahwa kalimatnya akan mengandung keduanya atau tidak menagandung keduanya dan juga bisa berupa pertaanyaan, berikut contoh kalimatnya:

Tabel 3.3.2.2 Cara Melabeli Kalimat

Kalimat	Sentimen
Senang sekali membaca tulisan dari tentang RKHUP dan	Positif
perjalanannya dari rumah ke rumah seperti lagunya	
Harkristuti Harkrisnowo berpendapat bahwa KUHP yang	Negatif
diterapkan sekarang sudah terlalu tua dan bukan	
merupakan buatan Indonesia	
Mana suaranya yang sepakat mempertemukan dan untuk	Netral
debat RKUHP	

3.3.3 Pembobotan Kata

Pada tahap pembobotan kata atau *Terms Weight* ini akan dilakukan perhitungan secara otomatis menggunakan rapidminer. Namun pada kali ini akan memberikan contoh dan Contoh akan dibagi menjadi 4 dimana 3 adalah data training dan 1 adalah data testing. Berikut adalah perhitungan manual dari pembobotan kata, yaitu:

Tabel 3.3.3.1 Contoh Data Pembobotan Kata

Ket	Tweet	Sentimen
D1	gagalkan rkuhp uu kolonial gaya oligarki hentikan	Negatif
	periode oligarki	
D2	hak publik untuk bersuara dan ikut terlibat dalam	Positif
	proses perumusan rkuhp ini	
D3	senang sekali membaca tulisan dari tentang rkhup	Positif
	dan perjalanannya dari rumah ke rumah seperti	
	lagunya	
D4	rkuhp memudahkan masyarakat mencari pekerjaan	?
	tapi banyak pasal karet	

Selanjutnya melakukan tokenisasi dan lakukan *stopwords*, tokenisasi dilakukan untuk memisahkan kalimat menjadi kata-kata dan *stopwords* digunakan untuk membuang kata-kata yang dirasa memiliki makna yang kurang berarti seperti "yang", "dan", "atau" dan lain-lain. Ini merupakan hasilnya:

Tabel 3.3.3.2 Data Pembobotan Kata Tf-Idf

	Tf					Idf	Wt = Tf.Idf			
Term	D1	D2	D3	D4	df	log(n/df)	D1	D2	D3	D4
gagalkan	1	0	0	0	1	0,60205999	0,60205999	0	0	0
rkuhp	1	1	1	1	4	0	0	0	0	0
uu	1	0	0	0	1	0,60205999	0,60205999	0	0	0
kolonial	1	0	0	0	1	0,60205999	0,60205999	0	0	0
gaya	1	0	0	0	1	0,60205999	0,60205999	0	0	0
oligarki	2	0	0	0	2	0,30103	0,60205999	0	0	0
hentikan	1	0	0	0	1	0,60205999	0,60205999	0	0	0
periode	1	0	0	0	1	0,60205999	0,60205999	0	0	0
hak	0	1	0	0	1	0,60205999	0	0,60205999	0	0
publik	0	1	0	0	1	0,60205999	0	0,60205999	0	0
untuk	0	1	0	0	1	0,60205999	0	0,60205999	0	0
bersuara	0	1	0	0	1	0,60205999	0	0,60205999	0	0
ikut	0	1	0	0	1	0,60205999	0	0,60205999	0	0
terlibat	0	1	0	0	1	0,60205999	0	0,60205999	0	0
proses	0	1	0	0	1	0,60205999	0	0,60205999	0	0
perumusan	0	1	0	0	1	0,60205999	0	0,60205999	0	0
senang	0	0	1	0	1	0,60205999	0	0	0,60205999	0
membaca	0	0	1	0	1	0,60205999	0	0	0,60205999	0
tulisan	0	0	1	0	1	0,60205999	0	0	0,60205999	0
tentang	0	0	1	0	1	0,60205999	0	0	0,60205999	0
perjalanannya	0	0	1	0	1	0,60205999	0	0	0,60205999	0
rumah	0	0	1	0	1	0,60205999	0	0	0,60205999	0
lagunya	0	0	1	0	1	0,60205999	0	0	0,60205999	0
memudahkan	0	0	0	1	1	0,60205999	0	0	0	0,60205999
masyarakat	0	0	0	1	1	0,60205999	0	0	0	0,60205999
mencari	0	0	0	1	1	0,60205999	0	0	0	0,60205999
pekerjaan	0	0	0	1	1	0,60205999	0	0	0	0,60205999
pasal	0	0	0	1	1	0,60205999	0	0	0	0,60205999
karet	0	0	0	1	1	0,60205999	0	0	0	0,60205999

Kata "gagalkan" memiliki df (*document frequency*) sebanyak 1 dari 4 dokumen yang ada. Jadi dalam menentukan Idf (*inverse document frequency*) adalah:

```
Idf = \log (4/1)
Idf = \log (4)
Idf = 0,60205999
```

Setelah mendapatkan nilai Idf, dapat dilanjutkan ketahap selanjutnya dengan mengkalikan Idf dan Tf (*Terms frequency*), dengan nilai Tf "gagalkan" di masing-masing dokumen D1 = 1, D2 = 0, D3=0, D4=0, maka dapat dihasilkan Wt (*Weight terms*) sebagai berikut :

```
Wt = Tf \cdot Idf
D1 = 1
Wt = 1. \ 0,60205999
Wt = 0,60205999
D1 = 2
Wt = 0. \ 0,60205999
Wt = 0
D1 = 3
Wt = 0. \ 0,60205999
Wt = 0
D1 = 5
Wt = 0. \ 0,60205999
Wt = 0
```

Data hasil dari pembobotan kata akan digunakan untuk mencari *Similiarity* atau persamaan menggunakan metode K-NN

3.4 K-Nearest Neighbor

Metode *K-Nearest Neighbor* menggunakan persamaan *Similiarity Vector* untuk mencari jarak antar data atau dokumen. Berikut ini adalah hitungan manualnya:

Tabel 3.4.1 Perkalian Skalar Vektor

WD4.Wdi				
D1	D2	D3		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Perkalian Sklar yang dimaksudkan untuk mecari nilai $\sum_{k}(dik.dij)$ pada rumus similiarity, dimana dik adalah bobot data dokumen *Testing* (D1, D2, D3) dij adalah bobot data dokumen *Training* (D4). Perkalian ini pasangkan untuk masing-masing nilai *Weight Terms* atau bobot kata, contoh perhitungan manual nya:

D1: "gagalkan" = 0,60205999

D2: "gagalkan" = 0

D3: "gagalkan" = 0

D4: "gagalkan" = 0

$$\sum_{k}(dik.dij)$$

D1 = bobot D1. bobot D5

D1 = 0,60205999.0

D1 = 0

D2 = bobot D3. bobot D5

D2 = 0.0

D2 = 0

D3 = bobot D3. bobot D5

D3 = 0.0

D3 = 0

Selanjutnya adalah menghitung vector Panjang setiap dokumen dengan rumus :

$$\sqrt{\sum_{k} d^{2}ik} \sqrt{\sum_{k} d^{2}jk}$$

Tabel 3.4.1 Perkalian Panjang Vektor

Panjang Vektor					
D1	D2	D3	D4		
0,36247623	0	0	0		
0	0	0	0		
0,36247623	0	0	0		
0,36247623	0	0	0		
0,36247623	0	0	0		
0,36247623	0	0	0		
0,36247623	0	0	0		
0,36247623	0	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0,36247623	0	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0,36247623	0		
0	0	0	0,36247623		
0	0	0	0,36247623		
0	0	0	0,36247623		
0	0	0	0,36247623		
0	0	0	0,36247623		
0	0	0	0,36247623		
2,53733362	2,89980985	2,53733362	2,17485738		

Panjang vektor:

D1: $\sqrt{0,60205999^2 \times 7}$

D1: $\sqrt{2,53733362}$

D1: 1,59290100

D2: $\sqrt{0,60205999^2 \times 8}$

 $D2:\sqrt{2,89980985}$

D2: 1,70288280

D3: $\sqrt{0,60205999^2 \times 7}$

D3: $\sqrt{2,53733362}$

D3: 1,59290100

D4: $\sqrt{0,60205999^2 \times 6}$

D4: $\sqrt{2,17485738}$

D4: 1,47473976

Jika semua sudah didapatkan maka data tersebut dapat dimasukan kedalam rumus yang utuh :

Cos(D4,D1) = 0 / (1,47473976*1,59290100) = 0

Cos(D4,D2) = 0 / (1,47473976*1,70288280) = 0

Cos(D4,D3) = 0 / (1,47473976*1,59290100) = 0

Nilai kedekatan vector yang dimiliki oleh D1, D2, D3 terhadap D4 memiliki nilai yang sama yaitu 0, maka dapat disimpulkan bahwa D4 bukan termasuk dalam sentiment "Negatif" maupun "Positif" atau D4 termasuk dalam sentiment "Negatif" maupun "Positif" yang mana itu berarti D4 adalah "Netral".