revisi infotel 5.docx

by Turnitin Turnitin

Submission date: 15-Jun-2024 04:00AM (UTC-0700)

Submission ID: 2402915899

File name: revisi_infotel_5.docx (873.76K)

Word count: 3768

Character count: 21997

RESEARCH ARTICLE

Prediction Of Student Achievement Using FNN And SVR At Smk Telkom Lampung

Desi Susanti^{1,*}, Joko Triloka²

^{1,2} Master of Informatics Engineering, Institut Informatika Dan Bisnis Darmajaya, Lampung, 35141, Indonesia

*Corresponding email: desi.2321211030P@mail.darmajaya.ac.id

Abstract: Analyzing student performance in vocational schools is essential as it assists in identifying the difficulties students encounter as they prepare for their careers. By integrating data mining techniques such as Artificial Neural Networks (ANN), educators can enhance their understanding of factors that improve student learning outcomes. An artificial neural network (ANN) is composed of interconnected artificial neurons that can learn from input data and make complex predictions, including academic achievements. ANN is inspired by the structure and function of the human brain. This study compares the effectiveness of the artificial neural network (ANN) method with other methodologies, such as support vector regression SVR), to predict student achievement at SMK Telkom Lampung. The initial data obtained from SMK Telkom Lampung comprises 4939 instances, encompassing 550 cases, 26 features, and 4 metaattributes. The assessment of performance includes metrics like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2). The coefficient of determination (R2) value of the Neural Network at 0.001 is higher from the R2 value of SVR, which reaches -0.036. Research results suggest that free Artificial Neural Network model demonstrates slightly superior performance compared to the Support Vector Regression model, exhibiting lower prediction error rates and greater capacity to explain variability in the data.

Keywords: Student Performance, Vocational School, Coefficient Determination, Prediction

1 Introduction

Vocational High Schools (SMK) are institutes of vocational education designed to equip students with the necessary skills to work in the business/industry sector or launch their own independent entrepreneurial ventures. Therefore, SMK students are expected to be ready to enter the workforce, thus, students are required to have skills and professional attitudes in their respective fields[1]. However, in practice, many students still lack skills or expertise in their vocational fields, even though they are given opportunities to learn through projects and hands-on practice in laboratories, as well as receiving

materials either directly or through digital platforms such as Learning Management Systems (LMS). Therefore, to evaluate the effectiveness of educational programs at SMK Telkom Lampung, it is necessary to predict student achievements by comparing predictions with actual results. Schools can assess how well their educational programs are working and identify areas that need improvement.

The educational organization is among the establishments that own a substantial quantity of data. [2]. Data is used by this organization to gather information, particularly regarding the students. Numerous characteristics of student data enable us to anticipate things like academic and extracurricular accomplishments of children during their time in school. Academic performance is frequently employed as a measure of educational success, even though in the autonomous curriculum pupils are not assessed using a ranking or rating system in their academic achievements because it is seen inaccurate to portray students' potential and talents. The ranking of pupils' academic performance serves as one measure of this accomplishment. The responsibilities that educators play, the drive and self-control of students, their socioeconomic backgrounds, and previous learning results all play a part in achieving high-quality education. Data mining is the process of identifying patterns in a large database to uncover hidden information using statistical approaches [3]. Using machine learning to aid in data mining proves highly beneficial for addressing a wide range of problems [4]. Sentiment analysis approaches are applied to data using machine learning (ML) techniques [5]. Schools can ensure students' academic and non-academic success by taking appropriate measures promptly after assessing their performance. The ultimate goal is for all students, regardless of their background, to reach their full potential both academically and in extracurricular activities.

In the field of education, it is essential to conduct research that predicts the success rates of students' academic studies to propose enhancements for future academic performance[6]. Numerous research studies have been conducted to forecast the academic success of children. For example, in the study 'Comparison of Data Mining Algorithm Performance for Student Graduation Prediction' by Sadimin and Handoyo Widi Nugroho, students' cumulative grade point average 1 PA) was utilized as an indicator of their learning achievement[2]. Yahia Baashar et al. conducted a systematic literature review titled 'Towards Predicting Academic Performance of Student Using Artificial Neural Networks (ANN)', in which they investigated the topic. The comprehensive review concluded that artificial neural networks (ANN) have shown high accuracy in predicting academic achievement outcomes, despite similar results being 1 hieved with other data mining methodologies [7]. Nalindren Naicker et al. conducted a similar study titled "Linear Support Vector Machine for Predicting Student Performance in School-Based Education." In this research, they performed experimental analysis using feature selection on 1 publicly accessible dataset containing 1,000 alphanumeric student records. The study demonstrated that the linear support vector machine, evaluated alongside ten categorical machine learning algorithms, exhibited superior performance in predicting student outcomes[8].

Some gaps identified in the studies include incomplete understanding of predictive phenomena, constraints on modifying input variables, and researchers primarily offering general performance comparisons based on background and previous studies.

Educational data mining has emerged as one of the most popular areas of scientific inquiry in recent times [9]. One machine learning and data mining approach that has been employed in various research publications is artificial neural networks (ANN), which are claimed to produce better and more accurate results when predicting student performance[7]. This model disregards physical processes entirely and instead relies on a collection of linear and non-linear mathematical equations. Its ability to closely approximate real outcomes is its most crucial feature. Due to its training and pattern recognition capabilities, ANN is frequently utilized [10]. Support Vector Regression (SVR), along with ANN, is a well-known machine learning technique used in statistical methods for constructing regression functions[11]. SVR is an effective method for making predictions based on past data, and it works especially well with high-dimensional datasets that use Kemel functions to handle nonlinear scenarios [12].

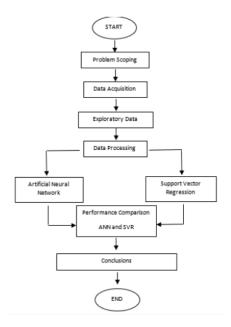
This study employs an artificial neural network to forecast the performance of students at SMK Telkom Lampung, addressing the aforementioned issues. By contrasting the ANN and SVR approaches

in predicting student achievement and utilizing the Orange program as an analytical tool, the research aims to systematically and comprehensively compare these two methods, leveraging advancements in technology.

Thus, this study evaluates the effectiveness of AN and SVR methods in predicting student achievement at SMK Telkom Lampung and investigates the potential of artificial intelligence technology within the educational context. The analysis aims to assess how well both approaches predict student performance in this distinctive educational environment.

2 Research Method

The stages of this study align with the steps depicted in the diagram provided:



F1. Research Stages

The following is an explanation of the research stages mentioned above:

2.1 Problem Scoping

The Vocational High School (SMK) Telkom Lampung is the primary research site for this study, where several core variables—such as current class, absenteeism, tardiness, ranking, extracurricular activities, and academic and non-academic student achievement data—are used in the problem scoping process. The Orange software is employed for implementing and analyzing the focused analytic methods, which include Artificial Neural Network (ANN) and Support Vector Regression (SVR).

2.2 Data Acquisition

Data acquisition for this research involves several steps, as:

2.2.1.1 Data Collection

At this point, decisions are made about which data features to use, where to save the data from, and whether the goals of the data collection are met by the acquired data [13]. Therefore, in this study, the collected data is sourced from the school database from 2021 to 2024. The quantity of records in the dataset is referred to as instances. The dataset contains a total of 550 samples.

2.2.1.2 Data Cleansing

The data cleansing process involves identifying and handling duplicate data, printing errors, and data inconsistencies. This process also includes verifying and correcting inaccurate or incomplete data. These steps are essential to ensure good data quality before further analysis.

2.2.1.3 Data Transformation

The format used for data mining processing is the Excel format. Data transformation is performed by importing the data into the Orange Data Mining software and then carrying out various preprocessing operations such as data cleansing, removal of missing values, normalization, or recoding of categorical features to prepare the data for further analysis.

2.2.1.4 Data Partitioning

In this study, the data is split into 80% for training the model and 20% for testing its performance. The training set is utilized to develop the prediction model, while the testing set assesses how well the trained model performs.

2.2.1.5 Data Validation

In this stage, consistency checks, research objective verification, outlier testing, cross-validation, and sensitivity testing are conducted.

2.3 Exploratory Data Analysis

To understand the characteristics of data in depth, it is necessary to examine descriptive statistics of the data and create graphs or plots to visualize data distributions, relationships between variables, and other patterns using Box plots and scatter plot widgets.

2.4 Preprocessing

Cleaning is typically a part of the data preprocessing steps[14]. Data cleaning involves checking for outliers, duplicate data, and missing values[15]. Clear and highly accurate information can be obtained through appropriate preprocessing procedures[16]. As part of the cleaning procedure, the researcher uses the Microsoft Excel tool to filter each tolumn separately and identify empty data. There are numerous inaccuracies in data entries across columns such as date of birth, class, number of siblings, and distance from home. These data points are assigned four scores in the prediction column based on factors like attendance, tardiness, academic achievement, and non-academic achievement. Students who still have records after expulsion or transfer are given a score of 0 to indicate erroneous data. Data with minimal influence is assigned a value of 1, moderate influence receives a score of 2, and significant influence receives a score of 3.

2.5 Prediction

Prophecy and estimation are synonymous with the term prediction[17]. Predictability refers to the ability to foresee future events or outcomes based on measurements, observations, gathered data, or study results that indicate specific patterns in phenomena[18].

2.6 Artificial Neural Network (ANN)

One of the most popular methods in artificial intelligence is the neural network (ANN), which allows the algorithm to learn on its own using training data[19]. Artificial neural networks (ANNs) can broadly be classified into three categories: (1) topology, which refers to the layout of connections between neurons; (2) training or learning algorithms, which are methods used to adjust the weights on connections; and (3) activation functions[20]. In this study, the method employed is a feedforward neural network with parameter settings of two hidden layers, each containing 100 and 20 neurons respectively. The activation function utilized is ReLU (Rectified Linear Unit), and the optimization method applied is Adam. The Feedforward Neural Network model, which consists of many interconnected neurons arranged in complex layers, is a flexible model for constructing non-linear regression models, data reduction, and non-linear dynamic systems, capable of processing large volumes of data and producing accurate predictions[21].

2.7 Support Vector Regression (SVR)

Support Vector Regression (SVR) is an extension of Support Vector Machine (SVM), originally used for classification problems, that applies SVM principles to solve regression problems[22]. This research focuses on tuning the parameters of the radial base function kernel. The parameter C (Complexity cost) is set to 1.00, while the parameter γ (gamma) is set to 0.10. The performance of the model is measured using the R-square accuracy value, where a value approaching 1 indicates better model performance[22].

2.8 Performance Comparison

Evaluation measures such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2) are compared to assess the performance of Artificial Neural Networks (ANN) and Support Vector Regression (SVR).

The following are the formulas for each evaluation metric frequently used in prediction:

The mean squared error, or MSE, is the average of the squared discrepancies between the actual values (Y_true) and the predicted values (Y_pred).

$$MSE = n1\sum_{i} i = 1n (Ytruei - Ypredi)2$$
 (1)

Where:

n is the number of samples.

Ytruei is the actual value of sample i.

Ypredi is the predicted value of sample i.

The root <u>mean</u> square error or RMSE, is a metric that quantifies the average deviation between anticipated and observed values.

$$\underline{RMSE} = \sqrt{n_1 \Sigma_{i=ln(Y_{truei}-ypr\acute{e}d)^2}}$$
 (2)

The mean absolute error or MAE is the average of the absolute discrepancies between the expected and actual values.

$$MAE=n1\sum_{i=1}^{i=1}n|Ytrue_i-Ypred_i|$$
 (3)

Coefficient of Determination (R2 score): This metric quantifies how much of the variability observed in the dependent variable can be explained by the model.

$$R2 = 1 - \sum_{i} i = 1n (Y \text{true} i - Y \text{true}) 2\sum_{i} i = 1n (Y \text{true} i - Y \text{pred} i) 2$$
 (4)

Where "Ytrue is the mean of the actual values true Ytrue.

3 Results

The results of predicting student achievement at SMK Telkom Lampung using ANN and SVR methods are as follows:

3.1 Dataset

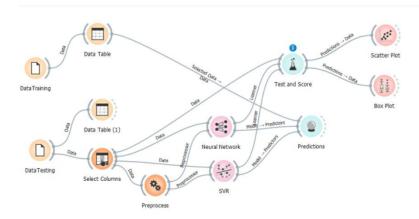
The data used in this study is primary data obtained from SMK TELKOM Lampung. The total number of data is 4939, with 550 instances, 26 features, and 4Meta-Attributes.

Table 1. Data Exploration

No	Name Parameter	Status	Data Type
1	Name	Rest	Nominal
2	NISN	Rest	Numerik
3	Place of Birth	Rest	Nominal
4	Date of Birth	Rest	Numeric
5	Gender	Rest	Nominal
6	Religion	Rest	Nominal
7	Address	Rest	Nominal
8	Subdienct	Rest	Nominal
9	Child Number	Rest	Numeric
10	Number of Siblings	Rest	Numeric
11	Type of Randence	Rest	Nominal
12	Transportation	Rest	Nominal
13	Current Claux	Rest	Nominal
14	Distance from Home to School	Rest	Numeric
	(KM)		
15	KIS Redpiret Input	ligut	Nominal
16	KIP Recipient	ligut	Nominal
17	Eligible for P P (proposed by the	liqui	Nominal
	school)	1	
18	Reason for Eligibility for P P	Rest	Nominal
19	Special Needs	ligut	Nominal
20	Sum of Value Scores.	ligst	Numeric
21	Mean	ligut	Numeric
22	Rank	Rest	Numeric
23	Abventueixm	ligut	Numeric
20 21 22 23 24 23 26	Delay Input	ligst	Numarik
25	Extraorria/or Activities	ligut	Nominal
26	Academic Achievement	ligst	Nominal
	Non-Academic Achievement	ligut	Nominal
28	Prediction	Output	Numeric

3.2 Data Mining Process

To select the best method with high accuracy, a comparison of several data mining methods is conducted by ANN and SVR as shown in Figure 2.

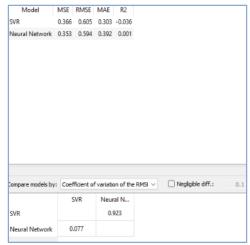


F2. DataMining Process

The data mining process, from raw data processing to evaluation and result visualization. Includes several important steps to build and evaluate prediction models using two different techniques Neural Network and Support Vector Regression (SVR). The dataset is divided into two parts, training data and testing data, which are then loaded into their respective Data Table widgets. The next step is featuring selection using the Select Columns widget and data preprocessing with the Preprocess widget to ensure the data is clean and ready for analysis. Two prediction models are built using Neural Networks and SVR, with each model trained using processed data. The trained models are evaluated using the Test and Score widget, which produces performance metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). Predictions are generated using the Predictions widget, and the results are visualized using scatter plots and box plots to understand the distribution and performance of the models in more detail.

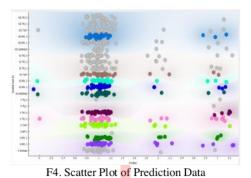
3.3 Performance Comparison of ANN and SVR

Figure 3 displays the results of each model's calculations based on the tested data. Metric-based evaluation indicates that the Neural Network model outperforms the Support Vector Regression (SVR) model. Specifically, the Neural Network model produces the following results: R2: 0.001, MAE: 0.392, RMSE: 0.594, MSE: 0.353.

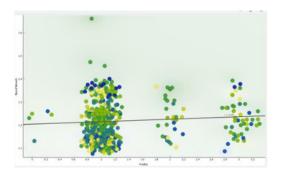


F3. Test and Score Widget Results

(0.366, 0.605, and 0.303 respectively), the R2 value of -0.036 suggests that the model is not suitable for the data. In contrast, the neural network model can produce predictions that at more accurate than the actual values, even though its R2 value is very close to zero. Therefore, the evaluation concludes that the neural network model performs better overall.

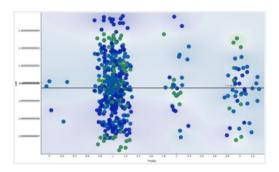


Only the visualization between predictions and classes is displayed in the prediction scatter plot.



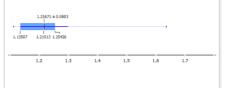
F 5. ANN Scatter Plot

With a Pearson correlation coefficient (r) of 0.08, the scatter plot of predictions made using the Neural Network (NN) demonstrates a weak correlation between the model's predictions and the actual values. This indicates little association between the Neural Network model's predictions and the actual values, resulting in a nearly flat regression line.



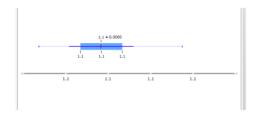
F 6. SVR Scatter Plot

With a Pearson correlation coefficient (r) of zero, or -0.00, the scatter plot of predictions using Support Vector Regression (SVR) indicates that there is no meaningful correlation between the model predictions and the actual values. This suggests that there is no discernible regression line because the SVR model's predictions and the actual values do not follow a linear relationship.



F 7. ANN Box Plot

The Neural Network (NN) box plot findings indicate that the model's prediction distribution has a mean of 1.21671 and a standard deviation of 0.0803. This suggests that the NN model's predictions frequently center around an average value slightly above 1.21 with low variability of about 0.0803.



F 8. SVR Box Plot

The Support Vector Regression SVR) box plot findings, as shown in Figure 8, indicate that the model's prediction distribution has a mean of 1.1 with negligible variance and a standard deviation of 0.0000, which is very close to zero. This suggests that the predictions of the SVR model are generally stable and do not vary significantly around the value of 1.1.

4 Discussion

In the measurements, the Neural Network showed a lower error rate with an MSE of 0.353 and an RMSE of 0.594, while the SVR had an MSE of 0.366 and an RMSE of 0.605. This indicates that the predictions from the Neural Network are generally more accurate than those from the SVR. Although the coefficient of determination (R2) of the Neural Network is still low at 0.001, this value is higher compared to the R2 of the SVR, which is -0.036. This shows that the Neural Network is slightly better at explaining student performance predictions at SMK Telkom Lampung.

This result is also supported by the scatter p11, where the Neural Network shows a low correlation between predictions and actual value with a Pearson correlation coefficient (r) of 0.08, while the SVR shows no significant correlation with a Pearson correlation coefficient close to zero (-0.00). The box plot shows that the predictions from the NN have greater variability compared to the SVR, with a mean value of 1.21671 and a standard deviation of 0.0803, whereas the SVR has a mean prediction value of 1.1 with no significant variation.

This indicates that the Neural Network is more sensitive to variations in the data but may be more prone to overfitting. In another study titled "Gold Price Prediction Using Algorithms Support Vector Regression (SVR) and Linear Regression (LR)" the research focused merely on one evaluation metric, explicitly MSE, without considering factors such as model complexity, prediction stability over time, or a more holistic interpretation of the results[23]. A more comprehensive evaluation considering various metrics and other factors would provide a better understanding of the overall performance of the model.

5 Conclusion

The results of the study show that the Neural Network (NN) outperforms Support Vector Regression (SVR) in predicting the academic performance of students at SMK Telkom Lampung. While SVR produces a negative R2 value, the Neural Network (NN) approaches zero and makes predictions that are more accurate. Additionally, the data reveals that although NN's predictions are not as well correlated with the actual values as SVR's, they are still better than SVR's weak correlation. Furthermore, NN's prediction distribution is

slightly more variable compared to SVR's stable distribution. Therefore, to enhance forecast accuracy and deepen our understanding of this phenomenon, future studies should consider incorporating additional data, modifying the model, and further examining student performance..

References

- [1] S. M. Susilo and I. Ismiyati, "The Influence of Industrial Work Practices, Information on the World of Work and Motivation for Entering the World of Work on Students' Work Readiness," Bus. Account. Educ. J., vol. 1, no. 3, pp. 290–296, 2020, doi: 10.15294/baej.v1i3.46701.
- [2] H. Sadimin, Widi Nugroho, "Performance Comparison Of Datamining Algorithm For Prediction Of Student Graduation," TEKNOINFO, vol. 17, no. 2, pp. 512–520, 2023, doi: 10.33365/jti.v17i2.2619.
- [3] S. Mukodimah and C. Fauzi, "Comparison of Tree Implementation, Regression Logistics, and Random Forest To Detect Iris Types," J. TAM (Technology Accept. Model., vol. 12, no. 2, p. 149, 2021, doi: 10.56327/jurnaltam.v12i2.1074.
- [4] A. Ishaq et al., "Improving the Prediction of Heart Failure Patients' Survival Using SMOTE and Effective Data Mining Techniques," *IEEE Access*, vol. 9, pp. 39707–39716, 2021, doi: 10.1109/ACCESS.2021.3064084.
- [5] K. Baker, Mohammed Rashad, Najmaldeen Taher, Yalmaz, H. Jihad, "Prediction Of People Sentiments on Twitter Using Machine Learning Classifiers During Russian Aggression In Ukraine," *Jordanian J. Comput. Inf. Technol.*, vol. Vol. 09, N, no. 717, p. 2023, 2023, doi: 10.5455/jjcit.71-1676205770.
- [6] D. Kurniadi, E. Abdurachman, H. L. H. S. Warnars, and W. Suparta, "Predicting student performance with multi-level representation in an intelligent academic recommender system using backpropagation neural network," *ICIC Express Lett. Part B Appl.*, vol. 12, no. 10, pp. 883–890, 2021, doi: 10.24507/icicelb.12.10.883.
- [7] Y. Baashar et al., "Toward Predicting Student's Academic Performance Using Artificial Neural Networks (ANNs)," Appl. Sci., vol. 12, no. 3, 2022, doi: 10.3390/app12031289.
- [8] N. Naicker, T. Adeliyi, and J. Wing, "Linear Support Vector Machines for Prediction of Student Performance in School-Based Education," *Math. Probl. Eng.*, vol. 2020, 2020, doi: 10.1155/2020/4761468.
- [9] D. Wang, D. Lian, Y. Xing, S. Dong, X. Sun, and J. Yu, "Analysis and Prediction of Influencing Factors of College Student Achievement Based on Machine Learning," *Front. Psychol.*, vol. 13, no. 1, 2022, doi: 10.3389/fpsyg.2022.881859.
- [10] A. Çetinkaya and Ö. K. Baykan, "Prediction of middle school students' programming talent using artificial neural networks," Eng. Sci. Technol. an Int. J., vol. 23, no. 6, pp. 1301–1307, 2020, doi: 10.1016/j.jestch.2020.07.005.
- [11] F. Zhang and L. J. O'Donnell, "Support vector regression," *Neural Inf. Process.*, vol. 11, no. 10, pp. 123–140, 2019, doi: 10.1016/B978-0-12-815739-8.00007-9.
- [12] R. E. Cahyono and J. P. Sugiono, "(Performance Analysis of Support Vector Regression (SVR) Methods in Predicting the Consumer Price Index," *JTIM J. Teknol. Inf. dan Multimed.*, vol. 1, no. 2, pp. 106–116, 2019, doi: https://doi.org/10.35746/jtim.v1i2.22.
- [13] M. Yageı, "Educational data mining: prediction of students' academic performance using machine learning algorithms," Smart Learn. Environ., vol. 9, no. 1, 2022, doi: 10.1186/s40561-022-00192-z.
- [14] S. Sandino Berutu, H. Budiati, Jatmika, and F. Gulo, "Data preprocessing approach for machine learning-based sentiment classification," *J. Infotel*, vol. 15, no. 4, pp. 317–325, 2023, doi: 10.20895/infotel.v15i4.1030.

- [15] A. Purwanto and H. Widi Nugroho, "Comparative Analysis Of The Performance Of The C4.5 Algorithm And The K-Nearest Neighbors Algorithm For Classification," *TEKNOINFO*, vol. 17, no. 1, pp. 236–243, 2023, doi: 10.33365/jti.v17i1.
- [16] R. Toro and S. Lestari, "Comparison of Classification Algorithms for Determining Promotional Locations for New Student Admissions at IIB Darmajaya Lampung," *Techno.COM*, vol. 22, no. 1, pp. 223–234, 2023.
- [17] N. Maylani Ferdy, Sriyanto, "Implementation of Data Mining Methods to Predict the Color of Kittens in the Breeding Process Race Cats Using Algorithms Support Vector Machine (SVM)," 2021 Natl. Semin. Res. Community Serv. Results Darmajaya Inst. Informatics Bus., no. August, pp. 114–125, 2021.
- [18] C. H. Rosnani Ginting, "Application of Data Mining: Toyota Car Sales Prediction Using Artificial Neural Network on Orange Software TALENTA Conference Series ApplicationData Mining: Toyota Car Sales Prediction Using Artificial Neural NetworksonOrange Software," *Talent. Conf. Ser. Energy Eng. R*, vol. 4, no. 1, 2021, doi: 10.32734/ee.v4i1.1228.
- [19] M. Uzair and N. Jamil, "Effects of Hidden Layers on the Efficiency of Neural networks," Proc. -2020 23rd IEEE Int. Multi-Topic Conf. INMIC 2020, pp. 1–6, 2020, doi: 10.1109/INMIC50486.2020.9318195.
- [20] C. F. Rodríguez-Hernández, M. Musso, E. Kyndt, and E. Cascallar, "Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation," *Comput. Educ. Artif. Intell.*, vol. 2, no. December 2020, 2021, doi: 10.1016/j.caeai.2021.100018.
- [21] P. D. Saputri and P. P. Oktaviana, "Comparison of Feedforward Neural Network and Classical Statistics Methods: Application in Finance," J. Mat. Stat. dan Komputasi, vol. 19, no. 3, pp. 537–548, 2023, doi: 10.20956/j.v19i3.25379.
- [22] D. Haryadi, A. R. Hakim, D. M. U. Atmaja, and S. N. Yutia, "Implementation of Support Vector Regression for Polkadot Cryptocurrency Price Prediction," *Int. J. Informatics Vis.*, vol. 6, no. 1–2, pp. 201–207, 2022, doi: 10.30630/joiv.6.1-2.945.
- [23] A. Anisa, B. Aprianti, and Y. Rozikin, Supriyanto; Chaerur, "Gold Price Prediction Using AlgorithmsSupport Vector Regression (SVR) AndLinear Regression (LR)," J. Ilm. Wahana Pendidik., vol. 8, no. 5, pp. 84–88, 2022, doi: 10.5281/zenodo.6408864.

revisi infotel 5.docx

ORIGINALITY REPORT

15% SIMILARITY INDEX

4%
INTERNET SOURCES

0%
PUBLICATIONS

15% STUDENT PAPERS

PRIMARY SOURCES

Submitted to Universitas Sang Bumi Ruwa Jurai

15%

Student Paper

Exclude quotes

On

Exclude matches

< 3%

Exclude bibliography On