Implementasi Data Mining Dalam Klasifikasi Tingkat Kesenjangan Kompetensi PNS Menggunakan Metode Naive Bayes
Abstract
Civil Servants (Aparatur Sipil Negara or ASN) play crucial roles as implementers of public policy, community service providers, and national unifiers. The government's primary focus is on enhancing the quality and efficiency of public services. In the Provincial Government of Lampung, planning for the enhancement of the competencies of Civil Servants (Aparatur Sipil Negara or ASN) has become a current priority activity. This emphasis is due to the absence of reference data for determining competency development for each ASN. The Assessment Center is one method for determining the competency level of Civil Servants (ASN). However, its implementation faces several challenges such as budget constraints, time limitations, and a shortage of assessors. Based on the results of the 2023 Merit System Index assessment by the Civil Service Commission (KASN), it was recommended that mapping and evaluating employee competency gaps can be carried out through the Human Capital Development Plan (HCDP). In its implementation, a self-assessment method using a questionnaire based on the competency dictionary from the Regulation of the Minister of Administrative and Bureaucratic Reform No. 38 of 2017 is used to address the constraints of the assessment center. The questionnaire is specifically targeted at technical civil servants (PNS) in the Lampung Provincial Government. The analysis of this questionnaire data produces a classification of civil servants based on the level of competency gaps (none, low, medium, high). In this study, the classification results are tested using one of the data mining classification techniques, namely the Naïve Bayes method. The objective of this research is to evaluate the performance of the Naïve Bayes algorithm in classifying the levels of competency gaps among civil servants. Based on the research findings, it can be concluded that the classification system for competency gap levels among civil servants in the Lampung Province Government can be modeled. The testing of the model, which implemented the Naïve Bayes classification method using RapidMiner tools on the research dataset, achieved an accuracy rate of 98.02%. The conclusion is that the Naïve Bayes algorithm performs well in classifying the competency gap levels among civil servants. With the achieved accuracy level, the resulting classifications can be utilized by the Lampung Provincial Government in planning the development needs of civil servant competencies
Downloads
References
Komisi Aparatur Sipil Negara, Keputusan Komisi Aparatur Sipil Negara Nomor 90/KEP.KASN/C/XI/2023 Tentang Penetapan Kategori, Penilaian dan Indeks Penerapan Sistem Merit Dalam Manajemen ASN di Lingkungan Pemerintah Provinsi Lampung. Indonesia, 2023, pp. 1–8.
A. Fitriani and P. Halik, “Analisis Kebutuhan Pengembangan Kompetensi Manajerial Melalui Penilaian Kompetensi Pada Jabatan Fungsional Tertentu Provinsi Sulawesi Selatan,” PESHUM : Jurnal Pendidikan, Sosial dan Humaniora, vol. 2, no. 2, pp. 318–326, 2023.
Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Republik Indonesia, Peraturan Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Republik Indonesia Nomor 38 Tahun 2017 tentang Standar Kompetensi Jabatan Aparatur Sipil Negara. Indonesia, 2017, pp. 1–108. Accessed: May 03, 2024. [Online]. Available: https://peraturan.bpk.go.id/Download/123418/PERMENPAN%20NOMOR%2038%20TAHUN%202017.pdf
Y. Irfayanti, “Penerapan Metode Naive Bayes untuk Klasifikasi Status Pegawai pada Perusahaan Swasta,” Syntax Literate: Jurnal Ilmiah Indonesia, vol. 7, no. 10, pp. 17934–17941, 2022, doi: 10.36418/syntax-literate.v7i10.13230.
H. Annur, “KLASIFIKASI MASYARAKAT MISKIN MENGGUNAKAN METODE NAÏVE BAYES,” ILKOM Jurnal Ilmiah, vol. 10, no. 2, pp. 160–165, 2018.
Sadimin and H. Widi Nugroho, “PERBANDINGAN KINERJA ALGORITMA DATAMINING UNTUK PREDIKSI KELULUSAN MAHASIWA,” vol. 17, no. 2, Jul. 2023, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
M. Agarina and Sutedi, “Teknika 14 (02): 165-174 Penerapan Data Mining dalam Perancangan Sistem Pendukung Keputusan Seleksi Penerimaan Beasiswa Menggunakan Naive Bayes Classifier (Studi Kasus: IIB Darmajaya),” Teknika, vol. 14, no. 2, pp. 165–174, Dec. 2020.
A. Saputra Dinata and nisar, “Penerapan Algoritma Naive Bayes Dalam Pengadaan Buku Referensi Pada Perpustakaan SMA Negeri 1 Trimurjo Berbasis Web,” Indonesian Journal of Science, Technology and Humanities, vol. 1, no. 2, pp. 80–90, 2023.
R. Rachman, R. N. Handayani, and I. Artikel, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” JURNAL INFORMATIKA, vol. 8, no. 2, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
D. Florencia, “Prediksi Jenis Kesehatan Kejiwaan Berdasarkan Usia Menggunakan Metode Naïve Bayes Berbasis Website,” Jurnal Pendidikan Tambusai, vol. 8, no. 1, pp. 15030–15040, 2024.
L. Aman, “Permasalahan Penerapan Kamus Kompetensi Manajerial dan Sosial Kultural Permenpan Rb Nomor 38 Tahun 2017 dalam Menilai Kompetensi Pejabat Fungsional Tertentu,” Civil Service, vol. 16, no. 2, pp. 61–88, 2022.
I. T. Monowati and R. Setyadi, “Penerapan Algoritma Naïve Bayes Dalam Memprediksi Pengusulan Penghapusan Peralatan dan Mesin Kantor,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 483–491, Jan. 2023, doi: 10.47065/josh.v4i2.2674.
M. Anggraini, R. A. Tyas, I. A. Sulasiyah, and Q. Aini, “Implementasi Algoritma Naïve Bayes Dalam Penentuan Rating Buku,” SISTEMASI, vol. 9, no. 3, pp. 557–566, Sep. 2020, doi: 10.32520/stmsi.v9i3.915.
M. Asfi and N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,” InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, pp. 44–50, 2020, doi: 10.30743/infotekjar.v5i1.2536.
D. R. Andriyani, M. Afdal, and S. Monalisa, “Analisis Sentimen Masyarakat Terhadap Penghapusan Honorer Berdasarkan Opini Dari Twitter Menggunakan Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 49–58, Jun. 2023, doi: 10.47065/bits.v5i1.3541.
J. P. Tanjung, F. C. Tampubolon, A. W. Panggabean, and M. A. A. Nandrawan, “Customer Classification Using Naive Bayes Classifier With Genetic Algorithm Feature Selection,” Sinkron, vol. 8, no. 1, pp. 584–589, Feb. 2023, doi: 10.33395/sinkron.v8i1.12182.
H. Derajad Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” JURNAL INFORMATIKA, vol. 7, no. 1, pp. 1–7, 2020, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
P. Rahmawati, A. Larasati, and Marsono, “Pengembangan Model Persetujuan Kredit Nasabah Bank Dengan Algoritma Klasifikasi Naïve Bayes, Decision Tree, Dan Artificial Neural Network,” J@ti Undip: Jurnal Teknik Industri, vol. 17, no. 1, pp. 1–12, 2022.
D. Ismiyana Putri and M. Yudhi Putra, “Komparasi Algoritma Dalam Memprediksi Perubahan Harga Saham GOTO Menggunakan Rapidminer,” JURNAL KHATULISTIWA INFORMATIKA, vol. 11, no. 1, pp. 14–20, 2023.
F. Ariani, Amir, N. Alam, and K. Rizal, “Klasifikasi Penetapan Status Karyawan Dengan Menggunakan Metode Naïve Bayes,” Paradigma, vol. XX, no. 2, pp. 33–38, 2018, doi: 10.31294/p.v%vi%i.4021.
R. A. Anggraini, G. Widagdo, A. Setya Budi, and M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,” Jurnal sistem dan teknologi informasi, vol. 7, no. 1, pp. 47–51, 2019.
S. Tri Utami, Sriyanto, S. Lestari, H. Widi Nugroho, and Zarnelly, “PREDICTION OF ANEMIA USING THE PARTICLE SWARM OPTIMIZATION (PSO) AND NAÏVE BAYES ALGORITHM,” Jurnal CoreIT, vol. X, No.X, pp. 1–8, Jun. 2024, doi: 10.24014/coreit.v10i1.28428.
Nosiel, S. Andriyanto, and M. Said Hasibuan, “Application of Nave Bayes Algorithm for SMS Spam Classification Using Orange,” International Journal of Advanced Science and Computer Applications, vol. 1, no. 1, pp. 16–24, 2022, doi: 10.47679/ijasca.v1i1.3.
G. Fun, “Performansi Multiclass Classification,” https://golchafun.medium.com/performansi-multiclass-classification-83dd4cba8d2. Accessed: Jul. 03, 2024. [Online]. Available: https://golchafun.medium.com/performansi-multiclass-classification-83dd4cba8d2
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Data Mining Dalam Klasifikasi Tingkat Kesenjangan Kompetensi PNS Menggunakan Metode Naive Bayes
Pages: 835-846
Copyright (c) 2024 Putra Kurniawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).