LAMPIRAN

Lampiran Listing Program

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <RTClib.h>

LiquidCrystal_I2C lcd(0x27, 20, 4); RTC_DS3231 rtc;

volatile int flow_frequency; // Measures flow sensor pulses *float* vol = 0.0, *l_minute;* unsigned char flowsensor = 2; // Sensor Input unsigned long currentTime; unsigned long cloopTime; float volume_per_pulse = 0.003; // Calibrated value const int buzzerPin = 13; // Buzzer connected to pin 3 const float cost_per_liter = 0.005; // Cost per liter in your currency const int buttonPin = 7; // the number of the pushbutton pin const int pompaPin = 8; *const int kipasPin = 9; int buttonState* = 0; *int count=0;* // Interrupt function void flow() { flow_frequency++; } void setup() { Serial.begin(115200);

lcd.init();

lcd.backlight(); pinMode(pompaPin, OUTPUT); pinMode(kipasPin, OUTPUT); // initialize the pushbutton pin as an input: pinMode(buttonPin, INPUT); pinMode(flowsensor, INPUT); digitalWrite(flowsensor, HIGH); // Optional Internal Pull-Up pinMode(buzzerPin, OUTPUT); digitalWrite(buzzerPin, LOW);

```
attachInterrupt(digitalPinToInterrupt(flowsensor), flow, RISING); // Setup
Interrupt
currentTime = millis();
cloopTime = currentTime;
```

```
// Initialize RTC
if (!rtc.begin()) {
   Serial.println("Couldn't find RTC");
   while (1);
```

```
}
```

```
if (rtc.lostPower()) {
   Serial.println("RTC lost power, let's set the time!");
   rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
}
```

```
lcd.setCursor(0, 0);
lcd.print("Water Meter");
}
```

```
void loop() {
```

currentTime = millis(); // Every second, calculate and print litres/hour if (currentTime >= (cloopTime + 1000)) { cloopTime = currentTime; // Updates cloopTime if (flow_frequency != 0) { l_minute = (flow_frequency * volume_per_pulse * 60); Serial.print("Rate: "); Serial.print(l_minute); Serial.println(" L/M");

lcd.setCursor(0, 1); lcd.print("Rate :"); lcd.print(l_minute); lcd.print("L/M "); // Add spaces to clear any leftover characters

vol = vol + l_minute / 60; Serial.print("Vol:"); Serial.print(vol); Serial.println(" L");

Serial.print("Vol:"); Serial.print(vol * 1000); Serial.println(" mL");

lcd.setCursor(0, 2); lcd.print("Volume :"); lcd.print(vol); lcd.print("0 L"); // Add spaces to clear any leftover characters

// Calculate cost
float cost = vol * cost_per_liter;

Serial.print("Cost: "); Serial.print(cost); Serial.println("Currency");

lcd.setCursor(0, 3); lcd.print("Biaya : Rp "); lcd.print(cost); lcd.print(" "); // Add spaces to clear any leftover characters

```
flow_frequency = 0; // Reset Counter
} else {
 Serial.println("Rate:0 L/M ");
lcd.setCursor(0, 1);
lcd.print("Rate :");
lcd.print("0.000 L/M"); // Add spaces to clear any leftover characters
}
```

```
// Check the date and activate the buzzer if it's the 28th
  DateTime now = rtc.now();
  if(now.day() == 28) {
   digitalWrite(buzzerPin, HIGH); // Turn on the buzzer
  } else {
   digitalWrite(buzzerPin, LOW); // Turn off the buzzer
  }
 }
 delay(10);
 tombol();
void tombol() {
```

```
buttonState = digitalRead(buttonPin);
```

}

```
if (buttonState == HIGH) {
   count++;
Serial.println(count);
   }
if (count==1){
   digitalWrite(pompaPin, LOW);
   digitalWrite(kipasPin, LOW);
}
if (count==2){
   digitalWrite(pompaPin, HIGH);
   digitalWrite(kipasPin, HIGH);
   count=0;
}
delay (1000);}
```

Product Reference Manual SKU: A000066

Description

The Arduino® UNO R3 is the perfect board to get familiar with electronics and coding. This versatile development board is equipped with the well-known ATmega328P and the ATMega 16U2 Processor.

This board will give you a great first experience within the world of Arduino.

Target areas:

Maker, introduction, industries

Features

- ATMega328P Processor
 - Memory
 - AVR CPU at up to 16 MHz
 - 32 kB Flash
 - 2 kB SRAM
 - 1 kB EEPROM

Security

- Power On Reset (POR)
- Brown Out Detection (BOD)

Peripherals

- 2x 8-bit Timer/Counter with a dedicated period register and compare channels
- 1x 16-bit Timer/Counter with a dedicated period register, input capture and compare channels
- 1x USART with fractional baud rate generator and start-of-frame detection
- 1x controller/peripheral Serial Peripheral Interface (SPI)
- 1x Dual mode controller/peripheral I2C
- 1x Analog Comparator (AC) with a scalable reference input
- Watchdog Timer with separate on-chip oscillator
- Six PWM channels
- Interrupt and wake-up on pin change

ATMega16U2 Processor

8-bit AVR® RISC-based microcontroller

Memory

- 16 kB ISP Flash
- 512B EEPROM
- 512B SRAM
- debugWIRE interface for on-chip debugging and programming

Power

2.7-5.5 volts

CONTENTS

 Θ

1 The Board	4
1.1 Application Examples	4
1.2 Related Products	4
2 Ratings	5
2.1 Recommended Operating Conditions	5
2.2 Power Consumption	5
3 Functional Overview	5
3.1 Board Topology	5
3.2 Processor	6
3.3 Power Tree	7
4 Board Operation	8
4.1 Getting Started - IDE	8
4.2 Getting Started - Arduino Cloud Editor	8
4.3 Sample Sketches	8
4.4 Online Resources	8
5 Connector Pinouts	9
5.1 JANALOG	10
5.2 JDIGITAL	10
5.3 Mechanical Information	11
5.4 Board Outline & Mounting Holes	11
6 Certifications	12
6.1 Declaration of Conformity CE DoC (EU)	12
6.2 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021	12
6.3 Conflict Minerals Declaration	13
7 FCC Caution	13
8 Company Information	14
9 Reference Documentation	14
10 Revision History	14

1 The Board

1.1 Application Examples

The UNO board is the flagship product of Arduino. Regardless if you are new to the world of electronics or will use the UNO R3 as a tool for education purposes or industry-related tasks, the UNO R3 is likely to meet your needs.

First entry to electronics: If this is your first project within coding and electronics, get started with our most used and documented board; UNO. It is equipped with the well-known ATmega328P processor, 14 digital input/output pins, 6 analog inputs, USB connections, ICSP header and reset button. This board includes everything you will need for a great first experience with Arduino.

Industry-standard development board: Using the UNO R3 board in industries, there are a range of companies using the UNO R3 board as the brain for their PLC's.

Education purposes: Although the UNO R3 board has been with us for about ten years, it is still widely used for various education purposes and scientific projects. The board's high standard and top quality performance makes it a great resource to capture real time from sensors and to trigger complex laboratory equipment to mention a few examples.

1.2 Related Products

- Arduino Starter Kit
- Arduino UNO R4 Minima
- Arduino UNO R4 WiFi
- Tinkerkit Braccio Robot

 Θ

2.1 Recommended Operating Conditions

Symbol	Description	Min	Max	
	Conservative thermal limits for the whole board:	-40 °C (-40 °F)	85 °C (185 °F)	

NOTE: In extreme temperatures, EEPROM, voltage regulator, and the crystal oscillator, might not work as expected.

2.2 Power Consumption

Symbol	Description		Тур	Max	Unit
VINMax	Maximum input voltage from VIN pad	6	-	20	V
VUSBMax	Maximum input voltage from USB connector		-	5.5	V
PMax	Maximum Power Consumption	-	-	хх	mA

3 Functional Overview

3.1 Board Topology

Top view

Board topology

Ref.	Description	Ref.	Description
X1	Power jack 2.1x5.5mm	U1	SPX1117M3-L-5 Regulator
X2	USB B Connector	U3	ATMEGA16U2 Module
PC1	EEE-1EA470WP 25V SMD Capacitor	U5	LMV358LIST-A.9 IC
PC2	EEE-1EA470WP 25V SMD Capacitor	F1	Chip Capacitor, High Density
D1	CGRA4007-G Rectifier	ICSP	Pin header connector (through hole 6)
J-ZU4	ATMEGA328P Module	ICSP1	Pin header connector (through hole 6)
Y1	ECS-160-20-4X-DU Oscillator		

3.2 Processor

The Main Processor is a ATmega328P running at up to 20 MHz. Most of its pins are connected to the external headers, however some are reserved for internal communication with the USB Bridge coprocessor.

3.3 Power Tree

 $\Theta \bullet$

Power tree

4 Board Operation

4.1 Getting Started - IDE

If you want to program your UNO R3 while offline you need to install the Arduino Desktop IDE [1] To connect the UNO R3 to your computer, you'll need a USB-B cable. This also provides power to the board, as indicated by the LED.

4.2 Getting Started - Arduino Cloud Editor

All Arduino boards, including this one, work out-of-the-box on the Arduino Cloud Editor [2], by just installing a simple plugin.

The Arduino Cloud Editor is hosted online, therefore it will always be up-to-date with the latest features and support for all boards. Follow **[3]** to start coding on the browser and upload your sketches onto your board.

4.3 Sample Sketches

Sample sketches for the UNO R3 can be found either in the "Examples" menu in the Arduino IDE or in the "Documentation" section of the Arduino website [4].

4.4 Online Resources

Now that you have gone through the basics of what you can do with the board you can explore the endless possibilities it provides by checking exciting projects on Arduino Project Hub [5], the Arduino Library Reference [6] and the online Arduino store [7] where you will be able to complement your board with sensors, actuators and more.

5 Connector Pinouts

 Θ

Pinout

5.1 JANALOG

Pin	Function	Туре	Description
1	NC	NC	Not connected
2	IOREF	IOREF	Reference for digital logic V - connected to 5V
3	Reset	Reset	Reset
4	+3V3	Power	+3V3 Power Rail
5	+5V	Power	+5V Power Rail
6	GND	Power	Ground
7	GND	Power	Ground
8	VIN	Power	Voltage Input
9	A0	Analog/GPIO	Analog input 0 /GPIO
10	A1	Analog/GPIO	Analog input 1 /GPIO
11	A2	Analog/GPIO	Analog input 2 /GPIO
12	A3	Analog/GPIO	Analog input 3 /GPIO
13	A4/SDA	Analog input/I2C	Analog input 4/I2C Data line
14	A5/SCL	Analog input/I2C	Analog input 5/I2C Clock line

5.2 JDIGITAL

Pin	Function	Туре	Description
1	D0	Digital/GPIO	Digital pin 0/GPIO
2	D1	Digital/GPIO	Digital pin 1/GPIO
3	D2	Digital/GPIO	Digital pin 2/GPIO
4	D3	Digital/GPIO	Digital pin 3/GPIO
5	D4	Digital/GPIO	Digital pin 4/GPIO
6	D5	Digital/GPIO	Digital pin 5/GPIO
7	D6	Digital/GPIO	Digital pin 6/GPIO
8	D7	Digital/GPIO	Digital pin 7/GPIO
9	D8	Digital/GPIO	Digital pin 8/GPIO
10	D9	Digital/GPIO	Digital pin 9/GPIO
11	SS	Digital	SPI Chip Select
12	MOSI	Digital	SPI1 Main Out Secondary In
13	MISO	Digital	SPI Main In Secondary Out
14	SCK	Digital	SPI serial clock output
15	GND	Power	Ground
16	AREF	Digital	Analog reference voltage
17	A4/SD4	Digital	Analog input 4/I2C Data line (duplicated)
18	A5/SD5	Digital	Analog input 5/I2C Clock line (duplicated)

5.3 Mechanical Information

5.4 Board Outline & Mounting Holes

Board outline

6 Certifications

6.1 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements of the following EU Directives and therefore qualify for free movement within markets comprising the European Union (EU) and European Economic Area (EEA).

ROHS 2 Directive 2011/65/EU	
Conforms to:	EN50581:2012
Directive 2014/35/EU. (LVD)	
Conforms to:	EN 60950-1:2006/A11:2009/A1:2010/A12:2011/AC:2011
Directive 2004/40/EC & 2008/46/EC & 2013/35/EU, EMF	
Conforms to:	EN 62311:2008

6.2 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3 Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Substance	Maximum limit (ppm)
Lead (Pb)	1000
Cadmium (Cd)	100
Mercury (Hg)	1000
Hexavalent Chromium (Cr6+)	1000
Poly Brominated Biphenyls (PBB)	1000
Poly Brominated Diphenyl ethers (PBDE)	1000
Bis(2-Ethylhexyl} phthalate (DEHP)	1000
Benzyl butyl phthalate (BBP)	1000
Dibutyl phthalate (DBP)	1000
Diisobutyl phthalate (DIBP)	1000

Exemptions: No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of the SVHCs (https://echa.europa.eu/web/guest/candidate-list-table), the Candidate List of Substances of Very High Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products do not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list published by ECHA (European Chemical Agency) 1907 /2006/EC.

6.3 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regards to laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum, Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder, or as a component in metal alloys. As part of our reasonable due diligence Arduino has contacted component suppliers within our supply chain to verify their continued compliance with the regulations. Based on the information received thus far we declare that our products contain Conflict Minerals sourced from conflict-free areas.

7 FCC Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference
- (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.
- 3. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

English: User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both. This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause interference

(2) this device must accept any interference, including interference that may cause undesired operation of the device.

French: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

(1) l' appareil nedoit pas produire de brouillage

(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

IC SAR Warning:

English This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

French: Lors de l'installation et de l'exploitation de ce dispositif, la distance entre le radiateur et le corps est d'au moins 20 cm.

Important: The operating temperature of the EUT can't exceed 85°C and shouldn't be lower than -40°C.

Hereby, Arduino S.r.I. declares that this product is in compliance with essential requirements and other relevant provisions of Directive 2014/53/EU. This product is allowed to be used in all EU member states.

8 Company Information

Company name	Arduino S.r.I	
Company Address	Via Andrea Appiani 25 20900 MONZA Italy	

9 Reference Documentation

Reference	Link
Arduino IDE (Desktop)	https://www.arduino.cc/en/Main/Software
Arduino Cloud Editor	https://create.arduino.cc/editor
Arduino Cloud Editor - Getting Started	https://docs.arduino.cc/arduino-cloud/guides/editor/
Arduino Website	https://www.arduino.cc/
Arduino Project Hub	https://create.arduino.cc/projecthub? by=part∂_id=11332&sort=trending
Library Reference	https://www.arduino.cc/reference/en/
Arduino Store	https://store.arduino.cc/

10 Revision History

Date	Revision	Changes
25/04/2024	3	Updated link to new Cloud Editor
26/07/2023	2	General Update
06/2021	1	Datasheet release

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

General Description

The DS3231 is a low-cost, extremely accurate I²C real-time clock (RTC) with an integrated temperaturecompensated crystal oscillator (TCXO) and crystal. The device incorporates a battery input, and maintains accurate timekeeping when main power to the device is interrupted. The integration of the crystal resonator enhances the long-term accuracy of the device as well as reduces the piece-part count in a manufacturing line. The DS3231 is available in commercial and industrial temperature ranges, and is offered in a 16-pin, 300-mil SO package.

The RTC maintains seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator. Two programmable time-of-day alarms and a programmable square-wave output are provided. Address and data are transferred serially through an I²C bidirectional bus.

A precision temperature-compensated voltage reference and comparator circuit monitors the status of V_{CC} to detect power failures, to provide a reset output, and to automatically switch to the backup supply when necessary. Additionally, the RST pin is monitored as a pushbutton input for generating a μ P reset.

Benefits and Features

- Highly Accurate RTC Completely Manages All Timekeeping Functions
 - Real-Time Clock Counts Seconds, Minutes, Hours, Date of the Month, Month, Day of the Week, and Year, with Leap-Year Compensation Valid Up to 2100
 - Accuracy ±2ppm from 0°C to +40°C
 - Accuracy ±3.5ppm from -40°C to +85°C
 - Digital Temp Sensor Output: ±3°C Accuracy
 - Register for Aging Trim
 - RST Output/Pushbutton Reset Debounce Input
 - Two Time-of-Day Alarms
 - Programmable Square-Wave Output Signal
- Simple Serial Interface Connects to Most Microcontrollers
 - Fast (400kHz) I²C Interface
- Battery-Backup Input for Continuous Timekeeping
- Low Power Operation Extends Battery-Backup Run Time
- 3.3V Operation
- Operating Temperature Ranges: Commercial (0°C to +70°C) and Industrial (-40°C to +85°C)
- Underwriters Laboratories[®] (UL) Recognized

Applications

- Servers
- Telematics
- Utility Power Meters
- GPS

Ordering Information and Pin Configuration appear at end of data sheet.

Typical Operating Circuit

Underwriters Laboratories is a registered certification mark of Underwriters Laboratories Inc.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Absolute Maximum Ratings

Voltage Range on Any Pin Relative to Ground V to +6.0V	Junction Temperature+125°C
Junction-to-Ambient Thermal Resistance (θ μ) (Note 1)73°C/W	Storage Temperature Range40°C to +85°C
Junction-to-Case Thermal Resistance (0, C) (Note 1)23°C/W	Lead Temperature (soldering, 10s) +260°C
Operating Temperature Range	Soldering Temperature (reflow, 2 times max) +260°C
DS3231S0°C to +70°C	(see the Handling, PCB Layout, and Assembly section)
DS3231SN40°C to +85°C	

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

 $(T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	V _{CC}		2.3	3.3	5.5	V
Supply voltage	V _{BAT}		2.3	3.0	5.5	V
Logic 1 Input SDA, SCL	V _{IH}		0.7 x V _{CC}		V _{CC} + 0.3	V
Logic 0 Input SDA, SCL	V _{IL}		-0.3		0.3 x V _{CC}	V

Electrical Characteristics

(V_{CC} = 2.3V to 5.5V, V_{CC} = Active Supply (see Table 1), T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Typical values are at V_{CC} = 3.3V, V_{BAT} = 3.0V, and T_A = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS	
Active Supply Current	laa.	(Notos 4, 5)	$V_{CC} = 3.63V$			200	
	ICCA	(Notes 4, 5)	$V_{CC} = 5.5V$			300	μΑ
Standby Supply Current		$V_{CC} = 3.63$				110	
	'CCS	(Note 5)	$V_{CC} = 5.5V$			170	μγ
Tomporature Conversion Current		I ² C bus inactive, 32kHz	$V_{CC} = 3.63V$			575	
Temperature Conversion Current	ICCSCONV	output on, SQW output off	$V_{CC} = 5.5V$			650	μΑ
Power-Fail Voltage	V_{PF}			2.45	2.575	2.70	V
Logic 0 Output, 32kHz, INT/SQW, SDA	V _{OL}	I _{OL} = 3mA				0.4	V
Logic 0 Output, RST	V _{OL}	I _{OL} = 1mA				0.4	V
Output Leakage Current 32kHz, INT/SQW, SDA	I _{LO}	Output high impedance		-1	0	+1	μA
Input Leakage SCL	۱ _{LI}			-1		+1	μA
RST Pin I/O Leakage	I _{OL}	RST high impedance (Note 6)		-200		+10	μA
V _{BAT} Leakage Current (V _{CC} Active)	IBATLKG				25	100	nA

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Electrical Characteristics (continued)

(V_{CC} = 2.3V to 5.5V, V_{CC} = Active Supply (see Table 1), T_A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Typical values are at V_{CC} = 3.3V, V_{BAT} = 3.0V, and T_A = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS	
Output Frequency	fout	V_{CC} = 3.3V or V_{BAT} = 3.3V	/		32.768		kHz	
Frequency Stability vs. Temperature (Commercial)	Af/four	$V_{CC} = 3.3 V \text{ or}$	0°C to +40°C			<u>+2</u>	nnm	
		aging offset = 00h	>40°C to +70°C			±3.5	ррп	
Frequency Stability vs. Temperature (Industrial)		$V_{CC} = 3.3 V \text{ or}$	-40°C to <0°C			±3.5		
	Δf/f _{OUT}	$V_{BAT} = 3.3V$, aging offset = 00h	0°C to +40°C			±2	ppm	
			>40°C to +85°C			±3.5		
Frequency Stability vs. Voltage	∆f/V				1		ppm/V	
			-40°C		0.7			
Trim Register Frequency		Specified et:	+25°C		0.1		ppm	
Sensitivity per LSB	ΔI/LOD	Specified at.	+70°C		0.4			
			+85°C		0.8			
Temperature Accuracy	Temp	$V_{CC} = 3.3 V \text{ or } V_{BAT} = 3.3 V$		-3		+3	°C	
Crystel Aging	۸f/fa	After reflow,	First year		±1.0			
	Δi/IQ	not production tested	0–10 years		±5.0		ppm	

Electrical Characteristics

(V_{CC} = 0V, V_{BAT} = 2.3V to 5.5V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Active Battery Current	I	EOSC = 0, BBSQW = 0,	$V_{BAT} = 3.63V$			70	
	IBATA	SCL = 400kHz (Note 5)	$V_{BAT} = 5.5V$			150	μΑ
Timekeeping Battery Current	L	EOSC = 0, BBSQW = 0, EN32kHz = 1,	V _{BAT} = 3.63V		0.84	3.0	μA
	IBATT	$\begin{aligned} &\text{SCL} = \text{SDA} = \text{0V or} \\ &\text{SCL} = \text{SDA} = \text{V}_{\text{BAT}} \text{ (Note 5)} \end{aligned}$	V _{BAT} = 5.5V		1.0	3.5	
Temperature Conversion Current		EOSC = 0, $BBSQW = 0$, SCL = SDA = 0V or	V _{BAT} = 3.63V			575	μA
Temperature Conversion Current	BATTC	$SCL = SDA = 0.00$ SCL = SDA = V_{BAT}	$V_{BAT} = 5.5V$			650	μД
Data-Retention Current	I BATTDR	EOSC = 1, $SCL = SDA = 0V$,	+25°C			100	nA

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

AC Electrical Characteristics

(V_{CC} = V_{CC(MIN)} to V_{CC(MAX)} or V_{BAT} = V_{BAT(MIN)} to V_{BAT(MAX)}, V_{BAT} > V_{CC}, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
	4	Fast mode	100		400		
SCL Clock Frequency	ISCL	Standard mode	0		100	KI IZ	
Bus Free Time Between STOP		Fast mode	1.3				
and START Conditions	^I BUF	Standard mode	4.7			μs	
Hold Time (Repeated) START		Fast mode	0.6				
Condition (Note 7)	'HD:STA	Standard mode	4.0			μs	
Law Daried of CCL Clock		Fast mode	1.3				
Low Period of SCL Clock	LOW	Standard mode	4.7			μs	
Lligh Deried of CCL Cleak		Fast mode	0.6				
High Period of SCL Clock	^I HIGH	Standard mode	4.0			μs	
		Fast mode	0		0.9		
Data Hold Time (Notes 8, 9)	'HD:DAT	Standard mode	0		0.9	μs	
Data Satura Tima (Nata 10)	t	Fast mode	100				
Data Setup Time (Note To)	^I SU:DAT	Standard mode	250			115	
START Setup Time	^t SU:STA	Fast mode	0.6				
		Standard mode	4.7			μο	
Rise Time of Both SDA and SCL	+-	Fast mode	20 +		300	ne	
Signals (Note 11)	чR	Standard mode	0.1CB		1000	115	
Fall Time of Both SDA and SCL	t-	Fast mode	20 +		300	ne	
Signals (Note 11)	ч	Standard mode	0.1CB		300	ns	
Sotup Time for STOP Condition	touro	Fast mode	0.6				
	¹ SU:STO	Standard mode	4.7			μο	
Capacitive Load for Each Bus Line	CB	(Note 11)			400	pF	
Capacitance for SDA, SCL	C _{I/O}			10		pF	
Pulse Width of Spikes That Must	t _{SP}			30		ns	
Be Suppressed by the input Filter				050			
Pushbutton Debounce	PBDB			250		ms	
	^I RST			250		ms	
Oscillator Stop Flag (OSF) Delay	^I OSF	(Note 12)		100		ms	
Temperature Conversion Time	^I CONV			125	200	ms	

Power-Switch Characteristics

 $(T_A = T_{MIN} \text{ to } T_{MAX})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC} Fall Time; V _{PF(MAX)} to V _{PF(MIN)}	^t VCCF		300			μs
V _{CC} Rise Time; V _{PF(MIN)} to V _{PF(MAX)}	^t VCCR		0			μs
Recovery at Power-Up	t _{REC}	(Note 13)		250	300	ms

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Pushbutton Reset Timing

Power-Switch Timing

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Data Transfer on I²C Serial Bus

WARNING: Negative undershoots below -0.3V while the part is in battery-backed mode may cause loss of data.

- **Note 2:** Limits at -40°C are guaranteed by design and not production tested.
- **Note 3:** All voltages are referenced to ground.
- **Note 4:** I_{CCA}—SCL clocking at max frequency = 400kHz.
- Note 5: Current is the averaged input current, which includes the temperature conversion current.
- **Note 6:** The RST pin has an internal $50k\Omega$ (nominal) pullup resistor to V_{CC}.
- **Note 7:** After this period, the first clock pulse is generated.
- **Note 8:** A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IH(MIN)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- **Note 9:** The maximum t_{HD:DAT} needs only to be met if the device does not stretch the low period (t_{LOW}) of the SCL signal.
- **Note 10:** A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line $t_{R(MAX)} + t_{SU:DAT} = 1000 + 250 = 1250$ ns before the SCL line is released.
- Note 11: CB-total capacitance of one bus line in pF.
- Note 12: The parameter t_{OSF} is the period of time the oscillator must be stopped for the OSF flag to be set over the voltage range of $0.0V \le V_{CC} \le V_{CC(MAX)}$ and $2.3V \le V_{BAT} \le 3.4V$.
- Note 13: This delay applies only if the oscillator is enabled and running. If the EOSC bit is a 1, t_{REC} is bypassed and RST immediately goes high. The state of RST does not affect the I²C interface, RTC, or TCXO.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Typical Operating Characteristics

(V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.)

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Block Diagram

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Pin Description

PIN	NAME	FUNCTION
1	32kHz	32kHz Output. This open-drain pin requires an external pullup resistor. When enabled, the output operates on either power supply. It may be left open if not used.
2	V _{CC}	DC Power Pin for Primary Power Supply. This pin should be decoupled using a 0.1μ F to 1.0μ F capacitor. If not used, connect to ground.
3	INT/SQW	Active-Low Interrupt or Square-Wave Output. This open-drain pin requires an external pullup resistor connected to a supply at 5.5V or less. This multifunction pin is determined by the state of the INTCN bit in the Control Register (0Eh). When INTCN is set to logic 0, this pin outputs a square wave and its frequency is determined by RS2 and RS1 bits. When INTCN is set to logic 1, then a match between the timekeeping registers and either of the alarm registers activates the INT/SQW pin (if the alarm is enabled). Because the INTCN bit is set to logic 1 when power is first applied, the pin defaults to an interrupt output with alarms disabled. The pullup voltage can be up to 5.5V, regardless of the voltage on V_{CC} . If not used, this pin can be left unconnected.
4	RST	Active-Low Reset. This pin is an open-drain input/output. It indicates the status of V_{CC} relative to the V _{PF} specification. As V_{CC} falls below V _{PF} , the RST pin is driven low. When V_{CC} exceeds V _{PF} , for t _{RST} , the RST pin is pulled high by the internal pullup resistor. The active-low, open-drain output is combined with a debounced pushbutton input function. This pin can be activated by a pushbutton reset request. It has an internal 50k Ω nominal value pullup resistor to V_{CC} . No external pullup resistors should be connected. If the oscillator is disabled, t _{REC} is bypassed and RST immediately goes high.
5–12	N.C.	No Connection. Must be connected to ground.
13	GND	Ground
14	V _{BAT}	Backup Power-Supply Input. When using the device with the V_{BAT} input as the primary power source, this pin should be decoupled using a 0.1μ F to 1.0μ F low-leakage capacitor. When using the device with the V_{BAT} input as the backup power source, the capacitor is not required. If V_{BAT} is not used, connect to ground. The device is UL recognized to ensure against reverse charging when used with a primary lithium battery. Go to www.maximintegrated.com/ga/info/ul.
15	SDA	Serial Data Input/Output. This pin is the data input/output for the I ² C serial interface. This open-drain pin requires an external pullup resistor. The pullup voltage can be up to 5.5V, regardless of the voltage on V_{CC} .
16	SCL	Serial Clock Input. This pin is the clock input for the I^2C serial interface and is used to synchronize data movement on the serial interface. Up to 5.5V can be used for this pin, regardless of the voltage on V_{CC} .

Detailed Description

The DS3231 is a serial RTC driven by a temperaturecompensated 32kHz crystal oscillator. The TCXO provides a stable and accurate reference clock, and maintains the RTC to within ±2 minutes per year accuracy from -40°C to +85°C. The TCXO frequency output is available at the 32kHz pin. The RTC is a low-power clock/calendar with two programmable time-of-day alarms and a programmable square-wave output. The INT/SQW provides either an interrupt signal due to alarm conditions or a square-wave output. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator. The internal registers are accessible though an I²C bus interface.

A temperature-compensated voltage reference and comparator circuit monitors the level of V_{CC} to detect power failures and to automatically switch to the backup supply when necessary. The RST pin provides an external pushbutton function and acts as an indicator of a power-fail event.

Operation

The block diagram shows the main elements of the DS3231. The eight blocks can be grouped into four functional groups: TCXO, power control, pushbutton function, and RTC. Their operations are described separately in the following sections.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

32kHz TCXO

The temperature sensor, oscillator, and control logic form the TCXO. The controller reads the output of the on-chip temperature sensor and uses a lookup table to determine the capacitance required, adds the aging correction in AGE register, and then sets the capacitance selection registers. New values, including changes to the AGE register, are loaded only when a change in the temperature value occurs, or when a user-initiated temperature conversion is completed. Temperature conversion occurs on initial application of V_{CC} and once every 64 seconds afterwards.

Power Control

This function is provided by a temperature-compensated voltage reference and a comparator circuit that monitors the V_{CC} level. When V_{CC} is greater than V_{PF}, the part is powered by V_{CC}. When V_{CC} is less than V_{PF} but greater than V_{BAT}, the DS3231 is powered by V_{CC}. If V_{CC} is less than V_{PF} and is less than V_{BAT}, the device is powered by V_{BAT}. See Table 1.

SUPPLY CONDITION	ACTIVE SUPPLY
V _{CC} < V _{PF} , V _{CC} < V _{BAT}	V _{BAT}
V _{CC} < V _{PF} , V _{CC} > V _{BAT}	V _{CC}
V _{CC} > V _{PF} , V _{CC} < V _{BAT}	V _{CC}
$V_{CC} > V_{PF}, V_{CC} > V_{BAT}$	V _{CC}

Table 1. Power Control

To preserve the battery, the first time V_{BAT} is applied to the device, the oscillator will not start up until V_{CC} exceeds V_{PF}, or until a valid I²C address is written to the part. Typical oscillator startup time is less than one second. Approximately 2 seconds after V_{CC} is applied, or a valid I²C address is written, the device makes a temperature measurement and applies the calculated correction to the oscillator. Once the oscillator is running, it continues to run as long as a valid power source is available (V_{CC} or V_{BAT}), and the device continues to measure the temperature and correct the oscillator frequency every 64 seconds.

On the first application of power (V_{CC}) or when a valid I²C address is written to the part (V_{BAT}), the time and date registers are reset to 01/01/00 01 00:00:00 (DD/MM/YY DOW HH:MM:SS).

VBAT Operation

There are several modes of operation that affect the amount of V_{BAT} current that is drawn. While the device

is powered by V_{BAT} and the serial interface is active, active battery current, I_{BATA}, is drawn. When the serial interface is inactive, timekeeping current (I_{BATT}), which includes the averaged temperature conversion current, I_{BATTC}, is used (refer to Application Note 3644: *Power Considerations for Accurate Real-Time Clocks* for details). Temperature conversion current, I_{BATTC}, is specified since the system must be able to support the periodic higher current pulse and still maintain a valid voltage level. Data retention current, I_{BATTDR}, is the current drawn by the part when the oscillator is stopped (EOSC = 1). This mode can be used to minimize battery requirements for times when maintaining time and date information is not necessary, e.g., while the end system is waiting to be shipped to a customer.

Pushbutton Reset Function

The DS3231 provides for a pushbutton switch to be connected to the RST output pin. When the DS3231 is not in a reset cycle, it continuously monitors the RST signal for a low going edge. If an edge transition is detected, the DS3231 debounces the switch by pulling the RST low. After the internal timer has expired (PB_{DB}), the DS3231 continues to monitor the RST line. If the line is still low, the DS3231 continuously monitors the line looking for a rising edge. Upon detecting release, the DS3231 forces the RST pin low and holds it low for t_{RST}.

RST is also used to indicate a power-fail condition. When V_{CC} is lower than V_{PF} , an internal power-fail signal is generated, which forces the RST pin low. When V_{CC} returns to a level above V_{PF} , the RST pin is held low for approximately 250ms (t_{REC}) to allow the power supply to stabilize. If the oscillator is not running (see the *Power Control* section) when V_{CC} is applied, t_{REC} is bypassed and RST immediately goes high. Assertion of the RST output, whether by pushbutton or power-fail detection, does not affect the internal operation of the DS3231.

Real-Time Clock

With the clock source from the TCXO, the RTC provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator.

The clock provides two programmable time-of-day alarms and a programmable square-wave output. The INT/SQW pin either generates an interrupt due to alarm condition or outputs a square-wave signal and the selection is controlled by the bit INTCN.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
00h	0		10 Second	S		Secor	nds		Seconds	00–59
01h	0		10 Minutes	6		Minut	es		Minutes	00–59
02h	0	12/24	AM/PM 20 Hour	10 Hour		Ηοι	ır		Hours	1–12 + AM/PM 00–23
03h	0	0	0	0	0		Day		Day	1–7
04h	0	0	10	Date		Dat	e		Date	01–31
05h	Century	0	0	10 Month		Mon	th		Month/ Century	01–12 + Century
06h		10	Year			Yea	r		Year	00–99
07h	A1M1		10 Second	S	Seconds			Alarm 1 Seconds	00–59	
08h	A1M2		10 Minutes	3		Minutes			Alarm 1 Minutes	00–59
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hour		Alarm 1 Hours	1–12 + AM/PM 00–23	
046	A 4 N 4 A		10.1	Data		Day	/		Alarm 1 Day	1–7
UAN	A HVI4	101/01	101	Jale		Dat	e		Alarm 1 Date	1–31
0Bh	A2M2		10 Minutes	6		Minutes Alarm 2 Minute			Alarm 2 Minutes	00–59
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Ηοι	ır		Alarm 2 Hours	1–12 + AM/PM 00–23
ODh	A 2144		10	Dato		Day	/		Alarm 2 Day	1–7
UDIT	AZIVI4	וטוזט	101	Jale		Dat	е		Alarm 2 Date	1–31
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control	—
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	—
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	—
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_
12h	DATA	DATA	0	0	0	0	0	0	LSB of Temp	

Figure 1. Timekeeping Registers

Note: Unless otherwise specified, the registers' state is not defined when power is first applied.

Address Map

Figure 1 shows the address map for the DS3231 timekeeping registers. During a multibyte access, when the address pointer reaches the end of the register space (12h), it wraps around to location 00h. On an I²C START or address pointer incrementing to location 00h, the current time is transferred to a second set of registers. The time information is read from these secondary registers, while the clock may continue to run. This eliminates the need to reread the registers in case the main registers update during a read.

I²C Interface

The I²C interface is accessible whenever either V_{CC} or V_{BAT} is at a valid level. If a microcontroller connected

to the DS3231 resets because of a loss of V_{CC} or other event, it is possible that the microcontroller and DS3231 I²C communications could become unsynchronized, e.g., the microcontroller resets while reading data from the DS3231. When the microcontroller resets, the DS3231 I²C interface may be placed into a known state by toggling SCL until SDA is observed to be at a high level. At that point the microcontroller should pull SDA low while SCL is high, generating a START condition.

Clock and Calendar

The time and calendar information is obtained by reading the appropriate register bytes. Figure 1 illustrates the RTC registers. The time and calendar data are set or initialized by writing the appropriate register bytes. The contents of the time and calendar registers are in the binary-coded

decimal (BCD) format. The DS3231 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic-high being PM. In the 24-hour mode, bit 5 is the 20-hour bit (20–23 hours). The century bit (bit 7 of the month register) is toggled when the years register overflows from 99 to 00.

The day-of-week register increments at midnight. Values that correspond to the day of week are user-defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation.

When reading or writing the time and date registers, secondary (user) buffers are used to prevent errors when the internal registers update. When reading the time and date registers, the user buffers are synchronized to the internal registers on any START and when the register pointer rolls over to zero. The time information is read from these secondary registers, while the clock continues to run. This eliminates the need to reread the registers in case the main registers update during a read.

The countdown chain is reset whenever the seconds register is written. Write transfers occur on the acknowledge from the DS3231. Once the countdown chain is reset, to avoid rollover issues the remaining time and date registers must be written within 1 second. The 1Hz square-wave output, if enabled, transitions high 500ms after the seconds data transfer, provided the oscillator is already running.

ALARM 1 REGISTER MASK BITS (BIT 7)

Alarms

The DS3231 contains two time-of-day/date alarms. Alarm 1 can be set by writing to registers 07h to 0Ah. Alarm 2 can be set by writing to registers 0Bh to 0Dh. The alarms can be programmed (by the alarm enable and INTCN bits of the control register) to activate the INT/SQW output on an alarm match condition. Bit 7 of each of the time-of-day/date alarm registers are mask bits (Table 2). When all the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers match the corresponding values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. Table 2 shows the possible settings. Configurations not listed in the table will result in illogical operation.

The DY/DT bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits 0 to 5 of that register reflects the day of the week or the date of the month. If DY/DT is written to logic 0, the alarm will be the result of a match with date of the month. If DY/DT is written to logic 1, the alarm will be the result of a match with day of the week.

When the RTC register values match alarm register settings, the corresponding Alarm Flag 'A1F' or 'A2F' bit is set to logic 1. If the corresponding Alarm Interrupt Enable 'A1IE' or 'A2IE' is also set to logic 1 and the INTCN bit is set to logic 1, the alarm condition will activate the INT/SQW signal. The match is tested on the once-persecond update of the time and date registers.

			Children Birt	0 (811 7)	
וטויט	A1M4	A1M3	A1M2	A1M1	
Х	1	1	1	1	Alarm once per second
Х	1	1	1	0	Alarm when seconds match
Х	1	1	0	0	Alarm when minutes and seconds match
Х	1	0	0	0	Alarm when hours, minutes, and seconds match
0	0	0	0	0	Alarm when date, hours, minutes, and seconds match
1	0	0	0	0	Alarm when day, hours, minutes, and seconds match
	ALAR	M 2 REGISTE	R MASK BIT	S (BIT 7)	
וטוזט	A2M4	A2	M3	A2M2	
Х	1		1	1	Alarm once per minute (00 seconds of every minute)
Х	1		1	0	Alarm when minutes match
Х	1		0	0	Alarm when hours and minutes match
0	0		0	0	Alarm when date, hours, and minutes match
1	0		0	0	Alarm when day, hours, and minutes match
	•	*			•

Table 2. Alarm Mask Bits

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Control Register (0Eh)

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME:	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE
POR:	0	0	0	1	1	1	0	0

Special-Purpose Registers

The DS3231 has two additional registers (control and status) that control the real-time clock, alarms, and squarewave output.

Control Register (0Eh)

Bit 7: Enable Oscillator (ŤŎŠČ). When set to logic 0, the oscillator is started. When set to logic 1, the oscillator is stopped when the DS3231 switches to V_{BAT} . This bit is clear (logic 0) when power is first applied. When the DS3231 is powered by V_{CC} , the oscillator is always on regardless of the status of the EOSC bit. When EOSC is disabled, all register data is static.

Bit 6: Battery-Backed Square-Wave Enable (BBSQW). When set to logic 1 with INTCN = 0 and $V_{CC} < V_{PF}$, this bit enables the square wave. When BBSQW is logic 0, the INT/SQW pin goes high impedance when $V_{CC} < V_{PF}$. This bit is disabled (logic 0) when power is first applied.

Bit 5: Convert Temperature (CONV). Setting this bit to 1 forces the temperature sensor to convert the temperature into digital code and execute the TCXO algorithm to update the capacitance array to the oscillator. This can only happen when a conversion is not already in progress. The user should check the status bit BSY before forcing the controller to start a new TCXO execution. A user-initiated temperature conversion does not affect the internal 64-second update cycle.

A user-initiated temperature conversion does not affect the BSY bit for approximately 2ms. The CONV bit remains at a 1 from the time it is written until the conversion is finished, at which time both CONV and BSY go to 0. The CONV bit should be used when monitoring the status of a user-initiated conversion.

Bits 4 and 3: Rate Select (RS2 and RS1). These bits control the frequency of the square-wave output when

the square wave has been enabled. The following table shows the square-wave frequencies that can be selected with the RS bits. These bits are both set to logic 1 (8.192kHz) when power is first applied.

SQUARE-WAVE OUTPUT FREQUENCY

RS2	RS1	SQUARE-WAVE OUTPUT FREQUENCY
0	0	1Hz
0	1	1.024kHz
1	0	4.096kHz
1	1	8.192kHz

Bit 2: Interrupt Control (INTCN). This bit controls the INT/SQW signal. When the INTCN bit is set to logic 0, a square wave is output on the INT/SQW pin. When the INTCN bit is set to logic 1, then a match between the time-keeping registers and either of the alarm registers activates the INT/SQW output (if the alarm is also enabled). The corresponding alarm flag is always set regardless of the state of the INTCN bit. The INTCN bit is set to logic 1 when power is first applied.

Bit 1: Alarm 2 Interrupt Enable (A2IE). When set to logic 1, this bit permits the alarm 2 flag (A2F) bit in the status register to assert INT/SQW (when INTCN = 1). When the A2IE bit is set to logic 0 or INTCN is set to logic 0, the A2F bit does not initiate an interrupt signal. The A2IE bit is disabled (logic 0) when power is first applied.

Bit 0: Alarm 1 Interrupt Enable (A1IE). When set to logic 1, this bit permits the alarm 1 flag (A1F) bit in the status register to assert INT/SQW (when INTCN = 1). When the A1IE bit is set to logic 0 or INTCN is set to logic 0, the A1F bit does not initiate the INT/SQW signal. The A1IE bit is disabled (logic 0) when power is first applied.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Status Register (0Fh)

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME:	OSF	0	0	0	EN32kHz	BSY	A2F	A1F
POR:	1	0	0	0	1	Х	Х	Х

Status Register (0Fh)

Bit 7: Oscillator Stop Flag (OSF). A logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period and may be used to judge the validity of the timekeeping data. This bit is set to logic 1 any time that the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set:

- 1) The first time power is applied.
- The voltages present on both V_{CC} and V_{BAT} are insufficient to support oscillation.
- 3) The EOSC bit is turned off in battery-backed mode.
- 4) External influences on the crystal (i.e., noise, leakage, etc.).

This bit remains at logic 1 until written to logic 0.

Bit 3: Enable 32kHz Output (EN32kHz). This bit controls the status of the 32kHz pin. When set to logic 1, the 32kHz pin is enabled and outputs a 32.768kHz square-wave signal. When set to logic 0, the 32kHz pin goes to a high-impedance state. The initial power-up state of this bit is logic 1, and a 32.768kHz square-wave signal appears at the 32kHz pin after a power source is applied to the DS3231 (if the oscillator is running).

Bit 2: Busy (BSY). This bit indicates the device is busy executing TCXO functions. It goes to logic 1 when the conversion signal to the temperature sensor is asserted and then is cleared when the device is in the 1-minute idle state.

Bit 1: Alarm 2 Flag (A2F). A logic 1 in the alarm 2 flag bit indicates that the time matched the alarm 2 registers. If the A2IE bit is logic 1 and the INTCN bit is set to logic 1, the INT/SQW pin is also asserted. A2F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged.

Bit 0: Alarm 1 Flag (A1F). A logic 1 in the alarm 1 flag bit indicates that the time matched the alarm 1 registers. If the

A1IE bit is logic 1 and the INTCN bit is set to logic 1, the INT/SQW pin is also asserted. A1F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged.

Aging Offset

The aging offset register takes a user-provided value to add to or subtract from the codes in the capacitance array registers. The code is encoded in two's complement, with bit 7 representing the sign bit. One LSB represents one small capacitor to be switched in or out of the capacitance array at the crystal pins. The aging offset register capacitance value is added or subtracted from the capacitance value that the device calculates for each temperature compensation. The offset register is added to the capacitance array during a normal temperature conversion, if the temperature changes from the previous conversion, or during a manual user conversion (setting the CONV bit). To see the effects of the aging register on the 32kHz output frequency immediately, a manual conversion should be started after each aging register change.

Positive aging values add capacitance to the array, slowing the oscillator frequency. Negative values remove capacitance from the array, increasing the oscillator frequency.

The change in ppm per LSB is different at different temperatures. The frequency vs. temperature curve is shifted by the values used in this register. At +25°C, one LSB typically provides about 0.1ppm change in frequency.

Use of the aging register is not needed to achieve the accuracy as defined in the EC tables, but could be used to help compensate for aging at a given temperature. See the *Typical Operating Characteristics* section for a graph showing the effect of the register on accuracy over temperature.

Aging Offset (10h)

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME:	Sign	Data						
POR:	0	0	0	0	0	0	0	0

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME:	Sign	Data						
POR:	0	0	0	0	0	0	0	0

Temperature Register (Upper Byte) (11h)

Temperature Register (Lower Byte) (12h)

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME:	Data	Data	0	0	0	0	0	0
POR:	0	0	0	0	0	0	0	0

Temperature Registers (11h–12h)

Temperature is represented as a 10-bit code with a resolution of 0.25°C and is accessible at location 11h and 12h. The temperature is encoded in two's complement format. The upper 8 bits, the integer portion, are at location 11h and the lower 2 bits, the fractional portion, are in the upper nibble at location 12h. For example, 00011001 01b = +25.25°C. Upon power reset, the registers are set to a default temperature of 0°C and the controller starts a temperature conversion. The temperature is read on initial application of V_{CC} or I²C access on V_{BAT} and once every 64 seconds afterwards. The temperature registers are updated after each user-initiated conversion and on every 64-second conversion. The temperature registers are read-only.

I²C Serial Data Bus

The DS3231 supports a bidirectional I²C bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data is defined as a receiver. The device that controls the message is called a master. The devices that are controlled by the master are slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions. The DS3231 operates as a slave on the I²C bus. Connections to the bus are made through the SCL input and open-drain SDA I/O lines. Within the bus specifications, a standard mode (100kHz maximum clock rate) and a fast mode (400kHz maximum clock rate) are defined. The DS3231 works in both modes.

The following bus protocol has been defined (Figure 2):

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data

line while the clock line is high are interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain high.

START data transfer: A change in the state of the data line from high to low, while the clock line is high, defines a START condition.

STOP data transfer: A change in the state of the data line from low to high, while the clock line is high, defines a STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the high period of the clock signal. The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between the START and the STOP conditions is not limited, and is determined by the master device. The information is transferred bytewise and each receiver acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse, which is associated with this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generat-

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Figure 2. I²C Data Transfer Overview

ing an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the STOP condition.

Figures 3 and 4 detail how data transfer is accomplished on the I²C bus. Depending upon the state of the R/Ž bit, two types of data transfer are possible:

Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master

is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first.

Data transfer from a slave transmitter to a master **receiver**. The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. Next follows a number of data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the

Figure 4. Data Read—Slave Transmitter Mode

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Figure 5. Data Write/Read (Write Pointer, Then Read)-Slave Receive and Transmit

last byte. At the end of the last received byte, a not acknowledge is returned.

The master device generates all the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred with the most significant bit (MSB) first.

The DS3231 can operate in the following two modes:

Slave receiver mode (DS3231 write mode): Serial data and clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit. The slave address byte is the first byte received after the master generates the START condition. The slave address byte contains the 7-bit DS3231 address, which is 1101000, followed by the direction bit (R/Z), which is 0 for a write. After receiving and decoding the slave address byte, the DS3231 outputs an acknowledge on SDA. After the DS3231 acknowledges the slave address + write bit, the master transmits a word address to the DS3231. This sets the register pointer on the DS3231, with the DS3231 acknowledging the

transfer. The master may then transmit zero or more bytes of data, with the DS3231 acknowledging each byte received. The register pointer increments after each data byte is transferred. The master generates a STOP condition to terminate the data write.

Slave transmitter mode (DS3231 read mode): The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit indicates that the transfer direction is reversed. Serial data is transmitted on SDA by the DS3231 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit. The slave address byte is the first byte received after the master generates a START condition. The slave address byte contains the 7-bit DS3231 address, which is 1101000, followed by the direction bit (R/Z), which is 1 for a read. After receiving and decoding the slave address byte, the DS3231 outputs an acknowledge on SDA. The DS3231 then begins to transmit data starting with the register address pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode, the first address that is read is the last one stored in the register pointer. The DS3231 must receive a not acknowledge to end a read.

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Handling, PCB Layout, and Assembly

The DS3231 package contains a quartz tuning-fork crystal. Pick-and-place equipment can be used, but precautions should be taken to ensure that excessive shocks are avoided. Ultrasonic cleaning should be avoided to prevent damage to the crystal.

Avoid running signal traces under the package, unless a ground plane is placed between the package and the signal line. All N.C. (no connect) pins must be connected to ground.

Moisture-sensitive packages are shipped from the factory dry packed. Handling instructions listed on the package label must be followed to prevent damage during reflow. Refer to the IPC/JEDEC J-STD-020 standard for moisture-sensitive device (MSD) classifications and reflow profiles. Exposure to reflow is limited to 2 times maximum.

Pin Configuration

Chip Information

SUBSTRATE CONNECTED TO GROUND PROCESS: CMOS

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS3231S#	0°C to +70°C	16 SO
DS3231SN#	-40°C to +85°C	16 SO

#Denotes an RoHS-compliant device that may include lead (Pb) that is exempt under RoHS requirements. The lead finish is JESD97 category e3, and is compatible with both lead-based and lead-free soldering processes. A "#" anywhere on the top mark denotes an RoHS-compliant device.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
16 SO	W16#H2	<u>21-0042</u>	<u>90-0107</u>

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/05	Initial release.	
1		Changed Digital Temp Sensor Output from ±2°C to ±3°C.	1, 3
	2/05	Updated Typical Operating Circuit.	1
I	2/05	Changed $T_A = -40^{\circ}C$ to $+85^{\circ}C$ to $T_A = T_{MIN}$ to T_{MAX} .	2, 3, 4
		Updated Block Diagram.	8
		Added "UL Recognized" to Features; added lead-free packages and removed S from top mark info in <i>Ordering Information</i> table; added ground connections to the N.C. pin in the Typical Operating Circuit.	1
		Added "noncondensing" to operating temperature range; changed $V_{\mbox{\sf PF}}$ MIN from 2.35V to 2.45V.	2
		Added aging offset specification.	3
		Relabeled TOC4.	7
		Added arrow showing input on X1 in the Block Diagram.	8
2	CIOE	Updated pin descriptions for V _{CC} and V _{BAT} .	9
2	6/05	Added the I ² C Interface section.	10
		Figure 1: Added sign bit to aging and temperature registers; added MSB and LSB.	11
		Corrected title for rate select bits frequency table.	13
		Added note that frequency stability over temperature spec is with aging offset register = 00h; changed bit 7 from Data to Sign (Crystal Aging Offset Register).	14
		Changed bit 7 from Data to Sign (Temperature Register); correct pin definitions in l^2C Serial Data Bus section.	15
		Modified the <i>Handing</i> , <i>PC Board Layout</i> , and <i>Assembly</i> section to refer to J-STD-020 for reflow profiles for lead-free and leaded packages.	17
3	11/05	Changed lead-free packages to RoHS-compliant packages.	1
		Changed RST and UL bullets in Features.	1
		Changed EC condition " $V_{CC} > V_{BAT}$ " to " V_{CC} = Active Supply (see Table 1)."	2, 3
		Modified Note 12 to correct t _{REC} operation.	6
		Added various conditions text to TOCs 1, 2, and 3.	7
		Added text to pin descriptions for 32kHz, V _{CC} , and RST.	9
4	10/06	Table 1: Changed column heading "Powered By" to "Active Supply"; changed "applied" to "exceeds V_{PF} " in the <i>Power Control</i> section.	10
		Indicated BBSQW applies to both SQW and interrupts; simplified temp convert description (bit 5); added "output" to INT/SQW (bit 2).	13
		Changed the <i>Crystal Aging</i> section to the <i>Aging Offset</i> section; changed "this bit indicates" to "this bit controls" for the enable 32kHz output bit.	14
		Added Warning note to EC table notes; updated Note 12.	6
		Updated the Typical Operating Characteristics graphs.	7
5	4/08	In the <i>Power Control</i> section, added information about the POR state of the time and date registers; in the <i>Real-Time Clock</i> section, added to the description of the RST function.	10
		In Figure 1, corrected the months date range for 04h from 00–31 to 01–31.	11

Extremely Accurate I²C-Integrated RTC/TCXO/Crystal

Revision History (continued)

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
		Updated the Typical Operating Circuit.	1
		Removed the V_{PU} parameter from the <i>Recommended DC Operating Conditions</i> table and added verbiage about the pullup to the <i>Pin Description</i> table for INT/SQW, SDA, and SCL.	2, 9
6	10/09	Added the Delta Time and Frequency vs. Temperature graph in the <i>Typical Operating Characteristics</i> section.	7
o	10/06	Updated the Block Diagram.	8
		Added the V_{BAT} Operation section, improved some sections of text for the 32kHz TCXO and Pushbutton Reset Function sections.	10
		Added the register bit POR values to the register tables.	13, 14, 15
		Updated the Aging Offset and Temperature Registers (11h–12h) sections.	14, 15
		Updated the I ² C timing diagrams (Figures 3, 4, and 5).	16, 17
7	3/10	Removed the "S" from the top mark in the Ordering Information table and the Pin Configuration to match the packaging engineering marking specification.	1, 18
8	7/10	Updated the <i>Typical Operating Circuit</i> , removed the "Top Mark" column from the <i>Ordering Information</i> ; in the <i>Absolute Maximum Ratings</i> section, added the theta-JA and theta-JC thermal resistances and Note 1, and changed the soldering temperature to +260°C (lead(Pb)-free) and +240°C (leaded); updated the functional description of the V _{BAT} pin in the <i>Pin Description</i> ; changed the timekeeping registers 02h, 09h, and 0Ch to "20 Hour" in Bit 5 of Figure 1; updated the BBSQW bit description in the <i>Control Register (0Eh)</i> section; added the land pattern no. to the <i>Package Information</i> table.	1, 2, 3, 4, 6, 9, 11, 12, 13, 18
9	1/13	Updated Absolute Maximum Ratings, and last paragraph in Power Control section	2, 10
10	3/15	Revised Benefits and Features section.	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Name: Relay Module 2-Channel Code: MR009-004.1

This *Relay Module 2-Channel* is a module designed to allow you to control two relays in a very simple and intuitive manner. Being compatible with Arduino, the most immediate way to use it is to connect it to an Arduino board using flexible jumpers.

Exploiting the characteristics of the relays mounted on the module and through the use of two Arduino digital I/O pins, it is possible to control motors, inductive loads and other devices; this product is therefore fundamental in domotics projects or, more in general, in robotics projects.

The module is equipped with optocouplers on *IN1* and *IN2* lines in such a way that it ensures the galvanic insulation between the relay load and the control board which drives this module.

Pin	Function				
IN1	TTL digital input				
IN2	TTL digital input				
GND	Ground				
+5V	Power (+5V)				
NO1	Normally open contact				
COM1	Common contact				
NC1	Normally closed contact				

CONNECTIONS

NO2	Normally open contact
COM2	Common contact
NC2	Normally closed contact
T 1 1 <i>G</i>	

Tab.1 – Connections

CHARACTERISTICS

Pin	Function
Supply voltage	+5V
Supply current	144mA typ. (150mA max.)
Current on pin IN	14mA typ.
Rated load	7A 250VAC
Operating temperature	-30°C / +70°C
Operate time max.	10ms Max.
Release time max.	5ms Max.
Insulation resistance	100Mohm Min.
Mechanical Life Expectancy	10,000,000 operations
Electrical Life Expectancy	10,000 operations
Dimensions	1.7" x 1.3" (43.2 x 33.0 mm)
Weight	0.92oz (26.2g)

Tab.2 - Characteristics

MODEL: YF-S201

Description:

Water flow sensor consists of a plastic valve body, a water rotor, and a hall-effect sensor. When water flows through the rotor, rotor rolls. Its speed changes with different rate of flow. The hall-effect sensor outputs the corresponding pulse signal. This one is suitable to detect flow in water dispenser or coffee machine. We have a comprehensive line of water flow sensors in different diameters. Check them out to find the one that meets your need most.

Features:

Compact, Easy to Install High Sealing Performance High Quality Hall Effect Sensor RoHS Compliant

Specifications:

Working Voltage: DC 4.5V~24V Normal Voltage: DC 5V~18V Max. Working Current: 15mA (DC 5V) Load capacity: ≤ 10 mA (DC 5V) Flow Rate Range: 1~30L/min Load Capacity: ≤10mA (DC 5V) Operating Temperature: ≤80°C Liquid Temperature: ≤120°C Operating Humidity: 35% ~ 90%RH Allowing Pressure: ≤1.75MPa Storage Temperature: -25 ~ + 80°C Storage Humidity: 25% ~ 95%RH Electric strength 1250V/min Insulation resistance $\geq 100M\Omega$ External threads: 1/2" Outer diameter: 20mm Intake diameter: 9mm Outlet diameter: 12mm

Application:

Water heaters, credit card machines, water vending machine, flow measurement device!

Cercuit: Red: Positive Black: GND Yellow: Output signal

Connection method:

<u>User Guide</u>

I2C Serial Interface 20x4 LCD Module

This is I2C interface 20x4 LCD display module, a new high-quality 4 line 20 character LCD module with on-board contrast control adjustment, backlight and I2C communication interface. For Arduino beginners, no more cumbersome and complex LCD driver circuit connection. The real significance advantages of this I2C Serial LCD module will simplify the circuit connection, save some I/O pins on Arduino board, simplified firmware development with widely available Arduino library.

SKU: <u>DSP-1165</u>

Brief Data:

- Compatible with Arduino Board or other controller board with I2C bus.
- Display Type: Black on yellow green backlight.
- I2C Address:0x38-0x3F (0x3F default)
- Supply voltage: 5V
- Interface: I2C to 4bits LCD data and control lines.
- Contrast Adjustment : built-in Potentiometer.
- Backlight Control: Firmware or jumper wire.
- Board Size: 98x60 mm.

Setting Up:

Hitachi's HD44780 based character LCD are very cheap and widely available, and is an essential part for any project that displays information. Using the LCD piggy-back board, desired data can be displayed on the LCD through the I2C bus. In principle, such backpacks are built around PCF8574 (from NXP) which is a general purpose bidirectional 8 bit I/O port expander that uses the I2C protocol. The PCF8574 is a silicon CMOS circuit provides general purpose remote I/O expansion (an 8-bit quasi-bidirectional) for most microcontroller families via the two-line bidirectional bus (I2C-bus). Note that most piggy-back modules are centered around PCF8574T (SO16 package of PCF8574 in DIP16 package) with a default slave address of 0x27. If your piggy-back board holds a PCF8574AT chip, then the default slave address will change to 0x3F. In short, if the piggy-back board is based on PCF8574T and the address connections (A0-A1-A2) are not bridged with solder it will have the slave address 0x27.

Address selection pads in the I2C-to-LCD piggy-back board.

Pin connectivity		Address of PCF8574A								Address b	7-bit			
A2	A1	A0	A6	A5	A4	A3	A2	A1	A0	R/W	Write	Read	hexadecimal address without R/W	
V_{SS}	V_{SS}	V_{SS}	0	1	1	1	0	0	0	-	70h	71h	38h	
V_{SS}	V_{SS}	V_{DD}	0	1	1	1	0	0	1	-	72h	73h	39h	
V_{SS}	V_{DD}	V_{SS}	0	1	1	1	0	1	0	-	74h	75h	3Ah	
V_{SS}	V_{DD}	V_{DD}	0	1	1	1	0	1	1	-	76h	77h	3Bh	
V_{DD}	V_{SS}	V_{SS}	0	1	1	1	1	0	0	-	78h	79h	3Ch	
V_{DD}	V_{SS}	V_{DD}	0	1	1	1	1	0	1	-	7Ah	7Bh	3Dh	
V_{DD}	V_{DD}	V_{SS}	0	1	1	1	1	1	0	-	7Ch	7Dh	3Eh	
V_{DD}	V_{DD}	V_{DD}	0	1	1	1	1	1	1	-	7Eh	7Fh	3Fh	

Table	5.	PCF	8574A	address	map
IUNIO	•••		0014/1	uuuiooo	map

Address Setting of PCD8574A (extract from PCF8574A data specs).

Note: When the pad A0~A2 is open, the pin is pull up to VDD. When the pin is solder shorted, it is pull down to VSS.

The default setting of this module is A0~A2 all open, so is pull up to VDD. The address is 3Fh in this case.

Reference circuit diagram of an Arduino-compatible LCD backpack is shown below. What follows next is information on how to use one of these inexpensive backpacks to interface with a microcontroller in ways it was exactly intended.

Reference circuit diagram of the I2C-to-LCD piggy-back board.

I2C LCD Display.

At first you need to solder the I2C-to-LCD piggy-back board to the 16-pins LCD module. Ensure that the I2C-to-LCD piggy-back board pins are straight and fit in the LCD module, then solder in the first pin while keeping the I2C-to-LCD piggy-back board in the same plane with the LCD module. Once you have finished the soldering work, get four jumper wires and connect the LCD module to your Arduino as per the instruction given below.

LCD display to Arduino wiring.

www.handsontec.com

Arduino Setup

For this experiment it is necessary to download and install the "Arduino I2C LCD" library. First of all, rename the existing "LiquidCrystal" library folder in your Arduino libraries folder as a backup, and proceed to the rest of the process.

https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads

Next, copy-paste this example sketch Listing-1 for the experiment into the blank code window, verify, and then upload.

Arduino Sketch Listing-1:

```
/*_____
   Author: Handson TechnologyProject: I2C to LCD with Arduino Uno
11
11
   Description : LCD with I2C Interface.
11
  LiquidCrystal Library - I2C Serial to LCD
//
11
   Source-Code : I2C LCD.ino
//_____
*/
/*----( Import needed libraries ) -----*/
#include <Wire.h> // Comes with Arduino IDE
// Get the LCD I2C Library here:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
// Move any other LCD libraries to another folder or delete them
// See Library "Docs" folder for possible commands etc.
#include <LiquidCrystal_l2C.h>
/*----( Declare Constants ) -----*/
// set the LCD address to 0x3F for PCF8574AT with A0,A1,A0 address line open, default
setting.
// Set the pins on the I2C chip used for LCD connections:
11
                    (addr, en,rw,rs,d4,d5,d6,d7,b1,b1po1)
LiquidCrystal I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C
address
/*----( Declare Variables ) -----*/
void setup()
            /*----( SETUP: RUNS ONCE ) ----*/
{
 Serial.begin(9600); // Used to type in characters
 lcd.begin(20, 4);
                        // initialize the lcd for 20 chars 4 lines, turn on
backlight
// ----- Quick 3 blinks of backlight ------
 for(int i = 0; i< 3; i++)</pre>
  {
   lcd.backlight();
   delay(250);
   lcd.noBacklight();
   delay(250);
 }
 lcd.backlight(); // finish with backlight on
//----- Write characters on the display ------
 // NOTE: Cursor Position: Lines and Characters start at 0
 lcd.setCursor(3,0); //Start at character 4 on line 0
 lcd.print("Hello, world!");
 delay(1000);
 lcd.setCursor(2,1);
 lcd.print("From Handsontec ");
                                                           www.handsontec.com
     4
```

```
delay(1000);
  lcd.setCursor(0,2);
  lcd.print("20 by 4 Line Display");
  lcd.setCursor(0,3);
  delay(2000);
  lcd.print(" www.handsontec.com ");
  delay(8000);
  // Wait and then tell user they can start the Serial Monitor and type in characters
to
  // Display. (Set Serial Monitor option to "No Line Ending")
  lcd.setCursor(0,0); //Start at character 0 on line 0
  lcd.print("Start Serial Monitor");
  lcd.setCursor(0,1);
  lcd.print("Type char to display");
}/*--(end setup )---*/
              /*----( LOOP: RUNS CONSTANTLY ) ----*/
void loop()
Ł
  ł
    // when characters arrive over the serial port...
    if (Serial.available()) {
      // wait a bit for the entire message to arrive
      delay(100);
      // clear the screen
      lcd.clear();
      // read all the available characters
      while (Serial.available() > 0) {
        // display each character to the LCD
        lcd.write(Serial.read());
      }
    }
  }
}/* --(end main loop )-- */
/* ( THE END ) */
```

If you are 100% sure that everything is okay, but you don't see any characters on the display, try to adjust the contrast control pot of the backpack and set it a position where the characters are bright and the background does not have dirty boxes behind the characters. Following is a partial view of author's experiment with the above described code with 20x4 display module. Since the display used by the author is a very clear bright "black on yellow" type, it is very difficult to get a good catch due to polarization effects.

This sketch will also display character send from serial Monitor:

In Arduino IDE, go to "Tools" > "Serial Monitor". Set the correct baud rate at 9600. Type the character on the top empty space and hit "SEND".

💿 COM31 (Arduino/Genuino Uno)	
handsontec RS232	Send
	<u>^</u>
	E
	- 9600 baud

The string of character will be displayed on the LCD module.

Resources:

- Handson Technology
- <u>Lelong.com.my</u>

Handsontec..com We have the parts for your ideas

HandsOn Technology provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer. Information, education, inspiration and entertainment. Analog and digital, practical and theoretical; software and hardware.

Hands*On* Technology support Open Source Hardware (OSHW) Development Platform.

Learn : Design : Share

www.handsontec.com

www.handsontec.com

The Face behind our product quality...

In a world of constant change and continuous technological development, a new or replacement product is never far away – and they all need to be tested.

Many vendors simply import and sell wihtout checks and this cannot be the ultimate interests of anyone, particularly the customer. Every part sell on Handsotec is fully tested. So when buying from Handsontec products range, you can be confident you're getting outstanding quality and value.

We keep adding the new parts so that you can get rolling on your next project.

www.handsontec.com Breakout Boards & Modules

Engineering Material

www.handsontec.com

Power Supply

Connectors

www.handsontec.com Mechanical Hardware

Arduino Board & Shield

www.handsontec.com

Electro-Mechanical Parts

Electronics Components

Ρ

GDM2004D-FL-YBW

SPECIFICATIONS OF LCD MODULE

1. Features

- 1. 5x8 dots with cursor
- 2. STN(Yellow-Green), Positive, Transflective
- 3. 1/16 duty cycle
- 4. Viewing direction: 6:00 o'clock
- 5. Built-in controller (S6A0069 or equivalent)
- 6. +5V power supply
- 7. Yellow-Green LED BKL ,to be driven by A, K

2. Outline dimension

Unit: mm

3. Absolute maximum ratings

Item	Symbol		Unit		
Power voltage	V _{DD} -V _{SS}	0	-	7.0	V
Input voltage	Vin	VSS	-	VDD	v
Operating temperature range	Тор	-20	-	+70	ŝ
Storage temperature range	Tst	-30	-	+80	C

4.Block diagram

5. Interface pin description

Pin no.	Symbol	External connection	Function
1	Vss		Signal ground for LCM (GND)
2	V_{DD}	Power supply	Power supply for logic (+5V) for LCM
3	\mathbf{V}_0		Contrast adjust
4	RS	MPU	Register select signal
5	R/W	MPU	Read/write select signal
6	Е	MPU	Operation (data read/write) enable signal
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU
15	A(LED+)	LED BKL power	Power supply for BKL(Anode)
16	K(LĒD-)	Supply	Power supply for BKL (GND)

6. Contrast adjust

V_{DD-}V₀: LCD Driving voltage VR: 10k~20k

7. Optical characteristics

STN type display module (Ta=25°C, VDD=5.0V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
	θ1			20			
	θ2	C >3		40		dog	
viewing angle	Φ1	Cr≠J		35	35		
	Φ2			35			
Contrast ratio	Cr		-	10	-	-	
Response time (rise)	Tr	-	-	200	250	ma	
Response time (fall)	Tr	-	-	300	350	1115	

8. Electrical characteristics Backlight circuit diagram(light 12X4)

COLOUR: YELLOW-GREEN

LED RATINGS

ITEM	SYMBOL	MIN	TYP.	MAX	UNIT
FORWARD VOLTAGE	VF	4.0	4.2	4.4	V
FORWARD CURRENT	IF	-	240	-	MA
POWER	Р	-	1.0	-	W
PEAK WAVE LENGTH	٨P	569	571	573	NM
LUMINANCE	LV	-	340	-	CD/M2
Operating temperature range	Vop	-20	-	+70	<u>ەر</u>
Storage temperature range	Vst	-25	-	+80	÷ر

DC characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage for LCD	Vdd-Vo	Ta =25℃	-	4.5	-	V
Input voltage	Vdd		4.7	5.0	5.5	
Supply current	DD	Ta=25℃, Vpp=5.0V	-	1.5	2.5	mA
Input leakage current	LKG		-	-	1.0	uA
"H" level input voltage	Vн		2.2	-	Vdd	V
"L" level input voltage	V∟	Twice initial value or less	0	-	0.6	
"H" level output voltage	Vон	LOH=-0.25mA	2.4	-	-	
V: B		3/18			200	8/06/02

"L" level output voltage	Vol	LOH=1.6mA	-	-	0.4	
Backlight supply current	F	Vdd=5.0V,R=6.8Ω	-	240	-	

Write cycle	(Ta=25°C, VDD=5.0V)
-------------	---------------------

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		500	-	-	
Enable pulse width	tw	E	230	-	-	
Enable rise/fall time	tr, tr		-	-	20	
RS; R/W setup time	t su1		40	-	-	ns
RS; R/W address hold time	t h1	NO, N/W	10	-	-	
Data output delay	t su2		80	-	-	
Data hold time	t h2		10	-	-	

Write mode timing diagram

Read cycle (Ta=25°C, VDD=5.0V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		500	-	-	
Enable pulse width	tw	E	230	-	-	
Enable rise/fall time	tr, tr		-	-	20	
RS; R/W setup time	t su		40	-	-	ns
RS; R/W address hold time	t h	κο, κνν	10	-	-	
Data output delay	td		-	-	120	
Data hold time	t dh		5	-	-	

Read mode timing diagram

9. FUNCTION DESCRIPTION

System Interface

This chip has all two kinds of interface type with MPU : 4-bit bus and 8-bit bus. 4-bit bus and 8-bit bus is selected by DL bit in the instruction register.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not high.

Address Counter (AC)

Address Counter (AC) stores DDRAM/CGRAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 - DB6 ports.

Display Data RAM (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number.

	Display posi									ositi	on								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	20	21	22	23	24	25	26	27
54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67

DDRAM address

CGROM (Character Generator ROM)

CGROM has a 5 x 8 dots 204 characters pattern and a 5 x 10 dots 32 characters pattern. CGROM has 204 character patterns of 5 x 8 dots.

CGRAM (Character Generator RAM)

CGRAM has up to 5 \times 8 dot, 8 characters. By writing font data to CGRAM, user defined characters can be used.

	0	cha	ira	cte	r C	od	е			0	CGF	RAN	Λ			Ch	ara	cte	r Pa	atte	rns	
		(DI	DR/	٩M	Da	ita)				Α	١dd	res	s			(CG	RA	MC)ata	I)	
b8	b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
						0	0	0				0	0	0				1	1	1	1	1
						0	0	0				0	0	1				0	0	1	0	0
						0	0	0				0	1	0				0	0	1	0	0
0	0	0	0	0		0	0	0	0	0	0	0	1	1				0	0	1	0	0
0	0	0	0	0	-	0	0	0	0	0	0	1	0	0	-	-	-	0	0	1	0	0
						0	0	0				1	0	1]			0	0	1	0	0
						0	0	0				1	1	0				0	0	1	0	0
						0	0	0				1	1	1				0	0	0	0	0
						0	0	1				0	0	0				1	1	1	1	0
						0	0	1				0	0	1				1	0	0	0	1
						0	0	1				0	1	0				1	0	0	0	1
0	0	0	0	0		0	0	1	0	0	1	0	1	1				1	1	1	1	0
0	0	0	0	0	-	0	0	1	U	U	'	1	0	0	-	-	-	1	0	1	0	0
						0	0	1				1	0	1				1	0	0	1	0
						0	0	1				1	1	0				1	0	0	0	1
						0	0	1				1	1	1				0	0	0	0	0

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data) Notes:

1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).

2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence.

3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).

4. As shown Table, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.

5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.

"-": Indicates no effect.

Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF at cursor position.

10. Instruction description

Outline

To overcome the speed difference between the internal clock of S6A0069 and the MPU clock, S6A0069 performs internal operations by storing control in formations to IR or DR. The internal operation is determined according to the signal from MPU, composed of read/write and data bus (Refer to Table7). Instructions can be divided largely into four groups:

- 1) S6A0069 function set instructions (set display methods, set data length, etc.)
- 2) Address set instructions to internal RAM
- 3) Data transfer instructions with internal RAM
- 4) Others

The address of the internal RAM is automatically increased or decreased by 1.

Note: during internal operation, busy flag (DB7) is read "High".

Busy flag check must be preceded by the next instruction.

Instruction Table

Instruction	Instruction code	Description	Execution
V: B	6/18	200	08/06/02

GDM2004D-FL-YBW

	RS	R/W	DB7	DB6	DB 5	DB4	DB3	DB2	DB 1	DB0		time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	Ous
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

NOTE:

When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) goes to "Low".

Contents

1) Clear display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the display. Make the entry mode increment (I/D="High").

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Return home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

3) Entry mode set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

Set the moving direction of cursor and display.

I/D: increment / decrement of DDRAM address (cursor or blink)

When I/D="high", cursor/blink moves to right and DDRAM address is increased by 1. When I/D="Low", cursor/blink moves to left and DDRAM address is increased by 1. *CGRAM operates the same way as DDRAM, when reading from or writing to CGRAM.

SH: shift of entire display

When DDRAM read (CGRAM read/write) operation or SH="Low", shifting of entire display is not performed. If SH ="High" and DDRAM write operation, shift of entire display is performed according to I/D value. (I/D="high". shift left, I/D="Low". Shift right).

4) Display ON/OFF control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D="High", entire display is turned on.

When D="Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

When D="High", cursor is turned on.

When D="Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

When B="High", cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.

When B="Low", blink is off.

5) Cursor or display shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Shifting of right/left cursor position or display without writing or reading of display data.

This instruction is used to correct or search display data.

During 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line.

Note that display shift is performed simultaneously in all the lines.

When display data is shifted repeatedly, each line is shifted individually.

When display shift is performed, the contents of the address counter are not changed.

Shift patterns according to S/C and R/L bits

S/C	R/L	Operation	
0	0	Shift cursor to the left, AC is decreased by 1	
0	1	Shift cursor to the right, AC is increased by 1	
/: B		8/18	2008/06/02

1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

6) Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	Ν	F	-	-

DL: Interface data length control bit

When DL="High", it means 8-bit bus mode with MPU.

When DL="Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode. When 4-but bus mode, it needs to transfer 4-bit data twice.

N: Display line number control bit

When N="Low", 1-line display mode is set.

When N="High", 2-line display mode is set.

F: Display line number control bit

When F="Low", 5x8 dots format display mode is set.

When F="High", 5x11 dots format display mode.

7) Set CGRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

The instruction makes CGRAM data available from MPU.

8) Set DDRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available form MPU.

When 1-line display mode (N=LOW), DDRAM address is form "00H" to "4FH".In 2-line display mode (N=High), DDRAM address in the 1st line form "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

9) Read busy flag & address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether S6A0069 is in internal operation or not.

If the resultant BF is "High", internal operation is in progress and should wait BF is to be LOW, which by then the nest instruction can be performed. In this instruction you can also read the value of the address counter.

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set, CGRAM address set).

RAM set instruction can also determine the AC direction to RAM.

After write operation. The address is automatically increased/decreased by 1, according to the entry mode.

11) Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If the address set instruction of RAM is not performed before this instruction, the data that has been read first is invalid, as the direction of AC is not yet determined. If RAM data is read several times without RAM address instructions set before, read operation, the correct RAM data can be obtained from the second. But the first data would be incorrect, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction, it also transfers RAM data to output data register.

After read operation, address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.

NOTE: In case of RAM write operation, AC is increased/decreased by 1 as in read operation.

At this time, AC indicates next address position, but only the previous data can be read by the read instruction.

Standard character pattern(English/European)

Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	гннн	HLLL	HLLH	HLHL	нгнн	HHLL	HHLH	нннг	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
LHHH	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
нгнн	(4)															
HHLL	(5)															
HHLH	(6)															
HHHL	(7)															
нннн	(8)															

11. Quality Specifications

11.1 Standard of the product appearance test

Manner of appearance test: The inspection should be performed in using $20W \times 2$ fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 25 cm or more.

Viewing direction for inspection is 35° from vertical against LCM.

Definition of zone:

LCM

A Zone: Active display area (minimum viewing area).

B Zone: Non-active display area (outside viewing area).

11.2 Specification of quality assurance

AQL inspection standard

Sampling method: GB2828-87, Level II, single sampling

Defect classification (**Note:** * is not including)

Cl	assify	Item	Note	AQL
Major	Display state	Short or open circuit	1	0.65
		LC leakage		
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Backlight	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display	Background color deviation	2	1.0
	state	Black spot and dust	3	
		Line defect, Scratch	4	
		Rainbow	5	
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
	Soldering	Poor connection	9	
	Wire	Poor connection	10	
	TAB	Position, Bonding strength	13	

Note on defect classification

No.	Item	Criterion					
1	Short or open circuit		Not allow				
	LC leakage						
	Flickering						
	No display						
	Wrong viewing direction						
	Wrong Back-light						
2	Contrast defect		Refer to approva	l sample			
	Background color deviation						
3	Point defect, Black spot, dust (including Polarizer) $\phi = (X+Y)/2$	Y	Point Size $\phi \leq 0.10$ $0.10 < \phi \leq 0.15$ $0.15 < \phi \leq 0.25$ $\phi > 0.25$	Acceptable Qty. Disregard 2 1 0			
			Unit: Inch	2			
4	Line defect, Scratch	$ \begin{array}{c} $	Line 0.05>W 0.1>W>0.05 >L 0.15≥W>0.1	Acceptable Qty. Disregard Unit: mm			
5	Rainbow	Not more than two cold	or changes across the	e viewing area.			

No.	Item	Criterion					
7	Segment pattern W = Segment width $\phi = (X+Y)/2$	(1) Pin hole $\phi < 0.10$ mm is acceptable. X Y Y Y Y Y Y Y Y Y Point Size Acceptable Qty $\phi \le 1/4$ W Disregard $1/4W < \phi \le 1/2$ W 1 $\phi > 1/2$ W 0 Unit: mm					
8	Back-light	(1) The color of backlight should be in match with the specification.(2) Not allow flickering					
9	Soldering	 (1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land. 					
10	Wire PCB	 (1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable. (1) Not allow screw rust or damage. 					
		(2) Not allow missing or wrong putting of component.					

11.3 Reliability of LCM

Reliability test condition:

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	48	
High temp. Operating	70°C	48	No abnormalities
Low temp. Storage	-30°C	48	in functions
Low temp. Operating	-20°C	48	and appearance
Humidity	40°C/ 90%RH	48	
Temp. Cycle	$0^{\circ}C \leftarrow 25^{\circ}C \rightarrow 50^{\circ}C$	10cycles	
	$(30 \min \leftarrow 5 \min \rightarrow 30 \min)$		

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature $(20\pm8^{\circ}C)$, normal humidity (below 65% RH), and in the area not exposed to direct sun light.

11.4 Precaution for using LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting XIAMEM OCULAR
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal spreads to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface

GDM2004D-FL-YBW

terminals with any parts of the human body.

- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: $280^{\circ}C \pm 10^{\circ}C$
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.