BAB IV PEMBAHASAN

4.1 Analisa Data

Kegiatan pemberian Bantuan Sosial adalah merupakan kegiatan yang dilaksanakan oleh petugas kecamatan yaitu melalui pendamping PKH, Namun memilih calon penerima Bantuan Sosial yang tepat sasaran bukanlah hal yang mudah, dimana pemberian Bantuan Sosial dapat dikatakan belum tepat sasaran dikarnakan masih ada yang seharusnya dia dapat tetapi setelah dilakukan surve kelapangan dia tidak mendapatkan hak nya, dan ada juga yang kita temui dilapangan seharusnya dia tidak dapat karna dilihat dari segi ekonomi dia tercukupi dan justu yang mampu mendapatkan Bantuan Sosial. Oleh karna itu penelitian ini akan membahas Model pengambilan keputusan yang diharapkan dapat membantu menyelesaikan masalah pembagian Bantuan Sosial yang sesuai atau tepat sasaran.Metode yang dipakai dalam pemodelal pengambilan keputusan pemberian Bantuan Sosial adalah Weighted Product (WP). Berikut analisa system dan perhitungan metode WP

4.2 Menentukan jenis-jenis Kriteria

penerima Bantuan Sosial, Dalam penelitian ini Kriteria-Kriteria yang dibutuhkan adalah :

- Pekerjaan,
- Status lahan tempat tinggal,
- Sumber penerangan listrik (Watt),
- Sumber air minum.
- Bahan bakar untuk masak,

- Membeli pakaian baru 1 stel dalam per tahun,
- Konsumsi (daging,susu,ayam) pertahun
- Pendidikan tertinggi kepala keluarga,
- Penghasilan kepala keluarga,
- Luas lantai bangunan,
- Jenis lantai,
- Dinding rumah.

4.3 Menentukan bobot masing-masing kriteria

Bobot yang digunakan disini berupa nilai 1 sampai dengan 5. Gradasi pembobotan ini mengacu pada pada *skala likert*, yaitu:

- Sangat Baik
- Baik
- Cukup
- Rendah
- Sangat Rendah

4.4 Menentukan Bobot scoring dalam kriteria

- Sangat Rendah : 1 (memiliki peluang yang sangat rendah untuk mendapatkan Bantuan Sosial)
- Rendah : 2 (memiliki peluang rendah untuk mendapatkan Bantuan Sosial)
- Cukup : 3 (memiliki peluang yang cukup untuk mendapatkan Bantuan Sosial)

- Baik : 4 (memiliki peluang yang baik untuk mendapatkan Bantuan Sosial)
- Sangat Baik : 5 (memiliki peluang yang sangat baik untuk mendapatkan Bantuan Sosial)

Tabel 1. Pembobotan kriteria Penerima Bantuan Sosial

No	Kriteria	Status	Skala	Bobot
1	Pekerjaan	PNS Gol≥III A	Sangat Rendah	1
		Wiraswasta Setara	Rendah	2
		dengan gol \leq II D		
		Karyawan Swasta	Cukup	3
		Petani	Baik	4
		Buruh	Sangat Baik	5
2	Tempat tinggal	Milik Sendiri	Sangat Rendah	1
		Dinas	Rendah	2
		Bebas Sewa	Cukup	3
		Kontrak/Sewa	Baik	4
		Numpang	Sangat Baik	5
3	Sumber	Listrik PLN	Sangat Rendah	1
	Penerangan	Genset	Rendah	2
		Listrik Pakai ACU	Cukup	3
		Menyalur listrik dari	Baik	4
		Orang		
		Mengunakan Lampu	Sangat Baik	5
		minyak Tanah		
4	Sumber Air	Sumur Bor	Sangat Rendah	1
		PDAM	Rendah	2
		Sumur galian	Cukup	3
		Air Sungai	Baik	4

		Numpang Tetangga	Sangat Baik	5
5	Bahan Bakar	Kompor Listrik	Sangat Rendah	1
	Memasak	Kompor Gas	Rendah	2
		Minyak Tanah	Cukup	3
		Arang	Baik	4
		Kayu Bakar	Sangat Baik	5
6	Pembelian	≥ 4 kali setahun	Sangat Rendah	1
	Pakaian / Tahun	3 kali setahun	Rendah	2
		2 kali setahun	Cukup	3
		1 kali setahun	Baik	4
		tidak pernah sama sekali	Sangat Baik	5
7	Konsumsi	≥ 4 kali setahun	Sangat Rendah	1
	Daging / Tahun	3 kali setahun	Rendah	2
		2 kali setahun	Cukup	3
		1 kali setahun	Baik	4
		tidak pernah sama sekali	Sangat Baik	5
8	Pendidikan	Sarjana	Sangat Rendah	1
	Kepala Keluarga	SMU	Rendah	2
		SMP	Cukup	3
		SD	Baik	4
		Tidak SANGGA lah	Sangat Baik	5
9	Penghasilan	Rp. > 5.000.000	Sangat Rendah	1
	kepala keluarga /	$4.000.000 < X \le$	Rendah	2
	Bulan	3.500.000		
		$2.500.000 < X \le$	Cukup	3
		2.000.000		
		1.500.000 < X ≤	Baik	4
		1.000.000		
		$Rp. \le 800.000$	Sangat Baik	5
10	Tabungan	Rp. > 4.000.000	Sangat Rendah	1

		3.500.000 < X ≤	Rendah	2
		3.000.000		
		2.500.000 < X ≤	Cukup	3
		2.000.000		
		$1.500.000 < X \le$	Baik	4
		1.000.000		
		$Rp. \le 500.000$	Sangat Baik	5
11	Lantai Bangunan	Marmar/Granet	Sangat Rendah	1
		Keramik	Rendah	2
		Semen Kasar	Cukup	3
		Kayu	Baik	4
		Tanah	Sangat Baik	5
12	Luas Lantai	7*3 m2	Sangat Rendah	1
		6*6 m2	Rendah	2
		4*7 m2	Cukup	3
		3*6 m2	Baik	4
		3*3 m2	Sangat Baik	5

4.5 Mengumpulkan Data Matrik Alternatif

Dalam melakukan pengumpulan data untuk mengisi matrik alternatif penulis menggunakan media form survey kepala keluarga yang diisi oleh petugas survey (form survey ada dilampiran). Sehingga didapatkan data matrik alternatif sebagai berikut :

Tabel 2. menunjukan data matrik alternatif

NO	NAMA						KRI	TERIA	\				
	PENERIMA	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
	BANTUAN												
	SOSIAL												
1	PARTINI	5	1	1	5	5	4	3	4	4	5	5	3
2	SUGIONO	3	1	1	3	2	1	1	3	2	2	2	2
3	MISWAN	4	5	1	3	2	3	2	3	3	4	3	2
4	MARGIONO	5	5	1	3	5	4	4	4	3	4	5	4
5	MISDI	5	5	4	3	2	4	4	4	4	5	5	4
6	TUKIMAN	4	1	1	3	5	3	3	3	4	4	5	4
7	TRIMO HADI	2	1	1	1	2	2	1	2	2	2	2	1
	REJO												
8	ANGGA	5	5	4	3	2	4	3	4	4	5	5	4
9	SUJADI	5	1	1	3	5	4	3	4	4	5	3	4
10	DAMINI	5	1	4	3	5	5	4	4	4	5	5	4

Catatan: penulis hanya menggunakan 10 data sebagai sample

4.6 Standar Bobot Preferensi

Penentuan standar bobot preferensi disini mengacu dari peraturan menteri koordinator bidang pembangunan manusia dan kebudayaan republik Indonesia nomor 1 tahun 2016 Dan analisa kondisi lapangan yang dilakukan oleh petugas penyalur beras Bantuan Sosial Kampung Purwajaya Kecamatan Banjar Margo Kabupaten Tulang Bawang sehingga bisa dituliskan standar bobot preferensi seperti pada tabel 3.

Tabel 3. Standar Bobot Preferensi

Bobot Preferensi	
Kriteria	Bobot
Pekerjaan	2
Tempat tinggal	2
Sumber Penerangan	3
Sumber Air	3
Bahan Bakar Memasak	3
Pembelian Pakaian dalam setahun	5
Konsumsi Daging	3
Pendidikan Kepala Keluarga	4
Penghasilan kepala keluarga	2
Tabungan	4
Lantai Bangunan	4
Luas Lantai	4

4.7 Proses analisa menggunakan metode weight product

Proses analisa data menggunakan metode *weight product* dalam menyelesaikan masalah langkah-langkahnya sebagai berikut :

a. Melakukan perbaikan bobot preferensi. Bobot awal preferensi $W = (2,2,3,3,3,5,5,4,2,4,4,4) \ \ seluruh \ \ bobot \ \ akan \ \ dimasukkan \ \ ke \ \ dalam \ \ persamaan Rumus$

$$W_j = \frac{w_j}{\sum w_j}$$

$$W_1 = \frac{2}{2+2+\dots+4}$$

$$= 0.05128$$

$$W_2 = \frac{2}{2+2+\dots+4}$$

$$= 0.05128$$

lakukan perhitungan untuk perbaikan bobot sampai dengan \mathcal{W}_{12}

$$W_{12} = \frac{4}{2 + 2 + \dots + 4}$$

$$= 0,10256$$

Sehingga didapatkan bobot preferensi seperti dalam tabel 4.

Tabel 4. Perbaikan Bobot Preferensi

No	Bobot Pref	erensi		
	Kriteria	skala	Perbaikan	Cost /
		kepentingan	Bobot (W)	benefit
1	Pekerjaan	2	0,05128	benefit
2	Tempat tinggal	2	0,05128	benefit
3	Sumber Penerangan	3	0,07692	benefit
4	Sumber Air	3	0,07692	benefit
5	Bahan Bakar Memasak	3	0,07692	benefit
6	Pembelian Pakaian dalam setahun	5	0,12821	benefit
7	Konsumsi Daging	3	0,07692	benefit
8	Pendidikan Kepala Keluarga	4	0,10256	benefit
9	Penghasilan kepala keluarga	2	0,05128	benefit
10	Tabungan	4	0,10256	benefit
11	Lantai Bangunan	4	0,10256	benefit
12	Luas Lantai	4	0,10256	benefit

b. Menentukan nilai vector s yang dapat dihitung menggunakan rumus persamaan sebagai berikut :

$$S_{i} = \prod_{j=1}^{n} X_{ij}^{Wj}$$

$$S_{1} = (5^{0,05128}) * (1^{0,05128}) * (1^{0,07692}) * \dots * (3^{0,10256})$$

$$= 3.485025$$

$$S_{2} = (3^{0,05128}) * (1^{0,05128}) * (1^{0,07692}) * \dots * (2^{0,10256})$$

$$= 1.743103$$

$$S_{3} = (4^{0,05128}) * (5^{0,05128}) * (1^{0,07692}) * \dots * (2^{0,10256})$$

$$= 2.6666037$$

Lakukan perhitungan sampai dengan sejumlah data alternativ
f yang tersedia S_{10}

$$S_{10} = (5^{0,05128}) * (1^{0,05128}) * (4^{0,07692}) * ... * (4^{0,10256})$$

= 4.039263

Sehingga didapatkan hasil skor alternatif seperti pada tabel 5

Tabel 5. Nilai Vector S

NO	NAMA ALTERNATIF	NILAI S
1	S1	3.485025
2	S2	1.743103
3	S3	2.666037
4	S4	3.690315
5	S5	3.972937
6	S6	3.120424
7	S7	1.531966
8	S8	3.885984
9	S9	3.274923
10	S10	4.039263

c. Menentukan Nilai vector yang akan digunakan Menghitung Preferensi (Vi) untuk perengkingan dengan memasukkan nilai s kedalam persamaan rumus .

$$V_{i} = \frac{\prod_{j=1}^{n} X_{ij} \text{ wj}}{\prod_{j=1}^{n} (X_{j} *) \text{wj}}$$

Sederhananya menjadi:

$$V_1 = \frac{S_1}{S_1 + S_2 + S_3 + \dots + S_{10}}$$

$$= \frac{3.485025}{3.485024741 + 1.743103232 + 2.666037279 + \dots + 4.039263138}$$

$$= 0.110953$$

$$V_2 = \frac{S_2}{S_1 + S_2 + S_3 + \dots + S_{10}}$$

$$=\frac{1.743103}{3.485024741+1.743103232+2.666037279+...+4.039263138}$$

= 0.055495

Lakukan perhitungan sampai mendapatkan V_{10}

$$V_{10} = \frac{S_{10}}{S_1 + S_2 + S_3 + \dots + S_{10}}$$

$$=\frac{4.039263}{3.485024741+1.743103232+2.666037279+...+4.039263138}$$

= 0.128598

Tabel.6 Perhitungan Vektor

No	NAMA PENERIMA BANTUAN	V (Alias)	Nilai V
	SOSIAL		
1	PARTINI	V1	0.110953
2	SUGIONO	V2	0.055495
3	MISWAN	V3	0.084879
4	MARGIONO	V4	0.117489
5	MISDI	V5	0.126486
6	TUKIMAN	V6	0.099345
7	TRIMO HADI REJO	V7	0.048773
8	ANGGA	V8	0.123718
9	SUJADI	V9	0.104264
10	DAMINI	V10	0.128598

d. Setelah menghitung nilai vector V maka data vector tersebut harus diurutkan dari nilai terbesar hingga nilai terkecil. Maka akan muncul nilai seperti pada table. 7

Tabel. 7 Hasil Perengkingan

NO	Hasil Rar	Hasil Ranking (sort)											
1	DAMINI	V10	0,128598										
2	MISDI	V5	0,126486										
3	ANGGA	V8	0,123718										
4	MARGIONO	V4	0,117489										
5	PARTINI	V1	0,110953										
6	SUJADI	V9	0,104264										
7	TUKIMAN	V6	0,099345										
8	MISWAN	V3	0,084879										
9	SUGIONO	V2	0,055495										
10	TRIMO HADI REJO	V7	0,048773										

- e. Berdasarkan tabel. 7 perhitungan dengan mengunakan metode Weighted Product (WP) menyatakan bahwa alternanif yang berhak menerima Bantuan Sosial adalah.
- 1. DAMINI
- 2. MISDI
- 3. MARGIONO
- 4. PARTINI
- 5. SUJADI

4.8 Proses Anlisa Menggunakan Metode Topsis

Prosedur proses metode *Topsis* dalam menyelesaikan masalah terdiri dari langkah-langkah sebagai berikut :

Membuat matriks keputusan yang ternormalisasi berdasarkan nilai hasil survey. Matriks keputusan ternormalisasi untuk alternatif (*i*) dan kriteria (*j*) menggunakan rumus (4). Proses perhitungannya dipaparkan pada halaman selanjutnya.

No	Alternatif		X										
		1	2	3	4	5	6	7	8	9	10	11	12
1	PARTINI	5	1	1	5	5	4	3	4	4	5	5	3
2	SUGIONO	3	1	1	3	2	1	1	3	2	2	2	2
3	MISWAN	4	5	1	3	2	3	2	3	3	4	3	2
4	MARGIONO	5	5	1	3	5	4	4	4	3	4	5	4
5	MISDI	5	5	4	3	2	4	4	4	4	5	5	4
6	TUKIMAN	4	1	1	3	5	3	3	3	4	4	5	4
7	TRIMO HADI	2	1	1	1	2	2	1	2	2	2	2	1
	REJO												
8	ANGGA	5	5	4	3	2	4	3	4	4	5	5	4
9	SUJADI	5	1	1	3	5	4	3	4	4	5	3	4
10	DAMINI	5	1	4	3	5	5	4	4	4	5	5	4

Tabel. 8 Tabel Matrik Keputusan

Dari tabel matrik keputusan hasil survey maka kita masukkan kedalam persamaan

$$rij = \frac{X_{ij}}{\sqrt{\sum_{i=1}^{m} X_{ij}^2}}$$

$$r1.1 = \frac{5}{\sqrt{5^2 + 3^2 + \dots + 5^2}} = 0.3581$$

$$r2.1 = \frac{3}{\sqrt{5^2 + 3^2 + \dots + 5^2}} = 0.2148$$

$$r3.1 = \frac{4}{\sqrt{5^2 + 3^2 + \dots + 5^2}} = 0.2864$$

Perhitungan tersebut kita lakukan sampai dengan sejumlah alternatif (i) dan kriteria yang ada (j).

$$r8.12 = \frac{4}{\sqrt{3^2 + 2^2 + \dots + 4^2}} = 0.3746$$

$$r9.12 = \frac{4}{\sqrt{3^2 + 2^2 + \dots + 4^2}} = 0.3746$$

$$r10.12 = \frac{4}{\sqrt{3^2 + 2^2 + \dots + 4^2}} = 0.3746$$

Sehingga didapatkan hasil matriks keputusan yang ternormalisasi seperti yang terdapat pada tabel 9

Tabel. 9 Tabel Matrik ternormalisasi

	Alternatif												
No	Penerima Bantuan Sosial	1	2	3	4	5	6	7	8	9	10	11	12
			0.097	0.134	0.505	0.415	0.353	0.316	0.354	0.362	0.371		0.281
1	PARTINI	0.3581	1	8	1	2	6	2	9	1	6	0.3769	0
			0.097	0.134	0.303	0.166	0.088	0.105	0.266	0.181	0.148		0.187
2	SUGIONO	0.2148	1	8	0	1	4	4	2	1	7	0.1508	3
			0.485	0.134	0.303	0.166	0.265	0.210	0.266	0.271	0.297		0.187
3	MISWAN	0.2864	6	8	0	1	2	8	2	6	3	0.2261	3
			0.485	0.134	0.303	0.415	0.353	0.421	0.354	0.271	0.297		0.374
4	MARGIONO	0.3581	6	8	0	2	6	6	9	6	3	0.3769	6
			0.485	0.539	0.303	0.166	0.353	0.421	0.354	0.362	0.371		0.374
5	MISDI	0.3581	6	4	0	1	6	6	9	1	6	0.3769	6
			0.097	0.134	0.303	0.415	0.265	0.316	0.266	0.362	0.297		0.374
6	TUKIMAN	0.2864	1	8	0	2	2	2	2	1	3	0.3769	6
	TRIMO HADI		0.097	0.134	0.101	0.166	0.176	0.105	0.177	0.181	0.148		0.093
7	REJO	0.1432	1	8	0	1	8	4	5	1	7	0.1508	7
			0.485	0.539	0.303	0.166	0.353	0.316	0.354	0.362	0.371		0.374
8	ANGGA	0.3581	6	4	0	1	6	2	9	1	6	0.3769	6
			0.097	0.134	0.303	0.415	0.353	0.316	0.354	0.362	0.371		0.374
9	SUJADI	0.3581	1	8	0	2	6	2	9	1	6	0.2261	6
			0.097	0.539	0.303	0.415	0.441	0.421	0.354	0.362	0.371		0.374
10	DAMINI	0.3581	1	4	0	2	9	6	9	1	6	0.3769	6

a. Menentukan bobot ternormalisasi matriks keputusan. Adapun rumus yang digunakan untuk menentukan nilai bobot ternormalisasi sebagai berikut:

$$Y_{ij} = W_i r_{ij}$$

Nilai W yang digunakan dalam perhitungan seperti pada tabel 10

Tabel. 10 Tabel Nilai Bobot Preferensi

Bobot Preferensi							
Kriteria	Bobot (W)						
Pekerjaan	2						
Tempat tinggal	2						
Sumber Penerangan	3						
Sumber Air	3						
Bahan Bakar Memasak	3						
Pembelian Pakaian dalam setahun	5						
Konsumsi Daging	3						
Pendidikan Kepala Keluarga	4						
Penghasilan kepala keluarga	2						
Tabungan	4						
Lantai Bangunan	4						
Luas Lantai	4						

b. Selanjutnya kita melakukan perhitungan untuk mendapatkan nilai Y dengan memasukan nilai bobot preferensi dikalikan dengan nilai yang terdapat pada tabel bobot ternormalisasi seperti pada persamaan berikut :

$$Y_{ij} = W_i r_{ij}$$

$$Y1.1 = 0.3581 * 2 = 0.7161$$

$$Y2.1 = 0.2148 * 2 = 0.4297$$

$$Y3.1 = 0.2864 * 2 = 0.4297$$

Perhitungan tersebut kita lakukan sampai dengan jumlah bobot preferensi yang ada (Wi) dan jumlah matriks keputusan yang ternormalisasi dari $(r_{ij...j})$

$$Y8.12 = 0.3746 * 4 = 1.4985$$

$$Y9.12 = 0.3746 * 4 = 1.4985$$

$$Y10.12 = 0.3746 * 4 = 1.4985$$

Sehingga didapatkan hasil bobot ternormalisasi matriks keputusan seperti yang terdapat pada tabel 11

Tabel. 11 Tabel Nilai Bobot Ternormalisasi

						Y							
No	Nama Penerima Bantuan Sosial (Alternatif)/i	1	2	3	4	5	6	7	8	9	10	11	12
1	PARTINI	0.7161	0.1943	0.4045	1.5152	1.2457	1.7678	0.9487	1.4198	0.7243	1.4866	1.5076	1.1239
2	SUGIONO	0.4297	0.1943	0.4045	0.9091	0.4983	0.4419	0.3162	1.0648	0.3621	0.5946	0.6030	0.7493
3	MISWAN	0.5729	0.9713	0.4045	0.9091	0.4983	1.3258	0.6325	1.0648	0.5432	1.1893	0.9045	0.7493
4	MARGIONO	0.7161	0.9713	0.4045	0.9091	1.2457	1.7678	1.2649	1.4198	0.5432	1.1893	1.5076	1.4985
5	MISDI	0.7161	0.9713	1.6181	0.9091	0.4983	1.7678	1.2649	1.4198	0.7243	1.4866	1.5076	1.4985
6	TUKIMAN	0.5729	0.1943	0.4045	0.9091	1.2457	1.3258	0.9487	1.0648	0.7243	1.1893	1.5076	1.4985
	TRIMO HADI												
7	REJO	0.2864	0.1943	0.4045	0.3030	0.4983	0.8839	0.3162	0.7099	0.3621	0.5946	0.6030	0.3746
8	ANGGA	0.7161	0.9713	1.6181	0.9091	0.4983	1.7678	0.9487	1.4198	0.7243	1.4866	1.5076	1.4985
9	SUJADI	0.7161	0.1943	0.4045	0.9091	1.2457	1.7678	0.9487	1.4198	0.7243	1.4866	0.9045	1.4985
10	DAMINI	0.7161	0.1943	1.6181	0.9091	1.2457	2.2097	1.2649	1.4198	0.7243	1.4866	1.5076	1.4985

- c. Menentukan nilai solusi ideal positif dan negative. Untuk menentukan nilai tersebut kita akan melakukan proses pemilahan nilai y max dan min untuk mendapatkan nilai solusi ideal positif (A⁺) dan solusi ideal negative (A⁻) berdasarkan tabel 11 bobot ternormalisasi matriks keputusan.
- Pemilahan nilai solusi ideal positif (A⁺)

$$y_{j}^{+} = \begin{cases} \max y_{ij \ jika \ j \ atribut \ benefit} \\ \min y_{ij \ jika \ j \ atribut \ cost} \end{cases}$$

$$y_{1}^{+} = \max \{0.7161; 0.4297; 0.5729; \dots; 0.7161\} = 0.7161$$

$$y_{2}^{+} = \max \{0.1943; 0.1943; 0.9713; \dots; 0.1943\} = 0.9713$$

$$y_{3}^{+} = \max \{0.4045; 0.4045; 0.4045; \dots; 1.6181\} = 1.4985$$
Lakukan proses pemilahan sampai dengan y_{12}^{+}

$$y_{12}^+ = \max\{1.1239; 0.7493; 0.7493; ...; 1.4985\} = 1.4985$$

- Pemilahan nilai solusi ideal negative (A)

$$y_j^- = \begin{cases} \max y_{ij \ jika \ j \ atribut \ benefit} \\ \min y_{ij \ jika \ atribut \ cost} \end{cases}$$

$$y_1^- = \min \{0.7161; 0.4297; 0.5729; ...; 0.7161\} = 0.2864$$

 $y_2^- = \min \{0.1943; 0.1943; 0.9713; ...; 0.1943\} = 0.1943$
 $y_3^- = \min \{0.4045; 0.4045; 0.4045; ...; 1.6181\} = 0.4045$

Lakukan proses pemilahan sampai dengan y_{12}^-

$$y_{12}^- = \min\{1.1239; 0.7493; 0.7493; \dots; 1.4985\} = 0.3746$$

Dari pemilahan nilai ideal positif dan ideal negatif maka didapatkanlah tabel 12 solusi ideal seperti

Tabel. 12 Tabel Nilai Solusi Ideal Positif dan Negatif

	Y												
No			J										
NO	Keterangan	1	2	3	4	5	6	7	8	9	10	11	12
	Solusi Ideal												
+	Positif (A+)	0.7161	0.9713	1.6181	1.5152	1.2457	2.2097	1.2649	1.4198	0.7243	1.4866	1.5076	1.4985
	Solusi Ideal												
-	Negatif (A-)	0.2864	0.1943	0.4045	0.3030	0.4983	0.4419	0.3162	0.7099	0.3621	0.5946	0.6030	0.3746

- d. Menentukan Jarak ideal antara masing-masing alternatif dengan persamaan rumus (10):
- Jarak Ideal Positif (D_i^+)

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_i^+ - y_{ij})^2} \square \square$$

$$D_1^+ = \sqrt{(0.7161 - 0.7161)^2 + (0.9713 - 0.1943)^2 + \dots + (1.4985 - 1.1239)^2}$$

= 1.5850 \(\Boxed\$

$$D_2^+ = \sqrt{(0.7161 - 0.4297)^2 + (0.9713 - 0.1943)^2 + \dots + (1.4985 - 0.7493)^2}$$

= 3.0890 \square

$$D_3^+ = \sqrt{(0.7161 - 0.5729)^2 + (0.9713 - 0.9713)^2 + \dots + (1.4985 - 0.7493)^2}$$

= 2.1846

Lanjutkan perhitungan sampai dengan D_{12}^+

$$D_{12}^{+} = \sqrt{(0.7161 - 0.7161)^2 + (0.9713 - 0.1943)^2 + \dots + (1.4985 - 1.4985)^2}$$

= 0.9855

Sehingga kita mendapatkan Nilai Jarak Ideal Positif seperti pada tabel 13

Tabel. 13 Tabel Nilai Jarak Ideal Positif

i	Nama Penerima Bantuan Sosial	\mathbf{D}^{+}
	(Alternatif)	
1	PARTINI	1.5850
2	SUGIONO	3.0890
3	MISWAN	2.1846
4	MARGIONO	1.4685
5	MISDI	1.0589

6	TUKIMAN	1.8868
7	TRIMO HADI REJO	3.2340
8	ANGGA	1.1051
9	SUJADI	1.7615
10	DAMINI	0.9855

- Jarak Ideal Negatif (D_i^-)

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^-)^2} \square \square \square$$

$$D_1^- = \sqrt{(0.7161 - 0.2864)^2 + (0.1943 - 0.1943)^2 + \dots + (1.4985 - 0.3746)^2}$$

= 2.6797 \square

$$D_2^- = \sqrt{(0.4297 - 0.2864)^2 + (0.1943 - 0.1943)^2 + \dots + (0.7493 - 0.3746)^2}$$

= 0.8088 \square

$$D_3^- = \sqrt{(0.7161 - 0.2864)^2 + (0.9713 - 0.1943)^2 + \dots + (1.4985 - 0.3746)^2}$$

= 1.6365

Lanjutkan perhitungan sampai dengan D_{12}^-

$$D_{12}^{-} = \sqrt{(0.7161 - 0.2864)^2 + (0.1943 - 0.1943)^2 + \dots + (1.4985 - 0.3746)^2}$$

= 3.1812

Sehingga kita mendapatkan nilai Jarak Ideal Negatif seperti pada tabel 14

Tabel. 14 Tabel Nilai Jarak Ideal Negatif

No	Nama Penerima Bantuan Sosial (Alternatif)	D.
1	PARTINI	2.6797
2	SUGIONO	0.8088
3	MISWAN	1.6365
4	MARGIONO	2.7099
5	MISDI	2.9662
6	TUKIMAN	2.2094
7	TRIMO HADI REJO	0.4419
8	ANGGA	2.8807
9	SUJADI	2.4603
10	DAMINI	3.1812

e. Menghitung nilai Vektor untuk penentuan peringkat (Rangking) penerima Bantuan Sosial menggunakan persamaan (12).

$$V_{i} = \frac{D_{i}^{-}}{D_{i}^{-} + D_{1}^{+}}$$

$$V_{1} = \frac{2.6797}{2.6797 + 1.5850} = 0.6283$$

$$V_{2} = \frac{0.8088}{0.8088 + 3.0890} = 0.2075$$

$$V_{3} = \frac{1.6365}{1.6365 + 2.1846} = 0.4283$$

Lanjutkan perhitungan sampai dengan V_{12}

$$V_{12} = \frac{3.1812}{3.1812 + 0.9855} = 0.7635$$

Sehingga kita mendapatkan nilai Vektor seperti pada tabel 15

Tabel. 15 Tabel Nilai Vektor

No	Nama Penerima Bantuan Sosial (Alternatif)	V
1	PARTINI	0.6283
2	SUGIONO	0.2075
3	MISWAN	0.4283
4	MARGIONO	0.6485
5	MISDI	0.7369
6	TUKIMAN	0.5394
7	TRIMO HADI REJO	0.1202
8	ANGGA	0.7227
9	SUJADI	0.5828
10	DAMINI	0.7635

f. Setelah menghitung nilai vector V maka kita bisa mengurutkan hasil vector dari nilai tertinggi ke yang terendah untuk mendapatkan hasil akhir yang layak mendapatkan Bantuan Sosial. Nilai tertinggi adalah kepala keluarga yang paling layak mendapatkan Bantuan Sosial dan nilai terendah adalah nilai yang tidak layak mendapatkan Bantuan Sosial.

Tabel. 16 Hasil Perangkingan (Pengurutan)

NO	Nama Penerima Bantuan Sosial/Alternatif	V
1	DAMINI	0.7635
2	MISDI	0.7369
3	ANGGA	0.7227
4	MARGIONO	0.6485
5	PARTINI	0.6283
6	SUJADI	0.5828
7	TUKIMAN	0.5394
8	MISWAN	0.4283
9	SUGIONO	0.2075
10	TRIMO HADI REJO	0.1202

Berdasarkan tabel. 16 perhitungan dengan mengunakan metode Topsis menyatakan bahwa alternanif yang berhak menerima Bantuan Sosial adalah.

- 1. **DAMINI** RT 03/RK 01
- 2. **MISDI** RT 03/RK 02
- 3. MARGIONO RT01/RK04
- 4. **PARTINI** RT02/RK05
- 5. **SUJADI** RT 01/RK 06

Tabel 17. Pencarian Nilai Mean

DAMINI	V10	0,128598
MISDI	V5	0,126486
ANGGA	V8	0,123718
MARGIONO	V4	0,117489
PARTINI	V1	0,110953
SUJADI	V9	0,104264
TUKIMAN	V6	0,099345
MISWAN	V3	0,084879
SUGIONO	V2	0,055495
TRIMO HADI REJO	V7	0,048773
	mean	0,1000000000

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai Mean sebagai berikut: 0,1000000000

Tabel 18. Pencarian Nilai S Kuadrat

NO	KETERANGAN	NILAI
1	Nilai S kuwadrat Wp	0,08889
2	Nilai S kuwadrat Topsis	0,4781

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai S kuwadrat sebagai berikut: 0,08889, 0,4781

Tabel 19. Pencarian Nilai Standar deviation

NO	KETERANGAN	NILAI
1	Standar deviation Wp	0,29814
2	Standar deviation Topsis	0,6914

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai Standar deviation sebagai berikut: 0,29814, 0,6914

Tabel 20. Pencarian Nilai Standar Error

NO	KETERANGAN	NILAI
1	Nilai Catandan annon WD	0,00889
	Nilai Satandar error WP	0,09428
2	Nilai Standar error Topsis	0,0478
		0,2186

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai Standar Nilai Error sebagai berikut: 0,00889, 0,09428

Berdsatkan hasil perbandingan dari hasil table prediksi mengunakian metode WP dan Topsis di peroleh hasil sebagai berikut:

Tabel.21 Hasil WP

Column1	
Mean	0,1
Standard Error	0,009043027
Median	0,107608288
Standard Deviation	0,028596561
Sample Variance	0,000817763
Kurtosis	-0,276844079
Skewness	-0,97392137
Range	0,079824853
Minimum	0,04877324
Maximum	0,128598093
Sum	1
Count	10

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai WP sebagai berikut:

Mean : 0,1

Standard Deviation : 0,028596561 Standar Error : 0,009043027 Berdsatkan hasil perbandingan dari hasil table prediksi mengunakian metode A dan B di peroleh hasil sebagai berikut:

Tabel.22 Hasil Hasil Topsis

Column1	
Mean	0,5
Standard Error	0,070137683
Median	0,605555353
Standard Deviation	0,221794827
Sample Variance	0,049192945
Kurtosis	-0,008880554
Skewness	-1,047340517
Range	0,643268234
Minimum	0,120224509
Maximum	0,763492743
Sum	5
Count	10

Berdasarkan tabel diatas mengunakan 10 sample maka di dapatkan nilai Topsis sebagai berikut:

Mean : 0,5

Standard Deviation : 0,221794827 Standar Error : 0,070137683

Rumus Pengujian Akurasi

X = A / B

Topsis	WP
0.02	0.1

Rumus Tingkat Kesesuaian

Tki = 100 - (xi/100%)

Persentase Metode Topsis	99.98
Persentase Metode WP	99.90

Metode	Tingkat Kesesuaian	Tingkat Akurasi
Topsis	99.98	0.02
WP	99.90	0.1

Berdasarkan pengamatan menggunakan metode WP dan TOPSIS dengan melakukan pembobotan kami melihat bahwa kedua metode tersebut memiliki kesamaan dalam prosesnya, Tetapi dua metode ini menghasilkan nilai error berbeada maka disimpulkan hasil terkecillah yang terbaik (Topsis 0,070137683)