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Recommendation systems have become indispensable across various 

platforms due to their ability to enhance personalized services. However, 

these systems face a critical challenge known as sparsity. Sparsity occurs 

when there are numerous gaps in data, making user preferences unknown. 

This results in less relevant recommendations, reducing system effective-

ness and diminishing user satisfaction. Moreover, it can lead to missed 

business opportunities. The purpose of this study is to address the sparsity 

problem using Deep Learning to enhance recommendation quality. The 

research stages include literature review (SLR), data collection from the 

Netflix Prize dataset obtained from kaggle.com, data preprocessing, Deep 

Learning implementation, testing, analysis, and conclusions. The stages 

of this study are conducted literature study (SLR), data collection, data 

preprocessing, Deep Learning implementation, testing and analysis, and 

conclusions. The method of this study is carried out data preprocessing 

and imputaion using several existing methods by using the Netflix Prize 

dataset, data taken from kaggle.com. The result of this study shows that 

the Deep Learning method is able to solve the sparsity problem to im-

prove the quality of recommendations, because the experimental results 

states that the Root Mean Squared Error (RMSE) value is the smallest 

compared to the Matrix-Factorization, SVD, KNN and other methods. 

   

. 

I. INTRODUCTION 

N the digital era, Various platforms have made integrated recommendation systems a part of them. The 

competition among companies to provide the most relevant and useful recommendations is increasing. 

Personalized service is crucial for a company to remain competitive. Recommendation systems can filter useful 

patterns from historical data to produce suggestions, thereby increasing the efficiency of information utilization. 

However, recommendation systems still face significant challenges, namely sparsity, cold start, and scalability. 

Sparsity is a condition where there are a lot of data gaps, this is because many users do not provide ratings for a 

large number of products [1]. Cold Start is a condition where the recommender cannot make conclusions regarding 

users or goods due to lack of data [2]. This generally happens to new users or new products, whose interest direction 

is not yet known. Scability is a condition where the system fails to handle user or product increases and provide 

recommendations within a reasonable time [3]. 

There are two techniques for building a recommendation system, namely Content-Based Filtering and 

Collaborative Filtering. Content-Based Filtering focuses on specific user characteristics. This method works based 

on user preferences, does not compare other people's choices or similarities to recommend users, the same data is 

not needed to recommend to other users [2]. Meanwhile, Collaborative Filtering focuses on tastes for an item. This 

method is based on user behavior by comparing the similarities of others to recommend items to users.  

Collaborative filtering in recommending items to users refers to other users' preference data. However, this 

process is greatly influenced by the condition of the available data. If the data is complete, the system will be able 

to recommend items accurately. Conversely, if there is a lot of missing data (sparsity), it will negatively impact the 

quality of the recommendations produced. 

Sparsity also results in less relevant recommendations, making the recommendation system less effective and 

reducing user satisfaction. This can lead to the loss of business opportunities, such as increased sales, customer 

retention, and overall business growth. Therefore, sparsity is a crucial problem as it affects the quality of 

recommendations and diminishes service quality. Consequently, much research has been conducted to address 

sparsity issues, including the work by Hafidz, MF et al., using the K-Means and Weight Point Rank (WP-Rank) 
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algorithms [4]. Next, G. Behera and N. Nain, proposed a deep collaborative recommender system to handle non-

linearityin data and sparsity [5]. Y. Yang et all, proposed GPS (Factorized group preference-based similarity 

method) which combines similarity-based methods and Markov chains to offer sequential recommendations [6]. 

In addition, Jia H, et al, proposed a graph neural network method and information enhancement to solve the 

sparse knowledge graph (KG) problem in short texts [7]. Meanwhile, Luo, Y at al, proposed a new method ESATInt 

to method Explicitly high-dimensional and sparse features can select meaningful high-level feature interactions 

and can eliminate irrelevant impacts [8]. Zhang W, et al proposed a new method, namely Deep Variational Matrix 

Factorization (DVMF), used to solve sparsity and scalability problems [9]. 

Research on handling sparsity has also been carried out by Lestari, et al by proposing Porat-Rank, namely a 

ranking-based approach to overcome sparsity problems. Porat-Rank successfully overcomes the sparsity problem 

by improving the quality of recommendations [10]. Next, combining the clustering approach and ranking approach 

to solve sparsity and scalability problems. The clustering algorithm used is K-Means and the ranking method used 

is Weight Point Rank (WP-Rank) [4]. Next is to use imputation techniques to overcome the sparsity problem. The 

imputation technique used is Hot Deck Imputation and was successful in solving the sparsity problem [1]. As well 

as a comparative analysis of the Borda and Copeland methods [11], developed a new method of NFR [12], and 

developed a new method WP-Rank [13].  

Research to resolve sparsity problems has been conducted with the aim of improving the quality of 

recommendations, thereby supporting service quality enhancements and creating greater opportunities for company 

development. Building on this, the present research proposes using Deep Learning to address sparsity issues and 

improve recommendation quality. 

With the unstoppable growth of data volume, we have a monumental task to filter and find the information that 

best suits the needs and preferences of users. If the Content-Based Filtering method focuses on item characteristics. 

This method works based on user preferences, not comparing the choices or similarities of other users. While 

Collaborative Filtering focuses on tastes for an item. This method is based on user behavior by comparing the 

similarities of other users to recommend items to users. Based on the recommendation system, both Content-Based 

Filtering and Collaborative Filtering, the process is greatly influenced by the condition of the available data. If the 

data is complete, the system will be able to recommend items accurately. Conversely, if there is a lot of missing 

data (sparsity), it will have a negative impact on the quality of the recommendations produced. The use of the Deep 

Learning method is used to overcome this problem. Missing data is studied more deeply with the Deep Learning 

method, so that accurate and relevant recommendation results are obtained. 

The K-Means method is a grouping of items that are used as recommendations, of course it is not a solution to 

the sparsity problem. Likewise, the WP-Rank method only uses rating data to improve the quality of 

recommendations. Use of Deep Learning in this study will provide a more effective solution to overcome the 

problem of sparsity compared to other methods. 

II. RESEARCH METHOD 

This study proposes a Deep Learning method to solve the sparsity problem, aiming to improve the quality of 

recommendations. This study is conducted in several stages: literature review, data collection, data pre-processing, 

Deep Learning implementation, and evaluation. For more details, the research stages are illustrated in Fig. 1. 

Fig. 1.  illustrates the stages. The first step is the literature review, which involves collecting journal articles and 

conference papers related to recommendation systems, collaborative filtering, sparsity, and Deep Learning. 
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Fig. 1.  Research Stages 

 

The second stage is data collection. The dataset used in this study is the Netflix Prize Data, available at 

https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data. The Netflix Prize Data is a collection from Netflix's 

competition to improve recommendation algorithms. It contains over 100 million ratings from 480,000 randomly 

selected anonymous Netflix subscribers on 17,000 movie titles. The scale used is 1 to 5 stars. 

The next stage is data pre-processing, which involves preparing the raw data into a structured form ready for 

analysis and removing any unnecessary data. Following this is the Deep Learning implementation stage. Here, the 

pre-processed dataset is processed using the Deep Learning method. For data that is still empty (sparsity) and has 

NaN values, the Deep Learning method replaces these NaN values with actual values, addressing the sparsity 

problem to improve recommendations. Next, the effectiveness of the method in addressing sparsity is evaluated 

using the Root Mean Square Error (RMSE) metric. A smaller RMSE indicates better performance in reconstructing 

the input data. Finally, after completing this study, conclusions are drawn, and a report is prepared. 

A. Deep Learning 

One branch of Machine Learning whose performance uses Artificial Neural Networks consisting of several layers, 

to automatically learn from data is called Deep Learning. Artificial Neural Networks in Deep Learning are 

employed to learn features found in complex and abstract data, as well as to make predictions and classifications 

on previously unseen data. In Deep Learning, the method learns through a hierarchical representation of data. In 

each network layer, information obtained from the previous layer is transformed and abstracted into more complex 

and abstract features. This representation is then used to predict or calculate the desired output. A mature scientific 

discipline in applying artificial intellegence to mine, analyze and recognize patterns from data [14]. 

Deep Learning is closely related to neural networks, namely an artificial neural network like the nerves of the 

human brain [15]. Deep Learning users in recommendation systems have effective capabilities. Deep Learning 

methods that have been used in recommendation systems include Convolutional Neural Network (CNN) [16].  

Deep Learning has proven its performance capabilities in recommending. By using more complex abstract 

learning as an efficient and compact representation at higher layers and capturing complex relationships in data [9]. 

Methods that can learn robust features from input distributions and form high-level hierarchical paths [17]. 

B. Matrix Factorization 

Matrix Factorization (MF) is a technique for calculating unknown data entries from some of the observed matrix 

interactions [5]. The MF method is the best choice for dealing with the problem of high levels of data sparsity in 

database system research. Apply Latent Sematic Index (LSI) and Singular Value Decomposition (SVD) reduction 
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methods when using method-based approaches. SVD is the earliest recommendation algorithm in matrix 

decomposition [18]. Matrix factorization is a recommendation-based method that has good scalability. SVD, PMF, 

BPMF and VBMF are methods used in matrix factorization [19].  

Matrix factorization aims to map items and users into a single space, representing the interaction of corresponding 

vectors. A matrix factorization technique that is often used in the recommendation system process which functions 

to extract latent vectors of user-item relationships and reduce the feature size by estimating missing values is usually 

called SVD [20]. Matrix factorization assumes that user preferences and item attributes are determined by only a 

small number of latent factors. so interaction information can then be mapped into a low-dimensional latent space 

and then unobserved ratings can be predicted by the product in the latent vector of users as well as items [9]. In 

Matrix Factorization, user behavior is determined by hidden factors commonly known as latent vectors, which are 

linear [5]. 

C. Collaborative Filtering 

Collaborative filtering (CF) is a technique in recommendation systems that aims to provide personalization to 

users based on past behavior and preferences [18]. This method looks for similarities between users to make a 

prediction [21]. Metadata is used to overcome collaborative filtering data sparsity problems. The proposed strategy 

is evaluated based on MF techniques and Deep Learning approaches in predicting collaborative filtering tasks [5]. 

Algorithms used through collaborative filtering to create personalized recommendations to find similar users or 

items with similar preferences and characteristics [22]. Collaborative filtering utilizes historical user behavior, for 

example, providing ratings without requiring other information about the user or item [9]. CF-based methods focus 

on user ratings and discover unknown relationships [23]. CF carries out a filtering process for all users to obtain 

user information to provide recommendations, that works based on similarities in user characteristics that are able 

to provide information to users [24].  

The neighborhood-based collaborative filtering method operates on the premise that users have similarities in 

their ratings of items. Similarly, items with similar rating patterns are considered alike. Therefore, vector similarity 

calculations can be used to determine which users are similar to a particular user. When a user provides a 

recommendation for a film, other users can receive recommendations for films that are similar to the recommended 

one. 

D. Cosine Similarity 

Cosine Similarity is a method to measure how similar two users or two items are based on the ratings they give 

to the same item. The goal is to find users with similar preferences so that relevant recommendations can be 

provided. Items and nearest neighbors with highly predictive ratings are recommended to users with similar ratings 

[21]. 

The level of similarity between two users can be determined by comparing their respective vector devices. An 

N-dimensional vector can be created from user ratings to represent their similarity, and can be used to determine 

how similar two users' ratings are to each other [18]. User-based collaborative filtering aims to predict items that 

are potentially interesting to a user by leveraging the behavioral history and preferences of other users who show 

similar interests [25].  Equation 1, is used to calculate Cosine Similarity. 

𝐶𝑜𝑠 𝛼 =  
𝐴 ∙ 𝐵

|𝐴||𝐵|
=  

∑ 𝐴𝑖− 𝐵𝑖
𝑛
𝑖−1

√∑ (𝐴𝑖)2𝑛
𝑖−1  𝑥 √∑ (𝐵𝑖)2𝑛

𝑖−1

             (1) 

A and B are vectors whose similarities will be compared. A • B is the dot product between vectors A and B. 

|A||B| is the cross product between |A| and |B| 

E. Mean Absolute Error 

Mean Absolute Error (MAE) is a commonly used evaluation method in data science. MAE works by calculating 

the average of the absolute difference between the predicted value and the actual value. MAE measures the average 

absolute error in prediction. The smaller the MAE value, the better the quality of the model. Therefore, it 

choosMAE) with Equation 2. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1                 (2) 

fi is the forecasted value, yi is the actual value, and n is the number of data. 
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F. Root Mean Square Error 

Root Mean Square Error (RMSE) is the most frequently used matrix to measure recommendation system 

performance over time [18]. RMSE calculates the differences and error values that exist between actual data and 

estimated data. The RMSE value shows the level of accuracy of a method being built. The smaller the RMSE value, 

the higher the resulting level of accuracy [1]. Therefore, it chooses the Root Mean Square Error (RMSE) with 

Equation 3. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑖−𝑦𝑖)2𝑁
𝑖=1

𝑁
                 (3) 

 

N is the number of observations, xi is the observed value and yi is the expected value. 

III. RESULTS AND DISCUSSION 

This section explains the results and discussion. It is carried out after successfully collecting the required data. 

The first step in this study is to conduct data analysis to understand the characteristics of the data. This is useful for 

obtaining insights, information, and identifying any data errors from the data collection process. 

Several experiments are conducted to evaluate the methods used. This study utilizes Google Colab with the 

Python programming language. The dataset has been sourced from Kaggle.com, specifically the Netflix Prize data. 

The movie rating file within the Netflix Prize data contains over 100 million ratings from 480,000 anonymous 

Netflix subscribers randomly selected from more than 17,000 movie titles, as illustrated in Table 1. 

 

TABLE 1 

SHAPE MOVIE-TITLE 

Id Year Name 

13312 2003 Anastasia 

7658 2004 Ray: Bonus Material 

11522 2002 Queer as Folk: Season 2 

15814 1941 Suspician 

5494 1979 Connection 2 

 

Table 1 represents five rows of data from movie titles in the Netflix Prize dataset. Next, the user data structure 

needs to be processed to extract all ratings and form a matrix, as the file structure consists of a mixture of JSON 

and CSV files that are still unorganized. There are approximately 24 million different ratings by users, as shown in 

Table 2. 

TABLE 2 

SHAPE USER-RATINGS 

 User Rating Date Movie 

18153708 2532810 5.0 2005-05-02 3446 

17649491 2243149 5.0 2004-03-04 3371 

5096791 1952137 2.0 2000-03-14 1027 

20604990 1900912 4.0 2002-08-24 3905 

4024666 1688041 5.0 2005-10-18 760 

 

Table 2 consists of four columns, namely User, Rating, Date and Movie and only displays five sample data (five 

rows). The rating distribution can be seen in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.  Distribution of 24053764 Netflix-Rating 
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Netflix movies typically receive ratings rarely lower than three stars. Most ratings fall between three and four 

stars. As depicted in Fig. 2, the highest rating observed is four stars. Users may opt for a higher rating when they 

genuinely enjoy a film, potentially leading to customer retention. In contrast, casual viewers might not provide 

ratings at all.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  17434 Movies Grouped by Year of Release 

 

Fig. 3. Categorizes films based on their release year, spanning from the late 19th century until the end of 2005. 

The peak period appears to be in early 2005. 

There are several methods available for building recommender systems, one of which is the weighted average. 

This method calculates ratings while considering the varying levels of importance of data points in a dataset, 

assigning appropriate ratings to each film. The dataset contains abundant information that can be leveraged to create 

a robust recommendation system. Extracted information is combined using weighted averages to determine 

similarities between films. 

It states that people choose films, then they consider not only the ratings but also the genre and popularity. A 

multi-objective approach incorporates film genres and ratings to predict suitable films for users. 

To better visualize and understand the distribution of ratings per movie, the dataset is processed to limit the 

maximum number of ratings per movie to 10,000. Any column values exceeding 9,999 are capped at 9,999. The 

distribution involves grouping data by movie, calculating ratings counts, creating a histogram using Plotly, and 

displaying the distribution of ratings per movie, as shown in Fig. 4. In Fig. 4 the highest rating count (928 ratings) 

falls within the range of 100 to 199 films. The second highest rating count (492 ratings) is in the range of 9,999 to 

99,999 films. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Distribution of Ratings Per Movie (Clipped at 9999) 
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Fig. 4.  Distribution of Ratings Per User (Clipped at 199) 

 

The distribution of ratings per user is limited to 199 users to focus on higher values and enhance the readability 

of the histogram, emphasizing the most relevant range of values. Fig. 5 visualizes the distribution of the number of 

ratings given by each user in a histogram format. The highest number of ratings, approximately 34,000, falls within 

the range of 2 to 3 users. The second highest number of ratings, around 30,000, is in the range of 3 to 4 users. 

Both the distribution of movie ratings and user ratings exhibit almost perfect exponential decay, indicating that 

only a few films and users receive many ratings. 

In reducing the dimensionality of the dataset, movies that are rarely rated by users are filtered first. For simplicity, 

only movies with more than 10,000 ratings in the DataFrame are retained. Similarly, users with more than 200 

ratings are filtered, resulting in a list of user IDs that have provided at least 200 ratings in the DataFrame. 

Subsequently, the DataFrame is filtered using these criteria to include only movies and users that meet the specified 

thresholds. After removing unnecessary temporary variables, the size of the DataFrame is printed before and after 

filtering. Initially, there are 24,053,764 movies, which reduced to 4,178,032 movies after filtering. 

Once the data is filtered, it is shuffled and divided into a training set and a test set. Unnecessary columns are 

removed from both sets. The training set is used to train all methods, while the test set evaluates their effectiveness. 

For this study, the test set comprises 100,000 rows. In the training set, all rows except the last 100,000 are used, 

which are reserved for the test set evaluation. Empty values (sparsity) play a crucial role in this study. A sparse 

value indicates a movie that has not been rated but could potentially receive high ratings, making it a good 

recommendation for users. The goal is to predict these empty values to assist users in selecting recommended films. 

Next, a matrix is constructed where each row represents a user and their ratings, and each column represents a 

movie, as illustrated in Table 3. To display sparsity values, it uses the syntax in Fig. 6 and the results can be seen 

in Table 3. 

 

 

 

 

 

 

Fig. 5.  Sintax Shows Sparsity Value 

 

 
TABLE 3.  

SHAPE USER-MOVIE-MATRIX 

Movie User 8 18 28 … 4392 4393 4402 4418 

1717060 NaN 3.0 NaN … 5.0 NaN 5.0 NaN 

1753194 3.0 NaN 1.0 … 3.0 1.0 3.0 NaN 

2382660 NaN NaN NaN … NaN NaN NaN NaN 

2150982 NaN NaN NaN … NaN NaN NaN NaN 

2132231 NaN NaN NaN … NaN 3.0 NaN NaN 

 

In Table 3, there are 6,148,516 NaNs in the total rating data, which should ideally consist of approximately 10 

million movie ratings by users as sample data. This indicates that approximately 60% of the data is empty (sparse). 

df_p = df_train.pivot_table(index='User', columns='Movie', values='Rating') 

print('Shape User-Movie-Matrix:\t{}'.format(df_p.shape)) 

df_p.sample(5) 
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The process of calculating the number of NaNs is depicted in Fig. 7. 

 

 

 

 

 

 

Fig. 7.  Sintax Caluculate NaN Value 

 

Calculating the average rating for all movies provides a single rating. These recommendations are uniform across 

all users and can be used when specific user information is not available. Alternatively, variations of this approach 

could involve creating separate rankings based on criteria such as country, year, or gender, and using these rankings 

individually to recommend movies to users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Rangking of Top 10 Mean-Movie-Ratings 

 

As depicted in Fig. 8, the top 10 movie titles with the highest average ratings have an RMSE of 0.9927. The 

figure shows that the film "Family Guy" received the highest rating despite having 2,790 ratings. In contrast, the 

lowest rating among the top 10 is for the film "The Silence of the Lambs," which received 18,775 ratings. 

The weighted average rating is a method for calculating an average that considers the importance or weight of 

each element included in the calculation. It takes into account both the film's average rating and the number of 

reviews, unlike the simple average rating which only prioritizes the rating itself. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 9. Ranking of Top Weighted-Movies-ratings 

 

In Fig. 9, the highest ranking goes to "Lord of the Rings" with a rating count of 18,435. Although "Family Guy" 

has the highest average rating, it ranks 9th in the weighted rating due to fewer reviews. To better understand the 

difference between the mean and weighted ratings, refer to Fig. 8 and Fig. 9. 

total_nan_count = df_p.isna().sum().sum() 

print("Total number of NaN values in DataFrame") 

print(total_nan_count) 
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A. Cosine Similarity 

In measuring similarity between users, cosine similarity can be used. In the matrix representation, each row 

represents a user, and each column represents a movie, with each cell containing the rating given by the user for 

that movie. Similarity between user vectors can be computed in treating each row of the matrix as a vector. This 

allows finding similar users who can provide recommendations to other users. However, if there are still empty 

values (NaNs) in the matrix, appropriate methods must be applied. One approach is to fill these empty values with 

each user's average rating. Subsequently, ratings from all similar users are aggregated and averaged. Movies that 

have not been rated by users are then recommended by identifying similar movie titles, calculated in a manner 

similar to user similarities while considering RMSE scores. By calculating user similarities in the dataset, it is 

filling missing values, and preparing recommendations based on the 100 most similar users, a movie 

recommendation system can be developed based on user similarities. The empty values (sparsity) in the DataFrame 

are filled with the average rating of each item to ensure there are no missing values in the data before calculating 

similarity. Fig. 10 illustrates the top 10 recommended movies for users based on user similarity, with an RMSE of 

1.3336. After calculating the similarity based on the user, the films that are most similar to the selected film can be 

displayed in the form of a bar graph, which can also be used as recommendations. The initial step involves creating 

a matrix of movie descriptions and titles, calculating similarities, identifying similar movies, and creating a 

visualization of movie recommendations. In this case, this study selected two examples of movies, which can be 

seen in Fig. 11 and Fig. 12. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 10.  Ranking of Top 10 Recommended Movies For A User Based On Similarity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  Ranking of Top 10 Most Similar Movie Descriptions For “Shrek 2” 
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Fig. 12.  Ranking Of Top 10 Most Similar Movie Descriptions For “Finding Nemo” 

 

In Fig. 11, there are the top 10 films that have similar descriptions to the film Shrek 2, which can be used as 

recommendations. Likewise with Fig. 12, there are the top 10 films that have the same description as the film 

Finding Nemo. 

B. Matrix Factorization With Keras 

A matrix characterized by high user-movie ratings yet exhibiting sparsity can be transformed into dense data. 

Through the application of matrix factorization, a large matrix can be decomposed into two matrices of considerable 

length but reduced width. Subsequently, the matrix can be refined using gradient descent to accurately represent a 

given ranking. Latent variables that capture the underlying structure of the data set are identified against the gradient 

descent algorithm. Furthermore, to reconstruct the original matrix and predict the missing ratings for each user, one 

can use these latent variables. 

In enhancing efficiency in data processing and the implementation of machine learning algorithms, a mapping is 

created to convert user IDs and movie IDs into numerical indices. This ensured consistency and prepared the data 

for further processing, ensuring that the data used for training and testing the method are aligned. 

Next, the dimensions of the input variables required for the embedding method are specified, including the num-

ber of unique users and movies, and the embedding size. This step is crucial to prepare the data and structure the 

method to capture latent patterns in the recommendation data effectively. 

The embedding process converts user IDs and movie IDs into vector representations, making them more 

meaningful and efficient for processing by machine learning algorithms. By leveraging embeddings, the method 

can learn latent relationships between users and movies, which is essential for accurate recommendations. 

Following this, the embedding layer is reshaped, and the dot product of the embeddings is calculated to capture 

latent user and movie features, predicting the likelihood of a user preferring a movie based on method preferences 

and characteristics. 

The method further refined its predictions using embeddings for users and movies, employing the "mse" loss 

function and the "adam" optimizer for training on rating data mapped to numeric IDs for users and movies. The 

training process included parameters such as batch size, number of epochs, validation data split, and data 

randomization to ensure efficient training and generalization on unseen data. 

The method is then tested by predicting ratings based on test data and comparing predicted results with actual 

values to evaluate performance and generalization to unseen data. In the training phase, using 3,670,228 samples 

and validating on 407,804 samples, a loss of 2.1596 and a validation loss (val_loss) of 0.86 are achieved. The test 

results using hard matrix factorization yielded an RMSE of 0.9280. 

C. Deep Learning With Keras 

This approach is similar to matrix factorization, but it employs several dense layers to find an optimal 

combination. Different embedding sizes are used for users and movies, allowing the method to capture distinct 

feature representations based on the complexity of each feature entity. Predictions are made using test data by 

comparing the actual rating values from the test data and calculating the RMSE to evaluate the performance of the 

method used. 
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TABLE 4.  

COMPARISON OF METHODS BASED ON RMSE VALUES 

Metode RMSE 

Deep Learning 0.907 

Matrix-Factorization 0.927 

SVDpp 1.005 

SVD 1.006 

BaselineOnly 1.006 

KNNBaseline 1.006 

KNNBasic 1.006 

CoClustering 1.006 

KNNWithMeans 1.006 

NMF 1.006 

KNNWithZScore 1.006 

SlopeOne 1.006 

NormalPredictor 1.006 

 

This method can represent more complex interactions and provide more accurate rating predictions by combining 

user and movie embedding vectors and adding a dense layer. From the train set and test set processes used, It 

obtained a train set with 3,670,228 sample data and a validation set with 407,804 sample data, resulting in a loss 

of 0.8682 and a validation loss (val_loss) of 0.8230. The results of testing with deep learning methods yielded an 

RMSE of 0.907. This study uses other methods for comparison. The comparison results of several methods used, 

along with their RMSE values, can be seen in Table 4. 

From the experimental results, the Mean Absolute Error (MAE) value is lower than the Root Mean Square Error 

(RMSE), but by using different methods, the MAE results are directly proportional to the RMSE, and the smaller 

the MAE value, the better the method used [5].  

Future developments in recommendation systems involve the integration of more sophisticated technologies, 

such as more complex artificial intelligence (AI) and the use of more advanced machine learning techniques. 

Contextual concepts are also a focus of development, where systems can understand and respond to changes in user 

context to provide more timely and relevant recommendations. The combination of recommendation methods, such 

as hybrid approaches, will continue to develop to maximize user accuracy and engagement. 

However, the author considers that the use of Deep Learning in this study will provide a more effective solution 

to overcome the problem of sparsity compared to other methods. 

IV. CONCLUSION 

Experimental results show that the deep learning method can overcome the sparsity problem, as indicated by the 

lowest RMSE value of 0.907 compared to other methods such as matrix factorization, SVDpp, SVD, and others. 

This study is limited to a single dataset, namely the Netflix Prize Data. Suggestions for further research include 

developing the study with the latest datasets to provide more accurate recommendations for users. Additionally, 

the method used can be further developed using a hybrid approach. 
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