ANALISIS SENTIMEN NETIZEN TERHADAP EFISIENSI APBN MENGGUNAKAN ORANGE DATA MINING

Febria, Anto and Triloka, Joko (2025) ANALISIS SENTIMEN NETIZEN TERHADAP EFISIENSI APBN MENGGUNAKAN ORANGE DATA MINING. ANALISIS SENTIMEN NETIZEN TERHADAP EFISIENSI APBN MENGGUNAKAN ORANGE DATA MINING, 7 (2). ISSN ISSN: 2685-9556

[img] Text
cover anto.pdf

Download (81kB)
[img] Text
daftar isi.pdf

Download (63kB)
[img] Text
pengesahan anto.pdf

Download (563kB)
[img] Text
persetujuan anto.pdf

Download (794kB)
[img] Text
5. LoA_Anto Febria LoA AJIEE.pdf

Download (101kB)
[img] Text
5. Jurnal_ANTO.FEBRIA_JURNAL AJIEE_2025.pdf

Download (921kB)
[img] Text
ABSTRACT.pdf

Download (92kB)

Abstract

The government's policy on APBN efficiency in 2025 has sparked debate on social media, including the X platform (formerly Twitter). Social media users and activists express their opinions based on their respective sentiments—whether in support, opposition, or neutrality toward the policy. This study aims to analyze public sentiment on the issue using the Orange Data Mining application with the Sentiment Analysis - Multilingual Sentiment method. The Naïve Bayes algorithm is also applied to assess accuracy and prediction errors. The sentiment analysis results indicate that the majority support the APBN efficiency policy, with confidence and accuracy nearing 100%. Keywords: Orange Data Mining; Text Mining; APBN Efficiency; Naïve Bayes; Sentiment Analysis.

Item Type: Article
Subjects: Ilmu Komputer
eTheses
Divisions: Pasca Sarjana > Magister Teknik Informatika
Depositing User: Febria Anto Febria
Date Deposited: 07 May 2025 06:51
Last Modified: 07 May 2025 06:51
URI: http://repo.darmajaya.ac.id/id/eprint/20158

Actions (login required)

View Item View Item