Febria, Anto and Triloka, Joko (2025) ANALISIS SENTIMEN NETIZEN TERHADAP EFISIENSI APBN MENGGUNAKAN ORANGE DATA MINING. ANALISIS SENTIMEN NETIZEN TERHADAP EFISIENSI APBN MENGGUNAKAN ORANGE DATA MINING, 7 (2). ISSN ISSN: 2685-9556
![]() |
Text
cover anto.pdf Download (81kB) |
![]() |
Text
daftar isi.pdf Download (63kB) |
![]() |
Text
pengesahan anto.pdf Download (563kB) |
![]() |
Text
persetujuan anto.pdf Download (794kB) |
![]() |
Text
5. LoA_Anto Febria LoA AJIEE.pdf Download (101kB) |
![]() |
Text
5. Jurnal_ANTO.FEBRIA_JURNAL AJIEE_2025.pdf Download (921kB) |
![]() |
Text
ABSTRACT.pdf Download (92kB) |
Abstract
The government's policy on APBN efficiency in 2025 has sparked debate on social media, including the X platform (formerly Twitter). Social media users and activists express their opinions based on their respective sentiments—whether in support, opposition, or neutrality toward the policy. This study aims to analyze public sentiment on the issue using the Orange Data Mining application with the Sentiment Analysis - Multilingual Sentiment method. The Naïve Bayes algorithm is also applied to assess accuracy and prediction errors. The sentiment analysis results indicate that the majority support the APBN efficiency policy, with confidence and accuracy nearing 100%. Keywords: Orange Data Mining; Text Mining; APBN Efficiency; Naïve Bayes; Sentiment Analysis.
Item Type: | Article |
---|---|
Subjects: | Ilmu Komputer eTheses |
Divisions: | Pasca Sarjana > Magister Teknik Informatika |
Depositing User: | Febria Anto Febria |
Date Deposited: | 07 May 2025 06:51 |
Last Modified: | 07 May 2025 06:51 |
URI: | http://repo.darmajaya.ac.id/id/eprint/20158 |
Actions (login required)
![]() |
View Item |