BAB II LANDASAN TEORI

2.1. Studi Literatur

Dalam penyusunan untuk riset yang dilakukan, penulis menghimpun studi yang terkait dengan konteks dari beberapa penelitian sebelumnya sebagai pedoman dan acuan untuk merancang studi tentang Implementasi Algoritma *Differential Evolution Inventory Management* untuk Pengecekan Bahan Secara *Real Time*.

2.2. Algoritma Differential Evolution

Algoritma Differential Evolution (DE) merupakan salah satu dari algoritma metaheuristik yang digagas oleh Storn dan Price pada tahun 1997. Algoritma DE termasuk dalam keluarga Evolutionary Algorithm (EA) yaitu evolutionary population-based algorithm dimana prinsip dan filosofi algoritmanya meniru perilaku evolusi biologi. Menurut (Pailin, 2021) Algoritma Differential Evolution (DE) merupakan salah satu algoritma metaheuristik yang menggunakan metode pencarian stokastik serta berdasarkan populasi (Population Based Search). Algoritma DE serupa dengan Evolutionary Algorithms (EA), namun terdapat perbedaan terkait dengan jarak serta arah populasi yang berdampak pada pencarian solusi terbaik. Karena algoritma DE ini serupa bahkan merupakan salah satu Algoritma Evolutionary, maka pembentukan variasi pada tiap generasi akan di bangkitan dari operasi crossover maupun operasi mutasi. Pembangkitan solusi yang diwakili dalam populasi pada algritma DE didasarkan untuk mencapai minimasi suatu fungsi tertentu.

Menurut (Georgioudakis dan Plevris, 2020) Differential Evolution merupakan algoritma pencarian stokastik berbasis populasi dan skema evolusi dengan parameter tertentu yang secara iteratif dapat digunakan untuk mencari solusi optimal global dari suatu fungsi. Algoritma DE memiliki tiga kelebihan yaitu dapat menentukan nilai global minimum terlepas dari nilai parameter awal, konvergensi yang cukup cepat dan hanya memakai sedikit parameter sehingga mudah digunakan.

Menurut (Sucipto Sucipto, 2018) Teori algoritma evolusi merupakan bagian dari komputasi evolusi, algoritma evolusi pada awalnya mempertahankan struktur populasi kemudian berkembang sesuai dengan aturan seleksi, mutasi rekombinasi dan kelangsungan hidup yang biasa di sebut dengan operator genetik.

Langkah-langkah algoritma DE meliputi

1. Inisialisasi Populasi

Sebelum melakukan inisialisasi titik populasi, perlu dilakukan penentuan batas atas (ub) dan batas bawah (lb). Berikutnya adalah membangkitkan bilangan acak untuk setiap parameter j dari vektor i pada iterasi g. Misal nilai inisial (g = 0) dapat diwakili dengan notasi sebagai berikut:

$$x_{i,i,\theta} = lb_i + rand_i(0,1) (ub_i-lb_i)$$

Bilangan *random* dibangkitkan dengan fungsi *rand* (), dimana bilangan yang dihasilkan terletak pada rentang (0,1).

2. Mutasi

Mutasi dilakukan dengan mengambil 3 buah vektor dari populasi (r1, r2, dan r0). Perbedaan 2 vektor pertama yaitu r1 dan r2 akan menghasilkan vektor d. Vektor d selanjutnya akan dikalikan dengan konstanta mutasi dan ditambahkan pada vector r0. Berikut ini adalah persamaan yang menunjukkan bagaimana membentuk vektor mutan (vi, g):

$$V_{ig} = x_{r\theta,g} + F(X_{r1,g} - X_{r2,g})$$

Dimana r0, r1, r2 merupakan indeks acak, bilangan integer yang berbeda.

- 3. *Crossover*: Pada tahap ini DE menyilangkan setiap vektor $x_{i,g}$ dengan vektor muatan, $v_{i,g}$ untuk membentuk vektor hasil persilangan yaitu u. Probabilitas *crossover*, $Cr \in (0,1)$ merupakan nilai yang didefinisikan untuk mengendalikan fraksi nilai parameter yang disalin dari mutan.
- 4. *Selection*: Apabila vektor trial Ui,g, memiliki fungsi evaluasi yang kurang dari fungsi evaluasi vector target *xgi*, maka pada generasi berikutnya yang terpilih adalah Ui,g, dan sebaliknya. Proses ini dilakukan untuk seluruh vektor dalam satu populasi.

2.3. Inventory Management

2.3.1. Konsep Inventory Management

Menurut (Marcias, 2020) biaya-biaya tersebut tentunya dapat mempengaruhi kinerja perusahaan dalam menjalankan manajemen persediaan. Jika dikelola dengan baik, biaya yang dikeluarkan menjadi ekonomis sehingga menjamin kelancaran operasional perusahaan. Sebaliknya jika tidak dikelola dengan baik, akan menimbulkan tingginya biaya yang dikeluarkan sehingga dapat menggangu kegiatan operasional perusahaan. Menurut (Handoko, 2019: 336) Perusahaan dapat mengoptimalkan peranan manajemen persediaan dengan mempertimbangkan biaya-biaya persediaaan, diantaranya biaya penyimpanan, biaya pemesanan, biaya penyiapan, dan biaya kekurangan bahan.

Menurut ZN Dianto (2023), *Inventory Management* adalah kebutuhan perusahaan untuk mengatasi fluktuasi permintaan. Penerapan *Inventory Management* yang tidak tepat dapat berdampak negatif dan menimbulkan berbagai masalah bagi perusahaan. *Inventory Management* adalah suatu sistem manajemen persediaan yang digunakan untuk mengontrol, mengelola, dan memantau persediaan suatu bisnis. Sistem ini membantu bisnis dalam mengoptimalkan kegiatan pengadaan, pengolahan, dan pengiriman barang.

Euneke, dkk (2018) mengemukakan cara bagaimana manajemen persediaan dapat menghindari *dead stock* yaitu :

- 1. Mengetahui nilai secara pasti
- 2. Mengendalikan jumlahnya
- 3. Mengendalikan pergerakannnya
- 4. Bereaksi cepat jika terjadi kesalahan pada saat sistem diimplementasikan
- 5. Kendalikan penggunaannya

Hakim, dkk. (2018) mengemukakan bahwa terjadinya persediaan mati (*dead stock*) pada *Inventory Management* karena barang yang menumpuk digudang terlalu lama sehingga barang kadaluarsa dan barang tertumpuk dengan barang lain sehingga rusak.

2.3.2. Tujuan Inventory Management

Berikut beberapa tujuan inventory management:

1) Memastikan Ketersediaan Stok

Menjamin ketersediaan barang untuk memenuhi permintaan tanpa mengalami kekurangan stok.

2) Mengurangi Biaya

Mengoptimalkan jumlah stok untuk menurunkan biaya penyimpanan, biaya pemesanan, dan biaya stok yang kedaluwarsa atau rusak.

3) Meminimalkan Risiko Kerugian

Mengelola stok agar tidak ada barang yang kedaluwarsa, rusak, atau usang.

4) Mengoptimalkan Alur Produksi dan Distribusi

Meningkatkan efisiensi aliran barang dalam proses produksi atau distribusi.

2.3.3. Komponen Inventory Management

Berikut beberapa komponen dalam inventory management sebagai berikut:

1) Safety Stock (Stok Pengaman)

Persediaan ekstra yang disimpan untuk menghadapi ketidakpastian permintaan atau gangguan pasokan.

2) Lead Time

Waktu yang dibutuhkan sejak pemesanan hingga barang tiba, yang mempengaruhi waktu pemesanan dan jumlah stok pengaman.

3) Reorder Point (Titik Pemesanan Ulang)

Titik di mana pesanan baru harus ditempatkan untuk mencegah kekurangan stok.

4) Economic Order Quantity (EOQ)

Kuantitas pemesanan yang meminimalkan total biaya persediaan, termasuk biaya pemesanan dan penyimpanan.

5) *Just-in-Time* (JIT)

Metode pengelolaan persediaan di mana barang diproduksi atau diambil sesuai kebutuhan untuk meminimalkan stok yang disimpan.

2.3.4. Metode Inventory Management

Metode pada Inventory Management yaitu:

1) Benefit/Cost Analysis: Mengelompokkan persediaan berdasarkan nilainya:

A: Barang dengan nilai tinggi tetapi jumlahnya rendah, memerlukan kontrol ketat.

B: Barang dengan nilai dan jumlah sedang.

C: Barang dengan nilai rendah dan jumlah tinggi, kontrol yang lebih longgar.

2) FIFO dan LIFO

FIFO (*First-In*, *First Out*) Barang yang pertama kali masuk akan dikeluarkan terlebih dahulu. Biasanya digunakan untuk produk dengan masa simpan.

3) LIFO (Last-In, First-Out)

Barang yang terakhir masuk dikeluarkan terlebih dahulu, relevan untuk barang yang harganya cenderung meningkat.

4) Safety Stock dan Reorder Point

Menggunakan stok pengaman dan menentukan kapan perlu memesan ulang berdasarkan analisis permintaan dan waktu tunggu.

- 5) Perpetual vs. Periodic Inventory System
 - a. Perpetual System: Sistem pencatatan stok secara real time.
 - b. *Periodic System*: Pencatatan stok hanya pada periode tertentu, misalnya setiap akhir bulan.

2.4 Real Time

Sistem *Real Time* adalah sistem komputer atau perangkat lunak yang dirancang untuk memproses data dan memberikan *output* dalam waktu yang sangat singkat, seringkali dalam milidetik atau bahkan mikrodetik. Berikut adalah beberapa aspek kunci dari sistem *Real Time*:

1. Tepat Waktu

Output dari sistem *real time* harus dihasilkan dalam jangka waktu yang ditentukan agar sistem dapat berfungsi dengan baik. Keterlambatan dalam pemrosesan dapat menyebabkan kegagalan sistem atau hasil yang tidak diinginkan.

2. Responsif

Sistem ini dirancang untuk merespons input secara cepat dan efisien. Misalnya, dalam aplikasi kontrol industri, sistem *real time* harus segera merespons perubahan kondisi untuk menjaga proses tetap berjalan dengan baik.

3. Keteraturan

Sistem *real time* biasanya memiliki karakteristik deterministik, artinya waktu yang diperlukan untuk memproses data dan menghasilkan *output* dapat diprediksi dengan akurat.

4. Aplikasi

Sistem *real time* digunakan dalam berbagai bidang, termasuk:

- 1. Telekomunikasi: Mengelola panggilan dan data dalam jaringan.
- 2. Kontrol Industri: Memantau dan mengendalikan proses manufaktur.
- 3. Sistem Transportasi: Mengelola lalu lintas dan sistem transportasi publik.
- 4. Sistem Medis: Memantau dan mengendalikan perangkat medis.

Tipe Sistem:

- a) *Hard Real Time*: Sistem di mana keterlambatan dalam pemrosesan dapat mengakibatkan konsekuensi serius, seperti dalam sistem kendali pesawat terbang.
- b) *Soft Real Time*: Sistem di mana keterlambatan yang tidak terduga masih dapat diterima, meskipun dapat mengurangi kualitas layanan, seperti dalam sistem multimedia.

Real Time Inventory Management adalah sistem pengelolaan inventaris yang secara otomatis memperbarui data stok barang secara langsung, sehingga pengguna

memiliki visibilitas stok yang akurat pada saat itu juga. Sistem ini sangat penting untuk bisnis yang memerlukan kontrol ketat dan cepat atas persediaan, seperti dalam ritel, manufaktur, logistik, dan *e-commerce*.

Fitur utama pada Real-Time Inventory Management yakni:

1. *Tracking* Langsung

Memantau barang secara langsung sejak barang masuk gudang, dipindahkan, atau dikirim.

2. Notifikasi Reorder

Memberikan notifikasi ketika stok mencapai batas minimum, sehingga pesanan dapat dilakukan tepat waktu.

3. Data Terintegrasi

Menyinkronkan inventaris di seluruh saluran penjualan dan gudang, memastikan data yang konsisten di semua lokasi.

4. Analitik Permintaan

Menganalisis tren permintaan secara *real time*, sehingga membantu prediksi stok.

5. Mobile Access

Memungkinkan akses data inventaris di mana saja melalui perangkat mobile untuk visibilitas yang lebih fleksibel.

6. Pengelolaan Waktu Nyata (*Lead Time*)

Menghitung *lead time* untuk perencanaan pesanan yang lebih akurat, membantu manajer memesan barang sesuai dengan jadwal kebutuhan.

Real-time juga dapat mengimplementasikan aplikasi teknik pengenalan wajah tiga dimensi yang dikendalikan melalui CCTV dengan bantuan mikrokontroler. Sistem ini dirancang untuk meningkatkan keamanan pengguna CCTV dengan mendeteksi dan mengidentifikasi wajah secara lebih akurat serta memberikan respons yang cepat terhadap potensi ancaman. Dengan teknologi ini, pengawasan dapat dilakukan secara lebih efektif, sehingga memperkuat perlindungan dan kenyamanan bagi para pengguna (Yuni, 2015).

2.5 Penelitian Terdahulu

Penelitian sebelumnya dilakukan dengan maksud untuk memperoleh materi perbandingan dan referensi. Selain itu, guna mencegah terjadinya kesan kesamaan dengan penelitian ini, maka dalam tinjauan pustaka ini, peneliti memasukkan hasilhasil penelitian terdahulu sebagaimana yang disajikan berikut.

Tabel 2.1 Penelitian Terdahulu

Judul	Nama	Metode	Hasil	Kelebihan	Kekurangan
	Peneliti,		penelitian		
	Tahun				
Sistem	(Daniel	Rapid	Dengan adanya	Pembahasan	Pembahasan pada
Management	Alexander	Application	sistem	pengumpulan	latar belakan
Inventory	Octavianus	Development	inventori,	data detail	manajemen
Menggunakan	Turang,		tingkat		inventory kurang
Algoritma	Sri Rahayu		persedian		luas.
Differential	Astari,		produk dapat		
Evolution	2018)		dijaga, shingga		
			jumlah		
			persediaan yang		
			harus dipenuhi		
			dapat segera		
			diketahui.		
Penerapan	(Rosina	EOQ	Pengelolaan	Terdapat	Bahasa susah
Inventory	Jappi	(Economic	inventory yang	tabel	dipahami dan
Management	Dianne	Order	diterapkan pada	Perbandingan	penulisan abstrak
	Frisko	Quantity),	Toko X ini	Sebelum dan	tidak jelas

Dalam Meningkatkan Profitabilitas Di Toko X Kupang	Koan, 2019)	ROP (Reorder Point), dan Safety Stock	belum maksimal sehingga banyak aktivitas- aktivitas yang tidak <i>profitable</i> .	Sesudah Penerapan Rekomendasi Inventory Management	
Perencanaan Rute Distribusi Yang Optimal Dengan Metode Algoritma Differential Evolution (De) Pt. Xyz	(Aprilia Kurnia, Dira Ernawati, 2021)	Algoritma Differential Evolution	Hasil penelitian memperlihatkan bahwa metode Algoritma Differential Evolution mampu menghasilkan usulan perbaikan rute distribusi yang optimal.	Terdapat diagram langkah- langkah dalam pemecahan masalah.	Penjelasan algoritma pada pembahasan
Analisis Management Inventory Untuk Menghindari Death Stock Product Di Tb. Sinar Baru	(Zidni Nurrahma Dianto, Endah Widati, 2023)	Economic Order Quantity (EOQ), Reorder Point (ROP), Safety Stock (SS) dan analisis FSN	menunjukkan bahwa TB. Sinar Baru tidak menerapkan manajemen persediaaan dalam pengelolaan barang dagang sehingga sulit untuk menghindari adanya kemungkinan dead stock	Terdapat tabel Economic Order Quantity (EOQ), Reorder Point (ROP), Safety Stock (SS) yang dijelaskan dengan rinci.	Metode Management Inventory tidak diterapkan dengan baik
Kajian Manajemen Persediaan (Inventory Management) Pada Pt Pura Mayungan	(Tessa Handra, 2018)	Metode EOQ	Hasil penelitian diperoleh bahwa EOQ membantu dalam menghitung persediaan ideal bagi perusahaan, terutama bagi	Terdapat Perbandingan Total Biaya EOQ dengan Total Biaya Actual	Penelitian tidak dapat memperhitungkan kepraktisan penerapan EOQ.

perusahaan yang memiliki biaya	
penyimpanan dan biaya	
pemesanan	
yang tinggi	