BAB II LANDASAN TEORI

2.1 Landasan Teori

2.1.1 Teori Data Mining dan Support Vector Regression (SVR)

Data mining adalah proses yang digunakan untuk menemukan pola dan informasi yang berguna dari kumpulan data besar. Dalam konteks penelitian ini, data mining berperan penting dalam menganalisis data hasil panen ayam broiler untuk memprediksi kebutuhan produksi. Metode yang umum digunakan dalam data mining meliputi asosiasi, klasifikasi, regresi, dan clustering. Di antara metode tersebut, regresi, khususnya Support Vector Regression (SVR), telah terbukti efektif dalam menangani data non-linear dan kompleks (Djehiche & Löfdahl, 2021; Q. Wang et al., 2022)

SVR adalah teknik yang dikembangkan dari Support Vector Machine (SVM), yang awalnya dirancang untuk masalah klasifikasi. SVR berfungsi untuk memodelkan hubungan antara variabel independen dan dependen, memungkinkan prediksi nilai numerik berdasarkan data historis (Putri et al., n.d.) SVR memiliki keunggulan dalam menangani data multivariat dan dapat memberikan hasil yang akurat meskipun terdapat outlier dalam dataset (Frissou et al., 2021; Sifaou, 2021). Penelitian sebelumnya menunjukkan bahwa SVR dapat digunakan untuk berbagai aplikasi, termasuk prediksi hasil panen dan analisis harga komoditas (Frissou et al., 2021; Z. Wang et al., 2022).

Rumus Dasar Support Vector Regression (SVR), SVR merupakan perluasan dari Support Vector Machine (SVM) yang digunakan untuk masalah klasifikasi. Namun, SVR berfokus pada regresi atau prediksi nilai kontinu. Secara umum, rumus dasar yang digunakan dalam SVR adalah sebagai berikut:

1. Fungsi Prediksi

Fungsi prediksi SVR diberikan oleh persamaan:

$$f(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) + b$$

Di mana:

- f(x) adalah fungsi prediksi untuk data input x.
- α_i adalah koefisien untuk setiap support vector x_i .
- $K(x_i, x)$ adalah fungsi kernel yang mengukur kedekatan antara titik data x_i dan titik prediksi x.
- *b* adalah bias term yang diperlukan untuk membuat prediksi lebih akurat.(Hadi et al., 2024; Kusuma & Kudus, 2022)

2. Objective Function (Fungsi Objektif)

Fungsi objektif dalam SVR bertujuan untuk menemukan hyperplane yang meminimalkan error dengan memasukkan toleransi ϵ (epsiloninsentive loss) yang menentukan batas error yang dapat diterima. Fungsi objektif tersebut adalah :

$$\min_{w,b,\epsilon} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \epsilon_i \right)$$

Di mana:

- w adalah vektor bobot.
- *C* adalah parameter yang mengontrol trade-off antara margin dan kesalahan klasifikasi.
- ϵ_i adalah slack variabel yang mengukur sejauh mana titik data berada di luar margin toleransi ϵ .(Agnesti et al., 2023; Kusuma & Kudus, 2022) SVR memiliki keunggulan dalam menangani masalah regresi non-linear dan mampu memberikan prediksi yang akurat meskipun terdapat outliers dalam data, berkat parameter ϵ yang membatasi pengaruh kesalahan besar. Fungsi kernel $K(x_i, x)$ dalam SVR dapat berupa berbagai jenis kernel,

seperti kernel linear, polynomial, atau Radial Basis Function (RBF). Pemilihan jenis kernel yang tepat sangat bergantung pada karakteristik data yang dihadapi. Misalnya, kernel RBF sering digunakan untuk data yang menunjukkan hubungan yang kompleks antar variabel, sedangkan kernel linear lebih cocok untuk data yang memiliki pola linier (Ishlah et al., 2023).

Dengan demikian, SVR menjadi alat yang sangat efektif dalam berbagai aplikasi, termasuk prediksi harga saham, peramalan harga emas, dan analisis data epidemiologi (Purnama, 2021; Raharjo et al., 2021) Dalam praktiknya, SVR telah terbukti efektif dalam berbagai studi, seperti dalam peramalan harga saham yang menunjukkan volatilitas tinggi dan sifat nonlinear (Ishlah et al., 2023) Selain itu, SVR juga digunakan dalam analisis prediksi kasus COVID-19, di mana pola data yang kompleks sulit untuk disimulasikan dengan metode regresi tradisional (Raharjo et al., 2021) Dengan demikian, SVR tidak hanya memberikan solusi yang akurat untuk masalah regresi, tetapi juga menunjukkan fleksibilitas dalam menghadapi berbagai tantangan data yang ada.

2.1.2 Faktor yang Mempengaruhi Hasil Panen Ayam Broiler

Hasil panen ayam broiler dipengaruhi oleh berbagai faktor, termasuk kondisi lingkungan, manajemen pakan, dan kesehatan ayam. Penelitian oleh Ekanayake et al. menunjukkan bahwa faktor-faktor seperti nutrisi dan kondisi pemeliharaan sangat berpengaruh terhadap hasil panen (Ekanayake et al., 2021). Selain itu, variabel seperti jumlah ayam yang dipelihara, masa pemeliharaan, dan konsumsi pakan juga berkontribusi signifikan terhadap total produksi daging ayam (Pangarkar et al., 2020; Suradiradja et al., 2023). Dengan menggunakan SVR, variabel-variabel ini dapat dianalisis secara bersamaan untuk memberikan prediksi yang lebih akurat mengenai hasil panen.

2.1.3 Hubungan Antara Variabel Dependen dan Independen

Data Dalam penelitian ini, variabel dependen adalah hasil panen ayam broiler, sedangkan variabel independen mencakup jumlah ayam DOC yang dipelihara, masa pemeliharaan, dan konsumsi pakan. Hubungan antara variabel-variabel ini dapat dimodelkan menggunakan SVR untuk memprediksi hasil panen berdasarkan data historis. Penelitian oleh Haryadi et al. menunjukkan bahwa SVR dapat digunakan untuk memprediksi harga cryptocurrency dengan mempertimbangkan berbagai variabel (Haryadi et al., 2022). Pendekatan serupa dapat diterapkan dalam konteks peternakan ayam broiler untuk mengoptimalkan produksi dan memenuhi permintaan pasar.

Dengan mengintegrasikan teori data mining dan SVR, penelitian ini bertujuan untuk memberikan solusi yang lebih efisien bagi PT. Surya Unggas Mandiri dalam merencanakan produksi ayam broiler. Melalui analisis yang komprehensif, diharapkan kesenjangan antara permintaan dan penawaran dapat diminimalkan, sehingga perusahaan dapat beroperasi lebih efektif di pasar yang dinamis.

2.1.4 Pemeliharaan Ayam Broiler

Pemeliharaan ayam broiler merupakan aspek krusial yang mempengaruhi hasil panen, dan melibatkan beberapa variabel penting seperti jumlah ayam yang dipelihara, jumlah pakan yang diberikan, berat ayam, dan masa pemeliharaan. Dalam konteks ini, setiap variabel memiliki peran yang signifikan dalam menentukan efisiensi produksi dan kualitas hasil akhir. Jumlah ayam yang dipelihara adalah faktor utama yang mempengaruhi total produksi daging. Penelitian menunjukkan bahwa peningkatan jumlah ayam dapat berkontribusi pada peningkatan hasil panen, asalkan manajemen pakan dan kesehatan ayam juga diperhatikan (Kamruzzaman et al., 2021). Selain itu, manajemen yang baik dalam pemeliharaan ayam dapat meningkatkan efisiensi konversi pakan (FCR), yang merupakan rasio antara jumlah pakan yang diberikan dan berat badan ayam yang

dihasilkan (Fajar et al., 2021). Dengan demikian, pengelolaan jumlah ayam yang tepat sangat penting untuk mencapai hasil yang optimal.

Jumlah pakan yang diberikan juga berpengaruh langsung terhadap pertumbuhan dan perkembangan ayam broiler. Pakan yang berkualitas dan cukup dapat meningkatkan berat badan ayam secara signifikan. Berat ayam pada saat panen adalah indikator penting dari keberhasilan pemeliharaan. Berat badan akhir ayam broiler dipengaruhi oleh kombinasi dari jumlah pakan yang diberikan dan lama masa pemeliharaan. Penelitian oleh Akter menunjukkan bahwa manajemen yang baik dalam pemeliharaan, termasuk pengaturan pakan dan waktu pemeliharaan, dapat meningkatkan berat badan akhir ayam (Akter, 2023). Oleh karena itu, pemeliharaan yang efektif harus mempertimbangkan semua variabel ini secara holistik untuk mencapai hasil yang diinginkan.

Masa pemeliharaan juga berperan penting dalam menentukan hasil panen. Ayam broiler biasanya dipelihara selama 6 hingga 8 minggu sebelum dipanen. Penelitian menunjukkan bahwa pengaruh masa pemeliharaan terhadap performa ayam dapat bervariasi tergantung pada kondisi lingkungan dan manajemen yang diterapkan (Tabler et al., 2020). Dengan mengintegrasikan semua variabel ini, pemeliharaan ayam broiler dapat dioptimalkan untuk meningkatkan hasil panen.

2.2 Penelitian Terdahulu

Tabel 2. 1 Penelitian Terdahulu

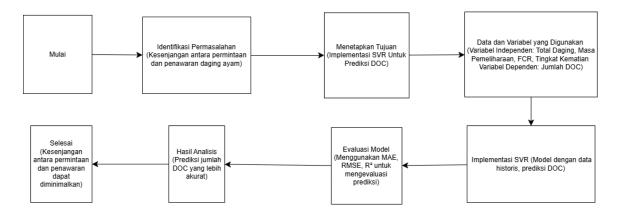
No	Nama	Judul	Nama	Hasil	Metode	Persamaa	Perbedaan
			Jurna			n	
			l				
1	(Ji et	Predic	Poultr	SVR	SVR,	Mengguna	Fokus pada
	al.,	ting	у	memberikan	MLP,	kan SVR	prediksi
	2025)	egg	Scien	hasil terbaik	Least	untuk	telur,
		produ	ce	dalam	Squares	prediksi	bukan hasil
		ction		prediksi	Regress	performa	panen
		rate		dengan	ion	ayam	daging
		and		akurasi			broiler
		egg		tinggi			
		weigh					
		t of					
		broile					
		r					
		breed					
		ers					
2	(Liu	Machi	Poultr	SVR	SVR,	Mengguna	Tidak
	et al.,	ne	у	menunjukka	LightG	kan SVR	mencakup
	2025)	learni	Scien	n akurasi	BM,	untuk	variabel
		ng	ce	tinggi untuk	Kernel	prediksi	lingkungan
		metho		prediksi	Ridge	performa	atau
		ds for		berdasarkan	Regress	ayam	manajemen
		geno		data genetik	ion		pemelihara
		mic					an
		predic					
		tion					

3	(Muth	Comp	IEEE	SVR	SVR	Mengguna	Tidak
	ulaksh	uter	Confe	berhasil	dengan	kan SVR	mempertim
	mi et	vision	rence	memprediks	analisis	untuk	bangkan
	al.,	for		i berat ayam	gambar	prediksi	konsumsi
	2024)	broile		dengan	X-ray	berat	pakan atau
		r		kesalahan		badan	tingkat
		weigh		minimal		ayam	kematian
		t					
		predic					
		tion					
4	(Zhu	X-ray	Anim	SVR	SVR	Mengguna	Fokus pada
	et al.,	for	als	memberikan	dengan	kan SVR	berat otot
	2024)	breast		akurasi	kombin	untuk	dada,
		muscl		tinggi	asi	prediksi	bukan total
		e		dalam	CNN	berat	hasil panen
		weigh		prediksi		ayam	
		t		berat otot			
		predic		dada			
		tion					
5	(Kirut	IoT-	IEEE	Efektif	SVR	Mengguna	Tidak
	hika	based	Confe	dalam	dengan	kan SVR	mencakup
	et al.,	broile	rence	prediksi	data	untuk	variabel
	2024)	r		pertumbuha	IoT	analisis	pasar atau
		growt		n ayam di		pertumbuh	permintaan
		h		lingkungan		an ayam	daging
		predic		terkendali			
		tion					

6	(Sin et	Web-	IEEE	SVR	SVR	Mengguna	Tidak
	al.,	based	Confe	meningkatk	dan	kan SVR	mengintegr
	2024)	applic	rence	an akurasi	LSTM	untuk	asikan data
		ation		prediksi		prediksi	pasar dan
		for		berat badan		berat	kebutuhan
		broile		ayam		badan	lokal
		r				ayam	
		growt					
		h					
		predic					
		tion					
7	(Siddi	ML	Journ	SVR	SVR	Mengguna	Tidak
	que et	for	al of	menghasilk	untuk	kan SVR	relevan
	al.,	poultr	Food	an deteksi	klasifik	dalam	dengan
	2024)	у	Scien	kualitas	asi	konteks	prediksi
		meat	ce	daging yang	kualitas	peternakan	hasil panen
		qualit		presisi	daging		
		у					
		detect					
		ion					

8	(C. Y.	Indust	Comp	SVR efektif	SVR	Mengguna	Tidak
	Wang	ry 3.5	uters	untuk	dengan	kan SVR	mencakup
	et al.,	for	&	prediksi	teknolo	untuk	variabel
	2021)	poultr	Indust	berat ayam	gi	prediksi	genetik
		у	rial		Industr	berat	atau
		farmi	Engin		y 3.5	ayam	konsumsi
		ng	eering				pakan
		weigh					
		t					
		predic					
		tion					
9	(Gonz	Data	Anim	Memberika	Analisi	Mengguna	Tidak
	ález	minin	als	n wawasan	S	kan	mempredik
	Ariza	g for		hubungan	regresi	analisis	si hasil
	et al.,	carcas		genetik dan	berbasi	regresi	panen
	2022)	s		kualitas	s data	dalam	secara
		qualit		daging	mining	konteks	keseluruha
		у				peternakan	n
		deter					
		minati					
		on					

10	Hasdy	Predic	Jurnal	Model	Naive	Fokus	Fokus pada
	na, N.	tive	Techn	dapat	Bayes	pada	algoritma
		Model	o	mengidentif		prediksi	probabilisti
		ing of	Nusa	ikasi faktor		hasil	k, bukan
		Broile	Mandi	utama yang		panen.	SVR.
		r	ri	memengaru			
		Chick		hi hasil			
		en		panen.			
		Produ					
		ction					
		Using					
		the					
		Naive					
		Bayes					
		Classi					
		ficatio					
		n					
		Algori					
		thm					


11	Agust	Identi	Jurnal	Model	GLCM	Fokus	Bukan
	ina,	fikasi	Ilmiah	mampu	dan NN	pada	prediksi
	F., &	Citra	Infoka	mengklasifi		kualitas	hasil
	Ardia	Dagin	m	kasikan		daging	panen.
	nsyah,	g		citra dengan		ayam.	
	Z.A.	Ayam		akurasi			
		Kamp		>90%.			
		ung					
		dan					
		Broile					
		r					
		Meng					
		gunak					
		an					
		Metod					
		e					
		GLC					
		M dan					
		Klasif					
		ikasi-					
		NN					

12	Wijay	Imple	Resea	SVR	TVIWP	Mengguna	Fokus pada
	anto,	menta	rchGa	memberikan	SO dan	kan SVR	prediksi
	A.W.,	tion of	te	hasil akurat	SVR	untuk	umum
	et al.	Big		untuk		prediksi	dalam
		Data		dataset		hasil	pertanian.
		and		besar.		panen.	
		AI for					
		Statist					
		ical					
		Predic					
		tions					
		in					
		Agric					
		ulture					
13	Riza,	Embr	Buku	SVR efektif	SVR	Fokus	Pendekatan
	H., &	acing		dalam		pada SVR	umum di
	Jarin,	Colla		memprediks		dalam	sektor
	A.	borati		i hasil		pertanian.	pertanian.
		on for		panen			
		AI in		dengan			
		Agric		dataset			
		ulture		kompleks.			

14	Hiday	Klasif	Indon	Akurasi	Logisti	Mengguna	Fokus pada
	at,	ikasi	esian	model	c	kan	klasifikasi
	W.F.,	Penya	Journ	mencapai	Regress	algoritma	penyakit
	et al.	kit	al on	85%.	ion	untuk	tanaman.
		Daun	Softw			klasifikasi.	
		Kenta	are				
		ng	Engin				
		Meng	eering				
		gunak					
		an					
		Model					
		Logist					
		ic					
		Regre					
		ssion					
15	Sutipn	Deter	Repos	Akurasi	NIR	Mengguna	Tidak
	0,	minati	itory	prediksi	dan	kan	terkait
	D.H.	on of	UNEJ	kadar kafein	kemom	analisis	dengan
		Caffei		cukup	etrik	prediktif.	hasil panen
		ne		tinggi.			atau SVR.
		Level					
		S					
		Using					
		NIR-					
		Kemo					
		metrik					

16	Firma	Klasif	Eprint	SVM	KNN	Mengguna	Fokus pada
	nsyah,	ikasi	S	unggul	dan	kan SVM,	klasifikasi
	S.	denga	UNIS	dalam	SVM	serupa	data hewan
		n	LA	akurasi.		dengan	ternak.
		KNN				SVR.	
		dan					
		Suppo					
		rt					
		Vecto					
		r					
		Machi					
		nes					

2.3 Kerangka Pemikiran

Gambar 2. 1 Kerangka Pemikiran