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 The Schlumberger geoelectric method has been extensively 

employed in earth resource exploration due to its capability to 

identify variations in subsurface resistivity. However, the manual 

interpretation of geoelectric data inversion results is often subjective 

and time-consuming. This study aims to automate the lithology 

identification process by utilizing deep learning techniques, 

particularly Artificial Neural Networks (ANN), based on the inverted 

resistivity parameters obtained through the IPI2Win software. The 

Schlumberger configuration geoelectric data were obtained from 

survey reports provided by the Ministry of Public Works and 

Housing (Kementerian Pekerjaan Umum dan Perumahan Rakyat/ 

PUPR), which conducted geoelectric measurements in East Lampung 

Regency, Lampung Province, Indonesia. The ANN algorithm 

demonstrated an average accuracy of 90% in predicting lithology 

based on resistivity patterns resulting from Schlumberger inversion. 

Outperforming Support Vectorr Machine (SVM) (87%) and 

XGBoost (88%). These results confirm the initial hypothesis that 

ANN can effectively capture the complex relationships between 

resistivity values and rock types. The present study proposes an 

integrated approach between geophysics and machine learning with 

ANN algorithms for lithology prediction based on Schlumberger 

configuration geophysical inversion data. The present study proposes 

an integrated approach between geophysics and machine learning 

with ANN algorithms for lithology prediction based on Schlumberger 

configuration geophysical inversion data. 

Keyword: 
Artificial Neural Network  

Deep Learning 

Lithology Prediction  
Schlumberger Geoelectric  
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1. INTRODUCTION 

Lithology is a key parameter in the exploration of geological resources, particularly for identifying 

rock formations, assessing hydrocarbon potential, and mitigating geohazard risks such as landslides or 

seawater intrusion. Traditional approaches such as core drilling analysis or data logging have long been used 

for lithological interpretation. However, these methods have significant limitations, including high costs, 

lengthy processing times, and subjectivity in interpretation results [1], [2], [3], [4]. Core drilling analysis 

requires complex physical extraction of rock cores and manual interpretation that is prone to error [5], [6]. 

Furthermore, conventional geophysical methods, such as Schlumberger resistivity measurements, frequently 

yield data that is challenging to translate directly into lithological categories without a robust analytical 

approach [7]. Challenges in lithological interpretation are of particular concern. According to research [8], 
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factors such as local variations, mineralogical composition, and moisture content can influence the results of 

rock resistivity interpretation. Additionally, geological interpretation challenges were highlighted in Study 

[9], which demonstrated that inaccuracies in geophysical surveys can lead to engineering issues in building 

construction in Nigeria. These structural failures were caused by inaccurate interpretations, necessitating 

better integration between geotechnical and geophysical disciplines in interpreting subsurface characteristic 

values.Therefore, integrating geophysical methods with machine learning algorithms is an innovative way to 

improve the accuracy and efficiency of predicting lithology.  

Several machine learning approaches have been proposed in previous studies for lithology 

classification. Study [3] utilized geophysical well-log data from nine wells in an Iranian gas field, comprising 

44,521 depth-level records with 11 well-log features and four lithology classes. Study [10] employed the 

same dataset from two gas hydrate exploration wells in the Alaska North Slope (ANS). The well-log data 

used in these studies were derived from subsurface geophysical surveys and are publicly available. Input 

features included Gamma Ray (GR), Bulk Density, Neutron Porosity, Density Porosity, Resistivity, and 

Compressional Velocity. In addition to well-log data, study [5] incorporated image-based Computed 

Tomography (CT Scan) datasets obtained from rock core samples. That study classified three lithological 

types—carbonate, sandstone, and shale—with original image dimensions of 1000×1000 pixels, which were 

resized to 224×224 pixels to meet the input requirements of the Convolutional Neural Network (CNN) 

model. According on [3], the development of a Residual Convolutional Neural Network (ResCNN) for the 

classification of Iranian gas fields has been shown to achieve an F1-score of up to 80%, with a particular 

emphasis on well-log data. This study highlights the importance of feature interpretation (SHAP) and the 

stability of models against noise. The findings of research [10] demonstrate that supervised learning 

algorithms, such as neural networks, exhibit an accuracy of up to 90%, while unsupervised learning methods 

attain approximately 80%. A similar approach can be developed using inverse resistivity data from 

Schlumberger surveys. Another study introduced RockDNet, a CNN model for lithology classification based 

on rock core images. However, this study did not integrate geophysical data such as Schlumberger resistivity 

[5]. The utilisation of Artificial Neural Networks (ANN) was also examined in study [2], which employed 

core drilling data to identify lithofacies with an accuracy of 88.2% by leveraging the XGBoost algorithm. 

Nevertheless, this approach is restricted to structural data and does not take into account geophysical data 

such as Schlumberger resistivity. Despite the noteworthy advancements, there remain notable lacunae in the 

amalgamation of Schlumberger geophysical data with ANN models that have been optimized through 

techniques such as Synthetic Over-Sampling Technique (SMOTE) and K-Fold validation. A prevailing 

tendency in extant studies has been to concentrate on a solitary form of data, such as well logs and rock core 

images, while neglecting to leverage the full potential of inverse geophysical data as the primary input [1], 

[7], [11]. Furthermore, lithological class imbalance is frequently disregarded, leading to prediction bias in 

minority classes [12]. Although SMOTE has been tested on Support Vector Machines (SVM) by research 

[3], [10], its application in ANN models for lithological data has not been optimal. This study addresses this 

gap by creating a lithology prediction model that uses IPI2Win software to analyze Schlumberger 

geophysical resistivity inversion data for ANN training. This approach is further enhanced by the 

implementation of the SMOTE technique, which addresses imbalanced classes due to lithology, and K-Fold 

validation, which ensures stability. SMOTE was selected for its capacity to enhance prediction accuracy in 

minority classes by generating synthetic examples based on interpolation between minority class samples, as 

opposed to merely duplicating data [13], [14], [15]. Additionally, we will compare the performance of the 

ANN with other algorithms, such as SVM and XGBoost. This comparison will provide insight into the 

relative advantages of each method when working with geophysical data.  

This study aims to develop a lithology classification model based on the ANN algorithm, utilizing 

inverted geoelectrical data from the Schlumberger configuration processed using the IPI2Win software. 

Geoelectrical resistivity measurements typically provide subsurface resistivity variations that can be 

correlated with specific lithological units. However, manual lithology classification based on resistivity 

values is often subjective and time-consuming. Therefore, this research proposes a machine learning-based 

approach to accelerate the classification process and improve its accuracy. The ANN algorithm was selected 

due to its capability to model complex, non-linear relationships commonly found in geophysical datasets. 

Furthermore, to address the issue of class imbalance which can lead to biased predictions and poor model 

performance the Synthetic Minority Over-sampling Technique (SMOTE) was employed. This technique 

enhances the representation of minority classes, allowing the model to learn more effectively from all 

available classes. Model validation was conducted using five-fold cross-validation to assess its robustness, 

consistency, and generalization ability. The results of this study are expected to contribute to the growing 

application of machine learning techniques in geophysical exploration, particularly in lithology classification 

using geoelectrical resistivity data. 
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2. RESEARCH METHOD 

This study uses data from a geophysical survey report in East Lampung Regency, Lampung 

Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of 

rock layers within the earth [16], [17]. The survey was conducted across 24 subdistricts to determine the 

distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local 

geological structures. In measurements using the Schlumberger configuration, the survey began with a half-

spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for 

interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected 

locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2 

distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to 

be the most effective method for geophysical investigation [18]. The Schlumberger configuration is used 

because it provides the most accurate and effective results in data collection compared to other geophysical 

methods [19], [20], [21]. A total of 500 measurement points were collected during the geophysical survey. 

However, this study utilized data from 374 measurement points, which yielded two lithological units: 

extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories 

still provided meaningful contributions to lithological classification based on geophysical data [22]. 

 

2.1. Data Collection and Geophysical Survey Methodology 

This study uses data from a geophysical survey report in East Lampung Regency, Lampung 

Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of 

rock layers within the earth [16], [17]. The survey was conducted across 24 subdistricts to determine the 

distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local 

geological structures. In measurements using the Schlumberger configuration, the survey began with a half-

spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for 

interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected 

locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2 

distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to 

be the most effective method for geophysical investigation [18]. The Schlumberger configuration is used 

because it provides the most accurate and effective results in data collection compared to other geophysical 

methods [19], [20], [21]. A total of 500 measurement points were collected during the geophysical survey. 

However, this study utilized data from 374 measurement points, which yielded two lithological units: 

extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories 

still provided meaningful contributions to lithological classification based on geophysical data [22]. 

 

2.2. Inversion of Schlumberger Sounding Data 

Based on the results of the geophysical survey conducted in the field, the obtained data represent 

apparent resistivity values rather than true resistivity values [16]. Therefore, an inversion process is necessary 

to generate a representative subsurface resistivity model [21], [23], [24]. Inversion is performed because 

geophysical observation data does not directly provide information about the physical properties of the 

subsurface. The inversion process aims to construct a realistic and representative subsurface model that can 

be used for geological interpretation, resource exploration, or understanding the tectonic structure of an area 

[19]. The inversion process applied to the data in this study is illustrated in Figure 1. 

 

 

Figure 1. Inversion of Schlumberger Sounding Data 

 

The geophysical measurement process was conducted in the field to obtain apparent resistivity 

values at various depths. The collected data were then processed through inversion steps using IPI2Win 

software [23], [24]. The purpose of this inversion stage is to generate a representative accurate resistivity 
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model as a function of depth. This model is the foundation for interpreting subsurface structures and 

delineating geological layers in the study area [24]. 

 

2.3. Multilayer Perceptron (MLP) 

The MLP represents a foundational architecture among feedforward neural networks. It comprises 

multiple fully connected layers of artificial neurons, typically consisting of one or more hidden layers and a 

final output layer [25], [26], [27]. Each neuron in this layer performs a computation consisting of a weighted 

sum of the input signals [28]. In the hidden layer, each neuron similarly computes a weighted sum of its 

inputs, as follows:  

    

𝑧𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1        (1) 

 

Where 𝑧𝑗is the pre-activation value of neuron j, 𝑤𝑗𝑖 is the weight connecting neuron i in the previous 

layer with neuron j. 𝑥𝑖 is the input value of neuron i and 𝑏𝑗 is the bias in neuron j, which helps regulate the 

computation result [29]. After calculating the weighted sum, the result is passed through an activation 

function to introduce non-linearity into the model. The activation function used in this study is the Rectified 

Linear Unit (ReLU) [30]. The Rectified Linear Unit (ReLU) activation function is mathematically expressed 

as 𝑓(𝑧) = (0, 𝑧) . It outputs zero for negative inputs and preserves positive values, which contributes to faster 

convergence and enhanced stability during neural network training [31], [32]. 

 

2.4. Machine Learning Workflow: From Data Preprocessing to Model Evaluation 

This study utilized geophysical inversion data obtained from previous surveys as the dataset. The 

dataset comprises 17 columns that include spatial features, depth parameters, resistivity values, and lithology 

labels. Spatial features are represented by latitude and longitude coordinates, while seven depth parameters 

(in meters) correspond to subsurface layers (Depth 1–7). The seven resistivity values (in ohm·m) measured at 

each depth (Resistivity 1–7) were also used as prominent input features. As classification targets, the 

Lithology column includes two main volcanic lithology categories: Extrusive mafic lava (0) and Extrusive 

intermediate pyroclastic (1). This dataset comprises 374 data points selected from an initial set of 500, which 

had undergone prior validation as part of this study’s data quality assurance process. The input features (X) 

encompass all variables except the Lithology column: latitude, longitude, depth 1–7, and resistivity 1–7. The 

lithology label (y) is encoded into numerical values using LabelEncoder to meet the ANN model input 

requirements. In contrast, numerical features are normalized with StandardScaler to ensure data scale 

uniformity and improve model training convergence [33]. Resistivity and depth serve as essential parameters 

for characterizing variations in the electrical properties of subsurface rock formations, which play a 

significant role in lithological identification [34]. 

 

 

Figure 2. Workflow for Lithology Classification Using MLP 

 

Figure 2 illustrates that the ANN model used in this study was designed based on the MLP 

architecture, which consists of two hidden layers [35]. The first layer consists of 128 neurons with a ReLU 

activation function, followed by BatchNormalization and Dropout (dropout rate=0.3), while the second layer 

has 64 neurons with a similar configuration. The model was compiled with Adam optimization (learning 

rate=0.001) and accuracy metrics. To address the class imbalance in the training data, the SMOTE was 
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applied in each training iteration. Model validation was performed using the Stratified K-Fold Cross 

Validation approach (n=5), ensuring that class distribution remained consistent across each data split. During 

training, the EarlyStopping and ReduceLROnPlateau callbacks were used to prevent overfitting and 

dynamically adjust the learning rate [36]. The model was trained for 50 epochs with a batch size of 32. 

Model performance evaluation included accuracy, confusion matrix, and classification report (precision, 

recall, F1-score). The results showed the average accuracy from 5 folds, with visualization of the confusion 

matrix for classification error analysis. Each fold stored the best model for potential inference use. 

 

3. RESULT AND ANALYSIS 

 This study uses geophysical survey data from Schlumberger configuration measurements in the East 

Lampung region of Lampung Province. The data obtained was then inverted using IPI2Win software to 

produce subsurface resistivity values. Each dataset is accompanied by lithological information derived from 

geophysical measurements, such as the latitude and longitude of the measurement area, depth, and resistivity 

values at each measurement depth. In the data preprocessing stage, lithological classes were coded into 

numerical values. Additionally, to address data imbalance, the SMOTE was applied to generate synthetic 

samples in the minority class. Modeling was performed using the ANN algorithm with a MLP approach. 

Model training was conducted using Adam optimization with a cross-entropy loss function. To evaluate 

performance and ensure generalization, cross-validation with five folds was applied, and model performance 

was assessed based on accuracy, precision, recall, and F-1 score metrics. The analysis process began with 

data collection and data inversion using IPI2Win software. The correlation matrix in Figure 3 was used to 

identify linear relationships between features that indicate multicollinearity among several variables. 

Variables res_4, res_5, res_6, and res_7 have a high correlation, while variables depth_3 and depth_4 also 

show a strong relationship. However, there is a significant negative relationship between the lithology 

variable and several resistivity variables. The relationships between variables, particularly between lithology 

and resistivity values, provide important insights into the geological dynamics within the dataset. Selecting 

the appropriate machine learning algorithm is crucial for subsurface lithology classification. This study 

employs an ANN algorithm, which handles multicollinearity relatively better than traditional linear models. 

 

 

Figure 3. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization 

 

This study utilized the ANN algorithm to identify and classify lithological units derived from 

geoelectrical inversion data. Class distribution was visualized using the t-SNE technique before model 

training as part of preliminary data analysis. Figure 4 presents visualization results that reveal the spatial 

distribution of classes and support the assessment of class balancing techniques, such as SMOTE. These 

methods improved model performance by reducing bias toward majority classes and enhancing 

generalization. Additionally, feature correlations were examined to ensure input independence. The results 

demonstrate that machine learning techniques can significantly contribute to subsurface characterization 

when combined with appropriate preprocessing and interpretation strategies. Furthermore, integrating 

geological context into feature selection helped improve the relevance and physical interpretability of the 

1

5

16

18

19

25

40

Page 11 of 16 - Integrity Submission Submission ID trn:oid:::27385:117730929

Page 11 of 16 - Integrity Submission Submission ID trn:oid:::27385:117730929



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 8, No. 2, July 2025: 427 – 436 

432 

classification outcomes. This approach highlights the potential for data-driven models to complement 

traditional geological analysis in complex subsurface environments. Such integration opens new 

opportunities for more accurate and efficient subsurface modeling, especially in areas with limited direct 

observations. 

 

 
(a) 

 
(b) 

Figure 4. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization 

 

As shown in Figure 4, panel (a) displays the original class distribution before SMOTE, whereas 

panel (b) presents the balanced class distribution following SMOTE application. This technique mitigated 

class imbalance by generating synthetic samples for the minority class, achieving a more uniform distribution 

across the feature space. However, this also increases the complexity of the data structure, which may hinder 

class separability by machine learning models. Therefore, tailored approaches such as SMOTE parameter 

optimization and appropriate algorithm selection are necessary to maximize the effectiveness of this method. 

The results indicate that SMOTE is an effective method for mitigating class imbalance. Nevertheless, careful 

application is required to minimize risks such as overfitting and introducing unnecessary data complexity. 

After observing the distribution of data before and after the application of SMOTE through t-SNE 

visualization, the next step is to apply a machine learning algorithm using the MLP ANN algorithm. Model 

validation was carried out using the Stratified K-Fold Cross Validation (n=5) approach, with the results 

shown in Table 1. 

In Table 1, class 0 represents Extrusive: mafic: lava, and class 1 represents Extrusive: intermediate: 

pyroclastic. Model validation was performed using the Stratified K-Fold Cross Validation approach (n=5). 

The model consists of two hidden layers with the first layer having 128 neurons and the second layer using 

64 neurons to gradually reduce complexity and prevent overfitting, resulting in an average accuracy of 

90.65% with a standard deviation of ±1.87%. These results indicate that the ANN model performs excellently 

and stably, with all folds achieving an accuracy of over 85%. Although minor variations were observed 

across folds (accuracy range: 88.00%–93.33%), the EarlyStopping and ReduceLROnPlateau callbacks were 

employed during training to prevent overfitting and enable dynamic learning rate adjustment. The model was 

configured with the Adam optimizer (learning rate = 0.001) and SMOTE to address class imbalance. 

Although the ANN algorithm achieved an average accuracy of 90.65%, based on the data in Table 1. There is 

variation in performance between classes, where Class 1 (Extrusive intermediate pyroclastic) has very high 

precision and recall values exceeding 90% due to the larger amount of data and dominant resistivity patterns, 
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as well as unique resistivity values. Class 0 (Extrusive mafic lava), although it has a relatively high recall 

rate, has a lower precision rate, resulting in the model incorrectly predicting some samples. The primary 

cause of the model's inaccuracy in prediction is that some pyroclastic data overlap, particularly the resistivity 

values res_4 and res_6. Additionally, vertical and lateral lithological variations in the East Lampung region 

cause smooth resistivity transitions, making the boundaries between lithological units not always clearly 

reflected as sharp changes in the resistivity profile. This makes explicit class separation challenging, 

especially in transition zones. Figure 5 presents the accuracy of each fold in the K-Fold cross-validation. 

 

Table 1. Evaluation Results of the ANN Model with SMOTE Based on 5-Fold Cross-Validation 

Fold Class 
SMOTE 

Precision Recall F1-Score Support Accuracy 
Before After 

1 
0 68 231 0.7143 0.8824 0.7895 17 

0.8933 
1 231 231 0.9630 0.8966 0.9286 58 

2 
0 68 231 0.8333 0.8824 0.8571 17 

0.9333 
1 231 231 0.9649 0.9483 0.9565 58 

3 
0 68 231 0.7778 0.8235 0.8000 17 

0.9067 
1 231 231 0.9474 0.9310 0.9391 58 

4 
0 68 231 0.6667 0.9412 0.7805 17 

0.8800 
1 231 231 0.9804 0.8621 0.9174 58 

5 
0 68 232 0.7619 0.9412 0.8421 17 

0.9189 
1 232 232 0.9811 0.9123 0.9455 57 

 

 

Figure 5. Accuracy of Each Fold in K-Fold Cross Validation 

 

The same dataset was used to evaluate the performance of additional machine learning algorithms, 

specifically, the SVM and XGBoost, to compare model accuracy and stability in lithology classification 

based on geoelectrical inversion data. Table 2 presents the average accuracy results for the three algorithms, 

providing a comparative overview of the effectiveness of the ANN, SVM, and XGBoost on the identical 

dataset. 

 

Table 2. Comparison of Results Across Machine Learning Algorithms Using the Same Dataset 

Model Precision Recall F1-Score Accuracy 

ANN 0.85 0.90 0.87 0.90 

SVM 0.82 0.82 0.82 0.87 
XGBoost 0.84 0.85 0.84 0.88 

 

According to the results in table 2, the ANN achieved the highest classification performance in 

lithology identification, with an accuracy of 90% and an F1-score of 0.87. This result surpassed the SVM, 

which recorded 87% accuracy and an F1-score of 0.82, and XGBoost, which yielded 88% accuracy and an 

F1-score of 0.84. The effectiveness of ANN can be attributed to its capacity to model complex, non-linear 

relationships in geophysical features such as depth and resistivity. While SVM and XGBoost provide strong 

alternatives, the results indicate that ANN offers superior stability and performance in handling imbalanced 

lithology classification tasks.  

Table 3 presents the evaluation results of four machine learning models using geotechnical and 

drilling data adapted from previous studies. The CNN model achieved an accuracy of 0.90 using drill string 

vibration data. The DANN model exhibited superior performance, with an accuracy exceeding 0.92, based on 

RGB image representations of drilling data obtained from an indoor core drilling machine. In comparison, 

the ANN model achieved a lower accuracy of 0.66 when trained on diamond drilling records. The proposed 
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approach, which leveraged geophysical inversion data from the Schlumberger configuration, attained an 

accuracy of 0.90, demonstrating its effectiveness for lithology classification. This study’s main novelty lies in 

applying a machine learning model based on geoelectrical inversion data from the Schlumberger 

configuration for lithology prediction. Unlike models that rely on direct drilling parameters such as vibration 

or torque, this approach utilizes resistivity values obtained through inversion, which represent subsurface 

geophysical properties. The dataset exhibits distinct spatial characteristics and vertical resolution compared 

to those used in previous studies, offering a novel perspective on lithology identification based on 

geophysical data. This approach opens new possibilities for geophysical surveys to classify rock formation 

lithology. 

 

Table 3. Comparison of Results with Existing Models from Previous Studies 

Model Dataset Accuracy Information 

CNN [1] 
Drill string vibration 

data 
0.90 

This study introduces a new method for real-time 

identification of rock formation lithology using drill 
string vibration data obtained during the drilling process. 

Deep Artificial Neural 

Networks (DANN) [2] 

Indoor core drilling 

machine 
> 0.92 

This research converts drilling data (torque, WOB, 

rotational speed) into an RGB image-like representation. 

ANN [3] 
Diamond Drilling 

Records 
0.66 

This study uses diamond drilling records, rock samples, 

and other related reports that prove categorical variables. 

Proposed model 
Geoelectrical 

Inversion Data 
0.90 

This study utilizes Schlumberger-configured 
geoelectrical data inverted into a structured dataset. 

 

4. CONCLUSION 

The study highlights the effectiveness of integrating geoelectrical inversion data from the 

Schlumberger configuration with an ANN to develop robust lithology prediction models. Using Stratified K-

Fold Cross-Validation (k=5), the model achieved an average classification accuracy of 90.65%. The ANN 

outperformed conventional machine learning algorithms, including SVM and XGBoost, modeling complex, 

non-linear associations among resistivity parameters, depth, and lithological classes. This performance 

advantage was maintained even under imbalanced data conditions, where class distribution was adjusted 

using the SMOTE technique. Unlike prior studies that predominantly utilized drilling records or image-based 

features, this research employs geoelectrical inversion data generated by IPI2Win as the primary input for 

model development. This conceptual shift introduces a novel framework for geophysical data-driven 

lithology classification, offering advantages in terms of speed, cost-efficiency, and objectivity in identifying 

subsurface rock types. Consequently, this study contributes to advancing artificial intelligence applications in 

geological resource exploration, particularly in areas with limited direct drilling data. Furthermore, it 

demonstrates potential as a decision-support tool for subsurface analysis in geophysics and sustainable 

energy exploration. This research can be further developed using larger datasets from various geographical 

regions. This will improve the model's generalization ability and enable comprehensive evaluation of the 

model's performance on various subsurface geologies. To address the common issue of class imbalance in 

lithology datasets caused by uneven rock type distribution, future research can explore other oversampling 

techniques. Future developments will deepen the application of Artificial Intelligence in subsurface lithology 

modeling and support broader applications in automated geological interpretation and sustainable resource 

exploration. 
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prediction based on Schlumberger configuration geophysical 
inversion data. The present study proposes an integrated approach 
between geophysics and machine learning with ANN algorithms for 
lithology prediction based on Schlumberger configuration 
geophysical inversion data. 
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1. INTRODUCTION (10 PT) 

Lithology is a key parameter in the exploration of geological resources, particularly for identifying 
rock formations, assessing hydrocarbon potential, and mitigating geohazard risks such as landslides or 
seawater intrusion. Traditional approaches such as core drilling analysis or data logging have long been used 
for lithological interpretation. However, these methods have significant limitations, including high costs, 
lengthy processing times, and subjectivity in interpretation results [1], [2], [3], [4]. Core drilling analysis 
requires complex physical extraction of rock cores and manual interpretation that is prone to error [5], [6]. 
Furthermore, conventional geophysical methods, such as Schlumberger resistivity measurements, frequently 
yield data that is challenging to translate directly into lithological categories without a robust analytical 
approach [7]. Therefore, integrating geophysical methods with machine learning algorithms is an innovative 
way to improve the accuracy and efficiency of predicting lithology.  

A considerable number of studies have employed machine learning techniques for the purpose of 
lithology classification. According on [3], the development of a Residual Convolutional Neural Network 
(ResCNN) for the classification of Iranian gas fields has been shown to achieve an F1-score of up to 80%, 
with a particular emphasis on well-log data. This study highlights the importance of feature interpretation 
(SHAP) and the stability of models against noise. The findings of research [8] demonstrate that supervised 
learning algorithms, such as neural networks, exhibit an accuracy of up to 90%, while unsupervised learning 
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methods attain approximately 80%. A similar approach can be developed using inverse resistivity data from 
Schlumberger surveys. Another study introduced RockDNet, a CNN model for lithology classification based 
on rock core images. However, this study did not integrate geophysical data such as Schlumberger resistivity 
[5]. The utilisation of Artificial Neural Networks (ANN) was also examined in study [2], which employed 
core drilling data to identify lithofacies with an accuracy of 88.2% by leveraging the XGBoost algorithm. 
Nevertheless, this approach is restricted to structural data and does not take into account geophysical data 
such as Schlumberger resistivity. Despite the noteworthy advancements, there remain notable lacunae in the 
amalgamation of Schlumberger geophysical data with artificial neural network (ANN) models that have been 
optimized through techniques such as Synthetic Over-Sampling Technique (SMOTE) and K-Fold validation. 
A prevailing tendency in extant studies has been to concentrate on a solitary form of data, such as well logs 
and rock core images, while neglecting to leverage the full potential of inverse geophysical data as the 
primary input [1], [7], [9]. Furthermore, lithological class imbalance is frequently disregarded, leading to 
prediction bias in minority classes [10]. Although SMOTE has been tested on Support Vector Machines 
(SVM) by research [3], [8], its application in Artificial Neural Networks (ANN) models for lithological data 
has not been optimal. 

This study addresses this gap by creating a lithology prediction model that uses IPI2Win software to 
analyze Schlumberger geophysical resistivity inversion data for ANN training. This approach is further 
enhanced by the implementation of the SMOTE technique, which addresses imbalanced classes due to 
lithology, and K-Fold validation, which ensures stability. SMOTE was selected for its capacity to enhance 
prediction accuracy in minority classes by generating synthetic examples based on interpolation between 
minority class samples, as opposed to merely duplicating data [11], [12], [13]. Additionally, we will compare 
the performance of the ANN with other algorithms, such as SVM and XGBoost. This comparison will 
provide insight into the relative advantages of each method when working with geophysical data. 

Add paragraph 
 
2. RESEARCH METHOD 

This study uses data from a geophysical survey report in East Lampung Regency, Lampung 
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of 
rock layers within the earth [14], [15]. The survey was conducted across 24 subdistricts to determine the 
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local 
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for 
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected 
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2 
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to 
be the most effective method for geophysical investigation [16]. The Schlumberger configuration is used 
because it provides the most accurate and effective results in data collection compared to other geophysical 
methods [17], [18], [19]. A total of 500 measurement points were collected during the geophysical survey. 
However, this study utilized data from 374 measurement points, which yielded two lithological units: 
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories 
still provided meaningful contributions to lithological classification based on geophysical data [20]. 
 
2.1. Data Collection and Geophysical Survey Methodology 

This study uses data from a geophysical survey report in East Lampung Regency, Lampung 
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of 
rock layers within the earth [14], [15]. The survey was conducted across 24 subdistricts to determine the 
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local 
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for 
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected 
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2 
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to 
be the most effective method for geophysical investigation [16]. The Schlumberger configuration is used 
because it provides the most accurate and effective results in data collection compared to other geophysical 
methods [17], [18], [19]. A total of 500 measurement points were collected during the geophysical survey. 
However, this study utilized data from 374 measurement points, which yielded two lithological units: 
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories 
still provided meaningful contributions to lithological classification based on geophysical data [20]. 
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2.2. Inversion of Schlumberger Sounding Data 
Based on the results of the geophysical survey conducted in the field, the obtained data represent 

apparent resistivity values rather than true resistivity values [14]. Therefore, an inversion process is necessary 
to generate a representative subsurface resistivity model [19], [21], [22]. Inversion is performed because 
geophysical observation data does not directly provide information about the physical properties of the 
subsurface. The inversion process aims to construct a realistic and representative subsurface model that can 
be used for geological interpretation, resource exploration, or understanding the tectonic structure of an area 
[17]. The inversion process applied to the data in this study is illustrated in Figure 1. 

 

 
Figure 1. Inversion of Schlumberger Sounding Data 

 
The geophysical measurement process was conducted in the field to obtain apparent resistivity values at 
various depths. The collected data were then processed through inversion steps using IPI2Win software [21], 
[22]. The purpose of this inversion stage is to generate a representative accurate resistivity model as a 
function of depth. This model is the foundation for interpreting subsurface structures and delineating 
geological layers in the study area [22]. 
 
2.3. Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) represents a foundational architecture among feedforward neural 
networks. It comprises multiple fully connected layers of artificial neurons, typically consisting of one or 
more hidden layers and a final output layer [23], [24], [25]. Each neuron in this layer performs a computation 
consisting of a weighted sum of the input signals [26]. In the hidden layer, each neuron similarly computes a 
weighted sum of its inputs, as follows:     

𝑧௝ = ෍ 𝑤௝௜𝑥௜ + 𝑏௝

௡

௜ୀଵ

  

 
Where 𝑧௝is the pre-activation value of neuron j, 𝑤௝௜  is the weight connecting neuron i in the previous layer 
with neuron j. 𝑥௜ is the input value of neuron i and 𝑏௝ is the bias in neuron j, which helps regulate the 
computation result [27]. After calculating the weighted sum, the result is passed through an activation 
function to introduce non-linearity into the model. The activation function used in this study is the Rectified 
Linear Unit (ReLU) [28]. The Rectified Linear Unit (ReLU) activation function is mathematically expressed 
as 𝑓(𝑧) = (0, 𝑧) . It outputs zero for negative inputs and preserves positive values, which contributes to faster 
convergence and enhanced stability during neural network training [29], [30]. 
 
2.4. Machine Learning Workflow: From Data Preprocessing to Model Evaluation 

This study utilized geophysical inversion data obtained from previous surveys as the dataset. The 
dataset comprises 17 columns that include spatial features, depth parameters, resistivity values, and lithology 
labels. Spatial features are represented by latitude and longitude coordinates, while seven depth parameters 
(in meters) correspond to subsurface layers (Depth 1–7). The seven resistivity values (in ohm·m) measured at 
each depth (Resistivity 1–7) were also used as prominent input features. As classification targets, the 
Lithology column includes two main volcanic lithology categories: Extrusive mafic lava (0) and Extrusive 
intermediate pyroclastic (1). This dataset comprises 374 data points selected from an initial set of 500, which 
had undergone prior validation as part of this study’s data quality assurance process. The input features (X) 
encompass all variables except the Lithology column: latitude, longitude, depth 1–7, and resistivity 1–7. The 
lithology label (y) is encoded into numerical values using LabelEncoder to meet the ANN model input 
requirements. In contrast, numerical features are normalized with StandardScaler to ensure data scale 
uniformity and improve model training convergence [31]. Resistivity and depth serve as essential parameters 

(1) 
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for characterizing variations in the electrical properties of subsurface rock formations, which play a 
significant role in lithological identification [32]. 
 

 
Figure 2. Workflow for Lithology Classification Using Multi-Layer Perceptron (MLP) 

 

Figure 2 illustrates that the Artificial Neural Network (ANN) model used in this study was designed based on 
the Multi-Layer Perceptron (MLP) architecture, which consists of two hidden layers [33]. The first layer 
consists of 128 neurons with a ReLU activation function, followed by BatchNormalization and Dropout 
(dropout rate=0.3), while the second layer has 64 neurons with a similar configuration. The model was 
compiled with Adam optimization (learning rate=0.001) and accuracy metrics. To address the class 
imbalance in the training data, the SMOTE (Synthetic Minority Over-sampling Technique) was applied in 
each training iteration. Model validation was performed using the Stratified K-Fold Cross Validation 
approach (n=5), ensuring that class distribution remained consistent across each data split. During training, 
the EarlyStopping and ReduceLROnPlateau callbacks were used to prevent overfitting and dynamically 
adjust the learning rate [34]. The model was trained for 50 epochs with a batch size of 32. Model 
performance evaluation included accuracy, confusion matrix, and classification report (precision, recall, F1-
score). The results showed the average accuracy from 5 folds, with visualization of the confusion matrix for 
classification error analysis. Each fold stored the best model for potential inference use. 
 
3. RESEARCH METHOD 
 This study utilized the artificial neural network (ANN) algorithm to identify and classify lithological 
units derived from geoelectrical inversion data. Class distribution was visualized using the t-SNE technique 
before model training as part of preliminary data analysis. Figure 3 presents visualization results that reveal 
the spatial distribution of classes and support the assessment of class balancing techniques, such as SMOTE. 
These methods improved model performance by reducing bias toward majority classes and enhancing 
generalization. Additionally, feature correlations were examined to ensure input independence. The results 
demonstrate that machine learning techniques can significantly contribute to subsurface characterization 
when combined with appropriate preprocessing and interpretation strategies. Furthermore, integrating 
geological context into feature selection helped improve the relevance and physical interpretability of the 
classification outcomes. This approach highlights the potential for data-driven models to complement 
traditional geological analysis in complex subsurface environments. Such integration opens new 
opportunities for more accurate and efficient subsurface modeling, especially in areas with limited direct 
observations. 
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(A) 

 
(B) 

Figure 3. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization 

 

As shown in Figure 3, panel (a) displays the original class distribution before SMOTE, whereas panel (b) 
presents the balanced class distribution following SMOTE application. This technique mitigated class 
imbalance by generating synthetic samples for the minority class, achieving a more uniform distribution 
across the feature space. However, this also increases the complexity of the data structure, which may hinder 
class separability by machine learning models. Therefore, tailored approaches such as SMOTE parameter 
optimization and appropriate algorithm selection are necessary to maximize the effectiveness of this method. 
The results indicate that SMOTE is an effective method for mitigating class imbalance. Nevertheless, careful 
application is required to minimize risks such as overfitting and introducing unnecessary data complexity. 
After observing the distribution of data before and after the application of SMOTE through t-SNE 
visualization, the next step is to apply a machine learning algorithm using the Multi-Layer Perceptron (MLP) 
Artificial Neural Network (ANN) algorithm. Model validation was carried out using the Stratified K-Fold 
Cross Validation (n=5) approach, with the results shown in Table 1. 

 
Table 1. Evaluation Results of the ANN Model with SMOTE Based on 5-Fold Cross-Validation 

Fold Class 
SMOTE 

Precision Recall F1-Score Support Accuracy 
Before After 

1 
0 68 231 0.7143 0.8824 0.7895 17 

0.8933 
1 231 231 0.9630 0.8966 0.9286 58 

2 
0 68 231 0.8333 0.8824 0.8571 17 

0.9333 
1 231 231 0.9649 0.9483 0.9565 58 

3 
0 68 231 0.7778 0.8235 0.8000 17 

0.9067 
1 231 231 0.9474 0.9310 0.9391 58 

4 
0 68 231 0.6667 0.9412 0.7805 17 

0.8800 
1 231 231 0.9804 0.8621 0.9174 58 

5 
0 68 232 0.7619 0.9412 0.8421 17 

0.9189 
1 232 232 0.9811 0.9123 0.9455 57 
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In Table 1, class 0 represents Extrusive: mafic: lava, and class 1 represents Extrusive: intermediate: 
pyroclastic. Model validation was performed using the Stratified K-Fold Cross Validation approach (n=5), 
resulting in an average accuracy of 90.65% with a standard deviation of ±1.87%. These results indicate that 
the Artificial Neural Network (ANN) model performs excellently and stably, with all folds achieving an 
accuracy of over 85%. Although minor variations were observed across folds (accuracy range: 88.00%–
93.33%), the EarlyStopping and ReduceLROnPlateau callbacks were employed during training to prevent 
overfitting and enable dynamic learning rate adjustment. The model was configured with the Adam optimizer 
(learning rate = 0.001) and SMOTE to address class imbalance. Figure 4 presents the accuracy of each fold in 
the K-Fold cross-validation. 
 

 
Figure 4. Accuracy of Each Fold in K-Fold Cross Validation 

 
The same dataset was used to evaluate the performance of additional machine learning algorithms, 
specifically, the Support Vector Machine (SVM) and XGBoost, to compare model accuracy and stability in 
lithology classification based on geoelectrical inversion data. Table 2 presents the average accuracy results 
for the three algorithms, providing a comparative overview of the effectiveness of the Artificial Neural 
Network (ANN), SVM, and XGBoost on the identical dataset. 
 

Table 2. Comparison of Results Across Machine Learning Algorithms Using the Same Dataset 

Model Precision Recall F1-Score Accuracy 

ANN 0.85 0.90 0.87 0.90 
SVM 0.82 0.82 0.82 0.87 

XGBoost 0.84 0.85 0.84 0.88 

 
According to the results in table 2, the Artificial Neural Network (ANN) achieved the highest classification 
performance in lithology identification, with an accuracy of 90% and an F1-score of 0.87. This result 
surpassed the Support Vector Machine (SVM), which recorded 87% accuracy and an F1-score of 0.82, and 
XGBoost, which yielded 88% accuracy and an F1-score of 0.84. The effectiveness of ANN can be attributed 
to its capacity to model complex, non-linear relationships in geophysical features such as depth and 
resistivity. While SVM and XGBoost provide strong alternatives, the results indicate that ANN offers 
superior stability and performance in handling imbalanced lithology classification tasks. 
 

Table 3. Comparison of Results with Existing Models from Previous Studies 

Model Dataset Accuracy Keterangan 

Convolutional Neural Network 
(CNN) [1] 

Drill string vibration 
data 

0.90 

This study introduces a new method for real-time 
identification of rock formation lithology using 
drill string vibration data obtained during the 
drilling process. 

Deep Artificial Neural 
Networks (DANN) [2] 

Indoor core drilling 
machine 

> 0.92 
This research converts drilling data (torque, 
WOB, rotational speed) into an RGB image-like 
representation. 

Artificial Neural Network 
(ANN) [3] 

Diamond Drilling 
Records 

0.66 
This study uses diamond drilling records, rock 
samples, and other related reports that prove 
categorical variables. 

Proposed model 
Geoelectrical 

Inversion Data 
0.90 

This study utilizes Schlumberger-configured 
geoelectrical data inverted into a structured 
dataset. 
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Table 2 presents the evaluation results of four machine learning models using geotechnical and drilling data 
adapted from previous studies. The CNN model achieved an accuracy of 0.90 using drill string vibration 
data. The DANN model exhibited superior performance, with an accuracy exceeding 0.92, based on RGB 
image representations of drilling data obtained from an indoor core drilling machine. In comparison, the 
ANN model achieved a lower accuracy of 0.66 when trained on diamond drilling records. The proposed 
approach, which leveraged geophysical inversion data from the Schlumberger configuration, attained an 
accuracy of 0.90, demonstrating its effectiveness for lithology classification. This study’s main novelty lies in 
applying a machine learning model based on geoelectrical inversion data from the Schlumberger 
configuration for lithology prediction. Unlike models that rely on direct drilling parameters such as vibration 
or torque, this approach utilizes resistivity values obtained through inversion, which represent subsurface 
geophysical properties. The dataset exhibits distinct spatial characteristics and vertical resolution compared 
to those used in previous studies, offering a novel perspective on lithology identification based on 
geophysical data. This approach opens new possibilities for geophysical surveys to classify rock formation 
lithology. 
 
4. CONCLUSION 

The study highlights the effectiveness of integrating geoelectrical inversion data from the 
Schlumberger configuration with an Artificial Neural Network (ANN) to develop robust lithology prediction 
models. Using Stratified K-Fold Cross-Validation (k=5), the model achieved an average classification 
accuracy of 90.65%. The Artificial Neural Network (ANN) outperformed conventional machine learning 
algorithms, including Support Vector Machine (SVM) and XGBoost, modeling complex, non-linear 
associations among resistivity parameters, depth, and lithological classes. This performance advantage was 
maintained even under imbalanced data conditions, where class distribution was adjusted using the SMOTE 
technique. Unlike prior studies that predominantly utilized drilling records or image-based features, this 
research employs geoelectrical inversion data generated by IPI2Win as the primary input for model 
development. This conceptual shift introduces a novel framework for geophysical data-driven lithology 
classification, offering advantages in terms of speed, cost-efficiency, and objectivity in identifying subsurface 
rock types. Consequently, this study contributes to advancing artificial intelligence applications in geological 
resource exploration, particularly in areas with limited direct drilling data. Furthermore, it demonstrates 
potential as a decision-support tool for subsurface analysis in geophysics and sustainable energy exploration. 
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