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ABSTRACT
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The Schlumberger geoelectric method has been extensively
employed in earth resource exploration due to its capability to
identify variations in subsurface resistivity. However, the manual
interpretation of geoelectric data inversion results is often subjective

and time-consuming. This study aims to automate the lithology
identification process by utilizing deep learning techniques,
particularly Artificial Neural Networks (ANN), based on the inverted
resistivity parameters obtained through the IPI2Win software. The
Schlumberger configuration geoelectric data were obtained from
survey reports provided by the Ministry of Public Works and
Housing (Kementerian Pekerjaan Umum dan Perumahan Rakyat/
PUPR), which conducted geoelectric measurements in East Lampung
Regency, Lampung Province, Indonesia. The ANN algorithm
demonstrated an average accuracy of 90% in predicting lithology
based on resistivity patterns resulting from Schlumberger inversion.
Outperforming Support Vectorr Machine (SVM) (87%) and
XGBoost (88%). These results confirm the initial hypothesis that
ANN can effectively capture the complex relationships between
resistivity values and rock types. The present study proposes an
integrated approach between geophysics and machine learning with
ANN algorithms for lithology prediction based on Schlumberger
configuration geophysical inversion data. The present study proposes
an integrated approach between geophysics and machine learning
with ANN algorithms for lithology prediction based on Schlumberger
configuration geophysical inversion data.

Copyright © 2025 Puzzle Research Data Technology
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1. INTRODUCTION

Lithology is a key parameter in the exploration of geological resources, particularly for identifying
rock formations, assessing hydrocarbon potential, and mitigating geohazard risks such as landslides or
seawater intrusion. Traditional approaches such as core drilling analysis or data logging have long been used
for lithological interpretation. However, these methods have significant limitations, including high costs,
lengthy processing times, and subjectivity in interpretation results [1], [2], [3], [4]. Core drilling analysis
requires complex physical extraction of rock cores and manual interpretation that is prone to error [5], [6].
Furthermore, conventional geophysical methods, such as Schlumberger resistivity measurements, frequently
yield data that is challenging to translate directly into lithological categories without a robust analytical
approach [7]. Challenges in lithological interpretation are of particular concern. According to research [8],
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factors such as local variations, mineralogical composition, and moisture content can influence the results of
rock resistivity interpretation. Additionally, geological interpretation challenges were highlighted in Study
[9], which demonstrated that inaccuracies in geophysical surveys can lead to engineering issues in building
construction in Nigeria. These structural failures were caused by inaccurate interpretations, necessitating
better integration between geotechnical and geophysical disciplines in interpreting subsurface characteristic
values.Therefore, integrating geophysical methods with machine learning algorithms is an innovative way to
improve the accuracy and efficiency of predicting lithology.

Several machine learning approaches have been proposed in previous studies for lithology
classification. Study [3] utilized geophysical well-log data from nine wells in an Iranian gas field, comprising
44,521 depth-level records with 11 well-log features and four lithology classes. Study [10] employed the
same dataset from two gas hydrate exploration wells in the Alaska North Slope (ANS). The well-log data
used in these studies were derived from subsurface geophysical surveys and are publicly available. Input
features included Gamma Ray (GR), Bulk Density, Neutron Porosity, Density Porosity, Resistivity, and
Compressional Velocity. In addition to well-log data, study [5] incorporated image-based Computed
Tomography (CT Scan) datasets obtained from rock core samples. That study classified three lithological
types—carbonate, sandstone, and shale—with original image dimensions of 1000x1000 pixels, which were
resized to 224x224 pixels to meet the input requirements of the Convolutional Neural Network (CNN)
model. According on [3], the development of a Residual Convolutional Neural Network (ResCNN) for the
classification of Iranian gas fields has been shown to achieve an F1-score of up to 80%, with a particular
emphasis on well-log data. This study highlights the importance of feature interpretation (SHAP) and the
stability of models against noise. The findings of research [10] demonstrate that supervised learning
algorithms, such as neural networks, exhibit an accuracy of up to 90%, while unsupervised learning methods
attain approximately 80%. A similar approach can be developed using inverse resistivity data from
Schlumberger surveys. Another study introduced RockDNet, a CNN model for lithology classification based
on rock core images. However, this study did not integrate geophysical data such as Schlumberger resistivity
[5]. The utilisation of Artificial Neural Networks (ANN) was also examined in study [2], which employed
core drilling data to identify lithofacies with an accuracy of 88.2% by leveraging the XGBoost algorithm.
Nevertheless, this approach is restricted to structural data and does not take into account geophysical data
such as Schlumberger resistivity. Despite the noteworthy advancements, there remain notable lacunae in the
amalgamation of Schlumberger geophysical data with ANN models that have been optimized through
techniques such as Synthetic Over-Sampling Technique (SMOTE) and K-Fold validation. A prevailing
tendency in extant studies has been to concentrate on a solitary form of data, such as well logs and rock core
images, while neglecting to leverage the full potential of inverse geophysical data as the primary input [1],
[7], [11]. Furthermore, lithological class imbalance is frequently disregarded, leading to prediction bias in
minority classes [12]. Although SMOTE has been tested on Support Vector Machines (SVM) by research
[3], [20], its application in ANN models for lithological data has not been optimal. This study addresses this
gap by creating a lithology prediction model that uses IPI2Win software to analyze Schlumberger
geophysical resistivity inversion data for ANN training. This approach is further enhanced by the
implementation of the SMOTE technique, which addresses imbalanced classes due to lithology, and K-Fold
validation, which ensures stability. SMOTE was selected for its capacity to enhance prediction accuracy in
minority classes by generating synthetic examples based on interpolation between minority class samples, as
opposed to merely duplicating data [13], [14], [15]. Additionally, we will compare the performance of the
ANN with other algorithms, such as SVM and XGBoost. This comparison will provide insight into the
relative advantages of each method when working with geophysical data.

This study aims to develop a lithology classification model based on the ANN algorithm, utilizing
inverted geoelectrical data from the Schlumberger configuration processed using the IPI2Win software.
Geoelectrical resistivity measurements typically provide subsurface resistivity variations that can be
correlated with specific lithological units. However, manual lithology classification based on resistivity
values is often subjective and time-consuming. Therefore, this research proposes a machine learning-based
approach to accelerate the classification process and improve its accuracy. The ANN algorithm was selected
due to its capability to model complex, non-linear relationships commonly found in geophysical datasets.
Furthermore, to address the issue of class imbalance which can lead to biased predictions and poor model
performance the Synthetic Minority Over-sampling Technique (SMOTE) was employed. This technique
enhances the representation of minority classes, allowing the model to learn more effectively from all
available classes. Model validation was conducted using five-fold cross-validation to assess its robustness,
consistency, and generalization ability. The results of this study are expected to contribute to the growing
application of machine learning techniques in geophysical exploration, particularly in lithology classification
using geoelectrical resistivity data.

IJAIDM Vol. 8, No. 2, July 2025: 427 — 436
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2. RESEARCH METHOD

This study uses data from a geophysical survey report in East Lampung Regency, Lampung
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of
rock layers within the earth [16], [17]. The survey was conducted across 24 subdistricts to determine the
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to
be the most effective method for geophysical investigation [18]. The Schlumberger configuration is used
because it provides the most accurate and effective results in data collection compared to other geophysical
methods [19], [20], [21]. A total of 500 measurement points were collected during the geophysical survey.
However, this study utilized data from 374 measurement points, which yielded two lithological units:
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories
still provided meaningful contributions to lithological classification based on geophysical data [22].

2.1. Data Collection and Geophysical Survey Methodology

This study uses data from a geophysical survey report in East Lampung Regency, Lampung
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of
rock layers within the earth [16], [17]. The survey was conducted across 24 subdistricts to determine the
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to
be the most effective method for geophysical investigation [18]. The Schlumberger configuration is used
because it provides the most accurate and effective results in data collection compared to other geophysical
methods [19], [20], [21]. A total of 500 measurement points were collected during the geophysical survey.
However, this study utilized data from 374 measurement points, which yielded two lithological units:
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories
still provided meaningful contributions to lithological classification based on geophysical data [22].

2.2. Inversion of Schlumberger Sounding Data

Based on the results of the geophysical survey conducted in the field, the obtained data represent
apparent resistivity values rather than true resistivity values [16]. Therefore, an inversion process is necessary
to generate a representative subsurface resistivity model [21], [23], [24]. Inversion is performed because
geophysical observation data does not directly provide information about the physical properties of the
subsurface. The inversion process aims to construct a realistic and representative subsurface model that can
be used for geological interpretation, resource exploration, or understanding the tectonic structure of an area
[19]. The inversion process applied to the data in this study is illustrated in Figure 1.

GEOLECTRICAL MEASUREMENT DATA (SCHLUMBERGER)

378 15
0808 65
1688 17
8342 543

[ 3 ]
167.92 14

250 9N

Vertical Electrical Sounding VES) Measurement Inversion Using IP2Win Lithology Dataset Preparation

Figure 1. Inversion of Schlumberger Sounding Data

The geophysical measurement process was conducted in the field to obtain apparent resistivity
values at various depths. The collected data were then processed through inversion steps using IP12Win
software [23], [24]. The purpose of this inversion stage is to generate a representative accurate resistivity

Lithology Prediction Using Deep Learning Artificial ... (Ramadhan et al)
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model as a function of depth. This model is the foundation for interpreting subsurface structures and
delineating geological layers in the study area [24].

2.3. Multilayer Perceptron (MLP)

The MLP represents a foundational architecture among feedforward neural networks. It comprises
multiple fully connected layers of artificial neurons, typically consisting of one or more hidden layers and a
final output layer [25], [26], [27]. Each neuron in this layer performs a computation consisting of a weighted
sum of the input signals [28]. In the hidden layer, each neuron similarly computes a weighted sum of its
inputs, as follows:

zj = Y= WjiX; + b; 1)

Where z;is the pre-activation value of neuron j, wy; is the weight connecting neuron i in the previous
layer with neuron j. x; is the input value of neuron i and b; is the bias in neuron j, which helps regulate the
computation result [29]. After calculating the weighted sum, the result is passed through an activation
function to introduce non-linearity into the model. The activation function used in this study is the Rectified
Linear Unit (ReLU) [30]. The Rectified Linear Unit (ReLU) activation function is mathematically expressed
as f(z) = (0,z) . It outputs zero for negative inputs and preserves positive values, which contributes to faster
convergence and enhanced stability during neural network training [31], [32].

2.4. Machine Learning Workflow: From Data Preprocessing to Model Evaluation

This study utilized geophysical inversion data obtained from previous surveys as the dataset. The
dataset comprises 17 columns that include spatial features, depth parameters, resistivity values, and lithology
labels. Spatial features are represented by latitude and longitude coordinates, while seven depth parameters
(in meters) correspond to subsurface layers (Depth 1-7). The seven resistivity values (in ohm-m) measured at
each depth (Resistivity 1-7) were also used as prominent input features. As classification targets, the
Lithology column includes two main volcanic lithology categories: Extrusive mafic lava (0) and Extrusive
intermediate pyroclastic (1). This dataset comprises 374 data points selected from an initial set of 500, which
had undergone prior validation as part of this study’s data quality assurance process. The input features (X)
encompass all variables except the Lithology column: latitude, longitude, depth 1-7, and resistivity 1-7. The
lithology label (y) is encoded into numerical values using LabelEncoder to meet the ANN model input
requirements. In contrast, numerical features are normalized with StandardScaler to ensure data scale
uniformity and improve model training convergence [33]. Resistivity and depth serve as essential parameters
for characterizing variations in the electrical properties of subsurface rock formations, which play a
significant role in lithological identification [34].

Stratified K-F old CrossValidation (n=5}
Vertical E lecrical Sounding > Spiit Features (X} and
(VES)Measurement Targets (v}
Split Data Train dan Val —= Training Model
3 h 4
Smote Oversampling Model Evaluation Caleulate the average
Inversion Using IPIZ¥in Drata Normalization with > #=  accuracy and standard
Build Model Save Model and Accuracy
3 - h 4
Inttiglization of ANM —¢— —¢—
Drata P reparation Algorithm Model with MLP
Architecture Add Callbacks Plot Confusion Matrix and
Report

Figure 2. Workflow for Lithology Classification Using MLP

Figure 2 illustrates that the ANN model used in this study was designed based on the MLP
architecture, which consists of two hidden layers [35]. The first layer consists of 128 neurons with a ReLU
activation function, followed by BatchNormalization and Dropout (dropout rate=0.3), while the second layer
has 64 neurons with a similar configuration. The model was compiled with Adam optimization (learning
rate=0.001) and accuracy metrics. To address the class imbalance in the training data, the SMOTE was
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applied in each training iteration. Model validation was performed using the Stratified K-Fold Cross
Validation approach (n=5), ensuring that class distribution remained consistent across each data split. During
training, the EarlyStopping and ReduceLROnPlateau callbacks were used to prevent overfitting and
dynamically adjust the learning rate [36]. The model was trained for 50 epochs with a batch size of 32.
Model performance evaluation included accuracy, confusion matrix, and classification report (precision,
recall, F1-score). The results showed the average accuracy from 5 folds, with visualization of the confusion
matrix for classification error analysis. Each fold stored the best model for potential inference use.

3. RESULT AND ANALYSIS

This study uses geophysical survey data from Schlumberger configuration measurements in the East
Lampung region of Lampung Province. The data obtained was then inverted using IPI2Win software to
produce subsurface resistivity values. Each dataset is accompanied by lithological information derived from
geophysical measurements, such as the latitude and longitude of the measurement area, depth, and resistivity
values at each measurement depth. In the data preprocessing stage, lithological classes were coded into
numerical values. Additionally, to address data imbalance, the SMOTE was applied to generate synthetic
samples in the minority class. Modeling was performed using the ANN algorithm with a MLP approach.
Model training was conducted using Adam optimization with a cross-entropy loss function. To evaluate
performance and ensure generalization, cross-validation with five folds was applied, and model performance
was assessed based on accuracy, precision, recall, and F-1 score metrics. The analysis process began with
data collection and data inversion using IPI2Win software. The correlation matrix in Figure 3 was used to
identify linear relationships between features that indicate multicollinearity among several variables.
Variables res_4, res_5, res_6, and res_7 have a high correlation, while variables depth_3 and depth_4 also
show a strong relationship. However, there is a significant negative relationship between the lithology
variable and several resistivity variables. The relationships between variables, particularly between lithology
and resistivity values, provide important insights into the geological dynamics within the dataset. Selecting
the appropriate machine learning algorithm is crucial for subsurface lithology classification. This study
employs an ANN algorithm, which handles multicollinearity relatively better than traditional linear models.

10
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Figure 3. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization

This study utilized the ANN algorithm to identify and classify lithological units derived from
geoelectrical inversion data. Class distribution was visualized using the t-SNE technique before model
training as part of preliminary data analysis. Figure 4 presents visualization results that reveal the spatial
distribution of classes and support the assessment of class balancing techniques, such as SMOTE. These
methods improved model performance by reducing bias toward majority classes and enhancing
generalization. Additionally, feature correlations were examined to ensure input independence. The results
demonstrate that machine learning techniques can significantly contribute to subsurface characterization
when combined with appropriate preprocessing and interpretation strategies. Furthermore, integrating
geological context into feature selection helped improve the relevance and physical interpretability of the
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classification outcomes. This approach highlights the potential for data-driven models to complement
traditional geological analysis in complex subsurface environments. Such integration opens new
opportunities for more accurate and efficient subsurface modeling, especially in areas with limited direct
observations.

Lithology
0

1

TSNE Camponent 2

10 5 [ 5 1o 15
©5NE Component 1
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Figure 4. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization

As shown in Figure 4, panel (a) displays the original class distribution before SMOTE, whereas
panel (b) presents the balanced class distribution following SMOTE application. This technique mitigated
class imbalance by generating synthetic samples for the minority class, achieving a more uniform distribution
across the feature space. However, this also increases the complexity of the data structure, which may hinder
class separability by machine learning models. Therefore, tailored approaches such as SMOTE parameter
optimization and appropriate algorithm selection are necessary to maximize the effectiveness of this method.
The results indicate that SMOTE is an effective method for mitigating class imbalance. Nevertheless, careful
application is required to minimize risks such as overfitting and introducing unnecessary data complexity.
After observing the distribution of data before and after the application of SMOTE through t-SNE
visualization, the next step is to apply a machine learning algorithm using the MLP ANN algorithm. Model
validation was carried out using the Stratified K-Fold Cross Validation (n=5) approach, with the results
shown in Table 1.

In Table 1, class O represents Extrusive: mafic: lava, and class 1 represents Extrusive: intermediate:
pyroclastic. Model validation was performed using the Stratified K-Fold Cross Validation approach (n=5).
The model consists of two hidden layers with the first layer having 128 neurons and the second layer using
64 neurons to gradually reduce complexity and prevent overfitting, resulting in an average accuracy of
90.65% with a standard deviation of £1.87%. These results indicate that the ANN model performs excellently
and stably, with all folds achieving an accuracy of over 85%. Although minor variations were observed
across folds (accuracy range: 88.00%-93.33%), the EarlyStopping and ReduceLROnPlateau callbacks were
employed during training to prevent overfitting and enable dynamic learning rate adjustment. The model was
configured with the Adam optimizer (learning rate = 0.001) and SMOTE to address class imbalance.
Although the ANN algorithm achieved an average accuracy of 90.65%, based on the data in Table 1. There is
variation in performance between classes, where Class 1 (Extrusive intermediate pyroclastic) has very high
precision and recall values exceeding 90% due to the larger amount of data and dominant resistivity patterns,
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as well as unique resistivity values. Class 0 (Extrusive mafic lava), although it has a relatively high recall
rate, has a lower precision rate, resulting in the model incorrectly predicting some samples. The primary
cause of the model's inaccuracy in prediction is that some pyroclastic data overlap, particularly the resistivity
values res_4 and res_6. Additionally, vertical and lateral lithological variations in the East Lampung region
cause smooth resistivity transitions, making the boundaries between lithological units not always clearly
reflected as sharp changes in the resistivity profile. This makes explicit class separation challenging,
especially in transition zones. Figure 5 presents the accuracy of each fold in the K-Fold cross-validation.

Table 1. Evaluation Results of the ANN Model with SMOTE Based on 5-Fold Cross-Validation
SMOTE

Fold Class Before Aftor Precision Recall F1-Score Support Accuracy

1 0 68 231 0.7143 0.8824 0.7895 17 0.8933
1 231 231 0.9630 0.8966 0.9286 58 '

2 0 68 231 0.8333 0.8824 0.8571 17 0.9333
1 231 231 0.9649 0.9483 0.9565 58 '

3 0 68 231 0.7778 0.8235 0.8000 17 0.9067
1 231 231 0.9474 0.9310 0.9391 58 '

4 0 68 231 0.6667 0.9412 0.7805 17 0.8800
1 231 231 0.9804 0.8621 0.9174 58 '

5 0 68 232 0.7619 0.9412 0.8421 17 0.9189
1 232 232 0.9811 0.9123 0.9455 57 )

——- Average Accuracy: 0.9065
1.0 (O Best(Fold 2)

0.8 +

Accuracy

0.4+

0.2+

0.0
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold

Figure 5. Accuracy of Each Fold in K-Fold Cross Validation

The same dataset was used to evaluate the performance of additional machine learning algorithms,
specifically, the SVM and XGBoost, to compare model accuracy and stability in lithology classification
based on geoelectrical inversion data. Table 2 presents the average accuracy results for the three algorithms,
providing a comparative overview of the effectiveness of the ANN, SVM, and XGBoost on the identical
dataset.

Table 2. Comparison of Results Across Machine Learning Algorithms Using the Same Dataset

Model Precision Recall F1-Score Accuracy

ANN 0.85 0.90 0.87 0.90

SVM 0.82 0.82 0.82 0.87
XGBoost 0.84 0.85 0.84 0.88

According to the results in table 2, the ANN achieved the highest classification performance in
lithology identification, with an accuracy of 90% and an F1-score of 0.87. This result surpassed the SVM,
which recorded 87% accuracy and an F1-score of 0.82, and XGBoost, which yielded 88% accuracy and an
F1-score of 0.84. The effectiveness of ANN can be attributed to its capacity to model complex, non-linear
relationships in geophysical features such as depth and resistivity. While SVM and XGBoost provide strong
alternatives, the results indicate that ANN offers superior stability and performance in handling imbalanced
lithology classification tasks.

Table 3 presents the evaluation results of four machine learning models using geotechnical and
drilling data adapted from previous studies. The CNN model achieved an accuracy of 0.90 using drill string
vibration data. The DANN model exhibited superior performance, with an accuracy exceeding 0.92, based on
RGB image representations of drilling data obtained from an indoor core drilling machine. In comparison,
the ANN model achieved a lower accuracy of 0.66 when trained on diamond drilling records. The proposed
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approach, which leveraged geophysical inversion data from the Schlumberger configuration, attained an
accuracy of 0.90, demonstrating its effectiveness for lithology classification. This study’s main novelty lies in
applying a machine learning model based on geoelectrical inversion data from the Schlumberger
configuration for lithology prediction. Unlike models that rely on direct drilling parameters such as vibration
or torque, this approach utilizes resistivity values obtained through inversion, which represent subsurface
geophysical properties. The dataset exhibits distinct spatial characteristics and vertical resolution compared
to those used in previous studies, offering a novel perspective on lithology identification based on
geophysical data. This approach opens new possibilities for geophysical surveys to classify rock formation

lithology.
Table 3. Comparison of Results with Existing Models from Previous Studies
Model Dataset Accuracy Information
Drill string vibration This study introduces a new method for real-time
CNN [1] dgta 0.90 identification of rock formation lithology using drill
string vibration data obtained during the drilling process.
Deep Artificial Neural Indoor core drilling This research converts drilling data (torque, WOB,

Networks (DANN) [2] machine >092 rotational speed) into an RGB image-like representation.

ANN [3] Diamond Drilling 066 This study uses diamond drilling records, rock samples,
Records ' and other related reports that prove categorical variables.
Geoelectrical This study utilizes Schlumberger-configured

Proposed model Inversion Data 0.90 geoelectrical data inverted into a structured dataset.

4. CONCLUSION

The study highlights the effectiveness of integrating geoelectrical inversion data from the
Schlumberger configuration with an ANN to develop robust lithology prediction models. Using Stratified K-
Fold Cross-Validation (k=5), the model achieved an average classification accuracy of 90.65%. The ANN
outperformed conventional machine learning algorithms, including SVM and XGBoost, modeling complex,
non-linear associations among resistivity parameters, depth, and lithological classes. This performance
advantage was maintained even under imbalanced data conditions, where class distribution was adjusted
using the SMOTE technique. Unlike prior studies that predominantly utilized drilling records or image-based
features, this research employs geoelectrical inversion data generated by IPI2Win as the primary input for
model development. This conceptual shift introduces a novel framework for geophysical data-driven
lithology classification, offering advantages in terms of speed, cost-efficiency, and objectivity in identifying
subsurface rock types. Consequently, this study contributes to advancing artificial intelligence applications in
geological resource exploration, particularly in areas with limited direct drilling data. Furthermore, it
demonstrates potential as a decision-support tool for subsurface analysis in geophysics and sustainable
energy exploration. This research can be further developed using larger datasets from various geographical
regions. This will improve the model's generalization ability and enable comprehensive evaluation of the
model's performance on various subsurface geologies. To address the common issue of class imbalance in
lithology datasets caused by uneven rock type distribution, future research can explore other oversampling
techniques. Future developments will deepen the application of Artificial Intelligence in subsurface lithology
modeling and support broader applications in automated geological interpretation and sustainable resource
exploration.

REFERENCES

[1] G. Chen, M. Chen, G. Hong, Y. Lu, B. Zhou, and Y. Gao, “A new method of lithology classification based on
convolutional neural network algorithm by utilizing drilling string vibration data,” Energies (Basel), vol. 13, no.
4, 2020, doi: 10.3390/en13040888.

[2] M. Yang, Y. Hu, B. Liu, L. Wang, Z. Zhou, and M. Jia, “Application of Artificial Neural Networks for
Identification of Lithofacies by Processing of Core Drilling Data,” Applied Sciences (Switzerland), vol. 13, no.
21, Nov. 2023, doi: 10.3390/app132111934.

[3] S. H. R. Mousavi and S. M. Hosseini-Nasab, “Residual Convolutional Neural Network for Lithology
Classification: A Case Study of an Iranian Gas Field,” Int J Energy Res, vol. 2024, 2024, doi:
10.1155/2024/5576859.

[4] H. Liang, H. Chen, J. Guo, J. Bai, and Y. Jiang, “Research on lithology identification method based on
mechanical specific energy principle and machine learning theory,” Expert Syst Appl, vol. 189, Mar. 2022, doi:
10.1016/j.eswa.2021.116142.

[5] M. A. M. Abdullah, A. A. Mohammed, and S. R. Awad, “RockDNet: Deep Learning Approach for Lithology
Classification,” Applied Sciences (Switzerland), vol. 14, no. 13, Jul. 2024, doi: 10.3390/app14135511.

[6] D. Fu, C. Su, W. Wang, and R. Yuan, “Deep learning based lithology classification of drill core images,” PL0OS
One, vol. 17, no. 7 July, Jul. 2022, doi: 10.1371/journal.pone.0270826.

IJAIDM Vol. 8, No. 2, July 2025: 427 — 436

v iThentiCQte Page 14 of 16 - Integrity Submission Submission ID  trn:oid:::27385:117730929



+ iThenticate Page 15 of 16 - Integrity Submission Submission ID  trn:oid:::27385:117730929

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 435

[7] R. S. Permana, A. P. Buana, A. Akmam, H. Amir, and A. Putra, “Using the Schlumberger configuration
resistivity geoelectric method to estimate the rock structure at landslide zone in Malalak agam,” in Journal of
Physics: Conference Series, Institute of Physics Publishing, May 2020. doi: 10.1088/1742-6596/1481/1/012034.

[8] A. A. Sembiring and A. Akmam, “Damping Factors in the Interpretation of Geoelectric Data (Case Study:
Malalak Agam Rock Structure),” ALSYSTECH Journal of Education Technology, vol. 2, no. 2, pp. 141-159, May
2024, doi: 10.58578/alsystech.v2i2.3082.

[9] K. D. Oyeyemi et al., “Geoengineering site characterization for foundation integrity assessment,” Cogent Eng,
vol. 7, no. 1, Jan. 2020, doi: 10.1080/23311916.2020.1711684.

[10] H. Singh, Y. Seol, and E. M. Myshakin, “Automated Well-Log Processing and Lithology Classification by
Identifying Optimal Features through Unsupervised and Supervised Machine-Learning Algorithms,” SPE
Journal, vol. 25, no. 5, pp. 2778-2800, Oct. 2020, doi: 10.2118/202477-PA.

[11] A. Singh, M. Ojha, and K. Sain, “Predicting lithology using neural networks from downhole data of a gas hydrate
reservoir in the Krishna-Godavari basin, eastern Indian offshore,” Geophys J Int, vol. 220, no. 3, pp. 1813-1837,
Mar. 2020, doi: 10.1093/gji/ggz522.

[12] J. J. Marquina-Araujo et al., “Application of Multilayer Perceptron Neural Network in Geological Modeling of
Categorical Variables: A Case Study in Peru,” Mathematical Modelling of Engineering Problems, vol. 11, no. 6,
pp. 1463-1472, Jun. 2024, doi: 10.18280/mmep.110607.

[13] F. Gurcan and A. Soylu, “Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and
Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis,” Cancers (Basel), vol. 16, no. 19, Oct.
2024, doi: 10.3390/cancers16193417.

[14]  N. Nnamoko and I. Korkontzelos, “Efficient treatment of outliers and class imbalance for diabetes prediction,”
Artif Intell Med, vol. 104, Apr. 2020, doi: 10.1016/j.artmed.2020.101815.

[15] M. Koziarski, “Potential Anchoring for imbalanced data classification,” Pattern Recognit, vol. 120, Dec. 2021,
doi: 10.1016/j.patcog.2021.108114.

[16] W. M. (William M. Telford 1917-1997, Applied geophysics. Second edition. Cambridge [England] ; New York :
Cambridge University Press, 1990., 1990. [Online]. Auvailable:
https://search.library.wisc.edu/catalog/999608560002121

[17] J. M. Reynolds, An introduction to applied and environmental geophysics. Chichester ; New York : John Wiley,
1997., 1997. [Online]. Available: https://search.library.wisc.edu/catalog/999809641902121

[18] M. A. Mohammed, N. M. Muztaza, and R. Saad, “The influence of non-collinear electrodes arrangement on a
two-dimensional resistivity survey using wenner array,” in Journal of Physics: Conference Series, I0P
Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1825/1/012012.

[19] Y. Palimbong, M. Arisalwadi, E. Agustriani, J. D. Anggraeni, and Kusnadi, “Interpretation of surface structure on
artisanal and small scale gold mining areas with geoelectric resistivity method of schlumberger configuration in
Sekotong, West Lombok,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics
Publishing, Jan. 2020. doi: 10.1088/1755-1315/413/1/012007.

[20] T. Dahlin and B. Zhou, “A numerical comparison of 2D resistivity imaging with 10 electrode arrays,” 2004.

[21] O. R. Hermawan and D. P. Eka Putra, “The Effectiveness of Wenner-Schlumberger and Dipole-dipole Array of
2D Geoelectrical Survey to Detect The Occurring of Groundwater in the Gunung Kidul Karst Aquifer System,
Yogyakarta, Indonesia,” Journal of Applied Geology, vol. 1, no. 2, p. 71, Jul. 2016, doi: 10.22146/jag.26963.

[22]  B. Mirzaei, B. Nikpour, and H. Nezamabadi-pour, “CDBH: A clustering and density-based hybrid approach for
imbalanced data classification,” Expert Syst Appl, vol. 164, Feb. 2021, doi: 10.1016/j.eswa.2020.114035.

[23] K. Kalaivanan, B. Gurugnanam, M. Suresh, Karung Phaisonreng Kom, and S. Kumaravel, “Geoelectrical
resistivity investigation for hydrogeology conditions and groundwater potential zone mapping of Kodavanar sub-
basin, southern India,” Sustain Water Resour Manag, vol. 5, no. 3, pp. 1281-1301, Sep. 2019, doi:
10.1007/540899-019-00305-6.

[24] J. S. Ejepu, M. O. Jimoh, S. Abdullahi, I. A. Abdulfatai, S. T. Musa, and N. J. George, “Geoelectric analysis for
groundwater potential assessment and aquifer protection in a part of Shango, North-Central Nigeria,” Discover
Water, vol. 4, no. 1, Jun. 2024, doi: 10.1007/s43832-024-00091-z.

[25] G. S. Lumacad and R. A. Namoco, “Multilayer Perceptron Neural Network Approach to Classifying Learning
Modalities Under the New Normal,” Aug. 2022. doi: 10.36227/techrxiv.20428230.v1.

[26] J. Zhang, T. Wang, Z. Zhang, P. Yan, and X. Li, “QiMLP: Quantum-inspired Multilayer Perceptron with Strong
Correlation Mining and Parameter Compression,” 2025. [Online]. Available: www.aaai.org

[27]  A. Fierravanti, L. Balducci, and T. Fonseca, “Cork Oak Regeneration Prediction Through Multilayer Perceptron
Architectures,” Forests, vol. 16, no. 4, Apr. 2025, doi: 10.3390/f16040645.

[28] A. Tashakkori, M. Talebzadeh, F. Salboukh, L. Deshmukh, and H. Talebzadeh, “Forecasting Gold Prices with
MLP Neural Networks: A Machine Learning Approach,” International Journal of Science and Engineering
Applications, Jul. 2024, doi: 10.7753/ijseal308.1003.

[29] K. A. Rashedi, M. T. Ismail, S. Al Wadi, A. Serroukh, T. S. Alshammari, and J. J. Jaber, “Multi-Layer
Perceptron-Based Classification with Application to Outlier Detection in Saudi Arabia Stock Returns,” Journal of
Risk and Financial Management, vol. 17, no. 2, Feb. 2024, doi: 10.3390/jrfm170200609.

[30] O. W. Layton, S. Peng, and S. T. Steinmetz, “ReLU, Sparseness, and the Encoding of Optic Flow in Neural
Networks,” Sensors, vol. 24, no. 23, Dec. 2024, doi: 10.3390/s24237453.

[31] R. K. Vasanthakumari, R. V. Nair, and V. G. Krishnappa, “Improved learning by using a modified activation
function of a Convolutional Neural Network in multi-spectral image classification,” Machine Learning with
Applications, vol. 14, p. 100502, Dec. 2023, doi: 10.1016/j.mlwa.2023.100502.

Lithology Prediction Using Deep Learning Artificial ... (Ramadhan et al)

v iThentiCQte Page 15 of 16 - Integrity Submission Submission ID  trn:oid:::27385:117730929



+ iThenticate Page 16 of 16 - Integrity Submission Submission ID  trn:oid:::27385:117730929

436 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

[32] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future
directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.

[33] N. Susanto and H. F. Pardede, “Feature Learning using Deep Variational Autoencoder for Prediction of Defects
in Car Engine,” in Proceeding - 2024 International Conference on Information Technology Research and
Innovation, ICITRI 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 311-316. doi:
10.1109/ICITRI162858.2024.10699115.

[34] A. White et al., “Assessing the effect of offline topography on electrical resistivity measurements: insights from
flood embankments,” Geophys J Int, Sep. 2024, doi: 10.1093/gji/ggae313.

[35] J. Wazny, M. Stefaniuk, and A. Cygal, “Estimation of electrical resistivity using artificial neural networks: a case
study from Lublin Basin, SE Poland,” Acta Geophysica, vol. 69, no. 2, pp. 631-642, Apr. 2021, doi:
10.1007/511600-021-00554-0.

[36] Y. Bai et al., “Understanding and Improving Early Stopping for Learning with Noisy Labels Supplementary A
Training details,” 2021.

BIBLIOGRAPHY OF AUTHORS

M. Fitrah Ramadhan is a graduate student in the Master Program in Computer Science at the Darmajaya

Institute of Information Technology and Business (I11B Darmajaya), Bandar Lampung. His research

- interests include Artificial Intelligence and Machine Learning, their applications in decision-making
3 systems and intelligent data analysis, and their interconnection with Software Engineering. He is

actively involved in developing technology solutions based on artificial intelligence and participates in

various research projects to produce practical innovations in the digital world.

Suhendro Yusuf Irianto is a lecturer in the Master of Information Technology Program at the
Darmajaya Institute of Information Technology and Business (11B Darmajaya) in Bandar Lampung. His
research interests include Artificial Intelligence and Machine Learning and their applications in
decision-making systems and intelligent data analysis. He has published several articles in national and
international journals on using artificial intelligence technology for practical solutions across various
fields. As an educator, he actively mentors graduate students in developing innovative Al-based
research projects.

Alhada Farduwin is a lecturer in the Geophysical Engineering Study Program at the Institut Teknologi
Sumatera (ITERA) in Lampung. His areas of expertise include seismic and rock physics, focusing on
applying geophysical methods in natural resource exploration and subsurface characterization for
geotechnical applications. He is actively involved in research to develop seismic interpretation
techniques, rock physical property analysis, and earth structure evaluation relevant to energy
exploration and geotechnical risk mitigation.

IJAIDM Vol. 8, No. 2, July 2025: 427 — 436

+ iThenticate Page 16 of 16 - Integrity Submission Submission ID  trn:oid:::27385:117730929



LAMPIRAN BUKTI SUBMIT JURNAL

% ejournal.uin-suska.ac.id/index.php/IJAIDM/author/submission/37652

Puzzle Research Data Technology (Predatech)
Faculty of Science and Technology UIN Sultan Syarif Kasim Riau

Terkareditasi SINTA 3 Kemendikbud No. 204/E/KTP/2022 (2018-2028)

Searching; Creating and-Giving The Best

HOME ABOUT USERHOME SEARCH CURRENT ARCHIVES ANNOUNCEMENTS INDEXING PUBLICATIONETHICS CUIDELINE AUTHOR

Home > User > Author > Submissions > #37652 > Summary

#37652 Summary
[ v | o

Submission

Authors M Fitrah Ramadhan, Suhendro Yusuf Irianto, Alhada Farduwin

Title Lithology Prediction Using Deep Learning Artificial Neural Network and Schlumberger Resistivity
Inversion Data at Eastern Lampung

Original file 37652-110994-1-SM.DOCX 30-06-2025

Supp. files None

submitter M Fitrah Ramadhan &2

Date submitted June 30, 2025 - 10:26 AM

Section Articles

Editor
Akhas Rahmadeyan 1

Abstract Views 299

[ % mail.google.com/mail/u/2/#inbox/FMfcgzQbgcQTkKNCHSCqmBzBDGBtWWhT

Q  Telusuri email
& B O @ E m

[IJAIDM] Editor Decision ketakMssuk x

Official IJAIDM <ejournal@uin-suska.ac.id>
kepada

Bf Sepertinya pesan ini ditulis dalam Inggris X

Terjemahkan ke Indonesia

The following message is being delivered on behalf of Indonesian Journal of
Artificial Intelligence and Data Mining

M Fitrah Ramadhan:

We have reached a decision regarding your submission to Indonesian Journal
of Artificial Intelligence and Data Mining, "Lithology Prediction Using Deep
Leamning (ANN) and Schlumberger Resistivity Inversion Data: A Case Study in
Eastern Lampung”.

Qur decision is to: Accept Submission

Mustakim Mustakim

UIN Sultan Syarif Kasim Riau (Scopus |D: 57195383688)
Phone 085275359942

ijaidm@uin-suska.ac.id

Data Mining and Big Data Analysis

Indonesian Journal of Artificial Intelligence and Data Mining
http://ejournal uin-suska.ac id/index php/lJAIDM

14|
TI'I'

Accredited

SINTA 3

L

ADDITIONAL MENU

FOCUS AND SCOPE

EDITORIAL TEAM
REVIEW PROCESS
REVIEWER
PLAGIARISM SCREENING
OPEN ACCESS STATEMENT
SUBMISSION
COPYRIGHT NOTICE

STAT COUNTER

JOURNAL TEMPLATE AND ETHICS



LAMPIRAN HASUK REVIEW PAPER

[

% gjournal.uin-suska.ac.id/index.php/JAIDM/author/submissionReview/37652

#37652 Review
I o

Submission

Authors M Fitrah Ramadhan, Suhendro Yusuf Irianto, Alhada Farduwin E3

Title Lithology Prediction Using Deep Learning Artificial Neural Network and Schlumberger Resistivity
Inversion Data at Eastern Lampung

Section Articles

Editor Akhas Rahmadeyan 1

Peer Review

Round 1

Review Version 37652-110995-2-RV.DOCX 30-06-2025

Initiated 30-06-2025

Last modified 15-07-2025

Uploaded file Reviewer A 37652-111776-1-AV.POF 15-07-2025

Editor Decision

Decision Accept Submission 03-08-2025
Notify Editor )
=1 Editor/Author Email Record ' 03-08-2025
Editor Version 37652-110996-1-ED.DOCK 30-06-2025
Author Version 37652-112011-1-ED.DOCX 19-07-2025 DELETE

37652-112011-2-ED.DOCX 22-07-2025 DELETE

Upload Author Version | Choose File | No file chosen | Upload




Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM)
Vol 5, No.1, March 2022, pp. 1 — 10
p-ISSN: 2614-3372 | e-ISSN: 2614-6150 0 1

Lithology Prediction Using Deep Learning (ANN) and
Schlumberger Resistivity Inversion Data: A Case Study in
Eastern Lampung

Article Info ABSTRACT

Article history: The Schlumberger geoelectric method has been extensively
Received May 12, 2019 employed in earth resource exploration due to its capability to
Revised Jun 20™, 2020 identify variations in subsurface resistivity. However, the manual
Accepted Jul 26, 2020 interpretation of geoelectric data inversion results is often subjective

and time-consuming. This study aims to automate the lithology

identification process by utilizing deep learning techniques,

fle\]y;]v ord: particularly Artificial Neural Networks (ANN), based on the inverted
Lithology Prediction resistivity parameters obtained through the IPI2Win software. The

Schlumberger configuration geoelectric data were obtained from
survey reports provided by the Ministry of Public Works and
Housing  (Kementerian Pekerjaan Umum dan  Perumahan
Rakyat/PUPR), which conducted geoelectric measurements in East
Lampung Regency, Lampung Province, Indonesia. The ANN
algorithm demonstrated an average accuracy of 90% in predicting
lithology based on resistivity patterns resulting from Schlumberger
inversion. Outperforming SVM (87%) and XGBoost (88%). These
results confirm the initial hypothesis that ANN can effectively
capture the complex relationships between resistivity values and rock
types. The present study proposes an integrated approach between
geophysics and machine learning with ANN algorithms for lithology
prediction based on Schlumberger configuration geophysical
inversion data. The present study proposes an integrated approach
between geophysics and machine learning with ANN algorithms for
lithology prediction based on Schlumberger configuration
geophysical inversion data.

Schlumberger Geoelectric

Copyright © 2022 Puzzle Research Data Technology
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1. [INTRODUCTION (10 PT)

__—— Commented [Pro1]: The introduction is well-structured, starting

Lithology is a key parameter in the exploration of geological resources, particularly for identifying
rock formations, assessing hydrocarbon potential, and mitigating geohazard risks such as landslides or
seawater intrusion. Traditional approaches such as core drilling analysis or data logging have long been used
for lithological interpretation. However, these methods have significant limitations, including high costs,
lengthy processing times, and subjectivity in interpretation results [1], [2], [3], [4]. [Core drilling analysis
requires complex physical extraction of rock cores and manual interpretation that is prone to error [5], [6].
Furthermore, conventional geophysical methods, such as Schlumberger resistivity measurements, frequently
yield data that is challenging to translate directly into lithological categories without a robust analytical
approach [7]. Therefore, integrating geophysical methods with machine learning algorithms is an innovative
way to improve the accuracy and efficiency of predicting lithology. \

from the problem statement, transitioning to digital solutions,
critically reviewing past studies, and concluding with a clear
statement of novelty and contribution.

1 Commented [Pro2]: The paper clearly outlines that the

considerable Inumber of studies have employed machine learning techniques for the purpose of

lithology classification. According on [3], the development of a Residual Convolutional Neural Network
(ResCNN) for the classification of Iranian gas fields has been shown to achieve an F1-score of up to 80%,
with a particular emphasis on well-log data. This study highlights the importance of feature interpretation
(SHAP) and the stability of models against noise. The findings of research [8] demonstrate that supervised
learning algorithms, such as neural networks, exhibit an accuracy of up to 90%, while unsupervised learning
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integration of inverse geophysical data with ANN and class
imbalance handling techniques (SMOTE) has not been
comprehensively explored in previous research.
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methods attain approximately 80%. A similar approach can be developed using inverse resistivity data from
Schlumberger surveys. [Another study introduced RockDNet]p a CNN model for lithology classification based

on rock core images. However, this study did not integrate geophysical data such as Schlumberger resistivity
[5]. The utilisation of Artificial Neural Networks (ANN) was also examined in study [2], which employed
core drilling data to identify lithofacies with an accuracy of 88.2% by leveraging the XGBoost algorithm.
Nevertheless, this approach is restricted to structural data and does not take into account geophysical data
such as Schlumberger resistivity. Despite the noteworthy advancements, there remain notable lacunae in the
amalgamation of Schlumberger geophysical data with artificial neural network (ANN) models that have been
optimized through techniques such as Synthetic Over-Sampling Technique (SMOTE) and K-Fold validation.
A prevailing tendency in extant studies has been to concentrate on a solitary form of data, such as well logs
and rock core images, while neglecting to leverage the full potential of inverse geophysical data as the
primary input [1], [7], [9]. Furthermore, lithological class imbalance is frequently disregarded, leading to
prediction bias in minority classes [10]. Although SMOTE has been tested on Support Vector Machines
(SVM) by research [3], [8], its application in Artificial Neural Networks (ANN) models for lithological data
has not been optimal.

This study addresses this gap by creating a lithology prediction model that uses IPI2Win software to
analyze Schlumberger geophysical resistivity inversion data for ANN training. This approach is further
enhanced by the implementation of the SMOTE technique, which addresses imbalanced classes due to
lithology, and K-Fold validation, which ensures stability. SMOTE was selected for its capacity to enhance
prediction accuracy in minority classes by generating synthetic examples based on interpolation between
minority class samples, as opposed to merely duplicating data [11], [12], [13]. Additionally, we will compare
the performance of the ANN with other algorithms, such as SVM and XGBoost. This comparison will
provide insight into the relative advantages of each method when working with geophysical data.

[Add paragraph\

2. RESEARCH METHOD

[This study uses data from a geophysical survey report in East Lampung Regency, Lampung
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of
rock layers within the earth [14], [15]. The survey was conducted across 24 subdistricts to determine the
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to
be the most effective method for geophysical investigation [16]. The Schlumberger configuration is used
because it provides the most accurate and effective results in data collection compared to other geophysical
methods [17], [18], [19]. A total of 500 measurement points were collected during the geophysical survey.
However, this study utilized data from 374 measurement points, which yielded two lithological units:
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories
still provided meaningful contributions to lithological classification based on geophysical data [20].

2.1. Data Collection and Geophysical Survey Methodology

This study uses data from a geophysical survey report in East Lampung Regency, Lampung
Province. Electrical resistivity is one geophysical method for studying the electrical resistivity properties of
rock layers within the earth [14], [15]. The survey was conducted across 24 subdistricts to determine the
distribution of lithology, rock outcrops, slope, and orientation of rock layers (strike and dip), as well as local
geological structures. In measurements using the Schlumberger configuration, the survey began with a half-
spread AB/2 of 1.5 meters, extending up to 400 meters. When the data were deemed insufficient for
interpretation at depths greater than 180 meters, the AB/2 spacing was extended to 600 meters at selected
locations. The potential electrode spacing (MN/2) is set at 5% of AB/2, with measurements taken at AB/2
distances of 12, 50, and 300 meters. Based on the survey results, the Schlumberger configuration proved to
be the most effective method for geophysical investigation [16]. The Schlumberger configuration is used
because it provides the most accurate and effective results in data collection compared to other geophysical
methods [17], [18], [19]. A total of 500 measurement points were collected during the geophysical survey.
However, this study utilized data from 374 measurement points, which yielded two lithological units:
extrusive mafic lava and extrusive intermediate pyroclastic deposits. The use of these lithological categories
still provided meaningful contributions to lithological classification based on geophysical data [20].

IJAIDM Vol. 5, No. I, March 2022: 1-10
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2.2. Inversion of Schlumberger Sounding Data

Based on the results of the geophysical survey conducted in the field, the obtained data represent
apparent resistivity values rather than true resistivity values [14]. Therefore, an inversion process is necessary
to generate a representative subsurface resistivity model [19], [21], [22]. Inversion is performed because
geophysical observation data does not directly provide information about the physical properties of the
subsurface. The inversion process aims to construct a realistic and representative subsurface model that can
be used for geological interpretation, resource exploration, or understanding the tectonic structure of an area
[17]. The inversion process applied to the data in this study is illustrated in Figure 1.

ASUREMENT O

Lithology Dataset Preparation

Figure 1. Inversion of Schlumberger Sounding Data

The geophysical measurement process was conducted in the field to obtain apparent resistivity values at
various depths. The collected data were then processed through inversion steps using IPI2Win software [21],
[22]. The purpose of this inversion stage is to generate a representative accurate resistivity model as a
function of depth. This model is the foundation for interpreting subsurface structures and delineating
geological layers in the study area [22].

2.3. Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) represents a foundational architecture among feedforward neural
networks. It comprises multiple fully connected layers of artificial neurons, typically consisting of one or
more hidden layers and a final output layer [23], [24], [25]. Each neuron in this layer performs a computation
consisting of a weighted sum of the input signals [26]. In the hidden layer, each neuron similarly computes a
weighted sum of its inputs, as follows:

n
z; = Z wj;ix; + bj )

i=1

Where zjis the pre-activation value of neuron j, wj; is the weight connecting neuron 7 in the previous layer
with neuron j. x; is the input value of neuron i and b; is the bias in neuron j, which helps regulate the
computation result [27]. After calculating the weighted sum, the result is passed through an activation
function to introduce non-linearity into the model. The activation function used in this study is the Rectified
Linear Unit (ReLU) [28]. The Rectified Linear Unit (ReLU) activation function is mathematically expressed
as f(z) = (0, z) .1t outputs zero for negative inputs and preserves positive values, which contributes to faster
convergence and enhanced stability during neural network training [29], [30].

2.4. Machine Learning Workflow: From Data Preprocessing to Model Evaluation

This study utilized geophysical inversion data obtained from previous surveys as the dataset. The
dataset comprises 17 columns that include spatial features, depth parameters, resistivity values, and lithology
labels. Spatial features are represented by latitude and longitude coordinates, while seven depth parameters
(in meters) correspond to subsurface layers (Depth 1-7). The seven resistivity values (in ohm-m) measured at
each depth (Resistivity 1-7) were also used as prominent input features. As classification targets, the
Lithology column includes two main volcanic lithology categories: Extrusive mafic lava (0) and Extrusive
intermediate pyroclastic (1). This dataset comprises 374 data points selected from an initial set of 500, which
had undergone prior validation as part of this study’s data quality assurance process. The input features (X)
encompass all variables except the Lithology column: latitude, longitude, depth 1-7, and resistivity 1-7. The
lithology label (y) is encoded into numerical values using LabelEncoder to meet the ANN model input
requirements. In contrast, numerical features are normalized with StandardScaler to ensure data scale
uniformity and improve model training convergence [31]. Resistivity and depth serve as essential parameters

Title of manuscript is short and clear, implies research results... (First Author)
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for characterizing variations in the electrical properties of subsurface rock formations, which play a
significant role in lithological identification [32].

Stratified KFold Cross Validation (n=5)
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Figure 2. Workflow for Lithology Classification Using Multi-Layer Perceptron (MLP)

Figure 2 illustrates that the Artificial Neural Network (ANN) model used in this study was designed based on
the Multi-Layer Perceptron (MLP) architecture, which consists of two hidden layers [33]. The first layer
consists of 128 neurons with a ReLU activation function, followed by BatchNormalization and Dropout
(dropout rate=0.3), while the second layer has 64 neurons with a similar configuration. The model was
compiled with Adam optimization (learning rate=0.001) and accuracy metrics. To address the class
imbalance in the training data, the SMOTE (Synthetic Minority Over-sampling Technique) was applied in
each training iteration. Model validation was performed using the Stratified K-Fold Cross Validation
approach (n=5), ensuring that class distribution remained consistent across each data split. During training,
the EarlyStopping and ReduceLROnPlateau callbacks were used to prevent overfitting and dynamically
adjust the learning rate [34]. The model was trained for 50 epochs with a batch size of 32. Model
performance evaluation included accuracy, confusion matrix, and classification report (precision, recall, F1-
score). The results showed the average accuracy from 5 folds, with visualization of the confusion matrix for
classification error analysis. Each fold stored the best model for potential inference use.

3. |RESEARCH METHOD|

,/_/-/’[ Commented [Pro7]: results and analysis

This study utilized the artificial neural network (ANN) algorithm to identify and classify lithological
units derived from geoelectrical inversion data. Class distribution was visualized using the t-SNE technique
before model training as part of preliminary data analysis. Figure 3 presents visualization results that reveal
the spatial distribution of classes and support the assessment of class balancing techniques, such as SMOTE.
These methods improved model performance by reducing bias toward majority classes and enhancing
generalization. Additionally, feature correlations were examined to ensure input independence. The results
demonstrate that machine learning techniques can significantly contribute to subsurface characterization
when combined with appropriate preprocessing and interpretation strategies. Furthermore, integrating
geological context into feature selection helped improve the relevance and physical interpretability of the
classification outcomes. This approach highlights the potential for data-driven models to complement
traditional geological analysis in complex subsurface environments. Such integration opens new
opportunities for more accurate and efficient subsurface modeling, especially in areas with limited direct
observationsi\
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Figure 3. Comparison of Class Distribution Before and After SMOTE Using t-SNE Visualization

As shown in Figure 3, panel (a) displays the original class distribution before SMOTE, whereas panel (b)
presents the balanced class distribution following SMOTE application. This technique mitigated class
imbalance by generating synthetic samples for the minority class, achieving a more uniform distribution
across the feature space. However, this also increases the complexity of the data structure, which may hinder
class separability by machine learning models. Therefore, tailored approaches such as SMOTE parameter
optimization and appropriate algorithm selection are necessary to maximize the effectiveness of this method.
The results indicate that SMOTE is an effective method for mitigating class imbalance. Nevertheless, careful
application is required to minimize risks such as overfitting and introducing unnecessary data complexity.
After observing the distribution of data before and after the application of SMOTE through t-SNE
visualization, the next step is to apply a machine learning algorithm using the Multi-Layer Perceptron (MLP)
Artificial Neural Network (ANN) algorithm. Model validation was carried out using the Stratified K-Fold
Cross Validation (n=5) approach, with the results shown in Table 1.

Table 1. Evaluation Results of the ANN Model with SMOTE Based on 5-Fold Cross-Validation
SMOTE

Fold Class “Before | Afer Precision Recall F1-Score Support Accuracy

1 0 68 231 0.7143 0.8824 0.7895 17 0.8933
1 231 231 0.9630 0.8966 0.9286 58 :
0 68 231 0.8333 0.8824 0.8571 17

2 1 231 231 0.9649 0.9483 0.9565 58 0.9333
0 68 231 0.7778 0.8235 0.8000 17

3 1 231 231 0.9474 0.9310 0.9391 58 0.9067
0 68 231 0.6667 0.9412 0.7805 17

4 1 231 231 0.9804 0.8621 0.9174 58 0.8800

5 0 68 232 0.7619 0.9412 0.8421 17 0.9189
1 232 232 0.9811 0.9123 0.9455 57 .

Title of manuscript is short and clear, implies research results... (First Author)
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In Table 1, class 0 represents Extrusive: mafic: lava, and class 1 represents Extrusive: intermediate:
pyroclastic. Model validation was performed using the Stratified K-Fold Cross Validation approach (n=5),
resulting in an average accuracy of 90.65% with a standard deviation of +1.87%. These results indicate that
the Artificial Neural Network (ANN) model performs excellently and stably, with all folds achieving an
accuracy of over 85%. Although minor variations were observed across folds (accuracy range: 88.00%—
93.33%), the EarlyStopping and ReduceLROnPlateau callbacks were employed during training to prevent
overfitting and enable dynamic learning rate adjustment. The model was configured with the Adam optimizer
(learning rate = 0.001) and SMOTE to address class imbalance. Figure 4 presents the accuracy of each fold in
the K-Fold cross-validation.

--- Average Accuracy: 0.9065
1.0 Q© Best(Fold 2)

08

0.6

Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold

Figure 4. Accuracy of Each Fold in K-Fold Cross Validation

The same dataset was used to evaluate the performance of additional machine learning algorithms,
specifically, the Support Vector Machine (SVM) and XGBoost, to compare model accuracy and stability in
lithology classification based on geoelectrical inversion data. Table 2 presents the average accuracy results
for the three algorithms, providing a comparative overview of the effectiveness of the Artificial Neural
Network (ANN), SVM, and XGBoost on the identical dataset.

Table 2. Comparison of Results Across Machine Learning Algorithms Using the Same Dataset

Model Precision Recall F1-Score Accuracy

ANN 0.85 0.90 0.87 0.90

SVM 0.82 0.82 0.82 0.87
XGBoost 0.84 0.85 0.84 0.88

According to the results in table 2, the Artificial Neural Network (ANN) achieved the highest classification
performance in lithology identification, with an accuracy of 90% and an Fl-score of 0.87. This result
surpassed the Support Vector Machine (SVM), which recorded 87% accuracy and an F1-score of 0.82, and
XGBoost, which yielded 88% accuracy and an F1-score of 0.84. The effectiveness of ANN can be attributed
to its capacity to model complex, non-linear relationships in geophysical features such as depth and
resistivity. While SVM and XGBoost provide strong alternatives, the results indicate that ANN offers
superior stability and performance in handling imbalanced lithology classification tasks.

Table 3. Comparison of Results with Existing Models from Previous Studies

Model Dataset Accuracy Keterangan

This study introduces a new method for real-time

Convolutional Neural Network Drill string vibration identification of rock formation lithology using

(CNN) [1] data 0.0 drill string vibration data obtained during the
drilling process.
e o This research converts drilling data (torque,
Deep Atrtificial Neural Indoor core drilling . . N .
Networks (DANN) [2] machine >0.92 :Zpoﬁl?s,e ;(i::;o;lal speed) into an RGB image-like
e . s This study uses diamond drilling records, rock
yﬁ%‘?;?euml Network Dlamlg:cdozt;llmg 0.66 samples, and other related reports that prove
categorical variables.
Geoeleetrical This study utilizes Schlumberger-configured

Proposed model . 0.90 geoelectrical data inverted into a structured
Inversion Data dataset
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Table 2 presents the evaluation results of four machine learning models using geotechnical and drilling data
adapted from previous studies. The CNN model achieved an accuracy of 0.90 using drill string vibration
data. The DANN model exhibited superior performance, with an accuracy exceeding 0.92, based on RGB
image representations of drilling data obtained from an indoor core drilling machine. In comparison, the
ANN model achieved a lower accuracy of 0.66 when trained on diamond drilling records. The proposed
approach, which leveraged geophysical inversion data from the Schlumberger configuration, attained an
accuracy of 0.90, demonstrating its effectiveness for lithology classification. This study’s main novelty lies in
applying a machine learning model based on geoelectrical inversion data from the Schlumberger
configuration for lithology prediction. Unlike models that rely on direct drilling parameters such as vibration
or torque, this approach utilizes resistivity values obtained through inversion, which represent subsurface
geophysical properties. The dataset exhibits distinct spatial characteristics and vertical resolution compared
to those used in previous studies, offering a novel perspective on lithology identification based on
geophysical data. This approach opens new possibilities for geophysical surveys to classify rock formation
lithology.

4. |CONCLUSION|

e

The study highlights the effectiveness of integrating geoelectrical inversion data from the
Schlumberger configuration with an Artificial Neural Network (ANN) to develop robust lithology prediction
models. Using Stratified K-Fold Cross-Validation (k=5), the model achieved an average classification
accuracy of 90.65%. The Artificial Neural Network (ANN) outperformed conventional machine learning
algorithms, including Support Vector Machine (SVM) and XGBoost, modeling complex, non-linear
associations among resistivity parameters, depth, and lithological classes. This performance advantage was
maintained even under imbalanced data conditions, where class distribution was adjusted using the SMOTE
technique. Unlike prior studies that predominantly utilized drilling records or image-based features, this
research employs geoelectrical inversion data generated by IPI2Win as the primary input for model
development. This conceptual shift introduces a novel framework for geophysical data-driven lithology
classification, offering advantages in terms of speed, cost-efficiency, and objectivity in identifying subsurface
rock types. Consequently, this study contributes to advancing artificial intelligence applications in geological
resource exploration, particularly in areas with limited direct drilling data. Furthermore, it demonstrates
potential as a decision-support tool for subsurface analysis in geophysics and sustainable energy exploration.
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