BAB IV
HASIL DAN PEMBAHASAN
4.1 Pengumpulan Data
Pengumpulan data dilakukan dengan menggunakan dataset yang tersedia di
platform Kaggle. Dataset ini berisi gambar daun selada yang telah diklasifikasikan
ke dalam berbagai kategori, seperti sehat atau terinfeksi penyakit tertentu. Total
gambar yang digunakan adalah sebanyak 2320 gambar dan Gambar 4.1.

menunjukkan hasil dari pengumpulan data melalui Kaggle

Dari hasil pengumpulan data gambar daun selada sebanyak 2320 gambar
melalui Kaggle, proses augmentasi dilakukan untuk meningkatkan variasi data,

sehingga model dapat lebih baik dalam mengenali berbagai kondisi daun selada

4.1.1 Labelling Data
Proses pelabelan data bertujuan untuk memberikan identitas pada data
sehingga dapat dikenali oleh model. Setiap folder diberi nama sesuai dengan
kategori yang sesuai, seperti bacterial, fungal, healthy, dan shepherd purse
weeds. Setiap folder diberi nama sesuai dengan kategori yang sesuai dan diisi
dengan data yang sesuai dengan namanya, seperti yang ditunjukkan pada
Gambar 4.2.

31

600

500

400

300

200

100

The Number Of Samples for each class

Gambar 4.22 Label Data

4.2 Preproccessing Data
Tahapan preprocessing data citra meliputi pengumpulan data (gathering),
pemberian label pada citra, serta augmentasi citra terhadap seluruh data yang

tersedia.

4.2.1 Augmentasi Data

Augmentasi data bertujuan untuk mengurangi overfitting pada dataset
yang tersedia. Selain itu, teknik augmentasi gambar ini juga dapat menambah
jumlah data yang digunakan. Namun, data yang dihasilkan hanya dapat
digunakan dalam proses pelatihan model. Berikut adalah kode yang digunakan

untuk melakukan augmentasi pada gambar.

tensorflow.keras.preprocessing.image
ImageDataGenerator

(256, 256)
32

ImageDataGenerator(
1.0/255,
20,

32

='nearest’

.flow_from_dataframe(

‘categorical’,
=True

.flow_from_dataframe(

='categorical"',
=False

Fungsi ImageDataGenerator digunakan dalam program di atas untuk
mengubah gambar, yang kemudian disimpan dalam variabel datagen.
Parameter yang digunakan untuk menghasilkan peningkatan gambar adalah

sebagai berikut.

a. rescale=1.0/255. Melakukan normalisasi nilai piksel gambar, mengubah
rentang piksel dari 0-255 menjadi 0-1 dengan membagi setiap nilai piksel
dengan 255.

b. rotation_range=20. Mengatur rentang rotasi gambar. Gambar dapat
diputar secara acak hingga 20 derajat, baik searah atau berlawanan arah
jarum jam.

c. width_shift_range=0.2. Mengubah foto ke arah horizontal (kanan atau
kiri) hingga 20% dari lebar gambar.

d. height_shift_range=0.2. Mengubah foto ke arah vertikal (atas atau
bawah) hingga 20% dari tinggi gambar.

33

e. shear_range=0.2. Melakukan transformasi shearing pada gambar, yang
berarti gambar akan diubah dalam bentuk kemiringan dengan tingkat
kemiringan sebesar 20%.

f. zoom_range=0.2. Melakukan zoom pada gambar secara acak dalam
rentang 20%. Gambar bisa diperbesar atau diperkecil.

g. horizontal_flip=True. Membalik gambar secara horizontal (flip). Ini
membantu model untuk belajar lebih banyak variasi dari gambar yang
tersedia.

h. validation_split=0.2. Menentukan persentase data yang akan digunakan
untuk validasi. Di sini, 20% dari total data akan digunakan untuk

validasi, sementara sisanya (80%) akan digunakan untuk pelatihan.

Gambar 4.23 Hasil Augmentasi Data

Gambar 4.3 menunjukkan hasil dari augmentasi gambar. Proses
augmentasi ini akan memutar, memiringkan, dan memperbesar gambar secara

acak berdasarkan parameter yang telah dijelaskan sebelumnya.

34

4.3 Building Model

Pemodelan CNN akan terdiri dari 4 lapisan convolutional, dan 1 lapisan fully
connected (neural network). Proses pemodelan CNN ini akan dilakukan

menggunakan TensorFlow, seperti yang dijelaskan berikut ini.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
BatchNormalization

=Sequential()
.add(Conv2D(256,(3,3), ="relu’, =(256,256,3))

.add(MaxPooling2D(2,2))
.add(Conv2D(128,(3,3), ='relu'))
.add(MaxPooling2D(2,2))
.add(Conv2D(128,(3,3), ='relu'))
.add(MaxPooling2D(2,2))
.add(Conv2D(64,(3,3), ="'relu'))
.add(MaxPooling2D(2,2))

.add(Flatten())

.add(Dense(32, ="'relu'))
.add(Dense(4, ="softmax"'))

.summary ()

Model CNN ini terdiri dari empat lapisan konvolusi dengan kernel 3x3 dan
jumlah filter bertahap 256, 128, 128, dan 64, masing-masing diikuti oleh MaxPooling
2x2 untuk mereduksi dimensi fitur. Setelah fitur diubah menjadi bentuk 1 dimensi
melalui lapisan Flatten, lapisan Dense dengan 32 neuron dan aktivasi RelLU
memprosesnya sebelum masuk ke lapisan output dengan 4 neuron dan aktivasi
Softmax untuk klasifikasi multi-kelas. Model ini dirancang untuk menerima input
gambar dengan dimensi (256, 256, 3). Hasil pembuatan model CNN berada di bawah
berikut :

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 254, 254, 256) 7,168
max_pooling2d (MaxPooling2D) (None, 127, 127, 256) (2]
conv2d_1 (Conv2D) (None, 125, 125, 128) 295,040
max_pooling2d_1 (MaxPooling2D) (None, 62, 62, 128) 2]
conv2d_2 (Conv2D) (None, 60, 60, 128) 147,584
max_pooling2d_2 (MaxPooling2D) (None, 30, 30, 128) 0

35

conv2d_3 (Conv2D) (None, 28, 28, 64) 73,792
max_pooling2d_3 (MaxPooling2D) (None, 14, 14, 64) 0
flatten (Flatten) (None, 12544) 2]
dense (Dense) (None, 32) 401,440
dense_1 (Dense) (None, 4) 132

Total params: 925,156 (3.53 MB)
Trainable params: 925,156 (3.53 MB)
Non-trainable params: © (0.00 B)

4.4 Training Model

Sebelum melakukan pelatihan, diperlukan beberapa pengaturan agar model
yang dihasilkan optimal dan proses pelatihan lebih efisien. Pengaturan tersebut dapat
dilihat pada source code berikut ini:

from tensorflow.keras.optimizers import Adam
.compile(
= Adam(=0.001),
='categorical crossentropy',

=["accuracy']

Kode ini mengatur optimasi model dengan Adam optimizer, menggunakan
categorical crossentropy sebagai fungsi loss untuk klasifikasi multi-kelas, dan

mengevaluasi kinerja model menggunakan metrik akurasi.

a. optimizer=Adam(learning_rate=0.001): Adam adalah algoritma optimasi
yang adaptif dan efisien, cocok untuk memperbarui bobot model selama
pelatihan. Parameter learning_rate=0.001 mengontrol kecepatan
pembelajaran untuk mencapai hasil optimal.

b. loss='categorical_crossentropy’ = Fungsi loss ini digunakan untuk
masalah klasifikasi multi-kelas dengan one-hot encoding.

c. metrics=['accuracy'] = Metrik akurasi digunakan untuk mengukur

seberapa sering prediksi model benar dibandingkan dengan label asli.

Setelah selesai melakukan pengaturan, langkah berikutnya adalah melatih

model CNN. Berikut adalah source code untuk proses pelatihan:

36

Proses pelatihan akan menghasilkan history yang berisi metrik performa model

seperti loss dan accuracy untuk data latih dan validasi.

a. train_generator = Generator yang menyediakan data latih dalam bentuk
batch secara bertahap. Biasanya digunakan dengan data augmentation
untuk efisiensi memori.

b. epochs=50 = Model akan dilatih selama 50 epoch, di mana satu epoch

adalah satu siklus penuh iterasi terhadap seluruh data latih.

c. validation_data=validation_generator = Data validasi yang juga

disediakan oleh generator untuk mengevaluasi performa model pada

setiap epoch.

Hasil dari proses training dapat dilihat pada gambar dibawah ini

Hasil akhir dari proses pelatihan model CNN di epoch 50 menujukkan
keakurasian diatas 90%. Selain itu, peneliti juga telah melakukan beberapa proses
pelatihan (training) dengan variasi parameter tertentu. Hasil dari pelatihan tersebut
akan ditampilkan dalam bentuk tabel di bawah ini.

37

Epoch

Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

Learning
Rate

Deskripsi

50

93.67%

0.1596

93.99%

0.2625

0.001

Akurasi validasi

tertinggi (93.99%)
dengan gap kecil
antara akurasi
training dan validasi.
Cocok untuk model
dengan generalisasi
baik.
Akurasi validasi
turun signifikan,
menunjukkan
kemungkinan
overfitting meskipun
training loss kecil.

60 93.76% 0.1494 90.63% 0.2571 0.001

0.2569 0.0001 Akurasi stabil
dengan selisih kecil
antara training dan
validation,
menunjukkan
keseimbangan
model.
Model cukup stabil,
tetapi training
accuracy lebih
rendah dibandingkan

opsi lainnya.

50 92.01% 0.2234 92.54%

60 91.48% 0.2092 92.25% 0.2587 0.0001

Tabel 4.3 Tabel hasil training model

Berdasarkan hasil pengujian, model dengan konfigurasi epoch 50 dan
learning rate 0.001 menunjukkan akurasi validasi tertinggi sebesar 93.99% dengan
gap yang kecil antara akurasi training (93.67%) dan validasi, serta loss yang
seimbang. Hal ini mengindikasikan bahwa model memiliki kemampuan
generalisasi yang baik tanpa tanda-tanda overfitting. Dibandingkan dengan
konfigurasi lainnya, pilihan ini memberikan kinerja yang optimal untuk akurasi
validasi sekaligus menjaga stabilitas model, sehingga direkomendasikan untuk
digunakan.

Selama proses pelatihan model, gambar akan melalui empat lapisan CNN
berupa input layer, convolution layer, pooling layer dan fully connected layer,
seperti yang ditunjukkan dibawah ini.

441 Input Layer
Gambar daun selada akan dimasukkan ke lapisan awal. Di lapisan ini,
gambar tersebut diolah menjadi matriks tiga dimensi yang terdiri dari
panjang, lebar, dan saluran warna (RGB). Contoh berikut menggambarkan

hasil input dari gambar tersebut.

38

Input Gambar - Saluran Merah (10x10})

032 020 010 0.24

037 030 025 036
Input Gambar -

020 033 027

0.36 93}‘ 0.10 0.02 0.04 0.05 0.20

- 025 031 011 0.02 0.36

0.09 0.14 0.07 0.04 002 0.03
I 0.14 0.10 025 013 (faaﬂ 0.01 0.06 013 0.03
016 010 0.36 0.04 033 012 018 0.10

0.11 0.05 038 022 0.02 O

0.22 0.07 0.03.0.15 0.10 0.02 0.00 018 0.16

024 019 014 025 0.09 010 0.10 0.25-

0.09 0.11 0.04 005 0.15 036 0.04 0.13 005 0.07

Gambar 4.24 hasil input layer

Pada gambar diatas, terdapat proses input layer, gambar diekstrak

mengubahnya menjadi tiga warna: merah, hijau, dan biru.
4.4.2 Convolution Layer

Pada lapisan ini, sebuah input akan dimasukkan ke dalam convolution
layer, di mana nilai RGB dari setiap piksel pada citra akan diekstraksi. Proses
ini menghasilkan output berupa feature map. untuk mengolah gambar pada
convolution layer, digunakan filter. Sebagai ilustrasi, dapat dilakukan
perhitungan yang dilakukan melalui saluran merah yang diambil dari input
layer.

39

0.24 0.28

.37 0.30 0.25 0.36 '0.3?.0.20 0.33

Gambar 4.25 red channel

Pada tahap ini, dilakukan perhitungan untuk menghasilkan peta fitur dengan
bantuan filter berukuran 3x3 yang memiliki nilai acak, yang terlihat seperti gambar
berikut.

1 0 -1
1 0 -1
1 0 -1

Gambar 4.26 contoh filter

Perhitungan untuk menentukan nilai sebuah feature map gambar dimulai
dengan menggunakan koordinat awal matriks (1,1). Oleh karena itu, perhitungan
dilakukan berdasarkan submatriks yang sesuai dengan posisi tersebut sebagai berikut

y[1,1] = (0.88-1) + (0.930) + (0.93—1) + (0.91-1) + (0.550) + (0.58—1) +
(0.91-1) + (0.510) + (0.50-—1)

y[1,1] = (0.88) + (0) + (~0.93) + (0.91) + (0) + (—0.58) + (0.91) + (0) + (—0.50)
y[1,1] = 0.88 — 0.93 + 0.91 — 0.58 + 0.91 — 0.50
y[1,1] = 0.69
Rumus untuk menghitung ukuran feature map setelah konvolusi adalah:
» Ukuran Feature Map = (Ukuran Gambar—Ukuran Kernel) + 1
Dengan menggantikan nilai-nilai yang diberikan:

* Ukuran Feature Map = (10-3) +1 =38

40

Artinya, gambar input yang berukuran 10x10 akan menghasilkan
feature map dengan ukuran 8x8. Ini terjadi karena filter 3x3 akan dipindahkan
sepanjang gambar 10x10, dan dengan stride 1, filter dapat diterapkan 8 kali
baik secara horizontal maupun vertikal. Sehingga hasil yang diberikan pada

koordinat [1,1] adalah 0.69 dan juga ukuran feature map adalah 8

Feature Map (8x8) - Saluran Merah (R)

-0.58

-0.46

-0.71

-0.69

-0.55

-0.61

-0.78

-0.89

Gambar 4. 27 feature map merah

Setelah proses perhitungan pada convolution layer selesai, langkah
berikutnya adalah menerapkan fungsi aktivasi. Dalam penelitian ini, fungsi
aktivasi yang digunakan pada lapisan konvolusi adalah ReLU. Fungsi aktivasi
ReLU (Rectified Linear Unit) bekerja dengan cara mengubah semua nilai
negatif menjadi nol dan mempertahankan nilai positif sebagaimana adanya.
Hal ini dilakukan secara elemen demi elemen pada matriks input (feature
map). Rumus matematis untuk ReL U adalah:

f(x) = max (0,x)
Di mana;

x adalah nilai elemen input pada matriks.

41

- Jika x>0, maka f(x)=x
. Jika x<0, maka f(x)=0
Sebagai contoh, jika diterapkan pada elemen x = —0.78 maka:
© f(~0.78)=max(0,—0.78)=0
Sedangkan untuk elemen x=0.74, maka:
« f(0.74)=max(0,0.74)=0.74

Proses ini dilakukan secara elemen per elemen hingga menghasilkan
matriks baru yang hanya berisi nilai nol dan positif.

Feature Map setelah RelU

1.4

of Wa 045 037 024 | W4t 000 0.00 0.00
1.2

— BNy 000 032 029 032 000 0.00 0.00
~ - 044 0.00 0.00 027 0.00 0.00 1.0
m - 0.00 0.00 0.00 036 000 0.00 0.8
< - 0.00 0.00 0.00 002 007 0.00 0.6

in - 0.00 0.00 0.00 000 002 0.00
-0.4

©- 0.02 0.00 0.00 0.00 000 0.00
-0.2

~-039 000 000 035 008 000 0.00 0.00
1 1 1 1 1 1 1 1 | 0-0

0 1 2 3 4 5 6 7

Gambar 4.28 feature map setelah ReLu

42

4.4.3 Pooling Layer

Pada tahap ini, tujuan utamanya adalah mengurangi jumlah parameter

dan kompleksitas perhitungan dalam neural network. Dalam penelitian ini,

pooling layer yang digunakan adalah MaxPooling, yang berfungsi untuk

mengambil nilai maksimum dari hasil convolution. Ukuran matriks untuk

Maxpooling yang diterapkan adalah 2x2, dengan stride sebesar 2. Proses ini

dilakukan pada feature map yang dihasilkan oleh convolution layer, seperti

yang terlihat pada gambar di bawah ini, sebelum diteruskan ke langkah

berikutnya.

Feature Map sebelum MaxPooling (2x2)

0.45
0.00
0.00
0.00
0.00
0.00
0.00

0.00

1

0.37

0.32

0.00

2

0.24

0.29

0.30

0.35

3

0.74
0.32
0.00
0.00
0.00
0.00
0.00

0.08

4

0.00
0.00
0.27
0.36
0.02
0.00
0.00

0.00

5

0.00
0.00
0.00
0.00
0.07
0.02
0.00

0.00

6

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

7

Feature Map setelah MaxPooling (2x2)

0.00

0.07

0.00

Gambar 4.29 Proses input dan output pooling layer

1.4

1.2

1.0

0.8

- 0.6

- 0.4

-0.2

-0.0

Pada gambar di atas, input berupa feature map yang dihasilkan dari

konvolusi, sementara output merupakan hasil dari pooling layer. Proses ini

akan menghasilkan nilai output yang merupakan nilai terbesar dari setiap blok

2x2 pada input. Dalam kasus ini, nilai terbesar dalam setiap blok 2x2 akan

dipilih dan dimasukkan ke dalam output dari pooling layer.

43

4.4.4 Flatten Layer

Flatten adalah proses mengubah matriks menjadi vektor atau matriks

satu dimensi yang diperoleh dari output lapisan pooling. Proses ini dapat

dilihat pada gambar berikut.

Feature Map setelah MaxPooling (2x2)

0.00
0.00

0.07

Flattened Feature Map (1D Vertical with Color Mapping)

1.4

1.2

1.0

0.8

-0.6 >
-0.4
-0.2

-0.0

a

0.37

0.00

0.44

0.36
0.00

0.00

W om oM @ w R W N e

10- 0.02
11 - 0.07

12 - 0.39

,_.
=

14 - 0.08

15 - 0.00

Gambar 4.30 Proses Flatten Layer

14

=
©

Value Intensity

o
ES

0.4

roz

- 0.0

Gambar 4.30 menunjukkan proses flatten, di mana matriks berukuran

4x4 dikonversi menjadi vektor berukuran 16x1. Hasil dari tahap ini adalah

vektor satu dimensi yang akan digunakan sebagai input untuk lapisan fully

connected.

44

445 Fully Connected Layer

Hidden Layer

04

Gambar 4.31 llustrasi Dense + Softmax Layer

Gambar di atas menunjukkan proses Dense + Softmax, di mana vektor
satu dimensi berjumlah 16 digunakan sebagai input. Setiap nilai dalam vektor
tersebut akan dihitung melalui hidden layer yang juga memiliki 16 neuron.

Berikut adalah proses perhitungannya.

N

ZIixVij =Ji
I=1

N
ZIixWij = Hi
I=1

N
ZIixXij = 0i
I=1

11, 12, 13, 14, 15, 16, hingga 116 merupakan nilai output dari proses
Flatten, yang kemudian diproses melalui Fully Connected Layer. Setiap nilai
akan dihitung dalam hidden layer dengan bobot yang berbeda untuk setiap
koneksi. Nilai bobot dapat ditentukan secara bebas sesuai kebutuhan. Berikut
adalah perhitungan pada setiap hidden layer.

31=(1.07%0.2)+(0.37%0.2)+(0.74x0.2)+(0.00%0.2)+(0.44x0.2)+(1.13x0.2)+(0.
36%0.2)+(0.00x0.2)+(0.00%0.2)+(1.43x0.2)+(0.02x0.2)+(0.07x0.2)+(0.39x0.
2)+(0.87x0.2)+(0.08x0.2)+(0.00x0.2)

45

Lalu
J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.00
0)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000)J _1 = (0.214)
+(0.074) + (0.148) + (0.000) + (0.088) + (0.226) + (0.072) + (0.000) +
(0.000) + (0.286) + (0.004) + (0.014) + (0.078) + (0.174) + (0.016) + (0.000)

J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.0
00)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000)

Lalu jumlahkan semuanya:
J1=1.394

Sehingga dari perhitungan diatas didapatkan Ji: sampai Jie berupa tabel

dibawah ini

Indeks J Hasil J Nilai Acak yang digunakan
I 1.3940 (1.07%0.2),(0.37x0.2),...
J2 0,6970 (1.07x0.1),(0. 37x0.1),...
Js 2.0910 (1.07%0.3),(0. 37x0.3),...
Ja 3.4850 (1.07x0.5),(0. 37x0.5),...
Js 2.7880 (1.07x0.4),(0. 37x0.4),...
Js 4.8790 (1.07x0.7),(0. 37%0.7),...
3 4.1820 (1.07x0.6),(0. 37x0.6),...
Js 6.2730 (1.07x0.9),(0. 37x0.9), ...
Jo 5.5760 (1.07%0.8),(0. 37x0.8),...
J10 0.7667 (1.07x0.11),(0. 37x0.11),...
Ju 0.6970 (1.07x0.10),(0. 37%0.10), ...
Ji2 0.9061 (1.07x0.13),(0. 37%0.13),...
Jis 0.8364 (1.07x0.12),(0. 37%0.12),...
Jia 1.0455 (1.07%0.15),(0. 37x0.15),...
Jis 0.9758 (1.07x0.14),(0. 37x0.14),...
Jis 1.1152 (1.07x0.16),(0. 37%0.16),...

Tabel 4.4 Hasil J; sampai Jie

Nilai J1 hingga Ji6 yang telah dihitung akan dikalikan dengan bobot baru

yang berbeda untuk masing-masing koneksi, guna memperoleh nilai H;

46

hingga Hie sebagai output dari hidden layer berikutnya.

Hi= (1. 3940%0.1)+(0. 6970x0.1)+(2. 0910x0.1)+(3.4850%0.1)(2.
7880x0.1)+(4. 8790%0.1)+(4. 1820x0.1) +(6. 2730x0.1)+(5. 5760%0.1)+(0.
7667x0.1)+(0. 6970%0.1)+(0.9061x0.1)+(0.8364x0.1)+(1. 0455x0.1)+(0.
9758x0.1)+(1. 1152x0.1) = 3.7708

Sehingga dari perhitungan diatas didapatkan Hi sampai His berupa

tabel dibawah ini

Indeks H Hasil H Bobot Baru
Hi 3.7708 0.1
H2 7.5415 0.2
Hs 11.3123 0.3
H4 15.0831 0.4
Hs 18.8538 0.5
He 22.6246 0.6
H7 26.3954 0.7
Hs 30.1662 0.8
Ho 33.9369 0.9
H 10 3.7708 0.10
Hi 41478 0.11
Hi2 4.5249 0.12
H s 4.9020 0.13
Hia 5.2791 0.14
His 5.6562 0.15
H 16 6.0332 0.16

Tabel 4.5 Hasil H1 sampai His

Setiap nilai output dari neuron H: hingga Hie akan dikalikan dengan
bobot yang berbeda untuk menghasilkan nilai O1 hingga O4, yang mewakili
kelas dalam dataset.

O1= (3.7708%0. 4)+(7.5415%0. 4)+(11.3123%0. 4)+(15.0831x0. 4)+(
18.8538%0.4)+(22.6246x0. 4)+(26.3954x 0. 4)+(30.1662x0. 4)
+(33.9369x%0. 4)+(3.7708x0. 4)+(4.1478x0. 4)+(4.5249x%0. 4)+(4.9020x0.
4)+(5.2791x0. 4)+(5.6562%0. 4)+(6.0332x0. 4)

47

O1 = 81.59944

Sehingga perhitungan dari Oy sampai O4 adalah sebagai berikut

Indeks O Hasil O Bobot Baru
(O]] 81.5994 0.4
0 101.9993 0.5
O3 40.79972 0.2
O4 61.19958 0.3

Tabel 4.6 Hasil O; sampai O4

Langkah selanjutnya adalah perhitungan softmax. Softmax digunakan
untuk mengubah sekumpulan nilai menjadi probabilitas. Rumus untuk setiap
nilai O;dalam himpunan {O1,02,03,...,0n} adalah:

eYi
5(0p) = W
Di Mana:

e S(0;) adalah nilai softmax untuk 0;
e ¢Y adalah eksponensial dari nilai 0;

o = e%i adalah jumlah dari semua eksponensial nilai 0;

Dan dimasukkan nilai dengan diketahui
+ 01=281.5994
+ 02=101.9993
+ 03=40.79972

+ 04=61.19958

Maka, dihitung eksponensial dari masing-masing nilai :
eol B eoz) 303)
Lalu di jumlahkan semua hasil eksponensial

e%i = e%1 + % + 03 + 04

e94

Kemudian, di bagi masing-masing eksponensial dengan jumlah total tersebut
0,) 03 04

S(0,) = 5 60; S5(0,) = Y0’ S(03) = ye0i’ S5(04) = Y 0

48

Sehingga berdasarkan perhitungan sebelumnya :
5$(0,) ~1.38 x 107°

S5(0;) ~ 0.999999999

S(03) = 2.64 x 10727

S(0,) ~1.91 x 10718

Dari sini, terlihat bahwa nilai softmax tertinggi adalah untuk O, dengan

probabilitas mendekati 1 yang O, merupakan Fungal.

Kesimpulan:

e 02 =101.9993 memiliki probabilitas tertinggi, sehingga jika ini adalah

data citra warna, maka warna yang terkait dengan nilai ini akan

mendominasi hasil klasifikasi.

o Dalam kasus ini, kita bisa menyimpulkan bahwa citra warna merah

4.5

memiliki nilai tertinggi jika O2 merepresentasikan warna merah.
Evaluation Model

Pada tahap evaluasi model, hasil dari proses pelatihan akan dianalisis untuk

menilai tingkat akurasi dan kemampuan model dalam meminimalkan kesalahan

deteksi. Akurasi dan loss yang diperoleh digunakan sebagai indikator untuk

menentukan apakah pelatihan model telah berjalan dengan baik atau memerlukan

perbaikan lebih lanjut.

0.9

0.8

o
~

Accuracy

o
e

0.4

0.3

O
o

Training and Validation Accuracy

AN A

VY av. @

¥

f/

[

—o— Train Accuracy
Validation Accuracy

Epochs
Gambar 4.32 Grafik train and validation accuraccy

Grafik akurasi menunjukkan peningkatan kinerja model dari epoch awal

hingga akhir pelatihan, dengan akurasi pelatihan mencapai lebih dari 92% dan

akurasi validasi mencapai 93.67%. Hal ini menunjukkan model belajar dengan baik

49

dan dapat menggeneralisasi data dengan baik.

Training and Validation Loss

—&— Train Loss
—&— Validation Loss

12}F

1.0

0.8

Loss

0.6}

0.4

0.2

0 10 20 o 30 20 50
Gambar 4.33 Grafik train and validation loss
Grafik loss menunjukkan penurunan loss pelatihan dan validasi yang
signifikan, dengan nilai akhir loss validasi sekitar 0.2278. Tren yang serupa antara
keduanya menunjukkan bahwa model tidak mengalami overfitting dan memiliki

performa yang stabil.

4.6 Confusion Matrix

Dengan pembagian split data 0,2, 20% digunakan untuk data uji dan 80%
untuk pelatihan. Confusion matrix pada data uji menunjukkan kinerja model dalam
memprediksi label yang belum pernah dilihat sebelumnya. Matriks ini membantu
menilai akurasi model dan mengidentifikasi masalah seperti overfitting atau
underfitting, yang mencerminkan kemampuan generalisasi model. Berikut adalah
hasil dari evaluasi matrix menggunakan confusion matrix.

Confusion Matrix

Bacterial .. 0 14 0
I.-
N

Shepherd_purse_weeds 1

True label

Bact&hapherd_purse_weddagal healthy
Predicted label

Gambar 4.34 Confusion matrix

50

Pada gambar di atas dapat dilihat bahwa pada indeks ke-0 (Bacterial), model
dapat mengklasifikasikan 88 data dengan benar dari total 102 data pada kategori ini.
Pada indeks ke-1 (Shepherd purse weeds), model memprediksi 115 data dengan tepat
dari total 117 data. Pada indeks ke-2 (Fungal), model hanya dapat

mengklasifikasikan 98 data dengan benar dari total 116 data. Sementara itu, pada

indeks ke-3 (Healthy), model berhasil mengklasifikasikan 113 data dengan
benar dari total 119 data. Precission, recall, dan fl-score dapat dilihat dari hasil

confusion matrix di atas, yang dapat dilihat pada tabel di bawah ini.

Classification Report Precission | Recall F1- Support
score

Bacterial 0.90 0.86 0.88 102
Fungal 0.82 0.84 0.83 116
Healthy 0.93 0.95 0.94 119
Shepherd purse weeds 1.00 0.98 0.99 127
Accuracy 0.91 464
Macro average 0.91 0.91 0.91 464
Weighted average 0.91 0.91 0.91 464

Tabel 4.7 Table confusion matrix

Kategori Bacterial memiliki precision 0,90 dan f1-score 88%, kategori Fungal
lebih rendah dengan f1-score 83%. Healthy menunjukkan performa tinggi dengan f1-
score 94%, sementara Shepherd purse weeds memiliki kinerja hampir sempurna

dengan fl-score 99%.

51

4.7 Uji Model

Setelah proses training selesai dan model berhasil dibuat, tahap selanjutnya
adalah melakukan pengujian. Pengujian ini bertujuan untuk mengevaluasi
kemampuan model dalam memprediksi data dengan akurat. Berikut beberapa hasil

uji dataset sebagai berikut:

Bacterial Bacterial Bacterial Bacterial Bacterial
97.23% 100.00% 99.87% 100.00% 100.00%
bl (1).jpg b2 (1).jpg b3 (1).jpg b4 (1).jpg b5 (1).jpg

Fungal Fungal Fungal Fungal Fungal
50.15% 63.73% 98.45% 99.89% 73.17%
1 (1).png f2 (1).png 3 (1).png f4 (1).png 5 (1).png

Healthy Healthy Healthy Healthy Healthy
99.96% 99.41% 99.90% 99.86% 97.31%
h1 (1).png h2 (1).png h3 (1).png h4 (1).png h5 (1).png

[Mo

Shepherd Shepherd Shepherd Shepherd Shepherd
100.00% 100.00% 100.00% 100.00% 100.00%
sl (1).jpg s2 (1).jpg s3(1).jpg s4 (1).jpg s5 (1).jpg

Gambar 4.35 Uji model

Hasil pengujian model menggunakan 60 dataset gambar menunjukkan variasi
akurasi yang berbeda-beda. Untuk penjelasan lebih rinci, dapat dilihat pada Tabel
berikut

52

No Prediction Actual Confidence
1 Bacterial Bacterial 97.23%
2 Bacterial Bacterial 100.00%
3 Bacterial Bacterial 99.87%
4 Bacterial Bacterial 100.00%
5 Bacterial Bacterial 100.00%
6 Bacterial Bacterial 96.28%
7 Bacterial Bacterial 99.42%
8 Bacterial Bacterial 100.00%
9 Bacterial Bacterial 99.87%

10 Bacterial Bacterial 100.00%

11 Bacterial Bacterial 100.00%

12 Bacterial Bacterial 100.00%

13 Bacterial Bacterial 84.99%

14 Bacterial Bacterial 67.86%

15 Bacterial Bacterial 98.34%

16 Fungal Fungal 50.15%

17 Fungal Fungal 99.77%

18 Fungal Fungal 98.92%

19 Fungal Fungal 99.96%

20 Fungal Fungal 98.64%

21 Fungal Fungal 90.56%

22 Fungal Fungal 59.85%

23 Fungal Fungal 63.73%

24 Fungal Fungal 98.45%

25 Fungal Fungal 99.89%

26 Fungal Fungal 73.17%

27 Fungal Fungal 98.84%

28 Fungal Fungal 72.02%

29 Fungal Fungal 95.30%

30 Fungal Fungal 98.18%

53

31 Healthy Healthy 99.96%
32 Healthy Healthy 99.62%
33 Healthy Healthy 99.41%
34 Healthy Healthy 99.97%
35 Healthy Healthy 99.83%
36 Healthy Healthy 99.99%
37 Healthy Healthy 99.97%
38 Healthy Healthy 99.41%
39 Healthy Healthy 99.90%
40 Healthy Healthy 99.86%
41 Healthy Healthy 97.31%
42 Healthy Healthy 99.99%
43 Healthy Healthy 99.98%
44 Healthy Healthy 99.77%
45 Healthy Healthy 99.51%
46 Shepherd purse weeds Shepherd purse weeds 100.00%
47 Shepherd purse weeds Shepherd purse weeds 100.00%
48 Shepherd purse weeds Shepherd purse weeds 100.00%
49 Shepherd purse weeds Shepherd purse weeds 100.00%
50 Shepherd purse weeds Shepherd purse weeds 100.00%
51 Shepherd purse weeds Shepherd purse weeds 100.00%
52 Shepherd purse weeds Shepherd purse weeds 100.00%
53 Shepherd purse weeds Shepherd purse weeds 100.00%
54 Shepherd purse weeds Shepherd purse weeds 100.00%
55 Shepherd purse weeds Shepherd purse weeds 100.00%
56 Shepherd purse weeds Shepherd purse weeds 100.00%
57 Shepherd purse weeds Shepherd purse weeds 100.00%
58 Shepherd purse weeds Shepherd purse weeds 100.00%
59 Shepherd purse weeds Shepherd purse weeds 100.00%
60 Shepherd purse weeds Shepherd purse weeds 100.00%

Tabel 4.8 Tabel uji model

54

4.8 Implementasi Deteksi Penyakit Pada Aplikasi

Dalam implementasi deteksi penyakit pada aplikasi, model terlebih dahulu

diubah ke format TensorFlow Lite agar dapat disematkan ke dalam aplikasi.
ort tensorflow as tf

model path = "/content/model.keras"

tflite model path = "/content/model.tflite"

model = tf.keras.models.load model (model path)

converter = tf.lite.TFLiteConverter.from keras model (model)

tflite model = converter.convert ()

with open(tflite model path,
f.write(tflite model)

Sebelum memulai pembuatan aplikasi, peneliti terlebih dahulu melakukan
perancangan, yang mencakup diagram aktivitas, diagram urutan, dan desain
tampilan, yang dapat ditemukan di bab 3, sub bab 3.3. Tujuan dari implementasi
deteksi penyakit ini adalah untuk menguji ketepatan model dalam
mengklasifikasikan berbagai jenis penyakit pada tanaman selada. Selain itu, aplikasi
yang bertujuan untuk mendeteksi penyakit tanaman ini membutuhkan perangkat

keras yang tercantum dalam tabel berikut.

Spesifikasi PC
Prosesor Ryzen 5 5500U
RAM 16 GB
SSD 512 GB
0S Windows 10 2H22

Spesifikasi Smartphone

Prosesor Mediatek Dimensity 1100 (6 nm) Octa-core (4x2.6
GHz Cortex-A78 & 4x2.0 GHz Cortex-A55)
RAM 8 GB
ROM 512 GB
Camera 64 MP, /1.8, 26mm (wide), 1/1.97", 0.7um,

PDAF 8 MP, /2.2, 120° (ultrawide),
1/4.0", 1.12pm 2 MP, f/2.4, (macro)

55

4.9 Tampilan Aplikasi
49.1 Tampilan Splash Screen

Tampilan splash screen adalah layar awal yang muncul saat aplikasi
dibuka, menampilkan nama dan logo aplikasi. Layar ini ditampilkan selama 3
detik sebelum melanjutkan ke tampilan berikutnya. Contoh halaman splash
screen dapat dilihat pada Gambar dibawah

Gambar 4.36 Tampilan splashscreen aplikasi

56

4.9.2 Tampilan Home

Tampilan Home aplikasi dirancang sebagai pusat navigasi utama dengan
antarmuka yang sederhana. Pada halaman ini, pengguna dapat mengakses tiga
fitur utama, yaitu:

1. ldentifikasi Penyakit

Tombol ini berfungsi untuk mengakses galeri atau kamera untuk
memungkinkan pengguna untuk menganalisis kondisi tanaman melalui
gambar

2. Chat dengan Al

Fitur ini membuat user untuk dapat berkonsultasi dengan Al yang peneliti buat

3. Detail Penyakit

Detail Penyakit memberikan informasi lengkap mengenai berbagai jenis

penyakit tanaman, termasuk gejala, penyebab, dan langkah pencegahan.
0

Identifikasi Penyakit z‘y

Buka Chat Detail Penyakit

o)
Gambar 4.37 Tampilan home aplikasi

57

4.9.3 Tampilan History
Tampilan History dirancang untuk membantu pengguna melacak riwayat
identifikasi penyakit tanaman yang telah dilakukan. Halaman ini menampilkan
daftar hasil analisis lengkap dengan tanggal, jenis penyakit yang terdeteksi, dan
gambar tanaman yang diunggah. Dengan antarmuka yang rapi, pengguna dapat
dengan mudah mengakses informasi sebelumnya untuk referensi atau

keperluan dokumentasi.

HiCare

"

Gambar 4.38 Tampilan history aplikasi

58

4.9.4 Tampilan Hasil Deteksi
Tampilan Hasil Deteksi dirancang untuk menampilkan informasi
lengkap setelah proses identifikasi penyakit tanaman selesai. Halaman ini
mencakup gambar tanaman yang dianalisis, jenis penyakit yang terdeteksi, dan

tingkat akurasi prediksi

@ Penyakit terdeteksi! D

Fungal
(Jamur)

Lactuca sativa

Akurasi: 99,00%

Deskripsi

Lorem Ipsum

Detail Penyakit

Identifikasi Penyakit Czy

A Y
Gambar 4.39 Tampilan hasil deteksi penyakit

59

4,95 Tampilan Detail Penyakit

Detail penyakit ini mencakup informasi tentang gejala, penyebab, dan

cara penanganannya.

8:52|12,6KB/d Z © © B il Sl GD 4

X 03-01-2025

Hasil Diagnosa

Fungal
¢ y ‘ Detail penyakit
Rekomendasi

Penyebab

Lorem Ipsum

Pengendalian

Lorem Ipsum

Apakah informasi ini berguna?

Report Feedback

. — |
Gambar 4.40 Tampilan detail penyakit

60

410 Uji Coba

4.10.1 Pengujian aplikasi

Pengujian aplikasi dilakukan dengan menginstal aplikasi dan
menjalankannya pada perangkat dengan sistem operasi Android. Pengujian
dilakukan menggunakan perangkat smartphone dengan spesifikasi sebagai

berikut:

- Nama Smartphone : POCO X3 GT

-Versi Android : Android 13

- Resolusi Kamera : 64MP

No Uji Coba Deskripsi Hasil yang diharapkan Status
1 Pengguna Tampilan Sukses
masuk ke Home akan
aplikasi muncul
Identifikasi Penyakit ‘29
5
Sukses menampilkan Home
2 Pengguna Tampilan Smsants Rl Sukses
menekan opsi pilih
tombol galeri atau
identifikasi kamera
penyakit muncul
Pilih sumber gambar
Sukses menampilkan opsi Ambil
Gambar

61

Pengguna Program Sukses
menekan akan beralih
tombol ke Kamera
kamera.
Sistem sukses membuka kamera
Pengguna Program Sukses
menekan akan
galeri membuka
galeri
Pengguna Sistem akan Sukses
berhasil meprediksi
memilih input berupa
gambar baik gambar dan
dari galeri memberikan
maupun hasil kepada g
kamera. pengguna Wi
berupa hasil i -
deteksi dan puncdl
akurasi iy
[9 |

Sistem berhasil memprediksi
gambar dan menyampaikan
hasilnya kepada pengguna.

62

Pengguna Sistem sukses
menekan menampilkan o p—
tombol detail rincian o
penyakit penyakit 'y "
sesuai -
dengan Rekomendasi
prediksi dan o
memberikan pengendation
solusi yang
relevan. Apakah nformas! it berguna?
Sistem sukses menampilkan
detail penyakit
Pengguna Tampilan Sukses
berpindah ke history
halaman muncul
history beserta hasil
lampau
L @
L]
Sistem sukses menampilkan
riwayat deteksi lampau
Pengguna Tampilan e ik Sukses
membuka Chat Al <
chat Al muncul @ &

(e

Sistem sukses menampilkan dan
menjalankan chat Al

Tabel 4.9 Tabel pengujian aplikasi

63

Selain itu, peneliti melakukan uji aplikasi dengan menggunakan Android versi

10 dan 11 juga. Sehingga uji aplikasi didapatkan dengan hasil sebagai berikut

Uji Aplikasi Android 10 Android 11 Android 13
Home X v v
Hasil Deteksi X v v
Detail Penyakit X v v
Riwayat X v v
Chat Al X v v

Tabel 4.10 Uji Versi Android

Pada uji aplikasi ini, untuk android 10 mengalami bug seperti tidak munculnya
button intent dan lainnya. namun pada android 11 dan android 13 tidak
mengalami masalah.

HiCare

& 9

Gambar 4.41 Bug Home Android 11

64

4.10.2 Pengujian Deteksi Tanaman

No | Uji Coba Gambar Hasil Android | Hasil Android
11 13
1 Validasi Tanaman berhasil | Tanaman berhasil
Tanaman diklasifisikasikan diklasifisikasikan
Sehat dengan benar dengan benar
Akurasi: 86,63% | Akurasi: 98,23%
2 Validasi Tanaman berhasil | Tanaman berhasil
penyakit diklasifisikasikan | diklasifisikasikan
Bacterial dengan benar dengan benar
Akurasi: 93,77% | Akurasi: 93,70%
3 Validasi Tanaman berhasil | Tanaman berhasil
penyakit diklasifisikasikan | diklasifisikasikan
Fungal dengan benar dengan benar
Akurasi: 99,13% | Akurasi: 99,99%
4 Validasi Tanaman berhasil | Tanaman berhasil
penyakit diklasifisikasikan | diklasifisikasikan
shepherd dengan benar dengan benar
purse
weeds Akurasi: 100% Akurasi: 100%

Tabel 4.11 Tabel pengujian deteksi aplikasi

Uji coba dilakukan untuk menilai akurasi klasifikasi tanaman sehat dan
penyakit pada Android 11 dan 13. Hasil menunjukkan aplikasi bekerja dengan
baik pada kedua versi, dengan akurasi lebih tinggi di Android 13. Pada
klasifikasi tanaman sehat, akurasi meningkat dari 86,63% (Android 11)
menjadi 98,23% (Android 13). Untuk penyakit bacterial, akurasinya stabil di
sekitar 93,7%. Penyakit fungal menunjukkan peningkatan dari 99,13%
menjadi 99,99%. Sementara itu, klasifikasi shepherd purse weeds mencapai
akurasi sempurna (100%) pada kedua versi. Secara keseluruhan, aplikasi lebih

optimal di Android 13, terutama dalam mengidentifikasi tanaman sehat.

65

411 Pembahasan

Berdasarkan pengumpulan data penyakit selada yang dijelaskan pada Bab
sebelumnya, ditemukan tiga jenis penyakit yang berasal dari hama maupun virus,
yaitu bacterial, fungal, dan shepherd's purse weeds. Data ini diambil dari Kaggle

untuk memastikan model dapat melakukan klasifikasi dengan akurasi yang baik.

Dataset yang digunakan terdiri dari 2320 gambar yang mencakup berbagai
jenis penyakit. Data ini dibagi menjadi 80% untuk training dan 20% untuk testing.
Penelitian ini mengembangkan model CNN dengan memanfaatkan TensorFlow yang
akan diintegrasikan ke dalam aplikasi Android. Dari hasil training yang dijelaskan
pada Sub Bab 4.4, model CNN mencapai akurasi sebesar 93.67%. Setelah model
yang memadai berhasil dibuat, langkah berikutnya adalah mengimplementasikannya
ke dalam aplikasi dengan menambahkan fitur deteksi tanaman. Hasil implementasi
dapat diberikan sebagai berikut:

1. Aplikasi dapat mengidentifikasi penyakit selada dengan akurasi 93.67% dan
dilengkapi fitur deteksi real-time melalui gambar yang diunggah atau diambil
menggunakan kamera Android.

2. Disediakan fitur riwayat penyakit yang memungkinkan petani melacak

perkembangan penyakit tanaman selada secara berkala.

3. Setiap penyakit selada yang berhasil diklasifikasikan akan disertai dengan

solusi yang relevan.
Namun aplikasi ini memiliki berapa kelemahan yaitu :

1. Penggunaan label umum seperti "bacterial™ dan "fungal” yang tidak terlalu
spesifik dapat mengurangi keefektifan solusi dari penyakit yang spesifik,

sehingga menyulitkan diagnosis dan penanganan yang tepat.

2. Aplikasi ini hanya tersedia di platform Android dan belum mendukung platform lain

seperti i0OS, sehingga membatasi aksesibilitas bagi pengguna iPhone atau iPad.

3. Aplikasi ini hanya mendukung Android 11 sampai 13 saja, sehingga
penggunaan pada android 10 kebawah kemungkinan akan terjadi bug seperti

yang sudah dijelaskan.

66

