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BAB IV 

HASIL DAN PEMBAHASAN 

 

4.1 Pengumpulan Data 

Pengumpulan data dilakukan dengan menggunakan dataset yang tersedia di 

platform Kaggle. Dataset ini berisi gambar daun selada yang telah diklasifikasikan 

ke dalam berbagai kategori, seperti sehat atau terinfeksi penyakit tertentu. Total 

gambar yang digunakan adalah sebanyak 2320 gambar dan Gambar 4.1. 

menunjukkan hasil dari pengumpulan data melalui Kaggle 

Gambar 4.21 gambar pengumpulan data 

Dari hasil pengumpulan data gambar daun selada sebanyak 2320 gambar 

melalui Kaggle, proses augmentasi dilakukan untuk meningkatkan variasi data, 

sehingga model dapat lebih baik dalam mengenali berbagai kondisi daun selada 

4.1.1 Labelling Data 

Proses pelabelan data bertujuan untuk memberikan identitas pada data 

sehingga dapat dikenali oleh model. Setiap folder diberi nama sesuai dengan 

kategori yang sesuai, seperti bacterial, fungal, healthy, dan shepherd purse 

weeds. Setiap folder diberi nama sesuai dengan kategori yang sesuai dan diisi 

dengan data yang sesuai dengan namanya, seperti yang ditunjukkan pada 

Gambar 4.2.  
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Gambar 4.22 Label Data 

4.2 Preproccessing Data 

Tahapan preprocessing data citra meliputi pengumpulan data (gathering), 

pemberian label pada citra, serta augmentasi citra terhadap seluruh data yang 

tersedia. 

4.2.1 Augmentasi Data 

Augmentasi data bertujuan untuk mengurangi overfitting pada dataset 

yang tersedia. Selain itu, teknik augmentasi gambar ini juga dapat menambah 

jumlah data yang digunakan. Namun, data yang dihasilkan hanya dapat 

digunakan dalam proses pelatihan model. Berikut adalah kode yang digunakan 

untuk melakukan augmentasi pada gambar. 

from tensorflow.keras.preprocessing.image  

import ImageDataGenerator 

 

image_size = (256, 256) 

batch_size = 32 

 

datagen = ImageDataGenerator( 

    rescale=1.0/255, 

    rotation_range=20, 

    width_shift_range=0.2, 

    height_shift_range=0.2, 

    shear_range=0.2, 

    zoom_range=0.2, 
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    horizontal_flip=True, 

    validation_split=0.2, 

    fill_mode='nearest' 

) 

 

train_generator = datagen.flow_from_dataframe( 

    df_train, 

    x_col='image', 

    y_col='label', 

    target_size=image_size, 

    batch_size=batch_size, 

    class_mode='categorical', 

    shuffle=True 

) 

 

test_generator = datagen.flow_from_dataframe( 

    df_test, 

    x_col='image', 

    y_col='label', 

    target_size=image_size, 

    batch_size=batch_size, 

    class_mode='categorical', 

    shuffle=False 

) 

Fungsi ImageDataGenerator digunakan dalam program di atas untuk 

mengubah gambar, yang kemudian disimpan dalam variabel datagen. 

Parameter yang digunakan untuk menghasilkan peningkatan gambar adalah 

sebagai berikut. 

a. rescale=1.0/255. Melakukan normalisasi nilai piksel gambar, mengubah 

rentang piksel dari 0-255 menjadi 0-1 dengan membagi setiap nilai piksel 

dengan 255. 

b. rotation_range=20. Mengatur rentang rotasi gambar. Gambar dapat 

diputar secara acak hingga 20 derajat, baik searah atau berlawanan arah 

jarum jam. 

c. width_shift_range=0.2. Mengubah foto ke arah horizontal (kanan atau 

kiri) hingga 20% dari lebar gambar. 

d. height_shift_range=0.2. Mengubah foto ke arah vertikal (atas atau 

bawah) hingga 20% dari tinggi gambar. 
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e. shear_range=0.2. Melakukan transformasi shearing pada gambar, yang 

berarti gambar akan diubah dalam bentuk kemiringan dengan tingkat 

kemiringan sebesar 20%. 

f. zoom_range=0.2. Melakukan zoom pada gambar secara acak dalam 

rentang 20%. Gambar bisa diperbesar atau diperkecil. 

g. horizontal_flip=True. Membalik gambar secara horizontal (flip). Ini 

membantu model untuk belajar lebih banyak variasi dari gambar yang 

tersedia. 

h. validation_split=0.2. Menentukan persentase data yang akan digunakan 

untuk validasi. Di sini, 20% dari total data akan digunakan untuk 

validasi, sementara sisanya (80%) akan digunakan untuk pelatihan. 

 

Gambar 4.23 Hasil Augmentasi Data 

Gambar 4.3 menunjukkan hasil dari augmentasi gambar. Proses 

augmentasi ini akan memutar, memiringkan, dan memperbesar gambar secara 

acak berdasarkan parameter yang telah dijelaskan sebelumnya. 
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4.3 Building Model 

Pemodelan CNN akan terdiri dari 4 lapisan convolutional, dan 1 lapisan fully 

connected (neural network). Proses pemodelan CNN ini akan dilakukan 

menggunakan TensorFlow, seperti yang dijelaskan berikut ini. 

from keras.models import Sequential 

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, 

BatchNormalization 

 

model=Sequential() 

model.add(Conv2D(256,(3,3),activation='relu',input_shape=(256,256,3))

) 

model.add(MaxPooling2D(2,2)) 

model.add(Conv2D(128,(3,3),activation='relu')) 

model.add(MaxPooling2D(2,2)) 

model.add(Conv2D(128,(3,3),activation='relu')) 

model.add(MaxPooling2D(2,2)) 

model.add(Conv2D(64,(3,3),activation='relu')) 

model.add(MaxPooling2D(2,2)) 

model.add(Flatten()) 

model.add(Dense(32, activation='relu')) 

model.add(Dense(4,activation='softmax')) 

 

model.summary() 
 

Model CNN ini terdiri dari empat lapisan konvolusi dengan kernel 3x3 dan 

jumlah filter bertahap 256, 128, 128, dan 64, masing-masing diikuti oleh MaxPooling 

2x2 untuk mereduksi dimensi fitur. Setelah fitur diubah menjadi bentuk 1 dimensi 

melalui lapisan Flatten, lapisan Dense dengan 32 neuron dan aktivasi ReLU 

memprosesnya sebelum masuk ke lapisan output dengan 4 neuron dan aktivasi 

Softmax untuk klasifikasi multi-kelas. Model ini dirancang untuk menerima input 

gambar dengan dimensi (256, 256, 3). Hasil pembuatan model CNN berada di bawah 

berikut : 

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ 
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃ 
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ 
│ conv2d (Conv2D)                      │ (None, 254, 254, 256)       │           7,168 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ max_pooling2d (MaxPooling2D)         │ (None, 127, 127, 256)       │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ conv2d_1 (Conv2D)                    │ (None, 125, 125, 128)       │         295,040 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ max_pooling2d_1 (MaxPooling2D)       │ (None, 62, 62, 128)         │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ conv2d_2 (Conv2D)                    │ (None, 60, 60, 128)         │         147,584 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ max_pooling2d_2 (MaxPooling2D)       │ (None, 30, 30, 128)         │               0 │ 
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├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ conv2d_3 (Conv2D)                    │ (None, 28, 28, 64)          │          73,792 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ max_pooling2d_3 (MaxPooling2D)       │ (None, 14, 14, 64)          │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ flatten (Flatten)                    │ (None, 12544)               │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense (Dense)                        │ (None, 32)                  │         401,440 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense_1 (Dense)                      │ (None, 4)                   │             132 │ 
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ 

Total params: 925,156 (3.53 MB) 
Trainable params: 925,156 (3.53 MB) 
Non-trainable params: 0 (0.00 B) 

4.4 Training Model 

Sebelum melakukan pelatihan, diperlukan beberapa pengaturan agar model 

yang dihasilkan optimal dan proses pelatihan lebih efisien. Pengaturan tersebut dapat 

dilihat pada source code berikut ini: 

from tensorflow.keras.optimizers import Adam 

model.compile( 

    optimizer = Adam(learning_rate=0.001), 

    loss='categorical_crossentropy', 

    metrics=['accuracy'] 

  ) 

 

Kode ini mengatur optimasi model dengan Adam optimizer, menggunakan 

categorical crossentropy sebagai fungsi loss untuk klasifikasi multi-kelas, dan 

mengevaluasi kinerja model menggunakan metrik akurasi. 

a. optimizer=Adam(learning_rate=0.001): Adam adalah algoritma optimasi 

yang adaptif dan efisien, cocok untuk memperbarui bobot model selama 

pelatihan. Parameter learning_rate=0.001 mengontrol kecepatan 

pembelajaran untuk mencapai hasil optimal. 

b. loss='categorical_crossentropy' = Fungsi loss ini digunakan untuk 

masalah klasifikasi multi-kelas dengan one-hot encoding. 

c. metrics=['accuracy'] = Metrik akurasi digunakan untuk mengukur 

seberapa sering prediksi model benar dibandingkan dengan label asli. 

Setelah selesai melakukan pengaturan, langkah berikutnya adalah melatih 

model CNN. Berikut adalah source code untuk proses pelatihan: 
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history = model.fit( 

    train_generator, 

    validation_data=test_generator, 

    epochs=50) 

Proses pelatihan akan menghasilkan history yang berisi metrik performa model 

seperti loss dan accuracy untuk data latih dan validasi. 

a. train_generator = Generator yang menyediakan data latih dalam bentuk 

batch secara bertahap. Biasanya digunakan dengan data augmentation 

untuk efisiensi memori. 

b. epochs=50 = Model akan dilatih selama 50 epoch, di mana satu epoch 

adalah satu siklus penuh iterasi terhadap seluruh data latih. 

c. validation_data=validation_generator = Data validasi yang juga 

disediakan oleh generator untuk mengevaluasi performa model pada 

setiap epoch. 

Hasil dari proses training dapat dilihat pada gambar dibawah ini 

 

Hasil akhir dari proses pelatihan model CNN di epoch 50 menujukkan 

keakurasian diatas 90%. Selain itu, peneliti juga telah melakukan beberapa proses 

pelatihan (training) dengan variasi parameter tertentu. Hasil dari pelatihan tersebut 

akan ditampilkan dalam bentuk tabel di bawah ini. 
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Epoch Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Learning 

Rate 

Deskripsi 

50 93.67% 0.1596 93.99% 0.2625 0.001 Akurasi validasi 

tertinggi (93.99%) 

dengan gap kecil 

antara akurasi 

training dan validasi. 

Cocok untuk model 

dengan generalisasi 

baik. 

60 93.76% 0.1494 90.63% 0.2571 0.001 Akurasi validasi 

turun signifikan, 

menunjukkan 

kemungkinan 

overfitting meskipun 

training loss kecil. 

 

50 92.01% 0.2234 92.54% 0.2569 0.0001 Akurasi stabil 

dengan selisih kecil 

antara training dan 

validation, 

menunjukkan 

keseimbangan 

model. 

60 91.48% 0.2092 92.25% 0.2587 0.0001 Model cukup stabil, 

tetapi training 

accuracy lebih 

rendah dibandingkan 

opsi lainnya. 

Tabel 4.3 Tabel hasil training model 

Berdasarkan hasil pengujian, model dengan konfigurasi epoch 50 dan 

learning rate 0.001 menunjukkan akurasi validasi tertinggi sebesar 93.99% dengan 

gap yang kecil antara akurasi training (93.67%) dan validasi, serta loss yang 

seimbang. Hal ini mengindikasikan bahwa model memiliki kemampuan 

generalisasi yang baik tanpa tanda-tanda overfitting. Dibandingkan dengan 

konfigurasi lainnya, pilihan ini memberikan kinerja yang optimal untuk akurasi 

validasi sekaligus menjaga stabilitas model, sehingga direkomendasikan untuk 

digunakan.  

Selama proses pelatihan model, gambar akan melalui empat lapisan CNN 

berupa input layer, convolution layer, pooling layer dan fully connected layer, 

seperti yang ditunjukkan dibawah ini. 

4.4.1 Input Layer 

Gambar daun selada akan dimasukkan ke lapisan awal. Di lapisan ini, 

gambar tersebut diolah menjadi matriks tiga dimensi yang terdiri dari 

panjang, lebar, dan saluran warna (RGB). Contoh berikut menggambarkan 

hasil input dari gambar tersebut. 
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Gambar 4.24 hasil input layer 

Pada gambar diatas, terdapat proses input layer, gambar diekstrak 

mengubahnya menjadi tiga warna: merah, hijau, dan biru. 

4.4.2 Convolution Layer 

Pada lapisan ini, sebuah input akan dimasukkan ke dalam convolution 

layer, di mana nilai RGB dari setiap piksel pada citra akan diekstraksi. Proses 

ini menghasilkan output berupa feature map. untuk mengolah gambar pada 

convolution layer, digunakan filter. Sebagai ilustrasi, dapat dilakukan 

perhitungan yang dilakukan melalui saluran merah yang diambil dari input 

layer.  



 

40 

 

Gambar 4.25 red channel 

Pada tahap ini, dilakukan perhitungan untuk menghasilkan peta fitur dengan 

bantuan filter berukuran 3x3 yang memiliki nilai acak, yang terlihat seperti gambar 

berikut. 

1 0 -1 

1 0 -1 

1 0 -1 

Gambar 4.26 contoh filter 

Perhitungan untuk menentukan nilai sebuah feature map gambar dimulai 

dengan menggunakan koordinat awal matriks (1,1). Oleh karena itu, perhitungan 

dilakukan berdasarkan submatriks yang sesuai dengan posisi tersebut sebagai berikut 

y[1,1] = (0.88⋅1) + (0.93⋅0) + (0.93⋅−1) + (0.91⋅1) + (0.55⋅0) + (0.58⋅−1) + 

(0.91⋅1) + (0.51⋅0) + (0.50⋅−1) 

y[1,1] = (0.88) + (0) + (−0.93) + (0.91) + (0) + (−0.58) + (0.91) + (0) + (−0.50) 

y[1,1] = 0.88 − 0.93 + 0.91 − 0.58 + 0.91 − 0.50 

y[1,1] = 0.69 

Rumus untuk menghitung ukuran feature map setelah konvolusi adalah: 

• Ukuran Feature Map = (Ukuran Gambar−Ukuran Kernel) + 1 

Dengan menggantikan nilai-nilai yang diberikan: 

• Ukuran Feature Map = (10−3) + 1 = 8 
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Artinya, gambar input yang berukuran 10x10 akan menghasilkan 

feature map dengan ukuran 8x8. Ini terjadi karena filter 3x3 akan dipindahkan 

sepanjang gambar 10x10, dan dengan stride 1, filter dapat diterapkan 8 kali 

baik secara horizontal maupun vertikal. Sehingga hasil yang diberikan pada 

koordinat [1,1] adalah 0.69 dan juga ukuran feature map adalah 8 

Gambar 4. 27 feature map merah 

Setelah proses perhitungan pada convolution layer selesai, langkah 

berikutnya adalah menerapkan fungsi aktivasi. Dalam penelitian ini, fungsi 

aktivasi yang digunakan pada lapisan konvolusi adalah ReLU. Fungsi aktivasi 

ReLU (Rectified Linear Unit) bekerja dengan cara mengubah semua nilai 

negatif menjadi nol dan mempertahankan nilai positif sebagaimana adanya. 

Hal ini dilakukan secara elemen demi elemen pada matriks input (feature 

map). Rumus matematis untuk ReLU adalah: 

f(x) = max (0,x) 

Di mana: 

• x adalah nilai elemen input pada matriks. 
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• Jika x>0, maka f(x)=x 

• Jika x≤0, maka f(x)=0 

Sebagai contoh, jika diterapkan pada elemen x = −0.78 maka: 

• f(−0.78)=max(0,−0.78)=0 

Sedangkan untuk elemen x=0.74, maka: 

• f(0.74)=max(0,0.74)=0.74 

Proses ini dilakukan secara elemen per elemen hingga menghasilkan 

matriks baru yang hanya berisi nilai nol dan positif. 

Gambar 4.28  feature map setelah ReLu 
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4.4.3 Pooling Layer 

Pada tahap ini, tujuan utamanya adalah mengurangi jumlah parameter 

dan kompleksitas perhitungan dalam neural network. Dalam penelitian ini, 

pooling layer yang digunakan adalah MaxPooling, yang berfungsi untuk 

mengambil nilai maksimum dari hasil convolution. Ukuran matriks untuk 

Maxpooling yang diterapkan adalah 2x2, dengan stride sebesar 2. Proses ini 

dilakukan pada feature map yang dihasilkan oleh convolution layer, seperti 

yang terlihat pada gambar di bawah ini, sebelum diteruskan ke langkah 

berikutnya. 

 

  

 

 

 

 

 

 

Gambar 4.29 Proses input dan output pooling layer 

Pada gambar di atas, input berupa feature map yang dihasilkan dari 

konvolusi, sementara output merupakan hasil dari pooling layer. Proses ini 

akan menghasilkan nilai output yang merupakan nilai terbesar dari setiap blok 

2x2 pada input. Dalam kasus ini, nilai terbesar dalam setiap blok 2x2 akan 

dipilih dan dimasukkan ke dalam output dari pooling layer. 
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4.4.4 Flatten Layer 

Flatten adalah proses mengubah matriks menjadi vektor atau matriks 

satu dimensi yang diperoleh dari output lapisan pooling. Proses ini dapat 

dilihat pada gambar berikut.  

Gambar 4.30 Proses Flatten Layer 

 

Gambar 4.30 menunjukkan proses flatten, di mana matriks berukuran 

4x4 dikonversi menjadi vektor berukuran 16x1. Hasil dari tahap ini adalah 

vektor satu dimensi yang akan digunakan sebagai input untuk lapisan fully 

connected. 
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4.4.5 Fully Connected Layer 

Hidden Layer 

Gambar 4.31 Ilustrasi Dense + Softmax Layer 

Gambar di atas menunjukkan proses Dense + Softmax, di mana vektor 

satu dimensi berjumlah 16 digunakan sebagai input. Setiap nilai dalam vektor 

tersebut akan dihitung melalui hidden layer yang juga memiliki 16 neuron. 

Berikut adalah proses perhitungannya. 

∑ I𝑖 𝑥  𝑉𝑖𝑗 = 𝐽𝑖

𝑁

𝐼=1

 

∑ I𝑖 𝑥  𝑊𝑖𝑗 = 𝐻𝑖

𝑁

𝐼=1

 

∑ I𝑖 𝑥  𝑋𝑖𝑗 = 𝑂𝑖

𝑁

𝐼=1

 

I1, I2, I3, I4, I5, I6, hingga I16 merupakan nilai output dari proses 

Flatten, yang kemudian diproses melalui Fully Connected Layer. Setiap nilai 

akan dihitung dalam hidden layer dengan bobot yang berbeda untuk setiap 

koneksi. Nilai bobot dapat ditentukan secara bebas sesuai kebutuhan. Berikut 

adalah perhitungan pada setiap hidden layer. 

J1=(1.07×0.2)+(0.37×0.2)+(0.74×0.2)+(0.00×0.2)+(0.44×0.2)+(1.13×0.2)+(0.

36×0.2)+(0.00×0.2)+(0.00×0.2)+(1.43×0.2)+(0.02×0.2)+(0.07×0.2)+(0.39×0.

2)+(0.87×0.2)+(0.08×0.2)+(0.00×0.2) 
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Lalu 

J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.00

0)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000)J_1 = (0.214) 

+ (0.074) + (0.148) + (0.000) + (0.088) + (0.226) + (0.072) + (0.000) + 

(0.000) + (0.286) + (0.004) + (0.014) + (0.078) + (0.174) + (0.016) + (0.000) 

 

J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.0

00)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000) 

Lalu jumlahkan semuanya: 

J1=1.394 

Sehingga dari perhitungan diatas didapatkan J1 sampai J16 berupa tabel 

dibawah ini 

 

Indeks J Hasil J Nilai Acak yang digunakan 

J1 1.3940 (1.07×0.2),(0.37×0.2),… 

J2 0,6970 (1.07×0.1),(0. 37×0.1),… 

J3 2.0910 (1.07×0.3),(0. 37×0.3),… 

J4 3.4850 (1.07×0.5),(0. 37×0.5),… 

J5 2.7880 (1.07×0.4),(0. 37×0.4),… 

J6 4.8790 (1.07×0.7),(0. 37×0.7),… 

J7 4.1820 (1.07×0.6),(0. 37×0.6),… 

J8 6.2730 (1.07×0.9),(0. 37×0.9),… 

J9 5.5760 (1.07×0.8),(0. 37×0.8),… 

J10 0.7667 
 

(1.07×0.11),(0. 37×0.11),… 

J11 0.6970 (1.07×0.10),(0. 37×0.10),… 

J12 0.9061 (1.07×0.13),(0. 37×0.13),… 

J13 0.8364 (1.07×0.12),(0. 37×0.12),… 

J14 1.0455 (1.07×0.15),(0. 37×0.15),… 

J15 0.9758 (1.07×0.14),(0. 37×0.14),… 

J16 1.1152 (1.07×0.16),(0. 37×0.16),… 

Tabel 4.4 Hasil J1 sampai J16 

Nilai J1 hingga J16 yang telah dihitung akan dikalikan dengan bobot baru 

yang berbeda untuk masing-masing koneksi, guna memperoleh nilai H1 
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hingga H16 sebagai output dari hidden layer berikutnya. 

H1= (1. 3940×0.1)+(0. 6970×0.1)+(2. 0910×0.1)+(3.4850×0.1)(2. 

7880×0.1)+(4. 8790×0.1)+(4. 1820×0.1) +(6. 2730×0.1)+(5. 5760×0.1)+(0. 

7667×0.1)+(0. 6970×0.1)+(0.9061×0.1)+(0.8364×0.1)+(1. 0455×0.1)+(0. 

9758×0.1)+(1. 1152×0.1) = 3.7708 

Sehingga dari perhitungan diatas didapatkan H1 sampai H16 berupa 

tabel dibawah ini 

Indeks H Hasil H Bobot Baru 

H 1 3.7708 0.1 

H 2 7.5415 0.2 

H 3 11.3123 0.3 

H 4 15.0831 0.4 

H 5 18.8538 0.5 

H 6 22.6246 0.6 

H 7 26.3954 0.7 

H 8 30.1662 0.8 

H 9 33.9369 0.9 

H 10 3.7708 0.10 

H 11 4.1478 0.11 

H 12 4.5249 0.12 

H 13 4.9020 0.13 

H 14 5.2791 0.14 

H 15 5.6562 0.15 

H 16 6.0332 0.16 

Tabel 4.5 Hasil H1 sampai H16 

Setiap nilai output dari neuron H1 hingga H16 akan dikalikan dengan 

bobot yang berbeda untuk menghasilkan nilai O1 hingga O4, yang mewakili 

kelas dalam dataset. 

O1= (3.7708×0. 4)+( 7.5415×0. 4)+( 11.3123×0. 4)+( 15.0831×0. 4)+( 

18.8538×0.4)+( 22.6246×0. 4)+( 26.3954× 0. 4)+( 30.1662×0. 4) 

+(33.9369×0. 4)+( 3.7708×0. 4)+( 4.1478×0. 4)+( 4.5249×0. 4)+( 4.9020×0. 

4)+( 5.2791×0. 4)+( 5.6562×0. 4)+( 6.0332×0. 4)  
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O1 = 81.59944 

Sehingga perhitungan dari O1 sampai O4 adalah sebagai berikut 

Indeks O Hasil O Bobot Baru 

O1 81.5994 0.4 

O 2 101.9993 0.5 

O 3 40.79972 0.2 

O 4 61.19958 0.3 

Tabel 4.6 Hasil O1 sampai O4 

Langkah selanjutnya adalah perhitungan softmax. Softmax digunakan 

untuk mengubah sekumpulan nilai menjadi probabilitas. Rumus untuk setiap 

nilai Oi dalam himpunan {O1,O2,O3,...,On} adalah: 

 

𝑆(𝑂𝑖) =  
𝑒𝑂𝑖

∑  𝑒𝑂𝑗𝑛
𝑗=1

 

Di Mana: 

• 𝑆(𝑂𝑖) adalah nilai softmax untuk  𝑂𝑖 

• 𝑒𝑂𝑖 adalah eksponensial dari nilai 𝑂𝑖 

• ∑  𝑒𝑂𝑖𝑛
𝑗=1  adalah jumlah dari semua eksponensial nilai 𝑂𝑗 

 

Dan dimasukkan nilai dengan diketahui  

• O1 = 81.5994 

• O2 = 101.9993 

• O3 = 40.79972 

• O4 = 61.19958 

 

Maka, dihitung eksponensial dari masing-masing nilai : 

𝑒𝑂1  , 𝑒𝑂2  , 𝑒𝑂3  , 𝑒𝑂4 

Lalu di jumlahkan semua hasil eksponensial 

∑ 𝑒𝑂𝑗 =  𝑒𝑂1  +  𝑒𝑂2  +  𝑒𝑂3 + 𝑒𝑂4 

Kemudian, di bagi masing-masing eksponensial dengan jumlah total tersebut 

𝑆(𝑂1) =  
𝑒𝑂1

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂2) =  

𝑒𝑂2

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂3) =  

𝑒𝑂3

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂4) =  

𝑒𝑂4

∑ 𝑒𝑂𝑗
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Sehingga berdasarkan perhitungan sebelumnya : 

 𝑆(𝑂1) ≈ 1.38 ×  10−9 

𝑆(𝑂2) ≈ 0.999999999 

𝑆(𝑂3) ≈ 2.64 ×  10−27 

𝑆(𝑂4) ≈ 1.91 ×  10−18 

Dari sini, terlihat bahwa nilai softmax tertinggi adalah untuk O2 dengan 

probabilitas mendekati 1 yang O2 merupakan Fungal. 

Kesimpulan: 

• O2 = 101.9993 memiliki probabilitas tertinggi, sehingga jika ini adalah 

data citra warna, maka warna yang terkait dengan nilai ini akan 

mendominasi hasil klasifikasi. 

• Dalam kasus ini, kita bisa menyimpulkan bahwa citra warna merah 

memiliki nilai tertinggi jika O2 merepresentasikan warna merah. 

4.5 Evaluation Model 

Pada tahap evaluasi model, hasil dari proses pelatihan akan dianalisis untuk 

menilai tingkat akurasi dan kemampuan model dalam meminimalkan kesalahan 

deteksi. Akurasi dan loss yang diperoleh digunakan sebagai indikator untuk 

menentukan apakah pelatihan model telah berjalan dengan baik atau memerlukan 

perbaikan lebih lanjut. 

Gambar 4.32 Grafik train and validation accuraccy 

Grafik akurasi menunjukkan peningkatan kinerja model dari epoch awal 

hingga akhir pelatihan, dengan akurasi pelatihan mencapai lebih dari 92% dan 

akurasi validasi mencapai 93.67%. Hal ini menunjukkan model belajar dengan baik 
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dan dapat menggeneralisasi data dengan baik. 

 

Gambar 4.33 Grafik train and validation loss 

Grafik loss menunjukkan penurunan loss pelatihan dan validasi yang 

signifikan, dengan nilai akhir loss validasi sekitar 0.2278. Tren yang serupa antara 

keduanya menunjukkan bahwa model tidak mengalami overfitting dan memiliki 

performa yang stabil. 

4.6 Confusion Matrix 

Dengan pembagian split data 0,2, 20% digunakan untuk data uji dan 80% 

untuk pelatihan. Confusion matrix pada data uji menunjukkan kinerja model dalam 

memprediksi label yang belum pernah dilihat sebelumnya. Matriks ini membantu 

menilai akurasi model dan mengidentifikasi masalah seperti overfitting atau 

underfitting, yang mencerminkan kemampuan generalisasi model. Berikut adalah 

hasil dari evaluasi matrix menggunakan confusion matrix. 

Gambar 4.34 Confusion matrix 
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Pada gambar di atas dapat dilihat bahwa pada indeks ke-0 (Bacterial), model 

dapat mengklasifikasikan 88 data dengan benar dari total 102 data pada kategori ini. 

Pada indeks ke-1 (Shepherd purse weeds), model memprediksi 115 data dengan tepat 

dari total 117 data. Pada indeks ke-2 (Fungal), model hanya dapat 

mengklasifikasikan 98 data dengan benar dari total 116 data. Sementara itu, pada  

indeks ke-3 (Healthy), model berhasil mengklasifikasikan 113 data dengan 

benar dari total 119 data. Precission, recall, dan f1-score dapat dilihat dari hasil 

confusion matrix di atas, yang dapat dilihat pada tabel di bawah ini. 

 

 

 

Tabel 4.7 Table confusion matrix 

Kategori Bacterial memiliki precision 0,90 dan f1-score 88%, kategori Fungal 

lebih rendah dengan f1-score 83%. Healthy menunjukkan performa tinggi dengan f1-

score 94%, sementara Shepherd purse weeds memiliki kinerja hampir sempurna 

dengan f1-score 99%. 

  

Classification Report Precission Recall F1-

score 

Support 

Bacterial 0.90 0.86 0.88 102 

Fungal 0.82 0.84 0.83 116 

Healthy 0.93 0.95 0.94 119 

Shepherd purse weeds 1.00 0.98 0.99 127 

     

Accuracy   0.91 464 

Macro average 0.91 0.91 0.91 464 

Weighted average 0.91 0.91 0.91 464 
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4.7 Uji Model 

Setelah proses training selesai dan model berhasil dibuat, tahap selanjutnya 

adalah melakukan pengujian. Pengujian ini bertujuan untuk mengevaluasi 

kemampuan model dalam memprediksi data dengan akurat. Berikut beberapa hasil 

uji dataset sebagai berikut:  

Gambar 4.35 Uji model 

Hasil pengujian model menggunakan 60 dataset gambar menunjukkan variasi 

akurasi yang berbeda-beda. Untuk penjelasan lebih rinci, dapat dilihat pada Tabel 

berikut 
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No Prediction Actual Confidence 

1 Bacterial Bacterial 97.23% 

2 Bacterial Bacterial 100.00% 

3 Bacterial Bacterial 99.87% 

4 Bacterial Bacterial 100.00% 

5 Bacterial Bacterial 100.00% 

6 Bacterial Bacterial 96.28% 

7 Bacterial Bacterial 99.42% 

8 Bacterial Bacterial 100.00% 

9 Bacterial Bacterial 99.87% 

10 Bacterial Bacterial 100.00% 

11 Bacterial Bacterial 100.00% 

12 Bacterial Bacterial 100.00% 

13 Bacterial Bacterial 84.99% 

14 Bacterial Bacterial 67.86% 

15 Bacterial Bacterial 98.34% 

16 Fungal Fungal 50.15% 

17 Fungal Fungal 99.77% 

18 Fungal Fungal 98.92% 

19 Fungal Fungal 99.96% 

20 Fungal Fungal 98.64% 

21 Fungal Fungal 90.56% 

22 Fungal Fungal 59.85% 

23 Fungal Fungal 63.73% 

24 Fungal Fungal 98.45% 

25 Fungal Fungal 99.89% 

26 Fungal Fungal 73.17% 

27 Fungal Fungal 98.84% 

28 Fungal Fungal 72.02% 

29 Fungal Fungal 95.30% 

30 Fungal Fungal 98.18% 



 

54 

 

31 Healthy Healthy 99.96% 

32 Healthy Healthy 99.62% 

33 Healthy Healthy 99.41% 

34 Healthy Healthy 99.97% 

35 Healthy Healthy 99.83% 

36 Healthy Healthy 99.99% 

37 Healthy Healthy 99.97% 

38 Healthy Healthy 99.41% 

39 Healthy Healthy 99.90% 

40 Healthy Healthy 99.86% 

41 Healthy Healthy 97.31% 

42 Healthy Healthy 99.99% 

43 Healthy Healthy 99.98% 

44 Healthy Healthy 99.77% 

45 Healthy Healthy 99.51% 

46 Shepherd purse weeds Shepherd purse weeds 100.00% 

47 Shepherd purse weeds Shepherd purse weeds 100.00% 

48 Shepherd purse weeds Shepherd purse weeds 100.00% 

49 Shepherd purse weeds Shepherd purse weeds 100.00% 

50 Shepherd purse weeds Shepherd purse weeds 100.00% 

51 Shepherd purse weeds Shepherd purse weeds 100.00% 

52 Shepherd purse weeds Shepherd purse weeds 100.00% 

53 Shepherd purse weeds Shepherd purse weeds 100.00% 

54 Shepherd purse weeds Shepherd purse weeds 100.00% 

55 Shepherd purse weeds Shepherd purse weeds 100.00% 

56 Shepherd purse weeds Shepherd purse weeds 100.00% 

57 Shepherd purse weeds Shepherd purse weeds 100.00% 

58 Shepherd purse weeds Shepherd purse weeds 100.00% 

59 Shepherd purse weeds Shepherd purse weeds 100.00% 

60 Shepherd purse weeds Shepherd purse weeds 100.00% 

Tabel 4.8 Tabel uji model 
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4.8 Implementasi Deteksi Penyakit Pada Aplikasi  

Dalam implementasi deteksi penyakit pada aplikasi, model terlebih dahulu 

diubah ke format TensorFlow Lite agar dapat disematkan ke dalam aplikasi.  

import tensorflow as tf 

 

model_path = "/content/model.keras" 

 

tflite_model_path = "/content/model.tflite" 

 

model = tf.keras.models.load_model(model_path) 

 

converter = tf.lite.TFLiteConverter.from_keras_model(model) 

tflite_model = converter.convert() 

 

with open(tflite_model_path, 'wb') as f: 

    f.write(tflite_model) 

Sebelum memulai pembuatan aplikasi, peneliti terlebih dahulu melakukan 

perancangan, yang mencakup diagram aktivitas, diagram urutan, dan desain 

tampilan, yang dapat ditemukan di bab 3, sub bab 3.3. Tujuan dari implementasi 

deteksi penyakit ini adalah untuk menguji ketepatan model dalam 

mengklasifikasikan berbagai jenis penyakit pada tanaman selada. Selain itu, aplikasi 

yang bertujuan untuk mendeteksi penyakit tanaman ini membutuhkan perangkat 

keras yang tercantum dalam tabel berikut. 

Spesifikasi PC 

Prosesor Ryzen 5 5500U 

RAM 16 GB 

SSD 512 GB 

OS Windows 10 2H22 

 

Spesifikasi Smartphone 

Prosesor Mediatek Dimensity 1100 (6 nm) Octa-core (4x2.6 

GHz Cortex-A78 & 4x2.0 GHz Cortex-A55) 

RAM 8 GB 

ROM 512 GB 

Camera 64 MP, f/1.8, 26mm (wide), 1/1.97", 0.7µm, 

PDAF 8 MP, f/2.2, 120˚ (ultrawide), 

1/4.0", 1.12µm 2 MP, f/2.4, (macro) 
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4.9 Tampilan Aplikasi 

4.9.1 Tampilan Splash Screen 

Tampilan splash screen adalah layar awal yang muncul saat aplikasi 

dibuka, menampilkan nama dan logo aplikasi. Layar ini ditampilkan selama 3 

detik sebelum melanjutkan ke tampilan berikutnya. Contoh halaman splash 

screen dapat dilihat pada Gambar dibawah 

 

Gambar 4.36 Tampilan splashscreen aplikasi 

  



 

57 

 

4.9.2 Tampilan Home 

Tampilan Home aplikasi dirancang sebagai pusat navigasi utama dengan 

antarmuka yang sederhana. Pada halaman ini, pengguna dapat mengakses tiga 

fitur utama, yaitu: 

1. Identifikasi Penyakit 

Tombol ini berfungsi untuk mengakses galeri atau kamera untuk 

memungkinkan pengguna untuk menganalisis kondisi tanaman melalui 

gambar 

2. Chat dengan AI 

Fitur ini membuat user untuk dapat berkonsultasi dengan AI yang peneliti buat 

3. Detail Penyakit 

Detail Penyakit memberikan informasi lengkap mengenai berbagai jenis 

penyakit tanaman, termasuk gejala, penyebab, dan langkah pencegahan. 

Gambar 4.37 Tampilan home aplikasi 
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4.9.3 Tampilan History 

Tampilan History dirancang untuk membantu pengguna melacak riwayat 

identifikasi penyakit tanaman yang telah dilakukan. Halaman ini menampilkan 

daftar hasil analisis lengkap dengan tanggal, jenis penyakit yang terdeteksi, dan 

gambar tanaman yang diunggah. Dengan antarmuka yang rapi, pengguna dapat 

dengan mudah mengakses informasi sebelumnya untuk referensi atau 

keperluan dokumentasi. 

Gambar 4.38 Tampilan history aplikasi 
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4.9.4 Tampilan Hasil Deteksi 

Tampilan Hasil Deteksi dirancang untuk menampilkan informasi 

lengkap setelah proses identifikasi penyakit tanaman selesai. Halaman ini 

mencakup gambar tanaman yang dianalisis, jenis penyakit yang terdeteksi, dan 

tingkat akurasi prediksi 

Gambar 4.39 Tampilan hasil deteksi penyakit 
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4.9.5 Tampilan Detail Penyakit 

Detail penyakit ini mencakup informasi tentang gejala, penyebab, dan 

cara penanganannya. 

Gambar 4.40 Tampilan detail penyakit 
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4.10 Uji Coba 

4.10.1 Pengujian aplikasi 

Pengujian aplikasi dilakukan dengan menginstal aplikasi dan 

menjalankannya pada perangkat dengan sistem operasi Android. Pengujian 

dilakukan menggunakan perangkat smartphone dengan spesifikasi sebagai 

berikut: 

- Nama Smartphone : POCO X3 GT 

-Versi Android : Android 13 

- Resolusi Kamera : 64MP 

No Uji Coba Deskripsi Hasil yang diharapkan Status 

1 Pengguna 

masuk ke 

aplikasi 

Tampilan 

Home akan 

muncul 

 

Sukses menampilkan Home 

Sukses 

2 Pengguna 

menekan 

tombol 

identifikasi 

penyakit 

Tampilan 

opsi pilih 

galeri atau 

kamera 

muncul 

 

Sukses menampilkan opsi Ambil 

Gambar 

 

Sukses 
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3 Pengguna 

menekan 

tombol 

kamera. 

Program 

akan beralih 

ke Kamera 

 

Sistem sukses membuka kamera 

Sukses 

4 Pengguna 

menekan 

galeri 

Program 

akan 

membuka 

galeri 

 

Sistem sukses membuka galeri 

Sukses 

5 Pengguna 

berhasil 

memilih 

gambar baik 

dari galeri 

maupun 

kamera. 

Sistem akan 

meprediksi 

input berupa 

gambar dan 

memberikan 

hasil kepada 

pengguna 

berupa hasil 

deteksi dan 

akurasi 

 

Sistem berhasil memprediksi 

gambar dan menyampaikan 

hasilnya kepada pengguna. 

Sukses 
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6 Pengguna 

menekan 

tombol detail 

penyakit 

Sistem 

menampilkan 

rincian 

penyakit 

sesuai 

dengan 

prediksi dan 

memberikan 

solusi yang 

relevan. 

 

Sistem sukses menampilkan 

detail penyakit 

sukses 

7 Pengguna 

berpindah ke 

halaman 

history 

Tampilan 

history 

muncul 

beserta hasil 

lampau 

 

Sistem sukses menampilkan 

riwayat deteksi lampau 

Sukses 

8 Pengguna 

membuka 

chat AI 

Tampilan 

Chat AI 

muncul 

 

Sistem sukses menampilkan dan 

menjalankan chat AI 

Sukses 

 

Tabel 4.9 Tabel pengujian aplikasi 
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Selain itu, peneliti melakukan uji aplikasi dengan menggunakan Android versi 

10 dan 11 juga. Sehingga uji aplikasi didapatkan dengan hasil sebagai berikut 

Uji Aplikasi Android 10 Android 11 Android 13 

Home    

Hasil Deteksi    

Detail Penyakit    

Riwayat    

Chat AI    

Tabel 4.10 Uji Versi Android 

Pada uji aplikasi ini, untuk android 10 mengalami bug seperti tidak munculnya 

button intent dan lainnya. namun pada android 11 dan android 13 tidak 

mengalami masalah. 

 

Gambar 4.41 Bug Home Android 11 
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4.10.2 Pengujian Deteksi Tanaman 

No Uji Coba Gambar Hasil Android 

11 

Hasil Android 

13 

1 Validasi 

Tanaman 

Sehat 

 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 86,63% 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 98,23% 

2 Validasi 

penyakit 

Bacterial 

 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 93,77% 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 93,70% 

3 Validasi 

penyakit 

Fungal 

 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 99,13% 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 99,99% 

4 Validasi 

penyakit 

shepherd 

purse 

weeds 

 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 100% 

Tanaman berhasil 

diklasifisikasikan 

dengan benar 

Akurasi: 100% 

 

Tabel 4.11 Tabel pengujian deteksi aplikasi 

Uji coba dilakukan untuk menilai akurasi klasifikasi tanaman sehat dan 

penyakit pada Android 11 dan 13. Hasil menunjukkan aplikasi bekerja dengan 

baik pada kedua versi, dengan akurasi lebih tinggi di Android 13. Pada 

klasifikasi tanaman sehat, akurasi meningkat dari 86,63% (Android 11) 

menjadi 98,23% (Android 13). Untuk penyakit bacterial, akurasinya stabil di 

sekitar 93,7%. Penyakit fungal menunjukkan peningkatan dari 99,13% 

menjadi 99,99%. Sementara itu, klasifikasi shepherd purse weeds mencapai 

akurasi sempurna (100%) pada kedua versi. Secara keseluruhan, aplikasi lebih 

optimal di Android 13, terutama dalam mengidentifikasi tanaman sehat. 
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4.11 Pembahasan 

Berdasarkan pengumpulan data penyakit selada yang dijelaskan pada Bab 

sebelumnya, ditemukan tiga jenis penyakit yang berasal dari hama maupun virus, 

yaitu bacterial, fungal, dan shepherd's purse weeds. Data ini diambil dari Kaggle 

untuk memastikan model dapat melakukan klasifikasi dengan akurasi yang baik. 

Dataset yang digunakan terdiri dari 2320 gambar yang mencakup berbagai 

jenis penyakit. Data ini dibagi menjadi 80% untuk training dan 20% untuk testing. 

Penelitian ini mengembangkan model CNN dengan memanfaatkan TensorFlow yang 

akan diintegrasikan ke dalam aplikasi Android. Dari hasil training yang dijelaskan 

pada Sub Bab 4.4, model CNN mencapai akurasi sebesar 93.67%. Setelah model 

yang memadai berhasil dibuat, langkah berikutnya adalah mengimplementasikannya 

ke dalam aplikasi dengan menambahkan fitur deteksi tanaman. Hasil implementasi 

dapat diberikan sebagai berikut:  

1. Aplikasi dapat mengidentifikasi penyakit selada dengan akurasi 93.67% dan 

dilengkapi fitur deteksi real-time melalui gambar yang diunggah atau diambil 

menggunakan kamera Android. 

2. Disediakan fitur riwayat penyakit yang memungkinkan petani melacak 

perkembangan penyakit tanaman selada secara berkala. 

3. Setiap penyakit selada yang berhasil diklasifikasikan akan disertai dengan 

solusi yang relevan. 

Namun aplikasi ini memiliki berapa kelemahan yaitu : 

1. Penggunaan label umum seperti "bacterial" dan "fungal" yang tidak terlalu 

spesifik dapat mengurangi keefektifan solusi dari penyakit yang spesifik, 

sehingga menyulitkan diagnosis dan penanganan yang tepat. 

2. Aplikasi ini hanya tersedia di platform Android dan belum mendukung platform lain 

seperti iOS, sehingga membatasi aksesibilitas bagi pengguna iPhone atau iPad. 

3. Aplikasi ini hanya mendukung Android 11 sampai 13 saja, sehingga 

penggunaan pada android 10 kebawah kemungkinan akan terjadi bug seperti 

yang sudah dijelaskan. 

  


