

31

BAB IV

HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

Pengumpulan data dilakukan dengan menggunakan dataset yang tersedia di

platform Kaggle. Dataset ini berisi gambar daun selada yang telah diklasifikasikan

ke dalam berbagai kategori, seperti sehat atau terinfeksi penyakit tertentu. Total

gambar yang digunakan adalah sebanyak 2320 gambar dan Gambar 4.1.

menunjukkan hasil dari pengumpulan data melalui Kaggle

Gambar 4.21 gambar pengumpulan data

Dari hasil pengumpulan data gambar daun selada sebanyak 2320 gambar

melalui Kaggle, proses augmentasi dilakukan untuk meningkatkan variasi data,

sehingga model dapat lebih baik dalam mengenali berbagai kondisi daun selada

4.1.1 Labelling Data

Proses pelabelan data bertujuan untuk memberikan identitas pada data

sehingga dapat dikenali oleh model. Setiap folder diberi nama sesuai dengan

kategori yang sesuai, seperti bacterial, fungal, healthy, dan shepherd purse

weeds. Setiap folder diberi nama sesuai dengan kategori yang sesuai dan diisi

dengan data yang sesuai dengan namanya, seperti yang ditunjukkan pada

Gambar 4.2.

32

Gambar 4.22 Label Data

4.2 Preproccessing Data

Tahapan preprocessing data citra meliputi pengumpulan data (gathering),

pemberian label pada citra, serta augmentasi citra terhadap seluruh data yang

tersedia.

4.2.1 Augmentasi Data

Augmentasi data bertujuan untuk mengurangi overfitting pada dataset

yang tersedia. Selain itu, teknik augmentasi gambar ini juga dapat menambah

jumlah data yang digunakan. Namun, data yang dihasilkan hanya dapat

digunakan dalam proses pelatihan model. Berikut adalah kode yang digunakan

untuk melakukan augmentasi pada gambar.

from tensorflow.keras.preprocessing.image

import ImageDataGenerator

image_size = (256, 256)

batch_size = 32

datagen = ImageDataGenerator(

 rescale=1.0/255,

 rotation_range=20,

 width_shift_range=0.2,

 height_shift_range=0.2,

 shear_range=0.2,

 zoom_range=0.2,

33

 horizontal_flip=True,

 validation_split=0.2,

 fill_mode='nearest'

)

train_generator = datagen.flow_from_dataframe(

 df_train,

 x_col='image',

 y_col='label',

 target_size=image_size,

 batch_size=batch_size,

 class_mode='categorical',

 shuffle=True

)

test_generator = datagen.flow_from_dataframe(

 df_test,

 x_col='image',

 y_col='label',

 target_size=image_size,

 batch_size=batch_size,

 class_mode='categorical',

 shuffle=False

)

Fungsi ImageDataGenerator digunakan dalam program di atas untuk

mengubah gambar, yang kemudian disimpan dalam variabel datagen.

Parameter yang digunakan untuk menghasilkan peningkatan gambar adalah

sebagai berikut.

a. rescale=1.0/255. Melakukan normalisasi nilai piksel gambar, mengubah

rentang piksel dari 0-255 menjadi 0-1 dengan membagi setiap nilai piksel

dengan 255.

b. rotation_range=20. Mengatur rentang rotasi gambar. Gambar dapat

diputar secara acak hingga 20 derajat, baik searah atau berlawanan arah

jarum jam.

c. width_shift_range=0.2. Mengubah foto ke arah horizontal (kanan atau

kiri) hingga 20% dari lebar gambar.

d. height_shift_range=0.2. Mengubah foto ke arah vertikal (atas atau

bawah) hingga 20% dari tinggi gambar.

34

e. shear_range=0.2. Melakukan transformasi shearing pada gambar, yang

berarti gambar akan diubah dalam bentuk kemiringan dengan tingkat

kemiringan sebesar 20%.

f. zoom_range=0.2. Melakukan zoom pada gambar secara acak dalam

rentang 20%. Gambar bisa diperbesar atau diperkecil.

g. horizontal_flip=True. Membalik gambar secara horizontal (flip). Ini

membantu model untuk belajar lebih banyak variasi dari gambar yang

tersedia.

h. validation_split=0.2. Menentukan persentase data yang akan digunakan

untuk validasi. Di sini, 20% dari total data akan digunakan untuk

validasi, sementara sisanya (80%) akan digunakan untuk pelatihan.

Gambar 4.23 Hasil Augmentasi Data

Gambar 4.3 menunjukkan hasil dari augmentasi gambar. Proses

augmentasi ini akan memutar, memiringkan, dan memperbesar gambar secara

acak berdasarkan parameter yang telah dijelaskan sebelumnya.

35

4.3 Building Model

Pemodelan CNN akan terdiri dari 4 lapisan convolutional, dan 1 lapisan fully

connected (neural network). Proses pemodelan CNN ini akan dilakukan

menggunakan TensorFlow, seperti yang dijelaskan berikut ini.

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,

BatchNormalization

model=Sequential()

model.add(Conv2D(256,(3,3),activation='relu',input_shape=(256,256,3))

)

model.add(MaxPooling2D(2,2))

model.add(Conv2D(128,(3,3),activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(Conv2D(128,(3,3),activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(Conv2D(64,(3,3),activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(Flatten())

model.add(Dense(32, activation='relu'))

model.add(Dense(4,activation='softmax'))

model.summary()

Model CNN ini terdiri dari empat lapisan konvolusi dengan kernel 3x3 dan

jumlah filter bertahap 256, 128, 128, dan 64, masing-masing diikuti oleh MaxPooling

2x2 untuk mereduksi dimensi fitur. Setelah fitur diubah menjadi bentuk 1 dimensi

melalui lapisan Flatten, lapisan Dense dengan 32 neuron dan aktivasi ReLU

memprosesnya sebelum masuk ke lapisan output dengan 4 neuron dan aktivasi

Softmax untuk klasifikasi multi-kelas. Model ini dirancang untuk menerima input

gambar dengan dimensi (256, 256, 3). Hasil pembuatan model CNN berada di bawah

berikut :

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D) │ (None, 254, 254, 256) │ 7,168 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d (MaxPooling2D) │ (None, 127, 127, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_1 (Conv2D) │ (None, 125, 125, 128) │ 295,040 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_1 (MaxPooling2D) │ (None, 62, 62, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_2 (Conv2D) │ (None, 60, 60, 128) │ 147,584 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_2 (MaxPooling2D) │ (None, 30, 30, 128) │ 0 │

36

├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_3 (Conv2D) │ (None, 28, 28, 64) │ 73,792 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_3 (MaxPooling2D) │ (None, 14, 14, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten (Flatten) │ (None, 12544) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense) │ (None, 32) │ 401,440 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense) │ (None, 4) │ 132 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘

Total params: 925,156 (3.53 MB)
Trainable params: 925,156 (3.53 MB)
Non-trainable params: 0 (0.00 B)

4.4 Training Model

Sebelum melakukan pelatihan, diperlukan beberapa pengaturan agar model

yang dihasilkan optimal dan proses pelatihan lebih efisien. Pengaturan tersebut dapat

dilihat pada source code berikut ini:

from tensorflow.keras.optimizers import Adam

model.compile(

 optimizer = Adam(learning_rate=0.001),

 loss='categorical_crossentropy',

 metrics=['accuracy']

)

Kode ini mengatur optimasi model dengan Adam optimizer, menggunakan

categorical crossentropy sebagai fungsi loss untuk klasifikasi multi-kelas, dan

mengevaluasi kinerja model menggunakan metrik akurasi.

a. optimizer=Adam(learning_rate=0.001): Adam adalah algoritma optimasi

yang adaptif dan efisien, cocok untuk memperbarui bobot model selama

pelatihan. Parameter learning_rate=0.001 mengontrol kecepatan

pembelajaran untuk mencapai hasil optimal.

b. loss='categorical_crossentropy' = Fungsi loss ini digunakan untuk

masalah klasifikasi multi-kelas dengan one-hot encoding.

c. metrics=['accuracy'] = Metrik akurasi digunakan untuk mengukur

seberapa sering prediksi model benar dibandingkan dengan label asli.

Setelah selesai melakukan pengaturan, langkah berikutnya adalah melatih

model CNN. Berikut adalah source code untuk proses pelatihan:

37

history = model.fit(

 train_generator,

 validation_data=test_generator,

 epochs=50)

Proses pelatihan akan menghasilkan history yang berisi metrik performa model

seperti loss dan accuracy untuk data latih dan validasi.

a. train_generator = Generator yang menyediakan data latih dalam bentuk

batch secara bertahap. Biasanya digunakan dengan data augmentation

untuk efisiensi memori.

b. epochs=50 = Model akan dilatih selama 50 epoch, di mana satu epoch

adalah satu siklus penuh iterasi terhadap seluruh data latih.

c. validation_data=validation_generator = Data validasi yang juga

disediakan oleh generator untuk mengevaluasi performa model pada

setiap epoch.

Hasil dari proses training dapat dilihat pada gambar dibawah ini

Hasil akhir dari proses pelatihan model CNN di epoch 50 menujukkan

keakurasian diatas 90%. Selain itu, peneliti juga telah melakukan beberapa proses

pelatihan (training) dengan variasi parameter tertentu. Hasil dari pelatihan tersebut

akan ditampilkan dalam bentuk tabel di bawah ini.

38

Epoch Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

Learning

Rate

Deskripsi

50 93.67% 0.1596 93.99% 0.2625 0.001 Akurasi validasi

tertinggi (93.99%)

dengan gap kecil

antara akurasi

training dan validasi.

Cocok untuk model

dengan generalisasi

baik.

60 93.76% 0.1494 90.63% 0.2571 0.001 Akurasi validasi

turun signifikan,

menunjukkan

kemungkinan

overfitting meskipun

training loss kecil.

50 92.01% 0.2234 92.54% 0.2569 0.0001 Akurasi stabil

dengan selisih kecil

antara training dan

validation,

menunjukkan

keseimbangan

model.

60 91.48% 0.2092 92.25% 0.2587 0.0001 Model cukup stabil,

tetapi training

accuracy lebih

rendah dibandingkan

opsi lainnya.

Tabel 4.3 Tabel hasil training model

Berdasarkan hasil pengujian, model dengan konfigurasi epoch 50 dan

learning rate 0.001 menunjukkan akurasi validasi tertinggi sebesar 93.99% dengan

gap yang kecil antara akurasi training (93.67%) dan validasi, serta loss yang

seimbang. Hal ini mengindikasikan bahwa model memiliki kemampuan

generalisasi yang baik tanpa tanda-tanda overfitting. Dibandingkan dengan

konfigurasi lainnya, pilihan ini memberikan kinerja yang optimal untuk akurasi

validasi sekaligus menjaga stabilitas model, sehingga direkomendasikan untuk

digunakan.

Selama proses pelatihan model, gambar akan melalui empat lapisan CNN

berupa input layer, convolution layer, pooling layer dan fully connected layer,

seperti yang ditunjukkan dibawah ini.

4.4.1 Input Layer

Gambar daun selada akan dimasukkan ke lapisan awal. Di lapisan ini,

gambar tersebut diolah menjadi matriks tiga dimensi yang terdiri dari

panjang, lebar, dan saluran warna (RGB). Contoh berikut menggambarkan

hasil input dari gambar tersebut.

39

Gambar 4.24 hasil input layer

Pada gambar diatas, terdapat proses input layer, gambar diekstrak

mengubahnya menjadi tiga warna: merah, hijau, dan biru.

4.4.2 Convolution Layer

Pada lapisan ini, sebuah input akan dimasukkan ke dalam convolution

layer, di mana nilai RGB dari setiap piksel pada citra akan diekstraksi. Proses

ini menghasilkan output berupa feature map. untuk mengolah gambar pada

convolution layer, digunakan filter. Sebagai ilustrasi, dapat dilakukan

perhitungan yang dilakukan melalui saluran merah yang diambil dari input

layer.

40

Gambar 4.25 red channel

Pada tahap ini, dilakukan perhitungan untuk menghasilkan peta fitur dengan

bantuan filter berukuran 3x3 yang memiliki nilai acak, yang terlihat seperti gambar

berikut.

1 0 -1

1 0 -1

1 0 -1

Gambar 4.26 contoh filter

Perhitungan untuk menentukan nilai sebuah feature map gambar dimulai

dengan menggunakan koordinat awal matriks (1,1). Oleh karena itu, perhitungan

dilakukan berdasarkan submatriks yang sesuai dengan posisi tersebut sebagai berikut

y[1,1] = (0.88⋅1) + (0.93⋅0) + (0.93⋅−1) + (0.91⋅1) + (0.55⋅0) + (0.58⋅−1) +

(0.91⋅1) + (0.51⋅0) + (0.50⋅−1)

y[1,1] = (0.88) + (0) + (−0.93) + (0.91) + (0) + (−0.58) + (0.91) + (0) + (−0.50)

y[1,1] = 0.88 − 0.93 + 0.91 − 0.58 + 0.91 − 0.50

y[1,1] = 0.69

Rumus untuk menghitung ukuran feature map setelah konvolusi adalah:

• Ukuran Feature Map = (Ukuran Gambar−Ukuran Kernel) + 1

Dengan menggantikan nilai-nilai yang diberikan:

• Ukuran Feature Map = (10−3) + 1 = 8

41

Artinya, gambar input yang berukuran 10x10 akan menghasilkan

feature map dengan ukuran 8x8. Ini terjadi karena filter 3x3 akan dipindahkan

sepanjang gambar 10x10, dan dengan stride 1, filter dapat diterapkan 8 kali

baik secara horizontal maupun vertikal. Sehingga hasil yang diberikan pada

koordinat [1,1] adalah 0.69 dan juga ukuran feature map adalah 8

Gambar 4. 27 feature map merah

Setelah proses perhitungan pada convolution layer selesai, langkah

berikutnya adalah menerapkan fungsi aktivasi. Dalam penelitian ini, fungsi

aktivasi yang digunakan pada lapisan konvolusi adalah ReLU. Fungsi aktivasi

ReLU (Rectified Linear Unit) bekerja dengan cara mengubah semua nilai

negatif menjadi nol dan mempertahankan nilai positif sebagaimana adanya.

Hal ini dilakukan secara elemen demi elemen pada matriks input (feature

map). Rumus matematis untuk ReLU adalah:

f(x) = max (0,x)

Di mana:

• x adalah nilai elemen input pada matriks.

42

• Jika x>0, maka f(x)=x

• Jika x≤0, maka f(x)=0

Sebagai contoh, jika diterapkan pada elemen x = −0.78 maka:

• f(−0.78)=max(0,−0.78)=0

Sedangkan untuk elemen x=0.74, maka:

• f(0.74)=max(0,0.74)=0.74

Proses ini dilakukan secara elemen per elemen hingga menghasilkan

matriks baru yang hanya berisi nilai nol dan positif.

Gambar 4.28 feature map setelah ReLu

43

4.4.3 Pooling Layer

Pada tahap ini, tujuan utamanya adalah mengurangi jumlah parameter

dan kompleksitas perhitungan dalam neural network. Dalam penelitian ini,

pooling layer yang digunakan adalah MaxPooling, yang berfungsi untuk

mengambil nilai maksimum dari hasil convolution. Ukuran matriks untuk

Maxpooling yang diterapkan adalah 2x2, dengan stride sebesar 2. Proses ini

dilakukan pada feature map yang dihasilkan oleh convolution layer, seperti

yang terlihat pada gambar di bawah ini, sebelum diteruskan ke langkah

berikutnya.

Gambar 4.29 Proses input dan output pooling layer

Pada gambar di atas, input berupa feature map yang dihasilkan dari

konvolusi, sementara output merupakan hasil dari pooling layer. Proses ini

akan menghasilkan nilai output yang merupakan nilai terbesar dari setiap blok

2x2 pada input. Dalam kasus ini, nilai terbesar dalam setiap blok 2x2 akan

dipilih dan dimasukkan ke dalam output dari pooling layer.

44

4.4.4 Flatten Layer

Flatten adalah proses mengubah matriks menjadi vektor atau matriks

satu dimensi yang diperoleh dari output lapisan pooling. Proses ini dapat

dilihat pada gambar berikut.

Gambar 4.30 Proses Flatten Layer

Gambar 4.30 menunjukkan proses flatten, di mana matriks berukuran

4x4 dikonversi menjadi vektor berukuran 16x1. Hasil dari tahap ini adalah

vektor satu dimensi yang akan digunakan sebagai input untuk lapisan fully

connected.

45

4.4.5 Fully Connected Layer

Hidden Layer

Gambar 4.31 Ilustrasi Dense + Softmax Layer

Gambar di atas menunjukkan proses Dense + Softmax, di mana vektor

satu dimensi berjumlah 16 digunakan sebagai input. Setiap nilai dalam vektor

tersebut akan dihitung melalui hidden layer yang juga memiliki 16 neuron.

Berikut adalah proses perhitungannya.

∑ I𝑖 𝑥 𝑉𝑖𝑗 = 𝐽𝑖

𝑁

𝐼=1

∑ I𝑖 𝑥 𝑊𝑖𝑗 = 𝐻𝑖

𝑁

𝐼=1

∑ I𝑖 𝑥 𝑋𝑖𝑗 = 𝑂𝑖

𝑁

𝐼=1

I1, I2, I3, I4, I5, I6, hingga I16 merupakan nilai output dari proses

Flatten, yang kemudian diproses melalui Fully Connected Layer. Setiap nilai

akan dihitung dalam hidden layer dengan bobot yang berbeda untuk setiap

koneksi. Nilai bobot dapat ditentukan secara bebas sesuai kebutuhan. Berikut

adalah perhitungan pada setiap hidden layer.

J1=(1.07×0.2)+(0.37×0.2)+(0.74×0.2)+(0.00×0.2)+(0.44×0.2)+(1.13×0.2)+(0.

36×0.2)+(0.00×0.2)+(0.00×0.2)+(1.43×0.2)+(0.02×0.2)+(0.07×0.2)+(0.39×0.

2)+(0.87×0.2)+(0.08×0.2)+(0.00×0.2)

46

Lalu

J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.00

0)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000)J_1 = (0.214)

+ (0.074) + (0.148) + (0.000) + (0.088) + (0.226) + (0.072) + (0.000) +

(0.000) + (0.286) + (0.004) + (0.014) + (0.078) + (0.174) + (0.016) + (0.000)

J1=(0.214)+(0.074)+(0.148)+(0.000)+(0.088)+(0.226)+(0.072)+(0.000)+(0.0

00)+(0.286)+(0.004)+(0.014)+(0.078)+(0.174)+(0.016)+(0.000)

Lalu jumlahkan semuanya:

J1=1.394

Sehingga dari perhitungan diatas didapatkan J1 sampai J16 berupa tabel

dibawah ini

Indeks J Hasil J Nilai Acak yang digunakan

J1 1.3940 (1.07×0.2),(0.37×0.2),…

J2 0,6970 (1.07×0.1),(0. 37×0.1),…

J3 2.0910 (1.07×0.3),(0. 37×0.3),…

J4 3.4850 (1.07×0.5),(0. 37×0.5),…

J5 2.7880 (1.07×0.4),(0. 37×0.4),…

J6 4.8790 (1.07×0.7),(0. 37×0.7),…

J7 4.1820 (1.07×0.6),(0. 37×0.6),…

J8 6.2730 (1.07×0.9),(0. 37×0.9),…

J9 5.5760 (1.07×0.8),(0. 37×0.8),…

J10 0.7667

(1.07×0.11),(0. 37×0.11),…

J11 0.6970 (1.07×0.10),(0. 37×0.10),…

J12 0.9061 (1.07×0.13),(0. 37×0.13),…

J13 0.8364 (1.07×0.12),(0. 37×0.12),…

J14 1.0455 (1.07×0.15),(0. 37×0.15),…

J15 0.9758 (1.07×0.14),(0. 37×0.14),…

J16 1.1152 (1.07×0.16),(0. 37×0.16),…

Tabel 4.4 Hasil J1 sampai J16

Nilai J1 hingga J16 yang telah dihitung akan dikalikan dengan bobot baru

yang berbeda untuk masing-masing koneksi, guna memperoleh nilai H1

47

hingga H16 sebagai output dari hidden layer berikutnya.

H1= (1. 3940×0.1)+(0. 6970×0.1)+(2. 0910×0.1)+(3.4850×0.1)(2.

7880×0.1)+(4. 8790×0.1)+(4. 1820×0.1) +(6. 2730×0.1)+(5. 5760×0.1)+(0.

7667×0.1)+(0. 6970×0.1)+(0.9061×0.1)+(0.8364×0.1)+(1. 0455×0.1)+(0.

9758×0.1)+(1. 1152×0.1) = 3.7708

Sehingga dari perhitungan diatas didapatkan H1 sampai H16 berupa

tabel dibawah ini

Indeks H Hasil H Bobot Baru

H 1 3.7708 0.1

H 2 7.5415 0.2

H 3 11.3123 0.3

H 4 15.0831 0.4

H 5 18.8538 0.5

H 6 22.6246 0.6

H 7 26.3954 0.7

H 8 30.1662 0.8

H 9 33.9369 0.9

H 10 3.7708 0.10

H 11 4.1478 0.11

H 12 4.5249 0.12

H 13 4.9020 0.13

H 14 5.2791 0.14

H 15 5.6562 0.15

H 16 6.0332 0.16

Tabel 4.5 Hasil H1 sampai H16

Setiap nilai output dari neuron H1 hingga H16 akan dikalikan dengan

bobot yang berbeda untuk menghasilkan nilai O1 hingga O4, yang mewakili

kelas dalam dataset.

O1= (3.7708×0. 4)+(7.5415×0. 4)+(11.3123×0. 4)+(15.0831×0. 4)+(

18.8538×0.4)+(22.6246×0. 4)+(26.3954× 0. 4)+(30.1662×0. 4)

+(33.9369×0. 4)+(3.7708×0. 4)+(4.1478×0. 4)+(4.5249×0. 4)+(4.9020×0.

4)+(5.2791×0. 4)+(5.6562×0. 4)+(6.0332×0. 4)

48

O1 = 81.59944

Sehingga perhitungan dari O1 sampai O4 adalah sebagai berikut

Indeks O Hasil O Bobot Baru

O1 81.5994 0.4

O 2 101.9993 0.5

O 3 40.79972 0.2

O 4 61.19958 0.3

Tabel 4.6 Hasil O1 sampai O4

Langkah selanjutnya adalah perhitungan softmax. Softmax digunakan

untuk mengubah sekumpulan nilai menjadi probabilitas. Rumus untuk setiap

nilai Oi dalam himpunan {O1,O2,O3,...,On} adalah:

𝑆(𝑂𝑖) =
𝑒𝑂𝑖

∑ 𝑒𝑂𝑗𝑛
𝑗=1

Di Mana:

• 𝑆(𝑂𝑖) adalah nilai softmax untuk 𝑂𝑖

• 𝑒𝑂𝑖 adalah eksponensial dari nilai 𝑂𝑖

• ∑ 𝑒𝑂𝑖𝑛
𝑗=1 adalah jumlah dari semua eksponensial nilai 𝑂𝑗

Dan dimasukkan nilai dengan diketahui

• O1 = 81.5994

• O2 = 101.9993

• O3 = 40.79972

• O4 = 61.19958

Maka, dihitung eksponensial dari masing-masing nilai :

𝑒𝑂1 , 𝑒𝑂2 , 𝑒𝑂3 , 𝑒𝑂4

Lalu di jumlahkan semua hasil eksponensial

∑ 𝑒𝑂𝑗 = 𝑒𝑂1 + 𝑒𝑂2 + 𝑒𝑂3 + 𝑒𝑂4

Kemudian, di bagi masing-masing eksponensial dengan jumlah total tersebut

𝑆(𝑂1) =
𝑒𝑂1

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂2) =

𝑒𝑂2

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂3) =

𝑒𝑂3

∑ 𝑒𝑂𝑗
 , 𝑆(𝑂4) =

𝑒𝑂4

∑ 𝑒𝑂𝑗

49

Sehingga berdasarkan perhitungan sebelumnya :

 𝑆(𝑂1) ≈ 1.38 × 10−9

𝑆(𝑂2) ≈ 0.999999999

𝑆(𝑂3) ≈ 2.64 × 10−27

𝑆(𝑂4) ≈ 1.91 × 10−18

Dari sini, terlihat bahwa nilai softmax tertinggi adalah untuk O2 dengan

probabilitas mendekati 1 yang O2 merupakan Fungal.

Kesimpulan:

• O2 = 101.9993 memiliki probabilitas tertinggi, sehingga jika ini adalah

data citra warna, maka warna yang terkait dengan nilai ini akan

mendominasi hasil klasifikasi.

• Dalam kasus ini, kita bisa menyimpulkan bahwa citra warna merah

memiliki nilai tertinggi jika O2 merepresentasikan warna merah.

4.5 Evaluation Model

Pada tahap evaluasi model, hasil dari proses pelatihan akan dianalisis untuk

menilai tingkat akurasi dan kemampuan model dalam meminimalkan kesalahan

deteksi. Akurasi dan loss yang diperoleh digunakan sebagai indikator untuk

menentukan apakah pelatihan model telah berjalan dengan baik atau memerlukan

perbaikan lebih lanjut.

Gambar 4.32 Grafik train and validation accuraccy

Grafik akurasi menunjukkan peningkatan kinerja model dari epoch awal

hingga akhir pelatihan, dengan akurasi pelatihan mencapai lebih dari 92% dan

akurasi validasi mencapai 93.67%. Hal ini menunjukkan model belajar dengan baik

50

dan dapat menggeneralisasi data dengan baik.

Gambar 4.33 Grafik train and validation loss

Grafik loss menunjukkan penurunan loss pelatihan dan validasi yang

signifikan, dengan nilai akhir loss validasi sekitar 0.2278. Tren yang serupa antara

keduanya menunjukkan bahwa model tidak mengalami overfitting dan memiliki

performa yang stabil.

4.6 Confusion Matrix

Dengan pembagian split data 0,2, 20% digunakan untuk data uji dan 80%

untuk pelatihan. Confusion matrix pada data uji menunjukkan kinerja model dalam

memprediksi label yang belum pernah dilihat sebelumnya. Matriks ini membantu

menilai akurasi model dan mengidentifikasi masalah seperti overfitting atau

underfitting, yang mencerminkan kemampuan generalisasi model. Berikut adalah

hasil dari evaluasi matrix menggunakan confusion matrix.

Gambar 4.34 Confusion matrix

51

Pada gambar di atas dapat dilihat bahwa pada indeks ke-0 (Bacterial), model

dapat mengklasifikasikan 88 data dengan benar dari total 102 data pada kategori ini.

Pada indeks ke-1 (Shepherd purse weeds), model memprediksi 115 data dengan tepat

dari total 117 data. Pada indeks ke-2 (Fungal), model hanya dapat

mengklasifikasikan 98 data dengan benar dari total 116 data. Sementara itu, pada

indeks ke-3 (Healthy), model berhasil mengklasifikasikan 113 data dengan

benar dari total 119 data. Precission, recall, dan f1-score dapat dilihat dari hasil

confusion matrix di atas, yang dapat dilihat pada tabel di bawah ini.

Tabel 4.7 Table confusion matrix

Kategori Bacterial memiliki precision 0,90 dan f1-score 88%, kategori Fungal

lebih rendah dengan f1-score 83%. Healthy menunjukkan performa tinggi dengan f1-

score 94%, sementara Shepherd purse weeds memiliki kinerja hampir sempurna

dengan f1-score 99%.

Classification Report Precission Recall F1-

score

Support

Bacterial 0.90 0.86 0.88 102

Fungal 0.82 0.84 0.83 116

Healthy 0.93 0.95 0.94 119

Shepherd purse weeds 1.00 0.98 0.99 127

Accuracy 0.91 464

Macro average 0.91 0.91 0.91 464

Weighted average 0.91 0.91 0.91 464

52

4.7 Uji Model

Setelah proses training selesai dan model berhasil dibuat, tahap selanjutnya

adalah melakukan pengujian. Pengujian ini bertujuan untuk mengevaluasi

kemampuan model dalam memprediksi data dengan akurat. Berikut beberapa hasil

uji dataset sebagai berikut:

Gambar 4.35 Uji model

Hasil pengujian model menggunakan 60 dataset gambar menunjukkan variasi

akurasi yang berbeda-beda. Untuk penjelasan lebih rinci, dapat dilihat pada Tabel

berikut

53

No Prediction Actual Confidence

1 Bacterial Bacterial 97.23%

2 Bacterial Bacterial 100.00%

3 Bacterial Bacterial 99.87%

4 Bacterial Bacterial 100.00%

5 Bacterial Bacterial 100.00%

6 Bacterial Bacterial 96.28%

7 Bacterial Bacterial 99.42%

8 Bacterial Bacterial 100.00%

9 Bacterial Bacterial 99.87%

10 Bacterial Bacterial 100.00%

11 Bacterial Bacterial 100.00%

12 Bacterial Bacterial 100.00%

13 Bacterial Bacterial 84.99%

14 Bacterial Bacterial 67.86%

15 Bacterial Bacterial 98.34%

16 Fungal Fungal 50.15%

17 Fungal Fungal 99.77%

18 Fungal Fungal 98.92%

19 Fungal Fungal 99.96%

20 Fungal Fungal 98.64%

21 Fungal Fungal 90.56%

22 Fungal Fungal 59.85%

23 Fungal Fungal 63.73%

24 Fungal Fungal 98.45%

25 Fungal Fungal 99.89%

26 Fungal Fungal 73.17%

27 Fungal Fungal 98.84%

28 Fungal Fungal 72.02%

29 Fungal Fungal 95.30%

30 Fungal Fungal 98.18%

54

31 Healthy Healthy 99.96%

32 Healthy Healthy 99.62%

33 Healthy Healthy 99.41%

34 Healthy Healthy 99.97%

35 Healthy Healthy 99.83%

36 Healthy Healthy 99.99%

37 Healthy Healthy 99.97%

38 Healthy Healthy 99.41%

39 Healthy Healthy 99.90%

40 Healthy Healthy 99.86%

41 Healthy Healthy 97.31%

42 Healthy Healthy 99.99%

43 Healthy Healthy 99.98%

44 Healthy Healthy 99.77%

45 Healthy Healthy 99.51%

46 Shepherd purse weeds Shepherd purse weeds 100.00%

47 Shepherd purse weeds Shepherd purse weeds 100.00%

48 Shepherd purse weeds Shepherd purse weeds 100.00%

49 Shepherd purse weeds Shepherd purse weeds 100.00%

50 Shepherd purse weeds Shepherd purse weeds 100.00%

51 Shepherd purse weeds Shepherd purse weeds 100.00%

52 Shepherd purse weeds Shepherd purse weeds 100.00%

53 Shepherd purse weeds Shepherd purse weeds 100.00%

54 Shepherd purse weeds Shepherd purse weeds 100.00%

55 Shepherd purse weeds Shepherd purse weeds 100.00%

56 Shepherd purse weeds Shepherd purse weeds 100.00%

57 Shepherd purse weeds Shepherd purse weeds 100.00%

58 Shepherd purse weeds Shepherd purse weeds 100.00%

59 Shepherd purse weeds Shepherd purse weeds 100.00%

60 Shepherd purse weeds Shepherd purse weeds 100.00%

Tabel 4.8 Tabel uji model

55

4.8 Implementasi Deteksi Penyakit Pada Aplikasi

Dalam implementasi deteksi penyakit pada aplikasi, model terlebih dahulu

diubah ke format TensorFlow Lite agar dapat disematkan ke dalam aplikasi.

import tensorflow as tf

model_path = "/content/model.keras"

tflite_model_path = "/content/model.tflite"

model = tf.keras.models.load_model(model_path)

converter = tf.lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert()

with open(tflite_model_path, 'wb') as f:

 f.write(tflite_model)

Sebelum memulai pembuatan aplikasi, peneliti terlebih dahulu melakukan

perancangan, yang mencakup diagram aktivitas, diagram urutan, dan desain

tampilan, yang dapat ditemukan di bab 3, sub bab 3.3. Tujuan dari implementasi

deteksi penyakit ini adalah untuk menguji ketepatan model dalam

mengklasifikasikan berbagai jenis penyakit pada tanaman selada. Selain itu, aplikasi

yang bertujuan untuk mendeteksi penyakit tanaman ini membutuhkan perangkat

keras yang tercantum dalam tabel berikut.

Spesifikasi PC

Prosesor Ryzen 5 5500U

RAM 16 GB

SSD 512 GB

OS Windows 10 2H22

Spesifikasi Smartphone

Prosesor Mediatek Dimensity 1100 (6 nm) Octa-core (4x2.6

GHz Cortex-A78 & 4x2.0 GHz Cortex-A55)

RAM 8 GB

ROM 512 GB

Camera 64 MP, f/1.8, 26mm (wide), 1/1.97", 0.7µm,

PDAF 8 MP, f/2.2, 120˚ (ultrawide),

1/4.0", 1.12µm 2 MP, f/2.4, (macro)

56

4.9 Tampilan Aplikasi

4.9.1 Tampilan Splash Screen

Tampilan splash screen adalah layar awal yang muncul saat aplikasi

dibuka, menampilkan nama dan logo aplikasi. Layar ini ditampilkan selama 3

detik sebelum melanjutkan ke tampilan berikutnya. Contoh halaman splash

screen dapat dilihat pada Gambar dibawah

Gambar 4.36 Tampilan splashscreen aplikasi

57

4.9.2 Tampilan Home

Tampilan Home aplikasi dirancang sebagai pusat navigasi utama dengan

antarmuka yang sederhana. Pada halaman ini, pengguna dapat mengakses tiga

fitur utama, yaitu:

1. Identifikasi Penyakit

Tombol ini berfungsi untuk mengakses galeri atau kamera untuk

memungkinkan pengguna untuk menganalisis kondisi tanaman melalui

gambar

2. Chat dengan AI

Fitur ini membuat user untuk dapat berkonsultasi dengan AI yang peneliti buat

3. Detail Penyakit

Detail Penyakit memberikan informasi lengkap mengenai berbagai jenis

penyakit tanaman, termasuk gejala, penyebab, dan langkah pencegahan.

Gambar 4.37 Tampilan home aplikasi

58

4.9.3 Tampilan History

Tampilan History dirancang untuk membantu pengguna melacak riwayat

identifikasi penyakit tanaman yang telah dilakukan. Halaman ini menampilkan

daftar hasil analisis lengkap dengan tanggal, jenis penyakit yang terdeteksi, dan

gambar tanaman yang diunggah. Dengan antarmuka yang rapi, pengguna dapat

dengan mudah mengakses informasi sebelumnya untuk referensi atau

keperluan dokumentasi.

Gambar 4.38 Tampilan history aplikasi

59

4.9.4 Tampilan Hasil Deteksi

Tampilan Hasil Deteksi dirancang untuk menampilkan informasi

lengkap setelah proses identifikasi penyakit tanaman selesai. Halaman ini

mencakup gambar tanaman yang dianalisis, jenis penyakit yang terdeteksi, dan

tingkat akurasi prediksi

Gambar 4.39 Tampilan hasil deteksi penyakit

60

4.9.5 Tampilan Detail Penyakit

Detail penyakit ini mencakup informasi tentang gejala, penyebab, dan

cara penanganannya.

Gambar 4.40 Tampilan detail penyakit

61

4.10 Uji Coba

4.10.1 Pengujian aplikasi

Pengujian aplikasi dilakukan dengan menginstal aplikasi dan

menjalankannya pada perangkat dengan sistem operasi Android. Pengujian

dilakukan menggunakan perangkat smartphone dengan spesifikasi sebagai

berikut:

- Nama Smartphone : POCO X3 GT

-Versi Android : Android 13

- Resolusi Kamera : 64MP

No Uji Coba Deskripsi Hasil yang diharapkan Status

1 Pengguna

masuk ke

aplikasi

Tampilan

Home akan

muncul

Sukses menampilkan Home

Sukses

2 Pengguna

menekan

tombol

identifikasi

penyakit

Tampilan

opsi pilih

galeri atau

kamera

muncul

Sukses menampilkan opsi Ambil

Gambar

Sukses

62

3 Pengguna

menekan

tombol

kamera.

Program

akan beralih

ke Kamera

Sistem sukses membuka kamera

Sukses

4 Pengguna

menekan

galeri

Program

akan

membuka

galeri

Sistem sukses membuka galeri

Sukses

5 Pengguna

berhasil

memilih

gambar baik

dari galeri

maupun

kamera.

Sistem akan

meprediksi

input berupa

gambar dan

memberikan

hasil kepada

pengguna

berupa hasil

deteksi dan

akurasi

Sistem berhasil memprediksi

gambar dan menyampaikan

hasilnya kepada pengguna.

Sukses

63

6 Pengguna

menekan

tombol detail

penyakit

Sistem

menampilkan

rincian

penyakit

sesuai

dengan

prediksi dan

memberikan

solusi yang

relevan.

Sistem sukses menampilkan

detail penyakit

sukses

7 Pengguna

berpindah ke

halaman

history

Tampilan

history

muncul

beserta hasil

lampau

Sistem sukses menampilkan

riwayat deteksi lampau

Sukses

8 Pengguna

membuka

chat AI

Tampilan

Chat AI

muncul

Sistem sukses menampilkan dan

menjalankan chat AI

Sukses

Tabel 4.9 Tabel pengujian aplikasi

64

Selain itu, peneliti melakukan uji aplikasi dengan menggunakan Android versi

10 dan 11 juga. Sehingga uji aplikasi didapatkan dengan hasil sebagai berikut

Uji Aplikasi Android 10 Android 11 Android 13

Home

Hasil Deteksi

Detail Penyakit

Riwayat

Chat AI

Tabel 4.10 Uji Versi Android

Pada uji aplikasi ini, untuk android 10 mengalami bug seperti tidak munculnya

button intent dan lainnya. namun pada android 11 dan android 13 tidak

mengalami masalah.

Gambar 4.41 Bug Home Android 11

65

4.10.2 Pengujian Deteksi Tanaman

No Uji Coba Gambar Hasil Android

11

Hasil Android

13

1 Validasi

Tanaman

Sehat

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 86,63%

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 98,23%

2 Validasi

penyakit

Bacterial

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 93,77%

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 93,70%

3 Validasi

penyakit

Fungal

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 99,13%

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 99,99%

4 Validasi

penyakit

shepherd

purse

weeds

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 100%

Tanaman berhasil

diklasifisikasikan

dengan benar

Akurasi: 100%

Tabel 4.11 Tabel pengujian deteksi aplikasi

Uji coba dilakukan untuk menilai akurasi klasifikasi tanaman sehat dan

penyakit pada Android 11 dan 13. Hasil menunjukkan aplikasi bekerja dengan

baik pada kedua versi, dengan akurasi lebih tinggi di Android 13. Pada

klasifikasi tanaman sehat, akurasi meningkat dari 86,63% (Android 11)

menjadi 98,23% (Android 13). Untuk penyakit bacterial, akurasinya stabil di

sekitar 93,7%. Penyakit fungal menunjukkan peningkatan dari 99,13%

menjadi 99,99%. Sementara itu, klasifikasi shepherd purse weeds mencapai

akurasi sempurna (100%) pada kedua versi. Secara keseluruhan, aplikasi lebih

optimal di Android 13, terutama dalam mengidentifikasi tanaman sehat.

66

4.11 Pembahasan

Berdasarkan pengumpulan data penyakit selada yang dijelaskan pada Bab

sebelumnya, ditemukan tiga jenis penyakit yang berasal dari hama maupun virus,

yaitu bacterial, fungal, dan shepherd's purse weeds. Data ini diambil dari Kaggle

untuk memastikan model dapat melakukan klasifikasi dengan akurasi yang baik.

Dataset yang digunakan terdiri dari 2320 gambar yang mencakup berbagai

jenis penyakit. Data ini dibagi menjadi 80% untuk training dan 20% untuk testing.

Penelitian ini mengembangkan model CNN dengan memanfaatkan TensorFlow yang

akan diintegrasikan ke dalam aplikasi Android. Dari hasil training yang dijelaskan

pada Sub Bab 4.4, model CNN mencapai akurasi sebesar 93.67%. Setelah model

yang memadai berhasil dibuat, langkah berikutnya adalah mengimplementasikannya

ke dalam aplikasi dengan menambahkan fitur deteksi tanaman. Hasil implementasi

dapat diberikan sebagai berikut:

1. Aplikasi dapat mengidentifikasi penyakit selada dengan akurasi 93.67% dan

dilengkapi fitur deteksi real-time melalui gambar yang diunggah atau diambil

menggunakan kamera Android.

2. Disediakan fitur riwayat penyakit yang memungkinkan petani melacak

perkembangan penyakit tanaman selada secara berkala.

3. Setiap penyakit selada yang berhasil diklasifikasikan akan disertai dengan

solusi yang relevan.

Namun aplikasi ini memiliki berapa kelemahan yaitu :

1. Penggunaan label umum seperti "bacterial" dan "fungal" yang tidak terlalu

spesifik dapat mengurangi keefektifan solusi dari penyakit yang spesifik,

sehingga menyulitkan diagnosis dan penanganan yang tepat.

2. Aplikasi ini hanya tersedia di platform Android dan belum mendukung platform lain

seperti iOS, sehingga membatasi aksesibilitas bagi pengguna iPhone atau iPad.

3. Aplikasi ini hanya mendukung Android 11 sampai 13 saja, sehingga

penggunaan pada android 10 kebawah kemungkinan akan terjadi bug seperti

yang sudah dijelaskan.

