Kristyanto, Andi and Chairani, Chairani and Sriyanto S, Sriyanto (2025) Analisis Performa Model BiLSTM dan CNN-LSTM Dalam Prediksi Sea Water Level Pada Pelabuhan Berdasarkan Data Historis. Analisis Performa Model BiLSTM dan CNN-LSTM Dalam Prediksi Sea Water Level Pada Pelabuhan Berdasarkan Data Historis, 7 (1). pp. 444-452. ISSN ISSN 2685-3310 (media online)
|
Text
1. Halaman 1-2.pdf Download (299kB) |
|
|
Text
2. Lembar penyataan keaslian.pdf Download (368kB) |
|
|
Text
3. Lembar pengesahan.pdf Download (565kB) |
|
|
Text
4. Kata Pengantar.pdf Download (128kB) |
|
|
Text
5. Daftar isi.pdf Download (177kB) |
|
|
Text
6. Daftar Tabel.pdf Download (106kB) |
|
|
Text
7. Daftar Gambar.pdf Download (138kB) |
|
|
Text
8. Jurnal.pdf Download (844kB) |
|
|
Text
9. Daftar Pustaka.pdf Download (334kB) |
|
|
Text
10. lampiran _LOA.pdf Download (137kB) |
|
|
Text
11. LOA Jurnal BITS Vol 7 No 1 June 55.pdf Download (151kB) |
|
|
Text
12. lampiran _Plagiarisme.pdf Download (137kB) |
|
|
Text
13. Plagiasi.docx.pdf Download (3MB) |
|
|
Text
14. lampiran _koresponden.pdf Download (174kB) |
|
|
Text
15. [bits] Editor Decision.pdf Download (190kB) |
|
|
Text
16. Review (1).pdf Download (803kB) |
|
|
Text
17. Review(2).pdf Download (795kB) |
|
|
Text
18. [bits] Editor Decision 1.pdf Download (195kB) |
|
|
Text
19. Keterangan Bimbingan.pdf Download (145kB) |
Abstract
Abstract−Indonesia is a country dominated by waters, so data on sea level rise, one of maritime weather is important. The Meteorology, Climatology, and Geophysics Agency one of its duties, namely conducting observations in meteorology. The Merak-Bakauheni Port serves the busiest crossing route in Indonesia and connects the islands of Java and Sumatra. If there is a disruption due to meteorological factors, shipping and sea transportation activities will be hampered and disrupted. The purpose of this study is to compare the performance of the BiLSTM and CNN-LSTM models in estimating sea water levels at Merak Port based on the results of the parameter analysis used. The steps begin with collecting, processing data, training the model, and analyzing the model. The data used is daily sea water level data over a period of six years from 2019 to 2024. Evaluation of MSE, MAE and RMSE values is used to see the performance of the two models. From this study, the BiLSTM model produced values of 0.0026 (MSE), 0.0224 (MAE), and 0.0512 (RMSE), the CNN-LSTM model values of 0.0044 (MSE), 0.0319 (MAE), and 0.0664 (RMSE), it can be seen that BiLSTM method has more optimal in predicting sea water levels of Merak Port.
| Item Type: | Article |
|---|---|
| Subjects: | Ilmu Komputer eTheses |
| Divisions: | Pasca Sarjana > Magister Teknik Informatika |
| Depositing User: | christyant andi kristyanto |
| Date Deposited: | 06 Feb 2026 01:29 |
| Last Modified: | 06 Feb 2026 01:29 |
| URI: | http://repo.darmajaya.ac.id/id/eprint/23597 |
Actions (login required)
![]() |
View Item |
