




















Preface to the 1992 Edition

When this book was originally published I was very optimistic, envisioning extensive
reviews and a kind of "best seller" in the realm of monographs. Alas! That did not
happen. After five years I did regain some optimism because the book did not "die,

"

as is usual with monographs, but kept on selling at 100- 200 copies a year. Still ,
research in the area was confined almost entirely to my students and their colleagues,
and it did not fit into anyone

's categories. 
" It is certainly not a part of artificial

intelligence
" and "Why would somebody study learning by imitating a process that

takes billions of years?
" are typical of comments made by those less inclined to look

at the work.
Five more years saw the beginnings of a rapid increase in interest. Partly, this

interest resulted from a change of focus in artificial intelligence. Learning, after
several decades at the periphery of artificial intelligence, was again regarded as pivotal
in the study of intelligence. A more important factor, I think, was an increasing
recognition that genetic algorithms provide a tool in areas that do not yield readily to
standard approach es. Comparative studies began to appear, pointing up the use fulness
of genetic algorithms in areas ranging from the design of integrated circuits and
communication networks to the design of stock market portfolios and aircraft turbines.
Finally, and quite important for future studies, genetic algorithms began to be seen
as a theoretical tool for investigating the phenomena generated by complex adaptive
systems- a collective designation for nonlinear systems defined by the interaction of
large numbers of adaptive agents (economies, political systems, ecologies, immune
systems, developing embryos, brains, and the like).

The last five years have seen the number of researchers studying genetic
algorithms increase from dozens to hundreds. There are two recent innovations that
will strongly affect these studies. The first is the increasing availability of massively
parallel machines. Genetic algorithms work with populations, so they are intrinsically
suited to execution on computers with large numbers of processors, using a processor
for each individual in the population. The second innovation is a unique interdisci-



plinary consortium, the Santa Fe Institute, dedicated to the study of complex adaptive
systems. The Santa Fe Institute, by providing a focus for intensive interactions among
its collection of Nobel Laureates, Mac Arthur Fellows, Old and Young Turks, and

bright young postdocs, has already made a substantial impact in the field of economics.
Current work emanating from the Institute promises similar effects in fields ranging
from studies of the immune system to studies of new approach es to cognitive science.
The future for studies of adaptive systems looks bright indeed.

Fifteen years should provide perspective and a certain detachment. Despite
that, or because of it , I still find the 1975 preface surprisingly relevant. About the

only change I would make would be to put more emphasis on improvement and less
on optimization. Work on the more complex adaptive systems- ecologies, for example

- has convinced me that their behavior is not well described by the ttajectories
around global optima. Even when a relevant global optimum can be defined, the

system is typically so "far away
" from that optimum that basins of attraction, fixed

points, and the other apparatus used in studying optima tell little about the system
's

behavior. Instead, competition between components of the system, aimed at "getting
an edge

" over neighboring competitors, determines the aggregate behavior. In all
other respects, I would hold to the points made in the earlier preface.

There are changes in emphasis reflected by two changes in terminology since
1975. Soon after the book was published, doctoral students in Ann Arbor began using
the term genetic algorithm in place of genetic plan, emphasizing the centrality of

computation in defining and implementing the plans. More recently, I
've advocated

implicit parallelism over intrinsic parallelism to distinguish the " implicit
" 

workings
of the algorithm, via schemata, from the parallel processing of the populations used

by the algorithm.
As a way of detailing some more recent ideas and research, I

've added a new

chapter, chapter 10, to this edition. In part, this chapter concerns itself with further
work on the advanced questions posed in section 9.3 of the previous edition. Questions
concerning the design of systems that build experience-based, hierarchical models of
their environments are addressed in section 10.1 of the new chapter. Questions
concerning speciation and the evolution of ecologies are addressed in terms of the
Echo models in section 10.3. The Echo models, besides being concerned with computer

-based gedanken experiments on these questions, have a broader purpose. They
are designed to facilitate investigation of mechanisms, such as competition and trading

, found in a wide range of complex adaptive systems. In addition to these discussions

, the new chapter also includes, in section 10.2, some corrections to the original
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edition. Section 10.4 concludes the chapter with a new set of advanced questions and
some new speculations.

There is more recent work, still in its earliest stages, that is not discussed in

chapter 10. Freddy Christiannsen, Marc Feldman, and I , working through the Santa
Fe Institute, have begun to introduce the effects of schemata into much-generalized
versions of Fisher's equations. This work is, in part, a follow-up of work of a decade

ago, by Bob Axelrod and Bill Ha milton, that began to study the relation of recombination 
to the prevalence of sex in spite of the two-fold genetic load it incurs. In

another direction, some preliminary theoretical investigations, stimulated by the Echo
models, suggest that there is a schema theorem that is relevant to any adaptive system
that can be described in terms of resource flow- such a system may involve neither

reproduction nor defined fitness functions. Also in the wings is a characterization of
a broad class of problems or " landscapes

" that are relatively easy for genetic algorithms
but difficult for both traditional optimization techniques and new weight-changing
techniques such as artificial nerve nets and simulated annealing.

At a metalevel, the problem landscapes we've been studying may describe an
essential aspect of all problems encountered by complex adaptive systems: Easy
(linear, hill -climbing) problems have a short-lived influence on complex adaptive
systems because they are quickly exploited and absorbed into the system

's structure.

Extremely difficult problems (
"
spikes

"
) almost never influence the behavior because

they are almost never solved. This leaves as a major continuing influence the presence
of certain kinds of "bottlenecks." These bottlenecks are regions in the problem space
that offer improvement but are surrounded by 

"
valleys

" of lowered performance. The
time it takes to traverse these valleys determines the trajectory, and rate of improvement

, of the adaptive system. It seems likely that this rate will be determined, to a

great degree, by recombination applied to "building blocks" (schemata) supplied by
solutions attached to other regions of high performance.

It is an exciting time to study adaptation in natural and artificial systems;
perhaps these studies will yield another edition sometime in the next millenium.

JOHN H. HOLLAND
OcTOBER 1991





The first technical descriptions and definitions of adaptation come from biology.
In that context adaptation designates any process whereby a structure is progressively 

modified to give better performance in its environment. The structures may
range from a protein molecule to a horse's foot or a human brain or, even, to an
interacting group of organisms such as the wildlife of the African veldt. Defined
more generally, adaptive process es have a critical role in fields as diverse as psychology 

(
"
learning

"
), economics (

"
optimal planning

"
), control, artificial intelligence

, computational mathematics and sampling (
" statistical inference" ). Basically,

adaptive process es are optimization process es, but it is difficult to subject them to
unified study because the structures being modified are complex and their performance 

is uncertain. Frequently nonadditive interaction (i.e., "
epistasis

" or
"
nonlinearity

"
) makes it impossible to determine the performance of a structure

from a study of its isolated parts. Moreover possibilities for improved performance
must usually be exploited at the same time that the search for further improvements
is pressed. While these difficulties pose a real problem for the analyst, we know
that they are routinely handled by biological adaptive process es, qua process es.
The approach of this book is to set up a mathematical framework which makes it
possible to extract and generalize critical factors of the biological process es. Two
of the most important generalizations are: ( I ) the concept of a schema as agen-
eralization of an interacting, coadapted set of genes, and (2) the generalization of
genetic operators such as crossing-over, inversion, and mutation. The schema
concept makes it possible to dissect and analyze complex 

" nonlinear" or " epistatic
"

interactions, while the generalized genetic operators extend the analysis to studies
of learning, optimal planning, etc. The possibility of " intrinsic parallelism

" - the
testing of many schemata by testing a single structure - is a direct offshoot of this
approach. The book develops an extensive study of intrinsically parallel process es
and illustrates their uses over the full range of adaptive process es, both as hypotheses 

and as algorithms.
The book is written on the assumption that the reader has a familiarity with
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probability and combinatorics at the level of a first course in finite mathematical

structures, plus enough familiarity with the concept of a system to make the notion

of " state" a comfortable working tool . Readers so prepared should probably read

the book in the given order, moving rapidly (on the first reading) over any example
or proof offering more than minor difficulties. A good deal of meaning can still

be extracted by those with less mathematics if they are willing to abide the notation,

treating the symbols (with the help of the Glossary) as abbreviations for familiar

intuitive concepts. For such a reading I would recommend chapter 1 (skipping
over section 1.3), the first part of chapter 4 and the summary at the end, the discussions 

throughout chapter 6 (particularly section 6.6), section 7.5, and most of

chapter 9, combined with use of the Index to locate familiar examples and topics.

The reader whose first interest is the mathematical development (exclusive of

applications) will find section 2.2, chapters 4 and 5, sections 6.2, 6.3, 6.4, 7.1, 7.2,
7.3, 7.5, and 9.1 the core of the book. By a judicious use of the Glossary and Index
it should be possible for a well-trained system scientist to tackle this part of the

book directly. ( This is not a procedure I would recommend except as a way of

getting a mathematical overview before further reading; in a book of this sort the

examples have a particularly important role in establishing the meaning of the
formalism.)

The pattern of this book, as the reader sees it now, only distantly resembles
the one projected at its inception. The first serious writing began almost seven

years ago at Pohoiki on the Big Island under the kamaaina hospitality of Carolyn
and Gilbert Hay. No book could start in a finer setting. Since that time whole

chapters, including chapters on hierarchies, the Kuhn-Tucker fixed point theorem,
and cellular automata, have come and gone, a vital pJ. f ) emerged, blossomed and

disappeared, 2-armed bandits arrived, and so on. At this remove it would be about
as difficult to chronicle those changes as to acknowledge properly the people who
have influenced the book along the way. Arthur Burks stands first among those
who provided the research setting and encouragement which made the book
feasible; Michael Arbib 's comments on a near-final draft s~ nd as the culmination
of readings, written comments, commentaries, and remarks by more than a hundred
students and colleagues; and Monna Whipp

's perseverance through the typing
of the final draft and revised revisions of changes brings to fruition the tedious
work of her predecessors. For the rest, I cannot conceive that appearance in a long
list of names is a suitable reward, but I also cannot conceive a good alternative

(beyond personal expression), so they remain anonymous and bereft of formal

gratitude beyond some appearances in the references. They deserve better.

JOHN H. HOLLAND
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1. The General Setting

How does evolution produce increasingly fit organisms in environments which are

highly uncertain for individual organisms?
What kinds of economic plan can upgrade an economy

's performance in spite of
the fact that relevant economic data and utility measures must be obtained as the

economy develops?
How does an organism use its experience to modify its behavior in beneficial ways
(i .e., how does it learn or "

adapt under sensory guidance
"
) ?

How can computers be programmed so that problem-solving capabilities are built

up by specifying 
" what is to be done" rather than " how to do it " ?

What control procedures can improve the efficiency of an ongoing process,
when details of changing component interactions must be compiled and used

concurrently ?

Though these questions come from very different areas, it is striking how much

they have in common. Each involves a problem of optimization made difficult by
substantial complexity and uncertainty. The complexity makes discovery of the

optimum a long, perhaps never-to-be-completed task, so the best among tested

options must be exploited at every step. At the same time, the uncertainties must
be reduced rapidly, so that knowledge of available options increases rapidly . More

succinctly, information must be exploited as acquired so that performance improves
apace. Problems with these characteristics are even more pervasive than the questions 

above would indicate. They occur at critical points in fields as diverse as
evolution, ecology, psychology, economic planning, control, artificial intelligence,
computational mathematics, sampling, and inference.

There is no collective name for such problems, but whenever the term

adaptation (ad + aptare, to fit to) appears it consistently singles out the problems
of interest. In this book the meaning of " adaptation

" will be extended to encom-

1. INTRODUCTION
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Natural

To what parts of its environment is the organism (system, organization) adapting?
How does the environment act upon the adapting organism (system, organization) ?
What structures are undergoing adaptation ?
What are the mechanisms of adaptation ?
What part of the history of its interaction with the environment does the organism
(system, organization) retain ?
What limits are there to the adaptive process?
How are different (hypotheses about) adaptive process es to be compared?

Moreover, as we attempt to answer these questions in different contexts, essentially
the same obstacles to adaptation appear again and again. They appear with different 

guises and names, but they have the same basic structure. For example,"
nonlinearity,

" " false peak,
" and " epistatic effect" all designate versions of the

same difficulty . In the next section we will look more closely at these obstacles;
for now let it be noted that the study of adaptation is deeply concerned with the
means of overcoming these obstacles.

Despite a wealth of data from many different fields and despite many insights
, we are still a long way from a general understanding of adaptive mechanisms.

The situation is much like that in the old tale of blind men examining an elephant-
different aspects of adaptation acquire different emphases because of the points of
contact. A specific feature will be prominent in one study, obscure in another.
Useful and suggestive results remain in comparative isolation. Under such circumstances 

theory can be a powerful aid. Successful analysis separates incidental
or " local" exaggerations from fundamental features. A broadly conceived analytic
theory brings data and explanation into a coherent whole, providing opportunities
for prediction and control . Indeed there is an important sense in which a good
theory defines the objects with which it deals. It reveals their interactions, the
methods of transforming and controlling them, and predictions of what will

Adaptation in I and Artificial Systems
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happen to them .

Theory will have a central role in all that follows, but only insofar as it
illuminates practice. For natural systems, this means that theory must provide

pass the entire collection of problems . (Among rigorous studies of adaptation ,
Tsypkin

's [ 1971] usage comes closest to this in breadth , but he deliberately focuses
on the man-made systems.) This extension , if taken seriously , entails acommitment 

to view adaptation as a fundamental process, appearing in a variety of guises
but subject to unified study . Even at the outset there is a powerful warrant for this
view . It comes from the observation that all variations of the problem give rise to
the same fundamental questions .



2. PRELIMINARY SURVEY

(Since we are operating outside of a formal framework in this chapter, some of the

statements which follow will be susceptible of different, possibly conflicting interpretations

. Precise versions will be formulated later.)
Just what are adaptation

's salient features? We can see at once that adaptation

, whatever its context, involves a progressive modification of some structure

or structures. These structures constitute the grist of the adaptive process, being

largely determined by the field of study. Careful observation of successive structural 

modifications generally reveals a basic set of structural modifiers or operators;

repeated action of these operators yields the observed modification sequences.

Table I presents a list of some typical structures along with the associated operators
for several fields of interest.

A system undergoing adaptation is largely characterized by the mixture of

operators acting on the structures at each stage. The set of factors controlling this

changing mixture - the adaptive plan- constitutes the works of the system as far

as its adaptive character is concerned. The adaptive plan determines just what

structures arise in response to the environment, and the set of structures attainable

The General Setting�

techniques for prediction and control ; for artificial systems, it must provide practical 

algorithms and strategies. Theory should help us to know more of the mechanisms 

of adaptation and of the conditions under which new adaptations arise.

It should enable us to better understand the process es whereby an initially unorganized 

system acquires increasing self-control in complex environments. It

should suggest procedures whereby actions acquired in one set of circumstances

can be transferred to new circumstances. In short, theory should provide us with

means of prediction and control not directly suggested by compilations of data

or simple tinkering. The development here will be guided accordingly.

The fundamental questions listed above can serve as a starting point for a

unified theory of adaptation, but the informal phrasing is a source of difficulty .

With the given phrasing it is difficult to conceive of answers which would apply

unambiguously to the full range of problems. Our first task, then, is to rephrase

questions in a way which avoids ambiguity and encourages generality. We can

avoid ambiguity by giving precise definitions to the terms appearing in the questions

, and we can assure the desired generality if the terms are defined by embedding 

them in a common formal framework. Working within such a framework

we can proceed with theoretical constructions which are of real help in answering
the questions. This, in broad outline, is the approach we will take.



Adaptation

Table 1:
Field

Typical Operators

Genetics mutation, recombination,
etc.

production activities

Bayes's rule, successive
approximation, etc.

synapse modification

rules for iterative approximation 
of optimal strategy

66 Iearning" rules

psychology

in Natural and Artificial Systems
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Sb' uctures . . .

Structures

strategies

Artificial intelligence

Operators
�

programs�

Physiological
Game theory

chromosomes

mixes of goods

policies

cell assemblies

by applying all possible operator sequences marks out the limits of the adaptive
plan

's domain of action. Since a given structure performs differently in different
environments- the structure is more or less fit - it is the adaptive plan

's task to
produce structures which perform 

" well" (are fit ) in the environment confronting
it . "Adaptations

" to the environment are persistent properties of the sequence of
structures generated by the adaptive plan.

A precise statement of the adaptive plan
's task serves as a key to uniform

treatment. Three major components are associated in the task statement: (I ) the
environment, E, of the system undergoing adaptation, (2) the adaptive plan, T,
whereby the system

's structure is modified to effect improvements, (3) a measure,
#I., of performance, i .e., the fitness of the structures for the environment. ( The
formal framework developed in chapter 2 is built around these three components.)
The crux of the problem for the plan T is that initially it has incomplete information 

about which structures are most fit . To reduce this uncertainty the plan must
test th~ performance of different structures in the environment. The "adaptiveness

"

of the plan enters when different environments cause different sequences of structures 
to be generated and tested.

In more detail and somewhat more formally : A characteristic of the environment 
can be unknown (from the adaptive plan

's point of view) only if alternative 
outcomes of the plan

's tests are allowed for. Each distinct combination of
alternatives is a distinct environment E in which the plan may have to act. The set
of all possible combinations of alternatives indicates the plan

's initial uncertainty
about the environment confronting it- the range of environments in which the
plan should be able to act. This initial uncertainty about the environment will be
formalized by designating a class 8 of possible environments. The domain of action



Genetics

Economic planning
Control

Physiological psychology
unspecified)

Game theory

Artificial intelligence efficiency (if specified

The successive structural modifications dictated by a plan or amount to a sequence
or trajectory through the set Ci. For the plan to be adaptive the trajectory through
Ci must depend upon which environment E E: & is present. Symbolizing the set of
operators by 0, this last can be stated another way by saying that the order of
application of operators from 0 must depend upon E.

It is clear that the organization of Ci, the effects of the operators 0 upon
structures in Ci, and the form of the performance measure /JiB all affect the difficulty
of adaptation. Among the specific obstacles confronting an adaptive plan are the
following :

I . Cl is large so that there are many alternatives to be tested.
2. The structures in Cl are complicated so that it is difficult to determine

which substructures or components (if any) are responsible for good
performance.

3. The performance measure liB is a complicated function with many
interdependent parameters (e.g., it has many dimensions and is nonlinear

, exhibiting local optima, discontinuities, etc.).

The General Setting
�

Performance Measure

Fitness

Utility
Error functions

Performance rate (in some contexts.
but often

Payoff

Comparative
at all)

�

�

of the adaptive plan will be formalized by designating a set d of attainable structures
. The fact that different E E: 8 in general elicit different performances from

a given structure A Ed means formally that there will be a different performance
measure IJ.B associated with each E. Each field of study is typified as much by its
performance measures as by its structures and operators. For the fields mentioned
in connection with examples of structures and operators, we have a corresponding
list of performance measures:



The performance measure varies over time and space so that given
adaptations are only advantageous at certain places and times.
The environment E presents to 'T a great flux of information (including
performances) which must be filtered and sorted for relevance.

3. A SIMPLE ARTIFICIAL ADAPTIVE SYSTEM
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By describing these obstacles, and the adaptive plans meant to overcome them,
within a general framework, we open the possibility of discovering plans useful
in any situation requiring adaptation.

Before going further let us flesh out these abstractions by using them in the
description of two distinct adaptive systems, one simple and artificial , the other
complex and natural.

.The artificial adaptive system of this example is a pattern recognition device. ( The
device to be described has very limited capabilities; while this is important in
applications, it does not detract from the device's use fulness as an illustration .)
The information to be fed to the adaptive device is preprocessed by a rectangular
array of sensors, a units high by b units wide. Each sensor is a threshold device
which is activated when the light falling upon it exceeds a fixed threshold. Thus,
when a " scene" is presented to the sensor array at some time I, each individual
sensor is either " on" or " off" depending upon the amount of light reaching it .
Let the activity of the ith sensor, i = 1, 2, . . . , ab, at time I be represented formally
by the function a.( I), where a.( I) = 1 if the sensor is " on" and a.( I) = 0 if it is " off."

A given scene thus gives rise to a configuration of ab " ones" and " zeros." All told
there are 20. possible configurations of sensor activation; let C designate this set
of possible configurations. It will be assumed

. 
that a particular subset of Cl of C

corresponds to (instances of) the pattern to be recognized. The particular subset
involved, among the 22- posSible, will be unknown to the adaptive device. (E.g.,
Cl might consist of all configurations containing a connected X -shaped array of
ones, or it might consist of all configurations containing as many ones as zeros,
or it might be anyone of the other 22- possible subsets of C.) This very large set of
possibilities constitutes the class of possible environments 8; it is the set of alternatives 

the adaptive plan must be prepared to handle. The adaptive device's task
is to discover or " learn" which element of8 is in force by learning what configurations 

belong to Ct. Then, when an arbitrary configuration is presented, the device
can reliably indicate whether the configuration belongs to Cl, thereby detecting
an instance of the pattern.

4.

s.



SCENE 

SENSOR

.

.

.

THRESHOLD

DEVI CE

The scene shown is classified as c+ because EI ! I W.-8,(t) = 8I(t) + 2as(t) + 2aa(t)
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+ 84(t) + 281(t) + 4a.(t) + . . . > 4.

Fig. 1. A limpie'pattern recognizer

The particular pattern recognition device considered here- a linear
threshold device- process es the input signals 8,(1) by first multiplying each one by
some weight w.. and then summing them to yield Er . 1 w,-8,( I). When this sum
exceeds a given fixed threshold K the input configuration will be said to be a
member of the set C+, otherwise a member of the set C- . (It should be clear that
c+ U C- = C and that c+ n C- is empty, so that the linear threshold device

partitions C into two classes.) More precisely c+ is supposed to be an approximation 
to C1, so that when the sum exceeds the fixed threshold K, the device indicates

(rightly or wrongly) that the input configuration is an instance of the pattern. The

object of the adaptive plan, then, is to discover as rapidly as possible a set of
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weights for which the partition (C+, C- ) approximates the partition (C1, Co), so
that c+ ~ C1 and C- ~ Co. ( This device, as noted earlier, is quite limited ; there
are many partitions (C1, Co) that can only be poorly approximated by (C+, C- ),
no matter what set of weights is chosen.) Now, let W = {VI, VI, . . . , Vi} be the set
of possible values for the weights Wi; that is, each Wi E: W, i = 1, . . . , ab. Thus,
with a fixed threshold K, the set of attainable structures   is the set of all ab-tupies,
Wa6.

The natural performance measure, liB, relative to any particular partition
E E: 8 is the proportion of all configurations correctly assigned (to C1 and Co).
That is, liB maps each ab-tuple into the fraction of correct recognitions achieved
thereby, a number in the interval [0, I ] , liB: Wa6- +[O, 1] . (In this example the outcome 

of each test- "
configuration correctly classified" or "

configuration incorrectly 
classified" - will be treated as the plan

's input . The same ab- tuple may have
to be tested repeatedly to establish an estimate of its performance.)

A simple plan TO for discovering the best set of weights in Wa6 is to try
various ab-tupies, either in some predetermined order or at random, estimating
the performance of each in its turn ; the best ab-tuple encountered up to a given
point in time is saved for comparison with later trials- this " best-to-date" ab-tuple
being replaced immediately by any better ab-tuple encountered in a later trial . It
should be clear that this procedure must eventually uncover the " best" ab-tuple
in Wa6. But note that even for k = 10 and a = b = 10, Wa6 has 10100 elements.
This is a poor augury for any plan which must exhaustively search W.&. And that
is exactly what the plan just described must undertake, since the outcome of earlier
tests in no way affects the ordering of later tests.

Let's look at a (fairly standard) plan TOO which does use the outcome of each
test to help determine the next structure for testing. The basic idea of this plan is
to change the weights whenever a presentation is misassigned so as to decrease
the likelihood of similar misassignments in the future. In detail : Let the values in
W be ordered in increasing magnitude so that Vi+l > Vi, j = I , 2, . . . , k - 1 (for
instance, the weights might be located at uniform intervals so that Vi+l = Vi + ~).
Then the algorithm proceeds according to the following prescription:

in Natural and , Systems
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1. If the presentation at time t is assigned to Co when it should have been
assigned to C1 then, for each i such that 8.{ t) = 1, replace the corresponding 

weight by the next highest weight (in the case of uniform
intervals the new weight would be the old weight Wi increased by A,
Wi + .6). Leave the other weights unchanged.



2. If the presentation at time t is assigned to C1 instead of Co then, for each
i such that 8.( t) = I , replace the corresponding weight by the next
lowest weight (for uniform intervals, the new weight is w.. - ~).

We cannot yet fruitfully discuss the merits of this plan in comparison to
alternatives; we can only note that the order in which 1'00 tests the elements of ci.
does indeed depend upon the information it receives. That is, the trajectory
through ci. = Wob is conditional on the outcomes II.. (A)~ A E: Ci., of prior tests.

herent in such a partial picture.
It is a familiar fact (but one we will delve into later) that every organism is

an amalgam of characteristics determined by the genes in its chromosomes. Each
gene has several forms or alternatives- a //eles- producing differences in the set
of characteristics associated with that gene. ( E.g., certain strains of garden pea
have a single gene which determines blossom color, one allele causing the blossom
to be white, the other pink ; bread mold has a gene which in normal form causes
synthesis of vitamin Rt, but several mutant alleles of the gene are deficient in this
ability ; human sickle cell anemia results from an abnormal allele of one of the

genes determining the structure of hemoglobin- interestingly enough, in environments 
where malaria is endemic, the abnormal allele can confer an advantage.)

There are tens of thousands of genes in the chromosomes of a typical vertebrate,
each of which (on the evidence available) has several alleles. Taking the set of
attainable structures (t, to be the set of chromosomes obtained by making all
possible combinations of alleles, we see that (t, contains on the order of 210.000 ~
101000 structures for a typical vertebrate species (assuming 2 alleles for each of
10,(XX) genes). Even a very large population, say 10 billion individuals of that
species, contains only a minuscule fraction of the possibilities.

The enormous number of possible genetic structures- genotypes- for a

single vertebrate species is an indicator of the complexity of such systems, but it
is only an indicator. The basic complexity of these systems comes from the interactions 

of the genes. To see just how extensive these interactions are, it is worth
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4 . A COMPLEX NATURAL ADAPTIVE SYSTEM

Here we will look at biological adaptation via changes in genetic makeup- the
first of a series of progressively more detailed examinations. This section will
present only biological facts directly relevant to adaptation, with a caveat to the
reader about the dangers of unintentional emphasis and oversimplification in-
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looking briefly at some of the related biochemistry . Without going into detail ,
different alleles of the same gene produce related proteins , which in turn produce
the variations in expressed characteristics associated with that gene. Typically
these proteins (or combinations of them ) are powerful biological catalysts called
enzymes, capable of modifying reaction rates by factors of IO,<XX> and more . For
this reason, genes exercise extensive control over the ongoing reactions in a cell -

the enzymes they produce modulate ongoing reactions so strongly that they are
the major determinants of the cell 's form . Moreover , the products of any given
enzyme- controned reaction may, and generally do , enter into several subsequent
reactions . Thus the effects of changes in a single enzyme are often widespread ,
causing gross changes in cell form and function . The human hereditary disorder
called phenylketonuria results from an (undesirable ) allele of a single gene; the
presence of this allele has pronounced effects upon a whole battery of characteristics 

ranging from hair color and head size through intelligence . It is equally true
that several genes may jointly determine a given characteristic , e.g., eye color in
humans .

All of this adds consider ably to the complexity of the system, but the
greatest complexities come about because the effects of different enzymes are not
additive - a phenomenon known as epistasis. For example , if a sequence of reactions 

depends upon several enzymes, for practical purposes the sequence does not
proceed at all until all of the enzymes are present ; subtraction of one enzyme stops
the reaction completely . More complicated reactions involving positive and
negative feedback are common , particularly those in which the output of a reaction 

sequence is a catalyst or inhibitor for some intermediate step of the reaction .
The main point is that the effect of each allele depends strongly upon what other
alleles are present and small changes can often produce large effects. The amalgam
of observed characteristics - the phenotype- depends strongly upon these epistatic
effects.

Because of epistasis there is no simple way to apportion credit to individual
alleles for the performance of the resulting phenotype . What may be a good allele
when coordinated with an appropriate set of alleles for other genes, can be disastrous 

in a different genetic context . Thus adaptation cannot be accomplished
by selecting among the alleles for one gene independently of what alleles appear
for other genes. The problem is like the problem of adjusting the " height ,

" " vertical
linearity ,

" and " vertical hold " controls on a television set. A " best setting
" for

"
height ,

" 
ignoring the settings of the other two controls , will be destroyed as soon

as one attempts to better the setting of either of the other two controls . The problem 
is vexing enough when there are three interdependent controls , as anyone who
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has attempted these adjustments can testify, but it pales in comparison to the

genetic case where dozens or hundreds of interdependent alleles can be involved.

Roughly, the difficulty of the problem increases by an order of magnitude for each
additional gene when the interdependencies are intricate (but see the discussions
in chapter 4 and pp. 160- 61).

Given the pervasiveness of epistasis, adaptation via changes in genetic
makeup becomes primarily a search for coadapted sets of alleles- alleles of different 

genes which together significantly augment the performance of the corresponding 

phenotype. (In chapter 4 the concept of a coadapted set of alleles will be

generalized, under the term schema, to the point where it applies to the full range
of adaptive systems.) It should be clear that coadaptation depends strongly upon
the environment of the phenotype. The large coadapted set of alleles which produces 

gills in fish augments performance only in aquatic environments. This dependence 
of coadaptation upon characteristics of the environment gives rise to

the notion of an environmental niche, taken here to mean a set of features of the
environment which can be exploited by an appropriate organization of the pheno-

type. ( This is a broader interpretation than the usual one which limits niche to
those environmental features particularly exploited by a given species.) Examples
of environmental niches fitting this interpretation are: (i) an oxygen-poor, sulfur-

rich environment such as is found at the bottom of ponds with large amounts of

decaying matter- a class of anaerobic bacteria, the thiobacilli , exploits this niche

by means of a complex of enzymes enabling them to use sulfur in place of oxygen
to carry out oxidation ; (ii ) the " bee-rich" environment exploited by the orchid

Ophrys apifera which has a flower mimicking the bee closely enough to induce

pollination via attempted copulation by the male bees; (iii ) the environment rich
in atmospheric vibrations in the frequency range of 50 to 50,000 cycles per second-

the bones of the mammalian ear are a particular adaptation of parts of the reptilian
jaw which aids in the detection of these vibrations, an adaptation which clearly
must be coordinated with many other adaptations, including a sophisticated
information-processing network, before it can improve an organism

's chances of
survival. It is important to note that quite distinct coadapted sets of alleles can

exploit the same environmental niche. Thus, the eye of aquatic mammals and the

(functionally similar) eye of the octopus exploit the same environmental niche,
but are due to coadapted sets of alleles of entirely unrelated sets of genes.

The various environmental niches E E:: 8 define different opportunities for

adaptation open to the genetic system. To exploit these opportunities the genetic
system must select and use the sets of coadapted alleles which produce the appropriate 

phenotypic characteristics. The central question for genetic systems is: How
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are initially unsuited structures transformed to (an observed range of) structures
suited to a variety of environmental niches 8? To attempt a general answer to this
question we need a well-developed formal framework. The framework available at
this point is insufficient, even for a careful description of a candidate adaptive
plan l' for genetic systems, unlike the case of the simpler artificial system. A fortiori ,
questions about such adaptive plans, and critical questions about efficiency, must
wait upon further development of the framework. We can explore here some of
the requirements an adaptive plan l' must meet if it is to be relevant to data about
genetics and evolution.

In beginning this exploration we can make good use of a concept from
mathematical genetics. The action of the environment E E: 8 upon the phenotype
(and thereby upon the genotype A E: (t) is typically summarized in mathematical
studies of genetics by a single performance measure IJ.B called fitness. Roughly, the
fitness of a phenotype is the number of its offspring which survive to reproduce
(precise definitions will be given later in connection with the appropriate formal
models, see section 3.1). This measure rests upon a universal, and familiar , feature
of biological systems: Every individual (phenotype) exists as a member of a population 

of similar individuals, a population constantly in flux because of the reproduction 
and death of the individuals comprising it . The fitness of an individual is

clearly related to its influence upon the future development
. of the population.

When many offspring of a given individual survive to reproduce, then many members 
of the resulting population, the " next generation,

" will carry the alleles of
that individual . Genotypes and phenotypes of the next generation will be influenced
accordingly.

Fitness, viewed as a measure of the genotype
's influence upon the future,

introduces a concept useful through the whole spectrum of adaptation. A good
way to see this concept in wider context is to view the testing of genotypes as a

sampling procedure. The sample space in this case is the set of all genotypes (t and
the outcome of each sample is the performance IJ.B of the corresponding phenotype.
The general question associated with fitness, then, is: To what extent does the
outcome IJ.s(A) of a sample A E: (t influence or alter the sampling plan l' (the kinds
of samples to be taken in the future)? Looking backward instead of forward, we
encounter a closely related question: How does the history of the outcomes of
previous samples influence the current sampling plan? The answers to these questions 

go far toward determining the basic character of any adaptive process.
We have already seen that the answer to the first question, for genetic

systems, is that the future influence of each individual A E: (t is directly proportional 
to the sampled performance IJ.s(A). This relation need not be so ingeneral-
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there are many well-established procedures for optimization, inference, mathematical 
learning, etc., where the relation between sampled performance and

future sampling is quite different. Nevertheless reproduction in proportion to
measured performance is an important concept which can be generalized to yield
sampling plans- reproductive plans - applicable to any adaptive problem (including
the broad class of problems where there is no natural notion of reproduction).
Moreover, once reproductive plans have been defined in the formal framework,
it can be proved that they are efficient (in a reasonable sense) over a very broad
range of conditions.

A part of the answer to the second question, for genetic systems, comes
from the observation that future populations can only develop via reproduction
of individuals in the current population. Whatever history is retained must be
represented in the current population. In particular, the population must serve as
a summary of observed sample values (performances). The population thereby
has the same relation to an adaptive process that the notion of (complete) state
has to the laws of physics or the transition functions of automata theory. Knowing
the population structure or state enables one to determine the future without any
additional information about the past of the system. ( That is, different sampling
sequences which arrive at the same population will have exactly the same influence
on the future.) The state concept has been used as a foundation stone for formal
models in a wide variety of fields; in the formal development to follow generaliza-

tions of population structure will have this role.
An understanding of the two questions just posed leads to a deeper understanding 

of the requirements on a genetic adaptive plan. It also leads to an apparent
dilemma. On the one hand, if offspring are simple duplicates of fit members of the
population, fitness is preserved but there is no provision for improvement. On the
other hand, letting offspring be produced by simple random variation (a process
practically identical to enumeration) yields a maximum of new variants but makes
no provision for retention of advances already made. The dilemma is sharpened
by two biological facts: ( I) In biological populations consisting of advanced
organisms (say vertebrates) no two individuals possess identical chromosomes
(barring identical twins and the like). This is so even if we look over many (all)
successive generations. (2) In realistic cases, the overwhelming proportion of
possible variants (all possible allele combinations, not just those observed) are
incapable of surviving to produce offspring in the environments encountered.
Thus, by observation ( I ), advances in fitness are not retained by simple duplication

. At the same time, by observation (2), the observed lack of identity cannot
result from simple random variation because extinction would almost certainly



follow in a single generation- variants chosen completely at random are almost
certain to be sterile.

In attempting to see how this
some of the deeper questions about adaptation.
resolution in this preliminary survey. Even a

" dilemma" is resolved, we begin to encounter
We can only hint at the dilemma's
clear statement of the resolution

requires a considerable formal structure, and proof that it is in fact a resolution
requires still more effort. Much of the understanding hinges on posing and answering 

two questions closely related to the questions generated by the concept of
fitness; How can an adaptive plan l' (specifically, here a plan for genetic systems)
retain useful portions of its (rapidly growing) history along with advances already
made? How is the adaptive plan l' to access and use its history (the portion stored)
to increase the likelihood of fit variants (A € (t such that IJ.g(A) is above average)?
Once again these are questions relevant to the whole spectrum of fields mentioned
at the outset.

The resolution of the dilemma lies in the action of the genetic operators 1}
within the reproductive plan 1'. The best-known genetic operators exhibit two
properties strongly affecting this action: ( I ) The operators do not directly affect
the size of the population- their main effect is to alter and redistribute alleles
within the population. ( The alleles in an individual typically come from more than
one source in the previous generation, the result, for example, of the mating of
parents in the case of vertebrates, or of transduction in the case of bacteria.) (2)
The operators infrequently separate alleles which are close together on a chromosome

. That is, alleles close together typically remain close together after the
operators have acted.

Useful clues to the dilemma's resolution emerge when we look at the effect
of these operators in a simple reproductive plan, 1'1. This plan can be thought of
as unfolding through repeated application of a two-phase procedure: During
phase one, additional copies of (some) individuals exhibiting above-average performance 

are added to the population while (some) individuals of subaverage
performance are deleted. More carefully, each individual has an expected number
of offspring, or rate of reproduction, proportional to its performance. (If the
population is to be constant in size, the rates of reproduction must be " normalized"

so that their average over the population at any time is 1.) During phase two, the
genetic operators in 1} are applied, interchanging and modifying sets of alleles in
the chromosomes of different individuals, so that the offspring are no longer
identical to their progenitors. The result is anew, modified population. The process
is iterated to produce successive generations of variants.

More formally, in an environment which assigns an observable performance
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to each individual , '7"1 acts as follows: At the beginning of each time period t, the

plan
's accumulated information about the environment resides in a finite population 
Ci(t) selected from (i,. The most important part of this information is given by

the discrete distributions which give the proportions of different sets of alleles in
the population Ci(t). Ci(t) serves not only as the plan

's repository of accumulated
information , but also as the source of new variants which will give

'
rise to Ci(t + 1).

As indicated earlierithe formation of Ci(t + 1) proceeds in two phases. During the
first phase, Ci(t) is modified to form (i, '(I) by copying each individual in Ci(t) a
number of times dependent upon the individual 's observed performance. The
number of copies made will be determined stochastically so that the expected
number of copies increases in proportion to observed performance. During the
second phase, the operators are applied to the population (i, 

'
(I), interchanging and

modifying the sets of alleles, to produce the new generation Ci(t + I ).
One key to understanding '7"1

'S resolution of the dilemma lies in observing
what happens to small sets of adjacent alleles under its action. In particular, what

happens if an adjacent set of alleles appears in several different chromosomes of
above-average fitness and not elsewhere? Because each of the chromosomes will
be duplicated an above-average number of times, the given alleles will occupy an
increased proportion of the population after the duplication phase. This increased

proportion will of course result whether or not the alleles had anything to do with
the above-average fitness. The appearance of the alleles in the extra-fit chromosomes 

might be happenstance, but it is equally true that any correlation between
the given selection of alleles and above-average fitness will be exploited by this
action. Moreover, the more varied the chromosomes containing the alleles, the
less likely it is that the alleles and above-average fitness are uncorrelated.

What happens now when the genetic operators {} are applied to form the
next generation? As indicated earlier, the closer alleles are to one another in the
chromosome the less likely they are to be separated during the operator phase.
Thus the operator phase usually transfers adjacent sets of genes as unit, placing
them in new chromosomal contexts without disturbing them otherwise. These
new contexts further test the sets of alleles for correlation with above-average
fitness. If the selected set of alleles does indeed augment fitness, the chromosomes

containing the set will again (on the average) be extra fit . On the other hand, if the

prior associations were simply happenstance, sustained association with extra-fit
chromosomes becomes increasingly less likely as the number of trials (new contexts

) increases. The net effect of the genetic plan over several generations will be
an increasing predominance of alleles and sets of alleles augmenting fitness in the

given environment.
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In observing what happens to small sets of genes under its action, we have
seen one way in which the plan T! preserves the history of its interactions with the
environment. It also retains certain kinds of advances thereby, favoring structural

components which have proved their worth by augmenting fitness. At the same
time, since these components are continually tried in new contexts and combinations

, stagnation is avoided. In brief, sets of alleles engendering above-average
performance provide comparative success in reproduction for the chromosomes

carrying them. This in turn assures that these alleles become predominant components 
of later generations of chromosomes. Though this description is sketchy,

it does indicate that reproductive plans using genetic operators proceed in a way
which is neither enumeration nor simple duplication of fit structures. The full

story is both more intricate and more sophisticated. Because reproductive plans
are provably efficient over a broad range of conditions, we will spend considerable
time later unraveling the skeins of this story.

5 . SOME GENERAL OBSERVATIONS

One point which comes through clearly from the examples is the enormous size of
d , even for a very modest system. This size has a fatal bearing on what is at first

sight a candidate for a " universal" adaptive plan. The candidate, called 'To in the
first example, and henceforth designated an enumerative plan, exhaustively tests
the structures in dEnumerative plans are characterized by the fact that the order
in which they test structures is unaffected by the outcome of previous tests. For

example, the plan first generates and tests all structures attainable (from an initially
given structure) by single applications of the basic operators, then all structures
attainable by two applications of the operators, etc. The plan preserves the fittest
structure it has encountered up to any given point in the process, replacing that
structure immediately upon generating a structure which is still more fit . Thus,
given enough time (and enough stability of the environment so that the fitness of
structures does not change during the process) an enumerative plan is guaranteed
to discover the structure most fit for any environment confronting it . The simplicity 

of this plan, together with the guarantee of discovering the most fit structure

, would seem to make it a very important adaptive plan. Indeed enumerative

plans have been repeatedly proposed and studied in most of the areas mentioned
in section 1.1. They are often set forth in a form not obviously enumerative, particularly 

in evolutionary studies (mutation in the absence of other genetic operators
), learning (simple trial -and-error), and artificial intelligence (random search).
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However, in all but the most constrained situations, enumerative plans are a false

lead.
The flaw, and it is a fatal one, asserts itself when we begin to ask, 

" How

long is eventually?
" To get some feeling for the answer we need only look back at

the first example. For that very restricted system there were 10100 structures in d .
In most cases of real interest, the number of possible structures vastly exceeds this
number, and for natural systems like the genetic systems we have already seen that
numbers like 210,000 ~ 101000 arise. If 1012 structures could be tried every second

(the fastest computers proposed to date could not even add at this rate), it would

take a year to test about 3. 1018 structures, or a time ,'a.stly exceeding the estimated

age of the universe to test 10100 structures.
It is clear that an attempt to adapt by means of an enumerative plan is foredoomed 

in all but the simplest cases because of the enormous times involved, This

extreme inefficiency makes enumerative plans uninteresting either as hypotheses
.about natural process es or as algorithms for artificial systems. It follows at once

that an adaptive plan cannot be considered good simply because it will eventually

produce fit structures for the environments confronting it ; it must do so in area-

sonable time span. What a " reasonable time span
" is depends strongly on the

environments (problems) under consideration, but in no case will it be a time large
with respect to the age of the universe. This question of efficiency or " reasonable
time span

" is the pivotal point of the most serious contemporary challenge to

evolutionary theory: Are the known genetic operators sufficient to account for the

changes observed in the alloted geological intervals? There is of course evidence
for the existence of adaptive plans much more efficient than enumeration. Arthur

Samuel (1959) has written a computer program which learned to play tournament
calibre checkers, and humans do manage to adapt to very complex environments
in times consider ably less than a century. It follows that a major part of any study
of the adaptive process must be the discovery of factors which provide efficiency
while retaining the " universality

" 
(robustness) of enumeration. It does not take

analysis to see that an enumerative plan is inefficient just because it always generates 
structures in the same order, regardless of the outcome of tests on those

structures. The way to improvement lies in avoiding this constraint.
The foregoing points up again the critical nature of the adaptive plan

's

initial uncertainty about its environment, and the central role of the procedures it

uses to store and access the history of its interactions with that environment. Since

different structures perform differently in different environments, the plan
's task

is set by the aspects of the environment which are unknown to it initially . It must
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generate structures which perform well (are fit ) in the particular environment

confronting it , and it must do this efficiently. Interest centers on robust adaptive
plans- plans which are efficient over the range of environments 8 they may encounter

. Giving robustness precise definition and discovering something of the
factors which make an adaptive plan robust is the formal distillation of questions
about efficiency. Because efficiency is critical , the study of robustness has a central

place in the formal development.
The discussion of genetic systems emphasized two general requirements

bearing directly on robustness: ( I ) The adaptive plan must retain advances already
made, along with portions of the history of previous plan-environment interactions.

(2) The plan must use the retained history to increase the proportion of fit structures 

generated as the overall history lengthens. The same discussion also indicated
the potential of a particular class of adaptive plans- the reproductive plans. One
of the first tasks, after setting out the formal framework, will be to provide a general
definition of this class of plans. Lifting the reproductive plans from the specific
genetic context makes them useful across the full spectrum of fields in which adaptation 

has a role. This widened role for reproductive plans can be looked upon as
a first validation of the formalism. A much more substantial validation follows

closely upon the definition, when the general robustness of reproductive plans is

proved via the formalism. Later we will see how reproductive plans using generalized 
genetic operators retain and exploit their histories. Throughout the development

, reproductive plans using genetic operators will serve to illuminate key
features of adaptation and, in the process, we will learn more of the robustness,
wide applicability , and general sophistication of such plans.

Summarizing: This entire survey has been organized around the concept of
an adaptive plan. The adaptive plan, progressively modifying structure by means
of suitable operators, determines what structures are produced in response to the
environment. The set of operators n and the domain of action of the adaptive plan
(t (i .e., the attainable structures) determine the plan

's options; the plan
's objective

is to produce structures which perform well in the environment E confronting it .
The plan

's initial uncertainty about the environment- its room forimprovement -

is reflected in the range of environments 8 in which it may have to act. The related

performance measures IJ.BE E: 8, change from environment to environment since
the same structure performs differently in different environments. These objects
lie at the center of the formal framework set out in chapter 2. Chapter 3 provides
illustrations of the framework as applied to genetics, economics, game-playing,
search es, pattern recognition, statistical inference, control, function optimization,
and the central nervous system.
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A brief look at the enormous times taken by enumerative plans to discover
fit structures, even when the domain of action disgreatly constrained, makes it
clear that efficiency is a sine qua non of studies of adaptation. Efficiency acts as a
cutting edge, shearing away plans 

" too slow" to serve as hypotheses about
natural systems or as algorithms for artificial systems. Whether an adaptive plan
is to serve as hypothesis or algorithm, information about its robustness- its efficiency 

in the environments 8- is critical . The latter part of this book will be much
concerned with this topic. Chapter 4 introduces a critical tool for the investigation
and construction of efficient adaptive plans- schemata. This generalization of
coadapted sets of alleles provides an efficient way of defining and exploiting properties 

associated with above-average performance. Chapter 5 develops a criterion
for measuring the efficiency with which adaptive plans improve average performance 

and then relates this criterion to the exploitation of schemata. Chapter 6
introduces generalized genetic plans and chapter 7 establish es their robustness.
Chapter 8 studies mechanisms which enable genetic plans to use predictive modeling 

for flexible exploitation of the large fluxes of information provided by typical
environments.

The emphasis throughout the book is on general principles which help to
resolve the problems and questions raised in this chapter. One particular interest
will be the solution of problems involving hundreds to hundreds of thousands of
interdependent parameters and multitudes of local optima- problems which
largely lie outside the prescriptions of present day computational mathematics.
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1. DISCUSSION

Three associated objects occupied the center of the preliminary survey

E, the environment of the system undergoing adaptation,
1' , the adaptive plan which determines successive structural modifications in response 

to the environment,
#I., a measure of the performance of different structures in the environment.

Implicit in the discussion is a decomposition of the overall process into two

disjoint parts- the adaptive system employing 1', and its environment E. This

decomposition is usually fixed or strongly suggested by the particular emphasis of
each study, but occasionally it can be arbitrary and, rarely, it can be a source of

difficulty . Thus, in some biological studies the epidermis naturally serves as the

adaptive system-environment boundary, while in other biological studies we deal
with populations which have no fixed spatial boundaries, and in ecological settings
the boundary shifts with every change in emphasis. Similarly, the emphasis of the

study usually determines what notion of performance is relevant and how it is to
be measured to yield #I.. Because E, 1', and #I. are central and can be regularly identi-

fied in problems of adaptation, the formal framework will be built around them.
In the basic formalism the adaptive plan l' will be taken to act at discrete

instants of time, t = I , 2, 3, . . . , rather than continuously. The primary reason
for adopting a discrete time-scale is the simpler form it confers on most of the

important results. Also this formalism intersects smoothly with extant mathematical
theories in several fields of interest where much of the development is based on a
discrete time-scale, viz., mathematical economics, sequential sampling theory, the

theory of self-reproducing automata, and major portions of population genetics.
Where continuity is more appropriate, it is often straightforward to obtain continuous 

counterparts of definitions and theorems, though in some cases appropriate

20

2. A Formal Framework



Finally, the set d will usually be potential rather than actual. That is, elements
become available to the plan only by successive modification (e.g., by rearrangement 

of components or construction from primitive elements), rather than by
selection from an extant set. We will examine all of these possibilities as we go
along, noting that relevant elaborations of the elements of d provide a way of
specializing the general parts of the theory for particular applications.

The adaptive plan T produces a sequence of structures, i .e., a trajectory
throughd , by making successive selections from a set of operators O. The particular

A Formal Framework
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restatements are full -fledged research problems with the discrete results serving only
as guidelines. In any case, the instants of time can be freely reinterpreted indifferent 

applications- they may be nanoseconds in one application (e.g., artificial
intelligence), centuries in another (e.g., evolutionary theory). The properties and
relations established with the formalism remain valid, only their durations will
vary. Thus, at the outset, we come upon a major advantage of the formalism:
Features or procedures easily observed in one process can be a~ tracted, set within
the framework, and analyzed so that they can be interpreted in other process es
where duration of occurrence, or other detail, obscures their role.

As our starting point for constructing the formalism let us take the domain
of action of the adaptive plan, the set of structures (t . At the most abstract level (t
will simply be an arbitrary, nonempty set; when the theory is applied, (t will
designate the set of structures appropriate to the field of interest. Because the more
general parts of the theory are valid for any nonempty set (t, we have great latitude
in interpreting or applying the notion of structure in particular cases. Stated the
other way around, the diversity of objects which can serve as elements of (t assures
flexibility in applying the theory. In practice, the elements of (t can be the formal
counterparts of objects much more complex than the basic structures (chromosomes

, mixes of goods, etc.) of the preliminary survey. They may be sets, sequences,
or probability distributions over the basic structures; moreover, portions of the
adaptive system

's past history may be explicitly represented as part of the structure.
Often the basic structures themselves will exhibit additional properties, being
presented as compositions of interacting components (chromosomes composed of
alleles, programs composed of sets of instructions, etc.). Thus (referring to section
1.4), if the elements of (t are to represent chromosomes with l specified genes,
where the ith gene has a set of ki alleles Ai = {ail, . . . , au,} , then the set of
structures becomes the set of all combinations of alleles,
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Fig. 2. Schematic of adaptive plan
'" operation

selections made are influenced by information obtained from the environment E,
so that the plan l' typically generates different trajectories in different environments.
The adaptive system

's ability to discriminate among various environments is
limited by the range I of stimuli or signals it can receive. More formally : Let the
structure tried at time t be Ci(t) Ed . Then the particular environment E confronting
the adaptive system reacts by producing a signal I (t). Different structures may of
course be capable of receiving different ranges of signals. That is, if IA is the range
of signals which A can receive, then for A' . ~ A it may be that IA ~ IAI. To keep
the presentation simple, I is used to designate the total range of signals U A E:GIA
receivable by structures in d . The particular information I (t) received by the
adaptive system at time t will then be constrained to the subset of signals I G(I) C I
which the structure at time t, Ci(t), can receive. I may have many components
corresponding, say, to different sensors. Thus, referring to the example of section
1.3, I consists of ab components 11 X It X . . . X I .. = fir . Iii . In this case Ii = {O, I }
for all i since the ith component of I represents the range of values the ith sensor 8i



can transmit. That is, given a particular signal I (t) E: lat time t, the ith component
I .( t) is the value 8.( 1) of the ith sensor at time t. In general the sets Ii may be quite
different, corresponding to different kinds of sensors or sensory modalities.

The formal presentation of an adaptive plan 'T can be simplified by requiring
that (I.(t) serve as the state of the plan at time t. That is, in addition to being the
structure tried at time t, Ct.(t) must summarize whatever accumulated information is
to be available to 'T. We have just provided that the total information received by 'T

up to time t is given by the sequence (/ (1), 1(2), . . . , / (t - I )}. Generally only part
of this information is retained. To provide for the representation of the retained
information we can make use of the latitude in specifying (1. Think of (1 as consisting 

of two components (11 and 3Jt, where (l.l(t) is the structure tested against the
environment at time t, and the memory mt( t) represents other retained parts of
the input history (/ (1), / (2), . . . , / (t - I )}. Then the plan can be represented by the
two-argument function

'T:I X (1- + (1.

Here the structure to be tried at time t + I , al( t + I), along with the updated
memory 3Jt( t + I), is given by

(al(t + I), 3Jt(t + I  = d( t + I) = or(l (t), d( t  = or(l (t), (al(t), 3Jt(t ).

(The projection of 'I' on 3Jt,

'1'. :1 X al X 3Jt - + 3Jt

defined so that

'I'. { I(t), al(t), 3Jt(t  = proj2 [or(l (t), d( t ] = 3Jt(t + I)

is that part of 'I' which determines how the plan
's memory is updated.) It is clear

that any theorems or interpretations established for the simple form

'I':lxa -+a

can at once be elaborated,
' 
without loss of generality or range of application, to

the form

'1':1 X (al X 3Jt) -+ (al X 3Jt).

Thus the framework can be developed in terms of the simple, two-argument form
of '1', elaborating it whenever we wish to study the mechanisms of trial selection or
memory update in greater detail.
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In what follows it will often be convenient to treat the adaptive plan 'T as a
stochastic process; instead of detennining a unique structure <i(1 + I ) from 1(1)
and <i ( I), 'T assigns probabilities to a range of structures and then selects accordingly.
That is, given 1(1), <i (1) may be transfonned into anyone of several structures
A~, A~, . . . , Aj , . . . , the structure Aj being selected with probability Pl. More

formally : Let <P be a set of admissible probability distributions over d . Then

aspect operators .
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as a special case.
In practice the transformation of Ci(t) to Ci(t + I) is usually accomplished

,..' :1 X Ci -+ n

and the set of operators
() = {C-' :ct -to cP}

is now embodied in the

C-', = 'T'(/ (t), Ct(t 

where the stochastic

mine the next structure <l (t + I ) uniquely, the distribution <P(t + I ) simply becomes
a degenerate, one-point distribution where a single structure in disassigned
probability I . Hence the form

T:/ X d - + CP
includes the previous

T:/ Xd - + d

designates the particular operator selected by .,' at time t, then

<p(t + 1) = (IJ,(a( t  = [.,'(I (t), a( t ](a( t 

gives the resulting distribution over Ct. Hence .,' determines ., once the functions
in n are specified:

1'(1(t), a( t  = [.,'(I(t), a( t ](a( t  = <p(t + 1).

will be interpreted as assigning to each pair (1(1), (t(1  a particular distribution over
Ct, <P( 1 + I) E: (9. The structure Ct( 1 + I) to be tried at time 1 + I will then be
determined by drawing a random sample from Ci according to the probability
distribution <p(t + I ) = .,(1(t), Ci(t . For those cases where the plan T is to deter-



Framework

That is, the range of ".' can be changed from n to (J' with ".' being redefined so that

".'(/(t), Ct(t  = [".'(;(t), Ct(t ](Ct(t  = <p(t + I).

With this extension ".' and ". become identical; for this reason one symbol ""." will

and the payoff assigned to 6( t) is determined by a trial of the random variable
/I.. (6( t  = ~ t). This extension does not add any generality to the framework
(and hence is unnecessary at the abstract level) because any randomness involved

A Formal
�

liB: (t -+ '\1

be used to designate both functions, the range being specified whenever the distinction 
is important .

The general objective of this formalism is comparison of adaptive plans,
either as hypotheses about natural phenomena or as algorithms for artificial
systems. The comparison naturally centers on the efficiency of different plans in
locating high performance structures under a variety of environmental conditions.
For a comparison to be made there must be a set of plans, given either explicitly
or implicitly , which are candidates for comparison. This set will be formally designated 

3. Often 3 will be the set of all possible plans employing the operators in 0,
but in some cases there will be constraints restricting 3, while in others 3 will be
enlarged to include all possible plans over Ct (i.e., all possible functions of the form
'T: 1 X Ct - . <P). 3, however defined, represents the set of technical or feasible
options for the adaptive system under consideration.

As indicated in the survey, a nontrivial problem of adaptation exists only
when the adaptive plan is faced with an initial uncertainty about its environment.
This uncertainty is formalized by designating the set 8 of alternatives corresponding
to characteristics of the environment unknown to the adaptive plan. The dependence 

of the plan
's action upon the environment finds its formal counterpart in the

dependence of the input I (t) upon which environment E E: 8 actually confronts
the plan. One case of particular importance is that in which the adaptive plan
receives a direct indication of the performance of each structure it tries. That is, a

part of the input I (t) will be the payoff 1I. (Ct(t  determined by the function

118:<1- ' Reals

which measures the performance of each structure in the given environment.
Sometimes, when the performance of a structure in the environment E

depends upon random factors, it is useful to treat the utility function as assigning
a random variable from some predetermined set ' U to each structure in Ct. Thus



Artificial

in the interaction between the

sumed in the stochastic action

however .)

adaptive system and its environment can be sub-
of the operators. (See chapter 5 and section 7.2,

where B,(T, t) is the structure selected by T in E at time t, il. (B,(T, t  is the corresponding 

payoff, and U.,... (T) is the total payoff received by T in E to time T. ( The
average rate of payoff is just the function U.,. .. (T) / T based on the cumulative payoff
function U.,... (T) .) When the adaptive plan is stochastic, T:I X Ct - + (p, it is natural

Adaptation in Natural and
, 
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U,...(T) = ET. ll1.. t (1', t 

Much can be learned about adaptive plans in general by studying plans
which act only in terms of payoff, plans for which

l (t) = p.~ (t.(t .

In particular, plans which receive information in addition to payoff should do at
least as well as plans which receive only payoff information . Thus, the efficiency of

payoff-only plans with respect to 8 sets a nontrivial lower bound on the efficiency
of other plans.

To pose a problem in adaptation unambiguously one more element is

required: a criterion X for comparing the efficiency of different plans TE: 3 under
the uncertainty represented by 8. Such a criterion must of necessity be fairly
sophisticated since it must somehow take into account the varying efficiency of a

plan in different environments. Thus, even with a definite measure of efficiency
such as the average rate of increase of payoff, there is still the problem of variations
across the environments 8. How is a plan which is highly efficient only in some
subset of 8 to be compared with a plan which is moderately efficient in all the
environments in 81 It should be clear that the plan favored will often depend upon
the particular application. In spite of this there are some broadly based criteria
which have quite general applicability. The simplest of these requires that a plan
accumulate payoff in each E E: 8 more rapidly than an enumerative plan which has
the same domain of action Ct. The intuitive content of this criterion is clear: A plan
which does not accumulate payoff at least as rapidly as the extremely inefficient
enumerative plans should, except in simple situations, be eliminated as a hypothesis
(about natural systems) or an algorithm (for artificial systems). Because it is often
useful to smooth out short-term variations in judging a plan, several broadly based
criteria are stated in terms of the long-term average rate of payoff. When the

adaptive plan has the deterministic form Til X ct - + Ct, other, more general criteria
are based on the cumulative payoff function



to substitute the expected payoff under <p(t), P. (T, I), for 1I. (Ci(T, t . (If Ct is countable

, P. (1', t) is simply given by P. (1', t) = Ej <p(Aj , t)II. (Aj) where <p(Aj, t) is the

probability of selecting Aj E: Ct when the distribution over Ct is <p(t).) Thus, for
stochastic adaptive plans,

U,... (T) = ET. IP. (T, I).

Following this line, a useful performance target can be formulated in terms
of the greatest possible cumulative payoff in the first T time-steps,

A Formal Framework
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UJ(T) = lob U,... (T} .
,.€3

gib [U,...s(T)/ UJ(T)] > (1 - C,.).
BE:l

An important criterion, appearing frequently in the literature of control theory
and mathematical economics (see chapter 3, " Illustrations"), can be concisely formulated 

in terms of UJ: .,. accumulates payoff at an asymptotic optimal rate if

Jim [(Uf'.~ T)/ T)/ (UJ(T)/ T) ] = Jim [Uf'.~ T)/ UJ(T)] = 1.
T- - T- -

In other words, the rate at which 'T accumulates payoff is, in the limit , the same as
the best possible rate. Often it is desirable to have a much stronger criterion setting
standards on interim behavior. That is, even though the payoff rate approach es the

optimum, it may take an intolerably long time before it is reason ably close. Thus,
the stronger criterion sets a lower bound on the rate of approach to the optimum.
For example, the criterion would designate a sequence (c'/') approaching 0 (such as

 kj (T + k 1) or (kj (k + el"1' , for 0 < j < ~ ) and then require for all T

[Ut',s(T) jU .J(T) ] > (1 - c'/').

Clearly the plan 'T satisfies the asymptotic optimal rate criterion when it satisfies
this criterion and, in addition, 'T can approach that rate no more slowly than c'/'

approach es O.
The simplest way to extend these criteria to & is to require that a plan 'TE: 3

meet the given criterion in each E E: &.

'T is robust in & with respect to the asymptotic optimal rate criterion for 3 whm

Sib Jim [Ut'.,B(T)/ UJ(T) ] - 1.
BE:& T- -

'T is robust In & with respect to the interim behavior criterion < Cf' > for 3 when, for
all T,



A problem in adaptation will be said to be well posed once 3, 8, and x have been
specified within the foregoing framework. An adaptive system is specified within
this framework by the set of objects (a , a, I , T) where

(t = {Ai  A!, . . .} is the set of attainable structures, the domain of action of the
adaptive plan,

() = {",.",,!, . . .} is the set of operators for modifying structures with ", E: () being
a function ", : (t - . <P, where <P is some set of probability distributions over (t ,

I is the set of possible inputs to the system from the environment, and
T : I X (t - . n is the adaptive plan which, on the basis of the mput and structure

at time I, determines what operator is to be applied at time I.

.,(1(1), <1(1  = (I), E: {} and (1), 1( 1  = <P(I + 1),

where <p(t + I ) is a particular distribution over (t . Ct(t + I ) is determined by
drawing a random sample from (t according to the distribution <p(t + I ). Given
the input sequence (/ ( I), / (2), . . .}, l' completely determines the stochastic process.
(Occasionally, when the adaptive system is to be deterministic with Ct(t + I ) being
uniquely determined once / (t) and Ct(t) are given, l' will be defined without the use
of operators so that 1' :/ X (t - . (t .) The structure of the adaptive system at time t,
Ct(t), will be required to summarize whatever aspects of the input history are to be
available to the plan. Hence it will often be useful to represent (t as (tl X 3ft, where
(tl is the set of structures to be directly tested and 3ft is the set of possible memory
configurations, for retaining past history not directly incorporated in the tested
structures.

Adaptation in Natural and Artificial Systems
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2. PRESENTATION

Each criterion in effect classifies the plans in 3 as " good
" or " bad" 

according to
whether or not it is satisfied. The first of these criteria is commonly met in a wide
range of applications, while the second proves to be relevant to questions of
survival under competition. (Once again, a plan satisfying the second criterion
automatically meets the first but not vice versa.) Other criteria can be based on the
cumulative payoff function and indeed criteria of a quite different kind can be
useful in particular situations. Nevertheless the criteria given are representative
and of general use; they will playa prominent role later.



3 is the set of feasible or possible plans of the form 1' :I X <1- + D (or 1' : I X
<1 - + (j;) appropriate to the problem being investigated.

8 represents the range of possible environments or, equivalently, the initial

uncertainty of the adaptive system about its environment. When the plan l' tries a
structure <l(t) E: <1 at time t, the particular environment E E: 8 confronting the

adaptive system signals a response I (t) E: I . The performance or payoff 1I.~ <l(t ,
given by the function II.B: (j; - + Reals, is generally an important part of the information 

I (t). Given E ~ E' for E, E' E: 8, the corresponding functions II.B, II.B' are

generally not identical so that a major part of the uncertainty about the environment
is just about how well a structure will perform therein. When a plan employs, or
receives, only information about payoff so that I (t) = 1I.g l ( t  it will be called a

payoff-only plan.

Finally , the various plans in 3 are to be compared over 8 according to a
criterion x. Comparisons will often be based on the cumulative payoff functions

Ur,g(T) = 1::[. 1 pg(1', I), where pg(1', t) is the expected payoff under <p(t), and the
"
target

" function UJ(T) = lub Ur,g(T). An interim behavior criterion, based on a
rE:3

selected sequence (CT) - + 0 and of the form

will be important in the sequel.
With the help of this framework each of the fundamental questions about

adaptation posed in chapter 1, section 1, can be translated into a formal counterpart 
:

Original Formal

To what parts of its environment is the organism (system, organiza- What is &?
tion) adapting?

How does the environment act upon the adapting organism (system, What is I ?
organization) ?

What structures are undergoing adaptation? What is (J;?

What are the mechanisms of adaptation? What is n?

What part of the history of its interaction with the environment does What is mt?
the organism (system, organization) retain in addition to that summarized 

in the structure tested?

What limits are there to the adaptive process? What is 3?

How are different (hypotheses about) adaptive process es to be Corn- What is X?
pared?

A Formal Framework
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sIb [U,.,.(T)/ UJ(T)] > (I - CT),
BE:s
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3. COMPARISON WITH THE DUBINS-SAVAGE FORMALIZATION

. . . much of the mathematical essence of a theory of gambling consists of
the discovery and demonstration of sharp inequalities for stochastic process es. . .
this theory is closely akin to dynamic programming and Bayesian statistics. In the
reviewer's opinion, [How to Gamble If You Must] is one of the most original books
published since World War II .

M. Iosifescu. Math. Rev. 38, 5, Review 5276 (1969).

in Natural and Systems
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OF THE GAM B LE R' S PROBLEM

For those who have read, or can be induced to read, Dubins and Savage
's influential 

book, this section (which requires special knowledge not essential for
subsequent development) shows how to translate their formulation of the abstract
gambler

's problem to the present framework and vice versa. Briefly, their formulation 
is based on a progression oflortuneslo ,/ I ,/ 2' . . . which the gambler attains

by a sequence of gambles. A gamble is naturally given as a probability distribution
over the set of all possible fortunes F. The gambler

's range of choice at any time t
depends directly and only upon his current fortune I , so that, as Dubins and Savage
remark, the word " state" might be more appropriate than " fortune." The gambler

's
range of choice for each fortune I is dictated by the gambling house r . The strategy 0'
for confronting the house is a function which at each time t selects a gamble in r
on the basis of the sequence or partial history of fortunes to that time ( /0,/ 1, . . . ,1,).
Finally the utility of a given fortune I to the gambler is specified by a utility function 

u. Thus an abstract gambler
's problem is well posed when the objects

(F, r , u) have been specified; the gambler
's response to the problem is given by his

strategy 0'.
The objects of the Dubins-Savage framework can be put in a one-to-one

correspondence with formally equivalent objects in the present framework. With
the help of this correspondence any theorem proved in one framework can automatically 

be translated to a statement which is a valid theorem in the other framework
. The relation between the intended interpretations of corresponding objects

is in itself enlightening, but the real advantage accrues from the ability to transfer
results from one framework to the other with a guarantee of validity .

The following table presents the formal correspondence with an indication
of the intended interpretation of each formal object. In this table the superscript" * " on a set will indicate the set of all finite sequences (or strings) which can be
formed from that set; thus F* is the set of all partial histories.



 I, basic structures (see 'T below).

P, a probability distribution over structures
, i.e., P E: <P.

F, fortunes

'Y, a probability distribution over fortunes
or a gamble.

r , a function assigning a set of gambles to
eachfE : F, the house.

The (induced) function which assigns to
each A E: Ci the set of distributions <p A -

{c.(A), Cd E: O} .

.,.: Ci -+ <p, an adaptive pion; .,. uses only
the retained history ~ in Ci = Ci1 X 3ft,
but .,. has the same generality as Q' if
Ci1 - Fand ~ - F* .

"'. : Ci - + Reals, performance.

0-: F* - + {'Y} , a strategy which assigns to
each partial history pEP * a gamble
rU ) , where I is the latest fortune in the
sequence p.

uP - + Reals, utility .

As implied by their terminology, Dubins and Savage treat situations wherein
the expectation for any strategy 0', given an initial fortune F, is less than F. That is,
the strategies are operating in environments wherein continued operation makes

degraded performance ever more likely . ( This is similar to adaptation in an
environment having only nonreplaceable resources, so that performance can only
decline in the long run.) In contrast, the present work is primarily concerned with

complex environments wherein performance can be permanently improved, if only
the right information can be acquired and exploited. Despite the differences, or
more likely because of them, theorems from one framework have interesting, and
sometimes surprising, translations in the other framework.

A Formal Framework
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3. Illustrations

The formal framework set out in chapter 2 is intended, first of all, as an instrument
for uniform treatment of adaptation. If it is to be useful a wide variety of adaptive
process es must fit comfortably within its confines. To give us a better idea of how
the framework serves this end, the present chapter applies the framework in several
different fields. It will repay the reader to skim through all of the illustrations on
first reading, but he should skip without hesitation over difficult points on unfamiliar 

ground, reserving concentration for illustrations from familiar fields.

Although each of the illustrations adds something to the substantiation of the
framework no one of them is essential in itself to later developments. The interpretations

, limited usually to one commonly used model per field, are of necessity
largely informal, but two points can be checked in each case: ( I ) the facility of the
framework in picking out and organizing the facts relevant to adaptation, and (2)
the fit of established mathematical models within the framework.

1. GENETICS

. . . genes act in many ways, affecting many physiological and morphological
characteristics which are relevant to survival. All of these come together into the

sufficient parameter 66fitness" or selective value. . . . Similarly environmental fluctuation

, patchiness, and productivity can be combined . . . in . . . [a] measure of

environmental uncertainty. . . .
Levins in Changing Environments (pp. 6- 7)

The phenotype is the product of the harmonious interaction of all genes.

The genotype is a ..physiological team" in which a gene can make a maximum contribution 
to fitness by elaborating its chemical ..gene product

" in the needed quantity 
and at the time when it is needed in development. There is extensive interaction

not only among the alleles of a locus, but also between loci. The main locale of

32



Illustrations

.

these epistatic interactions is the developmental pathway. Natural selection will
tend to bring together those genes that constitute a balanced system. The process
by which genes are accumulated in the gene pool that collaborate harmoniously is
called " integration" or "coadaptation." The result of this selection has been
referred to as " internal balance." Each gene will favor the selection of that genetic
background on which it can make its maximum contribution to fitness. The fitness
of a gene thus depends on and is control led by the totality of its genetic background.

Mayr in Animal Species and Evolution (p. 29S)

We have already looked at genetic process es at some length in the preliminary
survey, so this illustration will be brief, mostly recapitulating the main points of
the earlier discussion, but within the formal framework. Typically, only a certain
range of basic structures, i.e., chromosomes, is admitted to studies in genetics, so
that only a species, family, or other taxonomic grouping is involved. Still , in
principle, one can study all possible variations, including variations in chromosome
number and type. The range of the study will be primarily determined by the set 0
of genetic operators admitted, since the possible variants (genotypic and pheno-

typic) will be those produced by sequences of genetic operators from o. Familiar
examples of genetic operators are mutation, crossover, inversion, dominance
modification, translocation, and deletion (see the formal definitions given in
chapter 6).

The genetic adaptive plan develops in terms of an ever changing population
of chromosomes which, interacting with the environment, provides a concurrent
sequence of phenotype populations. For many purposes, it is convenient to
represent a population as a probability distribution over the set of genotypes ai ,
where the probability assigned to genotype A E: al is the fraction of the total
population consisting of that genotype (cf. Cro W' and Kimura 1970). Thus the
population at time t can be specified by Ci(t) E: a , where a is the set of distributions
over (tl . In very general terms, each element of the population is tested against
the .environment and is ranked according to its fitness- its ability to survive and
reproduce. It

's often useful to think of the environment E in terms of environmental
niches, each of which can be exploited by an appropriate set of phenotypic characteristics

. Then fitness P,B becomes a function of the coadapted sets of alleles
which produce these characteristics (see chapter 4). From this point of view the
population Ci( t) can be looked upon as a reservoir of coadapted sets, preserving
the history of past advances, particularly the environmental niches encountered.

Most mathematical models of genetic adaptation are based on very simple
reproductive plans, where each individual allele O' i is assigned a fitness p,s(O' i) and
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the fitness of any set of alleles {0'1, . . . , o'. } is taken to be the sum of the fitnesses

However, in general, the fitness of an allele depends critically upon the influence
of other alleles (epistasis). The replacement of any single allele in a coadapted set
may completely destroy the complex of phenotypic characteristics necessary for
adaptation to a particular environmental niche. The genetic operators provide
for the preservation of coadapted sets by inducing a " linkage

" between adjacent
alleles- the closer together a set of alleles is on a chromosome, the more immune
it is to separation by the genetic operators. Thus a more realistic set of adaptive
plans provides for emphasis of coadapted sets through reproduction, combined
with application of the genetic operators to provide new candidates and test
established coadapted sets in new combinations and contexts.

More formally, an interesting set of plans can be defined in terms of a twophase 
procedure: First the number of offspring of each individual A in a finite

population a( t) is determined probabilistically, so that the expected number of
offspring of A is proportional to A's observed fitness IJ.B!.A). The result is a population 

(1'(t) with certain chromosomes emphasized, along with the coadapted sets
they contain. Then, in the second phase, the genetic operators from n are applied
(in some predetermined order) to yield the new population Ct(t + I ). One class of
plans of considerable practical relevance can be defined by assuming that operator
CIJ.. from n is applied to an individual A E: (1'(t) with probability p.. (constant over
time). It is easy to see that the efficiency of such a plan will depend upon the values
ofthep ..; it is perhaps less clear that once each of the p.. has a value within a certain
critical range, the plan remains efficient, relative to other possible plans, over a
very broad range of fitness functions {IJ.BE E : 8} . In particular, if chromosomes
containing a given linked set of alleles repeatedly exhibit above-average fitness,
the set will spread throughout the population. On the other hand, if a linked set
occurs by happenstance in a chromosome of above-average fitness, later tests will
eliminate it (see chapters 6 and 7). It is this mode of operation (and others similar)
which gives such plans robustness- the ability to discover complex combinations
of coadapted sets appropriate to a wide variety of environmental niches.

Because of the central role of fitness, it is natural to discuss the efficiency
and robustness of a plan T in terms of the average fitnesses of the populations it
produces. Formally, the average fitness in E of a finite population of genotypes
Ct,(t) produced by T at time t is given by

in Natural and Artificial Systems
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of the alleles in the set,



where M(or, t) is the number of individuals in ~ t). If we take the ratio ps(or, t)/

ps(or', I), we have an indication of how close or comes to "extinction" relative to or'

(in the sense that extinction occurs when the population produced by or becomes

negligible relative to the population produced by or'). If we take the greatest lower

bound of this ratio relative to some set of possible plans 3, we have an indication

of the worst that can happen to or in E, relative to 3 at time t. Continuing in this

vein we get the following criterion for ranking plans as to robustness over &:

Illustrations�

Ps(T, t) = 1:A€4~(')I Is(A)
M(T, t) 

,

gIb gIb gIb P.(1', t)/P.(i ', I).
B~& , ",~3

�

In effect this criterion ranks plans according to how close they come to extinction

under the most unfavorable conditions.
The fantastic variety of possible genotypes, the effects of epistasis, changing

environments, and the difficulty of retaining adaptations while maintaining

variability (genetic variance), all constitute difficulties which genetic process es

must surmount. In terms of the (3, 8, x) framework these are, respectively, problems
of the large size of Ct, the nonlinearity and high dimensionality of #liB, the non-

stationarity of #liB, and the mutual interference of search and exploitation. The

(3, 8, x) framework enables the definition of concepts (chapters 4 and 5) which in

turn (chapters 6 through 9) help explain how genetic process es meet these difficulties

in times consistent with paleological and current biological observations.

Summarizing:
Ct, populations of chromosomes represented, for example, by the set of distributions 

over the set of genotypes Ctl.
n, genetic operators such as mutation, crossover, inversion, dominance modifi-

cation, translocation, deletion, etc.
3, reproductive plans combining duplication according to fitness with the

application of genetic operators; for example, if each operator CI1i En is

applied to individuals with a fixed probability Pi, then the set of possible plans
can be represented by the set

{(Pi, . . . , Pi, . . . , Pb) where 0 ~ Pi ~ I} .

8, the set of possible fitness functions {ll.B:Ct - + m} , each perhaps stated as-a

function of combinations of coadapted sets.



Adaptation

populations

The specification of how goods can be transformed into each other is called
the technology of the model and the specification of how goods are transformed to
satisfaction is called the utility function. Given this structure and some initial bundle
of goods, the problem of optimal development is to decide at each point of time
how much to invest and how much to consume in order to maximize utility summed
over time in some suitable way.

Gale in II A Mathematical Theory of Optimal Economic
Development

" Bull. AMS 74, 2 (p. 207)

One of the most important formulations of mathematical economics is the von
Neumann technology. This technology can be presented (following David Gale
1968) in terms of a finite set of goods and a finite set of activities, where each

activity transforms some goods into others. If the goods are indexed, then the goods
available to the economy at any given time can be presented as a v~ or where the
ith component gives the amount of the ith good. In the same way, the input to the

jth activity and the resultant output can be given by a pair of vectors W j and W;,
where the ith component of W j specifies the amount of the ith good required by
the activity, while the ith component of w ; specifies the amount produced. An

activity can be operated at various levels of effort so that, for instance, if the amount
of input of each required good is doubled then the amount of output will be
doubled. More generally, if the level of effort for activity j is Cj then the pair
(WjCj, WJcJ specifies the input and output of the activity. Ifa mixture of activities
is allowed, the overall technology can be specified as the set of pairs

{(Wc, W'c) : 3 CE: Q}

where Wand W' are matrices having the vectors W j and w ; as their respective jth
columns, each c is a vector having the level of the jth activity as its jth component,
and Q designates the set of admissible activity mixes (corresponding to the real
constraints limiting the total activity at any time). A program for utilizing the technology 

is given by a sequence of activities (c,) satisfying the intuitive " local" requirement 
that the total amount of each good required as input for the activities at time

in Natural and Artificial Systems
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x, comparison of plans according to average fitnesses of the
duced; for example,

pro -

gIb gIb gIb p.(.,., I)/P.(",', I).B~8 , ,.,~3
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inequalities can be changed to equalities without loss of generality. Thus, given
initial supply of goods V(O), the set of admissible programs becomes
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Fig. 3. Example olvon Neumann technology

t cannot exceed the total amount of that good produced as output in the preceding 
period:

W'C'- l ~ Wc,

(using matrix multiplication and the obvious extension of inequality to vectors).
Activities which dispose of or store goods can be introduced so that the given
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It is assumed that each activity vector c can be assigned a unique utility ,,(c)
designating the satisfaction to society of engaging in the mix of activities specified
by the vector. (This way of assigning utility has the nice feature that satisfying
activities which do not directly consume goods, such as viewing pictures in a
museum or conserving goods for future use, can be included in the model.) The
object of the study is to compare various programs in terms of the utility sequences
they produce. Typically, programs are compared over some interval of time (0, T)
by taking the difference of their accumulated utilities

RIb liminf [U,.(T) - U.s(T) ] ~ O.
Gile:eT - -

in Natural and Artificial
�

U.,(T) = ET-o ,l(c~.,).U.,(T) - U~,(T) where

A program Cisconsidered optimal if

(ill) W'c~., = Wc~.,+v .

e = {sequences C~ = (c~.,), where.BE: <B, an indexing set,
and t = 0, 1, 2, . . . :3 (i) C~.' E: Q, (ii) Wc~.o = V(O),

Because Q sets an upper limit to levels of effort, an optimal program always exists.
A program c~ will often be satisfactory if its rate of accrual of utility U ~T)/ T is
comparable to that of C,. .

Generally interest centers on " noncontracting
" economies where, once an

activity is possible, it continues to be possible at any subsequent time. This can be
guaranteed, for example, if there is a set of initial goods which are " regenerated

"

by all activities (cf. sunlight, water, and air) and from which all other goods can be
produced by appropriate sequences of activities. In such economies a mix of
activities can be tried and, if found to be of above-average utility , can be employed
again in the future.

In the (3, 8, x) framework, the set of admissible activity mixes Q becomes
the set of structures (t . An adaptive plan 7' generates a program C by selecting a
sequence of activity vectors (cr.,) on the basis of information received from the
environment (economy). The environment E in this case makes itself felt only
through the observed utility sequences( cr., ; thus different utility functions
correspond to different environments. Within this framework, the basic concern is
discovery of an adaptive plan which, over a broad variety of environments,
generates programs which work " near-optimally." A typical criterion of " near-
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optimality
" would be that for all utility functions of interest the ratio of the rate

of accrual of the adaptive plan 1', U~T)/ T, to that of C~(E) , U~(B)(T)/ T, approach es
1 for each E E: B. That is,

Summarizing:
d , the set of admissible activity vectors Q.
0, transformations of Q into itself.
3, plans for selecting a program (c,) E: e, where c, is an activity vector in Q, on

the basis of observed utilities {p.Bf.c,,), t' < I} , i .e., payoff-only plans.
8, an indexing set of possible utility functions {p.B: Q - + <R, E E: 8} .
x, typically a requirement that, for all utility functions p.BE E: 8, the limiting

rate of accrual of a plan, Jim (U,(T) / T) , equal that of the best possible pro-
'1'- -

gram C.s.(E) in each E E: 8.

�

jim [Ur<T)/ U~(B)(T)] = I, for aU E E: 8.
2"- -

Generally there will be some additional requirement that the rates be comparable
for all timesT .

Adaptation becomes important when there is uncertainty about just what

utility should be assigned to given activity mixes, or when it is difficult to project
IJ.B into the future, or when Q is a function of time (reflecting technological innovations

). The key to formulating an adaptive plan here, paralleling the procedure
in other contexts, is continual use of incoming information (about satisfactions
and dissatisfactions, changing technology, etc.) to modify activity levels. A well-

formulated plan should respond automatically, specifying adjustments needed, as
information accumulates. Since, in von Neumann's formulation, the environment
is characterized by the utility assigned to different activity vectors, we can limit
consideration to payoff-only plans. The fact that reproductive plans are payoff-only
plans which can be proved near-optimal (in the sense defined above) for any set of
utilities, makes it likely that such plans can supply the responsiveness required
here. In (3, 8, x) terms the basic problems here, as in the genetics illustration , are
the large size of (t coupled with nonlinearity and high-dimensionality of IJ.B.
Because the concepts of chapters 4 and 5 are formulated in terms of the general
framework, they apply here as readily as to genetics. The resulting techniques are

specifically interpreted as optimization procedures throughout chapter 6, at the
end of section 7.1, and throughout section 7.2.
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Lacking such knowledge [of machine-learning techniques], it is necessary to
specify methods of problem solution in minute and exact detail, a time-consuming
and costly procedure. Programming computers to learn from experience should
eventually eliminate the need for much of this detailed programming effort.

Samuel in " Some Studies in Machine Learning Using the
Game of Checkers" IBM J. Rea. Dev. 3 (p. 211)

Most competitive games played by man (board games, card games, etc.) can be
presented in terms of a tree of moves where each vertex (point, node) of the tree
corresponds to a possible game configuration and each directed edge (arrow)
leading from a given vertex represents a legal move of the game. The edge points
to a new vertex corresponding to a configuration which can be attained from the
given one in one move (turn, action) ; the options open to a player from a given
configuration are thus indicated by the edges leading from the corresponding
vertex. The tree has a single distinguished vertex with no edges leading into it , the
initial vertex, and there are tenninal vertices, having no edges leading from them,
which designate outcomes of the game. In a typical two-person game which does
not involve chance, the first player selects one of the options leading from the
initial configuration; then the second player selects one of the options leading
from the resulting configuration; the play of the game proceeds with the two
players alternately selecting options. The result is a path from the initial vertex to
some terminal vertex. The outcomes are ranked, usually by a payoff function
which assigns a value to each terminal vertex.

In these terms, a pure strategy for a given player is an algorithm (program,
procedure) which, for each nonterminal configuration, selects a particular option
leading therefrom. Once each player chooses a pure strategy, the outcome of the
game is completely determined, although in practice it is usually possible to
determine this outcome only by actually playing the game. Thus, in a strictly
determined (non-chance) two-person game, each pair of pure strategies (one for
each player) can be assigned a unique payoff. The object of either player, then, is
to find a strategy which does as well as possible against the opponent as measured
by the expected payoff. This informal object ramifies into a whole series of cases,
depending upon the initial information about the

" 
opponent and the form of the

game.
One of the simplest cases occurs when it is known that the opponent, say

the second player, has selected a single pure strategy for all future plays of the game.

in Natural and Artificial Systems
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3. GAME-PLAYING



Move selected by oppon-
ent 's predetermined strote Q Y

t: Move selected by adaptive
~ plan 's strategy 2

The object of the first player, then, is to learn enough of the strategy chosen by the
second player to find an opposing strategy which maximizes payoff. When the game
tree involves only a finite number of vertices, as is often the case, it is at least
theoretically possible to locate the maximizing strategy by enumerating and testing
all strategies against the opponent. However, if there is an average of k options
proceeding from each configuration, and if the average play involves m moves,
there will be in excess of k- pure strategies. The situation is quite comparable to
the examples of enumeration given earlier. Even for a quite modest game with
k = 10 and m = 20, and a machine which tests strategies at the exceptional rate
of one every 10- ' second, it would require in excess of 1011 seconds, or about 30
centuries, to test all possibilities. Efficiency thus becomes the critical issue, and

Ill I Istrations
�

Move GAME TREE

...
Plan's Move

MoveOpponent's

. . .

Plan's Move
.
.
.

~
- - _ .

Fig. 4. Example of a game tree



That is, the payoff accumulated by 1'1 never falls to less than c of that accumulated

by any other admissible plan lE: 3, no matter what strategy the opponent chooses

(even if that other plan by happenstance hits upon a good opposing strategy in its
first trial ). The smaller c is, the less stringent the criterIon and, in general, the

larger the number of plans satisfying the criterion. The use fulness of this criterion
and the kinds of plans satisfying it will be discussed at length later (see especially
the discussion of Samuel's algorithm in section 7.3) ; for now it is sufficient to notice
that : (i) the criterion depends upon the accumulation function U,..~ t), (ii ) for a

given opposing strategy E, the lower the efficiency of a plan in accumulating payoff
in relation to other plans lE : 3, the smaller c becomes, and (iii ) the rating of a plan
will be determined by its performance against the opposing strategy which gives
it the most difficulty .

Even when it is known that the opponent has selected a single pure strategy,
there is a wide range of sophistication of adaptive plans. One class of simpler plans,
the payoff-only plans, proves to be quite instructive because it sets a nontrivial
lower bound on the performance of more sophisticated plans and it can be analyzed 

in some detail. In this context, a payoff-only plan ranks strategies it has
tried according to the payoff obtained, and it generates new trial strategies on the
basis of (selected parts of) this information alone (see section 7.3). More sophisticated 

plans use the large amounts of information generated during plays of the

game, information concerning configurations encountered and the sequence in
which they occur (see chapter 8). Obviously a plan which makes proper use of this
additional information should do no worse than a payoff-only plan (since the

sophisticated plan can reduce its operation to that of a payoff-only plan by ignoring
the additional information), and there are certainly situations in which the information 

will enable the plan to accumulate payoff at a greater rate than a payoff-only
plan.

The other extreme from a fixed opposing pure strategy occurs when any
sequential mix of strategies is presumed possible on the part of the opponent. The

object then (following von Neumann 1947) is usually to minimize the maximum

Adaptation in Natural and Artificial Systems

sIb sIb sIb [Un,s(t)/ U",s(t)] ~ C.
B(:6,,(:3 ,

interest centers on the discovery of plans which enable a player to do well while

learning to do better. If plans are compared in terms of accumulated payoff, a
criterion emerges analogous to the classical " gambler

's ruin" of elementary probability
. Let Ug(T, t) be the payoff accumulated to time t by plan TE: :J confronting

the (unknown) pure strategy E E: 8, and require that
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loss (negative of the payoff) the opponent can impose. It is interesting that often
(checkers, chess, go) this minimax strategy is a pure strategy. Thus, although the
payoff may vary on successive trials of the same strategy, the plan can still restrict
its search to pure strategies in such cases. In more general situations, however, the
plan will have to employ stochastic mixtures of pure strategies and, if it is to exploit
its opponents maximally, it will even associate particular mixtures with particular
kinds of opponents (assuming it is supplied with enough information to enable it
to identify individual opponents).

Considered in the (3, 8, x) framework, the strategies become the elements
of the domain of action (t and the plans for employing these strategies become elements 

of 3. The set of admissible environments 8 depends upon the particular case
considered. Ifit is known that the opponent has chosen a single pure strategy, then
the set of admissible environments 8 is given by the set of pure strategies. The
criterion X for ranking the plans is then built up from the unique payoff determined
by each pair of opposing pure strategies, the example given being the " gambler

's
ruin" criterion

gib gib gib [Un..s(t)/ U,..~ t)] .BE:si E:3 ,

In the rnore corn plicated cases, the set of environrnents is enlarged, ultirnately including 
plans over ct; however, the accurnulation functions U,..~ t) are still defined

and criteria such as the "garnbler
's ruin" criterion can still be used to rank the plans

in 3.
Once again, as in the previous two illustrations, the large size of ct and the

cornplex relation of its elernents to perforrnance constitute a major barrier to
irnprovernent. Section 7.3 specifically discuss es the role of adaptive algorithrns in
garne strategy spaces defined in the rnanner of Sarnuel. In addition, the necessity of
using non-payoff inforrnation generated during the play of rnore cornplex garnes
presents special difficulties. This latter problern is addressed in section 8.4 as an
elaboration of the concepts and techniques developed in the earlier chapters.

Surnrnarizing:
Ct, strategies for the garne.
D, dependent upon the way strategies are represented; genetic operators will

function if descriptors are used so that each strategy is designated by a string
of descriptor values (see the predictive rnodeling technique of the next section
for suggestions concerning operations on the strategy during the play; section
8.4 extends these ideas).

3, plans for testing strategies.

�



8, the strategic options open to the opponent ; in simple cases, the set of pure

strategies.
x, a ranking of plans using the cumulative

criterion being an example.

(i) An (ordered) set of feature detectors {8i:S - + Vi, where Vi is the range
of readings or outputs of the ith detector} . Typically, each detector is
an algorithm which, when presented with a " scene" or situation, calculates 

a number; if the number is restricted to 0 or I , it is convenient
to think of the algorithm as detecting the presence or absence of a

Adaptation in Natural and Artificial Systems
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payoff functions , the " gambler
's ruin "

4 . SEARCHES, PATTERN RECOGNITION, AND STATISTICAL INFERENCE

Search es occur as the principal element in most problem-solving and goal-attainment 

attempts, from maze-running through resource allocation to very complicated
planning situations in business, government, and research. Games and search es
have much in common and, from one viewpoint, a game is just a search (perturbed
by opponents) in which the object is to find a winning position. The complementary
viewpoint is that a search is just a game in which the moves are the transformations

(choices, inferences) permissible in carrying out the search. Thus, this discussion
of search es complements the previous discussion of games.

In complicated search es the attainable situations S are not given explicitly ;
instead some initial situation So ES (position in a maze, collection of facts, etc.)
is specified and the searcher is given a repertory of transformations {" ..} which can
be applied (repeatedly) in carrying out the search. As in the case of games, a tree is
a convenient abstract representation of the search. For search es, each edge corresponds 

to a possible transformation " .. and the traverse of any path in the tree

corresponds to the application of the associated sequence of transformations. The
vertex at the end of a path extending from the initial vertex corresponds to the
situation produced from the initial situation by the transformations associated with
the path. The difficulty of solving a problem or attaining a goal is primarily a function 

of the size of the search tree and the cost of applying the transformations.
In most cases of interest the trees are so vast that hope of tracing out all alternative

paths must be abandoned. Somehow one must formulate a search plan which, over
a wide range of search es, will act with sufficient efficiency to attain the goal or
solve the problem.

A typical search plan (see Newell, Shaw, and Simon's [ 1959] GPS or
Samuel's [ 1959] procedure) involves the following elements:



property (cf. the simple artificial adaptive system of section 1.3). The
need for detectors arises from the overwhelming flow of information in
most realistic situations; the intent is to filter out as much " irrelevant"

information as possible.

�

ENTER

� �
indicates the direction of the goal. Each experiment involves a set of signs indicating
uniquely the shortest path to one of the three possible goals GI, GI, Ga.
In the tern1inology of section 3.4, the state at each choice point is given by the triple of
signs there. That is,

S - {triples of 4-by-4 arrays}
{'llillila } - {66follow direction x,

" 66follow direction y,
" 66follow direction z"

}

Fig. 5. A simple search setting: a maze with six choice points

Illustrations
�

At each choice point, 1 through 6, there is to be a sign associated with each of the 3 possible 
directions x, y, z. If the symbol II A " occurs at the top of a sign the associated corridor 
belongs to the shortest path from the entrance to the goal; on the other hand, if the

symbol II V " occurs at the bottom of a sign the associated corridor is to be avoided.
Either symbol may be dark on a light background or vice versa. Thus, reduced to a 4-by4
array of sensors (see section 1.3), either of the configurations
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1 if the right half is darker than the left half
/

darker

otherwise

1 if the array is dark and the upper half is darker
/

would be assigned the quadruple of detector values (1,1,0,0). ( Note the large reduction
in the number of situations to be evaluated- there are 211 ~ 64,(MX) different arrays but
only 2' - 16 detector value quadruples.)

The threshold devices of interest are specified by

/ (S) - Ef - 1W18.{S)

where each Wi can be chosen from the set { - 2, - 1,0,1,2} . A 4-by-4 array S is ~~~ oo to
c+ if f (S) ~ i , otherwise it is assigned to C- .

To determine what transformation from {" .", !", .} is to be invoked at choice point J each
of the three arraysS;aSS ;. is submitted to f. If exactly one of Slat S;., S;. is assigned
to c+ the corresponding corridor is followed, otherwise a corridor is chosen at random
(and, presumably, the adaptive plan is invoked to modify the weiahts because of the lack
of a unique prediction).

Fig. 6. A threlhold device for the . ttlng of figure 5

in Natural and Artificial Sy.rtem. r
�

&. -

" .
0 Otherwise

1 if the upper half is
/

than the lower half

&, - ""0
a. - la - &. -

, .0 Otherwise

Thus the array

The device is supplied with four detectors (see section 1.3)

1 if the array is predominantly dark (8 or more squares dark )
/

It -

" '
0 otherwise
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If the shortest path to the goal were always indicated as in Setting I , i .e., with dark symbols 
on a light background, then the functionf ' (s) = 8a(S) (i.e., w. = 1, WI - WI = W. = 0)

would always suffice for following the path. Notice, however, that in Setting II f ' assigns

exactly the same set of values (0,1,0) at point 1, indicating that I ' does not distinguish the

two settings. But, in Setting I f ' assigns (1,0,0) at point 2, while in Setting II I ' assigns

(0,0,0) at point 2. Thus, starting from the same initial state (0,1,0) and invoking the same

response 'l-, I
' arrives at two different states. Changing the weight assigned to 8, cannot

correct the difficulty . This is a clear indication that the set of detectors (8, in this case) is

inadequate.

A quick check of the possibilities shows that consistently correct choices in the two settings
can be achieved only by assigning a nonzero weight to 8. , which is a nonlinear combination 

of 81 and 8, . The function I
' '

(S) = 8. + 8, - 28. then performs correctly in both

settings and, in fact, performs consistently with any proper sequence of signs.

Fig. 7. Some searche" u.rIng the device" 01 figure 6 In the setting" 01 figure 5

Illustrations
�

Setting I : The goal is at G1, the signs at choice point 1 are

Sly SizSix

at choice point 2

~ x ~, 52z

Six 51 y SI Z

and at choice point 2 they are the same as in Setting I except for

S2x

and so on (i .e., the shortest path is indicated by dark symbols on a light background).

Setting II : The goal is at Ga, the signs at choice point 1 are
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(ii ) An evaluator. The evaluator calculates an estimate of the " distance"

of any given situation from the goal, using the detector outputs (an
ordered set of real numbers) produced by that situation. The estimates
are supposed to take the costs of the transformations, etc., into account;
that is, the "distances" are usually weighted path lengths, where the

paths involved are (conjectured) sequences of transformations leading
from given situations to the goal. The intent is to use these estimates to
determine which transformations should be carried out next. An evaluation 

is made of each of the situations which could be produced from
the current one by the application of allowed (simple sequences of)
transformations, and then that (sequence of) transformation(s) is executed 

which leads to the new situation estimated to be " nearest" the
goal.

(iii ) Error correction procedures. Before the search plan has been tried, the
detectors and evaluator must be set up in more or less arbitrary fashion,
using whatever information is at hand. The purpose of the error correction 

procedures is to improve the detectors and evaluators as the

plan accumulates data. The shorter term problem is that of evaluator

improvement. A typical procedure is to explore the search tree to some
distance ahead of the current situation, either actually or by simulation,
evaluating the situations encountered for their estimated distances from
the goal. The evaluation of the situation estimated to be " nearest"

the goal is then compared with the evaluation of the current situation
and the evaluator is modified to make the estimates consistent. This
" lookahead" procedure decreases the likelihood of contra4ictory distance 

estimates at different points on the same path. (A similar procedure 
can be carried out without lookahead using predictors to make

predictions about future situations, subsequently modifying the predic-

tors to bring predictions more in line with observed outcomes.) As a
result, the consistency of the evaluator is improved with each successive
evaluation. At the same time, in most search es, the difficulty of estimating 

the distance to the goal decreases as the goal is approached,
becoming perfect when the lookahead actually encounters the goal.
Thus increasing the consistency ultimately increases the relevance of the
evaluator.

There is, however, a caveat. If the set of detectors is inadequate, for whatever
reason, the improvement of the evaluator will be blocked. This raises the broad
issue of pattern recognition, for the set of detectors is, of course, meant to enable
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the plan to recognize critical features for goal-attainment. The plan must be able
to classify each situation encountered according to the goal-directed transformation
which should be applied to it . The long-term problem is that of determining whether
the set of detectors is adequate to this task. Important shortcomings are indicated
when, from application of identical transformations to situations classed as equivalent 

by the detectors, situations with critically different evaluations result. When
this happens, the detectors have clearly failed to distinguish some feature which
makes a critical difference as far as the transformations are concerned. The object,
then, is to generate a detector which gives different readings for the previously
indistinguishable situations. Among the obvious candidates are modifications of
the detectors which made the distinctions after the transformations were applied.

Usually simple modifications will enable such detectors to make the distinction

before the transformation as well as after.
We can look at this whole problem in another way, a way which makes contact 

with standard definitions in the theory of probability . Assume that the search

plan assigns to each transformation " a probability dependent upon the observed
situation. That is, if Sa is the current situation, then each situationS ~ ES can be

assigned a conditional probability of occurrence p~ , where pa~ is simply the sum
of the probabilities of all transformations leading from Sa to S~. (It may, of course,
be that there are no transformations of Sa to S~, in which casepa~ = 0.) A sequence
of trials performed according to the probabilities pa~ is a Markov chain, the outcome
of each trial being a random variable (dependent upon the outcome of prior trials).
The sample space underlying this random variable is the set of situations S. Let us

assign a measure of utility or relevance to each of these situations. ( For example,
goals could be assigned utility 1 and all other situations utility 0, or some more

complicated assignment ranking goals and intermediate situations could be used.)
Then, formally, the function W making this assignment is also a random variable.

Accordingly, we can assign an expected utility to the random variable representing
the outcome of each trial in the Markov chain. In these terms, the plan continually
redefines the Markov chain (by changing the transformation probabilities). It

attempts in this way to increase the average (over time) of the expected values of
the sequence of random variables corresponding to its trials.

The role of detectors here is, as already suggested, reduction of the size of
the sample space and simplification of the search. More formally, consider a set
of n detectors (not necessarily all those available), H = {8t, . . . , 8ft} , where H is

arbitrarily ordered. The detectors in H assign to each SE: S an n-tuple of readings
(VI, . . . , Vft) belonging to the direct product

fir - l Vi.



In general there will be many situations producing a given set of detector readings;
let S(V I' . . . , v A) be the set of situations in S producing the particular n-tuple of

readings (VI, . . . , v A). In probabilistic termsS(VI, . . . , v A) is an event defined on the

sample space S. Events themselves can be treated as random variables. (In fact, an
occurrence of the situation 5 can be construed as the occurrence of all the events
of which it is an instance.) Moreover, the function W assigning values to elements
of S can be restricted to the event S( VI, . . . , v A) so that it becomes a random variable
W(VI, . . . , VA) over S(VI, . . . , VA). As such W(VI, . . . , v A) has a well-defined expected 

value W( VI, . . . , v A) over S( VI, . . . , VA).
This probabilistic view of search plans is closely related to statistical inference 

based on sampling plans. The estimation of W(VI, . . . , VA) from observation
of a few samples drawn from S(VI, . . . , VA) is a standard problem of statistical
inference. We can think of a subset of detectors H as detecting one kind of critical
feature when the corresponding W(VI, . . . , v A) is greater than W, where W is the

average value of the random variable W over the sample space S. Search plans go
further In attempting to infer something of the value of W(VI, . . . , v A) for S(VI, . . . ,
v A) which have not been sampled. ForexampleS (VI, V2) is contained in both S(Vt)
and S(~); often it is possible to infer something of W(Vt, ~ ) from knowledge of
W(VI) and W(V2), though not necessarily by standard statistical techniques.

The earlier concern with distinguishability is also directly stated in these
terms: Let 8(t) be the particular n-tuple of detector readings at time t (8(t) E: niv i)
and let/ :ni Vi - . {.,,} be a search plan. That is,/ is a prescription which specifies,
for each set of detector readings, a transformation. The object of the search plan is
to transform the current situation into one of high utility . But, for this to be possible

, the effects of the transformations must be reliably indicated by the detectors.
In particular, consider St and ~ ES (V I' . . . , v A), so that at t = I either would
show the same reading 8(1) = (VI, . . . , v A) E: ni Vi. The plan/ specifies the action

.,,(1) = / (8(1 , and this in turn produces a new detector reading 8(2). The
whole procedure is iterated to yield a sequence of pairs ([8(1),/ (8(1 ] , [8(2),

/ (8(2 ] , . . . , [8(t),/ (8(t ]). The requirement on distinguishability is simply that,
using the information provided by the detectors, / reliably transforms 51 and 52
into situations 5~ and ~ , respectively, for which W(5~) ~ W(5~). ( Notice that this
is a much weaker requirement than would be necessary for a completely 

" autonomous
" model wherein future situations would be wholly predictable on the basis

of 8(1) without any further information from the environment. That is, in an autonomous 
model, knowledge of 8(1) and .,,(1), . . . , .,,(t) must suffice to determine

8(t + I ). This requirement for "
autonomy

" - technically a requirement that the
detectors induce a homomorphism- can be quite difficult to meet and, for intricate

Adaptation in Natural and Artificial Systems
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situations, there may be no nontrivial homomorphisms.) The requirement on distinguishability 
permits the detectors to lump together situations having approximately 

equal expected utilities. This permits us to construct new, much smaller
Markov .chains based on events of interest. With this interpretation, the object of
the adaptive plan T is to test different sets of detectors, H, and search plans, f .

The error correction procedures for the detectors and the evaluator can be
coordinated via a model of the search environment. In complex search environments

, it is the detectors which make a model possible. From considerations of
storage alone, a model w.ould be impossible if , for each observed transformation,
the initial situation and its successor had to be recorded in full . If the system records
just the effect of transformations 'on the detector read Ings, it can be reduced to
manageable proportions. Stated another way, the state space of the search environment 

is reduced to the manageable space of detector readings, and the effects of the
transformations are observed on this reduced space. The construction of the model
proceeds as data accumulate. When new detectors are required to increase distinguishability

, an augmented model can be built around the old model as a nucleus
. In particular, when a new detector is added to the set of detectors, this does

not affect the data or the part of the model concerned with the old set of detectors.
The task is to add information about the effect of the transformations upon the
new detector, particularly in those situations that were causing difficulty . Once a
model is available, it can be used with the evaluator to generate predictions and
these can be checked against the outcome of that segment of the search. The resulting 

error indications, together with simulated lookahead, can then be used to improve 
the consistency of the evaluator.
The sophistication of a model-evaluator search plan can only be justified

when repeated search es must be made in the same overall search environment. As
a prototype, we can consider an environment which (i) is complicated enough to
make the exact recurrence of any particular situation extremely unlikely, but (ii )
is regular enough to exhibit critical features (patterns) 

"
pointing the way

" to goals.
The object of a plan, then, is to search out a succession of goals, improving its
performance by incorporating the critical features in its detector-evaluator scheme.

The overall objective of a formal study of this area is to find a plan which,
when presented with any of a broad range of complex search environments, rapidly
increases its search efficiency by extracting and exploiting critical features. Considered 

within the (:J, 8, x) framework, the domain of action Cl of a search plan
TE: :J consists of the various combinations of detectors, models, and evaluators
that the plan can generate. Usually these will all be specified as algorithms or
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programs in some common formal language (see chapter 8). A search plan 'TE: :I
thus amounts to a data-dependent algorithm for modifying the combination of
detectors, model, and evaluator along the lines indicated above. The outward effect,
at each point in time, of the combination produced by the search plan is a transformation

" in the search environment. The range of the plan
's action at each

moment is therefore circumscribed by the set of possible transformations {,,} . The
set of admissible environments E E: 8 consists of the set of search environments
over which the search plan is expected to operate, each element E being presentable
as a tree generated by the possible transformations. Let U,..~ I) be the cost in E
of the transformations applied by 'T through time I. Ifn,..~ I) is the number of goals
achieved to time I, then c,..~ I) = U,..~ I)/ n,..~ I) is the average cost to time I of each

goal in E. A conservative measure of a plan
's performance over all of 8 would

then be

Summarizing:
 , [probabilistic] Markov chains induced by the sets of conditional probabilities

{P.{S) , the probability of applying transformation "Ii to situationS ES } ;
[general] admissible detector-evaluator-model combinations.

0, [probabilistic] rules for modifying the conditional probabilities {P.{S) } ;
[general] 

" lookahead" error correction, detector generation, and model revision 

procedures.
3, algorithms for applying operators from 0 to   using information about the

(sampled) average cost of goal attainment and (in the general case) errors in

prediction (
" lookahead" ) and observed inadequacies in detectors.

8, the set of search environments characterized by search trees along with a
transformation cost function II.BC"Ii' S) giving the cost of applying "Ii in situation
SE: S.

x, the ranking of plans in 3 according to performance measures such as

Illustrations
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lub jim c,.,.s(t)
BE:8 ,- -

lob Jim c.,.,~ I).
BE:s ,- -

which yields the criterion X wherein plan l' has a higher rank than plan 1" if it
is assigned a lower number by the above measure. Suggestions for a model-

evaluator plan, based on the genetic algorithms of chapter 6 and capable of

modifying its representations, are advanced in section 8.4.
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5. CONTROL AND FUNCTION OPTIMIZATION

dx/dt = f (X(t), C( t , X(t) E:, X C(t) E: C.
Often X will have several components XI, . . . , Xi following distinct laws/ I, . . . ,It
so that

f (X(t), C(t  = (/I(xi(t), C(t , . . . ,fk(X.(t), C(t ).

The fact that we need time to determine the minimum of the [performance]
functional or the optimal [control ] vector c. is sad, but unavoidable - it is a cost
that we have to pay in order to solve a complex problem in the presence of uncertainty

. . . . adaptation and learning are characterized by a sequential gathering
of information and the usage of current information to eliminate the uncertainty
created by insufficient a priori information .

Tsypkin in Adaptation and Learning in Automatic Systems (p. 69)

In the usual version, a control led process is defined in terms of a set of variables
{XI, . . . , x..} which are to be control led. ( For example, a simple process of air
conditioning may involve three critical variables, temperature, humidity, and air
flow.) The set of states or the phase space for the pr~ , X, is the set of all possible
combinations of values for these variables. ( Thus, for an air conditioning process
the phase space would be a 3-dimensional space of all triples of real numbers
(XI, X2, XI) where the temperature XI in degrees centigrade might have a range
0 ~ XI ~ SO, etc.) Permissible changes or transitions in phase space are determined
as a function of the state variable itself and a set of control parameters C. Typically
X is a region in n-dimensional Euclidean space and the control parameters assume
values in a region C of an m-dimensional space. Accordingly, the equation takes
the form of a " law of motion" in the space X,

For example, given a pursuit problem with a moving target having coordinates
X~t) at time t,f ~X~t), C(t  would be the law of motion of the target while/ l (xi (t),
C(t  would determine the pursuit curve. If some component, say X" represents
time, thenfa(Xa(t), C(t  = t and the law of motion becomes an explicit function of
time.

When a rule or policy A is given for selecting elements of C as a function of
time, a unique trajectory  X(t), C(t ) through X X Cisdetermined by the law of
motionf . The object is to select a policy A for minimizing a given function J which
assigns a performance or cost to each possible trajectory  X(t), C(t ). In practice,
the function J is usually determined as the cumulation over time of some instanta-
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neous cost rate Q( X(t), C( t ; i.e., J (X(t), V(t }) = f Q( X(t), C( t  dr. Typically,
the cost function is derived from an explicit control objective such as attainment
of a target state or a target region in minimal time or minimization of cumulative
error. (Error is defined in terms of a measure of distance imposed on the phase
space; the distance of the current state from the target region is the current error.)
Control is thus a continuing search in phase space for the (usually moving) target
or goal- as such the considerations of the preceding illustration are directly relevant

. In the formulation of the pursuit problem stated above a natural measure
of the cost of pursuit over some interval T would be the change in distance between
target and pursuer divided by the fuel expenditure (with suitable conventions for

trajectories where the distance does not decrease).

Although the control led process is defined above in terms of continuous
functions, discrete finite-state versions closely approximating the continuous version 

almost always exist. Indeed, if the problem is to be solved with the help of a

digital computer, it must be put in finite-state form. Because the framework we are
using is discrete, we will reformulate the problem in discrete form. The law of
motion is given by

X(t + I ) = f (X(t), C( t ,

and the cumulative cost for a given trajectory over T units of time is given by

J X( I ), C( I  , . . . , (X(T) , C(T ) = ET- l Q(X(t), C(t .

If we look at the control led process in the (3, 8, x) framework we see that
the law of motionf determines the environment of the adaptive system. A problem
in control becomes a problem of adaptation when there is significant uncertainty
about the law of motionf ; that is, it is only known thatfE : { fB, E E: 8} . Such

problems are generally unsolvable by contemporary methods of optimal control

theory (cf., for example, the comments of Tsypkin [ 1971, p. 178]). Clearly under
such circumstances the adaptive plan will have to try out various policies in an

attempt to determine a good one. To fix ideas, let us assume that each policy
lA E: (11 can be assigned an average or expected performance Q(IA,f ) for each
possible f . Moreover let us assume that this average can be estimated as closely
as desired by simply trying 1 A long enough from any arbitrary time t onward. The
object then is to search for the policy in (11 with the best average performance Q,
exploiting the best among known possibilities at each step along the way.

A control policy IA E: (11 generates a sequence of control parameters (C( t)).
Different trials of the policy lA, say at times tl, t2, . . . , t.., will in general elicit
different costs Q(tl)' Q( t2)' . . . , Q(tJ . However, the (3, 8, x) framework requires
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that each A E: (t be assigned a unique cost pBf.A). To satisfy this requirement we can
let (t = (tl X m where m is the set of natural numbers { I , 2, 3, . . .} . Then unique
elements of (t, namely ( lA, II)' (lA, t2)' . . . , ( lA, It), correspond to the successive
trials of lA and the cost Q( ti) of trial ti can be assigned as required,

pBf.A) = pBf.( IA, ti  = Q( ti).

An adaptive plan .,. will modify the policy at intervals on the basis of observed 
costs. With the definition of (t just given this means that, if 1 A is tried at

time t and is to be retained for trial at time t + 1,

1'(1(t), <t(t  = 1'(1(t), ( lA, t  = ( lA, t + 1) ;

on the other hand, if a new policy l A
' is to be tried,

1'(1(t), <t(t  = 1'(1(t), ( lA, t  = ( lAt + 1).

A sophisticated adaptive plan will probably retain a measure of the average performance 
of various policies tried so that (t would be further extended by a component 

5R (see section 2.2) to (t = (tl X m X 5R. A still more sophisticated plan will
progressively reduce uncertainty about the environment by deliberately selecting
elements of C to elicit critical information , perhaps constructing a model of fB.
Then by exploiting predictions of the model .,. can adjust the sequence (C(t)) to
better performance as measured by the function J. At this level the illustration concerning 

search es, pattern recognition, and statistical inference applies in toto . If the
plan is to be a payoff-only plan, then

I (t) = pBf.<t(t  = Q( t),

and ' In(t + I ) is updated by using Q(t) in a recalculation of the average performance 
of (tl (t).

Finally the function J determines a ranking for every control sequence
(C(t)}, whether or not it is generated by a single policy. That is, an adaptive plan
.,. confronted with a law of motionf B may try several policies, thereby generating a
control sequence which no single 1 A E: (tl could generate. However every control
action C(t) has a definite cost Q(t). Thus the trajectory (C(t)} through C generated
by .,. can be ranked according to J. In this way J determines a criterion for ranking
any .,. E: 3 in any E E: 8. As a specific example, consider the case where the object
is minimization of cumulative error. By assigning maximum payoff to the target
region and reducing the payoff of other states in proportion to the associated error,
the performance of a plan .,. can be measured in terms of the cumulative payoff
function UBf..,., I). The greater UBf..,., t) the less the cumulative error to time t.

in Natural and I Systems
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The foregoing discussion can bernade applicable to function optirnization
by so arranging it that a single 

" trial " of a policy 1 A produces a sufficient estirnate
of its average perforrnance Q(lA,/ } . For instance the policy could be repeatedly
tried over sorne extended interval of tirne which would then be taken to be a single
tirne-step in the discrete forrnulation. In any case let us assurne that each 1 A E: Ctl
has a unique value #I.~ lA) = Q(lA,/ } which can be deterrnined (with sufficient
accuracy) in a single tirne-step. Moving the problern ofestirnating Q into the background 

in this way, reduces the control objective to finding the optirnurn of the
function #l.B.

If the elernents of Ctl are represented as points in an n-dirnensional Euclidean
space (R" the problern becornes one of optirnizing an n-dirnensional (nonlinear)
real function. For exarnple the elernents of Ct I can be represented as strings of length
n over sorne basic alphabet} : . Since} : can be recoded as a subset of {O, I} "' , where
m is the first integer greater than log2 (card } : ), this can be looked upon as optirniza-
tion of an n-dirnensional function having m-place binary fractions as argurnents.
( Thus, if } : = {O'o, 0'1, 0'2, . . .} , the coding 0'0 +-+ .00 . . . 00, 0'1 +-+ .00 . . . 01,
0'2 +-+ .00 . . . 10, etc., can be used. Then with lA E: Ctl represented by the string
0'20'20'1, say, the argurnent of #liB becornes (.00 . . . 010, .00 . . . 010, .00 . . . 001).)

With this arrangernent an adaptive plan T uses its operators to generate a
sequence of points Ctl( l ), Ctl(2), Ctl(3), . . . converging to an optirnurn, rnuch in the
rnanner of standard iterative procedures. The adaptive approach, however, suggests 

irnportant differences in what inforrnation frorn prior calculations should be
retained (in ' In(t)) in preparation for generation of the next point Ctl(t + 1). In
particular certain adaptive plans proceed sirnultaneously and efficiently with global
and local optirnization of #liB. (See chapters 4 and 5 for basic techniques.)

In the case of function optirnization, high-dirnensionality and nonlinearity
of the function to be optirnized <ll.B), in all but a few special cases, constitute
insurmountable barriers to standard optirnization algorithrns. In the general control 

problern there is the added difficulty of non station arity . The schernata concept
(first interpreted in function optirnization terrns in chapter 4, pp. 70- 71) and the
algorithms based upon it (chapter 6) provide specific remedies for the first two
problems. The latter problem is substantial and difficult - it is discussed in section
9.3.

Summarizing:
Ct, [control] a set having as its basic component the set of adrnissible control

policies Ctl augmented by a memory component ' In and a set of time subscripts 
m so that <t(t) = (Ctl(t), t, ' In(t)) ; [function optirnization] the dornain

of the function Q to be optimized.

Illustrations
�



Adaptation

Behavior is primarily adaptation to the environment under sensory guidance
. It takes the organism away from harmful events and toward favorable ones,

or introduces changes in the immediate environment that make survival more
likely.

I introduce this last example of an adaptive system with some hesitation. Not because 
the central nervous system (CNS hereafter) lacks qualifications as an adaptive

system- on the contrary, this complex system exhibits a combination of breadth,
flexibility , and rapidity of response unmatched by any other system known to man
- but because there is so little prior mathematical theory aimed at explaining
adaptive aspects of the CNS. Even an intuitive understanding of the relation between 

physiological micro-data and behavioral macro-data is only sporadically
available. Perforce, mathematical theories enabling us to see some overall action
of the CNS as a consequence of the actions and interactions of its parts are, when
available at all, in their earliest formative stages.

Here, more than with the other examples, the initial advantage of the formal
framework will be restatement of the familiar in a broader context. The best that
can be hoped for at this stage is an occasional suggestion of new consequences of
familiar facts: Without the advantages of a deductive theory, statements made
within the framework can do little more than provide an experimenter with guideposts 

and cautions, suggesting possibilities and impossibilities, phenomena to

anticipate, and conclusions to be accepted warily. This is a preliminary, heuristic

stage marking the transition from unmathematical plausibility to the formal deductions 
of mathematical theory. In common with most heuristic and loose-textured

in Natural and Artificial Systems
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6. CENTRAL NERVOUS SYSTEMS

Hebb in A Textbook of Psychology (pp. 44- 45)



arguments, it is difficult to eliminate ambiguities and contradictions- as with
proverbs, proper application depends upon the intuition of the user. Specific applications 

of the formalism may arise, but these will probably be in areas of little
uncertainty, where theory was not actually required; the formal procedures will
be primarily corroborative. Only after considerable effort at this level can we hope
for a theory mathematically rigorous and conceptually general- a genuinely predictive 

theory organizing large masses of data at many levels.
One of the earliest suggestions (or corroborations) from the formal under-

pinnings of the (3, E, x) framework is quite fundamental. It can be established that
major aspects of the behavior of any very complex system fall outside the explanatory 

power of simple input-outputS -R or switching) theory. This result is a
rigorous version of the observation that ongoing activity in a complex system
usually depends upon the past history of that system. This dependence, which both
psychologists and computer theorists call " memory,

" finds its formal counterpart
in the notion of state: distinct stimulus-state pairs generally giving rise to different
responses. If there are many states (and, by any reasonable definition of state, the
CNS has an astronomical number) the same stimulus may give rise to a great
many different responses. Thus, observation of stimulus-response pairs will not
enable us to discover the mode of operation of any system with a substantial number 

of states. For a system as complex as the CNS, such a result can be ignored only
to the great detriment of the ensuing theory. It is a corollary of this result that
complex systems can act in autonomous fashion, producing continuing response
sequences in the absence of new stimulus. Thus, a stimulus may serve only to
modify ongoing activity rather than to initiate it . In short, the responses of the
CNS cannot be explained wholly in terms of concurrent stimuli.

The (3, E, x) framework also emphasizes a second important point. An adequate 
theory must include more than a formal counterpart of the internal process es

of the system being studied. The environment (or range of possible environments),
the information received therefrom, and the ways the system can affect the environment

, must also be represented. Moreover, the criterion X emphasizes the importance 
of performance 

"
along the way." The CNS cannot wait indefinitely for

" useful" outcomes; some minimal level of ongoing performance is required. (E.g.,
if food is not obtained with sufficient frequency, death ensues, totally removing the
possibility of further goal-oriented behavior.) Such observations are not new, but
the (3, E, X) framework does provide a form for fitting and arranging them, and it
lends them emphasis. This at least gives us a fresh look at familiar facts, occasionally 

suggesting new consequences which might otherwise be overwhelmed in the
plethora of macro- and micro-data (behavioral and physiological).

Illustrations 59
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The discussion which follows will be based upon the informal theory of

CNS action introduced by Hebb in his signal 1949 work and subsequently im-

portantlyenlarged by P. M . Milner ( 1957) and I . J. Good (1965). I will attempt a

brief recapitulation of some of the main assumptions here, with the intention of

orienting the reader having some knowledge of the area. This is only one view of

CNS process es and the presentation has been kept deliberately simplistic. (E.g., a

more sophisticated theory would take account of substantial evidence for distinct

physiological mechanisms underlying short-term, medium-term, and long-term

memory.) The object is to indicate, in as simple a context as possible, the relevance
of the (3, 8, x) framework to. understanding the CNS as a means of "

adaptation
to the environment under sensory guidance.

" The reader without a relevant background 
can gain a significant understanding by reading the papers of Milner and

Good ; a reading of Hebb's excellent textbook (1958) will give a much more comprehensive 
view.

The basic element of Hebb's theory is the cell assembly. It is assumed to
exhibit the following essential characteristics. (Comments in parentheses in the

presentation of characteristics refer to possible neurophysiological mechanisms) :



creases the likelihood of activity in all assemblies with which it is nega-

tively associated. Positive association between a pair of cell assemblies
increases whenever they are active at the same time. Negative association
is asymmetrical in that one cell assembly may be negatively associated
with a second, while the second is not necessarily negatively associated
with the first ; this negative association increases each time the first assembly 

is active and the second is inactive. (The underlying neural

assumption here is that, if neuron n2 produces a pulse immediately after
it receives a pulse from neuron nl, then nl is better able to elicit a pulse
from n2 in the future; contrariwise, ifn2 produces no pulse upon receiving
a pulse from nl, then nl is more likely to inhibit n2 in the future. It is

usually assumed that this process is the result of changing synapse
levels. The same process can be invoked in explaining the origin of cell
assemblies.) It should be noted that, under this assumption, there is a

tendency for cell assemblies to become active in fixed combinations, at
the same time actively suppressing alternative combinations. (Because a
cell assembly involves only a minute fraction of the neurons in a CNS,
a great many can be excited at any instant, different configurations corresponding 

to different perceived objects, etc.) Temporal association (i.e.,
probable action sequences) can occur via appropriate asymmetries; e.g.,
assembly a can arouse.8 via positive association while .8 inhibits a through
negative association. Thus the action sequence is always a,8, never the
reverse.

4. At any instant the response of the CNS to sensory input is determined
by the configuration of active cell assemblies. (Overt behavior such as

eye movement, activation of reflex es, release of voluntary muscle sequences
, and so on will accompany most sensory events. Via the mechanisms 

of (3), neurons involved in this behavior will tend to become components 
of cell assemblies active at the same time. Since pulse trains

from the active cell assemblies dominate overall CNS activity, overt
behavior will thus be determined by the active configurations. In effect,
the sensory input modulates the ongoing activity in the CNS to produce
overt behavior.)

5. Cell assemblies involved in temporal sequences yielding 
" need satisfaction

" 
(satisfaction of hunger, thirst, etc.) have their associations enhanced

; the greater the " need,
" the greater the enhancement. (

" Needs"

are internal conditions in the CNS-control led organism, conditions pri-

marily concerned with survival, which set basic restrictions on CNS

Illustrations
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action. In typical environmental situations, overt behavior is required for
" need satisfaction,

" and then the satisfaction is only temporary- the

organism consumes the resources involved in order to maintain itself.
Innate internal mechanisms in the organism automatically 

" reward"

satisfaction of hunger, thirst, etc., and perhaps some more generalized
needs such as curiosity. These " rewards" may be mediated by innately
organized neural networks which exhibit increasing activity as a corresponding 

need increases. Such internally generated stimuli would progressively 
disturb established configurations and sequences, unless they

resulted in reduction of the corresponding need. Ultimately , in the absence 
of satisfaction, this disruption would cause an increasingly broad

search through the organism
's behavioral repertory- a kind of hunt

through increasingly unusual cell assembly configurations in an attempt
to produce an appropriate overt response. Temporal associations of cell
assemblies, active when such a disturbance is reduced, would retain their
incremented synapse levels. Those active during a period of increasing
disturbance would encounter subsequent interference, causing synapse
level increments to be transitory. Assemblies having precursors occurring
early in " need satisfaction" sequences acquire a particular role. They
serve as " leading indicators,

" 
becoming active in advance of actual

primitive needs; they may serve as " learned needs" [goals] . A hierarchy
of precursors of precursors, etc., can provide the system with a hierarchy
of " learned needs,

" some of them quite remote from the primitive needs.
That is, assemblies containing substantial segments of the innately organized 

networks as components, or assemblies closely associated therewith,
could give rise to secondary and higher-order " learned needs." The
effects of these new assemblies will be much like those generated by the

innately organized networks.)
6. An active cell assembly primes cell assemblies associated with it as successors 

in temporal sequences, making them more likely to be active

subsequently. (A neuron producing pulses at a high rate tends to become

fatigued, with a consequent drop in pulse rate. A neuron that is being
inhibited tends to exhibit less fatigue than normal because of its very

Adaptation in Natural and Artificial Systems
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low pulse rate. A kind of inhibitory priming results, because the neuron
is hyperresponsive once the inhibition ceases. It is also likely that priming
occurs by transmission of " priming molecules" through the synapses of
active neurons. Priming provides the CNS with expectations and predictions

. In effect the system expects and is ready to respond to selected sets
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of features from the myriads of possibilities. When primed cell assemblies
subsequently become active- i.e., when the corresponding predictions
are verified- the associations involved are strengthened by the mechanisms 

of (3). The resulting network of associations constitutes a model of
the environment"within the CNS. The model is dynamic in the sense that
it takes sensory data as input and primes different temporal sequences
on the basis of the model's predictions. Introspection confirms that, for
the human CNS, models of the environment are indeed used to compare
alternative courses of action. This model is ultimately dedicated to keeping 

primitive needs fulfilled, but it incorporates 
"
leading indicators,

"

etc., so that needs rarely become acute enough to determine action
directly.)

How can the (3, B, x) framework help in analyzing this model? Certain
analogies with other process es are suggestive. Individual cell assemblies act, in part,
like the detectors in pattern recognizers: they are activated by particular features
of the environment, features presumably relevant to the organism

's needs. At the
same time, the configuration of cell assemblies active at any given time defines the
organism

's response to the environment. In the terms used earlier, such a configuration 
is an element of the system

's repertory. Assuming that the set of all cell
assemblies is fixed (as it might be, to a first approximation, in a mature organism)
or, at least, that the potentially available cell assemblies can be enumerated, the
set of all possible assembly configurations constitutes the system

's repertory of
techniques for confronting the environment.

When cell assemblies are in mutual negative association (cross-inhibition ),
they act much as the alleles of a chromosomal locus; any active configuration can
contain at most one of the assemblies, because it will actively suppress the others
in the set. Positive associations between cell assemblies which favor particular configurations 

are analogous to the linkage of coadapted alleles in a chromosome.
Indeed there are many potentially fruitful .'

genetic
" 

analogies. As the CNS gains
experience, some assemblies in a cross-inhibited set are likely to be expressed in a
broadened range of environmental conditions, at the expense of others in the set-
a process suggestive of the evolution of (partial) dominance. Various genetic operators 

such as crossover and inversion find their counterparts in the ways in which
cell assembly associations are modified. Temporal associations correspond to feedback 

among gene-products and sequential expression of genes. The list can be
extended easily.

The needs of the organism define its goals, and ultimately set a criterion on



blies involved, causing them to split and recombine so that their responses are more
discriminative. (Hebb calls the related procedures fractionation and recruitment.)
The second kind of improvement consists in " filling in

" the model- generally there
will be many situations where no expectations or predictions have been developed.

This clearly provides an important role for curiosity. The CNS must experience a
wide enough range of situations to provide an adequate repertory of relevant

temporal sequences. Just as with the coadapted sets of genetics, the basic laws of
cell assemblies permit flexible recombination (association) under environmental

(sensory) guidance, the actual combinations being influenced by the parts of the
model (associations) already extant. In this way a tremendous range or useful

procedures can be formed from relatively few elements. More importantly , a single
experience then constitutes a trial of a great many relevant associations, just as in

genetics a single organism tests a great many coadapted sets. Property (3) assures
that many associations will be tested and modified. The ultimate " survival" of
various combinations of assemblies is determined by their consistency within the

model and their success in contributing to learned or unlearned need satisfaction.
While the foregoing analogies are ready offshoots of the formal framework,

the basic task of theory in this area is quite difficult . It must enable one to judge
whether proposed mechanisms for CNS operation permit the learning rates, utiliza-

tion of cues, transfer of learning, etc., that one actually observes. How does the
CNS maintain its rapidity and appropriateness of response, while extending its

breadth and filling in its model of the environment? Section 8.4 indicates one way
in which concepts from the (.1, 8, x) framework can be brought to bear. In particular

, the robustness of reproductive plans, when interpreted in this area, indicates

some promising directions, but we even lack good general measures of performance
here. A kind of error function based upon average need levels might be interesting
for organisms not quite so efficient as man at keeping their primitive needs satisfied.

A criterion X could then be formulated, much as it was in the optimal control
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performance. Just as in games and search es, there is the problem that individual

responses do not often directly yield need satisfaction. However, the internal model
discussed in connection with property (6) enables the CNS to constantly improve
performance in the absence of current need satisfaction. Two kinds of improvement
are possible. First of all, cell assemblies typically respond to too broad a range of
situations when first formed, yielding inconsistencies in the model. That is, situations 

activating the same combinations of cell assemblies, and hence the same

responses, are followed by radically different outcomes. The remedy here is much
like that for inadequacy of detectors discussed in the illustration on search es. Because 

of the inconsistencies new associations are formed between the cell assem-



illustration, and it might be possible to use the framework more precisely in this
context (especially for animals in the wild state). Some suggestions for bringing cell

assembly theory within the range of the (:1, 8, x) framework are made in section
8.4. There is much to be done before we can hope for definite, general results from

theory.

Summarizing:
d, repertory of possible cell assemblies.
0, possible association rules (Hebb's rule for synapse change, short-term memory

rules, etc.).
:1, possible (or hypothetical) organizations of the CNS in terms of conditions

under which the rules of 0 are to operate.
8, the range of environments in which the CNS being studied is expected to

operate (relevant features, cues, etc.).

x, the ranking of organizations in :1 according to performance over 8, for example

, according to ability to keep average needs low under any situation in 8

(cf. optimal control illustration).

These illustrations are intended to demonstrate the broad applicability of
the (3, 8, x) framework. They can also serve to demonstrate something else. The
obstacles described informally at the end of section 1.2 do indeed appear as central

problems in each of the fields examined. This is an additional augury for making -

a unified approach to adaptation- common problems should have common solutions
. Much of the work that follows is directed to the resolution of these general

problems. In section 9.1 the problems are listed again, more formally, and the
relevance of this work to their resolution is recapitulated.

Illustrations
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4. Schemata

An adaptive system faces its principal challenge when the set of possible structures

B, is very large and the performance functions IJ.B involve many local maxima. It is

important then for the adaptive system to provide itself with whatever insurance

it can against a prolonged search. It is clear that the search of B, must go on so long
as significant improvements are possible (unless the system is to settle for inferior

performance throughout the remainder of its history). At the same time, unless it

exploits possibilities for improved performance while the search goes on, the system

pays the implicit cost of a performance less even than the best among known

alternatives. Moreover, unexploited possibilities may contain the key to optimal

performance, dooming the system to fruitless search until they are implemented.

There is only one insurance against these contingencies. The adaptive system must,
as an integral part of its search of B" persistently test and incorporate structural

properties associated with better performance. As with most insurance, this particular 

policy contains a limiting clause: useful properties must be identified to be

exploited. The present chapter is concerned with this limitation .

Almost by definition useful properties are points of comparison between

structures yielding better-than-average performance. The question then is: How

are the structures in B, to be compared? If the structures are built up from components

, comparison in terms of common components is natural and the question
becomes: How is credit for the above-average performance of a structure to be

apportioned to its components? A more general approach uses feature detectors

(see section 3.4) to make comparisons. Since one can find an appropriate detector

for any effectively describable feature of structures in B, (including the presence or

absence of given components) this approach is well suited to present purposes.

To begin with let us see how comparisons can be developed when a finite

set of detectors {8i:B, - + Vi, i = I , . . . , I} is given. In terms of the given detectors

each structure A E: B, will have a representation (8i(A), ~ A), . . . , 8,(A ; that is,
each structure A will he described by its particular ordered set of I attributes or

detector values 8.{A) E: Vi, i = I , . . . , I. Thus, for a chromosome...4, Vi can desig-
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{A such that 8s(A)
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. . .

I of some schemataFig. 9. Diagrammatic

nate the set of alleles of locus i (see section 3.1) and the corresponding representation 
of A is the specification of the ordered set of alleles which make up the chromosome
. For a von Neumann economy (section 3.2) the V.. can designate the possible

levels of the ith activity so that the representation of a mixture of activities is simply
the corresponding activity vector. Similar considerations apply to each of the remaining 

illustrations of chapter 3. Clearly, with a given set of I detectors, two
structures will be distinguishable only insofar as they have distinct representations.
Since, in the present chapter, we are only interested in comparisons let us assume
that all structures in (t are distinguishable (have distinct representations) or, equivalently

, that (t is used to designate distinguishable subsets of the original set of
structures. For simplicity in what follows (t will simply be taken to be the set of

representations provided by the detectors (rather than the abstract elements so

represented).



Now our objective is to designate subsets of (t which have attributes in

common. To do this let the $ymbol 
" 0 " indicate that we " don't care" what attribute 

occurs at a given position (i .e., for a given detector). Thus (Via, 0 , 0 , . . . , 0 )

designates the subset of all elements in (t having the attribute Vu E: VI. (Equivalently

, (vu, 0 , . . . , 0 ) designates the set of all I-tupies in (t beginning with the

symbol VIa-; hence, for I = 3, (vu, V'J;2, Va2) and (Vu, V21, Val) belong to (Vu, 0 , 0 ), but

(VI2, ~2, Va2) does not.) The set of all I-tupies involving combinations of " don't

cares" and attributes is given by the augmented product set E = n~- l { Vi U { O} } .

Then any I-tuple ~ = (~il' ~it, . . . , ~ I) E: E designates a subset of (t as follows:

A E: (t belongs to the subset if and only if (i) whenever ~ I = 0 , any attribute from

V j may occur at the jth position of A, and (ii ) whenever ~ I E: V j , the attribute ~ I
must occur at thejth position of A. (For example, (Vn, V21, Val, Va) and (Vu, V21, Va2, Va)

belong to (0 , V21, 0 , Va) but (Vn, V21, Val, V42) does not.) The set of I-tupies belonging
to E will be called the set of schemata; E amounts to a decomposition of (t into a

large number of subsets based on the representation in terms of the I detectors

{8i:(t - + Vi, i = 1, . . . , I} .
Schemata provide a basis for associating combinations of attributes with

potential for improving current performance. To see this, let " improvement
" be

defined as any increment in the average performance over past history. That is, if

I  t ( t  is the performance of the structure <t(t) tried at time t, the object is to discover 

ways of incrementing

.a(T) = 
~ ET - 1 II< <l( t .

(A more sophisticated measure would give more weight to recent history,

using

but the simple average suffices for the present discussion.) Though .a(T) can be

incremented by simply repeating the structure yielding the best performance up to

time T this does not yield new information . Hence the object is to find new structures 

which have a high probability of incrementing p,(T) significantly. An adaptive

plan can use schemata to this end as follows: Let A E: (t have a probability P(A)
of being tried by the plan T at time T + I . That is, T induces a probability distribution 

P over (t and, under this distribution , (l becomes a sample space. The performance 
measure #J. then becomes a random variable over (t, A E: (t being tried

with probability P( A) and yielding payoff ,,(A). More importantly , any schema

~ E: ,so designates an event on the sample space (t . Thus, the restriction #J. I ~ of #J. to
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the subset designated by ~, is also a random variable, A E: ~ being tried with probability 
(P( A / (LA 'E:E P( A'

  and yielding payoff P(A). In what follows ~ will be
used to designate both an element of S; and the corresponding random variable
with sample space ~, the particular usage being specified when it is not clear from
context. As a random variable, ~ has a well-defined average Ilt (and variance ul)
where, intuitively , Ilt is the payoff expected when an element of ~ is randomly selected 

under the marginal distribution (P(A / (LA 'E:E P(A' .

Clearly, when Ilt > .a(T), instances of ~ (i .e., A E: ~) are likely to exhibit

performance better than the current average .a(T). This suggests a simple procedure
(a bit too simple as it turns out) for exploiting combinations of attributes associated
with better-than-average performance while further searching (t,: (i) try instances
of various schemata until at least one schema ~ is located which exhibits a sample
average .at > .a(T); (ii ) generate new instances of the (observed) above-average
schema ~, returning to step (i) from time to time (particularly when the increasing
overall average .a(T) comes close to .at> to locate new schemata {~

'
} for which

.at' > .a(T). In effect, then, credit is apportioned to a combination of attributes in
accord with the observed average performance of its instances. This procedure
has some immediate advantages over a fixed random (or enumerative) search of
(t,: it generates improvements with high probability while gathering new information 

by trying new A E: (t,; furthermore, the new trials of the above-average schema

~ increase confidence that the observed average .at closely approximates Ilt . It is

oversimple because each instance A E: (t, tried yields information about a great
many schemata other than rinformation which is not used.

Given / detectors, a single structure A E: (t, is an instance of 2' distinct
schemata, as can be easily affirmed by noting that A is an instance of any schema ~
defined by substituting 

" 0 "s for one or more of the / attribute values in A's

representation. Thus a single trial A constitutes a trial of 2' distinct random variables

, yielding information about the expected payoff Ilt of each. (If / is only 20
this is still information about a million schemata!) Any procedure which uses even
a fraction of this information to locate ~ for which Ilt > p(T) has a substantial

advantage over the one-at-a-time procedure just propo~ d.

Exploiting this tremendous flow of information poses a much more clearly
defined challenge than the one which started the chapter. Schemata have advanced
our understanding, in this sense, but the new problem is difficult . The amount of

storage required quickly exceeds all feasible bounds if one attempts to record the

average payoff of the observed instances of each schema sampled. Moreover, the
information will be employed effectively only if it is used to generate new A E: (t,
which, individually, test as many above-average schema as possible. The adaptive
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system is thus faced with a specific problem of compact storage, access, and effective 
use of information about extremely large numbers of schemata. Chapter 6

(
"
Reproductive Plans and Genetic Operators

"
) sets forth a resolution of these difficulties

, but a closer look at schemata (the remainder of this chapter) and the optimal
allocation of trials to sets of schemata (the next chapter) provides the proper
setting.

Let us begin with a concrete, but fairly general, interpretation of schemata
stemming from the earlier discussion of control and function optimization (section
3.5, p. 57). Consider an arbitrary bounded functionf (x), 0 ~ x < I , and assume
that x is specified to an accuracy of one part in a million or, equivalently, that
values of x are discretely represented by 20 bits. Define <t. to be the set of 220 discrete
values of x represented with 20 detectors {8i:<t. - + {O, I } , j = I , . . . , 20} where
8,{x), x E: <t., assigns to x the value of the jth bit in the binary expansion of x.
The schema 100 . . . 0 then is just the right half-plane i ~ x < I , while the
schema 0000 . . . 0 is a set of four strips {O ~ x < i , t ~ x < f , i ~ x < I ,
! ~ x < i } and the schema 1000 . . . 0 is the intersection of the two previous
schemata {i ~ x < I , ! ~ x < i } (see Figure 10).

With this representation there are 320 distinct schemata since any 20-tuple
over the set {O, I , D } defines a schema. ( More technically, the schemata are simply
hyperplanes, of dimension 20 or less, in the 2O-dimensional space of detector-value
combinations.) Note that there are many points, such as x = H = .11010. . . 0,
which are instances of all three of the schemata just singled out. Note also thatf has
a well-defined average value f E on each schema ~ (for any weighting of the values
f (x), as by a probability distribution ). Clearly, for any x, knowledge of f (x) is
relevant to estimatingf E for any schema for which x E: ~. Moreover, observations

f
(

x
)

2

1

1 / 4 1 /
2 3

/ 4 1

Fig. 10. Some schemata/ or a one- dimen.flona/ / Unction

in Natural and Systems
�

rJ
~
~

100 . . . 0

DO 0 0 . . . 0

1000 . . . 0



off for relatively few x will enableff to be estimated for a great many fEE . Even
a sequence of four observations, say x( l ) = .0100010. . . 0, x(2) = .110100. . . 0,
x(3) = .100010. . . 0, x(4) = .1111010. . . 0, enables one to calculate three-point
estimates for many schemata, e.g. (assuming all points are equally likely or equally
weighted), 1100 . . . 0 = ( f (x(2  + f (x(3  + f (x(4 )/ 3 and 1000D  10. . . 0 =

( f (x( I   + f (x(3  + f (x(4 )/ 3, and two-point estimates for even more schemata,
e.g.,/ oloD  lo . . . o = ( f (x(3  + f (x(4 )/ 2 and/ tlo . . . 0 = ( f (x(2  + f (x(4 )/ 2.

The picture is not much changed if f is a function of many variables
Xl, . . . , Xd. Using binary representations again, we now have 2Od detectors (assuming 

the same accuracy as before), 32CW schemata, and each point is an instance of
pcw schemata. In the one-dimensional case the representation transformed the
problem to one of sampling in a 2O-dimensional space- already a space of high
dimensionality- so the increase to a 2Od-dimensional space really involves no significant 

conceptual changes. Interestingly, each point (Xl, . . . , Xd) is now an instance 
of 22Od schemata rather than 220 schemata, an exponential (dth power) increase

. Thus, for a given number of points tried, we can expect an exponential
(dth power) increase in the number of schemata for whichf f can be estimated with
a given confidence. As a consequence, if the information about the schemata can
be stored and used to generate relevant new trials, high dimensionality of the
argument space {O ~ Xj < I , j = I , . . . , d} imposes no particular barrier.

It is also interesting in this context to compare two different representations
for the same underlying space. Six detectors with a range of 10 values can yield
approximately the same number of distinct representations as 20 detectors with a
range of 2 values, since 108 ~ 220 = 1.05 X 108 (cf. decimal encoding vs. binary
encoding). However the numbers of schemata in the two cases are vastly different:
118 = 1.77 X 108 vs. 320 = 3.48 X 108. Moreover in the first case each A E: (1 is
an instance of only 28 = 64 schemata, whereas in the second case each A E: (1 is an
instance of 220 = 1.05 X 108 schemata. This suggests that, for adaptive plans which
can use the increased information flow (such as the reproductive plans), many de-

tectors deciding among few attributes are preferable to few detectors with a range
of many attributes. In genetics this would correspond to chromosomes with many
loci and few alleles per locus (the usual case) rather than few loci and many alleles
per locus.

Returning to the view of schemata as random variables, it is instructive to
determine how many schemata receive at least some given number n < N of trials
when N elements of (1 are selected at random. This will give us a better idea of the
intrinsic parallelism wherein a sequence of trials drawn from (1 is at the same time
a (usually shorter) sequence of trials for each of a large number of schemata

Schemata
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~ E=: E. It will be helpful in approaching this calculation (and in later discussions)
to more carefully classify the schemata. A schema will be said to be defined on the
set of positions {h, . . . , i,,} at which 6.., ~ o . If V = U i Vi has kelements and we
consider all schemata over V, i .e., E = { V U {O} } " then there are k" distinct
schemata defined on any given set of h ~ I positions. Moreover, for any given set of
h positions, every A E=: V' is an instance of one of these k" schemata. That is, the
set of schemata defined on a given set of positions partitions Ct, and each distinct
set of positions gives rise to a different partition of Ct. (For example, if V = {O, I }
and I = 4, the set of schemata defined on position I is {OO 0 0 , 100 O} , where
0000 abbreviates (0, 0 , 0 , D ) etc. It is clear that every element in ct = V'

begins either with the symbol 0 or else the symbol I , hence the given set partitions 
Ct. Similarly the set defined on position 2, {DODD , DIDO } , partitions Ct,

and the set defined on positions 2 and 4, {DODO, 000 I , 0 I DO, 0 I 0 I } is still a
different partition of Ct, a refinement of the one just previous.) There are (~) distinct 

ways of choosing h positions { I ~ h < i2 < . . . < i" ~ I} along the I-tuple,
and h can be any number between I and I. Thus there are E ~. l (~) = 2' - I distinct

partitions induced on ct by these sets of schemata. It follows that any sequence of
N trials of ct will be simultaneously distributed over each of these partitions. That
is, each of the 2' sets of schemata defined on the 2' distinct choices of positions
receives N trials.

On the assumption that elements of ct are tried at random, uniformly (elements 

equally likely) and independently, we can use the Poisson distribution to
determine the number of schemata receiving at least n < N trials. The basic parameter 

required is the average number of trials per schema for any set of schemata
defined on h positions. The value of this parameter is just N I k" since there are k"
schemata defined on a fixed set of h positions. The Poisson distribution then gives

r(nN ) = E :,. -  Nlk ")'" In
' !) exp ( - Nlk ")

as the proportion of schemata defined on the positions h, . . . , 4 and receiving at
least n out of the N trials.

This can be directly generalized to give a lower bound in the case where the
distribution over ct is no longer uniform. Let X.(h, . . . , i,,) designate the fraction
of schemata defined on h, . . . , i" for which the probability of a trial is at least

Elk", let 'Yh be the proportion of the (~) sets of schemata defined on h positions for
which X.(h, . . . , i,,) > .80 and, finally, let 'Yo = min" 'Y". Then the expression above,
by a simple manipulation, yields

r(nE , N) = E ~. l 'Y"(~).Bok" E :,. -  ENlk")'" In
' !) exp ( - ENlk")

~ 'Y0/30 E ~- l (~)k" E : ,- -  EN Ik ")'" In
' !) exp ( - EN Ik ").

Adaptation in Natural and
, 
Systems

�



Schemata

I(nE, N)

> 7000yo Po
> 5OyoPo (If the distribution of

(4, n , 32) > 2OyoPo trials is uniform, 'Yo = .80 = 1.)
(8, 1, 32) > 900010 Yo Po
(8, 1, 32) > 5OyoPo

Even for the small values of N considered here it is clear that a great many schemata 
will receive a significant number of trials. Moreover the figures given are

quite conservative since at least one schema defined on each distinct set of positions
must receive at least 1 trial in k", whereas the bound assumes none receive more than
1 in Ek".

The figures just given also hint at a compact way for storing a great deal of
information about schemata. Suppose that the object is to store the relative rank
of a large number of schemata where, say, ~ ranks higher than ~' when ,4f > ,4f'.
Let us limit the number of ranks to M (e.g., by dividing the range of p. into M
intervals and assigning ~ the same rank as ~' if their average payoffs, ,4f and ,4f" fall
in the same interval). Now with a set of Melements, <B = {Ai E: Ct,j = 1, . . . , M} ,
it is possible to represent the rank of a given schema ~ by the number of instances
of ~, Ai E: ~, in the set. That is, if ~ has rank m < M, there will be m instances
of ~ in <B, {Ail E: ~, h = 1, . . . , m} C <B. Note that there is no requirement that
Ai = Ai, forj ~ j ' , so that given some other schema ~' we may have Ai E: ~' but
Ai, ~ ~'. Thus the same instances used to represent the rank of ~ can be used in
differing numbers to represent the ranks of other schemata.

For example, given the 8 individuals

Al = 000010
At = 001111
A, = 011 <xx>
A. = 011011
A. = 101100
A. = 110011
A7 = 111011
As = 111101

�

Values for this bound can be obtained from standard tables for the Poisson distribution

, but the following representative cases will give some feeling for the
numbers involved . Setting k = 2 and / = 32 (so that d contains 212 ~ 4.3 X 10'

distinct elements) we get :

(nE, N)

(8, 1, 16)
(8, i , 16)

�
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we see that the schema ~ = 011000 is assigned rank 3 by the three instances
A" A., A7, while the schema ~

' = 000010 is assigned rank 4 using A4 E: ~ and
A7 E: ~ with two other instances, and ~

" = 110 0 0 0 is assigned rank 3 using
A7 E: ~ and two other instances.

If we set M = 32 then the above calculation for 1(8, 1, 32) indicates that
some sets of size 32 drawn from Ct (randomly generated ones in this case) can
assign a rank m ~ 8 to 9000 distinct schemata (for k = 2, I = 32). The problem
then is one of using this potential to represent the relative ranking of the sample
averages .4f for a large set of observed schemata. Once again we must wait upon
the discussion of reproductive plans in chapter 6 to see that this can be done.

Summarizing: Given a set of detectors {ai:Ct - + Vi, i = I , . . . , I} the elements 
A E: Ct each have a representation (~(A), . . . , a,(A  in terms of the ordered

set oflattributes a,{A) E: Vi, i = I , . . . , I. Each ~ E: ,so = nI - l { V.. U {O} } designates 
a particular subset of Ct, namely all elements of Ct for which the corresponding

representations match all positions in ~ which are not " 0 " s. Given a set of observations 
Ct(1), Ct(2), . . . , Ct(t) from Ct, the average payoff .4f of the observed instances

Ct(t
'
) E: ~ is apportioned to ~ as its credit for the performances of the A E: Ct possessing 

the corresponding set of attributes. Since each A E: Ct is an instance of 2'

schemata it constitutes a valid sample point of 2' distinct subsets of (or events on)
Ct. This suggests the existence of algorithms which, by testing many possibilities
with a single trial , are intrinsically parallel and which store the relative rankings
of .4f for a great many schemata by selecting a small set <B C Ct. The algorithms
introduced in chapter 6 will realize these possibilities. Later (chapter 8) dependence
on the detectors {ai} will be eliminated by subjecting the detectors themselves
to adaptation.

in Natural and Systems
�



Allocation of Trials5. The Optimal

In the last chapter a schema ~ was defined as potentially useful when .4f' the observed
average performance of instances of that schema, was significantly greater than the
overall average performance. However, .4f is basically a sample average for a random 

variable (or sequence of random variables) and, as such, is subject to sampling
error. For any two schemata ~ and ~', there is always a non-zero probability that
IJ.f' > IJ.f even though .4f > .4f'. This reintroduces in a sharp form the conflict of
exploiting what is known vs. obtaining new information . Confidence that the
ranking .4f > .4f' reflects a true ranking IJ.f > IJ.f' can be increased significantly only
by allocating additional trials to both ~ and ~

' . Thus, we can allocate a trial to exploit 
the observed best or we can allocate a trial to reduce the probability of error

as much as possible but we cannot generally do both at once. Given astring -

represented domain (1, it is important to have some idea of what proportion of
trials should be allocated to each purpose as the number of trials increases.

Corresponding to each of these objectives- exploitation vs. new information
- there is a source of loss. A trial allocated to the observed best may actually incur
a loss because of sampling error, the observed best being in fact less than the best
among the alternatives examined. On the other hand trials intended to maximally
reduce the probability of error will generally be allocated to a schema other than
the observed best. This means a performance less on the average than the best
among known alternatives, when the observations reflect the true ranking. Stated
succinctly, more information means a performance loss, while exploitation of the
observed best runs the risk of error perpetuated.

Competing sources of loss suggest the possibility of optimization- minimiz-

ing expected losses by a proper allocation of trials. If we can determine the optimal
allocation for arbitrary numbers of trials, then we can determine the minimum
losses to be expected as a function of the number of trials. This in turn can be used
as a criterion against which to measure the performance of suggested adaptive
plans. Such a criterion will be particularly useful in determining the worth of plans
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which use schemata to compare structures in d . The objective of this chapter is to
determine this criterion. In the process we will learn a good deal more about
schemata and intrinsic parallelism.

1. THE 2-ARMED BANDIT

The simplest precise version of the optimal allocation problem arises when we
restrict attention to two random variables, ~ and ~

'
, with only two possible payoffs,

0 or 1. A trial of ~ produces the payoff 1 with probability PI and the payoff 0 with

probability 1 - PI; similarly ~
' 

produces I with probability P2 and 0 with probability 
I - P2. (For example, such trials could be produced by flipping either of two

unbalanced coins, one of which produces heads with probability PI, the other with

probability P2.) One is allowed N trials on each of which either ~ or ~
/ can be selected

. The object is to maximize the total payoff (the cumulative number of heads).

Clearly if we know that ~ produces payoff I with a higher probability then all N
trials should be allocated to ~ with a resulting expected accumulation Pl . N. On the
other hand if we know nothing initially about ~ and ~

' It would be unwise not to
test both. How trials should be allocated to accomplish this is certainly not immediately 

obvious. (This is a version of the much-studied 2-armed bandit problem,
a prototype of important decision problems. Bellman [ 1961] and Hellman and
Cover [ 1970] give interesting discussions of the problem.)

If we allow the two random variables to be completely general (having
probability distributions over an arbitrary number of outcomes), we get a slight
generalization of the original problem which makes direct contact with our discussion 

of schemata. The outcome of a trial of either random variable is to be interpreted 
as a payoff (performance). The object once more is to discover a.procedure

for distributing an arbitrary number of trials, N, between ~ and ~
/ so as to maximize

the expected payoff over the N trials. As before, if we know for each ~i the mean and
variance (lI.i, 0'1) of its distribution (actually the mean lI.i would suffice), the problem
has a trivial solution (allocate all trials to the random variable with maximal mean).
The conflict asserts itself, however, if we inject just a bit more uncertainty. Thus we
can know the mean-variance pairs but not which variable is described by which

pair ; i.e., we know the pairs (11.1, O'f) and (11.2, O'~) but not which pair describes ~.
If it could be determined through some small number of trials which of ~

and ~
' has the higher mean, then from that point on all trials could be allocated to

that random variable. Unfortunately, unless the distributions are non-overlapping,
no finite number of observations will establish with certainty which random variable 

has the higher mean. (E.g., given II.f > II.E' along with a probability P > 0 that
a trial of ~

' will yield an outcome x > II.f, there is still a probability pH after N

Adaptation in Natural and Artificial Systems
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trials of ~
' that all of the trials have had outcomes exceeding IJ.E. A fortiori their

average .4E' will exceed IJ.E with probability at least pH, even though IJ.E' < IJ.E.) Here
the tradeoff between gathering information and exploiting it appears in its simplest
terms. To see it in exact form let ~(1)(N) name the random variable with the highest
observed payoff rate (average per trial ) after N trials and let ~(2)(N) name the other
random variable. For any number of trials n, 0 ~ n ~ N, allocated to ~(:!)(N) (and
assuming overlapping distributions) there is a positive probability , q(Nn, n),
that ~(:!)(N) is actually the random variable with the highest mean, max {IJ.E, IJ.E'} .
The two possible sources of loss are: ( I ) The observed best ~(1)(N) is really second
best, whence the Nn trials given ~(l)(N) incur an (expected) cumulative loss
(Nn ) . IIJ.E - IJ.rl ; this occurs with probability q(Nn , n). (2) The observed best
is in fact the best, whence the n trials given ~(2)(N) incur a loss n . IIJ.E - IJ.f1; this
occurs with probability ( I - q(Nn , n . The total expected loss for any allocation 

of n trials to ~(2) and Nn trials to ~(l) is thus

L( Nn, n ) = [q(Nn , n) .(N - n) + ( I - q(Nn , nn ] . IIJ.E - IJ.rl .

We shall soon see that, for n not too large, the first source of loss decreases
as n increases because both N - nand q(Nn , n) decrease. At the same time the
second source of loss increases. By making a tradeoff between the first and second
sources of loss, then, it is possible to find for each N a value n*(N) for which the
losses are minimized; i .e.,

L( Nn *, n*) ~ L( Nn, n ) for all n ~ N.

For the determination of n* let us assume that initially one random variable
is as likely as the other to be best. (This would be the case for example if the two
unbalanced coins referred to earlier have no identifying external characteristics
and are positioned initially at random. More generally, the result is the same if the
labels of the random variables are assigned at random. The proof of the theorem
will indicate the modifications necessary for cases where one random variable is
initially more likely than the other to be the best.) For convenience let us adopt the
convention that ~ is the random variable with the highest mean and let 1J.1 be that
mean; accordingly ~2 is the other random variable with mean 1J.2 ~ 1J.1. (The observer,
of course, does not know this.) Using these conventions we can now establish

THEOREM 5.1: Given N trials to be allocated to two random variables, with means
1J.1 > 1J.2 and variances O' , 0'1 respectively, the minimum expected loss results when
the number of trials allocated ~(2)(N) is

n ~ n* ,....., b2 In [N2/ (8rb4 In N2)]
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where b = O'I/ {I 1 - 11.2). If , initially , one random variable is as likely as the other to
be best, n = n* and the expected loss per trial is

L*(N) ' " (b2(pl - 1I.2)/ N)[2 + In [Nt/ (S...b4In Nt)] ] .

(Given two arbitrary functions, Y(t) and Z(t), of the same variable t, " Y(t) ' " Z(t)
"

will be used to mean Jim,_ - ( Y(t)/ Z(t  = I while " Y(t) ~ Z(t)
" means that under

stated conditions the differenceY (t) - Z(t  is negligible.)

Proof: In order to select an n which minimizes the expected loss, it is necessary
first to write q(Nn , n) as an explicit function of n. As defined above q(Nn , n)
is the probability that ~(2)(N) = ~ . More carefully, given the observation, say, that

~' = ~(2)(N) , we wish to determine the probability that ~
' = ~ . That is, we wish to

determine

q(Nn , n) = Pr {~
' = ~ I ~(2) = ~'}

as an explicit function of N - nand n. Bayes
's theorem then gives us the equation

Pr {~
' = ~ I ~(2) = ~'}

Letting q', q" , and p designate Pr{~' = ~(2) I ~' = a} , Pr{~' = ~(2) I ~' = ~} , and
Pr{~' = ~} , respectively, and using the fact that ~' must be ~ if it is not ~, this
can be rewritten as

in Natural and
�

Pr{F.' = F.(2) I F.' = Fit} Pr{F.' = &}
Pr{F.' = F.(2) I F.' = Fit}Pr{F.' = &} + Pr{F.' = F.(2) I F.' = F.OJ}Pr{F.' = F.OJ}

-

q(Nn , n) = q
'
p/ (q

'
p + q" (1 - p .

(If one random variable is as likely as the other to be best, then p = ( I - p) = I .)
To derive q

' let us assume that ~' has received n trials out of the N total .
Let Sf

- a be the sum of the outcomes (payoffs) of Nn trials of & and let 51 be
the corresponding sum for n trials of ~ . Since q

' has~' = ~1 as a condition, q
' is just

the probability that 51/ n < Sf
- a

/ (Nn ) or, equivalently the probability that

(51/ n) - (Sf
- a 

/ (Nn   < O. By the central limit theorems :
- a 

/ (N - n) ap-

proaches a normal distribution with mean 1J.2 and variance O'I/ (Nn ) ; similarly,
51/ n has mean 1J.1 and variance O'Y/ n. The distribution of (51/ n) - (Sa / (N - n 
is given by the product (convolution) of the distributions of S' :/ n and
_ (Sf

- a
/ (Nn  ; by an elementary theorem (on the convolution of normal distributions

) this is a normal distribution with mean 1J.1 - 1J.2 and variance

~ + NO
'I .. Thus the probability Pr 

{
~ -

NSf

- a 
< O

} 
is the tail I - ~ xo) of

n - nn - n
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where

Y - (PI - lit)

~ - : ~
2

!! + 
0'2

nN - n

O. (I.ey ), which describes the distribution

to  x) which describes the canonical normal dis-

variance I.) The tail of a normal distribution is well
approximated

(, , ] Jjt )

observations

- -
well as the total number of trials, N, and the number of trials, n, given f

'. More

importantly, both q
' and I - q" decrease exponentially with n, yielding

q(Nn , n) = q'p/ (q
'
p + q" (1 - p  " " q' .(p/ ( 1 - p 

with the approximation being quite good even for relatively small n. For p = !
this reduces to

q(Nn , n) " " q'

where the error is less than min {(q
'
)2, ( I - q

"
)2} . (If one random variable is a

priori more likely than the other to be best, i.e., if p ~ ! , then we can see from

�

a canonical normal distribution cf (x)

x =

and - Xo is the value of x when
C'a SN-a0;)1 2 . ~ ed- -

N ' IS translormnn
tribution with mean 0 and

by

. Y
=

Thus

~~~6't 6'2 1n+N-nexP2I e-~../2 Iq'<~ . -~...., v 2,.. Xo - v 2,..
with (N - n)Using the same line of reasoning (but now : of at etc.)

q" ~ 1 - Pr {~.=:. < ~}N-nn

From this we see that both q' and q
" are functions of the variances and means as

cf( - x) ~ 1 - cf(x) ~ 1 . e-s'/2"' ";\72; 
-
x .

[
-(Pt - #1.2)2 

]
_2 _2 .!! + 0'2nN-n

we have

(~~::!I=-~~I V:N -=-n T -;:.$ I - ~ (PI - 112): 
I

exp 2

[

- (PI - 1I.t)2

]
2 2 .6'1 + .!!Nn n
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{

. ! L _

~ 

<

oJ

n ~

I

distribution of

.. L - ~
nN ~

, ~ 2 0'"22 'V- ~ +_::1::-N-G'I-- r

above and from what follows that fewer trials can be allocated to attain the same
reduction ofq (Nn , n). The expected loss is reduced accordingly.)

The observation that q
' and hence q(Nn , n) decreases exponentially with

n makes it clear that, to minimize loss as N increases, the number of trials allocated
the observed best, Nn , should be increased dramatically relative to n. This
observation (which will be verified in detail shortly) enables us to simplify the

expression for x.. Whatever the value of 0'2, there will be an No such that, for any
N > No, O'I/ (Nn )   O'f/ n, for n close to its optimal value. (In most cases of
interest this occurs even for small numbers of trials since, usually, 0'1 is at worst an
order of magnitude or two larger than 0'2.) Using this we see that, for n close to its

optimal value,

Adaptation in Natural and , 
Systems
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Area = Pr

y . o y
x

y =1".
- 1"2

x=Ox =
- <II.I

-
p. }

Fig . 11. The convolution of ~ with 
N
-~

nn

(PI - I'2)V;, N > No.Xo ~ 0'1

�

~ (x)
~ (y)



We can now proceed to determine what value of n will minimize the loss
L(n) by taking the derivative of L with respect to n.

[
-

[(1 - 2q) + (N - 2n)~]

dq 1 
[ 

e-z~/2 2 
J 
dxo 

[
q 

J 
dxo- < --- - - e-zO/2 - = - - + X~ -dn ,..., .yI2,.. X~ dn Xo dn

dL 
[ 

(~ + I)
JThus - < 111.1 - #1.21. (1 - 2q) - (N - 2n).q. .dn ,..., 2n

(N - 2n.)0 ~ (I - 2q) - 2n. . q.(~ + I)

(N - 2n.) 1 - 2q<2n. -- q.(x~ + I)
Noting that I/ (~ + I) < I/ x~ and that ( I - 2q) rapidly approach es I because q,...,
decreases exponentially with n, we see that ~ .$ 4

' where the error rapidly

approach es zero as N increases. Thus the observation of the preceding paragraph
is verified, the ratio of trials of the observed best to trials of second-best growing

obtain function written

Introducing

.exp
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dL

tin 
= 111.1 - 11.21 .

where

and

~ < #1.1 - #1.2 = ~ .
dn ,..., 20' Iv In 2n

n*, the optimal value of n, satisfies 
~ 

= 0, whence we obtain a bound on n* as

follows:

n* as an explicit of N , q must be in terms
exponentially.

Finally, to
of n* :

N - 2n* 2V:2; 1< '1"0'1 .n* -- (PI - #1.2) w . exp [ PI - #l.2)2n*)/(20'f)].

b = 0'1/ <1 1 - 11-2) and ni = Nn * for simplification , we obtain

NI < ~ .b,..., I [(b-2n* + In n*)j2]

dq dq]- +I-q-n-dn dnq + (N - n)

= 1IJ.1 - 11.21 .
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where the fact that (N - 2n*) ,..." (N - n*) has been used, with the inequality

generally holding as soon as NI exceeds n* 
by a small integer . We obtain a recursion

for an ever better approximation to n* as a function of NI by rewriting this as

Whence

where, again, the error rapidly approach es zero as N increases. Finally, where it is
desirable to have n* approximated by an explicit function of N, the steps here can
be redone in terms of N In *, noting that ni / n* rapidly approach es N In * as N
increases. Then

in Natural and Systems
�

Nn* + b21n n* ~ 2b2.ln :--~bY 8...

n* ~ bl In [~~~JSrn* .

In  b- lNl)27ST) - In n* ]

n* "" b21n [8;ij~~"Nt ]

[N - 2n* n*]= 1"1 - 1'21 0 N q(Nn*, n* ) + N
[2n* n*]~ 1"1 - 1'21 0 ~ + N

bll"l - 1'21 [ ( HI )]~ N   2+ln S...b4InNI . Q.E.D.

n* ~ b2 In

~ b2 In

~ b2ln

~ b21n

[
~ !!1 .8...

[ 
b-4Nl 

]8... In Nl '

where, still, the error rapidly approach es zero as N increases.
The expected loss .per trial L*(N) when n* trials have been allocated to

f (2)( T, N) is

IL*(N) = 
:hi 111-1 - I Jill. [(Nn *)q(Nn , n*) + n*( l - q(Nn *, n* ]



quickly becomes apparent if we rearrange
N<*t) allocated to ~(l) as a function of the

This section points out, and resolves, a difficulty in using L *(N) as a perfonnance
criterion. The difficulty occurs because, in a strict sense, the minimal expected loss
rate just calculated cannot be obtained by any feasible plan for allocating trials in
terms of observations. As such L *(N) constitutes an unattainable lower bound and,

The Optimal Allocation of Trials
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Ntt> = N - n* "" N "" v S...bcln N2 e"*/26I.

2 2 
(
I -2 1 -2

) (
I 1 

)
2 

(
'1 - '0

)
20'1 ~ O'mu = 2 r} + 2 ro - '2'1 + '2 '0 = 2 - .

REALIZATION OF MINIMAL LOSSES

(i) 11.1 - 11.2 is small enough that, for small N, the standard deviation of
SI ~ . 

I I 
. 

d h- - 
N 

IS arge re atlve to 11.1 - 11.2 an , as a consequence, ten - n

approximation for the tail I -  xo) fails,
or (ii) 0'2 is large relative to 0'1 so that, for small N, the approximation for Xo is

inadequate.
Neither of these cases is important for our objectives here. The first is unimportant
because the cumulative losses will be small until N is large since the cost of trying
~ is just 11.1 - 11.2. The second is unimportant because the uncertainty and therefore
the expected loss depends pri,marily on a until Nn * is large; hence the expected
loss rate will be reduced near optimally as long as Nn ~ N (i .e., most trials go
to ~(1 , as will be the case if n is at least as small as the value given by the approximation 

for n*.

Finally , to get some idea of n* when 0'1 is not known, note that for bounded

payoff, ~..:d - + [ro, rl ] , the maximum variance occurs when all payoff is concentrated 
at the extremes, i .e., p( ro) = p( rl ) = I . Then

The main point of this theorem
the results to give the number of trials
number of trials n* allocated to ~(2):

Thus the loss rate will be optimally reduced if the number of trials allocated ~(l)
grows slightly faster than an exponential function of the number of trials allocated
~(2). This is true regardless of the fonn of the distributions defining a and &. Later we
will see that the random variables defined by schemata are similarly treated by
reproductive plans.

It should be emphasized that the above approximation for n* will be misleading 
for small N when
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if it is too far below what can be attained, it will not be a useful criterion. However,
we will see here that such loss rates can be approached quite closely (arbitrarily
closely as N increases) by feasible plans, thus verifying L *(N)

's use fulness.
The source of the difficulty lies in the expression for n*, which was obtained

on the assumption that the n* trials were allocated to ~(2)(N) . However there is no
realizable plan (sequential algorithm) which can '~foresee" in all cases which of the
two random variables will be ~(2)(N) at the end of Ntrials . No matter what the plan
1', there will be some observational sequences for which it allocates n > n* trials
to a random variable ~ (on the assumption that ~ will be ~(1)(N  only to have ~ turn
out to be ~(2)(N) after N trials. ( For example, the observational sequence may be
such that at the end of 2n* trials l' has allocated n* trials to each random variable.
l' must then decide where to allocate the next trial even though each random variable 

has a positive probability of being ~(2)(N) .) For these sequences the loss rate
will perforce exceed the optimum. Hence L *(N) is not attainable by any realizable
1'- there will always be payoff sequences which lead l' to allocate too many trials
to ~(2)(N) .

There is, however, a realizable plan 1'(- ) for which the expected loss per trial

1..(1'(- ), N) quickly approach es L *(N) , i .e.,

q(n*, n*) ~ 
( ~ /

. v2T(pl - ,.. 
)

.exp~ [ 
- CPI- P2)2/ ( #. + ; 1) ]

.

�

Proof: The expected loss per trial L(T(_), N) for T(_) is determined by applying the
earlier discussion of sources of loss to the present case.

1
L(T(_), N) = 

N 
. <Ill - 1&2) . [(Nn *)q(n*, n*) + n*( l - q(n*, n* ]

where q is the same function as before, but here the probability of error is irrevocably 
determined after 2n* trials. That is
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Since, asymptotically, q decreases as rapidly as N- l, it is clear that the second term
in the brackets will dominate as N grows. Inspecting the earlier expression for

L( N) we see the same holds there. Thus, since the second terms are identical

Q.E.D.

requisite

where

Proof: Following Theorem 5.1 we are interested in the probability that the average
of the observations of any ~i, i > 1, ex~ s the average for a . This probability
of error is accordingly

The Optimal Allocation of Trials
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L( 'T(- >, N) we'have

[
N - 2n* n*

]1.(1'(->, N) = (PI - 1 2) N q(n*, n*) + N .

limN- ( (1'(->, N) /L*(N  = I.

From this we see that, given the

3. MANY OPTIONS

(PI - 112) .(' - 1)b2 [ 
2 + In 

( S'l{' - ~ b41n Nt) ]

b = D'l/ {I lp .,.) .

(~ < ~)},q(nb . . . , nr) ,...., P, {(~ < ~) or (~ < ~)n2 nl n. nl or . . . or

infonnation (pi, 0'1) and ~ , 0'2),
there exist plans which have loss rates closely approximating L *(N) as N increases.

dom variables, the minimum expected loss after N trials must exceed

The function L *(N) sets a very stringent criterion when there are two uncertain

options, specifying a high goal which can only be approached where uncertainty
is very limited. Adaptive plans, however, considered in terms of testing schemata,
face many more than two uncertain options at any given time. Thus a general
performance criterion for adaptive plans must treat loss rates for arbitrary numbers 

of options. Though the extension from two options to an arbitrary number of r

options is conceptually straightforward, the actual derivation of L *(N) is consider-

ably more intricate. The derivation proceeds by indexing the r random variables

a , ft , . . . , ~,. so that the means are in decreasing order 11.1 > 11.2 > . . . > p.,. (again,
without the observer knowing that this ordering holds).

THEOREM 5.3: Under the same conditions asfor Theorem 5.1, but now with r ran-



Pr {
~ < ---; -

} > q' = I 0'1 - exp [
<1 1 - ~r )2m

]m Nn ~ <1 1 - IJ.r)V m 2cr1

(This verifies the observation at the outset, since the expected loss approach es n*

as N increases- see below.) Finally , noting that n > (r - l ) m, we can proceed
taking the derivative
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Solving this for n* and noting that 1 - 2q rapidly approach es I as N increases,
gives N (dq)

-ln* '" "2 + 'dii .

N (dq')
-ln* > "2 + 'dii" .

n* > (I' - l ) m* ' " (I' - 1)b21n 
( 8-.(1' - ~ b41n Nt )

as in the two-variable case by using (r - 1)In in place
of q

' with respect to m instead of n. The result is
of n and

where ni is the number of trials given ~.., and the loss ranges from (PI - 112) to

(PI - p.r) depending on which ~i is mistakenly taken for best.
Let n = EC- 2 ni , let m = min {n2, na, . . . , nr} , and letj be the largest index

of the random variables (if more than one) receiving m trials .
The proof of TheoremS .I shows that a lower bound on the expected loss

is attained by minimizing with respect to any lower bound on the probability
q (a point which will be verified in detail for r variables ). In the present case q must
exceed

using the fact that (PI - Pr) ~ (PI - 11.;) for any j > I . By the definition ofq

LN,,(n) > L~,,(n) = (II.I - 1I.2)[(Nn )q + n( 1 - q)]

using the fact that (PI - 11.2) ~ (PI - lI.i) for i ~ 2. Moreover the same value of n
minimizes both LN,,(n) and L~,,(n). To find this value of n, set

~ 
= (PI - 11.2) [ (

N - 2n) ~ + (1 - 2q) ] 
= O.

Noting that q must decrease less rapidly than q
' with increasing n, we have

(dq' / dn) < (dq/ dn) and, taking into account the negative sign of the derivatives ,
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We are ready now to apply the criterion just developed to the general problem of

ranking schemata. The basic problem was rephrased as one of minimizing the performance 
losses inevitably coupled with any attempt to increase confidence in an

observed ranking of schemata. The theorem just proved provides a guideline for

solving this problem by indicating how trials should be allocated among the
schemata of interest.

To see this note first that the central limit theorem, used at the heart of the

proof of Theorem 5.3, applies to any sequence of independent random variables

having means and variances. As such it applies to the observed average payoff p,~
of a sequence of trials of the schema ~ under any probability distribution P over (i

(cf. chapter 4). It even applies when the distribution over (i changes with time (a
fact we will take advantage of with reproductive plans). In particular, then, Theorem 

5.3 applies to any given set of r schemata. It indicates that under a good
adaptive plan the number of trials of the (observed) best will increase exponentially
relative to the total number of trials allocated to the remainder.

Near the end of chapter 4 it was proposed that the observed performance
rankings of schemata be stored by selecting an appropriate (small) set of elements
<B from (i so that the rank of each schema would be indicated by the relative
number of instances of ~ in <B. Theorem 5.3 suggests an approach to developing
<B, or rather a sequence <B( l ), <B(2), . . . , <B(t), according to the sequence ofobserva-

tions of schemata. Let the number of instances of ~ in the set <B(t) represent the
number of observations of ~ at time t. Then the number of instances of ~ in the set

UT. l <B(t) represents the total number of observations of ~ through time T. If
schema ~ should persist as the observed best, Theorem 5.3 indicates that ~

's portion
of UT. l <B(t) should increase exponentially with respect to the remainder. We can
look at this in a more " instantaneous" sense. ~

's portion of <B(t) corresponds to the
rate at which ~ is being observed, i .e., to the " derivative" of the function giving
~
's increase. Since the derivative of an exponential is an exponential, it seems natural

to have ~
's portion M ~t) of <B(t) increase exponentially with t (at least until ~

of TrialsThe Optimal
�

where b = 0'1/ <1 1 - P-r). Accordingly,

LN.,(n*) > L'H., r - 1) m*)> (PI - 1I.2).(r - 1)[,2 [ 2 + In (ST(r - ;b4ln Nt)]. Q.E.D.

4. APPLICATION TO SCHEMATA
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occupies most of <B(t . This will be the case if ~
's rate of increase is proportional

to the observed average payoff .a E< t) of instances of ~ at time t or, roughly,

dMt <t)/ dt = .a E<t)ME<t).

It will still be the case if the rate is proportional to the schema's " use fulness,
" the

difference between .a E<t) and the overall average performance .a(t) of instances in

<B(t), so that dMt <t)/ dt = <J1E<t) - .a(t ME<t). (In genetics .a E<t) - il (t) is called the
"
average excess" of ~ when ~ is defined on a single locus, i .e., when ~ is a specific

allele.)
The discussion of " intrinsic parallelism

" in chapter 4 would imply here that
each ~ represented in <B(t) should increase (or decrease) at a rate proportional to its
observed " use fulness" .at<t) - il (t). If this could be done consistently then each ~
would be automatically and properly ranked within <B(t) as t increases. The reasoning 

behind this, as well as the proof that reproductive plans accomplish the task,
will be developed in full in the next two chapters.



Plans and Genetic Operators6. Reproductive

In the earlier informal discussion of genetics (sections 1.4 and 3.1) reproductive
plans were introduced as the fundamental procedure of genetic adaptation. The
present chapter lifts reproductive plans from the specific context of genetics to the
general framework of chapter 2. This, at one stroke, makes reproductive plans
suitable objects for rigorous study and yields a class of plans applicable to the full
range of adaptive systems. Genetic plans, i .e., reproductive plans using generalized
genetic operators, will be the prime focus; emphasis will be laid upon the operators

'

retention and use of relevant history as they exploit opportunities for improved
performance.

Genetic plans can be applied to any domain of structures (t represented by
strings (I-tupies). ( To build a better intuition for this flexibility the reader may find
it useful to consistently interpret the properties and theorems advanced here in the
most familiar of the non genetic illustrations of chapter 3.) We will see that each
structure generated and tested by a genetic plan in effect tests a multitude of
schemata and that the plan actually preserves and exploits this information .
Genetic plans do this by generating sequences of structures in such a way that,
once a few instances of any given schema ~ occur, one can count on the cumulative
number of instances of ~ increasing at a rate closely related to #I.E. The generalized
genetic operators act so as to test old schemata in new contexts, generate instances
of schemata not previously tested, and so on (see sections 7.2- 7.5), without disturbing 

the rates of increase. Genetic plans thus exhibit the intrinsic parallelism
discussed at the ends of chapters 4 and 5.

Interpreted in genetics, the results of the next two chapters indicate that
adaptation proceeds largely in terms of pools of coadapted sets of alleles rather
than gene pools. As one important offshoot, this approach yields an extension of
Fisher's (1930) classical result (on the rates of increase of alleles) to coadapted sets
of alleles with epistatic interaction (see section 7.4). A typical interpretation for
artificial systems can be obtained by looking again at the functionj (x) of Figure 10.

89
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We see that the average value JJ.IDD . . . 0 of all points in the schema 100 . . . 0

(i .e., the area under the curve over the intervail ~ x < 1 divided by I , the length
of the interval) is approximately 1.5. Similarly, for 0000 . . . 0 the value is

approximately 1, for 1000 . . . 0 the value is approximately 2, etc. Thus instances

of 1 0 0 . . . 0 will accumulate at a higher rate than those of 0 000 . . . 0 , and

instances of 1000 . . . 0 will accumulate still more rapidly. The result is an ever

greater clustering of test points (instances) in intervals (schemata) of above-average
value (see Figure 13 and the example of section 7.3). In this way the genetic plan
locates a global optimum of f (x), exploiting false peaks (without entrapment) to

rapidly increase the average value of points tested.
We will see that genetic plans act with a combination of simplicity and

subtlety both pleasing to the eye and useful in application. They also act with

robustness and efficiency, a fact that will be finally established in the next chapter.

It should be emphasized that the plans (algorithms) set forth have a dual role.

When the plan
's parameter values (and functions) are determined from data about

a particular natural process, the plan serves as an idealized model or hypothesis
about that process. As such it is subject to the general observation-modification

cycle applicable to physical theories in general. Because the model is already in

algorithmic form, it is particularly suitable for simulations of the process. The

other role occurs in relation to artificial (designed) process es. Here the plans serve

as optimization procedures which can be fitted into the process to control its direction

. In either role the theorems proved hereafter yield predictions which must

come true if (for the natural systems) the basic model is verified or (for artificial

systems) the algorithm is incorporated as a control .

1. GENERALIZED REPRODUCTIVE PLANS

To embed reproductive plans in the (3, 8, x) framework of chapter 2 we must define

a class of plans (algorithms) applicable to an arbitrary set of structures (t . Moreover

each plan must be a mapping of the form T:I X (t ~ o. It must use only the input
from the environment, I (t), and the structure tried at time t, Ct(t), to determine a

random variable over (t, ~t(Ct(t , which is in turn sampled to determine the next

trial , Ct(t + 1). We will begin by defining a relatively narrow class of reproductive

plans <RI. Later <RI will be extended in ways which make some applications more

natural, and we will see that the new algorithms are essentially no more powerful
than those from <RI.

To begin let (tl be the set of structures to be tested and, as in chapter 4,
assume that the elements of (tl are representations. (As long as each structure is



represented by a finite string of attributes, (11 can be made countably infinite without 
affecting the presentation of CRI. This will be discussed in chapter 8.) Each

plan in CRI is an algorithm which acts at each instant t upon a small set of structures
<B(t) from (11 (interpretable, for instance, as a population or data base). The
algorithm uses a single basic cycle to modify elements of the small set, one at a
time, thereby producing a sequence of new structures for trial . In general terms,
the basic steps of the cycle are:

I . Select one structure from <B(t) probabilistically, after assigning each
structure a probability proportional to its observed performance.

2. Copy the selected structure, then apply operators to the copy to produce
a new structure.

3. Select a second element from <B(t) at random (all elements equally likely)
and replace it by the new structure produced in step 2.

4. Observe and record the performance of the new structureS. 
Return to step I .

Note that the number of elements in <B(t) remains constant . ( From the point of
view of genetics, it is convenient to look upon the size of <B(t) as an upper bound
on population size determined , say, by the "

carrying capacity
" of the environment

.) The number of structures in <B(t) can be varied up to the maximum number

by allowing null structures or vacancies.
With this outline as a guide, we can now go on to the rigorous definition of

the algorithms in <RI. The following symbols and definitions will be used with the

interpretations given :

the set of basic structures being tested.
the set of all M-tupies of structures corresponding to

possible compositions of <B.
the particular set of M structures {ai (t), A2Ct), . . . ,
AM(t)} available to the adaptive plan at time t.

used as an index set
for <B.
the set of stochastic operators for modifying structures

.

compositions of <B with one structure selected (for
modification by an operator) ; i .e. (i, ai (t), . . . ,
AM(tE :: 8M X at ' corresponds to <B(t) with the ith
structure, A.( t) selected.

Reproductive Plans and Genetic Operators
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(11,
M(11 ,

cB(t),

8M = {I, 2, . . . , M}, the first M positive integers,

0,

8M X at' ,
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Once the set of structures (t,1 has been given, along with an observation
procedure which assigns a payoff II..(A) to each trial of a structure A E: (t,1, a
reproductive plan of type CR1 is determined by specifying the functions p and {CA)} .
The algorithm proceeds as follows:

I Set t = 0 and initialize <B by selecting M structures at random from (t,. to

~ 
form <B(O) = {A,.(O), h = 1, . . . , M} .

2.1 Observe and store the performances {ll.Bf.A,.(Oh = 1, . . . , M} .

2.2 Observe the performance of A'(t) and replace

L 

II.Bf.A;(c)(t  by II.Bf.A'(t .

3 Increment t by 1
t
4 Select one structure Ai(c)(t) from <B(t) by taking one sample of <B(t) using

~ 
the probabilities Prob(A,.(t  = II.Bf.A,.(t 1 I:A . . II.Bf.A",(t , h = 1, . . . , M.

S Determine the operator CA)cE: n to be applied to Ai(C), CA)c = p(Ai(c)(t , and

1 

then use CA)c to determine a new structure A'(t) by taking a sample of (t,.
according to the probability distribution Pc = CA)c(i(t), A.(t), . . . ,
A..,(tE : <P.

6 Assign probability 11M to each number 1. . . . , M, select one number- - -
1 ~ j (t) ~ M accordingly, and replace Aj(I)(t) by A'(t).

Algorithms of type <RI are strictly sequential in the sense that one individual
A '

(/) is tested at a time. <B(t) serves as a reservoir of information about the environment 
and as a basis for generating new trials. <B(t) remains constant in size because

each new individual A'
(t) replaces an individual already in the population. Under

the operators n of interest (particularly the generalized genetic operators), A
'
(t)

can be looked upon as the " offspring
" of Ai (I)(/), retaining many (but generally not

all) of the attributes of A i(I)(t). Via the function p each structure in the population
carries a specification of the operator appropriate to it (a kind of "

species
" designation

). ( The apparent generalization to stochastic selection of one of a set of

in Natural and
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p:Cl1- + 0 ,

", :8M X  1" -+ <P,

operator ", E: O.

assigns to each basic structure A E: (t;1 the stochastic

operator ", E: 0 which is to be used to modify A.
an arbitrary operator from 0 which determines, from

<B(t) and a selection ;(t), a distribution P E: CP over (t;1.

a set of probability distributions over  1, one of
which is selected by each application of a stochastic
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operators can actually be subsumed in the stochastic selection of offspring. See
below.) The operators are computation procedures using random numbers; generally

, they use at most one other member of the population, in addition to A,<,)(I),
in the determination of A '(I). ( For instance, the operator may randomly select a
" mate" for A,<,)(t).) The argument of each CI) En includes the whole population,
because any structure in the population is a conceivable candidate for the second
operand, even when CI) is essentially a binary operator. (E.g., the probable outcomes
of a " mating

" will depend upon the range of " mates" available.)
It should be noted that the state of the algorithm at the beginning of any

cycle includes not only the population <B(t), but also the retained performances
p.. (AA(t , h = I , . . . , M , of the structures in <B(t). Thus, in the general formalism
of chapter 2,

  =  II X [O" . ]M

Plans and GeMtic Operator"
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where [0, r] is the interval of possible payoffs (performances), i.e. [0, r] is the
range of liB,

IIB:(I;l -+ [0, r].

Accordingly,

<l(t) = (..41(t), . . . , ..4...,(t), 1I. (..41(t , . . . , 1I. (..4...,(t ).

The new information l (t), from the environment E E: 8 at each time t, is simply the
payoffll. (..4'(t  of the new structure ..4'(t). Thus any adaptive plan.,. E: <Rl has the
required form

.,.:1 X (I; - + (I;

since

'I'{IS.(..4'(t , [..41(t), . . . , ..4...,(t), 1I. (..41(t , . . . , 1I.(..4...,(t ])
= [..41(t + I), . . . , ..4...,(t + I), 1I.(..41(t + I , . . . , 1I. (..4...,(t + I ] .

Informally, a reproductive plan is one under which the better an individual
performs the more offspring it has. For plans.,. E: <Rl a precise counterpart of this
property can be established with the help of the following

LEMMA 6.1: If , at any time-step, pi is the probability that a structure ..4 produces
an "offspring" during that time-step and P, is the probability that ..4 is deleted during
that time-step, then the expected number of 

"
offspring

" 
of A ispJp, .



Proof: This is immediately established by noting that, when pi and PI are constant,
the expected lifespan of A is I/PI and the expected number of offspring is simply
the number of offspring expected during the expected lifespan, i.e., pi/ Pt. In more
detail, the probability of A surviving for exactly T time-steps is P(T) =

(I - Pt)T- l . PI, and the expected number of " offspring
" 

during that interval is
UA(T) = PiT. Thus, the expected number of "offspring

" 
during A

's lifespan is

ET - 1 p(T) Ila(T) = P1Pt ET - l T(I - Pt)T
- l.

But ET - l T(I - Pt)T- J converges to (I/P2)1 (as may be easily verified by taking
the derivative of both sides of the identity (1/ 1 - x) = I + x + ,xl + . . . ).
Therefore

ET - IP(T) UA(T) = Pi/P2. Q.E.D.

(IJ.l ,/ El 'lJ.l ,,)/ ( I / M ) = IJ.l ,/ (El 'lJ.l " / M) = IJ.l '/ P,.

IJ.1'/ D, can be looked upon as a " normalized" payoff, the " use fulness" of ai being
measured relative to the average performance of the other members in the population

. With this arrangement the expected number of offspring of A" is greater than I

just in case A" 's performance is above average. Since p, is not stationary for plans
1" E: <RI, the probability PI does not in fact remain constant (though, over the expected 

lifespan of a structure, it will not often change greatly). If p, increases (as
it will generally with a good plan), then A" will receive fewer offspring than predicted 

by the calculation of PI at the time ai originated. That is, the performance
of A" looks less promising relative to the current average, so trials of ai are curtailed

. If lI, decreases, the opposite effect occurs. Still , the expected number of

offspring varies in direct relation to A" 's relative performance, so that plans in <RI
satisfy the (informal) characterization of reproductive plans.

A slight change in the form of the algorithms in <RI yields a class of algorithms 
<Jl(l wherein a time-step is a "

generation
" 

during which each individual
ai (t) E: CB(t) is replaced, deterministically instead of as an expectation, by IJ."'/ p,
offspring. Thus, for <Jl(l, CB(t + I ) consists of the set of all offspring of the individuals
in CB(t). ( To keep the population level at M individuals a special kind of rounding

Adaptation in Natural and Artificial Systems
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For plans in <Rl the interpretation of this lemma is direct: The probability
of AA being selected to produce an offspring A

' 
during time t is JlA,I E A' P A" where

PA', = Til.Jl. (AA,(t , while the probability of AA being deleted at the end of that
time-step is II M . Hence, if EA'PA" changes negligibly over A A's lifespan, the expected 

number of offspring is
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an integer)

.ac = (Elf . 1 /ls(AA,(t )/ M.

<B' in place of <B.

for modification.

be

Substit Qte
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Algorithms in the class <Rd are closer to some of the " deterministic" models
of mathematical genetics. It is easier, in some respects, to interpret the role of the
population <B(t) in these plans than it is for the strictly sequential, stochastic plans
in {Rl. On the other hand the algorithms in {Rl look more like the " one-point-at-atime

" 
algorithms of numerical analysis and computational mathematics. Though

{Rl and <Rd behave similarly, it is useful to have both in mind, translating from one
to the other as it aids understanding.

For both types of plan the operators brought into play in step 5 are critical
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Substitute <B' in place of <B.

Modify parameters for production
spring" ).

Select an A(t) E: <B(t) for modification.

Determine the operator (11, E: n to be applied to A(t) from
(11, = P(A(t . Then use (11, to produce a new structure A'(t) by
taking a sample of Ct. according to the distribution P, E: <P
selected by (11,.

Store A'(t) in <B'.

(In <H. steps 6 and 7 are amalgamated and the tests in 3 are unnecessary because
exactly one new structure is formed per time-step.)

The next four sections will investigate the role of generalized genetic operators 
in plans of type <H. We will see that <B(t) is used basically as a pool of schemata.

( Recall from chapter 4 that this means that <B(t) acts as a repository for somewhere
between 2' and M . 2' schemata; i .e., it contains instances of this many distinct
schemata.) Past history is recorded in terms of the ranking (number of instances)
of each schema in <B(t), much as discussed at the end of chapterS. From this point
of view crossing-over acts to generate new instances of schemata already in the pool
while simultaneously generating (instances of) new schemata (see section 6.2). In

general a total of 2' schemata will be affected by each crossing-over (see Lemma
6.2.1). Inversion (section 6.3) affects the pool of schemata by changing the linkage
(association) of alleles (attributes) defining various schemata. In combination with

reproduction, the net effect is to increase the linkage of schemata of high rank

in Natural and Artificial Systems
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1t2t3t3.1 Is the time-stepI Ino yest73.2~4,s
16

of a new structure (
" off-

in determining just how past history is stored and exploited. The examination of

specific operators can be expedited by subsuming ml and <Rd in a single overall

diagram. Plans which satisfy this diagram and retain a recognizable variant of the
"
reproduction according to performance

" 
procedures in ml or <Rd will be called

plans of type m.

Set t - 0 and initialize <B.

Observe and store the performances {p~A.{t  for A.{ t) E: <B(t)} .

Increment t by 1 and initialize parameters to begin a new time-step.

completed ?
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(coadapted sets of alleles), making such schemata less subject to decomposition.
Mutation (section 6.4) generally has a background role, supplying new alleles or
new instances of lost alleles. All of this goes on without seriously disturbing the
intrinsic rates of increase {II.U of most schemata instanced in <B(t). Chapter 7
establish es the robustness and intrinsic parallelism of these type <R plans for arbitrary 

string-representable domains Ci.

2 . GENERALIZED GENETIC OPERATORS- CROSSING- OVER

When genetic operators are used with reproductive plans we get a surprisingly
sophisticated set of adaptive plans. Like the rules of a well-constructed game (chess,
go, poker), genetic operators are simply defined but subtle in their consequences.

Our first objective, as with reproductive plans, will be to lift genetic operators 
from their specific biological context to the general (~, 8, x) framework. With

the help of this framework we can then define and investigate rig~rously two
critical advantages (first discussed in chapter 4) confer red by genetic operators:

(i) intrinsic parallelism in the testing and exploitation of schemata, and

(ii ) compact storage and use of the large amounts of information resulting
from prior observations of schemata.

This contrasts with the common view of evolutionary process es as successive
selection of the best of a sequence of variants produced by mutation- a process
which we will see amounts to an enumeration of structures, with its attendant

disadvantages.
The reader should be warned that the generalized operators presented in

the next three sections are idealized to varying degrees. This has been done to

emphasize the basic functions of the operators, at the cost of exploring the complex
(and fascinating) biological mechanism underlying their execution. Even so an

attempt has been made to keep the correspondence close enough to allow ready
translation of the results to the original biological context.

Because it serves well as a paradigm for other genetic operators, we will
look first at "

crossing-over." In biological systems, crossing-over is a process
yielding recombination of alleles via exchange of segments between pairs of chromosomes

. We can lift this process to the level of a general operator on structures

by providing the structures with representations as in chapter 4. As before, for

simplicity, Ci will be taken to be the set of representations. Besides facilitating the

generalization to arbitrary structures this emphasizes the effects of crossing-over
on schemata. Crossing-over proceeds in three steps~



I . Two structures, A = ala2. . . a, and A' = a~a~ . . . a:, are selected

(usually at random) from the current population <B(t). (ai and a~ are
elements of the set of attribute values V. Hence, if Ao is the basic structure 

prior to representation, 8.{Ao) = ai. Again ala2. . . a, abbreviates

(aI, a2, . . . , aI), etc.)
2. A number x is selected from { I , 2, . . . , 1- I } (again at random).
3. Two new structures are formed from A and A I by exchanging the set of

attributes to the right of position x, yielding al . . . a.zO~+ I . . . a: and
I Ial . . . a'zoZ+1 . . . a,.

( To incorporate crossing-over directly into plans of type <R one of the resultant
structures is discarded.)

The quickest way to get a feeling for the role crossing-over plays in adaptation 
is to look at its effect upon schemata. To do this, consider <B(t) as a pool of

schemata (following the suggestions of chapter 4) where the number ME<t) of instances 
of ~ in <B(t) reflects ~

's current " use fulness." The two direct effects of

crossing-over on this pool are:

1. Generation of new instances of schemata already in the pool. E.g.,
A = alai . . . a, is an instance of the schema alai 0 . . . 0 and, after

crossing-over with A I = a~a~. . . af, we have a new instance of
1 I ,

(
. , ~alai 0 . . . 0 , name y alai . . . azDz+I . . . a, assummg a, ~ af lor some

i ~ x). Each new instance of a schema ~ amounts to a new trial of the
random variable corresponding to ~. As such it increases the likelihood
that the observed average performance .4E of the instances of ~ closely
approximates the expectation IJ.E of the random variable ~.

2. Generation of new schemata (i .e. schemata having neither A nor A I as
an instance). E.g., after the crossing-over of A with A' the schema
0 . . . 0 azD~+ 1 0 . . . 0 has an instance, though neither A nor A I are
instances of it (if az ~ a~ or az+l ~ a~+ I). Thus 0 . . . 0 azD~+ 1 D . . . 0
will receive its first trial with the instance alai . . . azD~+ 1 . . . a~, unless
the schema has previously been introduced to the pool from another
source.

Adaptation in Natural and Artificial Systems
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~ / - f - - . . .
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In other words each of the 2' schemata instanced by the resultant arises from a

potentially useful manipulation of schemata already in the pool (those instanced

by A and A '
). Note also that, even when / is only 20, a single operation is processing

over a million schemata!
We can gain additional insight concerning crossing-over by considering its

effect, over an extended interval, on the whole pool of schemata in <B(t). In the
absence of reproduction and other operators, crossing-over generates a kind of
diffusion from the pool to schemata not represented therein. More precisely,

Reproductive Plans and Genetic Operators
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Once again f (x) of Figure 10 provides a simple illustration . New instances of a
schema such as I 0 0 . . . 0 increase confidence that the observed average
.4100 . . . 0 of evaluations of f (x) for selected x E: I 0 0 . . . 0 approach es

IJ.Ioo . . . o . At the same time an instance of some previously untried schema, say
1100 . . . 0 , allows a plan of type <R to exploit the new schema (by giving it high
rank) if it is above average.

In modifying the pool of schemata, crossing-over gains tremendous power
from its intrinsic parallelism. Each crossing-over affects great numbers of schemata,
as established by the following :

LEMMA 6.2.1: Let A = ala2 . . . a, and A ' = a~a~ . . . a~ differ in attribute values
at x ' 

positions to the left of x + 1 and x " 
positions to the right of x. Then either

resultant of a single crossing-over of A with A' at x will be an instance of 2' - 2l- s' -

2l- ,z" + 2l- (,z'+s" ) " new" schemata (instanced by neither A nor A '
). It will also be a

new instance of 2l- ,z' + 2l- s" - 2l- (,z'+s" ) schemata a/ready instanced by A or A '

(assuming x
' ~ 0 and x " ~ 0).

Proof: After crossing-over, any schema which is defined at one or more of the x '

positions on the left and at one or more of the x " 
positions on the right will have

neither A nor A ' as an instance. On the left there are 2%' - I ways of combining
one or more of the x ' attribute values with " D 's" ; similarly there are 2%" - I

ways on the right ; at the other / - (x
' + x "

) positions either an attribute value or
a " 0 " is allowable without restriction. Thus there are (2

%' - 1)(2
%" - 1)(2' - (s' +,z" 

= 2' - 2' - s' - 2' - s" + 2' - (s' +s" ) " new" schemata of which the resultant is
an instance.

If x ' > 0 and x " > 0 the remainder of the 2' schemata instanced by the
resultant, i.e., 2' - s' + 2' - s" - 2' - (s' +,z"), will have a new instance (though they
are not " new" schemata) since the resultant must differ by at least one attribute
value from both A and A ' . Q.E.D.
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Proof: Let Sa and s~2 be the resultants of a crossing-over of ~1 and ~2 at point x.
Then a crossing-over of the resultantss~l and s~2 at point x will bring back a and
~2 (i .e., as may be determined directly from its definition, the crossover operator
is self-dual).

Letting P(~) designate the proportion of (instances of) ~ in <B(t), we have
P(a) P(~2) as the probability that a will be paired with ~2 for crossing-over (under
uniform random pairing). Thus the probability that s~l, s~2 arise from acrossing-
over of b , ~2 at x is P(~l) P(&) P s, where Psis the probability that crossover takes
place at x .

Similarly the probability of a reversion (a , ~2 arising from sa, s~2 by crossover 
at x) is P(sa)P(S&) P s.

Considering only the effects of crossing-over at x on the pairs ~1, ~2 and
sa, s~2, there will be no changes in their probabilities of occurrence if

P(a>P<&) P s = P(sa) P(s~2) P s.

If (and only if ) such an equation holds for every x and every ordered quadruple
(~1' ~2, sa, S~2) will there be no change in the probability of occurrence of any schema.

100 in Natural and Artificial
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repeated application of crossing-over to the individuals in <B(t) yields a "
steady

state" wherein, at any instant (time-step), each schema ~ has a well-defined probability 
of occurrence X(~). It follows that the expected interval between occurrences

of ~ will be just the reciprocal l / X(~) of this probability . Thus, if the proportions
of schemata in <B(t) are not far removed from steady-state values, I / X(~) is area -
sonable measure of the expected time to an occurrence of ~. Of course, no actively
adapting system (natural or artificial) following a plan of type <R will even begin
to approach the steady state. Under such a plan, the steady state is continually" modulated" by changes in the number of instances of various ~ resulting from
reproduction according to .4E. In effect, with reproduction added, I/ X(~) is a
continually changing 

"
background

" 
testing rate, giving at any time a rough estimate 

of the expected time to first occurrence of ~. These ideas, together with values
for X(~) are established rigorously by

LEMMA 6.2.2: Repeated crossing-over (with uniform random pairing of individuals
and in the absence of other operators) in a population <B(t) yields a " steady state"

(i.e., a fixed point of the stochastic transformation) in which each schema ~ occurs
with probability X(~) = Nip(j~) where P(j~) is the overall proportion in <B(t) of the
allele occurring at the jth position of ~ (if a " 0 " occurs at the jtb position take
P(j~) = 1).



To balance all of these equations simultaneously, note first that the set of
alleles {;~, jft } is identical to the set of alleles {j~, ift } since, after crossing-over,
the same alleles are still present at the jth positions (though to the right of x they
will have been interchanged). Hence

P( /;t)P(.;Et) = P(j~)P(jEt).

Thus, if P(f) = nip(jf ) for each f , as defined in the statement of the lemma, we
have for any x, ~, ft , s~, sEt,

P(~)P(Et) = (nip(,-a)Xn;p(~   = Nip(;~)p(;ft)
= n ;p(j~)p(jEt) = ( nip(j~)Xn;p(jEt 
= P(s~)P(sft).

In other words, each of the equations will be balanced if the schemata occur with
probabilities ~(f) = lljP (;f); it is also clear that any departure from these prob-
abilities will unbalance the equations in such a way as to result in changes in some
of the probabilities of occurrence. Thus, the assignment ~(f) is the unique 

"steady
state" (fixed point) of the crossover operator. Q.E.D.

We can see from the proof of this lemma that a kind of "pressure
" toward

the steady state

4 = P(~)P(Et) - P(s~)P(sft)

can be defined for each quadruple ~, ft , s~, sEt. If 4 ~ 0 for any quadruple then
probabilities of occurrence will start changing and there will be a diffusion toward
the resultants a'~, Sft (4 > 0) or the precursors ~, ft (4 < 0). For example, if
P(~) > ~(~) while the other components remain at their steady-state values, there
will be a "movement to the right

" - a tendency to increase the probabilities of the
result. The following heuristic argument gives some idea of the rate of approach
to steady state from such departures:

A given individual has probability 2/ M of being involved in a crossover
when <B(t) contains M individuals (since two individuals are involved in each
application of the crossover operator). Thus in N trials a given individual can
expect to undergo 2N / M crossing-overs. When N is in the vicinity of / M / 2, where
I is the length of individual representations, each individual in the population can
be expected to have undergone independent crossing-over at almost every position.
As a result even extreme departures from steady state should be much reduced in
IM/ 2 trials.

Reproductive Plans and Genetic Operators 101
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The reduction to steady state does not, however, proceed uniformly with

respect to all schemata because the crossover operator induces a linkage phenomenon
. Simply stated, linkage arises because a schema is less likely to be affected by

crossover if its defining positions are close together. In more detail, let ~
's defining

positions (those not having a " 0 "
) be 4 < is < . . . < i A and let the length of ~ be

defined as I(~) = (i A - 4). Then the probability of the crossover falling somewhere
in ~, once an instance of ~ has been selected for crossing-over, is just I(~)/ (/ - I ).
E.g., if A = alasaa D4a6. . . a, is selected for crossing-over, the probability of the
crossover point x falling within ~ = 0 as 00 a6 0 . . . 0 is 3/ (1 - I ). Clearly
the smaller the length of a schema, the less likely it is to be affected by crossing-

over. Thus, the smaller the length of ~, the more slowly will a departure from ~(~)
be reduced.

Alleles defining a schema ~ of small length /(~) which exhibits above-average
performance will be tried ever more frequently as a unit under an adaptive plan of

type <R. I .e., the alleles will be associated and tried accordingly. More modifications
and tests of such schemata will be tried, and many of these trials will be of a variety
of combinations with other similarly favored schemata defined at other positions.
In effect such schemata serve as provisional structural elements or primitives. This
observation is made precise by the following simple but important

THEOREM 6.2.3: Consider a reproductive plan 0/ type CR using only the simple
crossover operator- defined as a crossover operator with both precursors, and the

single crossover point, determined by Wliform random selection. Then the expected
proportion 0/ each schema represented in <B(t) changes in one generation/ romP(F., t) to
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P(~, t + I) ~ [ I - Pc.(l(~)/ (l - 1 ( 1 - P(~, t ](.4t<t)/ .4(t P(~, I),

where Pc is the proportion of individuals undergoing crossover during a generation
and .4(t) is the observed average performance of <B(t). (The unit of time here--agen-
eration- is the expected time for an individual to produce its offspring.)

Proof: During one generation each individual A E: <B(t) can be expected to produce
p..(A)/ .4(t) offspring under a reproductive plan of type <R. The total expected offspring 

of the set of instances <Bt<t) of ~ in <B(t) is thus given by

ME(t) = ( EA E:CBI<I)p.. (A / .4(t) = .4~t)M t<t)/ .4(t).

If Pc is the proportion of <B(t) selected to undergo crossover and l(~) is the
length of ~, then a proportion Pcl(~)/ (l - I) of the Mkt ) offspring will have a crossover 

falling within the definin.g positions of ~. When an instance of ~ is crossed with
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another instance of ~ the result will also be an instance of ~; otherwise the resultant
may not be an instance of ~. Since the probability of ~ crossing with ~ is P(~, t) no
more than a proportion ( I - P(~, t Pc/(~)/ (/ - I ) of the modified offspring of ~
can be expected to be instances of schemata other than ~; the remainder
[1 - (1 - P(~, t Pc/(~)/ (/ - 1)] will be instances of ~.

That is,

P(~, t + 1) = ME<t + 1)/ M
~ [1 - (1 - P(~, t Pcl(~)/ (1 - 1)] Mf(t)/ M
= [1 - Pc.(l(~)/ (l - 1 ( 1 - P(~, t ] (PE<t)/ .4(t P( ~, I).

(It should be noted that crossing-over applied to precursors which are not instances
of ~ may yield a resultant which is an instance of~. Thus ME<t + 1) may be enlarged,
by a small amount usually, from sources outside BE<t); this of course only
strengthens the above bound.) Q.E.D.

From this result we see that the proportion of (instances of) a schema ~ will
increase as long as

[1 - Pc' (l(~)/ (/ - 1 ( 1 - P(~, t ](P-E<t)/ .4(t  ~ 1

or, using the fact that 1/ (1 - c) ~ 1 + c for c ~ 1,

P-E<t) ~ [1 + Pc.(l(~)/ (/ - 1 ( 1 - P(~, t ] .4(t).

Since the worst case occurs when Pc = 1 (every individual in <B(t) subjected to
crossing-over) and P(~, t) is small, we see that ~ will always increase its representation 

if

P-E<t) ~ [1 + (l(~)/ (/ - 1 ].4(t).

Since 1/ / ~ 1(~)/ (/ - 1) ~ 1, short schemata need perform only slightly above
average to increase, while the longest schemata (if they occur in small proportion)
may have to exhibit a performance twice the population average to increase.

Theorem 6.2.3 provides the first evidence of the intrinsic parallelism of
genetic plans. Each schema represented in the population <B(t) increases or decreases 

according to the above formulation independently of what is happening to
other schemata in the population. The proportion of each schema is essentially
determined by its average performance in relation to the population average. Thus
we see the evolution of a ranking of schemata based on observed performance, as
suggested at the end of chapter 4 and amplified in section 5.4. Crossing-over serves



this adaptive process by continually introducing new schemata for trial , while

testing extant schemata in new contexts- all this without much disturbing the

ranking process (except for the longer schemata). Moreover, crossing-over makes
it possible for the schemata represented in <B(t) to move automatically to appropriate 

ran kings through the application of the genetic plan to individual structures
from (t. As a result this very large number of rankings is compactly stored in a
selected, relatively small population of individuals (exploiting the possibility suggested 

at the end of chapter 4).

By extending the pressure analogy introduced just before Theorem 6.2.3
we can gain a global view of the interaction of reproduction and crossover. Whenever 

some schema ~ exhibits better-than-average performance, reproduction introduces 
"

pressures
" ~ > 0, disturbing the steady state which would result from

the action of the crossover operator alone. The disturbances both shift the steady-

state values X(~
'
) for large numbers of schemata, because of changes in the proportions 

P(j~) of the alleles j~, 1 ~ j ~ I, and also introduce local transitory departures
because P(~) > X(~). Because all schemata are being affected simultaneously, and
because reproduction affects them according to observed performance, we have
a diffusion " outward" from schemata currently represented in <B(t), a diffusion
which proceeds rapidly in the vicinity of schemata exhibiting above-average performance

. This is closely analogous to a gas diffusing from some central location

through a medium of varying porosity, where above-average porosity is the

analogue of above-average performance. The gas will exhibit a quickened rate of
diffusion wherever it encounters a region of higher porosity, rapidly saturating the
whole region. All the while it slowly but steadily infuses enclaves of low porosity.
In effect, high porosity is exploited wherever it occurs, without prejudicing eventual

penetration into regions of lower porosity. As a result the overall rate of penetration 
is much more determined by regions of high porosity and their proximity to

each other than by average porosity.
Restated in terms of schemata, regions of higher porosity correspond to

sets of schemata of above-average performance which can be produced from each
other by relatively few crossovers. Thus, following the analogy, local optima in

performance are thoroughly explored in an intrinsically parallel fashion. At the
same time the genetic plan does not get entrapped by settling on some local optimum
when further improvements are possible. Instead all observed regions of high
performance are exploited without significantly slowing the overall search for
better optima. Here we begin to see in a more precise context the powers of generalized 

genetic plans, powers first suggested in the specific context of section 1.4.
One final point : Plans of type <R measure a schema's performance relative
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Fig. 12. Some effects of a type <R plan on a one- dimension a! function

( inte Qer approx. to f(x))

to the current average performance of the population. Thus, as time elapses,
schemata must meet progressively higher criteria to attain (or retain) ~ high ranking

. ( This is, again, somewhat analogous to the slowed rate of occupation of a gas
as it occupies successively larger volumes, higher porosity being .required for the
same occupation rate.) As a result, older schemata associated with local optima
steadily lo.se ranking as better optima are located (unless the older schemata are
components of the new schemata), so that capacity is not wasted on superseded
regions.

The overall results of this section can be illustrated by elaborating the
comment (on page 99) aboutf (x) of Figure 10. Using 6 bits of accuracy (/ = 6),
assumeAl = .001100, AI = .<XX>IOO, Aa = .101<XX>, A4 = .110011, and A, = .011100
have been chosen at random to form <B(O). ( The size of <B(O), M = 5, is of course
much too small to be realistic even for an algorithm for artificial systems, but it is
adequate to illustrate the effects of crossing-over.) Looking at Figure 10 we see
that III = f (AJ = f (.OOIIOO) ~ i . Similarly, III = f (AI) ~ Ii , lIa~ 2, 14~ If ,
and /1.6 ~ i . For these points .a ~ I . Accordingly Al will produce 1I1/ .a ~ (i )/ (I ) = f
offspring- i .e., Al has about 2 chances out of 5 of being reproduced. Similarly AI
will have 112/ .a ~ ! offspring; and so on. Figure 12 shows a typical outcome for a
plan of type <R using only reproduction and simple crossover on <B(O). ( Thus, for
the reproduction of AI, a trial was made of a random variable yielding I with
probability f and 0 with probability i - the outcome of the trial was 0.) The crossing-
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over of At with one of the replicates of Aa at intersection @ serves both to generate
another (different) instance of 100 . . . 0 , and to generate a first instance of
I 0 0 0 . . . D . Clearly such a crossover becomes increasingly likely as instances
of 100 . . . 0 and 0000 . . . 0 proliferate. (Points from these schemata are
likely to exhibit above-average values and hence will have more offspring on the
average.) Similar effects will be happening to all other schemata instanced in (B(O),
(B(I ), etc. Figure 13 displays a more elaborate example of these effects.

3 . GENERALIZED GENE TIC OPERATORS- INVERSION

Crossover, by inducing a linkage between alleles, offers the possibility of an adaptable 
net of associations between alleles. By changing the length of a schema we

modify the probability of its being affected by crossover; instances of a shorter
schema are less likely to have the defining alleles separated by crossover. In consequence

, under a plan of type <R, instances of the shorter schema proliferate more
rapidly. The long-term effect is a selective increase in the linkage of various schemata
exhibiting above-average performance. The corresponding alleles (attributes) are
more frequently found in association (on the same string) in successive generations.
Since schemata are defined for any string-representable domain (1, such an adaptable 

network of associations can be induced for any such domain by introducing
an appropriate operator for changing linkage.

The linkage between the alleles defining a schema can be altered only by
changing the length of the schema. That is, the positions of the alleles defining the
schema (particularly the end-points) must be modifiable. However, up to this point,
the functional meaning of an allele has been determined by its position. The allele
a, at the ith position of the representation of the structure A is the value a,(A) of
the ith detector when A is its argument. Thus, if linkage is to be changed, an allele
must have the same functional interpretation in any position (as is the case generally 

in genetics). This in turn requires a change in the method of representation.
The simplest way to change the method of representation formally is to

assign each allele an index indicating the detector with which it is associated. That
is, each allele is now taken to be a pair (i, a) indicating that a = a,(A). It follows
that a structure A can be represented by any permutation of

 I , ai(A , (2, at(A , . . . , (I, a,(A ).

For example,

 3, aa(A , (2, at(A , ( I , ai(A , (4, a4(A , . . . , (I, a,(a )



would still represent A. Moreover, the schema (1, 81(A  0 0 (4, 8.(A  0 . . . 0
designates the same subset of (t as the schema 00 (1, 81(A ( 4, 8.(A  0 . . . 0 ,
though the latter is more tightly linked than the former. To define this enlarged set
of representations precisely, let V.. be redefined to be the set of pairs VI = {(i, v),
for all v E: Vi} and let O't indicate the set of all permutations of the string (or
I-tuple) 0' . Then (tt = (n : - I Vf>t is the enlarged set of all representations of elements 

in (t . The set of schemata is enlarged accordingly to Z = (n ~ - 1 { V~ U { O} } )t .
The object now is to find an operator which when used with crossover and

reproduction will tend to replace an above-average schema Fa with a permutation
Fa' E: F.f of shorter length I(Fa

'
) < I(Fa). The genetic operator which fits this specification 

is inversion. It works by producing a crossover within a single structure as
follows:

I . A structure A = ala! . . . Q, is selected (usually at random) from the
current population <B(t) (where each ai, i = I , . . . , /, now represents a
pair U, v) E: Vi).

2. Two numbers, x~ and X~, are selected from {O, 1, 2, . . . , / + I} (again at
random) and are used to define Xl = min {x~, x~} and X! = max {x~, x~} .

3. A new structure is formed from A by inverting the segment which lies
to the right of position Xl and to the left of position X!, yielding

I I .
al at .

. - . a-
Q,

It is clear that a single inversion can bring previously widely separated alleles into
close proximity , viz ., QZI and Qz, - l in the description . It is also clear that any possible 

permutation of the representation can be produced by an appropriate sequence
of inversions . (More technically , the inversions (Xl = 0, XI = 2), (Xl = 1, XI = 3),
. . . , (Xl = 1 - 1, XI = 1 + 1) are sufficient to generate the group of all permutations 

of order I.) The effect of the inversion operator upon (the instances of ) a
schema ~ is to randomly produce permutations ~

' of ~ with varying lengths . Though
inversion alters the linkage of schemata, it does not alter the subsets of d which

they designate. Every permutation ~
' of ~ designates the same subset in the set of

(original ) structures d (since the same set of detector values occurs in both ~ and

~
'
). The lengths of many schemata are affected simultaneously by a single inversion

, so this operator too exhibits intrinsic parallelism . As with crossover , schemata
of shorter lengths are less frequently affected by the inversion operator .
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where the second factor comes from the fact that an inversion wholly inside a
schema does not affect its length. Hence, if I(~) = b ./(~

'
) < 1/ 4, b > I , for two

schemata ~ and ~
'
, ~ is almost b times as likely to have its length altered.

One new restriction must be made upon the crossover operator when it is
used in combination with inversion. Because of inversion, two I-tupies in <B(t) will
not always have the alleles for a given detector at the same position. Crossing-over
can thus produce resultants with two (or more) alleles for a given detector, or
resultants with no alleles for a given detector. For example, crossing
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Let us define the simple inversion operator as an inversion with both the
structure selected for inversion and the two points Xl and XI determined by uniform
random selection. To see the combined effect of simple inversion, simple crossover,
and reproduction we need only refer to Theorem 6.2.3. The theorem guarantees
that, if inversion has produced a permutation ~

' of ~ where l(~
'
) < l(~), then the

proportion of ~' in <B(t) increases more rapidly than the proportion of ~. For example
, if Pc = 1 and P(~, t), P(~

'
, t)   1 we can expect

P(~
'
, t + 1) =  / - 1 - l(~

'
 / (/ - 1 - /(~ XP( ~', t)/ P( ~, t P(~, t + 1)

since IJ.f = IJ.f'. Or, after T generations

P(~
'
, t + T) =  / - 1 - l(~

'
 / (/ - 1 - /(~ )T(P(~

'
, t)/ P(~, t P (~, t + T) .

As a result, any time inversion yields a shorter permutation ~
' of a schema ~ of

above-average performance, that permutation will rapidly predominate. Because
the rate of reproduction of a schema is dependent upon its length, there is a constant 

"
pressure

" toward tighter linkage of the defining alleles of schemata. Because

only schemata exhibiting above-average performance occupy substantial fractions
of <B(t), the "

pressure
" is only important for such schemata. Inversion, by re-

peatedly varying the linkage, gives this pressure a chance to act.
A great many schemata are affected by each inversion, but tightly linked

schemata are much less likely to be affected than loosely linked ones, so that variations 
are primarily in the loosely linked schemata. That is, changes in linkage are

concentrated in the loosely linked (long) schemata of above-average performance,
where changes are desirable. More precisely, if P, is the proportion of the population 

undergoing inversion in a given generation, then the probability of a schema
~ of length /(~) being affected is

2P, .(/(~)/ (/ - 1 .(1 - /(~)/ (/ - 1  = 2P, [/(~)/ (/ - 1) - (/(~)/ (/ - 1 1] ,
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 I , at), (2, at), (3, a,  with  I , a~), (3, a' ), (2, a~ 

at x = 2 yields  I , oJ, (2, at), (2, a~  as one of the resultants. The simplest way to
remedy this is to permit crossing-over only between homologous representations,
where two representations are defined to be homologous if the detector indices
(first number of each pair in the representation) are in the same order. For example,
 I , at), (3, a,), (2, at  is homologous to  I , a~), (3, a' ), (2, a~ , even ifai ~ a J for
some or allj , while  I , oJ, (2, at), (3, a,  is not homologous to either of the foregoing

. This remedy requires that the probability of inversion PI be small so that
there will exist substantial homologous sub populations for the crossover operator
to act upon. A second alternative (with a biological precedent) would be to tem-

porarily make the second of the I-tupies chosen for crossover homologous to the
first by reordering it , returning it to the population in its original order after the
resultants of the crossing-over are formed. Under this alternative inversion can be
unrestricted, i.e., PI can be as large as desired.

Summing up: Inversion, in combination with reproduction and crossover,
selectively increases the linkage (decreases the length) of schemata exhibiting
above-average performance, and it does this in an intrinsically parallel fashion.

4 . GENERALIZED GENETIC OPE RAT O Rs - MUTATION

Though mutation is one of the most familiar of the genetic operators, its role in
adaptation is frequently misinterpreted. In genetics mutation is a process wherein
one allele of a gene is randomly replaced by (or modified to) another to yield a new
structure. Generally there is a small probability of mutation at each gene in the
structure. In the formal framework this means that, each structure A = alai . . . a,
in the population <B(t), is operated upon as follows:

I . The positions XI, X2, . . . , x,. to undergo mutation are determined (by a
random process where each position has a small probability of undergoing 

mutation, independently of what happens at other positions).
2 A ' , , .. new structure A = al . . . a'%I- la%la'%I+1 . . . ~ - la~ +1 . . . a,. IS

formed where a~ is drawn at random from the range V, of the detector
8, corresponding to position XI, each element in V, being an equilikely
candidate; a~, . . . , a~, are determined in the same way.

If IPM is the probability of mutation at each position, then the probability of h
mutations in a single representation is given by the Poisson distribution with
parameter IPM.



If successive populations are produced by mutation alone (without reproduction
), the result is a random sequence of structures drawn from (t . The process

is evidently enumerative (see section 1.5) since the order in which structures are

generated is unaffected by the observed performances of the structures. Even a

reproductive plan of type <R using only the mutation operator is little more than
an enumerative plan retaining the best structure encountered to each point in time.
That is, if IPM is small enough, reproduction will assure that structures with above-

average performance predominate in successive generations thus retaining the
better structures generated by the mutation operator. There is actually a bit of

history dependence since, with IPM small, the most likely structures resulting from
mutation will differ by one or two alleles from the current " best" structures. Thus,
the sequence of tests is not entirely random, though the dependence on observations 

is very unsophisticated compared to that generated by crossing-over.
Since enumerative plans are, at best, useful in very limited situations, it

would seem that mutation's primary role is not one of generating new structures
for trial - a role very efficiently filled by crossing-over. It might be objected that

crossing-over cannot generate all possible combinations of alleles unless the

population <B(t) contains at least one copy of every allele. However this is not a
burdensome requirement. If k is the maximum number of alleles for any detector,
then as few as k strings will suffice to provide a copy of each allele. (E.g., if

Vi = {O, I} , i = I , . . . , I, then the two I-tupies 00 . . . 0 and II . . . I suffice.)
There is nevertheless a difficulty which is remedled by mutation. In a population
that is small relative to (t, there is always the possibility that the last copy of some

will be eliminated during the deletion phase of a plan of type <R. Alleles which
occur in structures of below-average performance are particularly susceptible;

yet at some later stage these same alleles may be required in a combination necessary 
for further improvement. Stated another way, the lost allele may be necessary

for the adaptive plan to escape a false peak. Once an allele is lost from a population,
the crossover operator has no way of reintroducing it . Here, then, is a role uniquely
filled by mutation, because it assures that no allele permanently disappears from
the population.

Mutation introduces an additional source of loss for schemata undergoing
reproduction. If the probability of mutation at each position is less than or equal
to IPM, then a schema F. defined on /O(F.) positions can expect to undergo one or
more mutations with probability
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COROLLARY 6.4.1: Under a reproductive plan of type <R using the
over operator and mutation , the expected proportion of each schema

<B(t) changes in one generation from P(~, t) to

simple
represented in

P(~, t + 1) ~ [ 1 - Pc .(l (~)/ (l - 1 ( 1 - P(~, t ] .( 1 - IPM)'
O(t) 

( ~ ) 
P(~, t).

Unlike the case for crossing-over, mutation is a constant source of loss for a schema ~,
with IPM fixed , even when P(~, t) = 1. In effect it is a " disturbance" introduced to
prevent entrapment on a false peak .

Summing up: Mutation is a "
background

" 
operator, assuring that the

crossover operator has a full range of alleles so that the adaptive plan is not trapped
on local optima. (Of course if there are many possible alleles- e .g., if we consider
a great many variants of the nucleotide sequences defining a given gene- then even
a large population will not contain all variants. Then mutation serves an enumerative 

function, producing alleles not previously tried.)

The next chapter will establish that the three genetic operators just described are
adequate for a robust and general purpose set of adaptive plans, with one irnpor-
tant reservation which will be discussed at the end of this section. However, there
are additional operators which can rnake significant contributions to efficiency in
rnore cornplex situations. Chief arnong these is the dorninance-change operator
which (arnong other things) helps to control losses resulting frorn rnutation. Because
losses resulting frorn rnutation, for given IPM, do not dirninish as scherna ~ gains
high rank, a constant " load" is placed on the adaptive plan by the randorn rnove-
rnents away frorn optirnal configurations. For this reason it is desirable to keep the
rnutation rate IPM as low as possible consistent with rnutation's role of supplying
rnissing alleles. In particular, if the rate of disappearance of alleles can be lowered
without affecting the efficiency of the adaptive plan, then the rnutation rate can be
proportionally lower. Since the rnain cause of disappearance of alleles is sustained
below-average perforrnance, the rate of loss can be reduced by shielding such

Plans and Genetic Operators
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5. FURTHER INCREASES IN POWER

which is approximately equal to /O(~) . IPM when IPM is small relative to 1/ /. Thus,
adding mutation to the list of operators in Theorem 6.2.3, we get
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alleles from continued testing
such shielding.

To introduce dominance,
once again. Pairs of alleles will be
involves a pair of homologous I-tupies. The object is to let some of the extra alleles
be carried along with the others in an unexpressed form, forming a kind of reservoir 

of protected alleles. Precisely, then, the set of representations will be extended
to the set of all permutations of homologous pairs d~ = (n ~- l (Vl)2)t . Since there
is now a pair of alleles at each position there is no longer a direct correspondence
between the detector values for a structure A and the representation of A.

Let (A
'
, A"

) be a homologous pair of I-tupies drawn from d~ and let
,(A'

, A"
) = d/ h, v'

), (h, v"
  where v'

, v" E: Via, designate the pair of alleles

occurring at the ith position of the I-tupies. The most direct way to relate this pair
of I-tupies to a structure is to designate either v' or else v" as the value of detector h,
ignoring the other allele. The allele so designated will be called dominant, the other
recessive. For each position i, this designation should be completely determined by
information available in the pair (A

', A"
). Formally , for each i there should be a

dominance map di :d~ - + d such that, for each (A
'
, A

"
) E: d~, d.{A', A"

) is either
the first allele or the second allele of .(A ', A

"
). It should be emphasized that in this

general form, the determination of the dominant allele in .(A', A"
) may depend

upon the whole context (i .e., the other alleles in (A
'
, A

"
 . ( This corresponds closely

with Fisher's [ 1937, Chapter III ] theory of dominance.) A simpler approach makes
the determination dependent only upon the pair ,(A '

, A
"
) itself. Thus, for each h,

where i(h) is the index of the pair of alleles in (A
'
, A

"
) for detector h.

A particularly interesting example of the simpler dominance map, useful
for binary (two allele) codings (see chapter 4), can be constructed as follows. Let

VA = { I , 10, O} , where 10 is to be recessive whenever it is paired with 0, and let the

mapping dA: v: - + VA be given by the following table:
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d~: J1-+ VA such that d~v', v") E: {v', v"}
and

8A,(A) = di(A,)(A', A" )

against the environment. Dominance provides just

we must extend the method of representation
used for each detector, so that a representation

di:<l& -. <l such that for .(A', A" ) =  h, v'), (h, v"  , d.(A', A" ) = d,.(v', v" ).

Accordingly (A', A" ) represents the structure A E: <l for which
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0 0
0 10
0 1

0
0
1

10
10
10

0
10
1

0
1
1

1
1
1

0
10
1

1
1
1

Then, for example, the representation

A' = 
~~~

'
I?

)
~ 

(
~~: 

I
~~

, 
~~

'
I~~

' 
~~

'
I~~?A" =  I , 10), (3, 0), (2, 1), (4, 0 

maps to the (un permuted) representation

 1, 0), (2, I ), (3, 0), (4, I   = 0101.

That is, (A
'
, A

"
) represents the structure A E: (t; for which

8t(A) = 0, 8tCA) = I , aa(A) = 0, 8~A) = I .

In order to examine the effect of dominance on genetic plans, the simple
crossover operator must be extended to this new type of representation (inversion
takes place, as before, on the individual /-tupies in the homologous pairs). To cross
the homologous pair (A

'
, A

"
) with the pair (A

" ', A" "
), the procedure will be to

cross A' with A' " with probability Pc, and then select one of the resultants at
random. Similarly, A" is crossed with A" " and, again, one of the resultants is
selected at random. The two selected resultants are then paired to yield one of the
outcomes of the extended operation; the other two resultants are paired to yield
the other outcome (if it is to be used).

To see the effect of dominance on the mutation rate, let us consider the case
of two alleles VI, Vo at position i, where VI is dominant and Vo is recessive. There are
four distinct pairs of these alleles which can occur at position i in (A

'
, A

"
), namely

{(VI, VI), (Vi, Vo), (vo, v J , (Vo, t'o)} , and only one of these maps to VI under the dominance 

map. That is, in the pairs (VI, VI) and (Vo, v J the allele Vo is shielded or stored
without test (because the representation maps to one where only allele VI is present).
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Stated another way, allele Vo is only expressed or tested when it occurs in the pair
(vo, VI). Let us assume that, on the average, the adaptive plan is to provide at least
one occurrence of each allele in every T generations. That is, P( Vo, t) ~ 1/ MT must
be assured. In the absence of dominance (using the earlier single I-tuple representation

), let the reproduction rate of 1'0 (corrected for operator losses) be (1 - E(vo 
exclusive of additions resulting from mutation. Then

as a close approximation to the mutation rate required without dominance . (In the
extreme case that alleles Vo are deleted whenever they are tested, IPM = II MT .)
With dominance , the allele Vo is subject to selection only when the pair (Vo, Vo)
occurs. Under crossover, as extended to homologous pairs , the pair (vo, vo) occurs
with probability PI ( Vo, I). The loss from selection then is

2E{t'o) P2("o, t)M

the factor 2 occurring because 2 copies of Vo are lost each time the pair (vo, vo) is
deleted. Again the gains from mutation are

IPM.( I - P(Vo, t)2M - IPMP(Vo, t 2M

where the factor 2 occurs because the M homologous pairs are 2M I-tupies . Thus

P(Vo, t + I ) = P(vo, t) - 2E{Vo)P2(vo, t) + IPM.2( 1 - 2P(vo, I 

for the homologous pairs with dominance . Setting P(Vo, t) = P(vo, t + I ) = II MT
as before , and solving, we get

IPM = E{vo)/  1 - 21 MT) ( M1' ) 2).

We have thus established
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P(Vo, t + I) = (I - E(Vo P(Vo, t) + IPM( I - P(Vo, t  - IPMP(Vo, I).

To keep P(vo, t) ~ 1/ MT for all t, IPM must be at least large enough to maintain
the steady state P(Vo, t) = P(Vo, t + I) = 1/ MT. That is,

1/ MT = (I - E(Vo / MT + IPM( I - 2/ MT)
or

IPM = E(Vo)/  1 - 2/ MT) .MT) .

If MT is at a1llarge (as it will be for all cases of interest) this reduces to

IPM ~ E(Vo)/ MT
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LEMMA 6.5.1: To assure that, at all times, each allele a occurs with probability
P(a, t) ~ 1/ MT , the mutation rate IPM must be ~ 1/ MTin the absence of dominance,
but only ~ (1/ MT )2 with dominance.

For example, to sustain an average density of at least lo- a for every allele, the
mutation rate would have to be lo- a without dominance, but only lQ-6 with
dominance.

It should be noted that, with dominance, P(Vo, t) is no longer the expected
testing rate. Although dominance allows the constant mutation load to be reduced,
while maintaining a given proportion of disfavored alleles as a reserve, the testing
rate of the reserved alleles is only p2(Vo, t) not P(Vo, t). This reservoir is only released
through a change in dominance.

Dominance change in the general case di : a~ - + a, i = I , . . . , I, occurs
simply through a change in context, so that dominance is directly subject to adaptation 

by selection of appropriate contexts. In the more restricted case dAn - + VA
a special operator is required. The example using VA = { I , 10, O} will serve to
illustrate the process. The basic idea will be to replace some or all occurrences of
I by 10, and vice versa, in an I-tuple. Thus the previous recessives become dominant
and vice versa, this change being transmitted to all progeny of the I-tuple. A simple
way to do this is to designate a special inversion operator which not only inverts a
segment but carries out the replacement in the inverted segment. (In genetics,
there is a distant analogue in the effects produced by changes of context when a
region is inverted, but it should not be taken literally .) Thus for the dominance-

change inversion operator, step 3, p.l O7 of the inversion operator is followed by

inverted segment each occurrence of 1 is replaced by 10 and vice

With this operator the defining alleles of an arbitrary schema can be " put in
reserve" in a single operation to be " released" later, again in a single operation.

Dominance provides a reserved status not only for alleles but, more importantly
, for schemata. A useful schema ~l defined on many positions may be the

result of an extensive search. As such it represents a considerable fragment of the
adaptive plan

's history, embodying important adaptations. When it is superseded
by a schema ~2 exhibiting better performance,

. it is important that ~l not be discarded 
until it is established that ~2 is useful over the same range of contexts as ~l .

~2
'S performance advantage may be temporary or restricted in some way, or ~l may

be useful again in some context engendered by ~2. In any case it is useful to retain

Plans and Genetic Operators lIS
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F.l for a period comparable to the time it took to establish it . Dominance makes
this possible.

Summing up: Under dominance, a given minimal rate of occurrence of
alleles can be maintained with a mutation rate which is the square of the rate required 

in the absence of dominance. Moreover, with the dominance-change
operator the combination of alleles defining a schema can be " reserved" (as
recessives) or " released" (as dominants) in a single operation.

When the performance function depends upon many more or less independent 
factors, there is another pair of operators, segregation and translocation

which can make a significant contribution to efficiency. In such situations it is
useful to make provision for distinct and independent sets of associations (linkages)
between genes. This again calls for an extension in the method of representation.
Let each element in ct be represented by a set of homologous pairs of n-tupies, and
let crossover be restricted to homologous n-tupies. After two elements of ct, A and
A'

, are chosen for crossover and after all homologous pairs have been crossed (as
detailed under the discussion of dominance change) then from each pair of resultants 

one is chosen at random to yield the offspring
's n-tupies. Each offspring

thereby consists of the same number of homologous pairs of n-tupies as its progenitors
. The genetic counterpart of this random selection of resultants is known

as segregation. Clearly, under segregation, there is no linkage between alleles on
separate nonhomologous n-tupies, while alleles on homologous n-tupies are linked
as before. With this representation it is natural to provide an operator which will
shift genes from one linkage set to another (so that, for example, schemata that
are useful in one context of associations can be tested in another). The easiest way
to accomplish this is to introduce an exceptional crossover operator, the translocation 

operator, which produces crossing-over between randomly chosen non-

homolog Ql.ls pairs.
Another genetic operation provides a means of adaptively modifying the

effective mutation rate for different closely linked sets of alleles. The operator
involved is intrachromosomal duplication (see Britten 1968) ; it acts by providing
multiple copies of alleles on the same n-tuple. To interpret this operation, n-tupies
with multiple copies of the alleles for a given gene must be mapped into the set of

original structures. This can be done most directly by extending the concept of
dominance to multiple copies of alleles. With this provision, if there are k. copies
of a given allele a, the probability of one or more mutations of allele a is k. times

greater than if there were but one copy. That is, the probability of occurrence, via
mutation, of allele a' ~ a is increased k. times. Thus, increases and decreases in
the number of copies of an allele have the effect of modifying the (local) mutation
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rate. In genetics the decreases are provided by deletion. The easiest generalization
of these operators is an operator which doubles (or halves) the number of copies
at a randomly chosen (set of adjacent) location(s).

Though the operators just described are useful, they are not necessary.
Moreover they do not compensate the major shortcoming of genetic plans which
use just the first three operators described. That shortcoming is the complete
dependence of such plans upon the detectors determining the representation. If
the set of detectors {8i} is inadequate, in any way, the plan must operate within
that constraint. However, if the plan could add or modify detectors at need, it
could circumvent the difficulty . This implies making the detectors themselves
subject to adaptation. When we note that each detector can be specified by an
appropriate subroutine (string of instructions) for a general purpose computer,
a way of making this extension suggests itself. By keeping the number of basic
instructions from which the subroutines are constructed small, we can treat them
as alleles. d can then be extended to include all strings of basic instructions. In this
way d contains a representation of any possible detector, set of detectors or, in
fact, any effectively describable way of processing information . Moreover, under
this extension, favored schemata correspond to useful coordinated sets of instructions 

(such as detectors). Genetic plans applied to d , so extended, can thus develop
whatever functions or representations they need. This problem and the suggested
approach are complex enough to merit a chapter, chapter 8.

The Jacob-Monod (1961) 
"
operon

" model of the functioning of the chromosome 
has an interesting relation to the extension of d just suggested. In the

extension, we can think of each element of d as a program processing inputs from
the environment to produce outputs affecting that environment (cf. chapter 3.4
where transformations {'1i} are the outputs). The performance of the element is
thus directly determined by the relevance or fitness of the program. The " operon

"

model treats the chromosome as a similar information processing device. Each
gene can either be active (cf. the execution of an instruction) or inactive. When
active the gene is participating in the production of signals (enzymes) which modulate 

the ongoing activity of the cell. It thereby determines the cell's modes of
action and critical aspects of its structure. The genes are collected ingroups -

operons- such that all genes in the group are either simultaneously active or
inactive, as determined by one control gene in the group called an " operator gene

"

(or more recently, a " receptor gene
" in Britten and Davidson 1969; see Fig. 14).

The remainder of the cell is treated as the chromosome's environment. The action
of the " receptor gene

" is conditional upon the presence of signals (proteins) from
the cell (usually through the mediation of other genes-

"
repressor

" or " sensor"

117
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genes). In this way one operon can cause the cell to produce signals which (with
control led delays) turn on other operons. This provision for action conditional

upon previous (conditional) actions gives the chromosome tremendous information
-processing power. In fact, as will be shown in chapter 8, any effectively

describable information-processing program can be produced in this way.

emphasis interaction

Intricate adaptations, involving a great complexity of genetic substitutions to
render them efficient would only be established, or even maintained in the species,
by the agency of selective forces, the intensity of which may be thought of broadly,
as proportional to their complexity.

Fisher in Evolution as a Process, ed. Huxley et ale (p. 117)
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6. INTERPRETATIONS

Not only do we claim in this case [of inversions found in D. pseudoobscura and
D. persimilis] that the precise pairing of the chromosomes in the species hybrids
shows that the chromosomal material has had a common source, but we also claim
that the sequence of rearrangements [produced by inversions] that occurred in the
chromosome reconstructs for us the precise pattern of change that led up to and
then beyond the point of speciation.

Wallace in Chromosomes, Giant Molecules,
and Evolution (p. 49)

series of difficultAt the same time the

problems:
on gene poses a

For the geneticist, the picture of the process of adaptation which emerges from the
mathematical treatment thus far exhibits certain familiar landmarks:

Natural selection directs evolution not by accepting or rejecting mutations as they
occur, but by sorting new adaptive combinations out of a gene pool of variability
which has been built up through the combined action of mutation, gene recombination

, and selection over many generations. For the most part Darwin's concept of
descent with modification fits in with our modern concept of interaction between
evolutionary process es, because each new adaptive combination is a modification
of an adaptation to a previous environment. (p. 31)
Inversions and translocations of chromosomal segments, when present in the
heterozygous condition, can increase genetic linkage and so bind together adaptive
gene combinations. . . . The importance of such increased linkage is due to the
number of diverse genes which must contribute to any adaptive mechanism in a
higher plant or animal. (p. 57)

Stebbins in Process es of Organic Evolution



The interaction of genes is more and more recognized as one of the great evolutionary 
factors. The longer a genotype is maintained in evolution, the stronger will

its developmental homeostasis, its canalizations, its system of internal feed backs

become. . . . one of the real puzzles of evolution is how to break up such a perfectly 
co-adapted system in such a way so as not to induce extinction . . .

Mayr in Mathematical Challenges to the NeoDarwinian Interpretation
of Evolution, ed. Moorhead & Kaplan (p. 53)

And, even though the centennial for the Origin of Species has passed, speciation
still lacks a general mathematical explanation. Moreover, the question of " enough
time" 

plagues the neo- Oarwinian almost as much as it did his predecessors. It is a

question which weighs heavily if it is assumed that coadapted sets of alleles occur

only by the spread of mutant alleles to the point that relevant combinations are

likely (see Eden's [ 1967] comments ).
In the present context each of these questions can be rephrased in terms of

the processing of schemata by genetic operators . This allows us to probe the origin
and development of coadapted sets of alleles much more deeply, particularly the

way in which different genetic mechanisms enable exploitation of useful epistatic
effects. In the next chapter , we will be able to extend Corollary 6.4.1 to demonstrate

the simultaneous rapid spread of sets of alleles, as sets, whenever they are associated 

with above-average performance (because of epistasis or otherwise ). Theorem

7.4 establish es the efficiency of this process for epistatic interactions of arbitrary

complexity (i .e., for any fitness function p. :d --+ ' U, however complex ). Section 7.4

gives a specific example of the process in genetic terms and exhibits a version of

Fisher 's ( 1930) theorem applicable to arbitrary coadapted sets. Finally , in section

9.3, the formalism is extended to give an approach to speciation . This extension

suggests reasons for competitive exclusion within a niche, coupled with a proliferation 
of (hierarchically organized ) species when there are many niches.

For the nongeneticist , the illustration at the end of section 6.2 should

convey some of the flavor of algorithms of type <R as optimization procedures . It

is easy enough to extend that illustration to cover inversion and mutation . For

example, under the revised representation of section 6.3 each bit 8 is paired with

a number j designating its significance (i .eU , 8) designates the bit 8.2- ;). Thus bits

119Reproductive Plans and Genetic Operators
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The other and I think more interesting problem, which we have hardly begun to
solve, is the question: How many changes of information are necessary to explain
evolution?

Waddington in Mathematical Challenges to the NeoDarwinian Interpretation
of Evolution, ed. Moorhead & Kaplan (p. 96)
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of different orders can be set adjacent to each other in a string without changing
their significance. In consequence, under the combined effect of inversion and
reproduction, bits defining various regions of above-average values for f (x) will be
ever more tightly linked. This in turn increases the rate of exploration of intersections 

and refinements of these regions. Filling in the remaining details to complete 
the extension of the illustration is a straightforward exercise. Section 7.3 in

the next chapter provides a detailed example of the response of an algorithm of
type <R to nonlinearities. Theorem 7.4 of that chapter, coupled with the comments
on dimensionality in chapter 4 (p. 71) shows that, whatever the form off (i.e.,
for any f mapping aboundedd dimensional space into the reals), an algorithm of
type <R optimizes expeditiously. Moreover, the algorithm does this while rapidly
increasing the average value of the points it tests (though they may be scattered
through many different hyperplanes), thus making the algorithm useful for " online

" control . Sections 9.1 and 9.3 provide more detailed summaries of these
advantages.

120 Adaptation in Natural and
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7. The Robustness of Genetic Plans

We cannot distinguish between a realistic and an unrealistic adaptive hypothesis
or algorithm without a good estimate of the underlying adaptive plan

's robustness-

its efficiency over the range of environments it may encounter. By determining the

speed and flexibility of proposed adaptive mechanisms, in the intended domains )
of action, we gain a critical index of their adequacy. The framework of concepts
and theorems has expanded now to the point that we can tackle such questions
rigorously. The robustness established here is a general property holding for particular 

plans of type <R in any string-represented domain cf,; furthermore, the basic
theorem holds for any payoff function p. :cf, - + ' U. We can also address ourselves

directly to related questions of the automatic determination, retention, and use of
relevant history to increase efficiency~

Genetic plans will be the main vehicle for this investigation, both as test cases and
to illustrate formal approach es to questions of robustness. In particular, the

investigation will use, as prototypes, plans of type <RI employing the three operators,
simple crossover, simple inversion, and mutation. ( To retain the one-operator
format of the original specification of <RI, the combined effect of the three operators
could easily be reinterpreted as the effect of a single composite operator; for

expository purposes it is easier to treat the operators individually .) The basic

parameters are:

Pc, the constant probability of applying simple crossover to a selected
individual,

P" the constant probability of applying simple inversion to a selected
individual,

lP N, the initial probability of mutation of an allele (all alternatives for the
allele being equilikely outcomes),

121
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( The sequence (c,) is included primarily for its effects when genetic plans are
used as algorithms for artificial systems; it is used to drive the mutation rate to
zero, while assuring that every allele is tried in all possible contexts. (c,) is not
intended to have a natural system counterpart and its effects can be ignored in that
context. See below.)
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Define the random variable Rand, on SM = {I , . . . , M} by assigning the
probability IJ.h(t)/ .o(t) to hE: SM. Make one trial of Rand, and designate
the outcome ;(t).

simple

tria! random
designate

assigns
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probability

1/ M to each hE"" 6., and make a random trial accord-

.
si

s 
0 - :

~
 

i . ! . s j
~

 
. 5 . 5 ~

 
j . !

~
 

:   . ~
 

. ' ! J . ce
 

. c
i 

c S
e 

: =
 

C
o 

. ~
~

 
~ ~ ~

 
- 5 ~

I 
. G

J 
; : ; " 3~

 ' - . ~
 

-
~

 
~

 
- 0 ~

 
. : : .

~
. : ; ; , ' 0 " . 5 ~

.
. . . . . . ' C

G
Jo

 
~ "

~
 

~
 

~
 

b .
.

: ; ; " , N . c . ! ~
 \ 0 . s

~
 

~
 

~ ~ G
J 

C
~

 
- 5 c ~

 
- 5 . s . 0 ~

~
 

~
 

. i . 0 Q , ; ' - : e \ 0 ~
S

 
+

 
' C ' : e . ~

 0 G
 

~
 

C
 

~
.

. - ~
 ~ : =
 

~ . c c . 9 ~
" 

~
 - C
oD

 
- ~

 . - - . . c
~

 
~

 
: ; : . - . ! 0 - i ~

 ~
: 

~
 

; i e - g ' C ' t . . i
u 

' , =
 

e C
 

C
o 

- ~
 C
 

' C ' ' C '
~

 
. ! ' u ~

 
. c ~

 
- . - ~

 
~

=
 

. ! ' 0 . - i . - ~
 

G
J

: ; :
u 

C
o 

- . - . fI ) 4 ) e -
- 

G
J 

fI ) ! ~
 

~
 

C
 

"
c

@
 

B
 

. . . ~ S
 

S
 

~
 

~
 

8 ~
~

 
~

 
A - bS

 
S

 
S

 
' 0 - = . 0

Q
, oD

 
~

 
' ' - ' . . - . 0 ~

G
J 

' C ' ' C ' Q . . t ; . o ~
 

~
 

= S
 

G
J

" ' 6 .
.

c ~
 

X
 

~
 

' - D
 

~ , . c G
J

- 
~ . . . . 0 ' 0 0 ~

 
~

 
~ - . . .

u 
- C

 
- C

 
. -

j 
oS

 
oS

 
~

 
t ~

 
- g i . - " . . 9 ~

 
: s oS

 
A

s 
S

oD
 

' C " O ~ - = . . ! ! . ' C ' - " . 8 ~ ~ -
~

 
~

 
~

 
~ c _ ~

 C
o

- S - oD
j 

~
0 

: J : J ' S
 

~
 

e . b . ~
 

. 5 ~
 

~ . ~
 e . ~
 

e
~

 
~

 
In

 
U

 
~ ~ ~ e fI ) ~

 C
o

- a u
t

' i . - t ' i - . . . t ' i ~
 bi
s 

~ " : 5 ' ; b - . a b ~
 

. i ~
 

. i
'

J 8 : - = ~
 

8 : - 8 : - ~ M
 

~
~

 
<

 
~

 
A - , g ~

 
< . ~

 
< ; ; ; , , ( . 5 : J

- 
N

 
~

 
- N

~
. . . ~

 
. " ' . . . " ' - . " ' - . . ~ - + - ~

.
J

in the subclass of CRt just described will be designated
I. The performances observed at step 2.3 will be taken to be

, a random variable

C" an arbitrary sequence satisfying the conditions: (i) 0 ~ c, ~ 1, (ii)
C, -+ 0, (iii) E ,c, -+ ~ ; e.g., c, = (l / t) , 0 < cx: ~ 1.
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from some predetermined set '\1 to each structure d1 (see section 2.1) and successive
trials of the same structure will in general yield different performances. ( For clarity ,
this stochastic effect is treated explicitly here, rather than using the formally
equivalent approach of subsuming the effect in the stochastic action of the operators

.) It will be assumed that each random variable in '\1 has a well-defined mean
and variance.

The study below shows that the algorithm works well and efficiently when
d1 is small (e.g., when d1 has two elements as in the two-armed bandit problem)
as well as when d1 is large. When d is small relative to M the genetic operators are

unimportant, replication alone (step 4) being adequate to the task. However the

algorithm
's power is most evident when it is confronted with problems involving

high dimensionality (hundreds to hundreds of thousands of attributes, as in genetics
and economics) and multitudes of local optima. Computational mathematics has
little to offer at present toward the solution of such problems and, when they arise
in a natural context, they are consistently a barrier to understanding. For this
reason it will be helpful in evaluating the algorithm to keep in mind the case where
d1 (and '\1 as well) is a very large set, finite only by virtue of a limited ability to

distinguish its elements (e.g., because the detectors have a limited resolution). The
ultimate finiteness of d1 is convenient, since then the number of attributes or
detectors / can be held fixed, but it is not essential. Chapter 8 will discuss the
changes required when / is an unbounded function of t.

That step 5.3 assures continued testing of all alleles in all contexts follows
from

Under algorithms number

of trials of the jth value for the ith attribute (i.e., allele j of detector i), for any i and j ,
is infinite.

Proof: ( Essentially this proof is a specialized version of the Borel zero-one criterion
.) Let P jAr) be the probability of occurrence at time t of Vi;, the jth value for

the ith attribute. Then L ... 1 P i,( t)M is the expected number of occurrences of Vi;
over the history of the system. Unless L ,Pi,( t)M is infinite, Vi; can be expected to
occur only a finite number of times. That is, unless L ,Pi,( t)M is infinite, Vi; will at
best be tested only a finite number of times in each context, and it may not be
tested at all in some contexts. (Despite this a plan for which L ,Pi,( t)M is large
relative to the size of Ctl may be quite interesting in practical circumstances.)

Since L ,C, - + ~ , we have L ,c,lP M - + ~ . But Pi,( t) ~ C,IPMM for all t,
whence LtPi ,( t)M > L ,C,IPMM. Hence LtPi ,( t)M is also infinite in the limit .

Q.E.D.
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2 . THE ROBUSTNESS OF PLANS <R1(PC, PI, lP N, (c,})

It might seem that the natural first step in establishing the robustness of an adaptive
plan would be to show that it will ultimately converge to an optimal structure.
However, as early as section 1.5 it was possible to make a good argument against
convergence as a criterion for distinguishing useful plans. Enumerative plans
converge, yet in all but the most restricted circumstances they are useless either as

hypotheses or algorithms. Moreover, when data can be retained by no more than
M structures and M < Idl\, no plan for searching d1 can yield convergence. More

formally , for any M < Id11; there exists E(M ) > 0 such that as T - + ~ ,

( liT ) ET. 1 p( d *, t) - + I - E(M)

where d * is a subset of d1 consisting of one or more structures with optimal mean

performance (i .e., structures A' Ed* such that the mean of the random variable

#J.~ A'
) is at least as high as the mean for any A E: dJ . This is so because for any

finite sequence of trials of a suboptimal structure in d1, there is a non-zero probability 
that its observed average performance will exceed the observed performance

of the optimal structures) (assuming overlapping distributions). Clearly, if enough
of the structures being tested exhibit observed performances above that of the

optimal structures) (again an event with a non-zero probability), the result will
be the deletion of data concerning the optimal structure. Thus, unless possible
convergence to a suboptimal structure is to be allowed, each structure must be

repeatedly tested (infinitely often in the limit ). But this repeated testing (and the
law of large numbers) assures that suboptimal structures which have a finite

probability of displacing an optimal structure will do so with a limiting frequency
approaching that probability . Hence, for M < \dl \, no plan can yield
( liT ) ETP(d*, t) - + I . At the same time, E(M

'
) < E(M ) for M ' > M (even when

M ' < Idl\) because of two effects:

(i) the more copies there are of a suboptimal structure A in a given generation
, the smaller the variance of the associated average payoff #J.A(t)

(making it less likely that .4A(t) > .4A,(t), A
' E: d*),

(ii ) more generations are required to displace A
' in the whole population

(meaning that .4A(t) has to exceed .4A,(t) over a longer period, a progressively 
less likely event).

At the cost of a small increase in the complexity of the algorithms <R1(PC, PI, lP N,
(c,}) we can assure that they converge when M > \dl \ (as, for example, in the



2-armed bandit problem). The reader can learn a great deal more about convergence 

properties of reproductive plans from N. Martin 's excellent 1973 study.
Since convergence is not a useful guide, we must turn to the stronger

" minimal expected losses" criterion introduced in chapter 5. Results there

( Theorems 5.1 and 5.3) indicate that the number of trials allocated to the observed
best option should be an exponential function of the trials allocated to all other

options. It is at once clear that enumerative plans do not fare well under this criterion
. Enumeration, by definition, allocates trials in a uniform fashion, with no

increase in the number of trials allocated to the observed best at any state prior to

completion; accordingly, as the number of observations increases, expected losses
climb precipitously in comparison to the criterion. On the other hand, plans of

type <RI(Pc, PI, IPM, (c,  do award an exponentially increasing number of trials
to the observed best, as we shall see in a moment. More importantly , plans of this

type actually treat schemata from E as options, rather than structures from (tl .
In doing this the plans exhibit intrinsic parallelism, effectively modifying the rank
of large numbers of schemata each time a structure A E: (tl is tried. The effect is

pronounced, even in an example as simple as that of Figure 13, which illustrates
2 generations of a small population (M = 8, I = 9) undergoing reproduction and
crossover. Specifically, under plans of type <RI(Pc, PI, IPM, (c,  the number of
instances of a schema increases (or decreases) at a rate closely related to its observed

performance .art/) at each instant. That is, the portion ME<t) of each schema ~ represented 
in population <B(t) changes simultaneously according to an equation much

like that suggested at the end of chapter 5:

dM rtt)/ dl = .artt)M rtt).

The foregoing statements can be established with the help of

LEMMA 7.2: Under a plan of type <R1(PC, PI, lP Jf, (c, , given ME<to) instances of ~
in the population <B(to) at time to, the expected number of instances of ~ at time t.

ME<t), is bounded below by

where

a time-invariant constant generally close to zero, depending only upon the parameters

of the plan , the length l (~) of ~, and the nwnber 10(~) of defining positions for ~.

12SThe Robustness of Genetic Plans
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ME<tO)n~--llo (I - EE)PiE<t')/ .4(t')

EE = (Pc + 2P1)/(~)/(/ - I) + k"<t>
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Proof: Using Corollary 6.4.1 in combination with the expression for the probability
of a schema being affected by inversion (from section 6.3) we have, for any to,

P(E, to + I)
~ [ I - Pc. (f(E)/ (f - 1 ( 1 - P(E, 10 ] . [ I - 2P,(f(E)/ (f - 1 ( 1 - f(E)/ (f - I  ]

. [(I - C"I P M Y'(f)] . [.4E<to)/ .4(/0)] .P(E, to)
~ [(I - Ef).4E<tO)/ .4(/o)]P(E, to).

Or, by iteration of the relation,

P(E, 10 + h) ~ P(E, to)n~:t:
- 1 [(I - Ef).4E<t')/ .4(/')] .

But the expected number of instances of E at time t = to + h is just

M .P(E, 10 + h) ~ M .P(E, 10)n~:t:
- 1 [(I - Ef).4E<t')/ .4(t')]

~ ME<to)n~:t: 
- 1 

[(I - Ef).4E<t')/ .4(/')]. Q.E.D.

Lemma 7.2, though simple, makes one very important point. Even though
plans of type <Rl(PC, PI, IPM, (c,  try slructures from 6.1 one at a time, it is really
schemata which are being tested and ranked. There are somewhere between 2' and
M2' schemata with instances in <B(t). Each one changes its proportion in <B(t) at a
rate largely determined by its observed performance, .4E<t), and is largely uninfluenced 

by what is happening to other schemata. This is the foundation of the
intrinsic parallelism of plans of type <R.

While Lemma 7.2 is sharp enough as it stands to enable us to establish the

efficiency of plans of type <RI(Pc, PI, IPM, (c, , some of the properties implied by
the sharper inequality of the first line of its proof are also worth noting. As
P(Et ) -+ I the operator losses from crossing-over approach 0 and the first factor
in brackets approach es I . That is, as P(Et ) -+ I , the rate of change is very nearly

[ I - 2P,(f(E)/ (f - 1 ( 1 - f(E)/ (f - I  ] . [(I - c,IPM)" (f)] . [.4E<t)/ .4(t)] - I .

Moreover, if ME<t) is at all large, .4E<t) will closely approximate the expected payoff
piE<t) of E under the distribution (over 6.1 at time t) corresponding to <B(t), because
of the central limit theorem. Now recall that two schemata defined on different

positions, but having identical sets of/ unctionaf attribute pairs, designate the same
subset of 6.1. Thus all permutations of E induced by inversion exhibit the same

expected payoff piE<t) at any given time. If we treat these permutations as versions
of the same schema, then inversion does not in fact result in instances of E being
lost during the operator phase. This leaves mutation as the only important source



Systems

~ ME<to - l )n~_,. [(1 - Ef)piE<t' - 1)/ .4(t' - 1)] using Lemma7~2
= ME<to - 1) exp [In n~_,. [(1 - Ef)piE<t' - 1)/ p.(t' - 1)]]
= ME<to - l ) exp [E ~_,. ln [(1 - Ef)piE<I' - 1)/ .4(1' - 1)]]
= ME<to - 1) exp [Zl .(t - to + 1)]

nf".(I)/ nf".(lo) = (M . (I - 10 + I) - Nf".(I / (M - M t<lo  by definition
~ (M .(t - to + I) - (t - to + I)Mt<to / (M - ME<to 

by the premise of the theorem
~ t - to + 1
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Nf,ft = E~-. M t<t')
> M t<t)

However ,

of loss when P(~, t) is near one. But as I advances c, - + 0, so that

[( I - C,lP Jl Y
'(f)] - + I

and the rate of change approach es [PE<t)/ p(t)] - I . In particular, if some schema
begins to occupy a large fraction of the population (through consistent above-

average performance) its rate of increase will come very close to [PE<t)/ p(t)] - I .
We can now go on to determine the number of trials allocated to the observed 
best schema as a function of the number of trials allocated to structures

which are not instances of ~. In this determination nf.,. (/0) designates the number
of structures in <:B(/o) which are not instances of schema ~. Nf.,. and nf.,. designate
the number of trials allocated from to to t to structures which are, respectively,
instances of ~ and nol instances of ~. ( That is, Nf.,. + nf,le = (I - to + I ) .M , for
I ~ to.) The logarithm of the effective payoff to ~ or log payoff, bounded below by
10 [( I - EE).a E</)/ .4(t)] , plays a direct role in

LEMMA 7.3: If each instance of ~ gives rise, on the average, to at least one new
instance of ~ in each generation over the interval (to, t), i .e., if Nf,le ~
(t - to + I )ME<to - I), then the trials from to onward satisfy

Nf,le ~ ME<to - I ) exp [(Z~/ nf,le(tO nf ,le]

where ZL = ( I/ (t - to + I   E ~- " 10 [( I - EE).a E<t
' - 1)/ .4(t

' - I )] is (a lower
bozmd on) the average log payoff over (to, t).

Proof:
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Substituting for (t - to + I ) in the previous expression we get

Nf." ~ ME<to - I) exp [Z~(nt "; nf.,,(to ] . Q.E.D.

This lemma holds a fortiori for any schema ~ consistently exhibiting an effective
rate of increase at least equal to I , i .e., .4E<t

'
) > .4(t

'
)/ (1 - EE), over the interval

(to, I). As noted first in sections 6.2 and 6.3, when I(~)/ I is small, EE will be small and
the factor 1/ (1 - EE) will be very close to one. Let ~* denote a schema which consistently 

yields the best observed performance .4~ t '), to ~ t ' < t, among the
schemata which persist over that interval. In all but unusual circumstances .4~ t ')
will exceed .4(t

'
) by more than the factor 1/ (1 - EE). If I is large this is the more

certain since, until the adaptation is far advanced, I(~)/ I will with overwhelming
probability be small- see the discussion at the end of section 6.2. Thus, for any
~* for which II.~ significantly exceeds .4(t

'
), to ~ t ' < t, the number of trials N~."

allocated to ~* is an exponential function of n~.".

( For natural systems the reproduction rate is determined by the environment
- cf . fitness in genetics- hence it cannot be manipulated as a parameter of

the adaptive system. However, for artificial systems this is not the case; the adaptive 
plan can manipulate the observed performance, as a piece of data, to produce

more efficient adaptation. In particular, the reproductive step of <Rl(PC, PI, IPM, (c, 
algorithms, step 4, can be modified to assure that the reproduction rate of ~*

automatically exceeds .4{t)/ (1 - EE).)
From all of this it is clear that, whatever the complexity of the fwrction 11.,

plans of type <Rl(PC, PI, IPM, (c,  behave in a way much like that dictated by the

optimal allocation criterion : the number of trials allocated to the observed best

increasing as an exponential function of the total number of trials n~ allocated to
structures which are not instances of ~*. However we can learn a good deal more

by comparing the expected loss per trial of the genetic plans <Rl(PC, PI, IPM, (c, 
to the loss rate under optimal allocation. Theorem 5.3 established a lower bound

(r - 1)b2(IJ.~ - 11.2)[2 + In [N' l /  r - 1)2Srb. ln N' l )] ]

for the expected loss under optimal allocation, where b = Ul/ (IJ.~ - 11.'). For the

genetic plan, the expected loss per trial is bounded above by

L~(N) = (IJ.~/ N) [N~r '
q(N~, n

'
) + ( I - r '

q(Nf*, n
'
 n~]

where r ' is the number of schemata which have received n' or more trials under
the genetic plan, and, as in Theorem 5.3, q(Ne., n

'
) is the probability that a given

option other than ~* is observed as best. ( This expression is simply L~., from



Theorem 5.3 rewritten in the terms of the genetic plan
's allocation of trials, NE*

and n', noting that r '
q(NE*, n

'
) is an upper bound on q(nl, . . . , n,).) It is critical

to what follows that r ' . n' need not be equal to nE*. As <B(t) is transformed into

<B(t + I ) by the genetic plan, each schema ~ having instal1ces in <B(t) can be expected 
to have ( I - EE)IJ.E<t)/ p( t) instances in <B(t + I ). Thus, over the course of

several time-steps, the number of schemata r ' 
receiving n

' trials will be much,
much greater than the number of trials allocated to individuals A fl ~*, even when
n' 

approach es or exceeds nE*. This observation, that generally rin
'   n~, is an

explicit consequence of the genetic plan
's intrinsic parallelism.

With these observations for guidance, we can establish that the losses of

genetic plans are decreased by a factor I/ (r
' - I ) in comparison to the losses

under optimal allocation. Specifically, we have

schemata .,

--
.exp L<Z~(~. )nf*.o/ nf*.o(O  - (b

- 2n' + In b- 2n')/ 2] + nf*.o] .

If b- 2n' / 2 ~ Zl .(~. )nf*.o/ nf*.o(O), it is clear that the first term (the exponential term)
decreases as nf*.o increases, but the second term, nf*.o, increases. In other words, if
n' ~ [2Z~(~. )b2/ nf*.o(O)]nf*.o, i .e., if n' increases at least proportionally with nf*.o,
the expected loss per trial will soon depend almost entirely on the second term.
We have already seen (in the proof of Corollary 5.2) that the same holds for the
second term of the expression for expected loss under an optimal allocation of
N trials. Thus, for r ' and n' as specified, the ratio of upper bound on the reproductive 

plan
's losses to the lower bound on the optimal allocation's losses approach es

1&f*I If*.o/ ({I f* - I12Xr
' - l ) m*)
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mO OR EM 7.4 : If r ' is the number of (or which

n' ~ [2Z~~*)b2/nE-.o(O)]nE-.O,

L~(N) ~ (P~/ N) [(r' M~O)/~ )

i .e., if r ' is the number of schemata for which the number of trials n' increases at
least proportionally to nE*,O, then for any performance function #1.:  - + ' U,

L~(N) / L~N) - + L < [ I / (r
' - 1)](IJ.~ E*,o(O)/ 2b2Z~(~* 

as N - + ~ , where the parameters are defined as in Lemma 7.3.

Proof: Substituting the expression for NE* (from Lemma 1.3) and the expression
for q(N~, n

'
) (from the proof of Theorem 5.1) in L~(N), and noting that

(I - r '
q(N~, n'

 n ~ < n~, gives



L:.'/L: -+ L < [1/ (, ' - 1)](Pt*"e-.o(O)/ 2b2Zc\(E* . Q.E.D.

Thus algorithms of type <R1(PC, P" lP J I, (c,  effectively exploit their intrinsic
parallelism, however intricate the assignment of payoff I Al.A) to structures A E: Cl,
reducing their losses by a factor r ' in comparison to one-schema-at-a-time search es.
We can get some idea of the size of r ' 

by referring to the last few paragraphs of
chapter 4. Given a representation produced by I = 32 detectors with k = 2 values
(
" alleles" ) each, r ' > 9(XX) when N = 32 and n' = 8 (with all elements of Cl equally

likely, i .e., .80 = 'Yo = I ). This is a startling 
"
speed-up

" for a space which is, after
all, small relative to the Cl spaces in, say, genetics or economics which may involve
chromosomes or goods vectors with I   I 00. Even small increases in N, or decreases 

in n' 
produce dramatic increases in r ' ; similar increases result from increases 

in I. Increases in I may result from representing a larger space Cl, or they
may be deliberately introduced for a given Cl (either by selecting k

' < k, so that
(k

'
)Z

' 
~ (k) ' ~ I Cl I necessitates I ' > I, or else by using additional [redundant]

detectors).
To get a better picture of the implications of Lemma 7.2 and Theorem 7.4

let us look at two applications. Once again, as in chapter 1, one application is to
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we get

L: I L'r-+L < [1/ (r' - 1 )](pE*1J~.o(O)/Z~~* 

Or , as N grows

.In N/ [2b2 In N - b21n (Srbf(r' - 1)1 In N' )].

as N increases. (This comparison yields a lower bound on the ratio since the upper
bound in one case is being compared to the lower bound in the other. It can be
established easily, on comparison of the respective first terms of the two expressions

, that the condition on n' is sufficient to assure that the first term of L~(N) is
always less than the first term of L:(N). It should be noted that the condition on
n' can be made as weak as desired by simply choosing ne*.o(O) large enough.)

To proceed, substitute the explicit expressions derived earlier for ne*.o
(Lemma 7.3) and m* (Theorem 5.3) in the ratio ~ e*.o/ (~ - IJ.tXr' - 1) m*),
yielding

L~/ L~ --to ~ /  Pe* - IJ.tXr' - 1 ](ne*.o(O)/Z&(~*  In [(N - ne*.o)/ M~ O)]
.(b21n [NI/ (8rb4(r ' - 1)21n NI)])- l.

Simplifying and deleting terms which do not affect the direction of the inequality



Artificial

is the set of configurations legally attainable on the yth move; then that move is
chosen which leads to a configurationS * ES (y) of maximal rank, i .e., p(S*) =
ma Xs E:lc.> {P(S) } .

The objective now is to find an adaptive plan which search es the set of

strategies Ct1 so that performance improves rapidly. To keep the example simple
only the special case of correction of weights at the end of each play of the game
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and artificial , while the other is to a system which is

P(S) = I : ~- 1 W,",,(S) to each SE: S(y), where S(y)

3. ROBUSTNESS VIS-A-VIS A SIMPLE ARTIFICIAL ADAPTIVE SYSTEM

The first application concerns game-playing algorithms. The game-playing illustration 
(section 3.3) begins by pointing out that the outcome of a 2-person game

without chance moves (a strictly determined game) is fixed once each player has
selected a pure strategy. Assume, for present purposes, that the opponent has
adopted the best pure strategy available to him (the minimax strategy) for use in
all plays of the game. Then any pure strategy selected by the adaptive plan will
lead to a unique outcome and a unique payoff (again, as pointed out in section 3.3-

see Figure 4). Thus, the function II which assigns payoff to outcomes can be extended 
to the strategies d1 employed by the adaptive plan, assigning to each

strategy the unique payoff it achieves against the opponent
's fixed strategy. (It is

helpful, though not necessary, to think of these payoffs as wide ranging- numerical

equivalents of "close win,
" " loss by a wide margin,

" etc., rather than just 1, 0, - 1
for " win,

" " draw,
" " loss." ) The strategies available to the adaptive plan will be

limited, to a set of strategies fundamentally little different from the threshold pattern 
recognition devices of section 1.3. These strategies are based on the recognition 
and evaluation of positions (configurations) in the game tree and are substantially 

the same as those employed by Samuel in his 1959 checkers-player.
Each strategy in d1 is defined by a linear form E ~- 1 W,-8i where: (i) 8i:S - + Rea/s
evaluates each configurationS ES for a property relevant to winning the game
(e.g., in checkers, 81 might assign to each configuration the difference in the number
of kings on each side, 8t might count the number of pieces advanced beyond the
centerline, etc.) ; (ii ) Wi E:: W weights the property according to its estimated importance 

in the play of the game. The linear form determines a move by assigning
a rank

a system which is simple

complex and natural .
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will be considered here. ( The more complicated case, involving 
"
predictive correction

" 
during play of the game, is discussed in the latter half of section 8.4.)

Because the detectors 8i are given and fixed, the strategies in d1 are completely
determined by the weights Wi, i = 1, . . . , I, so the search is actually a search

through the space of I-tupies of weights, W'.
A typical plan for optimization in W' adjusts the weights independently of

each other (ignoring the interactions). However, in complex situations (such as

playing checkers) this plan is almost certain to lead to entrapment on a false peak,
or to oscillations between points distant from the optimum. Clearly such a plan is
not robust. To make the reasons for this loss of robustness explicit, consider the

plan T~ with an initial population <B(O) drawn from W', but with steps 3 and 4 of

CRl(O,O,O,O) extended as follows:

a,.(i(r).I).

successiveClearly makes genetic

plan has the same (stochastic) effect as repetition of the following sequence:

I . Form <B'
(t) from <B(t) by making I (A,( t  copies of each element A,( t),

; = I , . . . , M in <B(t). (Payoff l yields a copy with probability ; , so
that the expected number of elements in <B'

(t) is L ~ II  (A,( t .)
2. All the copies of weights associated with position j of the I-tupies in <B '(I)

are collected in a single set Wj(t), j = 1, . . . , I. Wj(t) thus, typically,
contains many duplicates of each weight in W.

3. Element A,( t + 1) = (OI(;(t + 1), t + I ), . . . , o,(;(t + I ), t + I  , ; = 1,
. . . , M , is formed from <B'

(t) by drawing weight 01(;(t + I ), t + I ) at
random from set W1(t), weight 02(;(t + 1), t + I ) from W2(t), etc.

<B(t + 1) thus consists of M I-tupies formed by M successive drawings

generation.

133
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[from 3]--""3.1 Set r = 1 and set A'(t) = (0,0, . . . ,0).t4t4.1 Set the rth position of A'(t) to the value of the rth posit tion of Ai(I)(t) = (al(i(t),t), . . . , a,{i(t),tE: W'.
4.2 Is r = 11

!o Lyes- +[to 6.1]t4.3 Increase r by 1.

[the same as before]

no use of the generations thisoperators. Over

from the I sets W ;(t).
4. Return to step I to generate the next
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P(;~, t + 1) = M~t + 1)/ M = (,4~t)/ ,4(/ M~t)/ M

under the plan TtR. Clearly the weights at distinct positions are chosen independently
of each other. Hence if a pair of weights contributes to a better performance than
could be expected from the presence of either of the two weights separately, there
will be no way to preserve that observation. This can lead to quite maladaptive
behavior wherein the plan ranks mediocre schemata highly and fails to exploit
useful schemata. For example, consider the set of schemata defined on positions I
and 2 when W = {WI, Wt, Wa} . Assume that all weights are equally likely at each

position (so that an instance of schema WtWaO. . . 0 , say, occurs with probability
i ), and let the expected payoff of each schema be given by the following table:

Since all instances are equally likely we can calculate from this table the following
expectations for single weights:
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so that

P(~, t + I) = [UJ{.4,t<t)/ .4(t ]P(~, t)

Table 3: A N~- " -~~ IJ.f " Two Positi O M

= (pit<t)f .4(t P(;Et)

Because 'T~ makes no use of genetic operators it is a plan for adjusting
weights independently. Specifically, under this procedure, the probability of
occurrence of A = ala, . . . a, at time t + 1 is just n ~- 1 P(ar, I), where P(ar, t) is
the proportion of ar E: W in W,(I). It follows at once that an arbitrary schema ~
occurs with probability X(~) = Nip(;~), as would be the case under the equilibrium
discussed in section 6.2. Moreover,



Table 4: P(~) a I M Il  J.E for the 0ae- , . . Id0ll Sdaemata Implicit in Table 3

~ P(~) IJ.E

WI 0 0 . . . 0 1/ 3 0.9
W2 00 . . . 0 1/ 3 1.1
W, 00 . . . 0 1/ 3 1.0
0 wID . . . 0 1/ 3 1.1
0 W2 0 . . . 0 1/ 3 1.0
0 wID . . . 0 1/ 3 0.9
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On the other hand, the best combination WIW, 0 . . . 0 by the same calculation
satisfies

P(WIW, 0 . . . 0 , t + I ) = 0.81 P(WIWI 0 . . . 0 , t)

so that its probability of occurrence actually decreases. It is true that, as
WtWl 0 . . . 0 becomes more probable, the values of PUIIO.. .O and 1J.0UII0. . .0
decrease, eventually dropping below I , but WI wID . . . 0 is still selected against,
as the following table shows:

Table 5: IJ.~ for the sm . . fa of Table 4 when I I I Stanees Are Not F..qu Dikely

Clearly the combination WtWI becomes increasingly likely under 'T6t; in fact

P(WtWI 0 . . . 0 , t + I) = P(WtO . . . 0 , t + I).P(O WI 0 . . . 0 , t + I)
= [(-4IDIO.. .o(t)/ P,(t P(Wt 0 . . . 0 , I)]

. [(P,QlDIO.. .o(t)/ P,(t P(O WI 0 . . . 0 , I)]
= 1.21 P(WtWI 0 . . . 0 , I).
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On the other hand the nonlinearities of liE ( Table 3) have no effect on

= (I - EvlWIO.. .O).4w.WIO. . .o( t)MW1WIO. . .o( t)/ M

= 
(

I - ~ ) 
.1.6,P(wlwa 0 . . . 0 , I),

whereas W2Wl 0 . . . 0 now satisfies

P(W2Wl 0 . . . 0 , t + I ) = 
(

I - ~ ) 
. 1.I .P(W2Wl 0 . . . 0 , I).

Clearly WIWa 0 . . . 0 quickly gains the ascendancy. Thus a plan of type
<Rl( l , - , - , - ) preserves and exploits useful interactions between the weights.
Moreover Lemma 1.2, in conjunction with Theorem 7.4, makes it clear that such
a plan can actually exploit local optima (false peaks) to improve its interim performance 

on the way to a global optimum.

<R1(1, - , - , - ). Lemma 1.2 makes this quite clear.

P(WIWa 0 . . . 0 , t + I) = Mt Dat Da O.. .O (t + 1)/ M

4 . ROBUSTNESS VIS-A-VIS A COMPLEX NATURAL ADAPTIVE SYSTEM

Many points made in connection with the game-playing algorithm can be translated 
to the much more complex situation in genetics. We shaIl see that these

points weigh strongly against the (stiIl widely held) view that biological adaptation 
proceeds by the substitution of advantageous mutant genes under natural

selection. In addition, they directly contradict the closely related view (in mathematical 

genetics) that a Ileies are replaced independently of each other, increasing
or decreasing according to their individual average excess es. Rather, the results
of this chapter suggest that the adaptive process works largely in terms of pools of
schemata (potentia Ily coadapted sets of genes) instead of gene pools. Because the

pool of schemata corresponding to a population is so much larger than the pool of

genes, selection has broader scope (some multiple of 2' vs. 2/, or with k = 2 a Ileies
and just / = 100 loci, some multiple of 1010 vs. 200) with many more pathways to

improvement, and the great advantage of intrinsic para Ilelism.
To translate the results on robustness to genetics, the central genetic

parameter, 
"
average excess (of fitness),

" must be defined in terms of observational

quantities .4E. First let .4E<t) = df.Mf (t + 1)/ Mf (t) ; that is, .4E<t) is the effective rate
of increase of the schema ~ at time t. For adaptive plans of type <Rl(PC, P" IPM, c,),



If M(t) is the size of the population at time t (allowing the overall population size

and ME<t) + 4M ~t)4P(~, t) = M(t) + A.M(t)

(p'E(t) - .4(t dt
1 + (.4(t

" l)~t

~ to a continuous time -scale , weIf we take the limit as ~ -+ 0, in effect going

The equation dP(~, t)/ dt = P(~, t)a(~, 0), when restricted to alleles (schemata
defined on one position), is just Fisher's (1930) classical result, relating the change
in proportion of an allele to its average excess. We see however that the equation
holds for arbitrary schemata. This gives us a way of predicting the rate of increase
of a set of alleles with epistatic interactions from a sample average .4E of the fitnesses
of chromosomes carrying the set of alleles.
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p'E(t) is bounded below by (I - EE)PiE<t) (following Lemma 1.2). For a fraction 4t

4M~t) = M~t + ~ ) - M~t)
= (.a E(t)ME<t) - M ~t ~
= (.a E(t) - l )M ~t)4t.

P(~, I) = ME<t)/ M(/)

ME<t)-
""ii(jj"

= ~ !2 . 
[
1 + (.4E(t) - 1).61 - 1]M(t) 1 + (.4(t) - 1).61

= P(~, t) .
: ) 

-

have

Iim &- o[4P( Et )/ .6.I] = dP(Et )/ dt = a(E, O)P(E, I)
= [l1f<t) - .4(t)]P(E, I).

of a generation we can write

to be variable for the time being), then

using the fact that the population as a whole increases at a rate determined by the
observed average fitness il(t). It follows that

4P(~, t)/ 41 = a(~, 4I)P(~, t)

where a(~, 41) = df.(.4f(t) - il(t / (1 + (il(t) - 1)41).
If we use a discrete time-scale t = I , 2, 3, . . . then 41 = (t + I) - t = 1

and

a(~, I) = (.4f(t) - il(t / il(t).
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so that

d~ (P( O Wit 0 . . . 0 , t) 11 [P(Wil DO . . . , I)])

d
+ (P( Wil DO . . . 0 , t) di [P( O Wi. 0 . . . 0 , I)])

~ P( WiIWi. O . . . 0 , I) . [a(Wil DO . . . 0 , 0) + a( O Wit 0 . . . 0 , 0)] .

Thus, under independent selection, combinations of alleles have a rate of change
which is the sum of their average excess es.

Reinterpreting Table 4 in terms of average excess es (noting that .4(t) ~ I),
we see that the rate of change of the favorable WIW. 0 . . . 0 (Table 3) is
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P(Wit Wi I D . . . 0 , t) = P(Wia DO . . . 0 , t).P( D Wit 0 . . . 0 , t)

d d
dt [P(WiIWti 0 . . . 0 , I)] = 

di [P(Wil 00 . . . 0 , t).P(O Wti 0 . . . 0 , I)]

- 0.2 P(W1W. 0 . . . D),

Consider, now, how such a prediction would differ from one made under
the assumption of independent substitution of alleles, using the earlier example
(the tables of section 7.3). In the present case the elements of W play the role of
indices: WI at position I indicates the allele I for position I is present; the same
WI at position 2 indicates the presence of allele I for position 2, an allele which
may be quite different from the former one. Under independent selection

while that of the less favorable WSWI 0 . . . 0 is + 0.2 P(WSWI 0 . . . 0 ) under
independent selection. Thus independent selection leads to maladaptation here.

As mentioned earlier, adaptation under independent selection amounts to
adaptation under the operator equilibrium of section 6.2,

P(Et ) ~ >.(Et ) ~ UiP(;E, I).

This is a common assumption in mathematical genetics, but it clearly leads to
maladaptations whenever

a(E) ~ Eia(;E).

The above equation for a(E) in ten Ds of .dE shows this to be the case whenever
liE ~ Eiillf , which occurs whenever the fitness is a nonlinear function of the alleles
present, i.e., whenever there is epistasis.



On the other hand, under reproductive plans of type <RI(PC, P" I PAl, (c, ,
operator equilibrium is persistently destroyed by reproduction. In effect, useful

linkages are preserved and nonlinearities (epistases) are exploited. Indeed, it would
seem that the term " coadapted

" is only reason ably used when alleles are peculiarly
suited to each other, giving a performance when combined which is not simply
the sum of their individual performances. Following Lemma 7.2, each coadapted
set of alleles (schema) changes its proportion at a rate determined by the particular
average (observed) fitness of its instances, not by the sum of the fitnesses of its

component alleles.

(Because of the stochastic nature of the operators in genetic plans, each
chromosome A E: (11 has a probability of appearing in the next generation
CB(t + I ), a probability which is conditional on the elements appearing in CB(t).
If there are enough instances of E in CB(t), the central limit theorem assures that
.4E<t) ~ IJ.ft where IJ.E is the expected fitness of the coadapted set E under the given
probability distribution over (11. Thus the observed rate of increase of a coadapted
set of alleles E will closely approximate the theoretical expectation once E gains a
foothold in the population.)

Returning to the example just above, but now for genetic  RI) plans, we see
(from Table 3) that WlWa 0 . . . 0 has a rate of change given by

+ O.6'P( wlwa 0 . . . 0 , t),

while WSW1 0 . . . 0 changes as

+ O.I ,p( wsw1 0 . . . 0 , t).

Consequently, the coadapted set of alleles with the higher average fitness quickly
predominates. Thus, when epistasis is important , plans of type <RI (and the corresponding 

theorems involving schemata) provide a better hypothesis than the

hypothesis of independent selection (and least mean squares estimates of the fitness
of sets of alleles).

5. GENERAL CONSEQUENCES

We see from Lemmas 7.2 and 7.3 that, under a genetic plan, a schema ~ which

persists in the population <B(t) for more than a generation or two will be ranked

according to its observed performance. This is accomplished in a way which
satisfies the desiderata put forth at the end of chapterS. Specifically, the proportion 

of ~
's instances in the population <B(t) will grow at a rate proportional to the
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amount by which ~
's average performance II.E exceeds the average performance II.

of the whole population. At the same time the rankings are stored compactly in
the way suggested at the end of chapter 4, at least 2' schemata being ranked in a

population which may consist of only a few dozen elements from d1. Moreover,

genetic plans automatically access this information , update it , and use it to generate 
new structures, each of which efficiently tests large numbers of schemata.
In detail: Schemata of above-average performance are combined and tested

in new contexts by crossing-over outside their defining locations. Because (the
instances of) schemata increase or decrease exponentially in terms of observed

performance (Lemma 7.3), the overall average performance is close to the best
observed. Because a wide range of promising variants is generated and tested

(section 6.2) entrapment on " false peaks
" 

(local optima) is prevented. Even for
moderate sizes of population and representation, say M = 100 and / = 20, if the
initial population <B(O) is varied, a crossover probability Pc > l will make it almost
certain that every structure A generated during the initial stages of adaptation is
new. Nevertheless, this high value of Pc does not disturb the rankings of schemata
which are consistently above average. Thus, sampling efficiency remains high,
while ranking information is preserved and used. In conjunction with these

process es, inversion by changes in linkage assures that schemata consistently
associated with above-average performance are steadily shortened (/(~) is decreased

), thereby reducing operator losses (section 6.4 and the definition of EE in
Lemma 7.2).

Overall, genetic plans, by simple operations on the current " data base"

<B(t), produce sophisticated, intrinsically parallel tests of the space of schemata E.

Large numbers of local optima, instead of diverting the plan from further improvement

, are exploited to improve performance on an interim basis while the
search for more global optima goes on. High dimensionality (such as a multitude
of factors affecting fitness or play of a game) creates no difficulties for genetic

plans, in contrast to its effect on classical procedures, because of the intrinsic

parallelism (the r ' factor of Theorem 7.4).

in Natural and Artificial Systems140
�



8. Adaptation of Codings and

To this point the major limitation of genetic plans has been their dependence upon
the fixed representation of the structures Ct. The object of the present chapter is to

show how to relax this limitation by subjecting the representation itself to adaptation
. This will be approached by reconsidering representation via detectors

{6i:Ct - + Vi, i = I , . . . , I} (chapter 4) in the light of the comment that detectors
can be looked upon as algorithms for assigning attributes (section 3.4). Since

algorithms can be presented as strings of instructions, the possibility opens of

treating them by genetic plans, much as the strings of attributes are treated. ( The
mode of action of the genetic operators, of course, puts some unique requirements
on the form and interaction of the instructions.) Actually , with a set of instructions
of adequate power, we can go much further. We can define structures capable of

achieving any effectively describable behavior vis-a-vis the environment. We can

do this by setting up algorithms which act conditionally in terms of environmental
and internal conditions. In particular, the predictive modeling technique of

sections 3.4 and 3.5 can be implemented and subjected to adaptation. The Jacob-

Monod "
operon-operator

" model (see the end of chapter 6) is suggestive in this

respect, and we'll look at it more closely after the question of a "
language of

algorithms
" 

(the instructions and their grammar) has been considered.

1. FIXEDREPRESENTATION

Representations

Before proceeding to a " language
" suited to the modification of representations it

is worth looking at just how flexible a fixed representation can be. That a fixed

representation has limitations is clear from the fact that only a limited number of

subsets of (t can be represented or defined in terms of schemata based on that

representation. If (t is a set of structures uniquely represented by I detectors, each
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taking on k values, then of the P ' distinct subsets of (J, only (k + I )' can be defined
by schemata. However, the question is not so much one of defining all possible
subsets, as it is one of defining enough 

" enriched" subsets, where an "enriched"

subset is one which contains an above-average number of high-performance
structures.

It is instructive, then, to determine how many schemata (on the given
representation) are " enriched" in the foregoing sense. Let (J, contain x structures
which are of interest at time t (because their performance exceeds the average by
some specified amount). If the attributes are randomly distributed over structures,
determination of " enrichment" is a straightforward combinatoric exercise. More
precisely, let each 8.. be a pseudorandom function and let V.. = {O, I } , i = I , . . . , /,
so that a given structure A E: (J, has property i (i.e., 8.(A) = I ) with probability -t.
Under this arrangement peculiarities of the payoff function cannot bias concentration 

of exceptional structures in relation to schemata.
Now, two exceptional structures can belong to the same schema only if they

are assigned the same attributes on the same defining positions. If there are h defining 
positions this occurs with probability (l )It. For j exceptional structures,

instead of 2, the probability is (1/ 2i- l)lt. Since there are (1) ways of choosing h out
of / detectors, and ~, ways of choosing j out of x exceptional structures, the expected 

number of schemata defined on h positions and containing exactly j exceptional 
structures is

(1/ 2i - l)A(1XJ).

For example, with / = 40 and x = I~ (so that the density of exceptional structures 
is x/ 2' = 1~ / 2.o ~ 10- 7), h = 20, andj = 10, this comes to

(1/ 2' )'0(40!/ (20!20!)XI ~ !/ (99,990! to !) ~ 3.

Noting that a schema defined on 20 positions out of 40 has po = I ~ instances,
we see that the 10 exceptional structures occur with density 10- ' , an " enrichment"

factor of 100. A few additional calculations show that in excess of 20 schemata
defined on 20 positions contain 10 or more exceptional structures.

For given h andj , the " enrichment" factor rises steeply as / increases. On
the other hand an increase in x (corresponding to an extension of interest to structures 

with performances not so far above the average) acts most directly on the
expected number of schemata containing j structures. With an adequate number
of pseudorandom functions as detectors (and a procedure for assuring that every
combination of attributes designates a testable structure), the adaptive plan wiD
have adequate grist for its mill . Stated another way, even when there can be no
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correlation between attributes and performance , the set of schemata cuts through
a variety of " enriched " subsets.

will be rapidly explored and
the space of structures in enough ways to
Intrinsic parallelism assures that these

exploited.

provide
subsets

Though the foregoing is encouraging as to the range of partitions offered by a

given set of schernata, sornething rnore is desirable when long-term adaptation is
involved. First of all, when the payoff function is very cornplex, it is desirable to

adapt the representation so that correlations between attributes and performance
are generated. Both higher proportions of " enriched" schernata and higher
" enrichrnent" factors result. It is still rnore irnportant, when the environrnent

provides signals in addition to payoff, that the adaptive plan be able to model
the environrnent by rneans of appropriate structures (the 5Jt corn ponent of
(1 = (11 X mt in section 2.1). In this way large (non-payoff) information flows
frorn the environrnent can be used to irnprove perforrnance. As suggested in
sections 3.4 and 3.5, by a process of generating predictions with the rnodel, observing 

subsequent outcornes, and then cornpensating the rnodel for false predictions
, adaptation can take place even when payoff is a rare occurrence.

To provide these possibilities, the set of representations and rnodels available 
to the plan rnust be defined. Further flexibility results if provision is rnade,

within the sarne frarnework, for defining operators useful in rnodifying representations 
and rnodels. A natural way to do this is to provide a " language

" tailored to
the precise specification of the representations and operators- a language which
can be ernployed by the adaptive plan. Sorne earlier observations suggest additional

, desirable properties of this language:

I . It should be convenient to present the representations, rnodels, operators,
etc. as strings so that schernata and generalized genetic operators can be
defined for these extensions.

2. The functional " units" 
(cf. detectors, etc.) should have the sarne interpretation 

(function) regardless of their positioning within a string, so
that advantage can be taken of the associations provided by positional
proximity (section 6.3).

3. The nurnber of alternatives at each position in a string should be small
so that a richer set of schernata is provided for a given size of (1 (see the
comments in the middle of chapter 4).
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"
Completeness,

" in the sense of being able to define within the language
all effective representations and operators, should be provided so that
the language itself places no long-term limits on the adaptive plan.

What follows is an outline of one " language
" 

satisfying these conditions.
It has the additional property (which will be discussed after the presentation) of
offering straightforward representations of several models of natural systems,
including operon-operator models, cell-assembly models (section 3.6) and various
physical signaling and radiation models.

The basic units of the language are broadcast units. Each broadcast unit
can be thought of as broadcasting an output signal 

" to whom it may concern"

whenever it detects certain other signals in its environment. For example, a given
unit , upon detecting the presence of signals I and I ' (perhaps broadcast by other
units), would broadcast signal 1" . Some broadcast units actually process signals
so that the signal broadcast is some modification of the signals detected. In keeping
with suggestion ( I ), broadcast units are specified by strings of symbols. A set of
broadcast units, usually combined in a string, will constitute a device or structure
(an element of <1). Some broadcast units broadcast strings which can be interpreted 

as (new) broadcast units; broadcast units can also detect the presence of
other broadcast units (treating them as signals). Thus, given broadcast units can
modify and create others- they serve as operators on <1.

The language
's ten symbols A = {O, I , *, : , 0 , V , ' Y, ~ , p, ' } , along with

informal descriptions of intended usage, follow. (Exact interpretations for strings
of the symbols follow the listing.)

For example, *1100: II designates a broadcast unit which will broadcast the signal
II one unit of time after the signal 1100 is detected in the unit 's environment (see
the intended interpretations for strings below).
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0
I

These two symbols constitute the basic alphabet for specifying
signals. Thus 01011 is a signal which, within the language, has no other
meaning than its ability to activate certain broadcast units. Genera Ily
a string such as 01011 wiIl be interpreted as the name of a particular
signal (e.g. the binary encoding of a frequency or amino acid sequence).
* indicates that the fo Ilowing string of symbols (up to the next occurrence
of a *, if any) is to be interpreted as an active broadcast unit .
This symbol is the basic punctuation mark, used in separating the arguments 

of a broadcast unit .
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When this symbol occurs in the argument of a broadcast unit it indicates 
a " don't care" condition. I .e. any symbol can occur at that particular 

position of a signal without affecting its acceptance or rejection
by the broadcast unit . If the symbol 0 occurs at the last position of an
argument it indicates that any terminal string (suffix) may occur from
that point onward without affecting acceptance or rejection.
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For example, *1000 : II will broadcast II if it detects either the signal 1100 or the
signal 1000 (or in fact a signal with any of the other symbols at the second position

) ; *1000 : II will broadcast II if it detects any string having the prefix 100,
such as 1001 or 10010110 or even 100.

~ ~ designates an arbitrary initial or terminal string of symbols (an
arbitrary prefix or suffix) when used in the arguments of a given broadcast 

unit . This symbol gives the unit string-processing capability.

For example, * II ~ : ~ will broadcast the suffix of any signal having the symbols
II as prefix. Thus if 1100 is detected, the signal 00 will be broadcast, whereas if the
signal 11010 is detected, the signal 010 will be broadcast. ( The resolution of conflicts

, where more than one signal satisfies the input condition, is detailed below.)
All occurrences of ~ within a given broadcast unit designate the same substring,
but occurrences in different broadcast units are independent of each other.

..., A second symbol used in the same manner as V . It makes concatenation 
of inputs possible (see below).

~ This symbol serves much as V and ..., but designates an arbitrary single
symbol in the arguments of a given broadcast unit .

For example, * II ~ O: I ~ broadcasts 10 if 1100 is detected, or II if 1110 is detected.

p When p occurs as the first symbol of a string it designates a string which
persists through time (until deleted), even though it is not a broadcast
unit .
This symbol is used to quote symbols in the arguments of a broadcast
unit .

For example, * 11'0 : 10 broadcasts 10 only if the (unique) string 110 is detected
(i.e., the symbol 0 occurs literally at the third position) ; without the quote the unit
would broadcast 10 whenever any 3 symbol string with the prefix 11 is detected.
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pl0 *11' *~ O: 1~ * : 11~ : 11~

designates two broadcast units, namely

* ll ' *~ O: l ~ and * : 11~ : 11~ .

There are four types of broadcast unit (other than the null unit). To determine 
the type of a broadcast unit from its designation, first detennine if there are

three or more (unquoted) : to the right of the *. If so ignore the third : and everything 
to the right of it . The remaining substring, which has a * at the initial positions 
and at most two : s elsewhere, designates one of the four types if it has one

of the following four organizations.

where h , it , and I, are arbitrary non-null strings from A * except that they contain
neither unquoted * s nor unquoted : s. If the substring does not have one of these
organizations it designates the null unit . The four basic types have the following
functions (subject to the conventions for eliminating ambiguities, which follow).

1. *h :it - If a signal of type h is present at time " then the signal it is
broadcast at time I + I .

2. * : h : it - If there is no signal of type h present at time I, then the signal
it is broadcast at time I + I .

3. * h : : it - If a signal of type h is present at time " then a persistent string
of type Is (if any exists) is deleted at the end of time I.
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1.
2.
3.
4.

*h:h
*. r . r..11..11
*r . . r.II. ..11
*h:h:h

The interpretations of the various strings from A *, the set of strings over A,
along with the conventions for resolving conflicts, follow.

Let I be an arbitrary string from A *. In I a symbol is said to be quoted if the
symbol

' occurs at its immediate left. I is parsed into broadcast units as follows:
The first broadcast unit is designated by the segment from the leftmost unquoted
* to (but not including) the next unquoted * on the right (if any). (Any prefix to the
left of the leftmost unquoted * is ignored.) The second, third , etc., broadcast units
are obtained by repeating this procedure for each successive unquoted * from the
left. If I contains no unquoted * s it designates the null unit, i.e., it does not broadcast 

a signal under any condition. Thus
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with environmental (input) signals
state S(O) at t = 0 is

S(O) = { * II ~ :O" ' : II ~ " ' , * IOO: IOO:(XK), 100, 110, (XK)} ,

and at t = 1 it is
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at t ~ 0 and {IOO} at t = 1, the{tOO, llO}

4. . h : It : fa - If a signal of type h and a signal of type It are both present
at time I, then the signal fa is broadcast at the same time t unless fa contains 

unquoted occurrences of the symbols {V , ,." A } or singly quoted
occurrences of . , in which case fa is broadcast at time t + I .

When the final string of any of these units (It for ( I ), (2), and (3), fa for (4  is interpreted 

for broadcast, one quote is stripped from each quoted symbol.
The concept of the state of a (finite) collection of broadcast units facilitates

discussion of potential ambiguities in the actions and interactions of the four types
of unit . This state at time t is, quite simply, the set of al/ signals present at time t,

including the strings defining devices in the collection, the signals generated by those

devices, and the signals generated in the environment of the collection (input

signals). Thus the initial state is the set of strings used to specify the initial collection 
of units, together with all signals present initially . If we look again at the

definition of type 4 broadcast units, we see that they may actually use signals in

the current state to contribute additional signals to the current state (i .e., they can
act with negligible delay much as the switching elements of computer theory). For

example, given the broadcast units

S( I) = {* I I ' \7:0' Y: I I ' \7' Y, * IOO: IOO:<XX>, 100, <XX>, II <XX>} .

The latter signal in S( I ), 11000, occurs because the unit *11' \7 :O' Y: II ' \7' Y receives 

both the signal 110 and the signal 000 at t = 0, so that ' \7 = 0 and ' Y = 00,
and hence the output 11000 occurs at time t = I . A little thought shows that the

instantaneous action of type 4 units does not interfere with the determination of

a unique state at each time since type 4 units can add at most a finite number of

signals to the current state.
Since the symbols ' \7 and ' Y are meant only to designate initial or terminal

strings their placement within arguments of a broadcast unit can be critical to

unambiguous interpretation. For types I through 4, if h contains exactly one

*llV :O.., : llV ..,
*100: 100: (XX)
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The object is to generate a sample of the random variable defined by
probability Lin to each of the numbers { I , 2, . . . , n} . To do this each
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3. USAGE

*ph V :ph' " :ph V ... .

assigning

unquoted occurrence of a symbol from the set {V , '9' } , then that symbol must
occur in either the first or last position to be interpreted; otherwise V or '9' is
treated simply as a null symbol without function or interpretation. If h contains
more than one unquoted occurrence of symbols from the set {V , '9' } then only
the leftmost is operative and then only if it occupies the first position. For type 4
the same convention applies to It , with the additional stipulation that, if the operative 

symbol is the same in both hand It . then only the occurrence in h is interpreted
. Similarly, for types I through 4, only the leftmost occurrence of an unquoted 

~ is operative. ~ oreover, if V , '9' , or ~ occur unquoted in the output
signal of the broadcast unit without interpretable occurrences in the arguments,
they are once again treated as null symbols (and are not broadcast). Thus the
broadcast unit *V II V ~ 0: II ~ " looks for" any signal with a 4 symbol suffix
beginning with II and ending in 0; for example, the signal 001110 would yield the
output III one time-step later.

The final source of ambiguity arises when two or more signals satisfy the
same argument of a given string-processing broadcast unit. For example, when
the state is

S(t) = {*IIV :V , III , lIOO}

the broadcast unit *IIV :V could process either II or 1100, producing either the
output I or else the output 00. This difficulty is resolved by having the unit select
one of the two signals at random. That is, if there are c signals satisfying a given
argument at time t, then each is assigned a probability Ilc and one is chosen at
random under this distribution. This method of resolving the difficulty extends
the power of the language, allowing the representation of random process es.

The following examples exhibit typical constructions and operations within the
"broadcast language

" :
1. The object is to produce the concatenation of two arbitrary persistent

strings uniquely identified by the prefix es It and It respectively. In so doing the
prefix es should be dropped and the result should be identified by the new prefix I..
This is accomplished by the broadcast unit
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string in a set of n persistent strings, say the binary representations of the numbers I

through n, is prefixed by the same string, say I , which uniquely indicates that the

strings are to serve as the data base for the random number generator. When the
state S(t) contains these strings and the signal (string) J, the broadcast unit

*plV :J :ph V

then accomplish es the task, with J signaling that the sample-taking procedure is
to be initiated, and h indicating the result. Simple, nonuniform random variables
can be approximated by making multiple copies of numbers in the base (so that
their proportions approximate the nonuniform distribution). More complex distributions 

can be handled by using the general computational powers of sets of
broadcast units in conjunction with the above procedure.

3. The object is to generate a sample as in (2) but without replacement (the
number drawn is deleted from the data base tagged by I ). To accomplish this a
second broadcast unit is added to the one in (2) giving

*p I V :J :phV *phV : :p I V .

The second unit deletes the string just selected from the data base since just that

string is uniquely prefixed with h by the first broadcast unit .
4. A particular substring 10 is to serve as a special punctuation mark and

the object is to cleave an arbitrary string at the first (ith ) occurrence of 10 (if it
occurs) in that string. To accomplish this let 1 be a prefix identifying the string to
be cleaved, let h identify the component to the left of 10 after the cleavage and let
h identify the component to the right (including 10). The following set of broadcast 

units accomplish es the cleavage at the first occurrence of 10:

*h :ph Signal h initiates the process and the string which
* h : p I V : ph V will be developed into the right component is given

its initial configuration, i.e., it is " set equal
" to the

string to be cleaved.
*plJoO :h A test is made to see if the punctuation 10 is a prefix
* :p I Jo O :J, of the current version of the right component. If so

signal h is emitted, indicating that cleavage has been

accomplished. Otherwise J, is emitted, indicating
that the test should be repeated one place to the right.

Signal J, indicates that the punctuation test failed

exactly two time-steps ago.

*h :/ .
*1.:/6
*/6:/ .:/ .
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units which realizes this function for an initial statebroadcast (signal)

Makes current condition of input available for calculation of

new state (on next time -step).

next time-step).

Adaptation in Natural and I SystemsISO
�

The set of

*. r . r."t."O
*h :J1
*SO:J10
* Sl :JU
*Jo:ho:So
*JO:JU:Sl
* J1 :J10: Sl
*J1:JU:So

Makes current state available for calculation of new state (on

Realization of the transition table.

So is:

*ph6. V :J.: fa V The left component is readied for a new test by hav-
*fa6. :phV :phV 6. ing the leftmost symbol of the "old" 

right component 
added to its right end.

*ph6. V :J.:/.V The right component is " updated
" by deleting the

*1. V : ph V symbol just added to the left component.

*ph V :J.:J. V The "old" 
right and left components are deleted

*J.V : :phV (simultaneously with the "updating
" above) so that

*ph V :J.:J7 V only the "new" 
components for testing appear in

* J7 V : : ph V the state after two time-steps.
*J.:Js J. signals that the punctuation test is to be reinitiated
*Js:J. for the "new" 

components.

To cleave the string at the ith occurrence of 10, instead of the first, a count must be
made of successive occurrences of 10. Since the signal Js signals such an occurrence,
this means counting successive occurrences of Js, restarting the process each time
the count is incremented (by issuing the signal Ja) until the count reaches i. The
next example indicates how a binary counter can be set up to record the count.

S. The object is to count (modulo 2-) occurrences of a signal Js. The basic
technique is illustrated by the construction of a one-stage binary counter. The
transition function (table) for a one-stage binary counter is



For example, if Is occurs at timest = I and t = 3 the sequence of all signals broadcast 

(the overall state sequence) is:

The use of broadcast units to realize the given transition table is perfectly general
and allows the realization of arbitrary transition functions (including counts
modulo 2-).

6. Treating the persistent strings as data implies that it should be possible
to process them in standard computational ways. As a typical operation consider
the addition of two persistent binary integers. The object, then, is to set up broadcast 

units which will carry out this addition. Let Al and At be the suffix es which

identify the two strings. The addition can be carried out serially, digit by digit,
from right to left. Much as in example (4) the " rightmost

" 
digits are successively

extracted by the broadcast units

. V .6.ai : h .6.

. V .6.At :It .6.

These digits, together with the " carry
" from the operation on the previous pair of

digits, identified by prefix It , are submitted as in example (5) to broadcast units

realizing the transition table:

ISIAdaptation of Coding" and Representations
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h It h I. I.
Addendl Addend 2 Carry Slim New Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Successive digits of the sum are assembled by the broadcast unit . I .~ : pA V : pA ~ V
where, at the end of the process, the prefix A designates the sum. A few additional
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"
housekeeping

" units such as .pAV :pV A, which puts the sum in the same form
as the addends, are required to start up the process, keep track of position, etc.
The overall process is simply a straightforward extension of techniques already
illustrated.

7. As a final example note that any string identified with a suffix I can be

reproduced by the broadcast unit . V I : V I . Note additionally that this unit itself
has the suffix I ! Hence, if we start with this unit alone, there will be 2' copies of it
after t time-steps. By revising the unit a bit , so that its action is conditional on a

signal J, . V I :J : V I , this self-reproduction can be control led from outside (say by
other broadcast units). By extending this idea, with the help of the techniques outlined 

previously, we can put together a set of broadcast units which reproduces an

arbitrary set of broadcast units (including itself). The result is a self-reproducing
entity which can be given any of the powers expressible in the " broadcast language.

"

At this point it would not be difficult to give the " broadcast language
" a

precise, axiomatic formulation, developing the foregoing examples into a formal

proof of its powers. ( For anyone familiar with the material presented, say, in
Arbib [ 1964] or Minsky [1967] this turns out to be little more than a somewhat
tedious exercise.) However, our present objectives would be little advanced thereby.
It is already reason ably clear that the " broadcast language

" exhibits the desiderata
outlined at the beginning of section 2. In particular, the broadcast units satisfy the
functional integrity requirement (2) in a straightforward way. Consequently, strings
of broadcast units can be manipulated by generalized genetic operators with
attendant advantages vis-a-vis schemata (see section 6.3 and the close of chapter 7).
Moreover a little thought shows that by using the techniques of usage (4) along
with those of (2), units can be combined to define a crossover operator which acts

only at specified 
"
punctuations

" 
(such as . s or : s or at a particular 

" indicator"

string / ) . The other generalized genetic operators can be similarly defined. New
detectors can be formed naturally from environmental signals (represented as

binary strings). For example; a signal can be converted to an argument which will
detect similar signals (elements of a superset) simply by inserting 

" don't cares"

( 0 ) at one or more points. Thus, . EV : p I V converts any signal with prefix E

(
" environmental" ) into a permanent piece of data which can then be manipulated

as in usages (4) and (6) to form a new broadcast unit with some modification of
the signal as an argument.

The collection of broadcast units employed by an adaptive system at any
time will , in effect, determine its representation of the environment. Since the units
themselves are strings which can be manipulated by generalized genetic operators,

strings of units (
" devices" ) can be made subject to reproductive plans and intrinsic
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TO MODIFY REPRESENTATIONS

The broadcast language provides unusually straightforward representations for a

variety of natural models . Such representation not only provides a uniform context 
for comparisons and rigorous study , it also makes clear the "

computational
"

or processing power of the model and its susceptibility to adaptation .
The Britten -Davidson generalization ( 1969) of the "

operon -operator
"

model serves well to illustrate the point . This is a model for regulation in higher
cells ; as such it includes many mechanisms not found in the simpler bacterial cells
modeled by Jacob and Monod ( 1961). The model consists of four basic types of

gene (see also Figure 14) :

I . The sensor gene is activated (perhaps via intermediary molecules) by any
of various agents (enzymes, hormones , metabolites ) involved in interand 

intracellular control . That is, the sensor gene is a detector sensitive
to the state of the cell and its environment .

2. The producer genes are the specific controls for the actual production of
cell structures (membranes, organelles, etc.) and operating agents
(enzymes, etc.). They are the output controls of the regulation procedure .

3. Each integrator gene is associated with a sensor gene and sends out a

specific signal (molecule ) to other genes when the sensor is activated .
Several integrator genes may be associated with a single sensor, thus

allowing the sensor to initiate a variety of signals.
4. The receptor gene is a link between integrator genes and producer genes.

Each receptor gene is associated with a single producer gene and is
sensitive to a single integrator signal . When the signal is received the

producer gene is activated . A given producer gene may have several
associated receptors .

IS3
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parallelism in processing. More than this, the adaptive plan can modify and coordinate 
the broadcast units to form models of the environment. By implementing,

within the language, the " prediction and correction" 
techniques for models discussed 

in Illustration 3.4, we can arrive at a very sophisticated adaptive plan, one
which can rapidly overcome inadequacies in its representation of the environment.
This approach will be elaborated in the next section. The " broadcast language

"

already makes it clear that there exist languages suitable both for defining arbitrary 

representations and for defining the operators which allow these representations 
to be adapted to environmental requirements.

4 . CONCERNING APPLICATIONS AND THE USE OF GENETIC PLANS
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Fig. 14. Schematic of Britten-Da, id.fOII generalized 
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"

model for gene regulation in higher cell.J

Translated to the broadcaSt language a sensor-integrator gene complex SIJJ . is
directly represented by the set of broadcast units *Sh *S: It *S: I.. Areceptor -

producer complex RIRsP is similarly represented by *Rl :P*Rt:P. If the receptor
Rl responds only to the integrator I ., say, then *R1: P would be replaced by *I. :P.
It is apparent, however, that the receptor Rl could be activated by several related
signals, say lA , IB , IC , . . . , in which case the producer complex would be represented 

by *10 :P. Similarly asensorS could be sensitive to any product with an
initial radical X so that Sh I J . could be represented by * X 0 : h * X 0 : It * X 0 : I ..
Clearly extremely complex feedback loops can be constructed, allowing a great
range of conditional actions dependent upon substrate and products already pro-

1S4 Adaptation In Natural and SY8tem. f
�

~- - - - - - - - - - - - - - - - - - - - - ,I - - - - - - - - - - - - - , IL_ _____- .,- - - - - - - , . I .
. . I I

- . _- - - - - ~~ - - - - + - - - - - - - + - - - - - .,. L___- "'!.. r ( , , ,L - - - - - -' i' - , I ; ~-trliI 8
.,:t . 

H 8 t.:
t11C

= ::::::~
. II . r - - - - - .J .I . . . . r - - - - - . I II . . . . . . II . . . . . . I .L ___ + __ - _":_ - - - - - - - - - - - - - - - - - - - _ .J I'- - - -
~

- - - - - - -: - - - - - - - - - - - - - - - - - - - - _J
.. .- -

J
L___ _ __ - - - - - - - - - ,- - - - - - - - - - - -

' } t~ 8H 8

. .

- - - - -



Representation J ISSAdaptation of Coding, and
�

duced. As an example (simplified for brevity) the sensor-integrator-receptor-

producer complex * XIO :hA *hO :X, p* X, p:hC maintains production of X, p if
a metabolite with initial radical Xl ever makes an appearance. 

"In fact, if sensors
and receptors can have the same range of sensitivity as the arguments of broadcast
units, it is easy to show that there is an appropriate Britten-Davidson model for

producing any arbitrarily given sequence of products.
A very similar representation can be produced for the lymphocyte immune

network, well described by Niels K . Jerne (1973) and presented more technically
by M . Sela (1973). In this case the " detectors" are combining sites on antibody
molecules produced by lymphocyte cells. The environmental " signals

" are invading 

antigens (e.g., foreign protein molecules). The presence of a detected

antigen causes the production of additional lymphocytes (additional " broadcast
units,

" see usage (7) of section 3) which in turn secrete additional antibodies which
combine with (and neutralize) the antigens.

A bit further afield the broadcast language can also serve for astraight -

forward representation of the cell assembly model of the central nervous system
(section 3.6). Here the broadcast units are cell assemblies while the " to-whom-it-

may-Concern" aspect of the broadcast language is reason ably approximated by
the large number of neurons (101 to 10' ) in other assemblies contacted by each
neuron in a given cell assembly. (More specific interconnections can be represented 

by appropriate 
"
tagging

" 
(prefix es) as in section 3.) Then, synaptic

"
learning

" rules which induce fractionation and recruitment in cell assemblies find

counterparts in generalized genetic operators which modify representations.

Closely associated cell assemblies become the counterparts of tested representational 
components (cf. schemata), and so on. ( The interested reader should consult

Plum [1972] for the details of a related model.)
In the context of the broadcast language, the cell assembly model fits

smoothly with the predictive modeling technique of section 3.4. A discussion of
the latter implementation also gives an indication of how the broadcast language
is applied to artificial systems. One implementation which emphasizes the cell-

assembly/ predictive-modeling fit relies on a set of behavioral units which generate
action sequences and are modified on the basis of the 'outcome. Each behavioral
unit consists of a population of behavioral atoms realized as devices in the broadcast 

language. If we look back to the search strategies of Figure 6 it is the detectors
which have a role comparable to the atoms here. In the broadcast language, the
detectors would be broadcast units (or sets of them) with arguments corresponding
to the conditions defining the detector. (For example, the atom corresponding to

8t in Figure 6 would be activated by any 4-by-4 array with 8 or more dark squares.)



The unit(s) implementing the detector, when activated, would broadcast a signal
with an identifying prefix. (For the reader familiar with the early history of pattern
recognition these units act much like the demons at the lowest level of Selfridge

's
Pandemonium [1959] .) Other devices would "

weight
" the signals, 

" sum" them,
and "

compare
" the result to a threshold (cf. section 7.3) to determine which

response signal (from the set of transformations {77i} ) should be broadcast. More
generally, the behavioral atoms would be a string of broadcast units with an
" initiate" condition C which specifies the set of signals capable of activating the
atom, an " end" 

signal J which indicates the end of the atom's activity, and a
"
predicted value" 

signal
. 
which is meant to indicate the ultimate value to the

behavioral unit of that atom's activation. With this arrangement we can treat the
behavioral unit as a population of atoms. The atom ac~ivated at any given time is
determined by a competition between whatever atom is already activated and all
atoms having condition C satisfied by a signal in the current state S(t). The higher
the predicted value of the atom the more likely it is to win the competition. The
object at this level is to have each atom's predicted value V consistent with that of
its successor, so that a set of atoms acting in sequence provides a consistent prediction 

of their value to the behavioral unit . (In this way the atoms satisfy the
error correction requirements discussed at the beginning of section 3.4 under
element (iii ) of a typical search plan.) This object can be accomplished via a genetic
plan applied to the population of atoms- the reproduction of any atom is determined 

by the match between its predicted value and that of whatever atom is next
activated. For example, consider two atoms, alwithparameters (C, J, V) and a2
with parameters (C

', JI, V'
), where ai's end signal acts as a2's initiate signal. Then

(V' - I V - V'
I) could be used as a payoff to al for purposes of the genetic plan,

since the quantity measures the match between V' and V. The population would
then be modified as outlined in section 6.1, new atoms being assigned the predicted
value of the successor a2. That is, the offspring of al would be assigned the predicted 

value V'. All atoms active since the last actual payoff from the environment,
and their offspring, are tagged and their predicted values are adjusted up or down
at the time of the next environmental payoff. The adjustment is determined by the
difference between predicted value and the actual payoff rate (payoff received from
the environment divided by the elapsed time since last payoff). After each environmental 

payoff the active behavioral unit is subjected to a genetic plan (again as
described in section 6.1). The behavioral unit next active (after the environmental
payoff) is determined by the winner of a competition among al/ atoms in all
behavioral units. The outcome of the competition is determined in the same way
as the within-unit competition. Finally , a behavioral unit may be subjected to
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Representations

competition in the absence of environmental payoff, the probability of such an
event increasing as a function of elapsed time since last payoff.

Much more detail would have to be supplied for this implementation of
predictive modeling to reach the level of precision earlier given to the description
of genetic plans. However the objective here is only to indicate the potential of the
broadcast language for predictive modeling with changing representations.

As a final example, note that the world of radiative signals (sound, light,
etc.) is susceptible to modeling as a complex broadcast system. In fact one physical
realization of devices specified in the broadcast language would assign a unique
frequency to each signal and realize broadcast units as a variety of frequency
modulation devices.

Even where the broadcast language does not so directly represent extant
models, it still supplies a rigorous framework for the description and modification
of representations. In particular it makes possible the application of genetic plans
to the problem of discovering suitable representations. Because devices are represented 

by strings and because the functional elements (the broadcast units) are
self-defined, the generalized genetic operators of sections 6.2 and 6.3 can be used
to modify the devices. Moreover, as indicated in section 3, these operators can
themselves be defined within the broadcast language. This makes possible a
hierarchy of operators defined with respect to various kinds of punctuation. Thus,
one crossover operator could be defined to produce crossing-over anywhere along
the string, another could be defined to produce crossing-over only at the symbol :
(thereby providing for exchange of arguments between broadcast units), still another 

only at * (thereby exchanging broadcast units between devices), and so on.
The operators so defined introduce a hierarchy of schemata ranging from schemata
concerned primarily with varieties of arguments, through schemata concerned
with combinations of broadcast units, and on to higher levels of organization
(e.g., behavioral atoms, behavioral units, etc.).

Note that for the broadcast language schemata are generally defined with
respect to sets of arbitrarily long strings. That is, the set of all devices specifiable
in the broadcast language would be the set of all strings which can be formed from
the ten basic symbols; since a schema designates the set of all strings which match
it on its defining positions, each schema designates a countable subset of devices.
Using this extension of the notion of a schema, we see that the results of chapters 6
and 7, particularly those pertaining to intrinsic parallelism, extend directly to the
adaptation of codings and representations. Since the operators themselves can
also be specified within the broadcast language, they can also be made subject to
the same adaptive process es.

Adaptation of Codings and lS7
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In sum: This chapter has been concerned with removing the limitations imposed
by fixed representations. To this end it is possible to devise languages- the broadcast 

language is an example- which use strings to rigorously define all effectively
specifiable representations, models, operators, etc. Since the objects of the language
are presented as strings, they can be made grist for the mill provided by genetic
plans. As a consequence the advantages of compact storage of accrued information

, operational simplicity, intrinsic parallelism, robustness, etc., discussed in
chapters 6 and 7, extend to adaptation of representations.



9. An Overview

Enough of the theoretical framework has now been erected that we can begin to
view it as a whole. To this end, the present chapter will discuss three general aspects
of the theory. Section I will concentrate on those insights offered by the theory
which are useful across the full spectrum of adaptive problems. Section 2 provides
a synopsis of several computer studies to give the reader an idea of how the overall
theory works in particular contexts. Section 3 will outline several difficult long-

range problems which fall within the scope of the theory.

1. INSIGHTS

Within the theoretical framework problems of adaptation have been phrased in
terms of generating structures of progressively higher performance. Because the
framework itself places no constraints on what objects can be taken as structures,
other than that it be possible to rank them according to some measure of performance

, the resulting theory has considerable latitude. Once adaptation has
been characterized along these lines, it is also relatively easy to describe several
pervasive, interrelated obstacles to adaptation- obstacles which occur in some
combination in all but the most trivial problems:

1. High cardinality of (1,. The set of potentially interesting structures is
extensive, making search es long and storage of relevant data difficult .

2. Apportionment of credit. Knowledge of properties held in common by
structures of above-average performance is incomplete, making it difficult 

to infer from past tests what untested structures are likely to yield
above-average performance.

3. High dimensionality of liB. Performance is a function of large numbers
of variables, making it difficult to use classical optimization methods employing 

gradients, etc.
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Nonlinearity of #I.E. The performance measure is nonlinear, exhibiting
" false peaks

" and making it difficult to avoid concentration of trials in

suboptimal regions.
Mutual interference of search and exploitation. Exploitation of what is
known (generation of structures observed to give above-average performance

) interferes with acquisition of new information (generation of
new structures) and vice versa.
Relevant non-payoff information . The environment provides much
information in addition to performance values (payoff), some of which
is relevant to improved performance.

The schema concept suggests a coordinated array of robust procedures for meeting
these obstacles. The procedures are all founded on the view that each structure is
a " carrier" (or selected sample point) of each of the great number of schemata it
instances. Because arbitrary structures are easily represented as strings (by using
detectors or more sophisticated techniques such as the broadcast language) the

resulting procedures apply to adaptation in all its forms. Once schemata have
been defined, there is a natural means (p. 69) of comparing structures and apportioning 

credit by assigning to each schema the average of payoffs to its observed
instances (compensating obstacle (2 . A small population of structures, when

properly selected (pp. 139- 40), can then store the relative performance rankings
for very large numbers of schemata (compensating obstacle ( I  . It is this broad
data base vis-a-vis schemata (p. 87) which enables genetic plans to escape false

peaks and other difficulties engendered by nonlinearities (compensating obstacle

(4 . Recasting the search problem in terms of the space of schemata sidesteps
dimensionality effects (obstacle (3 , at least for intrinsically parallel procedures
such as genetic plans (p. 71). Under such plans the succession of structures generated 

from the data base (the current population) induces a highly parallel,
diffusion-like spread of trials in the space of schemata (pp. 104- 6). This takes

place in such a fashion that there is:

( I ) progressive exploitation of the best observed schemata,
(2) increasing confidence in the estimates of the expected payoff to the best

observed schemata,
(3) testing of great numbers of new combinations of schemata (both newly

generated schemata and new combinations of already tested schemata
of high rank).

160
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In the particular case of the interaction of crossover and inversion with reproduction 
a net of associations is induced (p. 108). Coadapted attributes (attributes

defining schemata of above-average performance) become tightly linked and
increase their proportion in the population (p. 127). In fact (p. 137) the expected
rate of increase dPf/ dt of the proportion of any given schema ~ is closely approximated 

by

dPf/ dt = PE<I' f - p,) = P~ f,

where af is the average excess of the random variable ~ in the population <B(t).
This formula is analogous to Fisher's (1930) classical result for single alleles and
reduces to it when ~ is restricted to a single defining position. The resulting intrinsic

parallelism greatly ameliorates the conflict between search and exploitation
(obstacle (5 . By building up representations and models in terms of a language
like the broadcast language (p. 152) the overall advantages of the schema approach
can also be brought to bear on the problem of non-payoff information (obstacle
(6 . The schemata provide for apportionment of credit to various aspects of the
model on the basis of their relevance to realized predictions.
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2. COMPUTER STUDIES

At the time of this writing several computer studies of genetic plans have been
completed (and more are underway). Four studies closely related to the theoretical 

framework will be outlined here: R. S. Rosenberg
's Simulation of Genetic

Populations with Biochemical Properties (1967), D. J. Cavicchio's Adaptive Search

Using Simulated Evolution (1970), R. B. Hollstien's Artificial Genetic Adaptation
in Computer Control Systems (1971), and DR . Frantz's Non-linearities in Genetic
Adaptive Search (1972).

Richard Rosenberg completed his computer study of closed, small populations 
while formulation of the theoretical framework was still in its early stages.

He concentrated on the complicated relationship between genotype and phenotype
under dynamic interaction between the population and its environment. The
model's central feature is the definition of phenotype by chemical concentrations.
These concentrations are control led by enzymes under genetic control . Epistasis
has a critical role because several enzymes (and hence the corresponding genes)
can affect any given phenotypic characteristic (chemical concentration). Though
the variety of molecules, enzyme-control led reactions, and genes is kept small to
make the study feasible, it still presents a detailed picture of the propagation of
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advantageous, linked genes through a small population. Moreover the study
suggests general relations between the number of genes, crossover probabilities,
and the rate of adaptation under epistasis. Equally important, the study makes it
clear that quite complex (

" molecular" ) definitions of phenotype can be simulated
without losing relevance, up to and including suggestions for experiments in vivo
and in vitro. (At least two subsequent detailed studies of biological cells were

directly encouraged by this experience, R. Weinberg
's Computer Simulation of a

Living Cell [ 1970] and ED . Goodman's Adaptive Behavior of Simulated Bacterial
Cells Subjected to Nutritional Shifts [ 1972] .)

The first study based directly upon the theoretical framework was that of
Daniel Cavicchio. (J. D. Bagley

's The Behavior of Adaptive Systems Which Employ
Genetic and Correlation Algorithms [ 1967] is an earlier study which is a direct

precursor of both this study and Frantz's.) The set of structures Cl is taken to be a
broad class of pattern classification devices based on those developed by Bledsoe
and Browning (1959) and Uhr (1973). Specifically each device uses a set of detectors
to process information presented by the sensors in a 25 by 25 array (cf. section 1.3
and Figures 5 through 7). After an initial "

training
" 

period, during which the
device A E: Cl accumulates information about one or more handwritten alphabets,
A is tested and scored on its classification of letters from another handwritten

alphabet. This score amounts to A's performance rating, its payoff ~ A). The

adaptive plan, a version of the ffid class of reproductive plans (pp. 94- 95), generates 
new detectors (and, in the process, new devices) by using genetic operators

which are variations on the operators discussed in sections 6.2 through 6.4.
Because of the sophistication of the problem environment, the first objective 

is to develop some estimate of the task's difficulty vis-a-vis the devices in Cl.
Cavicchio does this by testing, in the problem setting, a large number of devices
drawn at random from Cl. The observed distribution of performances is Gaussian.
For a typical environment (Cavicchio calls it the " difficult task"

), the mean score
is 17 with a standard deviation of 5. (A perfect score would be 100.) This implies
that in I<XX> random trials of devices drawn from Cl we can expect the best performance 

to be about 32.
To obtain an idea of the performance of a nonreproductive, but adaptive,

plan in the same environment, Cavicchio applied a version of Uhr and Vossler's

(1973) 
" detector evaluation" 

procedure to the search of Cl. This procedure amounts
to identifying inferior detectors and replacing them with " mutated" versions.
The best performance observed over a great many runs of 600 trials each was a
score of 52; each of the runs " leveled out" somewhere between the 300th and the
600th trial . This is consider ably better than a random search, being 7 standard
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deviations above the mean in less than 600 trials (as compared to 3 standard deviations 
in ICXX> trials).

Against this background Cavicchio then developed and tested a series of
reproductive plans. The best of these attained a score of 75.5 in 780 trials, a score
consider ably beyond that attained in any of the " detector evaluation" runs. (In
qualitative terms, a score of 52 would correspond to a "

poor
" human performance

, while a ~ ore of 75.5 would correspond to a " good
" human performance.

Because many characters in the " difficult task" are quite similar in form, increments 
in scoring are difficult to attain after the easily distinguished characters

have been handled.) An important general observation of this study is that the
sophistication and power of a genetic plan is lost whenever M , the size of the
population (data base), is very small. It is an overwhelming handicap to use only
the most recent trial (M = I ) as the basis for generating new trials (cf. Fogel et al.
1966). On the other hand, the population need not be large to give considerable
scope to genetic plans (20 was a population size commonly used by Cavicchio).

Roy Hollstien added consider ably to our detailed understanding of genetic
plans by making an extensive study of genetic plans as adaptive control procedures

. His emphasis is on domains wherein classical " linear" and "
quadratic

"

approach es are unavailing, i .e., domains where the performance function exhibits
discontinuities, multiple peaks, plateaus, elongated ridges, etc. To give the problems 

a uniform settinghetransforms them to discrete function optimization problems
, encoding points in the domain as strings (see p. 57). An unusual and

productive aspect of Hollstien's study is his translation of breeding plans for
artificial genetic selection into control policies. A breeding plan which employs
inbreeding within related (akin) policies, and recurrent crossbreeding of the best
policies from the best families, is found to exhibit very robust performance over
a range of 14 carefully selected, difficult test functions. ( The test functions include
such " standards" as Rosenbrock's ridge, the sum of three Gaussian 2-dimensional
density functions, and a highly discontinuous " checkerboard" pattern.) The test
functions are represented on a grid of 10,CXX> points (100 by 100). In each case the
region in which the test function exceeds 90 percent of its maximum value is small.
For example, test function 7 with two false peaks (the sum of three Gaussian
2-dimensional densities) exceeds 90 percent of its maximum value on only 42 points
out of the 10,000. The breeding plans are tested over 20 generations of 16 individuals 

each, special provisions being made to control random effects of small
sample size (

"
genetic drift "

). The breeding plan referred to above, when confronted 
with test function 7, placed all of its trials in the " 90 percent region

" after
12 generations (192 trials). A random search would be expected to take 250 trials
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(10,000/ 42) to place a single point in the " 90 percent region." The same breeding
plan performs as well or better on the 13 other test functions. Given the variety of
the test functions, the simplicity of the basic algorithms, and the restricted data
base, this is a striking performance.

Daniel Frantz concentrated on the internal workings of genetic plans,
observing the effect, upon the population, of dependencies in the performance
function. Specifically, he studies situations in which the quantity to be optimized
is a function of binaryparameters  . I .e., 8 consists of functions which are
25-dimensional and have a domain of 225 = 3.2 X 107 points. Dependencies
between the parameters (nonlinearities) are introduced to make it impossible to
optimize the functions dimension by dimension (unimodality is avoided). Frantz's
procedure is to detect the effects of these dependencies upon population structure
(gene associations) by using a multidimensional chi-square contingency table. As
expected from theoretical considerations (see Lemma 7.2 and the discussion following 

it ) algebraic dependencies (between the parameters) induce statistical
dependencies (between alleles). That is, in the population, combinations of alleles
associated with dependent parameters occur with probabilities different from the
product of the probabilities of the individual allele~. Moreover there is a positional 

effect on the rate of improvement: For functions with dependencies the rate
of improvement is significantly greater when the corresponding alleles are close
together in the representation. This effect corresponds to the theoretical result
that the ability to pass good combinations on to descendants depends upon the
combinations' immunity to disruption by crossover. It is significant that, for the
problems studied, the optimum was attained in too short a time for the inversion
operator to effectively augment the rate of improvement (by varying positional
effects).

The results presented in this book have a bearing on several problem areas substantially 
more difficult than those recounted in section 9.1. Each of these problems 

has a long history and is complex enough to make sudden resolution unlikely.
Nevertheless the general framework does help to focus several disparate results,
providing suggestions for further progress.

As a first example, let us look at the complex of problems concerned with
the dynamics of speciation. These problems have their origin in biology, but a
close look shows them to be closely related to problems in the optimal allocation of
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limited resources. To see this, consider the following idealized situation. There are

two one-armed bandits, bandit ~l paying 1 unit with probability Pion each trial ,
bandit ~2 paying 1 unit with probability P2 < Pl. There are also M players. The

casino is so organized that the bandits are continuously (and simultaneously)

operated, so that at any time I, for a modest fee, a player may elect to receive the

payoff (possibly zero) of one of the two bandits. The manager has, however, introduced 

a gimmick. If Ml players elect to play bandit ~l at time I, they must share

the unit of payoff if the Qutcome is successful. That is, on that particular trial ,
each of the Ml players will receive a payoff of 1/ Ml with probability Pt. Now, let

us assume that the M players must participate for a period of T consecutive trials.

If there is but one player (M = 1), clearly he will maximize his income (or minimize 

his losses) by playing bandit ~l at all times. However, if there are M > 1

players the situation changes. There will be stable queues, where no player can

improve his payoff by shifting from one bandit to another. These occur when the

players distribute themselves in the ratio Mil M2 = Pl/P2 (at least as closely as

allowed by the requirement that Ml and M2 be integers summing to M ). For

example, if PI = i , P2 = 1, and M = 10, there will be 8 players queued in front of

bandit ~l and 2 players in front of bandit &. We see that with limited resources (in

the numerical example, a maximum of 2 units payoff per trial and an expectation
of 1 unit) the population of players must divide into two subpopulations in order

to optimize individual shares of the resources (the " bandit ~l players
" and the

" bandit & players
"
). Similar considerations apply when there are r > 2 bandits.

We have here a rough analogy to the differentiation of individuals (the

subpopulations) to exploit environmental niches (the bandits). The analogy can

be made more precise by recasting it in terms of schemata. Let us consider a population 
of M individuals and the set of 2'1 schemata defined on a given set of /0

positions. Assume that schema ~.., i = 1, . . . , 2'1, exploits a unique 
" environmental 

niche" which produces a total of Q.. units of payoff per time-step. (Q.. corresponds 

to the renewal rate of a critical, volatile resource exploited by ~...) If the

population contains M .. instances of ~.., the Q.. units are shared among them so

that each instance of ~.. receives a payoff of Q../ M ... Let Q(l) > Q(2) > . . . > Q(2P)
so that schema ~(l) is associated with the most productive niche, ~(2) with the

second most productive niche, etc. Clearly when M (1) is large enough that

Q(l)/ M (1) < Q(2), an instance of ~(t) will be at a reproductive advantage. Following
the same line of argument as in the case of the 2 one-armed bandits, we get as a

stable distribution the obvious generalization:

M (11 = cQ(il/ Q(j)
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where j is the smallest index such that

Ei :tl Q(11/ QU+l) > M

and c is chosen so that

E {. 1 cQ(t')/ Q<l1 ~ M

(modified so that the actual solution is in integers). For example, let /0 ~ 2 with
2 alleles (attributes) at each locus, yielding schemata ~1, &, &, ~4 with Ql ~ I,
Qt ~ 4, Qa ~ 8, Q4 ~ I . Then for M ~ 9 there will be 6 instances of &, 3
instances of &, and no instances of ~1 or ~4 in the stable distribution.

Here we have a simple example of speciation. If the population is restricted
to M individuals (by factors other than the niche payoff rates), certain combinations 

of alleles appear in a stable competition while other combinations are proscribed 
by the same competition. The example can rapidly be made more realistic

by letting the payoff to each schema ~ be a random variable with expected payoff

lIE<t) ~ min ~ ~, QJ ME<t), Q/ M(t)}

where QE is the minimum of the renewal rates of resources characterizing the
environmental niche associated with ~, ME<t) is the number of instances of ~ at
time t, Q is the minimum of the renewal rates of resources required by all the
schemata, and M(t) is the total population at time t. Now the schema ~ will increase 

its proportion at an intrinsic rate set by II~ I O I'll! it reaches the "carrying
capacity

" of its niche, determined by QE' or until the total population has increased 
to a point that the overall "carrying capacity,

" determined by Q, limits
further expansion. (For the reader familiar with Mac Arthur and Wilson's [1967]
work, the effect of QE corresponds to a K selection- crowded niche- effect,
whereas II~ is the intrinsic rate of increase, possibly wasteful of resources, under
classical r selection. Q sets an ultimate limit on the carrying capacity of the environment

, no matter what the diversity or organization of the species.) With typical
values for the {QJ and Q, the population will once again develop into subpopulations 

characterized by certain combinations of alleles (schemata), with many
combinations being proscribed.

The really interesting form of this theory would characterize niches (and
hence the overall payoff function II) in terms of the varieties of schemata that
could exploit them- different schemata exploiting a given niche with differing
efficiencies. The dynamics of speciation would then be determined by competition
within and across niches. It is interesting that under these circumstances speciation
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could take place in the absence of isolation (in contrast to the usual view, cf. Mayr
1963).

Once an adaptive system discovers that given combinations of genes (or

their alleles) offer a persistent advantage, new modes of advance become possible.

If the given combinations can be handled as units they can serve as components

(
"
super genes

"
) for higher order units. In effect the system can ignore the details

underlying the advantage confer red by a combination, and operate simply in

terms of the advantage confer red. By so doing the system can explore regions of (i ,
i.e., combinations of the new units, which would otherwise be tried with a much

lower probability . ( For example, consider two combinations of 10 alleles each

under the steady state of section 7.2. If each of the alleles involved occurs with a

frequency of 0.8, the overall combination of 20 alleles will occur with a frequency

(0.8)20 ~ 0.01. On the other hand, if each of the two 100allele combinations is

maintained at a frequency of only 0.5, then the 20-allele combination win occur

with frequency (0.5)2 = 0.25. I .e., the expected time to occurrence win be reduced

by a factor of 25.) Since combinations of advantageous units often offer an advantage 

beyond that of the individual units- as when the units' effects are additive

(linear independence) or cooperative- they are good candidates for early testing.

( The cooperative case where one unit effects an enrichment which can be exploited

by another is particularly common; cf. cooperating cell assemblies or stages of a

complex production activity such as illustrated in Figure 3.)
We have already discussed (section 6.3) the way in which inversion can

favor association between genes. However, by controlling representation, the

adaptive system can bring about changes which go much further, producing a

hierarchy of units. The basic mechanism stems from the introduction of arbitrary

punctuation marks to control operators (see usage (4) in section 8.3 and the discussion 

on pages 152- 53). The adaptive system introduces a distinct punctuation
mark (specific symbol string) to mark off the combinations which are to be treated

as units at a given level of the hierarchy. Then the operators for that level are

restricted to act only at that punctuation. (E.g., crossover takes place only at the

positions marked by the given punctuation.) By introducing another punctuation
mark to treat combinations of these units, in turn , as new units, and so on, the

hierarchy can be extended to any number of levels. The resulting structure offers

the possibility of quickly pinpointing responsibility for good or bad performance.

(E.g., a hierarchy of 5 levels in which each unit is composed of 10 lower level units

anows anyone of 101 components to be selected by a sequence of 5 tests.) In the

hierarchy, the units at each level are subject to the same " stability
" considerations
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as schemata ( pp. 100- 102), being continually modified by operators at lower
levels. Thus certain hierarchies will be favored because of their stability, the corresponding 

punctuations and operators becoming common features of the overall
population. Chapter 4 of Simon's book, The Sciences of the Artificial (1969), gives
a good qualitative discussion of this and related topics.

It is natural to ask whether these operator-induced hierarchies can account
for important features of such observed hierarchies as the organelle, cell, organ,
organism, species, . . . hierarchy of biology, or the hierarchical organization of
the CNS or a computer program. There would seem to be a strong relation between
operator-induced hierarchies and the sequences of developmental biology (embryo-
genesis and morphogenesis) whereby, for example, a fertilized egg develops into
a mature multicellular organism.

As a final problem area we can look to situations wherein payoff to a given
structure varies in time and space. For example, in the case of limited resources,
the resource renewal rates Qf may be both temporally and spatially inhomogeneous,
being described by a function QE<X I' . . . ' Xi, I). In such cases we would also
expect the population at time t to be distributed spatially, yielding <B(XI, . . . , Xi, t)
as the component at coordinate (Xl, . . . , Xi). After some adaptation anyone. component 

of the population, in response to the spatial variations in payoff, will
generally exhibit different proportions of schemata than its neighbors.

In ecological situations, as well as in certain control situations, it is appropriate 
to consider the migration of structures from one component of the population 

to another (one. coordinate to another). That is, under the direction of the
adaptive plan, the jth structure AJ(XI, . . . , Xi, t) in the population component
<B(XI, . . . , Xi, t) may be transferred to a neighboring coordinate (x~, . . . , X~),
becoming an element of <B(x~, . . . , X~, t + I ). (Such systems can be usefully
described with the help of cellular automata; see R. F. Brender's A Programming
System for Cel/ular Spaces 1969 and Essays on Cel/ular Automata edited by A . W.
Burks 1970.) Under these conditions we would expect to observe a spatial diffusion
of schemata. Thus schemata having a large number of instances in <B(XI, . . . , Xi, t)
would be expected to appear in fair numbers in neighboring components of the
population, even if their performance there is poor. At the " boundaries" between
different niches the genetic operators will produce unusual " hybrids

" of schemata
common in each of the niches. That is, where there are sharp changes in the
QE<XI, . . . , Xi, I), crossover will yield a wide range of new schemata, which would
otherwise occur with low probability . Many of these schemata will be unfit or fit
only in the boundary region, but some may exhibit exceptional performance on
one or both niches. The relation to Mayr

's (1963) description of speciation as the
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result of contact between previously isolated, locally adapted populations is manifest

. (See, however, the comment on page 166.) There is much to be learned about

these process es, particularly with reference to schemata or coadapted sets. (Some

of the most interesting work to date has been carried out by ABrues 1972.)
It is clear that the addition of migration rules to reproductive plans affords a

sophisticated approach to spatially inhomogeneous environments, but we need

to know a great deal more about the efficiency and robustness of such an approach

(paralleling the development of chapters 5 and 7 for the homogeneous case).

So far we have been discussing spatial inhomogeneity of payoff, but temporal 

inhomogeneity or non stationarity is an even more difficult problem. There

are four points at which the results of this book have a bearing on such problems.

First, and most obvious, the rapid response of reproductive plans, exhibited concretely 

in the studies of Cavicchio (1970) and Hollstien (1971), permits 
"
tracking

"

of the changing payoff function. As long as the payoff function changes at a rate

comparable to the response rate, overall performance will be good. The proportions 
of schemata in the population will change rapidly enough to take advantage

of current features of the environment. As a second point, it should be noted that

the rank bestowed on a schema (its proportion in successive generations) is the

geometric mean of the observed averages .a E<t) (see -Lemma 7.2). Thus more rapid
fluctuations will favor schemata which exhibit the best (geometric) mean performance 

when subjected to the fluctuations. Third , if there are repetitive (not

necessarily cyclic) features over time, dominance change provides a mechanism

for retaining useful schemata when the features are not in force (see pages 115- 16).

By occasionally (say once every few generations) giving recessive status to instances 

of currently favored schemata, they can be reserved against adverse

environmental configurations. In particular, these recessive instances have a much

reduced testing rate (see page liS ). As a result the recessive versions are relatively
unaffected by environmental changes which quickly eliminate the dominant version

. By occasionally returning an instance of a recessive schema to dominant

status it can be tested against the current environmental configuration. If the

dominant instance achieves above-average performance it will reproduce rapidly,

producing an increasing proportion of dominant instances in the population. (If

the performance is below average the newly dominant instance will quickly disappear

, at no great cost to the efficiency of the adaptive plan.) Finally , by making
the intrachromosomal duplication of a schema ~ subject to the disappearance of

an environmental feature currently exploited by ~, the effective mutation rate of ~
can be increased. For example, let the schema ~ be associated with a sensor (see

pages 153- 54) which detects the environmental feature exploited by ~. Let intra-
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chromosomal duplication be an operator control led by the sensor; i.e., whenever
the sensor is deactivated, intrachromosomal duplication takes place on the sets
of genes associated with the sensor. In consequence, disappearance of the environmental 

feature will result in many copies of the genes, and hence the schemata,
associated with the sensor. With a fixed mutation rate for each gene, the number
of mutants of a given schema in the population will depend upon the number of
copies thereof. Thus by providing many copies within a chromosome, the effective
mutation rate is correspondingly increased. As a result, this (hypothetical) mechanism 

provides many variants relevant to the crisis. At the same time it retains
whatever advantage remains to the original schema ~. In biology there are varying
amounts of evidence for the foregoing responses to non stationarity, and some of
the predicted effects have been demonstrated in simulations, but again we are a
long way from a theory, or even good experimental confirmation, of their efficiency.

In these nine chapters we have come only a short way in the study of
adaptation as a general process. The book's main objective has been to make it
plausible that simple mechanisms can generate complex adaptations; however,
the book will have fulfilled its role if it has communicated enough of adaptation

's
inherent fascination to make the reader's effort worthwhile.
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and Prospectus

1. IN THE INTERIM

Classifier

inb' oduced in Holland 1976 and were later revised to the current "standard" fonn in
Holland 1980. There is a comprehensive description of the standard fonn, with
examples, in Holland 1986, but there are now many variants (see Belew and Booker
1991). A classifier system is more restricted than the broadcast language in just one

171

10. Interim

Systems

Adaptation in Natural and Artificial Systems, after a seven-year gestation, made its
appearance in 1975. It is now 1991, and much has happened in the interim. Topics
that were speculative in 1975 have been carefully explored; extensions, applications,
and new areas of investigation abound. More than 150 papers were submitted to the
1991 International Conference on Genetic Algorithms (Belew and Booker 1991), and
several new books have been written about genetic algorithms (e.g., Davis 1987 or
Davis 1991). There is even a textbook (Goldberg 1989). Most of this new research
has been reported in the published proceedings of the genetic algorithm conferences
of 1985, 1987, 1989, and 1991 (Grefenstette 1985, Grefenstette 1987, Schaffer 1989,
and Belew and Booker 1991) and is readily accessible there, so I will not attempt to
review it here--the review would be, at best, little more than an annotated listing.
Instead, I

' ll follow the pattern of the rest of the book, using this new chapter to report
on lines of research I 've pursued since 1975. A new edition also provides an opportunity 

to correct errors in the original edition. Most of these are simple and innocuous,
but an error in one proof, discovered and corrected by Dr. Daniel Frantz, is subtle
and important. By good fortune, after the correction the theorem involved stands as
stated. Finally, a new chapter offers an opportunity to look further into the future;
this too I ' ll attempt.
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major respect: A broadcast unit can directly create other broadcast units, but a
classifier, the broadcast unit's counterpart in a classifier system, cannot directly create
other classifiers. This restriction permits a much simpler syntax based on only three
atomic symbols, { I ,O, # (

"don't care" )}. A classifier system creates new classifiers
through the action of the genetic algorithm on the system

's population of classifiers.
Classifier systems aim at a question that seems to me central to a deeper

understanding of learning: How does a system improve its performance in a perpetually
novel environment where overt ratings of performance are only rarely available? A
learning task of this kind is more easily described if we think of the system as playing
a strategic game, like checkers or chess. After a long sequence of actions (moves),
the system receives some notification of a "win" or a " loss" and, perhaps, some
indication of the strength of the win or loss. But there is almost no information about
what moves should have been changed to yield better performance. Most learning
situations for animals, including humans, have this characteristic- an extended sequence 

of actions is followed by some general indication of the level of performance,
with little information about specific changes that would improve performance.

In defining classifier systems (see Figure 15), I adopted the common view that
.the state of the environment is conveyed to the system via a set of detectors (e.g.,
rods and cones in a retina). The outputs of the detectors are treated as standardized
packets of information- messages. Messages are used for internal processing as well,
and some messages, by directing the system

's effectors (e.g., its muscles), determine
the system

's actions upon its environment. Beside the interactions with the environment 
provided by detectors and effectors, there is a further interaction that is critical

to the learning process. The environment must, upon occasion, provide the system
with some measure of its performance. Here, as earlier, I will use the term payoff as
the general term for this measure.

The computational basis for classifier systems is provided by a set of condition!
action rules, called classifiers. To simplify the computational basis, all interactions
between rules are mediated by messages. Under this provision a typical rule, under
interpretation, would have the form

IF there is (a message from the detectors indicating) an object left of center in
the field of vision
THEN (by issuing a message to the effectors) cause the eyes to look left.

That is, the condition part of the rule " looks for" certain kinds of messages, and when
the rule's conditions are satisfied, the action part specifies a message to be sent.
Messages both pass information from the environment and provide communication
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Fig. 15. A system

between rules, as in the broadcast language (where they were called signals). Thus
each rule is a simple message processor. Many rules can be active simultaneously, so
many messages may be present at any given instant. It is convenient to think of the
messages as collected in a list that changes under the combined impetus of the
environment and the rules.
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To define a standard classifier system, we first require all messages to be bit-

strings of the same length, k, much as one sets the register size for a computer.
Formally, then, messages belong to the set {1,O}

k. The condition part of a rule is
specified by the use of a "don't care" symbol, # , reminiscent of the "don't care"

used to define schemata. Thus, the set of all conditions is the set { I ,O,# }
k. For k= 6,

the condition 1# # # # # is satisfied by any message that starts with a I , while the
condition 001001 is satisfied by one and only one message, the message 001001. It
is worth noting that a condition's specificity (the reciprocal of the number of messages
that satisfy it) depends directly upon the number of # s in the condition- the more
lIs , the lower the specificity.

In the standard system, all rules consist of two conditions and a single outgoing
message, which is sent when the two conditions are satisfied. Rules are specified in
the format

1# # # # # ,00100 1/<XXX> I I .
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Parallelism, the concurrent activity of many rules, is an important aspect of
classifier systems. Parallelism makes it possible for the system to combine rules into
clusters that model the environment, providing two important advantages:

I . Combinatorics work for the system instead of against it . The system builds
a "picture

" of the situation from parts, rather than treating it as a monolithic
whole. The advantage is similar to that obtained when one describes a face
in terms of component parts. Select, say, 8 components for the face- hair,
forehead, eyebrows, eyes, cheekbones, nose, mouth, and chin. Allow 10
variants for each component part- different hair colors and textures, different 

forehead shapes, and so on. Then 108 = 100 million faces can be
described by combining these components in different ways. This at a cost
of storing only 8x 10 = 80 "building block" components.

2. Experience can be transferred to novel situations. On encountering a novel
situation, such as a "red car by the side of the road with a flat tire," the
system activates several relevant rules, such as those for "red," "car,

" " flat
tire," etc. When "building-block" rules, such as those for "car,

" have proved
useful in past combinations, it is at least plausible that they will prove
useful in new, similar combinations. To exploit these possibilities, the rules
must be organized in a way that pennits clusters of rules to be activated in
changing combinations, as dictated by changing situations. Building-block
rules then give the system a capacity for transferring experience to new
situations.



This format is interpreted as follows :

IF condition I is satisfied (in this case, by a message, on the message list, that
starts with I ),
AND condition 2 is satisfied (in this case, by a second, specific, message
001001),
THEN the message in the action part (in this case, 0000 II ) is posted to the

message list on the next time-step.

Conditions may be negated: For example, - 1# # # # # is satisfied if there is no

message on the message list that begins with a I . With these provisions it is easy to
show that a classifier system is computationally complete, in the sense that any
program that can be written in a standard programming language, such as For Uan,
C, or Lisp, can be implemented within a classifier system.

Without any changes to this definition, rules can be given an "address" that
can be used by other rules when that is useful. Consider a rule r with a condition of
the form 111# . . . # . Any message that starts with three Is will satisfy this condition.
If this particular prefix, III , is reserved for the rule r alone, then any message with
that prefix will be directed to r and only to r . Such reserved prefix es (they can also
be suffix es, or indeed any part of the message) are called tags. Of course, several
rules might have the same reserved tag; that simply means that all of them receive

messages so tagged, acting as a cluster with respect to that tag. Appropriate use of

tags also permits rules to be coupled to act sequentially.
The basic execution cycle of the classifier system consists of an iteration of

the following steps:

I . Messages from the environment are placed on the message list.
2. Each condition of each classifier is checked against the message list to see

if it is satisfied by (at least one) message thereon.
3. All classifiers that have both conditions satisfied participate in a competition

(to be discussed in a moment), and those that win post their messages to
the message list.

4. All messages directed to effectors are executed (causing actions in the
environment).

5. All messages on the message list from the previous cycle are erased (i .e.,
messages persist for only a single cycle, unless they are repeatedly posted).

Because the message list can hold an arbitrary number of messages, any number of
rules can be active simultaneously; because the messages are simply uninterpreted
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messages.
A rule, then, enters a competition to post its message any time its conditions

are satisfied. The actual competition is based on a bidding process. Each satisfied rule
makes a bid based upon its strength and its specificity. In its simplest form, the bid
for a rule r of strengths(r) would be

now ready to discuss the system
's learning procedures. There are two basic problems,

credit assignment, already mentioned, and rule discovery. Credit assignment rates the
rules the system already has. Rule discovery replaces rules of low strength and

provides new rules when environmental situations are ill -handled.

Let us begin with the credit assignment problem.
difficult where the situation provides immediate

, Credit assignment is not particularly
reward or precise infonnation about

Adaptation in Natural and Artificial Systems176
�

Bid(r) = cos(r)olog2[specificity(r ),

Credit assignment

where c is a constant < I , say 1/ 10. A rule that both has been useful to the system
in the past (high strength) and uses more infonnation about the current situation (high
specificity) thus makes a higher bid. Rules making higher bids are favored in the

competition. Various criteria for winning can be employed. For example, the proba-

bit-strings, there are no consistency problems in the internal processing. Consistency
problems do arise at the effectors; when different, simultaneous messages urge an
effector to take mutually exclusive actions, they are resolved by competition.

Competition plays a central role in detennining just which rules are active at

any given time. To provide a computational basis for the competition, each rule is

assigned a quantity, called its strength, that summarizes its average past use fulness
to the system. We will see shortly that the strength is automatically adjusted by a
credit assignment algorithm, as part of the learning process. Competition allows rules
to be treated as hypotheses, more or less confirmed, rather than as incontrovertible
facts. The strength of a rule corresponds to its level of confirmation; stronger rules
are more likely to win the competition when their conditions are satisfied. Stated
another way, the classifier system

's reliance upon a rule is based upon the rule's

average use fulness in the contexts in which it has been tried previously. Competition
also provides a means of resolving conflicts when effectors receive conb' adictory



correct actions. Then the rules directly involved are simply strengthened. Credit

assignment becomes difficult when credit must be assigned to early acting rules that
set the stage, making possible later useful actions. Stage-setting moves are the key
to success in complex situations, such as playing chess or investing resources. The

problem is to credit an early action, which may look poor (such as the sacrifice of a

piece in chess) but which sets the stage for later positive actions (such as the capture
of a major piece in chess). When many rules are active simultaneously, the problem
is exacerbated. It may be that only a few of the early acting rules contribute to a
favorable outcome, while others, active at the same time, are ineffective or even
obstructive. Somehow the credit assignment algorithm must sort this out, modifying
rule strengths appropriately.

Credit assignment in classifier systems is based on competition. The bidding
process mentioned earlier is treated as an exchange of "capital

" 
(strength). That is,

when a rule wins the competition, it actually 
"
pays

" its bid to the rule(s) that sent the

messages) satisfying its conditions. The rule acts as a kind of go-between or broker
in a chain that leads from the stage-setting situation to the favorable outcome.

In a bit more detail, when a rule competes, its sup pliers are those rules that
have sent messages satisfying its conditions and its consumers are those rules that
have conditions satisfied by its message. Under this regime, we treat the strength of
a rule as capital and the bid as payment to its sup pliers. When a rule wins, its bid is

apportioned to its sup pliers, increasing their strengths. At the same time, because the
bid is treated as a payment for the right to post a message, the strength of the winning
rule is reduced by the amount of its bid. Should a rule bid but not win, its strength
is unchanged and its sup pliers receive no payment. The resulting credit assignment
procedure is called a bucket brigade algorithm (see Figure 16).

Winning rules can recoup their payments in two ways: (1) They, in turn, have

winning consumers that make payments to them, or (2) they are active at a time when
the system receives payoff from the environment. Case (2) is the sole way in which

payoff from the environment affects the system. When payoff occurs, it is divided

among the rules active at that instant, their strengths being increased accordingly.
Rules not active at the time the payoff occurs do not share directly in that payoff.
The system must rely on the bucket brigade algorithm to distribute the increased

strength to the stage-setting rules, under repeated activations in similar situations.
The bucket brigade works because rules become strong only when they belong

to sequences leading to payoff. To see this, first note that rules consistently active at
times of payoff tend to become strong because of the payoff they receive from the
environment. As these rules grow stronger, they make larger bids. A rule that "supplies

" one of the payoff rules then benefits from these larger bids in future transactions.
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payment (time)

sb'ength at t.1
sb'ength at t
8b'ength at t+1

Subsequently, the sup pliers of the
early stage-setting rules.

sup pliers begin to benefit, and so on, back to the

Things can go wrong. A supplier might, through a message to the effectors,
convert an environmental state to one that diverts its consumer rule from apayoff -

directed path. That is, it might fail in its stage-setting role. In that case, the consumer
suffers because the diversion will prevent it from receiving payments from its consumers

; however, the diverting supplier rule generally suffers even more, because it
is at an earlier stage in its "getting rich" effort. Or it may be that the consumer has
a condition that attends to the state of the enviroment and does not even bid when
the diverting state occurs. In either case, the diverting supplier soon loses enough
strength so that it no longer wins the competition. It then ceases to influence subsequent 

activity.
The whole process, of course, takes repeated plays of the game. But it only

requires that a rule interact with its immediate sup pliers and consumers. It requires
no overt memory of the long and complicated sequences leading to payoff. Avoiding
extensive overt memories is almost a sine qua non for large, parallel systems acting
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Fig. 16. The bucket brigade algorithm

Its strength increases because its income exceeds its payout- it makes a "
profit ."

When a classifier wins a competition It Immediately
1) posts Its me. . age for use on die next time-step
2) peys Its bid to Its supplier (s) thereby re~ ing its strength.

In the diagram
C' Is first a consumer (of C) then a supplier (of C").



in perpetually novel environments with sparse payoff. Overt memories in such situations 
necessarily involve many tangled strands, including unnecessary detours and

incidentals. To tease out the relevant strands at the time payoff occurs would be an
overwhelming, hardly feasible task. Over repeated trials the bucket brigade carries
out this task, but in an implicit fashion.

Generating plausible replacements for rules assigned low strength under the credit
assignment algorithm is an even more daunting task than credit assignment itself. In
a rule-based system, the whole process of induction succeeds or fails in proportion
to its efficacy in generating plausible new rules, rules that are not obviously incorrect
on the basis of experience. However, plausible is not an easy concept to pin down
computationally. It implies that experience blases the generation of new rules, but
how?

I propose that the concept of plausibility is closely linked to the "schema"

concept set forth in the discussion of genetic algorithms. Because the rules in a
classifier system are presented by strings defined over a three-letter alphabet, { l ,O,# },
we can think of the strings as chromosomes defined on three alleles. Accordingly,
we can interpret the set of rules used by the classifier system as a population of
chromosomes. Moreover, the strength of each rule can be interpreted directly as its
fitness (though it should be noted that there are interesting variants that base fitness
on strength in a less simplistic' way). A genetic algorithm, then, is easily applied to
such a population of rules, and, indeed, classifier systems were designed with just
this objective in mind.

In this application of the genetic algorithm, schemata serve as building blocks
for rules. The use fulness of any given schema can be estimated, in the usual way,
from the average observed strength of the rules that are instances of the schema in
the population. Though these estimates are subject to error, they do provide an
experience-dependent guideline. Both the possibility of error and role of experience
are consonant with the term plausibility. As always, the genetic algorithm exploits
these estimates implicitly (implicit parallelism, nee intrinsic parallelism in chapter 4)
rather than explicitly, but this does not affect the plausibility of the new rules generated
thereby.

It helps in understanding the evolution of a classifier system to note that simple
schemata (those with few defining positions) generally have more instances than more

complex schemata in a population of fixed size. From a sampling point of view, this
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means that simple schemata accumulate samples more rapidly. It is not difficult to
show that the rate of accumulation falls off exponentially with the complexity.

This automatic differential in sampling rates has a strong influence on what
schemata play an important role in rule generation at any point in time. Early on, the

system has reliable information only about simple schemata. But simple schemata

usually only provide building blocks and estimates for coarse discriminations. Though
the classifier system can exploit this information, rules built from these simple schemata 

are exposed to frequent surprises, departures, and exceptions in more complex
contexts. Over time, the system gains more experience, and it gains information about
more complicated schemata. This information blases the genetic algorithm toward the
construction of more sophisticated, more specific rules. As a consequence, as the
classifier system accumulates experience, it is prone to build hierarchies of rules of

increasing specificity. These hierarchies grow from early 
"default" rules, based on

simple contexts, to layers of "exception
" rules based on later, more detailed contextual

information.
When simultaneous messages satisfy both a simpler default rule and a more

complex exception rule, the latter tends to outcompete the former (though there can
be complications; see Riolo's paper in Belew and Booker 1991). The higher specificity
of the exception rule causes it to outbid the default rule if their strengths are comparable

. The exception rule only survives under the bucket brigade if it corrects

inappropriate actions of some default rule; otherwise, the strength of the exception
rule diminish es until it is no longer a factor in the competition. When the exception
rule does correct the default rule, a kind of symbiosis results. By saving the default
rule from paying a bid in a situations where it would not make a profit, the exception
rule actually helps the default rule to retain its strength. Thus both the default rule
and the system as a whole are better off for the presence of the exception rule.

Because successive layers of exception rules are only added as the necessary
information becomes available, these rule hierarchies provide a sophisticated, incremental 

way of modeling the environment. The formal structures corresponding to
these default hierarchies, called quasi-homomorphisms, have been defined and studied
in Holland et al.(1986).

Genetic algorithms have another critical effect on the development of classifier

systems. Recombination, under the algorithm, discovers useful schemata for tags in

just the way it discovers useful schemata for other parts of the rule. For example, a

genetic algorithm can recombine parts of established tags to invent new tags. As a
result, established tags spawn related tags, providing new clusters of rules, and new
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couplings between established clusters. Tags survive (or, more carefully, the rules
using them survive) if they conbibute to useful interactions. Under these evolutionary
pressures, the tags develop into a system of experience-based "symbols

" for interior
use (cf . Hofstadter's [ 1979] concept of an .'active symbol

"
). The associations provided

by these tags flesh out the default hierarchy models. The resulting structures can be
quite sophisticated, enabling the system to model new situations by coupling appropriate 

clusters of established (strong) rules. Moreover, these models can be used in a
" lookahead" fashion, permit ting the classifier system to act in anticipatory fashion,
selecting actions on the basis of future consequences. The interested reader is referred
to Holland 1991 and Riolo 1990.

Each of the mechanisms used by the classifier system has been designed to
enable the system to continue to adapt to its environment, while using the capabilities
it already has to respond instant-by-instant to that environment. In so doing the system
is constantly trying to balance exploration (acquisition of new information and capabilities

) with exploitation (the efficient use of information and capabilities already
available) .

TRIALS REVISITED

Pride of place in the correction category belongs to Dan Frantz's work on one of the
main motivating theorems in the book, Theorem 5.1. This theorem concerns the
"
optimal

" allocation of trials in determining which of two random variables has a
higher expected value (the well known 2-armed bandit problem). In chapter 5, an
"
optimal

" solution is a solution that minimizes the losses incurred by drawing samples
from the random variable of lower expectation. The theorem there shows that these
losses are minimized if the number of trials allocated to the random variable with the
highest observed expectation increases exponentially relative to the number of trials
allocated to the observed second best.

Because schemata can be looked upon as random variables, this result illuminates 
the treatment of schemata under a genetic algorithm (nee genetic plan in

chapter 7). Under a genetic algorithm, a schema with an above-average fitness in the
population increases its proportion exponentially (until its instances constitute a significant 

fraction of the total population). If we think of the genetic algorithm as
generating samples of n random variables (an n-armed bandit), in a search for the
best, then this exponential increase is just what Theorem 5.1 suggests it should be.

The problem with the proof of the theorem, as given, turns on its particular
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use of the central limit theorem. To see the fonn of the error, let us follow Frantz by
using F ,.(x) to designate the distribution of the normalized sum of the observations of
the random variable X. For the 2-armed bandit, F is the distribution of the difference
of the two random variables of interest. Using the notation of chapter 5, q(n) = 1 -

F ,.(x) when x = bnll2. That is, 1 - F ,.(x) gives the probability of a decision error,
q(n), after n trials out of N have been allocated to the random variable observed to
be second best. Because x is a function of n, the proof given in chapter 5 implicitly
assumes that, as n - . 00, the ratio

[1- F,,(x)]/[ I - ~ (x)] - + I ,

where I - ~ (x) is the area under the tail of a nonnal distribution. However, standard
sources (see Feller 1966, for example) show that this is only true when x varies with
n as o(nl/~ . This is manifestly untrue for Theorem 5.1, where x = bnl/2.

The main result of theorem 5.1 can be recovered by using the theory of large
deviations instead of the central limit theorem. The theory of large deviations makes
the additional requirement that the moment-generating functions for the random variables 

exist, but this is satisfied for the random variables of interest here. Let the
moment-generating functions for the two random variables, corresponding to the two
arms of the bandit, be ml(t) and m2(t). Then the moment-generating function for X,
the difference, is m(t) = ml( - t)*m2(t). There is a uniquely defined constant c such
that

c = inf,(m(t .

DefineS(n) to be the sum of n samples of X. Then the appropriate theorem on

large deviations yields

Pr{S(n):2:0} = [c
"' (21rn)

I/2
]d,.( I + o( l  ,

where log d,. = 0(1). Making appropriate provision for ties, this yields

q(n) - b' c"' (21rn) 
1/2

,

where b' is a constant that depends upon whether or not X is a lattice variable. This
relation for q(n) is of the same form (except for constants) as that obtained for q(n)
under the inappropriate use of the centtallimit theorem. Substituting, and proceeding
as before, Frantz obtains
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THEOREM 5.1 (large deviations): The optimal allocation of trials n* to the observed

where r = Iin cl .

This theorem actually goes a step further than the original version, directly
providing a "realizable plan

" for sample allocation. The original version was based
on a " ideal" plan that could not be directly realized, requiring section 5.2 to show
that the losses of the ideal plan could be approached by the losses of an associated
"realizable" plan. Section 5.2 is now superfluous.

The revised constants for the realizable plan do not affect results in later
chapters, because the further analysis of genetic algorithm performance does not
depend upon the exact values for the constants. The basic point is that genetic
algorithms allocate trials exponentially to the random variables (schemata) corresponding 

to the arms of an n-armed bandit. Coefficients may vary among schemata, but
the implicit parallelism of a genetic algorithm is enough to dominate any differences
in the coefficients.

There are two other errors that may trouble the close reader, though they are
much less important. The first error occurs, at the top of page 71, in the example
giving estimated values for schemata. x(3) should be .1000010 . . . 0, with the
consequence that

The second error occurs, on page 103, in the discussion of the effect of crossover on
the increase of schemata. In the derivation just below the middle of the page, the
approximation 1/( I - c) :e;; I + c, for c ~ I , is invoked. But this approximation is in
the wrong direction for preserving the inequality for Tie(t); therefore the line that
follows the mention of this approximation should be deleted.

Finally there is a point of emphasis that may be troublesome. In the discussion
of the role of payoff in the formal framework, near the bottom of page 25, the
mapping allows the payoff to be any real number, positive or negative. It would have
helped the reader to say that payoff is treated as a nonnegative quantity throughout
the book, particularly in the discussion of genetic algorithms.
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3. RECENT WORK

My most recent work stems from my association with the Santa Fe Institute in Santa
Fe, New Mexico. About five years ago the Santa Fe Institute, then newly founded,

began developing a new interdisciplinary approach to the study of adaptive systems.
The studies center on a class of systems, called complex adaptive systems, that have
a crucial role in a wide range of human activitiesEconomiesecologies , immune

systems, developing embryos, and the brain are all examples of complex adaptive
systems. Despite surface dissimilarities, all complex adaptive systems exhibit acom-

mon kernel of similarities and difficulties, and they all exhibit complexities that have,
until now, blocked broadly based attempts at comprehension:

I . All complex adaptive systems involve large numbers of parts undergoing a

kaleidoscopic array of simultaneous nonlinear interactions.
Because of the nonlinear interactions, the behavior of the whole system is
not, even to an approximation, a simple sum of the behaviors of its parts.
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Other than these corrections , I am only aware of a few (less than a dozen)

typo graphical errors scattered throughout . They are all obvious from context , so

there' s no need to list them here.

The usual mathematical techniques of linear approximation- linear regression
, nonnal coordinates, mean field approach es, and the like - make little

progress in the analysis of complex adaptive systems. The simultaneity of
the interactions poses both a challenge and an opportunity for the massively
parallel computers now coming on the scene.
The impact of these systems in human affairs centers on the aggregate
behavior, the behavior of the whole.
Indeed, the aggregate behavior often feeds back to the individual parts,

modifying their behavior. Consider the effect of government statistics on
the plans of individual business es in an economy, or the effect of the

aggregate retention of nutrients in a rain forest, despite leached, impoverished 
soils, upon species diversity and niches therein.

The interactions evolve over time, as the parts adapt in an attempt to survive
in the environment provided by the other parts.
As a result, the parts face perpetual novelty, and the system as a whole

typically operates far from a global optimum or equilibrium. Standard
theories in physics, economics, and elsewhere are of little help because

they typically concentrate on "end points,
" whereas complex adaptive sys-



The objective of the Santa Fe Institute is to develop new approach es to the

study of complex adaptive systems, particularly approach es that exploit interactions
between computer simulation and mathematics. Computer simulation offers new ways
of carrying out both realistic experiments, of flight-simulator precision, and well-

defined gedanken experiments, of the kind that have played such an important role
in the development of physics. For real complex adaptive systems- economies,
ecologies, brains, etc.- these possibilities have been hard to come by because ( I ) the

systems lose their major features when parts are isolated for study, (2) the systems
are highly history dependent, so that it is difficult to make comparisons or tease out

representative behavior, and (3) operation far from equilibrium or a global optimum
is a regime not readily handled by standard methods.

The Institute aims to exploit the new experimental possibilities offered by the
simulation of complex adaptive systems, providing a much enriched version of the

theory/experiment cycle for such systems. In conjunction with these simulations, the
common ke~ el shared by complex adaptive systems suggests several possibilities for

theory (cf. the work on the schema theory of genetic algorithms). In an area this

complex, it is critical for theory to guide and inform the simulations, if they are not
to degenerate into a process of "watching the pot boil." Theory is as necessary for
sustained progress here as it is in modem experimental physics, which could not

proceed outside the framework of theoretical physics. We need experiment to inform
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tems "never get there." Improvement is usually much more important than

optimization. When parts of the system do settle down to a local optimum,
it is usually temporary, and those parts are almost always 

"dead,
" or

uninteresting, if they remain at that equilibrium for an extended period.

Complex adaptive systems anticipate.
In seeking to adapt to changing circumstance, the parts develop 

"rules"

(models) that anticipate the consequences of responses. At its simplest, this
is a process not much different from Pavlovian conditioning. Even then,
the effects are quite complex when large numbers of parts are being conditioned 

in different ways. The effects are still more profound when the

anticipation involves lookahead toward more distant horizons. Moreover,
aggregate behavior is sharply modified by anticipations, even when the

anticipations are not realized. For example, the anticipation of an oil shortage 
can cause a sharp rise in oil prices, whether or not the shortage comes

to pass. The effect of local anticipations on aggregate behavior is one of
the aspects of complex adaptive systems we least understand.
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Echo

While interesting models of complex adaptive systems can be built with classifier

systems, and classifier systems have indeed been used for this purpose (Marimon et
al. 1989), there is an advantage to having a simpler model that places the interactions
in a simpler setting, giving them sharper relief. ~cho is one such model, properly a
class of models, designed primarily for gedanken experiments rather than precise
simulations. Echo provides for the study of populations of evolving, reproducing
agents distributed over a geography with different inputs of renewable resources at
various sites (see Figures 17 and 18). Each agent has simple capabilities- offense,
defense, trading, and mate selection- defined by a set of "chromosomes." Though
these capabilities are simple, and simply defined, they provide for a rich set of
variations illustrating the four kernel properties of complex adaptive systems previously 

described. Collections of agents can exhibit analogues of a diverse range of

phenomena, including ecological phenomena (e.g., mimicry and biological arms
races), immune system responses (e.g., interactions conditioned on identification),
evolution of metazoans (e.g., emergent hierarchical organization), and economic

phenomena (e.g., trading complex es and the evolution of "money
"
).

A precise description of Echo begins with definition of the individual agents
(see Figure 19). The capacities of an agent are completely determined by a small set
of strings, the "chromosomes,

" defined over a small finite alphabet. In the simplest
Echo model, this alphabet consists of four letters {a,b,c,d} , called resources, and
there are just two classes of chromosomes, tag chromosomes and condition chromosomes

. The tag chromosomes determine the agent
's external, phenotypic characteristics

, and the condition chromosomes determine an agent
's responses to the

phenotypic characteristics of other agents.
There are just three tag chromosomes in the simplest model: (1) offense tag,

(2) defense tag, and (3) mating tag. It is convenient to think of the tags as displayed
on the exterior of the agent, counterparts of the signature groups of an antigen or the
trademarks of an organization. These tags are a kind of identifying address, quite
similar to the tags employed by classifier systems. There are also just three condition
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chromosomes: (1) condition for combat, (2) condition for trading, and (3) condition
for mating. Conditions serve much as the condition parts of a classifier rule, determining 

what interactions will take place when agents encounter one another.
The fact that an agent

's structure is completely defined by its chromosomes,
which are just strings over the resource alphabet {a,b,c,d} , plays a critical role in its
reproduction. An agent reproduces when it "collects" enough letters to make copies
of its chromosomes. As we will see, an agent can collect these letters through its
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interactions: combat, b' ade, or uptake from the environment. Each agent has a reservoir 
in which it stores collected letters until there are enough of them forreproduction 

to take place.
Interactions between agents, when they come into contact, are detennined by

a simple sequence of tests based on their tags and conditions. In the simplest model,
they first test for combat, then they test for b' ading, and finally they test for mating:

I . Combat (see Figure 20). Each agent checks its combat condition against
the offense tag of the other agent. This is a matching process much like the matching
of conditions against messages in classifier systems. For example, if the combat
condition is given by the sUing Dad, then this condition is matched by any offense
tag that begins with the letters Dad. ( The condition, in this example, 

"does not care"

what letters follow the first three in the tag, and it does not match any tag that has
less than three letters.)
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If the combat condition of either agent matches the offense tag of the other,
then combat is initiated. That is, combat can be initiated unilaterally by either agent.

If combat is initiated, the offense tag of the first agent is matched against the defense

tag of the second and a score is calculated. In the simplest case, this score is calculated

on a position-by-position basis, adding the results to get a total. For example, the

score for a single position could be obtained from a score mabix that is used to score

the match between corresponding letters in the two tags:

Offense a b c d

Defense
a 4 0 2 1
b 0 4 2 I
c 2 2 4 0
d 2 2 0 4
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Fig. 19. A single-cell agent

When an organism has enough elemena In la reservoir to make oopies of its
.chr~ n S.. it p~ an offspring.

( The offspring may differ from the parent because of nl Jtation or recormlnation.)
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1) When agent 1 [ 0 ] ~ ves into the vicinity of agent 2 [ @ J, ~ t occurs if agent 1's
conmat concition matches agent 2' s offense tag.

�

�

3) The winner a~ ulres from the loser the resouroos In Its reservoir and the resouroos tied ~ In Its
chr~ s and tags. The loser Is deleted.

interaction

Under this matrix, the offense tag Dab matched against the defense tag aaaad would
yield a score of 4+ 4+0 = 8. (In this simple example, the additional letters in the
defense- tag do not enter the scoring; in a more sophisiticated scoring procedure, the
defense might be given some extra points for additional letters). A score is also
calculated for the second agent by matching its offense tag against the defense tag of
the first agent. If the score of one agent exceeds the score of the other, then that agent
is declared the winner of the combat. In an interesting variant, the win is a stochastic
function of the difference of the two scores.
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2) Agent 1 is assigned a ~ e based on the match between its offense tag and the defense tag of
agent 2; a simHar ~ e is calculated for agent 2. The agent with the higher ~ e is the winner.

loft . " . . tagsl

Fig. 20. A typical between agents
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The winner collects the loser's resources, both the resources in its reservoir
and the resources tied up in its chromosomes (broken into individual letters). In some
models, the winner collects only some of the resources of the loser, the rest being
dissipated. The provision of separate offense and defense capabilities, with possible
asymmetries, allows the system to evolve intransitive relations between agents
wherein, for example, X can "eat" Y, and Y can "eat" Z, but X cannot "eat" Z. As a

consequence, various kinds of " food webs" can evolve.
2. Trading. If combat does not take place, then the first agent in the pair

checks its trading condition against the offense tag of the second agent, and vice
versa. Unlike combat, which can be initiated unilaterally, trading is bilateral- a trade
does not take place unless the trading conditions of both agents are satisfied. The

trading condition in the simplest model has a single letter, as a suffix, that specifies
the resource being offered for trade. If the trade is executed, then each agent transfers

any excess of the offered resource (amounts over and above the requirements for its
own reproduction) from its reservoir to the reservoir of its trading partner. Though
this is a very simple rule, with no bidding between agents, it does lead to intricate,
rational trading interactions as the system evolves: Trades that provide resources
needed for reproduction increase the reproduction rate, assuring that agents with such
rational trading conditions become common components of the population.

3. Mating. While an agent can reproduce asexually, simply making a copy of
each of its chromosomes when it has accumulated enough resources (letters), there is
also a provision for recombination of chromosomes. When agents come into contact
and do not engage in combat, the mating condition of each agent is checked against
the mating tag of the other. As with trade, mating is only executed as a bilateral
action: Both agents must have their mating conditions satisfied for recombination to
take place. If this happens, then the agents exchange some of their chromosome
material, as with crossover under the genetic algorithm. (The procedure is reminiscent
of conjugation between different mating types of paramecia). This selective recombination 

provides a powerful mechanism for discovering and exploiting useful schemata
. The effect is very like the effect that the schema theorems) of chapter 7 project,

though the schema theorems cannot be applied directly to Echo's agents because they
have no explict fitness function.

Sites
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regular, or irregular, array (see Figures 17 and 18). Each site has a well-defined set
of neighboring sites, and each site can contain a subpopulation of agents. In addition,
each site is assigned a production function that determines how rapidly the site

produces and accumulates the various resources. For example, one site may produce
10 units of resource a per time step, and nothing of b, c, or d, whereas another may
produce 4 units each of a, b, c, and d. If the site is unoccupied by any agents, these
resouces accumulate, up to some maximum value. In the example of the site that

produces 10 units of resource a per time step, the site could continue to accumulate
the resource until it had accumulated, say, a total of 100 units. Agents present at a
site can "consume" these resources. Thus an agent located at a site that produces the
resources it needs can manage reproduction without combat or trade, if it survives
combat interactions with other agents. Different agents may have intrinsic limits on
the resources they can take up from the site. For example, an agent may only be able
to consume resource b from the environment, being dependent upon agent-agent
interactions to obtain other needed resources. Resouces available at a site are shared

among the agents that can consume them.
When neither agent-agent nor agent-environment interactions are providing at

least one needed resource at a given site, an agent may migrate from that site to a

neighboring site. For example, consider an agent that has already acquired enough of
resources a and b to make copies of its chromosomes but that is not acquiring needed
resource c. Then that agent will migrate to some neighboring site; in the simplest
models the new site is simply selected at random from the neighboring sites.

The Simulation

The actual Echo simulation is designed so that, in effect, the populations at each of
the sites in the model undergo their interactions simultaneously. In other words, Echo
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is well suited to execution on a massively parallel computer. The interactions at each
site are carried out by repetition of the following basic cycle.

(1) Pairs of agents from within the site are selected for interaction. (In the

simplest model, these pairs are simply selected at random from the local population).
Each pair is tested for the kind(s) of action that will ensue following the procedures
outlined above.

(1.1) First the pair is tested for combat, which may be invoked unilaterally.
(1.2) If combat is not invoked, then the pair is tested for trade, which can

only be invoked bilaterally. The same pair is then tested for mating compatibility
. If the agents are compatible, then, with low probability, recombination

of their chromosomes will follow.
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( 2 ) Each 
agent 

in the site executes 
uptake 

of resources 
produced 

at the site .

( 3 ) Each 
agent 

in the site is 
charged 

a 
"

maintenance

" 

cost , which must be

payed by 
the 

"

subtraction

" 

of 
specified 

resources from its reservoir . If the cost cannot

be met , the 
agent 

is deleted ( some of its resources 
may 

be returned to the site ,

depending 
on the 

particular 
model ) . Each 

agent 
also has a small random chance of

being 
deleted 

"

without cause .

"

( 4 ) Each 
agent 

in the site tests to see if it has accumulated 
enough 

resources

in its reservoir , via 
steps ( 1 ) and ( 2 ) , to make a 

copy 
of its chromosomes . If so , it

replicates 
itself , with 

infrequent 
mutations .

( 5 ) Each 
agent 

in the site , other than the 
replicates produced 

in 
step ( 3 ) , tests

to see if it has 
acquired 

at least one of the resources it 
currently 

needs for 
reproduction

.

If not , the 
agent migrates 

to one the 
neighboring 

sites .

( 6 ) The 
production 

function associated with the site adds a 
specified 

number

of units of each resource to the site , for later 
uptake 

in 
step ( 2 ) .

The details of this basic cycle can be filled out in a variety of ways , depending

upon the particular range of gedanken experiments of interest . Even the simplest

models show surprisingly sophisticated evolutions . One of the earliest models produced 

evolving sequences of agents with ever longer , more complicated chromosomes ,

accompanied by a corresponding increase in the complexity of their interactions . The

result was a 
"

biological arms race
" 

(Dawkins 1986 ) , wherein defense tags became

ever longer and offense tags developed ever more sophisticated matches to overcome

the increasing defensive capabilities . More recent models , by a modification of the

basic cycle , provide for the evolution of 
"

metazoans
"

- - connected communities of

agents that have internal boundaries and reproduce as a unit . With this provision ,

agents belonging to a connected community can specialize to the advantage of the

whole community . For example , one kind of agent belonging to the community can

specialize for offense, while a second kind specializes in resource acquisitionsome -

what reminiscent of the stinging cells and cavity cells of the hydra ) . It is easy to

show that intracommunity trading between these specialists yields a net increase in

the reproduction rate of both . As a consequence the metazoans come to occupy a

significant place in the overall ecology of agents. Many of the mechanisms investigated

by Buss ( 1987) can be imitated by this model , including the evolution of cooperation
between cell lines (cf . Axelrod and Ha milton 1981 ) and the origin of such developmental 

mechanisms as induction and competence ( see Figure 21 ) .
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Echo and classifier systems are similar in many ways. The conditions employed by
an agent in Echo to determine its actions are quite similar to the condition/action rules
of a classifier system. However, the actions in Echo (combat, trading, mating) are
much more concrete than the rule-activating messages used by a classifier system.
They are much easier to interpret when one is trying to understand aspects of distributed 

control and emergent computation in complex adaptive systems. Tags also play
a critical role in both Echo and classifier systems, but again a tag

's effects are much
more directly interpretable in Echo.

Echo differs from classifier systems in two important ways. First, geometry is
critical in Echo. This goes back to the origin of the Echo models (Holland 1976)
where geometry played an important role in the spontaneous emergence of autocatalytic 

structures. In a similar way, the sites in Echo, with their differing resource
production characteristics, encourage sophisticated agent ecologies. Second, there are
no explicit fitness functions in Echo. The reproduction rate of an agent depends solely
on its ability to gather the necessary resources in the context of other agents and sites.
There is no number corresponding to the payoff used by a genetic algorithm, nor is
there a counterpart of the payoff-derived strength of a classifier system rule. An
economist would say that fitness has become endogenous in Echo, whereas it is
exogenous in genetic algorithms and classifier systems. As a consequence, the emergent 

structures (agents) in Echo are much more a function of the overall context and
much less a function of external constraints. This can be both an advantage and a
disadvantage, but it does allow studies of emergent functional structures free from
the confounding effects of external constraints.

4 . POSSIBILITIES

Both Echo and classifier systems point up a salient characteristic of complex adaptive
systems: In these multi agent systems it takes only a few primitive activities to generate
an amazing array of structures and behaviors. Moreover, when the primitives are
chosen with care, counterparts of these structures and behaviors can be found in all
kinds of complex adaptive systems. Echo's primitives (combat, trade, and mating)
and the phenomena they generate (arms races, cooperation, etc.) directly illustrate
the point. Though the range of structures exhibited by complex adaptive systems is
daunting, this "generator

" characteristic offers real hope for a future general theory.
In pursuing a general theory, there is a traditional tool of physics that can be
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brought to bear- the gedanken experiment. As the name implies, a gedanken experiment 
is a thought experiment. It extracts a few elements from a process in order to

examine, logically, some critical effect produced by the interaction of these elements.

Computers offer a way of extending the scope of gedanken experiments to much
more complex situations. Echo has been designed as a computational base for gedan-

ken experiments on complex adaptive systems.
Echo, and other models of complex adaptive systems, are readily designed for

direct simulation on massively parallel computers. It is also possible to design interactive 
interfaces for these simulations that permit ready, intuitive interactions with

the ongoing simulation, much as is the case with flight simulators. Thus, the " logic
"

of the simulation can be combined with the human's intuition and superb pattern
recognition ability to provide quick detection of interesting patterns or events. This
has the double value of providing reality checks on the design, while allowing
investigators to bring their scientific taste and intuitions to bear in creating and

exploring unusual variants.

By looking for pervasive phenomena in these gedanken experiments, we can

study complex adaptive systems with a new version of the classic hypothesize-test-

revise cycle. The "test" part of this cycle is particularly important because complex
adaptive systems, as mentioned earlier, typically operate far from a steady state. They
are continually undergoing revisions, and their evolution is highly history dependent.
This, combined with the nonadditive nature of the internal interactions, makes it
difficult to do control led experiments with real complex systems. Computer-based

gedanken experiments should help fill the gap.
In examining complex adaptive systems, there is one property that is particularly 

hard to examine in situ. Complex adaptive systems form and use internal models
to anticipate the future, basing current actions on expected outcomes. A system with
an internal model can look ahead to the future consequences of current actions without

actually commit ting itself to those actions. In particular, the system can avoid acts
that would set it irretrievably down some road to future disaster (

"
stepping over a

cliff "
). More sophisticated uses of an internal model allow the system to select current

"
stage-setting

" actions that set up later advantageous situations (as in Samuel's [ 1959]
use of " lookahead"). As pointed up earlier, the very essence of attaining a competive
advantage, whether it be in chess or economics, is the discovery and execution of
"
stage-setting

" moves. Internal models distinguish complex adaptive systems from
other kinds of complex systems; they also make the emergent behavior of complex
adaptive systems intricate and difficult to understand.

Internal models offer a second advantage in addition to the advantage of

Adaptation in Natural and196 Systems
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prediction. They enable a system to make improvements in the absence of overt payoff
or detailed information about errors. Whenever a model's prediction fails to match

subsequent outcome, there is direct information about the need for improvement. An

appropriate credit (blame) assignment algorithm can even detennine what part(s) of
the model should be revised. This is a tremendous advantage in most real-world
situations where the rewards for current action are usually much delayed. Internal
models enable improvement in the interim.

Though we readily ascribe internal models, cognitive maps, anticipation, and

prediction to humans, we rarely think of them as characteristic of other systems. Still ,
a bacterium moves in the direction of a chemical gradient, implicitly predicting that
food lies in that direction. Th'e--repertoire of the immune system constitutes its model
of its world, including an identity of "self." The butterfly that mimics the foul-tasting
monarch butterfly survives because it implicitly forecasts that a certain wing pattern
discourages predators. A wolf bases its actions on anticipations generated by a mental

map that incorporates landmarks and scents. Because so much of the behavior of a

complex adaptive system stems from anticipations based on its internal models, it is

important that we understand the way in which such systems build and use internal
models.

A general theory of complex adaptive systems that address es these problems
will be built , I think, on a framework that centers on three mechanisms: parallelism,
competition, and recombination. Parallelism lets the system use individuals (rules,
agents) as building blocks, activating sets of individuals to describe and act upon
changing situations (as described in the discussion of classifier systems). Competition
allows the system to marshal its resources in realistic environments where torrents of

mostly irrelevant information deluge the system. Procedures relying on the mechanism
of competition- credit assignment and rule discovery- extract useful, repeatable
events from this torrent, incorporating them as new building blocks. Recombination

underpins the discovery process, generating plausible new rules from building blocks
that form parts of tested rules. It ir&1plements the pervasive heuristic that building
blocks useful in the past will prove useful in new, similar contexts. Overall, these
mechanisms allow a complex adaptive system to respond, instant by instant, to its
environment, while improving its performance. In so doing, as with classifier systems,
the system balances exploration with exploitation.

When these mechanisms are appropriately incorporated in simulations, the

systems that result are well founded in computational terms, and they do indeed get
better at attaining goals in perpetually novel environments. It should be possible to
take a first step toward a general theory of complex adaptive systems by formalizing

Interim and Prospectus
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a framework based on these mechanisms. A second step would incorporate a mathematics 
that emphasizes process over end points. This mathematics would emphasize

the discovery and recombination of useful components- building blocks- rather than
focusing on fixed points and basins of attraction. At that point, the incipient theory
should begin to provide the guidelines that make the computer-based experiments
more than uncoordinated forays into an endlessly complex domain. Once we get that
far, we come at last to a rational discipline of complex adaptive systems providing
genuine predictions.



Glossary of Important

(Page numbers indicate first important or defining occurrences in the text.)

English Symbols

A a particular structure attainable by an adaptive plan ; A E: (1 (5, 22)

(1 domain of action of an adaptive plan, the structures it can attain (5, 21)

Ct(t) the particular structure from (1 being tried at time t (15, 22)

(11(t) that part of the structure Ct(t) directly tested against the environment
(23)

(B(t) the population (set of structures) acted upon by the reproductive plan
at time t (88, 91)

(c,) controlling sequence for mutation rate (122)

(C,J,V) (
" initiation ,condition ,

" " end signal,
" "

predicted value"
) forbehav -

Loral atom (156)

d.. dominance map for ith position of homologous pair of I-tupies (112)

E a particular environment of a system undergoing adaptation (4, 25)

8 possible environments (uncertainty) of adaptive system (4, 25)

1 the range of signals the adaptive system can receive from the environment 
(22)

I(t) the particular signal received by the adaptive system from the environment 
at time t (22)

8M first M positive integers (91)

k or k.. number of attributes (alleles, etc.) associated with the (it h) detector
(gene, etc.) (21, 72)

I number of detectors (genes, etc.) used in the representation of structures 
in (1 (66)
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size of population (data base) <B(t) acted upon by reproductive plan
(73, 91)

reproductive plans of type [ ] (90 ft)

special class of type <R. plans used in the study of robustness (121 ft)

time (20)

a set of adaptive plans to be compared (25)

the payoff accumulated by plan T in environment E up to time T (26)
a set of random variables used when payoff is to be assigned stochastically 

to elements of <t (25)

set of attributes (range of values) for the ith detector, 8.. (66)

a(~,.tit)

8i:  -+ Vi

Greek Symbols

average excess (in genetics) of schema (coadapted set) ~ (137)

detector, assigns attributes (values from Yi) to structures A Ed
(66; cf. 6, 44)
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length of schema ~ (102)

number of positions on which schema ~ is defined (110)

expected loss under an allocation of N trials (by plan 1') (77)

Mf<t)

N

P(~,t)
p[ ]

number of schemata receiving n' or more trials (under a genetic plan )
(129)

<R[ )
<R.(PC' p" .PM,(C, 
t

3

U.,....{T)
' U

memory, that part of the input history retained by the adaptive plan
in addition to the part summarized in the tested structure Ci1(t), where
Ci(t) - (Ci1(t),3R( t  (23)

number of instances of schema ~ in the population <B(t) (87, 98)
number of trials allocated to random variables other than the best in
a set of random variables (77)

total number of trials allocated to a set of random variables (76)
- dr. ME<t)/ M, the proportion of ~ in <B(t) (102, 127)

probability of operator [ ] being applied to an individual in <B(t)
(102 Pc (crossing-over), 108 PI (inversion), 110 IPJI (mutation 
a set of probability distributions over Ci (24)

limit on rate of reproduction in environmental niche associated with ~,
set by renewal rates of resources in that niche (166)

/(e
JO(e

L(N)
M

mt(t)

<P

Of

r'



Symbol"

crossing-over " pressure" (101)

fraction of instances of f in <B(t) lost because of action of OperatoR
(125)

steady-state probability of occurrence of schema f undercrossing-
over (100)
- df. {O,I ,*,:,O," ,v A ,p,'} , symbols of the broadcast language (144)

payoff or performance of structure A E: (i in environment E (4, 25)
the expected payoff to schema f (under some given probability distribution 

P over (i) (69)

the observed average performance (payoff) of a set of samples of f
(69)

the observed average performance of the structures in <B(t) (102)
the average performance (payoff) of all trials of (i to time T, or the
average performance of trials of (i at time-step t (69)
- df.JI,.(AA(t  (94)
- df. L A I I A'/ M, average performance of population <P.(t) (94)
a schema (designating a subset of (i) ; f E: ,i (68)

schema with the jth highest observed average after N trials (77)
the set of schemata defined over (i (68)

assigns opei-ator to structure for plans of type CR[ ) (92)
an adaptive plan (4, 21)

a criterion for comparing plans in the set 3 (26)
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A(f}

~\

II. : d - + Reala

lit

p(T) or p(l)

p~,

P,

F.

~(/)(N)
-,:,

p:d1 - + n

T:/ X d - + n
or

T:/ X d - + d

X

"' : Cl - + Cl an operator (for modifying structures), either deterministic or stoor 
chastic; ' " E: n (24)

", :Cl- + <P
", :SM X Clf' - + <P a particular operator (for plans of type <R( ) (92)

n the set of operators (for modifying structures) employed by anadap-
tive plan (3, 24)

Miscellanea"" Symbols

0 a " don't care" indicator used in the definition of schemata (68)

[ ]t set of aU permutations of (elements of ) [ ] (107)

.11

Ef

P,f

p,(t)



Important

ratio is 1 in the limit (78)

difference is negligible (under stated conditions) (78)

defined to be equal (94)
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Bucket brigade algorithm, 176-79 (df.).

See also Apportionment of credit
"
Building blocks," 174, 179- 80, 198. See
also Recombination

Burks, A. W., 168
Buss, L. W., 193

CNS. See Central nervous system
Carrying capacity, 91, 166
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