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INTRODUCTION

Artificial intelligence is a consortium of data-driven methodologies which includes
artificial neural networks, genetic algorithms, fuzzy logic, probabilistic belief net-
works and machine learning as its components. We have witnessed a phenomenal
impact of this data-driven consortium of methodologies in many areas of studies,
the economic and financial fields being of no exception. In particular, this volume
of collected works will give examples of its impact on the field of economics
and finance. This volume is the result of the selection of high-quality papers
presented at a special session entitled “Applications of Artificial Intelligence
in Economics and Finance” at the “2003 International Conference on Artificial
Intelligence” (IC-AI ’03) held at the Monte Carlo Resort, Las Vegas, NV, USA,
June 23–26 2003. The special session, organised by Jane Binner, Graham Kendall
and Shu-Heng Chen, was presented in order to draw attention to the tremendous
diversity and richness of the applications of artificial intelligence to problems in
Economics and Finance. This volume should appeal to economists interested in
adopting an interdisciplinary approach to the study of economic problems, com-
puter scientists who are looking for potential applications of artificial intelligence
and practitioners who are looking for new perspectives on how to build models for
everyday operations.

The structure of this volume is as follows; in the first chapter by Shu-Heng
Chen and Chueh-Yung Tsao a statistical approach to testing the performance of
GA-based trading strategies is proposed. The paper asks the question, what are
the statistical properties which distinguish a successful application of GA from
an unsuccessful one? The performance of ordinal GA-based trading strategies is
evaluated under six classes of time series model, namely, the linear ARMA model,
the bilinear model, the ARCH model, the GARCH model, the threshold model and
the chaotic model. The performance criteria employed are the winning probability,
accumulated returns, Sharpe ratio and luck coefficient. Asymptotic test statistics
for these criteria are derived. The hypothesis as to the superiority of GA over
a benchmark, say, buy-and-hold, is then be tested using Monte Carlo simulation.
From this rigorously-established evaluation process, simple genetic algorithms are
found to work very well in linear stochastic environments, and they are also found
to work very well in nonlinear deterministic (chaotic) environments. However, they
may perform much worse in pure nonlinear stochastic cases. These results shed
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light on the superior performance of GA when it is applied to the two tick-by-tick
time series of foreign exchange rates: EUR/USD and USD/JPY.

The second chapter by Tina Yu, Shu Heng Chen and Tzu-Wen Kuo models inter-
national short-term capital flow by identifying technical trading rules in short-term
capital markets. Through the simulation, they investigate if there exist any trad-
ing strategies that are capable of predicting the capital inflow and out-flow, hence
making investment profitable. The modelling and simulation were conducted using
Genetic Programming (GP), a novel approach for this task. The simulation results
suggest that the international short-term markets were quite efficient during the
period of 1997–2002, with most GP generated trading strategies recommending
buy-and-hold on one or two assets. The out-of-sample performance of GP trad-
ing strategies varies from year to year. However, many of the strategies are able
to forecast Taiwan stock market down time and avoid making futile investment.
Investigation of Automatically Defined Functions shows that they do not give
advantages or disadvantages to the GP results.

The third chapter by Binner, Elger, Nilsson and Tepper contrasts the forecasting
performance of two non-linear models, a regime-switching (RS) vector autore-
gressive model (VAR) and a recurrent neural network (RNN), to that of a linear
benchmark VAR model. These models belong to different classes of non-linear
models that are both econometrically challenging and therefore rarely compared.
Evidence suggests that the RNN model and RS-VAR model outperform the VAR
model for both monthly and annual forecast horizons. The RS-VAR and the RNN
perform approximately on par over both forecast horizons. For the RS-VAR model,
findings suggest that imposing the restriction that only the intercept is allowed to
vary across regimes provides the best forecasts. For the RNN-model, the forecast-
ing performance depends on the number of hidden units and thus free parameters
included.

Nathan Joseph, David Brée and Efstathios Kalyvas ask the question, “Are the
learning procedures of genetic algorithms (GAs) able to generate optimal archi-
tectures for artificial neural networks (ANNs) in high frequency data?” in paper
four. The approach is in some respects similar in spirit to the use of bootstrapping
to select suitable ANN structures. The architectures of the ANNs are also evalu-
ated, both in- and out-of-sample, against a set of naı̈ve RW models and the mean
absolute error (MAE). The use of in-sample forecasts facilitates an assessment of
the suitability of the chosen ANN configuration prior to implementation, while the
use of RW models serves to evaluate the contribution of the ANNs to forecasting
accuracy. No ANN architectures were able to outperform a random walk, despite
the finding of non-linearity in the excess returns. This failure is attributed to the
absence of suitable ANN structures and further implies that researchers need to be
cautious when making inferences from ANN results that use high frequency data.



xi

Chapter 5 uses the Artificial Intelligence techniques of evolutionary strategies
and neural networks to evaluate the performance of simple sum monetary
aggregates vis-à-vis their Divisia index counterparts in a simple inflation
forecasting experiment. Jane Binner, Graham Kendall and Alicia Gazely find
that that superior tracking of inflation is possible for models that employ a
Divisia M2 measure of money that has been adjusted to incorporate a learning
mechanism to allow individuals to gradually alter their perceptions of the
increased productivity of money. Divisia measures of money outperform their
simple sum counterparts as macroeconomic indicators. Co-evolution is found
to compete very favourably with neural networks and has the potential to beat
neural networks in terms of superior predictive performance when used to evolve
neural networks. Artificial Intelligence techniques in general and co-evolution in
particular are highly effective tools for predicting future movements in inflation
and the paper concludes that there is tremendous scope for further research
into the development of these methods as new macroeconomic forecasting
models.

Stefan Kooths, Timo Mitze and Eric Ringhut seek to determine whether the
predictive power of dynamic single-equation, linear econometric models out-
perform models based on a novel computational approach using genetic-neural
fuzzy rule-bases when forecasting the EMU inflation rate in paper six. Evidence
for the superiority of the computational approach based on genetic-neural fuzzy
rule-bases (GENEFER) is found according to various different evaluation criteria.
Especially striking is the ability of GENEFER models to predict turning points
reliably. GENEFER models perform best within a 2-stage approach, where the dis-
equilibrium (error-correction) terms from cointegration analysis are used as input
variables. This result proposes a combination of econometric and computational
techniques and calls for further research.

Given the recent explosion of interest in streaming data and online algorithms,
clustering of time series subsequences has received much attention. In the seventh
chapter, Jessica Lin and Eamonn Keogh make a surprising claim. Clustering of
time series subsequences is completely meaningless. More concretely, clusters
extracted from these time series are forced to obey a certain constraint that is
pathologically unlikely to be satisfied by any dataset, and because of this, the
clusters extracted by any clustering algorithm are essentially random. While this
constraint can be intuitively demonstrated with a simple illustration and is simple
to prove, it has never appeared in the literature. Jessica and Eamonn can justify
calling their claim surprising, since it invalidates the contribution of dozens of
previously published papers. They justify their claim with a theorem, illustrative
examples, and a comprehensive set of experiments on reimplementations of
previous work.
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Sam Mirmirani and Hsi-Cheng Li apply VAR and ANN techniques to make ex-
post forecast of U.S. oil price movements in the eighth chapter. The VAR-based
forecast uses three endogenous variables: lagged oil price, lagged oil supply and
lagged energy consumption. However, the VAR model suggests that the impacts
of oil supply and energy consumption has limited impacts on oil price movement.
The forecast of the genetic algorithm-based ANN model is made by using oil
supply, energy consumption, and money supply (M1). Root mean squared error
and mean absolute error have been used as the evaluation criteria. Their analysis
suggests that the back-propagation network-GA model noticeably outperforms the
VAR model.

Vincent Schmidt and Jane Binner demonstrate how neural network models (such
as the Aggregate Feedforward Neural Network) provide beneficial information
in the domain of discovering and describing the money-price relationship using
Divisia component data in the ninth chapter. The AFFNN is demonstrated as being
straightforward to design and use with encoded Divisia component and inflation
data, and the model is able to effectively learn the relationships within the dataset. A
simple decompositional rule extraction technique examines the learned knowledge
and automatically generates a collection of if-then rules in terms of the original
attribute values. These Divisia rules are suitable for examination by subject-matter
experts (specifically, econometricians). The rules potentially provide interesting
and useful insight into monetary aggregation theory, particularly when exploring
the relationships between various monetary assets and the corresponding growth
rate of prices. As an additional advantage, the resulting rules are expressed in well-
documented computer code, capable of being executed for validation or used for
forecasting purposes.

Ian Wilson, Antonia Jones, David Jenkins and Andrew Ware show, by means of
an example of its application to the problem of house price forecasting, an approach
to attribute selection and dependence modelling utilising the Gamma Test (GT), a
non-linear analysis algorithm that is described. The GT is employed in a two-stage
process: first the GT drives a Genetic Algorithm (GA) to select a useful subset
of features from a large dataset that is developed from eight economic statistical
series of historical measures that may impact upon house price movement. Next a
predictive model is generated utilising an Artificial Neural Network (ANN) trained
to the Mean Squared Error (MSE) estimated by the GT, which accurately forecasts
changes in the House Price Index (HPI). They present a background to the problem
domain and demonstrate, based on results of this methodology, that the GT was of
great utility in facilitating a GA based approach to extracting a sound predictive
model from a large number of inputs in a data-point sparse real-world application.

There are still many important Artificial Intelligence disciplines yet to be cov-
ered. Among them are the methodologies of independent component analysis,
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reinforcement learning, inductive logical programming, classifier systems and
Bayesian networks, not to mention many ongoing and highly fascinating hybrid
systems. A way to make up for their omission is to visit this subject again later.
We certainly hope that we can do so in the near future with another volume of
“Applications of Artificial Intelligence in Economics and Finance.”





STATISTICAL ANALYSIS OF GENETIC
ALGORITHMS IN DISCOVERING
TECHNICAL TRADING STRATEGIES

Chueh-Yung Tsao and Shu-Heng Chen

ABSTRACT

In this study, the performance of ordinal GA-based trading strategies is
evaluated under six classes of time series model, namely, the linear ARMA
model, the bilinear model, the ARCH model, the GARCH model, the
threshold model and the chaotic model. The performance criteria employed
are the winning probability, accumulated returns, Sharpe ratio and luck
coefficient. Asymptotic test statistics for these criteria are derived. The
hypothesis as to the superiority of GA over a benchmark, say, buy-and-hold,
can then be tested using Monte Carlo simulation. From this rigorously-
established evaluation process, we find that simple genetic algorithms can
work very well in linear stochastic environments, and that they also work
very well in nonlinear deterministic (chaotic) environments. However, they
may perform much worse in pure nonlinear stochastic cases. These results
shed light on the superior performance of GA when it is applied to the two
tick-by-tick time series of foreign exchange rates: EUR/USD and USD/JPY.

1. INTRODUCTION

Genetic algorithms (GAs) have been developed by Holland (1975) to mimic
some of the processes observed in natural evolution. They are based on the

Applications of Artificial Intelligence in Finance and Economics
Advances in Econometrics, Volume 19, 1–43
© 2004 Published by Elsevier Ltd.
ISSN: 0731-9053/doi:10.1016/S0731-9053(04)19001-4
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2 CHUEH-YUNG TSAO AND SHU-HENG CHEN

genetic processes of natural selection which have become widely known as
the “survival of the fittest” since Darwin’s celebrated work. In recent years, GAs
have been successfully applied to find good solutions to real-world problems whose
search space is complex, such as the traveling salesman problem, the knapsack
problem, large scheduling problems, graph partitioning problems, and engineering
problems, too.1

In finance, Bauer (1994) provides the first application of GAs to discover trading
strategies. Since then, GAs have gradually become a standard tool for enhancing
investment decisions.2 While many studies have supported the effectiveness of
GAs in investment decisions; however, the foundation of these applications has
not been well established. The thing that concerns us, therefore, is the robustness
of these empirical results. For example, if GAs are effective for the investment in
one market at one time, would the same result apply to the same market or different
markets at different times? It is for the purpose of pursuing this generality, that we
see the necessity of building a solid foundation upon which a rigorous evaluation
can be made.

In this paper, a statistical approach to testing the performance of GA-based
trading strategies is proposed. Instead of testing the performance of GAs in specific
markets as a number of conventional studies already have, we are interested in a
market-independence issue: what makes GAs successful and what makes them not?
Since the data to which GAs are applied consist of financial time series, the question
can be rephrased as follows: what are the statistical properties which distinguish
a successful application of GA from an unsuccessful one? One way to think of the
question is to consider two markets following different stochastic processes. One
market follows stochastic process A, and the other stochastic process B. If GAs
can work well with stochastic process A, but not B, then the successful experience
of GAs in the first market is certainly not anticipated in the second market.

Having said that, this paper follows the following research methodology.
First, some financially-related stochastic processes are singled out as the
standard scenarios (testbeds) to test the performance of GA. Second, appropriate
performance criteria are used to evaluate the performance of the GA over
these testbeds. Third, the associated asymptotic statistical tests are applied to
examine whether the GAs perform significantly differently as opposed to a familiar
benchmark. By this procedure, we may be able to distinguish the processes in
which the GA has competence from others in which it does not. Once the critical
properties are grasped, we can then apply the GA to the financial time series whose
stochastic properties are well-known, and test whether the GA behaves consistently
with what we have learned from the previous statistical analysis.

By means of the procedure established in this paper, we hope to push forward the
current applications of GAs or, more generally, computational intelligence (CI),
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toward a more mature status. After all, whether GA will work has been asked too
intensely in the literature. The very mixed results seem to suggest that we look at
the same question at a finer level and start to inquire why it works or why it doesn’t.
We believe that there are other ways to do something similar to what we propose
in this paper.3 We do not exclude these possibilities. In fact, little by little, these
efforts will eventually enable GA or CI tools to rid themselves of their notoriety
for being blackboxes.

The rest of the paper is organized as follows. Section 2 introduces a specific
version of GA, referred as to the ordinary GA (OGA), used in this paper. Section 3
will detail the classes of stochastic processes considered in this paper and the
reasons for this choice. Section 4 reviews the four performance criteria and
establishes their associated asymptotic test. Section 5 sets up the Monte Carlo
simulation procedure. Section 6 summarizes and discusses the actual performance
of the GA over the artificial data, whereas the counterpart over the real data is
given in Section 7. Section 8 concludes this paper.

2. TRADING WITH GAS

A trading strategy g can be formally defined as a mapping:

g: � → {0, 1}. (1)

In this paper, � is assumed to be a collection of finite-length binary strings.
This simplification can be justified by the data-preprocessing procedure which
transforms the raw data into binary strings. The range of the mapping g is simplified
as a 0–1 action space. In terms of simple market-timing strategy, “1” means to “act”
and “0” means to “wait.” Here, for simplicity, we are only interested in day trading.
So, “act” means to buy it at the opening time and sell it at the closing time.

Like all financial applications of GA, the start-off question is the representation
issue. In our case, it is about how to effectively characterize the mapping g by
a finite-length binary string, also known as a chromosome in GA. Research on
this issue is very much motivated by the format of existing trading strategies, and
there are generally two approaches to this issue. The first approach, called the
decision tree approach, was pioneered by Bauer (1994). In this approach each
trading strategy is represented by a decision tree. Bauer used bit strings to encode
these decision tress, and generated and evolved them with genetic algorithms. The
second approach, called the combinatoric approach, was first seen in Palmer et al.
(1994). The combinatoric approach treats each trading strategy as one realization
from

(
n
k

)
combinations, where l ≤ k ≤ n, and n is the total number of given

trading rules. Using GAs, one can encode the inclusion or exclusion of a
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specific trading rule as a bit and the whole trading strategy as a bit string
(chromosome).

Both approaches have very limited expression power. While various
enhancements are possible, they all lead to non-standard GAs in the sense that
their representations are not based on finite-length binary strings. Since the main
focus of this paper is to illustrate a statistical foundation of the GA, we try to
avoid all unnecessary complications, including the use of those non-standard
representations. In other words, at this initial stage, we only make the illustration
with the ordinary genetic algorithm (OGA), and, for that reason, Bauer’s simple
decision-tree representation is employed. However, it is clear that the statistical
foundation presented in this paper is also applicable to GAs with different
representations.

Bauer’s decision-tree representation corresponds to the following general form
of trading strategies

(IF (CONDS)
THEN (BUY AND SELL [DAY TRADING])
ELSE (WAIT)).

The CONDS appearing in the trading strategy is a predicate. CONDS itself is a
logical composition of several primitive predicates. In this paper, all CONDSs
are composed of three primitive predicates. Each primitive predicate can be
represented as:

Cond(Z) =
{

1(True), if Z ⊕ a,

0(False), if Z � a
(2)

where Z, in our application, can be considered as a time series of returns indexed
by t, e.g. rt−1, rt−2, etc., and a can be regarded as a threshold or critical value
(a∈ℵ, a set of integers).⊕ ∈ {≥, <} and� = {≥, <} − ⊕. An example of CONDS
with three primitive predicates is

CONDS(rt−1, rt−2, rt−3) = Cond(rt−1) ∨ (Cond(rt−2) ∧ Cond(rt−3)), (3)

where “∨” refers to the logic operator “OR,” and “∧” refers to “AND.”
Following Bauer, we use a 21-bit string to encode a trading strategy of this

kind. Details can be found in the Appendix (Section A.1). Let G be the collection
of all trading strategies encoded as above. Then the cardinality of G is 221

(#(G) = 221), which is more than 2 million. The search over the space G can be
interpreted as a numerical algorithm as well as a machine learning algorithm for
solving a mathematical optimization problem. Without losing generality, consider
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the trading strategy with only one primitive predicate,

Cond(Z) =
{

1(True), if rt−1 ≥ a,

0(False), if rt−1 < a.
(4)

Suppose the stochastic process of rt is strictly stationary and denote the joint
density of rt−1 and rt by f(rt−1, rt). In this simplest case, a trading strategy is
parameterized by a single parameter a. Denote it by ga. Then the optimal strategy
ga∗ can be regarded as a solution to the optimization problem

max
a

E (ln(�n )), (5)

where

�n =
n∏

t=1

(1 + rt ) (6)

is the accumulated returns of ga over n consecutive periods. It can be shown that
the solution to the problem (5) is

a∗ = F−1(0), if F−1(0) exists. (7)

where

F(a) =
∫ ∞

−∞
ln(1 + rt )f(a, rt ) drt (8)

To solve Eq. (7), one has to know the density function of f(rt−1, rt), which can
only be inferred from the historical data. In this case, GAs are used as a machine
learning tool to obtain an estimate of this joint density. Also, to arrive at a value
for a∗, we have to know the inverse function of F(a), which in general can only be
solved numerically. In this case, GAs are used as a numerical technique to solve this
problem. Therefore, in the trading-strategy problem, GAs are used simultaneously
as a numerical technique and a machine learning tool to determine the critical
parameter a∗. In the general case when CONDS has more than one predicate, the
mathematical formulation of the problem can become very complicated, but the
dual role of GAs remains unchanged. This interpretation justifies the mathematical
significance of using GAs to discover the trading strategies.

The GA employed in this paper is a very basic version, which we shall call
the ordinary genetic algorithm (OGA). In this study, we only focus on the OGA.
Nonetheless, in a further study, it will be interesting to see whether a better result
can be expected from advanced versions of GAs. The technical details of the OGA
are given in the Appendix (Section A.2).
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3. TESTBEDS

There are six stochastic processes used to evaluate the performance of GAs. They
are:

(1) the linear stationary time series (also known as the Auto-Regressive and
Moving-Average (ARMA) processes),

(2) the bilinear processes,
(3) the Auto-Regressive Conditional Heteroskedasticity (ARCH) processes,
(4) the Generalized ARCH (GARCH) processes,
(5) the threshold bilinear processes, and
(6) the chaotic processes.

All of the six classes have been frequently applied to modeling financial time
series. Linear ARMA processes are found to be quite useful in high-frequency
financial data (Campbell et al., 1997; Roll, 1984). Bilinear processes are often
used to model the nonlinear dependence in both low- and high-frequency data
(Drunat et al., 1998; Granger & Andersen, 1978). The ARCH processes are the
most popular econometric tools for capturing the nonlinear dependence in the form
of the second moment (Bollerslev et al., 1992). The threshold processes are good
for asymmetric series and bursts (Tong, 1990). Finally, chaotic time series have
been a topic of interest in finance over the last decade (Brock et al., 1991). Some
details of these classes of processes are briefly reviewed from Sections 3.1 to 3.6.

These six processes are general enough to cover three important classes
of dynamic processes, namely, linear stochastic processes, nonlinear stochastic
processes, and nonlinear deterministic processes. This enables us to analyze the
GA’s performance in terms of some generic properties. For example, would it be
easier for the GA to perform better with the linear (stochastic) process than with
the nonlinear (stochastic) process, and with the deterministic (nonlinear) processes
than with the stochastic (nonlinear) processes? The answers to these questions can
certainly help us to delineate the effectiveness of GAs.

3.1. Linear Time Series

The linear time series model, also known as the Auto-Regressive and Moving-
Average (ARMA(p,q)) model, was initiated by Box and Jenkings (1976). It has the
following general form:

rt = � +
p∑

i=1

�i rt−i +
q∑

j=1

�j�t−j + �t , (9)
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Table 1. Data Generating Processes – ARMA

Code Model Parameters

�1 �2 �1 �2

L-1 ARMA(1,0) 0.3 0 0 0
L-2 ARMA(1,0) 0.6 0 0 0
L-3 ARMA(2,0) 0.3 −0.6 0 0
L-4 ARMA(2,0) 0.6 −0.3 0 0
L-5 ARMA(0,1) 0 0 0.3 0
L-6 ARMA(0,1) 0 0 0.6 0
L-7 ARMA(0,2) 0 0 0.3 −0.6
L-8 ARMA(0,2) 0 0 0.6 −0.3
L-9 ARMA(1,1) 0.3 0 −0.6 0
L-10 ARMA(1,1) 0.6 0 −0.3 0
L-11 ARMA(2,2) 0.4 −0.4 0.4 0.4
L-12 ARMA(2,2) 0.6 −0.3 −0.3 −0.6
L-13 White Noise Gaussian (0, 0.1)

where �t
iid∼N(0, �2). In all Monte Carlo simulations conducted in this paper, � is set

to 0 and �2 is set to 0.01. Thirteen ARMA(p,q) models were tested. The parameters
of these thirteen ARMA(p,q) models are detailed in Table 1. Among these thirteen
models, there are four pure AR models (L1–L4), four pure MA models (L5–L8),
and four mixtures (L9–L12). The last one is simply Gaussian white noise.

3.2. Bilinear Process

The second class of stochastic processes considered in this paper is the bilinear
process (BL), which was first studied by Granger and Anderson (1978), and
subsequently by Subba-Rao (1981) and Subba-Rao and Gabr (1980). The BL
process is constructed simply by adding the cross-product terms of rt−i and �t−j

to a linear ARMA process so it can be regarded as a second-order nonlinear time
series model. In other words, if the parameters of all cross-product terms are zero,
then the BL process can be reduced to the ARMA process.

The general form of a bilinear process, BL(p, q, u, v) is:

rt = � +
p∑

i=1

�i rt−i +
q∑

j=1

�j�t−j +
u∑

m=1

v∑
n=1

�mnrt−m�t−n + �t , (10)

where �t
iid∼N(0, �2). Eight specific bilinear processes are employed for our Monte-

Carlo simulation. In all of these processes, � = 0 and �2 = 0.01. Other parameters
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Table 2. Data Generating Processes – Bilinear.

Code Model Parameters

�1 �1 �11 �12 �21 �22

BL-1 BL(0,0,1,1) 0 0 0.6 0 0 0
BL-2 BL(0,0,1,1) 0 0 0.3 0 0 0
BL-3 BL(0,1,1,2) 0 0.3 0 0.6 0 0
BL-4 BL(0,1,1,2) 0 0.6 0 0.3 0 0
BL-5 BL(1,0,2,1) 0.3 0 0 0 0.6 0
BL-6 BL(1,0,2,1) 0.6 0 0 0 0.3 0
BL-7 BL(1,1,2,2) 0.3 0.3 0 0 0 0.3
BL-8 BL(1,1,2,2) 0.3 0.3 0 0 0 0.6

are given in Table 2. Notice that the first two (BL-1, BL-2) do not have the linear
component, and only the nonlinear cross-product terms are presented.

3.3. ARCH Processes

The third class of models considered is the Auto-Regressive Conditional
Heteroskedasticity (ARCH) process introduced by Engle (1982), which has played
a dominant role in the field of financial econometrics. The ARCH process is mainly
used to replicate the three stylized facts of financial time series, namely, the fat-
tailed marginal distribution of returns, the time-variant volatility of the returns,
and clustering outliers. Consequently, unlike the ARMA process, ARCH mainly
works only on the second moment, rather than the first moment. Nonetheless, by
combining the two, one can attach an ARMA(p, q) process with an ARCH (q′)
process, called the ARMA(p, q)-ARCH(q′) process. Its general form is

rt = � +
p∑

i=1

�i rt−i +
q∑

j=1

�j�t−j + �t (11)

�t |�t−1 ∼ N(0, �2
t ) (12)

�2
t = � +

q′∑
m=1

	m�2
t−m (13)

where � > 0, �m ≥ 0, m = 1, . . . , q′ and �t denotes the information set available
at time t.
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Table 3. Data Generating Processes – ARCH.

Code Model Parameters

� 	1 	2 �1 �1

AH-1 AR(0)-ARCH(1) 0.005 0.3 0 0 0
AH-2 AR(0)-ARCH(1) 0.005 0.6 0 0 0
AH-3 AR(0)-ARCH(2) 0.001 0.3 0.5 0 0
AH-4 AR(0)-ARCH(2) 0.001 0.5 0.3 0 0
AH-5 AR(1)-ARCH(1) 0.005 0.6 0 0.6 0
AH-6 AR(1)-ARCH(2) 0.001 0.5 0.3 0.6 0
AH-7 MA(1)-ARCH(1) 0.005 0.3 0 0 −0.6

Seven ARCH processes are included in this study. They share a common value
of �, which is 0. Values of other parameters are detailed in Table 3. Notice that the
first four processes do not have linear signals (�1 = 0, �1 = 0), whereas the fifth
and the sixth processes are associated with an AR(1) linear signal (�1 = 0.6), and
the last process has a MA(1) linear signal (�1 = −0.6).

3.4. GARCH Processes

A generalized version of the ARCH process, known as the generalized ARCH
(GARCH) process, was introduced by Bollerslev (1986). GARCH generalizes
Engle’s ARCH process by adding additional conditional autoregressive terms. An
ARMA(p, q) process with a GARCH error term of order (p′, q′), ARMA(p, q)-
GARCH(p′, q′), can be written as

rt = � +
p∑

i=1

�i rt−i +
q∑

j=1

�j�t−j + �t (14)

�t |�t−1 ∼ N(0, �2
t ) (15)

�2
t = � +

q′∑
m=1

	m�2
t−m +

p′∑
n=1


n�2
t−n (16)

with � > 0, 	m = 0 and 
n ≥ 0, m = 1, . . . , q′, n = 1, . . . , p′. Again, �t denotes
the information set available at time t.

Nine GARCH processes are attempted. In all cases, � = 0 and � = 0.001.
Specifications of other parameters are given in Table 4. The 7th, 8th and 9th models
(GH-7, GH-8, GH-9) are AR(1) processes combined with a GARCH error term,
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Table 4. Data Generating Processes – GARCH.

Code Model Parameters


1 
2 	1 	2 �1 �1

GH-1 AR(0)-GARCH(1,1) 0.3 0 0.5 0 0 0
GH-2 AR(0)-GARCH(1,1) 0.5 0 0.3 0 0 0
GH-3 AR(0)-GARCH(1,2) 0.2 0 0.2 0.4 0 0
GH-4 AR(0)-GARCH(1,2) 0.2 0 0.4 0.2 0 0
GH-5 AR(0)-GARCH(2,1) 0.2 0.4 0.2 0 0 0
GH-6 AR(0)-GARCH(2,1) 0.4 0.2 0.2 0 0 0
GH-7 AR(1)-GARCH(1,1) 0.5 0 0.3 0 0.6 0
GH-8 AR(1)-GARCH(1,2) 0.2 0 0.4 0.2 0.6 0
GH-9 AR(1)-GARCH(2,1) 0.4 0.2 0.2 0 0.6 0
GH-10 MA(1)-GARCH(1,1) 0.3 0 0.5 0 0 −0.6

whereas the last model (GH-10) is a MA(1) process plus a GARCH error term.
For the remaining six, there are no linear signals but just pure GARCH processes.

3.5. Threshold Processes

Tong (1983) proposed a threshold autoregressive (TAR) model which is of the
form,

rt = �(l) +
p∑

i=1

�
(l)
i rt−i + �t (17)

if rt−d ∈ �1 (l = 1, 2, . . . , k), where �i ∩ �j = ∅ (i, j = 1, . . . , k) if i �= j and
∪k

l=1�l = R. The parameter k represents the number of thresholds and d is called
the threshold lag (or delay parameter). Producing various limit cycles is one of the
important features of the threshold models, and the TAR process can be applied to
the time series which has an asymmetric cyclical form.

The threshold idea can be used as a module to add and to extend other processes.
Here, we apply the threshold idea to the bilinear process (10), and extend it to a
threshold bilinear (TBL) process. Let us denote a bilinear process (BL(p, q, u, v))
with k-thresholds by TBL(k, p, q, u, v), which can be written as

rt = �(l) +
p∑

i=1

�
(l)
i rt−i +

q∑
j=1

�
(l)
j �t−j +

u∑
m=1

v∑
n=1

�(l)
mnrt−m�t−n + �t (18)
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Table 5. Data Generating Processes – Threshold Processes.

Code Model Parameters

�
(1)
1 �

(1)
2 �

(1)
1 �

(1)
11 �

(1)
12 �

(1)
21 �

(1)
22

�
(2)
1 �

(2)
2 �

(2)
1 �

(2)
11 �

(2)
12 �

(2)
21 �

(2)
22

TH-1 TBL(2;1,0,0,0) 0.3 0 0 0 0 0 0
0.6 0 0 0 0 0 0

TH-2 TBL(2;1,1,0,0) 0.3 0 0.6 0 0 0 0
0.6 0 0.3 0 0 0 0

TH-3 TBL(2;0,0,1,1) 0 0 0 0.3 0 0 0
0 0 0 0.6 0 0 0

TH-4 TBL(2;1,1,2,2) 0.3 0 0 0 0 0.6 0
0 0 0.3 0 0.6 0 0

TH-5 TBL(2;2,0,2,2) 0 0 0 0.3 0 0 −0.6
0.3 –0.6 0 0 0 0 0

Note: The lag period d is set to 1 and �(1) = �(2) = 0 in all of the models. In addition, �1 ≡
{rt−d |rt−d ≥ 0} and �2 ≡ {rt−d |rt−d < 0 }.

It is trivial to show that TBL can be reduced to a threshold ARMA if �
(l)
mm = 0

for all m, n and l. Table 5 lists the five TBL processes considered in this paper.
The motives for choosing these five series will become clear when we come to
Section 6.4.

3.6. Chaotic Processes

All of the above-mentioned processes are stochastic. However, the time series
that appear to be random does not necessary imply that they are generated from
a stochastic process. Chaotic time series as an alternative description of this
seemingly random phenomenon was a popular econometrics topic in the 1990s.
While it is hard to believe that a financial time series is just a deterministic chaotic
time series, the chaotic process can still be an important module for the working
of a nonlinear time series. Five chaotic processes are employed in this study.

C-1: Logistic Map

rt = 4rt−1(1 − rt−1), rt ∈ [0, 1] ∀t (19)

C-2: Henon Map

rt = 1 + 0.3rt−2 − 1.4r2
t−1, r−1, r0 ∈ [−1, 1] (20)
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C-3: Tent Map {
rt = 2rt−1, if 0 ≤ rt−1 < 0.5,

rt = 2(1 − rt−1), if 0.5 ≤ rt−1 ≤ 1.
(21)

C-4: Poly. 3

rt = 4r3
t−1 − 3rt−1, rt ∈ [−1, 1] ∀t (22)

C-5: Poly. 4

rt = 8r4
t−1 − 8r2

t−1 + 1, rt ∈ [−1, 1] ∀t (23)

The series generated by all these stochastic processes (from Sections 3.1 to 3.6)
may have a range which does not fit the range of the normal return series. For
example, the process (19) is always positive. As a result, a contracting or a
dilating map is needed. We, therefore, contract or dilate all series linearly and
monotonically into an acceptable range, which is (−0.3, 0.3) in this paper.

4. PERFORMANCE CRITERIA
AND STATISTICAL TESTS

Basic performance metrics to evaluate the performance of trading strategies have
long existed in the literature. Following Refenes (1995), we consider the following
four main criteria: returns, the winning probability, the Sharpe ratio and the luck
coefficient. In this paper, the performance of the trading strategies generated by
the ordinal genetic algorithm (OGA) is compared with that using a benchmark
based on these four criteria. To make the evaluation process rigorous, performance
differences between the OGA-based trading strategies and the benchmark are
tested statistically. Tests for returns and winning probability are straightforward.
Tests for the Sharpe ratio are available in the literature (see, for example, Jobson
and Korkie (1981) and Arnold (1990)). However, tests for the luck coefficient are
more demanding, and it has not been derived in the literature. In this paper, we
develop asymptotic tests for the luck coefficient.

4.1. Returns

Let X and Y be the accumulated returns of an one-dollar investment by applying
OGA-based trading strategies and the benchmark strategy, say, the buy-and-hold
(B&H) strategy, respectively. Assume that E(X) = � and E(Y) = ν. Let us estimate
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the � and ν by the respective sample average �̄2 and �̄1 via the Monte Carlo
simulation. Then one can test the null

H0 : �−� ≤ 0, (24)

with the following test statistic

Z� =
√

n(�̄2 − �̄1)

(�̂2 + �̂2 − 2̂�̂�̂)1/2
, (25)

where �̂2 and �̂2 are the sample variances of X and Y, ̂ is the sample correlation
coefficient of X and Y, and n is the sample size (the number of ensembles generated
during the Monte Carlo simulation). By using the central limit theorem, it is
straightforward to show that Z� is an asymptotically standard normal test.

While testing the difference between �̄2 and �̄1 can tell us the performance of
the GA as opposed to a benchmark, it provides us with nothing more than a point
evaluation. In some cases, we may also wish to know whether the superiority, if
shown, can extend to a large class of trading strategies. A common way to address
this question is to introduce an omniscient trader. Let us denote the respective
accumulated returns earned by this omniscient trader as �̄∗.4 Now, subtracting �̄1

from �̄∗ gives us the total unrealized gain, if we only know the benchmark. Then,
the ratio, also called the exploitation ratio,

�̃ ≡ �̄2 − �̄1

�̄∗ − �̄1
(26)

is a measure of the size of those unrealized gains which can be exploited by using
a GA. Based on its formulation, �̃ may be positive, negative or zero, but has one as
its maximum. If �̃ is not only positive, but is also close to one, then its superiority
is not just restricted to the benchmark, but may also have global significance.

In addition to the accumulated gross returns, one can also base the comparison on
the excess return by simply subtracting one from the accumulated gross returns. A
relative superiority measure of the GA as opposed to the benchmark can be defined
accordingly as

�̇ ≡ (�̄2 − 1) − (�̄1 − 1)

|�̄1 − 1| = �̄2 − �̄1

|�̄1 − 1| . (27)

4.2. Winning Probability

The mean return can sometimes be sensitive to outliers. Therefore, it is also
desirable to base our performance criterion on some robust statistics, and the
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winning probability is one of this kind. The winning probability basically tells us,
by randomly picking up an ensemble from one stochastic process, the probability
that the GA will win. Formally, let (X, Y) be a random vector with the joint density
function h(x, y). Then pw, defined as follows, is called the winning probability.

pw = Pr(X > Y) =
∫ ∫

x>y

h(x, y) dx dy (28)

Based on the winning probability, we can say that X is superior to Y if pw > 0.5,
and inferior to Y if pw < 0.5, and equivalent to Y if pw = 0.5. The null hypothesis
to test is

H0: pw ≤ 0.5 (29)

The rejection of (29) shows the superiority of the GA over the benchmark. An
asymptotic standard normal test of (29) can be derived as

Zw =
√

n(p̂w − 0.5)√
p̂w(1 − p̂w)

(30)

where p̂w is the sample counterpart of pw.

4.3. Sharpe Ratio

One criterion which has been frequently ignored by machine learning people in
finance is the risk associated with a trading rule. Normally, a higher profit known
as the risk premium is expected when the associated risk is higher. Without taking
the risk into account, we might exaggerate the profit performance of a highly risky
trading rule. Therefore, to evaluate the performance of our GA-based trading rule
on a risk-adjusted basis, we have employed the well-known Sharpe ratio as the
third performance criterion (Sharpe, 1966). The Sharpe ratio s is defined as the
excess return divided by a risk measure. The higher the Sharpe ratio, the higher
the risk-adjusted return.

Formally, let X ∼ f(x) with E(X) = � and Var(X) = �2. Then the value

s = �−c

�
(31)

is called the Sharpe ratio of X where c is one plus a risk-free rate. Furthermore, to
compare the performance of two trading strategies in the Sharpe ratio, let X ∼ f(x)
and Y ∼ g(y) with E(X) = �, E(Y) = �, Var(X) = �2 and Var(Y) = �2. Then the
difference

d = �−c

�
− ν − c

�
(32)
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is called the Sharpe-ratio differential between X and Y. Accordingly, X is said to
have a higher (lower) Sharpe ratio relative to Y if d > 0 (d < 0). Otherwise, X and
Y are said to be identical in terms of the Sharpe ratio.

Jobson and Korkie (1981) derive an asymptotic standard normal test for the
Sharpe-ratio differential. However, we do not follow their Taylor expansion
formulation. Instead, by applying Slutzky’s theorem, the Cramer � theorem, and
the multivariate central limit theorem, a standard normal test for the null

H0 : d ≤ 0 (33)

can be derived as follows:

Zd =
√

n(d̂ − d)

�̂1
, (34)

where

d̂ = �̄2 − c

�̂
− �̄1 − c

�̂
, (35)

and

�̂2
1 = 2(1 − ̂) + (�̄2 − c)

�̂
(�̂ − �̂) + (�̄1 − c)

�̂
(�̂ − �̂)

− (�̄2 − c)(�̄1 − c)

�̂�̂

(�̂ − 1)

2
+ (�̄2 − c)2

�̂2

(�̂ − 1)

4
+ (�̄1 − c)2

�̂

(�̂ − 1)

4

(36)

�̂, �̂, �̂ and �̂ are the corresponding sample third and fourth moments of X and Y,
whereas ̂, �̂, �̂, �̂ are the corresponding sample mixed moments between X and
Y (also expressed as Eq. (37)).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(X − �)3

�3

E(X − �)4

�4

E(Y − �)3

�3

E(Y − �)4

�4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

�
�
�
�

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(X − �)E(X − �)

��

E(X − �)2(Y − �)

�2�

E(X − �)(Y − �)2

��2

E(x − �)2(Y − �)2

�2�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣


�
�
�

⎤
⎥⎥⎦ (37)
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4.4. Luck Coefficient

The largest positive trade can be very important if it makes a significant contribution
towards skewing the average profit dramatically. When this happens, people can
be severely misled by the sample mean. As a solution to this problem, the trimmed
mean is often used in statistics. A similar idea in finance is known as the luck
coefficient. The luck coefficient l� is defined as the sum of the largest 100�%
returns, � ∈ (0, 1), divided by the sum of total returns. In a sense, the larger the
luck coefficient, the weaker the reliability of the performance. The luck coefficient,
as a performance statistic, is formally described below.

Let {X1, X2, . . ., Xm} be a random sample from f(x) with E(X) = �. The order
statistic of this random sample can be enumerated as X(1), X(2), . . ., X(m), where
X(1) ≤ X(2) ≤ · · · ≤ X(m). Then, from the order statistics, it is well known that

X(m) ∼ g(x(m)) = m[F(x(m))]
m−1f(x(m)) (38)

where F is the distribution function of X. Furthermore, let Xi
iid∼f(x), i = 1, 2, . . . ,

m and X(m) ∼ g(x(m)) as described above with E(X(m)) = ��. Then the ratio

l� = ���

�
(39)

is called the luck coefficient of X where � = 1
m . In this study, � is set to 0.05. Here

we want to see how much of the contribution to mean returns comes from the
largest 5% of trades.

For making a comparison between strategies, the luck-coefficient ratio is defined
as follows. Let Xi

iid∼fx (x) with E(X) = �, Yi
iid∼fy (y) with E(Y) = ν, i = 1, 2, . . . , m

and X(m) ∼ gx(x(m)) with E(X(m)) = ��, Y(m) ∼ gy(y(m)) with E(Y(m)) = ��. Then
the ratio

r� = ���/�

���/�
= ���

���

(40)

is called the luck-coefficient ratio of X relative to Y where � = 1
m . Based on this

definition, X is said to have a lower (higher) luck coefficient relative to Y if r� > 1
(r� < 1). Otherwise, X and Y are said to be identical in terms of the luck coefficient.
However, to the best of our knowledge, the respective asymptotic standard normal
test for the null

H0 : r� ≤ 1 (41)

is not available in the literature. Nevertheless, similar to the derivation of the test
of the Sharpe ratio (34), it is not hard to cook up such a test by using Slutzky’s
theorem, the Cramer � theorem, and the multivariate central limit theorem, which
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is given in Eq. (42)

Zr =
√

n(r̂� − r�)

�̂2
, (42)

where

r̂� = �̄2�̄1
m

�̄1�̄2
m

, (43)

and

�̂2
2 = ε(�̄1

m )2

(�̄1)2(�̄2
m )2

(
�̂2 + (�̄2)2�̂2

(�̄2)2

)
+ (�̄2)2

(�̄1)2(�̄2
m )2

(
�̂2

� + (�̄1
m )2�̂2

�

(π̄2
m )2

)

− 2�̄2�̄1
m �̂

(�̄1)3(�̄2
m )2

(ε�̄1
m ̂�̂ + �̄2�̂�̂�) − 2�̄2�̄1

m �̂�

(�̄1)2(�̄2
m )3

(�̄1
m �̂ι̂ + �̄2�̂��̂)

+ 2�̄2�̄1
m

(�̄1)2(�̄2
m )2

(
�̂�̂�̂� + �̄2�̄1

m �̂εô�̂

�̄1�̄2
m

)
. (44)

�̄1
m and �̄2

m are the corresponding sample means of Y(m) and X(m). �̂2
� and �̂2

� are
the corresponding sample variances of Y(m) and X(m), and ̂, �̂, �̂, ι̂, �̂, and ô are
the corresponding sample correlation coefficients as indicated in Eq. (45).⎡

⎣ corr(Xi, Yi)
corr(X(m), Y(m))
corr(Xi, Y(m))

⎤
⎦ =

⎡
⎣ 

�
�

⎤
⎦ ,

⎡
⎣ corr(Xi, X(m))

corr(Yi, Y(m))
corr(Yi, X(m))

⎤
⎦ =

⎡
⎣ ι

�
o

⎤
⎦ (45)

5. MONTE CARLO SIMULATION

Since it is hard to obtain analytical results of the performance of the GA in relation
to various stochastic processes, Monte Carlo simulation methodology is used in
this study. Each stochastic process listed in Tables 1–5 and Eqs (19) to (23) is used
to generate 1000 independent time series, each with 105 observations ({rt}105

t=1).5

For each series, the first 70 observations ({rt}70
t=1) are taken as the training sample,

and the last 35 observations ({rt}105
t=76) are used as the testing sample. The OGA

are then employed to extract trading strategies from these training samples. These
strategies are further tested by the testing samples, and the resulting accumulated
returns (�) are calculated, i.e.

� =
105∏
t=76

(1 + rt ) (46)
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In the meantime, the accumulated returns of the benchmark are also calculated.
In following convention, our choice of the benchmark is simply the buy-and-hold
(B&H) strategy.

Let �1
i (i = 1, 2, . . ., 1000) be the accumulated returns of the B&H strategy

when tested on the ith ensemble of a stochastic process, and �2
i be the accumulated

returns of the OGA when tested on the same ensemble. The issue which we shall
address, given the set of observations S(≡ {�1

i , �2
i }1000

i=1 ), is to decide whether the
OGA-based trading strategies can statistically significantly outperform the B&H
strategy under the stochastic process in question. The answers are given in the
next section.

6. TEST RESULTS

6.1. ARMA Processes

We start our analysis from the linear stochastic processes. Table 6 summarizes the
statistics defined in Section 4. Several interesting features stand out. First, from the
statistics p̂w and zw, it can be inferred that, in accumulated returns, the probability
that the OGA-based trading strategies can beat the B&H strategy is significantly
greater than 0.5. For the stochastic processes with linear signals (L-1–L-12), the
winning probability p̂w ranges from 0.713 (L-5) to 0.991 (L-12). What, however,
seems a little puzzling is that, even in the case of white noise (L-13), the GA can also
beat B&H statistically significantly, while with much lower winning probabilities
pw (0.606). This seemingly puzzling finding may be due to the fact that a pseudo-
random generator can actually generate a series with signals when the sample size
is small. For example, Chen and Tan (1999) show that, when the sample size is
50, the probability of having signals in a series generated from a pseudo-random
generator is about 5%, while that probability can go to zero when the sample size
is 1000. Therefore, by supposing that the OGA-based trading strategies can win in
all these atypical ensembles and get even with the B&H strategy in other normal
ensembles, then p̂w can still be significantly greater than 0.5.

Second, by directly comparing �̄1 with �̄2, we can see that, except for the
case of white noise, the OGA-based trading strategies unanimously outperform
the B&H strategy numerically in all linear ARMA(p, q) processes. From the �̇
statistic (27), we see that the triumph of GA over B&H extends from a low of
19% (L-10) to a high of 916% (L-3). The z� statistic, ranging from 2.12 to 47.39,
signifies the statistical significance of these differences. Third, to see how the GA
effectively exploited the excess potential returns earned by the omniscient trader,
�̃ is also included in Table 6. There it is observed that the GA exploited 2–31%
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Table 6. Performance Statistics of the OGA and B&H – ARMA.

Code Model �̄1 �̄2 �̄∗ z� �̃ (%) �̇ (%) p̂w zw

L-1 ARMA(1,0) 1.198 1.355 4.388 6.33 4 20 0.732 16.56
L-2 ARMA(1,0) 1.992 2.868 6.658 13.67 19 88 0.859 32.62
L-3 ARMA(2,0) 0.845 2.265 5.480 42.98 31 916 0.976 98.35
L-4 ARMA(2,0) 1.123 1.185 5.170 27.08 2 50 0.896 41.02
L-5 ARMA(0,1) 1.103 1.269 4.241 7.63 5 161 0.713 14.89
L-6 ARMA(0,1) 1.199 1.775 5.166 20.61 15 289 0.861 32.99
L-7 ARMA(0,2) 0.853 1.633 5.104 39.97 18 531 0.926 51.46
L-8 ARMA(0,2) 1.065 1.522 5.285 21.58 11 703 0.848 30.65
L-9 ARMA(1,1) 0.898 1.229 4.128 24.55 10 325 0.812 25.25
L-10 ARMA(1,1) 1.452 1.538 4.783 2.12 3 19 0.721 15.58
L-11 ARMA(2,2) 1.306 2.588 6.957 30.43 23 419 0.927 51.90
L-12 ARMA(2,2) 0.721 2.167 6.189 47.39 26 518 0.991 164.40
L-13 ARMA(0,0) 0.983 0.993 3.881 0.67 0 59 0.606 6.85

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

L-1 ARMA(1,0) 0.166 0.438 0.272 11.74 0.179 0.126 1.416 3.32
L-2 ARMA(1,0) 0.236 0.526 0.290 8.40 0.310 0.214 1.450 1.75
L-3 ARMA(2,0) −0.342 1.181 1.523 32.14 0.115 0.106 1.087 1.68
L-4 ARMA(2,0) 0.111 0.877 0.767 24.53 0.182 0.114 1.594 4.45
L-5 ARMA(0,1) 0.110 0.419 0.309 13.40 0.169 0.117 1.449 4.23
L-6 ARMA(0,1) 0.135 0.602 0.467 5.02 0.216 0.138 1.563 2.48
L-7 ARMA(0,2) −0.353 0.948 1.301 27.67 0.108 0.099 1.092 1.68
L-8 ARMA(0,2) 0.065 0.624 0.559 18.18 0.181 0.120 1.509 4.18
L-9 ARMA(1,1) −0.307 0.524 0.831 22.43 0.093 0.092 1.007 0.16
L-10 ARMA(1,1) 0.214 0.392 0.177 5.39 0.263 0.171 1.534 2.50
L-11 ARMA(2,2) 0.170 0.854 0.684 11.19 0.240 0.141 1.708 3.34
L-12 ARMA(2,2) −1.363 1.224 2.587 36.46 0.083 0.105 0.795 −6.21
L-13 ARMA(0,0) −0.025 −0.016 0.010 0.37 0.130 0.096 1.353 3.90

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

of the potential excess returns. However, as we expect, it was to no avail when the
scenario changed to white noise.

As mentioned earlier, we should not judge the performance of the GA solely
by the profitability criterion. The risk is a major concern in business practice.
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We, therefore, have also calculated the Sharpe ratio, a risk-adjusted profitability
criterion. It is interesting to notice that in all cases the Sharpe-ratio differential (d̂)
is positive. In other words, the GA still outperforms B&H even after taking into
account the risk. The test of this differential also lends support to its statistical
significance.

Finally, we examine whether the GA wins just by luck in the sense that its return
performance depends heavily on its best 5% trades. Based on the statistic of luck
coefficient r̂0.05, it is found that in only one of the 13 cases, i.e. the case L-12, dose
the GA have a higher luck coefficient; in the other 12 cases, the luck-coefficient
ratios are larger than 1, meaning that the dominance of the GA over B&H cannot
be attributed to the presence of a few abnormally large returns. From the test zr, this
result is again significant except for the case L-9. All in all, we can conclude that if
the return follows a simple linear ARMA process, then the superior performance
of the GA compared to B&H is expected.

6.2. Bilinear Processes

By moving into the bilinear processes, we are testing the effectiveness of the GA
when the return series is nonlinear. Table 7 summarizes all the key statistics.
Obviously, the performance of the GA is not as glamorous as before. Out of the
eight battles, it loses twice (cases BL-1 and BL-2) to B&H (see z� and zw). Taking
the risk into account would not help reverse the situation (see zd). It is, however,
interesting to notice a unique feature shared by BL-1 and BL-2. As mentioned in
Section 3.2, the two stochastic processes do not have any linear component (all
�i and �j in Eq. (10) or Table 2 are zero). In other words, these two cases are
pure nonlinear (pure bilinear). If some linear components are added back to the
series, then the significant dominance of the GA does come back. This is exactly
what happens in the other six cases (BL-3 to BL-8), which all have the ARMA
component as a part (Table 2).

Even for the six cases where the GA wins, we can still observe some adverse
impacts of nonlinearity on the GA. Roughly speaking, Table 7 shows that the
distribution of both �̇ and �̃ becomes lower as opposed to those items observed in
the linear stochastic processes. So, not only does the advantage of the GA relative
to B&H shrink, but its disadvantage relative to the omniscient also becomes
larger.

However, nonlinearity does not change many of the results in relation to the
luck coefficients. The luck-coefficient ratios are all higher than 1, and most
of the results are statistically significant, indicating the relative stability of
the GA.
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Table 7. Performance Statistics of the OGA and B&H – Bilinear.

Code Model �̄1 �̄2 �̄∗ z� �̃ (%) �̇ (%) p̂w zw

BL-1 BL(0,0,1,1) 1.253 1.126 4.398 −6.78 −4 −50 0.491 –0.57
BL-2 BL(0,0,1,1) 1.151 1.064 4.228 −4.66 −3 −58 0.517 1.08
BL-3 BL(0,1,1,2) 1.302 1.830 5.341 11.50 13 175 0.861 17.78
BL-4 BL(0,1,1,2) 1.186 1.356 4.449 6.95 5 91 0.745 17.78
BL-5 BL(1,0,2,1) 1.260 1.419 4.539 5.07 5 61 0.747 17.97
BL-6 BL(1,0,2,1) 2.292 3.143 7.226 9.89 17 66 0.877 36.30
BL-7 BL(1,1,2,2) 1.841 2.471 6.448 8.83 14 75 0.848 30.65
BL-8 BL(1,1,2,2) 1.602 2.287 5.894 19.57 16 114 0.870 34.79

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

BL-1 BL(0,0,1,1) 0.316 0.251 –0.065 –3.29 0.132 0.105 1.256 3.30
BL-2 BL(0,0,1,1) 0.190 0.144 –0.046 –2.21 0.144 0.101 1.427 4.14
BL-3 BL(0,1,1,2) 0.167 0.425 0.259 7.31 0.182 0.124 1.793 3.08
BL-4 BL(0,1,1,2) 0.162 0.724 0.562 16.32 0.232 0.129 1.465 3.22
BL-5 BL(1,0,2,1) 0.178 0.465 0.287 13.53 0.211 0.138 1.531 3.54
BL-6 BL(1,0,2,1) 0.251 0.539 0.289 10.38 0.346 0.226 1.534 2.05
BL-7 BL(1,1,2,2) 0.285 0.711 0.426 9.29 0.270 0.168 1.603 2.67
BL-8 BL(1,1,2,2) 0.179 0.386 0.207 2.52 0.272 0.182 1.494 1.14

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

6.3. ARCH and GARCH Processes

As we have already seen from the bilinear processes, nonlinearity can have some
adverse effects on the performance of the GA. It would be imperative to know
whether this finding is just restricted to a specific class of nonlinear processes or
can be generalized to other nonlinear processes. In this and the next two sections,
we shall focus on this question, and briefly mention other details when we see the
necessity.

Let us first take a look at the results of the other two nonlinear stochastic
processes, namely, ARCH and GARCH. Just like what we saw in the bilinear
processes, these two classes of processes can become pure nonlinear stochastic
if some specific coefficient values are set to zero. This is basically what we do
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Table 8. Performance Statistics of the OGA and B&H – ARCH.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

AH-1 AR(0)-ARCH(1) 1.038 1.013 3.195 −1.99 −1 −66 0.546 2.92
AH-2 AR(0)-ARCH(1) 1.001 1.005 4.251 0.19 0 400 0.592 5.92
AH-3 AR(0)-ARCH(2) 0.985 0.991 2.307 0.67 0 40 0.562 3.95
AH-4 AR(0)-ARCH(2) 1.007 0.997 2.268 −1.09 −1 −143 0.529 1.84
AH-5 AR(1)-ARCH(1) 1.175 1.509 2.187 22.88 33 191 0.862 33.19
AH-6 AR(1)-ARCH(2) 1.300 1.705 3.061 17.64 23 135 0.838 29.01
AH-7 MA(1)-ARCH(1) 0.869 1.551 3.602 44.12 25 521 0.959 73.20

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

AH-1 AR(0)-ARCH(1) 0.170 0.038 –0.032 −1.33 0.117 0.091 1.285 4.53
AH-2 AR(0)-ARCH(1) 0.001 0.010 0.009 0.34 0.149 0.105 1.411 3.19
AH-3 AR(0)-ARCH(2) −0.038 −0.035 0.002 0.09 0.100 0.079 1.269 4.03
AH-4 AR(0)-ARCH(2) 0.017 −0.012 −0.030 −1.22 0.099 0.080 1.246 3.24
AH-5 AR(1)-ARCH(1) 0.211 0.774 0.563 15.42 0.145 0.109 1.331 3.43
AH-6 AR(1)-ARCH(2) 0.221 0.605 0.384 10.79 0.187 0.140 1.332 2.15
AH-7 MA(1)-ARCH(1) −0.641 1.126 1.766 35.75 0.076 0.086 0.889 −3.44

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. 27). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

in Tables 3 and 4. Notice that, based on these settings, AH-1 to AH-4 (ARCH)
and GH-1 to GH-6 (GARCH) are all pure nonlinear stochastic processes, i.e. pure
ARCH or pure GARCH without linear ARMA components. For the rest, they are
a mixture of pure ARCH (GARCH) and linear ARMA processes. Tables 8 and 9
summarize the results of the two stochastic processes. A striking feature is that,
in contrast to its performance in mixed processes, the GA performed dramatically
worse in pure nonlinear ARCH and GARCH scenarios.

Let us take the ARCH processes as an illustration. In the mixed processes AH-5,
AH-6 and AH-7, the GA has a probability of up to 80% or higher of beating B&H,
and earned 135–521% more than B&H. The fact that these excess returns are not
compensation for risk is further confirmed by the Sharpe-ratio differentials which
are significantly positive. In addition, the GA exploited 23–33% of the potential
returns earned by the omniscient trader. However, when coming to the pure
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Table 9. Performance Statistics of the OGA and B&H – GARCH.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

GH-1 AR(0)-GARCH(1,1) 0.987 0.983 2.457 −0.42 0 −31 0.539 2.47
GH-2 AR(0)-GARCH(1,1) 0.968 0.979 2.580 1.19 1 34 0.554 3.44
GH-3 AR(0)-GARCH(1,2) 1.008 1.007 2.474 −0.04 0 −13 0.544 2.79
GH-4 AR(0)-GARCH(1,2) 0.998 1.007 2.434 0.90 1 450 0.572 4.60
GH-5 AR(0)-GARCH(2,1) 0.978 1.001 2.637 2.24 1 105 0.584 5.39
GH-6 AR(0)-GARCH(2,1) 0.982 0.997 2.595 1.50 1 83 0.563 4.02
GH-7 AR(1)-GARCH(1,1) 1.428 1.926 3.511 18.40 24 116 0.856 32.07
GH-8 AR(1)-GARCH(1,2) 1.356 1.747 3.298 12.58 20 110 0.841 29.49
GH-9 AR(1)-GARCH(2,1) 1.378 1.934 3.616 19.20 25 147 0.872 35.21
GH-10 MA(1)-GARCH(1,1) 0.911 1.376 2.769 36.44 25 521 0.949 64.54

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

GH-1 AR(0)-GARCH(1,1) −0.030 −0.652 −0.035 −1.19 0.101 0.079 1.282 4.30
GH-2 AR(0)-GARCH(1,1) −0.080 −0.076 0.004 0.17 0.098 0.081 1.202 4.08
GH-3 AR(0)-GARCH(1,2) −0.005 0.020 0.024 1.05 0.094 0.081 1.166 3.32
GH-4 AR(0)-GARCH(1,2) 0.020 0.026 0.007 0.27 0.108 0.093 1.151 1.68
GH-5 AR(0)-GARCH(2,1) −0.051 0.005 0.056 2.04 0.103 0.083 1.233 4.10
GH-6 AR(0)-GARCH(2,1) −0.044 −0.012 0.032 1.23 0.097 0.083 1.178 3.50
GH-7 AR(1)-GARCH(1,1) 0.244 0.620 0.375 11.06 0.225 0.158 1.426 2.72
GH-8 AR(1)-GARCH(1,2) 0.231 0.614 0.383 14.52 0.201 0.143 1.405 2.59
GH-9 AR(1)-GARCH(2,1) 0.703 0.239 0.465 13.47 0.213 0.147 1.454 3.13
GH-10 MA(1)-GARCH(1,1) −0.476 1.034 1.509 29.43 0.070 0.081 0.867 −3.90

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader. �̃ is the exploitation ratio (Eq. (26)), and �̇ is
the relative superiority index (Eq. (27)). p̂w is the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05 and l̂20.05 are the sample luck coefficient of OGA
and B&H (Eq. (39)), and r̂0.05 is the sample luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of the
mean return difference, winning probability, Sharpe ratio differential, and luck coefficient ratio, respectively. The critical value of them is 1.28
at the 10% significance level, and is 1.64 at the 5% significance level.
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nonlinear processes AH-1 to AH-4, this dominance either disappears or becomes
weaker. This can be easily shown by the sharp decline in the statistics z�, zw and zd

in Table 8 with an almost 0% exploitation (�̃) of the maximum potential returns.
This discernible pattern also extends to Table 9. The double-digit z�, zw, and zd of

the mixed processes (GH-7 to GH-10) distinguish themselves from the low, or even
negative, single-digit ones of the pure nonlinear processes (GH-1 to GH-6). For
the former, the GA has 84–95% chance of beating B&H and earned 110–521%
more than B&H. Again, from zd , we know that the high returns are more than
compensation for risk. Very similar to the case of ARCH, 20–25% of the maximum
potential returns can be exploited by the GA, but that value �̃ drops near to 0%
when the underlying processes change to pure GARCH.

Despite the fact that pure nonlinear processes continue to deal the GA a hard
blow, as far as the winning probability is concerned, its relative performance to
B&H is overwhelmingly good. This can be reflected by the zw statistics which
are consistently significantly positive in all cases. A similar property holds for the
luck coefficient (see zr). The only two exceptions are the cases AH-7 and GH-10,
which, however, are not pure nonlinear. In fact, they both have MA(1) as their
linear component.

6.4. Threshold Processes

The threshold process leads to a different kind of nonlinear process. While its
global behavior is nonlinear, within each local territory, characterized by �i , it can
be linear. TH-1 and TH-2 in Table 5 are exactly processes of this kind. The former
is switching between two AR(1) processes, whereas the latter is switching between
two ARMA(1,1) processes. Since the GA can work well with linear processes, it
would be interesting to know whether its effectiveness will extend to these local
linear processes. Our results are shown in Table 10. The four statistics z�, zw, zd ,
and zr all give positive results. The GA is seen to exploit 20–30% of the maximum
potential returns, and the winning probabilities are greater than 90%.

TH-4 and TH-5 are another kind of complication. TH-4 switches between two
mixed processes, while TH-5 switches between a pure nonlinear process and a
linear process. From previous experiences, we already knew that the GA can work
well with the mixed process. Now, from Table 10, it seems clear that it can survive
these two complications as well.

Finally, we come to the most difficult one TH-5, i.e the one which switches
between two pure nonlinear (bilinear) processes. Since the GA did not show its
competence in the pure nonlinear process, at least from the perspective of the
return criteria, one may conjecture that TH-5 will deal another hard blow to the
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Table 10. Performance Statistics of the OGA and B&H – Threshold.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

TH-1 TBL(2;1,0,0,0) 0.612 1.233 3.372 24.89 23 160 0.910 45.30
TH-2 TBL(2;1,1,0,0) 1.262 2.743 6.361 21.15 29 565 0.931 53.77
TH-3 TBL(2;0,0,1,1) 1.161 1.074 4.207 –4.38 –3 –54 0.502 0.13
TH-4 TBL(2;1,1,2,2) 1.271 1.406 4.497 5.41 4 50 0.717 15.23
TH-5 TBL(2;2,0,2,2) 0.654 1.236 3.890 37.38 18 168 0.919 48.56

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

TH-1 TBL(2;1,0,0,0) –0.398 0.374 0.772 9.33 0.267 0.119 2.252 4.30
TH-2 TBL(2;1,1,0,0) 0.093 0.727 0.634 11.86 0.329 0.163 2.012 2.95
TH-3 TBL(2;0,0,1,1) 0.208 0.176 –0.032 –1.42 0.136 0.098 1.394 3.72
TH-4 TBL(2;1,1,2,2) 0.208 0.426 0.219 10.41 0.192 0.140 1.379 2.97
TH-5 TBL(2;2,0,2,2) –0.813 0.484 1.297 16.88 0.130 0.097 1.343 3.54

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

GA. Both z� and zd in Table 10 confirm this conjecture. Not just the returns, but
zw shows that the winning probability is also not good, which is similar to what
we experienced in BL-1 and BL-2. The only criterion that remains unaffected by
this complication is the luck coefficient. Furthermore, it turns out that zr seems to
give the most stable performance across all kinds of processes considered so far,
except the MA process.

6.5. Chaotic Processes

Chaotic processes are also nonlinear, but they differ from the previous four
nonlinear processes in that they are deterministic rather than stochastic. These
processes can behave quite erratically without any discernible pattern. Can the GA
survive well with this type of nonlinear process? The answer is a resounding yes.
All the statistics in Table 11 are sending us this message.

The winning probabilities are all higher than 85%. In the case of the Henon
map (C-2), the GA even beats B&H in all of the 1000 trials. In addition, in this
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Table 11. Performance Statistics of the OGA and B&H – Chaos.

Code �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

C-1 1.019 5.664 21.876 31.15 22 24447 0.993 186.99
C-2 5.387 23.235 33.452 85.62 64 407 1.000 ∗
C-3 0.937 4.124 11.374 44.65 31 5059 0.990 352.49
C-4 1.188 3.066 25.563 22.91 8 999 0.950 65.29
C-5 0.928 1.790 23.172 17.18 4 1197 0.876 36.08

Code ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

C-1 0.009 0.832 0.824 16.59 0.297 0.184 1.615 2.28
C-2 1.600 2.502 0.901 23.56 0.112 0.090 1.252 4.39
C-3 −0.075 1.160 1.235 28.92 0.153 0.127 1.207 2.75
C-4 0.074 0.627 0.554 10.39 0.348 0.200 1.739 2.66
C-5 −0.045 0.518 0.563 14.45 0.279 0.169 1.649 2.88

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

map, the GA is seen to exploited 64% of the potential excess returns earned by
the omniscient trader, which is the highest of all the processes tested in this paper.
One of the possible reasons why the GA can work well with these nonlinear
deterministic processes is that they are not pure nonlinear. C-1, C-2 and C-4 have
linear AR(1) or AR(2) components. C-3, like the threshold processes, switches
between two linear processes. As already evidenced in Section 6.4, the GA
can handle these types of processes effectively. So, the success is not totally
unanticipated.

However, the explanation above does not apply to C-5, which has no linear
component. Nonetheless, statistics such as z�, �̃ and p̂w all indicate that this
process is not as easy as the other four. For example, only 4% of the potential
excess returns are exploited in this process. Regardless of these weaknesses, the
fact that the GA can dominate B&H in this case motivates us to ask the following
question: Can the GA work better for the pure nonlinear deterministic processes
than the respective stochastic ones, and hence can it help distinguish the chaotic
processes from the stochastic processes? This is a question to pursue in the
future.
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6.6. Summary

The Monte Carlo simulation analysis conducted above provides us with an
underpinning of the practical financial applications of the GA. It pinpoints the
kinds of stochastic processes which we may like to see fruitful results. We have
found that the GA can perform well with all kinds of stochastic processes which
have a linear process (signal) as a part of them. Preliminary studies also suggest
that it may also work well with chaotic processes. However, the class of nonlinear
stochastic processes presents a severe limitation for the GA. In the next section, we
shall see the empirical relevance of these results by actually applying OGA-based
trading strategies to financial data.

7. EMPIRICAL ANALYSIS

7.1. Data Description and Analysis

The empirical counterpart of this paper is based on two sets of high-frequency
time series data regarding foreign exchange rates, namely, the Euro dollar vs. the
U.S. dollar EUR/USD and the U.S. dollar vs. the Japanese yen USD/JPY.6 The
data is from January 11, 1999 to April 17, 1999. Data within this period are further
divided into 12 sub-periods with roughly equal numbers of observations. Table 12
gives the details.

Let PU
i,t (P

P
i,t ) denote the tth (t = 1, 2, . . . , ni) observation of the ith sub-period

(i = A, B, . . . , L) of the EUR/USD (USD/JPY) forex series. The price series is
transformed into the return series by the usual logarithmic formulation,

rj
i,t = ln(Pj

i,t ) − ln(Pj
i,t−1) (47)

where j = U, P. Tables 13 and 14 give some basic statistics of the returns of each
sub-period.

Both return series share some common features. From Tables 13 and 14, the
mean, median and skewness of these two return series are all close to zero.
The kurtosis is much higher than 3, featuring the well-known fat-tail property. The
Jarque-Bera (1980) test further confirms that these forex returns do not follow the
normal distribution, and that is true for each sub-period. In addition, the series
is not independent due to its significant negative first-order serial correlation ρ1.
However, there is no evidence of serial correlation in higher orders.7

To apply what we learned from the Monte Carlo simulation to predict the
effectiveness of the GA over these series, we must first gauge their likely stochastic
processes. Here we follow a standard procedure frequently used in econometrics
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Table 12. Data Quotations – EUR/USD and USD/JPY.

Sub-Period A B C D E F

EUR/USD
Number 12000 12000 12000 12000 12000 12000
From (GMT) 2/25 7:59 3/1 0:59 3/3 15:36 3/8 6:43 3/10 6:53 3/12 7:26
To (GMT) 2/26 8:22 3/2 7:17 3/5 3:04 3/9 1:08 3/11 7:12 3/15 1:16

Sub-Period G H I J K L

Number 12000 12000 12000 12000 12000 12000
From (GMT) 3/17 7:36 3/19 0:19 3/24 15:06 3/26 15:46 3/31 7:32 4/15 6:14
To (GMT) 3/18 6:12 3/22 2:01 3/26 2:12 3/30 6:23 4/02 1:14 4/17 0:37

Sub-Period A B C D E F

USD/JPY
Number 12000 12000 12000 12000 12000 10808
From (GMT) 1/11 6:11 1/15 0:00 1/27 15:14 2/04 8:47 2/17 7:20 2/23 6:10
To (GMT) 1/14 8:11 1/21 0:00 2/03 3:24 2/11 2:43 2/23 6:09 2/26 21:48

Sub-Period G H I J K L

Number 12000 12000 11026 12000 12000 12000
From (GMT) 2/28 18:15 3/04 10:02 3/09 21:52 3/15 5:25 3/18 6:07 3/24 13:00
To (GMT) 3/04 10:01 3/09 21:52 3/15 1:21 3/18 6:06 3/24 13:00 3/30 10:41

Note: GMT: Greenwich Mean Time.

(Chen & Lu, 1999). First, notice that all series used in our Monte Carlo simulation
are stationary. To make sure that the forex returns are stationary, the Augmented
Dickey-Fuller (ADF) test is applied (Dickey & Fuller, 1979). From Table 15, the
null hypothesis that rj

i,t contains a unit root is rejected at the 1% significance level,
meaning that the rj

i,t are stationary.
Second, since our Monte Carlo simulations demonstrate the effectiveness of

the GA over the linear stochastic processes, it is important to know whether
the forex returns have a linear component. To do so, the famous Rissanen’s
predictive stochastic complexity (PSC) as a linear filter is taken.8 Table 15 gives the
ARMA(p, q) process extracted from the forex return series. A MA(1) linear process
is founded for both forex returns in each sub-period. In fact, it re-confirms the early
finding that the high-frequency forex returns follow a MA(1) process (Moody &
Wu, 1997; Zhou, 1996).

Third, it should be not surprising if none of these series is just linear. To see
whether nonlinear dependence exists, one of the most frequently used statistics,
the BDS test, is applied to the residuals filtered through the PSC filter.9 There
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Table 13. Basic Statistics of the Return Series – EUR/USD.

Sub-Period A B C D E F

Mean −2.56E−07 −8.13E−07 −7.37E−07 5.39E−07 5.63E−07 −7.49E−07
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000252 0.000252 0.000213 0.000191 0.000238 0.000264
Skewness −0.015831 0.007214 −0.034436 0.002017 −0.001071 −0.009908
Kurtosis 5.606484 5.558600 5.636056 5.976148 6.136196 5.757020
Jarque-Bera 3397.10 3273.05 3476.48 4428.37 4917.45 3800.46
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 −0.513935 −0.503725 −0.494695 −0.504014 −0.486925 −0.509612

Sub-Period G H I J K L

Mean 3.81E−07 −8.00E−07 −7.48E−07 −5.64E−08 2.37E−07 −1.13E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000225 0.000217 0.000184 0.000241 0.000292 0.000219
Skewness 0.011155 −0.050369 −0.119412 0.007646 −0.021431 −0.203838
Kurtosis 6.512019 5.435495 6.226714 5.337107 8.780986 10.97326
Jarque-Bera 6166.88 2970.40 5233.92 2730.92 16708.03 31861.55
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 −0.493223 −0.505528 −0.480500 −0.498232 −0.475452 −0.464571

Note: 1 is the first-order autocorrelation coefficient. Jarque-Bera statistic converges to a chi-square distribution with two degrees of freedom under
the normality assumption.
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Table 14. Basic Statistics of the Return Series – USD/JPY.

Sub-Period A B C D E F

Mean 3.97E−07 −5.16E−07 −2.01E−06 2.54E−07 1.69E−06 −1.44E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000413 0.002108 0.001853 0.000332 0.000311 0.000363
Skewness 0.008135 0.080038 −0.018340 −0.057694 0.022959 −0.003358
Kurtosis 6.769064 6.711594 6.854310 7.170642 6.757800 6.374525
Jarque-Bera 7091.806 6898.478 7426.049 8700.883 7059.230 5123.885
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 −0.343317 −0.338790 −0.370748 −0.362052 −0.360786 −0.335953

Sub-Period G H I J K L

Mean 2.53E−06 −1.09E−06 −2.54E−06 −2.75E−07 −7.87E−07 1.90E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000301 0.000279 0.000322 0.000287 0.000265 0.000247
Skewness 0.080100 0.019734 0.079313 0.002414 −0.019244 0.213584
Kurtosis 5.597214 6.763973 6.747828 8.198238 7.650768 6.701801
Jarque-Bera 3385.029 7083.936 6459.934 13508.60 10811.96 6941.746
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 −0.436860 −0.396329 −0.344660 −0.348622 −0.361993 −0.364189

Note: 1 is the first-order autocorrelation coefficient. Jarque-Bera statistic converges to a chi-square distribution with two degrees of freedom under
the normality assumption.
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Table 15. Basic Econometric Properties of the Return Series – EUR/USD and
USD/JPY.

Sub-Period A B C D E F

EUR/USD
ADF −74.9502 −76.4264 −74.0755 −76.6226 −77.4292 −79.1714
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

G H I J K L

ADF −74.7427 −74.7053 −68.8254 −73.4958 −72.3726 −67.6148
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0.1)

A B C D E F

USD/JPY
ADF −57.1573 −55.2394 −56.0518 −56.8433 −55.0202 −51.1507
Critical Value −2.5660 −2.5660 −2.5660 −3.4341 −3.4341 −3.4342
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

G H I J K L

ADF −59.3422 −57.4123 −55.5809 −58.0822 −57.5485 −59.5623
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

Note: The “Critical Value” indicates the critical value of the ADF test that is taken from the table
provided by Dickey and Fuller at the 1% significance level.

are two parameters used to conduct the BDS test. One is the distance measure
(� standard deviations), and the other is the embedding dimension. The parameter
“�” considered here is equal to one standard deviation. (In fact, other are also tried,
but the results are not sensitive to the choice of �.) The embedding dimensions
considered range from 2 to 5. Following Barnett et al. (1997), if the absolute values
of all BDS statistics under various embedding dimensions are greater than 1.96,
the null hypothesis of an identical independent distribution (IID) is rejected. From
Table 16, the BDS statistics for the EUR/USD and USD/JPY are all large enough
to reject the null hypothesis, i.e. nonlinear dependence is detected.

Fourth, given the existence of the nonlinear dependence, the next step is to
identify its possible form, i.e. by modeling nonlinearity. While there is no standard
answer as to how this can be done, the voluminous (G)ARCH literature over the past
two decades has proposed a second-moment connection (Bollerslev et al., 1992).
In order to see whether (G)ARCH can successfully capture nonlinear signals, we
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Table 16. The BDS Test of the PSC-filtered Return Series – EUR/USD and
USD/JPY.

Sub-Period A B C D E F

Part I II I II I II I II I II I II

EUR/USD
DIM = 2 20.47 26.82 22.58 26.56 13.60 20.25 17.15 14.66 18.23 18.09 18.03 19.37
DIM = 3 27.57 34.17 30.61 34.72 19.44 26.84 22.50 20.12 22.78 23.48 24.63 26.43
DIM = 4 33.60 40.03 37.25 40.81 23.80 31.27 26.80 24.22 25.68 27.63 30.21 32.09
DIM = 5 38.50 45.80 43.40 46.75 27.43 35.23 30.38 27.40 28.54 31.23 35.26 37.94

G H I J K L

I II I II I II I II I II I II

DIM = 2 12.04 16.97 23.90 19.45 13.06 12.40 20.13 13.41 35.69 19.74 8.18 22.23
DIM = 3 17.84 22.20 30.02 25.59 17.30 17.31 26.84 18.79 46.83 24.39 10.98 27.08
DIM = 4 21.09 26.34 34.39 30.41 20.35 20.57 31.24 22.98 56.42 27.22 12.97 30.22
DIM = 5 24.08 30.18 39.31 35.47 23.29 23.40 35.39 26.48 66.58 29.79 14.20 33.13

A B C D E F

I II I II I II I II I II I II

USD/JPY
DIM = 2 15.36 23.15 15.68 13.41 12.00 16.63 14.76 20.44 12.98 17.84 17.88 16.61
DIM = 3 17.89 28.38 18.83 16.04 14.54 20.02 17.11 23.15 16.08 20.87 21.35 18.94
DIM = 4 20.03 31.37 20.17 17.89 15.32 22.24 18.72 24.27 17.49 22.82 23.35 20.44
DIM = 5 22.30 34.58 21.57 19.13 16.07 24.42 20.28 25.43 18.52 24.56 24.43 22.16

G H I J K L

I II I II I II I II I II I II

DIM = 2 15.65 11.34 15.56 16.84 16.44 15.51 20.98 17.79 19.41 15.51 15.28 15.61
DIM = 3 17.64 13.92 18.57 18.91 18.50 18.68 25.07 21.84 21.94 16.84 16.32 17.87
DIM = 4 19.30 15.35 20.86 19.45 19.78 21.02 27.72 24.43 23.23 17.52 17.21 19.34
DIM = 5 20.82 16.49 23.10 19.73 20.95 22.76 30.10 26.45 24.15 18.56 18.14 20.62

Note: Due to the size of the data which is beyond the affordable limit of the software computing the BDS statistics,
each sub-period was divided into two parts before the BDS test was applied. The BDS statistic follows an
asymptotically standard normal distribution.

carry out the Lagrange Multiplier (LM) test for the presence of ARCH effects. The
LM test for ARCH effects is a test based on the following model:

�2
t = h(	0 + 	1�2

t−1 + · · · + 	p�2
t−p ), (48)

where h is a differential function. The null hypothesis that the ARCH effect does
not exist is

	1 = · · · = 	p = 0. (49)

By taking p = 1, 2, . . . , 4, the LM test results are given in Table 17. It is found
that the ARCH effect does exist in both return series.
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Table 17. The LM Test of the ARCH Effect in the Return Series – EUR/USD
and USD/JPY.

Sub-Period A B C D E F

EUR/USD
p = 1 1029.94 821.665 681.92 560.27 463.98 401.08
p = 2 1572.34 1191.26 998.22 1094.72 960.83 585.88
p = 3 2030.32 1501.74 1202.15 1320.58 1052.54 705.17
p = 4 2169.98 1731.33 1295.77 1471.40 1195.93 871.73

Sub-Period G H I J K L

p = 1 275.07 797.26 411.61 390.94 1584.30 1571.04
p = 2 423.33 1168.19 689.02 553.11 1668.88 1587.53
p = 3 493.11 1262.87 1001.22 678.90 1714.39 1640.60
p = 4 551.99 1354.28 1050.53 715.68 2036.42 1641.41

Sub-Period A B C D E F

USD/JPY
p = 1 533.15 411.35 479.80 769.49 550.15 685.34
p = 2 639.75 490.58 6018.02 849.31 604.18 752.71
p = 3 677.49 531.78 667.50 854.11 614.26 821.85
p = 4 709.00 559.97 687.09 923.01 636.99 854.71

Sub-Period G H I J K L

p = 1 600.528 545.791 696.185 749.650 883.107 795.762
p = 2 648.101 656.653 758.918 1094.82 926.127 929.618
p = 3 695.639 727.043 811.000 1101.78 939.221 1059.00
p = 4 726.942 764.836 844.766 1103.08 951.489 1109.23

Note: The LM test is asymptotically distributed as χ2 with p degrees of freedom when the null
hypothesis is true. There is no need to report the p values here because they are all 0.0000.

After these series of statistical tests, we may conclude that basically both the
EUR/USD and the USD/JPY return series have MA(1) as a linear component and
ARCH as a part of its nonlinear components. In Section 6.3, the Monte Carlo
simulation analysis already indicated that the GA can work well with MA(1) plus
(G)ARCH processes. To see the empirical relevance of the simulation study, in the
next sections, the GA is applied to the two return series.

7.2. Experimental Design

In order to compare the empirical results with our earlier simulation analysis, the
experiments are designed in a similar fashion to the one which our Monte Carlo
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simulation follows. Specifically, many “ensembles” are generated from the original
series to evaluate the performance of the GA. Of course, rigorously speaking, they
are not the “ensembles” defined in the stochastic process. They are just subseries
taken from the original return series. Each subseries has 105 observations. The
first 70 observations are treated as the training sample, and the last 35 observations
are used as the testing sample.

Nonetheless, to make the tests we developed in Section 4 applicable, we cannot
just continuously chop the return series into subseries, because doing so will not
make the sampling process independent, and hence will violate the fundamental
assumption required for the central limit theorem. One solution to this problem
is to leave an interval between any two consecutive subseries so that they are
not immediately connected. The purpose in doing this is hopefully to make them
independent of each other as if they were sampled independently. However, how
large an interval would suffice? To answer this question, we take a subsequence
with a fixed number of lags, say, {rj

i,t , rj
i,t+k , rj

i,t+2k , . . .} from the original return
series, where k varies from 40, 60, . . . , to 300. We then apply the BDS test to each
of these subsequences.

Table 18 summarizes the BDS test results. For the EUR/USD case, it is
found that when k is greater than 100, the null hypothesis that the subsequence
{rj

i,t , rj
i,t+k , rj

i,t+2k , . . .} is IID is not rejected. In other words, leaving an interval
of 100 observations between each of two consecutive subseries would suffice. For
the EUR/USD case, k can even be smaller than 60. To ensure the quality of the
sampling process, we, however, take an even larger number of lags, i.e. k = 200.
This choice leaves us with a total of 720 subseries from the EUR/USD and 709
subseries from the USD/JPY.

The GA is then employed to extract trading strategies from the training samples
of these subseries, and the strategies extracted are further applied to the respective
testing samples. The resulting accumulated returns (�) are then compared with
that of the B&H strategy.

7.3. Results of the Experiments

Since the analysis of the data shows that the two forex returns are mixtures of
MA(1) and (G)ARCH processes, our previous results of Monte Carlo simulations
may provide a good reference for what one can expect from such empirical
applications. Both Tables 8 and 9 indicate the superior performance of the GA
over B&H, except in relation to the criterion for the luck coefficient, when the
underlying stochastic processes are MA plus (G)ARCH. Will the dominance carry
over?
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Table 18. The BDS Test of the Lag Period in the Return Series – EUR/USD and
USD/JPY.

Lag DIM = 2 DIM = 3 DIM = 4 DIM = 5

EUR/USD
40 2.94 3.45 3.86 4.18
60 0.72 1.20 1.27 1.38
80 1.11 1.21 1.38 1.50
100 0.66 0.66 0.69 0.69
120 0.61 0.66 0.79 0.88
140 0.45 0.52 0.54 0.58
160 0.30 0.43 0.46 0.54
180 0.21 0.30 0.42 0.49
200 −0.01 0.08 0.12 0.11
220 0.11 0.14 0.13 0.13
240 0.25 0.24 0.27 0.24
260 −0.02 −0.04 −0.04 −0.01
280 0.10 0.11 0.14 0.14
300 0.06 0.07 0.05 0.01

USD/JPY
40 1.39 1.50 1.50 1.57
60 0.53 0.69 0.75 0.89
80 0.56 0.63 0.72 0.80
100 −0.08 −0.12 −0.12 −0.16
120 0.13 0.22 0.19 0.20
140 0.01 −0.13 −0.14 −0.09
160 0.05 0.09 0.09 0.12
180 −0.01 −0.07 0.01 0.06
200 −0.04 −0.08 −0.08 −0.06
220 0.21 0.29 0.30 0.32
240 0.15 0.13 0.11 0.12
260 0.05 0.12 0.09 0.07
280 −0.14 −0.09 −0.11 −0.10
300 0.06 0.02 0.05 0.04

Note: The BDS statistic follows an asymptotically standard normal distribution.

Table 19 is the kind of table which we have presented many times in Section 6.
All the key statistics z�, zw, and zd are consistent with those of AH-7 (Table 8) and
GH-10 (Table 9). So, in both forex return series, the dominance of the GA over
B&H is statistically significant. The consistency continues even to a finer level of
the results: �̄1 < 1 and �̄2 > 1. As already seen, B&H earned negative profits in
both of the cases AH-7 and GH-10, while the GA earned positive profits in both
cases. In addition, both the winning probability and the exploitation ratio are also
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Table 19. Performance Statistics of the OGA and B&H – EUR/USD and
USD/JPY.

�̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

EUR/USD 0.9999 1.0012 1.0028 38.58 43 9257 0.972 77.10
USD/JPY 0.9999 1.0010 1.0039 23.70 27 11462 0.850 26.17

ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

EUR/USD −0.0338 1.4193 1.4532 18.32 0.0812 0.0933 0.8710 −1.69
USD/JPY −0.0086 0.8786 0.8873 20.64 0.0826 0.0948 0.8713 −1.66

Note: �̄1, �̄2 and �̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 and ŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference is d̂ (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), and r̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). The z�, zw, zd and zr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

comparable. p̂w is around 95% for both AH-7 and GH-10, and �̃ is about 25%.
The value of p̂w remains as high for the EUR/USD series, while it drops a little
to 85% for the USD/JPY series. As to �̃, it is also about 25% for the USD/JPY
series, but is greater than 40% for the EUR/USD series.

Notice that our earlier simulation result already indicated that, for some reason
unknown to us, the MA component when combined with the ARCH or GARCH
component may bring a negative impact to the luck coefficient. This has been
already shown in the cases AH-7 and GH-10. What interests us here is that this
observation repeats itself in our empirical results. The statistic zr is statistically
negative in both return series. As a result, to a large extent, what we have found from
the early Monte Carlo simulations applies quite well to the real data. Hence, the GA
can be useful in extracting information to develop trading strategies involving these
high-frequency financial data because the underlying stochastic process, based on
the Monte Carlo simulation analysis, is not a hard one for the GA.

8. CONCLUDING REMARKS

The literature on financial data mining, driven by the rapid development and
applications of computational intelligence tools, are frequently clothed with a
“magic house” notoriety. Unlike in mainstream econometrics, users are usually
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not well informed of the stochastic properties of these tools, which in turn makes
it difficult to grasp the significance of the result obtained from one specific
application, be it positive or negative. An essential question is how we can know
that what happens in one specific application can or cannot extend to the other one.
Will we still be so “lucky” next time?

By using the Monte Carlo simulation methodology, a statistical foundation for
using the GA in market-timing strategies is initiated. This foundation would allow
us to evaluate how likely the GA will work given a time series whose underlying
stochastic process is known. This helps us to distinguish the luck from normal
expectations. We believe that this is a major step toward lightening the black box.
We emphasize that this work provides a statistical foundation, not the statistical
foundation, because there are many other ways of enriching the current framework
and of making it more empirically relevant.

First, different benchmarks may replace the B&H strategy. This is particularly
so given a series of articles showing that simple technical analysis can beat B&H.
However, since we can never run out of interesting benchmarks, the exploitation
ratio �̃ introduced in this paper will always be a good reference. For example,
in this paper, we can hardly have a �̃ of 30% or higher. Consequently, the 70%
left there may motivate us to try more advanced version of the GA or different
computational intelligence algorithms.

Second, financial time series are not just restricted to the six stochastic processes
considered in this paper, but introducing new stochastic processes causes no
problems for the current framework. Third, different motivations may define
different evaluation criteria. The four criteria used in this paper are by no means
exhausted. For example, the downside risk or VaR (Value at Risk) frequently
used in current risk management can be another interesting criterion. However,
again, it is straightforward to add more criteria to the current framework as long
as one is not bothered by deriving the corresponding statistical tests. Fourth, the
focus of this paper is to initiate a statistical foundation. Little has been addressed
regarding the practical trading behavior or constraints. Things like transaction
costs, non-synchronous trading, etc., can be introduced to this framework quite
easily. Fifth, our framework is also not restricted to just the ordinary GA, for the
general methodology applies to other machine learning tools, including the more
advanced versions of the GA.

Finally, while, in this paper, we are only interested in the statistical foundation,
we do not exclude the possibilities of having other foundations. As a matter of fact,
we believe that a firm statistical foundation can show us where to ask the crucial
questions, and that will help build a more general mathematical foundation. For
example, in this paper, we have been already well motivated by the question as to
why the GA performed quite poorly in the pure nonlinear stochastic processes, but
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performed well in the chaotic processes. Of course, this statistical finding alone
may need more work before coming to its maturity. However, the point here is
that theoretical questions regarding the GA’s performance cannot be meaningfully
answered unless we have firmly grasped their behavior in a statistical way.

NOTES

1. The interested reader can obtain more spread applications in the fields of research
from Goldberg (1989).

2. A bibliographic list of financial applications of genetic algorithms and genetic
programming can be found in Chen and Kuo (2002) and Chen and Kuo (2003). For a
general coverage of this subject, interested readers are referred to Chen (1998a), Chen
(2002) and Chen and Wang (2003). As opposed to the conventional technical analysis, the
advantages of using GAs and GP are well discussed in Allen and Karjalainen (1999), and
is also briefly reviewed in another paper of this special issue. (Yu et al., 2004).

3. For example, Chen (1998b) sorted out three stochastic properties which may impinge
upon the performance of GAs in financial data mining. These are the no-free-lunch property,
the well-ordered property and the existence of temporal correlation. Several tests of these
properties are then proposed and an a priori evaluation of the potential of GAs can be made
based on these proposed tests.

4. �̄∗ is a sample average of π∗
i , which is the accumulated return earned by the omniscient

trader in the ith ensemble of the Monte Carlo simulation.
5. Doing this enables us to apply the central limit theorem to derive the asymptotic

distribution of the various test statistics mentioned in Section 4.
6. The main source of this dataset is the interbank spot prices published by Dow Jones

in a multiple contributors page (the TELERATE page). This covers markets worldwide
24 hours a day. These prices are quotations of the average prices of bid and ask and not
actual trading prices. Furthermore, they are irregularly sampled and therefore termed as
tick-by-tick prices.

7. The clear cut-off pattern appearing at the first lag suggests that these series involve
a MA(1) process. Later on, from more rigorous statistics, we will see that indeed it is the
case.

8. The detailed description can be found in Chen and Tan (1996).
9. Once the linear signals are filtered out, any signals left in the residual series must be

nonlinear. “BDS” stands for “Brock, Dechert and Scheinkman” see Brock et al. (1996).
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APPENDIX A

A.1. Coding Trading Strategies

Based on the trading formulation (3), to encode a trading strategy, we only need
to encode the CONDS with three primitive predicates, which means the following
three parts:

� �a = (a1, a2, a3),
� �⊕ = (⊕1, ⊕2, ⊕3),
� the logical combination of the three predicates Cond(rt−i) (i = 1, 2, 3).

To encode �a, we first transform the range of the variable Z, [Zmin, Zmax], into a
fixed interval, say [0, 31].

Z∗ = Z − Zmin

Zmax − Zmin
× 32 (A.1)

Then Z∗ will be further transformed by Eq. (A.2).

Z∗∗ =
{

n, if n ≤ Z∗ < n + 1
31 if Z∗ = 32

(A.2)

Since there are only 32 cutoff values, each ai can be encoded by a 5-bit string. Hence
the vector �a can be encoded by a 15-bit binary string. To encode �⊕, notice that each
⊕ has only two possibilities: ≥ or <. Therefore, a �⊕ can be encoded by a 3-bit
binary string (Table A.1). Finally, there are a total of totally 8 logical combinations
for three predicates and they can be encoded by 3-bit strings (Table A.2).

In sum, a CONDS can be encoded by a 21-bit string (3 for logical combinations,
3 for inequalities, and 15 for the three thresholds). Therefore, each trading strategy
can be represented by a 21-bit string.

Table A.1. Binary Codes for Inequality Relation.

Code ⊕1 ⊕2 ⊕3

0(000) ≥ ≥ ≥
1(001) < ≥ ≥
2(010) ≥ < ≥
3(011) ≥ ≥ <

4(100) < < ≥
5(101) < ≥ <

6(110) ≥ < <

7(111) < < <
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Table A.2. Binary Codes for Logical Combinations.

Logic Code Logical Combination of Predicates

0(000) Cond 1 OR (Cond 2 AND Cond 3)
1(001) Cond 1 AND (Cond 2 OR Cond 3)
2(010) (Cond 1 OR Cond 2) AND Cond 3
3(011) (Cond 1 AND Cond 2) OR Cond 3
4(100) (Cond 1 OR Cond 3) AND Cond 2
5(101) (Cond 1 AND Cond 3) OR Cond 2
6(110) Cond 1 OR Cond 2 OR Cond 3
7(111) Cond 1 AND Cond 2 AND Cond 3

A.2. Ordinary Genetic Algorithms

The GA described below is a very basic version of a GA, and is referred to as the
ordinary genetic algorithm (OGA). More precisely, it is very similar to the GA
employed in Bauer (1994).

� The genetic algorithm maintains a population of individuals,

Pi = {gi
1, . . . , gi

n} (A.3)

for iteration i, where n is population size. Usually, n is treated as fixed during
the whole evolution. Clearly, Pi ⊂ G.

� Evaluation step: Each individual gi
j represents a trading strategy at the ith

iteration (population). It can be implemented with the historical data rt−1, rt−2,
and rt−3 by means of Eq. (2). A specific example is given in Eq. (3). Each trading
strategy gi

j is evaluated by a fitness function, say Eq. (6).
� Selection step: Then, a new generation of population (iteration i + 1) is formed

by randomly selecting individuals from Pi in accordance with a selection scheme,
which, in this paper, is the roulette-wheel selection scheme.

Mi = Ps (Pi ) = (s1(Pi ), s2(Pi ), . . . , sn (Pi )) (A.4)

where

sk :

{(
G

n

)}
→ G, (A.5)

k = 1, 2,. . ., n, and

{(
G

n

)}
is the set of all populations whose population size

is n. The set Mi is also called the mating pool.
� Alteration step: Some members of the new population undergo transformations

by means of genetic operators to form new solutions.
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� Crossover: We use two-point crossover ck, which create new individuals by
combining parts from two individuals.

Oi = Pc (Mi ) = (c1(Mi ), c2(Mi ), . . . , cn/2(Mi )) (A.6)

where

ck:

{(
G

n

)}
→ G × G, (A.7)

k = 1, 2,. . ., n/2. Oi is known as the set of offspring in the GA.
� Mutation: We use bit-by-bit mutation mk, which creates new individuals by

flipping, with a small probability, each bit of each individual of Oi.

Pi+1 = Pm (Oi ) = (m1(Oi ), m2(Oi ), . . . , mn (Oi )) (A.8)

where

mk:

{(
G

n

)}
→ G (A.9)

k = 1, 2,. . ., n.
� After the evaluation, selection and alteration steps, the new population Pi+1 is

generated. Then we proceed with the three steps with Pi+1, and the loop goes
over and over again until a termination criterion is met. The control parameters
employed to run the OGA are given in Table A.3.

Table A.3. Control Parameters of OGA.

Number of generations 100
Population size (n) 100
Selection scheme Roulette-wheel
Fitness function Accumulated returns
Elitist strategy Yes
Rank min 0.75
Crossover style Two-Point
Crossover rate 0.6
Mutation rate 0.001
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ABSTRACT

We model international short-term capital flow by identifying technical
trading rules in short-term capital markets using Genetic Programming (GP).
The simulation results suggest that the international short-term markets was
quite efficient during the period of 1997–2002, with most GP generated
trading strategies recommending buy-and-hold on one or two assets. The
out-of-sample performance of GP trading strategies varies from year to year.
However, many of the strategies are able to forecast Taiwan stock market
down time and avoid making futile investment. Investigation of Automatically
Defined Functions shows that they do not give advantages or disadvantages
to the GP results.

1. INTRODUCTION

Hot money, or speculative capital, is raising some concerns in Chinese economy.
During the first half of this year (2003), about US$25 billion in short-term
speculative funds sneaked into China as investors bet on possible sharp appreciation
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of the local currency Renminbi. Speculative capital mostly flows into areas
with high liquidity, such as the security and bonds markets, as it is for short-
term investments. Without being invested in industries, this money usually does
not damage the overall economy once it is withdrawn.1 Nevertheless, Chinese
government has to take heed of possible longer-term fallout from speculation.

Unlike the normal direct investment, speculative capital moves very quickly
among international capital markets, sometimes with very huge amount (as the
Asian Crisis has demonstrated). Therefore, it can be always a potential threat for
macroeconomic stability. If we can predicate the short-term capital movements, it
becomes possible to control and to stabilize the economy under the influence of
hot money.

In short-term international capital movements, technical trading rules play an
important role as they reveal investors’ behavior. This work models international
short-term capital flow by identifying technical trading rules in short-term capital
markets. Through the simulation, we investigate if there exists trading strategies
that are capable of predicting the capital inflow and outflow, hence make
profitable investment. The modeling and simulation were conducted using Genetic
Programming (GP) (Koza, 1992), a novel approach for this task. Its effectiveness
will be analyzed and discussed.

As a first step, we use Taiwan as the host country and model the short-term capital
flow between Taiwan and four other foreign countries: United States, Hong Kong,
Japan and United Kingdom. In other words, the speculator resides in Taiwan,
investing Taiwan currency to other foreign assets to pursue the highest returns.
The two types of short-term assets considered here are currency and stocks, whose

Fig. 1. The Global Short-term Capital Flow Model.



A Genetic Programming Approach to Model International Short-Term Capital Flow 47

transactions are governed by stock markets and foreign exchange markets. This
overall model gives a global picture of the short-term capital inflow and outflow
between Taiwan and four foreign countries (see Fig. 1).

The paper is organized as follows. Section 2 gives the background of this work.
It explains technical analysis in financial markets and surveys the applications
of GP to model financial trading strategies. Section 3 describes the capital flow
model representation and Section 4 gives the GP trading strategy structure. The
financial data used for modeling and simulation are explained in Section 5.
Section 6 gives the GP experimental setup. In Section 7, the benchmark used to
evaluate GP trading strategies is explained. Section 8 presents the experimental
results. The analysis of GP trading strategies is presented in Section 9. Finally,
Section 10 gives the concluding remarks and outlines the direction of future
work.

2. BACKGROUND

One driving force of short-term capital movement is the opportunities of profit.
The prediction of short-term capital flow can therefore be viewed as the forecast of
positive investment returns. One empirical approach to identify profitable capital
trading is technical analysis. This approach uses historical price information to
study price trends. This technique was originated from the work of Charles Dow
in the late 1800 and is now widely used by investment professionals as inputs for
trading decisions (Pring, 1991).

Based on technical analysis techniques, various trading rules have been
developed. Examples include moving average, filter and trading-range break (see
Section 4.2 for more explanation). In (Brock et al., 1992), they reported that moving
average and trading-range break give significant positive returns on Dow Jones
Index from 1897 to 1986. Similarly, Cooper (1999) showed that filter strategy
can out-perform buy-and-hold under relatively low transaction cost on NYSE and
AMEX stocks for the 1962–1993 period. These studies are encouraging evidences
indicating that it is possible to devise profitable trading rules for financial
markets.

However, one concern toward these studies is that the investigated trading rules
are decided ex post. It is possible that the selected trading rule is favored by
the tested time periods. If the investor has to make a choice about what rule or
combination of rules to use at the beginning of the sample period, the reported
returns may have not occurred. In order to obtain true out-of-sample performance,
GP has been used to derive the trading rules for analysis (Allen & Karjalainen,
1999; Neely et al., 1997; Neely & Weller, 1999; Wang, 2000).
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Fig. 2. Genetic Programming Cycle.

2.1. Genetic Programming

GP is a population-based search algorithm developed by John Koza (1992). It
mimics the process of natural evolution to search for optimal solutions of a
given problem. Figure 2 depicts the GP process cycle. Initially, a population of
models is randomly created. Based on their fitness, better models are selected
for reproduction. Using alteration operations, such as crossover and mutation,
new offspring are generated to form a new generation. This process of selection,
alteration and fitness evaluation continues until the specified termination criterion
is met. The best model at the end of the process is the final model.

Various representations, selection and alteration schemes have been proposed
to suit different applications. In this work, the model is represented as a parse tree
that is evaluated to give trading decisions. The financial return after executing the
trading decisions becomes the fitness of the model. Section 4 gives more details
on the structure of GP trading strategies.

2.2. Related Works

Targeted toward different financial markets, different researchers have applied
GP to generate trading rules and to analyze their profitability. For example,
Allen and Karjalainen (1999) studied S&P 500 index from 1928 to 1995. They
reported that the evolved GP trading rules do not earn consistent excess returns
over buy-and-hold after the transaction costs. In contrast, Neely et al. (1997)
reported that their GP trading rules for foreign exchange markets were able to
gain excess returns for six exchange rates over the period of 1981–1995. Wang
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(2000) suggested that this conflicting result might be due to the fact that foreign
exchange markets have a lower transaction cost than the trading cost in the S&P
index stock market. Another reason Wang suggested is that Neely et al. did not
use the rolling forward approach to test their results for different time periods
while Allen and Karjalainen did (see Section 5 for the explanation of rolling
forward approach). Finally, Wang pointed out that these two works used different
benchmarks to assess their GP trading rules: Allen and Karjalainen used the
return from buy-and-hold while Neely et al. used zero return, because there is no
well-defined buy-and-hold strategy in the foreign exchange markets.

Using a similar GP setup as that of Allen and Karjalainen (1999), Wang (2000)
also investigated GP rules to trade in S&P 500 futures markets alone and to trade
in both S&P 500 spot and futures markets simultaneously. He reported that GP
trading rules are not able to beat buy-and-hold in both cases. Additionally, he
also incorporated Automatically Defined Function (ADF) (Koza, 1994) in his GP
experiments. He reported that ADFs made the representation of the trading rules
simpler by avoiding duplication of the same branches. In his work, Wang did not
compare the results from GP with the results from ADF-GP.

Similar to the trading model of Wang, our short-term capital flow model
allows trading in two kinds of financial markets (stock and foreign exchange)
simultaneously. Moreover, we also included ADFs in our GP implementations.
However, the implementations of our ADFs have more variation than that of
Wang’s. We also used a different data transformation method to normalize time
series. Consequently, the evolved GP trading rules have different interpretations
(see Section 9.1).

There are other works using Genetic Algorithms (GA) and/or Neural Network
(NN) to make investment decisions. For example, Kassicieh et al. (1997) applied
GA to determine the time to trade in different financial markets by selecting a
subset of 10 given economic indicator time series. Baba et al. (2000) applied
GA/NN hybrid to devise their decision support system for trading in Tokyo stock
markets. Although GA and NN are powerful modeling tools, we find GP more
suitable for our work because it has a natural representation (S-expression) for
modeling trading rules. If we use GA or NN, there is an inevitable extra task of
mapping the GA and NN structures to the technical trading rules.

3. MODEL REPRESENTATION

The representation of our short-term capital flow model between Taiwan and a
foreign country is a directed graph. Each node in the graph represents an asset. For
example, Fig. 3 gives the capital flow model between Taiwan and United States.



50 TINA YU ET AL.

Fig. 3. The Short-term Capital Flow Model Represented as a Directed Graph.

From the left to the right, the four nodes represent Taiwan stock market (TAIEX),
Taiwan currency (NT$), United States currency (US$), and United States stock
market (S&P 500). This model encompasses three capital markets: Taiwan stock
market, U.S. stock market and Taiwan-U.S. currency exchange market.

Funds in one asset can be transferred into one or more other assets, through
the transactions in the related capital markets. For example, funds in NT$ may be
changed to US$ by trading in Taiwan foreign exchange market. One can also use
them to buy Taiwan stocks in the Taiwan stock market.

Initially, the fund is placed in foreign currency. At each time step, the fund may
be reallocated to other assets, according to the trading decisions made for the three
capital markets. These three decisions made up the trading strategies to be carried
out by an investor. More details on GP trading strategies are given in the following
section.

A trading decision may be to buy an asset, to sell an asset or to do nothing.
For the purpose of generality, we structure a financial market with two assets, one
on left and one on right. When the decision is to transfer a fund from the asset
on the right to the asset on the left, a “+1” is signaled. When the decision is to
transfer a fund from the asset on the left to the one on the right, a “−1” is signaled.
Signal “0” means do nothing. Table 1 gives the 27 possible combinations of trading
decisions. Assuming at time t, the fund in TAIEX is A, in NT$ is B, in US$ is C
and in S&P500 is D, the table gives the fund allocations at time t + 1.

When the decision is to trade (+1 or −1), half of the current fund is transferred to
the designated asset. For example, if the trading strategy is {−1, −1, −1}, half of
the TAIEX funds (A) will be moved to NT$; half of the original NT$ fund (B) will
be moved to US$ and half of the original US$ fund (C) will be moved to S&P500.
A trading strategy may cause an original fund to be completely transferred out, e.g.
{1, −1, −1} trades all NT$ with TAIEX and US$. However, the maximum amount
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Table 1. Trading Decisions and Their Funds Reallocation Results.

TSM CEM FSM TAIEXt + 1 NT$t + 1 U.S.$t + 1 S&P500t + 1

−1 −1 −1 0.5A 0.5A + 0.5B 0.5B + 0.5C 0.5C + D
−1 −1 0 0.5A 0.5A + 0.5B 0.5B + C D
−1 −1 1 0.5A 0.5A + 0.5B 0.5B + C + 0.5D 0.5D
−1 0 −1 0.5A 0.5A + B 0.5C 0.5C + D
−1 0 0 0.5A 0.5A + B C D
−1 0 1 0.5A 0.5A + B C + 0.5D 0.5D
−1 1 −1 0.5A 0.5A + B + 0.5C 0 0.5C + D
−1 1 0 0.5A 0.5A + B + 0.5C 0.5C D
−1 1 1 0.5A 0.5A + B + 0.5C 0.5C + 0.5D 0.5D

0 −1 −1 A 0.5B 0.5B + 0.5C 0.5C + D
0 −1 0 A 0.5B 0.5B + C D
0 −1 1 A 0.5B 0.5B + C + 0.5D 0.5D
0 0 −1 A B 0.5C 0.5C + D
0 0 0 A B C D
0 0 1 A B C + 0.5D 0.5D
0 1 −1 A B + 0.5C 0 0.5C + D
0 1 0 A B + 0.5C 0.5C D
0 1 1 A B + 0.5C 0.5C + 0.5D 0.5D
1 −1 −1 A + 0.5B 0 0.5B + 0.5C 0.5C + D
1 −1 0 A + 0.5B 0 0.5B + C D
1 −1 1 A + 0.5B 0 0.5B + C + 0.5D 0.5D
1 0 −1 A + 0.5B 0.5B 0.5C 0.5C + D
1 0 0 A + 0.5B 0.5B C D
1 0 1 A + 0.5B 0.5B C + 0.5D 0.5D
1 1 −1 A + 0.5B 0.5B + 0.5C 0 0.5C + D
1 1 0 A + 0.5B 0.5B + 0.5C 0.5C D
1 1 1 A + 0.5B 0.5B + 0.5C 0.5C + 0.5D 0.5D

Note: TSM: Taiwan Stock Market; CEM: Currency Exchange Market; FSM: Foreign Stock Market.
The table is simplified in that no transaction cost is considered. The modeling process, however,
does take transaction cost into account.

of fund that one asset can acquire is half of its two neighboring assets. For example,
the trading strategy {0, −1, 1} leads to an increase of US$ by half of the original
NT$ fund and half of the original S&P500 fund. This is a rather conservative setup.
We therefore adjust the modeling and simulation procedure to execute a transaction
multiple (10) times in one time step,2 with the transaction cost charged once only.
This leads to almost 100% of the original fund in one asset to be transferred to
the designated asset in one time step. Nevertheless, to reallocate all the funds
(A + B + C + D) into single asset, it still requires at least three time steps.

To be close to the reality, the model does not allow direct capital flow between
international stocks. In the real world, the trading between stocks in two different
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Table 2. Trading Decision Table.

Rule 1 Recommendation Rule 2 Recommendation Final Decision

True False +1
False True −1
True True 0
False False 0

countries requires an intermediate step of currency exchange. For example, to
trade a Taiwan stock with a U.S. stock, the Taiwan stock has to be cashed into
Taiwan currency, which is exchanged to U.S. currency, which is then used to
purchase the U.S. stock.

4. GP TRADING STRATEGIES

A GP trading strategy consists of three trading decisions made for the three financial
markets. Each trading decision (+1, −1 or 0) is determined by a pair of GP rules.
The first rule decides whether to move funds from the right asset to the left asset
(True) or not (False). The second rule decides whether to move funds from the left
asset to the right asset (True) or not (False). The final decision is derived according
to Table 2.

A GP rule has a tree structure. Figure 4 gives a trading rule example. It says,
“If the 15-day moving average is greater than the 250-day moving average, then
trade. Otherwise, if the closing exchange rate has risen by more than 1% above its
minimum over the previous 10 days, then trade. Otherwise, do not trade.”

With three trading decisions, each is determined by two rules; a GP trading
strategy consists of six GP trees. Figure 5 gives the structure of a GP trading
strategy. Note that the labels Tree-A, Tree-B and Tree-C correspond to those in
Fig. 3.

Fig. 4. A GP Trading Rules Example.
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Fig. 5. The GP Trading Strategy Structure.

The following functions are provided to construct the internal nodes of a GP tree:

� Boolean function: and, or, not, <, >, if-then-else
� Numerical function: +, −, ×, ÷, average, max, min, norm, lag

The function average computes the moving average of a variable in a time window
specified by the integer argument. For example, average (x, 250) at time t is the
arithmetic mean of xt−1, xt−2, . . ., xt−250. The function max returns the largest
value of a variable during a time window specified by the integer argument. For
example, max (y, 3) at time t is equivalent to max(yt−1, yt−2, yt−3). Similarly, the
function min returns the smallest value of a variable during a time window specified
by the integer argument. The function norm computes the absolute value of the
given real number. The function lag returns the value of a variable lagged by a
number of days specified by the integer argument. For example, lag (z, 3) at time t is
zt−3. These functions are commonly used by financial traders to decide their trading
strategies, hence are reasonable building blocks for GP to construct trading rules.

GP tree leaf nodes can be a value from the following three types of terminals:

� Input variables: TWIR, TWSI, FCIR, FCSI, NTD/FD
� Numerical constants: 100 constants randomly generated between 0.0 and 10.0
� Boolean constants: True, False

Input variables include: interest rate in Taiwan (TWIR) and the foreign country
(FCIR); stock index in Taiwan stock market (TWSI) and the foreign country stock
market (FCSI); the exchange rate between Taiwan and the foreign country
(NTD/FD). These financial time series will be explained with more details in
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Fig. 6. An ADF-GP Trading Strategy Example.

Section 5. Real-valued constants may be truncated into integer value if they are
passed over to time series functions, such as lag.

4.1. Automatically Defined Functions

Automatically Defined Function (ADF) is a mechanism devised by Koza to extend
GP ability to solve problems with regularity, symmetry and homogeneity (Koza,
1994). ADFs are subroutines that are simultaneously evolved with the GP main
programs. Figure 6 gives an example GP trading rule with one ADF. The left
branch of the tree is an ADF while the right branch is the main trading rule. The
ADF takes one argument (a time series variable) and checks if its 1-day moving
average is greater than its 50-day moving average. This ADF is called twice in the
GP main trading rule: ADF(×2) takes Taiwan stock index as the argument while
ADF(×3) takes UK stock index as the argument.

An ADF is evolved simultaneously with the GP main trading rule. If a trading
rule contains patterns, ADF-GP may discover and extract them as ADFs, which
are then called from the GP main trading rule. We implemented ADFs in three
different ways for three different purposes:

� One ADF is included in each trading strategy. This investigates whether
regularity exists in profitable trading strategies and as to whether GP is able
to discover them. Since the time series are transformed by dividing them by
250-day moving average (see Section 5), ADF is used to identify patterns in the
change of trend that provide profitable trading.
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� One partially defined ADF is included in each trading strategy. The ADF is
initially seeded with one of the commonly used technical trading rules (see
Section 4.2). They are then evolved during the GP runs. With the transformed
time series, this implementation is to discover if the provided technical trading
rules (and their variations) are effective on the transformed time series data.

� Three partially defined ADFs are included in each trading strategy. This is the
same as the above except three, instead of one, ADFs are used.

The function and terminal sets used to evolve ADFs are the same as that used to
evolve the GP main program. For ADF-GP, an extra function (the name of the
ADF) is included in the GP main program function set.

4.2. Technical Trading Rules

Two types of technical trading rules are provided for GP to initialize its ADFs:
moving average rules and filter rules. Moving average rules include a class of rules
where the trading signals are decided by comparing a short-run with a long-run
moving average in the same time series, producing a “buy” signal when the short-
run moving average cuts the long-run moving average from below. This rule can be
implemented in many different ways by specifying different short and long periods.
We have included the following five implementations: (1–50), (1–150), (5–150),
(1–200), and (2–200), where the first number is the short while the second number
indicates the long. We also implemented a band moving average rule, where the
band is 0.01, i.e. signal “buy” if the short-run moving average exceeds the long-run
moving average by 1%.

Filter rules include a class of trading rules where the trading signals are decided
by comparing the current price with its local low or with its local high over a
past period of time. We select three time lengths (50, 150, 200) to implement this
class of rules. We also implemented two band filter rules, one with band 0.01 and
the other with band −0.01. In the first case, a “buy” signal is generated if the
current price exceeds the local high by 1%. In the second scenario, a “sell” signal
is generated if the current price is below the local low by 1%.

Since these predefined ADFs are evolved, the final versions have different
semantics and are not to be called the same names anymore.

5. DATA SET

We have acquired financial time series data for five countries (Taiwan, United
States, United Kingdom, Japan and Hong Kong) between January 1, 1992 and
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Fig. 7. Time Series Data Before and After Normalization.

December 31, 2002 from Datastream. The time series include: TWIR, TWSI, USIR,
USSI, UKIR, UKSI, HKIR, HKSI, JPIR, JPSI, NTD/USD, NTD/GBP, NTD/JPY,
NTD/HKD. Five times series are used to build one model. For example, TWIR,
TWSI, USIR, USSI and NTD/USD are used to model Taiwan-U.S. capital flow.

Since the original time series are non-stationary, we transform them by dividing
the daily data by a 250-day moving average. This is the method used by Allen and
Karjalainen (1999) and Neely et al. (1997). The adjusted data oscillate around 1
and make the modeling task easier. Figure 7 gives two examples. On the left side
are the two original series while on the right are the transformed ones. While
the transformed series are used for modeling, the computation of GP trading
strategies returns is based on the original time series. One implication of this
data transformation is that GP is searching for patterns exhibited in the change of
trends that give profitable trading strategies.

Over-fitting is an issue faced by all data modeling techniques. GP is no
exception. When constructing/optimizing the trading strategies, GP tends to make
the strategies producing maximum returns for the training period, which may
contain noise that do not represent the overall series pattern. In order to construct
trading strategies that generalize beyond the training data, we adopt two methods
to run the GP experiments. The first one is to enforce parsimony pressures on the
trading strategies structures, which will be discussed in Section 6. The second one
is splitting the series into training, validation and out-of-sample periods. This is
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Fig. 8. Six Sequences of Time Series Data.

a commonly used approach in machine learning and data mining. We adopt the
rolling forward approach first proposed by Pesaran and Timmermann (1995) and
also used by Allen and Karjalainen (1999) and Wang (2000).

To start, the first 500 data (250 used to transform raw data and 250 reserved to be
referred by time series function such as lag) were removed. This leaves 2500 data in
each time series. To guard against potential data snooping in the choice of time pe-
riods, the series are organized into 6 sequences, each with 1000 data points. Among
them, 500 are for training, 250 are for validation and 250 are for out-of-sample test-
ing. The data in one series may overlap with that in other series. As shown in Fig. 8,
the second half of the training period and the entire validation period at the first se-
ries are the training period at the second series. The out-of-sample testing period at
the first series is the validation period at the second series. With this setup, each out-
of-sample testing period is one-year (short-term) and covers a different time period.

For each data series, 20 GP runs were made. The three data periods are used in
the following manner:

(1) The best trading strategy against the training period at the initial population
is selected and evaluated against the validation period. This is the initial “best
strategy.”

(2) A new generation of trading strategies is created by recombining/modifying
parts of relatively fit strategies in the previous generation.

(3) The best trading strategies against the training period at the current population
is selected and evaluated against the validation period.

(4) If this strategy has a better validation fitness than the previous “best strategy,”
then this is considered to be the new “best strategy.”

(5) Go to step 2 until the maximum number of generation is reached or there is
no fitter strategy is found after a certain number of generations (a controllable
parameter).

(6) The last “best strategy” is tested against the out-of-sample period. This is what
we use to evaluate the performance of GP trading strategies.
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In summary, the training period is used to construct/optimize GP trading strategies
while the validation period is used to select the GP trading strategies, which are
then applied on the out-of-sample period to give the performance of the strategies.
The analysis and evaluation are based on results from the out-of-sample period.

6. EXPERIMENTAL SETUP

The control parameters used to run GP experiments are given in Table 3. We
experimented with different population size (200, 500 and 1000) to run for different
number of generations (100 and 200). This setup is motivated by an observation
reported by Chen and Kuo (2002, 2003) that population size and the number of
generations have impact on GP search efficiency when modeling chaotic time
series. These results will be compared in Section 8.

The GP system is generation-based, i.e. parents do not compete with offspring
for selection and reproduction. This is a less aggressive search method compared
to the steady-state-based GP where the offspring are used to replace less fit
individuals in the population (Syswerda, 1991). Although steady-state-based GP
has the advantage that fit offspring become available for reproduction right away,
there are possibilities that the population becomes converged too fast hence leads
to sub-optimal solutions.

We used tournament of size 2 to select winners. This means that two individuals
are randomly selected and the one with a better fitness is the winner. For crossover
operation, two winners are selected. For mutation or copy operation, only one
winner is needed. The new population is generated with 70% of the individuals
from crossover, 10% from point mutation, 10% from tree mutation and 10% from
copy operation. The best individual in the current population is always copied over
to the new generation.

Table 3. Control Parameters for GP Experiments.

Parameter Value

Population size 200, 500, 1000
Maximum generation 100, 200
Crossover rate 70%
Point mutation rate 10%
Tree mutation rate 10%
Reproduction (copy) 10%
Elite 1
Maximum tree node 50
Maximum tree depth 17
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The maximum tree depth of 17 is a hard constraint that cannot be violated.
A GP strategy with tree depth larger than 17 is discarded. This is necessary to
accommodate the computer resources. In contrast, the maximum number of tree
node (50) is a soft constraint, which is handled using penalty explained in the
following section (see Yu & Bentley, 1998) for more constraint handling methods.

As mentioned in Section 5, the best rule for a training period in each generation
is evaluated against validation period. If the rule has a validation fitness that is
better than the previous best rule has, it is saved as the new best rule. A GP run
stops if no new best rule appears for 1/4 of the specified maximum number of
generations or when the maximum number of generations is reached.

The fitness of an evolved GP trading strategy is the gross return (R) of the
investment it generates. Initially, an investment of 1 unit is made in foreign
currency. At the end of the time period, its final value is the gross return.

To determine the fitness of a GP trading strategy, it is applied on the normalized
time series to produce a series of trading decisions for the three financial markets.
This decision series are executed 10 times in each time step until the end of the
time period. Every time a trading decision is executed, the amount of funds in each
of the four assets may change (see Table 1). Let the amount of fund transferred
from A to B be �A, from B to C be �B, from C to D be �C, from D to C be �D, from
C to B be �C, from B to A be �B. Also, the associated one-way transaction costs are
CostAB, CostBC, CostCD, CostDC, CostCB and CostBA. TWSI is the Taiwan stock
index and FCSI is the foreign stock index. TWIR is the Taiwan currency interest
rate and FCIR is the foreign currency interest rate. E is the exchange rate between
the two currencies. At time t + 1, the funds in each asset is given by:

At+1 = At − �A + �B

TWSI(t) × (1 + CostBA)

Bt+1 = (Bt − �B − �B) × (1 + TWIR(t)) + �A × TWSI(t)

× (1 − CostAB) + �C × Et × (1 − CostCB)

Ct+1 = (Ct − �C − �C) × (1 + FCIR(t)) + �B

Et × (1 + CostBC)
+ �D

× FCSI(t) × (1 − CostDC)

Dt+1 = Dt − �D + �C

FCSI(t) × (1 + CostCD)

Different financial markets have different transaction costs. Moreover, within the
same financial market, a transaction from asset A to asset B may have a different
cost from that of a transaction from asset B to asset A. Table 4 gives the transaction
cost implemented in this work. The costs associated with Taiwan stock market and
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Table 4. Transaction Cost.

Transaction Type Rate (%)

CostAB 0.4425
CostBC 0.2**

CostCD 0.1*

CostDC 0.43*

CostCB 0.2**

CostBA 0.1425

∗Allen et al. (1999) used 0.1, 0.25 and 0.5% as the one-way transaction cost for S&P500 index market,
while Wang (2000) used 0.12% for the same market.
∗∗Neely et al. (1997) used 0.05% as the one-way transaction cost for foreign exchange markets.

Taiwan foreign exchange market are actual values. The costs associated with for-
eign country stock markets are estimated based on the fixed transaction tax charged
to international investment and an estimated handling charge of 0.1%. Compared to
the transaction cost for S&P500 stock market used by Allen and Karjalainen (1999)
(0.1, 0.25 & 0.5%) and by Wang (2000) (0.12%), we have a higher transaction cost.
Also, we have a higher transaction cost for foreign exchange market than that used
by Neely et al. (1997) (0.05%). Normally, higher transaction costs discourage
trades and reduces the number of transactions. This work intents to reflect the
actual market operations, hence adapts the actual financial costs in the markets
for modeling, in spite of the fact that they are higher than those used in other
studies.

At the end of the time period (T), all assets are converted into the foreign
currency:

BT+1 = BT + AT × TWSI(T) × (1 − CostAB)

CT+1 = CT + BT+1

ET × (1 + CostBC)
+ DT × FCSI(T) × (1 − CostDC)

The gross return is:

R = CT+1

There is a penalty toward GP strategies that exceed the maximum number of 50
nodes. This soft constraint approach allows fitter strategies with a larger number
of nodes to survive. Yet, it discourages tree size growth to avoid over-fitting, since
trees with a large number of nodes tend to fit the training data so well that they lose
their generality. The final fitness of a GP trading strategy is given in the following
equation (Seshadri, 2003):

F = R
50

max(tree size, 50)
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7. BENCHMARK

The buy-and-hold (B&H) strategy is the most commonly used benchmark to
evaluate financial trading strategies. With B&H, an investment made on one asset

Table 5. Return for the Buy-and-Hold Strategy.

Year TW-U.S. Model TW-HK Model TW-JP Model TW-UK Model

1997
B&H(A) 1.2618 1.2627 1.3645 1.2431
B&H(B) 1.0187 1.0194 1.1016 1.0035
B&H(C) 1.0492 1.0536 1.0047 1.0594
B&H(D) 1.3523 1.2029 0.8240 1.3019
RB& H 1.1705 1.1346 1.0737 1.1520

1998
B&H(A) 0.6792 0.6805 0.7364 0.6513
B&H(B) 0.8805 0.8822 0.9546 0.8444
B&H(C) 1.0492 1.0626 1.0042 1.0688
B&H(D) 1.0432 0.5012 0.7803 0.9488
RB& H 0.9130 0.7816 0.8689 0.8783

1999
B&H(A) 1.2342 1.2362 1.0198 1.2862
B&H(B) 1.1340 1.1358 0.9370 1.1818
B&H(C) 1.0449 1.0492 1.0012 1.0558
B&H(D) 1.3186 1.8282 1.2897 1.2622
RB& H 1.1829 1.3124 1.0619 1.1965

2000
B&H(A) 1.0192 1.0249 1.0139 1.0948
B&H(B) 1.0669 1.0728 1.0612 1.1460
B&H(C) 1.0527 1.0514 1.0003 1.0541
B&H(D) 1.0933 1.2960 0.9120 1.0209
RB& H 1.0580 1.1113 0.9968 1.0790

2001
B&H(A) 0.4889 0.4893 0.5593 0.5101
B&H(B) 0.9351 0.9358 1.0698 0.9757
B&H(C) 1.0485 1.0494 1.0015 1.0555
B&H(D) 0.8056 0.6973 0.7592 0.8435
RB& H 0.8195 0.7930 0.8474 0.8462

2002
B&H(A) 1.1983 1.1991 1.1205 1.0807
B&H(B) 1.0691 1.0698 0.9997 0.9642
B&H(C) 1.0158 1.0200 1.0000 1.0406
B&H(D) 0.7024 0.8454 0.8288 0.7377
RB& H 0.9964 1.0336 0.9873 0.9558
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stays there until the end of time period. Since there are four assets in a model, the
B&H strategy can be applied in four different ways: buy TAIEX and hold, buy
NT$ and hold, . . ., etc. We therefore apply B&H over these four different assets.
The average of their returns is used as the benchmark. Table 5 gives the B&H
returns for the four different models.

8. RESULTS

For each of the four foreign countries modeled, we obtain 36 GP trading returns.
These GP strategies are evolved based on 6 different data sequences using 3
different population sizes to run for 2 different numbers of generations. Each
of the 36 results is the average of 20 trials. Table 6 gives the percentage of the GP
trading strategies that out-performs the B&H strategy.

In TW-US, TW-JP and TW-UK models, most GP trading strategies out-perform
B&H. In contrast, TW-HK model has a less number of GP trading strategies that
give better returns than B&H. The number of statistically significant GP returns is
given inside the parenthesis.

Different population sizes and number of generations make little difference on
the GP results. For the small number of cases where they produce different results,
there is not a consistent pattern showing larger (smaller) population size and/or
longer (shorter) runs give better results. We checked the log files and found that
most of the runs stop before generation 50 when no improved strategy on validation
period was found.

Moreover, ADFs, in various form, provide no improvement in performance
than the standard or “vanilla” GP model we used. For those runs where vanilla GP
produces better returns than B&H, ADF-GP also gives better returns. Similarly,
those runs where vanilla GP produces worse returns than the B&H method, the
ADF-GP performs even worse. We will analyze the ADF-GP trading strategies
and give explanation of this outcome in Section 9.1.

In this section, we analyze GP trading strategies based on the vanilla GP out-of-
sample results, which are summarized in Table 7. In the table, six sets of data are

Table 6. Percentage of GP Trading Strategies Results that Out-performs B&H.

GP Implementation TW-U.S. Model TW-HK Model TW-JP Model TW-UK Model

Vanilla GP 29(19)/36 8(5)/36 19(11)/36 28(21)/36
GP with 1 ADF 27(20)/36 9(3)/36 22(9)/36 26(22)/36
GP with 1 partially defined ADF 30(21)/36 13(4)/36 23(11)/36 26(20)/36
GP with 3 partially defined ADFs 29(15)/36 11(7)/36 25(8)/36 26(12)/36
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Table 7. Summary of Vanilla GP Trading Strategies Results.

Year TW-U.S. Model TW-HK Model

� � t � � t

1997 1.2295 0.1292 2.0409 1.0815 0.0753 −3.1553
1.1764 0.0998 0.2638 1.0865 0.1015 −2.1181
1.1397 0.1171 −1.1759 1.0784 0.0652 −3.8543
1.1680 0.1305 −0.0846 1.1228 0.1136 −0.4636
1.2070 0.1086 1.5040 1.1077 0.1016 −1.1834
1.2001 0.0907 1.4604 1.0784 0.0754 −3.3333

1998 1.0489 0.0190 32.0570 0.5356 0.0755 −14.5672
1.0287 0.0355 14.5564 0.5102 0.0401 −30.2427
1.0293 0.0488 10.6501 0.5058 0.0200 −61.5146
1.0437 0.0014 428.904 0.5035 0.0102 −121.807
1.0243 0.0553 9.0039 0.5927 0.1645 −5.1336
1.0457 0.0328 18.0693 0.5429 0.1481 −7.2061

1999 1.2033 0.0708 1.2920 1.1947 0.0765 −6.8797
1.2344 0.0877 2.6265 1.2110 0.1184 −3.8310
1.2183 0.0875 1.8076 1.2720 0.1424 −1.2689
1.2146 0.0936 1.5137 1.2728 0.1225 −1.4475
1.1845 0.1195 0.0600 1.2494 0.1283 −2.1974
1.2585 0.1160 2.9160 1.2419 0.1315 −2.3980

2000 1.0980 0.0178 10.0229 1.0739 0.0688 −2.4330
1.0915 0.0162 9.2525 1.0808 0.0806 −1.6928
1.0914 0.0132 11.3239 1.0967 0.0842 −0.7770
1.0779 0.0660 1.3476 1.0540 0.0508 −5.0403
1.0821 0.0475 2.2684 1.1580 0.1255 1.6630
1.0974 0.0336 5.2471 1.1167 0.1222 0.1965

2001 0.8227 0.0313 0.4588 0.9045 0.1477 3.3785
0.8538 0.0622 2.4679 0.9207 0.1558 3.6642
0.8374 0.0284 2.8263 0.8779 0.1472 2.5781
0.8430 0.0655 1.6014 0.8370 0.1385 1.4203
0.8425 0.0267 3.8532 0.8774 0.1741 2.1677
0.8509 0.0350 4.0088 0.8755 0.1569 2.3513

2002 0.9516 0.1376 −1.4553 0.8649 0.0440 −17.1482
0.9677 0.1412 −0.9081 0.8639 0.0326 −23.2644
0.9008 0.1383 −3.0940 0.8688 0.0441 −16.7151
0.9416 0.1589 −1.5428 0.9015 0.1078 −5.4767
0.9203 0.1665 −2.0433 0.8860 0.0662 −9.9759
1.0118 0.1295 0.5315 0.9195 0.0908 −5.6226
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given for each of the 6 out-of-sample periods (1997–2002). Each set contains data
obtained from vanilla GP runs using different combinations of population size and
number of generations. The average return of 20 trials is �; the standard deviation
is �; the t-statistics is t. Those � values in bold are average returns which are better
than the returns of B&H (see Table 5 for B&H returns). Those t values in bold
indicate the difference between � and the B&H return is significant at the 5% level.

As shown, the performance of GP strategies varies in different out-of-sample
periods. For example, in sequence 5 period, all GP strategies out-perform B&H
while in sequence 6 period, B&H gives higher returns in most of the cases. We
examined time series in sequence 6 and found that both Taiwan stock and the
foreign stock indices (the two most influential trading decision factors) fluctuate
widely. For example, during the training period (1999 and 2000), both Taiwan stock
and Hang Seng indices declined. During the validation period (2001), the markets
gradually improved. However, the markets rallied during the out-of-sample testing
period (2002) (see Fig. 7). As a result, the strategies trained using 1999 and 2000
periods and selected based on 2001 period are not able to perform well on 2002
period. This is a shortcoming of all machine learning techniques, including GP.

In contrast, the stock indices for training, validation and out-of-sample periods
in sequence 5 have a similar pattern: the stock markets generally went down.
Consequently, the strategies evolved on training period were able to perform well
on the out-of-sample period. Another interesting observation is that although all
markets decline in this period (with Taiwan stock market having the worst decline
of 50%) and cause B&H to have low returns (see Table 5), GP strategies were
able to make profitable trading decisions. Figure 9 gives two such examples. In
Fig. 9(a), the 1 US$ was kept until day 151 and then invested in S&P500 when
the index started rising. As a result, it has a return of 1.1131, which is better than
holding it until the end of the time period (1.0485). Figure 9(b) gives a different GP
strategy, which invested in S&P index stock too early and cause a negative return
at the beginning. However, as the index started improving on day 151, the return

Fig. 9. Capital Flows of Two GP Trading Strategies Applied on Out-of-sample Period
of 2001.
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became positive. At the end of the period, the return is 0.9036, which is better
than the B&H return. One important observation is that none of the GP trading
strategies trained in this time sequence entered into Taiwan stock market, the worst
asset to invest. This suggests GP strategies have some forecasting abilities in the
sense of avoiding money-losing assets all the way to the end of the period.

The transaction frequencies in out-of-sample testing periods are mostly low: no
more than 3 times in the whole year. The majority of GP strategies recommend to
buy-and-hold on one or two assets. For example, for out-of-sample period 1999, GP
trading strategies in TW-JP model either invest in Taiwan stock market or in Japan
stock market. The first decision gives a higher return than the second decision does.
There are also many strategies give zero transaction: hold the foreign currency all
the way to the end of the period. Consequently, most of the GP trading strategies
give returns that are close to the returns of B&H (see Tables 7 and 5). This indicates
that international short-term financial markets are reasonably efficient during the
years between 1997 and 2002.

Overall, the out-of-sample performance of GP trading strategies are not
consistently better than that of B&H, an outcome that is consistent with the finding
of Allen and Karjalainen (1999) and Wang (2000).

9. ANALYSIS OF GP TRADING STRATEGIES

9.1. Vanilla-GP Trading Strategies

Using both hard and soft constraints to enforce parsimony, the evolved GP trading
strategies are not as complex as what we have expected. As mentioned in the
previous section, many of them are evaluated into a simple B&H on one or two
assets. These strategies either have other options blocked by constant “do nothing”
decisions or recommending trading using assets which have no available fund.
Overall, the decisions of GP strategies are not difficult to derive, although their
financial meaning is challenging to interpret.

We have found one particular GP strategy derived from TW-UK model that
provides financially meaningful recommendations. Figure 10 gives the GP tree.
Without being very rigorous, the left tree can be interpreted as:

When UK stock market bulls (suggested by a higher FTSE100 index 250-moving average than
US/GBP 250-moving average exchange rate), sell Taiwan stocks to obtain Taiwan currency.

The middle tree can be interpreted as:

Trade British Ponds with Taiwan Dollars when the exchange rate is less than the 250-day
moving average.
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Fig. 10. An Evolved GP Trading Strategy.

The right tree can be interpreted as:

When Taiwan stock market bulls (suggested by the high Taiwan Stock index), move the funds
from UK stock market to UK currency.

The two stock market trading rules recommend allocating funds toward that with
indication of higher returns. It advises cashing stocks as a preparation of purchasing
foreign stocks, when the foreign stock index looks promising.

9.2. ADF-GP Trading Strategies

ADFs were incorporated for GP to identify possible regularity in profitable trading
strategies. However, ADF-GP results are not better than vanilla GP results. We
examined those strategies where ADFs were created and evolved by GP and found
that most of the ADFs have a constant value of either “True” or “False.” In other
words, they are not functions but serve as constants in the trading rules. It is not
surprising that this implementation of ADFs give similar returns as the vanilla
GP does. As mentioned in Section 5, the time series have been transformed by
dividing the daily data with a 250-day moving average. This result indicates that
either there is no regularity in the change of trend that provides profitable trading
or GP is not able to identify such regularity.

Provided with ADFs that are initiated with commonly used technical trading
rules, GP still cannot find strategies that give better returns. This indicates that those
technical trading rules (and their variations) are not effective on the transformed
time series data.
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This raises a question about whether the data transformation method used is
appropriate for this modeling task or not. In Nikolaev and Iba (2002), they have
reported that GP gives different results when the time series are normalized using
different data transformation methods. Kassicieh et al. (1998) also reported a
similar result when using a GA to make investment decisions. We have normalized
the time series by dividing the daily data with 250-day moving average. With
such data, GP is searching for patterns in the change of trend that give profitable
trading. In other words, GP rules can exploit patterns in financial market indices,
just like commonly used moving average and filter rules do. When ADFs are
incorporated, GP becomes capable of exploiting higher-order complexity, i.e. an
ADF gives the first-order pattern while the GP main program calling such ADF
defines higher-order complexity (Li & Vitanyi, 1997). We are not certain if higher-
order complexity exists in the change of trend financial time series. The ADF-
GP results do not support this proposition. However, this does not preclude the
possibility that such complexity can exist in time series that are normalized using
different methods.

We have compared our approach with another work using ADF to find trading
strategies in S&P stock index markets and found the author used a different data
transformation method in his work: stock indices are divided by 100 while interest
rates are divided by 10,000 (Wang, 2000). Similar to our ADF-GP results, Wang’s
ADF-GP did not discover trading strategies that out-perform B&H in S&P500 spot
and future markets. However, his work did not acknowledge ADF-GP is capable of
identifying higher-order complexity in the time series. Nor did it mention about the
evolved ADF-GP strategies exhibit such complexity. We are inclined to believe that
there exist patterns in profitable trading strategies when the time series are applied
with appropriate data transformation method. We are currently investigating this
hypothesis.

10. CONCLUDING REMARKS

The hot money issue occurred in China has triggered our interest in modeling
short-term capital flow in international financial markets. If it is possible to
predict such capital inflow and outflow, appropriate measures can be imposed
before hand to stabilize global economy. Unfortunately, our finding using GP to
simulate a simplified international markets model indicates that such task cannot
be accomplished. The devised GP trading strategies do not consistently generate
better returns than the buy-and-hold strategy, suggesting that they do not have the
ability to predict capital inflow and outflow. Many of the GP strategies recommend
the buy-and-hold approach on one or two assets. This indicates that the international
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short-term capital markets are reasonably efficient, a finding which is similar to
that reported by Allen and Karjalainen (1999) and Wang (2000).

However, many GP strategies are able to forecast Taiwan stock market down
time and avoid making futile investments. This indicates that GP has the ability to
learn from historical data to make profitable trading decisions. Moreover, during
market down time when buy-and-hold gives poor returns, many GP strategies are
able to identify opportunities and produce better returns than buy-and-hold.

Our investigation of ADF-GP trading strategies does not support the proposition
that profitable strategies contain regularity. Nor does it endorse the idea that
commonly used technical trading rules are effective on the change of trend time
series. This seems to counter our intuitions since it is not uncommon for the
real-world technical traders apply a combination of technical trading rules to
make trading decisions. We are puzzled by this result and have started looking
into reasons that have led to such a conclusion. One issue we have identified
is the transformation of time series which might have changed the modeling
space and time series correlation. Another aspect is the existence of higher-
order complexity in financial time series that can be captured by ADF-GP. We
are currently investigating different modular GP techniques (Yu et al., 2004), in
addition to ADFs, and different data normalization methods in order to improve
our understanding of regularity in profitable trading strategies.

NOTES

1. Of course, as long as the central government doesn’t intervene in the foreign exchange
market correspondingly, there are always the direct balance of payments effects, be the
foreign investment speculative or not.

2. We have also experimented with the setup where each transaction is executed once
in each time step. The preliminary results, however, show very little differences from that
of executing a transaction 10 times in a time step. This suggests that for these time series
data, trading strategies are not sensitive to the amount of capital flow. In other words, under
such time series, a trading strategy gives similar return regardless of the amount of fund
transferred in each time step.
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The purpose of this study is to contrast the forecasting performance of two
non-linear models, a regime-switching vector autoregressive model (RS-VAR)
and a recurrent neural network (RNN), to that of a linear benchmark
VAR model. Our specific forecasting experiment is U.K. inflation and we
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1. INTRODUCTION

Non-linear models for economics and time series modeling have gained in
popularity over recent years. The main reason for this is the failure of linear
models to capture non-linear dynamic relationships embedded in real-world data.
Econometric developments in combination with increases in computing power
have further spurred the use of non-linear models. The purpose of this study is to
contrast the forecasting performance of two non-linear models, a regime-switching
(RS) vector autoregressive model (VAR) and a recurrent neural network (RNN), to
that of a linear benchmark VAR model. These models belong to different classes of
non-linear models that are both econometrically challenging and therefore rarely
compared.

Our specific forecasting experiment is U.K. inflation over the period 1969–2003.
For this purpose, we obtain monthly observations of the retail price index, M0
and industrial production. The first part of the data set is used for estimation
(training). The last five years of the data is used for out-of-sample forecasting and
evaluation of the different models. There are three main motives for choosing to
study U.K. inflation using this set of variables. Firstly, the amount of available
data must be considered large. Our full sample contains over 400 observations.
Macroeconomists are fortunate if quarterly data for, say, 20–30 years is available.
Secondly, visual inspection of the data indicates that the use of a linear model
may be inappropriate. Over the full sample, we can identify long periods with
high inflation and long periods with low inflation. The latter is particularly evident
for the 1990s, or, more specifically, the “post-ERM” period. Finally, as evident
in numerous papers and central bank reports, many people are interested in
inflation forecasts. For them, this forecasting experiment may be interesting in its
own right.

In the regime switching framework, the underlying idea is to allow for
endogenous switches between different data generating processes at different
points in time, where the switches are governed by an underlying discrete
state Markov process. Markov-switching regression models were introduced in
economics by Goldfeld and Quandt (1973), but time-series applications were not
considered until the seminal papers by Hamilton (1988, 1989). Regime-switching
models are inherently non-linear because the mean, as well as higher moments, are
non-linear functions of the current state of the Markov process. The different states
of the underlying Markov process have in economic applications, for example,
represented periods of low and high exchange rate volatility (Klaassen, 2002),
different level and volatility of real interest rates (Garcia & Perron, 1996), booms
and slumps (Hamilton, 1989), and low and high volatility and correlation in
stock markets (Ang & Bekaert, 2002). Particular applications to forecasting in the
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RS-VAR framework include Krolzig (2004), who models output and employment
growth and Blix (1999), who studies inflation in a trivariate RS-VAR system.

Artificial neural networks (ANNs) (Cheng & Titterington, 1994; Haykin,
1999; Rumelhart et al., 1986), on the other hand, consist of simple interacting
processing units that are arranged in arbitrary layers with variable patterns of
interconnectedness. Knowledge is represented as connection strengths (or weights)
between connected units. Each processing unit spreads its activation to connected
units after combining and processing its input using some linear or non-linear
activation function. Learning occurs when general recursive rules are applied to
adapt these weights in order to produce desired output responses.

ANNs are becoming increasingly popular in economics and are used in a
large variety of modeling and forecasting problems. The main reason for this
increased popularity is that these models have been shown to be able to approximate
any non-linear function arbitrarily close (Cybenko, 1989; Hornik, 1991). Hence
when applied to a time series which is characterized by truly non-linear dynamic
relationships, the ANN will provide a global approximation to this unknown non-
linear relationship. Previous studies unveil the applicability of ANNs to modeling
and forecasting in economics. Applications include returns forecasting (Gençay,
1996; Gençay & Stengos, 1998; Haefke & Helmenstein, 1996a, b), option pricing
(Qi & Maddala, 1995), exchange rates (Franses & van Griensven, 1998; Franses
& van Homelen, 1998; Gençay, 1999; Giles et al., 2001; Kuan & Liu, 1995;
Tenti, 1996), interest rates (Swanson & White, 1995) and inflation (Binner et al.,
2002; Moshiri et al., 1999; Stock & Watson, 1999).1 Due to the inherent ability
of ANNs with recurrent connections (i.e. RNNs) to implicitly learn the non-linear
temporal dynamics of sequential time series data without recourse to additional
temporally-dependent external memory mechanisms, this work uses and evaluates
RNN models.

The paper is organized as follows. Section two introduces the VAR model, the
RS-VAR model and the RNN. Section three contains a brief description of the data
together with a discussion of estimation (training) results. Section four presents
the inflation forecast evaluation results. Section 5 concludes the paper.

2. NON-LINEAR MODELS

This section introduces the VAR model, the RS-VAR model and the RNN. The
raison d’être for considering the latter models is an a priori belief that linear models
will fair badly in our forecasting experiment. It is therefore logical to include a
linear model as a benchmark model in our analysis. A natural choice is the VAR
model, which is commonly used in macroeconomic forecasting experiments.
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In the VAR model, the dynamics of xt , a k-dimensional vector of dependent
variables at time t, is governed by the following pth order autoregressive process:2

xt = �0 + A1xt−1 + · · · + Apxt−p + �t , (1)

where �0 is a vector of intercepts, A�, � = 1, . . . , p are k × k coefficient matrices
and �t is a white-noise distributed disturbance vector. Estimates of the coefficient
matrices are obtained using ordinary least squares. The model is said to be stable
if its reverse characteristic polynomial has no roots in and on the complex unit
circle.

For the VAR model, a conditional t + 1 forecast of x is obtained from:

Et (xt+1) = �0 + A1xt + · · · + Apxt−p+1, (2)

for each t using the information set Xt = {xt , xt − 1, . . .}. The conditional t + 1
forecast in (2) is a special case of the conditional dynamic t + � forecast where
forecasted values of x should be used for certain lags (depending on the forecast
horizon and the number of included lags).

2.1. The Regime Switching VAR Model

We follow the common practice in the economic regime switching literature
and assume that a discrete time-homogenous s-state first order Markov process
governs the endogenous switches between the regimes. This assumption implies
that the probability of a switch between different regimes is described by a constant
transition matrix, that there is a different VAR model in each regime and that only
the most recent state of the Markov-process influences the transition probabilities.
We also assume that xt can be modeled as a discrete mixture of k-variate Gaussian
distributions. This assumption implies that xt is Normal distributed conditional
on the prevailing regime and the information set Xt − 1 Finally, we restrict the
variance-covariance matrix in each regime to be constant.

Taken together, if the prevailing regime at time t is j ∈ {1, . . . , s}, then the VAR
process is:

xt = �
(j)
0 + A(j)

1 xt−1 + · · · + A(j)
p(j)xt−p(j) + �

(j)
t , (3)

where p(j) is the order of the VAR model, i.e. the number of included lags in
regime j. Further, the matrix of transition probabilities, P = {pij}, where i,
j = 1,. . ., s is determined by the equations:

pij = Pr[St = j|St−1 = i], (4)

where the state variable St denotes the regime prevailing at time t.
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This Markov switching model can be estimated via maximum likelihood as
described in Hamilton (1994). A well-known problem of regime switching models
is that the likelihood surface is multimodal. For this reason, a strategy of how
to be able to report the global maximum should be advised. Our solution to
this problem is to use simulated annealing to maximize the likelihood function.
Simulated annealing is a derivative-free stochastic search algorithm that, in contrast
to conventional gradient based algorithms, is able to escape from local maxima
and hence is very well suited for estimation of regime switching models.3

As the regimes are unobservable, St can be regarded as missing data. However,
the probability that a given observation belongs to a particular regime can be
computed. From this information, we can construct an optimal forecast probability
that the next observation belongs to a particular regime.

Let Prt (St = j) denote the updated (filtered) probability that St = j, given the
information set Xt . The forecast probabilities for time t + 1, given the information
available at time t, are denoted Prt (St+1 = j) Following Hamilton (1994), let
�t |t denote the vector of updated probabilities and �t+1|t the vector of forecast
probabilities. The time t likelihood function value is obtained as a by-product
from the following iterations to calculate the optimal forecast probabilities:

�t|t = �t|t−1 ◦ �t

1′(�t|t−1 ◦ �t )
, (5a)

�t+1|t = P′�t|t , (5b)

where �t is the vector of conditional densities, 1 is a unit column vector and
◦ denotes (vector) element-by-element multiplication. This filter is proposed in
Hamilton (1989) and can be thought of as a non-linear Kalman filter, where the
probabilities are the state variables. The filter outputs an optimal inference about
the predicted and updated probabilities through one set of prediction equations
and another set of updating equations. The time t likelihood function is given by
the denominator in (5a). In words, the likelihood function is the weighted sum of
the conditional densities, with weights given by the forecast probabilities.

2.1.1. Forecasting Method
For the RS-VAR model, the conditional t + 1 forecast of x is the weighted average
of the s different forecasted within regime means, with weights given by the
probability of each regime to prevail in the next period, i.e.:

Et (xt+1) =
s∑

j=1

s∑
i=1

Prt (St = j)pij

⎛
⎝α

(j)
0 +

p(j)∑
�=1

A(j)
� xt−�+1

⎞
⎠ , (6)
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for each t using the information set Xt = {xt , xt−1, . . .}. In an s-regime model
there are S� possible outcomes for each dependent variable � periods ahead and
S� associated probabilities. Hence, the t + � forecast of x is calculated as the
probability weighted average by traversing the non-recombining tree generated by
the underlying Markov-chain along all possible paths. Note that the probability
trees should be multiplied by the s updated probabilities according to (6). This
reflects the uncertainty of the prevailing regime today, or, econometrically, the fact
that the Markov chain is unobserved even ex post.4

2.2. Recurrent Neural Networks

Recurrent neural networks based on gradient descent learning5 are typically
adaptations of the traditional feed-forward multi-layered perceptron (FF-MLP)
trained with the back-propagation algorithm6 (Rumelhart et al., 1986). This
particular class of RNN extends the FF-MLP architecture to include recurrent
connections that allow network activations to feedback (as internal input at
subsequent time steps) to units within the same or preceding layer(s). Units that
receive such feedback values are referred to as context or state units.

This internal memory enables the RNN to construct internal representations of
temporal order and dependencies since the temporal structure embedded within
the data will be encoded within the spatial structure of the RNN. This is due to
the sequence of weights to each unit connected to the input layer being convolved
with different sequences of input examples (Haykin, 1999). Assuming non-linear
activation functions are used, the universal function approximation properties of
FF-MLPs naturally extends to RNNs.

The pattern of recurrent connectivity strongly influences the computational
power of RNNs where certain classes of RNNs have been shown to theoretically
simulate Turing machines (Siegelmann & Sontag, 1991). More specifically, it
has been shown that RNNs employing recurrent connections from the output
layer back to the input layer (see Jordan, 1986) are analogous to infinite impulse
response filters (IIRs) (Khan & Unal, 1995). Likewise, those RNNs that contain
recurrent connections from the hidden layer back to the input layer, such as Elman’s
Simple Recurrent Networks (SRNs) (Elman, 1990) are similar in computational
power to Hidden Markov Models (HMMs) (Lee, 1989). More generally, RNNs
are considered dynamical systems that can represent at least auto-regressive with
moving average (ARMA) estimators (Connor et al., 1994).

RNNs can be expressed generally as (modified from Chappelier et al., 2000):

rt = f(rt−1, xt , t, �f
t ), (7a)
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Fig. 1. The Jordan-Elman Hybrid Network Architecture.

yt = g(rt , t, �g
t ), (7b)

where r represents the context vector (recurrent variables); y refers to the activation
vector on the output layer (regressands); x is the input vector (input variables or
regressors); t refers to the current time step; �f

t refers to the set of weights connect-
ing the input layer to the hidden layer at time t; and �

g
t refers to the set of weights

connecting the hidden layer to the output layer at time t; finally, functions f and g
represent the activation vectors from the hidden and output layers respectively.

For the purposes of this paper, we use an RNN architecture that combines the
relative strengths of the Jordan network (Jordan, 1986) with Elman’s SRN (Elman,
1990) to form a hybrid RNN that feeds both the hidden unit activations and output
unit activations back to the context units of the input layer. This is shown in Fig. 1.
To reduce complexity and the number of parameters, our model does not utilize a
recurrent input layer or self-loops.

We also use a common extension of the backpropagation algorithm for training
RNNs called backpropagation-through-time (BPTT) (Rumelhart et al., 1986;
Werbos, 1990; Williams & Peng, 1990), which has proven more powerful than
standard backpropagation for training RNNs such as Jordan and Elman networks.
BPTT works under the assumption that for every recurrent MLP network, a
feedforward MLP with identical behavior can be obtained by “unfolding the
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network over time,” i.e. a recurrent network state at time t can be viewed as though
it was obtained from the tth layer output of a corresponding FF-MLP network with
T layers (Rumelhart et al., 1986), where T is the length of the sequence. When at
the end of a sequence or h patterns have been propagated through the network, the
external error is calculated and the errors and local gradients are backpropagated
through the network from t until the initial time step. During this back-error
propagation phase, an additional error term for recurrent connections can be
introduced to emphasize unit-error contributions from subsequent time steps. Each
individual weight change is then calculated as in standard backpropagation but
applied and summed across all time steps resulting in one large weight change
calculation for each weight. The weights are then adjusted as normal. In the case of
epoch-wise BPTT (Williams & Peng, 1990) the context units are reset to some
initial value at the beginning of each sequence. Due to these reset operations, we
implement a discrete-time RNN as opposed to a continually running RNN.

The equation for the hybrid Jordan-Elman RNN used in this work can be
expressed generally as (modified from Eqs (7a) and (7b) above):

rt = f(ct , xt , �
f
t ), (8a)

yt = g(rt , �
g
t ), (8b)

where rt now represents the hidden unit activation vector at time t; ct refers to the
concatenation of the previous hidden state vector, rt−1, and the previous external
output response vector, yt−1; yt refers to the external output activation vector at
time t; as illustrated in Fig. 1, xt refers to the external vector of input variables
at time t; �

f
t refers to the set of weights connecting the input layer to the hidden

layer; and �
g
t refers to the set of weights connecting the hidden layer to the output

layer; finally, functions, as before, f and g represent the activation vectors from
the hidden and output layers, respectively.

2.2.1. Forecasting Method
When applying the selected RNN method to our forecasting task we follow the
common practice of: (i) normalizing the input variables to accelerate the learning
process by avoiding time consuming trajectories across the error surface caused
by groups of successive observations sharing the same sign and thus direction;
(ii) generating the training (or estimation) data from some in-sample using a sliding
window of a pre-determined time-lag; (iii) using the volume of training data to
set an upper-limit on the number of allowable free parameters (weights) and thus
to constrain network size in a way that will reduce over-fitting and subsequently
increase generalization ability; (iv) implementing an appropriate training regime
with a learning rate schedule that encourages fast, stable and convergent learning;
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(v) defining a suitable stopping criteria; and (vi) using the sliding window technique
to generate forecasts of the required forecast horizon.

The fundamental purpose of the training phase is for the RNN to learn to forecast
(on its output vector y) each value of the dependent variables in x at time t + 1
given a sequence of input vectors Xt = {xt , xt−1, . . .}.

We use the hyperbolic tangent function for calculating the activation level for
all processing units (hidden and output units) of the network. The hyperbolic
tangent function is simply the logistic function rescaled and biased with user
defined constants. For training the RNNs, we employ a “search and converge”
learning rate regime as defined by Darken and Moody (1991):

� = �0

n/(N/2) + c1/max(1, (c1 − (max(0, c1(n − c2N))/(1 − c2)N)))
(9)

where � is the learning rate, �0 is the initial learning rate which we set to 0.01,
N is the total number of training epochs, n refers to the current training epoch, c1 and
c2 are user defined constants. This provides an effective time varying learning rate
constant that guarantees convergence of stochastic approximation algorithms and
has proven effective for training RNNs to learn temporal problems (see Giles et al.,
2001; Lawrence et al., 2000). Motivated by the impressive RNN results reported
by Lawrence et al. (2000), we use constant values of 50 and 0.65 for c1 and c2
respectively. The momentum term constant is fixed at 0.9 due to the low learning
rates. Note that since our model is a discrete-time RNN, the context units (ct ) must
be reset to some initial value after each xt+1 forecast during training (estimation)
and testing (forecast evaluation).

For generating dynamic forecasts of each dependent variable � periods ahead,
we maintain two input streams: stream A containing all real observations found
in the forecast evaluation (test) set and stream B consisting of the first t − � real
observations found in the training set, where t initially refers to the first observation
to be forecast in the evaluation (test) sample. Stream B will grow dynamically over
time as it accommodates the RNNs t + 1 forecasts. We first initialize the RNNs
context units and then using the standard sliding window technique we pass the first
� observations in stream B through the network, generating dynamic observations
at each step and appending them to stream B. Clearly, the first t + � dynamic
forecast cannot be generated until the last real observation in stream B is in the first
position of the sliding window (i.e. becomes xt ). From thereon both streams are
synchronously indexed. Dynamic t + � forecasts are generated when the window
of input observations becomes X̂t = {xt , xt+1 = yt , . . . , xt+�−1 = yt+�−2},
where xt is always a real observation extracted from stream A. Note that each
element of X̂t is presented sequentially to the RNN. We continue processing in
this way until all observations in stream A have been represented in xt .
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3. DATA AND ESTIMATION RESULTS

We obtain a monthly data set that covers June 1969–October 2003 from EcoWin,
yielding a total of 413 observations. The three time-series we obtain are: (i) the
Retail Price Index (P); (ii) M0 (M); and (iii) Industrial Production (Y).7 Each of
these series is logarithmically transformed and differenced, so that x′

t =(dPt , dMt ,
dYt). For the RNN, all observations for each of the dependent input variables are

Fig. 2. The Log-differenced Time Series.
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Fig. 3. Estimated Coefficients for Price Equation in VAR-Model with Two Standard Error
Bands.

independently normalized such that each variable in x has a zero mean and a unit
standard deviation. The data is shown in Fig. 2.

The data up to October 1998 is used for estimation (training). The last five years
of the data (November 1998–October 2003; 60 observations) is used for forecast
evaluation. To limit the scope of our study somewhat and to facilitate comparison
of forecasts from the different models, we use a fixed lag-length of 12 for our two
vector autoregressive models and for the RNNs.

Before turning to a formal comparison of the forecasting performance, we briefly
present the estimation results for the different models. The estimated dynamic
structure of the price equation in the VAR(12) model is visualized in Fig. 3. The
parameters are depicted jointly with their two standard error bands.

As can be seen, the estimated coefficient for the constant term is insignificant.
The first lag of inflation is (relative to remaining coefficients) large and highly
significant. We also find various higher lags of inflation as well as changes in
M0 and industrial production to be significant. Finally, it can be verified that the
estimated model satisfies the theoretical stability restrictions.

3.1. RS-VAR

In the RS-VAR framework, we find that allowing for a different intercept in each
regime, while leaving the dynamic structure unchanged across regimes, provides
the best models for inflation forecasting purposes. When allowing for a different
dynamic structure in different regimes, the forecasting performance deteriorates
significantly, which may be interpreted as a classical case of in-sample over-fitting.
This result is in accordance with Krolzig (2004), who argues that forecast errors of
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Fig. 4. Estimated Coefficients for Price Equation in RS-VAR-Model with Two Standard
Error Bands.

economic time series from linear models are mainly due to shifts in the level or drift.
Hence, we only report estimation (and forecasting) results for a two-regime RS-
VAR(12), with a different intercept and the same dynamic structure in each regime.

The estimated dynamic structure of the price equation in the RS-VAR model
can be found in Fig. 4. The point estimate of the intercept in the second regime
is obviously much higher than in the first regime, although both are statistically
insignificant. Turning to the lag structure, we find that the first, sixth and twelfth
lag of inflation is significant as well as the fourth, fifth and ninth lag of changes
in M0 and the fifth lag of industrial production. This pattern is very similar to the
one found for the linear VAR model (Fig. 3).

The estimated probabilities for remaining in each regime are presented in
Table 1. The expected duration for each regime is determined by (1 − pjj )

−1 where
pjj is the probability of remaining in regime j once there. For the preferred two-
regime model, both regimes are relatively persistent, with expected durations of
about 47 and 23 months, for regime one and regime two, respectively.

Table 1. Estimates of Transition Probabilities and Volatilities.

Pjj �jdP �jdM �jdY

Regime 1 0.9787 (0.0130) 0.2295 (0.0138) 0.6614 (0.0457) 2.2302 (0.1551)

Regime 2 0.9567 (0.0296) 0.6680 (0.0443) 1.3194 (0.1114) 3.7160 (0.3669)

Note: Standard errors in parentheses.
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Fig. 5. Filtered Probabilities of Regimes in RS-VAR-Model.

Time-series plots of the updated probabilities can be found in Fig. 5. The
probabilities attached to regime one and two vary (in principle) between zero
and one. As is evident from Table 1, volatility is higher in the second regime
for both inflation, money growth and growth in industrial production. This is
consistent with the time-series plots of the updated probabilities, in which it can
be seen that the second regime is dominating up until the beginning of the 1980s,
while the first regime has dominated since then. In other words, the second regime
seems to capture the period of high inflation and high inflation volatility during
the first, say, 12 years of the sample, while the first regime captures the period of
lower inflation and lower inflation volatility during the next 20 years. However,
one must remember that we simultaneously model inflation, money growth and
growth in industrial production, which means that the regimes must be interpreted
as different regimes of the economy, rather than different regimes of inflation
(only).

3.2. RNN

All RNN models contain three input units (to present xt to the processing units)
and three output units (to forecast xt+1). The number of hidden units is empirically
established.
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Using the sliding window technique to generate training sequences from the
in-sample observations we obtain a training set consisting of the following total
number of patterns:

z = q − m

m
, (10)

where z refers to the total number of input pairs (a pair refers to an input vector
x and an output vector encoding the desired response, i.e. values of x at the next
time period), q is the total number of observations in the time series and m is the
window size. The resulting number of training sequences (collections of training
pairs) is simply:

v = z

m
. (11)

For our purposes, q = 352 and m = 12, thus z = 4080 and v = 340.
The number of patterns generated (z) form a basis for our upper limit constraint

on the number of allowable parameters (weights) and thus on the number of
hidden units allowed. The architecture is therefore fixed in accordance with the
data and with the complexity of the underlying problem. We expect over-fitting
to occur as the number of free parameters approaches z, i.e. 4080 (e.g. 60 hidden
units or above).

For all training (or estimation) experiments weight initializations were in the
range of [−0.1, 0.1]. Our stopping condition is a function of the root mean squared
error (RMSE) and number of training cycles performed. A training cycle is where
the network has processed all training patterns and sequences once (a single pass
of the whole data through the network) and is referred to as an epoch. An RNN
is stopped training when either the number of epochs reaches 2000 or the rate
of change of the RMSE is sufficiently small, whichever comes first. During each
epoch, successive sequences are randomly selected to encourage a wider search
of the weight space. The standard summed squared error (quadratic cost) function
was used for all error calculations.

After performing a number of training experiments with various hidden unit
configurations (below 60) we found that an RNN configuration with 50 hidden
units, RNN(50), and 3003 free parameters (26% fewer than available training
cases) provides an optimum fit for the in-sample data with respect to subsequent
dPt+1 performance on the evaluation forecast data (generalization). After 2000
epochs, the RNN(50) obtained an RMSE of 5.0093 for the whole in-sample data
set and an RMSE of 0.2826 for the dP observations.

We also assessed an RNN with more free parameters than there were training
cases to confirm our intuitions that classic over-fitting would naturally occur.
After 2000 epochs, an RNN with 100 hidden units, RNN(100), and 11,003 free
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parameters (170% more than available training cases) obtained a tighter fit of the
whole in-sample data set with an RMSE of 4.2246. As expected, it obtained a
tighter fit (approximately 26% closer) for the in-sample dP observations with an
RMSE of 0.2102 at the expense of yielding poorer generalization performance for
dPt+1 forecasts.

4. FORECAST EVALUATION

Turning to a formal comparison of the forecasts, we use three common forecast
evaluation criteria; mean errors (ME), root mean squared errors (RMSE), and
mean absolute errors (MAE). ME can give an indication as to whether the forecast
is biased. RMSE is the most frequently used measure, while MAE is known to be
less sensitive to outliers. Let:

ME = 1

K

2003:10∑
t=1998:10+�

(Et−�[dPt ] − dPt ), (12a)

MAE = 1

K

2003:10∑
t=1998:10+�

|Et−�[dPt ] − dPt |, (12b)

RMSE =
⎡
⎣ 1

K

2003:10∑
t=1998:10+�

(Et−�[dPt ] − dPt )
2

⎤
⎦

1/2

, (12c)

where K is the total number of out-of-sample forecasts and � is the forecast
horizon. In our specific study K = 60 or 49, depending on whether � equals
one or twelve. We complement the raw measures in (12b–c) by presenting
ratios of the MAE and RMSE for each model to that of the best performing
model.

4.1. One-Month Ahead Forecasts

We present the t + 1 forecasts as a 2 × 2-panel in Fig. 6. Forecasts (black line)
are compared to actual inflation (gray line) in each panel.

We immediately note that the VAR-model performs reasonably well in
comparison with the non-linear models. It tends, however to overshoot large
increases in monthly inflation on occasions. The forecasts from the RS-VAR model
are quite similar to those obtained from the VAR-model. We note, however, that
there are fewer tendencies to overshoot large changes in inflation compared to the
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Fig. 6. Forecasted (t + 1) and Actual Values of Inflation.

standard VAR. Although the pattern of the forecasts obtained from the RNN(50)
and RNN(100) models differs from the forecasts obtained by the two VAR-models,
these models appear to give good forecasts of inflation as well. An interesting
observation is that all models poorly capture the fall in the price level in January
and July up to 2001.

As is evident from the calculated ME in Table 2, all models but RNN(50) are
slightly biased upwards. For the two VAR-models and the RNN(100) model,
the bias is approximately 0.1%, but substantially lower for the RNN(50) model.
Turning next to RMSE and MAE, both criteria rank the different models under
evaluation similarly. The RNN(50) model and the RS-VAR model are the best
models. They perform approximately as well, with the RS-VAR model yielding
slightly lower values for both MAE as well as RMSE. The RNN(100) model is
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Table 2. Evaluation Criteria for t + 1 Forecasts.

VAR RS-VAR RNN(50) RNN (100)

ME 0.1285 0.1375 −0.0097 0.0616
MAE 0.2712 0.2245 0.2267 0.2987
RMSE 0.3186 0.2752 0.2889 0.3533
MAE-ratio 120.80% 100.00% 100.98% 133.03%
RMSE-ratio 115.77% 100.00% 104.97% 128.39%

the worst performing model, yielding higher values of both MAE and RMSE
than are obtained from the linear VAR model. In fact, looking at ratios of the
forecast-evaluation criterion, it performs up to 33% worse than the best performing
RS-VAR model.

Fig. 7. Forecasted (t + 12) and Actual Values of Inflation.
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Table 3. Evaluation Criteria for t + 12 Forecasts.

VAR RS-VAR RNN(50) RNN (100)

ME 0.1963 0.1739 −0.2160 0.0428
MAE 0.2984 0.2579 0.2771 0.2498
RMSE 0.3761 0.3177 0.3332 0.3018
MAE-ratio 119.44% 103.25% 110.91% 100.00%
RMSE-ratio 124.63% 105.28% 110.41% 100.00%

4.2. One-Year Ahead Forecasts

We present the t + 12 forecasts as a 2 × 2-panel in Fig. 7. As before, forecasts
(black line) are compared to actual inflation (gray line) in each panel.

A noticeable difference between the two VAR models and the two RNNs is that
forecasts from the VAR models appear to be biased upwards. This tendency seems
to be more pronounced compared with the one-month ahead forecasts.

The fact that the VAR-models overshoot actual inflation for the one-year ahead
forecasts is confirmed by the ME criterion presented in Table 3. The RNN(50)
undershoots actual inflation. The RNN(100) still overshoots inflation, although
slightly less than was the case on a one-month ahead basis. The RNN(100) model
is now, judging from MAE and RMSE the best forecaster. The second best is
the RS-VAR model followed by the RNN(50) model. The VAR model performs
significantly worse than the other models.

Finally, we observed an interesting behavior when comparing RNN(50) and
RNN(100) dPt+12 dynamic forecasts. Contrary to our intuitions, we found that
the RNN(100) yielded superior performance with an RMSE of 0.3018, 9% better
than that generated by the RNN(50) (i.e. an RMSE of 0.3332). This is a good
example of the unpredictable nature of RNNs and further research is required
to assess which factors within its complex internal dynamics is causing such
perturbations in expected behavior. We are particularly interested in the approach
taken by Lawrence et al. (2000) and Giles et al. (2001), for extracting discrete finite
state automata from RNNs to help understand its behavioral patterns and intend
to pursue this further.

5. CONCLUSIONS

In this study, we have compared the forecasting performance of two non-linear
models, a RS-VAR model and a RNN model, with that of a benchmark linear
VAR model. Our specific forecast experiment is U.K. inflation. We find that the
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RNN model and RS-VAR model outperform the VAR model for both monthly and
annual forecast horizons. The RS-VAR and the RNN perform approximately on
par over both forecast horizons. For the RS-VAR model, we find that imposing the
restriction that only the intercept is allowed to vary across regimes provides the best
forecasts. For the RNN-model, the forecasting performance depends on the number
of hidden units and thus free parameters included.

NOTES

1. For a detailed account of vector-based machine learning models applied to financial
prediction, see Shadbolt and Taylor (2002) and for hybrid models, see Kovalerchuk and
Vityaev (2000).

2. For thorough textbook treatments of VAR-models, see for example Enders (1995),
Hamilton (1994) and Lütkepohl (1991).

3. Relevant references to simulated annealing include Corona et al. (1987), Goffe et al.
(1994), Fishman (1996, pp. 384–406) and Robert and Casella (1999, pp. 194–202). The
program used in this paper is a C++ implementation of the algorithm in Goffe et al. (1994).

4. From a computational perspective, there are therefore s · 2� different probabilities �
periods ahead, each of which should be multiplied by the corresponding � periods ahead
forecast of x.

5. A detailed treatment of gradient descent learning for RNNs is provided in Pearlmutter
(1995) and for brevity is not repeated here.

6. From hereon simply referred to as FF-MLP.
7. Our sample is restricted backward in time by the availability of data on M0 in EcoWin.
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USING NON-PARAMETRIC SEARCH
ALGORITHMS TO FORECAST DAILY
EXCESS STOCK RETURNS
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ABSTRACT

Are the learning procedures of genetic algorithms (GAs) able to generate
optimal architectures for artificial neural networks (ANNs) in high frequency
data? In this experimental study, GAs are used to identify the best architecture
for ANNs. Additional learning is undertaken by the ANNs to forecast daily
excess stock returns. No ANN architectures were able to outperform a random
walk, despite the finding of non-linearity in the excess returns. This failure is
attributed to the absence of suitable ANN structures and further implies that
researchers need to be cautious when making inferences from ANN results
that use high frequency data.

1. INTRODUCTION

Over the years a large body of literature has developed on the ability of search
algorithms from artificial intelligence (AI) to generate parameters that facilitate
estimation, classification and prediction. Two such algorithms that have since
been applied (separately and sequentially) in empirical research in finance and
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economics are genetic algorithms (GAs), and artificial neural networks (ANNs).
For example, GAs and their extension in the form of genetic programming have
been used to: (i) identify optimal trading rules aimed at assessing the economic
benefit of trades based on financial asset price movements (see, e.g. Allen &
Karjalainen, 1999; Neely et al., 1997); and (ii) to solve bankruptcy classification
and prediction problems (see Varetto, 1998).1 ANNs have also been used in related
areas. For example, ANNs have been used to predict both exchange rates (see
Qi & Wu, 2003) and mutual fund performance (see Indro et al., 1999), as well
as to facilitate bankruptcy classification and prediction (see Altman et al., 1994).
Estimations using GAs and ANNs are very appealing since they are essentially non-
parametric econometric search techniques that do not require specific distributional
assumptions regarding the innovations in the data – a condition which plagues
traditional linear models in time series settings. Such non-parametric models are
therefore useful when the dataset to be estimated contains several local optima,
noise and non-linearities.

An ANN typically consists of nodes arranged in layers, with each node
communicating its output to other nodes. There is always an input layer of nodes,
into which the input data is stored, repeatedly, and an output layer of nodes, from
which the predicted output is read off. Each node takes a weighted sum of its
input, transforms the result with some function, which has one parameter, and
outputs the result. The ANNs are generally used in a feed forward manner, with
each node taking its inputs from the previous layer and sending its output to the
nodes in the next layer. The weights and the function parameter in any node are
estimated from the data, usually by comparing the output predicted by the model
with the actual data. Weight estimation, called training, is continued until further
refinement leads to over-fitting the training data, according to a separate validation
data set.

The straightforward use of ANNs pre-supposes that their learning algorithm is
able to find parameters that globally optimize the mapping from input to output
variables. Indeed, theoretical work shows that any non-linear mapping can be
well approximated by an ANN if it has a sufficient number of hidden nodes.
Admittedly, this presumption of perfect approximation suggests that the parameters
that need to be set by the modeler are known precisely, and that there is a sufficiently
good match between the decision rules undertaken in the experiments and the
learning undertaken by the algorithm. In practice, there is not much guidance on
how to choose the appropriate number of hidden nodes; consequently standard
applications of ANNs often suffer from over-fitting.

The most common application of ANN relies on a gradient search technique,
such as back propagation (BP), for estimating the weights (parameters) linking
the nodes, using a common weight adjustment factor. BP requires that the optimal
architecture is chosen before network training, preferably in a scientific way. Also
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the gradient decent method commonly used in BP is not a reliable way to train
networks (see also, Curry & Morgan, 1997) as the method may get caught in local
solutions that are not global. The solutions found depend on the initial weights
that are drawn at random.2 This method runs the risk that the ANNs may not
accurately learn the parameters of the data if procedures are not in place to ensure
global optimization. Thus, in practice, the output from a single ANN is not an
adequate test of the suitability of the ANN to model the data. The most suitable
ANN structure needs to be selected based on an assessment of its performance
relative to that of other structures. In order to ensure that performance measures
are reliably estimated it is desirable both to search for better estimation procedures
to specify the ANN structure and to repeat the learning procedure several times as
we have done in this experimental study or perhaps using a bootstrapping approach
(see, e.g. LeBaron & Weigend, 1994).

To deal with the problem of gradient search and local convergence in BP,
several alternative solutions have been proposed. Such techniques include: (i)
direct optimization procedures such as a polytope algorithm; (ii) evolutionary
programming approaches such as GAs; and (iii) global search procedures such
as simulated annealing. These approaches appear to generate solutions that are
superior to those of the straightforward use of the gradient technique in BP. GAs
have been shown to have very good global convergence properties. Indeed, Sexton
et al. (1999) report that the use of GAs achieves superior solutions compared
with those of simulated annealing and both techniques perform better than the gra-
dient technique of BP. As the GA seeks to provide a more parsimonious architecture
that will increase the chances of the ANN finding a global optimum, the scope for
the ANN to model complex problems is substantially reduced (see Sexton et al.,
1998). The use of GAs however, entails some form of reinforcement learning for
ANNs, which in turn reduces both the training and flexibility inherent in standard
ANNs and their ability to model complex problems.

Specifically, GAs are a broad robust class of adaptive algorithms particularly
adept to finding solutions to objective functions that exhibit many local optima,
high dimensionality, noise and discontinuities (see, e.g. Bethke, 1981). They
operate by testing a subset of solutions from a domain of possible solutions. In so
doing, GAs have the ability to combine useful elements of distant information with
new innovations in the data so as to generate the most representative elements of
the data in their outputs. A GA seeks to evolve a population of good decision rules
(or chromosomes) that represents different beliefs in response to past experiences.
Each decision rule is evaluated via a fitness function, which measures the outcome
or utility from the behavior dictated by the rule.

Arifovic and Gençay’s (2001) work is one of the few experimental studies in
financial research to employ a GA for generating the architecture for an ANN.3

Using the ANN architecture selected by a GA, they compared the forecasting
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performance of the ANN against that of two linear models for daily French franc
exchange rates. The ANN generated an out-of-sample mean square prediction error
(MSPE) which is 18% better than that of the linear models. This is a promising
result, but suffers from an important drawback: their results only allow them to
reject the linear models in favor of the ANN alternative since the forecasts were
not compared with those of a naı̈ve forecasting model, e.g. a random walk (RW).

To minimize the over-fitting problems of ANNs, researchers have also used
bootstrapping procedures (see Franke & Neumann, 2000; LeBaron, 1997; LeBaron
& Weigend, 1994). Bootstrapping is a method for estimating the generalization
error based on resampling, and is useful for model selection and confidence
interval estimation. These studies suggest that bootstrapping the network generates
more parsimonious network structures although LeBaron (1997, p. 12) notes
that “. . . no system trying to use training data for model selection can . . . be
completely free of overfitting problems.” Despite this view, it seems reasonable to
assess estimation techniques that are considered appropriate for minimizing the
architecture selection bias in ANNs. This is a main objective of our study which
we explore in much detail using a set of robust procedures.

This experimental study therefore investigates whether it is useful
econometrically to employ GAs to prespecify the architecture for ANNs when
seeking to forecast daily excess stock returns. Arifovic and Gençay’s (2001)
experimental work appears to lack much rigor both in the GA application and the
validation and testing procedures for the network. Like most of that literature, their
ANN forecast is not evaluated against a naı̈ve scheme of forecasting no change. We
seek to apply much more rigor to our experimental design by explicitly exploiting
the evolution of the forecasts and their standard errors across GA generations. Our
approach is in some respects similar in spirit to the use of bootstrapping to select
suitable ANN structures. The architectures of the ANNs are also evaluated, both in-
and out-of-sample, against a set of naı̈ve RW models and the mean absolute error
(MAE). The use of in-sample forecasts facilitates an assessment of the suitability
of the chosen ANN configuration prior to implementation, while the use of RW
models serves to evaluate the contribution of the ANNs to forecasting accuracy (see
Collopy et al., 1994). We apply much rigor to our validation and testing procedures
and seek to avoid some of the common weakness of existing ANN applications
(see, e.g. Adya & Collopy, 1998). For example, many empirical studies do not
appear to cross-validate their results so as to ensure that the chosen architecture
does not result in over-fitting.4

Since stock index returns often serve as benchmarks against which the
performance of both private clients and fund managers is judged (see Baker, 1998),
it is economically useful to assess whether it is possible to forecast the returns of
stock indices. However, a model that predicts stock index returns can appear to do
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well by simply predicting the average positive drift in the index returns. Instead,
we will see if the excess returns of two stock indices, i.e. the index returns over
and above the risk free interest rate, can be predicted.5 The empirical results will
have important implications for the investment strategies that an investor might
choose to follow. For example, a forecast at t − 1 that next period’s excess return
will be positive would suggest that a fund manager will want to switch his/her
investments from Treasury bills to the stock market to benefit from the stock price
rise. Similarly, a forecast at t − 1 that next period’s excess return will be negative
would imply that the fund manager will want to switch his/her investment to
Treasury bills.6 The use of daily excess returns imposes a very demanding task
on the algorithms we employ, as high frequency data are likely to contain much
more noise and local optima, and non-linearity, than (say) monthly data.7 Since
we do not account for transaction costs and risk aversion, we do not suggest that
our findings necessarily (in)validate the efficient market hypothesis. Any finding
relating to market (in)efficiency can only be interpreted in conjunction with an
intertemporal equilibrium model of the economy.

The next section describes the data sets that are used. Much effort is put into
identifying non-linearity in the series, as evidence of this strengthens the case for
the use of non-parametric search algorithms. Section 3 introduces our benchmarks
of forecasting performance. We describe the experimental design in Section 4. The
main results are presented in Section 5 and we provide our conclusions in the final
section.

2. THE DATA SETS AND DESCRIPTIVE STATISTICS

We seek to predict the realized excess return defined as

yt = ln

(
pt

pt−1

)
− ln

(
1 + ct−1

360

)
(1)

but unknown at t − 1 and each subsequent period. Here, pt−1 is the stock price at
time t − 1 and ct−1 is the risk-free annualized interest rate that will apply at the
end of the investment period.

To conduct the experiments, two daily excess return series were generated using
the: (i) Standard and Poor (S&P)–500 and the 13-week U.S. Treasury bill rates
and (ii) the Financial Times Stock Exchange (FTSE)–100 indices and the 1-month
U.K. Treasury bill rate. All the raw time series data were obtained from DataStream
International online database. The data sets span the period from 4 January 1988
to 12 December 2000. The start date of 1988 was taken because we wanted to avoid
the econometric problems associated with identifying the data points for structural
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Table 1. Descriptive Statistics for Excess Returns.

Panel A

N Mean S.D. Skewness Kurtosis ADF Statistics

�� m �� m

S&P excess
return

2976 0.00043b 0.0090 −0.636a 7.044a −16.373a 11 −16.407a 11

FTSE excess
return

2974 0.00013 0.0076 −0.076 2.587a −37.254a 1 −37.258a 1

Panel B: Autocorrelation Coefficients of Square of Excess Returns

Lags

1 2 3 4 5 10 15 20

S&P excess
return

0.184a 0.078a 0.040a 0.066a 0.135a 0.042a 0.040a 0.041a

FTSE excess
return

0.147a 0.142a 0.115a 0.100a 0.091a 0.101a 0.084a 0.041a

Note: m is the lag structure for the ADF statistics. S.D. denotes the standard deviation. The samples
span the period 4th January 1988 to 6th October 1999.

a Indicate statistical significance at less than the 1% level.
b Indicate statistical significance at less than the 5% level.

breaks around the period of the stock market crash of October 1987. The last 300
daily observations (10% of the data) were reserved for out-of-sample forecasting
(testing) leaving 2977 (approx.) for the GA search and ANN training. The size of
the test set was necessary to ensure that there were sufficient data points in the
training set for the number of parameters in the ANN models, which could have
been as high as 1590 but, in practice turned out to be around 100 or less.8

Before applying the learning algorithms, it is useful to understand the dynamics
of the excess returns and their data generating process (DGP) as this will enable
us to be confident regarding the outcome of our experiments. Panel A of Table 1
presents the descriptive statistics for the computed excess returns. Unless otherwise
stated, the results are based on the observations up to 6th October 1999; that is,
excluding the last 300 observations reserved for out-of-sample forecasting/testing.
The table shows that the means of the daily excess returns yt are positive, but only
the mean for the S&P is significantly different from zero. Skewness and kurtosis
are, however, significant and the DGP of the series appears to result in distributions
with fat-tails that are leptokurtic. This feature suggests that the observations cluster
during certain periods.
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Panel B of the table also shows that the square of the excess returns are positively
autocorrelated (p-value < 0.01). The standard errors of the autocorrelation
coefficients were not adjusted for heteroscedasticity, but Hsieh’s (1989) results
suggest that adjusting them would provide stronger evidence of autocorrelation.
To explore possible clustering of the data points, we performed the following
simple experiment on the raw excess return series, yt . Consider first the possibility
that each observation for a given series can be either below or above the median.
Attribute a “+” if an observation is above the median and a “−” otherwise. This
procedure results is a new series which we call S. If the initial sequence contained
an odd number of points we ignored the median point. So S will contain m “+”s
and m “−”s and the length of S will be 2m. We also define r+ and r− as the number
of runs that contain “+” and “−” respectively and r to be equal to r+ + r−. If r is
even in S we have r+ = r−. Otherwise, r is odd and either r+ = r− + 1 or r− = r+
+ 1. We apply a runs test based on the intuitive notion that an unusually large or an
unusually small value of r would suggest lack of randomness. More specifically,
for a random series S, r is approximately normally distributed with mean of E(r) =
m + 1 and a variance of Var(r) = m(m + 1)/(2m − 1) ∼ (2m − 1)/4 when m is large.

To confirm this approximation to a normal distribution, we used the Matlab
5.2 facility to generate 5000 series of random numbers belonging in the interval
[0,1] having the same length as each excess return series, yt . For each series, each
random number was replaced by a “+” if it was larger than the previous random
number, and by a “−” otherwise. We calculated r for each series and compared
it with the theoretical distribution. The results in Fig. 1 show that the distribution
of r for the generated series does indeed closely follow the normal distribution.
Using the standard normal distribution N(0,1), we then calculate the probability
P(Y ≤ r̄obs) for each of our actual data series, where: r̄obs = (robs − E(r))/Var(r),
Y is a random variable of the standard normal distribution, and robs is the observed

Fig. 1. Runs Tests for the Excess Return Series.
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r for a series. We found that P(Y ≤ r̄obs) = 0.04 for the FTSE, so we can be 96%
confident that the observations in this series are not random. However, the value
for the S&P excess return series is 0.45, so the null hypothesis of normality cannot
be rejected.

The presence of autocorrelation in the univariate series (see Table 1, Panel B) also
suggests that we should try to identify the ARMA model that best approximates
each yt series. Firstly, we computed the augmented Dickey-Fuller (ADF) statistics
by varying the lag structure of the variable from 12 to 1. The reported statistics
are the highest ones provided the residuals were white noise (p-value >0.05). The
ADF statistics suggest the excess returns series are stationary (see Table 1, Panel
A). So no further differencing is necessary.

We then estimated 25 ARMA(p, q) for each series such that p, q = 0, 1, 2, 3, 4,
where p is the number of lagged variables and q the number of lagged moving
averages. The chosen ARMA is the one with the highest Akaike information
criterion (AIC). Panel A of Table 2 indicates that the series have a mix of AR
and moving average representations. That is, ARMA(4,4) and ARMA(2,4) best
describe the S&P and FTSE series, respectively. Thus the excess return series are
low-order processes with a memory of up to four periods. Notice, though, that �̂4 is
not significantly different from zero for the FTSE such that perhaps an ARMA(2,3)
might have been more appropriate, although this is not supported by the AIC. If a
relative short memory process encapsulates the DGP, it would appear that relatively
simple algorithms rather then complicated ones might generate the best forecasts.
As the autocorrelation coefficients of the square residuals of the ARMA models
are significant (p-value < 0.01), not all the information contained in the data has
been exploited.

As a final test of the iid condition, we fitted an EGARCH(1,1) model to capture
the conditional distributional errors in each yt series. Panel A of Table 3 shows
that the estimated coefficients are non-zero but the fit of the model is not appealing
on the basis of the t-distribution parameter. Similarly, the EGARCH(1,1) process
is not too stable since |�1| is not less than one.

To test for non-linearity in the standardized residuals of the EGARCH(1,1)
model, the BDS statistic (see Brock et al., 1991) was applied. The BDS statistic is
considered to be one of the best tests for non-linearity (see Barnett et al., 1997).
Panel B of the table shows that the standardized residuals of the EGARCH models
are not iid across embedded dimensions. As noted by Brock et al. (1991), the size
of the BDS statistic depends on the value of �. However, the evidence against iid
is still rejected for all measures of �, although the magnitude of the statistic varies
across embedded dimensions. de Lima (1998) reports similar results for the S&P
500 stock returns and indicated that the iid condition was overwhelming rejected
in periods of high volatility.



U
sing

N
on-Param

etric
Search

A
lgorithm

s
101

Table 2. Estimates of ARMA Models.

Panel A

ARMA Estimates

� �1 �2 �3 �4 �1 �2 �3 �4

S&P excess returns 0.36E-3b −0.2001b 0.0719 0.0429 0.2871b 0.1876 −0.0906 −0.0960 −0.3181a

(0.14E-3) (0.1019) (0.1120) (0.1023) (0.1166) (0.1022) (0.1133) (0.1026) (0.1201)
R̄2 = 0.0034, AIC = 9801.8

FTSE excess returns 0.59E-4 1.3592a −0.8028a −1.2627a 0.6668a 0.0967a −0.0191
(0.67E-4) (0.1039) (0.0967) (0.1057) (0.0934) (0.0300) (0.0184)
R̄2 = 0.0062, AIC = 10300.0

Panel B: Autocorrelation Coefficients of Square Residuals of ARMA Models

Lags

1 2 3 4 5 10 15 20

S&P excess return 0.196a 0.106a 0.053a 0.071a 0.139a 0.046a 0.041a 0.046a

FTSE excess return 0.149a 0.152a 0.121a 0.099a 0.093a 0.116a 0.088a 0.041a

Note: The samples span the period 4th January 1988 to 6th October 1999. The ARMA(p,q) model for series yt can be stated as yt = � + �1yt−1 +
· · · + �p yt−p + �t − �1�t−1 − · · · − �q �t−q . �p and �q are respectively the coefficients for the autoregressive and moving average operators.
The statistical significance in Panel B is based on the Ljung-Box statistic.

a Indicate statistical significance at less than the 1% level.
b Indicate statistical significance at less than the 5% level.



102
N

A
T

H
A

N
L

A
E

L
JO

SE
PH

E
T

A
L

.
Table 3. Conditional Estimates of EGARCH (1,1) Model and BDS Statistics.

Panel A

Parameters of Conditional Heteroscedasticity for t-Distribution R̄2 AIC
Exponential GARCH(1,1)

�0 	1 	2 �1

S&P excess returns −0.0647b −0.0340a 0.0861a 0.9933a 5.5951a 0.0028 10142.2
(0.0328) (0.0110) (0.0162) (0.0034) (0.5710)

FTSE excess returns −0.1106a −0.0341a −0.0911a 0.9889a 10.9872a 0.0079 10516.7
(0.0398) (0.0084) (0.0165) (0.0040) (1.7739)

Panel B: BDS Statistics for Standardized Residuals

m

2 3 4 5 6 7 8 9 10

S&P excess returns
� = 0.25 5.067 7.485 9.093 11.225 12.468 14.237 14.067 6.691 −5.194
� = 0.50 4.659 6.823 8.426 10.639 12.583 14.989 17.394 20.150 23.103
� = 0.75 4.818 6.957 8.560 10.613 12.648 14.979 17.292 20.283 23.785
� = 1.00 5.096 7.218 8.657 10.521 12.449 14.660 16.724 19.167 21.966
� = 1.25 5.282 7.404 8.850 10.550 12.161 13.966 15.562 17.331 19.237
� = 1.50 5.609 7.636 9.066 10.546 11.812 13.245 14.480 15.781 17.202

FTSE excess returns
� = 0.25 4.297 6.763 8.574 9.886 9.114 15.533 31.529 81.491 −7.685
� = 0.50 4.287 7.260 8.933 10.556 12.489 15.395 17.814 18.663 17.669
� = 0.75 4.574 7.542 9.006 10.304 11.672 13.735 15.718 18.045 20.284
� = 1.00 4.965 7.926 9.460 10.698 12.101 14.083 15.898 17.758 19.811
� = 1.25 5.609 8.507 10.024 11.175 12.407 14.033 15.429 16.732 18.231
� = 1.50 6.445 9.335 10.823 11.823 12.841 14.170 15.260 16.230 17.414

Note: The EGARCH(1,1) conditional errors for an equation of yt = a0 + b0 yt−i + �t at i lags can be written as logh2
t = �0 + 	1(ut−1/ht−1) + 	2(|ut−1/ht−1| − �t ) +

�1logh2
t−1 and �t |�t−1 ∼ N(0, ht ) where �t is the disturbance term, ht

2 is the conditional variance of �t and �t−1 is the information set at t–1. N(0, ht ) depicts a distrbution
with a mean of zero and a variance of ht which we assumed to be the t-density distribution with 
 degrees of freedom. The EGARCH(1,1) model was estimated with a lag
of 7 for the S&P series and a lag of 1 for the FTSE series. The BDS statistic is for �-standard deviations and m-dimensions of 2–10. The statistic is distributed asymptotic
normal so that the 99% critical value of 2.58 (two-tailed) rejects iid. The samples span the period 4th January 1988 to 6th October 1999.

a Indicate statistical significance at less than the 1% level.
bIndicate statistical significance at less than the 5% level.
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In general, the excess return series appear to contain statistical properties that
are appropriate for our learning algorithms. Indeed, LeBaron et al. (1999) applied a
GA to artificial data that generated much of the statistical properties depicted here.
The sources of the non-linearity in the excess returns might reflect the response
of the stock market to both positive and negative news. It would seem a priori
that our algorithms would be able to cope with the leptokurtic and conditional
properties of the series. If, however, the DGP switches between tranquil periods of
purely random motion and more turbulent periods as suggested for artificial data
(see Chen et al., 2001), the statistical properties of the excess returns might well
create problems of tractability for the algorithms.

3. BENCHMARKS FOR ASSESSING FORECASTING
PERFORMANCE

To evaluate forecasting performance we use three different Theil-type measures as
well as a MAE. The Theil-type measures are unit free and provide an easy way of
assessing the ANN’s forecasting performance against the forecasts from a naı̈ve
RW model. For example, a Theil statistic of less than one implies that the ANN
generated forecasts that are superior to those generated by a RW. Following Theil
(1966), we write the Theil statistic in a general form

Theil =
√∑N

t=1(yt − ŷt)2√∑N
t=1(yt − y′

t)2
(2)

where ŷt is the forecast for time t, yt is the actual observation, and y′
t is the expected

excess stock return according to a RW. There are different ways for specifying the
RW value y′

t .
Usually when using log ratios, as we do in Eq. (1), the RW prediction is zero,

i.e. y′
t = 0, which occurs when the expected stock return equals the risk free rate.

We can then write our first Theil statistic as

TheilA =
√∑N

t=1(yt − ŷt)2√∑N
t=1y

2
t

. (3)

Equation (3) is not the only way to specify a RW of excess returns for yt . An
alternative is a RW around actual prices, i.e. the prediction is for the price not to
change from one day to the next. Thus p′

t = pt−1 where p′
t is the prediction of the

RW for day t. This alternative RW around today’s price is not a strong competitor
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against which to measure forecasting performance, because we know that there
is a positive drift in the prices; we nevertheless use it in our forecast evaluation.
Substituting p′

t for pt−1 in Eq. (1), we can write the prediction of the excess returns
on day t according to a RW on prices as

y′
t = −ln

(ct−1

360
+ 1

)
. (4)

Substituting Eq. (4) in Eq. (2) gives our second Theil-type statistic

TheilB =
√∑N

t=1(yt − ŷt)2√∑N
t=1(yt − ln( ct−1

360 + 1))2
. (5)

A final Theil statistic we can specify is based on the idea that the momentum of the
excess return series follows a RW, i.e. y′

t = yt−1. Here, the RW assumes that the
prediction of the excess return on day t is equal to the excess return on day t − 1,
i.e. bull and bear markets are likely to have long runs. We show this in TheilC
which compares the forecast ŷt with this alternative RW and is written as

TheilC =
√∑N

t=1(yt − ŷt)2√∑N
t=1(yt − yt−1)2

. (6)

Finally, we define the MAE as ∑N
t=1

∣∣yt − ŷt
∣∣

N
. (7)

The MAE is known to be more reliable than either the mean square error or root
mean square error and less sensitive to the presence of outliers (see, e.g. Meese &
Rogoff, 1983).

4. EXPERIMENTAL DESIGN AND MODEL
IMPLEMENTATION

Our experimental design, described in this section, has been particularly
carefully chosen because we ultimately expected negative results in our research
environment and we wanted to ensure that a very robust set of empirical results
was ultimately generated.9 To achieve this objective, the GA is given a wide area
to search for ANN structures. The chosen ANN structures are trained up to 50
times using various criteria, since only repeated training gives an indication of
the reliability of the results, given the non-deterministic nature of ANN training.
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In particular, these actions guard against the temptation to report the best of the
several runs that might have been carried out. Also, we compare the predictive
model against three RW models, as well as the MAE, for two data sets.10 Usually in
ANN applications, the ANN forecasts are evaluated against the same metric which
was used for training, but this is not robust. A good model should be good using any
suitable measure. Hence we will test, repeatedly, each ANN not only against the
metric used in its training, but also against the remaining three metrics. We believe
that our cautious and rigorous methodological approach goes some way to allaying
Adya and Collopy’s (1998) concerns regarding previous ANN methodological
applications. Given this rigorous methodological approach, our experimental
results will remind researchers that they always need to use appropriate forecast
benchmarks and extensively retrain their ANNs before they can have confidence
in their results. We now describe our experimental results in more detail.

Several parameters need to be set in order to obtain suitable ANN architectures.
Take an ANN structure x-y-z-1 where x, y and z are any positive integers. These
parameters represent the size of the input, the first hidden and the second hidden
layers, respectively. The integer one represents the single output node.11 The
transformation functions for all the hidden layer nodes was tansigmoid, and for the
output node nonlin. The structure represents the size of space searched by the GA,
up to the maximum established values. To allow a sufficiently wide and extensive
search space, we chose to limit the inputs of the ANNs to at most 20 lags (x ≤ 20)
for each series. The goal was to allow as much flexibility as possible in the choice
of lags for fitting the data thereby allowing the GA to search across a sufficiently
broad range of lag structures. The number of hidden layers in each ANN was set
to be at most two on the grounds that two hidden layers are sufficient to capture
any function; the second hidden layer enables the first hidden layer to capture any
pre-processing of the input data. The numbers of nodes in each hidden layer, y
and z, were set to a maximum of 30 each. This allows quite a large area to search.
A chosen structure that is smaller than that required by the data will prevent the
algorithm from learning the required representation. Alternatively, a much larger
structure than is required makes generalization difficult for the algorithms. So we
experimented within that range. It turns out that in all the searches the best ANNs
fell within, rather than at, these upper limits. The string used to represent the ANN
structure in the GA was, therefore, three integers, each representing the number
of nodes in the three layers: input, hidden1 and hidden2. That is, the alphabet
from which the strings were made consisted of three symbols, each representing
a number between 1 and 30.

Another set of parameters affects the GA search directly. They include not only
the termination criterion (maxGen) and the number of chromosomes (rules) per
generation (m), (where higher values of m and maxGen imply a more expensive
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search), but also the three probability parameters that seek to capture the chances
of selecting an architecture from one generation to the next. These parameters are:
reproduction (Preproduction), crossover (Pcrossover) and mutation (Pmutation). Prior
experimental work suggests a strong relationship between the desirable values
of these parameters, although there is little agreement as to what the exact values
should be. For example, Gathercole and Ross (1997) suggest that a small population
for the training set is better than a large one, while Goldberg (1989) employed a
population size m = 50, with Pcrossover = 0.90 and Pmutation = 0.01.12 Because we
wanted to force the GA to make a sparser search in our space, we set: m = 40;
maxGen = 25; Pcrossover = 0.60; Pmutation = 0.10, and Preproduction = 0.30. The
cost of adopting this strategy is that it is more difficult for our GA to converge to
a single network structure. We dealt with this consequence by selecting the three
best network structures from the final GA generation.

To identify the most appropriate training algorithm, various ANN algorithms
were run in a pilot study. The BP algorithm was found to be the fastest to
converge, so needing fewest training epochs – a result similar to that of Demuth
and Beale (1997). Therefore all the networks in this study were trained using the
resilient BP algorithm with: (i) the initial weight adjustment factor, delta initial
= 0.07; (ii) the increase in the factor for each successive change in the same
direction, delta increase = 1.20; and (iii) the decrease for successive changes
in opposite directions, delta decrease = 0.50. In preliminary experiments, the
GAs were also run several times to ensure that the reported results were robust
to reasonable changes in the parameter choices. Any change to these parameters
within reasonable ranges did not alter the results quantitatively. All parameter
choices were guided by computational and robustness considerations and were
fixed for all the reported experiments.

The experiments were repeated on all the series. The data points for each excess
return series was divided into two sets for experimentation as in Section 2: a
Training set (90% of the data) and a Test set (10%). Furthermore, to control the
search and reduce the risk of over-fitting, the Training set was further subdivided
into the following subsets: Training1 (45% of the Training set), Validation1 (also
45%) and Validation2 (10%).

The experiments on the two data series were identical. They were carefully
designed to ensure that if good ANN structures were available, they would be
found and their weights reliably estimated. In view of the results, this approach
turns out to be particularly useful. Each experiment consisted of three stages as
shown in Fig. 2. The aim of the first stage was to select promising ANN structures.
A GA was allowed to search the space of ANN structures, train each structure
for 25 epochs on the Training1 subset and then evaluate each structure using
the Validation1 subset. All four evaluation metrics were used in the process, i.e.
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Fig. 2. Experimental Stages.

TheilA, TheilB, TheilC and MAE. For each of the four metrics the GA search was
repeated three times. For each of these three repetitions, the best three networks
were selected for further investigation, giving 3 × 3 = 9 network structures, and
for each evaluation metric 4 × 9 = 36 network structures in total (see Fig. 2), all
of which turned out to be slightly different, as expected.

The purpose of the second stage was to select between these 36 network
structures, using the robustness of each structure when repeatedly evaluated. For
each one of the 36 ANNs, the following procedure was repeated 50 times, each time
starting with random initial weights. Thus, to determine the appropriate number
of training epochs, each ANN was initially repeatedly trained on the Training1
subset and evaluated on Validation1 subset, using the same metric as had been
used to select the ANN in the first stage, until performance on the Validation1 set
deteriorated (see Fig. 2). The optimal number of training epochs was chosen at
this training stage. Then the ANN was retrained on the data from the Training1
and Validation1 subsets together, using the indicated optimal number of epochs.
Finally, the performance of the each trained ANN was tested on the unseen data
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set in the Validation2 subset. For each performance statistic, the most stable of
the 9 ANNs were identified in terms of the standard deviation of the performance
metric over the 50 repetitions. The repetitions and test procedures at this stage were
intended to ensure a robust set of results as the GA randomly combines operators
and variables during estimation, and as it can occasionally get caught in local
minimum.

The purpose of the third and final phase of the experiment was to repeatedly
evaluate each of the four surviving structures against each of the four metrics,
i.e. not only on the metric against which it was originally chosen, but also the
other three metrics as well. Again the following procedure was applied 50 times.
Each of the four networks was initially repeatedly trained on the first half of the
Training set and evaluated on the remaining half, using the same metric as had
been used to select it in the first place. Then, using the number of epochs indicated
by this validation procedure, the network was retrained on the complete Training
set. Finally each network was evaluated on the Test set against all four metrics. The
performance for each network on each metric was measured again in terms of the
standard deviation and mean of its performance over the 50 times that each network
was trained, validated and tested. These statistics reflect the average characteristics
of the population and can therefore be expected to reflect the overall patterns in
the data sets.

5. MAIN EXPERIMENTAL RESULTS

We report the experimental results for both excess return series in parallel. Each
of the three stages of the experiments is considered sequentially. The first stage
seeks to identify reasonable architectures for the ANN models. In so doing, we
consider the four metrics that are used to evaluate the ANNs. The second and
third stages examine the stability of the best structures under repeated estimation
of their parameters. To anticipate our findings the experimental results are not
strong but serve a useful reminder to researchers intent on doing future work in
this area.

5.1. Stage 1: TheilA Metric for the First Repetition

Recall that the purpose of the first stage of each experiment is to select promising
ANN structures using the GA search. The structures are coded by the number of
nodes in the input layer (max 20), two hidden layers (max 30 each) and the single
node in the output layer.
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The use of three repetitions of the GA search for the four metrics of both data
sets, gave us a total set of 24 different outputs of results. To illustrate, we briefly
focus on the structures chosen (but not presented) when using the TheilA metric in
the first repetition.13 For the S&P series, 10 ANN structures tended to be present
in most cases over all 25 generations. Of course, a given structure may be present
more than once in any generation although it may not necessarily be present in
the final generation. All the most frequently occurring structures had 27 nodes
in the first hidden layer. This is remarkably high suggesting that the number of
dimensions needed to characterize the input data is also high. This seems to be
the case even though the structures in the final generation had only one or two
input nodes. To some extent, the same is true for the FTSE series. Here, the most
frequently occurring node in the 25th generation had 16 first hidden layer nodes.
For both sets of data the number of nodes in the second hidden layer was generally
one or three, suggesting that the second hidden layer of nodes may not be necessary.

For the S&P series, the best structure at the final generation of the first repetition
(not shown) was 2-27-3-1, where the structure 2-27-3-1 takes on our definition of
x-y-z-1 as before (see Section 4). TheilA had a mean, � of 0.997 and standard
deviation, � of 0.016. Similarly, the best structure for the FTSE series (not shown)
was 1-7-3-1 (TheilA: � = 1.005, � = 0.007). TheilA is not less than one in any
case so the RW has outperformed the ANN forecasts. These preliminary findings
suggest that the GA search is not finding structures any better than would be found
by chance, despite earlier evidence of non-linearity in the data! We will now look
at all the data for the first stage to see if this conclusion holds.

5.2. Stage 1: Comparison of Evaluation Metrics

Table 4 shows the mean and standard deviation of all four metrics for the structures
selected at the first, the 12th and the final 25th generations of the GA search,
for all three repetitions and for both series. The magnitude of the mean and
standard deviation of the TheilA metric for the S&P for all structures are of
concern. As expected, the mean has decreased but only in some cases and any
decrease is not significant and not below one. Moreover, the standard deviation
has not generally decreased. Indeed, the standard deviations of the 25th generation
for the first and third repetitions are larger than those of the first generation in
each case.

Four conclusions are clear from the overall results of Table 4: firstly, there
is little variation between repetitions, which points to the difficulty that the GA
has in choosing between structures but also adds credence to the robustness of the
results. Secondly, there is an improvement in the mean value for each of the metrics
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Table 4. Summary Statistics of Fitness Functions at Specific Generations.

Generation Repetition 1 Repetition 2 Repetition 3

1 12 25 1 12 25 1 12 25

Panel A: S&P excess returns
TheilA

Average 1.0310 1.0122 1.0076 1.0463 1.0558 1.0009 1.0342 1.0073 1.0409
S.D. 0.0369 0.0558 0.0410 0.0902 0.2404 0.0164 0.0503 0.0245 0.2651

TheilB
Average 0.7118 0.7045 0.6834 0.7172 0.6874 0.6941 0.7106 0.6895 0.6874
S.D. 0.0338 0.0839 0.0172 0.0402 0.0162 0.0251 0.0437 0.0283 0.0233

TheilC
Average 1.1508 1.0302 1.0025 1.0324 1.0064 1.0042 1.0320 1.0006 1.0010
S.D. 0.4590 0.0394 0.0271 0.0566 0.0306 0.0221 0.0450 0.0176 0.0183

MAE
Average 0.0105 0.0103 0.0101 0.0103 0.0102 0.0102 0.0104 0.0102 0.0103
S.D. 0.0004 0.0003 0.0001 0.0003 0.0003 0.0003 0.0005 0.0003 0.0006

Panel B: FTSE excess returns
TheilA

Average 1.0868 1.0129 1.0099 1.0411 1.0108 1.0116 1.0457 1.0120 1.0068
S.D. 0.2040 0.0272 0.0125 0.0445 0.0162 0.0222 0.0444 0.0183 0.0142

TheilB
Average 0.7707 0.7337 0.7313 0.7713 0.7335 0.7346 0.7842 0.7329 0.7343
S.D. 0.0490 0.0091 0.0106 0.0444 0.0087 0.0121 0.1512 0.0095 0.0151

TheilC
Average 1.1355 1.0110 1.0043 1.0384 1.0290 1.0114 1.0568 1.0081 1.0039
S.D. 0.4040 0.0168 0.0136 0.0382 0.0372 0.0156 0.0835 0.0088 0.0123

MAE
Average 0.0090 0.0088 0.0087 0.0090 0.0087 0.0087 0.0092 0.0091 0.0088
S.D. 0.0004 0.0002 0.0001 0.0002 0.0002 0.0001 0.0012 0.0190 0.0002

Note: S.D. denotes the standard deviation. The mean and standard deviation were computed for the
fitness functions over each generation. The samples span the period 4th January 1988 to 6th
October 1999.

between the first and final generations (except for repetition three of TheilA on
S&P) although more so from the first to the 12th generations. So the GA search
is functioning as best it can, given the data. Thirdly, this improvement is not
statistically significant. So the search space is indeed difficult for the GA – a feature
that we will explore below. Fourthly, while TheilA and TheilC are each close to
one, TheilB is considerably better – in the region of 0.70 – and significantly better
than the RW for all repetitions (except the third repetition of the first generation
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for the FTSE). The magnitude of the MAE appears to be small; however, there is
no independent benchmark against which this metric can be compared.

The explanation for the result that ANNs outperform the RW according to
the TheilB metric can be found in the definition of this metric (see Eq. (5)). The
TheilB statistic would be one if investors predicted no price changes, in which
case they would keep their funds in Treasury bills. So, investing in stocks during
the 12-year training period covered by the two data sets would appear to pay off,
not surprisingly.

5.3. Stage 1: In-Sample Dynamics

As indicated, the average size of TheilA and TheilC for the structures in the final
generation is much higher than expected. One possible reason for this might be
that the structures were generated randomly by the GA. To validate this view, we
first examine the dynamics of the mean and standard deviation of the four metrics.
These results are shown in Figs 3a and b. The plots show fluctuations in both the
mean and standard deviations of the metrics for all repetitions. While the standard
deviations are drawn symmetrically either side of the mean, the results themselves
do not fluctuate symmetrically, as we will see below. In most cases, there is a slight
and slow decrease in the mean value. The standard deviation, however, fluctuates
rather than steadily decreases, indicating that we need to be wary that the last
generation could contain some recently introduced inappropriate structures. The
third repetition of the TheilA metric for the S&P data is, indeed, an instance in
which this problem appears to arise. But otherwise, even though there are a few
high standard deviations just before the last generation, in general, the searches
have settled down.

A high standard deviation, even in the last generation, would not necessarily
be damaging since our method requires us to select just the best three structures
from each repetition. But it is also possible that a good structure was found in
an earlier generation but was then discarded. The descriptive statistics associated
with the figures indicate that the minimum metric value over all generations is
better than the average of all the structures in the final generation. These minimum
values occur in the final generation only once (see MAE of FTSE series; third
repetition). This does not mean that the corresponding structures do not occur in
the 25th generation, since the value of the metric depends on the training weights
found and these vary for every instantiation of the structure, i.e. not only within
one generation but also across generations. Moreover, these minimum values are
not significantly different from the mean of the forecast measures for the final
generation in each case (see Table 4).
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Fig. 3. Plots and Summary Statistics of Forecast Measures for 25 Generations of the (a) S&P Excess Returns and (b) FTSE Excess
Returns. (Continued on next page)



Using Non-Parametric Search Algorithms 113



114 NATHAN LAEL JOSEPH ET AL.

Fig. 4. Distribution of Forecast Measures for (a) S&P Excess Returns and (b) FTSE Excess
Returns.

To get an idea of the space in which the GA was searching, we plotted histograms
of the number of times each metric value was encountered in all 25 generations
for each repetition separately. These are shown in Figs 4a and b for each series.
All the histograms are very similar (except for one) in being highly skewed, with
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Fig. 4. (Continued )

a peakedness close to the lowest (best) metric value. The one exception is the
first repetition of the MAE for the S&P series. Here, the plots show a broader
distribution as well as a few structures with low values (<0.0098) which are not
present in the 25th generation (see Table 5). Otherwise, the best structures are
still present in the last generation. These results suggest that continuing the GA
search beyond the 25th generation would not have improved either the mean of
the forecast measures or the best structure.
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Table 5. Performance of Fittest Networks Identified by GA.

Repetition TheilA TheilB TheilC MAE

Network Mean S.D. Network Mean S.D. Network Mean S.D. Network Mean S.D.

Panel A: S&P excess returns
1 2-27-3-1 0.9973 0.0163 5-8-1-1 0.6860 0.0104 7-13-7-1 1.0180 0.1209 6-26-4-1 0.0101 0.0002
1 2-27-1-1 0.9997 0.0134 5-8-4-1 0.6799 0.0177 7-17-7-1 1.0017 0.0281 6-9-4-1 0.0101 0.0001
1 1-27-1-1 0.9996 0.0102 5-14-4-1 0.6776 0.0104 7-26-7-1 0.9991 0.0231 6-22-4-1 0.0104 0.0002
2 3-8-3-1 0.9967 0.0163 2-24-5-1 0.6941 0.0207 6-4-7-1 0.9999 0.0258 1-22-2-1 0.0101 0.0001
2 3-28-3-1 1.0032 0.0306 5-6-5-1 0.6775 0.0106 3-4-7-1 1.0028 0.0204 1-7-2-1 0.0102 0.0003
2 3-8-6-1 1.0157 0.0563 5-24-5-1 0.6814 0.0176 6-4-9-1 1.0015 0.0175 1-22-1-1 0.0101 0.0001
3 6-7-2-1 0.9939 0.0158 1-8-1-1 0.6831 0.0071 6-3-3-1 0.9997 0.0221 3-19-3-1 0.0102 0.0003
3 6-7-4-1 0.9921 0.0151 1-1-1-1 0.6848 0.0058 6-1-3-1 0.9972 0.0089 3-2-3-1 0.0101 0.0001
3 6-10-2-1 0.9941 0.0133 1-6-1-1 0.6830 0.0103 6-8-3-1 0.9992 0.0227 3-2-9-1 0.0103 0.0008

Panel B: FTSE excess returns
1 1-16-3-1 1.0082 0.0196 4-4-1-1 0.7281 0.0076 14-3-2-1 1.0065 0.0120 6-22-2-1 0.0087 0.0002
1 1-7-3-1 1.0049 0.0073 4-20-1-1 0.7313 0.0150 5-3-2-1 1.0022 0.0086 6-3-2-1 0.0087 0.0001
1 4-16-3-1 1.0149 0.0223 7-4-1-1 0.7296 0.0028 1-3-1-1 1.0018 0.0050 6-9-2-1 0.0087 0.0001
2 7-3-1-1 1.0023 0.0060 1-4-1-1 0.7317 0.0131 3-1-5-1 1.0072 0.0150 4-10-1-1 0.0087 0.0001
2 7-21-1-1 1.0076 0.0177 8-4-2-1 0.7346 0.0543 8-7-5-1 1.0160 0.0207 4-5-1-1 0.0087 0.0001
2 4-3-1-1 1.0017 0.0040 8-27-1-1 0.7287 0.0079 3-7-5-1 1.0134 0.0139 4-24-1-1 0.0087 0.0001
3 18-3-2-1 1.0105 0.0202 12-4-2-1 0.7311 0.0076 3-2-1-1 1.0014 0.0041 9-2-1-1 0.0087 0.0001
3 4-3-2-1 1.0049 0.0093 6-4-2-1 0.7307 0.0059 7-8-1-1 1.0036 0.0051 9-6-1-1 0.0087 0.0002
3 18-1-2-1 1.0049 0.0070 3-4-2-1 0.7341 0.0110 1-2-1-1 1.0002 0.0027 17-2-5-1 0.0087 0.0001

Note: S.D. denotes the standard deviation. The networks shown are for lowest fitness functions and together with their standard deviation. Each
network was trained 50 times. The samples span the period 4th January 1988 to 6th October 1999.
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5.4. Stage 2: In-Sample Validation

This section deals with the validation of the chosen structures. The three structures
that had the most representatives in the final generation of stage 1 were selected
for each of the three repetitions on all four metrics. If there was a tie, the tie was
broken by selecting the structure that was visited the most frequently by the GA
over all generations. If this did not break the tie, the simplest structure was chosen.
The rationale for this selection process is that the structures that occur frequently
and survive are indeed the best structures. The structures chosen are characterized
by having at most five and generally one or three nodes in the second hidden layer,
indicating that this second hidden layer may not be needed (see Table 5). The
number of nodes in the first hidden layer varies considerably. In a few cases, the
number of nodes is up to 27 (close to the maximum), thereby indicating the high
dimensionality of the space. The number of lags, given by the number of nodes
in the input layer, varies as well, generally being below 10 although one structure
uses 18, close to the maximum of 20.

Each of these structures was trained, validated, retrained and then tested on the
Validation2 subset, 50 times. The mean and standard deviation of the parameters
of each of the 3 × 3 = 9 ANN structures are also shown in Table 5. The structures
with the lowest standard deviation are shown in bold face. The mean values for
both TheilA and TheilC are still close to one (as before) for all structures while
TheilB shows improved performance. For all three Theil metrics, the structure
with lowest standard deviation has a single input node for both the S&P and FTSE
series. This is particularly obvious for TheilB of the S&P, where the structure is
1-1-1-1. For all three metrics, the best structure is not best by much. The large
variation in the structures together with TheilA and TheilC values of around one
indicates that ANNs are not capable of predicting the series sufficiently well to
give an excess return over the Treasury bill rate. To confirm this conclusion, we
continue with stage 3 to see whether or not the chosen structures cannot, after all,
be improved by a better choice of parameter weights.

5.5. Stage 3: Out-of-Sample Forecasts

In this stage of the experiment, the best structure from the set of nine structures
was further tested against all four metrics using the unseen Test sets (300 data
points each). This generated the out-of-sample forecasts. Each of the 4 × 2 Test
sets = 8 structures was trained anew. This new round of training for each structure
consisted of training on the first half of the appropriate Training set, validating
on the other half to choose the number of learning epochs, and finally retraining
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Table 6. Out-of Sample Forecasting Performance of Fittest Networks for All
Fitness Functions.

Network TheilA TheilB TheilC MAE

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Panel A: S&P excess returns
1-27-1-1 0.9991 0.0059 0.7045 0.0042 0.9990 0.0059 0.0104 0.0001

1-1-1-1 1.0032 0.0092 0.7074 0.0065 1.0031 0.0092 0.0104 0.0001
6-1-3-1 1.0087 0.0289 0.7093 0.0203 1.0086 0.0289 0.0105 0.0003
3-2-3-1 1.0013 0.0199 0.7063 0.0140 1.0011 0.0199 0.0104 0.0002

Panel B: FTSE excess returns
4-3-1-1 1.0008 0.0049 0.7247 0.0036 1.0008 0.0049 0.0086 0.0001
7-4-1-1 1.0017 0.0122 0.7208 0.0088 1.0019 0.0122 0.0086 0.0001
1-2-1-1 1.0031 0.0170 0.7248 0.0123 1.0031 0.0170 0.0086 0.0002
9-2-1-1 1.0013 0.0052 0.7205 0.0038 1.0013 0.0052 0.0086 0.0001

Note: S.D. denotes the standard deviation. The forecasts are for the last 300 observations.

on the entire Training set. The newly trained ANN was then tested against all
four metrics. This procedure was repeated 50 times. The resulting statistics for the
out-of-sample forecasts are shown in Table 6. The results show that the mean and
standard deviation of the metrics are very similar to those obtained at stage 2.

Training using a Theil metric and testing against another Theil metric seems to
make little difference to the results. Training on a Theil metric and testing using
the MAE metric confirms earlier results. Training on the MAE metric and testing
on a Theil does not give appreciably worse results. In general, the performance of
the networks has not altered in any meaningful way.

To further explore the above results, we identified an AR(1) linear model based
on the AIC. This model generated out-of-sample forecast metrics that are very
close to those of the ANNs. Indeed, TheilB was equal to 0.7001 and 0.7226 for
the S&P and FTSE series respectively while both TheilA and TheilC were close
to one.14 So the performance of the AR(1) model is not appreciably better than
those of the ANNs and those results further confirm that the forecasts are not good
for any estimation method.

6. CONCLUSION, EXTENSIONS
AND IMPLICATIONS

This empirical study was concerned with the use of GAs in finding the optimal
architectures for ANN input. We sought to apply rigorous procedures in our
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research design so that we can generalize the results more forcefully. Non-linearity
was observed in the excess returns of both series, implying that prediction was
theoretically possible. The structures that were found by the GA search were
repeatedly trained, validated and tested against four different forecast metrics. The
structure with the least variance against each metric was again repeatedly trained
and tested against a Test data set. TheilB generated a value of around 0.71 with �
of around 0.01 (for the Test set), which is better than the RW forecast and appears
to suggest that an ANN had been found that was a good predictor. This is however
not the case as TheilB is a RW based on constant prices, a RW which is too easy
to beat. It also shows that predicting prices rather than excess returns would have
been too easy. Both mean values for TheilA and TheilC were close to or equal to
one while the MAE was small but its relative importance is difficult to assess. The
overall results show that it is unlikely that one day excess returns can be predicted,
using ANNs with simply the excess return time series as inputs.

Is it possible that there were ANN structures that would have performed better,
but which were not found by the GA searches? The total search space for ANN
structures was set at 20 × 302, i.e. 18,000. With a population size of 40 and 25
epochs, each GA search evaluated at most 1000 of these structures, but most
probably a few hundred. However, each GA search was repeated three times, so
our guess is that around 1000 ANN structures were evaluated for each metric, i.e.
1 in 18. For the GA search to have missed a much better ANN structure the surface
of the excess returns would have to be very uneven, spiking at one or more critical
values of the ANN structure parameters. In view of the remarkably smooth nature
of the space actually explored by the GA, this seems unlikely.

It could be argued that the size of the Test set (about 14 months worth of daily
data) was too small for testing purposes. However, the in-sample forecasts which
are from a much longer series are no better. Certainly if positive results had been
obtained, it would have been reasonable to validate the result by testing on a longer
series. However, in view of the negative result, the only criticism could be that this
particular 14 months, mostly in the year 2000, was unusually difficult to predict
in light of the 10 previous year’s worth of data. There is no reason to believe that
this is so; the major decline in the markets did not begin until 2001.

The results of the above experiments lead us to the following conclusions:

(i) The TheilB metric, based on constant prices, should not be used as the RW
when evaluating prediction models; it is too easy to beat using any model,
including the other RW models. Either of the other RW models should be used
instead: price rises drifting upwards to just compensate for the risk free rate
of return (TheilA) or tomorrow’s price change being the same as yesterday’s
(TheilC).
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(ii) The finding that the GAs converge slowly leaves us with the view that network
structures as good as those identified could have been obtained by a very
simple random search;

(iii) As the networks that were generated were unable to outperform the RW,
except for the TheilB metric, there are useful implications regarding the
suitability of ANNs for finding patterns in daily excess returns and to forecast
such series.

(iv) Unfortunately, no firm conclusion can be drawn regarding the suitability of
GAs for finding suitable ANN structures, because there weren’t any such
structures.15

The finding that the simplest network structures performed (marginally) better is
consistent with related work. Indeed, it is well known that simple mis-specified
linear models tend to outperform complex well specified models in out-of-sample
forecasts. It can be argued that the observed non-linearity in the series does not
mean that the series are predictable. This is because the non-linearity may not
exist over a sufficiently long period for it to be captured by the ANNs. This echoes
some of the explanations provided by Kilian and Taylor (2003) for the failure of
the non-linear models to outperform the RW. So the algorithms may not have been
able to capture and track the local patterns in a meaningful way, given also the
dynamics of the series.

We believe that the inability of the networks to beat the RW is associated with
the difficulty that networks have in recognizing temporally local patterns in the
data. Perhaps, a methodology that eliminates more noise in the data might prove
useful.16 However, it should be recognized that treating the data for noise would
remove features that are inherent to the data and would alter the conditions under
which the algorithms learn. If ANN structures are to be found that exploit the
lack of iid in daily excess returns, then it may well require different structures
for different types of period, e.g. for stable vs. volatile periods in the time series.
Indeed, we do not put forward the alternative argument that the failure to beat
the RW is because the stock market is efficient since we have acknowledged the
specific conditions under which market (in)efficiency will apply.

A secondary lesson of this study is that it is important both to repeatedly
estimate the weights of a single ANN structure, using training and validation,
in order to find the most stable structure, and also to repeatedly retrain the weights
of the best structure(s) for out-of-sample testing. This is the approach we have
emphasized in our experiments. Although the use of an ANN structure with weights
estimate just once is not uncommon in related experimental work, this approach
should be discouraged. The main lesson from this study is the importance of fully
exploiting the evolution of the data and comparing forecasting performance using
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no change forecast benchmarks. The use of linear models to compare the relative
forecasting performance of ANNs, as is often done in empirical work, should also
be discouraged.

NOTES

1. GAs are computer intensive search techniques – pioneered by Holland (1975) – based
on Darwin’s theory of natural selection. Under a GA search the encodings are of fixed length
character strings. Koza (1992) extended Holland’s work to include explicit hierarchical
variable length character strings. Given the nature of our research problem we focus on
GAs rather than Genetic Programming in this study.

2. Recently, Conti et al. (2000) put forward a learning algorithm within an ANN
framework that minimizes the statistical averages of the error rather than their nominal
values. This in turn, takes weight tolerances into account, thereby guaranteeing low
sensitivity to the initial random weights.

3. Their GA search converged on a single ANN structure after just 19 generations. The
structure contained 5 lagged inputs and 15 hidden nodes in a single layer. Using rules based
on information criteria, their linear models had 5 lagged inputs and the equivalent of one
hidden unit. The use of GAs to identify the appropriate architecture for ANNs is not typically
found in empirical work in finance and economics. Indeed, Schaffer et al. (1992) provide
a review of experimental work in several (other) research areas while Sexton and Sikander
(2001) provide experimental results based on the Henon mapping problem. Both ANNs and
GAs generally appear to work well in those and other settings (see also, Arifovic, 1996;
Indro et al., 1999; Noe & Pi, 2000).

4. Following Adya and Collopy’s (1998) review, most studies compare the forecasting
performance of the ANNs against some linear model in terms of a MSE cost function rather
than a no change forecast such as a RW. This is a major failing of prior ANN applications
in finance and economics although an exception is Haefke and Helmenstein’s (1996) work
which is concerned with initial public offerings. If an ANN outperforms a linear model
this does not mean that the forecasts are useful if indeed better forecasts could have been
obtained from a naı̈ve RW.

5. The economic importance of the use of excess return forecasts can be illustrated as
follows. Consider an investor who holds a risky stock portfolio but can also switch to a risk-
free investment (say) Treasury bills on receiving a signal that it is economically beneficial
to do so. The choice of the investment strategy will depend on the investor’s forecast of the
amount by which the return from the stock portfolio is expected to exceed the risk-free rate,
given also transaction costs and the investor’s level of risk aversion. Excess returns are also
an important measure in asset pricing models.

6. Several studies (see, e.g. Pesaran & Timmermann, 1994) show that the extent to which
investors can benefit from switching between risky and the riskless assets following a signal
from the excess return forecasts depends on the frequency of the trading rule that is applied.

7. Empirical work shows that a substantial proportion of monthly, quarterly and annual
variation in excess stock returns is predictable when estimated in conjunction with
macroeconomic explanatory variables (see, e.g. Balvers et al., 1990). Except for Pesaran
and Timmermann’s (1994) study, the predictions are typically not truly ex ante in such
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experimental work as they are based on observations over the entire sample period. Most
macroeconomic variables do not exist at high frequency.

8. As there are 300 data points for the out-of-sample forecasts (about 14 months), this
can be considered to be long given the number of data points. It is well-known that the
performance of forecast models declines the longer the forecast horizon. This is because
forecast models are unable to anticipate future disequilibrium or structural breaks within
the sample parameters of their own estimation period. So a larger test set is likely to generate
worse forecasts than those reported here. Since we will show that both the in- and out-of-
sample forecast are not good, we do not believe that the use of a larger test or estimation
set would necessarily improve on the forecast results that are presented.

9. Our preview that the forecast results might be negative was based on a small
experimentation using a basic GA-ANN structure. We were initially surprised by this
preliminary finding since most prior applications of ANNs and indeed GA-ANNs (see, e.g.
Arifovic & Gençay, 2001) suggest that good forecasts can be found, albeit such applications
used different data sets and forecast benchmarks. In view of our initial findings and the results
of existing empirical work, we felt that it was essential that a very rigorous methodological
approach was adopted to confirm the reliability of the experimental results.

10. We have noted (see Note 4) that one of the failings of many ANN applications in
finance and economics is that the RW forecast is not used in most forecast evaluations and
many of the forecast results are likely to be affected by over-fitting due to the failure to
apply appropriate validation criteria.

11. Throughout we will use this format to report the results of the ANN structures, but
in integer terms. Normally, a ANN with no second hidden layer would be represented as
x-y-0-1, i.e. setting z to 0. For technical reasons to do with the automatic training of the
ANNs and the GA search, the actual minimum value of z had to be set to 1 rather than 0. A
structure of the form x-y-1-1 can be treated as having no second layer of hidden nodes as
the output of the single node in the second hidden layer is the only value sent to the output
node. A structure of the form x-1-1-1 is equivalent to a tansigmoid function applied to the
output of a linear model.

12. Man et al. (1999) also suggest that for a large population size of m = 100, Pcrossover

= 0.60 and Pmutation = 0.001 work well, while for small population size (m = 30), Pcrossover

= 0.90 and Pmutation = 0.01 are acceptable values.
13. Understandably, a large body of numerical results was generated from the

experiments. All experimental results not fully presented can be obtained from the authors.
14. Haefke and Helmenstein (1996) also identified an ANN structure that generated an

out-of-sample Theil statistic (similar to TheilC) of 0.896 for the Austrian Traded Index
stock (raw) return. Their AR(1) linear model generated a Theil statistic that exceeded one.
Notice that in both our study and Haefke and Helmenstein’s (1996) study, the ANN and
linear models are both being assessed against the forecast performance of a RW.

15. This has since been confirmed. A complete search for all possible ANN structures
for predicting the Dow and FTSE indices over similar time periods failed to find any
structures that could outperform the RW. We are indebted to Robert Woolfson, University
of Manchester, for this empirical result.

16. Kaboudan (2001) shows that the performance of Genetic Programming is adversely
affected by the structural complexity of the DGP as well as the level of noise contained in
the data. Arguably, our use of GAs rather than Genetic Programming would not appear to
alter our results if indeed the excess returns also contained noise. However, to see if the
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level of noise in the data adversely impacted on the choice of the architecture and in turn
the performance of the ANNs, we reduced the level of noise in each series as follows. Each
excess return was recoded as zero if its value was between the mean excess return of the
series and ±1 standard deviation. Values greater than the mean plus one standard deviation
were coded “+1” and those less than the mean less one standard deviation were coded
“−1.” The GA was then used to generate the architecture for the ANNs and the ANNs were
used to generate the forecasts. The metrics generated values that were very similar to those
reported here, thereby giving us more confidence in our earlier results.
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ABSTRACT

This work applies state-of-the-art artificial intelligence forecasting methods
to provide new evidence of the comparative performance of statistically
weighted Divisia indices vis-à-vis their simple sum counterparts in a
simple inflation forecasting experiment. We develop a new approach that
uses co-evolution (using neural networks and evolutionary strategies) as a
predictive tool. This approach is simple to implement yet produces results
that outperform stand-alone neural network predictions. Results suggest that
superior tracking of inflation is possible for models that employ a Divisia
M2 measure of money that has been adjusted to incorporate a learning
mechanism to allow individuals to gradually alter their perceptions of the
increased productivity of money. Divisia measures of money outperform their
simple sum counterparts as macroeconomic indicators.
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1. INTRODUCTION

Macroeconomic policy-makers aim to promote sustained economic growth and
rising living standards. It is now widely accepted that a low rate of inflation must
be maintained if these objectives are to be achieved. A standard result of most
textbook macroeconomic models which include money and prices is that changes
in the money supply lead, eventually, to proportional changes in the price level.
Friedman and Schwartz (1982) present a simple analysis of the correlation between
U.S money and prices over a span of more than a hundred years while Hallman
et al. (1991) provide evidence of a long-run link between M2 and the price level
using the P-star model based on the long run quantity theory of money. It appears
that the long run causal chain is just as Friedman said it should be, inflation is a
monetary phenomenon.

In the United States, the favored monetary aggregate among monetarists,
particularly Milton Friedman, during the early to mid 1970s was simple sum M2.
Barnett (1997) paints a very clear picture of the monetarist stance in the States in
the early 1980s in his description of the “broken road.” Forecasts showed that the
rise in growth of M2 from under 10% to over 30% between late 1982 and early
1983 was bound to result in renewed stagflation, i.e. recession accompanied by
high interest rates and rising inflation. Friedman’s very visible forecast failure,
according to Barnett (1997), delivered a very “serious blow to ‘monetarism’ and
to advocates of stable simple sum money demand equations.”

Central banks around the world became convinced of the importance of money
as a policy control variable and confident in the use of monetary aggregates
as intermediate monetary targets just at a time when everything started to go
embarrassingly wrong. During the mid to late 1970s evidence of the deterioration
in the formerly stable demand for money function was beginning to emerge,
making the monetarist reign a short one. It was becoming apparent throughout
the developed economies in the mid 1980s that increased competition within the
banking sector and the computer revolution in the financial world was beginning
to have substantial effects on the relative user-costs of bank liabilities and the ever-
increasing array of substitutes for them. It is now well established that monetary
targeting failed in the major macroeconomies because the chosen target aggregates
did not remain stably related to other key macroeconomic variables such as nominal
income. Some countries such as the USA and Germany, moved from narrow to
broader money targeting in the mid 1980s, before officially abandoning targeting
altogether in the late 1980s (e.g. USA and Canada). The Bundesbank kept its
monetary goal until the formation of the European Central Bank (ECB) although
Svensson (2000) claims that the Bundesbank has been an inflation targeter in deeds
and a monetary targeter in words only. The consensus of opinion at the end of the
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1980s was that it was not possible to re-establish the former apparently stable
demand for money functions, even though broad monetary aggregates had been
redefined and extended to include higher interest bearing building society deposits
(see Hall et al., 1989).

Recent research into the construction of monetary aggregates (see Barnett,
1997, for the USA) attributes the breakdown in demand for money functions
during the 1980s to the use of conventional official simple sum aggregates. Simply
summing the constituent component assets to form the aggregate creates flawed
index numbers because aggregating any set of commodities with equal weights
implies that each good is a perfect substitute for every other good in the group. The
simple sum aggregation method will lead to the mismeasurement of the monetary
services provided, particularly during periods of significant financial development
when interest rate yields on the various components of broad money are changing
over time. The use of equal weights for the user costs of the constituent component
assets is wholly inappropriate during periods of high financial innovation since the
introduction of new instruments and the technological progress that occurred in
making transactions has almost certainly have diverse effects on the productivity
and liquidity of monetary assets.

Many attempts have been made to improve the measurement of money. The
most well known attempt is that of Friedman and Schwartz (1970). They suggested
applying some form of weighting of the components in the aggregate depending
on their relative “moneyness.” The pioneering work of Barnett (1978, 1980) has
provided a consistent method to perform this weighting. Economic aggregation
theory provides methods for choosing which assets to include in a monetary
aggregate and how to construct aggregator functions, whilst index number theory
provides parameter- and estimation free methods to perform the aggregation. One
index that has particularly good properties for the purpose of constructing monetary
quantity indices is the Divisia index, derived from the class of superlative index
numbers discussed by Diewert (1976). Much attention has also been devoted
to the viability of alternative weighting schemes, such as weighting by bid-ask
spreads, turnover rates, price variations and denomination size. The preference for
a Divisia monetary index was founded on neoclassical microeconomic theory,
approximation theory and revealed preference theory. When applying these
theories to the construction of monetary aggregates it becomes apparent that the
components included should be weighted depending on the monetary services they
provide. It can be shown that traditional simple sum aggregation is only justified
when all asset components are perfect substitutes (Barnett, 1984).

Indeed, many economists concede that, in principle, reported simple sum
aggregates are flawed and based on untenable assumptions. See, for example,
Belongia (1996). In this study using U.S. data, Belongia re-estimated empirical
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models by replacing simple sum money with Divisia and thereby significantly
altered the conclusions that should have been reached by several influential studies.
Similarly, Barnett (1980) showed that an apparent decline in velocity was removed
when Divisia measures replaced simple sum. Central banks continue to publish
simple sum measures of the money stock and draw policy inferences from their
behavior even though it has been demonstrated conclusively that such data violate
basic principles of economic and index number theory. Barnett et al. (1992) provide
a survey of the relevant literature, whilst Drake et al. (1997) review the construction
of Divisia indices and associated problems.

The hypothesis developed over a series of studies (summarized in Gazely &
Binner, 2000) is that measures of money constructed using the Divisia index
number formulation are superior indicators of monetary conditions when compared
to their simple sum counterparts. This hypothesis is reinforced by a growing
body of evidence from empirical studies around the world which demonstrate
that broad Divisia weighted index number measures may be able to overcome
the drawbacks of the simple sum, provided the underlying economic weak
separability and linear homogeneity assumptions are satisfied. Whenever new
assets are included in Divisia monetary aggregates, the issue of separability must
be addressed. Economic theory provides several methods, both parametric and
non-parametric, for choosing which assets are admissible for inclusion. The non-
parametric (nonpar) approach to demand analysis developed by Varian (1982,
1983) is particularly interesting since there is no need to be specific on the
functional form of the utility function. Studies by Swofford and Whitney (1988,
1994) on U.S. data and Belongia (2000) on using data from the U.S., Germany
and Japan have applied the nonpar procedure. Varian’s non-parametric approach
has, however, been heavily criticized in the literature. It has been shown by
Barnett and Choi (1989) (using Monte Carlo simulations), that the test results
are biased towards rejection. A stochastic extension to the nonpar-procedure has
been suggested and is the subject of ongoing research (see, for example, Binner
et al., 2002a). In the current work it is assumed that the Divisia monetary aggregates
under investigation satisfy the separability assumption.

This paper aims to provide further support for the use of Divisia indices by
policy makers and academic economists. The potential of a new generation of
Divisia monetary aggregates is explored and adjusted to take account of the recent
developments in the financial sector in Taiwan over the period 1970 to date.
Ultimately, such evidence could reinstate monetary targeting as an acceptable
method of macroeconomic control, including price regulation.

The inflation forecasting potential of the standard Divisia and simple sum indices
are compared with that of two new Divisia indices designed to capture the true
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user costs of the component assets during times of high financial innovation. Hence
the first new Divisia index, inspired initially by Hendry and Ericsson (1990) and
used subsequently by Ford et al. (1992), uses a learning adjustment of the retail
sight-deposit interest rate to reflect the adaption of agents to the introduction of
interest-bearing sight deposits in 1984. The second modified Divisia series assumes
a period of gradual and continuous learning by agents as they adapt to the changes
in the financial system throughout the period.

The novelty of this paper lies in the use of co-evolution, using neural networks
and evolutionary strategies, to examine Taiwan’s recent experience of inflation.
Our preference for evolutionary strategies is due to their suitability for optimising
real valued variables in an economic and financial domain (Dorsey & Mayer,
1995). Other techniques, such as genetic algorithms and simulated annealing do
not offer such a natural representation and, in addition, there are more parameters
to these approaches which must be selected and tuned. This is a unique tool in this
context and its use in this research is highly exploratory although results presented
here give us confidence to believe that significant advances in macroeconomic
forecasting and policymaking are possible using advanced Artificial Intelligence
(AI) methods such as this. We build on the linear ES model reported in Kendall
et al. (2001) and compare our results to those already produced for Taiwan using
the AI technique of neural networks, Binner et al. (2002b) as a means of evaluating
the explanatory power of both Divisia and simple sum measures of broad money
as indicators of inflation.

The paper proceeds as follows; it begins by motivating the study with a review
of recent financial innovations in Taiwan before describing the data in Section 3.
Section 4 introduces the co-evolution model while results of a simple inflation
forecasting experiment designed to evaluate the empirical performance of the
innovation adjusted Divisia indices compared with the traditional Divisia and
simple sum counterparts are presented in Section 5. Section 6 concludes and offers
suggestions for further development of this research.

2. FINANCIAL INNOVATION AND THE DIVISIA
MONETARY AGGREGATE IN TAIWAN

At the beginning of the 1980s, drastic economic, social and political changes took
place in Taiwan creating a long-term macroeconomic imbalance. Rising oil prices
caused consumer prices to rise by 16.3% in 1981, followed by a period of near zero
inflation in the mid 1980s. From the 1990s onwards, inflation has been fluctuating
around the 5% mark and hence the control of inflation has not been the mainstay
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of recent economic policy in Taiwan, in contrast to the experience of the western
world. Rather, policy in Taiwan has focused more on achieving balanced economic
and social development.

The revolution in the financial and monetary sectors of Taiwan over the last
two decades has resulted in the implementation of major financial liberalization
policies. In July 1987, trade-related foreign exchange controls were abolished and
capital-flow related foreign exchange controls were relaxed. The entry of new
securities firms was permitted in January 1988, increasing their number from 60
to 150 within the first year. The banking system in Taiwan was heavily regulated
by the Central Bank and the Ministry of Finance until September 1989, which
saw the introduction of the revised Banking Law. As a result, bank interest rates
on deposits and loans were completely liberalized and new private commercial
banks became established. Deregulations of financial price variables and market
entry resulted in the rapid expansion of local financial markets and interest rates,
exchange rates and stock prices becoming increasingly sensitive to market forces.
The introduction of new instruments and the increased sophistication associated
with transactions technology have almost certainly had a considerable influence on
the liquidity and monetary services provided by the component assets of money.

As outlined by Shih (2000), in her pioneering work on the performance of Divisia
money aggregates in Taiwan, such financial liberalization had significant impact
upon the stability of the monetary aggregates. The narrowly defined aggregate,
M1B, was vulnerable to deposit shifts and was thus replaced by the broadly defined
monetary aggregate, M2, as the intermediate target variable for monetary policy in
Taiwan in 1990. Concerns were expressed as to whether the technique of simply
summing the balances of component assets with equal weights can adequately
capture the increased productivity of the monetary assets.

This question was taken one step further by Ford et al. (1992, p. 87) who asked
“do the Divisia aggregates adequately capture the effects of all these financial
innovations?”. This question is revisited and the econometric performance of a
new generation of Divisia indices that have been reformulated to take account of
recent financial innovations in Taiwan is explored. Thus two innovation adjusted
Divisia series are analyzed, using data provided by Ford, that have been modified
to allow for a learning process by individuals as they adapt to changes in the
productivity of monetary assets and adjust their holdings.

� One adjusted series, Innovation1 Divisia, assumes that individuals who had
been adjusting well to cosmetic changes in interest rates were slow to react
to the increased productivity of money, initially underestimating the effect of
financial innovation. In keeping with Ford (1997, p. 21) the approach proposed
in Baba et al. (1985, 1990) is adopted, which imposes a learning adjustment
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process on the user cost of interest-bearing sight deposits in the construction
of monetary indices. Specifically, the learning function used is an ogive-shaped
weight function, wt , representing the agents’ learning about the assets and is
applied to the interest rates. Thus,

wt = (1 + exp[� − �(t − t∗+1)])−1 for t ≥ t∗ and 0 otherwise. (1)

Here, t∗ denotes the time at which the innovation occurred. � represents the
existing level of knowledge about the innovation and � measures the speed to
respond to it.

� The second series, namely Innovation2 Divisia, assumes a period of gradual and
continuous learning throughout the whole period as individuals adjust to the
increased productivity of money. The approach adopted in Ford (1997, p. 4)
is used, whereby an approximate estimate of the degree of productivity
improvements is obtained by using an index number of bank branches of all
kinds (although medium sized business banks are excluded).

In the case of Taiwan financial innovation accelerated around the end of 1989 and
the changes are assumed to occur gradually and continuously throughout the years
and be assimilated by individuals as they occurred, Innovation2; or a period of
learning occurs before individuals adapt to the change of regime, Innovation1.

3. DATA AND MODEL SPECIFICATION

The level of monetary aggregation selected for this study was M2, as this is the
measure currently monitored by the monetary authorities in Taiwan. Four different
M2 measures were used independently to predict future movements in the inflation
rate. Monetary data thus consisted of three Divisia series provided by Ford (1997),
one conventional Divisia, (DIVM2), Innovation1 (INN1) and Innovation2 (INN2),
together with a simple sum series (M2), constructed from component assets
obtained from the Aremos-Financial Services database in Taiwan. The Divisia
M2 (DIVM2) aggregate is constructed by weighting each individual component
by its own interest rate whilst Innovation1 (INN1) and Innovation2 (INN2) seek to
improve upon the weighting system by capturing the true monetary services flow
provided by each component asset more accurately. Thus INN1 is a development
of DIVM2 and it should be noted that it does not diverge from the conventional
Divisia measure until the late 1980s. The second modified Divisia series, INN2
assumes a period of gradual and continuous learning by agents as they adapt to
the increased productivity of money throughout the period and corrects, at least
partially, for the distortion arising from technological progress. Individuals are thus
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Fig. 1. Inflation and Predicated Inflation Using Innovation1.

assumed to adjust their holdings of financial assets until the diffusion of financial
liberalization is complete.

Inflation was constructed for each quarter as year-on-year growth rates of prices.
Quarterly data over the sample period 1970Q1–1995Q3 was used as illustrated in
Fig. 1. Our preferred price series, the Consumer Price Index (CPI), was obtained
from DataStream. The four monetary series were subjected to a smoothing process
by taking three quarter averages to reduce noise. Finally, to avoid the swamping
of mean percent error (MPE) by huge values during a period of very low inflation
from 1983 to 1986, the entire series was translated upwards by 5%. Measures of
absolute error (RMS and MAD) are unaffected by this translation and results are
presented on this basis. Of the total quarterly data points available, after loss of
data points due to the smoothing process and the time lag implicit in the model
of up to four quarters, 96 quarters remained, of which the first 85 were used for
training and the last 7 were used as a validation set. The first 4 items were only
used as a basis for the first prediction.

The aim of the co-evolutionary model is to evolve a neural network that
represents the predictive function. In previous work, Kendall et al. (2001), an
evolutionary strategy used a linear function. One of the criticisms of the previous
work is the use of a linear model. In this work, due to the activation function used
within the neural network, it has the ability to evolve a non-linear function.

4. CO-EVOLUTION MODEL

Evolutionary strategies (ES) are closely related to genetic algorithms, with
(possibly) some of the same inherent difficulties (Horn & Goldberg, 1994;
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Szipro, 2002). Originally evolutionary strategies used only mutation, only used
a population of one (i.e. a single individual) and were used to optimise real valued
variables. More recently, ES’s have used a population size greater than one, they
have used crossover and have also been applied to discrete variables (see Back
et al., 1991; Herdy, 1991). However, they are extensively used as an optimisation
tool for real variables, using mutation, rather than crossover.

An individual in an ES is represented as a pair of real vectors, v = (x, �). The
first vector, x, represents a point in the search space and consists of a number of real
valued variables. The second vector, �, represents a vector of standard deviations.

Mutation is performed by replacing x by

xt + 1 = xt + N(0, �) (2)

where N(0, �) is a random Gaussian number with a mean of zero and a standard
deviation of �. This mimics the evolutionary process that small changes occur
more often than larger ones.

In evolutionary computation there are two variations with regard to how the
new generation is formed. The first, termed (� + �), uses � parents and creates
� offspring. Therefore, after mutation, there will be � + � members in the
population. All these solutions compete for survival, with the � best selected
as parents for the next generation. An alternative scheme, termed (�, �), works
by the � parents producing � offspring (where � > �). Only the � compete for
survival. Thus, the parents are completely replaced at each new generation. In this
work, we use a 1 + 1 strategy.

Good introductions to evolutionary strategies can be found in Fogel (1998, 2000)
and Michalewicz and Fogel (1996, 2000).

The artificial neural networks we utilise are feed forward networks that have their
weights adapted using evolutionary strategies, rather than a supervised learning
technique such as back propagation. The networks comprise an input layer, with
the neurons within that layer using an identify function. A hidden layer, with a
varying number of neurons, is used, with the number of nodes being a matter
of experimentation (see Table 1 and Section 4). The network has a single output
neuron, which is the predicted inflation rate. The hidden and output neurons use
a non-linear activation function, which, in these experiments is either sigmoid
(Eq. (3)) or tanh (Eq. (4)). In (3) and (4), x is the input value to the given neuron
and a is the slope of the sigmoid function.

f(x) = 1

1 + e−ax
(3)

f(x) = ex − e−x

e + e−x
(4)
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Table 1. Co-Evolutionary Results Average Errors Over 5 Trials.

M2 DIVM2 INN1 INN2

Within sample
RMS 0.050759 0.038414 0.039012 0.044366
MAD 0.024788 0.023520 0.023335 0.024782
MPE 20% 22% 21% 21%

Out-of-sample
RMS 0.035561 0.014817 0.020179 0.151284
MAD 0.031064 0.012219 0.017148 0.128701
MPE 34% 14% 19% 145%

In the experiments a population of 20 neural networks are created. The networks
have a fixed structure and the population is homogeneous from the point of view
of the structure. The weights are assigned small random values.

Each neural network is presented with the entire set of training data (86 samples)
and the output for each sample is compared against the actual inflation rate for that
quarter. The fitness for a particular neural network is then given by

86∑
i=1

(ti − oi )
2 (5)

where t = the training value presented to the network and o = the actual output
from the network.The aim is to minimize Eq. (5) and the final network (after the
entire evolutionary process) that produces the minimum value is the one that is
used on the validation set (10 samples).

Once all 20 neural networks have had the training data presented, they are sorted
based on their fitness (Eq. (5)) and the best 10 are selected to survive to the next
generation. These are copied (in order to maintain a population size of 20) and
the copied networks have their weights mutated in order to try and improve their
predictive ability. This is done using Eq. (2). In addition, the value of � is also
mutated using Eq. (6).

� = �∗exp(�∗N(0, �)) (6)

where � = (2(NW)0.5)−0.5 and NW = The number of weights in the neural network.
This process continues for 1,000,000 iterations. One million iterations was

chosen as a good trade off between time taken (about one hour on a standard
desktop PC (1.5GHZ)) and to give the possibility of a suitably good neural network
evolving. There is a danger that we could “overfit” the data (Lawrence et al., 1997).
That is, the validation set can produce a larger error than the training data. We did
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carry out some experiments, in order to find out if this was the case, and we do not
believe that this is happening.

In this work we evolve a population of neural networks which are evaluated by
considering how well the network can predict the test cases in the data (in sample).
Once evolution has completed the best individual (i.e. evolved neural network) is
tested to see how well it can predict the data that it has not seen before (out of
sample). The input supplied to the neural network is the four previous quarters
from the money supply currently being tested (i.e. M2, DIVM2, INN1, INN2) and
an autoregressive term in the form of the previous months inflation figure. The
network has one output, a prediction of the next quarters inflation rate.

A population of 20 networks was randomly created and, after evaluating them,
the top 10 are retained and evolved using an evolutionary strategy. In addition
to evolving the weights in the network, the sigma value (that is, the standard
deviation value used in the mutation operator) is also evolved. Sigma is initially set
to 0.05.

Various experiments were conducted. The number of hidden neurons was varied
between 3 and 5 and sigmoid and tanh activation functions were used in the hidden
layer (an identify function was used for the input and output layer). Each test
consisted of 1,000,000 iterations so as to be comparable with the results reported
in Kendall et al. (2001).

In summary, the various parameters we used are as follows:

� Measures: {M2, DIVM2, INN1, INN2);
� Population Size of Networks: 20;
� Iterations: 1,000,000;
� Networks Retained and Mutated: 10;
� Input Neurons: 5;
� Hidden Neurons: {3,4,5};
� Activation fn (hidden): {sigmoid, tanh};
� Activation fn (input/output): identity;
� All results averaged over 6 runs.

Therefore, we conducted 120 (|Measures| × |Hidden Neurons| × |Activations fn
(hidden)| × Averaged over six runs) runs, each of 1,000,000 iterations.

5. TESTING AND RESULTS

The four money measures (M2, DIVM2, INN1 and INN2) were tested
independently and these results compared against previous results obtained on
the same data using a neural network approach, but with some slight variations
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Table 2. Co-Evolutionary Results for Best-Fit Model.

M2 DIVM2 INN1 INN2

Within Sample
RMS 0.050696 0.040938 0.041234 0.048419
MAD 0.024900 0.024000 0.023000 0.026300
MPE 20% 22% 20% 23%

Out-of-Sample
RMS 0.017289 0.013175 0.011312 0.080092
MAD 0.013800 0.012000 0.008300 0.078500
MPE 15% 14% 9% 89%

Note: All these results used the tanh activation function with five hidden neurons. However, the other
models gave similar results.

(see Binner et al., 2002b, for a full description of the neural network procedure
employed). The results reported here are the arithmetic means calculated over six
individual trials of the co-evolutionary approach and are divided between within
sample (the training set) and out-of-sample (the validation set). Within these two
categories, three standard forecasting evaluation measures were used to compare
the predicted inflation rate with the actual inflation rate, namely, Root Mean
Squared Error (RMS), Mean Absolute Difference (MAD) and Mean Percent Error
(MPE). The in-sample and out-of-sample results produced by the co-evolutionary
approach averaged over six trials are shown in Table 1. These six trials represent
varying the number of hidden neurons (3) and the hidden layer activation function
(2). These two parameters are used when testing all the Divisia measures (M2,
DIVM2, INN1, INN2). The best fitting model is shown in Table 2. This trial
represents 3 hidden neurons and using the tanh activation function. Previous results,
using neural networks are shown in Table 3. Results for trial 6 only are presented

Table 3. Comparison with Neural Network Results.

M2 DIVM2 INN1 INN2

Within Sample
RMS 0.032106 0.022578 0.018764 0.026806
MAD 0.024700 0.017500 0.013900 0.018200
MPE 30% 22% 16% 21%

Out-of-Sample
RMS 0.014801 0.016043 0.010715 0.011575
MAD 0.013800 0.015000 0.00800 0.009000
MPE 16% 17% 9% 10%
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Table 4. Forecasts from a Random Walk.

Within Sample Inflation

RMS 0.0428365
MAD 2.12%
MPE 63.24%

Out-of-Sample
RMS 0.013972
MAD 1.02%
MPE 26.79%

for reasons of brevity, although the pattern of findings is consistent across all six
trials performed. Table 4 presents results obtained from a simple random walk
model for comparative purposes.

A comparison of Tables 1 and 3 reveals that co-evolution clearly competes
favorably with the neural network, on average, in terms of forecasting capabilities
across all forecasting evaluation methods both in- and out-of sample. When the
results of the best-fitting co-evolutionary model are considered, however, using trial
6 presented here in Table 2, the co-evolutionary method produces forecasts equal
to or superior to the neural network in eight out of 12 out-of-sample cases analysed.
This result is representative of all six co-evolutionary trials performed. The best
inflation forecast is achieved using the INN1 monetary aggregate, where the
co-evolutionary approach RMS error is 14% lower than that achieved for Divisia
M2 and 34% lower using forecasts from the simple sum M2 model. Figures 1 and 2

Fig. 2. Inflation and Predicated Inflation Using Simple Sum M2.
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illustrate the best fitting (INN1) and worst fitting (M2) forecasts for the co-
evolutionary technique. On average, evidence presented in Table 1 clearly indicates
that both INN1 and standard Divisia M2 outperform the simple sum M2 counterpart
in all cases out-of-sample. INN2 is undoubtedly the worst performing aggregate,
producing out-of-sample RMS errors some 7.5 times greater than INN1 on
average.

Comparison of Tables 3 and 4 reveal that the best fitting neural network RMS
errors (INN1) are 44% lower than the equivalent random walk forecast within
sample and 23% lower than the random walk forecast out of sample. In the case
of the co-evolutionary model, RMS errors for the best fitting model (INN1) are
4% lower than the random walk forecast within sample and 19% lower than the
random walk forecast out of sample.

6. CONCLUDING REMARKS

This research provides a significant improvement upon Kendall et al. (2001) in
terms of comparative predictive performance of co-evolution, which has been
found to compete very favourably with neural networks and has the potential to beat
neural networks in terms of superior predictive performance when co-evolution is
used to evolve neural networks. Artificial Intelligence techniques in general and co-
evolution in particular are highly effective tools for predicting future movements
in inflation; there is tremendous scope for further research into the development
of these methods as new macroeconomic forecasting models.

The evidence presented here provides overwhelming support for the view that
Divisia indices are superior to their simple sum counterparts as macroeconomic
indicators. It may be concluded that a money stock mismeasurement problem exists
and that the technique of simply summing assets in the formation of monetary
aggregates is inherently flawed. The role of monetary aggregates in the major
economies today has largely been relegated to one of a leading indicator of
economic activity, along with a range of other macroeconomic variables. However,
further empirical work on Divisia money and, in particular, close monitoring of
Divisia constructs that have been adjusted to accommodate financial innovation,
may serve to restore confidence in former well established money-inflation
links. Ultimately, it is hoped that money may be re-established as an effective
macroeconomic policy tool in its own right. This application of evolutionary
strategies to explore the money – inflation link is highly experimental in nature and
the overriding feature of this research is very much one of simplicity. It is virtually
certain in this context that more accurate inflation forecasting models could be
achieved with the inclusion of additional explanatory variables, particularly those
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currently used by monetary authorities around the world as leading indicator
components of inflation.

ACKNOWLEDGMENT

The authors gratefully acknowledge the help of Prof Jim Ford at the University of
Birmingham for providing the Innovation Adjusted Divisia data.

REFERENCES

Baba, Y., Hendry, D. F., & Starr, R. M. (1985). A stable U.S. money demand function, 1960–1984,
Paper presented at the Fifth World Congress of the Econometric Society. Cambridge, MA,
USA, August.

Baba, Y., Hendry, D. F., & Starr, R. M. (1990). The demand for M1 in the USA, 1960–1988, mimeo.
San Diego, USA: Department of Economics, University of California.

Back, T., Hoffmeister, F., & Schwefel, H.-P. (1991). A survey of evolution strategies. In: R. Belew &
L. Booker (Eds), Proceedings of the Fourth Conference on Genetic Algorithms (pp. 2–9). San
Mateo, CA: Morgan Kaufmann.

Barnett, W. A. (1978). The user cost of money. Economic Letters, 1, 145–149. Reprinted in: W. A.
Barnett & A. Serletis (Eds), The Theory of Monetary Aggregation (Chap. 1, 2000, pp. 6–10).
Amsterdam: North Holland.

Barnett, W. A. (1980). Economic monetary aggregates; An application of index number and
aggregation theory. Journal of Econometrics, 14(1), 11–48. Reprinted in: W. A. Barnett & A.
Serletis (Eds), The Theory of Monetary Aggregation (Chap. 2, 2000, pp. 11–48). Amsterdam:
North Holland.

Barnett, W. A. (1984). Recent monetary policy and the divisia monetary aggregates. The American
Statistician, 38, 165–172. Reprinted in: W. A. Barnett & A. Serletis (Eds), The Theory of
Monetary Aggregation (Chap. 23, 2000, pp. 563–576). Amsterdam: North Holland.

Barnett, W. A. (1997). Which road leads to stable money demand? Economic Journal, 107, 1171–1185.
Reprinted in: W. A. Barnett & A. Serletis (Eds), The Theory of Monetary Aggregation (Chap. 24,
2000, pp. 577–592). Amsterdam: North Holland.

Barnett, W. A., & Choi, S. (1989). A Monte Carlo study of blockwise weak separability. Journal of
Business and Economic Statistics, 7, 363–377.

Barnett, W. A., Fisher, D., & Serletis, A. (1992). Consumer theory and the demand for money. Journal
of Economic Literature, 30, 2086–2119. Reprinted in: W. A. Barnett & A. Serletis (Eds), The
Theory of Monetary Aggregation (Chap. 18, 2000, pp. 389–430). Amsterdam: North Holland.

Belongia, M. T. (1996). Measurement matters: Recent results from monetary economics re-examined.
Journal of Political Economy, 104(5), 1065–1083.

Belongia, M. T. (2000). Consequences of money stock mismeasurement: Evidence from three countries.
In: M. T. Belongia & J. M. Binner (Eds), Divisia Monetary Aggregates: Theory and Practice
(Chap. 13, pp. 292–312). Basingstoke, UK: Palgrave.

Binner, J. M., Elger, T., & dePeretti, P. (2002a). Is UK risky money weakly separable? A stochastic
approach, Department of Economics, Lund University, Working Paper. S-woPEc No. 13.



142 JANE M. BINNER ET AL.

Binner, J. M., Gazely, A. M., & Chen, S. H. (2002b). Financial innovation in Taiwan: An application
of neural networks to the broad money aggregates. European Journal of Finance, 8(2),
238–247.

Diewert, W. E. (1976). Exact and superlative index numbers. Journal of Econometrics, 4(2), 115–145.
Dorsey, R. E., & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima,

nondifferentiability and other irregular features. Journal of Business and Economics Statistics,
13, 53–66.

Drake, L., Mullineux, A. W., & Agung, J. (1997). One divisia money for Europe. Applied Economics,
29(6), 775–786.

Fogel, D. B. (1998). Evolutionary computation the fossil record. IEEE Press.
Fogel, D. B. (2000). Evolutionary computation: Toward a new philosophy of machine intelligence

(2nd ed.). IEEE Press.
Ford, J. L. (1997). Output, the price level, broad money, and Divisia aggregates with and without

innovation: Taiwan, 1967(1)–1995(4). Discussion paper 97–17. Department of Economics, the
University of Birmingham, UK.

Ford, J. L., Peng, W. S., & Mullineux, A. W. (1992). Financial innovation and Divisia monetary
aggregates. Oxford Bulletin of Economics and Statistics, 87–102.

Friedman, M., & Schwartz, A. J. (1970). Monetary statistics of the United States. New York, USA:
Columbia University Press.

Friedman, M., & Schwartz, A. J. (1982). Monetary trends in the United States and in the United
Kingdom. Chicago, USA: University of Chicago Press.

Gazely, A. M., & Binner, J. M. (2000). The application of neural networks to the Divisia index debate:
Evidence from three countries. Applied Economics, 32, 1607–1615.

Hall, S. G., Hendry, S. G. B., & Wilcox, J. B. (1989). The long run determination of the U.K. monetary
aggregates. Bank of England Discussion Paper, No. 41, August.

Hallman, J. J., Porter, R. D., & Small, D. H. (1991). Is the price level tied to the M2 monetary aggregate
in the long run? American Economic Review, 81(4).

Hendry, D. F., & Ericsson, N. R. (1990). Modelling the demand for narrow money in the U.K. and
the United States, Board of Governors of the Federal Reserve System, International Finance
Discussion Papers, No. 383.

Herdy, M. (1991). Application of the evolution strategy to discrete optimization problems. Proceedings
of the First International Conference on Parallel Problem Solving from Nature (PPSN). In:
H.-P. Schwefel & R. Manner (Eds), Lecture Notes in Computer Science (Vol. 496, pp. 188–192).
Springer-Verlag.

Horn, J., & Goldberg, D. (1994). Genetic algorithm difficulty and the modality of fitness landscapes.
In: Proceedings of Foundations of Genetic Algorithms (FOGA) 3. Workshop held July 30 to
August 2. Colarado, USA.

Kendall, G., Binner, J. M., & Gazely, A. M. (2001). Evolutionary strategies vs. neural networks: An
inflation forecasting experiment. In: H. R. Arabnia (Ed.), Proceedings of the International
Conference on Artificial Intelligence (IC’AI) (pp. 609–615, ISBN 1-892512-79-3). Las Vegas
Nevada USA: CSREA Press.

Lawrence, S., Giles, C. L., & Tsoi, A. C. (1997). Lessons in neural network training: Overfitting may
be harder than expected. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97) (pp. 540–545). Menlo Park, CA: AAAI Press.

Michalewicz, Z., & Fogel, D. B. (1996). Genetic algorithms + data structures = evolution programs
(3rd revision and extended ed.). Berlin: Springer-Verlag.

Michalewicz, Z., & Fogel, D. B. (2000). How to solve it. ISBN 3-540-66061-5. Springer-Verlag.



Co-Evolving Neural Networks with Evolutionary Strategies 143

Shih, Y. C. (2000). Divisia monetary aggregates for Taiwan. In: M. T. Belongia & J. M. Binner (Eds),
Divisia Monetary Aggregates; Theory and Practice (Chap. 10, pp. 227–248). Basingstoke, UK:
Palgrave.

Svensson, L. (2000). The first year of the Eurosystem: Inflation targeting or not? NBER Working Paper,
W7598.

Swofford, J. L., & Whitney, G. A. (1988). A comparison of non-parametric tests of weak separability for
annual and quarterly data on consumption, leisure and money. Journal of Business Economics
and Statistics, 6, 241–246.

Swofford, J. L., & Whitney, G. A. (1994). A revealed preference test for weakly separable utility
maximization with incomplete adjustment. Journal of Econometrics, 60(1–2), 235–249.

Szipro, G. G. (2002). Tinkering with genetic algorithms: Forecasting and data mining in finance
and economics. In: S.-H. Chen (Ed.), Evolutionary Computation in Economics and Finance.
Heidelberg: Physica Verlag.

Varian, H. R. (1982). The non-parametric approach to demand analysis. Econometrica, 50, 945–974.
Varian, H. R. (1983). Non-parametric tests of consumer behavior. Review of Economic Studies, 50,

99–110.





FORECASTING THE EMU INFLATION
RATE: LINEAR ECONOMETRIC VS.
NON-LINEAR COMPUTATIONAL
MODELS USING GENETIC NEURAL
FUZZY SYSTEMS

Stefan Kooths, Timo Mitze and Eric Ringhut

ABSTRACT

This paper compares the predictive power of linear econometric and non-
linear computational models for forecasting the inflation rate in the European
Monetary Union (EMU). Various models of both types are developed using
different monetary and real activity indicators. They are compared according
to a battery of parametric and non-parametric test statistics to measure
their performance in one- and four-step ahead forecasts of quarterly data.
Using genetic-neural fuzzy systems we find the computational approach
superior to some degree and show how to combine both techniques
successfully.

1. INTRODUCTION

Inflation forecasts are highly significant for economic and political agents. Central
banks are a user of forecasts as they need insight into probable future inflation rates
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when setting their policy instruments which affect economic behaviour with a time-
lag. Especially those central banks which run an inflation targeting regime require
accurate inflation forecasts. A sound foundation for monetary policy decisions
requires insight into the processes responsible for inflation. Ideally, an empirical
model should be available that produces reliable conditional inflation forecasts,
thus indicating how to adjust policy instruments in order to keep inflation in
conformity with the definition of price stability. Erroneous inflation forecasts
lead to poor policy decisions that may impact negatively on real output and
employment. Equivalent to central banks, private agents also have a clear need
for accurate inflation forecasts, because they require them for such purposes as
wage negotiations (labour unions and employers) or for designing credit contracts
(financial institutions).

However, forecasting inflation reliably remains a difficult task and vast resources
are invested in estimation activities that yield an acceptably accurate and rational
forecast output. In empirical economics, a broad variety of models has been applied,
ranging from univariate to multiple regression models (time series methods
such as univariate ARIMA or multivariate VAR models, as well as theory-
driven econometric specifications ranging from reduced form representations to
structural multi-equation systems). Moreover, artificial intelligent systems have
been developed and used within complex environments and opaque systems.
Recently, seminal comparative work has been conducted on the predictive power
of many commonly used econometric procedures and Artificial Neural Networks
(e.g. Rech, 2002; Swansson & White, 1997; Zhang et al., 1998).

In addition to the technique-driven search for optimal forecasting methods,
the lack of consensus as to which economic theory – if any – best derives
indicator variables for predicting movements in prices, is also highly relevant when
testing various forecasting approaches. Typically, such indicators are based on
macroeconomic concepts such as the Pstar model (e.g. Gerlach & Svensson, 2003;
Nicoletti Altimari, 2001), mark-up pricing (e.g. Banerjee et al., 2001; De Brouwer
& Ericsson, 1998) or classical final demand specifications underlying the Phillips
curve (e.g. Stock & Watson, 1999). However, findings as to the best predictor
of price movements are specific to country data and sample choice, resulting in
rather mixed empirical evidence. For U.S. data Stock and Watson (1999) found
real activity variables derived from the final demand Phillips curve best suited
to explain and forecast inflation for the last decades, while similar forecasting
systems yield superior results for monetary aggregates predicting inflation for the
EMU area (e.g. Nicoletti Altimari, 2001).

Moreover, when evaluating inflation indicators based on long-run regressions,
fairly eclectic models are generally used in the literature, that allocate different
levels of significance to different indicators in subsequent periods and therefore
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treat inflation as a general phenomenon deriving from different sources (e.g.
Fic, 2003; Hendry, 2001; Kim, 2001). The advantage of eclectic models is
that they make use of a number of variables that need not stem from one
a-priori chosen theoretical concept alone. Thus, the potential for empirical
investigation is widened, while the risk of possible model misspecifications is
reduced.

The scope of this paper extends to three dimensions. The first dimension
is methodical: we seek to determine whether the predictive power of dynamic
single-equation, linear econometric models outperform models based on a
novel computational approach using genetic-neural fuzzy rule-bases when
forecasting the EMU inflation rate. The latter approach is a non-linear, fully
interpretable procedure that is implemented with the software GENEFER (GEnetic
NEural Fuzzy explorER, www.genefer.de). The software automatically constructs,
simplifies and tunes a fuzzy rule-base FRB, on the basis of a training database,
by means of Genetic Algorithms and Neural Networks. Since linear econometric
models are by far the most commonly applied inflation predictors, they can be seen
as established competitor for the novel computational approach.

The second dimension accounts for the variety of (competing) inflation
theories for constructing econometric and computational models. This facilitates
a reconsideration of the ongoing dispute among economists as to which theory
best explains inflation, when deriving leading indicators of price level changes.
The forecasts are evaluated according to a broad battery of test statistics, which
can be seen as a third dimension of our analysis. We distinguish between
parametric and non-parametric evaluation criteria in order to evaluate, which
indicator-model-combination best predicts the general direction and pattern
changes or the absolute level of inflation. The advantage of combining multiple
dimensions in this competition set-up is that – since we evaluate the applied
forecasting techniques on a broader and more balanced modelling basis with
respect to a variety of test statistics – the results are more robust with respect to
each dimension. In this way, we can provide sound recommendations with respect
to: (1) the superior forecasting technique; and (2) the best indicator identification
procedure.

The remainder of the paper is organised as follows: We describe the empirical
data set in Section 2. In Section 3 we derive a set of inflation indicators linked
to the outline of the econometric forecasting technique. The presentation of the
computational approach follows in Section 4. The forecasting set-up and evaluation
criteria based on parametric and non-parametric test statistics are discussed in
Section 5. In Section 6 we present and analyse out-of-sample forecast results for
various models of both estimation techniques. Finally, Section 7 summarises the
key findings and provides suggestions for further research.

http://www.genefer.de
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2. DATA SET

The time series used in the forecasting experiments are mainly from an ECB study
by Fagan et al. (2001).1 The database contains time series on a quarterly basis from
the first quarter of 1980 until the fourth quarter of 2000 (in total 80 observations).
All series are aggregated data for an area-wide model (AWM) of the EMU based
on the EU11. The inflation rate is defined as the quarter-to-quarter change of
an artificially constructed harmonized consumer price index, using a fixed set of
weights for each country. Beside the AWM database the time series of oil price
changes (�poil) is from the World Market Monitor (WMM) database, based on
the spot market price for oil. The ECU/U.S.$ nominal exchange rate is given by
Eurostat (obtained via Datastream with Mnemonic: USESXECU. The exchange
rate is originally the Dollar to ECU rate and was converted for the purpose of
this paper). The change in energy prices (�penergy) as well as the Bundesbank’s
inflation objective stem from a study of Svensson and Gerlach (2003).2 The latter
is used to derive a time series for an implicit central bank inflation objective for
the EMU area, yielding inflation expectations as one of the models’ driving forces.
All time series were transformed into natural logarithms.

Since the main purpose of this paper is a technical comparison between
different estimation techniques, we do not pay explicit attention to the historical
circumstances of the chosen sample. For example, problems in the European
exchange rate mechanism in the beginning of the 1990s, indicated by a break
in long-run velocity are expected to worsen the fit of monetary indicators. Further
research should consider these issues more carefully. Also, one should bear in
mind that the database is an artificial construction and may be biased due to the
calculation method. However, until longer time series for the EMU are available,
the use of constructed data can be seen as the most promising approach for
modelling and forecasting purposes.

We divided the database into an in-sample or training subset from 2/823 to 4/96
(59 observations) and an out-of-sample subset from 1/97 until 4/2000. All models
are exclusively estimated with respect to the former, whereas the latter is used for
evaluation purposes only.

3. ECONOMETRIC FORECASTING TECHNIQUE

In terms of econometrics GENEFER is most similar to a single-equation approach.
Therefore, we drop VARs and structural multi-equation systems when contrasting
the predictive power of standard econometric tools with the computational
approach.
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To derive a set of single equation inflation models, we apply (multi)cointegration
analysis based on a two-stage modelling strategy that is closely related to the
well-known Engle and Granger (1987) methodology: At the first stage, particular
cointegration relationships are estimated separately to obtain leading indicators
capturing deviations from a stable long-run relationship between the aggregate
price level, real activity and monetary variables. At the second stage, the calculated
error-correction terms are inserted into the final inflation equation as a vector of
explanatory variables.

Defining equilibrium as a stable long-run cointegration relation, a measure of
disequilibrium in a particular market can be derived as a deviation of the price level
from its normal path. For modelling purposes, we use a dynamic single-equation
autoregressive distributed-lag approach, as supposed by Pesaran and Shin (1995),
of the following general ARDL(q0, q1, . . ., qn) form4

yt = �0 +
q0∑
i=1

�1,i yt−i +
q1∑
i=0

�2,i x1,t−i + · · · +
qn∑
i=0

�n,i xn,t−i + �t , (1)

where y is the dependent variable, which is regressed on q0 lags of its own and
on q1 to qn lags of n explanatory variables x. �0 to �n are coefficients, with �0
being a constant, �t is an (iid) disturbance term and t is a time index. From (1) the
long-run coefficients for all exogenous variables can be calculated based on the
assumption that in a long-run equilibrium, there is no tendency for change such
that yt = yt−1 = yt−2 = · · · = ylr . Using these long-run characteristics, we can
calculate the long-run coefficients as

ylr = �0

1 −∑q0
i=1�1,i

+
∑q1

i=0�2,i

1 −∑q0
i=1�1,i

xlr
1 + · · · +

∑qn
i=0�n,i

1 −∑q0
i=1�1,i

xlr
n (2)

Using OLS, we start estimating a general model including a maximum lag length
of 5 for all variables. We therefore use an algorithm that estimates a total of
(q + 1)n+1 models (with q = 5 for the maximum number of lags and n as the
number of variables) and choose the best specification according to the Schwartz-
Bayesian (SBC) information criterion (e.g. Pesaran & Shin, 1995).

From (2), we can calculate error-correction terms (ect) as the difference of
actual and long-run values of ect = (y − ylr ). They capture the deviation from a
long-run cointegration path and are used as leading indicators for future inflation.
At the second stage, we estimate various models based on the derived ec-terms
using the general-to-specific modelling approach. That is, we start from a rather
general model and subsequently exclude statistically insignificant variables to
obtain a more parsimonious form. The general set-up for the inflation model can be
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written as:

�t =
4∑

i=1

�iDt,i +
N∑

n=1

T∑
n=1

�n,iectn,t−i +
M∑

m=1

T∑
j=0

�m,jzm,t−j + �t . (3)

Equation (3) specifies the inflation rate (�t ), which is defined as �t ≡ pt − pt−1
(with p = price index), in terms of the variables on the right with z1, . . ., zM =
other exogenous (short-run) variables, Di = deterministic seasonal, �, �, � =
coefficients, � = residual. Inserting more than one error correction term into the
equation constitutes the main difference with regard to the commonly used error-
correction model.

When deriving the error-correction terms we concentrate on different models
based on the augmented Phillips curve theory assigning different weights to
demand pressure variables in production factors, final goods and monetary
aggregates as:

markup = (mupt − mup∗
t ) with: mup∗ = f(ulc, pim) (4)

ygap = (yt − y∗
t ) with : y∗ = f(trend) (5)

mgap = (mrt − mr∗t ) with : mr∗ = f(y∗, i∗). (6)

Equation (4) relates inflationary pressure to deviations of marked-up prices over
marginal costs (mup) from their equilibrium level (mup∗), recasting the markup
model of inflation.5 In the markup model, mup∗ is a function of unit labour costs
(ulc) and import prices (pim). Turning to indictor models of excess final demand
rather than factor demand pressure, we obtain the final demand Phillips curve in
(5), relating inflation to deviations of actual output (y) from its equilibrium path
(y∗), which is expressed in the output gap (ygap). In (5), we model y∗ as a function
of a time trend.6

Moreover, we can derive a monetarist version of the modified Phillips curve,
starting from a quadratic price adjustment cost model (e.g. Roberts, 1995;
Rotemberg, 1982; Tödter, 2002) which can be seen as an extension of the standard
markup pricing approach. The model results in the real money gap (mgap) as the
driving force for inflation. This model relates deviations of real money balances
(mr = m − p, with m = nominal money supply) from equilibrium value mr∗ as
a function of equilibrium output (y∗) and interest rates (i∗), thereby recasting the
quantity theory of money (e.g. Gerlach & Svensson, 2003). Finally, as suggested
by Nicoletti Altimari (2001) we can further use the monetary overhang (monov)
as a closely related monetarist indicator to (6). The monov is calculated as:

monov = (mrt − mrlr
t ), mrlr = f(y, i), (7)
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Long-run real money balances (mrlr ) are estimated as a function of output (y) and
nominal interest rates (i).7

In order to obtain the ec-terms of (4), (6) and (7), we apply the ARDL model
while (5) is estimated as a trend regression. The algorithm estimating an ARDL
based on the SBC criterion, yields the following lag-structure: Equilibrium values
of marked up prices (mup∗) are estimated as an ARDL(4,0,1) model, the mgap∗
yields an ARDL(5,0) form,8 the monov results in an ARDL(5,2,0) model with the
following, significant long-run coefficients (t-values in brackets):

mup∗ = 4, 2738
(11,05)

+ 0, 8812 ulc
(22,53)

+ 0, 1673 pim
(2,06)

(8)

y∗ = 6.67
(1187,4)

+ 0.006t
(44,42)

(9)

(m − p)∗ = −6, 8174
(−27,44)

+ 1, 4899y∗
(41,83)

(10)

(m − p)lr = −5, 6125
(−14,01)

+ 1, 3495y
(26,78)

− 0, 0849r
(−2,96)

. (11)

We further calculate rather simple disequilibrium terms for external inflationary
pressure caused by excess demand in the international goods and financial markets
using:

ereal
t = 0, 362 − (et + pf

t ) − pt (12)

�t = �et + (r − rf )t−1, (13)

with ereal = real exchange rate as deviations from purchasing power parity (PPP,
with the sample mean set to zero), � = deviations from uncovered interest parity
(UIP), e = nominal Euro-Dollar exchange rate, �e = exchange rate change, pf =
foreign price index.

Before we estimate a set of models, we must specify the additional exogenous
variables zM , which initially include an expectational component accounting for
the influence of expectation formation on inflation:

�e
t = (1 − �)�obj

t + �(�obj
t−1 − �t−1), (14)

where �e
t = expected inflation rate, �

obj
t = implicit ECB inflation objective, the

superscript e denotes expected values. In analogy to the ec-terms, (14) can be seen
as a partial adjustment mechanism: Inflation expectations are formed according to
the central bank’s inflation objective (�obj

t ) and a correction factor (�obj
t−1 − �t−1)

that accounts for lagged deviations of actual inflation from the inflation objective.
For details see Gerlach and Svensson (2003). Furthermore, the exogenous variables
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Table 1. Econometric Models and In-Sample Fit.

Model Dependent Variable: �(t) R2 Breusch-Godfrey ARCH White Jarque-Bera RESET
List of Explanatory Variable (SEE)a LM Testb Testb Test b Testb Testb

ygap trend D, �e (t), ygap trend(t − 1), �e(t − 1),
�poil(t)

0.8864 1.795 0.575 1.22 1.72 1.079
(−0.0075) (0.177) (0.451) (0.294) (0.424) (0.347)

ygap hp D, �e (t), ygap hp(t − 1), �e(t − 1),
�poil(t)

0.8674 2.99 0.006 1.6 1.743 0.657
(−0.0081) (0.059) (0.937) (0.113) (0.418) (0.522)

ygap cd D, �e (t), ygap cd(t − 1), �e(t − 1),
�poil(t)

0.8674 0.766 0.365 1.921 1.912 0.676
(−0.0081) (0.470) (0.548) (0.047) (0.384) (0.512)

monov D, �e (t), monov(t − 1), �e(t − 1),
�poil(t)

0.8654 0.083 0.061 2.163 0.676 0.152
(−0.0083) (0.919) (0.804) (0.028) (0.713) (0.859)

markup D, �e (t), markup(t − 1),�e(t − 1),
�poil(t)

0.8993 0.819 1.462 1.408 0.262 0.453
(−0.0067) (0.446) (0.231) (0.186) (0.877) (0.638)

mgap D, �e (t), mgap(t − 1), �e(t − 1),
�poil(t)

0.8433 0.05 1.498 1.932 1.483 0.013
(−0.0078) (0.951) (0.226) (0.046) (0.476) (0.986)

eclectic D, ygap trend(t − 1), mgap(t − 1),
�e (t), markup(t − 1), monov(t − 1),
�(t − 1), �penergy(t − 2), �e(t − 1),
�poil(t), �poil(t − 2)

0.9425 0.829 0.126 2.326 0.189 0.765
(−0.0053) (0.442) (0.723) (0.011) (0.909) (0.386)

a Standard Error of Regression.
bProb-values are given in brackets.
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(zm) contain the current and lagged changes in the energy price index (�penergy)
and the oil price (�poil) to account for short-run shocks, as well as lagged changes
in the Euro-Dollar exchange rate (�e). Table 1 presents the in-sample results for
the single ec-term models for (8) to (11), as well as an eclectic specification. All
derived models perform well in-sample, as indicated by the R2 in the first column
of Table 1. The abbreviations are defined as follows: hp = Hodrick-Prescott (HP)-
filter, cd = Cobb-Douglas production function, trend = trend regression.

In order to test for the in-sample properties of the models, we report some
standard diagnostic test statistics.9 We are especially interested in whether or
not linear specifications represent the proper form of the model. This question
is motivated by our modelling strategy in the next section that uses intelligent
system analysis to allow for non-linearities. Thus, if we detect non-linearities in the
input/output relationship, we expect superior results when switching to intelligent
system models. The explicit testing for models based on monetary aggregates and
real activity variables for non-linearities is suggested by Claus (2000) and Nicoletti
Altimari (2001).

All models pass the standard tests for normality of the residuals (Jarque-Bera
test) and model misspecifications (Ramsey RESET test). Furthermore, we apply
more extended tests for neglected non-linearities (McLeod-Li test, BDS test).
The McLeod-Li test uses the standard Ljung-Box Portmanteau test with the null
hypothesis of no serial correlation to the squared residuals from the derived linear
models (e.g. Lee et al., 1993). The BDS-test makes use of the concept of correlation
integral and is applied to the estimated residuals, testing the null hypothesis of

Table 2. Results of the McLeod-Li Test.

LB(k) LB(1) LB(6) LB(12) LB(24) LB(36)

eclectic 0.00 9.46 16.03 24.20 38.61
(0.994) (0.149) (0.190) (0.450) (0.352)

mgap 0.06 6.78 17.84 39.8** 55.53**

(0.811) (0.341) (0.121) (0.022) (0.020)
mov 1.17 4.12 4.60 14.81 20.53

(0.280) (0.661) (0.970) (0.926) (0.982)
output gap 0.12 3.84 16.09 33.26*** 43.87

(0.727) (0.698) (0.187) (0.099) (0.200)
mark-up 1.55 5.06 14.82 21.92 35.83

(0.214) (0.537) (0.252) (0.584) (0.477)

Note: Prob-values are given in brackets. LB(k) is the Ljung-Box statistic with a lag length of k. The
test statistic is asymptotically �2-distributed with k degrees of freedom.

∗∗Significance on the 5% significance level.
∗∗∗Significance on the 10% significance level.
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Table 3. Results of the BDS Test.

M = 2 � = 0.5	 Critical Value � = 1	 Critical Value

eclectic 3.445** 3.36 −2.781** −2.20
mgap AR(1)-filt. −3.545** −3.24 −2.286** −2.20
monov AR(1)-filt. −0.398 Non sign. −1.227 Non sign.
output gap −7.069* −4.87 3.903* 3.40
mark-up −0.775 Non sign. −0.237 Non sign.

Note: The BDS statistics is a function of two arguments: m as the dimension of the correlation integral
and � as a metric bound. We choose m = 2 as suggested for small sample size and 
 both as
0.5 and 1 times of the standard deviation (	) of the underlying series. Having a small sample
size (T) with (T − m + 1)/m ≤ 200 we use the critical values from Brock et al. (1991). The
residuals of the mgap and monov are filtered according to an AR(1) model, since we detected
autocorrelation in the residuals.

∗Significance on the 1% level.
∗∗Significance on the 5% level.

an identical and independent distribution (iid).10 As argued in Lee et al. (1993),
the BDS test is an appropriate test for detecting general stochastic non-linearities.
The advantage of the test is that it is able to detect additive and multiplicative
non-linearities, whereas the McLeod-Li test is sensitive against multiplicative non-
linearity.

Turning to the results in Tables 2 and 3, the McLeod-Li test does not reject the
null hypothesis of linear specifications for most of the models and appropriate
lag lengths. Nevertheless, for the mgap model the null hypothesis of linearity
in the residuals can be rejected at the 5% significance level for Ljung-Box
statistics with a lag length of 24 and 36 respectively. Also, for the output gap
specification, we obtain weak support for non-linearities in the models. In order
to confirm or reject this presumption, we can refer to the BDS test that seems
more powerful than the McLeod-Li test for small samples of 50 observations.11

The BDS test results indicate non-linear models for the output gap and price gap
specification. The former result is consistent with previous literature (e.g. Claus,
2000) and both results are consistent with the McLeod-Li test. Furthermore,
the result for the eclectic model provides some support for a non-linear
functional form.12

4. A COMPUTATIONAL MODELLING APPROACH

As stated in the previous section, the starting point for econometric modelling
is typically a theoretical model that is assumed to explain how an economy or
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particular market works. The next step is to estimate the model’s parameters
using an empirical data set. In a highly complex economy, it may become
necessary to estimate many different models, based on different explanatory
variables. As Berlemann and Nelson (2002) argue, the final problem is to
identify the econometric model that facilitates a given forecasting success at least
effort.

The genetic-neural fuzzy rule-base approach is simultaneously somewhat
similar and somewhat different to the econometric approach. It also relies on a
given database in order to set the models parameters, but no theoretical model is
needed that explains how inputs and output are linked with each other. GENEFER
is able freely to generate and tune a fuzzy rule-base without any prior knowledge
as to which inputs to select, how many rules to formulate and how to link the
fuzzy sets within one rule. Theoretical models help to pre-select the explanatory
variables that are given to the software as potential inputs, but they are not needed
to identify the functional form of the relationship between the output and input
variables.

In order to work with GENEFER, all time series must be stored in an Excel
worksheet (output data in the first column and input candidates in the following
ones). Depending on the user’s pre-knowledge, the relevant inputs can either be
selected manually or be determined automatically, based on the fuzzy curve/fuzzy
surface (FC/FS) algorithm (e.g. Lin et al., 1996). The selected inputs are then
indexed by superscript from 1 to n.

The next step consists in fuzzifying all variables. After specifying the degree of
granularity f (3, 5 or 7)13 and the type of the fuzzy sets (triangular or gaussian),
their widths (wl,wr) and centres (c) can be set manually or determined by setting a
common overlap degree or applying a clustering algorithm. After completing this
second step, GENEFER provides a fuzzification base FB which is the basis for the
following rule-base generating step.

FB = {{(wl01, c0
1, wr0

1), . . . , (wl0f , c0
f , wr0

f )}, {(wl11, c1
1, wr1

1), . . . ,

× (wl1f , c1
f , wr1

f )}, . . . , {(wln1 , cn
1 , wrn

1), . . . , (wlnf , cn
f , wrn

f )}}. (15)

The software provides three different methods of setting up a rule-base RB. The
user may either set the number of rules and link the fuzzy sets within each
rule manually, or apply an evolutionary or neural generating algorithm. Since
we work only with the evolutionary algorithm here, we ignore the other two.14 The
evolutionary algorithm selects each training pattern (output and input data for one
observation within the training data set) and generates a fuzzy rule by combining
the fuzzy sets of each variable that yield the highest degree of membership for
the crisp values. The generated rule is called a candidate rule and is copied into
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a candidate rule set. After the entire training data set has been processed by this
algorithm, all candidate rules are evaluated according to a multi criterion fitness
function that accounts for the completeness and consistency of a fuzzy rule-base
FRB. The best candidate rule is copied in the generated rule set and all observations
within the training database that are covered to a given degree, are removed.
Following Gordón and Herrera (1997) this procedure is repeated as long as there are
still observations in the training data set that are not covered. The result of this third
step is a consistent fuzzy rule-base that completely covers all observations within
the training data set. Each rule can be identified by its termcode which is a string
of fuzzy set indexes beginning with the output. Example: Given a fuzzification
with five fuzzy sets for the output, input2 and input3 variables and a fuzzification
of input1 with three fuzzy sets, a termcode of “1252” can be interpreted as
follows:

IF Input 1 is medium AND Input 2 is very large
AND Input 3 is low THEN output is very low.

The words in italics are fuzzy terms that represent the linguistic labels of one of
the fuzzy sets for each variable in the FB. They facilitate reading the system in
words and render the fuzzy rule-base transparent and interpretable. Because there
might be redundant rules in the generated rule-base due to the parameter settings
of the evolutionary algorithm, the rule base can be simplified. The simplification
algorithm is based on a binary encoded GA that seeks to reduce the number of rules
with the aim of lowering the MSE of the training database, while simultaneously
maintaining completeness and consistency (e.g. Gordón & Herrera, 1997).

The forecast performance of a fuzzy rule-base is determined mainly by the
cooperation of FB and RB. Since both are generated in subsequent steps, the fuzzy
rule-base can be tuned to further minimize MSE. For that purpose, GENEFER
transforms the fuzzy system into an equivalent neural-fuzzy-system and applies
the (modified) error backpropagation algorithm which guarantees interpretability
of the FB. Alternatively, the user may also choose a genetic procedure (e.g. Gordón
& Herrera, 1997; Kooths & Ringhut, 2003).

The final result is a set of fuzzy rules of equal length (identical number of inputs
in each rule) that were constructed automatically, by acquiring the knowledge
within the training database. The user can now present new input observations to
the FRB and let GENEFER do the forecasting. Since new observations mean new
experience, the forecast errors indicate the need for learning procedures that update
the knowledge base (= FRB). Therefore GENEFER provides learning algorithms
that allow modifying the RB as well as the FB during the out-of-sample forecast
computation (see Section 6). Additionally, there is a COM-interface available that
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Fig. 1. GENEFER Estimation Set-Up.

links GENEFER to Excel and allows for pre-processing input data or evaluating
GENEFER’s forecasts. The software itself also provides analysis tools for exact
tracking of each calculation and for analysing the forecasts and their evolution
during the learning process.

In accordance with the econometric modelling approach, we develop various
GENEFER models that are comparable with respect to the major input variables as
well as some additional models. The so-called 2-stage (or cooperative) GENEFER
models contain the disequilibrium terms derived from cointegration analysis using
the ARDL approach (first stage) as inputs for the inflation forecast (second stage).
The 2-stage GENEFER models therefore represent a combination of econometric
and computational approaches. The other (1-stage) GENEFER models use the
(lagged) first differences, indicated by the symbol �, of the explanatory variables,
in order to ensure an equal order of integration. The models are labelled
according to the initial databases before input identification. For instance, the
model g mgap � used the mgap database as in the econometric approach. The
explanatory variables may still differ, due to the FC/FS-algorithm. Figure 1 outlines
the two input sources of the GENEFER modelling strategy.

None of the models includes dummies, because the fuzzy approach is so far
not appropriate for binary variables. Table 4 reports the estimated computational
models. We also computed the R2 and performed standard in-sample diagnostic
residual tests for these kinds of models (Table 2 reports a standard F-test and p-
values in brackets). As the test results show, the models’ in-sample performance is
comparable to the econometric specifications. All models pass further conducted
stability tests (CUSUM, CUSUMQ).

However, as argued in economic literature, in-sample results say rather little
about out of sample performance: Therefore, we turn to the forecast set-up and
evaluation as the second test for GENEFER models.
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Table 4. GENEFER Models and In-Sample Fit.

Model Dependent Variable: �(t) #Fuzzy Sets R2 Breusch-Godfrey ARCH White
List of Explanatory Variables (�/Input) Type (SEE)a (LM test)b Testb Testb

g ygap trend �e (t), ygaptrend(t − 1), �penergy(t), �e(t − 1) (5/5) 0.859 0.009 0.936 0.153
gaussian (−0.00642) (0.990) (0.337) (0.858)

g ygap hp �e (t), ygaphp(t − 1), �penergy(t), �e(t − 1) (5/3) 0.859 4.694 0.029 0.356
gaussian (−0.00607) (0.013) (0.864) (0.701)

g ygap cd �e (t), ygapcd(t − 1), �penergy(t), �e(t − 1) (5/3) 0.854 2.198 3.53 0.389
gaussian (−0.00634) (0.120) (0.065) (0.678)

g monov �e (t), monov(t − 1), �penergy(t − 1), �e(t − 1) (5/3) 0.773 2.388 0.072 0.838
triangular (−0.00799) (0.101) (0.788) (0.437)

g markup �e (t), markup(t − 1), �e(t − 1), Dpenergy(t),
Dpenergy(t − 1)

(7/3) 0.788 3.459 0.001 1.504
triangular (−0.00728) (0.038) (0.983) (0.231)

g mgap �e (t), mgap(t − 1), �e(t − 1), �penergy(t − 1) (5/3) 0.854 2.951 0.001 1.539
agaussian (−0.00612) (0.153) (0.976) (0.223)

g eclectic �e (t), ygaptrend(t − 1), monov(t − 1),
mark-up(t − 1), e(t − 1), �energy(t), j(t − 1)

(7/3) 0.891 3.421 0.91 0.565
triangular (−0.00587) (0.0233) (0.408) (0.571)

g markup D. �e (t), �ulc(t − 1), �e(t − 1), �penergy(t),
Dpenergy(t − 1),

(5/5) 0.873 1.425 0.285 3.014
triangular (−0.00556) (0.248) (0.595) (0.057)

g mgap D �e (t), �m(t − 4), Dm(t − 5), r(t − 1),
�y*(t − 1), �e(t − 1), �penergy(t)

(5/3) 0.88 1.097 0.055 0.571
gaussian (−0.00596) (0.340) (0.815) (0.567)

g monov D �e (t), �m(t − 5), �m(t − 4), �y(t − 1),
r(t − 1), �e(t − 1), �penergy(t)

(7/3) 0.782 2.951 2.915 1.279
triangular (−0.0084) (0.060) (0.098) (0.286)

g ecletic D �m(t − 1), �m(t − 3), �m(t − 5), r(t − 1),
�penergy(t), �e(t − 1), �e (t), �y*(t − 1),
�ulc(t − 1), �pim(t − 1)

(5/3) 0.896 0.858 1.792 4.152
gaussian (−0.00565) (0.429) (0.176) (0.021)

a Standard Error of Regression.
bProb-values are given in brackets.
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5. FORECAST SET-UP AND EVALUATION CRITERIA

In this section, we compare the results and forecasting power of the econometric
and computational methods, using a simulated out-of-sample task over h-quarter
ahead forecasts. For this reason, we calculate a set of rolling one-step (one
quarter) and four-step ahead (one year) forecasts for each model in a pseudo-
dynamic forecast setting (ex-post forecasts).15 For instance, for the four-step ahead
procedure, we first compute four forecasts for 1/97–4/97 using the actual values
for the explanatory variables and the period-to-period forecasted values for the
inflation rate. The models are then re-estimated for an updated sample until 1/97 to
calculate the next four out-of-sample forecasts from 2/97 until 1/98. This sequential
updating process is continued until the sample is exhausted. This recursive strategy
generates 16 one-step ahead and 13 four-step ahead forecasts for the entire forecast
interval until 4/00.

In order to compare the predictive power of the various models, we calculate
a set of commonly used parametric accuracy measures: the mean squared errors
(MSE), the root mean squared errors (RMSE) and the mean absolute percentage
error (MAPE). We further calculate the Theil’s U statistic with an AR(1) as
a naive benchmark [RMSE(model)/RMSE(AR(1))]. If that test statistic is less
than one, the model at least outperforms the benchmark. In analogy with
Theil’s U, we compute the relative form of the mean absolute error (MAE) as
[MAE(model)/MAE(AR(1))] whose interpretation is in line with Theil’s U. We
also compute the �Theil’s U, in order to gauge the model’s ability to predict
turning points.

Taking into account that measures of the squared sum of residuals such as
RMSE and MAE may derive misleading conclusions and suboptimal results, we
also calculate non-parametric statistics. As a 2×2 contingency table the confusion
matrix identifies the ability of each model to correctly predict the direction of
change in the level of the variable being forecasted, regardless of how closely
the forecast matches the true level. From the confusion matrix, we can derive
the confusion rate (CR) which is the number of falsely predicted changes in the
inflation rate, divided by the number of observed changes. The closer the CR
statistic is to zero, the better the forecasts of the direction of change in inflation,
regardless of the level of accuracy.

Moreover we can use the 2 × 2 contingency table in the form of the confusion
matrix to perform a �2-test of independence among the forecasts and the actual
inflation rate.16 The null hypothesis of the test states that the forecasted and actual
changes in the inflation rate are independent of each other. As Stekler (1991) notes,
if a model is assumed to predict changes in the inflation rate correctly, it should
at least be able to pass the test and reject the nullhypothesis. We are aware of the
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small sample size and also report the Yates corrected form, as well as the exact
Fisher test statistic, based on a hypergeometric distribution.17

6. RESULTS

A total of 19 models (7 econometric, 11 computational, 1 benchmark) are estimated
and their out-of-sample predictive power is compared. All forecast time series are
evaluated according to the test statistics mentioned above. In order to provide
a quick and illustrative insight into our main results, Fig. 2 contains a graph in
the upper left, which shows the three dimensions of our forecasting contest. The
other graphs show the results of 15 of 19 models (we omitted the eclectic models,
since they cannot be classified into real activity or monetary models) according to
different evaluation criteria. Additionally, Table 5 reports the test statistics for the
one-step ahead forecasts. The first row displays the AR(1) benchmark model, the
following upper half shows the econometric models and the lower part contains
the GENEFER models.

The following findings are striking:

� For most of the models, Theil’s U, �Theil’s U and relative MAE are almost
always below the critical value of one, indicating a superior predictive power in
comparison to the benchmark AR(1).

� The linear econometric specification of the real money gap model (mgap) is most
accurate according to the majority of parametric measures presented in the first
part of Table 5 (see bold values). Only with respect to MAPE and �Theil’s U the
model is outperformed by the linear eclectic and computational g mgap model
respectively.

� According to the Theil’s U statistic, the computational g mgap and g-
monov � models also perform well, indicating that monetary aggregates are
good indicators of future inflationary pressure, using both econometric and
computational models.

� According to the confusion rate CR, the smallest values are found for the
GENEFER models with the g mgap � model having the highest predictive
power with respect to the direction of change in inflation rates.

� Only GENEFER models pass the (Yates corrected) �2 test based on the confusion
matrix, rejecting the null hypothesis of independence between the predicted and
actual directions of change. Again, the g mgap � model forecasts best. It is
significant at a 95% (90%) confidence level for the (Yates corrected) �2 test.

A closer look at Fig. 2 reveals that the results for monetary indicators are to
some extent superior to real activity variables with respect to the displayed
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Fig. 2. Multidimensional Evaluation Scheme One-Step Ahead Forecasts.
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Table 5. Predictive Power of Various Inflation Forecasting Models for One-Step Ahead Forecasts.

Model MSE RMSE MAPE Rel. MAE Theil’s U �Theil’s U CR �2 (1) �2 Yates

AR(1) 1.011 1.005 0.963 1.000 1.000 1.078 0.667 0.434 0.632
ygap trend 0.781 0.884 0.710 0.730 0.879 0.807 0.467 0.045 0.101
ygap hp 1.064 1.032 1.040 1.105 1.026 1.002 0.467 0.045 0.101
ygap cd 1.013 1.007 1.009 1.098 1.001 0.981 0.467 0.045 0.101
monov 0.961 0.980 0.745 0.857 0.975 0.784 0.600 0.077 0.101
markup 0.669 0.818 0.450 0.763 0.814 0.855 0.533 0.579 0.058
mgap 0.543 0.737 0.531 0.676 0.733 0.700 0.467 0.045 0.632
eclectic 0.891 0.944 0.386 0.725 0.939 0.925 0.467 0.077 0.101
g ygaptrend 1.379 1.174 1.168 1.103 1.168 1.044 0.467 0.077 0.058
g ygaphp 2.241 1.497 1.619 1.441 1.489 1.284 0.533 0.045 0.101
g ygapcd 2.124 1.457 1.561 1.363 1.45 1.294 0.467 0.077 0.058
g monov 1.589 1.261 1.132 1.208 1.254 1.038 0.400 0.714 0.101
g markup 0.914 0.956 1.117 0.888 0.951 0.903 0.267 3.233*** 1.637
g mgap 0.608 0.780 0.806 0.732 0.776 0.696 0.267 3.233*** 1.637
g eclectic 0.747 0.864 0.688 0.805 0.860 0.845 0.667 1.727 0.632
g eclectic � 0.597 0.773 0.926 0.811 0.768 0.798 0.267 3.233*** 1.637
g markup � 0.690 0.831 0.864 0.934 0.826 0.824 0.600 0.714 0.101
g mgap � 0.738 0.859 1.097 0.857 0.854 0.860 0.200 5.402** 3.225***

g monov � 0.624 0.790 0.973 0.863 0.786 0.732 0.333 1.607 0.546

∗∗Significance on the 5% significance level.
∗∗∗Significance on the 10% significance level.
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evaluation criteria. This accounts especially for the output gap models that perform
poorly on average. The (real activity) markup model yields similar results to the
monetary overhang model, but it is persistently outperformed by the real money
gap model. The results from different modelling techniques are mixed so that no
general trend can be determined: However, econometric models clearly outperform
computational ones on the basis of the MAPE, while computational models are
superior with respect to the confusion rate and to a minor extent for the Theil’s
U (disregarding ygap models). For the other evaluation criteria, Fig. 2 shows
somewhat heterogeneous results.

Comparing 1- and 2-stage GENEFER models, Fig. 2 indicates slightly better
predictions of the 1-stage models, especially with respect to Theil’s U and rel.
MAE. However, this is more valid for the markup and monov indicator, while the
real money gap model using an ec-term, clearly outperforms its rivals.

In summary, the results are promising even for the difficult one-step ahead
forecasts, where structural relations between input and output variables are
generally weaker than for longer time horizons. So far, neither the linear, nor the
GENEFER models can persistently outperform the other estimation technique. The
results favour the real money gap models (in linear and non-linear specification),
which appear to be among the most reliable indicators to forecast inflation. It is
interesting to note that although eclectic models are best equipped to trace back
the multiple inflation determinants in-sample (see the goodness-of-fit values), they
are generally outperformed by more parsimonious models in terms of actually
forecasting inflation out-of-sample.

As the general comparison of GENEFER and linear econometric specifications
shows, the linear models generally have smaller values for the MAE and MAPE
statistics, while GENEFER models perform slightly better on the basis of the
RMSE (except for the GENEFER output gap models). This can be seen as
an indication that the linear models forecast quite well on average, but are
biased towards (large) outliers, which are given more weight when calculating
statistics based on a quadratic loss function, such as the RMSE. In comparison,
computational models predict inflation more stable and get turning points right. The
latter is obvious with respect to the results of the non-parametric tests. GENEFER
models clearly perform better in predicting turning points.

In order to come to a broader judgement, we also compute four-step ahead
forecasts. Table 6 reports the same statistics for these predictions, and Fig. 3
highlights the results graphically.

� Compared to the naı̈ve benchmark, the relative performance of the models
increases. This indicates, that the longer the forecast period the better structural
models perform as opposed to pure time series models. The same result holds,
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Table 6. Predictive Power of Various Inflation Forecasting Models for Four-Step Ahead Forecasts.

Model MSE RMSE MAPE Rel. MAE Theil’s U �Theil’s U CR �2 (1) �2 Yates

AR(1) 1.604 1.267 1.312 1.000 1.000 0.974 0.500 0.000 0.333
ygap trend 1.074 1.037 0.984 1.005 0.818 0.938 0.417 0.343 0.000
ygap hp 2.135 1.461 1.446 1.493 1.154 1.311 0.417 0.343 0.000
ygap cd 2.020 1.421 1.383 1.445 1.122 1.277 0.417 0.343 0.000
monov 0.771 0.878 0.699 0.848 0.693 0.816 0.417 0.343 0.375
markup 1.034 1.017 0.742 0.878 0.803 0.970 0.417 0.343 0.000
mgap 0.569 0.754 0.521 0.692 0.595 0.710 0.500 0.343 0.333
eclectic 1.099 1.048 0.679 0.923 0.828 0.993 0.417 0.343 0.000
g ygaptrend 1.372 1.171 1.42 1.099 0.925 1.089 0.417 0.343 0.000
g ygaphp 1.852 1.361 1.075 1.849 1.136 1.174 0.334 1.334 0.333
g ygapcd 2.233 1.493 1.18 2.000 1.226 1.349 0.167 5.333** 3.000***

g monov 1.269 1.127 0.976 1.015 0.89 0.884 0.250 3.086*** 1.371
g markup 1.166 1.08 1.338 0.988 0.853 0.983 0.250 3.086*** 1.371
g mgap 0.531 0.729 0.794 0.675 0.575 0.629 0.167 5.333** 3.000***

g eclectic 1.114 1.055 0.822 0.968 0.833 0.999 0.667 1.333 0.333
g eclectic � 0.854 0.924 1.001 0.841 0.73 0.806 0.333 1.5 0.375
g markup � 0.923 0.961 0.945 0.911 0.759 0.905 0.583 0.343 0.000
g mgap � 0.921 0.960 1.083 0.854 0.758 0.862 0.250 3.086*** 0.371
g monov � 1.163 1.078 1.312 0.905 0.851 0.941 0.250 3.086*** 0.371

∗∗Significance on the 5% significance level.
∗∗∗Significance on the 10% significance level.
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Fig. 3. Multidimensional Evaluation Scheme Four-Step Ahead Forecasts.
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if, instead of the simple AR process, a more sophisticated ARIMA model is used
(not reported here).18

� All models (with the exception of the rather disappointing output gap models)
have a Theil’s U below the critical value of one and are lower on average, than
in the one-step ahead case. GENEFER models in particular, achieve a low value
for Theil’s U. This indicates that the longer the forecast horizon, the better
GENEFER’s ability to predict, due to a good structural fit of the underlying
system in GENEFER.

� The results of the non-parametric test statistics are even more striking: The
confusion rate CR, falls below the values in Table 5 (one-step ahead forecasts)
for all models. However, the GENFER models outperform the econometric
approaches on average.

� Five GENEFER models pass the �2 test based on the confusion matrix (two for
the Yates corrected test) while none of the econometric ones does. Significantly,
the g ygapcd model is rather disappointing in its parametric accuracy statistics,
but predicts the direction of change in inflation correctly. This result further
advocates the hypothesis that GENEFER clearly outperforms linear models in
predicting inflationary turning points.

� Regarding the ‘winning’ model of the forecasting competition, the results of
the four-step ahead forecasts are more straightforward than the one step test
statistics: The best model is by far the g mgap. It achieves the best results in all
parametric and non-parametric test statistics. The model performs by far the most
effectively with respect to Theil’s U and passes the Yate’s corrected �2 test as
well as the exact Fisher test at a 10% significance level (not reported in the table).

In comparison to the one-step forecast results, the interpretation of the graphical
representation in Fig. 3 is more straightforward: The general trend, already
observed when analysing the one-step forecasts, is confirmed, with econometric
models having smaller MAPE and rel. MAE values (except for the rather
disappointing ygap models), while GENEFER models perform better with test
statistics based on RMSE (again disregarding the ygap models). Furthermore,
a substantial increase of relative performance of GENEFER models predicting
turning points (CR) can be seen from Fig. 3 (lower right). These observations
further advocate the hypothesis that computational models are better suited to
predict turning points. Finally, regarding the 1- (= using simple growth rates) and
2-stage (= inclusion of error correction terms derived from cointegration analysis)
GENEFER models, the performance of the latter is significantly higher and they
outclass their 1-stage rivals.

In general, for most evaluation criteria (except the MAPE statistics), both models
that give explicit weight to monetary aggregates, perform better than real activity
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variables and therefore support monetarist theories of inflation for the EMU.
The poor performance of output gap models enhances the findings of the one-
step horizon. This also holds for eclectic models, whose relatively poor forecast
performance again contrasts with their promising in-sample fit. The results support
the above hypothesis that although multiple input models may serve best to identify
inflation determinants historically, rather lean models, especially those based on
monetary aggregates, are more suitable when extracting leading information about
the future path of inflation.

The four-step ahead forecasts are of special importance in determining whether a
model captures the general trend of inflation correctly, rather than predicting high
frequency movements, which are more dominant for the one-step horizon. The
relative dominance of linear and non-linear structural models over univariate time
series models argues in favour of the derived models. Nonetheless, the performance
of the output gap variants is, on average, rather disappointing. Only the ygap version
derived from a simple time trend regression, seems to add useful information
beyond that contained in the AR(1) benchmark.

The “winning” model with good results for the one-step ahead forecast horizon
and the best performance for four-step forecasts is the GENEFER mgap model,
using the derived ec-term from econometric modelling. The combination of both
estimation techniques therefore advocates further collaboration between the two
forecasting techniques. Because GENEFER delivers the best single forecasting
model g mgap, it is presented in greater detail, because the software’s analysis
tools for adaptable fuzzy rule-bases are not yet well-known. The g mgap model
consists of 56 generated rules that are reduced to 38 through simplification. It
functions through gaussian type fuzzy sets and a degree of granularity of 5 for the
inflation rate and 3 for all explanatory variables.

The software can display the rule-base as a list of linked linguistic fuzzy sets
– just like the example in Section 4. It represents the rules as a set of activated
fuzzy sets in a table grid for a quick overview or shows each single rule in detail.
To get an idea of the relationship between one explanatory variable and the
inflation rate the software provides a rule-scatter chart that shows a clustering grid,
displaying the number of rules that contain the pairwise fuzzy sets in one cluster.
The larger the number of rules containing the fuzzy sets in a particular cluster, the
larger the gray circles. Figure 4 shows the link between �penergy(t−1) and the
inflation rate within the rule-base of g mgap (the greater the change in the price
index of energy within the last period, the greater the change in the consumer
price index).

In order to track GENEFER’s forecasts, the software provides several tools
that report the details of the underlying algorithms. The “Forecast Manager” is an
illustrative tool for analysing and understanding a single forecast value. It contains
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Fig. 4. Rule-Scatter.

and displays all crisp data used in the current forecast period, shows all activated
rules not excluded by a user-specific activation filter (since the activation of a fuzzy
rule is not a binary value, but a gradual one in the unit interval). It also provides the
user with a graph of the complete output fuzzification, the fuzzy inference result
(grey area) and an indication of the true value as well as GENEFER’s forecast.
Figures 5 and 6 shows this graph for g mgap in period 67.

Fig. 5. Fuzzy Inference Result.
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Fig. 6. Time Series of Actual and Forecasted Values in the g mgap Computational Model.
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7. SUMMARY

We have presented a study of the forecasting performance of two types of
forecasting techniques: a dynamic, single-equation linear econometric approach,
vs. a computational one based on genetic-neural fuzzy rule-bases. We used both
approaches to forecast the EMU inflation rate on a one- (one quarter) and four-step
ahead basis (one year). We found some superiority for the computational approach
according to various different evaluation criteria. Especially striking is the ability of
GENEFER models to predict turning points reliably. GENEFER models perform
best within a 2-stage approach, where the disequilibrium (error-correction) terms
from cointegration analysis are used as input variables. This result proposes a
combination of econometric and computational techniques and calls for further
research.

The real money gap is found to be the best predictor of future inflation and
confirms the current ECB approach of relying on monetary aggregates as a leading
indicator for inflation. Nonetheless, some mixed results remain, with respect to the
parametric accuracy statistics as opposed to the non-parametric ones. These could
possibly be exploited by calculating composites of the forecasts (“thick modelling”
e.g. Granger, 2001) that render lower variability and therefore reduce the forecast
uncertainty by diversifying over various stable models.

NOTES

1. The details are described in Annex 2 of Fagan et al. (2001) and the database can be
downloaded from http://www.ecb.int. We obtained an updated version from Jerome Henry,
ECB.

2. The database of Gerlach and Svensson (2003) can be downloaded from
http://www.princeton.edu/∼svensson/papers/gsdata.xls.

3. The later beginning of our in-sample period is due to the need for a sufficiently large
lag length in the estimations.

4. Compared to the static Engle and Granger (1987) approach to cointegration, the ARDL
approach has the advantage of allowing for a richer lag structure, while still retaining the
specification of one or more explanatory variables. However, weak exogeneity must apply
when modelling a single-equation specification, if the model is not to be biased. The ARDL
approach to cointegration assumes weak exogeneity to be valid without explicit testing. As
argued in Boswijk (1995), it is also possible to test for weak exogeneity ex-post if the derived
error correction term of the ARDL model is inserted in equations for the exogenous variables
(marginal model in terms of VAR notation) and tested according to their significance with
the help of an LM-test. Though some caveats may apply, we treat exogeneity as given in
the subsequent modelling process.

5. For a derivation of the markup model see De Brouwer and Ericsson (1998).

http://www.ecb.int
http://www.princeton.edu/~svensson/papers/gsdata.xls
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6. Next to the trend regression, we also calculate proxies for equilibrium output (i)
applying the Hodrick Prescott (HP)-filter with the calibration parameter set to � = 1600
as suggested for quarterly data, (ii) estimating a Cobb-Douglas production function as in
Fagan et al. (2001). We take all derived versions as possible input variable for the output
and money gap model and judge according to statistical criteria which proxy serves best to
model and forecast inflation.

7. Though closely related, the monetary overhang and the real money gap may
differ from each other, since the money gap would tend to rise for excess output
above equilibrium (y∗), while the monetary overhang does not indicate inflationary
pressure in excess output situations. The monetary overhang therefore reflects additional
information contained in monetary aggregates above its determinants, while the price or
real money gap serves more as a summary statistics. See Nicoletti Altimari (2001) for
details.

8. Different measures of the equilibrium interest rate turned out to be insignificant and
were bypassed in later modelling stages.

9. Table 1 presents the results of standard F-tests with Prob-values in brackets. For the
mgap, monov, ygap cd and eclectic model, we obtain a weak indication of heteroskedastic
residuals (see White test). If we additionally compute the results of a �2-test, the null
hypothesis of heteroskedasticity can not be rejected at the 5% significance level only in
case of the monetary overhang (monov) and the eclectic model. With respect to all other
tests, the models do not show any misspecification with regard to reasonable intervals (again
5% significance value). All models pass stability tests (CUSUM and CUSUMQ) which are
not reported in Table 1. These results also provide an ex-post validation of our approach
of assuming that there are no breaks in the structural relation, as argued for the data set in
Section 2.

10. The Brock-Dechert-Scheinkmann (BDS) test is based on the idea that randomly
generated processes are evenly distributed in a n-dimensional space, while processes
generated by non-linear models tend to depict geometric structures, if the n-dimensional
space is reasonably large. Hence, one should observe more clusters when the process is
generated by a non-linear model, compared to a randomly created process. Details of the
test statistic are reported in Brock et al. (1991). The software to perform the BDS test is
available from http://dechert.econ.uh.edu/.

11. Lee et al. (1993) find that the BDS test is quite robust in application and shows low
power only in comparison to Neural Networks approaches (e.g., White’s neural network
test).

12. However, it is difficult to assess whether this is due to non-linearities or
heteroskedasticity, as indicated by the White test in Table 1.

13. We restrict the number of fuzzy sets for each variable, in order to maintain
interpretability of the fuzzy rule-base.

14. For details see Kooths and Ringhut (2003).
15. One advantage of ex-post forecasts over ex-ante forecasts is that an evaluation of

the model’s forecasting performance isolates the error component in the forecast of the
endogenous variables and prevents a simultaneous error induced by exogenous variables
forecasts. Further, most of the forecast accuracy measures applied in this paper are designed
to evaluate ex-post forecasts. In order to exploit these advantages, we accept the less realistic
ex-post forecasts.

16. For a 2 × 2 contingency table the �2-test has one degree of freedom.

http://dechert.econ.uh.edu/
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17. The test statistic for the Yates corrected form is

�2 =
4∑

i=1

(|(xoi − xei)| − 0.5)2

xei

with i ranging over the matrix entries, xoi are observed and xei expected matrix elements.
Since the latter two yield exactly the same results, we report only the Yates corrected �2-test
in the following.

18. Results are available upon request.
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FINDING OR NOT FINDING
RULES IN TIME SERIES

Jessica Lin and Eamonn Keogh

ABSTRACT

Given the recent explosion of interest in streaming data and online algorithms,
clustering of time series subsequences has received much attention. In this
work we make a surprising claim. Clustering of time series subsequences is
completely meaningless. More concretely, clusters extracted from these time
series are forced to obey a certain constraint that is pathologically unlikely
to be satisfied by any dataset, and because of this, the clusters extracted
by any clustering algorithm are essentially random. While this constraint
can be intuitively demonstrated with a simple illustration and is simple to
prove, it has never appeared in the literature. We can justify calling our
claim surprising, since it invalidates the contribution of dozens of previously
published papers. We will justify our claim with a theorem, illustrative
examples, and a comprehensive set of experiments on reimplementations of
previous work.

1. INTRODUCTION

In econometrics, a large fraction of research has been devoted to time series analysis
(Enders, 2003). As a recent trend, time series data have also been given a lot of
attention in the data mining community (Keogh & Kasetty, 2002; Roddick &
Spiliopoulou, 2002). This is highly anticipated since time series data has extended
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its influence outside of economic applications. It is a by-product in virtually every
human endeavor, including biology (Bar-Joseph et al., 2002), finance (Fu et al.,
2001; Gavrilov et al., 2000; Mantegna, 1999), geology (Harms et al., 2002b), space
exploration (Honda et al., 2002; Yairi et al., 2001), robotics (Oates, 1999) and
human motion analysis (Uehara & Shimada, 2002). While traditional time series
analysis focuses on modeling and forecasting, data mining researchers focus on
discovering patterns (known or unknown) or underlying relationships among the
data. These techniques can be very useful in aiding the decision-making process
for the econometrics community.

Of all the techniques applied to time series, clustering is perhaps the most
frequently used (Halkidi et al., 2001), being useful in its own right as an
exploratory technique, and as a subroutine in more complex data mining algorithms
(Bar-Joseph et al., 2002; Bradley & Fayyad, 1998). The work in this area can be
broadly classified into two categories:

� Whole Clustering: The notion of clustering here is similar to that of conventional
clustering of discrete objects. Given a set of individual time series data, the
objective is to group similar time series into the same cluster.

� Subsequence Clustering: Given a single time series, sometimes in the form of
streaming time series, individual time series (subsequences) are extracted with
a sliding window. Clustering is then performed on the extracted time series
subsequences.

Subsequence clustering is commonly used as a subroutine in many other
algorithms, including rule discovery (Das et al., 1998; Fu et al., 2001; Uehara
& Shimada, 2002; Yairi et al., 2001) indexing (Li et al., 1998; Radhakrishnan
et al., 2000), classification (Cotofrei, 2002; Cotofrei & Stoffel, 2002), prediction
(Schittenkopf et al., 2000; Tino et al., 2000), and anomaly detection (Yairi et al.,
2001). For clarity, we will refer to this type of clustering as STS (Subsequence
Time Series) clustering.

In this work we make a surprising claim. Clustering of time series subsequences
is meaningless! In particular, clusters extracted from these time series are forced
to obey a certain constraints that are pathologically unlikely to be satisfied by any
dataset, and because of this, the clusters extracted by any clustering algorithm are
essentially random.

Since we use the word “meaningless” many times in this paper, we will take the
time to define this term. All useful algorithms (with the sole exception of random
number generators) produce output that depends on the input. For example, a
decision tree learner will yield very different outputs on, say, a credit worthiness
domain, a drug classification domain, and a music domain. We call an algorithm
“meaningless” if the output is independent of the input. As we show in this
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paper, the output of STS clustering does not depend on input, and is therefore
meaningless.

Our claim is surprising since it calls into question the contributions of dozens
of papers. In fact, the existence of so much work based on STS clustering offers
an obvious counter argument to our claim. It could be argued: “Since many papers
have been published which use time series subsequence clustering as a subroutine,
and these papers produced successful results, time series subsequence clustering
must be a meaningful operation.”

We strongly feel that this is not the case. We believe that in all such cases the
results are consistent with what one would expect from random cluster centers.
We recognize that this is a strong assertion, so we will demonstrate our claim by
reimplementing the most successful (i.e. the most referenced) examples of such
work, and showing with exhaustive experiments that these contributions inherit
the property of meaningless results from the STS clustering subroutine.

The rest of this paper is organized as follows. In Section 2 we will review the
necessary background material on time series and clustering, then briefly review
the body of research that uses STS clustering. In Section 3 we will show that
STS clustering is meaningless with a series of simple intuitive experiments; then
in Section 4 we will explain why STS clustering cannot produce useful results.
In Section 5 we show that the many algorithms that use STS clustering as a
subroutine produce results indistinguishable from random clusters. We conclude
in Section 6.

2. BACKGROUND MATERIAL

In order to frame our contribution in the proper context we begin with a review of
the necessary background material.

2.1. Notation and Definitions

We begin with a definition of our data type of interest, time series:

Definition 1 (Time Series). A time series T = t1, . . ., tm is an ordered set of m
real-valued variables.

Data mining researchers are typically not interested in any of the global properties
of a time series; rather, researchers confine their interest to subsections of the time
series, called subsequences.



178 JESSICA LIN AND EAMONN KEOGH

Fig. 1. An Illustration of the Notation Introduced in This Section: A Time Series T of
Length 128, a Subsequence of Length w = 16, Beginning at Datapoint 67, and the First 8

Subsequences Extracted by a Sliding Window.

Definition 2 (Subsequence). Given a time series T of length m, a subsequence
Cp of T is a sampling of length w < m of contiguous positions from T, that is,
C = tp , . . . , tp+w−1 for 1 ≤ p ≤ m − w + 1.

In this work we are interested in the case where all the subsequences are extracted,
and then clustered. This is achieved by use of a sliding window.

Definition 3 (Sliding Windows). Given a time series T of length m, and a user-
defined subsequence length of w, a matrix S of all possible subsequences can
be built by “sliding a window” across T and placing subsequence Cp in the pth
row of S. The size of matrix S is (m − w + 1) by w.

Figure 1 summarizes all the above definitions and notations.
Note that while S contains exactly the same information1 as T, it requires

significantly more storage space.

2.2. Background on Clustering

One of the most widely used clustering approaches is hierarchical clustering, due to
the great visualization power it offers (Keogh & Kasetty, 2002; Mantegna, 1999).
Hierarchical clustering produces a nested hierarchy of similar groups of objects,
according to a pairwise distance matrix of the objects. One of the advantages of
this method is its generality, since the user does not need to provide any parameters
such as the number of clusters. However, its application is limited to only small
datasets, due to its quadratic computational complexity. Table 1 outlines the basic
hierarchical clustering algorithm.

A faster method to perform clustering is k-means (Bradley & Fayyad, 1998). The
basic intuition behind k-means (and a more general class of clustering algorithms
known as iterative refinement algorithms) is shown in Table 2.
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Table 1. An Outline of Hierarchical Clustering.

Algorithm: Hierarchical Clustering

1. Calculate the distance between all objects. Store the results in a distance matrix.
2. Search through the distance matrix and find the two most similar clusters/objects.
3. Join the two clusters/objects to produce a cluster that now has at least 2 objects.
4. Update the matrix by calculating the distances between this new cluster and all other clusters.
5. Repeat step 2 until all cases are in one cluster.

The k-means algorithm for N objects has a complexity of O(kNrD), where
k is the number of clusters specified by the user, r is the number of iterations
until convergence, and D is the dimensionality of time series (in the case of STS
clustering, D is the length of the sliding window, w). While the algorithm is perhaps
the most commonly used clustering algorithm in the literature, it does have several
shortcomings, including the fact that the number of clusters must be specified in
advance (Bradley & Fayyad, 1998; Halkidi et al., 2001).

It is well understood that some types of high dimensional clustering may be
meaningless. As noted by (Agrawal et al., 1993; Bradley & Fayyad, 1998), in
high dimensions the very concept of nearest neighbor has little meaning, because
the ratio of the distance to the nearest neighbor over the distance to the average
neighbor rapidly approaches one as the dimensionality increases. However, time
series, while often having high dimensionality, typically have a low intrinsic
dimensionality (Keogh et al., 2001), and can therefore be meaningful candidates
for clustering.

2.3. Background on Time Series Data Mining

The last decade has seen an extraordinary interest in mining time series data,
with at least one thousand papers on the subject (Keogh & Kasetty, 2002).

Table 2. An Outline of the k-Means Algorithm.

Algorithm: k-means

1. Decide on a value for k.
2. Initialize the k cluster centers (randomly, if necessary).
3. Decide the class memberships of the N objects by assigning them to the nearest cluster center.
4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
5. If none of the N objects changed membership in the last iteration, exit. Otherwise goto 3.
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Tasks addressed by the researchers include segmentation, indexing, clustering,
classification, anomaly detection, rule discovery, and summarization.

Of the above, a significant fraction use subsequence time series clustering as a
subroutine. Below we enumerate some representative examples.

� There has been much work on finding association rules in time series (Das et al.,
1998; Fu et al., 2001; Harms et al., 2002a; Uehara & Shimada, 2002; Yairi
et al., 2001). Virtually all work is based on the classic paper of Das et al. that
uses STS clustering to convert real-valued time series into symbolic values,
which can then be manipulated by classic rule finding algorithms (Das et al.,
1998).

� The problem of anomaly detection in time series has been generalized to include
the detection of surprising or interesting patterns (which are not necessarily
anomalies). There are many approaches to this problem, including several based
on STS clustering (Yairi et al., 2001).

� Indexing of time series is an important problem that has attracted the attention
of dozens of researchers. Several of the proposed techniques make use of STS
clustering (Li et al., 1998; Radhakrishnan et al., 2000).

� Several techniques for classifying time series make use of STS clustering to
preprocess the data before passing to a standard classification technique such as
a decision tree (Cotofrei, 2002; Cotofrei & Stoffel, 2002).

� Clustering of streaming time series has also been proposed as a knowledge
discovery tool in its own right. Researchers have suggested various techniques
to speed up the STS clustering (Fu et al., 2001).

The above is just a small fraction of the work in the area, more extensive surveys
may be found in (Keogh, 2002a; Roddick & Spiliopoulou, 2002).

3. DEMONSTRATIONS OF THE
MEANINGLESSNESS OF STS CLUSTERING

In this section we will demonstrate the meaninglessness of STS clustering. In
order to demonstrate that this meaninglessness is a result of the way the data is
obtained by sliding windows, and not some quirk of the clustering algorithm, we
will also do whole clustering as a control (Gavrilov et al., 2000; Oates, 1999). We
will begin by using the well-known k-means algorithm, since it accounts for the
lion’s share of all clustering in the time series data mining literature. In addition,
the k-means algorithm uses Euclidean distance as its underlying metric, and again
the Euclidean distance accounts for the vast majority of all published work in this
area (Cotofrei, 2002; Cotofrei & Stoffel, 2002; Das et al., 1998; Fu et al., 2001;
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Keogh et al., 2001), and as empirically demonstrate in (Keogh & Kasetty, 2002)
it performs better than the dozens of other recently suggested time series distance
measures.

3.1. K-means Clustering

Because k-means is a heuristic, hill-climbing algorithm, the cluster centers found
may not be optimal (Halkidi et al., 2001). That is, the algorithm is guaranteed to
converge on a local, but not necessarily global optimum. The choices of the initial
centers affect the quality of results. One technique to mitigate this problem is to
do multiple restarts, and choose the best set of clusters (Bradley & Fayyad, 1998).
An obvious question to ask is how much variability in the shapes of cluster centers
we get between multiple runs. We can measure this variability with the following
equation:

� Let A = (ā1, ā2, . . . , āk ) be the cluster centers derived from one run of k-means.
� Let B = (b̄1, b̄2, . . . , b̄k ) be the cluster centers derived from a different run of

k-means.
� Let dist(āi , āj ) be the distance between two cluster centers, measured with

Euclidean distance.

Then the distance between two sets of clusters can be defined as:

cluster distance(A, B) ≡
k∑

i=1

min[dist(āi , b̄j )], 1 ≤ j ≤ k (1)

The simple intuition behind the equation is that each individual cluster center in
A should map on to its closest counterpart in B, and the sum of all such distances
tells us how similar two sets of clusters are.

An important observation is that we can use this measure not only to compare
two sets of clusters derived for the same dataset, but also two sets of clusters which
have been derived from different data sources. Given this fact, we propose a simple
experiment.

We performed 3 random restarts of k-means on a stock market dataset, and saved
the 3 resulting sets of cluster centers into set X̂. We also performed 3 random restarts
on random walk dataset, saving the 3 resulting sets of cluster centers into set Ŷ .
Note that the choice of “3” was an arbitrary decision for ease of exposition; larger
values do not change the substance of what follows.

We then measured the average cluster distance (as defined in Eq. 1), between
each set of cluster centers in X̂, to each other set of cluster centers in X̂. We call
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this number within set X̂ distance.

within set X̂ distance =
∑3

i=1
∑3

j=1cluster distance(X̂i , X̂j )

9
(2)

We also measured the average cluster distance between each set of cluster centers
in X̂, to cluster centers in Ŷ ; we call this number beween set X̂ and Ŷ distance.

beween set X̂ and Ŷ distance =
∑3

i=1
∑3

j=1cluster distance(X̂i , Ŷj )

9
(3)

We can use these two numbers to create a fraction:

clustering meaningfulness (X̂, Ŷ ) ≡ within set X̂ distance

beween set X̂ and Ŷ distance
(4)

We can justify calling this number “clustering meaningfulness” since it clearly
measures just that. If, for any dataset, the clustering algorithm finds similar clusters
each time regardless of the different initial seeds, the numerator should be close to
zero. In contrast, there is no reason why the clusters from two completely different,
unrelated datasets should be similar. Therefore, we should expect the denominator
to be relatively large. So overall we should expect that the value of clustering
meaningfulness (X̂, Ŷ ) be close to zero when X̂ and Ŷ are sets of cluster centers
derived from different datasets.

As a control, we performed the exact same experiment, on the same data, but
using subsequences that were randomly extracted, rather than extracted by a sliding
window. We call this whole clustering.

Since it might be argued that any results obtained were the consequence of a
particular combination of k and w, we tried the cross product of k = {3, 5, 7, 11}
and w = {8, 16, 32}. For every combination of parameters we repeated the entire
process 100 times, and averaged the results. Figure 2 shows the results.

The results are astonishing. The cluster centers found by STS clustering on any
particular run of k-means on stock market dataset are not significantly more similar
to each other than they are to cluster centers taken from random walk data! In other
words, if we were asked to perform clustering on a particular stock market dataset,
we could reuse an old clustering obtained from random walk data, and no one
could tell the difference!

We re-emphasize here that the difference in the results for STS clustering and
whole clustering in this experiment (and all experiments in this work) are due
exclusively to the feature extraction step. In particular, both are being tested on the
same datasets, with the same parameters of w and k, using the same algorithm.

We also note that the exact definition of clustering meaningfulness is not
important to our results, since we get the same results regardless of the definition
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Fig. 2. A Comparison of the Clustering Meaningfulness for Whole Clustering, and STS
Clustering, Using k-Means With a Variety of Parameters. Note: The two datasets used were

Standard and Poor’s 500 Index closing values and random walk data.

used. In our definition, each cluster center in A maps onto its closest match in
B. It is possible, therefore, that two or more cluster centers from A map to one
center in B, and some clusters in B have no match. However, we tried other
variants of this definition, including pairwise matching, minimum matching and
maximum matching, together with dozens of other measurements of clustering
quality suggested in the literature (Halkidi et al., 2001); it simply makes no
significant difference to the results.

3.2. Hierarchical Clustering

The previous section suggests that k-means clustering of STS time series does not
produce meaningful results, at least for stock market data. Two obvious questions
to ask are, is this true for STS with other clustering algorithms? And is this true
for other types of data? We will answer the former question here and the latter
question in Section 3.3.

Hierarchical clustering, unlike k-means, is a deterministic algorithm. So we can’t
reuse the experimental methodology from the previous section exactly, however,
we can do something very similar.

First we note that hierarchical clustering can be converted into a partitional
clustering, by cutting the first k links (Mantegna, 1999). Figure 3 illustrates the
idea. The resultant time series in each of the k subtrees can then be merged into
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Fig. 3. A Hierarchical Clustering of Ten Time Series. Note: The clustering can be converted
to a k partitional clustering by “sliding” a cutting line until it intersects k lines of the
dendrograms, then averaging the time series in the k subtrees to form k cluster centers

(gray panel).

a single cluster prototype. When performing hierarchical clustering, one has to
make a choice about how to define the distance between two clusters; this choice
is called the linkage method (cf. step 3 of Table 1).

Three popular choices are complete linkage, average linkage and Ward’s method
(Halkidi et al., 2001). We can use all three methods for the stock market dataset,
and place the resulting cluster centers into set X. We can do the same for random
walk data and place the resulting cluster centers into set Y. Having done this,
we can extend the measure of clustering meaningfulness in Eq. (4) to hierarchical
clustering, and run a similar experiment as in the last section, but using hierarchical
clustering. The results of this experiment are shown in Fig. 4.

Once again, the results are astonishing. While it is well understood that the
choice of linkage method can have minor effects on the clustering found, the
results above tell us that when doing STS clustering, the choice of linkage method
has as much effect as the choice of dataset! Another way of looking at the results
is as follows. If we were asked to perform hierarchical clustering on a particular
dataset, but we did not have to report which linkage method we used, we could
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Fig. 4. A Comparison of the Clustering Meaningfulness for Whole Clustering and STS
Clustering Using Hierarchical Clustering With a Variety of Parameters. Note: The two
datasets used were Standard and Poor’s 500 Index closing values and random walk data.

reuse an old random walk clustering and no one could tell the difference without
re-running the clustering for every possible linkage method.

3.3. Other Datasets and Algorithms

The results in the two previous sections are extraordinary, but are they the
consequence of some properties of stock market data, or as we claim, a property of
the sliding window feature extraction? The latter is the case, which we can simply
demonstrate. We visually inspected the UCR archive of time series datasets for the
two time series datasets that appear the least alike (Keogh, 2002b). The best two
candidates we discovered are shown in Fig. 5.

We repeated the experiment of Section 3.2, using these two datasets in place of
the stock market data and the random walk data. The results are shown in Fig. 6.

In our view, this experiment sounds the death knell for clustering of STS time
series. If we cannot easily differentiate between the clusters from these two vastly
different time series, then how could we possibly find meaningful clusters in any
data?

In fact, the experiments shown in this section are just a small subset of the
experiments we performed. We tested other clustering algorithms, including EM
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Fig. 5. Two Subjectively Very Dissimilar Time Series from the UCR Archive. Note: Only
the first 1000 datapoints are shown. The two time series have very different properties of

stationarity, noise, periodicity, symmetry, autocorrelation etc.

and SOMs (van Laerhoven, 2001). We tested on 42 different datasets (Keogh,
2002a; Keogh & Kasetty, 2002). We experimented with other measures of
clustering quality (Halkidi et al., 2001). We tried other variants of k-means,
including different seeding algorithms. Although Euclidean distance is the most
commonly used distance measure for time series data mining, we also tried other
distance measures from the literature, including Manhattan, L∞, Mahalanobis
distance and dynamic time warping distance (Gavrilov et al., 2000; Keogh,
2002a; Oates, 1999). We tried various normalization techniques, including Z-
normalization, 0–1 normalization, amplitude only normalization, offset only
normalization, no normalization etc. In every case we are forced to the inevitable

Fig. 6. A Comparison of the Clustering Meaningfulness for Whole Clustering, and STS
Clustering, Using k-Means With a Variety of Parameters. Note: The two datasets used were

buoy sensor(1) and ocean.
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conclusion: whole clustering of time series is usually a meaningful thing to do, but
sliding window time series clustering is never meaningful.

4. WHY IS STS CLUSTERING MEANINGLESS?

Before explaining why STS clustering is meaningless, it will be instructive to
visualize the cluster centers produced by both whole clustering and STS clustering.
By definition of k-means, each cluster center is simply the average of all the
objects within that cluster (cf. step 4 of Table 2). For the case of time series, the
cluster center is just another time series whose values are the averages of all time
series within that cluster. Naturally, since the objective of k-means is to group
similar objects in the same cluster, we should expect the cluster center to look
somewhat similar to the objects in the cluster. We will demonstrate this on the
classic Cylinder-Bell-Funnel data (Keogh & Kasetty, 2002). This dataset consists
of random instantiations of the eponymous patterns, with Gaussian noise added.
Note that this dataset has been freely available for a decade, and has been referenced
more than 50 times (Keogh & Kasetty, 2002). While each time series is of length
128, the onset and duration of the shape is subject to random variability. Figure 7
shows one instance from each of the three patterns.

We generated a dataset that contains 30 instances of each pattern, and performed
k-means clustering on it, with k = 3. The resulting cluster centers are shown in

Fig. 7. Examples of Cylinder, Bell, and Funnel Patterns.
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Fig. 8. The Three Final Centers Found by k-Means on the Cylinder-Bell-Funnel Dataset.
Note: The shapes of the centers are close approximation of the original patterns.

Fig. 8. As one might expect, all three clusters are successfully found. The final
centers closely resemble the three different patterns in the dataset, although the
sharp edges of the patterns have been somewhat “softened” by the averaging of
many time series with some variability in the time axis.

To compare the results of whole clustering to STS clustering, we took the
90 time series used above and concatenated them into one long time series. We
then performed STS clustering with k-means. To make it simple for the algorithm,
we used the exact length of the patterns (w = 128) as the window length, and
k = 3 as the number of desired clusters. The cluster centers are shown in Fig. 9.

The results are extraordinarily unintuitive! The cluster centers look nothing like
any of the patterns in the data; what’s more, they appear to be perfect sine waves.

In fact, for w � m, we get approximate sine waves with STS clustering
regardless of the clustering algorithm, the number of clusters, or the dataset used!
Furthermore, although the sine waves are always exactly out of phase with each
other by 1/k period, overall, their joint phase is arbitrary, and will change with
every random restart of k-means.

This result explains the results from the last section. If sine waves appear as
cluster centers for every dataset, then clearly it will be impossible to distinguish
one dataset’s clusters from another. Although we have now explained the inability

Fig. 9. The Three Final Centers Found by Subsequence Clustering Using the Sliding
Window Approach. Note: The cluster centers appear to be sine waves, even though the
data itself is not particularly spectral in nature. Note that with each random restart of the
clustering algorithm, the phase of the resulting “sine waves” changes in an arbitrary and

unpredictable way.
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of STS clustering to produce meaningful results, we have revealed a new question:
why do we always get cluster centers with this special structure?

4.1. A Hidden Constraint

To explain the unintuitive results above, we must introduce a new fact.

Theorem 1. For any time series dataset T with an overall trend of zero, if T
is clustered using sliding windows, and w � m, then the mean of all the data
(i.e. the special case of k = 1), will be an approximately constant vector.

In other words, if we run STS k-means on any dataset, with k = 1 (an unusual case,
but perfectly legal), we will always end up with a horizontal line as the cluster
center. The proof of this fact is straightforward but long, so we have elucidated
it in a separate technical report (Truppel et al., 2003). Note that the requirement
that the overall trend be zero can be removed, in which case, the k = 1 cluster
center is still a straight line, but with slope greater than zero. We content ourselves
here with giving the intuition behind the proof, and offering a visual “proof”
in Fig. 10.

The intuition behind Theorem 1 is as follows. Imagine an arbitrary datapoint ti
somewhere in the time series T, such that w ≤ i ≤ m − w + 1. If the time series
is much longer than the window size, then virtually all datapoints are of this type.
What contribution does this datapoint make to the overall mean of the STS matrix S?
As the sliding window passes by, the datapoint first appears as the rightmost value
in the window, then it goes on to appear exactly once in every possible location
within the sliding window. So the ti datapoint contribution to the overall shape is
the same everywhere and must be a horizontal line. Only those points at the very
beginning and the very end of the time series avoid contributing their value to
all w columns of S, but these are asymptotically irrelevant. The average of many
horizontal lines is clearly just another horizontal line. Another way to look at
it is that every value vi in the mean vector, 1 ≤ i ≤ w, is computed by averaging
essentially every value in the original time series; more precisely, from ti to tm−w+i .
So for a time series of m = 1,024 and w = 32, the first value in the mean vector
is the average of t[1. . .993]; the second value is the average of t[2. . .994], and
so forth. Again, the only datapoints not being included in every computation are
the ones at the very beginning and at the very end, and their effects are negligible
asymptotically.

The implications of Theorem 1 become clearer when we consider the following
well documented fact. For any dataset, the weighted (by cluster membership)
average of k clusters must sum up to the global mean. The implication for STS
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Fig. 10. A Visual “Proof” of Theorem 1. Ten Time Series of Vastly Different Properties of
Stationarity, Noise, Periodicity, Symmetry, Autocorrelation etc. Note: The cluster centers
for each time series, for w = 32, k = 1 are shown at right. Far right shows a zoom-in
that shows just how close to a straight line the cluster centers are. While the objects have
been shifted for clarity, they have not been rescaled in either axis; note the light gray
circle in both graphs. The datasets used are, reading from top to bottom: Space Shuttle,
Flutter, Speech, Power Data, Koski ecg, Earthquake, Chaotic, Cylinder, Random Walk,

and Balloon.

clustering is profound. Since the global mean for STS clustering is a straight
line, then the weighted average of k-clusters must in turn sum to a straight line.
However, there is no reason why we should expect this to be true of any dataset,
much less every dataset. This hidden constraint limits the utility of STS clustering
to a vanishing small set of subspace of all datasets. The out-of-phase sine waves
as cluster centers that we get from the last section conforms to this theorem, since
their weighted average, as expected, sums to a straight line.

4.2. The Importance of Trivial Matches

There are further constraints on the types of datasets where STS clustering could
possibly work. Consider a subsequence Cp that is a member of a cluster. If we
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Fig. 11. For Almost Any Subsequence C in a Time Series, the Closest Matching
Subsequences are the Subsequences Immediately to the Left and Right of C.

examine the entire dataset for similar subsequences, we should typically expect to
find the best matches to Cp to be the subsequences . . ., Cp−2, Cp−1, Cp+1, Cp+2,
. . . In other words, the best matches to any subsequence tend to be just slightly
shifted versions of the subsequence. Figure 11 illustrates the idea, and Definition 4
states it more formally.

Definition 4 (Trivial Match). Given a subsequence C beginning at position p,
a matching subsequence M beginning at q, and a distance R, we say that M
is a trivial match to C of order R, if either p = q or there does not exist a
subsequence M′ beginning at q′ such that D(C, M′) > R, and either q < q′< p or
p < q′< q.

The importance of trivial matches, in a different context, has been documented
elsewhere (Lin et al., 2002).

An important observation is the fact that different subsequences can have
vastly different numbers of trivial matches. In particular, smooth, slowly changing
subsequences tend to have many trivial matches, whereas subsequences with
rapidly changing features and/or noise tend to have very few trivial matches.
Figure 12 illustrates the idea. The figure shows a time series that subjectively
appears to have a cluster of 3 square waves. The bottom plot shows how many
trivial matches each subsequence has. Note that the square waves have very few
trivial matches, so all three taken together sit in a sparsely populated region of
w-space. In contrast, consider the relatively smooth Gaussian bump centered at
125. The subsequences in the smooth ascent of this feature have more than 25
trivial matches, and thus sit in a dense region of w-space; the same is true for
the subsequences in the descent from the peak. So if clustering this dataset with
k-means, k = 2, then the two cluster centers will be irresistibly drawn to these two
“shapes,” simple ascending and descending lines.
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Fig. 12. (A) A Time Series T That Subjectively Appears to Have a Cluster of 3 Noisy Square
Waves. (B) Here the ith Value is the Number of Trivial Matches for the Subsequence Ci in

T, where R = 1, w = 64.

The importance of this observation for STS clustering is obvious. Imagine we
have a time series where we subjectively see two clusters: equal numbers of a
smooth slowing changing pattern, and a noisier pattern with many features. In
w-dimensional space, the smooth pattern is surrounded by many trivial matches.
This dense volume will appear to any clustering algorithm an extremely promising
cluster center. In contrast, the highly featured, noisy pattern has very few trivial
matches, and thus sits in a relatively sparse space, all but ignored by the clustering
algorithm. Note that it is not possible to simply remove or “factor out” the trivial
matches since there is no way to know beforehand the true patterns.

We have not yet fully explained why the cluster centers for STS clustering
degenerate to sine waves (cf. Fig. 9). However, we have shown that for STS
“clustering,” algorithms do not really cluster the data. If not clustering, what
are the algorithms doing? It is instructive to note that if we perform singular
value decomposition on time series, we also get shapes that seem to approximate
sine waves (Keogh et al., 2001). This suggests that STS clustering algorithms are
simply returning a set of basis functions that can be added together in a weighted
combination to approximate the original data.

An even more tantalizing piece of evidence exists. In the 1920s “data miners”
were excited to find that by preprocessing their data with repeated smoothing,
they could discover trading cycles. Their joy was shattered by a theorem by
Evgeny Slutsky (1880–1948), who demonstrated that any noisy time series will
converge to a sine wave after repeated applications of moving window smoothing
(Kendall, 1976). While STS clustering is not exactly the same as repeated moving
window smoothing, it is clearly highly related. For brevity we will defer future
discussion of this point to future work.
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4.3. Is there a Simple Fix?

Having gained an understanding of the fact that STS clustering is meaningless,
and having developed an intuition as to why this is so, it is natural to ask if there
is a simple modification to allow it to produce meaningful results. We asked this
question, not just among ourselves, but also to dozens of time series clustering
researchers with whom we shared our initial results. While we considered all
suggestions, we discuss only the two most promising ones here.

The first idea is to increment the sliding window by more than one unit each
time. In fact, this idea was suggested by Das et al. (1998), but only as a speed up
mechanism. Unfortunately, this idea does not help. If the new step size s is much
smaller than w, we still get the same empirical results. If s is approximately equal
to, or larger than w, we are no longer doing subsequence clustering, but whole
clustering. This is not useful, since the choice of the offset for the first window
would become a critical parameter, and choices that differ by just one timepoint
can give arbitrarily different results. As a concrete example, clustering weekly
stock market data from “Monday to Sunday” will give completely different cluster
patterns and cluster memberships from a “Tuesday to Monday” clustering.

The second idea is to set k to be some number much greater than the true
number of clusters we expect to find, then do some post-processing to find the real
clusters. Empirically, we could not make this idea work, even on the trivial dataset
introduced in the last section. We found that even if k is extremely large, unless it
is a significant fraction of T, we still get arbitrary sine waves as cluster centers. In
addition, we note that the time complexity for k-means increases with k.

It is our belief that there is no simple solution to the problem of STS-clustering;
the definition of the problem is itself intrinsically flawed.

4.4. Necessary Conditions for STS Clustering to Work

We conclude this section with a summary of the conditions that must be satisfied
for STS clustering to be meaningful.

Assume that a time series contains k approximately or exactly repeated patterns
of length w. Further assume that we happen to know k and w in advance. A
necessary (but not necessarily sufficient) condition for a clustering algorithm to
discover the k patterns is that the weighted mean of the patterns must sum to a
horizontal line, and each of the k patterns must have approximately equal numbers
of trivial matches.

It is obvious that the chances of both these conditions being met is essentially
zero.
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5. A CASE STUDY ON EXISTING WORK

As we noted in the introduction, an obvious counter argument to our claim is
the following. “Since many papers have been published which use time series
subsequence clustering as a subroutine, and these papers produce successful
results, time series subsequence clustering must be a meaningful operation.” To
counter this argument, we have reimplemented the most influential such work,
the Time Series Rule Finding algorithm of Das et al. (1998) (the algorithm
is not named in the original work, we will call it TSRF here for brevity and
clarity).

5.1. (Not) Finding Rules in Time Series

The algorithm begins by performing STS clustering. The centers of these clusters
are then used as primitives to convert the real-valued time series into symbols,
which are in turn fed into a slightly modified version of a classic association rule
algorithm (Agrawal et al., 1993). Finally the rules are ranked by their J-measure,
an entropy based measure of their significance.

The rule finding algorithm found the rules shown in Fig. 13 using 19 months of
NASDAQ data. The high values of support, confidence and J-measure are offered
as evidence of the significance of the rules. The rules are to be interpreted as
follows. In Fig. 13(b) we see that “if stock rises then falls greatly, follow a smaller

Fig. 13. Above, Two Examples of “Significant” Rules Found by Das et al. (This is a
Capture of Fig. 4 from Their Paper.) Below, a Table of the Parameters They Used and

Results They Found.



Finding or Not Finding Rules in Time Series 195

Fig. 14. Above, Two Examples of “Significant” Rules Found in Random Walk Data Using
the Techniques of Das et al. Below, We Used Identical Parameters and Found Near Identical

Results.

rise, then we can expect to see within 20 time units, a pattern of rapid decrease
followed by a leveling out” (Das et al., 1998).

What would happen if we used the TSRF algorithm to try to find rules in random
walk data, using exactly the same parameters? Since no such rules should exist
by definition, we should get radically different results.2 Figure 14 shows one such
experiment; the support, confidence and J-measure values are essentially the same
as in Fig. 13!

This one experiment might have been an extraordinary coincidence; we might
have created a random walk time series that happens to have some structure to it.
Therefore, for every result shown in the original paper we ran 100 recreations using
different random walk datasets, using quantum mechanically generated numbers
to insure randomness (Walker, 2001). In every case, the results published cannot
be distinguished from our results on random walk data.

The above experiment is troublesome, but perhaps there are simply no rules to
be found in stock market. We devised a simple experiment in a dataset that does
contain known rules. In particular, we tested the algorithm on a normal healthy
electrocardiogram. Here, there is an obvious rule that one heartbeat follows another.
Surprisingly, even with much tweaking of the parameters, the TSRF algorithm
cannot find this simple rule.

The TSRF algorithm is based on the classic rule mining work of Agrawal et al.
(1993); the only difference is the STS step. Since the rule mining work has been
carefully vindicated in 100s of experiments on both real and synthetic datasets, it
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seems reasonable to conclude that the STS clustering is at the heart of the problems
with the TSRF algorithm.

These results may appear surprising, since they invalidate the claims of a highly
referenced paper, and many of the dozens of extensions researchers have proposed
(Das et al., 1998; Fu et al., 2001; Harms et al., 2002a, b; Hetland & Satrom,
2002; Jin et al., 2002a, b; Mori & Uehara, 2001; Osaki et al., 2000; Sarker
et al., 2002; Uehara & Shimada, 2002; Yairi et al., 2001). However, in retrospect,
this result should not really be too surprising. Imagine that a researcher claims to
have an algorithm that can differentiate between three types of Iris flowers (Setosa,
Virginica and Versicolor) based on petal and sepal length and width3 (Fisher, 1936).
This claim is not so extraordinary, given that it is well known that even amateur
botanists and gardeners have this skill (British Iris Society, 1997). However, the
paper in question is claiming to introduce an algorithm that can find rules in stock
market time series. There is simply no evidence that any human can do this, in fact,
the opposite is true: every indication suggests that the patterns much beloved by
technical analysts such as the “calendar effect” are completely spurious (Jensen,
2000; Timmermann et al., 1998).

6. DISCUSSION AND CONCLUSIONS

As one might expect with such an unintuitive and surprising result, the original
version of this paper caused some controversy when first published. Some
suggested that the results were due to an implementation bug. Fortunately, many
researchers have since independently confirmed our findings; we will note a few
below.

Dr. Loris Nanni noted that she had encountered problems clustering economic
times series. After reading an early draft of our paper she wrote “At first we
didn’t understand what the problem was, but after reading your paper this fact
we experimentally confirmed that (STS) clustering is meaningless!!” (Nanni,
2003). Dr. Richard J. Povinelli and his student Regis DiGiacomo experimentally
confirmed that STS clustering produces sine wave clusters, regardless of the dataset
used or the setting of any parameters (Povinelli, 2003). Dr. Miho Ohsaki re-
examined work she and her group had previously published and confirmed that
the results are indeed meaningless in the sense described in this work (Ohsaki
et al., 2002). She has subsequently been able to redefine the clustering subroutine
in her work to allow more meaningful pattern discovery (Ohsaki et al., 2003).
Dr. Frank Höppner noted that he had observed a year earlier than us that “. . . when
using few clusters the resulting prototypes appear very much like dilated and
translated trigonometric functions . . .” (Hoppner, 2002); however, he did not attach
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any significance to this. Dr. Eric Perlman wrote to tell us that he had begun to
scaling up a project of astronomical time series data mining (Perlman & Java,
2003); however, he abandoned it after noting that the results were consistent with
being meaningless the sense described in this work. Dr. Anne Denton noted, “I’ve
experimented myself, (and) the central message of your paper – that subsequence
clustering is meaningless – is very right,” and “it’s amazing how similar the cluster
centers for widely distinct series look!” (Denton, 2003).

7. CONCLUSIONS

We have shown that clustering of time series subsequences does not produce
meaningful results. We have demonstrated that the choice of clustering algorithms
or the measurements of clustering meaningfulness is irrelevant to our claim. We
have shown, theoretically and empirically, that the clusters extracted from these
time series are forced to obey a certain constraint that is pathologically unlikely to
be satisfied by any dataset. More specifically, in order to discover k patterns in any
dataset using subsequence clustering, at least two conditions must be satisfied:

(1) the weighted mean of the patterns must sum to a constant line, and
(2) each of the k patterns must have approximately the same number of trivial

matches.

Needless to say, the chance of any dataset to exhibit these two properties is very
slim.

In future work we intend to consider several related questions; for example,
whether or not the weaknesses of STS clustering described here have any
implications for model-based, streaming clustering of time series, or streaming
clustering of nominal data (Guha et al., 2000). In addition, we plan to investigate
alternatives for finding clusters in time series data. One promising direction is
towards time series motif discovery algorithms (Chiu et al., 2003; Lin et al., 2002),
which identify frequently occurring patterns in time series.

NOTES

1. S contains the same information as T, except that the subsequences are usually
normalized individually before inserting to S. Normalization is an important and
indispensable step in the sense that it allows identification of similar patterns in time series
with different amplitude, scaling, etc.

2. Note that the shapes of the patterns in Figs 13 and 14 are only very approximately
sinusoidal. This is because the time series are relatively short compared to the window
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length. When the experiments are repeated with longer time series, the shapes converge to
pure sine waves.

3. This of course is the famous Iris classification problem introduced by R. A. Fischer.
It is probably the most referenced dataset in the world.
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A COMPARISON OF VAR AND
NEURAL NETWORKS WITH
GENETIC ALGORITHM IN
FORECASTING PRICE OF OIL
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ABSTRACT

This study applies VAR and ANN techniques to make ex-post forecast of
U.S. oil price movements. The VAR-based forecast uses three endogenous
variables: lagged oil price, lagged oil supply and lagged energy consumption.
However, the VAR model suggests that the impacts of oil supply and energy
consumption has limited impacts on oil price movement. The forecast of the
genetic algorithm-based ANN model is made by using oil supply, energy
consumption, and money supply (M1). Root mean squared error and mean
absolute error have been used as the evaluation criteria. Our analysis
suggests that the BPN-GA model noticeably outperforms the VAR model.

1. INTRODUCTION

Oil, one of the strategic commodities, has played a critical role in affecting the
world’s economic conditions, before and after the appearance of new economic
currents. In his commentary, Evans (2000) contends that the single most influential
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factor in causing recessions has been oil shocks. For that reason, reliable prediction
of the price of oil would be important to researchers and policy makers. Emerson
(2000) argues that while OPEC, a crisis manager, tends to maintain price stability;
financial market speculators and hedgers have a propensity to exacerbate oil price
fluctuations.

Various econometric techniques have been used for predicting the price
movement of oil. Economists are unable to agree which is the most suitable method
for making reliable oil price predictions. One of the widely used econometric
techniques is vector autoregression (VAR).

More recently, artificial neural networks (ANN) techniques have gained much
deserved popularity in engineering because of their flexibility and accuracy. Many
algorithms have been used in ANN models. Among them is the genetic algorithm
which is considered to be superior for searching global optimality.

The purpose of this study is to incorporate oil supply, oil demand, and
government policy into forecasting models of oil prices. We compare the results
of a vector autoregression model with that of a genetic algorithm-based ANN
model.

This paper begins with a review of the most recent literature on oil price
movements and some forecasting techniques. This is followed by a description
of data bases. An application of VAR is given in the next section. The use of ANN
models in forecasting is then elaborated. Findings and discussions are given in the
two sections.

2. LITERATURE REVIEW

The global oil glut of the 1990s has been viewed as the key to the low rate of
inflation and the high rate of growth in the United States. The reversal of the
oil price movement in early 1999, due to OPEC’s decision to reduce the level of
exports on the one hand and the limited refinery capacity worldwide on the other,
has led some policy makers and economists to wonder whether changes in energy
price have long lasting macroeconomic impacts.

Gisser and Goodwin (1986), Hamilton (1996), and Bernanke et al. (1997) have
identified a negative correlation between oil price and economic growth. On the
contrary, Raymond and Rich (1997) suggest that oil price fluctuations may not
present a significant threat to economic growth in the long run.

Concerning inflation, the price of oil has been known to be one of the main
supply-side factors that have contributed to general price increases in most
industrialized countries. Oil price as an inflationary factor in the United States
was examined by Pain et al. (2000), and in European economies by Sarantis and
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Stewart (2000). Both studies concluded that oil price has a strong influence on the
inflationary expectation.

On the other hand, changes in general economic conditions may also affect the
price of oil. In a comprehensive study of global energy demand for the next two
decades, Matsui (1998) projects a moderate increase in demand with little change
in international oil prices. Taking the political economy tack, Jaffe and Manning
(2000) are more optimistic and suggest a prolonged surplus and lower prices for
the next 20 years.

Many in the oil business do not share this optimistic view. Linden (1998)
forecasts oil shortages and consequently rising prices. In a more recent study,
Johnson (2002) paints a gloomy picture of the future, making references to global
oil shortages. On the other hand, with a qualitative approach, Lawrence (2002)
incorporates supply and demand forces to analyze oil and natural gas price in
the future. The focus of the study is on the potential political tensions and socio-
economic instability among OPEC members rooted in the September 11th attack
on the U.S. and presents a more optimistic future for oil prices. In another study,
Weinert (2002) points out that the attack will have little effect on oil prices, due to
lower demand for oil.

In the academic community, the estimation of oil price and its relationship with
other variables has brought up methodological issues. Hooker (1996) points out
that the existence of breakpoints and the changes in Granger-causality in sub-
samples necessitate the use of non-linear analysis. In analyzing long-run energy
price fluctuations, Pindyck (1999) suggests the use of a non-structural model.
On the other hand, Morana (2001) points out that the GARCH model allows for
better forecasting without requiring the specification of the structural model. As
expected, changes in modeling technique provide the public with mixed results in
forecasting oil price movements.

In addition to econometric methods, engineering-based techniques, such as
neural networks and genetic algorithms, have gradually found their way into
economic and business modeling (Curry & Peel, 1998; Dawid, 1996; Kyungdoo
et al., 1997; Smith & Mason, 1997; Zhang & Hu, 1998). A thorough review
of literature pertaining to neural network applications in finance and business
is provided by Wong and Yakup (1997, 1998) and Chen (2002). Although we have
not been able to find any application of neural networks in analyzing oil price
movement, McMenamin and Monforte (1998) have applied neural networks in a
related field, the forecasting of short-term energy loads. They find that because of
nonlinearities, neural networks are especially well suited for the analysis, and pro-
vide improvements in forecast accuracy when compared with regression models.

The methodological linkage between time series analysis and neural networks
is given by Cheng and Titterington (1994). This linkage suggests that a neural
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network estimator can be viewed as a sieve extremum estimator. The consistency
of sieve extremum estimators has been recognized by Geman and Hwang (1982)
and White and Wooldridge (1991). The convergence and asymptotic normality of
these estimators have been established by Barron (1993, 1994), Chen and Shen
(1998), Shen (1997) and Shen and Wong (1994).

In comparison with standard econometric techniques, neural networks make
less restrictive assumptions on the underlying distributions, allow non-parametric
functional forms, and provide a higher degree of robustness (Bode, 1998;
Lippmann, 1992; Ripley, 1993). As pointed out by Kuo and Reitsch (1995/1996),
neural networks provide meaningful predictions when independent variables were
correlated or missing. It is also known that neural networks tend to outperform
the conventional regression analysis in the presence of ambiguity in independent
variables (Denton, 1995). Cooper (1999) compares the multi-layer feed-forward
neural networks results with that of multivariate statistics in the international
economics field and confirms the superiority of the technique. Similar conclusions
are drawn by Kudyba (1998) in forecasting electricity demand. A comparison
between VAR and ANN models for economic forecasting has been made by
Moshiri et al. (1999).

Our motivation to use neural networks in forecasting the price of oil is justified
on the basis that the standard random walk assumption is often misapplied to cover
a noisy nonlinear process (Grudnitski & Osburn, 1993). When a nonlinear model
is adopted, the functional form of a traditional model is often arbitrarily imposed
on rather than dictated by the data. The use of neural networks provides needed
flexibility and prevents the adoption of other stringent assumptions (Denton, 1995;
Kuo & Reitsch, 1995/1996). Thus, neural networks are superior to traditional
approaches in terms of parsimony of parameterization (Cheng & Titterington,
1994). Finally, a network structure is trained by using part of the data and then
tested by using the rest of the data. A well-trained network is expected to provide
robust predictions. Therefore, it is no surprise to learn that neural network models
outperform non-linear regression in terms of predictability (Cheng & Titterington,
1994; Grudnitski & Osburn, 1993).

3. DATA

Following price theory, market price of oil should primarily be determined by oil
demanded and oil supplied, subject to the intervention of government policy. It
is therefore reasonable to estimate the price movement of oil by using petroleum
consumption, oil supply, and a policy variable. The use of petroleum consumption
and oil supply, respectively, to reflect oil demanded and supplied seems to be
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straightforward. The identification of policy variables which have strong and steady
impacts on oil price, however, poses quite a challenge. In addition to the theoretical
adequacy of the policy variable, the availability of data is also a concern. Because
oil price movement interacts with both inflation and economic growth, which in
turn are subject to the constraint of monetary policy, we have arbitrarily selected
money supply as a proxy of government policy.

The monthly data covers the period of 1980:01 to 2002:11, a total of 275 sample
observations of oil price (P), petroleum consumption (CO), oil supply (S), and
M1 money supply (M1). P is the daily NYMEX light sweet crude oil futures
prices (U.S. dollars per barrel). Measured in trillion BTU, petroleum consumption
includes the oil consumed monthly by both businesses and consumers in the U.S.
Monthly oil supply, measured in million barrels per day, is derived by adding
the domestic production to the oil imported from overseas. M1 is measured
in billions of dollars. Data on nominal oil prices, oil supply, and petroleum
consumption, all seasonally unadjusted, have been obtained from the Energy
Information Administration, U.S. Department of Energy. Seasonally adjusted
money supply, measured in M1, has been made available by the Federal Reserve
System.

The price of oil experienced a steady increase since the late 1970s. Despite
several significant decreases, oil price maintained relative high levels for the
first half of the 1980s. The sharp plunge in 1986 marked the end of a price
movement pattern. The formation of this unique plateau pattern was attributable to
international politics. Since the middle of the 1980s, oil prices fluctuated around
$15 per barrel. Towards the end of the century, however, price volatility seemed
to have increased. It is obvious that a linear model is inadequate for predicting oil
price movement.

Figure 2 shows the petroleum consumption by households and businesses from
1980 to 2002. The time series exhibits a gradual decrease in the early 1980s. Despite
its volatility, the demand for petroleum has gradually increased since 1983.

As shown in Fig. 3, the supply of oil, which is the sum of domestic production
and imports, follows the general pattern as shown by petroleum consumption.
However, a close examination reveals that oil supply has higher seasonal volatility
than petroleum consumption.

As shown in Fig. 4, the supply of M1 in the United States is obviously not
stationary. Over a span of twenty years, money supply, as measured by M1,
has grown three folds. The rate of increase of money supply far exceeds that
of petroleum consumption or oil supply. The issue of stationarity requires the
immediate attention of the modeler. The M1 series reveals another significant
difference from other series in this study. That is, money supply exhibits much
less volatility over time.
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Fig. 1. Oil Price (P). Original Data, January 1980 to November 2002. Source: U.S. Dept.
of Energy, Energy Information Administration, Monthly Energy Review.

Because both oil price and money supply are measured in nominal values, there
is no need to convert any variable from real values to nominal values. To obtain
unbiased estimates, oil price, petroleum consumption, and oil supply have been
processed to obtain seasonally adjusted data. In addition, the outlier effects have
been adjusted in all four monthly series by applying the Tramo program. The four
series after seasonal and outlier adjustments are given in Figs 1 through 8.

It is well known that oil price movement reflects changes in OPEC action. Since
our intent is not to estimate the price impact of any OPEC policy, nor to model
any structural changes, only monthly data after January 1986 have been used in
our analysis. As a result, the comparison between VAR- and ANN-based forecasts
becomes more meaningful.

Table 1 reveals changes in the mean, the standard deviation, and the coefficient
of variation of each series resulting from seasonal and outlier adjustments.
The summary statistics are derived from monthly data from January 1986 to
November 2002. Data before January 1986 have been removed to avoid modeling
complications. Note that the statistics of M1 stay the same under the columns of
“no adjustments” and “seasonally adjusted,” because M1 is a seasonally adjusted
series. After seasonal and outlier adjustments, the coefficient of variation of oil
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Fig. 2. Oil Supply (S). Original Data, January 1980 to November 2002. Source: U.S. Dept.
of Energy, Energy Information Administration, Monthly Energy Review.

Fig. 3. Petroleum Consumption (CO). Original Data, January 1980 to November 2002.
Source: U.S. Dept. of Energy, Energy Information Administration, Monthly Energy Review.
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Fig. 4. Money Supply (M1). Original Data, January 1980 to November 2002. Source: The
Federal Reserve System.

Fig. 5. Oil Price (P). Seasonally and Outlier Adjusted Data, January 1986 to November
2002.
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Fig. 6. Oil Supply (S). Seasonally and Outlier Adjusted Data, January 1986 to November
2002.

Fig. 7. Petroleum Consumption (CO). Seasonally and Outlier Adjusted Data, January
1986 to November 2002.
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Fig. 8. Money Supply (M1). Seasonally and Outlier Adjusted Data, January 1986 to
November 2002.

prices changes from 0.2857 to 0.2536. Statistics of other series shows only minor
changes before and after the adjustments.

For comparing forecasting results, the data set has been divided into two subsets.
The first sub-sample, covering a period from January 1986 to November 2001, is
used for obtaining fitted values of the VAR and ANN models. To generate long-
term ex-post forecasts, the data from December 2001 to November 2002 are used.

4. VAR MODELS

A VAR(p) model can be expressed as

Xt = � + �1Xt−1 + · · · + �pXt−p + vt , (1)

where � = (�1, . . ., �k )′ is a vector of intercepts; �1, . . ., �p are vectors of
coefficients, Xt−1, . . ., Xt−p are vectors of variables with lags 1, . . ., p, respectively;
and vt , ∼ WN(0, �). The number of lags for each variable is determined by the
Akaike Information and Schwartz criteria.

VAR has been considered as a very useful tool for economic forecasting. For a
large sample, VAR estimates are fully efficient. Furthermore, the properties of the
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Table 1. Variable Statistics.

Statistic No Adjustments Seasonally Adjusted Seasonally Adjusted + Outliers Removed

P S CO M1 P S CO M1 P S CO M1

Mean 16.66 13,943.07 2,931.99 984.65 16.65 13,941.28 2,932.52 984.65 16.35 13,955.28 2,929.48 985.67
Standard

deviation
4.76 859.91 203.67 168.32 4.68 802.92 176.79 168.32 4.15 840.27 204.07 170.22

Coefficient of
variation

0.2857 0.0617 0.0695 0.1709 0.2814 0.0576 0.0603 0.1709 0.2536 0.0602 0.0697 0.1727
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Table 2. Tests of Unit Roots Hypothesis.

Variable ADF Test PP Test

P −2.323187 −2.255479
CO −1.644940 −1.107161
S −1.910515 −2.539142
M1 −1.197474 −2.030140
�P −8.630371 −8.390454
�CO −16.60505 −21.49671
�S −15.60040 −29.29778
�M1 −2.858863 −12.96359

estimates are reliable. A VAR model also has the advantage that the estimate of its
covariance matrix is independent of the estimates of its parameters. To examine
the dynamic interactions among oil prices, petroleum consumption, oil supply and
monetary policy, a VAR analysis is performed. E-Views is the software chosen for
this task. To investigate the order of integration of these variables, the augmented
Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test have been applied to the in-sample data.

Table 2 gives the results of augmented Dickey-Fuller test, Phillips-Perron test,
and Kwiatkowski-Phillips-Schmidt-Shin test. Each variable and its first difference
are subject to these tests. The ADF and the PP tests fail to reject the hypothesis
that the P, CO, S, or M1 contains an autoregressive unit root. However, these tests
reject the hypothesis that �P, �CO, or �S contains a unit root. For �M1, the PP

Table 3. Johansen Cointegration Test.

Maximum Eigenvalues

Null Eigenvalue Maximum 5% Critical 1% Critical
Hypothesis Eigenvalue Value Value

Statistic

r = 0 0.205043 43.36929 20.97 25.52
r = 1 0.091872 18.21385 14.07 18.63
r = 2 0.006799 1.289427 3.76 6.65

Trace Statistics

Null Eigenvalue Trace 5% Critical 1% Critical
Hypothesis Statistic Value Value

r = 0 0.205043 62.87258 29.68 35.65
r = 1 0.091872 19.50328 15.41 20.04
r = 2 0.006799 1.289427 3.76 6.65
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Table 4. Vector Autoregression Estimates.

P

Pt−1 0.896101
(0.02503)

[35.7980]
St−1 −0.001005

(0.00027)
[−3.69780]

COt−1 0.005355
(0.00134)
[3.99524]

R-squared 0.904227
Adj. R-squared 0.903203
Log likelihood −335.8326
Akaike AIC 3.566659
Schwartz SC 3.617928

Note: Standard errors in ( ) & t-statistics in [ ].

test statistic is smaller than the t-statistic at both 5 and 10% levels, while the ADF
statistic is greater than the t-statistic at the 5% level but smaller at the 10%. Results
from all these tests suggest that each of the four series is an I(1) process.

The Johansen test has been applied to whether there exists any cointegrating
equation. Results of this test are given in Table 3. The hypothesized number of
cointegration equations is given in column 1. The next column shows eigenvalues.
Maximum eigenvalue statistics and trace statistics are given in the third column.
The 5% and 1% critical values are given in the last two columns. Results of
this test suggest that the null hypothesis of no cointegrating equation is rejected.
Both the maximum-eigenvalue test and the trace test suggest the presence of two
cointegrating equations at the 5% level.

Based upon Akaike Information criterion, Schwartz criterion, and log likelihood
ratio statistic, the best VAR model has been selected. This model includes P, CO,
and S as endogenous variables. It is noteworthy that both the constant term and
M1 have been excluded from the model. The VAR estimates which are used for
forecasting oil price are shown in Table 4.

5. NEURAL NETWORK STRUCTURE
AND GENETIC ALGORITHM

Perceptrons are the building blocs of a neural network. Each perceptron (also
known as a neuron or node), alone, is capable of solving only linearly independent
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problems. A feed-forward net is constructed by arranging banks of nodes into rows
and linking elements of successive rows via weighted summation operators. A node
in a higher row computes a linear combination of inputs sent from a lower row, and
then forwards the result to an activation function (a nonlinear function if needed)
to generate output. The activation function forces the output to be contained within
finite bounds, with a range usually between 0 and 1, or −1 and 1. In a feed-forward
net, the signal pathway is one direction – from the input layer to the output layer.
Kinchem (1998) argues that the development of the back propagation paradigm in
conjunction with the popular use of inexpensive high-powered personal computers
brought neural networks technology to the mainstream.

Consider a three-layer network with an input layer, a hidden layer, and an output
layer. Let X ∈Rd be a d-dimensional stationary process. At iteration step t, t = 1,
2, . . ., n, the input vector x(t) ∈ X at the input layer is connected with r(t) nodes
at the hidden layer to generate outputs z(t) ∈ Z. This output vector is then fed to
a node at the output layer. The output resulted from the output layer at iteration
step t, y(t) ∈ y, is the outcome of the feed-forward system. If each neuron has an
activation value that is the weighted sum of input values, then the network-based
estimation function of y(t), �n (·), becomes

�n (x(t), b(t), a(t)) =
∑

i

Si{Zi (t), bi (t)}

=
∑

i

Si

⎛
⎝∑

ji

Tji [xji (t), aji (t)], bi (t)

⎞
⎠ , (2)

where bi(t) ∈ b(t), i = 1, 2, . . ., r(t), is the hidden-to-output weight assigned to ith
hidden node with b0(t) as the bias, and aji(t) ∈ a(t), i = 1, 2, . . ., r(t) and j = 1, 2,
. . ., d, is the input-to-hidden weight assigned to the connection between jth input
and ith hidden node with a0i as the corresponding bias. Let � ∈ � be the parameter
space, and xji(t) ∈ x(t). Let �0 ∈ � be the true parameter, and a, b ∈ � be the
estimates of �0. Here, Si and Tji are activation functions, a bounded function with
infinite domain. A function may take the form of a signum, a logistic sigmoid, a
cumulative distribution, a threshold logic, or a hyperbolic tangent function. Any
change in activation functions would result in a different estimation of y.

Before a network can be used as a forecasting tool, it must be trained. Given a
sample of {y(t), x(t)} at iteration step t, the training problem is to select a, b ∈ � so
that an evaluative criterion such as the sum of squared errors is optimized. Note
the difference between estimated and actual y at iteration step t by:

D(t) = y(t) − �n (x(t), b(t), a(t)). (3)
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The weights assigned to inputs of the output layer at iteration step t + 1 become

bi (t + 1) = bi (t) − �D(t)zi (t), i = 0, 1, 2, . . . , r(t), (4)

where � is the learning rate. For the hidden layer, the estimation error at iteration
step t is

�(t) = D(t)S′{zi (t), bi (t + 1)}, i = 0, 1, 2, . . . , r(t), (5)

where S′ is the first derive of S. The weights assigned to inputs of the hidden layer
at iteration step t + 1 are

ai (t + 1) = aji (t) − ��(t)xji (t), i = 0, 1, 2, . . . , r(t), and j = 0, 1, 2, . . . , d.

(6)
An architecture following this type of learning process is known as a back
propagation network. The optimal estimate of y is obtained when the following
risk functional is minimized:

Ln (�) =
∫

(y − �n (x, b, a))2p(x, y) dx dy, (7)

where p(x, y) is the joint probability density function.
A neural net estimator contains an approximation error and an estimation error.

The approximation error refers to the distance between the target function and the
approximation function, while the estimation error measures the distance between
the approximation function and the estimates. Cybenko (1989) and Hornik et al.
(1989) suggest that a feed-forward network with sufficient hidden units is able
to eliminate the approximation error. That is, feed-forward networks have the
property of universal approximation. Barron (1993), Makovoz (1996), and Chen
and White (1999) have proved that the approximation function approaches the
target function at a convergence rate to be determined primarily by the number of
nodes in a feed-forward network.

As aforementioned, the neural network estimator �∗ is a sieve extremum
estimator, which satisfies

Ln (�∗) ≥ sup�∈�n
Ln (�∗) − O(�2

t ), (8)

where �n is a sieve such that {�n} is dense in � as n → ∞, and �t → 0, as t →
∞. The neural network sieve �n , as shown in Eq. (1), is an approximation function
in �n . We can restate the approximation function in a more familiar form

�n (x) = b0 +
m∑

j=1

bj�(aT
j x + a0j ), (9)
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where �(·) is the activation function. Chen and Shen (1998) show that
the neural network sieve convergence rate is OP ([n/log n])−(1+1/d)/[4(1+1/2d)],
and this convergence rate induces a root-n asymptotic normality of plug-in
estimates.

Given the above theoretical structure, many algorithms can be applied for
searching the optimal network architecture. Among them are linear programming,
integer programming, constrained non-linear programming, unconstrained non-
linear programming, non-linear least-square methods, heuristic search and genetic
algorithms (GAs). Economists often use structural models based on economic
theory. But when the structure of the problem domains is large and not well known,
GAs have an advantage over traditional modeling methods (Polani & Uthman,
1993). That is, when the researcher has little a priori knowledge of the structure of
problem domains, the combined power of GAs can still explore the search space
efficiently (Al-Tabtabai & Alex, 1998). When GAs are incorporated into neural
networks, the learning power and robustness of the network are greatly enhanced
(Hansen & Meservey, 1996).

Holland (1975) proposed an iterative genetic algorithm to search the optimal
solution to a fitness function or objective function. Each member in the population
of possible solutions is a binary string of chromosomes with a fixed length. To
initiate the search process, a population is created at random or in a heuristic
manner. Each iteration of the search algorithm consists of an evaluation of the
current population, and the formation of a replacement population. To evaluate
a population, a selection operator that optimizes a fitness function is applied. A
genetic algorithm can therefore be viewed as a repetitive optimization process that
uses a selection operator to choose the most-fit population. There are several ways
to end the search algorithm. The process can come to an end by simply fixing the
total number of iterations, by reaching an approximate value within some tolerance
level of the true solution to fitness function, or by establishing a criterion relevant
to the application under consideration.

The creation of a replacement population at each iteration is essential to the
search for the optimal solution. Variations to an existing population are generated
by means of some chromosome recombination operators. The crossover operator
is a powerful device for recombining chromosomes. During the crossover, two
members of an existing population exchange portions of their binary chromosomes.
To achieve the crossover effect, a crossover point on a string of chromosomes of
each member is chosen. Then, two members exchange their binary sub-strings
of chromosomes to the right of this crossover point. After the crossover, a new
population has been created because each of its members contains a different
string of chromosomes. Through this process, each iteration evaluates a different
set of possible solutions to the objective function.
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The population convergence over the iteration process implies that an optimal
solution to the objective function is being approached. If the convergence
rate is too high, however, the solution could be sub-optimal. To prevent fast
convergence, a mutation operator can be applied to provide members with new
genetic combinations. Thus, the mutation operator prevents premature convergence
through population diversity.

A genetic algorithm can be viewed as a search process for identifying the
optimal net structure. In this sense, each population corresponds to a neural network
structure. Following Polani and Uthman (1993), each member of a population has
the chromosomes consisting of two header bytes and “m” double bytes. The first
header byte indicates the number of neurons or node in the net. The second header
byte specifies the maximum number of transcription steps allowed by the modeler.
A transcription step reflects a connection between one node and another. The
double bytes are used to designate the possible node connections. The transcription
process comes to a halt before the allowed maximum number of steps whenever
it tries to connect a node with itself, or to reconnect the pre-connected nodes.

For the purpose of making an accurate forecast, the risk functional in our neural
network model, as shown in Eq. (7), can serve as the fitness function of the GA
search. That is, a neural network structure is considered optimal when its root
mean squared error between predicted and observed output is the smallest among
all nets.

This study uses Neuro Genetic Optimizer (NGO) to train and to select the optimal
network. Among many types of applications that NGO provides, the time series
prediction was selected. The software also offers a selection of neural network
architectures, such as Back Propagation (BPN), Continuous Adaptive Time Delay
(CATNN), Time Delay (TDNN), Probabilistic (PNN), Generalized Regression
Neural Network (GRNN), and Self Organizing Map (SOM). For consistency
purposes, BPN has been chosen for this study. Out of six available measures for
fitness and accuracy, root mean squared error and mean absolute error have been
chosen.

The databases are scaled by the software with the range of −1 to +1 for inputs.
For output, depending on the transfer function, the scaling is from 0.1 to 0.9 if
logistic sigmoid, and −1 to +1 if other functions are used. The initial weights
are randomly selected between ±0.3. This software allows a maximum of 256
hidden neurons per hidden layer. In addition, each network is allowed to have a
maximum of two hidden layers. NGO has a capacity to support 32 input and 100
output variables.

Each iteration or run of a GA search involves a full cycle of evaluation/
selection/mutation process. If not limited, GA would search for the optimum
solution continuously without stopping. To prevent that, a minimum of 20 training
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Table 5. Forecast Evaluation.

Pt = f(·) Root Mean Squared Error Mean Absolute Error

VAR Pt−1, St–1, COt−1 4.69861 4.18883
BPN – GA St , COt−1, M1t 1.2354 0.8629

passes for each network were used. A new population is generated by cloning the
survivors of an old population. We adopt the mutation technique of Tail Swap with
a random exchange at a rate of 25%.

The neural network methodology requires the allocation of a portion of the data
for training purpose. The training set includes the monthly data of each series from
January 1986 to November 2001. The last twelve data points of each series are
used for ex-post forecasting.

6. FINDINGS

Root mean squared error and mean absolute error have been chosen as the criteria
for comparing VAR and BPN forecasts. The estimated coefficients of the VAR
model is

Pt = 0.896101Pt−1
(0.02503)

− 0.001005St−1
(0.00027)

+ 0.005355COt−1
(0.00134)

. (10)

R-squared = 0.904227, Adjusted R-squared = 0.903203.
The GA-based back propagation (BPN-GA) model, however, employs all three

variables, S, CO and M1, to forecast the price of oil (P). There is one hidden layer
with 1 logistic, and 1 tan h neurons. There is one output neuron using the logistic
transfer function.

Table 5 shows root mean squared error and mean absolute error of VAR and
BPN-GA models. Variables used for different modeling techniques are given in
the second column. The subsequent columns provide root mean squared error and
mean absolute error of each model. Based on the forecast evaluation statistics, the
BPN-GA model noticeably outperforms the VAR model.

7. DISCUSSION

The Middle East conflict has heightened the concern about global oil supply. At
the heart of this concern is the future energy prices and their reliable forecasts. The
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selection of a forecasting technique becomes an important component of policy
making.

The VAR model selected for forecasting suggests that lagged oil price is the
most important variable in forecasting price movement. Interestingly, M1 does not
play any role in this model. A possible explanation is that money supply is not an
appropriate proxy for energy policy. For future studies, the search for an alternative
policy variable is in order.

A closer look of the VAR model further reveals that the coefficient of lagged oil
supply is −0.001005, and that of lagged energy consumption is 0.005355. Both
coefficients are statistically significant. The results also confirm the economic
theory that an increase in oil supply has a dampening effect on, while the energy
consumption is positively related to the oil price. However, these coefficients
suggest that there are minimal impacts of energy consumption and oil supply
on oil price.

Recently, the application of the artificial neural networks in forecasting has
gained popularity in the fields of business and economics. Models based on
neural networks have the advantage of making less restrictive assumptions. Neural
networks are also capable of approximating any continuous mapping with desirable
accuracy. This study suggests that a BPN-GA model can outperform a VAR model
in forecasting. However, our study does not prove that ANN is always a better
forecasting technique than VAR.

ANN techniques, however, also have some shortcomings. One of the problems is
that they do not emphasize the functional form of a model. Unlike a VAR model,
coefficients of individual variables are not known. In addition, the selection of
variables to be included does not follow the common practices in econometrics.
For example, unit root tests do not find a place in ANN models.
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SEARCHING FOR DIVISIA/INFLATION
RELATIONSHIPS WITH THE
AGGREGATE FEEDFORWARD
NEURAL NETWORK

Vincent A. Schmidt and Jane M. Binner

ABSTRACT

Divisia component data is used in the training of an Aggregate Feedforward
Neural Network (AFFNN), a general-purpose connectionist system designed
to assist with data mining activities. The neural network is able to learn
the money-price relationship, defined as the relationships between the rate
of growth of the money supply and inflation. Learned relationships are
expressed in terms of an automatically generated series of human-readable
and machine-executable rules, shown to meaningfully and accurately
describe inflation in terms of the original values of the Divisia component
dataset.

1. INTRODUCTION

If macroeconomists ever agree on anything, it is that a relationship exists between
the rate of growth of the money supply and inflation. According to the Quantity
Theory tradition of economics, the money stock will determine the general level of
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prices (at least in the long term) and according to the monetarists it will influence
real activity in the short run. This relationship has traditionally played an important
role in macroeconomic policy as governments try to control inflation.

Measuring money supply is no easy task. Component assets range from “narrow
money,” which includes cash, non interest bearing demand deposits and sight
deposits1 on which cheques can be drawn, to “broader” money, which includes
non-checkable liquid balances and other liquid financial assets such as Certificates
of Deposit. In practice, official measures have evolved over time according to
policy needs. Obviously many of these assets yield an interest rate and could thus
be chosen as a form of savings as well as being available for transactions. Financial
innovation, in particular liberalisation and competition in banking, has led to shifts
in demand between the components of “money” which have undermined earlier
empirical regularities and made it more difficult to distinguish money which is
held for transactions purposes from money which is held for savings purposes
(Mullineux, 1996).

Secondly, there is the question of how to combine the different components,
since they are not perfect substitutes for one another. They provide different levels
of monetary services for transactions (liquidity) and different yields (interest). As
payments technology progresses, so the monetary services provided will change
disproportionately – not only do interest rates vary with time but liquidity can be
enhanced too. Despite this variation in the characteristics of assets, the conventional
way of measuring the amount of money circulating in an economy is to simply
sum the various constituent liquid liabilities of commercial and savings banks.
However the belief is widely established that this method of arriving at broad
money aggregates is seriously flawed and based on untenable assumptions, as
shown by Belongia (1996). From a micro-demand perspective it is hard to justify
adding together component assets having differing yields that vary over time,
especially since the accepted view allows only perfect substitutes to be combined
as one “commodity.”

Barnett (1978, 1980) pioneered the use of the Divisia monetary aggregate as
an alternative to simple sum aggregation. By drawing on statistical index number
theory and consumer demand and aggregation theory, he advocated the use of
the Divisia chain-linked index numbers as a means of constructing a sophisticated
weighted index number measure of money. The Divisia index formulation has been
well documented in the literature and so need not detain us here (see Fisher et al.,
1993; Mullineux, 1996, for detailed discussions on the construction of Divisia
monetary aggregates and associated problems). Proponents of weighted index
number aggregation contend that Divisia M4 endogenizes at least some of the
major innovations that clearly distorted simple sum M4 in the 1980s, especially
the payment of competitive interest rates on checking deposits.
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The Divisia approach attempts to allow for the varying transactions and liquidity
properties of the components of a monetary aggregate by giving them different
weights. The share weight of each component depends on its size relative to the
other components of the monetary aggregate and on its user cost. Consequently,
currency and non-interest bearing deposits receive the highest weights because
they are highly liquid assets and (correspondingly) have high user costs (in terms
of interest foregone). Interest-bearing time deposits by contrast pay a relatively
high rate of interest and are less liquid, and so attract a lower weight than might
be expected from the size of such deposits alone. To the extent that these weights
reflect the differences in transactions services provided by various monetary assets,
the resulting Divisia index should be more closely related to the overall level of
liquidity in the economy (and therefore to total spending in the economy) than are
conventional monetary aggregates.

Clearly, the foundations of the construction of monetary aggregates are well
rooted in monetary aggregation theory and require extremely strong assumptions.
(Barnett and Serletis (2000) give a detailed treatment of the theory of monetary
aggregation.) However, the underlying philosophy of the current research is that all
assumptions can be weakened and the Divisia formulation can still be improved.
Our hypothesis is that the interest rate weights are not ideal in Divisia construction
and the Divisia index number formula has not yet been optimized. This is also
borne out by recent research which has focused on accounting for the riskiness of
the asset in the index construction; see Barnett et al. (Barnett, 1995; Barnett et al.,
1997) for such efforts in the USA and Drake et al. (1999) and Elger and Binner
(2004) for approaches in the UK.

To work toward this hypothesis, our primary interest is to identify the
relationships between Divisia components and inflation. One promising approach
is the use of artificial neural networks, or connectionist models, which can
model relations from examples, and are robust with respect to noise and random
fluctuations in training data. This robustness allows neural solutions to generalize
such that the final state is accurate across a wide range of data. We believe neural
networks can be used as a tool to identify the true weights and relationships between
monetary assets and prices. If the discovered relationships prove to be reliable
indicators, a construction of superior weighted monetary indices could ultimately
reinstate monetary targeting as the mainstay of macroeconomic control.

Trained neural networks are ideal solutions in a variety of domains, and the
popularity of connectionist systems has been a catalyst in the introduction of a
large collection of inexpensive or freely available neural modeling tools. Coupled
with rapid and continuous advances in computer technology and the availability of
inexpensive, but powerful, desktop computers, many casual researchers are able
to take advantage of these tools. In many cases, reasonable experimental results
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Fig. 1. Feedforward Connectionist Models.

can be quickly produced. The resulting models and their solutions can be useful
in lending insight into the behavior and relationships among data elements and
attributes.

The use of neural networks to learn the relationship between Divisia asset
components and inflation was first attempted very successfully for UK Divisia
M4 by Gazely and Binner (2000). Their 7–5–1 and 3–4–1 feedforward models
are shown graphically in Fig. 1, and include Divisia components, a time trend
variable, and an autoregressive term. Weights from the trained network were used
in a sensitivity analysis to determine the importance of attribute inputs. They
demonstrated that a properly generated neural network is expressive enough to
learn relationships between Divisia components and inflation to the extent that even
a reasonably simple architecture can outperform traditional Divisia measurements
under many circumstances, and performs comparably at its worst.

These connectionist models were sufficiently expressive to learn the
relationships from Divisia components to inflation. However, we are not currently
interested in only devising a system that learns such relationships, but in a system
that also describes them in useful and practical terms. This is the role of a solution
such as the Aggregate Feedforward Neural Network (AFFNN) approach, which
specializes in learning the relationships using a customized neural network, and
then presents the knowledge as human-readable and machine-executable rules.

The purpose of the AFFNN architecture is to assist in the exploration and
explanation of data, supporting data mining activities. It was selected for this
effort because of its generality and existing rule extraction subsystem. The AFFNN
specializes in examining a collection of K input attributes and discovering the
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relationships amongst all attributes simultaneously. The resulting relationships are
expressed as sets of rules. Key descriptions of this novel model were introduced,
with applications, in Schmidt and Chen (Schmidt & Chen, 2002a, b). Characteristic
features of this model include:

� The AFFNN is a novel architecture that behaves as if it were an aggregation of
a collection of individual neural networks.

� The AFFNN uses all attributes in both the source and target sets, but is not
autoassociative because of the way that the inputs are managed.

� The AFFNN can use contemporary supervised training algorithms and
performance functions suitable for feedforward connectionist models with little
or no modification.

� A customized decompositional rule extraction algorithm was developed for use
with the AFFNN. Discovered relationships are algorithmically transformed into
readable and executable rules.

The remainder of this paper briefly summarizes key points of the AFFNN, and
then describes the model’s application to learning the relationships among the
monetary component asset data of UK Divisia M4.2 Application-specific AFFNN
architectural and training details are presented, along with a brief comparison to
a traditional non-rule-bearing feedforward neural model and a discussion of the
experimental results. This study is a continuation of a collaborative research effort
originating in Schmidt and Binner (2003).

2. LEARNING DIVISIA RELATIONSHIPS
USING THE AFFNN

The AFFNN is a fully-connected feedforward connectionist model that relies on
the use of traditional supervised training algorithms. Although the architecture is
not constrained, the most commonly used architecture contains a single hidden
layer with an empirically determined number of hidden layer nodes. Both the
input and output layers have the same number of nodes, represented by the size
of the vector encoding all K attributes. The nature of the AFFNN design allows
the user to select practically any supervised training algorithm and performance
function.

By design, the AFFNN accepts all K attributes as network inputs, and produces
all K attributes as outputs. However, the network is not trained autoassociatively.
Each attribute Ai, 1 ≤ i ≤ K, is learned by the network such that all other attributes
are permitted to contribute to the solution for Ai except for Ai itself. Expressed
more formally, if Ai∗ represents the set of all attributes such that all attributes except
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for Ai are included in Ai∗ , and if O î defines the set of attributes only including Ai,
then the AFFNN strives to simultaneously learn all relationships:

O î = f(Ai∗ ), ∀1 ≤ i ≤ K (1)

for all values of i for all such existing functions, given adequate expressive power
in the hidden layer and a sufficient amount and quality of training.

The AFFNN is a general-purpose connectionist architecture that is able to
perform such learning with the assistance of an exclusive performance function
wedge and a set of pre-and post-processing functions. These functions, not
accessible by the user, manage the internal functionality of the AFFNN model.
This unique feature allows it to operate in a variety of domains without restricting
the selection of supervised training functions or network performance functions
available to the end user. More detail regarding the specific implementation of the
AFFNN can be found in the definitive work by Schmidt (2002).

In this effort the AFFNN is used as a tool for discovering relationships within the
Divisia component data, specifically the relationship between Divisia components
and inflation. The raw dataset is obtained as a collection of quarterly figures
from Q1 of 1977 through Q1 of 2001, yielding 97 exemplar vectors. This data
is preprocessed by computing the percentage of change for each successive and
corresponding quarter (the same quarter of the previous year), which reduces the
data to 94 exemplars. Once the component data is preprocessed, it is clustered
and thermometer-encoded in preparation for use in the AFFNN. The clustering
algorithm used for this effort is fully automated (completely hands-off), and is a
customized approach based on the standard deviation of the differences among the
numbers to be grouped. The algorithm is documented in Section 5.2.1 of Schmidt
(2002). Applying this algorithm to the Divisia dataset, the number of clusters for
each attribute is:

� Notes and Coin (NC) encoded into 7 levels;
� Non Interest Bearing Bank Deposits (NIBD) encoded into 14 levels;
� Interest Bearing Bank Sight Deposits (IBSD) encoded into 4 levels;
� Interest Bearing Bank Time Deposits (IBTD) encoded into 7 levels; and
� Building Society Deposits (BSD) encoded into 7 levels.

The six attributes used to train the AFFNN consist of these five, along with inflation
rate (INFL), also expressed as a percentage of increase, automatically clustered
and encoded into 4 levels. Since these attributes are thermometer-encoded, the
input vector is 43 binary elements: 39 from the original encoded components and
four from the encoded inflation rate.

Figure 2 shows a block diagram depicting a 43–12–43 AFFNN topology very
similar to the architecture used in this study. After empirically determining that
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Fig. 2. Divisia AFFNN Block Diagram.

15 nodes in the hidden layer is sufficiently expressive, the AFFNN used for this
study is a 43–15–43 model (43 nodes in the input and output layers, with 15 nodes
in the hidden layer). Note that the AFFNN uses all six encoded attributes as both
inputs and outputs (the input and output layer sizes are the same). The nodes in
the hidden layer use sigmoid activation functions and the output layer nodes use
linear activation functions. Both the number of network layers and the selection
of activation functions used in this effort conform to research demonstrating that
a feedforward neural network containing a single hidden layer (using sigmoid
activation functions) and a single output layer (using linear activation functions)
can be used to approximate virtually any function of interest to any degree of
accuracy when using an adequate number of nodes in the hidden layer (Hornick
et al., 1989). Thus, defining a network with a single hidden layer is a practical
decision that is not a limitation of the AFFNN, which can be created with an
arbitrary number of layers and any set of activation functions.
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The nature of the AFFNN allows inflation (INFL) to be learned purely as a
function of the other attribute variables. Although the AFFNN attempts to learn
all of the relationships for all attributes, it is always possible to examine the paths
leading to a single attribute, effectively “lifting” the desired portion (inflation, in
this case) out of context following network training. This allows the rule extraction
routines to concentrate on describing the relationships in this more limited series of
outputs. For example, rules are generated using the weights and values propagated
along the solid lines of the figure, while weights on the dashed lines are ignored.
Here, A6 (INFL) is the only attribute receiving weights at the output nodes, but it
does not contribute as an input.

3. GENERATING RULES FROM LEARNED
RELATIONSHIPS

It is not sufficient to merely learn the relationships; they must also be expressed in
some format that is both understandable and reasonable. Neural networks excel at
learning relationships, but are frequently declared to be black boxes since casual
examination of trained network weights is not practical. Thus, it is often assumed
that the inner workings of connectionist systems are incapable of being practically
expressed. Fortunately this is not necessarily true. There are numerous research
activities that strive to describe the neural model in understandable terms, although
many contemporary systems require specialized architectures or operate in limited
domains (see Lu et al., 1995; Towell & Shavlik, 1993, for particularly interesting
systems). In fact, examination of the relevant literature shows the existence of a
variety of techniques for transforming trained connectionist models into intelligible
forms. For example, some methods generate decision trees or statistical models
from the trained neural network. The decompositional approach, where the trained
model’s connections and internal weights are examined, is also a popular form.

Rule extraction in the AFFNN uses a technique which is similar to basic
decompositional strategies frequently employed to describe neural networks.
The algorithm uses a multistaged approach to inspect discretized activation
values within the trained network model. Rules are then created by identifying
similar weighting structures and combining the activation values within the
trained AFFNN. The final product of the decompositional extraction is a
collection of if-then rules based on the solution set of satisfied expressions,
where each rule describes a single expression. A set of rules describes
the entire solution, and inputs satisfying any rule belong to the solution
set.
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As an additional advantage, the rules are expressed in an appropriate syntax
such that they are directly executable by a computer. Thus it is not necessary to
“code” or “translate” the rules into a valid computer language. These rules can be
executed against the training or testing data to confirm rule validity and can also
be used to process previously unseen data. In the case of the Divisia component
data, this makes the extracted rules available for performing predictions and other
forecasting tasks.

Figure 3 illustrates the basics of this technique, as applied to a typical AFFNN
architecture. For this example, assume that and AFFNN is trained for three
attributes, A, B, and C, encoded into multiple input variables, and that rules are to
be produced for attribute C, with values encoded into two nodes. The only weights
used in extracting these rules are indicated by the solid lines in the figure. Note
how entries related to attribute C are not participating as inputs to the network, and
only those nodes related to attribute C are considered at the output layer (since the
AFFNN is not autoassociative).

Each node in the hidden layer produces values that are passed on to the output
layer. These values can be clustered into sets, as represented by the sets labeled
h1–h7 in the figure. Certain combinations of these values yield the desired output at
the selected output node, exemplified as the two sets (expressions) at the right of the
figure. The extraction algorithm is able to identify these “candidate expressions” by
working in reverse. Starting with the selected output node, the algorithm identifies
potential solutions forming the specified output range. The clusters of activation

Fig. 3. Decompositional Extraction.
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values (represented by h1–h7 in the figure) generated by the nodes in the hidden
layer that produce the desired results are gathered into combinations that form
“candidate expressions,” matching the solution set.

This procedure is repeated again to determine the inputs supporting the
individual terms in the candidate expressions. Combinations of inputs producing
all terms in the candidate expression will satisfy the candidate expression, and
therefore also satisfy the solution set. This is a brief overview of the extraction
technique, which is a repeatable, deterministic, and algorithmic approach. Specific
implementation and more detailed discussion can be found in Schmidt (2002) and
Schmidt and Chen (2002b). This stage of the process yields a set of satisfied
expressions, which are encoded by an automated encoding process.

The custom rule generation function algorithmically translates the satisfied
expressions into MATLAB code describing the solution set. The rule generator
was deliberately coded to produce rules describing outputs with respect to the
original input values, expressing the rules in a notation that is easy to read and
validate by subject-matter experts. The rules are represented using MATLAB as a
notation, allowing them to be executed as an independent product, separate from
the original AFFNN.

The Divisia data exhibits the expected results when processed by the AFFNN.
An automated clustering algorithm assists in dividing the inflation data (percentage
change in growth rate of price level) into four distinct levels:

L1 = (−0.0033, 0.0124]
L2 = (0.0124, 0.0558]
L3 = (0.0558, 0.1116]
L4 = (0.1116, ∞)

When trained on the dataset, the AFFNN learns the relationships leading to
each attribute,3 including the function describing the relationships of the Divisia
components to the level of inflation:

f(NC, NIBD, IBSD, IBTD, BSD) ⇒ Lx , Lx ∈ {L1, L2, L3, L4} (2)

Once the AFFNN learns this relationship, the decompositional rule extraction
mechanism is used to produce a series of if-then rules describing the discovered
relationships in terms of original attribute values. This makes the resulting rule base
very easy to comprehend by econometricians or similar subject-matter experts,
a much more practical task than attempting to directly understand the internal
weights of a trained neural network model.

The example rule shown in Fig. 4 is a single expression for a solution the
AFFNN learned to describing L3, the third level of the inflation relationship. The
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Fig. 4. Example Expression for L3.

rule extraction algorithm yields 408 distinct expressions for completely describing
this relationship. Any set of values of NC, NIBD, IBSD, IBTD, and BSD meeting
the requirements of this expression makes the expression true. If one or more of the
408 expressions comprising the solution set for L3 is true, then that set of values
is a valid solution for L3 and satisfies the statement “Inflation percent change is in
the range (0.0558, 0.1116].”

4. EXPERIMENTAL METHOD AND RESULTS

The AFFNN topology was designed for 43 inputs, as described in Section 2,
representing the encoding of all attributes of the Divisia dataset. Training was
performed using an AFFNN model developed with the MATLAB Neural Network
toolbox, and executed on a Linux-based dual Pentium-II (300 MHz) computer with
128 Mb of RAM and 1 Gb of swap space.

Following the example of the earlier experiments by Gazely and Binner (2000),
the dataset was randomly divided into a large training set of 75 exemplar vectors
(80% of the data) and a smaller testing set of 19 exemplar vectors (20% of the
data). The training and test sets were held constant for all experiments described
in this paper.

Two distinctly different AFFNN architectures were trained using the Divisia
dataset, identical except for the representation of the encoding used for the
INFL attribute. This test examines the effects of using slightly different encoding
mechanisms on AFFNN architectures that are otherwise similar. In both cases,
attribute data for NC, NIBD, IBSD, IBTD, and BSD were thermometer-encoded
based on the outcome of the automated data clustering algorithm. The first AFFNN
also thermometer-encoded the INFL attribute, while the second AFFNN used
1-of-4 encoding. Both AFFNN models used sigmoid activation functions in the
hidden layer and linear activation functions in the output layer. The number of
hidden nodes for each model was determined empirically.
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Table 1. AFFNN Experimental Results.

Network Topology INFL Encoding Train/Test # Rules
Accuracy in % (L1 / L2 / L3 / L4)

1st AFFNN 43–15–43 Thermometer 93.3/84.2 573 / 566 / 408 / 0
2nd AFFNN 43–16–43 1-of-N 89.3/8.9 39 / 365 / 149 / 0

Table 1 shows the experimental results of creating and training these two AFFNN
models. The first AFFNN was designed with a 43–15–43 topology. Training mean-
squared error (MSE) was 0.0079 after 4000 epochs (943) seconds of training using
the custom MATLAB AFFNN model. As indicated in the table, the trained network
properly classified 93.3% of the training data and 84.2% of the testing data for the
INFL attribute. The number of rules extracted for the four levels of INFL were,
respectively, 573, 566, 408, and 0.

A second AFFNN was designed with a 43–16–43 topology (using one additional
node in the hidden layer). For this model, the best candidate of 500 networks
was selected, where each network was trained for 2500 iterations (approximately
550 seconds of training per trial). The best candidate was able to correctly classify
89.3% of the training data and 78.9% of the test data. Although accuracy was
marginally reduced, rule comprehensibility improved due to a decrease in the
number of rules: the rule extraction algorithm generated 39, 365, 149, and 0 rules
for each of the four respective levels of INFL.

5. DISCUSSION OF RESULTS

In addition to being easily readable by subject-matter experts, the rules generated
by the rule extraction algorithm can be executed directly by the computer. The
advantages to this product are twofold: (1) The rules can be as validation of the
AFFNN’s learning ability, since the training and testing data can be classified
independently by the rules; (2) the rules can be used to forecast or predict future
outcomes when used with previously unseen exemplar vectors. The rules produced
for the Divisia dataset generate outcomes that are very similar to the output of
the AFFNNs, as expected. However, the rule extraction algorithm relaxes several
constraints as it progresses, which permits the rules to process borderline data
cases differently than the AFNNN would compute the same data under some
circumstances. Identical AFFNN and rule outcomes are neither guaranteed nor
expected in all cases.

Examination of the rules produced by both AFFNNs yields interesting
observations. In general, rules tended to use all five attributes to describe INFL,
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suggesting that all attributes have some significance or relative importance. For the
NIBD attribute, the expression simplification step of the rule extraction algorithm
commonly folded two or more levels of this component together (see Fig. 4). This
indicates that the rule would be true for multiple levels of the NIBD attribute,
suggesting that NIBD values play a key role in the prediction of INFL, but specific
levels may not be critical contributors. This was also true in many cases for the
BSD attribute. In contrast, the extraction algorithm rarely folded IBSD or IBTD
together, allowing for the possibility that specific levels of these attributes may
significantly impact INFL.

These results, which might initially seem to conflict with earlier sensitivity
analysis findings by Gazely and Binner (2000), are not alarming. The AFFNN
observations are based on the importance of particular levels of attributes in certain
situations and equations, rather than weight sensitivities in the overall network.

The most surprising result of the rule generation process was observing the
number of rules generated by both AFFNN models. Although modification of the
encoding for the INFL target attribute did reduce the number of rules, there was
still an unexpectedly large quantity of expressions for such a small dataset. This
suggests one or more of the following conclusions regarding the nature of the
dataset:

(1) the learning of appropriate relationships is hindered due to suboptimal data
encoding or clustering practices,

(2) decompositional rule extraction is a computationally complex task that does
not tend to generate optimal numbers of rules by default,

(3) the relationships among these data are extremely complex and cannot be
adequately captured within the expressive power provided to the network
models, or

(4) there is not a sufficient mechanism to accurately capture the relationships, and
the network is merely learning a somewhat random set of relationships based
on the data available.

Since techniques such as those used in Gazely and Binner (2000) have been able to
successfully model the relationships within the Divisia component data, it is most
likely that the first point (suboptimal encoding and/or data clustering) has merit. In
addition, it is clearly true that rule extraction is a nontrivial process, lending support
to the second conclusion as well. Since both the first and second AFFNN models
classify the testing and training data with reasonable classification accuracy, there
seems to be an existing relationship among the Divisia components, which casts
doubt on the latter two conclusions. Regardless of the reason for the number of
rules, this simple experiment demonstrates the potential complexity of attempting
to describe relationships, even in small datasets.
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Table 2. AFFNN vs. Tailored Network Models.

Network Topology INFL Encoding Train/Test Accuracy in %

1st AFFNN 43–15–43 Thermometer 93.3/84.2
1st Tailored 39–6–4 Thermometer 97.3/78.9

2nd AFFNN 43–16–43 1-of-N 89.3/78.9
2nd Tailored 39–6–4 1-of-N 98.7/73.7

As a final basis of comparison for network training accuracy, two individual
supervised feed-forward neural networks were created, each corresponding to the
encoding method used by of one of the AFFNN models. For each network, the
five encoded Divisia components were used as the network exemplar vectors (39
encoded elements), with the INFL attribute (4 encoded elements) as the target.
These tailored 39–6–4 feedforward models were trained with the identical 80%
training dataset records used with the AFFNN models and were tested with the
identical 20% test dataset records. Both tailored networks used sigmoid activation
functions in the hidden layer and linear activation functions in the output layer.
After 4000 epochs (94 seconds, MSE = 0.004789, although MSE was stable near
1000 epochs) of training, the first tailored model correctly classified 97.3% of the
training data and 78.9% of the test data. The second tailored model was similarly
trained, and correctly classified 98.7 and 73.7% of the training and testing data,
respectively. These results are shown in Table 2 along with the values of their
respective AFFNN models.

As the table indicates, the accuracy of the AFFNN and corresponding tailored
individual network was very close. In fact, each tailored model exhibits a higher
training accuracy than the related AFFNN, and lower testing dataset accuracy than
the related AFFNN. This suggests that the tailored networks might be suffering
from some overfitting, while the AFFNN models are still able to generalize
reasonably well on the test data. Good generalization in the face of potentially
long training times is a strong argument in favor of using the AFFNN on the
Divisia component dataset and similar monetary component asset data, especially
when performing preliminary data mining investigations.

6. SUMMARY

This preliminary, yet very promising, research demonstrates how neural network
models (such as the Aggregate Feedforward Neural Network) provide beneficial
information in the domain of discovering and describing the money-price
relationship using Divisia component data. The AFFNN is demonstrated as being
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straightforward to design and use with encoded Divisia component and inflation
data, and the model is able to effectively learn the relationships within the dataset. A
simple decompositional rule extraction technique examines the learned knowledge
and automatically generates a collection of if-then rules in terms of the original
attribute values. These Divisia rules are suitable for examination by subject-matter
experts (specifically, econometricians). The rules potentially provide interesting
and useful insight into monetary aggregation theory, particularly when exploring
the relationships between various monetary assets and the corresponding growth
rate of prices. As an additional advantage, the resulting rules are expressed in well-
documented computer code, capable of being executed for validation or used for
forecasting purposes.

There are a number of enhancements and additional paths requiring attention
as the research continues. It is almost painfully evident from the preliminary
results that selection of encoding and clustering methods significance impacts
the final solution. This is certainly not a new observation with respect to
connectionist models. It merely underscores the importance of finding a reasonable
representation before investing significant amounts of time or effort in network
training. The use of appropriate and representative data encoding and preprocessing
heuristics is critical with respect to producing reasonable and properly expressed
relationships. Inappropriate encoding or data clustering can hinder the discovery
of practical relationships. Only a selection of obvious preprocessing and
encoding mechanisms were examined here, but others may be more appropriate.
Preprocessing and encoding also impacts rule generation.

The final rule set is reasonably large, and should be reduced in both size and
complexity. To promote confidence in the rule set, it should also be compared
with results from a greater variety of systems. Perhaps the use of additional
datasets would also be helpful in this regard, especially as we continue to examine
and draw from other current research in monetary aggregation theory. The rule
extraction algorithms, although functional, must also be improved to avoid issues
in combinatorial explosion. This requires more intelligent and efficient extraction
techniques and early simplification of the rule sets. Finally, the AFFNN excels
when there are multiple relationships in the dataset, and tends to present weaker
solutions when such relationships do not exist. Since it is unclear if there are
multiple relationships within the Divisia component dataset, it would be interesting
to disengage the rule generation capability from the AFFNN system and execute
additional rule generation experiments with simpler feedforward connectionist
models, such as with the tailored models reported herein.

The process outlined in this research clearly demonstrates the utility of
connectionist models, particularly data-mining models such the Aggregate
Feedforward Neural Network, in discovering the relationships among Divisia
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component data. Ongoing research will examine alternative encoding mechanisms
and extensions to the decompositional rule extraction algorithms. It will be
especially interesting to more rigorously compare the upcoming results with
contemporary techniques used in describing the money-price relationship as this
revolutionary work in macroeconomics continues.

NOTES

1. Interest-bearing savings account with instant access to the money.
2. Component data is available on the Internet at http://www.bankofengland.co.uk/

mfsd/index.htm (Bank of England Statistical Abstracts, Part 2, Section A, Tables 12.1 and
12.2).

3. Traditional feedforward neural networks would also be capable of learning such
relationships; the chief advantage of the AFFNN is that it learns the other five sets of
relationships, for NC, NIBD, IBSD, IBTD, and BSD, simultaneously within the same
network. The functions for the Inflation attribute, represented by Lx in Eq. (2), are the only
ones of immediate interest in this study.
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ABSTRACT

In this paper we show, by means of an example of its application to the problem
of house price forecasting, an approach to attribute selection and dependence
modelling utilising the Gamma Test (GT), a non-linear analysis algorithm that
is described. The GT is employed in a two-stage process: first the GT drives
a Genetic Algorithm (GA) to select a useful subset of features from a large
dataset that we develop from eight economic statistical series of historical
measures that may impact upon house price movement. Next we generate a
predictive model utilising an Artificial Neural Network (ANN) trained to the
Mean Squared Error (MSE) estimated by the GT, which accurately forecasts
changes in the House Price Index (HPI). We present a background to the
problem domain and demonstrate, based on results of this methodology, that
the GT was of great utility in facilitating a GA based approach to extracting a
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sound predictive model from a large number of inputs in a data-point sparse
real-world application.

1. INTRODUCTION

Development of data-derived models (for example, Artificial Neural Networks) of
smooth systems, where the objective is to construct a model directly from a set of
measurements of the system’s behaviour is often problematic. This is especially
true of systems where the relative utility of each metric is unclear, where a large
number of potentially useful inputs exist and where data is either sparse or contains
a high level of noise. These problems are often addressed iteratively, with data-
driven models being constructed, analysed and adjusted before repeating the cycle
until either a useful model is constructed or it becomes apparent that the system
being modelled is not smooth. Clearly, this iterative procedure is labour intensive
requiring considerable experience and skill on the part of the practitioner.

The Gamma Test (first noted by Stefánsson et al., 1997) (GT) was originally
developed to facilitate the exercise of constructing data-derived models of smooth
systems, i.e. a model where the transformation from input to output is continuous
and has bounded first partial derivatives over the input space (e.g. Jones et al.,
2002). The GT procedure provides an estimate for the noise level present in a data
set computed directly from the data without assuming any a priori knowledge
about the system. The GT provides a measure of the quality of the data that, in
cases of high noise, indicates when a smooth model does not exist within the data.
ANN derived models generalise from useful data first and reach a point where
continuing the process tends to “over train” the network, a situation where noise is
incorporated into the model. Therefore, providing a measure of the noise inherent
within a data set before the modelling exercise begins supplies a point at which
the training exercise should terminate. However, the utility of a data-derived
measure of noise within a non-linear system extends further. That is, supplying
an estimate of the level of noise within a data set provides a means for extracting
useful features before the iterative procedure of deriving a data-driven model
begins.

In this paper, the authors demonstrate, by means of a real-world example that is
familiar to many, the practical utility of the GT to the area of attribute selection and
dependence modelling. Specifically, the authors show how a GA driven by a GT
derived objective function can heuristically generate a sample of different attribute
selections that, when analysed, strongly indicates which attributes are salient. In
addition, the authors show how these salient attributes were utilised to generate an
ANN model of the underlying relationship that resulted in good actual forecasts
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Fig. 1. Summary of the Modelling Procedure.

and trends that closely followed the actual. The salient steps within this process
are illustrated in Fig. 1.

First, the reader is presented with an overview of the GT, GA and ANN
procedures and the problem domain. Next, an explanation is given of how these
procedures were applied to the domain problem to extract predictively useful
features and associated forecasts. Finally, conclusions are drawn and plans for
future work explained.

2. THE GAMMA TEST (GT): OVERVIEW

The Gamma Test is a non-linear data analysis algorithm that estimates that part of
the variance of the output of an input/output data set

{(xi , yi )|1 ≤ i ≤ M} (1)

that cannot be accounted for by the existence of any smooth model based on the
inputs, even though the model is unknown. Here xi = (x1(i),. . ., xm(i)) represents
the ith data input vector and yi represents the associated output.

We imagine that the data is derived from an underlying smooth function f: Pm

→ P which is unknown and that the measured output values y are given by

y = f(x) + r (2)
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where r is a random variable with mean zero and bounded variance
Var(r).

The Gamma test estimates Var(r) in O(M log M) time by first constructing a
kd-tree using the input vectors xi (1 ≤ i ≤ M) and then using the kd-tree to construct
lists of the kth (1 ≤ k ≤ p) nearest neighbours xN[i,k] (1 ≤ i ≤ M) of xi . Here p is
fixed and bounded, typically p = 10. The algorithm next computes

�m (k) = 1

M

M∑
i=1

|xN[i,k] − xi |2 (1 ≤ k ≤ p) (3)

where |·| denotes Euclidean distance, and

�M (k) = 1

2M

M∑
i=1

(yN[i,k] − yi )
2 (1 ≤ k ≤ p). (4)

Note here that yN[i, k] is not necessarily the kth nearest neighbour of yi in output
space. Finally the regression line � = � + A� of the points (�M (k), �M (k))
(1 ≤ k ≤ p) is computed and the vertical intercept � returned as the estimate for
Var(r). The slope parameter A is also returned as this normally contains useful
information regarding the complexity of the unknown surface y = f(x).

Evans and Jones (2002) and Evans et al. (2002) provide a formal proof that
� → Var(r) in probability as M → ∞ under a wide range of circumstances. The
idea is based on the remarkable observation that the relationship between �M (k)
and �M (k) is approximately linear in probability as M becomes large, i.e.

�M (k) ≈ Var(r) + A�M (k) + o(�M (k)) (5)

with probability one as M → ∞.
If linear regression is characterised as the ability to provide an estimate of

“goodness of fit” against the class of linear models, then the Gamma test is non-
linear regression, because it provides an estimate of “goodness of fit” against the
class of non-linear smooth models that have bounded partial derivatives.

If possible the Gamma test requires the number of data points M to be relatively
large, with an asymptotic estimate being reached for incrementally increasing
quantities of M indicating sufficient data is available to provide a reliable �

estimate. With high dimensional input data we may, of necessity, require orders
of magnitude more data. However, this should not surprise us, it is intrinsic to the
nature of the undertaking. A linear model is determined by very few parameters and
naturally requires less data to fit, whereas here we seek to quantify the goodness
of fit against a huge class of potential models, each of which may be determined
by an infinite set of parameters. What is surprising is that this can be done at all.
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Although the Gamma test gives very little information about the best fitting
function from the allowed class it nevertheless facilitates the construction of such
a model. To actually build the model we use information from the Gamma test
combined with other non-parametric techniques, such as local linear regression or
neural networks.

However, the Gamma test has other implications that are of relevance to the
present study: it can be used for model identification. In this context we might say
that the goal of model identification for a particular output is to choose a selection
of input variables that best models the output y. Although mathematically the
inclusion of an irrelevant variable in the list of inputs makes no difference to the
fact that f: Pm → P is a function, nevertheless in practice it is very important to
eliminate counter-productive inputs. This reduces training time for neural networks
and can substantially improve the resulting model.

Some input variables may be irrelevant, or subject to high measurement error,
so their inclusion as inputs into the model may be counter-productive, leading to
a higher effective noise level on the desired output. Since a single Gamma test is
a relatively fast procedure it is possible (provided m is not too large) to find that
selection of inputs which minimises the (asymptotic) value of the Gamma statistic
and thereby make the “best selection” of inputs. Moreover, for the purpose of
comparing one selection of input variables with another, even if M is smaller than
we would prefer, it may not be critical that individual Gamma test results are rather
less accurate than one would like provided they are all computed using the same
data. This is because we are primarily interested in ranking selections of inputs in
order of their Gamma statistics rather than the Gamma statistic per se.

3. GENETIC ALGORITHM OVERVIEW

This section provides an introduction to the, general, GA search procedure
highlighting the design methodology adopted. Genetic Algorithms are adaptive
search methods that can be used to solve optimisation problems. They are based
on the genetic process of evolution within biological organisms. Which is to say
that, over many generations, populations have evolved according to the principles
of natural selection. By adopting this process, a GA is able to “evolve” solutions
to real world problems (for a fuller discussion the reader is directed to Golberg,
1989).

Solutions are evolved utilising a genome (or structure of the problem,
where a single instance of which represents a solution to the problem) and
a genetic algorithm (the procedure utilised to control how evolution takes
place). The GA makes use of genome operators (associated with the genome)
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and selection/replacement strategies (associated with the GA) to generate new
individuals. The GA uses an objective function to determine how fit each of these
individual genomes is for survival. So, given a choice of GA, three things are
required to solve a problem:

� A representation for the genome (determined from the definition of the problem);
� Suitable genetic operators;
� An objective function that measures the relative quality of a solution.

In summary, when using a GA to solve an optimisation problem, a series of
variables are combined to form a single solution to the problem within a single
genome. The GA creates a population of solutions based on the genome. The GA
then operates on this population to evolve an optimum, or near optimum, solution
to the problem utilising the objective function. Given this overview, the following
sections expand upon each of these components.

3.1. The Genome

This section outlines the decision making process that determines how an
individual solution (the genome) should be modelled and physically represented.
When defining a representation appropriate to the problem at hand, a data structure
that is minimal but also completely expressive should be selected (see Section 7.3
for the description of the implemented genome). Although it may appear beneficial
to include extra genetic material beyond that which is required to express a
solution fully, this tends to increase the size of the search space and hinder the
performance of the algorithm. Finally, each genome will have a “fitness” score
associated with it that determines its prospects for selection. This representation
is an independent component of the general GA procedure, allowing separate
decision making processes to be made. For example, a different GA procedure
might be adopted without any need to change the structure of the genome. This is
possible because the operators necessary to evolve new solutions, described in the
next section, are associated with the genome and not the GA itself.

3.2. The Genome Operators

Given a general GA procedure and genome (described in Section 3.1), it is also
necessary to determine how operators specific to the genome should behave. This
section describes how these operators act upon the genome within a general GA
procedure. Three operators can be applied to the genome, these being initialisation,
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mutation and crossover. These operators allow a population to be given a particular
bias, and allow for mutations or crossovers specific to the problem representation.
The initialisation operator determines how each genome is initialised. Here, the
genome is “filled” with the genetic material from which all new solutions will
evolve. Next, the mutation operator defines the procedure for mutating the genome.
Mutation is only rarely applied and randomly alters a gene in a selected “child.” It
provides a small amount of random search that facilitates convergence at the global
optimum. Finally, the crossover operator defines the procedure for generating a
child from two parent genomes. The crossover operator produces new individuals
as “offspring,” which share some features taken from each “parent.”

These operators are independent functions in themselves, specific to the structure
of the genome, which may be altered in isolation to the other components described
in these sections. For example, the crossover operator might be changed from a
single point (adopted by the authors and explained in Section 8.3) to a two-point
implementation without any need to adjust the other components.

3.3. Objective Functions and Fitness Scaling

This section describes how an objective-function and fitness-scaling fits into a
general GA procedure. Genetic algorithms are often more attractive than gradient
search methods because they do not require complicated differential equations
or a smooth search space. The genetic algorithm needs only a single measure
of how good an individual is compared with the other individuals. The objective
function provides this, needing only a genome, or solution, and genome specific
instructions for assigning and returning a measure of the solution’s quality. The
objective score is the raw value returned by the objective function. The fitness
score is the possibly transformed objective score used by the genetic algorithm
to determine the fitness of individuals for mating. Typically, the fitness score is
obtained by a linear scaling of the raw objective scores. Given this, the objective
function can be altered in isolation from the GA procedure and genome operators,
and, once a representation for the problem has been decided upon, without any
need to change the structure of the genome.

3.4. The Genetic Algorithm

Here, we present an overview of a general GA procedure, explaining how each
phase fits into the evolutionary process. The GA procedure determines when
the population is initialised, which individuals should survive, which should
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Fig. 2. Genetic Algorithm Evolution Procedure.

reproduce, and which should die. At each generation certain, highly fit, individuals
(determined by the scaled, objective function) are allowed to reproduce (through
selection) by “breeding” (using the crossover operator described in Section 8.3)
with other individuals within the population. Offspring may then undergo mutation,
which is to say that a small part of their genetic material is altered.

Offspring are then inserted into the population, in general replacing the worst
members of the existing population although other strategies exist (e.g. random).
Typically, evolution stops after a given number of generations, but fitness of
best solution, population convergence, or any other problem specific criterion
can be used. Given this overview of the general design methodology adopted,
the following sections describe the domain problem and how the problem was
modelled (Fig. 2).

4. FORECASTING WITH ANNS

The forward projection of a value that varies with time can be approximated from
a model of the time series using a variety of traditional techniques. Most such
schemes rely on the assumption of linearity, or on some kind of transformation
of the data such as a logarithmic or a cosine. The necessary function has to be
postulated however by the user for each individual time series.

Neural networks are pattern recognition devices that can be used effectively to
fit any smooth non-linear function in data. They have the advantage that there is
no need to assume any transformation or functional form in the data. Windowing
is a technique often used to enable ANN’s to model a time series. The network
has multiple inputs, x1 . . . xm and an output y. The data is arranged in to m + 1
columns, each column being a repeat of the one on its right, but displaced down by
one time unit. If the successive values of the time series are represented by yt , yt+1,
yt−2 . . ., then Table 1 shows the arrangement of the data, assuming for example
that m = 4. The number of columns is decided by the length of the data set, and
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Table 1. The Time Series is Organised as a Data Table, Each Record Being a
Small Window of the Complete Time Series.

Record Inputs Output or Targets

1 yt+2 yt+3 yt+4 yt+5 yt+6

2 yt+1 yt+2 yt+3 yt+4 yt+5

3 yt yt+1 yt+2 yt+3 yt+4

4 yt−1 yt yt+1 yt+2 yt+3

5 etc.

Note: The full table comprising of the time series back to a convenient point in time is used to train
and validate the neural network. In this example, yt+6 is the most recent value of the time series.

the width of window considered necessary to include all the major features of the
time series, a figure that is often found by trial and error.

Once a model has been trained and validated, it can be used to project the series
forward in time. The most recent n values of the time series (up to yt+6 in this case)
are applied to the neural network and the output gives the first projected value of
the time series, yt+7. Next, the last n − 1 values of the series, plus the value yt+7
are applied to the neural network, which now gives yt+8.

Often it is desirable to predict a time-series that is thought to be dependent on
other time series. The input to the network is formed by concatenating the data
from appropriate “windows” of the independent time series while the output is the
predicted value for the dependent time series. However, mere concatenation often
leads to lengthy (which is not a good feature when training neural networks) input
vectors that may contain non-salient information. The aim of feature selection is
to reduce the length of the training vector by removing non-salient columns from
the concatenated vector.
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5. THE PROBLEM DOMAIN:
HOUSE PRICE FORMATION

Periodic overheating of residential property markets is a feature of developed
economies. It is a feature that has the potential to inflict substantial socio-economic
damage. Avoiding the worst effects has become a policy objective for governments’
central banks (Aoki et al., 2001). Given that approximately 65% of U.K. residential
property is mortgaged, the activity of lenders provides a potential brake to curb the
worst excesses of the market. In particular it would be helpful if lending did not fuel
speculation. At the moment, lenders rely on “open market value,” a bid price which
by definition reflects market froth, as the key metric when determining a ceiling fig-
ure for lending. A move away from current bid price to a metric that reflected a more
sustainable value would realise the policy objective without heavy regulation. Such
an alternative metric – that restrains the speculative component – would need to be
forward looking. Whereas the “open market value” is determined by reference to
comparable concurrent transactions, any measure of sustainable value would need
to be predictive. This is not a trifling pursuit; the complexity is perhaps on a par with
setting central bank lending rates. Incidentally, we might anticipate that the analysis
identifies one or more heuristics similar to the Taylor rule that assists in setting the
“appropriate” interest rate at the American Treasury Department. We call this more
prudent metric “sustainable market value” and given that, historically, the highest
risk in residential lending occurs during the first three years of a mortgage, we
define “sustainable” using a three year horizon (Jenkins, 2002). The development
of models that provide a sustainable valuation for properties would be of great
usefulness to the lender and consumer. The measure would provide the lender with
a more sober reflection of risk. The consumer would be able to make informed
decisions based upon pricing models that give a clearer indication of the real,
sustainable, value of property. “Sustainable market value” would forestall negative
equity and facilitate movement between jobs in today’s mobile labour market.

Two major problems exist when model building in this domain. The first problem
is theoretical, the second computational. Economic theory is hardly a finished
epistemological category. Writing of the “Death of Economics” in 1994 then
forecaster at Henley Management College, Professor Paul Ormerod, suggested of
current economic theory that it “should be abandoned or at least suspended until
it can find a sounder economic base.” And of economic forecasting in particular,
“By ignoring non-linearity, forecasters constantly get things wrong – missing, for
example, the contagion of fear that infected Asia and the world after the fall of
the Thai baht in 1997” (Ormerod, 1998). What appears true of economic theory in
general is also likely to be true of theoretical market models of residential markets
in particular (Meen & Andrew, 1998).
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The extent of the computational problem can be gauged from the fact that
outside the subjective, comparison heuristic used by professional valuers, no
coherent model exists even for the calculation of current bid price; the countless
factors that influence value have nowhere been systematised (Jenkins et al., 1998).
Furthermore, unless it can be proven that Takens’ Theorem applies in this domain,
the prediction of sustainable values is likely to be more rather than less complex
than the calculation of open market values. This suggests that the kind of modelling
strategy pursued here is relevant and may be significant.

6. DESCRIPTION OF THE DATA

Competing theories are used to explain the behaviour of markets at national,
regional and urban aggregates. However, U.K. national and regional level models
have developed primarily from the modelling of the market at the macroeconomic
level and these models have not been integrated with modelling at the urban
level, where professional valuers operate. In order to make some headway, we
decided that the initial focus should be on the prediction of values at a national
level where data has been systematically recorded for 30 years and sometimes
longer.

In this paper we have not chosen data on the basis of a particular theory, rather
data sets were chosen primarily because of their consistent use across the various
models described in the literature, which we classify as follows:

� General, related, models (e.g. Ball & Grilli, 1997; Barkham & Geltner, 1996);
� Hedonic (a measure of general, overall opinion) regression analysis models (e.g.

Adair et al., 1996; Antwi, 1995; Lam, 1996);
� Artificial intelligence (e.g. McCluskey & Anand, 1999; Wang, 1999), including

ANNs (e.g. Lewis, 1999; McGreal et al., 1998; Vemuri & Rogers, 1994; Worzala
et al., 1995).

Such models indicate that the main variables expected to influence house prices
at both the national and regional levels include incomes; interest rates (real or
nominal); the general level of prices; household wealth; demographic variables;
the tax structure; financial liberalisation and the housing stock. Miles and Andrew
(1997) developed a highly condensed forecasting model using just three variables
widely thought to play a significant causal role together with a house price
index:

� Real House Price (log of house price index divided by Retail Price Index – RPI);
� Real incomes (log of real disposable incomes at constant prices);
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� Retail prices (log of RPI);
� Mortgage interest rate (tax-adjusted interest rate).

In this pilot we have included these last variables in the form of quarterly percentage
changes in the Bank Rate (BR),1 the Retail Price Index (RPI),2 and the Average
Earnings Index (AEI).3

However, given the data-driven nature of this model and given too that variables
will be ranked in terms of their significance to model building; we were not
constrained by the exigencies of economic theory. In addition to data that are
thought to have a strong causal connection to house price changes, we were
able to select additional time series that may have a weak (or no) connection
with house price formation, or which may simply be associated with changing
levels of activity/pricing in housing markets. In fact we restricted ourselves
to quarterly percentage changes in the following additional variables, which a
priori were assumed to be associated with if not causes of house price changes:
claimant count (CC);4 consumption of durable goods (DG); GDP household
consumption (GDPHC); household savings rate (HHSR) and rates of mortgage
equity withdrawal (MEW).

We also injected a degree of anonymity into the modelling by not disclosing
to the non-economist model builder a priori expectations of the likely strength of
these variables, nor the lagged observation(s) in which they might be expected
to feature. The house price index data in this paper relates to quarterly changes
in the All U.K.: Average House Price (£) (House Price Index – HPI) Nationwide
Building Society (see Appendix A further information).

7. PROBLEM COMPOSITION
AND MODELLING

In this section, considerations relating to the attribute generalisation procedure are
described, and an overview of the model’s underlying representation and physical
implementation is provided, along with a detailed discussion about the objective
function and its mathematical formulation.

7.1. Problem Size and Complexity

The eight attributes contained in the economic indicator database (quarterly
measurements from 1975) that are converted into windows of length six and
concatenated together provide a vector of 48 inputs and one output value. This
configuration provides a search space of approximately 2.8 e+20 combinations.
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7.2. Data Pre-Processing

Data is often manipulated using pre-processing routines, such as data scaling,
sectioning, smoothing, and removal of outliers, before being used to construct an
underlying model. However, the authors made the deliberate decision to allow the
data-mining procedure described in this paper to drive the decision making process
without any a priori assumptions about the data being made. Therefore, the data
was simply transformed from a series of actual values into one containing the,
quarterly, annual percentage movements of each series (see Appendix B for more
information). This is important, given that the object was to reduce the windowed
input vector for each independent time-series where possible to a single lagged
observation. This decision was based upon an assumption that a combination of
single, differently lagged, observations of the direction and magnitude of the
input time-series could, in combination, be used to determine the change in
the output time series. In other words, was it possible to replace a window of
discrete observations with a single measure of the magnitude and direction of the
time-series (i.e. the annual percentage movement)? To this end, each economic
time-series was independently “windowised” (described in Section 4) and then
concatenated together to provide a set of input vectors. Then, for each input vector
was concatenated with a single value of the annual movement in the HPI, four
quarters in advance of the end of the period covered by each input vector.

7.3. Genome Representation

Our state representation, the genome (introduced in Section 3.1), is physically
stored as a string of Boolean values (a “mask”) and its corresponding fitness value.
The mask is effectively a series of on/off switches that correspond with the columns
within our database (described in Section 7.2) of input vectors (illustrated in Fig. 3).

The fitness value for any given genome is calculated using only the active
columns determined by its mask (e.g. the mask provided by the partial genome
shown in Fig. 3 indicates that only columns {1, 3, 5, 7, 8, 9, 10, 13, . . ., 48}
were utilised when determining its fitness score). This physical implementation is
easily manipulated using the GA procedures introduced in Section 3 and explained
further in Section 8.

7.4. Mask Evaluation

The success of any discrete optimisation problem rests upon its objective function,
the purpose of which is to provide a measure for any given solution that represents



256 IAN D. WILSON ET AL.

Fig. 3. Mapping within the State Representation.

its relative quality. In this section, we present the attribute selection strategies and
their formulation within an objective function.

The objective function used here works by calculating the Gamma statistic
for the data for a given attribute mask within our state representation and then
summing metrics associated with the quality of the mask. Hence, the objective
score associated with a given configuration is an abstraction of the penalties
analogous with the relationships between a set of attributes determined by the
configuration. In full, we consider the three measures of relative quality proposed
by Durrant (2001), namely:

� the amount of noise within the database (should be reduced to a minimum);
� the underlying complexity of any underlying relationship between input and

output data (should be minimised);
� the complexity of any ANN architecture utilised (should be optimally-minimal

in terms of the number of inputs into the architecture).

7.4.1. Underlying Definitions and Constraints
The objective function utilised to evaluate solutions requires a number of
definitions, namely:

� P(t): {mt1, . . ., mtn} is the population of masks at generation t;
� M: {m1, . . ., ms} is the set, of length s, of all possible masks;
� t is the generation;
� n is the number of members in the population;
� s is the number of individual masks (2a) that exist within the state-space;
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� a is the total number of attribute measurements within a given mask;
� mti is a given mask i of the population at generation t;
� w1 is the weight given to the intercept value (1.0);
� w2 is the weight given to the gradient value (0.1);
� w3 is the weight given to the number of active attributes (0.1);
� (w1 + w2 + w3) > 0;
� f1(mask) is a function that returns the Gamma statistic for a given mask mask

such that 0 ≤ f1(mask) ≤ 1;
� f2(mask) is a function that returns an estimate of the model’s complexity for a

given mask mask such that f2(mask) ≥ 0;
� f3(mask) is a function that returns the number of active attributes within a given

mask mask such that f3(mask) ≥ 0;
� f(mask) is a function that returns the weighted objective score for a given mask

mask such that f(mask) ≥ 0;
� Vratio(mask) is a function that returns Gamma/Var(output), providing a

standardised measure;
� OutputRange is the difference between the maximum and minimum values in

the output column;
� Active(mask) is a function that counts the number of active attributes within a

given mask m;
� Length(mask) is a function that returns the number of attributes within a given

mask m;
� Gradient(mask) is a function that returns the slope of the regression line used to

calculate the Gamma statistic.

7.4.2. The Object Relationship Fitness Function
The objective function used to evaluate masks examines the weighted relationship
between relative measures of its quality. The general expression of the objective
function is:

f(mask) = 1 − (w1f1(mask) + w2f2(mask) + w3f3(mask)). (6)

Where f1(mask) and w1 represent, respectively, the number of conflicting objects
and the weight of that particular measure, with a high value of f(mask) indicating
a good solution. These values are then scaled to a positive range.

The first term of the objective function, f1(mask), returns a measure of the
quality of the intercept based upon the Vratio, which is a standardised measure of
the Gamma statistic that enables a judgement to be made, independently of the
output range, as to how well the output can be modelled by a smooth function.
Minimising the intercept by examining different mask combinations provides a
means for eliminating noisy attributes, facilitating the extraction of a smooth model
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from the input data, and is expressed as:

f1(mask) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

1 − 10Vratio(mask)
if Vratio(mask) < 0

2 − 2

1 + Vratio(mask)
otherwise

⎫⎪⎪⎬
⎪⎪⎭ . (7)

The second term of the objective function, f2, returns a measure of the complexity
of any underlying smooth model based on the gradient, or slope parameter, A
determined by the GT. Minimising this complexity is desirable, especially in cases
where data points are relatively sparse, and is expressed as where |·| denotes the
absolute value:

f2(mask) = 1 − 1

1 +
∣∣∣Gradient(mask)

Output Range

∣∣∣ . (8)

Lastly, the third term of the objective function, f3, sums the number of active
elements within the input vector and returns this as a percentage of the total number
elements within the input vector. Minimising the number of active genes within our
genome encourages the search procedure to find solutions that are less complex,
resulting in input minimal input vectors.

f3 = Active(mask)

Length(mask)
(9)

The next section deals with our GA implementation, with special consideration
being given to the sub-ordinate heuristics used to direct the procedure through the
search space.

8. ATTRIBUTE SELECTION AND
DEPENDENCE MODELLING

Of the variations of GA available, the work presented in this paper utilised an
approach similar to the Simple GA (SGA). Our SGA uses overlapping populations
but with a pre-specified amount of overlap (expressed here as a percentage), these
being the initial and next generation populations. The SGA first creates a population
of individuals by cloning the initial genome. Then, at each generation during
evolution, the SGA creates a temporary population of individuals, adds these to
the previous population and then removes the worst individuals in order that the
current population is returned to its original size. This strategy means that the newly
generated offspring may or may not remain within the new population, dependant
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upon how they measure up against the existing members of the population. The
following sections examine each component of our SGA implementation.

8.1. Configuration, Search Space and Cost Function

Given a set of lagged observations (w) for a number of economic metrics (n), a
configuration s corresponds to an individual mask of Boolean values associated
with each attribute. The search space S is therefore composed of all such
configurations. According to Eq. (6), for each solution s ∈ S, f(s) corresponds
to a combination of minimal intercept, gradient and active attribute values.

8.2. Population Size and Maximum Generations

The population size was set to 100 for all experiments, however, larger population
sizes would facilitate the attribute selection procedure at the expense of longer run
times. The maximum number of generations varied between experiments with the
search procedure terminating upon population convergence (defined as when the
average fitness score stabilised).

8.3. Crossover, Replacement and Mutation

The probability of crossover (selection for sexual reproduction) determines the
proportion of parents within the population that will be selected for crossover at
each generation. The single-point crossover strategy (illustrated in Fig. 4) was
adopted for all experiments.

Each time crossover occurs, two offspring were created using material from each
of its parents. The results for all experiments presented in this paper were generated
using a crossover percentage of 50%, which is to say that at each generation 50% of
the new population were generated by splicing two parts of each genomes’ parents
together to generate two new genomes. The position of the join is determined
randomly for each pair of parents.

Fig. 4. Single Point Crossover.
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Fig. 5. Single Bit Mutation.

Mutation is introduced to facilitate movement away from local optimality
to a place closer to global optimality. However, mutation should not occur too
often, as this would be detrimental to the search exercise. Consequently, the
results presented here were generated using a 5% mutation probability, which was
determined experimentally, utilising a single bit flip mutation operator (illustrated
in Fig. 5).

9. ATTRIBUTE SELECTION COMPUTATIONAL
EXPERIMENTS AND RESULTS

The experimental work that formed the basis for this paper utilised nine economic
metrics dating from 1974 to 2001, which were pre-processed to provide measures
of annual percentage movement for each of the series. The eight input metrics were
converted into a set of vectors, of length six, which were concatenated together,
along with a single corresponding output metric to provide 97 vectors. Experiments
with the SGA produced the consolidated results presented below, where, for every
member of the population, the number of times an attribute is active is totalled to
provide an indication of its significance.

Totalling how often each lagged observation occurs within the population
(presented graphically in Fig. 6) provides a useful means for pruning the input
vector. In addition to this, totalling the number of times each lagged observation
occurs within a each attribute provides a useful heuristic for determining the weight
each attribute has on the outcome (illustrated in graphically in Fig. 7).

The algorithms and features referenced in this paper were implemented in
VC++ 6.0 running under Windows NT on a Viglen P3 (800 MHz Pentium) with
128 Megabytes of RAM. Experimental data shows how certain lagged observations
appear more often than others do. These results confirm a priori expectations to
a significant degree. For example, it is noticeable that the recent behaviour of
Average Earnings (see Fig. 6) is more important than in earlier periods as would
be expected. The results suggest that the Bank Rate and Retail Price Index are
consistently significant in house price formation. If this model provides a “useful”
forecast of the house price index, it would confirm that their widespread inclusion
in models as causal variables is rational.

Figure 7 ranks the variables by frequency of occurrence. The Bank Rate and
Retail Price Index head the list as expected. Interestingly the Consumption of
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Fig. 6. Graphs Showing the Sum of How Often Each Lagged Observation Occurs in the
Population.
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Fig. 7. Analysis of Relative Importance of Each Metric.

Durable Goods, not notable as a cause of house price changes per se, is also
conspicuous. However, this is also expected. It is a feature of recent economic
performance that the Consumption of Durable Goods and Average House Price
are strongly correlated. At the other end of the scale it is observable that Mortgage
Equity Withdrawal is a relatively weak input. While there are moments when this
variable plays a role, across the whole time series it is expected that this would be
of lesser significance.

Selecting those lagged observations that occurred in each member of the
population (i.e. 100 times) significantly pruned the length of the original input
vector (from 48 to 8). However, it was decided to heuristically reduce this to a
single observation for each economic metric by again utilising the GT procedure.
This, further, heuristic pruning of the suggested mask involved systematically
eliminating each of the two �RPI and �DG metrics and measuring its affect on

Fig. 8. Lagged Observations.
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the Gamma Statistic and Gradient. Choosing the lagged value for the �RPI and
�DG that least affected the Gamma and Gradient measures enabled a single most
significant measure for each of these indices to be selected.

This procedure provided an input vector made up of varying lagged movements
taken from each of the six predictively useful economic metrics (shown in Fig. 8)
ready for the next, or predictive, step in the modelling exercise.

10. FORECASTING USING ARTIFICIAL
NEURAL NETWORKS

Despite the many satisfactory characteristics of an ANN, building a neural network
for a particular forecasting problem is a nontrivial task. Modelling issues that affect
the performance of an ANN must be considered carefully. First, an appropriate
architecture, that is, the number of layers, the number of nodes in each layer,
and the number of arcs that interconnect with the nodes must be determined.
Other network design decisions include the choice of activation function for the
processing nodes, the training algorithm, data normalisation methods, training
data, and performance measures (Zhang et al., 1998). In this section, an
overview of the Back-Propagation ANN utilised to forecast a change in the HPI
is provided.

10.1. The Network Architecture

Our ANN is composed of an input layer, which corresponds to the length of the
input vector, an output layer, which provides the forecast values, and two layers
of hidden nodes. Hornik (1991) has shown that a single hidden layer is sufficient
for an ANN to approximate any complex non-linear function with any desired
accuracy. However, recent findings have shown that two hidden layers can result
in a more compact architecture that achieves a higher efficiency than single hidden
layer networks (e.g. Chester, 1990; Srinivasan et al., 1994; Zhang, 1994).

10.1.1. The Number of Nodes in the Hidden Layers
It is important that the network has generalised across the time series and not simply
fitted the inputs to their corresponding outputs. Therefore, the number of hidden
nodes in each layer was determined by trial and error, with large numbers of nodes
in the hidden layers being incrementally pruned to a minimum (of four nodes in
each of the two hidden layers) whilst still producing relatively good forecasting
capabilities.
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10.1.2. The Number of Nodes in the Input Layer
The number of nodes in the input layer corresponds to the length of the mask
generated during the attribute selection procedure described earlier. This is the
most critical decision variable for a forecasting problem, since the vector contains
important information about complex (linear and/or non-linear) structure in the
data. Given that there is no widely accepted systematic way to determine the
optimum length (or content) for the input vector the heuristically derived mask
provides a significant step forward in this area of modelling.

10.1.3. The Number of Nodes in the Output Layer
For the time-series forecasting problem described in this paper, the single output
node corresponds to the forecasting horizon. Here, a four-step-ahead (i.e. one-year
into the future) was adopted.

10.2. Performance Measure

Although there can be many performance indicators associated with the
construction of an ANN the decisive measure of performance is the prediction
accuracy it can achieve beyond the training data. No one universally accepted
measure of accuracy is available, with a number of different measures being
frequently presented in literature (Makridakis et al., 1983). The performance
measure adopted by the authors is the Mean Squared Error (MSE) function. The
MSE provides an averaged measure of the difference between the actual (desired)
and predicted value.

10.3. Updating the Weights

The new values for the network weights are calculated by multiplying the negative
gradient with the learning rate parameter (set at 0.25) and adding the resultant
vector to the vector of network weights attached to the current layer. In order to
accelerate convergence a weighted momentum term (of 0.1) is added to the weight
update.

10.4. Terminating the Training Procedure

As over-fitting is a widely accepted problem associated with modelling utilising
ANNs, the GT’s ability to accurately measure the “noise” within a data-set
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and, consequently, the point at which training should stop provides a significant
utility for practitioners. Over-fitting occurs because the ANN will attempt to
fit all data encountered, including any noise present. Given that an ANN will
tend to fit useful data before any noise (assuming that some underlying useful
function exists within the data), providing a measure of any noise present in
the data-set is of considerable utility as it allows training to end at a near
optimal point. Therefore, the GT procedure (see Section 2, which calculates the
variance of the noise) was applied to the input/output mask suggested by the
heuristic procedure (see Section 8) to provide a MSE value at which training was
stopped.

10.5. Partitioning of the Vector Set

Typically, training and test data sets are used during the ANN creation process. In
this paper, the training set was used to construct the ANN’s underlying model of
the time series and the test set was used to measure the accuracy of this model.
Next, the set of vectors was partitioned into a training set and a test set. The
M-competition convention of retaining the last eight quarterly points for testing,
mapped to input/output vectors, was adopted (Foster et al., 1992). The remaining
vectors formed the training set. As the Gamma test statistic was used to stop the
training procedure, there was no need to further partition the training set to provide
a Validation Set (e.g. Wilson et al., 2002).

11. FORECASTING UTILISING
AN ANN – EXPERIMENTAL RESULTS

In this section, the authors present the predicted and actual annual movements in
the HPI in addition to the actual and predicted values for the HPI taking into account
the predicted percentage change produced by ANN models that utilise the partial
mask suggested by the method and the full mask for purposes of comparison. The
salient decisions relating to GT, GA and ANN configuration and parameter settings
utilised are summarised in Table 2.

11.1. Annual Percentage Movement Results

Experimental work utilising the training set of ninety, varying lagged, six indicator
input-vectors to produce an ANN model that, when tested using the last eight
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Table 2. Summary of Parameter Settings and Algorithm Configuration.

Gamma test objective function
Intercept value (w1) 1.0
Gradient value (w2) 0.1
Number of active attributes (w3) 0.1
Number of near neighbours 10

Genetic algorithm
Type Steady state
Objective function f(mask) = 1−(w1 f1(mask) +

w2 f2(mask) + w3 f3(mask))
Representation scheme mask = a binary string with

length that corresponds with
the total number of economic
observations within each
input vector

Objective score scaling Linear

Genetic operators Selection Roulette wheel
Crossover Single point
Mutation Single bit inversion
Replacement Replace worse

Parameters Crossover rate 50%
Mutation rate 5%

Termination criteria Population convergence –
asymptotic average fitness

Artificial neural network
Type Back-propagation
Number of inputs Determined by GA/GT 6

All attribute observations 48 (8 windows of length 6)
Number of hidden layers 2
Number of hidden nodes 4 per hidden layer
Number of outputs 1
Learning rate 0.25
Momentum 0.10
Performance measure Mean squared error (MSE)
Termination criteria Determined by the Gamma

Intercept ∼ 0.004

quarters of data, produced the results presented in Fig. 9. The model resulted in
a MSE of 0.0030647 and a trend line that closely followed the actual in all but
one of the test vectors, i.e. the direction of the change was detected in seven of the
eight test quarters.

These results provide evidence that a predictively useful model has been
extracted from the available feature data. However, the sparse nature of the data
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Fig. 9. Annual Percentage Movement Forecast Results using Predictively Useful Mask.

warrants further examination as more observations become available. Although
direct comparison between ANN models constructed using different numbers
of inputs and hidden nodes is problematic, the results generated using all the
available input observations are illustrated in Fig. 10. This model resulted in a
MSE of 0.0055438, but with considerable variance in the accuracy of the results,
and a trend line that indicated the direction of the change in four of the eight test
quarters.

Fig. 10. Annual Percentage Movement in Forecast Results Using Full Mask.
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Fig. 11. Housing Price Index Forecast.

11.2. Actual Movements in the House Price Index

Factoring the predicted percentage movement into the actual HPI resulted in
forecasts within 3% of the actual and an average accuracy within 1.1% (shown in
Fig. 11). The model built using the training data resulted in a standard deviation
of the predictive error (0.066901), which is approximately 7% of the range.

12. CONCLUSION

This work has provided evidence that promising forecasting models can be
produced using an ANN trained to a MSE suggested by the GT. In addition, it has
been shown how predictively useful indicators can be heuristically selected from
a database of economic metrics utilising a GT/GA procedure. The full-mask and
partial-mask comparative results provided draw attention to the inherent problem
of utilising ANNs to model functions with excessively large numbers of inputs
and serve to highlight the importance of reducing the inputs (in terms of model
efficacy) to a sub-set of salient features. As such, the quality (in terms of model
accuracy) of the full-mask results would be expected to be poor given the data
sparse (in terms of numbers of observations) problem domain. The quality of
the model generated utilising the subset of inputs suggested by the methodology
described in this paper supports the proposition that the GT has utility within the
domain of attribute selection and dependence modelling.
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13. FUTURE WORK

While care was taken in the selection of inputs for this pilot study, there may well
be other useful indicators that could improve the performance of the present model.
We have already identified a number of other time series that may further improve
the usefulness of the forecasts beyond the national aggregate market to specific
sub-markets and further work on these issues is planned. In addition, given the
data sparse (in terms of numbers of observations), the robustness of the model will
need to be tested as further data points become available.

Despite epistemological caveats, in general analysis such as this can be useful
in refuting or confirming conventional wisdom regarding the relative importance
of useful predictive variables. For example, there are competing theories regarding
house-price formation that it might also be possible to test. One school of thought
suggests that land prices are an important determinant of house price (at least in
certain sub-markets). It will be relatively straightforward to run models with and
without the variables suggested by these commentators. We also intend to test the
models at regional and then urban aggregates where data is available.

NOTES

1. Description: TABLE 20.1: Bank of England Money Market Intervention Rates:
Changes in Bank Rate, Minimum Lending Rate, Minimum Band 1 Dealing Rate and Repo
Rate Source: Bank of England.

2. Description: CZBH: Percentage change over 12 months (headline rate), Annual
1949–1999, Monthly 1948 06 to 2000 (updated approximately monthly), Quarterly 1948
Q3 to 2000 (updated approximately quarterly). Source: Office for National Statistics.

3. Description: LNMU: Average earnings, Percentage change over 12 months, seasonally
adjusted Monthly 1964 01 to 2000 (updated approximately monthly). Source: Office for
National Statistics.

4. Description: BCJE: Claimant count, 1950–2000. Estimates of claimant count (the
number of people claiming unemployment related benefits) in the U.K.; the level (thousands)
and as a percentage rate. Source: Office for National Statistics.
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APPENDIX A: GRAPHICS OF THE SOURCE DATA

Figures A.1 and A.2

Fig. A.1. Graphs of the Real Movement within Each Economic Input Series.
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Fig. A.2. Graph Showing the Percentage Movement in the House Price Index.
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APPENDIX B: GRAPHICS OF THE SOURCE DATA’S
ANNUAL PERCENTAGE MOVEMENT

Figures B.1 and B.2

Fig. B.1. Graphs of the Annual Percentage Movement Within Each Economic Input Series.
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Fig. B.2. Graph Showing the Percentage Movement in the House Price Index.
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