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Time and place: Tuesday and Wednesday 10–12
in Multimediahörsaal (Tannenhöhe)
Exercises: See schedule (7 exercises in total).

Website
http://www.in.tu-clausthal.de/index.php?id=cig_ki13

Visit regularly!

There you will find important information about
the lecture, documents, exercises et cetera.

Organization: Exercise: F. Schlesinger, M. Janßen
Exam: tba
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History

This course evolved over the last 16 years. It was
first held in Koblenz (WS 95/96, WS 96/97), then
in Vienna (Austria, WS 98, WS00) , Bahia Blanca
(Argentina, SS 98, SS 01) and Clausthal (SS
04–12).
Chapters 1–4, 9 are based on the seminal book of
Russel/Norvig: Artificial Intelligence.

Many thanks to Nils, Tristan, Wojtek and
Federico for the time they invested in crafting
slides and doing the exercises. Their help over
the years improved the course a lot.
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Lecture Overview
1. Introduction (2 lectures)
2. Searching (3 lectures)
3. Supervised Learning (3 lectures)
4. Neural Nets (1 lecture)
5. Knowledge Engineering: SL (3 lectures)
6. Hoare Calculus (2 lectures)
7. Knowledge Engineering: FOL (2 lectures)
8. Knowledge Engineering: Provers (2 lectures)
9. Planning (1 lecture: overview)
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1 Introduction
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From Plato To Zuse
History of AI
Intelligent Agents
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1 Introduction

Content of this chapter (1):

Defining AI: There are several definitions of AI.
They lead to several scientific areas
ranging from Cognitive Science to
Rational Agents.

History: We discuss some important
philosophical ideas in the last 3
millennia and touch several events that
play a role in later chapters (syllogisms
of Aristotle, Ockhams razor, Ars
Magna).
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1 Introduction

Content of this chapter (2):

AI since 1958: AI came into being in 1956-1958
with John McCarthy. We give a rough
overview of its successes and failures.

Rational Agent: The modern approach to AI is
based on the notion of a Rational Agent
that is situated in an environment. We
discuss the PEAS description and give
some formal definitions of agency,
introducing the notions of run,
standard- vs. state- based agent
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1 Introduction
1.1 What Is AI?
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1 Introduction
1.1 What Is AI?

“The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
. . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“The branch of computer science that is con-
cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Table 1.1: Several Definitions of AI
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1 Introduction
1.1 What Is AI?

1. Cognitive science

2. ”Socrates is a man. All men are mortal. Therefore
Socrates is mortal.”
(Famous syllogisms by Aristotle.)

(1) Informal description 
(2) Formal description 
(3) Problem solution
(2) is often problematic due to under-specification

(3) is deduction (correct inferences): only enumerable,
but not decidable
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1 Introduction
1.1 What Is AI?

3. Turing Test:
http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

http://www.loebner.net/Prizef/loebner-prize.html
Standard Turing Test
Total Turing Test

Turing believed in 1950:

In 2000 a computer with 109 memory-units could
be programmed such that it can chat with a
human for 5 minutes and pass the Turing Test
with a probability of 30 %.
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1 Introduction
1.1 What Is AI?

4. In item 2. correct inferences were mentioned.

Often not enough information is available
in order to act in a way that makes sense (to
act in a provably correct way).
 Non-monotonic logics.

The world is in general under-specified. It is
also impossible to act rationally without correct
inferences: reflexes.
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1 Introduction
1.1 What Is AI?

To pass the total Turing Test, the computer will
need:

computer vision to perceive objects,
robotics to move them about.

The question Are machines able to think? leads
to 2 theses:

Weak AI thesis: Machines can be built, that
act as if they were intelligent.
Strong AI thesis: Machines that act in an
intelligent way do possess cognitive states, i.e.
mind.
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1 Introduction
1.1 What Is AI?

The Chinese Chamber
was used in 1980 by Searle to demonstrate that a system can
pass the Turing Test but disproves the Strong AI Thesis. The
chamber consists of:

CPU: an English-speaking man without experiences
with the Chinese language,
Program: a book containing rules formulated in English
which describe how to translate Chinese texts,
Memory: sufficient pens and paper

Papers with Chinese texts are passed to the man, which he
translates using the book.

Question

Does the chamber understand Chinese?
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1.2 From Plato To Zuse
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1 Introduction
1.2 From Plato To Zuse

450 BC: Plato, Socrates, Aristotle

Sokr.: ”What is characteristic of piety which
makes all actions pious?”
Aris.: ”Which laws govern the rational part of
the mind?”

800 : Al Chwarizmi (Arabia): Algorithm

1300 : Raymundus Lullus: Ars Magna

1350 : William van Ockham: Ockham’s Razor
”Entia non sunt multiplicanda
praeter necessitatem.”
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1 Introduction
1.2 From Plato To Zuse

1596–1650: R. Descartes:
Mind = physical system
Free will, dualism

1623–1662: B. Pascal, W. Schickard:
Addition-machines
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1 Introduction
1.2 From Plato To Zuse

1646–1716: G. W. Leibniz:
Materialism, uses ideas of Ars Magna to build
a machine for simulating the human mind

1561–1626: F. Bacon: Empirism

1632–1704: J. Locke: Empirism
”Nihil est in intellectu quod
non antefuerat in sensu.”

1711–1776 : D. Hume: Induction

1724–1804: I. Kant:
”Der Verstand schöpft seine Gesetze nicht
aus der Natur, sondern schreibt sie dieser vor.”
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1 Introduction
1.2 From Plato To Zuse

1805 : Jacquard: Loom

1815–1864: G. Boole:
Formal language,
Logic as a mathematical discipline

1792–1871: Ch. Babbage:
Difference Engine: Logarithm-tables
Analytical Engine: with addressable memory,
stored programs and conditional jumps
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1 Introduction
1.2 From Plato To Zuse

Figure 1.1: Reconstruction of Babbage’s difference engine.
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1 Introduction
1.2 From Plato To Zuse

1848–1925 : G. Frege: Begriffsschrift
2-dimensional notation for PL1

Figure 1.2: A formula from Frege’s Begriffsschrift.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 21



1 Introduction
1.2 From Plato To Zuse

1862–1943: D. Hilbert:
Famous talk 1900 in Paris: 23 problems
23rd problem: The Entscheidungsproblem

1872–1970: B. Russell:
1910: Principia Mathematica
Logical positivism, Vienna Circle (1920–40)
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1 Introduction
1.2 From Plato To Zuse

1902–1983 : A. Tarski: (1936)
Idea of truth in formal languages

1906–1978 : K. Gödel:
Completeness theorem (1930)
Incompleteness theorem (1930/31)
Unprovability of theorems (1936)

1912–1954 : A. Turing:
Turing-machine (1936)
Computability

1903–1995 : A. Church:
λ-Calculus, Church-Turing-thesis
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1 Introduction
1.2 From Plato To Zuse

1938/42: First operational programmable computer: Z 1
Z 3 by K. Zuse (Deutsches Museum)
with floating-point-arithmetic.
Plankalkül: First high-level programming language

Figure 1.3: Reconstruction of Zuse’s Z3.
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1 Introduction
1.2 From Plato To Zuse

1940 : First computer ”Heath Robinson”
built to decipher German messages (Turing)
1943 ”Collossus” built from vacuum tubes

1940–45: H. Aiken: develops MARK I, II, III.
ENIAC: First general purpose electronic comp.

1952 : IBM: IBM 701, first computer to yield a profit
(Rochester et al.)
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1 Introduction
1.2 From Plato To Zuse

1948: First stored program computer (The Baby)
Tom Kilburn (Manchester)
Manchester beats Cambridge by 3 months

Figure 1.4: Reconstruction of Kilburn’s baby.
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1 Introduction
1.2 From Plato To Zuse

First program run on The Baby in 1948:

Figure 1.5: Reconstruction of first executed program on The Baby.
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1 Introduction
1.3 History of AI

The year 1943:
McCulloch and W. Pitts drew on three sources:

1 physiology and function of neurons in the
brain,

2 propositional logic due to Russell/Whitehead,
3 Turing’s theory of computation.

Model of artificial, connected neurons:
Any computable function can be computed by some
network of neurons.
All the logical connectives can be implemented by
simple net-structures.
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1 Introduction
1.3 History of AI

The year 1951:
Minsky and Edwards build the first computer
based on neuronal networks (Princeton)

The year 1952:
A. Samuel develops programs for checkers that
learn to play tournament-level checkers.
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1 Introduction
1.3 History of AI

The year 1956:
Two-month workshop at Dartmouth organized by
McCarthy, Minsky, Shannon and Rochester.

Idea:

Combine knowledge about automata theory,
neural nets and the studies of intelligence (10
participants)
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1 Introduction
1.3 History of AI

Newell und Simon show a reasoning program,
the Logic Theorist, able to prove most of the
theorems in Chapter 2 of the Principia
Mathematica (even one with a shorter proof).

But the Journal of Symbolic Logic rejected a paper
authored by Newell, Simon and Logical Theorist.

Newell and Simon claim to have solved the
venerable mind-body problem.
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1 Introduction
1.3 History of AI

The term Artificial Intelligence is
proposed as the name of the new
discipline.

Logic Theorist is followed by the General
Problem Solver, which was designed from the
start to imitate human problem-solving protocols.
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1 Introduction
1.3 History of AI

The year 1958: Birthyear of AI
McCarthy joins MIT and develops:

1 Lisp, the dominant AI programming language
2 Time-Sharing to optimize the use of computer-time
3 Programs with Common-Sense.

Advice-Taker: A hypothetical program that can be seen
as the first complete AI system. Unlike others it
embodies general knowledge of the world.
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1 Introduction
1.3 History of AI

The year 1959:
H. Gelernter: Geometry Theorem Prover
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1 Introduction
1.3 History of AI

The years 1960-1966:
McCarthy concentrates on
knowledge-representation and reasoning in
formal logic ( Robinson’s Resolution, Green’s
Planner, Shakey).

Minsky is more interested in getting programs to
work and focusses on special worlds, the
Microworlds.
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1 Introduction
1.3 History of AI

SAINT is able to solve integration problems typical of
first-year college calculus courses
ANALOGY is able to solve geometric analogy problems
that appear in IQ-tests

is to as is to:

1 2 3 4 5
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1 Introduction
1.3 History of AI

Blocksworld is the most famous microworld.

Work building on the neural networks of McCulloch and
Pitts continued. Perceptrons by Rosenblatt and convergence
theorem:

Convergence theorem

An algorithm exists that can adjust the connection
strengths of a perceptron to match any input data.
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1 Introduction
1.3 History of AI

Summary:
Great promises for the future, initial successes but miserable
further results.

The year 1966: All US funds for AI research are
cancelled.

Inacceptable mistake

The spirit is willing but the flesh is weak.

was translated into

The vodka is good but the meat is rotten.
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1 Introduction
1.3 History of AI

The years 1966–1974: A dose of reality

Simon 1958: ”In 10 years a computer will be grandmaster of
chess.”

Simple problems are solvable due to small
search-space. Serious problems remain
unsolvable.

Hope:

Faster hardware and more memory will solve
everything!
 NP-Completeness, S. Cook/R. Karp (1971),
P 6= NP?
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1 Introduction
1.3 History of AI

The year 1973:
The Lighthill report forms the basis for the
decision by the British government to end
support for AI research.

Minsky’s book Perceptrons proved limitations of
some approaches with fatal consequences:

Research funding for neural net research
decreased to almost nothing.
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1 Introduction
1.3 History of AI

The years 1969–79: Knowledge-based systems

General purpose mechanisms are called weak methods,
because they use weak information about the domain. For
many complex problems it turns out that their performance
is also weak.

Idea:
Use knowledge suited to making larger reasoning steps and
to solving typically occurring cases on narrow areas of
expertise.

Example DENDRAL (1969)

Leads to expert systems like MYCIN (diagnosis of blood
infections).
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1 Introduction
1.3 History of AI

’73: PROLOG
’74: Relational databases (Codd)

81-91: Fifth generation project
’91: Dynamic Analysis and Replanning Tool

(DART) paid back DARPA’s investment
in AI during the last 30 years

’97: IBM’s Deep Blue
’98: NASA’s remote agent program
’11: IBM’s Watson winning Jeopardy! http:

//www-05.ibm.com/de/pov/watson/
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1 Introduction
1.3 History of AI

Something to laugh about: In 1902 a German poem was
translated into Japanese. The Japanese version war
translated into French. At last this version was translated
back into German, assuming that it was a Japanese poem.

The result:

Stille ist im Pavillon aus Jade,
Krähen fliegen stumm
Zu beschneiten Kirschbäumen im Mondlicht.
Ich sitze
und weine.

What is the original poem?
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1 Introduction
1.4 Intelligent Agents

Definition 1.1 (Agent aaa)
An agent aaa is anything that can be viewed as perceiving its
environment through sensor and acting upon that environment
through effectors.

?

agent

percepts

sensors

actions

effectors

environment
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1 Introduction
1.4 Intelligent Agents

Definition 1.2 (Rational Agent, Omniscient Agent)

A rational agent is one that does the right thing
(Performance measure determines how
successful an agent is).

A omniscient agent knows the actual outcome of
his actions and can act accordingly.

Attention:

A rational agent is in general not omniscient!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 47



1 Introduction
1.4 Intelligent Agents

Question

What is the right thing and what does it depend
on?

1 Performance measure (as objective as possible).
2 Percept sequence (everything the agent has received so

far).
3 The agent’s knowledge about the environment.
4 How the agent can act.
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1 Introduction
1.4 Intelligent Agents

Definition 1.3 (Ideal Rational Agent)

For each possible percept-sequence an
ideal rational agent should do whatever
action is expected to maximize its
performance measure (based on the
evidence provided by the percepts and
built-in knowledge).

Note the performance measure is
something outside the agent. It allows to
compare agents performances.
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1 Introduction
1.4 Intelligent Agents

Mappings:

set of percept sequences 7→ set of actions

can be used to describe agents in a mathematical way.

Remark:
Internally an agent is

agent = architecture + program

AI is engaged in designing agent programs
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1 Introduction
1.4 Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis
system

Healthy
patient,
minimize
costs, law-
suits

Patient, hos-
pital, staff

Display
questions,
tests, di-
agnoses,
treatments,
referrals

Keyboard
entry of
symptoms,
findings,
patient’s
answers

Satellite im-
age analysis
system

Correct im-
age catego-
rization

Downlink
from orbit-
ing satellite

Display cate-
gorization of
scene

Color pixel
arrays

Part-picking
robot

Percentage
of parts in
correct bins

Conveyor
belt with
parts; bins

Jointed arm
and hand

Camera,
joint angle
sensors

Interactive
English tutor

Maximize
student’s
score on test

Set of stu-
dents, test-
ing agency

Display
exercises,
suggestions,
corrections

Keyboard
entry

Table 1.2: Examples of agents types and their PEAS descriptions.
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1 Introduction
1.4 Intelligent Agents

A simple agent program:
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1 Introduction
1.4 Intelligent Agents

In theory everything is trivial:
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1 Introduction
1.4 Intelligent Agents

An agent example – taxi driver:

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal, com-
fortable trip,
maximize
profits

Roads,
other traffic,
pedestrians,
customers

Steering,
accelerator,
brake, sig-
nal, horn,
display

Cameras,
sonar,
speedome-
ter, GPS,
odometer,
accelerome-
ter, engine
sensors,
keyboard

Table 1.3: PEAS description of the environment for an automated taxi
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1 Introduction
1.4 Intelligent Agents

Some examples:
1 Production rules: If the driver in front hits the

breaks, then hit the breaks too.
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1 Introduction
1.4 Intelligent Agents

A first mathematical description

At first, we want to keep everything as
simple as possible.
Agents and environments

An agent is situated in an environment
and can perform actions

A := {a1, . . . , an} (set of actions)

and change the state of the environment

S := {s1, s2, . . . , sn} (set of states).
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1 Introduction
1.4 Intelligent Agents

How does the environment (the state s) develop when an
action a is executed?

We describe this with a function

env : S×A −→ 2S.

This includes non-deterministic
environments.
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1 Introduction
1.4 Intelligent Agents

How do we describe agents?

We could take a function action : S −→ A.

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1 Introduction
1.4 Intelligent Agents

Question:

How can we describe an agent, now?

Definition 1.4 (Purely Reactive Agent)

An agent is called purely reactive, if its
function is given by

action : S −→ A.
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1 Introduction
1.4 Intelligent Agents

This is too weak!

Take the whole history (of the
environment) into account:
s0 →a0 s1 →a1 . . . sn →an . . ..

The same should be done for env!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 60



1 Introduction
1.4 Intelligent Agents

This leads to agents that take the whole
sequence of states into account, i.e.

action : S∗ −→ A.

We also want to consider the actions
performed by an agent. This requires
the notion of a run (next slide).
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1 Introduction
1.4 Intelligent Agents

We define the run of an agent in an environment
as a sequence of interleaved states and actions:

Definition 1.5 (Run r, R = Ract ∪ Rstate)

A run r over A and S is a finite sequence

r : s0 →a0 s1 →a1 . . . sn →an . . .

Such a sequence may end with a state sn or with
an action an: we denote by Ract the set of runs
ending with an action and by Rstate the set of runs
ending with a state.
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1 Introduction
1.4 Intelligent Agents

Definition 1.6 (Environment, 2. version)

An environment Env is a triple 〈S, s0, τττ〉 consisting
of

1 the set S of states,
2 the initial state s0 ∈ S,
3 a function τττ : Ract −→ 2S, which describes how

the environment changes when an action is
performed (given the whole history).
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1 Introduction
1.4 Intelligent Agents

Definition 1.7 (Agent system aaa)

An agent aaa is determined by a function

action : Rstate −→ A,

describing which action the agent performs,
given its current history.
An agent system is then a pair aaa = 〈action, Env〉
consisting of an agent and an environment.
We denote by R(aaa, Env) the set of runs of agent
aaa in environment Env.
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1 Introduction
1.4 Intelligent Agents

Definition 1.8 (Characteristic Behaviour)

The characteristic behaviour of an agent aaa in an
environment Env is the set R of all possible runs
r : s0 →a0 s1 →a1 . . . sn →an . . . with:

1 for all n: an = action(〈s0, a0 . . . , an−1, sn〉),
2 for all n > 0: sn ∈ τττ(s0, a0, s1, a1, . . . , sn−1, an−1).

For deterministic τττ , the relation “∈” can be
replaced by “=”.
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1 Introduction
1.4 Intelligent Agents

Important:

The formalization of the characteristic
behaviour is dependent on the concrete
agent type. Later we will introduce
further behaviours (and corresponding
agent designs).
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1 Introduction
1.4 Intelligent Agents

Definition 1.9 (Equivalence)

Two agents aaa, bbb are called behaviourally
equivalent wrt. environment Env, if
R(aaa, Env) = R(bbb, Env).
Two agents aaa, bbb are called behaviourally
equivalent, if they are behaviourally
equivalent wrt. all possible environments
Env.
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1 Introduction
1.4 Intelligent Agents

So far so good, but...

What is the problem with all these agents
and this framework in general?

Problem

All agents have perfect information
about the environment!

(Of course, it can also be seen as feature!)
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1 Introduction
1.4 Intelligent Agents

We need more realistic agents!

Note

In general, agents only have
incomplete/uncertain information about the
environment!

We extend our framework by perceptions:
Definition 1.10 (Actions A, Percepts P, States S)

A := {a1, a2, . . . , an} is the set of actions.
P := {p1,p2, . . . ,pm} is the set of percepts.
S := {s1, s2, . . . , sl} is the set of states
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1 Introduction
1.4 Intelligent Agents

Sensors don’t need to provide perfect
information!

Agent
E

n
viro

n
m

en
t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1 Introduction
1.4 Intelligent Agents

Question:

How can agent programs be designed?

There are four types of agent programs:
Simple reflex agents
Agents that keep track of the world
Goal-based agents
Utility-based agents
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1 Introduction
1.4 Intelligent Agents

First try

We consider a purely reactive agent and
just replace states by perceptions.

Definition 1.11 (Simple Reflex Agent)

An agent is called simple reflex agent, if
its function is given by

action : P −→ A.
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1 Introduction
1.4 Intelligent Agents

A very simple reflex agent
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1 Introduction
1.4 Intelligent Agents

A simple reflex agent with memory
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1 Introduction
1.4 Intelligent Agents

As before, let us now consider sequences of
percepts:

Definition 1.12 (Standard Agent aaa)

A standard agent aaa is given by a function

action : P∗ −→ A

together with

see : S −→ P.

An agent is thus a pair 〈see, action〉.
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1 Introduction
1.4 Intelligent Agents

Definition 1.13 (Indistinguishable)

Two different states s, s′ are
indistinguishable for an agent aaa, if
see(s) = see(s′).

The relation “indistinguishable” on S× S

is an equivalence relation.
What does | ∼ | = |S|mean?
And what | ∼ | = 1?
The characteristic behaviour has to match
with the agent design!
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1 Introduction
1.4 Intelligent Agents

Definition 1.14 (Characteristic Behaviour)

The characteristic behaviour of a standard agent
〈see, action〉 in an environment Env is the set of
all finite sequences p0 →a0 p1 →a1 . . .pn →an . . .

where

p0 = see(s0),
ai = action(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1).

Such a sequence, even if deterministic from the
agent’s viewpoint, may cover different
environmental behaviours (runs):
s0 →a0 s1 →a1 . . . sn →an . . .
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1 Introduction
1.4 Intelligent Agents

Instead of using the whole history, resp. P∗, one
can also use internal states
I := {i1, i2, . . . , in, in+1, . . .}.
Definition 1.15 (State-based Agent aaastate)

A state-based agent aaastate is given by a function
action : I −→ A together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is
observed.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 78
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1.4 Intelligent Agents

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules
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1 Introduction
1.4 Intelligent Agents

Definition 1.16 (Characteristic Behaviour)

The characteristic behaviour of a state-based agent aaastate
in an environment Env is the set of all finite sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an−1 (in,pn), . . .

with

p0 = see(s0),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1),
an = action(in+1),
next(in,pn) = in+1.

Sequence covers the runs r : s0 →a0 s1 →a1 . . . where
aj = action(ij+1),
sj ∈ τττ(s0, a0, s1, a1, . . . , sj−1, aj−1),
pj = see(sj)
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1 Introduction
1.4 Intelligent Agents

Are state-based agents more expressive
than standard agents? How to
measure?
Definition 1.17 (Environmental Behaviour of aaastate)

The environmental behaviour of an agent
aaastate is the set of possible runs covered by
the characteristic behaviour of the agent.
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1 Introduction
1.4 Intelligent Agents

Theorem 1.18 (Equivalence)

Standard agents and state-based
agents are equivalent with respect to
their environmental behaviour.
More precisely: For each state-based agent
aaastate and next storage function there exists
a standard agent aaa which has the same
environmental behaviour, and vice versa.
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1.4 Intelligent Agents

3. Goal based agents:

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What it will be like
  if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

Will be discussed in Planning (Chapter 9).
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1 Introduction
1.4 Intelligent Agents

Intention:

We want to tell our agent what to do,
without telling it how to do it!

We need a utility measure.
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1 Introduction
1.4 Intelligent Agents

How can we define a utility function?
Take for example

u : S 7→ R

Question:
What is the problem with this definition?

Better idea:

u : R 7→ R

Take the set of runs R and not the set of states S.

How to calculate the utility if the agent has incomplete
information?
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1.4 Intelligent Agents

4. Agents with a utility measure:

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What it will be like
  if I do action A

What the world
is like now

How happy I will be
   in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

The utility measure can often be simulated through a set of
goals. It would be helpful, if the utility is close to the
performance measure.
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1.4 Intelligent Agents

Example 1.19 (Tileworld)
H

H

H

T T T

T T T

(a) (b) (c)
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1 Introduction
1.4 Intelligent Agents

Question:

How do properties of the environment
influence the design of an agent?
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1 Introduction
1.4 Intelligent Agents

Some important properties:
Fully/partially oberservable: If the environment

is not completely observable the agent
will need internal states.

Deterministic/stochastic: If the environment is
only partially observable, then it may
appear stochastic (while it is
deterministic).

Episodic/nonepisodic: Percept-action-sequences
are independent. The agent’s
experience is divided into episodes.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 89



1 Introduction
1.4 Intelligent Agents

Static/dynamic: The environment can change
while an agent is deliberating. An
environment is semidynamic if it does
not change with the passage of time but
the performance measure does.

Discrete/continuous: If there is a limited number
of percepts and actions the environment
is discrete.

Single/multi agents: Is there just one agent or
are there several interacting with each
other.
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1 Introduction
1.4 Intelligent Agents

Task Environment Observ. In/Determ. Episodic Static Discrete Agents
Crossword puzzle Fully Determ. Seq. Stat. Discr. Single
Chess with a clock Fully Strategic Seq. Semi Discr. Multi
Poker Part. Strategic Seq. Stat. Discr. Multi
Backgammon Fully Stochastic Seq. Stat. Discr. Multi
Taxi driving Part. Stochastic Seq. Dyn. Cont Multi
Medical diagnosis Part. Stochastic Seq. Dyn. Cont Single
Image-analysis Fully Determ. Epis. Semi Cont Single
Part-picking robot Part. Stochastic Epis. Dyn. Cont Single
Refinery controller Part. Stochastic Seq. Dyn. Cont Single
Interactive tutor Part. Stochastic Seq. Dyn. Discr. Multi

Table 1.4: Examples of task environments and their characteristics
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2 Searching

2. Searching
2 Searching

Problem Formulation
Uninformed search
Best-First Search
A∗ Search
Heuristics
Limited Memory
Iterative Improvements
Online Search
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2 Searching

Content of this chapter (1):

Searching: Search Algorithms are perhaps the most basic
notion of AI. Almost any problem can be
formulated as a search problem.

(Un-) informed: We distinguish between uninformed and
informed search algorithms. In the latter case,
there is information available to guide the
search. Often, this results in algorithms that are
exponentially better than uninformed ones.
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2 Searching

Content of this chapter (2):

A∗: The A∗ algorithm is one of the fundamental
informed search algorithms in AI. We discuss
several variants based on Tree-Search or
Graph-Search and discuss their correctness and
completeness. We also consider Heuristics.

Memory: We discuss several variants which use only
limited memory: IDA∗, RBFS, and SMA∗.

Extensions: Finally, we conclude with a few words about
iterative improvements (genetic algorithms or
simulated annealing) and online algorithms
(where actions and search are interleaved). We
present the LRTA∗ algorithm.
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2 Searching

Wanted: Problem-solving agents, which
form a subclass of the
goal-oriented agents.

Structure: Formulate, Search, Execute.
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2 Searching

Formulate:

Goal: a set of states,
Problem: States, actions mapping
from states into states, transitions

Search: Which sequence of actions is helpful?
Execute: The resulting sequence of actions is

applied to the initial state.
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2 Searching

function SIMPLE-PROBLEM-SOLVING-AGENT( � � � � � � 
 ) returns an action
inputs: � � � � � � 
 , a percept
static: � � � , an action sequence, initially empty

� 
 � 
 � , some description of the current world state
� � � � , a goal, initially null

� � � � � � � , a problem formulation

� 
 � 
 � � UPDATE-STATE( � 
 � 
 � , � � � � � � 
 )
if � � � is empty then do

� � � � � FORMULATE-GOAL( � 
 � 
 � )
� � � � � � � � FORMULATE-PROBLEM( � 
 � 
 � , � � � � )

� � � � SEARCH( � � � � � � � )
� � 
 % � & � FIRST( � � � )

� � � � REST( � � � )
return � � 
 % � &

Table 2.5: A simple problem solving agent.

When executing, percepts are ignored.
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2 Searching
2.1 Problem Formulation

2.1 Problem Formulation
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2 Searching
2.1 Problem Formulation

We distinguish four types:
1 1-state-problems: Actions are completely described.

Complete information through sensors to determine the
actual state.

2 Multiple-state-problems: Actions are completely
described, but the initial state is not certain.

3 Contingency-problems: Sometimes the result is not a
fixed sequence, so the complete tree must be
considered.
( Excercise: Murphy’s law, Chapter 9. Planning)

4 Exploration-problems: Not even the effect of each
action is known. You have to search in the world
instead of searching in the abstract model.
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2 Searching
2.1 Problem Formulation

1 2

3 4

5 6

7 8

Table 2.6: The vacuum world.
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2 Searching
2.1 Problem Formulation

Definition 2.1 (1-state-problem)

A 1-state-problem consists of:
a set of states (incl. the initial state)
a set of n actions (operators), each of which – applied to
a state – leads to another state:

Operatori: States→ States, i = 1, . . . , n

We use a function Successor-Fn: S → 2A×S. It assigns
each state a set of pairs 〈a, s〉: the set of possible actions
and the state it leads to.
a set of goal states or a goal test, which – applied on a
state – determines if it is a goal-state or not.
a cost function g, which assesses every path in the state
space (set of reachable states) and is usually additive.
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2 Searching
2.1 Problem Formulation

What about multiple-state-problems?
( excercise)

How to choose actions and states?
( abstraction)

Definition 2.2 (State Space)

The state space of a problem is the set of all
reachable states (from the initial state). It forms
a directed graph with the states as nodes and the
arcs the actions leading from one state to another.
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2 Searching
2.1 Problem Formulation

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

Table 2.7: The 8-puzzle.
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2 Searching
2.1 Problem Formulation

Table 2.8: The 8-queens problem.
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2 Searching
2.1 Problem Formulation

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Table 2.9: State Space for Vacuum world.

Missionaries vs. cannibals
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2 Searching
2.1 Problem Formulation

L

R

L R

S

L R
S S

S S

R

L

S S

L

R

R

L

R

L

Table 2.10: Belief Space for Vacuum world without sensors.
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2 Searching
2.1 Problem Formulation

Real-world-problems:

travelling-salesman-problem
VLSI-layout
labelling maps
robot-navigation
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2 Searching
2.2 Uninformed search

2.2 Uninformed search
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2 Searching
2.2 Uninformed search

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Choose, test, expand RBFS

Table 2.11: Map of Romania
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2 Searching
2.2 Uninformed search

Principle: Choose, test, expand.

Search-tree
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Map of Romania
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2 Searching
2.2 Uninformed search

Tree Search

function TREE-SEARCH( � � � � � 
 � , � � � � � 
 � � ) returns a solution, or failure
initialize the search tree using the initial state of � � � � � 
 �

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to � � � � � 
 � �

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Table 2.12: Tree Search.
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2 Searching
2.2 Uninformed search

Important:

State-space versus search-tree:

The search-tree is countably infinite in contrast to
the finite state-space.

a node is a bookkeeping data structure with
respect to the problem instance and with
respect to an algorithm;
a state is a snapshot of the world.
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2 Searching
2.2 Uninformed search

Definition 2.3 (Datatype Node)

The datatype node is defined by state (∈ S), parent (a node),
action (also called operator) which generated this node,
path-costs (the costs to reach the node) and depth (distance
from the root).

Tree-Search

Important:

The recursive dependency between node and parent is
important. If the depth is left out then a special node root
has to be introduced.

Conversely the root can be defined by the depth: root is its
own parent with depth 0.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 113



2 Searching
2.2 Uninformed search

1

23

45

6

7

81

23

45

6

7

8

Node

PARENT− NODE

STATE P COSTATH−  = 6
DEPTH = 6
ACTION  = right

Figure 2.6: Illustration of a node in the 8-puzzle.
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2 Searching
2.2 Uninformed search

Instantiating Tree-SEARCH

Design-decision: Queue
Tree-SEARCH generates nodes. Among them are
those that are-to-be-expanded later on. Rather
than describing them as a set, we use a queue
instead.
The fringe is the set of generated nodes that have
not yet been expanded.

Here are a few functions operating on queues:
Make-Queue(Elements) Remove-First(Queue)
Empty?(Queue) Insert(Element,Queue)
First(Queue) Insert-All(Elements,Queue)
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2 Searching
2.2 Uninformed search

function TREE-SEARCH( � � � � � � � � 	 � 
 � � � ) returns a solution, or failure

	 � 
 � � �  INSERT(MAKE-NODE(INITIAL-STATE[ � � � � � � � ]), 	 � 
 � � � )
loop do

if EMPTY?( 	 � 
 � � � ) then return failure
� � � �  REMOVE-FIRST( 	 � 
 � � � )
if GOAL-TEST[ � � � � � � � ] applied to STATE[ � � � � ] succeeds

then return SOLUTION( � � � � )
	 � 
 � � �  INSERT-ALL(EXPAND( � � � � , � � � � � � � ), 	 � 
 � � � )

function EXPAND( � � � � � � � � � � � � ) returns a set of nodes

� � � � � � � � � �  the empty set
for each � � � � 
 � � , � � � � � � � in SUCCESSOR-FN[ � � � � � � � ](STATE[ � � � � ]) do

�  a new NODE

STATE[ � ]  � � � � � �
PARENT-NODE[ � ]  � � � �
ACTION[ � ]  � � � 
 � �
PATH-COST[ � ]  PATH-COST[ � � � � ] + STEP-COST( � � � � , � � � 
 � � , � )
DEPTH[ � ]  DEPTH[ � � � � ] + 1
add � to � � � � � � � � � �

return � � � � � � � � � �

Datatype Node

Graph-Search

Table 2.13: Tree-Search
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2 Searching
2.2 Uninformed search

Question:

Whiat are interesting requirements of
search-strategies?

completeness
time-complexity
space complexity
optimality (w.r.t. path-costs)

We distinguish:

Uninformed vs. informed search.
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2 Searching
2.2 Uninformed search

Definition 2.4 (Completeness, optimality)

A search strategy is called
complete, if it finds a solution,
provided there exists one at all.
optimal, if whenever it produces an
output, this output is an optimal
solution, i.e. one with the smallest
path costs among all solutions.

Is any optimal strategy also complete?
Vice versa?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 118



2 Searching
2.2 Uninformed search

Breadth-first search: “nodes with the smallest
depth are expanded first”,

Make-Queue : add new nodes at the end: FIFO
Complete? Yes.
Optimal? Yes, if all operators are equally expensive.

Constant branching-factor b: for a solution at
depth d we have generated1(in the worst case)

b+ b2 + . . .+ bd + (bd+1 − b)-many nodes.
Space complexity = Time Complexity

1 Note this is different from “expanded”.
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2 Searching
2.2 Uninformed search

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Figure 2.7: Illustration of Breadth-First Search.
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2 Searching
2.2 Uninformed search

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

Table 2.14: Time versus Memory.
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2 Searching
2.2 Uninformed search

Uniform-Cost-Search: “Nodes n with lowest
path-costs g(n) are expanded first”

Make-Queue : new nodes are compared to
those in the queue according
to their path costs and are
inserted accordingly

Complete? Yes, if each operator increases the
path-costs by a minimum of δ > 0 (see below).
Worst case space/time complexity: O(b1+bC

∗
δ c),

where C∗ is the cost of the optimal solution and
each action costs at least δ
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2 Searching
2.2 Uninformed search

If all operators have the same costs (in particular if
g(n) = depth(n) holds):

Uniform-cost search

Uniform-cost search=Breadth-first search.

Theorem 2.5 (Optimality of Uniform-cost search)

If ∃δ > 0 : g(succ(n)) ≥ g(n) + δ then: Uniform-cost
search is optimal.
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2 Searching
2.2 Uninformed search

Depth-first search: “Nodes of the greatest depth
are expanded first”,

Make-Queue : LIFO,new nodes are
added at the
beginning

If branching-factor b is constant and the
maximum depth is m then:

Space-complexity: b×m,
Time-complexity: bm.
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2 Searching
2.2 Uninformed search

A
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D E F G

H I J K L M N O

A
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D E F G
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A

B C

D E F G
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A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G
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A
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D E F G

H I J K L M N O

Table 2.15: Illustration of Depth-First-Search.
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2 Searching
2.2 Uninformed search

Depth-limited search: “search to depth d”.

function DEPTH-LIMITED-SEARCH( � � � � � 
 � , � � � � � ) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[ � � � � � 
 � ]), � � � � � 
 � , � � � � � )

function RECURSIVE-DLS( � � � 
 , � � � � � 
 � , � � � � � ) returns a solution, or failure/cutoff
� � � �  � � � � � � 
 � # % false
if GOAL-TEST[ � � � � � 
 � ](STATE[ � � � 
 ]) then return SOLUTION( � � � 
 )
else if DEPTH[ � � � 
 ] = � � � � � then return � � � �  

else for each ) � � � 
 ) ) � � in EXPAND( � � � 
 , � � � � � 
 � ) do
� 
 ) � � � % RECURSIVE-DLS( ) � � � 
 ) ) � � , � � � � � 
 � , � � � � � )
if � 
 ) � � � = � � � �  then � � � �  � � � � � � 
 � # % true
else if � 
 ) � � � -. / 0 � � � � 
 then return � 
 ) � � �

if � � � �  � � � � � � 
 � # then return � � � �  else return / 0 � � � � 


Table 2.16: Depth-Limited-Search.
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2 Searching
2.2 Uninformed search

In total: 1 + b+ b2 + . . .+ bd−1 + bd + (bd+1 − b)
many nodes.

Space-complexity: b× l,
Time-complexity: bl.

Two different sorts of failures!
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2 Searching
2.2 Uninformed search

Iterative-deepening search: “depth increases”

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G
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D E F G

A
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D E F G

A
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D E F G
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D E F G

H I J K L M N O

A
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H I J K L M N O
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D E F G
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A

B C
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A
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A
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D E F G

H I J K L M N O

Table 2.17: Illustration of Iterative-Deepening-Search.
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2 Searching
2.2 Uninformed search

function ITERATIVE-DEEPENING-SEARCH( � � � � � 
 � ) returns a solution, or failure
inputs: � � � � � 
 � , a problem

for � 
 � � � � 0 to � do
� 
 � � � � � DEPTH-LIMITED-SEARCH( � � � � � 
 � , � 
 � � � )
if � 
 � � � �  ! cutoff then return � 
 � � � �

Table 2.18: Iterative-Deepening-Search.
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2 Searching
2.2 Uninformed search

How many nodes?

d× b + (d− 1)× b2 + . . . + 2× bd−1 + 1× bd.

Compare with Breadth-first search:

b + b2 + . . . + bd + (bd+1 − b).
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2 Searching
2.2 Uninformed search

Attention:

Iterative-deepening search is faster than
Breadth-first search because the latter also
generates nodes at depth d+ 1 (even if the
solution is at depth d).

The amount of revisited nodes is kept within a
limit.
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2 Searching
2.2 Uninformed search

GoalStart

Figure 2.8: Bidirectional search.
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2 Searching
2.2 Uninformed search

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deep.

Bi-
direct.

Complete Yes1 Yes1,2 No No Yes1 Yes1,4

Time O(bd+1) O
(
b

⌈
C∗
ε

⌉)
O(bm) O(bl) O(bd) O

(
b

d
2

)
Space O(bd+1) O

(
b

⌈
C∗
ε

⌉)
O(bm) O(bl) O(bd) O

(
b

d
2

)
Optimal Yes3 Yes No No Yes3 Yes3,4

Table 2.19: Complexities of uninformed search procedures. Cells regard-
ing time and space denote the nodes generated.

1 if b is finite;
2 if step costs ≥ ε for
positive ε;
3if step costs are all
identical;
4 if both directions use
Breadth-first search

b branching factor, b ≥ 2

d depth of the shallowest solution,
d < m

m maximum depth of the search tree

l depth limit, l ≤ m

C∗ cost of the optimal solution
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2 Searching
2.2 Uninformed search

How to avoid repeated states?

Can we avoid infinite trees by checking for
loops?
Compare number of states with number of
paths in the search tree.
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2 Searching
2.2 Uninformed search

State space vs. Search tree

Rectangular grid: How many different states
are reachable within a path of length d?

A

B

C

D

A

B B

CC CC

A

(c)(b)(a)

Table 2.20: State space versus Search tree: exponential blow-up.
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2 Searching
2.2 Uninformed search

Graph-Search= Tree-Search+ Loop-checking
Tree-Search

function GRAPH-SEARCH( � � � � � � � � 	 � 
 � � � ) returns a solution, or failure

 � � � � � � an empty set
	 � 
 � � � � INSERT(MAKE-NODE(INITIAL-STATE[ � � � � � � � ]), 	 � 
 � � � )
loop do

if EMPTY?( 	 � 
 � � � ) then return failure
� � � � � REMOVE-FIRST( 	 � 
 � � � )
if GOAL-TEST[ � � � � � � � ](STATE[ � � � � ]) then return SOLUTION( � � � � )
if STATE[ � � � � ] is not in  � � � � � then

add STATE[ � � � � ] to  � � � � �

	 � 
 � � � � INSERT-ALL(EXPAND( � � � � , � � � � � � � ), 	 � 
 � � � )

Table 2.21: Graph-Search.
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2.3 Best-First Search

2.3 Best-First Search
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2 Searching
2.3 Best-First Search

Idea:

Use problem-specific knowledge to improve the
search.

Tree-search is precisely defined. Only freedom:
Make-Queue.
Let’s assume we have an evaluation-function f
which assigns a value f(n) to each node n.
We change Make-Queue as follows

the nodes with smallest f are located at
the beginning of the queue

– thus the queue is sorted wrt. f .
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2 Searching
2.3 Best-First Search

function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn� a function that orders nodes by EVAL-FN

return GENERAL-SEARCH( problem, Queueing-Fn)

Table 2.22: Best-First-Search.

What about time and space complexity?
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2 Searching
2.3 Best-First Search

Best-first search: here the evaluation-function is
f(n):= expected costs of an optimal path
from the state in n to a goal state.

The word optimal is used with respect to the
given cost-function g.

This evaluation-function is also called heuristic
function, written h(n).
Heuristic Function

We require from all heuristic functions that they
assign the value 0 to goal states.
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2 Searching
2.3 Best-First Search

Example 2.6 (path-finding)

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

h(n) might be defined as the direct-line distance
between Bucharest and the city denoted by n.
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2 Searching
2.3 Best-First Search

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Table 2.23: Illustration of Best-first search.
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2 Searching
2.3 Best-First Search

Questions:

1 Is Best-first search optimal?
2 Is Best-first search complete?
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2.4 A∗ Search

2.4 A∗ Search
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2 Searching
2.4 A∗ Search

Definition of A∗

A∗ search: Here the evaluation-function is
the sum of an heuristic function
h(n) and the real path-costs
g(n):

f (n) := h(n) + g(n).

So A∗ search is “best-first + uniform-cost”, because
h(nz) = 0 holds for final states nz, as f(nz) = g(nz).
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2 Searching
2.4 A∗ Search

The notion of admissibility

On Slide 140 we required from any heuristic
function that its value is 0 for goal nodes.
An important generalization of this is that it never
overestimates the cost to reach the goal.
Definition 2.7 (Admissible heuristic function)

The heuristic function h is called admissible if
h(n) is always smaller or equal than the optimal
costs h∗ from n to a goal-node:

h(n) 5 h∗(n)
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2 Searching
2.4 A∗ Search

Table 2.24: Illustration of A∗ (1).
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2 Searching
2.4 A∗ Search

Table 2.25: Illustration of A∗ (2).
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2 Searching
2.4 A∗ Search

To show completeness of A∗ we have to ensure:

1 Never it is the case that an infinite number of
nodes is generated in one step (locally finite).

2 There is a δ > 0 such that in each step the path
costs increase by at least δ.

These conditions must also hold in the following
optimality results.

Theorem 2.8 (Completeness of A∗)

A∗ is complete (wrt. Tree Search or Graph Search),
if the above two properties are satisfied.
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2 Searching
2.4 A∗ Search

f is monotone in our example.
This does not hold in general.
Monotony of f is not needed to ensure
optimality.
But if the heuristic function is admissible, then
we can easily modify f to be monotone
(how?) and make the search more efficient.
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2 Searching
2.4 A∗ Search

Theorem 2.9 (Optimality of A∗ wrt Tree Search)

A∗ is optimal using Tree Search, if the
heuristic function h is admissible.
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2 Searching
2.4 A∗ Search

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 2.9: Goal-directed contours of A∗.
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2 Searching
2.4 A∗ Search

What if we use Graph Search?
The proof breaks down!
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2 Searching
2.4 A∗ Search

The notion of consistency

Definition 2.10 (Consistent heuristic function)

The heuristic function h is called consistent if the
following holds for every node n and successor n′

of n:
h(n) ≤ cost(n, a, n′) + h(n′).

Consistency of h implies monotony of f .

Is the converse also true?
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2 Searching
2.4 A∗ Search

Theorem 2.11 (Optimality of A∗ wrt Graph Search)

A∗ is optimal using Graph Search, if the
heuristic function h is consistent.

Is the last theorem also true if we
require monotony of f (instead of
consistency of h)?
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2 Searching
2.4 A∗ Search

Question:

How many nodes does A∗ store in memory?

Answer:

Virtually always exponentially many with respect
to the length of the solution.

It can be shown: As long as the heuristic function
is not extremely exact

|h(n)− h∗(n)| < O(log h∗(n))

the amount of nodes is always exponential with
respect to the solution.
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2 Searching
2.4 A∗ Search

For almost every usable heuristic a bad
error-estimation holds:

|h(n)− h∗(n)| ≈ O(h∗(n))

Important:

A∗’s problem is space not time.
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2 Searching
2.4 A∗ Search

Important:

A∗ is even optimally efficient: No other optimal
algorithm (which expands search-paths
beginning with an initial node) expands less
nodes than A∗.
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2.5 Heuristics
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2 Searching
2.5 Heuristics

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Table 2.26: An instance of the 8-puzzle.
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2 Searching
2.5 Heuristics

Question:
Which branching-factor?

Answer:
Approx. 3 (more exactly 8

3
).

Question:
How many nodes have to be considered?

Answer:

3g ≈ 1010

in which g is the amount of moves necessary to get a
solution. g is approx. 22.
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2 Searching
2.5 Heuristics

Checking for loops

But: There are only 9! ≈ 105 states!

In other words: Looking at cycles can
be very helpful.
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2 Searching
2.5 Heuristics

Question:

Which heuristic functions come in handy?

Hamming-distance: h1 is the amount of
numbers which are in the wrong
position. I.e. h1(start) = 8.

Manhattan-distance: Calculate for every piece
the distance to the right position and
sum up:

h2 :=
8∑
i=1

(distance of i to the right position)

h2(start) = 2+3+2+1+2+2+1+2 = 15.
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2 Searching
2.5 Heuristics

Question:

How to determine the quality of a
heuristic function? (In a single value)

Definition 2.12 (Effective Branching Factor)

Suppose A∗ detects an optimal solution
for an instance of a problem at depth d
with N nodes generated. Then we define
b∗ via N + 1 = 1 + b∗ + (b∗)2 + . . . + (b∗)d:
the effective branching-factor of A∗.
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2 Searching
2.5 Heuristics

Attention:

b∗ depends on h and on the special
problem instance.

But for many classes of problem instances
b∗ is quite constant.
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2 Searching
2.5 Heuristics

Search Cost Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Table 2.27: Comparing A∗ (Hamming and Manhattan) with IDS.

Question:

Is Manhattan better than Hamming?
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2 Searching
2.5 Heuristics

How to determine a (good) heuristics
for a given problem?

There is no general solution, it
always depends on the problem.
Often one can consider a relaxed
problem, and take the precise
solution of the relaxed problem as a
heuristics for the original one.
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2 Searching
2.5 Heuristics

2

Start State Goal State

1

3 6

7 8

5

1

2

3

4

6

8

5 4

Table 2.28: A relaxed version of the 8-puzzle.
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2 Searching
2.5 Heuristics

Relaxed problem:

Try to bring 1–4 in the right positions,
but do not care about all the others.

This heuristics is better than
Manhattan distance (for the 8-puzzle).
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2.6 Limited Memory
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2 Searching
2.6 Limited Memory

Question:

A∗ is memory-intensive. What if the memory is
limited? What to do if the queue is restricted in its
length?

This leads to:
IDA∗: A∗ + iterative deepening,
RBFS: Recursive Best-First Search,
SMA∗: Simplified memory bounded A∗.
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2 Searching
2.6 Limited Memory

IDA∗: A∗ combined with iterative-deepening
search. We perform Depth-first search
(small memory), but use values of f
instead of depth.

So we consider contures: only nodes within the
f-limit. Concerning those beyond the limit we
only store the smallest f -value above the actual
limit.
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2 Searching
2.6 Limited Memory

function IDA*( problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f - COST limit

root, a node

root�MAKE-NODE(INITIAL-STATE[problem])
f-limit� f - COST(root)
loop do

solution, f-limit�DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
if f-limit =� then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f - COST limit
inputs: node, a node

f-limit, the current f - COST limit
static: next-f, the f - COST limit for the next contour, initially�

if f - COST[node] > f-limit then return null, f - COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do

solution, new-f�DFS-CONTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
next-f�MIN(next-f, new-f); end

return null, next-f

Figure 2.10: IDA∗.
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2 Searching
2.6 Limited Memory

Theorem 2.13 (Properties of IDA∗)

IDA∗ is optimal if enough memory is
available to store the longest
solution-path with costs 5 f ∗.
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2 Searching
2.6 Limited Memory

Question:

What about complexity?

space: depends on the smallest operator-costs δ, the
branching-factor b and the optimal costs f ∗.
bf ∗/δ-many nodes are generated (worst case)

time: depends on the amount of values of the
heuristic function.

If we consider a small amount of values, the last iteration of
IDA∗ will often be like A∗.

Consider a large amount of values. Then only one node
per conture will be added: How many nodes will IDA∗

visit if A∗ expands n-many?
What does this say about the time-complexity of A∗

and IDA∗?
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2 Searching
2.6 Limited Memory

RBFS: recursive Depth-first version of
Best-First search using only linear
memory. Memorizes f -value of
best alternative path.

f -value of each node is replaced by the
best (smallest) f -value of its children.
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2 Searching
2.6 Limited Memory

function RECURSIVE-BEST-FIRST-SEARCH( � � � � � 
 � ) returns a solution, or failure
RBFS( � � � � � 
 � , MAKE-NODE(INITIAL-STATE[ � � � � � 
 � ]), � )

function RBFS( � � � � � 
 � , � � � 
 , � � � � � � ) returns a solution, or failure and a new � -cost limit
if GOAL-TEST[ � � � � � 
 � ]( � � � � 
 ) then return � � � 


�  " " 
 � � � � � $ EXPAND( � � � 
 , � � � � � 
 � )
if �  " " 
 � � � � � is empty then return � � � �  � 
 , �
for each � in �  " " 
 � � � � � do

� [s] $ * , - / 0 / � 2 4 6 / � 2 7 � 9 � � � 
 : 2
repeat

� 
 � � $ the lowest � -value node in �  " " 
 � � � � �
if � 9 � 
 � � : = � � � � � � then return � � � �  � 
 , � [ � 
 � � ]

� � � 
 � � � � � B 
 $ the second-lowest � -value among �  " " 
 � � � � �
� 
 �  � � , � [ � 
 � � ] $ RBFS( � � � � � 
 � , � 
 � � , * F H / � � � � � � 7 � � � 
 � � � � � B 
 2 )
if � 
 �  � � KL � � � �  � 
 then return � 
 �  � �

Table 2.29: RBFS
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2.6 Limited Memory

Map of Romania

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 526

526 553

646 526

450591

646 526

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450 417
Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu, 
      and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
      and expanding Pitesti

(b) After unwinding back to Sibiu 
      and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

Table 2.30: Illustration of RBFS.
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2 Searching
2.6 Limited Memory

RBFS is optimal and complete under
the same assumptions as A∗.
IDA∗ and RBFS suffer from using
too little memory.

We would like to use as much memory as
possible. This leads to SMA∗
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2 Searching
2.6 Limited Memory

SMA∗: is an extension of A∗, which only needs
a limited amount of memory.

If there is no space left but nodes have to be
expanded, nodes will be removed from the
queue:

those with possibly great f -value (forgotten
nodes). But their f-costs will be stored. Later
those nodes will be considered if all other
paths lead to higher costs.
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2 Searching
2.6 Limited Memory

0+12=12

10 8

10 10 8

8 810 10

10+5=15 8+5=13

20+5=25 20+0=20 16+2=18

24+0=24 24+5=2930+5=35 30+0=30

16

24+0=24

A

B

C D

E F

G

H I

J K

15 24

A

B G

15

15 13

13

A

B G

12

15

A

B

12

A

24

A

G

I

15(15)

24(    )

20

A

B

D

20(24)

20(    )15

25

A

B

C

15(24)

13

18

A

G

H

13(15)

41 2 3

5 6 7 8

Figure 2.11: Illustration of SMA∗.
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2 Searching
2.6 Limited Memory

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f -cost

Queue�MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do

if Queue is empty then return failure
n� deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
s�NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then

f(s)��
else

f(s)�MAX(f(n), g(s)+h(s))
if all of n’s successors have been generated then

update n’s f -cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue
remove it from its parent’s successor list
insert its parent on Queue if necessary

insert s on Queue
end

Table 2.31: SMA∗.
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2 Searching
2.6 Limited Memory

Theorem 2.14 (Properties of SMA∗)

SMA∗ is complete if enough memory is
available to store the shortest
solution-path.

SMA∗ is optimal if there is enough memory
to store the optimal solution-path.
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2.7 Iterative Improvements

2.7 Iterative Improvements
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2 Searching
2.7 Iterative Improvements

Idea:

Considering certain problems only the actual
state is important, but not the path leading to it:
Local Search problems

evaluation

current
state

Of course this problem is as difficult as you like!
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2 Searching
2.7 Iterative Improvements

Hill-climbing: gradient-descent (-ascent). Move
in a direction at random. Compare the
new evaluation with the old one. Move
to the new point if the evaluation is
better.

Problems:
local optima: (getting lost).
plateaux: (wandering around).
ridge: (detour).
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2 Searching
2.7 Iterative Improvements

function HILL-CLIMBING( problem) returns a solution state
inputs: problem, a problem
static: current, a node

next, a node

current�MAKE-NODE(INITIAL-STATE[problem])
loop do

next� a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current� next

end

Table 2.32: Hill Climbing.
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2 Searching
2.7 Iterative Improvements

Random Restart Hill Climbing: Start
again and again from randomly
generated initial states.
N -queens: heuristic function h is the
number of pairs of queens that attack
each other. Random restart hill
climbing works well even for N = 106.
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2 Searching
2.7 Iterative Improvements

Simulated annealing: modified
hill-climbing: also bad moves
(small evaluation-value) are
allowed with the small
probability of e−|∆f |T . It depends
on the “temperature” T ranging
from∞ to 0.
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2 Searching
2.7 Iterative Improvements

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
static: current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current�MAKE-NODE(INITIAL-STATE[problem])
for t� 1 to� do

T� schedule[t]
if T=0 then return current
next� a randomly selected successor of current
ΔE�VALUE[next] – VALUE[current]
if ΔE > 0 then current� next
else current� next only with probability eΔE/T

Table 2.33: Simulated Annealing.
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2 Searching
2.7 Iterative Improvements

function GENETIC-ALGORITHM( � � � � � 	 �  � � , FITNESS-FN) returns an individual
inputs: � � � � � 	 �  � � , a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat
� � � � � � � � 	 �  � � � empty set
loop for  from 1 to SIZE( � � � � � 	 �  � � ) do

� � RANDOM-SELECTION( � � � � � 	 �  � � , FITNESS-FN)
� � RANDOM-SELECTION( � � � � � 	 �  � � , FITNESS-FN)

� �  � " � REPRODUCE( � , � )
if (small random probability) then � �  � " � MUTATE( � �  � " )
add � �  � " to � � � � � � � � 	 �  � �

� � � � � 	 �  � � � � � � � � � � � 	 �  � �

until some individual is fit enough, or enough time has elapsed
return the best individual in � � � � � 	 �  � � , according to FITNESS-FN

function REPRODUCE( � , � ) returns an individual
inputs: � , � , parent individuals

� � LENGTH( � )
� � random number from 1 to �

return APPEND(SUBSTRING( � , 1, � ), SUBSTRING( � , � + - , � ))

Table 2.34: Genetic Algorithm.
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2 Searching
2.7 Iterative Improvements

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Table 2.35: Illustration of Genetic Algorithm.
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2.7 Iterative Improvements

+ =

Table 2.36: Crossover in the 8-queens problem.

Fitness function: number of non-attacking pairs
of queens.
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2.8 Online Search

2.8 Online Search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 194



2 Searching
2.8 Online Search

Up to now: offline search. What about
interleaving actions and computation?
Remember the exploration problem. One does
not know the effect of actions, nor the state
space. Therefore one has to try out all actions
and remember to which states they lead.
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2.8 Online Search

G

S

1 2 3

1

2

3

Table 2.37: Online vs Offline search.
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2 Searching
2.8 Online Search

How to measure the quality of an online
algorithm? Number of steps alone does not make
sense. One has to explore the space and find
the optimal path.

Definition 2.15 (Competitive Ratio)

The competitive ratio of an online search
problem is the costs of the path taken by the
agent divided by the costs of the optimal path.
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2.8 Online Search

Infinite competitive ratio

S

G

S

G

A

A
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2.8 Online Search

Unbounded competitive ratio

S G
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2 Searching
2.8 Online Search

We assume the following
1 actions are reversible (why?),
2 once a state has been visited, it will be recognized when

it is visited again.
Compare backtracking in offline versus online search. In
online search, we have to find an action to backtrack to
the previous state. We cannot take it from the queue!!
Similarly in online search we can only expand a node
that we physically occupy.
We have to keep a table result(a, s) listing the effects of
actions a executed in state s.
We also have to keep the following two tables:

1 unexplored: for each state the actions not yet tried,
2 unbacktracked: for each state the backtracks not yet tried.
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2.8 Online Search

Table 2.38: Online DFS Agent.
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2 Searching
2.8 Online Search

Hill Climbing is an Online Search algorithm!
What about using random restarts?
What about using random walks?
This certainly works for finite spaces, but not
for infinite ones.
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2 Searching
2.8 Online Search

Why not simply taking random walks?

S G

Table 2.39: Random Walk.

Because they can lead to exponentially many steps.
Will a random walk eventually find the goal
(completeness)? Y es, if state space is finite;

Y es, for 2-dimensional grids;
with probability 0.34, for 3-dimensional grids.
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2 Searching
2.8 Online Search

Instead of randomness, let’s try to use memory!

Given a heuristics h, it should be used.
But it can be misleading (local maxima).
Therefore we build a better, more realistic
estimate H that takes h into account and the
path that the hill climbing algorithm takes
to explore the states.
This can help to get out of the local maximum.
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2 Searching
2.8 Online Search

Hill-Climbing + Memory=LRTA∗

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

8 9

8 9

8 9

2

2

3

4

4

4

3

3

3

1 1 11 1 11
8 9 4 4 3

1 1 11 1 11
8 9 4 35

3

5

5

4

(a)

(b)

(c)

(d)

(e)

Table 2.40: Illustration of LRTA∗
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2 Searching
2.8 Online Search

LRTA∗

a) The algorithm got stuck in a local minimum. The best
neighbour is right from the current (yellow) state.

b) Therefore the expected costs of the previous state have to be
updated (3 instead of 2 because the best neighbour has
expected costs 2 and the costs to go there is 1). Therefore the
algorithm walks back to this node (it is the best one).

c) In the same way the expected costs of the previous node
have to be updated (4 instead of 3).

d) Similarly, the expected costs of the current node have to be
updated (5 instead of 4).

e) Finally, the best next node is to the right (4 is better than 5).
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2.8 Online Search

Table 2.41: LRTA∗
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3. Supervised Learning
3 Supervised Learning

Basics
Decision Trees
Ensemble Learning
PL1 Formalisations
PAC Learning
Noise and overfitting
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3 Supervised Learning

Content of this chapter (1):

Learning: We describe the general structure of a Learning
Agent. An agent should be capable of learning
new concepts through observing its
environment. We distinguish between
supervised-, reinforcement- and unsupervised
learning.

Decision Trees: We describe a simple algorithm built on
some general assumption of Shannon’s
information theory, to construct decision trees
given a table of observations. We apply
Ockham’s razor and generate a tree that can be
used to make predictions about unseen cases.
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3 Supervised Learning

Content of this chapter (2):

Ensembles: Here we use not a single hypothesis,
but an ensemble of hypotheses to
make predictions. We describe the Ada
Boost Algorithm, which often improves
the hypothesis enormously.

Logic: We discuss another formulation of
learning, based on first-order logical
formulae: The Version Space
Algorithm.
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3 Supervised Learning

Learning in general

Hitherto: An agent’s intelligence is in his
program, it is hard-wired.

Now: We want a more autonomous agent,
which should learn through percepts
(experiences) to know its environment.

Important: If the domain in which it acts can’t be
described completely.
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3.1 Basics
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3 Supervised Learning
3.1 Basics

Performance standard

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

Performance
   element

changes

knowledge
learning
  goals

  Problem
 generator 

feedback

  Learning  
   element

Critic
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3 Supervised Learning
3.1 Basics

Performance element: Observes and chooses
actions. This was the whole agent until now.
Critic: Observes the result of an action and
assesses it with respect to an external
standard.

Why external?

Otherwise it would set its own standard so
low that it always holds!
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3 Supervised Learning
3.1 Basics

Learning element: Modifies the performance
element by considering the critic (and
architecture of the performance element). It
also creates new goals (to improve
understanding effects of actions).
Problem generator: It proposes the execution
of actions to satisfy the goals of the learning
element. These do not have to be the “best”
actions (wrt. performance element): but they
should be informative and deliver new
knowledge about the world.

Example: Driving a taxi.
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3 Supervised Learning
3.1 Basics

Question:

What does learning (the design of the
learning element) really depend on?

1. Which components of the performance
element should be improved?

2. How are these components
represented?
( Slide 224 (Decision trees), 
Slide 248 (Ensemble Learning), 
Slide 257 (Domains formalised in PL1))
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3 Supervised Learning
3.1 Basics

3. Which kind of feedback?
Supervised learning: The execution of an incorrect action
leads to the “right” solution as feedback (e.g. How intensively
should the brakes be used?).
Driving instructor
Reinforcement learning: Only the result is perceived. Critic
tells, if good or bad, but not what would have been right.
Unsupervised learning: No hints about the right actions.

4. Which a-priori-information is there?
(Often there is useful background
knowledge)
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3 Supervised Learning
3.1 Basics

Components of the performance element:

1 Mappings from the conditions of the actual
state into the set of actions

2 Deriving relevant properties of the world from
the percepts

3 Information about the development of the
world

4 Information about the sequence of actions
5 Assessing-function of the world-states
6 Assessing-function concerning the quality of

single actions in one state
7 Description of state-classes, which maximise

the utility-function of an agent
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3 Supervised Learning
3.1 Basics

Important:

All these components are – from a
mathematical point of view – mappings.

Learning means to represent these
mappings.
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3 Supervised Learning
3.1 Basics

Inductive learning: Given a set of pairs
(x, y).
Find f with f (x) = y.

Example 3.1 (Continue a series of numbers)

Which number is next?
3, 5, 7, ?
3, 5, 17, 257, ?

o
o

o
o

(c)

o
o

o

o
o

(a)

o
o

o

o
o

(b)

o
o

o

o
o

(d)

o
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3 Supervised Learning
3.1 Basics

Simple reflex agent:

global examples�fg

function REFLEX-PERFORMANCE-ELEMENT( percept) returns an action

if ( percept, a) in examples then return a
else

h� INDUCE(examples)
return h( percept)

procedure REFLEX-LEARNING-ELEMENT(percept, action)
inputs: percept, feedback percept

action, feedback action

examples� examples� f( percept,action)g
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3 Supervised Learning
3.1 Basics

Example 3.2 (Wason’s Test; Verify and Falsify)
Consider a set of cards. Each card has a letter printed on one
side and a number on the other. Having taken a look at
some of these cards you formulate the following hypothesis:

If there is a vowel on one side then there is an even
number on the other.

Now there are the following cards on the table:

4 T A 7.

You are allowed to turn around only two cards to check the
hypothesis.
Which card(s) do you flip?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 222



3 Supervised Learning
3.2 Decision Trees

3.2 Decision Trees
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3 Supervised Learning
3.2 Decision Trees

Decision trees represent boolean functions

Small example:

You plan to go out for dinner and arrive at a
restaurant. Should you wait for a free table or
should you move on?
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3.2 Decision Trees

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No  Yes

No Yes

YesNoYes

No  Yes

YesNo

WaitEstimate?

Trainings set Learned Tree Decision Tree
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3 Supervised Learning
3.2 Decision Trees

decision tree = conjunction of implications

(implication = path leading to a leaf)
For all restaurants r:
(Patrons(r, Full)∧Wait_estimate(r, 10− 30)∧¬Hungry(r))
−→ Will_Wait(r)

Attention:
This is written in first order logic but a decision tree talks
only about a single object (r above). So this is really
propositional logic:

PatronsFullr ∧Wait_estimate10−30r ∧ ¬Hungryr
−→ Will_Waitr
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3 Supervised Learning
3.2 Decision Trees

Question:

boolean functions = decision trees?

Answer:

Yes! Each row of the table describing the function
belongs to one path in the tree.

Attention

Decision trees can be much smaller! But there
are boolean function which can only be
represented by trees with an exponential size:

Parity function: par(x1, . . . , xn) :=

{
1, if

∑n
i=1 xi is even

0, else
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3 Supervised Learning
3.2 Decision Trees

Variant of decision-trees
Example 3.3 (Decision List)

All attributes are boolean. A decision list is a tree of the
following form

yes

no Answer e+1

Answer e

TEST eTEST 2TEST 1

yes yes

no no

Answer 1 Answer 2

. . .

with Answeri ∈ {Yes,No} and Testi a conjunction of
(possibly negated) attributes ( Exercise: Compare
decision trees and decision lists).
k-DL(n) is the set of boolean functions with n attributes,
which can be represented by decision lists with at most k
checks in each test.
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PAC-Learning

Patrons(x,Some)
No

Yes Yes

No

>Patrons(x,Full)  Fri/Sat(x)

Yes

No

Yes

Obviously:
n-DL(n) = set of all boolean functions
card(n-DL(n)) = 22n.
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3 Supervised Learning
3.2 Decision Trees

Question: Table of examples

How should decision trees be learned?

Example
Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes

Decision Tree Learned Tree
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3.2 Decision Trees

The set of examples-to-be-learned is called
training set. Examples can be evaluated
positively (attribute holds) or negatively (attribute
does not hold).

Trivial solution of learning

The paths in the tree are exactly the examples.

Disadvantage:

New cases can not be considered.
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3 Supervised Learning
3.2 Decision Trees

Idea:

Choose the simplest tree (or rather the
most general) which is compatible with
all examples.

Ockham’s razor: Entia non sunt
multiplicanda praeter
necessitatem.
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3 Supervised Learning
3.2 Decision Trees

Example 3.4 (Guess!)

A computer program encodes triples of numbers
with respect to a certain rule. Find out that rule.

You enter triples (x1, x2, x3) of your choice
(xi ∈ N) and get as answers “yes” or “no”.
Simplification: At the beginning the program tells
you that these triples are in the set:

(4, 6, 8), (6, 8, 12), (20, 22, 40)

Your task:

Make more enquiries (approx. 10) and try to find
out the rule.
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3 Supervised Learning
3.2 Decision Trees

The idea behind the learning algorithm

Goal: A tree which is as small as possible. First test
the most important attributes (in order to get a
quick classification).

This will be formalised later, using information
theory.

Then proceed recursively, i.e. with decreasing
amounts of examples and attributes.
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3 Supervised Learning
3.2 Decision Trees

We distinguish the following cases:
1 There are positive and negative examples.

Choose the best attribute.
2 There are only positive or only negative

examples. Done – a solution has been found.
3 There are no more examples. Then a default

value has to be chosen, e.g. the majority of
examples of the parent node.

4 There are positive and negative examples,
but no more attributes. Then the basic set of
attributes does not suffice, a decision can not
be made. Not enough information is given.
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3 Supervised Learning
3.2 Decision Trees

function DECISION-TREE-LEARNING(examples, attributes, default) returns a decision tree
inputs: examples, set of examples

attributes, set of attributes
default, default value for the goal predicate

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY-VALUE(examples)
else

best�CHOOSE-ATTRIBUTE(attributes, examples)
tree� a new decision tree with root test best
for each value vi of best do

examplesi�felements of examples with best = vig
subtree�DECISION-TREE-LEARNING(examplesi, attributes� best,

MAJORITY-VALUE(examples))
add a branch to tree with label vi and subtree subtree

end
return tree
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3.2 Decision Trees

None Some Full

Patrons?

No Yes

No  Yes

Hungry?

No

No  Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Decision Tree Trainings set Learned Tree
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3 Supervised Learning
3.2 Decision Trees

The algorithm computes a tree which is as small
as possible and consistent with the given
examples.

Question:

How good is the generated tree? How different is
it from the “actual” tree? Is there an
a-priory-estimation? ( PAC learning).
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3 Supervised Learning
3.2 Decision Trees

Empiric approach:
1 Chose a set of examples MEx.
2 Divide into two sets: MEx = MTrai ∪MTest.
3 Apply the learning algorithm on MTrai and get

a hypothesis H.
4 Calculate the amount of correctly classified

elements of MTest.
5 Repeat 1.-4. for many MTrai ∪MTest with

randomly generated MTrai.

Attention: Peeking!
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3.2 Decision Trees
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3 Supervised Learning
3.2 Decision Trees

Information theory

Question:

How to choose the best attribute? The
best attribute is the one that delivers the
highest amount of information.

Example: Flipping a coin
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3 Supervised Learning
3.2 Decision Trees

Shannon’s theory

Definition 3.5 (1 bit, information)

1 bit is the information contained in the outcome
of flipping a (fair) coin.

More generally: assume there is an experiment
with n possible outcomes v1, . . . , vn. Each
outcome vi will result with a probability of P (vi).
The information encoded in this result (the
outcome of the experiment) is defined as follows:

I(P (v1), . . . , P (vn)) :=
n∑
i=1

−P (vi)log2P (vi)
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3 Supervised Learning
3.2 Decision Trees

Assume the coin is manipulated. With a
probability of 90% head will come out.
Then

I(0.1, 0.9) = . . . ≈ 0.47
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3 Supervised Learning
3.2 Decision Trees

Question:

For each attribute A: If this attribute is
evaluated with respect to the actual
training-set, how much information will
be gained this way?

The “best” attribute is the one with the
highest gain of information!
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3 Supervised Learning
3.2 Decision Trees

Definition 3.6 (Gain of Information)

We gain the following information by testing the
attribute A:

Gain(A) = I(
p

p+ n
,

n

p+ n
)−Missing_Inf(A)

with

Missing_Inf(A) =
ν∑
i=1

pi + ni
p+ n

I(
pi

pi + ni
,

ni
pi + ni

)

Choose_Attribute chooses the A with maximal
Gain(A).
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3.2 Decision Trees

(a)

French Italian Thai Burger

Type?

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

The figure implies Gain(Patron) ≈ 0.54. Calculate
Gain(Type), Gain(Hungry) (Hungry as the first
attribute), Gain(Hungry) (with predecessor
Patron).
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3.3 Ensemble Learning

3.3 Ensemble Learning
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3 Supervised Learning
3.3 Ensemble Learning

So far:

A single hypothesis is used to make predictions.

Idea:

Let’s take a whole bunch of them (an
ensemble).

Motivation:

Among several hypotheses, use majority voting.
The misclassified ones get higher weights!
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3 Supervised Learning
3.3 Ensemble Learning

Consider three simple hypotheses. No one is
perfect. But all taken together, a new hypothesis
is created (which is not constructible by the
original method).
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3.3 Ensemble Learning

h1 h2 h3 h4

h
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3 Supervised Learning
3.3 Ensemble Learning

Weighted Training Set: Each example gets a
weight wj ≥ 0.

Initialisation: All weights are set to 1
n.

Boosting: Misclassified examples are getting
higher weights.

Iterate: We get new hypotheses hi. After we got
a certain number M of them we feed
them into the

Boosting-Algorithm: It creates a weighted
ensemble hypothesis.
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3.3 Ensemble Learning
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3 Supervised Learning
3.3 Ensemble Learning

Theorem 3.7 (Effect of boosting)

Suppose the Learning algorithm has the following
property: it always returns a hypothesis with
weighted error that is slightly better than
random guessing.
Then AdaBOOST will return a hypothesis classifying
the training data perfectly for large enough M .
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3 Supervised Learning
3.4 PL1 Formalisations

Goal:

A more general framework.

Idea:

To learn means to search in the hypotheses
space ( planning).

Goal-predicate:

Q(x), one-dimensional (hitherto: Will_Wait)

We seek a definition of Q(x), i.e. a formula C(x)
with

∀x (Q(x)↔ C(x))
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3.4 PL1 Formalisations

Each example Xi represents a set of conditions
under which Q(Xi) holds or not. We look for an
explanation: a formula C(x) which uses all
predicates of the examples.
∀r Will_Wait(r)↔

Patrons(r, Some)
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, French))
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, Thai) ∧ Fri_Sat(r))
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r,Burger))

Note that we require the formulae C(x) to be of a certain form:
disjunctions of conjunctions of atomic or negated predicates.
The negations of such formulae are also called clauses. They will
be defined more precisely on Slide 401 in Chapter 5.
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3.4 PL1 Formalisations

Definition 3.8 (Hypothesis, Candidate Function)

A formula Ci(x) with ∀x (Q(x)↔ Ci(x)) is called
candidate function. The whole formula is called
hypothesis:

Hi : ∀x (Q(x)↔ Ci(x))
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Definition 3.9 (Hypotheses-Space H)

The hypotheses-space H of a learning-algorithm
is the set of hypotheses the algorithm can create.

The extension of a hypothesis H with respect to
the goal-predicate Q is the set of examples for
which H holds.

Attention:

The combination of hypotheses with different
extensions leads to inconsistency.

Hypotheses with the same extensions are
logically equivalent.
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The situation in general:
We have a set of examples {X1, . . . , Xn}. We
describe each example X through a clause
and the declaration Q(X) or ¬Q(X).

Example
Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes
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X1 is defined through

Alt(X1)∧¬Bar(X1)∧¬Fri_Sat(X1)∧Hungry(X1)∧. . .

und Will_Wait(X1).
Note that H is the set of hypotheses as defined
in Definition 3.8. While it corresponds to
decision trees, it is not the same.

The training set is the set of all such
conjunctions.
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3.4 PL1 Formalisations

We search for a hypothesis which is consistent with
the training set.

Question:
Under which conditions is a hypothesis H inconsistent with
an example X?

false negative: Hypothesis says no (¬Q(X)) but Q(X) does
hold.

false positive: Hypothesis says yes (Q(X)) but ¬Q(X) does
hold.

Attention:
Inductive learning in logic-based domains means to
restrict the set of possible hypotheses with every
example.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 263



3 Supervised Learning
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For first order logic: H is in general infinite, thus
automatic theorem proving is much too general.
1st approach: We keep one hypothesis and

modify it if the examples are
inconsistent with it.

2nd approach: We keep the whole subspace
that is still consistent with the
examples (version space).
This is effectively represented by two
sets (analogical to the representation of
a range of real numbers by [a, b]).
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3.4 PL1 Formalisations

1st approach: Current-best-hypothesis Search.
Begin with a simple hypothesis H.

If a new example is consistent with H: okay.
If it is false negative: Generalise H.
If it is false positive: Specialise H.
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This leads to an algorithm:

function CURRENT-BEST-LEARNING(examples) returns a hypothesis

H� any hypothesis consistent with the first example in examples
for each remaining example in examples do

if e is false positive for H then
H� choose a specialization of H consistent with examples

else if e is false negative for H then
H� choose a generalization of H consistent with examples

if no consistent specialization/generalization can be found then fail
end
return H
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Question:
How to generalize/specialize?

H1 : ∀x (Q(x)↔ C1(x))
H2 : ∀x (Q(x)↔ C2(x))

H1 generalises H2, if ∀x (C2(x)→ C1(x)),
H1 specialises H2, if ∀x (C1(x)→ C2(x)).

Generalisation means: leave out ∧-elements in a
conjunction, add ∨-elements to a disjunction.
Specialisation means: add ∧-elements to a
conjunction, leave out ∨-elements in a disjunction.
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2nd approach: Version-space.

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V, the version space: the set of all hypotheses

V� the set of all hypotheses
for each example e in examples do

if V is not empty then V�VERSION-SPACE-UPDATE(V, e)
end
return V

function VERSION-SPACE-UPDATE(V, e) returns an updated version space

V�fh � V : h is consistent with eg
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Problem:
H is a big disjunction H1 ∨ . . . ∨Hn. How to represent this?

Reminder:
How is the set of real numbers between 0 and 1
represented? Through the range [0, 1].

To solve our problem:

There is a partial order on H (generalize/specialize). The
borders are defined through

G set: is consistent with all previous examples and
there is no more general hypothesis.
S set: is consistent with all previous examples and
there is no more special hypothesis.
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Initially, the G set consists of > (true), and the S set consists
of ⊥ (false). This is because the initial version space should
represent all possible hypotheses.

this region all inconsistent

This region all inconsistent

More general

More specific

S 1

G1

S 2

G2 G3  . . .            G m

 . . .        S n

We have to ensure the following:

1 Each consistent hypothesis
(except those in G or S) is
more specific than some
member of G and more
general than some member
of S.

2 Each hypothesis that is more
specific than some member
of G and more general than
some member of S is a
consistent hypothesis.
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When considering new examples the G- and S-sets must be
appropriately modified in VERSION-SPACE-UPDATE (so that
the two conditions on the last slide are satisfied).
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S 1

1G

G2

False positive for Si: Si too general, no
consistent specializations:
Remove Si from S.

False negative for Si: Si too specific: Replace
it by all generalizations that
are more specific than some
element of G.

False positive for Gi: Gi too general: Replace
it by all specializations that
are more general than some
element of S.

False negative for Gi: Gi too specific, no
consistent generalizations:
Remove Gi from G.
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Question:

What can happen?

We iterate the algorithm on the previous slide
until one of the following happens:

1 Only one hypothesis remains: That is our
solution!

2 The space collapses: There is no consistent
hypothesis, G = ∅ or S = ∅.

3 No examples are left, but there are still several
hypotheses: Result is a big disjunction.
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3.5 PAC Learning

Question:

What is the distance between the hypothesis H
calculated by the learning algorithm and the real
function f?

 computational learning theory: PAC-learning –
Probably Approximately Correct.

Idea:

If a hypothesis is consistent with a big training
set then it cannot be completely wrong.
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Question:

How are the training set and test set related?

We assume:

The elements of the training and test set are
taken from the set of all examples with

the same probability.
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Definition 3.10 (error(h))

Let h ∈ H be a hypothesis and f the target (i.e.
to-be-learned) function. We are interested in the
set

Diff (f ,h) := {x : h(x) 6= f(x)}.

We denote with error(h) the probability of a
randomly selected example being in Diff (f , h).
With ε > 0 the hypothesis h is called ε
approximatively correct, if error(h) ≤ ε holds.
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Question:

ε > 0 is given. How many examples must the
training set contain to make sure that the
hypothesis created by a learning algorithm is ε
approximatively correct?

Question is wrongly stated!
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3.5 PAC Learning

Different sets of examples lead to different
propositions and with it to different values of
ε. It depends not only on how many but also
which examples are chosen.
For this reason we reformulate our question
more carefully.

Question: More carefully and precisely stated.

Let ε > 0 and δ > 0 be given. How many examples
must the training-set contain to make sure that
the hypothesis computed by a
learning-algorithm is ε approximatively correct
with a probability of at least 1− δ?
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We want to abstract from particular
learning-algorithms and make a statement
about all possible learning algorithms.
So we assume only that a learning-algorithm
calculates a hypothesis that is consistent
with all previous examples. Our result holds
for this class of learning algorithms.
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Definition 3.11 (Example Complexity)

Let δ > 0 and ε > 0 be given. The example
complexity is the number m of examples an
arbitrary learning algorithm needs so that the
created hypothesis h is ε approximatively correct
with the probability 1− δ.
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Theorem 3.12 (Example Complexity)

The example complexity m depends on ε, δ and
the hypotheses-space H as follows:

m ≥ 1

ε
(ln

1

δ
+ ln|H|)
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f

Hbad

H

∋

Question:

What does the last result mean?
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Question:

The complexity depends on log(|H|). What does
this mean for boolean functions with n
arguments?

Answer:

We have log(|H|) = 2n. Thus one needs
exponentially-many examples even if one is
satisfied with ε approximative correctness under a
certain probability!
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Proof (of the theorem):
hb ∈ H with error(hb) > ε.

What is the probability Pb of hb being consistent with
the chosen examples? For one single example: it is
≤ (1− ε) because of the definition of error. Therefore:

Pb ≤ (1− ε)m

What is the probability P ′ that there is a hypothesis
hb with error(hb) > ε and consistent with m examples
at all?

P ′ ≤ |Hbad|(1− ε)m
≤ |{h : error(h) > ε}|(1− ε)m
≤ |H|(1− ε)m
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Proof (continuation):

We want P ′ ≤ δ:

|H|(1− ε)m ≤ δ

After some transformations:

(1− ε)m ≤ δ
|H|

m ln(1− ε) ≤ ln(δ)− ln(|H|)
m ≥ − 1

ln(1−ε)(ln(1
δ ) + ln(|H|))

m ≥ 1
ε (ln(1

δ ) + ln(|H|))

The last line holds because of
ln(1− ε) < −ε.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 285



3 Supervised Learning
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Essential result:

Learning is never better than looking up in a
table!

1st way out: We ask for a more specialised
hypothesis instead of one that is just
consistent (complexity gets worse).

2nd way out: We give up on learning arbitrary
boolean functions and concentrate on
appropriate subclasses.
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We consider Decision lists.
Theorem 3.13 (Decision Lists can be learned)

Learning functions in k-DL(n) (decision lists with
a maximum of k tests) has a PAC-complexity of

m =
1

ε
(ln(

1

δ
) + O(nklog2(n

k))).

Decision Lists

Each algorithm which returns a consistent
decision list for a set of examples can be turned
into a PAC-learning-algorithm, which learns a
k-DL(n) function after a maximum of m
examples.
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Important estimates (exercises):

|Conj (n, k)| =
∑k

i=0

(
2n
i

)
= O(nk),

|k-DL(n)| ≤ 3|Conj (n,k)||Conj (n, k)! ,

|k-DL(n)| ≤ 2O(nklog2(nk)) .
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function DECISION-LIST-LEARNING(examples) returns a decision list, No or failure

if examples is empty then return the value No
t� a test that matches a nonempty subset examplest of examples

such that the members of examplest are all positive or all negative
if there is no such t then return failure
if the examples in examplest are positive then o� Yes
else o�No
return a decision list with initial test t and outcome o

and remaining elements given by DECISION-LIST-LEARNING(examples � examples t)
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3 Supervised Learning
3.6 Noise and overfitting

Noise:
examples are inconsistent (Q(x) together with
¬Q(x)),
no attributes left to classify more examples,
makes sense if the environment is stochastic.
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3.6 Noise and overfitting

Overfitting: Dual to noise.
remaining examples can be classified using
attributes which establish a pattern, which is
not existent (irrelevant attributes).

Example 3.14 (Tossing Dice)

Several coloured dice are tossed. Every toss is
described via (day, month, time, colour). As long
as there is no inconsistency every toss is described
by exactly one (totally overfitted) hypothesis.
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Other examples:

the pyramids,
astrology,
“Mein magisches Fahrrad”.
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4. Learning in networks
4 Learning in networks

The human brain
Neural networks
The Perceptron
Multi-layer feed-forward
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4 Learning in networks

Content of this chapter:

Neural Nets: Neural nets are an abstraction from entities
operating in our brain.

Perceptrons: the perceptron is a particularly simple model.
We describe the perceptron learning algorithm,
which converges for each representable
function: The linear separable functions.

Feed Forward Nets: We illustrate back propagation by
simulating methods and techniques from
perceptrons.
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4 Learning in networks

Learning with networks is a method to
build complex functions from many very
simple but connected units and to learn this
construction from examples,
improve the understanding of the
functionality of the human brain.
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4.1 The human brain

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse
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4.1 The human brain

A neuron consists of
the soma: the body of the cell,
the nucleus: the core of the cell,
the dendrites,
the axon: 1 cm - 1 m in length.

The axon branches and connects to the dendrites
of other neurons: these locations are called
synapses. Each neuron shares synapses with

10-100000 others.
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4.1 The human brain

Signals are propagated from neuron to neuron
by a complicated electrochemical reaction.

Chemical transmitter substances are released
from the synapses and enter the dendrite, raising
or lowering the electrical potential of the cell
body.

When the potential reaches a threshold an
electrical pulse or action potential is sent along
the axon.

The pulse spreads out along the branches of the
axons and releases transmitters into the bodies of
other cells.
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4.1 The human brain

Question:

How does the building process of the network of
neurons look like?

Answer:

Long term changes in the strength of the
connections are in response to the pattern of
stimulation.
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4.1 The human brain

Biology versus electronics:
Computer Human Brain

Computational units 1 CPU, 105 gates 1011 neurons
Storage units 109 bits RAM, 1010 bits disk 1011 neurons, 1014 synapses
Cycle time 10�8 sec 10�3 sec
Bandwidth 109 bits/sec 1014 bits/sec
Neuron updates/sec 105 1014

Computer: sequential processes, very fast,
“rebooting quite often”

Brain: works profoundly concurrently, quite
slow, error-correcting, fault-tolerant
(neurons die constantly)
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4.2 Neural networks

Definition 4.1 (Neural Network)

A neural network consists of:

1 units,
2 links between units.

The links are weighted. There are three kinds of
units:

1 input units,
2 hidden units,
3 output units.
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4.2 Neural networks

Idea:

A unit i receives an input via links to other units j.
The input function

ini :=
∑
j

Wj,i aj

calculates the weighted sum.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 306



4 Learning in networks
4.2 Neural networks

Notation Meaning

ai Activation value of unit i (also the output of the unit)
ai Vector of activation values for the inputs to unit i

g Activation function
g� Derivative of the activation function

Erri Error (difference between output and target) for unit i
Erre Error for example e

Ii Activation of a unit i in the input layer
I Vector of activations of all input units
Ie Vector of inputs for example e

ini Weighted sum of inputs to unit i

N Total number of units in the network

O Activation of the single output unit of a perceptron
Oi Activation of a unit i in the output layer
O Vector of activations of all units in the output layer

t Threshold for a step function

T Target (desired) output for a perceptron
T Target vector when there are several output units
Te Target vector for example e

Wj,i Weight on the link from unit j to unit i
Wi Weight from unit i to the output in a perceptron
Wi Vector of weights leading into unit i
W Vector of all weights in the network
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4.2 Neural networks

Output

g
Input

Links

Output

Links

ini

Σ

a   =  g(in ) iiaj Wj,i

Activation
  Function

     Input
  Function

ia
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4.2 Neural networks

The activation function g calculates the output ai
(from the inputs) which will be transferred to
other units via output-links:

ai := g(ini)

Examples:

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini
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4.2 Neural networks

Standardisation:

We consider step0 instead of stept.
If an unit i uses the activation function stept(x)
then we bring in an additional input link “0”
which adds a constant value of a0 := −1. This
value is weighted as W0,i := t. Now we can use
step0 for the activation function:

stept(

n∑
j=1

Wj,iaj) = step0(−t+

n∑
j=1

Wj,iaj) = step0(

n∑
j=0

Wj,iaj)
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4.2 Neural networks

Networks can be
recurrent, i.e. somehow connected,
feed-forward, i.e. they form an acyclic graph.

Usually networks are partitioned into layers:
units in one layer have only links to units of the next
layer.

E.g. multi-layer feed-forward networks: without internal
states (no short-term memory).

2I

1I

O5

w13

w14

w23

w24

w35

w45

H3

H4
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4.2 Neural networks

Important:

The output of the input-units is determined by the
environment.

Question 1:

Which function does the figure describe?

Question 2:

Why can non-trivial functions be represented at
all?
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4.2 Neural networks

Question 3:

How many units do we need?

a few: a small number of functions can be
represented,
many: the network learns by heart ( 
overfitting)
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4.2 Neural networks

Hopfield networks:
1 bidirectional links with symmetrical

weights,
2 activation function: sign,
3 units are input- and output-units,
4 can store up to 0.14N training

examples.
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4.2 Neural networks

Learning with neural networks means the
adjustment of the parameters to ensure
consistency with the training-data.
Question:

How to find the optimal network structure?

Answer:

Perform a search in the space of network
structures (e.g. with genetic algorithms).
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4.3 The Perceptron

Definition 4.2 (Perceptron)

A perceptron is a feed-forward network with one
layer based on the activation function step0.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj
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4 Learning in networks
4.3 The Perceptron

Question:

Can all boolean functions be represented by a
feed-forward network?

Can AND, OR and NOT be represented?
Is it possible to represent every boolean
function by simply combining these?
What about

f(x1, . . . , xn) :=

{
1, if

∑n
i=1 xi >

n
2

0, else.
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4 Learning in networks
4.3 The Perceptron

Solution:

Every boolean function can be composed
using AND, OR and NOT (or even only
NAND).
The combination of the respective perceptrons
is not a perceptron!
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4 Learning in networks
4.3 The Perceptron

Perceptron with sigmoid activation
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x2

0
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0.6
0.8

1
Perceptron output
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4 Learning in networks
4.3 The Perceptron

Question:

What about XOR?

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2
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4 Learning in networks
4.3 The Perceptron

Output = step0(
n∑
j=1

WjIj)∑n
j=1WjIj = 0 defines a n-dimensional

hyperplane.
Definition 4.3 (Linear Separable)

A boolean function with n attributes is called
linear separable if there is a hyperplane
((n− 1)-dimensional subspace) which separates
the positive domain-values from the negative
ones.
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4 Learning in networks
4.3 The Perceptron

(a) Separating plane (b) Weights and threshold

W = −1

t = −1.5
W = −1

W = −1

I3

I2

I1
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4 Learning in networks
4.3 The Perceptron

Learning algorithm:

Similar to current best hypothesis ( chapter on
learning).

hypothesis: network with the current weights
(firstly randomly generated)
UPDATE: make it consistent through small
changes.
Important: for each example UPDATE is called
several times. These calls are called epochs.
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4 Learning in networks
4.3 The Perceptron

function NEURAL-NETWORK-LEARNING(examples) returns network

network� a network with randomly assigned weights
repeat

for each e in examples do
O�NEURAL-NETWORK-OUTPUT(network, e)
T� the observed output values from e
update the weights in network based on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network
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4 Learning in networks
4.3 The Perceptron

Definition 4.4 (Perceptron Learning (step0)

Perceptron learning modifies the weights Wj

with respect to this rule:

Wj := Wj + α× Ij × Error

with Error:= T −O (i.e. the difference between
the correct and the current output-value). α is the
learning rate.
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4 Learning in networks
4.3 The Perceptron

Definition 4.5 (Perceptron Learning (sigmoid)

Perceptron learning modifies the weights Wj

with respect to this rule:

Wj := Wj + α× g′(in) Ij × Error

with Error:= T −O (i.e. the difference between
the correct and the current output-value). α is the
learning rate.
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4 Learning in networks
4.3 The Perceptron

The following algorithm uses xj[e] for Ij.

function PERCEPTRON-LEARNING( � � � � � 
 �  , � � � � � � � ) returns a perceptron hypothesis
inputs: � � � � � 
 �  , a set of examples, each with input x � � � � � � � � � ! and output "

� � � � � � � , a perceptron with weights # $ � � � � � � � � , and activation function %

repeat
for each � in � � � � � 
 �  do

& � ) �
!

$ � � # $ � $ * � +
, � � ) " * . + 0 % 2 & � 5
# $ ) # $ 6 7 � , � � � % 9 2 & � 5 � � $ * � +

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS( � � � � � � � )
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4 Learning in networks
4.3 The Perceptron

Theorem 4.6 (Rosenblatt’s Theorem)

Every function which can be represented by a
perceptron is learned through the perceptron
learning algorithm (Definition 4.4).
More exactly: The series Wj converges to a
function which represents the examples
correctly.
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4 Learning in networks
4.3 The Perceptron

Proof:
Let ŵ be a solution, wlog. we can assume (why?  exercise)

ŵ
−→
I > 0 for all

−→
I ∈ Ipos ∪ −Ineg

with Ipos consisting of the positive and Ineg consisting of the
negative examples (and −Ineg = {−

−→
I :
−→
I ∈ Ineg}).

Let I′ := Ipos ∪ −Ineg and m := min {ŵ
−→
I :
−→
I ∈ I′}.

−→w1, . . . ,
−→wj, . . . be the sequence of weights resulting from the

algorithm.
We want to show that this sequence eventually becomes
constant.
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4 Learning in networks
4.3 The Perceptron

Proof (continued):

Consider the possibility that not all −→wi are different from
their predecessor (or successor) (this is the case if the new
example is not consistent with the current weights). Let
k1, k2, . . . , kj be the indices of the changed weights (where
error is non-zero), i.e.

−→wkj
−→
Ikj ≤ 0, −−−→wkj+1 = −→wkj + α

−→
Ikj .

With
−→
Ikj being the kj-th tested example in I

′ (which is not
consistent (wrt the definition of kj)).
The we have

−−−→wkj+1 = −→wk1 + α
−→
Ik1 + α

−→
Ik2 + . . .+ α

−→
Ikj
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4 Learning in networks
4.3 The Perceptron

Proof (continued):
We use this to show that j cannot become arbitrarily big.
We compose

cosω =
ŵ−−−→wkj+1

‖ŵ‖ ‖−−−→wkj+1‖
and estimate as follows (by decreasing the numerator and
increasing the denominator):

cosω =
ŵ−−−→wkj+1

‖ŵ‖ ‖−−−→wkj+1‖
≥ ŵ−→wk1 + αmj

‖ŵ‖
√
‖−→wk1‖2 + α2Mj

The right side converges to infinity (when j increases to
infinity) and cosinus will never get greater than 1. This leads
to the contradiction.
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4 Learning in networks
4.3 The Perceptron

Proof (continued):
How do we get the estimation above?

the scalar product ŵ−−−→wkj+1 leads to
ŵ−→wk1 + αŵ (

−→
I1 + . . .+

−→
Ij ) ≥ ŵ−→wk1 + αmj.

‖−−−→wkj+1‖2 = ‖−→wkj + α
−→
Ikj‖2 =

‖−→wkj‖2 + 2α
−→
Ikj
−→wkj + α2‖

−→
Ikj‖2 ≤ ‖−→wkj‖2 + α2‖

−→
Ikj‖2, da

−→
Ikj
−→wkj ≤ 0, this is how we have chosen kj.

Now be M := max {‖
−→
I ‖2 :

−→
I ∈ I′}. Then

‖−−−→wkj+1‖2 ≤ ‖−→wk1‖2+α2‖
−→
Ik1‖2+ . . .+α2‖

−→
Ikj‖2 ≤

−→wk1‖2+α2Mj

holds.
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4 Learning in networks
4.3 The Perceptron

What is the underlying example?
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Figure 4.12: Perceptron Better than Decision Tree
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4 Learning in networks
4.3 The Perceptron

What is the underlying example?
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Figure 4.13: Decision Tree Better than Perceptron
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4 Learning in networks
4.4 Multi-layer feed-forward

4.4 Multi-layer feed-forward
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4 Learning in networks
4.4 Multi-layer feed-forward

Problem:

How does the error-function of the hidden units
look like?

Learning with multi-layer networks is called back
propagation.
Hidden units can be seen as perceptrons (Figure
on page 320). The outcome can be a linear
combination of such perceptrons (see next two
slides).
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4 Learning in networks
4.4 Multi-layer feed-forward
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4 Learning in networks
4.4 Multi-layer feed-forward
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4 Learning in networks
4.4 Multi-layer feed-forward

Input units

Hidden units

Output units Oi

Wj,i

a j

Wk,j

Ik
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4 Learning in networks
4.4 Multi-layer feed-forward

The perceptron was not powerful enough in our
restaurant-example (Figure 335). So we try 2
layers. 10 attributes lead to 10 input-units.
Question

How many hidden units are necessary?

Answer:

Four!

Perceptron’s error is easily determined because
there was only one Wj between input and output.
Now we have several.

How should the error be distributed?
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4 Learning in networks
4.4 Multi-layer feed-forward

Minimising by using derivatives (1)

We minimise E = 1
2

∑
i(Ti −Oi)

2 and get

E = 1
2

∑
i(Ti − g(

∑
jWj,iaj))

2

= 1
2

∑
i(Ti − g(

∑
jWj,ig(

∑
kWk,jIk)))

2

Do a gradient descent.
∂E
∂Wj,i

= 1
2

∑
i(Ti −Oi)

2

= 1
22(Ti − g(. . .))(−∂g

∂x(ini))aj
= −aj(Ti −Oi)

∂g
∂x(ini)

= −aj∆i
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4 Learning in networks
4.4 Multi-layer feed-forward

Minimising by using derivatives (2)

Now the Wk,j:

∂E
∂Wk,j

= 1
2

∑
i (2(Ti − g(. . .))(−∂g

∂x(ini))(Wj,i
∂g
∂x(inj)Ik))

=
∑

i (∆iWj,i
∂g
∂x(inj)Ik)

= ∂g
∂x(inj)Ik

∑
iWj,i∆i

Prof. Dr. Jürgen Dix Clausthal, SS 2013 343



4 Learning in networks
4.4 Multi-layer feed-forward

Idea:

We perform two different updates. One for the
weights to the input units and one for the weights
to the output units.

output units: similar to the perceptron

Wj,i := Wj,i + α× aj × Errori × g′(ini)
Instead of Errori × g′(ini) write ∆i.

hidden units: each hidden unit j is partly responsible for
the error ∆i (if j is connected with the output
unit i).

Wk,j := Wk,j + α× Ik ×∆j

with ∆j := g′(inj)
∑

iWj,i∆i.
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4 Learning in networks
4.4 Multi-layer feed-forward

function BACK-PROP-LEARNING( � � � � � 
 �  , � � � � � � � ) returns a neural network
inputs: � � � � � 
 �  , a set of examples, each with input vector x and output vector y

� � � � � � � , a multilayer network with � layers, weights � � � � , activation function  

repeat
for each � in � � � � � 
 �  do

for each node � in the input layer do � � ! � � # � $
for � = 2 to % do

& � � ! � � � � � � � �
� � !  ) & � � +

for each node � in the output layer do, � !  . ) & � � + � ) 1 � # � $ 3 5 � +
for � = % 3 6 to 1 do

for each node � in layer � do, � !  . ) & � � + � � � � � � , �
for each node � in layer � 7 6 do

� � � � ! � � � � 7 9 � 5 � � , �
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS( � � � � � � � )
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4 Learning in networks
4.4 Multi-layer feed-forward
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4 Learning in networks
4.4 Multi-layer feed-forward
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4 Learning in networks
4.4 Multi-layer feed-forward

Back propagation algorithm:

1 calculate ∆i for the output units based on the
observed error errori.

2 for each layer proceed recursively (output layer
first):

back propagate the ∆i (predecessor layer)
modify the weight between the current layers

Important:

Back propagation is gradient search!
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4 Learning in networks
4.4 Multi-layer feed-forward

error is the function of the network’s weights.
This function delivers the error surface.

Err

b

a

W2

W1
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4 Learning in networks
4.4 Multi-layer feed-forward

General remarks:

expressibility: neural networks are suitable for
continous input and outputs (noise).
To represent all boolean functions
with n attributes 2n

n hidden units
suffice.
Often much less suffice: the art of
determining the topology of the
network.
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4 Learning in networks
4.4 Multi-layer feed-forward

efficiency: m examples, |W | weights: each epoch
needs O(m× |W |)-time. We know:
Number of epochs is exponential.
In practice the time of convergence is
very variable.
Problem: local minima on the error
surface.

transparency: black box. Trees and lists explain
their results!
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5 Knowledge Engineering (1)

5. Knowledge Engineering (1)
5 Knowledge Engineering (1)

Sentential Logic
Sudoku
Calculi for SL
Wumpus in SL
A Puzzle
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5 Knowledge Engineering (1)

Content of this chapter (1):

Logic: We introduce sentential logic (also
called propositional logic). This logic
dates back to Boole and is the basis for
many logical frameworks. The essential
features of most logics can be illustrated
in a puristic way.
We are using logics to describe the
world and how the world behaves.

Sudoku: We illustrate how to use SL with the
game of Sudoku. The conditions of
being a solution can be easily stated in
SL.
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5 Knowledge Engineering (1)

Content of this chapter (2):

Calculi for SL: While it is nice to describe the
world, or the solution of a Sudoku
puzzle, we also want to draw
conclusions about it or even to solve
the puzzle. Therefore we have to
derive new information and deduce
statements, that are not explicitly given.

Examples: We illustrate the use of SL with two
more examples: The Wumpus world and
one of the weekly puzzles in the
newspaper Die Zeit.
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5.1 Sentential Logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 355



5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.1 (Sentential Logic LSL, Lang. L ⊆ LSL)

The language LSL of propositional (or sentential) logic
consists of
� and >: the constants falsum and verum,
p, q, r, x1, x2, . . . xn, . . .: a countable set AT of
SL-constants,
¬, ∧, ∨,→: the sentential connectives (¬ is unary, all
others are binary operators),
(, ): the parentheses to help readability.

In most cases we consider only a finite set of SL-constants.
They define a language L ⊆ LSL. The set of L-formulae
FmlL is defined inductively.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 356



5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.2 (Semantics, Valuation, Model)

A valuation v for a language L ⊆ LSL is a mapping from the
set of SL-constants defined by L into the set {true, false}
with v(�) = false, v(>) = true.
Each valuation v can be uniquely extended to a function
v̄ : FmlL → {true, false} so that:

v̄(¬p) =

{
true, if v̄(p) = false,
false, if v̄(p) = true.

v̄(ϕ ∧ γ) =

{
true, if v̄(ϕ) = true and v̄(γ) = true,
false, else

v̄(ϕ ∨ γ) =

{
true, if v̄(ϕ) = true or v̄(γ) = true,
false, else
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition (continued)
v̄(ϕ→ γ) ={

true, if v̄(ϕ) = false or (v̄(ϕ) = true and v̄(γ) = true),
false, else

Thus each valuation v uniquely defines a v̄. We call v̄
L-structure.
A structure determines for each formula if it is true or false.
If a formula φ is true in structure v̄ we also say Av is a model
of φ. From now on we will speak of models, structures and
valuations synonymously.

Semantics
The process of mapping a set of L-formulae into
{true, false} is called semantics.
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.3 (Model, Theory, Tautology (Valid))

1 A formula ϕ ∈ FmlL holds under the
valuation v if v̄(ϕ) = true. We also write v̄ |= ϕ
or simply v |= ϕ. v̄ is a model of ϕ.

2 A theory is a set of formulae: T ⊆ FmlL. v
satisfies T if v̄(ϕ) = true for all ϕ ∈ T . We write
v |= T .

3 A L-formula ϕ is called L-tautology (or simply
called valid) if for all possible valuations v in
L v |= ϕ holds.

From now on we suppress the language L when obvious
from context.
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.4 (Consequence Set Cn(T ))

A formula ϕ follows from T if for all models v of T
(i.e. v |= T ) also v |= ϕ holds. We write: T |= ϕ.
We call

CnL(T ) =def {ϕ ∈ FmlL : T |= ϕ},

or simply Cn(T ), the semantic consequence
operator.
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Lemma 5.5 (Properties of Cn(T ))

The semantic consequence operator has the
following properties:

1 T -expansion: T ⊆ Cn(T ),
2 Monotony: T ⊆ T ′ ⇒ Cn(T ) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T )) = Cn(T ).

Lemma 5.6 (ϕ 6∈ Cn(T))

ϕ 6∈ Cn(T ) if and only if there is a model v
with v |= T and
v̄(ϕ) = false.
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.7 (MOD(T), Cn(U))

If T ⊆ FmlL then we denote with MOD(T ) the set
of all L-structures A which are models of T :

MOD(T ) =def {A : A |= T}.

If U is a set of models, we consider all those
sentences, which are valid in all models of U . We
call this set Cn(U):

Cn(U) =def {ϕ ∈ FmlL : ∀v ∈ U : v̄(ϕ) = true}.

MOD is obviously dual to Cn:

Cn(MOD(T )) = Cn(T ), MOD(Cn(T )) = MOD(T ).
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.8 (Completeness of a Theory T )

T is called complete if for each formula
ϕ ∈ Fml: T |= ϕ or T |= ¬ϕ holds.

Attention:

Do not mix up this last condition with the
property of a valuation (model) v: each
model is complete in the above sense.
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5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.9 (Consistency of a Theory)

T is called consistent if there is a
valuation (model) v with v̄(ϕ) = true for
all ϕ ∈ T .

Lemma 5.10 (Ex Falso Quodlibet)

T is consistent if and only if
Cn(T ) 6= FmlL.
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5.2 Sudoku

5.2 Sudoku
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5 Knowledge Engineering (1)
5.2 Sudoku

Since some time, Sudoku puzzles are becoming
quite famous.

Table 5.42: A simple Sudoku (S1)
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5 Knowledge Engineering (1)
5.2 Sudoku

Can they be solved with sentential logic?
Idea: Given a Sudoku-Puzzle S, construct a
language LSudoku and a theory TS ⊆ FmlLSudoku

such that

MOD(TS) = Solutions of the puzzle S

Solution

In fact, we construct a theory TSudoku and for each
(partial) instance of a 9× 9 puzzle S a particular
theory TS such that

MOD(TSudoku ∪ TS) = {S : S is a solution of S}
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5 Knowledge Engineering (1)
5.2 Sudoku

We introduce the following language LSudoku:
1 einsi,j, 1 ≤ i, j ≤ 9,
2 zweii,j, 1 ≤ i, j ≤ 9,
3 dreii,j, 1 ≤ i, j ≤ 9,
4 vieri,j, 1 ≤ i, j ≤ 9,
5 fuenfi,j, 1 ≤ i, j ≤ 9,
6 sechsi,j, 1 ≤ i, j ≤ 9,
7 siebeni,j, 1 ≤ i, j ≤ 9,
8 achti,j, 1 ≤ i, j ≤ 9,
9 neuni,j, 1 ≤ i, j ≤ 9.

This completes the language, the syntax.

How many symbols are these?
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5 Knowledge Engineering (1)
5.2 Sudoku

We distinguished between the puzzle S and a
solution S of it.
What is a model (or valuation) in the sense of
Definition 5.2?

Table 5.43: How to construct a model S?
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5 Knowledge Engineering (1)
5.2 Sudoku

We have to give our symbols a meaning: the
semantics!

einsi,j means i, j contains a 1
zweii,j means i, j contains a 2

...
neuni,j means i, j contains a 9

To be precise: given a 9× 9 square that is

completely filled out, we define our valuation v as
follows (for all 1 ≤ i, j ≤ 9).

v(einsi,j) =

{
true, if 1 is at position (i, j),
false, else .
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5 Knowledge Engineering (1)
5.2 Sudoku

v(zweii,j) =

{
true, if 2 is at position (i, j),
false, else .

v(dreii,j) =

{
true, if 3 is at position (i, j),
false, else .

v(vieri,j) =

{
true, if 4 is at position (i, j),
false, else .

etc.

v(neuni,j) =

{
true, if 9 is at position (i, j),
false, else .

Therefore any 9× 9 square can be seen as a model or valuation
with respect to the language LSudoku.
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5 Knowledge Engineering (1)
5.2 Sudoku

How does TS look like?

TS = { eins1,4, eins5,8, eins6,6,
zwei2,2, zwei4,8,
drei6,8,drei8,3,drei9,4,
vier1,7, vier2,5, vier3,1, vier4,3, vier8,2, vier9,8,
...
neun3,4,neun5,2,neun6,9,

}
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5 Knowledge Engineering (1)
5.2 Sudoku

How should the theory TSudoku look like (s.t. models
of TSudoku ∪ TS correspond to solutions of the puzzle)?
First square: T1

1 eins1,1 ∨ . . . ∨ eins3,3
2 zwei1,1 ∨ . . . ∨ zwei3,3
3 drei1,1 ∨ . . . ∨ drei3,3
4 vier1,1 ∨ . . . ∨ vier3,3
5 fuenf1,1 ∨ . . . ∨ fuenf3,3
6 sechs1,1 ∨ . . . ∨ sechs3,3
7 sieben1,1 ∨ . . . ∨ sieben3,3

8 acht1,1 ∨ . . . ∨ acht3,3
9 neun1,1 ∨ . . . ∨ neun3,3

Prof. Dr. Jürgen Dix Clausthal, SS 2013 373
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5.2 Sudoku

The formulae on the last slide are saying, that
1 The number 1 must appear somewhere in the

first square.
2 The number 2 must appear somewhere in the

first square.
3 The number 3 must appear somewhere in the

first square.
4 etc

Does that mean, that each number 1, . . . , 9
occurs exactly once in the first square?
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5.2 Sudoku

No! We have to say, that each number occurs
only once:
T ′1:

1 ¬(einsi,j ∧ zweii,j), 1 ≤ i, j ≤ 3,
2 ¬(einsi,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
3 ¬(einsi,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
4 etc
5 ¬(zweii,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
6 ¬(zweii,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
7 ¬(zweii,j ∧ fuenfi,j), 1 ≤ i, j ≤ 3,
8 etc

How many formulae are these?
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5.2 Sudoku

Second square: T2

1 eins1,4 ∨ . . . ∨ eins3,6
2 zwei1,4 ∨ . . . ∨ zwei3,6
3 drei1,4 ∨ . . . ∨ drei3,6
4 vier1,4 ∨ . . . ∨ vier3,6
5 fuenf1,4 ∨ . . . ∨ fuenf3,6
6 sechs1,4 ∨ . . . ∨ sechs3,6
7 sieben1,4 ∨ . . . ∨ sieben3,6

8 acht1,4 ∨ . . . ∨ acht3,6
9 neun1,4 ∨ . . . ∨ neun3,6

And all the other formulae from the previous
slides (adapted to this case): T ′2
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5 Knowledge Engineering (1)
5.2 Sudoku

The same has to be done for all 9 squares.

What is still missing:
Rows: Each row should contain exactly the

numbers from 1 to 9 (no number twice).
Columns: Each column should contain exactly

the numbers from 1 to 9 (no number
twice).
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5 Knowledge Engineering (1)
5.2 Sudoku

First Row: TRow 1
1 eins1,1 ∨ eins1,2 ∨ . . . ∨ eins1,9
2 zwei1,1 ∨ zwei1,2 ∨ . . . ∨ zwei1,9
3 drei1,1 ∨ drei1,2 ∨ . . . ∨ drei1,9
4 vier1,1 ∨ vier1,2 ∨ . . . ∨ vier1,9
5 fuenf1,1 ∨ fuenf1,2 ∨ . . . ∨ fuenf1,9
6 sechs1,1 ∨ sechs1,2 ∨ . . . ∨ sechs1,9
7 sieben1,1 ∨ sieben1,2 ∨ . . . ∨ sieben1,9

8 acht1,1 ∨ acht1,2 ∨ . . . ∨ acht1,9
9 neun1,1 ∨ neun1,2 ∨ . . . ∨ neun1,9
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5.2 Sudoku

Analogously for all other rows, eg.
Ninth Row: TRow 9

1 eins9,1 ∨ eins9,2 ∨ . . . ∨ eins9,9
2 zwei9,1 ∨ zwei9,2 ∨ . . . ∨ zwei9,9
3 drei9,1 ∨ drei9,2 ∨ . . . ∨ drei9,9
4 vier9,1 ∨ vier9,2 ∨ . . . ∨ vier9,9
5 fuenf9,1 ∨ fuenf9,2 ∨ . . . ∨ fuenf9,9
6 sechs9,1 ∨ sechs9,2 ∨ . . . ∨ sechs9,9
7 sieben9,1 ∨ sieben9,2 ∨ . . . ∨ sieben9,9

8 acht9,1 ∨ acht9,2 ∨ . . . ∨ acht9,9
9 neun9,1 ∨ neun9,2 ∨ . . . ∨ neun9,9

Is that sufficient? What if a row contains
several 1’s?
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First Column: TColumn 1
1 eins1,1 ∨ eins2,1 ∨ . . . ∨ eins9,1
2 zwei1,1 ∨ zwei2,1 ∨ . . . ∨ zwei9,1
3 drei1,1 ∨ drei2,1 ∨ . . . ∨ drei9,1
4 vier1,1 ∨ vier2,1 ∨ . . . ∨ vier9,1
5 fuenf1,1 ∨ fuenf2,1 ∨ . . . ∨ fuenf9,1
6 sechs1,1 ∨ sechs2,1 ∨ . . . ∨ sechs9,1
7 sieben1,1 ∨ sieben2,1 ∨ . . . ∨ sieben9,1

8 acht1,1 ∨ acht2,1 ∨ . . . ∨ acht9,1
9 neun1,1 ∨ neun2,1 ∨ . . . ∨ neun9,1

Analogously for all other columns.

Is that sufficient? What if a column contains
several 1’s?
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5.2 Sudoku

All put together:

TSudoku = T1 ∪ T ′1 ∪ . . . ∪ T9 ∪ T ′9
TRow 1 ∪ . . . ∪ TRow 9

TColumn 1 ∪ . . . ∪ TColumn 9
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5 Knowledge Engineering (1)
5.2 Sudoku

Here is a more difficult one.

Table 5.44: A difficult Sudoku Sdifficult
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5.2 Sudoku

The above formulation is strictly formulated in
propositional logic.
Theorem provers, even if they consider only
propositional theories, often use predicates,
variables etc.
smodels uses a predicate logic formulation,
including variables. But as there are no
function symbols, such an input can be seen
as a compact representation.
It allows to use a few rules as a shorthand for
thousands of rules using propositional
constants.
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5.2 Sudoku

For example smodels uses the following
constructs:

1 row(0..8) is a shorthand for row(0), row(1),
..., row(8).

2 val(1..9) is a shorthand for val(1), val(2),
..., val(9).

3 The constants 1, ..., 9 will be treated as
numbers (so there are operations available to
add, subtract or divide them).
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5.2 Sudoku

1 Statements in smodels are written as

head :- body
This corresponds to an implication
body → head.

2 An important feature in smodels is that all
atoms that do not occur in any head, are
automatically false.
For example the theory

p(X, Y, 5) :- row(X), col(Y)

means that the whole grid is filled with 5’s and
only with 5’s: eg. ¬p(X, Y, 1) is true for all
X, Y , as well as ¬p(X, Y, 2) etc.
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5.2 Sudoku

More constructs in smodels
1 1 { p(X,Y,A) : val(A) } 1

:- row(X), col(Y)
this makes sure that in all entries of the grid,
exactly one number (val()) is contained.

2 1 { p(X,Y,A) : row(X) : col(Y)
: eq(div(X,3), div(R,3))
: eq(div(Y,3), div(C,3) } 1

:- val(A), row(R), col(C)
this rule ensures that in each of the 9 squares
each number from 1 to 9 occurs only once.

3 More detailed info on the web-page.
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5.3 Calculi for SL
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5.3 Calculi for SL

A general notion of a certain sort of calculi.

Definition 5.11 (Hilbert-Type Calculi)

A Hilbert-Type calculus over a language L is a pair
〈Ax, Inf〉 where

Ax: is a subset of FmlL, the set of well-formed
formulae in L: they are called axioms,

Inf: is a set of pairs written in the form

φ1, φ2, . . . , φn
ψ

where φ1, φ2, . . . , φn, ψ are L-formulae: they are
called inference rules.

Intuitively, one can assume all axioms as “true formulae”
(tautologies) and then use the inference rules to derive
even more new formulae.
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5.3 Calculi for SL

Definition 5.12 (Calculus for Sentential Logic SL)

We define HilbertSLL = 〈AxSLL , {MP}〉, the Hilbert-Type
calculus: L ⊆ LSL with the wellformed formulae FmlL as
defined in Definition 5.1.
Axioms in SL (AxSLL ) are the following formulae:

1 φ→ >, �→ φ, ¬> → �, �→ ¬>,
2 (φ→ ψ)→ ((φ→ (ψ → χ))→ (φ→ χ)),
3 (φ ∧ ψ)→ φ, (φ ∧ ψ)→ ψ,
4 φ→ (φ ∨ ψ), ψ → (φ ∨ ψ),
5 ¬¬φ→ φ, (φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ),
6 φ→ (ψ → φ), φ→ (ψ → (φ ∧ ψ)).
7 (φ→ χ)→ ((ψ → χ)→ (φ ∨ ψ → χ)).

φ, ψ, χ stand for arbitrarily complex formulae (not just constants).
They represent schemata, rather than formulae in the language.
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5.3 Calculi for SL

Definition (continued)

The only inference rule in SL is modus ponens:

MP : Fml × Fml→ Fml : (ϕ, ϕ→ ψ) 7→ ψ.

or short

(MP)
ϕ, ϕ→ ψ

ψ
.

(ϕ, ψ are arbitrarily complex formulae).
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5.3 Calculi for SL

Definition 5.13 (Proof)

A proof of a formula ϕ from a theory T ⊆ FmlL is
a sequence ϕ1, . . . , ϕn of formulae such that
ϕn = ϕ and for all i with 1 ≤ i ≤ n one of the
following conditions holds:

ϕi is substitution instance of an axiom,
ϕi ∈ T ,
there is ϕl, ϕk = (ϕl → ϕi) with l, k < i. Then ϕi
is the result of the application of modus
ponens on the predecessor-formulae of ϕi.

We write: T ` ϕ (ϕ can be derived from T ).
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We show that:
1 ` > and ` ¬�.
2 A ` A ∨B and ` A ∨ ¬A.
3 The rule

(R)
A→ ϕ, ¬A→ ψ

ϕ ∨ ψ
can be derived.

4 Our version of sentential logic does not
contain a connective “↔”. We define “φ↔ ψ”
as a macro for “φ→ ψ ∧ ψ → φ”. Show the
following:

If ` φ↔ ψ, then ` φ if and only if ` ψ.
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5.3 Calculi for SL

We have now introduced two important notions:
Syntactic derivability `: the notion that certain

formulae can be derived from other
formulae using a certain calculus,

Semantic validity |=: the notion that certain
formulae follow from other formulae
based on the semantic notion of a
model.
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Definition 5.14 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a
relation |=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

Φ ` φ implies Φ |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

Φ |= φ implies Φ ` φ.
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Theorem 5.15 (Correct-, Completeness for HilbertSLL )

A formula follows semantically from a theory T if
and only if it can be derived:

T |= ϕ if and only if T ` ϕ
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Theorem 5.16 (Compactness for HilbertSLL )

A formula follows from a theory T if and only if
it follows from a finite subset of T :

Cn(T ) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′finite}.

Although the axioms from above and modus
ponens suffice it is reasonable to consider more
general systems. Therefore we introduce the
notion of a rule system.
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Definition 5.17 (Rule System MP + D)

Let D be a set of general inference rules, e.g.
mappings, which assign a formula ψ to a finite set
of formulae ϕ1, ϕ2, . . . , ϕn. We write

ϕ1, ϕ2, . . . , ϕn
ψ

.

MP + D is the rule system which emerges from
adding the rules in D to modus ponens. For
W ⊆ Fml let

CnD(W )

be the set of all formulae ϕ, which can be derived
from W and the inference rules from MP+D.
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We bear in mind that Cn(W ) is defined
semantically but CnD(W ) is defined syntactically
(using the notion of proof). Both sets are equal
according to the completeness-theorem in the
special case D = ∅.
Lemma 5.18 (Properties of CnD)

Let D be a set of general inference rules and
W ⊆ Fml. Then:

1 Cn(W ) ⊆ CnD(W ).
2 CnD(CnD(W )) = CnD(W ).
3 CnD(W ) is the smallest set which is closed in

respect to D and contains W .
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Question:

What is the difference between an inference
rule ϕ

ψ and the implication ϕ→ ψ?
Assume we have a set T of formulae and we
choose two constants p, q ∈ L. We can either
consider

(1) T together with MP and {pq}
or

(2) T ∪ {p→ q} together with MP
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1. Case:
Cn{

p
q }(T ),

2. Case:
Cn(T ∪ {p→ q}).

If T = {¬q}, then we have in (2):
¬p ∈ Cn(T ∪ {p→ q}), but not in (1).
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It is well-known, that any formula φ can be
written as a conjunction of disjunctions

n∧
i=1

mi∨
j=1

φi,j

The φi,j are just constants or negated constants.
The n disjunctions

∨mi

j=1 φi,j are called clauses of φ.

Normalform

Instead of working on arbitrary formulae, it is
sometimes easier to work on finite sets of
clauses.
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A resolution calculus for SL

The resolution calculus is defined over the
language Lres ⊆ LSL where the set of well-formed
formulae FmlResLres consists of all disjunctions of the
following form

A ∨ ¬B ∨ C ∨ . . . ∨ ¬E,
i.e. the disjuncts are only constants or their
negations. No implications or conjunctions are
allowed. These formulae are also called clauses.
� is also a clause: the empty disjunction.
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Set-notation of clauses

A disjunction A ∨ ¬B ∨ C ∨ . . . ∨ ¬E is often
written as a set

{A,¬B,C, . . . ,¬E}.

Thus the set-theoretic union of such sets
corresponds again to a clause: {A,¬B} ∪ {A,¬C}
represents A ∨ ¬B ∨ ¬C. Note that the empty set
∅ is identified with �.
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We define the following inference rule on FmlResLres:

Definition 5.19 (SL resolution)

Let C1, C2 be clauses (disjunctions). Deduce the
clause C1 ∨ C2 from C1 ∨ A and C2 ∨ ¬A:

(Res)
C1 ∨ A, C2 ∨ ¬A

C1 ∨ C2

If C1 = C2 = ∅, then C1 ∨ C2 = �.
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If we use the set-notation for clauses, we can
formulate the inference rule as follows:
Definition 5.20 (SL resolution (Set notation))

Deduce the clause C1 ∪ C2 from C1 ∪ {A} and
C2 ∪ {¬A}:

(Res)
C1 ∪ {A}, C2 ∪ {¬A}

C1 ∪ C2

Again, we identify the empty set ∅ with �.
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Definition 5.21 (Resolution Calculus for SL)

We define the resolution calculus
RobinsonSLLres = 〈∅, {Res}〉 as follows. The
underlying language is Lres ⊆ LSL defined on
Slide 402 together with the well-formed formulae
FmlResLres.

Thus there are no axioms and only one inference
rule. The well-formed formulae are just clauses.
Question:

Is this calculus correct and complete?
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Answer:
It is correct, but not complete!

But every problem of the kind “T |= φ” is equivalent to

“T ∪ {¬φ} is unsatisfiable”

or rather to
T ∪ {¬φ} ` �

(` stands for the calculus introduced above).

Theorem 5.22 (Completeness of Resolution Refutation)

If M is an unsatisfiable set of clauses then the empty clause
� can be derived in RobinsonSLLres.

We also say that resolution is refutation complete.
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5.4 Wumpus in SL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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5.4 Wumpus in SL

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK  = Safe square

V  = Visited

A

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

OKOK
B

P?

P?A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

(a) (b)
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BB P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

OK

W!

V
P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK  = Safe square

V  = Visited
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5.4 Wumpus in SL

Language definition:
Si,j stench
Bi,j breeze
Piti,j is a pit
Gli,j glitters
Wi,j contains Wumpus

General knowledge:
¬S1,1 −→ (¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1)
¬S2,1 −→ (¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1)
¬S1,2 −→ (¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3)

S1,2 −→ (W1,3 ∨W1,2 ∨W2,2 ∨W1,1)
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Knowledge after the 3rd move:

¬S1,1 ∧ ¬S2,1 ∧ S1,2 ∧ ¬B1,1 ∧B2,1 ∧ ¬B1,2

Question:

Can we deduce that the wumpus is located at
(1,3)?

Answer:

Yes. Either via resolution or using our
Hilbert-calculus.
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Problem:
We want more: given a certain situation we would like to
determine the best action, i.e. to ask a query which gives us
back such an action. This is impossible in SL: we can only
check for each action whether it is good or not and then, by
comparison, try to find the best action.

But we can check for each action if it should be done or not.
Therefore we need additional axioms:
A1,1 ∧ East ∧W2,1 −→ ¬Forward
A1,1 ∧ East ∧ Pit2,1 −→ ¬Forward
Ai,j ∧Gli,j −→ TakeGold
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Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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Disadvantages

actions can only be guessed
database must be changed continuously
the set of rules becomes very big because
there are no variables

Using an appropriate formalisation (additional
axioms) we can check if

KB ` ¬ action or KB ` action

But it can happen that neither one nor the
other is deducible.
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5.5 A Puzzle

We now want to formalize a ”Logelei“ and solve it
with a theorem prover.
”Logelei“ from ”Die Zeit“ (1)

Alfred ist als neuer Korrespondent in
Wongowongo. Er soll über die
Präsidentschaftswahlen berichten, weiß aber noch
nichts über die beiden Kandidaten, weswegen er
sich unter die Leute begibt, um Infos zu sammeln.
Er befragt eine Gruppe von Passanten, von denen
drei Anhänger der Entweder-oder-Partei sind und
drei Anhänger der Konsequenten.
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”Logelei“ from ”Die Zeit“ (2)

Auf seinem Notizzettel notiert er stichwortartig die
Antworten.
A: »Nachname Songo: Stadt Rongo«,
B: »Entweder-oder-Partei: älter«,
C: »Vorname Dongo: bei Umfrage hinten«,
A: »Konsequenten: Vorname Mongo«,
B: »Stamm Bongo: Nachname Gongo«,
C: »Vorname Dongo: jünger«,
D: »Stamm Bongo: bei Umfrage vorn«,
E: »Vorname Mongo: bei Umfrage hinten«,
F: »Konsequenten: Stamm Nongo«,
D: »Stadt Longo: jünger«,
E: »Stamm Nongo: jünger«.
F: »Konsequenten: Nachname Gongo«.
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”Logelei“ from ”Die Zeit“ (3)

Jetzt grübelt Alfred. Er weiß, dass die Anhänger
der Entweder-oder-Partei (A, B und C) immer eine
richtige und eine falsche Aussage machen,
während die Anhänger der Konsequenten (D, E
und F) entweder nur wahre Aussagen oder nur
falsche Aussagen machen.
Welche Informationen hat Alfred über die beiden
Kandidaten?

(By Zweistein)
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5 Knowledge Engineering (1)
5.5 A Puzzle

Towards a solution

Selection of the language (Propositional Logic,
Predicate Logic,...).
Analysis and formalization of the problem.
Transformation to the input format of a prover.
Output of a solution, i.e. a model.
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5 Knowledge Engineering (1)
5.5 A Puzzle

Definition of the constants
Surx,Songo ≡ x’s surname is Songo
Surx,Gongo ≡ x’s surname is Gongo
Firstx,Dongo ≡ x’s first name is Dongo
Firstx,Mongo ≡ x’s first name is Mongo
Tribex,Bongo ≡ x belongs to the Bongos
Tribex,Nongo ≡ x belongs to the Nongos
Cityx,Rongo ≡ x comes from Rongo
Cityx,Longo ≡ x comes from Longo
Ax ≡ x is the senior candidate
Jx ≡ x is the junior candidate
Hx ≡ x’s poll is worse
Vx ≡ x’s poll is better

Here x is a candidate, i.e. x ∈ {a, b}. So we have 24
constants in total.
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5 Knowledge Engineering (1)
5.5 A Puzzle

The correspondent Alfred noted 12 statements
about the candidates (each interviewee gave 2
statements, φ, φ′) which we enumerate as follows

φA, φ
′
A, φB, φ

′
B, . . . , φF , φ

′
F ,

All necessary symbols are now defined, and we
can formalize the given statements.
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5 Knowledge Engineering (1)
5.5 A Puzzle

Formalization of the statements

φA ↔ (Sura,Songo ∧ Citya,Rongo)∨
(Surb,Songo ∧ Cityb,Rongo)

φ′A ↔ Firstb,Mongo

φB ↔ Aa

φ′B ↔ (Tribea,Bongo ∧ Sura,Gongo)∨
(Tribeb,Bongo ∧ Surb,Gongo)

...
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5 Knowledge Engineering (1)
5.5 A Puzzle

Furthermore, explicit conditions between the
statements are given, e.g.

(φA ∧ ¬φ′A) ∨ (¬φA ∧ φ′A)

and
(φD ∧ φ′D) ∨ (¬φD ∧ ¬φ′D).

Analogously, for the other statements.

Is this enough information to solve the puzzle?
E.g., can the following formula be satisfied?

Sura,Songo ∧ Sura,Gongo
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5 Knowledge Engineering (1)
5.5 A Puzzle

We also need implicit conditions (axioms) which
are required to solve this problem.
It is necessary to state that each candidate has
only one name, comes from one city, etc.
We need the following background knowledge...

Surx,Songo ↔ ¬Surx,Gongo

Firstx,Dongo ↔ ¬Firstx,Mongo
...

Hx ↔ ¬Vx

Can we abstain from these axioms by changing
our representation of the puzzle?
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5 Knowledge Engineering (1)
5.5 A Puzzle

What is still missing?
Can we prove that when a’s poll is worse, then s’s
poll is better?
We need to state the relationships between these
attributes:

Hx ↔ Vy

Ax ↔ Jy

Finally, we have modeled all “sensible”
information. Does this yield a unique model?

No! There are 6 models in total, but this is all
right. It just means there is no unique solution.
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5 Knowledge Engineering (1)
5.5 A Puzzle

What if a unique model is desirable?
Often, there are additional assumptions hidden
“between the lines”. Think, for example, of
deductions by Sherlock Holmes (or Miss Marple,
Spock etc).
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5 Knowledge Engineering (1)
5.5 A Puzzle

For example, it might be sensible to assume that
both candidates come from different cities:

Cityx,Rongo ↔ Cityy,Longo

Indeed, with this additional axiom there is an
unique model.

But, be careful...

... this additional information may not be justified
by the nature of the task!
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5 Knowledge Engineering (1)
5.5 A Puzzle

Tractatus Logico-Philosophicus
1 Die Welt ist alles was der Fall ist.

1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge.

2 Was der Fall ist, die Tatsache, ist das Bestehen
von Sachverhalten.

3 Das logische Bild der Tatsachen ist der
Gedanke.

4 Der Satz ist eine Wahrheitsfunktion der
Elementarsätze.

5 Die allgemeine Form der Wahrheitsfunktion
ist: [p, ξ,N(ξ)].

6 Wovon man nicht sprechen kann, darüber
muß man schweigen.
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6 Hoare Calculus

6. Hoare Calculus
6 Hoare Calculus

Verification
Core Programming Language
Hoare Logic
Proof Calculi: Partial Correctness
Proof Calculi: Total Correctness
Sound and Completeness
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6 Hoare Calculus

Content of this chapter (1):

We introduce a calculus to prove correctness of computer
programs.
Verification: We argue why formal methods are

useful/necessary for program verification.
Core Programming Language: An abstract but powerful

programming language is introduced.
Hoare Logic: We introduce the Hoare Calculus which

operates on triples {φpre}P {ψpost}.
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6 Hoare Calculus

Content of this chapter (2):

Proof Calculi (Partial Correctness): Here we present three
calculi (proof rules, annotation calculus, and
the weakest precondition calculus) for partial
correctness.

Proof Calculi (Total Correctness): Partial correctness is
trivially satisfied when a program does not
terminate. Therefore, we consider total
correctness as well and an extension of the
calculi to deal with it. We consider the partial
and total correctness of programs.

Sound & Completeness: We briefly discuss the sound and
completeness of the Hoare calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 433



6 Hoare Calculus
6.1 Verification

6.1 Verification
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6 Hoare Calculus
6.1 Verification

Why to formally specify/verify code?

Formal specifications are often important for
unambiguous documentations.
Formal methods cut down software
development and maintenance costs.
Formal specification makes software easier to
reuse due to a clear specification.
Formal verification can ensure error-free
software required by safety-critical computer
systems.
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6 Hoare Calculus
6.1 Verification

Verification of Programs

How can we define the state of a program?

The state of a program is given by the contents
of all variables.

What about the size of the state-space of a
program?

The state space is usually infinite! Hence, the
technique of model checking is inappropriate.
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6 Hoare Calculus
6.1 Verification

Software Verification Framework

Main reasons for formal specifications:

Informal descriptions often lead to
ambiguities which can result in serious (and
potentially expensive) design flaws.
Without formal specifications a rigorous
verification is not possible!
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6 Hoare Calculus
6.1 Verification

Methodology

We assume the following methodology:

1 Build an informal description D of the
program and the domain.

2 Convert D into an equivalent formula φ in a
suitable logic.

3 (Try to) build a program P realizing φ.
4 Prove that P satisfies φ.
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6 Hoare Calculus
6.1 Verification

Methodology (2)

Some points to think about:
(i) Point 2 is a non-trivial and non-formal

problem and thus “cannot be proven”: D is an
informal specification!

(ii) Often there are alternations between 3 and 4.
(iii) Sometimes one might realize that φ is not

equivalent to D and thus one has to revise φ.
(iv) Often, P must have a specific structure to

prove it against ϕ.
In this lecture, we will focus on points 3 and 4.
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6 Hoare Calculus
6.1 Verification

Some Properties of the Procedure

Proof-based: Not every state of the system is
considered (there are infinitely many
anyway), rather a proof for
correctness is constructed: this works
then for all states.

Semi-automatic: Fully automatic systems are
desireable but they are not always
possible: undecidability, time
constraints, efficiency, and “lack of
intelligence”.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 440



6 Hoare Calculus
6.1 Verification

Some Properties of the Procedure (2)

Property-oriented: Only certain properties of a
program are proven and not the
“complete” behavior.

Application domain: Only sequential programs
are considered.

Pre/post-development: The proof techniques
are designed to be used during the
programming process (development
phase).
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6 Hoare Calculus
6.2 Core Programming Language

6.2 Core Programming Language
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6 Hoare Calculus
6.2 Core Programming Language

Core Programming Language

To deal with an up-to-date programming
language like Java or C++ is out of scope of this
introductory lecture. Instead we identify some
core programming constructs and abstract away
from other syntactic and language-specific
variations.
Our programming language is built over

1 integer expressions,
2 boolean expressions, and
3 commands.
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6 Hoare Calculus
6.2 Core Programming Language

Definition 6.1 (Program Variables)

We use Vars to denote the set of (program)
variables. Typically, variables will be denoted by
u, . . . , x, y, z or x1, x2, . . . .

Definition 6.2 (Integer Expression)

Let x ∈ Vars. The set of integer expressions I is
given by all terms generated according to the
following grammar:

I ::= 0 | 1 | x | (I + I) | (I − I) | (I · I)

We also use −I to stand for 0− I.
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6 Hoare Calculus
6.2 Core Programming Language

Although the term “1− 1” is different from “0”, its meaning
(semantics) is the same. We identify “1 + 1 + . . .+ 1” with
“n” (if the term consist of n 1’s). The precise notion of
meaning will be given in Definition 6.10.
Integer expressions are terms over a set of function symbols
Func, here

Func = Vars ∪ {0, 1,+,−, ·}
Note also, that we consider elements from Z as constants
with their canonical denotation! Thus we write “3” instead
of “1 + 1 + 1”.

Example 6.3 (Some integer expressions)

5, x, 6 + (3 · x), x · y + z − 3,−x · x, . . .

Note that xx or y! are not integer expressions. Do we need
them?
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6 Hoare Calculus
6.2 Core Programming Language

Definition 6.4 (Boolean Expression)

The set of Boolean expressions B is given by all formulae
generated according to the following grammar:

B ::= > | (¬B) | (B ∧B) | (I < I)

We also use (B ∨B) as an abbreviation of ¬(¬B ∧ ¬B) and
� as an abbreviation for ¬>. Boolean expressions are
formulae over the set of relation symbols Pred = {>, <}.
So, boolean expressions are similar to sentential logic
formulae.

Note that we use I = I ′ to stand for ¬(I < I ′) ∧ ¬(I ′ < I).
We also write I 6= I ′ for ¬(I = I ′).
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z
When describing the Hoare calculus, we also need formulae
to express (1) what should hold before a program is
executed, and (2) what should be the case after the
program has been executed. These formulae are built using
the boolean expressions just introduced.

Definition 6.5 (Formulae over Z)

The set of formulae FmlVars is given by all formulae
generated according to the following grammar:

φ ::= ∃xφ | B | (¬φ) | (φ ∧ φ)

where B is a boolean expression according to Definition 6.4
and x ∈ Vars.

We note that “∀xφ” is just an abbreviation for “¬∃x¬Φ”
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (2)

We have to give a meaning (semantics) to the syntactic
constructs! Our model is given by Z where Z is the set of
integer numbers. Note that in Z we have a natural meaning
of the constructs 0, 1,−,+, ·, <.

Which of the following formulae are true in Z?

1 ∀x∀y∀z (x · x+ y · y + z · z > 0),
2 ∀x∃y (y < x),
3 x · x < x · x · x,
4 x+ 4 < x+ 5.
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (3)
Note that when evaluating a formula with free variables,
there are two possibilities:

1 Either we need to assign values to these variables, or
2 we add “∀” quantifiers to bind all variables.

The truth of a formula can only be established if the
formula is a sentence, i.e. does not contain free variables.
We will be more formal in Chapter 7.
Let φ(x, y) be the formula ∃z x+ z < y and let n, n′ ∈ Z.
Then we denote

by ∀φ(x, y) the formula ∀x∀y(∃z x+ z < y),
by φ(x, y)[n/x, n′/y] the formula where x is replaced by
n and y is replaced by n′: ∃z n+ z < n′.
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (4)

How large is this class of formulae over Z? Is it
expressive enough?

1 How can we express the function x! or xx?
2 Which functions are not expressible? Are there

any?
3 Is there an algorithm to decide whether a

given sentence φ (formulae without free
variables) holds in Z, i.e. whether Z |= φ?

4 Attention: everything radically changes, when
we do not allow multiplication! Then the
resulting theory is decidable.
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (5)

Let us express some functions f : Z→ Z that are
not available as integer expressions.

Definition 6.6 (Functions Expressible over Z)

A function f : Z→ Z is expressible over Z if there
is a formula Φ(x, y) with x, y as the only free
variables such that the following holds for all
z, z′ ∈ Z:

Z |= Φ(x, y)[z/x, z′/y] iff f(z) = z′
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6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (6)

x!: Not obvious.
xx: Not obvious.

Using Gödelization, it can be shown that all
naturally occurring functions can be expressed. In
fact, all recursive functions are expressible. We
shall therefore use functions like x! as macros
(knowing that they can be expressed as formulae
in the language).
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6 Hoare Calculus
6.2 Core Programming Language

Definition 6.7 (Program)

The set Prog of (while) programs over Vars, I and
B is given by all well-formed sequences which can
be formed according to the following grammar:

C ::= skip | x := I | C;C | if B {C} else {C} | while B {C}

where B ∈ B, I ∈ I, and x ∈ Vars.

We usually write programs in lines (for better
readability).
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6 Hoare Calculus
6.2 Core Programming Language

skip: Do nothing.
x := I: Assign I to x.
C1;C2: Sequential execution: C2 is executed

after C1 provided that C1 terminates.
if B {C1} else {C2}: If B is true then C1 is

executed otherwise C2.
while B {C}: C is executed as long as B is true.

The statement “B is true” is defined in
Definition 6.11.
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6 Hoare Calculus
6.2 Core Programming Language

Example 6.8

What does the following program Fac(x)
calculate?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}
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6 Hoare Calculus
6.2 Core Programming Language

Is this class of programs large or small?
Can we express everything we want?

1 No, because we need better software engineering
constructs.

2 Yes, because we have "while" and therefore we can do
anything.

3 No, because we can not simulate (emulate) Java or C++.
4 It is already too large, because we assume that we can

store arbitrary numbers. This is clearly not true on real
computers.

5 Yes, because this class of programs corresponds to the
class of deterministic Turing machines. And we cannot
aim for more.
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6 Hoare Calculus
6.2 Core Programming Language

While Programs = Turing Machines

Turing Machines

The class of programs we have introduced corresponds
exactly to programs of Turing machines. Thus it is an
idealization (arbitrary numbers can be stored in one cell)
and therefore it is much more expressive than any real
programming language.
But playing quake requires a lot of coding . . .

In particular, there is no algorithm to decide whether a
given program terminates or not.
The set of all terminating programs is recursive
enumerable, but not recursive.
Therefore the set of non-terminating programs is not
even recursively enumerable.
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6 Hoare Calculus
6.2 Core Programming Language

Meaning of a Program

Definition 6.9 (State)

A state s is a mapping

s : Vars → Z

A state assigns to each variable an integer. The set
of all states is denoted by S.

The semantics of a program P is a partial
function

[[P]] : S → S

that describes how a state s changes after
executing the program.
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6 Hoare Calculus
6.2 Core Programming Language

Definition 6.10 (Semantics: Integer Expression)

The semantics of integer expressions is defined:

[[0]]s = 0

[[1]]s = 1

[[x]]s = s(x) for x ∈ Vars

[[E ∗ E ′]]s = [[E]]s ∗ [[E ′]]s for ∗ ∈ {+,−, ·}

Definition 6.11 (Meaning: Boolean Expression)

The semantics of a Boolean expression is given
as for sentential logic; that is, we write Z, s |= B if
B is true in Z wrt to state (valuation) s.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 459



6 Hoare Calculus
6.2 Core Programming Language

Definition 6.12 (Meaning: Satisfaction Z, s |= φ)

The semantics of a formula φ is defined
inductively. We have already defined it in
Definition 6.11 for atomic expressions. Arbitrary
formulae can also contain the quantifier ∃.

Z, s |= ∃xφ(x) iff there is a n ∈ Z
such that Z, s |= φ(x)[n/x]

1 ∃xφ : ∃x 3x < 4,
2 ∃xφ : ∃x 3x < 4y.
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6 Hoare Calculus
6.2 Core Programming Language

Definition 6.13 (Meaning: Program)

1 [[skip]](s) = s

2 [[x := I]](s) = t where t(y) =

{
s(y) if y 6= x

[[I]]s else.

3 [[C1;C2]](s) = [[C2]]([[C1]](s))

4 [[ if B {C1} else {C2}]](s) =

{
[[C1]](s) if Z, s |= B,

[[C2]](s) else.

5 [[ while B {C}]](s) ={
[[ while B {C}]]([[C]](s)) if Z, s |= B,

s else.

Note that the recursive definition of the while cases is the
reason that [[·]] might be a partial function: it is (perhaps)
not everywhere defined.
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6 Hoare Calculus
6.3 Hoare Logic

6.3 Hoare Logic
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6 Hoare Calculus
6.3 Hoare Logic

Hoare Triples

How can we prove that a program/method P
really does what it is intended to do?

We describe the desired state of the (overall)
program before and after the execution of P.

For example, let P(x) be a program that should
return a number whose square is strictly less than
x.

Is the correctness of the program ensured
when we require that P(x) · P(x) < x?

Not completely! What if x < 0? So, the
precondition is also very important!
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6 Hoare Calculus
6.3 Hoare Logic

Definition 6.14 (Hoare Triple)

Let φ and ψ be formulae of FmlVars and P be a
program. A Hoare triple is given by

{φ}P{ψ}

where φ is said to be the precondition and ψ the
postcondition.
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6 Hoare Calculus
6.3 Hoare Logic

A Hoare triple {φ}P{ψ} is read as follows:

If the overall program is in a state that satisfies
φ, then,
after the execution (and termination) of P the
resulting state of the program satisfies ψ.

Let P be the program given above and y be the
variable returned. Then the following Hoare triple
would be a valid specification:

{x > 0}P{y · y < x}.
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6 Hoare Calculus
6.3 Hoare Logic

Partial and Total Correctness
We already introduced the informal reading of
Hoare triples. Now we will be more formal. There
are two cases one has to distinguish: Programs
that terminate and ones which do not.
Accordingly, we have two definitions of
correctness:
partially correct: ψ holds after execution of P,

provided that P terminates,
totally correct: we require in addition that P

terminates.
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6 Hoare Calculus
6.3 Hoare Logic

Definition 6.15 (Partial Correctness)

A triple {φ}P{ψ} is satisfied under partial
correctness, written as

|=p {φ}P{ψ},

if for each state s

Z, [[P]](s) |= ψ

provided that Z, s |= φ and [[P]](s) are defined.

The following program is always partially
correct: while > {x := 0}, for arbitrary pre and
postconditions.
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6 Hoare Calculus
6.3 Hoare Logic

Definition 6.16 (Total Correctness)

A triple {φ}P{ψ} is satisfied under total
correctness, written as

|=t {φ}P{ψ},

if for each state s, [[P]](s) is defined and

Z, [[P]](s) |= ψ

provided that Z, s |= φ.

The following program is usually not totally
correct: while > {x := 0}. Why “usually”?
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6 Hoare Calculus
6.3 Hoare Logic

Example 6.17

Consider the following program Succ(x):

a := x + 1;
if (a− 1 = 0){

y := 1
} else{

y := a
}

Under which semantics does the program satisfy
{>}Succ{y = x+ 1}?
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6 Hoare Calculus
6.3 Hoare Logic

Note, that the last program is only one program
(and a very silly one) that ensures the condition
{>}Succ{y = x+ 1}. There are many more.
Example 6.18

Recall the program Fac(x) stated in Example 6.8.
Which of the following statements are correct?
|=t {x ≥ 0}Fac{y = x!},
|=t {>}Fac{y = x!},
|=p {x ≥ 0}Fac{y = x!} and
|=p {>}Fac{y = x!}.
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6 Hoare Calculus
6.3 Hoare Logic

Program and Logical Variables

The pre- and postconditions in a Hoare triple may
contain two kinds of variables:

program variables and
logical variables.

Given a program P the former kind occurs in the
program whereas the latter refers to fresh
variables.

The following example makes clear why we need
logical variables.
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6 Hoare Calculus
6.3 Hoare Logic

Example 6.19

The following program Fac2 works as well.

y := 1;
while (x 6= 0){

y := y · x;
x := x− 1

}

Why is it not a good idea to use the Hoare triple
{x ≥ 0}Fac2{y = x!} in this case?

What about {x = x0 ∧ x ≥ 0}Fac2{y = x0!}? The
variable x0 is a logical variable!
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

6.4 Proof Calculi: Partial
Correctness
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Proof Rules
We have introduced a semantic notion of (partial
and total) correctness. As for resolution we are
after syntactic versions (`t and `p) which can be
used on computers.

Sound Calculus: Can we define a calculus, that
allows us to derive only valid Hoare
triples?

Complete Calculus: Can we define a calculus,
that generates all valid Hoare triples?
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Answer to question 1: Yes, for both versions.
Answer to question 2: No, not even for `p:

`p {>}P {�} iff P is not terminating.
And this set is not recursive enumerable.

The following rules were proposed by R. Floyd
and C.A.R. Hoare. A rule for each basic program
construct is presented.

If a program is correct we may be able to show it
by only applying the following rules (compare
with Modus Ponens).
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Composition

Definition 6.20 (Composition Rule (comp))

{φ}C1{η} {η}C2{ψ}
{φ}C1;C2{ψ}

In order to prove that {φ}C1;C2{ψ} we
have to prove the Hoare triples {φ}C1{η}
and {η}C2{ψ} for some appropriate η.
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

An axiom
Definition 6.21 (Assignment Rule (assign))

{ψ[I/x]}x := I{ψ}

The rule is self-explanatory. Recall that
ψ[I/x] denotes the formula that is equal
to ψ but each free occurrence of x is
replaced by I.
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Another axiom

Definition 6.22 (Skip Rule (skip))

{φ}skip{φ}
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6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

If Rule
Definition 6.23 (If Rule (if))

{φ ∧B}C1{ψ} {φ ∧ ¬B}C2{ψ}
{φ} if B {C1} else {C2}{ψ}

In order to prove the conclusion we prove
that ψ holds for both possible program
executions of the if-rule: when B holds
and when it does not.
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Partial-While Rule
Definition 6.24 (Partial-While Rule (while))

{ψ ∧B}C{ψ}
{ψ} while B {C}{ψ ∧ ¬B}

The while-rule is the most sophisticated
piece of code; it may allow infinite
looping. The formula ψ in the premise
plays a decisive rule: ψ is true before and
after the execution of C, i.e. C does not
change the truth value of ψ.
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Invariant

Definition 6.25 (Invariant)

An invariant of the while-statement
while B {C} is any formula ψ such that
|=p {ψ ∧B}C{ψ}.

The conclusion says that ψ does not
change, even when C is executed several
times and if C terminates then B is false.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 481



6 Hoare Calculus
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Example 6.26

What is an invariant of the following program?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

An invariant is y = z!.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 482



6 Hoare Calculus
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Implication Rule

Definition 6.27 (Implication Rule (impl))

{φ}C{ψ}
{φ′}C{ψ′}

whenever Z |= ∀(φ′ → φ) and
Z |= ∀(ψ → ψ′).
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Implication Rule (2)

The implication rule allows us to
strengthen the precondition φ to φ′ and
to weaken the postcondition ψ to ψ′,
provided that the two implications hold.

Note, that this rule links program logic
with the truths of formulae in Z, which
have to be established. We call them
proof obligations.
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An Example

We will try to prove the correctness of the
program Fac given in Example 6.8. That is, we
would like to derive

{>}Fac{y = x!}

For any input state after the execution of Fac
the return value y should have the value x!.
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We have to start with axioms (by the assignment rule):
{1=1}y:=1{y=1}
{>}y:=1{y=1} (impl) {y=1∧0=0}z:=0{y=1∧z=0}

{y=1}z:=0{y=1∧z=0} (impl)

{>}y := 1; z := 0{y = 1 ∧ z = 0}︸ ︷︷ ︸
ψ1

(comp)

Again, on top are axioms:
{y·(z+1)=(z+1)!}z:=z+1{y·z=z!}
{y=z!∧z 6=x}z:=z+1{y·z=z!} (impl) {y·z=z!}y:=y·z{y=z!}

{y=z!∧z 6=x}z:=z+1;y:=y·z{y=z!} (comp)

{y = z!} while z 6= x {z := z + 1; y := y · z}{y = z! ∧ z = x}︸ ︷︷ ︸
ψ2

(while)

Putting both parts together:

ψ1
ψ2

{y=1∧z=0} while z 6=x {z:=z+1;y:=y·z}{y=x!}(impl)

{>}Fac{y = x!}
(comp)
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Proof obligations

We have to show that the following formulae hold
in Z:

1 > → 1 = 1,
2 ∀y(y = 1→ y = 1 ∧ 0 = 0),
3 ∀x∀y∀z(y = z! ∧ z 6= x→ (y(z + 1) = (z + 1)!)),
4 ∀y∀z(y = 1 ∧ z = 0→ y = z!),
5 ∀x∀y∀z(y = z! ∧ z = x→ y = x!).
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Annotation Calculus

The proof rules just presented are very similar
to Hilbert style calculus rules.
They inherit some undesirable properties: The
proof calculus is not “easy to use”.
The proof given for the small Fac-program
looks already quite complicated.

In this section we present an annotation calculus
which is much more convenient for practical
purposes.
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We consider a program P as a sequence of basic
commands:

C1; C2; . . . ;Cn

That is, none of the commands Ci is directly
composed of smaller programs by means of
composition. Assume we intend to show that

`p {φ}P{ψ}
In the annotation calculus we try to find
appropriate φi, i = 0, . . . , n such that

if `p {φi}Ci{φi+1} for all i = 0, . . . , n− 1
then also `p {φ}P{ψ}.
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In other words, we interleave the program P with
intermediate conditions φi

{φ0}C1{φ1} C2{φ2} . . . {φn−1}Cn{φn}
where each step {φi}Ci{φi+1} is justified by one of
the proof rules given above.

That is, an annotation calculus is a way of
summarizing the application of the proof rules to
a program.

How to find the appropriate φi?
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We determine “something like” the weakest
preconditions successively such that

`p {φ′0}C1{φ′1} C2{φ′2} . . . {φ′n−1}Cn{φ′n}
Under which condition would this guarantee
`p {φ0}P{φn}?
It must be the case that Z |= ∀φ0 → φ′0 and
Z |= ∀φ′n → φn

Why do we say “something like” the weakest
precondition? We come back to this point later.
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In the following we label the program P with
preconditions by means of rewrite rules

X

Y

Such a rule denotes that X can be rewritten (or
replaced) by Y .

Each rewrite rule results from a proof rule.
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Definition 6.28 (Assignment Rule)

x := E{ψ}
{ψ[E/x]}x := E{ψ}

Definition 6.29 (If Rule (1))

if B {C1} else {C2}{ψ}
if B {C1{ψ}} else {C2{ψ}}{ψ}

Definition 6.30 (If Rule (2))

if B {{φ1} · · · } else {{φ2} · · · }
{(B → φ1) ∧ (¬B → φ2)} if B {{φ1} · · · } else {{φ2} · · · }
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Definition 6.31 (Partial-While Rule)

while B {P}
{φ} while B {{φ ∧ B}P{φ}}{φ ∧ ¬B}

where φ is an invariant of the while-loop.

Definition 6.32 (Skip Rule)

skip{φ}
{φ}skip{φ}
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Applying the rules just introduced, we end up with a finite
sequence

s1s2 . . . sm

where each si is of the form {φ} or it is a command of a
program (which in the case of if or while commands can also
contain such a sequence).
It can also happen that two subsequent elements have the
same form: . . . {φ}{ψ} . . .. Whenever this occurs, we have to
show that φ implies ψ: a proof obligation (see Slide 483).

Definition 6.33 (Implied Rule)
Whenever applying the rules lead to a situation where two
formulae stand next to each other . . . {φ}{ψ} . . ., then we
add a proof obligation of the form

Z |= ∀ (φ→ ψ).
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Consider {φ} while B {P}{ψ}. Then the while-rule
yields the following construct:

{φ}{η} while B {{η ∧ B}P{η}}{η ∧ ¬B}{ψ}
That is, we have to show that the invariant η
satisfies the following properties:

1 Z |= ∀ (φ→ η),
2 Z |= ∀ ((η ∧ ¬B)→ ψ),
3 `p {η} while B {P}{η ∧ ¬B}, and
4 `p {η ∧B}P{η} (this is the fact that it is an

invariant).
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Example 6.34

Prove: |=p {y = 5}x := y + 1{x = 6}
1 x := y + 1{x = 6}
2 {y + 1 = 6}x := y + 1{x = 6} (Assignment)
3 {y = 5}{y + 1 = 6}x := y + 1{x = 6} (Implied)

Example 6.35

Prove: |=p {y < 3}y := y + 1{y < 4}
1 y := y + 1{y < 4}
2 {y + 1 < 4}y := y + 1{y < 4} (Assignment)
3 {y < 3}{y + 1 < 4}y := y + 1{y < 4} (Implied)
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Example 6.36

{y = y0}
z := 0;
while y 6= 0 do{

z := z + x;
y := y − 1

}
{z = xy0}

Firstly, we have to use the rules of the annotation
calculus.
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{y = y0}
{I[0/z]}
z := 0;
{I}
while y 6= 0 do{
{I ∧ y 6= 0}
{I[y − 1/y][z + x/z]}
z := z + x;
{I[y − 1/y]}
y := y − 1
{I}

}
{I ∧ y = 0}
{z = xy0}

What is a suitable invariant?
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We have to choose an invariant such that the
following hold in Z:

1 y = y0 → I[0/z],
2 I ∧ y 6= 0→ I[y − 1/y][z + x/z],
3 I ∧ y = 0→ z = xy0.

What about I : >? What about I : (z + xy = xy0)?

It is easy to see that the latter invariant satisfies all
three conditions. This proves the partial
correctness of {y = y0}P{z = xy0}.
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How to ensure that |=p {φ}P{ψ}?
Definition 6.37 (Valid Annotation)

A valid annotation of {φ}P{ψ} is given if

1 only the rules of the annotation calculus are
used;

2 each command in P is embraced by a post
and a precondition;

3 the assignment rule is applied to each
assignment;

4 each proof obligation introduced by the
implied rule has to be verified.
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Proposition 6.38 (`p iff Valid Annotation)

Constructing valid annotations is equivalent to
deriving the Hoare triple {φ}P{ψ} in the Hoare
calculus:

`p {φ}P{ψ} iff there is a valid annotation of {φ}P{ψ}.

Note, this does not mean that the calculus is
complete!
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Exercise

Let the program P be:

z := x;
z := z + y;
u := z

Use the annotation calculus to prove that
`p {>}P{u = x+ y}.
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Exercise

Given the program P:

a := x + 1;
if a− 1 = 0 {y := 1} else {y := a}

Use the annotation calculus to prove that
`p {>}P{y = x+ 1}.
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Exercise

Given the program Sum:

z := 0;
while x > 0 {

z := z + x;
x := x− 1

}

Use the annotation calculus to prove that
`p {x = x0 ∧ x ≥ 0}Sum{z = x0(x0+1)

2 }.
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Weakest Liberal Precondition
In principle, the annotation calculus determines the
weakest precondition of a program and checks whether the
given precondition implies the calculated precondition.
I.e. when we start with something of the form

P{ψ}
then the annotation calculus leads to a Hoare triple

{φ}P′{ψ}
where φ is “something like the weakest precondition”:

`p {φ}P{ψ}.
Without the while-command the annotation calculus does
calculate the weakest precondition! But in the rule for the
while-command some invariant is selected. This does not
ensure that the weakest precondition is determined!
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A formula ψ is said to be weaker than χ if it holds
that Z |= ∀(χ→ ψ).
Theorem 6.39 (Weakest Liberal Precondition)

The weakest liberal precondition of a program P
and postcondition φ, denoted by wp(P, φ), is the
weakest formula ψ such that |=p {ψ}P{φ}. Such a
formula exists and can be constructed as a formula
in our language.

The reason for the last theorem is that the model
Z with +, ·, < is powerful enough to express all
notions we need.
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6.5 Proof Calculi: Total
Correctness
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Proof Rules
We extend the proof calculus for partial
correctness presented to one that covers total
correctness.

Partial correctness does not say anything about
the termination of programs. It is easy to see that
only the while construct can cause the
nontermination of a program. Hence, in addition
to the partial correctness calculus we have to
prove that a while loop terminates.
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The proof of termination of while statements
follows the following schema:

Given a program P, identify an integer
expression I whose value decreases after
performing P but which is always
non-negative.

Such an expression E is called a variant. Now, it is
easy to see that a while loop has to terminate if
such a variant exists. The corresponding rule is
given below.
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Definition 6.40 (Total-While Rule)

{φ ∧B ∧ 0 ≤ E = E0}C{φ ∧ 0 ≤ E < E0}
{φ ∧ 0 ≤ E} while B {C}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-loop,
E0 represents the initial value of E before the
loop.
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Example 6.41

Let us consider the program Fac once more:

y := 1;

z := 0;

while (z 6= x) {z := z + 1; y := y · z}

How does a variant for the proof of
{x ≥ 0}Fac{y = x!} look?

A possible variant is for instance x− z. The first
time the loop is entered we have that x− z = x

and then the expression decreases step by step
until x− z = 0.
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Annotation Calculus
Definition 6.42 (Total-While Rule)

while B {P}
{φ ∧ 0 ≤ E} whileB{{φ ∧ B ∧ 0 ≤ E = E0}P{φ ∧ 0 ≤ E < E0}}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-looping,
E0 represents the initial value of E before the
loop.
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Example 6.43

Prove that |=t {x ≥ 0}Fac{y = x!}. What do we
have to do at the beginning?

We have to determine a suitable variant and an
invariant. As variant we may choose x− z and as
invariant y = z!. Now we can apply the
annotation calculus.
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{x ≥ 0}
{1 = 0! ∧ 0 ≤ x− 0}
y := 1;
{y = 0! ∧ 0 ≤ x− 0}
z := 0;
{y = z! ∧ 0 ≤ x− z}
while x 6= z {
{y = z! ∧ x 6= z ∧ 0 ≤ x− z = E0}
{y(z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) < E0}
z := z + 1;
{yz = z! ∧ 0 ≤ x− z < E0}
y := y · z
{y = z! ∧ 0 ≤ x− z < E0} }

{y = z! ∧ x = z}
{y = x!}
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Weakest Precondition
Proposition 6.44 (wp- Total Correctness)

The weakest precondition for total correctness
exists and can be expressed as a formula in our
language.

Example 6.45

What is the weakest precondition for

while i < n {i := i + 1}{i = n+ 5}?

i = n+ 5.
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6 Hoare Calculus
6.6 Sound and Completeness

Theoretical Aspects

Finally, we consider some theoretical aspects with
respect to the sound and completeness of the
introduced calculi.

Recall, that a calculus is sound if everything that
can be derived is also semantically true:

If `x {φ}P{ψ} then |=x {φ}P{ψ}

where x ∈ {p, t} stands for partial and total
correctness.
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6.6 Sound and Completeness

The reverse direction is referred to as
completeness.
A calculus is complete if everything that can
semantically be derived is also derivable by the
calculus:

If |=x {φ}P{ψ} then `x {φ}P{ψ}

where x ∈ {p, t} stands for partial and total
correctness.

Which direction is more difficult to prove?
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For the soundness we just have to make sure that
all proof rules introduced make sense. That is,
given a rule X

Y it has to be shown that Y holds
whenever X holds.

Theorem 6.46

The Hoare calculus is sound.

Proof.

Exercise!
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Theorem 6.47

The Hoare calculus is complete.

The Hoare calculus contains axioms and rules
that require to determine whether certain
formulae (proof obligations) are true in Z.
The theory of Z is undecidable.
Thus any re axiomatization of Z is incomplete.
However, most proof obligations occurring in
practice can be checked by theorem provers.
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First Order Logic
Sit-Calculus
The Blocksworld
Higher order logic
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7 Knowledge Engineering: FOL

Content of this chapter:

FOL: While sentential logic SL has some nice features,
it is quite restricted in expressivity. First order
logic (FOL) is an extension of SL which allows us
to express much more in a succinct way.

SIT-calculus: The Situation Calculus, introduced by John
McCarthy, is a special method for using FOL to
express the dynamics of an agent. Applying
actions to the world leads to a series of
successor worlds that can be represented with
special FOL terms.
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Content of this chapter (2):

Blocksworld: We consider the blocksworld scenario and
discuss how to formalize that with FOL.

HOL: Finally, we give an outlook to higher order
logics (HOL), in particular to second order
logic. While we can express much more than in
1st order logic, the price we have to pay is that
there is no correct and complete calculus.

Declarative: In this chapter we only consider the question
How to use FOL to model the world? We are
not concerned with deriving new information
or with implementing FOL. This will be done in
the next chapter.
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7.1 First Order Logic

Definition 7.1 (First order logic LFOL, L ⊆ LFOL)

The language LFOL of first order logic (Prädikatenlogik
erster Stufe) is:

x, y, z, x1, x2, . . . , xn, . . .: a countable set Var of variables
for each k ∈ N0: P k

1 , P
k
2 , . . . , P

k
n , . . . a countable set

Predk of k-dimensional predicate symbols (the
0-dimensional predicate symbols are the propositional
logic constants from At of LSL, including �, >).
for each k ∈ N0: fk1 , f

k
2 , . . . , f

k
n , . . . a countable set

Functk of k-dimensional function symbols.
¬, ∧, ∨,→: the sentential connectives.
(, ): the parentheses.
∀, ∃: the quantifiers.
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7.1 First Order Logic

Definition (continued)

The 0-dimensional function symbols are called
individuum constants – we leave out the
parentheses. In general we will need – as in
propositional logic – only a certain subset of the
predicate or function symbols.

These define a language L ⊆ LFOL (analogously
to definition 5.1 on page 356). The used set of
predicate and function symbols is also called
signature Σ.
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Definition (continued)

The concept of an L-term t and an L-formula ϕ
are defined inductively:

Term: L-terms t are defined as follows:
1 each variable is a L-term.
2 if fk is a k-dimensional function symbol from
L and t1, . . . ,tk are L-terms, then fk(t1, . . . , tk)
is a L-term.

The set of all L-terms that one can create from the
set X ⊆ Var is called TermL(X) or TermΣ(X).
Using X = ∅ we get the set of basic terms
TermL(∅), short: TermL.
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Definition (continued)

Formula: L-formulae ϕ are also defined
inductively:

1 if P k is a k-dimensional predicate symbol from
L and t1, . . . ,tk are L-terms then P k(t1, . . . , tk)
is a L-formula

2 for all L-formulae ϕ is (¬ϕ) a L-formula
3 for all L-formulae ϕ and ψ are (ϕ ∧ ψ) and

(ϕ ∨ ψ) L-formulae.
4 if x is a variable and ϕ a L-formula then are

(∃xϕ) and (∀xϕ) L-formulae.
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Definition (continued)

Atomic L-formulae are those which are
composed according to 1., we call them AtL(X)
(X ⊆ Var). The set of all L-formulae in respect to
X is called FmlL(X).

Positive formulae (Fml+L (X)) are those which are
composed using only 1, 3. and 4.

If ϕ is a L-formula and is part of an other
L-formula ψ then ϕ is called sub-formula of ψ.
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An illustrating example

Example 7.2 (From semigroups to rings)

We consider L = {0, 1,+, ·,≤, .=}, where 0, 1 are constants,
+, · binary operations and ≤, .= binary relations. What can
be expressed in this language?
Ax 1: ∀x∀y∀z x+ (y + z)

.
= (x+ y) + z

Ax 2: ∀x (x+ 0
.
= 0 + x) ∧ (0 + x

.
= x)

Ax 3: ∀x∃y (x+ y
.
= 0) ∧ (y + x

.
= 0)

Ax 4: ∀x∀y x+ y
.
= y + x

Ax 5: ∀x∀y∀z x · (y · z)
.
= (x · y) · z

Ax 6: ∀x∀y∀z x · (y + z)
.
= x · y + x · z

Ax 7: ∀x∀y∀z (y + z) · x .
= y · x+ z · x

Axiom 1 describes an semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.
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Definition 7.3 (L-structure A = (UA, IA))

A L-structure or a L-interpretation is a pair
A =def (UA, IA) with UA being an arbitrary non-empty set,
which is called the basic set (the universe or the
individuum range) of A. Further IA is a mapping which

assigns to each k-dimensional predicate symbol P k in L
a k-dimensional predicate over UA
assigns to each k-dimensional function symbol fk in L a
k-dimensional function on UA

In other words: the domain of IA is exactly the set of
predicate and function symbols of L.
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7.1 First Order Logic

Definition (continued)
The range of IA consists of the predicates and functions on
UA. We write:

IA(P ) = PA, IA(f) = fA.

ϕ be a L1-formula and A =def (UA, IA) a L-structure. A is
called matching with ϕ if IA is defined for all predicate and
function symbols which appear in ϕ, i.e. if L1 ⊆ L.

FOL with Equality

Often, one assumes that the predicate symbol .= is built-in
and interpreted by identity in all structures A:
IA(

.
=) = {(x, x) : x ∈ A}. In that case, .= is not listed among

the predicates in a model A.
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Definition 7.4 (Variable assignment %)

A variable assignment % over a L-structure
A = (UA, IA) is a function

% : Var → UA; x 7→ %(x).

Note that this is exactly what we called state in
the chapter about the Hoare calculus.
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Some structures
The following will be explained in detail on the
blackboard.

We consider L = {≤, .=} and the following
structures

1 (Z,≤Z)
2 (R,≤R)
3 (Q,≤Q)
4 (Q+

0 ,≤Q+
0 )

State formulae in L that are true in all structures,
just in some, . . . . Is there a formula φ which can
distinguish between (R,≤R) and (Q,≤Q)?
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Some structures (2)

We have seen some formulae that are true in these
structures. Can we come up with a finite
axiomatization?

Dense linear order without endpoints

It turns out, that the set of all formulae true in
(R,≤R) coincides with the set all formulae true in
(Q,≤Q). An axiomatization is given by the finite
set of formulae stating that < is a dense, linear
order without endpoints. This theory is also
complete.
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Definition 7.5 (Semantics of first order logic, Model A)

Let ϕ be a formula, A a structure matching with ϕ
and % a variable assignment over A. For each term
t, which can be built from components of ϕ, we
define the value of t in the structure A, called
A(t).

1 for a variable x is A(x) =def %(x).
2 if t has the form t = fk(t1, . . . , tk), with t1, . . . , tk

being terms and fk a k-dimensional function
symbol, then A(t) =def f

A(A(t1), . . . ,A(tk)).

Compare with Definition 6.10.
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Definition (continued)

We define inductively the logical value of a formula ϕ in A:
1. if ϕ =def P

k(t1, . . . , tk) with the terms t1, . . . , tk and the
k-dimensional predicate symbol P k, then

A(ϕ) =def

{
>, if (A(t1), . . . ,A(tk)) ∈ PA,
�, else.

2. if ϕ =def ¬ψ, then

A(ϕ) =def

{
>, if A(ψ) = �,
�, else.

3. if ϕ =def (ψ ∧ η), then

A(ϕ) =def

{
>, if A(ψ) = > and A(η) = >,
�, else.
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Definition (continued)

4. if ϕ =def (ψ ∨ η), then

A(ϕ) =def

{
>, if A(ψ) = > or A(η) = >,
�, else.

5. if ϕ =def ∀xψ, then

A(ϕ) =def

{
>, if ∀ d ∈ UA : A[x/d](ψ) = >,
�, else.

6. if ϕ =def ∃xψ, then

A(ϕ) =def

{
>, if ∃d ∈ UA : A[x/d](ψ) = >,
�, else.

For d ∈ UA let A[d/x] be the structure A′, identical to A except for the
definition of xA

′
: xA

′
=def d (whether IA is defined for x or not).
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Definition (continued)
We write:

A |= ϕ[%] for A(ϕ) = >: A is a model for ϕ with respect to %.

If ϕ does not contain free variables, then A |= ϕ[%] is
independent from %. We simply leave out %.

If there is at least one model for ϕ, then ϕ is called
satisfiable or consistent.

A free variable is a variable which is not in the scope of a
quantifier. For instance, z is a free variable of ∀xP (x, z) but not
free (or bounded) in ∀z∃xP (x, z).
A variable can occur free and bound in the same formula. So we
have to talk about a particular occurrence of a variable: the very
position of it in the formula.
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Definition 7.6 (Tautology)

1 A theory is a set of formulae without free
variables: T ⊆ FmlL. The structure A satisfies
T if A |= ϕ holds for all ϕ ∈ T . We write A |= T
and call A a model of T .

2 A L-formula ϕ is called L-tautology, if for all
matching L-structures A the following
holds: A |= ϕ.

From now on we suppress the language L,
because it is obvious from context.
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Definition 7.7 (Consequence set Cn(T ))

A formula ϕ follows semantically from T , if for
all structures A with A |= T also A |= ϕ holds.
We write: T |= ϕ.

In other words: all models of T do also satisfy ϕ.

We denote by CnL(T ) =def {ϕ ∈ FmlL : T |= ϕ},
or simply Cn(T ), the semantic consequence
operator.
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Lemma 7.8 (Properties of Cn(T ))

The semantic consequence operator Cn has the
following properties

1 T -extension: T ⊆ Cn(T ),
2 Monotony: T ⊆ T ′ ⇒ Cn(T ) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T )) = Cn(T ).

Lemma 7.9 (ϕ 6∈ Cn(T))

ϕ 6∈ Cn(T ) if and only if there is a structure A
with A |= T and A |= ¬ϕ.

Or: ϕ 6∈ Cn(T ) iff there is a counterexample: a
model of T in which ϕ is not true.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 543



7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.10 (MOD(T ), Cn(U))

If T ⊆ FmlL, then we denote by MOD(T ) the set of all
L-structures A which are models of T :

MOD(T ) =def {A : A |= T}.

If U is a set of structures then we can consider all sentences, which
are true in all structures. We call this set also Cn(U):

Cn(U) =def {ϕ ∈ FmlL : ∀A ∈ U : A |= ϕ}.

MOD is obviously dual to Cn:

Cn(MOD(T )) = Cn(T ), MOD(Cn(T )) = MOD(T ).
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Definition 7.11 (Completeness of a theory T )

T is called complete, if for each formula
ϕ ∈ FmlL: T |= ϕ or T |= ¬ϕ holds.

Attention:

Do not mix up this last condition with the
property of a structure v (or a model): each
structure is complete in the above sense.

Lemma 7.12 (Ex Falso Quodlibet)

T is consistent if and only if Cn(T ) 6= FmlL.
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An illustrating example

Example 7.13 (Natural numbers in different languages)

NPr = (N0, 0
N ,+N ,

.
=N ) („Presburger Arithmetik”),

NPA = (N0, 0
N ,+N , ·N , .=N ) („Peano Arithmetik”),

NPA′ = (N0, 0
N , 1N ,+N , ·N , .=N ) (variant of NPA).

These sets each define the same natural numbers, but in
different languages.

Question:
If the language is bigger then we might express more.
Is LPA′ strictly more expressive than LPA?
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Answer:

No, because one can replace the 1N by a
LPA-formula: there is a LPA-formula φ(x) so that
for each variable assignment ρ the following
holds:

NPA′ |=ρ φ(x) if and only if ρ(x) = 1N

Thus we can define a macro for 1.
Each formula of LPA′ can be transformed into
an equivalent formula of LPA.
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Question:

Is LPA perhaps more expressive than LPr, or can
the multiplication be defined somehow?

Indeed, LPA is more expressive:

the set of sentences valid in NPr is decidable,
whereas
the set of sentences valid in NPA is not even
recursively enumerable.
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Question:

We have introduced Z = (Z, 0Z, 1Z,+Z,−Z, ·Z, <Z)
in the chapter about the Hoare calculus. How
does it compare with NPA?

“ .=” can be defined with < and vice versa in Z
and NPA (resp. in NPr).
“−” can also be defined with the other
constructs.
NPA can be defined in Z with an appropriate
formula φ(x):

Z |=ρ φ(x) if and only if ρ(x) ∈ N0
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Can NPA be defined in (Z,+Z, ·Z)?
To be more precise, for each LPA formula φ, there
is a LZ formula φ′ such that: if NPA′ |= φ then
Z |= φ′.

So Z is at least as difficult as NPA.
The converse is true as well. Therefore although
the theories of Z and NPA are not identical, the
truth of a formula in one of them can be reduced
to the truth of a translated formula in the other
one.
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Question:

What about R = (R, 0R, 1R,+R,−R, ·R, <R) and
Q = (Q, 0Q, 1Q,+Q,−Q, ·Q, <Q)? How do they
compare with NPA?

State a formula that distinguishes both
structures.
Can one define Q within R (as we did define
NPA in Z)?
Is there an axiomatization of R?

In general, theories of particular structures
are undecidable. But it depends on the
underlying language.
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As for sentential logic, formulae can be derived
from a given theory and they can also
(semantically) follow from it.
Syntactic derivability `: the notion that certain

formulae can be derived from other
formulae using a certain calculus,

Semantic validity |=: the notion that certain
formulae follow from other formulae
based on the semantic notion of a
model.
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Definition 7.14 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a relation
|=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

Φ ` φ implies Φ |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

Φ |= φ implies Φ ` φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 553



7 Knowledge Engineering: FOL
7.1 First Order Logic

We have already defined a complete and correct calculus for
sentential logic LSL. Such calculi also exist for first order
logic LFOL.

Theorem 7.15 (Correct-, Completeness of FOL)

A formula follows semantically from a theory T if and only if
it can be derived:

T ` ϕ if and only if T |= ϕ

Theorem 7.16 (Compactness of FOL)

A formula follows follows semantically from a theory T if and
only if it follows semantically from a finite subset of T :

Cn(T ) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′ finite}.
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Predicate- or function- symbols?

How to formalize each animal has a brain?
1 Two unary predicate symbols: animal(x),
has_brain(x). The statement becomes

∀x ( animal(x)→ has_brain(x) )

2 Finally, what about a binary predicate
is_brain_of(y, x) and the statement

∀x ( animal(x) → ∃y is_brain_of(y, x) )

3 But why not introducing a unary function
symbol brain_of(x) denoting x’s brain? Then

∀x ∃y ( animal(x) → y
.
= brain_of(x) )
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Unary function or binary predicate?

Given a unary function symbol f (x) and a
constant c. Then the only terms that can
be built are of the form fn(c). Assume we
have .

= as the only predicate. Then the
atomic formulae that we can built have
the form fn(c)

.
= fm(c). We call this

language L1.
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Unary function or binary predicate? (2)

Assume now that instead of f and .
=, we

use a binary predicate pf(y, x) which
formalizes y .

= f (x). We call this language
L2.

Can we express all formulae of L1 in
L2?
And vice versa?
What is the difference between
both approaches?
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Tuna the cat
We formalize again the example of the killed cat,
this time in FOL.

1 Jack owns a dog.
7→ owns(x, y), dog(x), jack.

2 Dog owners are animal lovers.
7→ animal_lover(x).

3 Animal lovers do not kill animals.
7→ killer_of(x, y), animal(x).

4 Either Jack or Bill killed Tuna, the cat.
7→ bill, tuna, cat(x), killer_of(x, y).

The formalization follows on the blackboard.
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Question:

How do we axiomatize the Wumpus-world in
FOL?

function KB-AGENT( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action�ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action
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Idea:
In order to describe actions or their effects consistently we
consider the world as a sequence of situations (snapshots of
the world). Therefore we have to extend each predicate by
an additional argument.

We use the function symbol

result(action, situation)

as the term for the situation which emerges when the
action action is executed in the situation situation.

Actions: Turn_right, Turn_left, Foreward, Shoot, Grab,
Release, Climb.
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PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

Forward

S0

Forward

Turn (Right)
S1

S0S2

S3
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We also need a memory, a predicate

At(person, location, situation)

with person being either Wumpus or Agent and location
being the actual position (stored as pair [i,j]).

Important axioms are the so called successor-state axioms,
they describe how actions effect situations. The most
general form of these axioms is

true afterwards ⇐⇒ an action made it true
or it is already true and
no action made it false
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Axioms about At(p, l, s):

At(p, l, result(Forward, s))↔((l
.
= location_ahead(p, s) ∧ ¬Wall(l))

At(p, l, s) →Location_ahead(p, s)
.
=

Location_toward(l, Orient.(p, s))
Wall([x, y]) ↔(x

.
= 0 ∨ x .

= 5 ∨ y .
= 0 ∨ y .

= 5)
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Location_toward([x, y], 0)
.
= [x+ 1, y]

Location_toward([x, y], 90)
.
= [x, y + 1]

Location_toward([x, y], 180)
.
= [x− 1, y]

Location_toward([x, y], 270)
.
= [x, y − 1]

Orient.(Agent, s0)
.
= 90

Orient.(p, result(a, s)) .
= d↔

((a
.
= turn_right ∧ d .

= mod(Orient.(p, s)− 90, 360))
∨(a

.
= turn_left ∧ d .

= mod(Orient.(p, s) + 90, 360))
∨(Orient.(p, s)

.
= d ∧ ¬(a

.
= Turn_right ∨ a .

= Turn_left))

mod(x, y) is the implemented “modulo”-function,
assigning a value between 0 and y to each
variable x.
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Axioms about percepts, useful new notions:

Percept([Stench, b, g, u, c], s) → Stench(s)
Percept([a,Breeze, g, u, c], s) → Breeze(s)
Percept([a, b,Glitter, u, c], s) → At_Gold(s)
Percept([a, b, g, Bump, c], s) → At_Wall(s)
Percept([a, b, g, u, Scream], s) → Wumpus_dead(s)

At(Agent, l, s) ∧Breeze(s) → Breezy(l)
At(Agent, l, s) ∧ Stench(s) → Smelly(l)
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Adjacent(l1, l2) ↔ ∃ d l1
.
= Location_toward(l2, d)

Smelly(l1) → ∃l2 At(Wumpus, l2, s)∧
(l2

.
= l1 ∨ Adjacent(l1, l2))

Percept([none, none, g, u, c], s)∧
At(Agent, x, s) ∧ Adjacent(x, y)

→ OK(y)
(¬At(Wumpus, x, t) ∧ ¬Pit(x))

→ OK(y)
At(Wumpus, l1, s) ∧ Adjacent(l1, l2)

→ Smelly(l2)
At(Pit, l1, s) ∧ Adjacent(l1, l2)

→ Breezy(l2)
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Axioms to describe actions:

Holding(Gold, result(Grab, s)) ↔ At_Gold(s)∨
Holding(Gold, s)

Holding(Gold, result(Release, s)) ↔ �
Holding(Gold, result(Turn_right, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Turn_left, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Forward, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Climb, s)) ↔ Holding(Gold, s)

Each effect must be described carefully.
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Axioms describing preferences among actions:

Great(a, s)→ Action(a, s)
(Good(a, s) ∧ ¬∃bGreat(b, s))→ Action(a, s)
(Medium(a, s) ∧ ¬∃b (Great(b, s) ∨Good(b, s)))→ Action(a, s)
(Risky(a, s) ∧ ¬∃b (Great(b, s) ∨Good(b, s) ∨Medium(a, s)))

→ Action(a, s)
At(Agent, [1, 1], s) ∧Holding(Gold, s)→ Great(Climb, s)
At_Gold(s) ∧ ¬Holding(Gold, s)→ Great(Grab, s)
At(Agent, l, s) ∧ ¬V isited(Location_ahead(Agent, s))∧
∧OK(Location_ahead(Agent, s))→ Good(Forward, s)
V isited(l)↔ ∃sAt(Agent, l, s)
The goal is not only to find the gold but also to return safely.
We need additional axioms like

Holding(Gold, s)→ Go_back(s).
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Blocksworld

The Blocks World (BW) is one of the most popular
domains in AI (first used in the 1970s). However,
the setting is easy:
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Domain

Blocks of various shapes, sizes and colors sitting
on a table and on each other.

(Here: Quadratic blocks of equal size.)

Actions

Pick up a block and put it to another position
(tower of blocks or table). Only the topmost
blocks can be used.

How to formalize this? What language to use?
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Choosing the predicates: First try.

1 One action: move. We add a ternary predicate
move(b, x, y): The block b is moved from x to y
if both b and y are clear (nothing on top of
them).

2 So we need a predicate clear(x).
3 One predicate on(b, x) meaning block b is on x.
4 But then clear(x) can be defined by
∀y ¬on(y, x).

Problem: What about the table?

If we view the table as a simple block: clear(table)
means that there is nothing on the table.
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Choosing the predicates: Second try.

Keep the current framework, view the table as a
block but add an additional binary predicate

move_to_table(b, x),

meaning that the block b is moved from x to the
table.

clear(x) is interpreted as there is free place on x to
put a block on x. This interpretation does also
work for x .

= table.
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Choosing the predicates: Third try.

Definition 7.17 (LBW)

The BW language LBW ⊆ LFOL is the subset of FOL
having a signature consisting of the two binary
predicate symbols above and .

=.

We define the following macros:
on(x, y) : above(x, y) ∧ ¬(∃z(above(x, z) ∧ above(z, y)))

onTable(x) : ¬(∃y(above(x, y)))
clear(x) : ¬(∃y(above(y, x)))

How do the LBW -structures look like?

Do they all make sense?
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Our blocksworld has a very specific structure,
which should be reflected in the models!

Definition 7.18 (Chain)

Let A be a nonempty set. We say that (A,<) is a
chain if < is a binary relation on A which is

1 irreflexive,
2 transitive, and
3 connected, (i.e., for all a, b ∈ A it holds that

either a < b, a = b, or a > b).

(A chain is interpreted as a tower of blocks.)
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Definition 7.19 (LBW-BW-structure)

An BW-structure is a LBW-structure A = (U, I) in
which I(above) is a finite and disjoint union of
chains over U , i.e.

I(above) =
⋃

(A,<)∈A′
{(a, b) ∈ A2 | a > b}}

where A′ is a set of chains over U such that for all
(A1, <1), (A2, <2) ∈ A′ with (A1, <1) 6= (A2, <2) it
holds that A1 ∩ A2 = ∅.

(Note: I(above) is transitive!)
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Definition 7.20 (BW-theory)

The theory Th(BW ) consists of all LBW-sentences
which are true in all BW-structures.

Is the theory complete?
No, consider for example

∀x, y(onTable(x) ∧ onTable(y)→ x
.
= y)

What about planning in the blocksworld?
This should be done automatically as in the
case of the Sudoku game or the puzzle.
Thus we need a FOL theorem prover.

 An axiomatization is needed!
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A complete axiomatization
The following set AX BW of axioms was proposed by Cook
and Liu (2003):

1 ∀x ¬above(x, x)
2 ∀x ∀y ∀z (above(x, y) ∧ above(y, z))→ above(x, z)
3 ∀x ∀y ∀z (above(x, y) ∧ above(x, z))→

(y = z ∨ above(y, z) ∨ above(z, y))
4 ∀x ∀y ∀z (above(y, x) ∧ above(z, x))→

(y = z ∨ above(y, z) ∨ above(z, y))
5 ∀x (onTable(x) ∨ ∃y(above(x, y) ∧ onTable(y)))
6 ∀x (clear(x) ∨ ∃y(above(y, x) ∧ clear(y)))
7 ∀x ∀y (above(x, y)→ (∃zon(x, z) ∧ ∃zon(z, y))

The last statement says that if an element is not on top (y)
then there is a block above it, and if an element is not at the
bottom (x) then there is an element below it.

Is every LBW-BW-structure also a model for AX BW?
 Exercise

Prof. Dr. Jürgen Dix Clausthal, SS 2013 579



7 Knowledge Engineering: FOL
7.3 The Blocksworld

Lemma 7.21

Cn(AX BW) ⊆ Th(BW ).

Proof:  Exercise

Indeed, both sets are identical:

Theorem 7.22 (Cook and Liu)

Cn(AX BW) = Th(BW ).

Thus the axiomatization is sound and complete.

Additionally, the theory is decidable!

 We are ready to use a theorem prover!
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7.4 Higher order logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 581



7 Knowledge Engineering: FOL
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Definition 7.23 (Second order logic LPL 2)

The language L2ndOL of second order logic consists of the
language LFOL and additionally

for each k ∈ N0: Xk
1 , X

k
2 , . . . , X

k
n, . . . a countable set

RelVark of k-ary predicate variables.
Thereby the set of terms gets larger:

if Xk is a k-ary predicate variable and t1, . . . , tk are
terms, then Xk(t1, . . . , tk) is also a term

and also the set of formulae:
if X is a predicate variable, ϕ a formula, then (∃Xϕ) and
(∀Xϕ) are also formulae.

Not only elements of the universe can be quantified but also
arbitrary subsets resp. k-ary relations.
The semantics do not change much – except for the new
interpretation of formulae like (∃Xϕ), (∀Xϕ)).
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We also require from IA that the new k-ary
predicate variables are mapped onto k-ary
relations on UA.

if ϕ =def ∀Xk ψ, then

A(ϕ) =def

{
>, if for all Rk ⊆ UA × · · · × UA : A[Xk/Rk](ψ) = >,
�, else.

if ϕ =def ∃Xk ψ, then

A(ϕ) =def

{
>, if there is a Rk ⊆ UA × · · · × UA with A[Xk/Rk](ψ) = >,
�, else.

We can quantify over arbitrary n-ary relations,
not just over elements (like in first order logic).
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Dedekind/Peano Characterization of N
The natural numbers satisfy the following axioms:

Ax1: 0 is a natural number.

Ax2: For each natural number n, there is exactly one
successor S(n) of it.

Ax3: There is no natural number which has 0 as its
successor.

Ax4: Each natural number is successor of at most one
natural number.

Ax5: The set of natural numbers is the smallest set N
satisfying the following properties:

1 0 ∈ N ,
2 n ∈ N ⇒ S(n) ∈ N .

The natural numbers are characterized up to isomorphy by these
axioms.
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7.4 Higher order logic

How to formalize the last properties?

Language: We choose “0” as a constant and
“S(·)” as a unary function symbol.

Axiom for 0: ∀x¬S(x)
.
= 0.

Axiom for S: ∀x∀y (S(x)
.
= S(y)→ x

.
= y).

Axiom 5: ∀X ( (X(0) ∧ ∀x (X(x)→ X(S(x)))) →
∀yX(y)).

While the first two axioms are first-order, the last
one is essentially second-order.
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Different languages for NPA

NPA = (N0, 0
N , 1N ,+N ,

.
=N )

NPA = (N0, 0
N , SN ,+N ,

.
=N )

NPA = (N0, 0
N , 1N , SN ,+N ,

.
=N )

NPA = (N0, 1
N ,+N ,

.
=N )

All these structures, resp. their formulae
are interdefinable.
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7.4 Higher order logic

Question

What do the following two 2nd order sentences
mean?

∀x∀y (x
.
= y ⇐⇒ ∀X (X(x)⇐⇒ X(y))),

∀X ( ∀x∃!yX(x, y) ∧
∀x∀y∀z ( (X(x, z) ∧X(y, z))→ x

.
= y))

→ ∀x∃yX(y, x) )
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7.4 Higher order logic

Answer:

The first sentence shows that equality can be
defined in 2nd OL (in contrast to FOL).
The second sentence holds in a structure iff it is
finite. Note that this cannot be expressed in FOL.

While the semantics of L2ndOL is a canonical
extension of LFOL, this does not hold for the
calculus level. It can be shown that the set of
valid sentences in L2ndOL is not even recursively
enumerable.
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7.4 Higher order logic

Attention:

There is no correct and complete
calculus for 2nd Order Logic!
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8. Knowledge Engineering:
Provers

8 Knowledge Engineering: Provers
Theorem Proving
Resolution
Herbrand
Variants of resolution
SLD resolution
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Content of this chapter:

Provers: We describe several theorem provers that are
freely available and that can handle FOL.

Resolution: There are several calculi for implementing FOL.
While the classical ones are not really feasible,
resolution calculi can be efficiently
implemented (and are the basis of most
provers).

Variants: Resolution implementations often have huge
search spaces. There are several variants that can
be more efficiently implemented. SLD
resolution leads to PROLOG as a programming
language.
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8.1 Theorem Proving
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8.1 Theorem Proving

Automated Theorem Proving
Development of computer programs that show
that some statement (the conjecture) is a logical
consequence of a set of statements (axioms and
assumptions).
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8.1 Theorem Proving

Examples

First year math students usually prove that
groups of order two are commutative.
Management consultants might formulate
axioms that describe how organizations grow
and interact, and from those axioms prove that
organizational death rates decrease with
age.
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8.1 Theorem Proving

Examples (cont.)

Hardware developers might validate the
design of a circuit by proving a conjecture
that describes a circuit’s performance, given
axioms that describe the circuit itself.
Lazy crosswords fans might prepare a
database of words and rules of putting a
crossword together, and generate the
crosswords solution as a proof.
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The Idea

Specification of what we have (the system):
Assumptions/axioms A1, . . . , An

Specification of what we want: Goals
G1, . . . , Gk

Now, we want to prove or disprove that

A1 ∧ · · · ∧ An |= G1 ∧ · · · ∧Gk

 verification!
constructive proof synthesis!
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How can we use a theorem prover?
Correctness proving: We prove
A1 ∧ · · · ∧ An ` G1 ∧ · · · ∧Gk

Testing: We look for counterexamples
(models!)
Solution synthesis: The constructed
proof/model is the solution
 software synthesis
 hardware synthesis
 plan generation etc.
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The language = logic

Often: Classical First Order Logic
Possibly: A non-classical logic or higher order
logic
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8.1 Theorem Proving

The system needs a formal description of the
problem in some logical form.

User prepares the description.
Prover attempts to solve the problem.
If successful: Proof is the output.
If unsuccessful: User can provide guidance,
simplify/split the problem, and/or revise the
description.

This formality is both the underlying strength
and handicap of ATP.
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8.1 Theorem Proving

Pros of logical languages

Allow a precise formal statement of the
necessary information.
No ambiguity in the statement of the problem
(often the case when using natural language).
Force the user to describe the problem
precisely and accurately.
The process often leads to a clearer and
deeper understanding of the problem
domain.
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8.1 Theorem Proving

Cons of logical languages

Require a precise formal statement of the
necessary information
 many problems are not formalizable!
Examples:
Creating a good user interface.
Creating a system which defends itself
reasonably well against unpredicted
situations.
Even for domains which are in principle
formalizable: Inaccurate formalizations are
easy to obtain.
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Cons of logical languages (cont.)

Force the user to describe the problem
precisely and accurately.
 considerable skills needed!
Computational intractability.
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Computational complexity of the problem

Propositional logic: co-NP-complete.
First-order logic: recursively enumerable
(re).
Higher-order logic: Not even re.
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Way out of the complexity

Computer-assisted theorem proving

Fully automatic
theorem prover

← · · · · · · → Proof checker
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Interactive theorem provers require a human
to give hints to the system.
The interaction may be at a very detailed level,
where the user guides the inferences made by
the system, or at a much higher level where
the user determines intermediate lemmas to
be proved on the way to the proof of a
conjecture.
Often: the user defines a number of proof
strategies proving toolbox (e.g., Isabelle).
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Popular ATP techniques

First-order resolution with unification,
Higher-order unification,
Model elimination,
Superposition and term rewriting,
Lean theorem proving,
Method of analytic tableaux,
Mathematical induction,
DPLL (Davis-Putnam-Logemann-Loveland algorithm).

All the previously mentioned complexity bounds still apply!
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CASC: CADE ATP System Competition, a yearly
contest of first-order provers for many important
classes of first-order problems.

http://www.cs.miami.edu/~tptp/CASC/
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Some important first-order provers (all have won
at least one CASC competition division):

E
Gandalf
Otter Prover9/Mace4
SETHEO
SPASS
Vampire (won the "world cup for theorem
provers" for eight years: 1999, 2001–2007)
Waldmeister (won the CASC UEQ division for
the last ten years: 1997-2006); recently
embedded in Mathematica
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Other Important Systems

HOL
Isabelle
Mizar

Growing competition: Model checking (especially
in logics of time, action and knowledge).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 609



8 Knowledge Engineering: Provers
8.1 Theorem Proving

Example: animals, cats, and Garfield

Assumptions:
cat(x) -> animal(x).
cat(Garfield).

Goals:
exists x animal(x).
-(exists x animal(x)).

 Ontologies, Semantic web
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Prover9 Syntax

Meaning Connective Example
negation – (–p)
disjunction | (p | q | r)
conjunction & (p & q & r)
implication –> (p –> q)
equivalence <–> (p <–> q)
universal quant. all (all x all y p(x,y))
existential quant. exists (exists x p(x,y))
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Prover9 Syntax (cont.)

Variables start with (lower case) u through z
Otherwise: Constants
Free variables in clauses and formulas are
assumed to be universally quantified at the
outermost level

Prover9 uses resolution with refutation.
Thus, its inference rules operate on clauses.
If non-clausal formulas are input, Prover9
immediately translates them to clauses by
NNF, Skolemization, and CNF conversions.
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Schubert’s Steamroller
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Success Stories

Fields where ATP has been successfully used:
Logic and mathematics.
Computer science and engineering (software
creation and verification, hardware design and
verification – esp. integrated circuit design and
verification, and knowledge based systems).
Social science.
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Mathematics

EQP: Settling of the Robbins problem (open
for 63 years!)
Otter: Several results in quasi-groups;
axiomatizations of algebraic structures.
Mizar: Cross-verification of the Mathematical
Library (ongoing).
Geometry Expert: New results in Euclidean
geometry.
NUPRL helped to confirm Higman’s lemma
and Gerard’s paradox.
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Mathematics (cont.)

Results by dedicated provers (no general
theorem provers):

Proof of four color theorem (very
controversial: The first mathematical proof
which was impossible to verify by humans due
to the enormous size of the program’s
calculation).

Solving the game of Connect Four.
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Software creation

KIDS: Used to derive scheduling algorithms
that have outperformed currently used
algorithms.
Amphion (NASA): Determining subroutines
for satellite guidance
Certifiable Synthesis (NASA).
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Software verification

KIV (Karlsruhe): Verified an implementation
of set functions, graph representations and
algorithms, and a Prolog to WAM compiler.
PVS: Diagnosis and scheduling algorithms for
fault tolerant architectures; requirements
specification for parts of the space shuttle
flight control system.
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Hardware verification

Employed e.g. by IBM, Intel, and Motorola
(especially since the Pentium FDIV bug).
ACL2: Correctness proof of the floating point
divide code for AMD5K86 microprocessor.
ANALYTICA: Used to verify a division circuit
that implements the floating point standard of
IEEE.
RRL: Verification of adder and multiplier
circuits.
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Hardware verification (cont.)

PVS: Used to verify a microprocessor for
aircraft flight control.
Nqthm: Correctness proof of the FM9001
microprocessor.
HOL: Hardware verification at Bell
Laboratories.
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Verification of critical section
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8.2 Resolution
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8.2 Resolution

Definition 8.1 (Most general unifier: mgU)

Given a finite set of equations between terms or
equations between literals.
Then there is an algorithm which calculates a
most general solution substitution (i.e. a
substitution of the involved variables so that the
left sides of all equations are syntactically identical
to the right sides) or which returns fail.
In the first case the most general solution
substitution is defined (up to renaming of
variables): it is called

mgU, most general unifier
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8.2 Resolution

p(x, a) = q(y, b),
p(g(a), f (x)) = p(g(y), z).
Basic substitutions are:
[a/y, a/x, f (a)/z], [a/y, f (a)/x, f (f (a))/z],

and many more.
The mgU is: [a/y, f (x)/z] .
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Given: f(x, g(h(y), y)) = f(x, g(z, a))

The algorithm successively calculates the
following sets of equations:

{ x = x, g(h(y), y) = g(z, a) }
{ g(h(y), y) = g(z, a) }
{ h(y) = z, y = a }
{ z = h(y), y = a }
{ z = h(a), y = a }

Thus the mgU is: [x/x, a/y, h(a)/z].
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The occur-check

Given: f(x, g(x)) = f(c, c)

Is there an mgU?
The algorithm gives the following:

{ x = c, g(x) = c }

But setting x = c is not a unifying substitution, because
c 6= g(c).
Therefore there is no mgU. And the algorithm has to do
this check, called occur check, to test whether the
substitution is really correct.
However, this check is computationally expensive and
many algorithms do not do it.
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A resolution calculus for FOL
The resolution calculus is defined over the language
Lres ⊆ LFOL where the set of well-formed formulae FmlResLres
consists of all disjunctions of the following form

A ∨ ¬B ∨ C ∨ . . . ∨ ¬E,
i.e. the disjuncts are only atoms or their negations. No
implications or conjunctions are allowed. These formulae
are also called clauses.
Such a clause is also written as the set

{A,¬B,C, . . . ,¬E}.
This means that the set-theoretic union of such sets
corresponds again to a clause.
Note, that a clause now consists of atoms rather than
constants, as it was the case of the resolution calculus for SL.
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Definition 8.2 (Robinson’s resolution for FOL)

The resolution calculus consists of two rules:

(Res)
C1 ∪ {A1} C2 ∪ {¬A2}
(C1 ∪ C2)mgU(A1, A2)

where C1 ∪ {A1} and C2 ∪ {A2} are assumed to be
disjunct wrt the variables, and the factorization
rule

(Fac)
C1 ∪ {L1, L2}

(C1 ∪ {L1})mgU(L1, L2)
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Illustration of the resolution rule

Example 8.3

Consider the set
M = {r(x) ∨ ¬p(x), p(a), s(a)} and the
question M |= ∃x(s(x) ∧ r(x))?
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Definition 8.4 (Resolution Calculus for FOL)

We define the resolution calculus
RobinsonFOLLres = 〈∅, {Res,Fac}〉 as follows. The
underlying language is Lres ⊆ LFOL defined on
Slide 627 together with the set of well-formed
formulae FmlResLres.

Thus there are no axioms and only two inference
rules. The well-formed formulae are just clauses.
Question:

Is this calculus correct and complete?
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Question:
Why do we need factorization?

Answer:
Consider

M = {{s(x1), s(x2)}, {¬s(y1),¬s(y2)}}

Resolving both clauses gives

{s(x1)} ∪ {¬s(y1)}

or variants of it.
Resolving this new clause with one in M only leads to
variants of the respective clause in M .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 631



8 Knowledge Engineering: Provers
8.2 Resolution

Answer (continued):

� can not be derived (using resolution only).

Factorization solves the problem, we can deduce
both s(x) and ¬s(y), and from there the empty
clause.

Theorem 8.5 (Resolution is refutation complete)

Robinsons resolution calculus RobinsonFOLLres is
refutation complete: Given an unsatisfiable set,
the empty clause can eventually be derived using
resolution and factorization.
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What to do if the formulae are not clauses?

In that case, we have to transform them into
clauses of the required form.

Let us consider
Example 8.6

Let
M = {∃x∃y Q(x) ∧ ¬Q(y), ∀x∃y P (x, y)→ ¬Q(y)}.
How to deal with the existential quantifiers?
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The first formula is easy to transform: we just add
two new constants c, c′ and instantiate them for
the variables. This leads to Q(c) ∧ ¬Q(c′), or the
two clauses Q(c) and Q(c′).

The second formula is more complicated, because
there is no single y. We have to take into account,
that the y usually depends on the chosen x.
Therefore we introduce a function symbol f(x):
∀xP (x, f(x))→ ¬Q(f(x)). Then we have to
transform the formula into disjunctive form:
∀x¬P (x, f(x)) ∨ ¬Q(f(x)).
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Transformation into a set of clauses
Applying the technique of the last slide
recursively, we can transform each set M in a
language L into a set M ′ of clauses in an extended
language L′ . It can be shown that the following
holds.
Theorem 8.7

Let M be a set of first-order sentences in a language
L and let M ′ be its transform. Then

M is satisfiable if and only if M ′ is satisfiable.

Because of the refutation completeness of the
resolution calculus, this property is all we need.
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8.3 Herbrand

The introduced relation T |= φ states that each
model of T is also a model of φ. But because
there are many models with very large universes
the following question comes up: can we restrict
to particular models ?
Theorem 8.8 (Löwenheim-Skolem)

T |= φ holds if and only if φ holds in all countable
models of T .

By countable we mean the size of the universe of
the model.
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Quite often the universes of models (which we are
interested in) consist exactly of the basic terms TermL(∅).
This leads to the following notion:

Definition 8.9 (Herbrand model)

A model A is called Herbrand model with respect to a
language if the universe of A consists exactly of TermL(∅)
and the function symbols fki are interpreted as follows:

fki
A

: TermL(∅)× . . .× TermL(∅) → TermL(∅);
(t1, . . . , tk) 7→ fki (t1, . . . , tk)

We write T |=Herb φ if each Herbrand model of T is also a
model of φ.
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Theorem 8.10 (Reduction to Herbrand models)

If T is universal and φ existential, then the
following holds:

T |= φ if and only if T |=Herb φ

Question:

Is T |=Herb φ not much easier, because we have to
consider only Herbrand models? Is it perhaps
decidable?

No, truth in Herbrand models is highly
undecidable.
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The following theorem is the basic result for applying
resolution. In a way it states that FOL can be somehow
reduced to SL.
Theorem 8.11 (Herbrand)
Let T be universal and φ without quantifiers. Then:

T |= ∃φ if and only if there are t1, . . . , tn ∈ TermL(∅)
with: T |= φ(t1) ∨ . . . ∨ φ(tn)

Or: Let M be a set of clauses of FOL (formulae in the form
P1(t1) ∨ ¬P2(t2) ∨ . . . ∨ Pn(tn) with ti ∈ TermL(X)). Then:

M is unsatisfiable
if and only if
there is a finite and unsatisfiable set Minst of
basic instances of M .
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In automatic theorem proving we are always
interested in the question

M |= ∃x1, . . . xn
∧
i

φi

Then
M ∪ {¬∃x1, . . . xn

∧
i

φi}

is a set of clauses, which is unsatisfiable if and
only if the relation above holds.
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8.4 Variants of resolution

Our general goal is to derive an existentially
quantified formula from a set of formulae:

M ` ∃ϕ.

To use resolution we must form M ∪ {¬∃ϕ} and
put it into the form of clauses. This set is called
input.

Instead of allowing arbitrary resolvents, we try to
restrict the search space.
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Example 8.12 (Unlimited Resolution)

Let M := {r(x) ∨ ¬p(x), p(a), s(a)} and
�← s(x) ∧ r(x) the query.
An unlimited resolution might look like this:

r(x) ∨ ¬p(x) p(a)

r(a)

s(a) ¬s(x) ∨ ¬r(x)

¬r(a)

�
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Input resolution: in each resolution step one of the two
parent clauses must be from the input. In our
example:

¬s(x) ∨ ¬r(x) s(a)

¬r(a)
r(x) ∨ ¬p(x)

¬p(a)
p(a)

�
Linear resolution: in each resolution step one of the two

parent clauses must either be from the input
or must be a successor of the other parent
clause.
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8.4 Variants of resolution

Theorem 8.13 (Completeness of resolution variants)

Linear resolution is refutation complete.
Input resolution is correct but not refutation
complete.

Idea:

Maybe input resolution is complete for a
restricted class of formulae.
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8.5 SLD resolution
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Definition 8.14 (Horn clause)

A clause is called Horn clause if it contains at most
one positive atom.

A Horn clause is called definite if it contains
exactly one positive atom. It has the form

A(t)← A1(t1), . . . , An(tn).

A Horn clause without positive atom is called
query:

�← A1(t1), . . . , An(tn).
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.15 (Input resolution for Horn clauses)

Input resolution for Horn clauses is refutation complete.

Definition 8.16 (SLD resolution wrt P and query Q)

SLD resolution with respect to a program P and the
query Q is input resolution beginning with the query
�← A1, . . . , An. Then one Ai is chosen and resolved with a
clause of the program. A new query emerges, which will be
treated as before. If the empty clause �← can be derived
then SLD resolution was successful and the instantiation of
the variables is called computed answer.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.17 (Correctness of SLD resolution)
Let P be a definite program and Q a query. Then each answer
calculated for P wrt Q is correct.

Question:
Is SLD completely instantiated?

Definition 8.18 (Computation rule)

A computation rule R is a function which assigns an atom
Ai ∈ {A1, . . . , An} to each query �← A1, . . . , An. This Ai is
the chosen atom against which we will resolve in the next
step.

Note:
PROLOG always uses the leftmost atom.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

In the following, we are illustrating SLD resolution
on the following program:

p(x, z) ← q(x, y), p(y, z)
p(x, x)
q(a, b)

We would like to know, for which instances for x,
the fact p(x, b) follows from the above theory.

Obviously, there are two solutions: x = a and
x = b and these are the only ones.

We are now showing how to derive these
solutions using SLD resolution.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

← p(x, b)

← q(x, y), p(y, b)

← p(b, b)

← q(b, u), p(u, b)

�
[b/x]

“Success”

“Failure”

�

“Success”
[a/x]

�
�
��

�
�

��

@
@
@@

@
@
@@

1

1

2

2

3
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8 Knowledge Engineering: Provers
8.5 SLD resolution

← p(x, b)

← q(x, y), p(y, b)

← q(x, y), q(y, u), p(u, b) ← q(x, b)

← q(x, y), q(y, u), q(u, v), p(v, b) ← q(x, y), q(y, b)

← q(x, a)

�
[b/x]

“Success”

“Failure”

�

“Success”

�

“Success”

[a/x]

�
�
��

�
�

��

�
�

��

�
�

�
�

��
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@
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@
@@
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@
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8 Knowledge Engineering: Provers
8.5 SLD resolution

A SLD tree may have three different kinds of
branches:

1 infinite ones,
2 branches ending with the empty clause

(and leading to an answer) and
3 failing branches (dead ends).
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.19 (Independence of computation rule)

Let R be a computation rule and σ an answer
calculated wrt R (i.e. there is a successful SLD
resolution). Then there is also a successful SLD
resolution for each other computation rule R’ and
the answer σ′ belonging to R’ is a variant of σ.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.20 (Completeness of SLD resolution)

Each correct answer substitution is
subsumed through a calculated answer
substitution. I.e.:

P |= ∀QΘ
implies

SLD computes an answer τ with: ∃σ : Qτσ = QΘ
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Question:

How to find successful branches in a SLD
tree?
Definition 8.21 (Search rule)

A search rule is a strategy to search for
successful branches in SLD trees.
Note:

PROLOG uses depth-first-search.

A SLD resolution is determined by a
computation rule and a search rule.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

SLD trees for P ∪ {Q} are determined by
the computation rule.

PROLOG is incomplete because of two
reasons:

depth-first-search
incorrect unification (no occur
check).
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8 Knowledge Engineering: Provers
8.5 SLD resolution

A third reason comes up if we also ask for
finite and failed SLD resolutions:

the computation rule must be fair, i.e.
there must be a guarantee that each
atom on the list of goals is eventually
chosen.
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8 Knowledge Engineering: Provers
8.5 SLD resolution

Programming versus knowledge engineering
programming knowledge engineering
choose language choose logic
write program define knowledge base
write compiler implement calculus
run program derive new facts
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9 Planning

9. Planning
9 Planning

Planning vs. Problem-Solving
STRIPS
Partial-Order Planning
Conditional Planning
SHOP
Extensions
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9 Planning

Content of this chapter (1):

Planning vs Search: While planning can be seen as a
purely search problem, available search
methods are not feasible. We need to use
knowledge about the problem and create a
newly planning agent.

STRIPS: The STRIPS approach is based on using logical
formulae as a representation language for
planning.

POP: We describe a sound and complete partial
order planning (POP) algorithm. POP is an
action-based planner.
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9 Planning

Content of this chapter (2):

Conditional Planning: Often a plan cannot be completely
constructed a priori, because the environment is
dynamic. The we need sensing actions that
have to be checked at run-time.

SHOP: We introduce HTN-planning, which is based on
Hierarchical Task networks. HTN planners use
domain knowledge and are more expressive
than action-based planners. SHOP is one of the
most efficient HTN planners.

Extensions: We briefly describe replanning and how to
combine it with conditional planning.
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9.1 Planning vs. Problem-Solving
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9 Planning
9.1 Planning vs. Problem-Solving

Motivation:

problem-solving agent: The effects of a static
sequence of actions are determined.

knowledge-based agent: Actions can be chosen.

We try to merge both into a planning agent.
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9 Planning
9.1 Planning vs. Problem-Solving

function SIMPLE-PLANNING-AGENT( percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time

local variables: G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then

G�ASK(KB, MAKE-GOAL-QUERY(t))
p� IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then action�NoOp
else

action� FIRST( p)
p�REST( p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action

Prof. Dr. Jürgen Dix Clausthal, SS 2013 666



9 Planning
9.1 Planning vs. Problem-Solving

Example 9.1 (Running Example)

We want to drink freshly made banana shake and
drill some holes into a wall at home.
Thus an agent needs to solve the following
problem:

1 Get a quart of milk,
2 a bunch of bananas, and
3 a variable-speed cordless drill.
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9 Planning
9.1 Planning vs. Problem-Solving

Question:

How does a problem-solving agent handle this?

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish
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9 Planning
9.1 Planning vs. Problem-Solving

Planning in the situation calculus:

Initial state: At(Home, S0), ¬Have(Milk, S0),
¬Have(Bananas, S0), ¬Have(Drill, S0).

Goal: ∃s (At(Home, s) ∧Have(Milk, s) ∧
Have(Bananas, s) ∧Have(Drill, s)).

Axioms: e.g. “buy milk”:

∀a, s Have(Milk, result(a, s))↔
(a = Buy(Milk) ∧ At(Supermarket, s))∨
(Have(Milk, s) ∧ a 6= Drop(Milk))
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9 Planning
9.1 Planning vs. Problem-Solving

We also need a term Result′(l, s): the situation
that would emerge when the sequence of actions
l is executed in s.

∀s Result′([], s) := s
∀a, p, s Result′([a|p], s) := Result′(p, result(a, s))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 670



9 Planning
9.1 Planning vs. Problem-Solving

The task is now to find a p with
At(Home,Result′(p, S0)) ∧
Have(Milk,Result′(p, S0)) ∧
Have(Bananas,Result′(p, S0)) ∧
Have(Drill, Result′(p, S0)).

Problem solved!
This is the solution of our problem! We start a
theorem prover and collect the answers!
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9 Planning
9.1 Planning vs. Problem-Solving

Problems:

T ` φ is only semi-decidable for FOL.
If p is a plan then so are [Empty_Action|p] and
[A,A−1|p].

Result:

We should not resort to a general prover, but to
one which is specially designed for our domain.
We also should restrict the language.
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9 Planning
9.1 Planning vs. Problem-Solving

We should make clear the difference between
shipping a goal to a planner,
asking a query to a theorem prover.

In the first case we look for a plan so that after
the execution of the plan the goal holds.

In the second case we ask if the query can be
made true wrt the KB: KB |= ∃xφ(x).

The dynamics is in the terms. The logic itself is
static.
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9.2 STRIPS
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9 Planning
9.2 STRIPS

STRIPS stands for STanford Research Institute
Problem Solver.

states: conjunctions of function-free ground-
atoms (positive literals).

goal: conjunctions of function-free literals
actions: STRIPS-operations consist of three

components
1 description, name of the action
2 precondition, conjunction of atoms
3 postcondition, conjunction of literals

Prof. Dr. Jürgen Dix Clausthal, SS 2013 675
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9.2 STRIPS

At(there),     At(here)

Go(there)

L

At(here), Path(here, there)
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9 Planning
9.2 STRIPS

Example 9.2 (Air Cargo Transportation)

Three actions: Load, Unload, F ly. Two predicates
In(c, p): cargo c is inside plane p,
At(x, a): object x is at airport a.

Is cargo c at airport a when it is loaded in a plane
p?
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9 Planning
9.2 STRIPS

� � � � � � � � 
 � �  � � � � � � � 
 � � � � � � � � � � � � �  � � � � � � � � � � � � � �
� � � ! # % � 
 � � � � � ! # % � 
 � � � + , � � / � � � � � + , � � / � � � �
� � � ! 3 % ! � � � � � � � � � ! 3 % ! � �  � � � �

7 % � , � � � � 
 � � � � � � � � � � 
 � �  � � � �
� ; � � % � � = % � ? � A � C � E � �

PRECOND: � � � A � E � � � � � C � E � � � � ! # % � A � � + , � � / � C � � � � ! 3 % ! � � E �
EFFECT: I � � � A � E � � � � � A � C � �

� ; � � % � � J � , % � ? � A � C � E � �
PRECOND:

� � � A � C � � � � � C � E � � � � ! # % � A � � + , � � / � C � � � � ! 3 % ! � � E �
EFFECT: � � � A � E � � I � � � A � C � �

� ; � � % � � � , M � C � N ! % P � � % � �
PRECOND: � � � C � N ! % P � � + , � � / � C � � � � ! 3 % ! � � N ! % P � � � � ! 3 % ! � � � % �
EFFECT: I � � � C � N ! % P � � � � � C � � % � �
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9 Planning
9.2 STRIPS

Example 9.3 (Spare Tire)

Four actions:
1 Remove(spare, trunk),
2 Remove(flat, axle),
3 PutOn,
4 LeaveOvernight.

One predicate At(x, a) meaning object x is at
location a.

Is the following a STRIPS description?
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9.2 STRIPS

� � � � � � � � 
 �  � � � � � � � � � � � � �  � � � � � � � ! � �
# $  � � � � � � �  � � � � � � � � �

� + � � $ � � / � 0 $ 2 � � � �  � � � � � � � ! � ,
PRECOND: � � � � �  � � � � � � � ! �
EFFECT: 3 � � � � �  � � � � � � � ! � � � � � � �  � � � # � $ � � 7 � �

� + � � $ � � / � 0 $ 2 � � 
 �  � � � � � � � ,
PRECOND: � � � 
 �  � � � � � � �
EFFECT: 3 � � � 
 �  � � � � � � � � � � � 
 �  � � # � $ � � 7 � �

� + � � $ � � 8 � � 9 � � � �  � � � � � � � � ,
PRECOND: � � � � �  � � � # � $ � � 7 � � 3 � � � 
 �  � � � � � � �
EFFECT: 3 � � � � �  � � � # � $ � � 7 � � � � � � �  � � � � � � � � �

� + � � $ � � < �  2 � 9 2 � � � � = > � ,
PRECOND:
EFFECT: 3 � � � � �  � � � # � $ � � 7 � � 3 � � � � �  � � � � � � � � � 3 � � � � �  � � � � � � � ! �

� 3 � � � 
 �  � � # � $ � � 7 � � 3 � � � 
 �  � � � � � � � �
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9 Planning
9.2 STRIPS

Example 9.4 (Blocks World)

One action: Move. Move(b, x, y) moves the
block b from x to y if both b and y are clear.
One predicate On(b, x) meaning block b is on x
(x can be another block or the table).

How to formulate that a block is clear?

“b is clear”: ∀x¬On(x, b).

Not allowed in STRIPS.
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9 Planning
9.2 STRIPS

Therefore we introduce another predicate
Clear(y).

What about Move(b, x, y) defined by
Precondition: On(b, x) ∧ Clear(b) ∧ Clear(y) and
Effect:
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)?
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9 Planning
9.2 STRIPS

� � � � � � � � �  � � � � � � � � � � �  � � � � � � � � � � �  � � � � � �
� " � $ & ' � � � � " � $ & ' � � � � " � $ & ' � � �
� * � � � - � � � � * � � � - � � � � * � � � - � � � �

2 $ � � � � � � �  � � � � � � �  � � �
4 & � � $ � � 7 $ 9 � � <  =  > � 

PRECOND: � � � <  = � � * � � � - � < � � * � � � - � > � � " � $ & ' � < � �
� < @A = � � � < @A > � � � = @A > � ,

EFFECT: � � � <  > � � * � � � - � = � � C � � � <  = � � C * � � � - � > � �
4 & � � $ � � 7 $ 9 � � $ � � � � � � <  = � 

PRECOND: � � � <  = � � * � � � - � < � � " � $ & ' � < � � � < @A = � ,
EFFECT: � � � <  � � � � � � � * � � � - � = � � C � � � <  = � �
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9 Planning
9.2 STRIPS

ADL (Action Description Language) and its many
derivatives are extensions of STRIPS:

States: both positive and negative literals in
states.

OWA: Open World assumption (not CWA)
Effects: Add all positive and negative literals,

and delete their negations.
Quantification: Quantified variables in goals are

allowed.
Goals: disjunction and negation also allowed.

when P : Conditional effects allowed.
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9 Planning
9.2 STRIPS

(a) Progression (forward) and (b) Regression
(backward) state-space search

(a)

(b)

2At(P  , A)

1At(P  , A)

1At(P  , A)

2At(P  , B)

1At(P  , B)

2At(P  , A)

1At(P  , B)

2At(P  , A)

1At(P  , A)

2At(P  , B)

1At(P  , B)

2At(P  , B)

1Fly(P  ,A,B)

2Fly(P  ,A,B)

1Fly(P  ,A,B)

2Fly(P  ,A,B)
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9.2 STRIPS

At(there),     At(here)

Go(there)

L

At(here), Path(here, there)
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9 Planning
9.2 STRIPS

Definition 9.5 (Applicable Operator)

An operator Op is applicable in a state s if there is
some way to instantiate the variables in Op so that
every one of the preconditions of Op is true in s:
Precond(Op) ⊆ s.

In the resulting state, all the positive literals in
Effect(Op) hold, as do all the literals that held in s,
except for those that are negative literals in
Effect(Op).
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9 Planning
9.2 STRIPS

Frame problem is handled implicitly: literals not
mentioned in effects remain unchanged
(persistence).
Effect is sometimes split into add and delete lists.
Up to now we can consider this as being
problem-solving.
We use STRIPS as an representation-formalism
and search a solution-path:

nodes in the search-tree ≈ situations
solution paths ≈ plans.
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9 Planning
9.2 STRIPS

Idea:

Perform a search in the space of all plans!

Begin with a partial plan and extend it
successively.

Therefore we need operators which operate on
plans. We distinguish two types:
refinement-op: constraints are attached to a

plan. Then a plan represents the set of
all complete plans (analogously Cn(T )
for MOD(T )).

modification-op: all others.
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9 Planning
9.2 STRIPS

Question:

How do we represent plans?

Answer:

We have to consider two things:
instantiation of variables: instantiate only if
necessary, i.e. always choose the mgU
partial order: refrain from the exact ordering
(reduces the search-space)
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9 Planning
9.2 STRIPS

Definition 9.6 (Plan)

A plan is formally defined as a data structure consisting of
the following four components:

A set of plan steps. Each step is one of the operators for
the problem.
A set of step ordering constraints. Each one of the
form Si ≺ Sj: Si has to be executed before Sj.
A set of variable binding constants. Each one of the
form v = x: v is a variable in some step, and x is either a
constant or another variable.
A set of causal links. Each one of the form Si

c−→ Sj: Si
achieves c for Sj.
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9 Planning
9.2 STRIPS

The initial plan consists of two steps, called START
and FINISH.

Finish

Start

Initial   State

Finish

Start

Goal     State

(a) (b)

LeftShoeOn,    RightShoeOn
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9 Planning
9.2 STRIPS

The initial plan of a problem is:

Plan( Steps : {S1 : START, S2 : FINISH}
Orderings : {S1 ≺ S2}
Bindings : ∅
Links : ∅

)
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9 Planning
9.2 STRIPS

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish
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9 Planning
9.2 STRIPS

Question:
What is a solution?

Answer:
Considering only fully instantiated, linearly ordered
plans: checking is easy.

But our case is far more complicated:

Definition 9.7 (Solution of a Plan)

A solution is a complete and consistent plan.
complete: each precondition of each step is achieved by

some other step,
consistent: there are no contradictions in the ordering or

binding constraints.
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9 Planning
9.2 STRIPS

More precisely:
“Si achieves c for Sj” means

c ∈ Precondition(Sj),
c ∈ Effect(Si),
Si ≺ Sj ,
6 ∃Sk : ¬c ∈ Effect(Sk) with Si ≺ Sk ≺ Sj in any linearization of
the plan

“no contradictions” means
neither (Si ≺ Sj and Sj ≺ Si) nor (v = A and v = B for
different constants A,B).

Note: these propositions may be derivable,
because ≺ and = are transitive.
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9 Planning
9.3 Partial-Order Planning

We consider the banana-milk example. The
operators are Buy and Go.

Finish

Start

Have(Drill)  Have(Milk)      Have(Banana)  At(Home)

At(Home)  Sells(SM,Banana)     Sells(SM,Milk)  Sells(HWS,Drill)

Causal links are protected!
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9.3 Partial-Order Planning

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)

At(x)At(x)

At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(Home) At(Home)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 699



9 Planning
9.3 Partial-Order Planning

The last partial plan cannot be extended. How
do we determine this? By determining that a
causal link is threatened and the threat cannot
be resolved.

cL

cL

cLc cc

(a) (b) (c)

S 2

S 3

S 2

S 3

S 2

S 3

S1S11S

The way to resolve the threat is to add ordering
constraints (this will not always work!).
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9.3 Partial-Order Planning

Question:
We have to introduce a Go-step in order to ensure the last
precondition. But how can we ensure the precondition of
the Go-step?

Now there are a lot of threats and many of them are
unresolvable. This leads to

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

At(Home) At(HWS)

At(SM)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Go(Home)
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9.3 Partial-Order Planning

At(SM)

At(Home)

At(HWS)

Have(Milk)  At(Home)  Have(Ban.)  Have(Drill)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(HWS)  Sells(HWS,Drill)

At(SM)  Sells(SM,Milk) At(SM)  Sells(SM,Ban.)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 702



9 Planning
9.3 Partial-Order Planning

This leads to the following algorithm
In each round the plan is extended in order to ensure
the precondition of a step. This is done by choosing
an appropriate operator.
The respective causal link is introduced. Threats are
resolved through ordering constraints (two cases: the
new step threatens existing ones or the existing ones
threaten the new one).
If there is no operator or the threat cannot be resolved
then perform backtracking.

Theorem 9.8 (POP)
POP is complete and correct.
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9.3 Partial-Order Planning

function POP(initial, goal, operators) returns plan

plan�MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?( plan) then return plan
Sneed, c� SELECT-SUBGOAL( plan)
CHOOSE-OPERATOR( plan, operators, Sneed, c)
RESOLVE-THREATS( plan)

end

function SELECT-SUBGOAL( plan) returns Sneed, c

pick a plan step Sneed from STEPS( plan)
with a precondition c that has not been achieved

return Sneed, c

procedure CHOOSE-OPERATOR(plan, operators, S need, c)

choose a step Sadd from operators or STEPS( plan) that has c as an effect
if there is no such step then fail
add the causal link Sadd

c
�� Sneed to LINKS( plan)

add the ordering constraint Sadd � Sneed to ORDERINGS( plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS( plan)
add Start � Sadd � Finish to ORDERINGS( plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
c
�� Sj in LINKS( plan) do

choose either
Promotion: Add Sthreat� Si to ORDERINGS( plan)
Demotion: Add Sj � Sthreat to ORDERINGS( plan)

if not CONSISTENT( plan) then fail
end
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9.3 Partial-Order Planning

So far we did not consider variable-substitutions.

Question:
Suppose S1 ensures the At(home) precondition of a step S2

and there is a concurrent step S3 with the postcondition
¬At(x). Is this a threat?
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9.3 Partial-Order Planning

We call such a threat possible and ignore it for the time
being, but keep it in mind. If x is later instantiated with
home then a real threat is there which has to be resolved.

S1

At(home)

S2

At(home)

S3

¬At(x )
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9.3 Partial-Order Planning

procedure CHOOSE-OPERATOR(plan, operators, S need, c)

choose a step Sadd from operators or STEPS( plan) that has cadd as an effect
such that u = UNIFY(c, cadd, BINDINGS( plan))

if there is no such step
then fail

add u to BINDINGS( plan)
add Sadd

c
�� Sneed to LINKS( plan)

add Sadd � Sneed to ORDERINGS( plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS( plan)
add Start � Sadd � Finish to ORDERINGS( plan)

procedure RESOLVE-THREATS(plan)

for each Si
c
�� Sj in LINKS( plan) do

for each Sthreat in STEPS( plan) do
for each c� in EFFECT(Sthreat) do

if SUBST(BINDINGS( plan), c) = SUBST(BINDINGS( plan),� c�) then
choose either

Promotion: Add Sthreat � Si to ORDERINGS( plan)
Demotion: Add Sj � Sthreat to ORDERINGS( plan)

if not CONSISTENT( plan)
then fail

end
end

end
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9.3 Partial-Order Planning

STRIPS was originally
designed for SHAKEY, a small
and mobile robot. SHAKEY is
described through 6
Operators: Go(x),
Push(b, x, y), Climb(b),
Down(b), Turn_On(ls),
Turn_Off(ls).

To turn the lights on or off SHAKEY has to stand
on a box. On(Shakey, floor) is a precondition of
the Go-action so that SHAKEY does not fall off.
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9.3 Partial-Order Planning

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor
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9.3 Partial-Order Planning

POP for ADL

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)
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9.3 Partial-Order Planning

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

LeaveOvernight

At(Flat,Axle)
At(Flat,Ground)
At(Spare,Axle)
At(Spare,Ground)
At(Spare,Trunk)

Start
At(Flat,Axle)

At(Spare,Trunk)
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9.3 Partial-Order Planning

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)
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9.4 Conditional Planning

Question:

What to do if the world is not fully accessible?
Where to get milk? Milk-price has doubled and we
do not have enough money.

Idea:

Introduce new sensing actions to query certain
conditions and to react accordingly. (How much
does milk cost?)
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9.4 Conditional Planning

A flat tire
Op( Action : Remove(x),

P rec : On(x),
Effect : Off(x) ∧ Clear_Hub ∧ ¬On(x)

)
Op( Action : Put_on(x),

P rec : Off(x) ∧ Clear_Hub,
Effect : On(x) ∧ ¬Clear_Hub ∧ ¬Off(x)

)
Op( Action : Inflate(x),

P rec : Intact(x) ∧ Flat(x),
Effect : Inflated(x) ∧ ¬Flat(x)

)

goal: On(x) ∧ Inflated(x),
initial state: Inflated(Spare) ∧ Intact(Spare) ∧

Off(Spare) ∧On(Tire1) ∧ Flat(Tire1).
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9.4 Conditional Planning

Question:

What does POP deliver?

Answer:

Because of Intact(Tire1) not being present POP
delivers the plan

[Remove(Tire1), Put_on(Spare)].
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9.4 Conditional Planning

Question:

Would you also do it like that?

Answer:

A better way would be a conditional plan:

If Intact(Tire1) then: Inflate(Tire1).
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9.4 Conditional Planning

Therefore we have to allow conditional steps in
the phase of plan-building:

Definition 9.9 (Conditional Step)

A conditional step in a plan has the form

If({Condition}, {Then_Part}, {Else_Part})
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9.4 Conditional Planning

The respective planning-agent looks like this:

function CONDITIONAL-PLANNING-AGENT( percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time
G, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then p�CPOP(current, G, KB)
if p = NoPlan or p is empty then action�NoOp
else

action� FIRST( p)
while CONDITIONAL?(action) do

if ASK(KB, CONDITION-PART[action]) then p�APPEND(THEN-PART[action], REST( p))
else p�APPEND(ELSE-PART[action], REST( p))
action� FIRST( p)

end
p�REST( p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action
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9.4 Conditional Planning

The agent has to know if the respective
if-condition holds or not when executing the plan
(at runtime). Therefore we introduce new
checking actions:

Op( Action : Check_Tire(x),
P rec : Tire(x),
Effect : “We know if Intact(x) holds or not.”

)

Definition 9.10 (Context)

We associate a context with each step: the set of
conditions which have to hold before executing a
step.
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9.4 Conditional Planning

Inflated(Spare)

On(Tire1)

Flat(Tire1)Start Finish
(True)

Inflated(x)

On(x)

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)
On(Tire1)

Inflated(Tire1)

Flat(Tire1)

Intact(Tire1)

Start Finish

Inflate(Tire1)
(True)
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9.4 Conditional Planning

Here POP would backtrack, because Intact(Tire1)
cannot be shown.

Hence we introduce a new type of links:
conditional links.
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9.4 Conditional Planning

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Check(Tire1)

Inflate(Tire1)
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9.4 Conditional Planning

We have to cover each case:

(   Intact(Tire1))
L

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Finish

Check(Tire1)

Inflate(Tire1)

On(x)

Inflated(x)
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9.4 Conditional Planning

Question:

What if new contexts emerge in the second case?

Answer:

Then we have to introduce new copies of the
FINISH step: There must be a complete distinction
of cases in the end.
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9.4 Conditional Planning

Question:

How can we make Inflated(x) true in the FINISH
step? Adding the step Inflate(Tire1) would not
make sense, because the preconditions are
inconsistent in combination with the context.

(   Intact(Tire1))
L

On(Spare)

Inflated(Spare)

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Finish

Check(Tire1)

Inflate(Tire1)
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9.4 Conditional Planning

At last On(Spare).

(   Intact(Tire1))
L

On(Spare)

Inflated(Spare)

(Intact(Tire1))

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))

(   Intact(Tire1))
L

(   Intact(Tire1))
L

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)
Flat(Tire1)

Intact(Tire1)

Start Finish

FinishPuton(Spare)

Check(Tire1)

Remove(Tire1)

Inflate(Tire1)

    Intact(Tire1)
L

Attention:

At first “True” is the context of
Remove(Tire1), Put_on(Spare). But
Remove(Tire1) threatens the On(Tire1) step
(precondition of the first Finish).
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9.4 Conditional Planning

We can resolve this threat by making the
contexts incompatible. The respective contexts
are inherited by the following steps.

More exactly:

Search a conditional step the precondition of
which makes the contexts incompatible and
thereby resolves threats.
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9.4 Conditional Planning

function CPOP(initial, goals, operators) returns plan

plan�MAKE-PLAN(initial, goals)
loop do

Termination:
if there are no unsatisfied preconditions

and the contexts of the finish steps are exhaustive
then return plan

Alternative context generation:
if the plans for existing finish steps are complete and have contexts C 1 . . . Cn then

add a new finish step with a context � (C1 � . . . � Cn)
this becomes the current context

Subgoal selection and addition:
find a plan step Sneed with an open precondition c

Action selection:
choose a step Sadd from operators or STEPS( plan) that adds c or

knowledge of c and has a context compatible with the current context
if there is no such step

then fail
add Sadd

c
�� Sneed to LINKS( plan)

add Sadd < Sneed to ORDERINGS( plan)
if Sadd is a newly added step then

add Sadd to STEPS( plan)
add Start < Sadd < Finish to ORDERINGS( plan)

Threat resolution:
for each step Sthreat that potentially threatens any causal link Si

c
�� Sj

with a compatible context do
choose one of

Promotion: Add Sthreat < Si to ORDERINGS( plan)
Demotion: Add Sj < Sthreat to ORDERINGS( plan)
Conditioning:

find a conditional step Scond possibly before both Sthreat and Sj, where
1. the context of Scond is compatible with the contexts of Sthreat and Sj;
2. the step has outcomes consistent with Sthreat and Sj, respectively

add conditioning links for the outcomes from Scond to Sthreat and Sj

augment and propagate the contexts of S threat and Sj

if no choice is consistent
then fail

end
end
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9.5 SHOP

Up to now: Action-based planning (POP,
CPOP)

Each state of the world is represented by a set
of atoms, and each action corresponds to a
deterministic state transition.
Search space is still huge.
HTN planning has been proved to be more
expressive than action-based planning.
Moreover, HTN planning algorithms have
been experimentally proved to be more
efficient than their action-based counterparts.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 731



9 Planning
9.5 SHOP

HTN-Planning

Each state of the world is represented by a set
of atoms, and each action corresponds to a
deterministic state transition.
Hierarchical Task Networks: HTN planners
differ from classical planners in what they plan
for, and how they plan for it.
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9.5 SHOP

HTN-Planning (2)

Classical HTN planning (dating back to mid-70ies)
focused on particular application domains:
production-line scheduling, crisis management and
logistics, planning and scheduling for spacecraft,
equipment configuration, manufacturability analysis,
evacuation planning, and the game of bridge.
There are also domain-independent HTN planners:
Nonlin, Sipe-2 , O-Plan, UMCP , SHOP , ASHOP , and
SHOP2 .
We focus on SHOP.
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9.5 SHOP

Features of HTN planning

Why is HTN planning superior to classical
action-based planning?
The domain knowledge and the notion of
decomposing a task network while satisfying
the given constraints enable the planner to
focus on a much smaller portion of the
search space.
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9.5 SHOP

Features of SHOP

SHOP is based on ordered task decomposition.
SHOP plans for tasks in the same order that they will
later be executed.
Therefore we know the current state of the world at
each step in the planning process.
This eliminates a great deal of uncertainty about the
world.
It helps to incorporate inferencing and reasoning
power into the planning system.
It also enables to call external programs (e.g. to
perform numeric computations).
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9.5 SHOP

SHOP needs the following

Knowledge: about the domain. Can be given as a set of
axioms from which other facts can be deduced.

Operators: they describe what needs to be done to fulfill a
primitive task.

Methods: often a task can not be fulfilled in one single
step. In that case, the task needs to be reduced
to other (new) tasks. Methods are prescriptions
for how to decompose some compound
(abstract) task into a totally ordered sequence
of subtasks, along with various restrictions that
must be satisfied in order for the method to be
applicable.
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9.5 SHOP

More than one method may be applicable to the same
task. Thus several methods can be used.
The SHOP algorithm nondeterministically chooses an
applicable method.
This method is instantiated to decompose the task into
(several) subtasks.
This goes on recursively.
The deterministic implementation of the SHOP
algorithm uses depth-first backtracking: If the
constraints on the subtasks prevent the plan from being
feasible, then the implementation will backtrack and try
other methods.
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9.5 SHOP

Beware!

The planner may need to recognise and
resolve interactions among the subtasks.
(travel to airport: arrive in time)
It is not always obvious which method to use.
If it is not possible to solve the subtasks
produced by one method, SHOP will
backtrack and try another method instead.
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9.5 SHOP

SHOP (3 sorts of atoms)

Rigid Atoms: Atoms whose truth values never change
during planning. They appear in states, but not in the
effects of planning operators nor in the heads of Horn
clauses.
Primary Atoms: Atoms that can appear in states and in
the effects of planning operators, but cannot appear in
the heads of Horn clauses.
Secondary Atoms: These are the ones whose truth
values are inferred rather than being stated explicitly.
They can appear in the heads of Horn clauses, but
cannot appear in states nor in the effects of planning
operators.
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9.5 SHOP

SHOP (States, axioms)

Definition 9.11 (States (S), Axioms (AX ))

A state S is a set of ground primary atoms. An
axiom is an expression of the form

a← l1, . . . , ln,

where a is a secondary atom and the l1, . . . , ln are
literals that constitute either primary or
secondary atoms.
Axioms need not be ground.
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SHOP (3)

SHOP starts with a state and modifies this
state using add/delete lists.
Axioms are used only to check whether the
preconditions of methods are satisfied.
A precondition might not be explicitly satisfied
(an atom is not contained in S), but might be
caused by S and the axioms.
The precise definition of this relation “caused
by” is given as follows.
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9.5 SHOP

SHOP (Caused by)

Definition 9.12 (Literal caused by (S,AX ))

A literal l is caused by (S,AX ) if l is true in the
unique model of S ∪ AX .
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9.5 SHOP

SHOP (Task list)

A task list is a list of tasks, like the following:

((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))
A ground task list is a task list that consists of
only ground tasks, like the following:

((!get-taxi umd) (!ride-taxi umd mit) (!pay-driver
umd mit)))
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SHOP (Operator)

Definition 9.13 (Operator: (Op h εdel εadd))

An operator is an expression of the form (Op h εdel εadd),
where h (the head) is a primitive task and εadd and εdel are
lists of primary atoms (called the add- and delete-lists,
respectively). The set of variables in the atoms in εadd and
εdel must be a subset of the set of variables in h.

Unlike the operators used in action-based planning,
ours have no preconditions.
Preconditions are not needed for operators in our
formulation, because they occur in the methods that
invoke the operators.
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9.5 SHOP

SHOP

As an example, here is a possible implementation
of the get-taxi operator:

(:Op (!get-taxi ?x)
((taxi-called-to ?x))
((taxi-standing-at ?x)))
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SHOP (Decomposing primitive tasks)

Operators are used in decomposition of primitive
tasks during planning:
Definition 9.14 (Decomposition of Primitive Tasks)

Let t be a primitive task, and let
Op = (Op h εdel εadd) be an operator. Suppose
that θ is a unifier for h and t. Then the ground
operator instance (Op)θ is applicable to t, in
which case we define the decomposition of t by
Op to be (Op)θ.
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9.5 SHOP

SHOP

The decomposition of a primitive task by an
operator results in a ground instance of that
operator – i.e., it results in an action that can be
applied in a state of the world. We now define
the result of such an application.
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9.5 SHOP

SHOP (Plan)

Definition 9.15 (Plans, result(S,π))

A plan is a list of heads of ground operator instances. A plan
π is called a simple plan if it consists of the head of just one
ground operator instance.
Given a simple plan π = (h), we define result(S, π) to be
the set S \ εdel ∪ εadd, obtained by deleting from S all atoms
in εdel and by adding all ground instances of atoms in εadd.
If π = (h1, h2, . . . , hn) is a plan and S is a state, then the
result of applying π to S is the state

result(S, π) = result(result(. . . (result(S, h1), h2), . . .), hn).
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SHOP

In SHOP , a method specifies a possible way to
accomplish a compound task.
The set of methods relevant for a particular compound
task can be seen as a recursive definition of that task.
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SHOP (Methods)

Definition 9.16 (Method: (Meth h ρ t))

A method is an expression of the form (Meth h ρ t) where h
(the method’s head) is a compound task, ρ (the method’s
preconditions) is a conjunction of literals and t is a
totally-ordered list of subtasks, called the decomposition list
of the method.

The set of variables that appear in the decomposition list of
a method must be a subset of the variables in h (the head of
the method) and ρ (the preconditions of the method).
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SHOP

Here is a possible implementation of the travel-by-taxi
method:

(:Meth (travel ?x ?y)
((smaller-distance ?x ?y))
((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))
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SHOP (Decomposing compound tasks)

Definition 9.17 (Decomposition of Compound Tasks)

Let t be a compound task, S be the current state,
Meth = (Meth h ρ t) be a method, and AX be an axiom set.
Suppose that θ is a unifier for h and t, and that θ′ is a unifier
such that all literals in (ρ)θθ′ are caused wrt. S and AX (see
Definition 9.12).
Then, the ground method instance (Meth)θθ′ is applicable
to t in S, and the result of applying it to t is the ground task
list r = (t)θθ′. The task list r is the decomposition of t by
Meth in S.
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SHOP (Planning Problem)

Definition 9.18 (Planning Domain Description)

A planning domain description D is a triple
consisting of (1) a set of axioms, (2) a set of
operators such that no two operators have the
same head, and (3) a set of methods.

A planning problem is a triple (S, t,D), where S is
a state, t= (t1, t2, . . . , tk) is a ground task list, and
D is a planning domain description.
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SHOP (Solutions)

Definition 9.19 (Solutions)

Let P = (S, t,D) be a planning problem and π = (h1, h2, . . . , hn)
be a plan. Then, π is a solution for P , if any of the following is
true:

Case 1: t and π are both empty, (i.e., k = 0 and n = 0);

Case 2: t = (t1, t2, . . . , tk), t1 is a ground primitive task, (h1) is
the decomposition of t1, and (h2 . . . hn) solves
(result(S, (h1)), (t2, . . . , tk),D);

Case 3: t = (t1, t2, . . . , tk), t1 is a ground compound task,
and there is a decomposition (r1 . . . rj) of t1 in S such
that π solves (S, (r1, . . . , rj , t2, . . . , tk),D).

The planning problem (S, t,D) is solvable if there is a plan that
solves it.
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SHOP (Search Tree)
Edge labellings mi(t) (resp. o(t)) represent a method (resp. an
operator) application to a task t, which is compound
(resp. primitive).

<S, {}, {t1, t2, t3, …, tk} >
m1(t1)

m2(t1)
m3(t1)

<S, {}, {t111, t112, …, t11n, t2, t3, …,}>

<S, {}, {t121, t122, …,}>
<S, {}, {t131, t132, …,}>

…o(t121)

<result(S, o(t121)), {t121}, {t122, t12, …}>

m1(t122)

FAILURE!

m1(t111)

<S, {}, {t1111, t1112, t112, …}>

m2(t111)

…
o(t1111)

<result(S, o(t1111)), {t1111}, {t1112, t112, …}>

…
…
…

<result(result(…(result(result(S, o(t1111)), …), …), {t1111, ….}, {ti}>

o(ti)

<result(result(…(result(result(S, o(t1111)), …), …),  {t111, …., ti}, {}> 

SUCCESS!
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9.6 Extensions
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1. A plan can fail because of the following
reasons:

Actions may have unexpected
effects, but these can be
enumerated (as a disjunction).
The unexpected effects are known.
Then we have to replan.
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function REPLANNING-AGENT( percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, an annotated plan, initially NoPlan
q, an annotated plan, initially NoPlan
G, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then

p� PLANNER(current, G, KB)
q� p
if p = NoPlan or p is empty then return NoOp

if PRECONDITIONS( p) not currently true in KB then
p�
�CHOOSE-BEST-CONTINUATION(current, q)

p�APPEND(PLANNER(current, PRECONDITIONS( p �), KB), p�)
q� p

action� FIRST( p)
p�REST( p)
return action

I.e. we perceive and then plan only if something has
changed.
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2. Combine replanning and conditional
planning. Planning and execution are
integrated.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 761


	Introduction
	What Is AI?
	From Plato To Zuse
	History of AI
	Intelligent Agents

	Searching
	Problem Formulation
	Uninformed search
	Best-First Search
	A* Search
	Heuristics
	Limited Memory
	Iterative Improvements
	Online Search

	Supervised Learning
	Basics
	Decision Trees
	Ensemble Learning
	PL1 Formalisations
	PAC Learning
	Noise and overfitting

	Learning in networks
	The human brain
	Neural networks
	The Perceptron
	Multi-layer feed-forward

	Knowledge Engineering (1)
	Sentential Logic
	Sudoku
	Calculi for SL
	Wumpus in SL
	A Puzzle

	Hoare Calculus
	Verification
	Core Programming Language
	Hoare Logic
	Proof Calculi: Partial Correctness
	Proof Calculi: Total Correctness
	Sound and Completeness

	Knowledge Engineering: FOL
	First Order Logic
	Sit-Calculus
	The Blocksworld
	Higher order logic

	Knowledge Engineering: Provers
	Theorem Proving
	Resolution
	Herbrand
	Variants of resolution
	SLD resolution

	Planning
	Planning vs. Problem-Solving
	STRIPS
	Partial-Order Planning
	Conditional Planning
	SHOP
	Extensions


