
Artificial Intelligence
Prof. Dr. Jürgen Dix

Computational Intelligence Group
TU Clausthal

Clausthal, SS 2013

Prof. Dr. Jürgen Dix Clausthal, SS 2013 1

Time and place: Tuesday and Wednesday 10–12
in Multimediahörsaal (Tannenhöhe)
Exercises: See schedule (7 exercises in total).

Website
http://www.in.tu-clausthal.de/index.php?id=cig_ki13

Visit regularly!

There you will find important information about
the lecture, documents, exercises et cetera.

Organization: Exercise: F. Schlesinger, M. Janßen
Exam: tba

Prof. Dr. Jürgen Dix Clausthal, SS 2013 2

History

This course evolved over the last 16 years. It was
first held in Koblenz (WS 95/96, WS 96/97), then
in Vienna (Austria, WS 98, WS00) , Bahia Blanca
(Argentina, SS 98, SS 01) and Clausthal (SS
04–12).
Chapters 1–4, 9 are based on the seminal book of
Russel/Norvig: Artificial Intelligence.

Many thanks to Nils, Tristan, Wojtek and
Federico for the time they invested in crafting
slides and doing the exercises. Their help over
the years improved the course a lot.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 3

Lecture Overview
1. Introduction (2 lectures)
2. Searching (3 lectures)
3. Supervised Learning (3 lectures)
4. Neural Nets (1 lecture)
5. Knowledge Engineering: SL (3 lectures)
6. Hoare Calculus (2 lectures)
7. Knowledge Engineering: FOL (2 lectures)
8. Knowledge Engineering: Provers (2 lectures)
9. Planning (1 lecture: overview)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 4

1 Introduction

1. Introduction
1 Introduction

What Is AI?
From Plato To Zuse
History of AI
Intelligent Agents

Prof. Dr. Jürgen Dix Clausthal, SS 2013 5

1 Introduction

Content of this chapter (1):

Defining AI: There are several definitions of AI.
They lead to several scientific areas
ranging from Cognitive Science to
Rational Agents.

History: We discuss some important
philosophical ideas in the last 3
millennia and touch several events that
play a role in later chapters (syllogisms
of Aristotle, Ockhams razor, Ars
Magna).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 6

1 Introduction

Content of this chapter (2):

AI since 1958: AI came into being in 1956-1958
with John McCarthy. We give a rough
overview of its successes and failures.

Rational Agent: The modern approach to AI is
based on the notion of a Rational Agent
that is situated in an environment. We
discuss the PEAS description and give
some formal definitions of agency,
introducing the notions of run,
standard- vs. state- based agent

Prof. Dr. Jürgen Dix Clausthal, SS 2013 7

1 Introduction
1.1 What Is AI?

1.1 What Is AI?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 8

1 Introduction
1.1 What Is AI?

“The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
. . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“The branch of computer science that is con-
cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Table 1.1: Several Definitions of AI

Prof. Dr. Jürgen Dix Clausthal, SS 2013 9

1 Introduction
1.1 What Is AI?

1. Cognitive science

2. ”Socrates is a man. All men are mortal. Therefore
Socrates is mortal.”
(Famous syllogisms by Aristotle.)

(1) Informal description
(2) Formal description
(3) Problem solution
(2) is often problematic due to under-specification

(3) is deduction (correct inferences): only enumerable,
but not decidable

Prof. Dr. Jürgen Dix Clausthal, SS 2013 10

1 Introduction
1.1 What Is AI?

3. Turing Test:
http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

http://www.loebner.net/Prizef/loebner-prize.html
Standard Turing Test
Total Turing Test

Turing believed in 1950:

In 2000 a computer with 109 memory-units could
be programmed such that it can chat with a
human for 5 minutes and pass the Turing Test
with a probability of 30 %.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 11

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html
http://www.loebner.net/Prizef/loebner-prize.html

1 Introduction
1.1 What Is AI?

4. In item 2. correct inferences were mentioned.

Often not enough information is available
in order to act in a way that makes sense (to
act in a provably correct way).
 Non-monotonic logics.

The world is in general under-specified. It is
also impossible to act rationally without correct
inferences: reflexes.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 12

1 Introduction
1.1 What Is AI?

To pass the total Turing Test, the computer will
need:

computer vision to perceive objects,
robotics to move them about.

The question Are machines able to think? leads
to 2 theses:

Weak AI thesis: Machines can be built, that
act as if they were intelligent.
Strong AI thesis: Machines that act in an
intelligent way do possess cognitive states, i.e.
mind.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 13

1 Introduction
1.1 What Is AI?

The Chinese Chamber
was used in 1980 by Searle to demonstrate that a system can
pass the Turing Test but disproves the Strong AI Thesis. The
chamber consists of:

CPU: an English-speaking man without experiences
with the Chinese language,
Program: a book containing rules formulated in English
which describe how to translate Chinese texts,
Memory: sufficient pens and paper

Papers with Chinese texts are passed to the man, which he
translates using the book.

Question

Does the chamber understand Chinese?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 14

1 Introduction
1.2 From Plato To Zuse

1.2 From Plato To Zuse

Prof. Dr. Jürgen Dix Clausthal, SS 2013 15

1 Introduction
1.2 From Plato To Zuse

450 BC: Plato, Socrates, Aristotle

Sokr.: ”What is characteristic of piety which
makes all actions pious?”
Aris.: ”Which laws govern the rational part of
the mind?”

800 : Al Chwarizmi (Arabia): Algorithm

1300 : Raymundus Lullus: Ars Magna

1350 : William van Ockham: Ockham’s Razor
”Entia non sunt multiplicanda
praeter necessitatem.”

Prof. Dr. Jürgen Dix Clausthal, SS 2013 16

1 Introduction
1.2 From Plato To Zuse

1596–1650: R. Descartes:
Mind = physical system
Free will, dualism

1623–1662: B. Pascal, W. Schickard:
Addition-machines

Prof. Dr. Jürgen Dix Clausthal, SS 2013 17

1 Introduction
1.2 From Plato To Zuse

1646–1716: G. W. Leibniz:
Materialism, uses ideas of Ars Magna to build
a machine for simulating the human mind

1561–1626: F. Bacon: Empirism

1632–1704: J. Locke: Empirism
”Nihil est in intellectu quod
non antefuerat in sensu.”

1711–1776 : D. Hume: Induction

1724–1804: I. Kant:
”Der Verstand schöpft seine Gesetze nicht
aus der Natur, sondern schreibt sie dieser vor.”

Prof. Dr. Jürgen Dix Clausthal, SS 2013 18

1 Introduction
1.2 From Plato To Zuse

1805 : Jacquard: Loom

1815–1864: G. Boole:
Formal language,
Logic as a mathematical discipline

1792–1871: Ch. Babbage:
Difference Engine: Logarithm-tables
Analytical Engine: with addressable memory,
stored programs and conditional jumps

Prof. Dr. Jürgen Dix Clausthal, SS 2013 19

1 Introduction
1.2 From Plato To Zuse

Figure 1.1: Reconstruction of Babbage’s difference engine.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 20

1 Introduction
1.2 From Plato To Zuse

1848–1925 : G. Frege: Begriffsschrift
2-dimensional notation for PL1

Figure 1.2: A formula from Frege’s Begriffsschrift.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 21

1 Introduction
1.2 From Plato To Zuse

1862–1943: D. Hilbert:
Famous talk 1900 in Paris: 23 problems
23rd problem: The Entscheidungsproblem

1872–1970: B. Russell:
1910: Principia Mathematica
Logical positivism, Vienna Circle (1920–40)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 22

1 Introduction
1.2 From Plato To Zuse

1902–1983 : A. Tarski: (1936)
Idea of truth in formal languages

1906–1978 : K. Gödel:
Completeness theorem (1930)
Incompleteness theorem (1930/31)
Unprovability of theorems (1936)

1912–1954 : A. Turing:
Turing-machine (1936)
Computability

1903–1995 : A. Church:
λ-Calculus, Church-Turing-thesis

Prof. Dr. Jürgen Dix Clausthal, SS 2013 23

1 Introduction
1.2 From Plato To Zuse

1938/42: First operational programmable computer: Z 1
Z 3 by K. Zuse (Deutsches Museum)
with floating-point-arithmetic.
Plankalkül: First high-level programming language

Figure 1.3: Reconstruction of Zuse’s Z3.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 24

1 Introduction
1.2 From Plato To Zuse

1940 : First computer ”Heath Robinson”
built to decipher German messages (Turing)
1943 ”Collossus” built from vacuum tubes

1940–45: H. Aiken: develops MARK I, II, III.
ENIAC: First general purpose electronic comp.

1952 : IBM: IBM 701, first computer to yield a profit
(Rochester et al.)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 25

1 Introduction
1.2 From Plato To Zuse

1948: First stored program computer (The Baby)
Tom Kilburn (Manchester)
Manchester beats Cambridge by 3 months

Figure 1.4: Reconstruction of Kilburn’s baby.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 26

1 Introduction
1.2 From Plato To Zuse

First program run on The Baby in 1948:

Figure 1.5: Reconstruction of first executed program on The Baby.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 27

1 Introduction
1.3 History of AI

1.3 History of AI

Prof. Dr. Jürgen Dix Clausthal, SS 2013 28

1 Introduction
1.3 History of AI

The year 1943:
McCulloch and W. Pitts drew on three sources:

1 physiology and function of neurons in the
brain,

2 propositional logic due to Russell/Whitehead,
3 Turing’s theory of computation.

Model of artificial, connected neurons:
Any computable function can be computed by some
network of neurons.
All the logical connectives can be implemented by
simple net-structures.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 29

1 Introduction
1.3 History of AI

The year 1951:
Minsky and Edwards build the first computer
based on neuronal networks (Princeton)

The year 1952:
A. Samuel develops programs for checkers that
learn to play tournament-level checkers.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 30

1 Introduction
1.3 History of AI

The year 1956:
Two-month workshop at Dartmouth organized by
McCarthy, Minsky, Shannon and Rochester.

Idea:

Combine knowledge about automata theory,
neural nets and the studies of intelligence (10
participants)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 31

1 Introduction
1.3 History of AI

Newell und Simon show a reasoning program,
the Logic Theorist, able to prove most of the
theorems in Chapter 2 of the Principia
Mathematica (even one with a shorter proof).

But the Journal of Symbolic Logic rejected a paper
authored by Newell, Simon and Logical Theorist.

Newell and Simon claim to have solved the
venerable mind-body problem.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 32

1 Introduction
1.3 History of AI

The term Artificial Intelligence is
proposed as the name of the new
discipline.

Logic Theorist is followed by the General
Problem Solver, which was designed from the
start to imitate human problem-solving protocols.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 33

1 Introduction
1.3 History of AI

The year 1958: Birthyear of AI
McCarthy joins MIT and develops:

1 Lisp, the dominant AI programming language
2 Time-Sharing to optimize the use of computer-time
3 Programs with Common-Sense.

Advice-Taker: A hypothetical program that can be seen
as the first complete AI system. Unlike others it
embodies general knowledge of the world.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 34

1 Introduction
1.3 History of AI

The year 1959:
H. Gelernter: Geometry Theorem Prover

Prof. Dr. Jürgen Dix Clausthal, SS 2013 35

1 Introduction
1.3 History of AI

The years 1960-1966:
McCarthy concentrates on
knowledge-representation and reasoning in
formal logic (Robinson’s Resolution, Green’s
Planner, Shakey).

Minsky is more interested in getting programs to
work and focusses on special worlds, the
Microworlds.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 36

1 Introduction
1.3 History of AI

SAINT is able to solve integration problems typical of
first-year college calculus courses
ANALOGY is able to solve geometric analogy problems
that appear in IQ-tests

is to as is to:

1 2 3 4 5

Prof. Dr. Jürgen Dix Clausthal, SS 2013 37

1 Introduction
1.3 History of AI

Blocksworld is the most famous microworld.

Work building on the neural networks of McCulloch and
Pitts continued. Perceptrons by Rosenblatt and convergence
theorem:

Convergence theorem

An algorithm exists that can adjust the connection
strengths of a perceptron to match any input data.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 38

1 Introduction
1.3 History of AI

Summary:
Great promises for the future, initial successes but miserable
further results.

The year 1966: All US funds for AI research are
cancelled.

Inacceptable mistake

The spirit is willing but the flesh is weak.

was translated into

The vodka is good but the meat is rotten.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 39

1 Introduction
1.3 History of AI

The years 1966–1974: A dose of reality

Simon 1958: ”In 10 years a computer will be grandmaster of
chess.”

Simple problems are solvable due to small
search-space. Serious problems remain
unsolvable.

Hope:

Faster hardware and more memory will solve
everything!
 NP-Completeness, S. Cook/R. Karp (1971),
P 6= NP?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 40

1 Introduction
1.3 History of AI

The year 1973:
The Lighthill report forms the basis for the
decision by the British government to end
support for AI research.

Minsky’s book Perceptrons proved limitations of
some approaches with fatal consequences:

Research funding for neural net research
decreased to almost nothing.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 41

1 Introduction
1.3 History of AI

The years 1969–79: Knowledge-based systems

General purpose mechanisms are called weak methods,
because they use weak information about the domain. For
many complex problems it turns out that their performance
is also weak.

Idea:
Use knowledge suited to making larger reasoning steps and
to solving typically occurring cases on narrow areas of
expertise.

Example DENDRAL (1969)

Leads to expert systems like MYCIN (diagnosis of blood
infections).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 42

1 Introduction
1.3 History of AI

’73: PROLOG
’74: Relational databases (Codd)

81-91: Fifth generation project
’91: Dynamic Analysis and Replanning Tool

(DART) paid back DARPA’s investment
in AI during the last 30 years

’97: IBM’s Deep Blue
’98: NASA’s remote agent program
’11: IBM’s Watson winning Jeopardy! http:

//www-05.ibm.com/de/pov/watson/

Prof. Dr. Jürgen Dix Clausthal, SS 2013 43

http://www-05.ibm.com/de/pov/watson/
http://www-05.ibm.com/de/pov/watson/

1 Introduction
1.3 History of AI

Something to laugh about: In 1902 a German poem was
translated into Japanese. The Japanese version war
translated into French. At last this version was translated
back into German, assuming that it was a Japanese poem.

The result:

Stille ist im Pavillon aus Jade,
Krähen fliegen stumm
Zu beschneiten Kirschbäumen im Mondlicht.
Ich sitze
und weine.

What is the original poem?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 44

1 Introduction
1.4 Intelligent Agents

1.4 Intelligent Agents

Prof. Dr. Jürgen Dix Clausthal, SS 2013 45

1 Introduction
1.4 Intelligent Agents

Definition 1.1 (Agent aaa)
An agent aaa is anything that can be viewed as perceiving its
environment through sensor and acting upon that environment
through effectors.

?

agent

percepts

sensors

actions

effectors

environment

Prof. Dr. Jürgen Dix Clausthal, SS 2013 46

1 Introduction
1.4 Intelligent Agents

Definition 1.2 (Rational Agent, Omniscient Agent)

A rational agent is one that does the right thing
(Performance measure determines how
successful an agent is).

A omniscient agent knows the actual outcome of
his actions and can act accordingly.

Attention:

A rational agent is in general not omniscient!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 47

1 Introduction
1.4 Intelligent Agents

Question

What is the right thing and what does it depend
on?

1 Performance measure (as objective as possible).
2 Percept sequence (everything the agent has received so

far).
3 The agent’s knowledge about the environment.
4 How the agent can act.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 48

1 Introduction
1.4 Intelligent Agents

Definition 1.3 (Ideal Rational Agent)

For each possible percept-sequence an
ideal rational agent should do whatever
action is expected to maximize its
performance measure (based on the
evidence provided by the percepts and
built-in knowledge).

Note the performance measure is
something outside the agent. It allows to
compare agents performances.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 49

1 Introduction
1.4 Intelligent Agents

Mappings:

set of percept sequences 7→ set of actions

can be used to describe agents in a mathematical way.

Remark:
Internally an agent is

agent = architecture + program

AI is engaged in designing agent programs

Prof. Dr. Jürgen Dix Clausthal, SS 2013 50

1 Introduction
1.4 Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis
system

Healthy
patient,
minimize
costs, law-
suits

Patient, hos-
pital, staff

Display
questions,
tests, di-
agnoses,
treatments,
referrals

Keyboard
entry of
symptoms,
findings,
patient’s
answers

Satellite im-
age analysis
system

Correct im-
age catego-
rization

Downlink
from orbit-
ing satellite

Display cate-
gorization of
scene

Color pixel
arrays

Part-picking
robot

Percentage
of parts in
correct bins

Conveyor
belt with
parts; bins

Jointed arm
and hand

Camera,
joint angle
sensors

Interactive
English tutor

Maximize
student’s
score on test

Set of stu-
dents, test-
ing agency

Display
exercises,
suggestions,
corrections

Keyboard
entry

Table 1.2: Examples of agents types and their PEAS descriptions.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 51

1 Introduction
1.4 Intelligent Agents

A simple agent program:

Prof. Dr. Jürgen Dix Clausthal, SS 2013 52

1 Introduction
1.4 Intelligent Agents

In theory everything is trivial:

Prof. Dr. Jürgen Dix Clausthal, SS 2013 53

1 Introduction
1.4 Intelligent Agents

An agent example – taxi driver:

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal, com-
fortable trip,
maximize
profits

Roads,
other traffic,
pedestrians,
customers

Steering,
accelerator,
brake, sig-
nal, horn,
display

Cameras,
sonar,
speedome-
ter, GPS,
odometer,
accelerome-
ter, engine
sensors,
keyboard

Table 1.3: PEAS description of the environment for an automated taxi

Prof. Dr. Jürgen Dix Clausthal, SS 2013 54

1 Introduction
1.4 Intelligent Agents

Some examples:
1 Production rules: If the driver in front hits the

breaks, then hit the breaks too.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 55

1 Introduction
1.4 Intelligent Agents

A first mathematical description

At first, we want to keep everything as
simple as possible.
Agents and environments

An agent is situated in an environment
and can perform actions

A := {a1, . . . , an} (set of actions)

and change the state of the environment

S := {s1, s2, . . . , sn} (set of states).
Prof. Dr. Jürgen Dix Clausthal, SS 2013 56

1 Introduction
1.4 Intelligent Agents

How does the environment (the state s) develop when an
action a is executed?

We describe this with a function

env : S×A −→ 2S.

This includes non-deterministic
environments.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 57

1 Introduction
1.4 Intelligent Agents

How do we describe agents?

We could take a function action : S −→ A.

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules

Prof. Dr. Jürgen Dix Clausthal, SS 2013 58

1 Introduction
1.4 Intelligent Agents

Question:

How can we describe an agent, now?

Definition 1.4 (Purely Reactive Agent)

An agent is called purely reactive, if its
function is given by

action : S −→ A.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 59

1 Introduction
1.4 Intelligent Agents

This is too weak!

Take the whole history (of the
environment) into account:
s0 →a0 s1 →a1 . . . sn →an

The same should be done for env!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 60

1 Introduction
1.4 Intelligent Agents

This leads to agents that take the whole
sequence of states into account, i.e.

action : S∗ −→ A.

We also want to consider the actions
performed by an agent. This requires
the notion of a run (next slide).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 61

1 Introduction
1.4 Intelligent Agents

We define the run of an agent in an environment
as a sequence of interleaved states and actions:

Definition 1.5 (Run r, R = Ract ∪ Rstate)

A run r over A and S is a finite sequence

r : s0 →a0 s1 →a1 . . . sn →an . . .

Such a sequence may end with a state sn or with
an action an: we denote by Ract the set of runs
ending with an action and by Rstate the set of runs
ending with a state.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 62

1 Introduction
1.4 Intelligent Agents

Definition 1.6 (Environment, 2. version)

An environment Env is a triple 〈S, s0, τττ〉 consisting
of

1 the set S of states,
2 the initial state s0 ∈ S,
3 a function τττ : Ract −→ 2S, which describes how

the environment changes when an action is
performed (given the whole history).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 63

1 Introduction
1.4 Intelligent Agents

Definition 1.7 (Agent system aaa)

An agent aaa is determined by a function

action : Rstate −→ A,

describing which action the agent performs,
given its current history.
An agent system is then a pair aaa = 〈action, Env〉
consisting of an agent and an environment.
We denote by R(aaa, Env) the set of runs of agent
aaa in environment Env.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 64

1 Introduction
1.4 Intelligent Agents

Definition 1.8 (Characteristic Behaviour)

The characteristic behaviour of an agent aaa in an
environment Env is the set R of all possible runs
r : s0 →a0 s1 →a1 . . . sn →an . . . with:

1 for all n: an = action(〈s0, a0 . . . , an−1, sn〉),
2 for all n > 0: sn ∈ τττ(s0, a0, s1, a1, . . . , sn−1, an−1).

For deterministic τττ , the relation “∈” can be
replaced by “=”.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 65

1 Introduction
1.4 Intelligent Agents

Important:

The formalization of the characteristic
behaviour is dependent on the concrete
agent type. Later we will introduce
further behaviours (and corresponding
agent designs).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 66

1 Introduction
1.4 Intelligent Agents

Definition 1.9 (Equivalence)

Two agents aaa, bbb are called behaviourally
equivalent wrt. environment Env, if
R(aaa, Env) = R(bbb, Env).
Two agents aaa, bbb are called behaviourally
equivalent, if they are behaviourally
equivalent wrt. all possible environments
Env.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 67

1 Introduction
1.4 Intelligent Agents

So far so good, but...

What is the problem with all these agents
and this framework in general?

Problem

All agents have perfect information
about the environment!

(Of course, it can also be seen as feature!)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 68

1 Introduction
1.4 Intelligent Agents

We need more realistic agents!

Note

In general, agents only have
incomplete/uncertain information about the
environment!

We extend our framework by perceptions:
Definition 1.10 (Actions A, Percepts P, States S)

A := {a1, a2, . . . , an} is the set of actions.
P := {p1,p2, . . . ,pm} is the set of percepts.
S := {s1, s2, . . . , sl} is the set of states

Prof. Dr. Jürgen Dix Clausthal, SS 2013 69

1 Introduction
1.4 Intelligent Agents

Sensors don’t need to provide perfect
information!

Agent
E

n
viro

n
m

en
t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules

Prof. Dr. Jürgen Dix Clausthal, SS 2013 70

1 Introduction
1.4 Intelligent Agents

Question:

How can agent programs be designed?

There are four types of agent programs:
Simple reflex agents
Agents that keep track of the world
Goal-based agents
Utility-based agents

Prof. Dr. Jürgen Dix Clausthal, SS 2013 71

1 Introduction
1.4 Intelligent Agents

First try

We consider a purely reactive agent and
just replace states by perceptions.

Definition 1.11 (Simple Reflex Agent)

An agent is called simple reflex agent, if
its function is given by

action : P −→ A.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 72

1 Introduction
1.4 Intelligent Agents

A very simple reflex agent

Prof. Dr. Jürgen Dix Clausthal, SS 2013 73

1 Introduction
1.4 Intelligent Agents

A simple reflex agent with memory

Prof. Dr. Jürgen Dix Clausthal, SS 2013 74

1 Introduction
1.4 Intelligent Agents

As before, let us now consider sequences of
percepts:

Definition 1.12 (Standard Agent aaa)

A standard agent aaa is given by a function

action : P∗ −→ A

together with

see : S −→ P.

An agent is thus a pair 〈see, action〉.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 75

1 Introduction
1.4 Intelligent Agents

Definition 1.13 (Indistinguishable)

Two different states s, s′ are
indistinguishable for an agent aaa, if
see(s) = see(s′).

The relation “indistinguishable” on S× S

is an equivalence relation.
What does | ∼ | = |S|mean?
And what | ∼ | = 1?
The characteristic behaviour has to match
with the agent design!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 76

1 Introduction
1.4 Intelligent Agents

Definition 1.14 (Characteristic Behaviour)

The characteristic behaviour of a standard agent
〈see, action〉 in an environment Env is the set of
all finite sequences p0 →a0 p1 →a1 . . .pn →an . . .

where

p0 = see(s0),
ai = action(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1).

Such a sequence, even if deterministic from the
agent’s viewpoint, may cover different
environmental behaviours (runs):
s0 →a0 s1 →a1 . . . sn →an . . .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 77

1 Introduction
1.4 Intelligent Agents

Instead of using the whole history, resp. P∗, one
can also use internal states
I := {i1, i2, . . . , in, in+1, . . .}.
Definition 1.15 (State-based Agent aaastate)

A state-based agent aaastate is given by a function
action : I −→ A together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is
observed.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 78

1 Introduction
1.4 Intelligent Agents

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Prof. Dr. Jürgen Dix Clausthal, SS 2013 79

1 Introduction
1.4 Intelligent Agents

Definition 1.16 (Characteristic Behaviour)

The characteristic behaviour of a state-based agent aaastate
in an environment Env is the set of all finite sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an−1 (in,pn), . . .

with

p0 = see(s0),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1),
an = action(in+1),
next(in,pn) = in+1.

Sequence covers the runs r : s0 →a0 s1 →a1 . . . where
aj = action(ij+1),
sj ∈ τττ(s0, a0, s1, a1, . . . , sj−1, aj−1),
pj = see(sj)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 80

1 Introduction
1.4 Intelligent Agents

Are state-based agents more expressive
than standard agents? How to
measure?
Definition 1.17 (Environmental Behaviour of aaastate)

The environmental behaviour of an agent
aaastate is the set of possible runs covered by
the characteristic behaviour of the agent.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 81

1 Introduction
1.4 Intelligent Agents

Theorem 1.18 (Equivalence)

Standard agents and state-based
agents are equivalent with respect to
their environmental behaviour.
More precisely: For each state-based agent
aaastate and next storage function there exists
a standard agent aaa which has the same
environmental behaviour, and vice versa.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 82

1 Introduction
1.4 Intelligent Agents

3. Goal based agents:

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What it will be like
 if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

Will be discussed in Planning (Chapter 9).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 83

1 Introduction
1.4 Intelligent Agents

Intention:

We want to tell our agent what to do,
without telling it how to do it!

We need a utility measure.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 84

1 Introduction
1.4 Intelligent Agents

How can we define a utility function?
Take for example

u : S 7→ R

Question:
What is the problem with this definition?

Better idea:

u : R 7→ R

Take the set of runs R and not the set of states S.

How to calculate the utility if the agent has incomplete
information?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 85

1 Introduction
1.4 Intelligent Agents

4. Agents with a utility measure:

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What it will be like
 if I do action A

What the world
is like now

How happy I will be
 in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

The utility measure can often be simulated through a set of
goals. It would be helpful, if the utility is close to the
performance measure.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 86

1 Introduction
1.4 Intelligent Agents

Example 1.19 (Tileworld)
H

H

H

T T T

T T T

(a) (b) (c)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 87

1 Introduction
1.4 Intelligent Agents

Question:

How do properties of the environment
influence the design of an agent?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 88

1 Introduction
1.4 Intelligent Agents

Some important properties:
Fully/partially oberservable: If the environment

is not completely observable the agent
will need internal states.

Deterministic/stochastic: If the environment is
only partially observable, then it may
appear stochastic (while it is
deterministic).

Episodic/nonepisodic: Percept-action-sequences
are independent. The agent’s
experience is divided into episodes.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 89

1 Introduction
1.4 Intelligent Agents

Static/dynamic: The environment can change
while an agent is deliberating. An
environment is semidynamic if it does
not change with the passage of time but
the performance measure does.

Discrete/continuous: If there is a limited number
of percepts and actions the environment
is discrete.

Single/multi agents: Is there just one agent or
are there several interacting with each
other.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 90

1 Introduction
1.4 Intelligent Agents

Task Environment Observ. In/Determ. Episodic Static Discrete Agents
Crossword puzzle Fully Determ. Seq. Stat. Discr. Single
Chess with a clock Fully Strategic Seq. Semi Discr. Multi
Poker Part. Strategic Seq. Stat. Discr. Multi
Backgammon Fully Stochastic Seq. Stat. Discr. Multi
Taxi driving Part. Stochastic Seq. Dyn. Cont Multi
Medical diagnosis Part. Stochastic Seq. Dyn. Cont Single
Image-analysis Fully Determ. Epis. Semi Cont Single
Part-picking robot Part. Stochastic Epis. Dyn. Cont Single
Refinery controller Part. Stochastic Seq. Dyn. Cont Single
Interactive tutor Part. Stochastic Seq. Dyn. Discr. Multi

Table 1.4: Examples of task environments and their characteristics

Prof. Dr. Jürgen Dix Clausthal, SS 2013 91

2 Searching

2. Searching
2 Searching

Problem Formulation
Uninformed search
Best-First Search
A∗ Search
Heuristics
Limited Memory
Iterative Improvements
Online Search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 92

2 Searching

Content of this chapter (1):

Searching: Search Algorithms are perhaps the most basic
notion of AI. Almost any problem can be
formulated as a search problem.

(Un-) informed: We distinguish between uninformed and
informed search algorithms. In the latter case,
there is information available to guide the
search. Often, this results in algorithms that are
exponentially better than uninformed ones.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 93

2 Searching

Content of this chapter (2):

A∗: The A∗ algorithm is one of the fundamental
informed search algorithms in AI. We discuss
several variants based on Tree-Search or
Graph-Search and discuss their correctness and
completeness. We also consider Heuristics.

Memory: We discuss several variants which use only
limited memory: IDA∗, RBFS, and SMA∗.

Extensions: Finally, we conclude with a few words about
iterative improvements (genetic algorithms or
simulated annealing) and online algorithms
(where actions and search are interleaved). We
present the LRTA∗ algorithm.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 94

2 Searching

Wanted: Problem-solving agents, which
form a subclass of the
goal-oriented agents.

Structure: Formulate, Search, Execute.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 95

2 Searching

Formulate:

Goal: a set of states,
Problem: States, actions mapping
from states into states, transitions

Search: Which sequence of actions is helpful?
Execute: The resulting sequence of actions is

applied to the initial state.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 96

2 Searching

function SIMPLE-PROBLEM-SOLVING-AGENT(� � � � � �
) returns an action
inputs: � � � � � �
 , a percept
static: � � � , an action sequence, initially empty

�
 �
 � , some description of the current world state
� � � � , a goal, initially null

� � � � � � � , a problem formulation

�
 �
 � � UPDATE-STATE(�
 �
 � , � � � � � �
)
if � � � is empty then do

� � � � � FORMULATE-GOAL(�
 �
 �)
� � � � � � � � FORMULATE-PROBLEM(�
 �
 � , � � � �)

� � � � SEARCH(� � � � � � �)
� �
 % � & � FIRST(� � �)

� � � � REST(� � �)
return � �
 % � &

Table 2.5: A simple problem solving agent.

When executing, percepts are ignored.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 97

2 Searching
2.1 Problem Formulation

2.1 Problem Formulation

Prof. Dr. Jürgen Dix Clausthal, SS 2013 98

2 Searching
2.1 Problem Formulation

We distinguish four types:
1 1-state-problems: Actions are completely described.

Complete information through sensors to determine the
actual state.

2 Multiple-state-problems: Actions are completely
described, but the initial state is not certain.

3 Contingency-problems: Sometimes the result is not a
fixed sequence, so the complete tree must be
considered.
(Excercise: Murphy’s law, Chapter 9. Planning)

4 Exploration-problems: Not even the effect of each
action is known. You have to search in the world
instead of searching in the abstract model.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 99

2 Searching
2.1 Problem Formulation

1 2

3 4

5 6

7 8

Table 2.6: The vacuum world.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 100

2 Searching
2.1 Problem Formulation

Definition 2.1 (1-state-problem)

A 1-state-problem consists of:
a set of states (incl. the initial state)
a set of n actions (operators), each of which – applied to
a state – leads to another state:

Operatori: States→ States, i = 1, . . . , n

We use a function Successor-Fn: S → 2A×S. It assigns
each state a set of pairs 〈a, s〉: the set of possible actions
and the state it leads to.
a set of goal states or a goal test, which – applied on a
state – determines if it is a goal-state or not.
a cost function g, which assesses every path in the state
space (set of reachable states) and is usually additive.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 101

2 Searching
2.1 Problem Formulation

What about multiple-state-problems?
(excercise)

How to choose actions and states?
(abstraction)

Definition 2.2 (State Space)

The state space of a problem is the set of all
reachable states (from the initial state). It forms
a directed graph with the states as nodes and the
arcs the actions leading from one state to another.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 102

2 Searching
2.1 Problem Formulation

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

Table 2.7: The 8-puzzle.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 103

2 Searching
2.1 Problem Formulation

Table 2.8: The 8-queens problem.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 104

2 Searching
2.1 Problem Formulation

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Table 2.9: State Space for Vacuum world.

Missionaries vs. cannibals

Prof. Dr. Jürgen Dix Clausthal, SS 2013 105

2 Searching
2.1 Problem Formulation

L

R

L R

S

L R
S S

S S

R

L

S S

L

R

R

L

R

L

Table 2.10: Belief Space for Vacuum world without sensors.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 106

2 Searching
2.1 Problem Formulation

Real-world-problems:

travelling-salesman-problem
VLSI-layout
labelling maps
robot-navigation

Prof. Dr. Jürgen Dix Clausthal, SS 2013 107

2 Searching
2.2 Uninformed search

2.2 Uninformed search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 108

2 Searching
2.2 Uninformed search

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Choose, test, expand RBFS

Table 2.11: Map of Romania
Prof. Dr. Jürgen Dix Clausthal, SS 2013 109

2 Searching
2.2 Uninformed search

Principle: Choose, test, expand.

Search-tree
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Map of Romania
Prof. Dr. Jürgen Dix Clausthal, SS 2013 110

2 Searching
2.2 Uninformed search

Tree Search

function TREE-SEARCH(� � � � �
 � , � � � � �
 � �) returns a solution, or failure
initialize the search tree using the initial state of � � � � �
 �

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to � � � � �
 � �

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Table 2.12: Tree Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 111

2 Searching
2.2 Uninformed search

Important:

State-space versus search-tree:

The search-tree is countably infinite in contrast to
the finite state-space.

a node is a bookkeeping data structure with
respect to the problem instance and with
respect to an algorithm;
a state is a snapshot of the world.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 112

2 Searching
2.2 Uninformed search

Definition 2.3 (Datatype Node)

The datatype node is defined by state (∈ S), parent (a node),
action (also called operator) which generated this node,
path-costs (the costs to reach the node) and depth (distance
from the root).

Tree-Search

Important:

The recursive dependency between node and parent is
important. If the depth is left out then a special node root
has to be introduced.

Conversely the root can be defined by the depth: root is its
own parent with depth 0.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 113

2 Searching
2.2 Uninformed search

1

23

45

6

7

81

23

45

6

7

8

Node

PARENT− NODE

STATE P COSTATH− = 6
DEPTH = 6
ACTION = right

Figure 2.6: Illustration of a node in the 8-puzzle.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 114

2 Searching
2.2 Uninformed search

Instantiating Tree-SEARCH

Design-decision: Queue
Tree-SEARCH generates nodes. Among them are
those that are-to-be-expanded later on. Rather
than describing them as a set, we use a queue
instead.
The fringe is the set of generated nodes that have
not yet been expanded.

Here are a few functions operating on queues:
Make-Queue(Elements) Remove-First(Queue)
Empty?(Queue) Insert(Element,Queue)
First(Queue) Insert-All(Elements,Queue)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 115

2 Searching
2.2 Uninformed search

function TREE-SEARCH(� � � � � � � � 	 �
 � � �) returns a solution, or failure

	 �
 � � � INSERT(MAKE-NODE(INITIAL-STATE[� � � � � � �]), 	 �
 � � �)
loop do

if EMPTY?(�
 � � �) then return failure
� � � � REMOVE-FIRST(�
 � � �)
if GOAL-TEST[� � � � � � �] applied to STATE[� � � �] succeeds

then return SOLUTION(� � � �)
	 �
 � � � INSERT-ALL(EXPAND(� � � � , � � � � � � �), 	 �
 � � �)

function EXPAND(� � � � � � � � � � � �) returns a set of nodes

� � � � � � � � � � the empty set
for each � � � �
 � � , � � � � � � � in SUCCESSOR-FN[� � � � � � �](STATE[� � � �]) do

� a new NODE

STATE[�] � � � � � �
PARENT-NODE[�] � � � �
ACTION[�] � � �
 � �
PATH-COST[�] PATH-COST[� � � �] + STEP-COST(� � � � , � � �
 � � , �)
DEPTH[�] DEPTH[� � � �] + 1
add � to � � � � � � � � � �

return � � � � � � � � � �

Datatype Node

Graph-Search

Table 2.13: Tree-Search
Prof. Dr. Jürgen Dix Clausthal, SS 2013 116

2 Searching
2.2 Uninformed search

Question:

Whiat are interesting requirements of
search-strategies?

completeness
time-complexity
space complexity
optimality (w.r.t. path-costs)

We distinguish:

Uninformed vs. informed search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 117

2 Searching
2.2 Uninformed search

Definition 2.4 (Completeness, optimality)

A search strategy is called
complete, if it finds a solution,
provided there exists one at all.
optimal, if whenever it produces an
output, this output is an optimal
solution, i.e. one with the smallest
path costs among all solutions.

Is any optimal strategy also complete?
Vice versa?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 118

2 Searching
2.2 Uninformed search

Breadth-first search: “nodes with the smallest
depth are expanded first”,

Make-Queue : add new nodes at the end: FIFO
Complete? Yes.
Optimal? Yes, if all operators are equally expensive.

Constant branching-factor b: for a solution at
depth d we have generated1(in the worst case)

b+ b2 + . . .+ bd + (bd+1 − b)-many nodes.
Space complexity = Time Complexity

1 Note this is different from “expanded”.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 119

2 Searching
2.2 Uninformed search

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Figure 2.7: Illustration of Breadth-First Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 120

2 Searching
2.2 Uninformed search

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

Table 2.14: Time versus Memory.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 121

2 Searching
2.2 Uninformed search

Uniform-Cost-Search: “Nodes n with lowest
path-costs g(n) are expanded first”

Make-Queue : new nodes are compared to
those in the queue according
to their path costs and are
inserted accordingly

Complete? Yes, if each operator increases the
path-costs by a minimum of δ > 0 (see below).
Worst case space/time complexity: O(b1+bC

∗
δ c),

where C∗ is the cost of the optimal solution and
each action costs at least δ

Prof. Dr. Jürgen Dix Clausthal, SS 2013 122

2 Searching
2.2 Uninformed search

If all operators have the same costs (in particular if
g(n) = depth(n) holds):

Uniform-cost search

Uniform-cost search=Breadth-first search.

Theorem 2.5 (Optimality of Uniform-cost search)

If ∃δ > 0 : g(succ(n)) ≥ g(n) + δ then: Uniform-cost
search is optimal.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 123

2 Searching
2.2 Uninformed search

Depth-first search: “Nodes of the greatest depth
are expanded first”,

Make-Queue : LIFO,new nodes are
added at the
beginning

If branching-factor b is constant and the
maximum depth is m then:

Space-complexity: b×m,
Time-complexity: bm.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 124

2 Searching
2.2 Uninformed search

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Table 2.15: Illustration of Depth-First-Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 125

2 Searching
2.2 Uninformed search

Depth-limited search: “search to depth d”.

function DEPTH-LIMITED-SEARCH(� � � � �
 � , � � � � �) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[� � � � �
 �]), � � � � �
 � , � � � � �)

function RECURSIVE-DLS(� � �
 , � � � � �
 � , � � � � �) returns a solution, or failure/cutoff
� � � � � � � � � �
 � # % false
if GOAL-TEST[� � � � �
 �](STATE[� � �
]) then return SOLUTION(� � �
)
else if DEPTH[� � �
] = � � � � � then return � � � �

else for each) � � �
)) � � in EXPAND(� � �
 , � � � � �
 �) do
�
) � � � % RECURSIVE-DLS() � � �
)) � � , � � � � �
 � , � � � � �)
if �
) � � � = � � � � then � � � � � � � � � �
 � # % true
else if �
) � � � -. / 0 � � � �
 then return �
) � � �

if � � � � � � � � � �
 � # then return � � � � else return / 0 � � � �

Table 2.16: Depth-Limited-Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 126

2 Searching
2.2 Uninformed search

In total: 1 + b+ b2 + . . .+ bd−1 + bd + (bd+1 − b)
many nodes.

Space-complexity: b× l,
Time-complexity: bl.

Two different sorts of failures!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 127

2 Searching
2.2 Uninformed search

Iterative-deepening search: “depth increases”

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Table 2.17: Illustration of Iterative-Deepening-Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 128

2 Searching
2.2 Uninformed search

function ITERATIVE-DEEPENING-SEARCH(� � � � �
 �) returns a solution, or failure
inputs: � � � � �
 � , a problem

for �
 � � � � 0 to � do
�
 � � � � � DEPTH-LIMITED-SEARCH(� � � � �
 � , �
 � � �)
if �
 � � � � ! cutoff then return �
 � � � �

Table 2.18: Iterative-Deepening-Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 129

2 Searching
2.2 Uninformed search

How many nodes?

d× b + (d− 1)× b2 + . . . + 2× bd−1 + 1× bd.

Compare with Breadth-first search:

b + b2 + . . . + bd + (bd+1 − b).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 130

2 Searching
2.2 Uninformed search

Attention:

Iterative-deepening search is faster than
Breadth-first search because the latter also
generates nodes at depth d+ 1 (even if the
solution is at depth d).

The amount of revisited nodes is kept within a
limit.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 131

2 Searching
2.2 Uninformed search

GoalStart

Figure 2.8: Bidirectional search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 132

2 Searching
2.2 Uninformed search

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deep.

Bi-
direct.

Complete Yes1 Yes1,2 No No Yes1 Yes1,4

Time O(bd+1) O
(
b

⌈
C∗
ε

⌉)
O(bm) O(bl) O(bd) O

(
b

d
2

)
Space O(bd+1) O

(
b

⌈
C∗
ε

⌉)
O(bm) O(bl) O(bd) O

(
b

d
2

)
Optimal Yes3 Yes No No Yes3 Yes3,4

Table 2.19: Complexities of uninformed search procedures. Cells regard-
ing time and space denote the nodes generated.

1 if b is finite;
2 if step costs ≥ ε for
positive ε;
3if step costs are all
identical;
4 if both directions use
Breadth-first search

b branching factor, b ≥ 2

d depth of the shallowest solution,
d < m

m maximum depth of the search tree

l depth limit, l ≤ m

C∗ cost of the optimal solution

Prof. Dr. Jürgen Dix Clausthal, SS 2013 133

2 Searching
2.2 Uninformed search

How to avoid repeated states?

Can we avoid infinite trees by checking for
loops?
Compare number of states with number of
paths in the search tree.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 134

2 Searching
2.2 Uninformed search

State space vs. Search tree

Rectangular grid: How many different states
are reachable within a path of length d?

A

B

C

D

A

B B

CC CC

A

(c)(b)(a)

Table 2.20: State space versus Search tree: exponential blow-up.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 135

2 Searching
2.2 Uninformed search

Graph-Search= Tree-Search+ Loop-checking
Tree-Search

function GRAPH-SEARCH(� � � � � � � � 	 �
 � � �) returns a solution, or failure

 � � � � � � an empty set
	 �
 � � � � INSERT(MAKE-NODE(INITIAL-STATE[� � � � � � �]), 	 �
 � � �)
loop do

if EMPTY?(�
 � � �) then return failure
� � � � � REMOVE-FIRST(�
 � � �)
if GOAL-TEST[� � � � � � �](STATE[� � � �]) then return SOLUTION(� � � �)
if STATE[� � � �] is not in � � � � � then

add STATE[� � � �] to � � � � �

	 �
 � � � � INSERT-ALL(EXPAND(� � � � , � � � � � � �), 	 �
 � � �)

Table 2.21: Graph-Search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 136

2 Searching
2.3 Best-First Search

2.3 Best-First Search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 137

2 Searching
2.3 Best-First Search

Idea:

Use problem-specific knowledge to improve the
search.

Tree-search is precisely defined. Only freedom:
Make-Queue.
Let’s assume we have an evaluation-function f
which assigns a value f(n) to each node n.
We change Make-Queue as follows

the nodes with smallest f are located at
the beginning of the queue

– thus the queue is sorted wrt. f .
Prof. Dr. Jürgen Dix Clausthal, SS 2013 138

2 Searching
2.3 Best-First Search

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn� a function that orders nodes by EVAL-FN

return GENERAL-SEARCH(problem, Queueing-Fn)

Table 2.22: Best-First-Search.

What about time and space complexity?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 139

2 Searching
2.3 Best-First Search

Best-first search: here the evaluation-function is
f(n):= expected costs of an optimal path
from the state in n to a goal state.

The word optimal is used with respect to the
given cost-function g.

This evaluation-function is also called heuristic
function, written h(n).
Heuristic Function

We require from all heuristic functions that they
assign the value 0 to goal states.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 140

2 Searching
2.3 Best-First Search

Example 2.6 (path-finding)

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

h(n) might be defined as the direct-line distance
between Bucharest and the city denoted by n.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 141

2 Searching
2.3 Best-First Search

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Table 2.23: Illustration of Best-first search.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 142

2 Searching
2.3 Best-First Search

Questions:

1 Is Best-first search optimal?
2 Is Best-first search complete?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 143

2 Searching
2.4 A∗ Search

2.4 A∗ Search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 144

2 Searching
2.4 A∗ Search

Definition of A∗

A∗ search: Here the evaluation-function is
the sum of an heuristic function
h(n) and the real path-costs
g(n):

f (n) := h(n) + g(n).

So A∗ search is “best-first + uniform-cost”, because
h(nz) = 0 holds for final states nz, as f(nz) = g(nz).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 145

2 Searching
2.4 A∗ Search

The notion of admissibility

On Slide 140 we required from any heuristic
function that its value is 0 for goal nodes.
An important generalization of this is that it never
overestimates the cost to reach the goal.
Definition 2.7 (Admissible heuristic function)

The heuristic function h is called admissible if
h(n) is always smaller or equal than the optimal
costs h∗ from n to a goal-node:

h(n) 5 h∗(n)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 146

2 Searching
2.4 A∗ Search

Table 2.24: Illustration of A∗ (1).
Prof. Dr. Jürgen Dix Clausthal, SS 2013 147

2 Searching
2.4 A∗ Search

Table 2.25: Illustration of A∗ (2).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 148

2 Searching
2.4 A∗ Search

To show completeness of A∗ we have to ensure:

1 Never it is the case that an infinite number of
nodes is generated in one step (locally finite).

2 There is a δ > 0 such that in each step the path
costs increase by at least δ.

These conditions must also hold in the following
optimality results.

Theorem 2.8 (Completeness of A∗)

A∗ is complete (wrt. Tree Search or Graph Search),
if the above two properties are satisfied.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 149

2 Searching
2.4 A∗ Search

f is monotone in our example.
This does not hold in general.
Monotony of f is not needed to ensure
optimality.
But if the heuristic function is admissible, then
we can easily modify f to be monotone
(how?) and make the search more efficient.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 150

2 Searching
2.4 A∗ Search

Theorem 2.9 (Optimality of A∗ wrt Tree Search)

A∗ is optimal using Tree Search, if the
heuristic function h is admissible.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 151

2 Searching
2.4 A∗ Search

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 2.9: Goal-directed contours of A∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 152

2 Searching
2.4 A∗ Search

What if we use Graph Search?
The proof breaks down!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 153

2 Searching
2.4 A∗ Search

The notion of consistency

Definition 2.10 (Consistent heuristic function)

The heuristic function h is called consistent if the
following holds for every node n and successor n′

of n:
h(n) ≤ cost(n, a, n′) + h(n′).

Consistency of h implies monotony of f .

Is the converse also true?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 154

2 Searching
2.4 A∗ Search

Theorem 2.11 (Optimality of A∗ wrt Graph Search)

A∗ is optimal using Graph Search, if the
heuristic function h is consistent.

Is the last theorem also true if we
require monotony of f (instead of
consistency of h)?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 155

2 Searching
2.4 A∗ Search

Question:

How many nodes does A∗ store in memory?

Answer:

Virtually always exponentially many with respect
to the length of the solution.

It can be shown: As long as the heuristic function
is not extremely exact

|h(n)− h∗(n)| < O(log h∗(n))

the amount of nodes is always exponential with
respect to the solution.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 156

2 Searching
2.4 A∗ Search

For almost every usable heuristic a bad
error-estimation holds:

|h(n)− h∗(n)| ≈ O(h∗(n))

Important:

A∗’s problem is space not time.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 157

2 Searching
2.4 A∗ Search

Important:

A∗ is even optimally efficient: No other optimal
algorithm (which expands search-paths
beginning with an initial node) expands less
nodes than A∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 158

2 Searching
2.5 Heuristics

2.5 Heuristics

Prof. Dr. Jürgen Dix Clausthal, SS 2013 159

2 Searching
2.5 Heuristics

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Table 2.26: An instance of the 8-puzzle.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 160

2 Searching
2.5 Heuristics

Question:
Which branching-factor?

Answer:
Approx. 3 (more exactly 8

3
).

Question:
How many nodes have to be considered?

Answer:

3g ≈ 1010

in which g is the amount of moves necessary to get a
solution. g is approx. 22.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 161

2 Searching
2.5 Heuristics

Checking for loops

But: There are only 9! ≈ 105 states!

In other words: Looking at cycles can
be very helpful.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 162

2 Searching
2.5 Heuristics

Question:

Which heuristic functions come in handy?

Hamming-distance: h1 is the amount of
numbers which are in the wrong
position. I.e. h1(start) = 8.

Manhattan-distance: Calculate for every piece
the distance to the right position and
sum up:

h2 :=
8∑
i=1

(distance of i to the right position)

h2(start) = 2+3+2+1+2+2+1+2 = 15.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 163

2 Searching
2.5 Heuristics

Question:

How to determine the quality of a
heuristic function? (In a single value)

Definition 2.12 (Effective Branching Factor)

Suppose A∗ detects an optimal solution
for an instance of a problem at depth d
with N nodes generated. Then we define
b∗ via N + 1 = 1 + b∗ + (b∗)2 + . . . + (b∗)d:
the effective branching-factor of A∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 164

2 Searching
2.5 Heuristics

Attention:

b∗ depends on h and on the special
problem instance.

But for many classes of problem instances
b∗ is quite constant.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 165

2 Searching
2.5 Heuristics

Search Cost Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Table 2.27: Comparing A∗ (Hamming and Manhattan) with IDS.

Question:

Is Manhattan better than Hamming?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 166

2 Searching
2.5 Heuristics

How to determine a (good) heuristics
for a given problem?

There is no general solution, it
always depends on the problem.
Often one can consider a relaxed
problem, and take the precise
solution of the relaxed problem as a
heuristics for the original one.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 167

2 Searching
2.5 Heuristics

2

Start State Goal State

1

3 6

7 8

5

1

2

3

4

6

8

5 4

Table 2.28: A relaxed version of the 8-puzzle.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 168

2 Searching
2.5 Heuristics

Relaxed problem:

Try to bring 1–4 in the right positions,
but do not care about all the others.

This heuristics is better than
Manhattan distance (for the 8-puzzle).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 169

2 Searching
2.6 Limited Memory

2.6 Limited Memory

Prof. Dr. Jürgen Dix Clausthal, SS 2013 170

2 Searching
2.6 Limited Memory

Question:

A∗ is memory-intensive. What if the memory is
limited? What to do if the queue is restricted in its
length?

This leads to:
IDA∗: A∗ + iterative deepening,
RBFS: Recursive Best-First Search,
SMA∗: Simplified memory bounded A∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 171

2 Searching
2.6 Limited Memory

IDA∗: A∗ combined with iterative-deepening
search. We perform Depth-first search
(small memory), but use values of f
instead of depth.

So we consider contures: only nodes within the
f-limit. Concerning those beyond the limit we
only store the smallest f -value above the actual
limit.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 172

2 Searching
2.6 Limited Memory

function IDA*(problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f - COST limit

root, a node

root�MAKE-NODE(INITIAL-STATE[problem])
f-limit� f - COST(root)
loop do

solution, f-limit�DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
if f-limit =� then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f - COST limit
inputs: node, a node

f-limit, the current f - COST limit
static: next-f, the f - COST limit for the next contour, initially�

if f - COST[node] > f-limit then return null, f - COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do

solution, new-f�DFS-CONTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
next-f�MIN(next-f, new-f); end

return null, next-f

Figure 2.10: IDA∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 173

2 Searching
2.6 Limited Memory

Theorem 2.13 (Properties of IDA∗)

IDA∗ is optimal if enough memory is
available to store the longest
solution-path with costs 5 f ∗.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 174

2 Searching
2.6 Limited Memory

Question:

What about complexity?

space: depends on the smallest operator-costs δ, the
branching-factor b and the optimal costs f ∗.
bf ∗/δ-many nodes are generated (worst case)

time: depends on the amount of values of the
heuristic function.

If we consider a small amount of values, the last iteration of
IDA∗ will often be like A∗.

Consider a large amount of values. Then only one node
per conture will be added: How many nodes will IDA∗

visit if A∗ expands n-many?
What does this say about the time-complexity of A∗

and IDA∗?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 175

2 Searching
2.6 Limited Memory

RBFS: recursive Depth-first version of
Best-First search using only linear
memory. Memorizes f -value of
best alternative path.

f -value of each node is replaced by the
best (smallest) f -value of its children.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 176

2 Searching
2.6 Limited Memory

function RECURSIVE-BEST-FIRST-SEARCH(� � � � �
 �) returns a solution, or failure
RBFS(� � � � �
 � , MAKE-NODE(INITIAL-STATE[� � � � �
 �]), �)

function RBFS(� � � � �
 � , � � �
 , � � � � � �) returns a solution, or failure and a new � -cost limit
if GOAL-TEST[� � � � �
 �](� � � �
) then return � � �

� " "
 � � � � � $ EXPAND(� � �
 , � � � � �
 �)
if � " "
 � � � � � is empty then return � � � � �
 , �
for each � in � " "
 � � � � � do

� [s] $ * , - / 0 / � 2 4 6 / � 2 7 � 9 � � �
 : 2
repeat

�
 � � $ the lowest � -value node in � " "
 � � � � �
if � 9 �
 � � : = � � � � � � then return � � � � �
 , � [�
 � �]

� � �
 � � � � � B
 $ the second-lowest � -value among � " "
 � � � � �
�
 � � � , � [�
 � �] $ RBFS(� � � � �
 � , �
 � � , * F H / � � � � � � 7 � � �
 � � � � � B
 2)
if �
 � � � KL � � � � �
 then return �
 � � �

Table 2.29: RBFS

Prof. Dr. Jürgen Dix Clausthal, SS 2013 177

2 Searching
2.6 Limited Memory

Map of Romania

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 526

526 553

646 526

450591

646 526

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450 417
Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu,
 and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

Table 2.30: Illustration of RBFS.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 178

2 Searching
2.6 Limited Memory

RBFS is optimal and complete under
the same assumptions as A∗.
IDA∗ and RBFS suffer from using
too little memory.

We would like to use as much memory as
possible. This leads to SMA∗

Prof. Dr. Jürgen Dix Clausthal, SS 2013 179

2 Searching
2.6 Limited Memory

SMA∗: is an extension of A∗, which only needs
a limited amount of memory.

If there is no space left but nodes have to be
expanded, nodes will be removed from the
queue:

those with possibly great f -value (forgotten
nodes). But their f-costs will be stored. Later
those nodes will be considered if all other
paths lead to higher costs.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 180

2 Searching
2.6 Limited Memory

0+12=12

10 8

10 10 8

8 810 10

10+5=15 8+5=13

20+5=25 20+0=20 16+2=18

24+0=24 24+5=2930+5=35 30+0=30

16

24+0=24

A

B

C D

E F

G

H I

J K

15 24

A

B G

15

15 13

13

A

B G

12

15

A

B

12

A

24

A

G

I

15(15)

24()

20

A

B

D

20(24)

20()15

25

A

B

C

15(24)

13

18

A

G

H

13(15)

41 2 3

5 6 7 8

Figure 2.11: Illustration of SMA∗.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 181

2 Searching
2.6 Limited Memory

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f -cost

Queue�MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do

if Queue is empty then return failure
n� deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
s�NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then

f(s)��
else

f(s)�MAX(f(n), g(s)+h(s))
if all of n’s successors have been generated then

update n’s f -cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue
remove it from its parent’s successor list
insert its parent on Queue if necessary

insert s on Queue
end

Table 2.31: SMA∗.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 182

2 Searching
2.6 Limited Memory

Theorem 2.14 (Properties of SMA∗)

SMA∗ is complete if enough memory is
available to store the shortest
solution-path.

SMA∗ is optimal if there is enough memory
to store the optimal solution-path.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 183

2 Searching
2.7 Iterative Improvements

2.7 Iterative Improvements

Prof. Dr. Jürgen Dix Clausthal, SS 2013 184

2 Searching
2.7 Iterative Improvements

Idea:

Considering certain problems only the actual
state is important, but not the path leading to it:
Local Search problems

evaluation

current
state

Of course this problem is as difficult as you like!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 185

2 Searching
2.7 Iterative Improvements

Hill-climbing: gradient-descent (-ascent). Move
in a direction at random. Compare the
new evaluation with the old one. Move
to the new point if the evaluation is
better.

Problems:
local optima: (getting lost).
plateaux: (wandering around).
ridge: (detour).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 186

2 Searching
2.7 Iterative Improvements

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node

next, a node

current�MAKE-NODE(INITIAL-STATE[problem])
loop do

next� a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current� next

end

Table 2.32: Hill Climbing.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 187

2 Searching
2.7 Iterative Improvements

Random Restart Hill Climbing: Start
again and again from randomly
generated initial states.
N -queens: heuristic function h is the
number of pairs of queens that attack
each other. Random restart hill
climbing works well even for N = 106.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 188

2 Searching
2.7 Iterative Improvements

Simulated annealing: modified
hill-climbing: also bad moves
(small evaluation-value) are
allowed with the small
probability of e−|∆f |T . It depends
on the “temperature” T ranging
from∞ to 0.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 189

2 Searching
2.7 Iterative Improvements

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
static: current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current�MAKE-NODE(INITIAL-STATE[problem])
for t� 1 to� do

T� schedule[t]
if T=0 then return current
next� a randomly selected successor of current
ΔE�VALUE[next] – VALUE[current]
if ΔE > 0 then current� next
else current� next only with probability eΔE/T

Table 2.33: Simulated Annealing.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 190

2 Searching
2.7 Iterative Improvements

function GENETIC-ALGORITHM(� � � � � 	 � � � , FITNESS-FN) returns an individual
inputs: � � � � � 	 � � � , a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat
� � � � � � � � 	 � � � � empty set
loop for from 1 to SIZE(� � � � � 	 � � �) do

� � RANDOM-SELECTION(� � � � � 	 � � � , FITNESS-FN)
� � RANDOM-SELECTION(� � � � � 	 � � � , FITNESS-FN)

� � � " � REPRODUCE(� , �)
if (small random probability) then � � � " � MUTATE(� � � ")
add � � � " to � � � � � � � � 	 � � �

� � � � � 	 � � � � � � � � � � � � 	 � � �

until some individual is fit enough, or enough time has elapsed
return the best individual in � � � � � 	 � � � , according to FITNESS-FN

function REPRODUCE(� , �) returns an individual
inputs: � , � , parent individuals

� � LENGTH(�)
� � random number from 1 to �

return APPEND(SUBSTRING(� , 1, �), SUBSTRING(� , � + - , �))

Table 2.34: Genetic Algorithm.
Prof. Dr. Jürgen Dix Clausthal, SS 2013 191

2 Searching
2.7 Iterative Improvements

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Table 2.35: Illustration of Genetic Algorithm.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 192

2 Searching
2.7 Iterative Improvements

+ =

Table 2.36: Crossover in the 8-queens problem.

Fitness function: number of non-attacking pairs
of queens.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 193

2 Searching
2.8 Online Search

2.8 Online Search

Prof. Dr. Jürgen Dix Clausthal, SS 2013 194

2 Searching
2.8 Online Search

Up to now: offline search. What about
interleaving actions and computation?
Remember the exploration problem. One does
not know the effect of actions, nor the state
space. Therefore one has to try out all actions
and remember to which states they lead.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 195

2 Searching
2.8 Online Search

G

S

1 2 3

1

2

3

Table 2.37: Online vs Offline search.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 196

2 Searching
2.8 Online Search

How to measure the quality of an online
algorithm? Number of steps alone does not make
sense. One has to explore the space and find
the optimal path.

Definition 2.15 (Competitive Ratio)

The competitive ratio of an online search
problem is the costs of the path taken by the
agent divided by the costs of the optimal path.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 197

2 Searching
2.8 Online Search

Infinite competitive ratio

S

G

S

G

A

A

Prof. Dr. Jürgen Dix Clausthal, SS 2013 198

2 Searching
2.8 Online Search

Unbounded competitive ratio

S G

Prof. Dr. Jürgen Dix Clausthal, SS 2013 199

2 Searching
2.8 Online Search

We assume the following
1 actions are reversible (why?),
2 once a state has been visited, it will be recognized when

it is visited again.
Compare backtracking in offline versus online search. In
online search, we have to find an action to backtrack to
the previous state. We cannot take it from the queue!!
Similarly in online search we can only expand a node
that we physically occupy.
We have to keep a table result(a, s) listing the effects of
actions a executed in state s.
We also have to keep the following two tables:

1 unexplored: for each state the actions not yet tried,
2 unbacktracked: for each state the backtracks not yet tried.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 200

2 Searching
2.8 Online Search

Table 2.38: Online DFS Agent.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 201

2 Searching
2.8 Online Search

Hill Climbing is an Online Search algorithm!
What about using random restarts?
What about using random walks?
This certainly works for finite spaces, but not
for infinite ones.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 202

2 Searching
2.8 Online Search

Why not simply taking random walks?

S G

Table 2.39: Random Walk.

Because they can lead to exponentially many steps.
Will a random walk eventually find the goal
(completeness)? Y es, if state space is finite;

Y es, for 2-dimensional grids;
with probability 0.34, for 3-dimensional grids.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 203

2 Searching
2.8 Online Search

Instead of randomness, let’s try to use memory!

Given a heuristics h, it should be used.
But it can be misleading (local maxima).
Therefore we build a better, more realistic
estimate H that takes h into account and the
path that the hill climbing algorithm takes
to explore the states.
This can help to get out of the local maximum.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 204

2 Searching
2.8 Online Search

Hill-Climbing + Memory=LRTA∗

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

8 9

8 9

8 9

2

2

3

4

4

4

3

3

3

1 1 11 1 11
8 9 4 4 3

1 1 11 1 11
8 9 4 35

3

5

5

4

(a)

(b)

(c)

(d)

(e)

Table 2.40: Illustration of LRTA∗

Prof. Dr. Jürgen Dix Clausthal, SS 2013 205

2 Searching
2.8 Online Search

LRTA∗

a) The algorithm got stuck in a local minimum. The best
neighbour is right from the current (yellow) state.

b) Therefore the expected costs of the previous state have to be
updated (3 instead of 2 because the best neighbour has
expected costs 2 and the costs to go there is 1). Therefore the
algorithm walks back to this node (it is the best one).

c) In the same way the expected costs of the previous node
have to be updated (4 instead of 3).

d) Similarly, the expected costs of the current node have to be
updated (5 instead of 4).

e) Finally, the best next node is to the right (4 is better than 5).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 206

2 Searching
2.8 Online Search

Table 2.41: LRTA∗

Prof. Dr. Jürgen Dix Clausthal, SS 2013 207

3 Supervised Learning

3. Supervised Learning
3 Supervised Learning

Basics
Decision Trees
Ensemble Learning
PL1 Formalisations
PAC Learning
Noise and overfitting

Prof. Dr. Jürgen Dix Clausthal, SS 2013 208

3 Supervised Learning

Content of this chapter (1):

Learning: We describe the general structure of a Learning
Agent. An agent should be capable of learning
new concepts through observing its
environment. We distinguish between
supervised-, reinforcement- and unsupervised
learning.

Decision Trees: We describe a simple algorithm built on
some general assumption of Shannon’s
information theory, to construct decision trees
given a table of observations. We apply
Ockham’s razor and generate a tree that can be
used to make predictions about unseen cases.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 209

3 Supervised Learning

Content of this chapter (2):

Ensembles: Here we use not a single hypothesis,
but an ensemble of hypotheses to
make predictions. We describe the Ada
Boost Algorithm, which often improves
the hypothesis enormously.

Logic: We discuss another formulation of
learning, based on first-order logical
formulae: The Version Space
Algorithm.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 210

3 Supervised Learning

Learning in general

Hitherto: An agent’s intelligence is in his
program, it is hard-wired.

Now: We want a more autonomous agent,
which should learn through percepts
(experiences) to know its environment.

Important: If the domain in which it acts can’t be
described completely.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 211

3 Supervised Learning
3.1 Basics

3.1 Basics

Prof. Dr. Jürgen Dix Clausthal, SS 2013 212

3 Supervised Learning
3.1 Basics

Performance standard

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 213

3 Supervised Learning
3.1 Basics

Performance element: Observes and chooses
actions. This was the whole agent until now.
Critic: Observes the result of an action and
assesses it with respect to an external
standard.

Why external?

Otherwise it would set its own standard so
low that it always holds!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 214

3 Supervised Learning
3.1 Basics

Learning element: Modifies the performance
element by considering the critic (and
architecture of the performance element). It
also creates new goals (to improve
understanding effects of actions).
Problem generator: It proposes the execution
of actions to satisfy the goals of the learning
element. These do not have to be the “best”
actions (wrt. performance element): but they
should be informative and deliver new
knowledge about the world.

Example: Driving a taxi.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 215

3 Supervised Learning
3.1 Basics

Question:

What does learning (the design of the
learning element) really depend on?

1. Which components of the performance
element should be improved?

2. How are these components
represented?
(Slide 224 (Decision trees),
Slide 248 (Ensemble Learning),
Slide 257 (Domains formalised in PL1))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 216

3 Supervised Learning
3.1 Basics

3. Which kind of feedback?
Supervised learning: The execution of an incorrect action
leads to the “right” solution as feedback (e.g. How intensively
should the brakes be used?).
Driving instructor
Reinforcement learning: Only the result is perceived. Critic
tells, if good or bad, but not what would have been right.
Unsupervised learning: No hints about the right actions.

4. Which a-priori-information is there?
(Often there is useful background
knowledge)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 217

3 Supervised Learning
3.1 Basics

Components of the performance element:

1 Mappings from the conditions of the actual
state into the set of actions

2 Deriving relevant properties of the world from
the percepts

3 Information about the development of the
world

4 Information about the sequence of actions
5 Assessing-function of the world-states
6 Assessing-function concerning the quality of

single actions in one state
7 Description of state-classes, which maximise

the utility-function of an agent
Prof. Dr. Jürgen Dix Clausthal, SS 2013 218

3 Supervised Learning
3.1 Basics

Important:

All these components are – from a
mathematical point of view – mappings.

Learning means to represent these
mappings.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 219

3 Supervised Learning
3.1 Basics

Inductive learning: Given a set of pairs
(x, y).
Find f with f (x) = y.

Example 3.1 (Continue a series of numbers)

Which number is next?
3, 5, 7, ?
3, 5, 17, 257, ?

o
o

o
o

(c)

o
o

o

o
o

(a)

o
o

o

o
o

(b)

o
o

o

o
o

(d)

o

Prof. Dr. Jürgen Dix Clausthal, SS 2013 220

3 Supervised Learning
3.1 Basics

Simple reflex agent:

global examples�fg

function REFLEX-PERFORMANCE-ELEMENT(percept) returns an action

if (percept, a) in examples then return a
else

h� INDUCE(examples)
return h(percept)

procedure REFLEX-LEARNING-ELEMENT(percept, action)
inputs: percept, feedback percept

action, feedback action

examples� examples� f(percept,action)g

Prof. Dr. Jürgen Dix Clausthal, SS 2013 221

3 Supervised Learning
3.1 Basics

Example 3.2 (Wason’s Test; Verify and Falsify)
Consider a set of cards. Each card has a letter printed on one
side and a number on the other. Having taken a look at
some of these cards you formulate the following hypothesis:

If there is a vowel on one side then there is an even
number on the other.

Now there are the following cards on the table:

4 T A 7.

You are allowed to turn around only two cards to check the
hypothesis.
Which card(s) do you flip?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 222

3 Supervised Learning
3.2 Decision Trees

3.2 Decision Trees

Prof. Dr. Jürgen Dix Clausthal, SS 2013 223

3 Supervised Learning
3.2 Decision Trees

Decision trees represent boolean functions

Small example:

You plan to go out for dinner and arrive at a
restaurant. Should you wait for a free table or
should you move on?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 224

3 Supervised Learning
3.2 Decision Trees

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

No Yes

YesNoYes

No Yes

YesNo

WaitEstimate?

Trainings set Learned Tree Decision Tree
Prof. Dr. Jürgen Dix Clausthal, SS 2013 225

3 Supervised Learning
3.2 Decision Trees

decision tree = conjunction of implications

(implication = path leading to a leaf)
For all restaurants r:
(Patrons(r, Full)∧Wait_estimate(r, 10− 30)∧¬Hungry(r))
−→ Will_Wait(r)

Attention:
This is written in first order logic but a decision tree talks
only about a single object (r above). So this is really
propositional logic:

PatronsFullr ∧Wait_estimate10−30r ∧ ¬Hungryr
−→ Will_Waitr

Prof. Dr. Jürgen Dix Clausthal, SS 2013 226

3 Supervised Learning
3.2 Decision Trees

Question:

boolean functions = decision trees?

Answer:

Yes! Each row of the table describing the function
belongs to one path in the tree.

Attention

Decision trees can be much smaller! But there
are boolean function which can only be
represented by trees with an exponential size:

Parity function: par(x1, . . . , xn) :=

{
1, if

∑n
i=1 xi is even

0, else

Prof. Dr. Jürgen Dix Clausthal, SS 2013 227

3 Supervised Learning
3.2 Decision Trees

Variant of decision-trees
Example 3.3 (Decision List)

All attributes are boolean. A decision list is a tree of the
following form

yes

no Answer e+1

Answer e

TEST eTEST 2TEST 1

yes yes

no no

Answer 1 Answer 2

. . .

with Answeri ∈ {Yes,No} and Testi a conjunction of
(possibly negated) attributes (Exercise: Compare
decision trees and decision lists).
k-DL(n) is the set of boolean functions with n attributes,
which can be represented by decision lists with at most k
checks in each test.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 228

3 Supervised Learning
3.2 Decision Trees

PAC-Learning

Patrons(x,Some)
No

Yes Yes

No

>Patrons(x,Full) Fri/Sat(x)

Yes

No

Yes

Obviously:
n-DL(n) = set of all boolean functions
card(n-DL(n)) = 22n.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 229

3 Supervised Learning
3.2 Decision Trees

Question: Table of examples

How should decision trees be learned?

Example
Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes

Decision Tree Learned Tree

Prof. Dr. Jürgen Dix Clausthal, SS 2013 230

3 Supervised Learning
3.2 Decision Trees

The set of examples-to-be-learned is called
training set. Examples can be evaluated
positively (attribute holds) or negatively (attribute
does not hold).

Trivial solution of learning

The paths in the tree are exactly the examples.

Disadvantage:

New cases can not be considered.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 231

3 Supervised Learning
3.2 Decision Trees

Idea:

Choose the simplest tree (or rather the
most general) which is compatible with
all examples.

Ockham’s razor: Entia non sunt
multiplicanda praeter
necessitatem.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 232

3 Supervised Learning
3.2 Decision Trees

Example 3.4 (Guess!)

A computer program encodes triples of numbers
with respect to a certain rule. Find out that rule.

You enter triples (x1, x2, x3) of your choice
(xi ∈ N) and get as answers “yes” or “no”.
Simplification: At the beginning the program tells
you that these triples are in the set:

(4, 6, 8), (6, 8, 12), (20, 22, 40)

Your task:

Make more enquiries (approx. 10) and try to find
out the rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 233

3 Supervised Learning
3.2 Decision Trees

The idea behind the learning algorithm

Goal: A tree which is as small as possible. First test
the most important attributes (in order to get a
quick classification).

This will be formalised later, using information
theory.

Then proceed recursively, i.e. with decreasing
amounts of examples and attributes.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 234

3 Supervised Learning
3.2 Decision Trees

We distinguish the following cases:
1 There are positive and negative examples.

Choose the best attribute.
2 There are only positive or only negative

examples. Done – a solution has been found.
3 There are no more examples. Then a default

value has to be chosen, e.g. the majority of
examples of the parent node.

4 There are positive and negative examples,
but no more attributes. Then the basic set of
attributes does not suffice, a decision can not
be made. Not enough information is given.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 235

3 Supervised Learning
3.2 Decision Trees

function DECISION-TREE-LEARNING(examples, attributes, default) returns a decision tree
inputs: examples, set of examples

attributes, set of attributes
default, default value for the goal predicate

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY-VALUE(examples)
else

best�CHOOSE-ATTRIBUTE(attributes, examples)
tree� a new decision tree with root test best
for each value vi of best do

examplesi�felements of examples with best = vig
subtree�DECISION-TREE-LEARNING(examplesi, attributes� best,

MAJORITY-VALUE(examples))
add a branch to tree with label vi and subtree subtree

end
return tree

Prof. Dr. Jürgen Dix Clausthal, SS 2013 236

3 Supervised Learning
3.2 Decision Trees

None Some Full

Patrons?

No Yes

No Yes

Hungry?

No

No Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Decision Tree Trainings set Learned Tree

Prof. Dr. Jürgen Dix Clausthal, SS 2013 237

3 Supervised Learning
3.2 Decision Trees

The algorithm computes a tree which is as small
as possible and consistent with the given
examples.

Question:

How good is the generated tree? How different is
it from the “actual” tree? Is there an
a-priory-estimation? (PAC learning).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 238

3 Supervised Learning
3.2 Decision Trees

Empiric approach:
1 Chose a set of examples MEx.
2 Divide into two sets: MEx = MTrai ∪MTest.
3 Apply the learning algorithm on MTrai and get

a hypothesis H.
4 Calculate the amount of correctly classified

elements of MTest.
5 Repeat 1.-4. for many MTrai ∪MTest with

randomly generated MTrai.

Attention: Peeking!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 239

3 Supervised Learning
3.2 Decision Trees

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Prof. Dr. Jürgen Dix Clausthal, SS 2013 240

3 Supervised Learning
3.2 Decision Trees

Information theory

Question:

How to choose the best attribute? The
best attribute is the one that delivers the
highest amount of information.

Example: Flipping a coin

Prof. Dr. Jürgen Dix Clausthal, SS 2013 241

3 Supervised Learning
3.2 Decision Trees

Shannon’s theory

Definition 3.5 (1 bit, information)

1 bit is the information contained in the outcome
of flipping a (fair) coin.

More generally: assume there is an experiment
with n possible outcomes v1, . . . , vn. Each
outcome vi will result with a probability of P (vi).
The information encoded in this result (the
outcome of the experiment) is defined as follows:

I(P (v1), . . . , P (vn)) :=
n∑
i=1

−P (vi)log2P (vi)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 242

3 Supervised Learning
3.2 Decision Trees

Assume the coin is manipulated. With a
probability of 90% head will come out.
Then

I(0.1, 0.9) = . . . ≈ 0.47

Prof. Dr. Jürgen Dix Clausthal, SS 2013 243

3 Supervised Learning
3.2 Decision Trees

Question:

For each attribute A: If this attribute is
evaluated with respect to the actual
training-set, how much information will
be gained this way?

The “best” attribute is the one with the
highest gain of information!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 244

3 Supervised Learning
3.2 Decision Trees

Definition 3.6 (Gain of Information)

We gain the following information by testing the
attribute A:

Gain(A) = I(
p

p+ n
,

n

p+ n
)−Missing_Inf(A)

with

Missing_Inf(A) =
ν∑
i=1

pi + ni
p+ n

I(
pi

pi + ni
,

ni
pi + ni

)

Choose_Attribute chooses the A with maximal
Gain(A).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 245

3 Supervised Learning
3.2 Decision Trees

(a)

French Italian Thai Burger

Type?

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

The figure implies Gain(Patron) ≈ 0.54. Calculate
Gain(Type), Gain(Hungry) (Hungry as the first
attribute), Gain(Hungry) (with predecessor
Patron).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 246

3 Supervised Learning
3.3 Ensemble Learning

3.3 Ensemble Learning

Prof. Dr. Jürgen Dix Clausthal, SS 2013 247

3 Supervised Learning
3.3 Ensemble Learning

So far:

A single hypothesis is used to make predictions.

Idea:

Let’s take a whole bunch of them (an
ensemble).

Motivation:

Among several hypotheses, use majority voting.
The misclassified ones get higher weights!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 248

3 Supervised Learning
3.3 Ensemble Learning

Consider three simple hypotheses. No one is
perfect. But all taken together, a new hypothesis
is created (which is not constructible by the
original method).

+
+

+
+

+
+++++

+
+

+
+

−−−
−

−

−
−

−

−
−

−
−

−
−

−

−
−

− − −−

− −
−−

− −

−
−

−
−

−

−
− −

−

−
− −

−

−

Prof. Dr. Jürgen Dix Clausthal, SS 2013 249

3 Supervised Learning
3.3 Ensemble Learning

h1 h2 h3 h4

h

Prof. Dr. Jürgen Dix Clausthal, SS 2013 250

3 Supervised Learning
3.3 Ensemble Learning

Weighted Training Set: Each example gets a
weight wj ≥ 0.

Initialisation: All weights are set to 1
n.

Boosting: Misclassified examples are getting
higher weights.

Iterate: We get new hypotheses hi. After we got
a certain number M of them we feed
them into the

Boosting-Algorithm: It creates a weighted
ensemble hypothesis.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 251

3 Supervised Learning
3.3 Ensemble Learning

Prof. Dr. Jürgen Dix Clausthal, SS 2013 252

3 Supervised Learning
3.3 Ensemble Learning

Theorem 3.7 (Effect of boosting)

Suppose the Learning algorithm has the following
property: it always returns a hypothesis with
weighted error that is slightly better than
random guessing.
Then AdaBOOST will return a hypothesis classifying
the training data perfectly for large enough M .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 253

3 Supervised Learning
3.3 Ensemble Learning

0.5
0.55

0.6
0.65

0.7
0.75
0.8

0.85
0.9

0.95
1

0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Boosted decision stumps
Decision stump

Prof. Dr. Jürgen Dix Clausthal, SS 2013 254

3 Supervised Learning
3.3 Ensemble Learning

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

T
ra

in
in

g/
te

st
 a

cc
ur

ac
y

Number of hypotheses M

Training error
Test error

Prof. Dr. Jürgen Dix Clausthal, SS 2013 255

3 Supervised Learning
3.4 PL1 Formalisations

3.4 PL1 Formalisations

Prof. Dr. Jürgen Dix Clausthal, SS 2013 256

3 Supervised Learning
3.4 PL1 Formalisations

Goal:

A more general framework.

Idea:

To learn means to search in the hypotheses
space (planning).

Goal-predicate:

Q(x), one-dimensional (hitherto: Will_Wait)

We seek a definition of Q(x), i.e. a formula C(x)
with

∀x (Q(x)↔ C(x))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 257

3 Supervised Learning
3.4 PL1 Formalisations

Each example Xi represents a set of conditions
under which Q(Xi) holds or not. We look for an
explanation: a formula C(x) which uses all
predicates of the examples.
∀r Will_Wait(r)↔

Patrons(r, Some)
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, French))
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, Thai) ∧ Fri_Sat(r))
∨(Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r,Burger))

Note that we require the formulae C(x) to be of a certain form:
disjunctions of conjunctions of atomic or negated predicates.
The negations of such formulae are also called clauses. They will
be defined more precisely on Slide 401 in Chapter 5.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 258

3 Supervised Learning
3.4 PL1 Formalisations

Definition 3.8 (Hypothesis, Candidate Function)

A formula Ci(x) with ∀x (Q(x)↔ Ci(x)) is called
candidate function. The whole formula is called
hypothesis:

Hi : ∀x (Q(x)↔ Ci(x))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 259

3 Supervised Learning
3.4 PL1 Formalisations

Definition 3.9 (Hypotheses-Space H)

The hypotheses-space H of a learning-algorithm
is the set of hypotheses the algorithm can create.

The extension of a hypothesis H with respect to
the goal-predicate Q is the set of examples for
which H holds.

Attention:

The combination of hypotheses with different
extensions leads to inconsistency.

Hypotheses with the same extensions are
logically equivalent.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 260

3 Supervised Learning
3.4 PL1 Formalisations

The situation in general:
We have a set of examples {X1, . . . , Xn}. We
describe each example X through a clause
and the declaration Q(X) or ¬Q(X).

Example
Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes

Prof. Dr. Jürgen Dix Clausthal, SS 2013 261

3 Supervised Learning
3.4 PL1 Formalisations

X1 is defined through

Alt(X1)∧¬Bar(X1)∧¬Fri_Sat(X1)∧Hungry(X1)∧. . .

und Will_Wait(X1).
Note that H is the set of hypotheses as defined
in Definition 3.8. While it corresponds to
decision trees, it is not the same.

The training set is the set of all such
conjunctions.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 262

3 Supervised Learning
3.4 PL1 Formalisations

We search for a hypothesis which is consistent with
the training set.

Question:
Under which conditions is a hypothesis H inconsistent with
an example X?

false negative: Hypothesis says no (¬Q(X)) but Q(X) does
hold.

false positive: Hypothesis says yes (Q(X)) but ¬Q(X) does
hold.

Attention:
Inductive learning in logic-based domains means to
restrict the set of possible hypotheses with every
example.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 263

3 Supervised Learning
3.4 PL1 Formalisations

For first order logic: H is in general infinite, thus
automatic theorem proving is much too general.
1st approach: We keep one hypothesis and

modify it if the examples are
inconsistent with it.

2nd approach: We keep the whole subspace
that is still consistent with the
examples (version space).
This is effectively represented by two
sets (analogical to the representation of
a range of real numbers by [a, b]).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 264

3 Supervised Learning
3.4 PL1 Formalisations

1st approach: Current-best-hypothesis Search.
Begin with a simple hypothesis H.

If a new example is consistent with H: okay.
If it is false negative: Generalise H.
If it is false positive: Specialise H.

(a) (b) (c) (d) (e)

+
+

+

+
+

+ +

−
−

−

−

−−

−

− −
−

−

+
+

+

+
+

+ +

−
−

−

−

−−

−

− −
−

−

+

+
+

+

+
+

+ +

−
−

−

−

−−

−

− −
−

−

+

+
+

+

+
+

+ +

−
−

−

−

−−

−

− −

−

+−

+
+

+

+
+

+ +

−
−

−

−

−−

−

− −

−

+

− −

−

Prof. Dr. Jürgen Dix Clausthal, SS 2013 265

3 Supervised Learning
3.4 PL1 Formalisations

This leads to an algorithm:

function CURRENT-BEST-LEARNING(examples) returns a hypothesis

H� any hypothesis consistent with the first example in examples
for each remaining example in examples do

if e is false positive for H then
H� choose a specialization of H consistent with examples

else if e is false negative for H then
H� choose a generalization of H consistent with examples

if no consistent specialization/generalization can be found then fail
end
return H

Prof. Dr. Jürgen Dix Clausthal, SS 2013 266

3 Supervised Learning
3.4 PL1 Formalisations

Question:
How to generalize/specialize?

H1 : ∀x (Q(x)↔ C1(x))
H2 : ∀x (Q(x)↔ C2(x))

H1 generalises H2, if ∀x (C2(x)→ C1(x)),
H1 specialises H2, if ∀x (C1(x)→ C2(x)).

Generalisation means: leave out ∧-elements in a
conjunction, add ∨-elements to a disjunction.
Specialisation means: add ∧-elements to a
conjunction, leave out ∨-elements in a disjunction.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 267

3 Supervised Learning
3.4 PL1 Formalisations

2nd approach: Version-space.

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V, the version space: the set of all hypotheses

V� the set of all hypotheses
for each example e in examples do

if V is not empty then V�VERSION-SPACE-UPDATE(V, e)
end
return V

function VERSION-SPACE-UPDATE(V, e) returns an updated version space

V�fh � V : h is consistent with eg

Prof. Dr. Jürgen Dix Clausthal, SS 2013 268

3 Supervised Learning
3.4 PL1 Formalisations

Problem:
H is a big disjunction H1 ∨ . . . ∨Hn. How to represent this?

Reminder:
How is the set of real numbers between 0 and 1
represented? Through the range [0, 1].

To solve our problem:

There is a partial order on H (generalize/specialize). The
borders are defined through

G set: is consistent with all previous examples and
there is no more general hypothesis.
S set: is consistent with all previous examples and
there is no more special hypothesis.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 269

3 Supervised Learning
3.4 PL1 Formalisations

Initially, the G set consists of > (true), and the S set consists
of ⊥ (false). This is because the initial version space should
represent all possible hypotheses.

this region all inconsistent

This region all inconsistent

More general

More specific

S 1

G1

S 2

G2 G3 . . . G m

 . . . S n

We have to ensure the following:

1 Each consistent hypothesis
(except those in G or S) is
more specific than some
member of G and more
general than some member
of S.

2 Each hypothesis that is more
specific than some member
of G and more general than
some member of S is a
consistent hypothesis.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 270

3 Supervised Learning
3.4 PL1 Formalisations

When considering new examples the G- and S-sets must be
appropriately modified in VERSION-SPACE-UPDATE (so that
the two conditions on the last slide are satisfied).

+ +

+ +

+

+

+
+

+ +

−

−

−

−

−

−
−

−

− −
−

−−

−

S 1

1G

G2

False positive for Si: Si too general, no
consistent specializations:
Remove Si from S.

False negative for Si: Si too specific: Replace
it by all generalizations that
are more specific than some
element of G.

False positive for Gi: Gi too general: Replace
it by all specializations that
are more general than some
element of S.

False negative for Gi: Gi too specific, no
consistent generalizations:
Remove Gi from G.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 271

3 Supervised Learning
3.4 PL1 Formalisations

Question:

What can happen?

We iterate the algorithm on the previous slide
until one of the following happens:

1 Only one hypothesis remains: That is our
solution!

2 The space collapses: There is no consistent
hypothesis, G = ∅ or S = ∅.

3 No examples are left, but there are still several
hypotheses: Result is a big disjunction.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 272

3 Supervised Learning
3.5 PAC Learning

3.5 PAC Learning

Prof. Dr. Jürgen Dix Clausthal, SS 2013 273

3 Supervised Learning
3.5 PAC Learning

Question:

What is the distance between the hypothesis H
calculated by the learning algorithm and the real
function f?

 computational learning theory: PAC-learning –
Probably Approximately Correct.

Idea:

If a hypothesis is consistent with a big training
set then it cannot be completely wrong.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 274

3 Supervised Learning
3.5 PAC Learning

Question:

How are the training set and test set related?

We assume:

The elements of the training and test set are
taken from the set of all examples with

the same probability.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 275

3 Supervised Learning
3.5 PAC Learning

Definition 3.10 (error(h))

Let h ∈ H be a hypothesis and f the target (i.e.
to-be-learned) function. We are interested in the
set

Diff (f ,h) := {x : h(x) 6= f(x)}.

We denote with error(h) the probability of a
randomly selected example being in Diff (f , h).
With ε > 0 the hypothesis h is called ε
approximatively correct, if error(h) ≤ ε holds.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 276

3 Supervised Learning
3.5 PAC Learning

Question:

ε > 0 is given. How many examples must the
training set contain to make sure that the
hypothesis created by a learning algorithm is ε
approximatively correct?

Question is wrongly stated!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 277

3 Supervised Learning
3.5 PAC Learning

Different sets of examples lead to different
propositions and with it to different values of
ε. It depends not only on how many but also
which examples are chosen.
For this reason we reformulate our question
more carefully.

Question: More carefully and precisely stated.

Let ε > 0 and δ > 0 be given. How many examples
must the training-set contain to make sure that
the hypothesis computed by a
learning-algorithm is ε approximatively correct
with a probability of at least 1− δ?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 278

3 Supervised Learning
3.5 PAC Learning

We want to abstract from particular
learning-algorithms and make a statement
about all possible learning algorithms.
So we assume only that a learning-algorithm
calculates a hypothesis that is consistent
with all previous examples. Our result holds
for this class of learning algorithms.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 279

3 Supervised Learning
3.5 PAC Learning

Definition 3.11 (Example Complexity)

Let δ > 0 and ε > 0 be given. The example
complexity is the number m of examples an
arbitrary learning algorithm needs so that the
created hypothesis h is ε approximatively correct
with the probability 1− δ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 280

3 Supervised Learning
3.5 PAC Learning

Theorem 3.12 (Example Complexity)

The example complexity m depends on ε, δ and
the hypotheses-space H as follows:

m ≥ 1

ε
(ln

1

δ
+ ln|H|)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 281

3 Supervised Learning
3.5 PAC Learning

f

Hbad

H

∋

Question:

What does the last result mean?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 282

3 Supervised Learning
3.5 PAC Learning

Question:

The complexity depends on log(|H|). What does
this mean for boolean functions with n
arguments?

Answer:

We have log(|H|) = 2n. Thus one needs
exponentially-many examples even if one is
satisfied with ε approximative correctness under a
certain probability!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 283

3 Supervised Learning
3.5 PAC Learning

Proof (of the theorem):
hb ∈ H with error(hb) > ε.

What is the probability Pb of hb being consistent with
the chosen examples? For one single example: it is
≤ (1− ε) because of the definition of error. Therefore:

Pb ≤ (1− ε)m

What is the probability P ′ that there is a hypothesis
hb with error(hb) > ε and consistent with m examples
at all?

P ′ ≤ |Hbad|(1− ε)m
≤ |{h : error(h) > ε}|(1− ε)m
≤ |H|(1− ε)m

Prof. Dr. Jürgen Dix Clausthal, SS 2013 284

3 Supervised Learning
3.5 PAC Learning

Proof (continuation):

We want P ′ ≤ δ:

|H|(1− ε)m ≤ δ

After some transformations:

(1− ε)m ≤ δ
|H|

m ln(1− ε) ≤ ln(δ)− ln(|H|)
m ≥ − 1

ln(1−ε)(ln(1
δ) + ln(|H|))

m ≥ 1
ε (ln(1

δ) + ln(|H|))

The last line holds because of
ln(1− ε) < −ε.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 285

3 Supervised Learning
3.5 PAC Learning

Essential result:

Learning is never better than looking up in a
table!

1st way out: We ask for a more specialised
hypothesis instead of one that is just
consistent (complexity gets worse).

2nd way out: We give up on learning arbitrary
boolean functions and concentrate on
appropriate subclasses.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 286

3 Supervised Learning
3.5 PAC Learning

We consider Decision lists.
Theorem 3.13 (Decision Lists can be learned)

Learning functions in k-DL(n) (decision lists with
a maximum of k tests) has a PAC-complexity of

m =
1

ε
(ln(

1

δ
) + O(nklog2(n

k))).

Decision Lists

Each algorithm which returns a consistent
decision list for a set of examples can be turned
into a PAC-learning-algorithm, which learns a
k-DL(n) function after a maximum of m
examples.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 287

3 Supervised Learning
3.5 PAC Learning

Important estimates (exercises):

|Conj (n, k)| =
∑k

i=0

(
2n
i

)
= O(nk),

|k-DL(n)| ≤ 3|Conj (n,k)||Conj (n, k)! ,

|k-DL(n)| ≤ 2O(nklog2(nk)) .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 288

3 Supervised Learning
3.5 PAC Learning

function DECISION-LIST-LEARNING(examples) returns a decision list, No or failure

if examples is empty then return the value No
t� a test that matches a nonempty subset examplest of examples

such that the members of examplest are all positive or all negative
if there is no such t then return failure
if the examples in examplest are positive then o� Yes
else o�No
return a decision list with initial test t and outcome o

and remaining elements given by DECISION-LIST-LEARNING(examples � examples t)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 289

3 Supervised Learning
3.5 PAC Learning

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Decision list

Prof. Dr. Jürgen Dix Clausthal, SS 2013 290

3 Supervised Learning
3.6 Noise and overfitting

3.6 Noise and overfitting

Prof. Dr. Jürgen Dix Clausthal, SS 2013 291

3 Supervised Learning
3.6 Noise and overfitting

Noise:
examples are inconsistent (Q(x) together with
¬Q(x)),
no attributes left to classify more examples,
makes sense if the environment is stochastic.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 292

3 Supervised Learning
3.6 Noise and overfitting

Overfitting: Dual to noise.
remaining examples can be classified using
attributes which establish a pattern, which is
not existent (irrelevant attributes).

Example 3.14 (Tossing Dice)

Several coloured dice are tossed. Every toss is
described via (day, month, time, colour). As long
as there is no inconsistency every toss is described
by exactly one (totally overfitted) hypothesis.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 293

3 Supervised Learning
3.6 Noise and overfitting

Other examples:

the pyramids,
astrology,
“Mein magisches Fahrrad”.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 294

4 Learning in networks

4. Learning in networks
4 Learning in networks

The human brain
Neural networks
The Perceptron
Multi-layer feed-forward

Prof. Dr. Jürgen Dix Clausthal, SS 2013 295

4 Learning in networks

Content of this chapter:

Neural Nets: Neural nets are an abstraction from entities
operating in our brain.

Perceptrons: the perceptron is a particularly simple model.
We describe the perceptron learning algorithm,
which converges for each representable
function: The linear separable functions.

Feed Forward Nets: We illustrate back propagation by
simulating methods and techniques from
perceptrons.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 296

4 Learning in networks

Learning with networks is a method to
build complex functions from many very
simple but connected units and to learn this
construction from examples,
improve the understanding of the
functionality of the human brain.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 297

4 Learning in networks
4.1 The human brain

4.1 The human brain

Prof. Dr. Jürgen Dix Clausthal, SS 2013 298

4 Learning in networks
4.1 The human brain

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Prof. Dr. Jürgen Dix Clausthal, SS 2013 299

4 Learning in networks
4.1 The human brain

A neuron consists of
the soma: the body of the cell,
the nucleus: the core of the cell,
the dendrites,
the axon: 1 cm - 1 m in length.

The axon branches and connects to the dendrites
of other neurons: these locations are called
synapses. Each neuron shares synapses with

10-100000 others.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 300

4 Learning in networks
4.1 The human brain

Signals are propagated from neuron to neuron
by a complicated electrochemical reaction.

Chemical transmitter substances are released
from the synapses and enter the dendrite, raising
or lowering the electrical potential of the cell
body.

When the potential reaches a threshold an
electrical pulse or action potential is sent along
the axon.

The pulse spreads out along the branches of the
axons and releases transmitters into the bodies of
other cells.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 301

4 Learning in networks
4.1 The human brain

Question:

How does the building process of the network of
neurons look like?

Answer:

Long term changes in the strength of the
connections are in response to the pattern of
stimulation.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 302

4 Learning in networks
4.1 The human brain

Biology versus electronics:
Computer Human Brain

Computational units 1 CPU, 105 gates 1011 neurons
Storage units 109 bits RAM, 1010 bits disk 1011 neurons, 1014 synapses
Cycle time 10�8 sec 10�3 sec
Bandwidth 109 bits/sec 1014 bits/sec
Neuron updates/sec 105 1014

Computer: sequential processes, very fast,
“rebooting quite often”

Brain: works profoundly concurrently, quite
slow, error-correcting, fault-tolerant
(neurons die constantly)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 303

4 Learning in networks
4.2 Neural networks

4.2 Neural networks

Prof. Dr. Jürgen Dix Clausthal, SS 2013 304

4 Learning in networks
4.2 Neural networks

Definition 4.1 (Neural Network)

A neural network consists of:

1 units,
2 links between units.

The links are weighted. There are three kinds of
units:

1 input units,
2 hidden units,
3 output units.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 305

4 Learning in networks
4.2 Neural networks

Idea:

A unit i receives an input via links to other units j.
The input function

ini :=
∑
j

Wj,i aj

calculates the weighted sum.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 306

4 Learning in networks
4.2 Neural networks

Notation Meaning

ai Activation value of unit i (also the output of the unit)
ai Vector of activation values for the inputs to unit i

g Activation function
g� Derivative of the activation function

Erri Error (difference between output and target) for unit i
Erre Error for example e

Ii Activation of a unit i in the input layer
I Vector of activations of all input units
Ie Vector of inputs for example e

ini Weighted sum of inputs to unit i

N Total number of units in the network

O Activation of the single output unit of a perceptron
Oi Activation of a unit i in the output layer
O Vector of activations of all units in the output layer

t Threshold for a step function

T Target (desired) output for a perceptron
T Target vector when there are several output units
Te Target vector for example e

Wj,i Weight on the link from unit j to unit i
Wi Weight from unit i to the output in a perceptron
Wi Vector of weights leading into unit i
W Vector of all weights in the network

Prof. Dr. Jürgen Dix Clausthal, SS 2013 307

4 Learning in networks
4.2 Neural networks

Output

g
Input

Links

Output

Links

ini

Σ

a = g(in) iiaj Wj,i

Activation
 Function

 Input
 Function

ia

Prof. Dr. Jürgen Dix Clausthal, SS 2013 308

4 Learning in networks
4.2 Neural networks

The activation function g calculates the output ai
(from the inputs) which will be transferred to
other units via output-links:

ai := g(ini)

Examples:

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini

Prof. Dr. Jürgen Dix Clausthal, SS 2013 309

4 Learning in networks
4.2 Neural networks

Standardisation:

We consider step0 instead of stept.
If an unit i uses the activation function stept(x)
then we bring in an additional input link “0”
which adds a constant value of a0 := −1. This
value is weighted as W0,i := t. Now we can use
step0 for the activation function:

stept(

n∑
j=1

Wj,iaj) = step0(−t+

n∑
j=1

Wj,iaj) = step0(

n∑
j=0

Wj,iaj)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 310

4 Learning in networks
4.2 Neural networks

Networks can be
recurrent, i.e. somehow connected,
feed-forward, i.e. they form an acyclic graph.

Usually networks are partitioned into layers:
units in one layer have only links to units of the next
layer.

E.g. multi-layer feed-forward networks: without internal
states (no short-term memory).

2I

1I

O5

w13

w14

w23

w24

w35

w45

H3

H4

Prof. Dr. Jürgen Dix Clausthal, SS 2013 311

4 Learning in networks
4.2 Neural networks

Important:

The output of the input-units is determined by the
environment.

Question 1:

Which function does the figure describe?

Question 2:

Why can non-trivial functions be represented at
all?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 312

4 Learning in networks
4.2 Neural networks

Question 3:

How many units do we need?

a few: a small number of functions can be
represented,
many: the network learns by heart (
overfitting)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 313

4 Learning in networks
4.2 Neural networks

Hopfield networks:
1 bidirectional links with symmetrical

weights,
2 activation function: sign,
3 units are input- and output-units,
4 can store up to 0.14N training

examples.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 314

4 Learning in networks
4.2 Neural networks

Learning with neural networks means the
adjustment of the parameters to ensure
consistency with the training-data.
Question:

How to find the optimal network structure?

Answer:

Perform a search in the space of network
structures (e.g. with genetic algorithms).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 315

4 Learning in networks
4.3 The Perceptron

4.3 The Perceptron

Prof. Dr. Jürgen Dix Clausthal, SS 2013 316

4 Learning in networks
4.3 The Perceptron

Definition 4.2 (Perceptron)

A perceptron is a feed-forward network with one
layer based on the activation function step0.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj

Prof. Dr. Jürgen Dix Clausthal, SS 2013 317

4 Learning in networks
4.3 The Perceptron

Question:

Can all boolean functions be represented by a
feed-forward network?

Can AND, OR and NOT be represented?
Is it possible to represent every boolean
function by simply combining these?
What about

f(x1, . . . , xn) :=

{
1, if

∑n
i=1 xi >

n
2

0, else.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 318

4 Learning in networks
4.3 The Perceptron

Solution:

Every boolean function can be composed
using AND, OR and NOT (or even only
NAND).
The combination of the respective perceptrons
is not a perceptron!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 319

4 Learning in networks
4.3 The Perceptron

Perceptron with sigmoid activation

−4 −2 0 2 4x1
−4

−2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Prof. Dr. Jürgen Dix Clausthal, SS 2013 320

4 Learning in networks
4.3 The Perceptron

Question:

What about XOR?

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Prof. Dr. Jürgen Dix Clausthal, SS 2013 321

4 Learning in networks
4.3 The Perceptron

Output = step0(
n∑
j=1

WjIj)∑n
j=1WjIj = 0 defines a n-dimensional

hyperplane.
Definition 4.3 (Linear Separable)

A boolean function with n attributes is called
linear separable if there is a hyperplane
((n− 1)-dimensional subspace) which separates
the positive domain-values from the negative
ones.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 322

4 Learning in networks
4.3 The Perceptron

(a) Separating plane (b) Weights and threshold

W = −1

t = −1.5
W = −1

W = −1

I3

I2

I1

Prof. Dr. Jürgen Dix Clausthal, SS 2013 323

4 Learning in networks
4.3 The Perceptron

Learning algorithm:

Similar to current best hypothesis (chapter on
learning).

hypothesis: network with the current weights
(firstly randomly generated)
UPDATE: make it consistent through small
changes.
Important: for each example UPDATE is called
several times. These calls are called epochs.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 324

4 Learning in networks
4.3 The Perceptron

function NEURAL-NETWORK-LEARNING(examples) returns network

network� a network with randomly assigned weights
repeat

for each e in examples do
O�NEURAL-NETWORK-OUTPUT(network, e)
T� the observed output values from e
update the weights in network based on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network

Prof. Dr. Jürgen Dix Clausthal, SS 2013 325

4 Learning in networks
4.3 The Perceptron

Definition 4.4 (Perceptron Learning (step0)

Perceptron learning modifies the weights Wj

with respect to this rule:

Wj := Wj + α× Ij × Error

with Error:= T −O (i.e. the difference between
the correct and the current output-value). α is the
learning rate.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 326

4 Learning in networks
4.3 The Perceptron

Definition 4.5 (Perceptron Learning (sigmoid)

Perceptron learning modifies the weights Wj

with respect to this rule:

Wj := Wj + α× g′(in) Ij × Error

with Error:= T −O (i.e. the difference between
the correct and the current output-value). α is the
learning rate.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 327

4 Learning in networks
4.3 The Perceptron

The following algorithm uses xj[e] for Ij.

function PERCEPTRON-LEARNING(� � � � �
 � , � � � � � � �) returns a perceptron hypothesis
inputs: � � � � �
 � , a set of examples, each with input x � � � � � � � � � ! and output "

� � � � � � � , a perceptron with weights # $ � � � � � � � � , and activation function %

repeat
for each � in � � � � �
 � do

& �) �
!

$ � � # $ � $ * � +
, � �) " * . + 0 % 2 & � 5
$) # $ 6 7 � , � � � % 9 2 & � 5 � � $ * � +

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(� � � � � � �)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 328

4 Learning in networks
4.3 The Perceptron

Theorem 4.6 (Rosenblatt’s Theorem)

Every function which can be represented by a
perceptron is learned through the perceptron
learning algorithm (Definition 4.4).
More exactly: The series Wj converges to a
function which represents the examples
correctly.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 329

4 Learning in networks
4.3 The Perceptron

Proof:
Let ŵ be a solution, wlog. we can assume (why? exercise)

ŵ
−→
I > 0 for all

−→
I ∈ Ipos ∪ −Ineg

with Ipos consisting of the positive and Ineg consisting of the
negative examples (and −Ineg = {−

−→
I :
−→
I ∈ Ineg}).

Let I′ := Ipos ∪ −Ineg and m := min {ŵ
−→
I :
−→
I ∈ I′}.

−→w1, . . . ,
−→wj, . . . be the sequence of weights resulting from the

algorithm.
We want to show that this sequence eventually becomes
constant.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 330

4 Learning in networks
4.3 The Perceptron

Proof (continued):

Consider the possibility that not all −→wi are different from
their predecessor (or successor) (this is the case if the new
example is not consistent with the current weights). Let
k1, k2, . . . , kj be the indices of the changed weights (where
error is non-zero), i.e.

−→wkj
−→
Ikj ≤ 0, −−−→wkj+1 = −→wkj + α

−→
Ikj .

With
−→
Ikj being the kj-th tested example in I

′ (which is not
consistent (wrt the definition of kj)).
The we have

−−−→wkj+1 = −→wk1 + α
−→
Ik1 + α

−→
Ik2 + . . .+ α

−→
Ikj

Prof. Dr. Jürgen Dix Clausthal, SS 2013 331

4 Learning in networks
4.3 The Perceptron

Proof (continued):
We use this to show that j cannot become arbitrarily big.
We compose

cosω =
ŵ−−−→wkj+1

‖ŵ‖ ‖−−−→wkj+1‖
and estimate as follows (by decreasing the numerator and
increasing the denominator):

cosω =
ŵ−−−→wkj+1

‖ŵ‖ ‖−−−→wkj+1‖
≥ ŵ−→wk1 + αmj

‖ŵ‖
√
‖−→wk1‖2 + α2Mj

The right side converges to infinity (when j increases to
infinity) and cosinus will never get greater than 1. This leads
to the contradiction.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 332

4 Learning in networks
4.3 The Perceptron

Proof (continued):
How do we get the estimation above?

the scalar product ŵ−−−→wkj+1 leads to
ŵ−→wk1 + αŵ (

−→
I1 + . . .+

−→
Ij) ≥ ŵ−→wk1 + αmj.

‖−−−→wkj+1‖2 = ‖−→wkj + α
−→
Ikj‖2 =

‖−→wkj‖2 + 2α
−→
Ikj
−→wkj + α2‖

−→
Ikj‖2 ≤ ‖−→wkj‖2 + α2‖

−→
Ikj‖2, da

−→
Ikj
−→wkj ≤ 0, this is how we have chosen kj.

Now be M := max {‖
−→
I ‖2 :

−→
I ∈ I′}. Then

‖−−−→wkj+1‖2 ≤ ‖−→wk1‖2+α2‖
−→
Ik1‖2+ . . .+α2‖

−→
Ikj‖2 ≤

−→wk1‖2+α2Mj

holds.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 333

4 Learning in networks
4.3 The Perceptron

What is the underlying example?

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Perceptron
Decision tree

Figure 4.12: Perceptron Better than Decision Tree

Prof. Dr. Jürgen Dix Clausthal, SS 2013 334

4 Learning in networks
4.3 The Perceptron

What is the underlying example?

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Perceptron

Figure 4.13: Decision Tree Better than Perceptron

Prof. Dr. Jürgen Dix Clausthal, SS 2013 335

4 Learning in networks
4.4 Multi-layer feed-forward

4.4 Multi-layer feed-forward

Prof. Dr. Jürgen Dix Clausthal, SS 2013 336

4 Learning in networks
4.4 Multi-layer feed-forward

Problem:

How does the error-function of the hidden units
look like?

Learning with multi-layer networks is called back
propagation.
Hidden units can be seen as perceptrons (Figure
on page 320). The outcome can be a linear
combination of such perceptrons (see next two
slides).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 337

4 Learning in networks
4.4 Multi-layer feed-forward

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

hW(x1, x2)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 338

4 Learning in networks
4.4 Multi-layer feed-forward

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

hW(x1, x2)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 339

4 Learning in networks
4.4 Multi-layer feed-forward

Input units

Hidden units

Output units Oi

Wj,i

a j

Wk,j

Ik

Prof. Dr. Jürgen Dix Clausthal, SS 2013 340

4 Learning in networks
4.4 Multi-layer feed-forward

The perceptron was not powerful enough in our
restaurant-example (Figure 335). So we try 2
layers. 10 attributes lead to 10 input-units.
Question

How many hidden units are necessary?

Answer:

Four!

Perceptron’s error is easily determined because
there was only one Wj between input and output.
Now we have several.

How should the error be distributed?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 341

4 Learning in networks
4.4 Multi-layer feed-forward

Minimising by using derivatives (1)

We minimise E = 1
2

∑
i(Ti −Oi)

2 and get

E = 1
2

∑
i(Ti − g(

∑
jWj,iaj))

2

= 1
2

∑
i(Ti − g(

∑
jWj,ig(

∑
kWk,jIk)))

2

Do a gradient descent.
∂E
∂Wj,i

= 1
2

∑
i(Ti −Oi)

2

= 1
22(Ti − g(. . .))(−∂g

∂x(ini))aj
= −aj(Ti −Oi)

∂g
∂x(ini)

= −aj∆i

Prof. Dr. Jürgen Dix Clausthal, SS 2013 342

4 Learning in networks
4.4 Multi-layer feed-forward

Minimising by using derivatives (2)

Now the Wk,j:

∂E
∂Wk,j

= 1
2

∑
i (2(Ti − g(. . .))(−∂g

∂x(ini))(Wj,i
∂g
∂x(inj)Ik))

=
∑

i (∆iWj,i
∂g
∂x(inj)Ik)

= ∂g
∂x(inj)Ik

∑
iWj,i∆i

Prof. Dr. Jürgen Dix Clausthal, SS 2013 343

4 Learning in networks
4.4 Multi-layer feed-forward

Idea:

We perform two different updates. One for the
weights to the input units and one for the weights
to the output units.

output units: similar to the perceptron

Wj,i := Wj,i + α× aj × Errori × g′(ini)
Instead of Errori × g′(ini) write ∆i.

hidden units: each hidden unit j is partly responsible for
the error ∆i (if j is connected with the output
unit i).

Wk,j := Wk,j + α× Ik ×∆j

with ∆j := g′(inj)
∑

iWj,i∆i.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 344

4 Learning in networks
4.4 Multi-layer feed-forward

function BACK-PROP-LEARNING(� � � � �
 � , � � � � � � �) returns a neural network
inputs: � � � � �
 � , a set of examples, each with input vector x and output vector y

� � � � � � � , a multilayer network with � layers, weights � � � � , activation function

repeat
for each � in � � � � �
 � do

for each node � in the input layer do � � ! � � # � $
for � = 2 to % do

& � � ! � � � � � � � �
� � !) & � � +

for each node � in the output layer do, � ! .) & � � + �) 1 � # � $ 3 5 � +
for � = % 3 6 to 1 do

for each node � in layer � do, � ! .) & � � + � � � � � � , �
for each node � in layer � 7 6 do

� � � � ! � � � � 7 9 � 5 � � , �
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(� � � � � � �)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 345

4 Learning in networks
4.4 Multi-layer feed-forward

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n

tr
ai

ni
ng

 s
et

Number of epochs

Prof. Dr. Jürgen Dix Clausthal, SS 2013 346

4 Learning in networks
4.4 Multi-layer feed-forward

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Multilayer network

Prof. Dr. Jürgen Dix Clausthal, SS 2013 347

4 Learning in networks
4.4 Multi-layer feed-forward

Back propagation algorithm:

1 calculate ∆i for the output units based on the
observed error errori.

2 for each layer proceed recursively (output layer
first):

back propagate the ∆i (predecessor layer)
modify the weight between the current layers

Important:

Back propagation is gradient search!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 348

4 Learning in networks
4.4 Multi-layer feed-forward

error is the function of the network’s weights.
This function delivers the error surface.

Err

b

a

W2

W1

Prof. Dr. Jürgen Dix Clausthal, SS 2013 349

4 Learning in networks
4.4 Multi-layer feed-forward

General remarks:

expressibility: neural networks are suitable for
continous input and outputs (noise).
To represent all boolean functions
with n attributes 2n

n hidden units
suffice.
Often much less suffice: the art of
determining the topology of the
network.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 350

4 Learning in networks
4.4 Multi-layer feed-forward

efficiency: m examples, |W | weights: each epoch
needs O(m× |W |)-time. We know:
Number of epochs is exponential.
In practice the time of convergence is
very variable.
Problem: local minima on the error
surface.

transparency: black box. Trees and lists explain
their results!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 351

5 Knowledge Engineering (1)

5. Knowledge Engineering (1)
5 Knowledge Engineering (1)

Sentential Logic
Sudoku
Calculi for SL
Wumpus in SL
A Puzzle

Prof. Dr. Jürgen Dix Clausthal, SS 2013 352

5 Knowledge Engineering (1)

Content of this chapter (1):

Logic: We introduce sentential logic (also
called propositional logic). This logic
dates back to Boole and is the basis for
many logical frameworks. The essential
features of most logics can be illustrated
in a puristic way.
We are using logics to describe the
world and how the world behaves.

Sudoku: We illustrate how to use SL with the
game of Sudoku. The conditions of
being a solution can be easily stated in
SL.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 353

5 Knowledge Engineering (1)

Content of this chapter (2):

Calculi for SL: While it is nice to describe the
world, or the solution of a Sudoku
puzzle, we also want to draw
conclusions about it or even to solve
the puzzle. Therefore we have to
derive new information and deduce
statements, that are not explicitly given.

Examples: We illustrate the use of SL with two
more examples: The Wumpus world and
one of the weekly puzzles in the
newspaper Die Zeit.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 354

5 Knowledge Engineering (1)
5.1 Sentential Logic

5.1 Sentential Logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 355

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.1 (Sentential Logic LSL, Lang. L ⊆ LSL)

The language LSL of propositional (or sentential) logic
consists of
� and >: the constants falsum and verum,
p, q, r, x1, x2, . . . xn, . . .: a countable set AT of
SL-constants,
¬, ∧, ∨,→: the sentential connectives (¬ is unary, all
others are binary operators),
(,): the parentheses to help readability.

In most cases we consider only a finite set of SL-constants.
They define a language L ⊆ LSL. The set of L-formulae
FmlL is defined inductively.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 356

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.2 (Semantics, Valuation, Model)

A valuation v for a language L ⊆ LSL is a mapping from the
set of SL-constants defined by L into the set {true, false}
with v(�) = false, v(>) = true.
Each valuation v can be uniquely extended to a function
v̄ : FmlL → {true, false} so that:

v̄(¬p) =

{
true, if v̄(p) = false,
false, if v̄(p) = true.

v̄(ϕ ∧ γ) =

{
true, if v̄(ϕ) = true and v̄(γ) = true,
false, else

v̄(ϕ ∨ γ) =

{
true, if v̄(ϕ) = true or v̄(γ) = true,
false, else

Prof. Dr. Jürgen Dix Clausthal, SS 2013 357

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition (continued)
v̄(ϕ→ γ) ={

true, if v̄(ϕ) = false or (v̄(ϕ) = true and v̄(γ) = true),
false, else

Thus each valuation v uniquely defines a v̄. We call v̄
L-structure.
A structure determines for each formula if it is true or false.
If a formula φ is true in structure v̄ we also say Av is a model
of φ. From now on we will speak of models, structures and
valuations synonymously.

Semantics
The process of mapping a set of L-formulae into
{true, false} is called semantics.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 358

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.3 (Model, Theory, Tautology (Valid))

1 A formula ϕ ∈ FmlL holds under the
valuation v if v̄(ϕ) = true. We also write v̄ |= ϕ
or simply v |= ϕ. v̄ is a model of ϕ.

2 A theory is a set of formulae: T ⊆ FmlL. v
satisfies T if v̄(ϕ) = true for all ϕ ∈ T . We write
v |= T .

3 A L-formula ϕ is called L-tautology (or simply
called valid) if for all possible valuations v in
L v |= ϕ holds.

From now on we suppress the language L when obvious
from context.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 359

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.4 (Consequence Set Cn(T))

A formula ϕ follows from T if for all models v of T
(i.e. v |= T) also v |= ϕ holds. We write: T |= ϕ.
We call

CnL(T) =def {ϕ ∈ FmlL : T |= ϕ},

or simply Cn(T), the semantic consequence
operator.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 360

5 Knowledge Engineering (1)
5.1 Sentential Logic

Lemma 5.5 (Properties of Cn(T))

The semantic consequence operator has the
following properties:

1 T -expansion: T ⊆ Cn(T),
2 Monotony: T ⊆ T ′ ⇒ Cn(T) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T)) = Cn(T).

Lemma 5.6 (ϕ 6∈ Cn(T))

ϕ 6∈ Cn(T) if and only if there is a model v
with v |= T and
v̄(ϕ) = false.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 361

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.7 (MOD(T), Cn(U))

If T ⊆ FmlL then we denote with MOD(T) the set
of all L-structures A which are models of T :

MOD(T) =def {A : A |= T}.

If U is a set of models, we consider all those
sentences, which are valid in all models of U . We
call this set Cn(U):

Cn(U) =def {ϕ ∈ FmlL : ∀v ∈ U : v̄(ϕ) = true}.

MOD is obviously dual to Cn:

Cn(MOD(T)) = Cn(T), MOD(Cn(T)) = MOD(T).
Prof. Dr. Jürgen Dix Clausthal, SS 2013 362

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.8 (Completeness of a Theory T)

T is called complete if for each formula
ϕ ∈ Fml: T |= ϕ or T |= ¬ϕ holds.

Attention:

Do not mix up this last condition with the
property of a valuation (model) v: each
model is complete in the above sense.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 363

5 Knowledge Engineering (1)
5.1 Sentential Logic

Definition 5.9 (Consistency of a Theory)

T is called consistent if there is a
valuation (model) v with v̄(ϕ) = true for
all ϕ ∈ T .

Lemma 5.10 (Ex Falso Quodlibet)

T is consistent if and only if
Cn(T) 6= FmlL.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 364

5 Knowledge Engineering (1)
5.2 Sudoku

5.2 Sudoku

Prof. Dr. Jürgen Dix Clausthal, SS 2013 365

5 Knowledge Engineering (1)
5.2 Sudoku

Since some time, Sudoku puzzles are becoming
quite famous.

Table 5.42: A simple Sudoku (S1)
Prof. Dr. Jürgen Dix Clausthal, SS 2013 366

5 Knowledge Engineering (1)
5.2 Sudoku

Can they be solved with sentential logic?
Idea: Given a Sudoku-Puzzle S, construct a
language LSudoku and a theory TS ⊆ FmlLSudoku

such that

MOD(TS) = Solutions of the puzzle S

Solution

In fact, we construct a theory TSudoku and for each
(partial) instance of a 9× 9 puzzle S a particular
theory TS such that

MOD(TSudoku ∪ TS) = {S : S is a solution of S}
Prof. Dr. Jürgen Dix Clausthal, SS 2013 367

5 Knowledge Engineering (1)
5.2 Sudoku

We introduce the following language LSudoku:
1 einsi,j, 1 ≤ i, j ≤ 9,
2 zweii,j, 1 ≤ i, j ≤ 9,
3 dreii,j, 1 ≤ i, j ≤ 9,
4 vieri,j, 1 ≤ i, j ≤ 9,
5 fuenfi,j, 1 ≤ i, j ≤ 9,
6 sechsi,j, 1 ≤ i, j ≤ 9,
7 siebeni,j, 1 ≤ i, j ≤ 9,
8 achti,j, 1 ≤ i, j ≤ 9,
9 neuni,j, 1 ≤ i, j ≤ 9.

This completes the language, the syntax.

How many symbols are these?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 368

5 Knowledge Engineering (1)
5.2 Sudoku

We distinguished between the puzzle S and a
solution S of it.
What is a model (or valuation) in the sense of
Definition 5.2?

Table 5.43: How to construct a model S?
Prof. Dr. Jürgen Dix Clausthal, SS 2013 369

5 Knowledge Engineering (1)
5.2 Sudoku

We have to give our symbols a meaning: the
semantics!

einsi,j means i, j contains a 1
zweii,j means i, j contains a 2

...
neuni,j means i, j contains a 9

To be precise: given a 9× 9 square that is

completely filled out, we define our valuation v as
follows (for all 1 ≤ i, j ≤ 9).

v(einsi,j) =

{
true, if 1 is at position (i, j),
false, else .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 370

5 Knowledge Engineering (1)
5.2 Sudoku

v(zweii,j) =

{
true, if 2 is at position (i, j),
false, else .

v(dreii,j) =

{
true, if 3 is at position (i, j),
false, else .

v(vieri,j) =

{
true, if 4 is at position (i, j),
false, else .

etc.

v(neuni,j) =

{
true, if 9 is at position (i, j),
false, else .

Therefore any 9× 9 square can be seen as a model or valuation
with respect to the language LSudoku.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 371

5 Knowledge Engineering (1)
5.2 Sudoku

How does TS look like?

TS = { eins1,4, eins5,8, eins6,6,
zwei2,2, zwei4,8,
drei6,8,drei8,3,drei9,4,
vier1,7, vier2,5, vier3,1, vier4,3, vier8,2, vier9,8,
...
neun3,4,neun5,2,neun6,9,

}

Prof. Dr. Jürgen Dix Clausthal, SS 2013 372

5 Knowledge Engineering (1)
5.2 Sudoku

How should the theory TSudoku look like (s.t. models
of TSudoku ∪ TS correspond to solutions of the puzzle)?
First square: T1

1 eins1,1 ∨ . . . ∨ eins3,3
2 zwei1,1 ∨ . . . ∨ zwei3,3
3 drei1,1 ∨ . . . ∨ drei3,3
4 vier1,1 ∨ . . . ∨ vier3,3
5 fuenf1,1 ∨ . . . ∨ fuenf3,3
6 sechs1,1 ∨ . . . ∨ sechs3,3
7 sieben1,1 ∨ . . . ∨ sieben3,3

8 acht1,1 ∨ . . . ∨ acht3,3
9 neun1,1 ∨ . . . ∨ neun3,3

Prof. Dr. Jürgen Dix Clausthal, SS 2013 373

5 Knowledge Engineering (1)
5.2 Sudoku

The formulae on the last slide are saying, that
1 The number 1 must appear somewhere in the

first square.
2 The number 2 must appear somewhere in the

first square.
3 The number 3 must appear somewhere in the

first square.
4 etc

Does that mean, that each number 1, . . . , 9
occurs exactly once in the first square?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 374

5 Knowledge Engineering (1)
5.2 Sudoku

No! We have to say, that each number occurs
only once:
T ′1:

1 ¬(einsi,j ∧ zweii,j), 1 ≤ i, j ≤ 3,
2 ¬(einsi,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
3 ¬(einsi,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
4 etc
5 ¬(zweii,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
6 ¬(zweii,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
7 ¬(zweii,j ∧ fuenfi,j), 1 ≤ i, j ≤ 3,
8 etc

How many formulae are these?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 375

5 Knowledge Engineering (1)
5.2 Sudoku

Second square: T2

1 eins1,4 ∨ . . . ∨ eins3,6
2 zwei1,4 ∨ . . . ∨ zwei3,6
3 drei1,4 ∨ . . . ∨ drei3,6
4 vier1,4 ∨ . . . ∨ vier3,6
5 fuenf1,4 ∨ . . . ∨ fuenf3,6
6 sechs1,4 ∨ . . . ∨ sechs3,6
7 sieben1,4 ∨ . . . ∨ sieben3,6

8 acht1,4 ∨ . . . ∨ acht3,6
9 neun1,4 ∨ . . . ∨ neun3,6

And all the other formulae from the previous
slides (adapted to this case): T ′2

Prof. Dr. Jürgen Dix Clausthal, SS 2013 376

5 Knowledge Engineering (1)
5.2 Sudoku

The same has to be done for all 9 squares.

What is still missing:
Rows: Each row should contain exactly the

numbers from 1 to 9 (no number twice).
Columns: Each column should contain exactly

the numbers from 1 to 9 (no number
twice).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 377

5 Knowledge Engineering (1)
5.2 Sudoku

First Row: TRow 1
1 eins1,1 ∨ eins1,2 ∨ . . . ∨ eins1,9
2 zwei1,1 ∨ zwei1,2 ∨ . . . ∨ zwei1,9
3 drei1,1 ∨ drei1,2 ∨ . . . ∨ drei1,9
4 vier1,1 ∨ vier1,2 ∨ . . . ∨ vier1,9
5 fuenf1,1 ∨ fuenf1,2 ∨ . . . ∨ fuenf1,9
6 sechs1,1 ∨ sechs1,2 ∨ . . . ∨ sechs1,9
7 sieben1,1 ∨ sieben1,2 ∨ . . . ∨ sieben1,9

8 acht1,1 ∨ acht1,2 ∨ . . . ∨ acht1,9
9 neun1,1 ∨ neun1,2 ∨ . . . ∨ neun1,9

Prof. Dr. Jürgen Dix Clausthal, SS 2013 378

5 Knowledge Engineering (1)
5.2 Sudoku

Analogously for all other rows, eg.
Ninth Row: TRow 9

1 eins9,1 ∨ eins9,2 ∨ . . . ∨ eins9,9
2 zwei9,1 ∨ zwei9,2 ∨ . . . ∨ zwei9,9
3 drei9,1 ∨ drei9,2 ∨ . . . ∨ drei9,9
4 vier9,1 ∨ vier9,2 ∨ . . . ∨ vier9,9
5 fuenf9,1 ∨ fuenf9,2 ∨ . . . ∨ fuenf9,9
6 sechs9,1 ∨ sechs9,2 ∨ . . . ∨ sechs9,9
7 sieben9,1 ∨ sieben9,2 ∨ . . . ∨ sieben9,9

8 acht9,1 ∨ acht9,2 ∨ . . . ∨ acht9,9
9 neun9,1 ∨ neun9,2 ∨ . . . ∨ neun9,9

Is that sufficient? What if a row contains
several 1’s?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 379

5 Knowledge Engineering (1)
5.2 Sudoku

First Column: TColumn 1
1 eins1,1 ∨ eins2,1 ∨ . . . ∨ eins9,1
2 zwei1,1 ∨ zwei2,1 ∨ . . . ∨ zwei9,1
3 drei1,1 ∨ drei2,1 ∨ . . . ∨ drei9,1
4 vier1,1 ∨ vier2,1 ∨ . . . ∨ vier9,1
5 fuenf1,1 ∨ fuenf2,1 ∨ . . . ∨ fuenf9,1
6 sechs1,1 ∨ sechs2,1 ∨ . . . ∨ sechs9,1
7 sieben1,1 ∨ sieben2,1 ∨ . . . ∨ sieben9,1

8 acht1,1 ∨ acht2,1 ∨ . . . ∨ acht9,1
9 neun1,1 ∨ neun2,1 ∨ . . . ∨ neun9,1

Analogously for all other columns.

Is that sufficient? What if a column contains
several 1’s?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 380

5 Knowledge Engineering (1)
5.2 Sudoku

All put together:

TSudoku = T1 ∪ T ′1 ∪ . . . ∪ T9 ∪ T ′9
TRow 1 ∪ . . . ∪ TRow 9

TColumn 1 ∪ . . . ∪ TColumn 9

Prof. Dr. Jürgen Dix Clausthal, SS 2013 381

5 Knowledge Engineering (1)
5.2 Sudoku

Here is a more difficult one.

Table 5.44: A difficult Sudoku Sdifficult

Prof. Dr. Jürgen Dix Clausthal, SS 2013 382

5 Knowledge Engineering (1)
5.2 Sudoku

The above formulation is strictly formulated in
propositional logic.
Theorem provers, even if they consider only
propositional theories, often use predicates,
variables etc.
smodels uses a predicate logic formulation,
including variables. But as there are no
function symbols, such an input can be seen
as a compact representation.
It allows to use a few rules as a shorthand for
thousands of rules using propositional
constants.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 383

5 Knowledge Engineering (1)
5.2 Sudoku

For example smodels uses the following
constructs:

1 row(0..8) is a shorthand for row(0), row(1),
..., row(8).

2 val(1..9) is a shorthand for val(1), val(2),
..., val(9).

3 The constants 1, ..., 9 will be treated as
numbers (so there are operations available to
add, subtract or divide them).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 384

5 Knowledge Engineering (1)
5.2 Sudoku

1 Statements in smodels are written as

head :- body
This corresponds to an implication
body → head.

2 An important feature in smodels is that all
atoms that do not occur in any head, are
automatically false.
For example the theory

p(X, Y, 5) :- row(X), col(Y)

means that the whole grid is filled with 5’s and
only with 5’s: eg. ¬p(X, Y, 1) is true for all
X, Y , as well as ¬p(X, Y, 2) etc.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 385

5 Knowledge Engineering (1)
5.2 Sudoku

More constructs in smodels
1 1 { p(X,Y,A) : val(A) } 1

:- row(X), col(Y)
this makes sure that in all entries of the grid,
exactly one number (val()) is contained.

2 1 { p(X,Y,A) : row(X) : col(Y)
: eq(div(X,3), div(R,3))
: eq(div(Y,3), div(C,3) } 1

:- val(A), row(R), col(C)
this rule ensures that in each of the 9 squares
each number from 1 to 9 occurs only once.

3 More detailed info on the web-page.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 386

5 Knowledge Engineering (1)
5.3 Calculi for SL

5.3 Calculi for SL

Prof. Dr. Jürgen Dix Clausthal, SS 2013 387

5 Knowledge Engineering (1)
5.3 Calculi for SL

A general notion of a certain sort of calculi.

Definition 5.11 (Hilbert-Type Calculi)

A Hilbert-Type calculus over a language L is a pair
〈Ax, Inf〉 where

Ax: is a subset of FmlL, the set of well-formed
formulae in L: they are called axioms,

Inf: is a set of pairs written in the form

φ1, φ2, . . . , φn
ψ

where φ1, φ2, . . . , φn, ψ are L-formulae: they are
called inference rules.

Intuitively, one can assume all axioms as “true formulae”
(tautologies) and then use the inference rules to derive
even more new formulae.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 388

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition 5.12 (Calculus for Sentential Logic SL)

We define HilbertSLL = 〈AxSLL , {MP}〉, the Hilbert-Type
calculus: L ⊆ LSL with the wellformed formulae FmlL as
defined in Definition 5.1.
Axioms in SL (AxSLL) are the following formulae:

1 φ→ >, �→ φ, ¬> → �, �→ ¬>,
2 (φ→ ψ)→ ((φ→ (ψ → χ))→ (φ→ χ)),
3 (φ ∧ ψ)→ φ, (φ ∧ ψ)→ ψ,
4 φ→ (φ ∨ ψ), ψ → (φ ∨ ψ),
5 ¬¬φ→ φ, (φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ),
6 φ→ (ψ → φ), φ→ (ψ → (φ ∧ ψ)).
7 (φ→ χ)→ ((ψ → χ)→ (φ ∨ ψ → χ)).

φ, ψ, χ stand for arbitrarily complex formulae (not just constants).
They represent schemata, rather than formulae in the language.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 389

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition (continued)

The only inference rule in SL is modus ponens:

MP : Fml × Fml→ Fml : (ϕ, ϕ→ ψ) 7→ ψ.

or short

(MP)
ϕ, ϕ→ ψ

ψ
.

(ϕ, ψ are arbitrarily complex formulae).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 390

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition 5.13 (Proof)

A proof of a formula ϕ from a theory T ⊆ FmlL is
a sequence ϕ1, . . . , ϕn of formulae such that
ϕn = ϕ and for all i with 1 ≤ i ≤ n one of the
following conditions holds:

ϕi is substitution instance of an axiom,
ϕi ∈ T ,
there is ϕl, ϕk = (ϕl → ϕi) with l, k < i. Then ϕi
is the result of the application of modus
ponens on the predecessor-formulae of ϕi.

We write: T ` ϕ (ϕ can be derived from T).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 391

5 Knowledge Engineering (1)
5.3 Calculi for SL

We show that:
1 ` > and ` ¬�.
2 A ` A ∨B and ` A ∨ ¬A.
3 The rule

(R)
A→ ϕ, ¬A→ ψ

ϕ ∨ ψ
can be derived.

4 Our version of sentential logic does not
contain a connective “↔”. We define “φ↔ ψ”
as a macro for “φ→ ψ ∧ ψ → φ”. Show the
following:

If ` φ↔ ψ, then ` φ if and only if ` ψ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 392

5 Knowledge Engineering (1)
5.3 Calculi for SL

We have now introduced two important notions:
Syntactic derivability `: the notion that certain

formulae can be derived from other
formulae using a certain calculus,

Semantic validity |=: the notion that certain
formulae follow from other formulae
based on the semantic notion of a
model.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 393

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition 5.14 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a
relation |=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

Φ ` φ implies Φ |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

Φ |= φ implies Φ ` φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 394

5 Knowledge Engineering (1)
5.3 Calculi for SL

Theorem 5.15 (Correct-, Completeness for HilbertSLL)

A formula follows semantically from a theory T if
and only if it can be derived:

T |= ϕ if and only if T ` ϕ

Prof. Dr. Jürgen Dix Clausthal, SS 2013 395

5 Knowledge Engineering (1)
5.3 Calculi for SL

Theorem 5.16 (Compactness for HilbertSLL)

A formula follows from a theory T if and only if
it follows from a finite subset of T :

Cn(T) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′finite}.

Although the axioms from above and modus
ponens suffice it is reasonable to consider more
general systems. Therefore we introduce the
notion of a rule system.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 396

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition 5.17 (Rule System MP + D)

Let D be a set of general inference rules, e.g.
mappings, which assign a formula ψ to a finite set
of formulae ϕ1, ϕ2, . . . , ϕn. We write

ϕ1, ϕ2, . . . , ϕn
ψ

.

MP + D is the rule system which emerges from
adding the rules in D to modus ponens. For
W ⊆ Fml let

CnD(W)

be the set of all formulae ϕ, which can be derived
from W and the inference rules from MP+D.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 397

5 Knowledge Engineering (1)
5.3 Calculi for SL

We bear in mind that Cn(W) is defined
semantically but CnD(W) is defined syntactically
(using the notion of proof). Both sets are equal
according to the completeness-theorem in the
special case D = ∅.
Lemma 5.18 (Properties of CnD)

Let D be a set of general inference rules and
W ⊆ Fml. Then:

1 Cn(W) ⊆ CnD(W).
2 CnD(CnD(W)) = CnD(W).
3 CnD(W) is the smallest set which is closed in

respect to D and contains W .
Prof. Dr. Jürgen Dix Clausthal, SS 2013 398

5 Knowledge Engineering (1)
5.3 Calculi for SL

Question:

What is the difference between an inference
rule ϕ

ψ and the implication ϕ→ ψ?
Assume we have a set T of formulae and we
choose two constants p, q ∈ L. We can either
consider

(1) T together with MP and {pq}
or

(2) T ∪ {p→ q} together with MP

Prof. Dr. Jürgen Dix Clausthal, SS 2013 399

5 Knowledge Engineering (1)
5.3 Calculi for SL

1. Case:
Cn{

p
q }(T),

2. Case:
Cn(T ∪ {p→ q}).

If T = {¬q}, then we have in (2):
¬p ∈ Cn(T ∪ {p→ q}), but not in (1).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 400

5 Knowledge Engineering (1)
5.3 Calculi for SL

It is well-known, that any formula φ can be
written as a conjunction of disjunctions

n∧
i=1

mi∨
j=1

φi,j

The φi,j are just constants or negated constants.
The n disjunctions

∨mi

j=1 φi,j are called clauses of φ.

Normalform

Instead of working on arbitrary formulae, it is
sometimes easier to work on finite sets of
clauses.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 401

5 Knowledge Engineering (1)
5.3 Calculi for SL

A resolution calculus for SL

The resolution calculus is defined over the
language Lres ⊆ LSL where the set of well-formed
formulae FmlResLres consists of all disjunctions of the
following form

A ∨ ¬B ∨ C ∨ . . . ∨ ¬E,
i.e. the disjuncts are only constants or their
negations. No implications or conjunctions are
allowed. These formulae are also called clauses.
� is also a clause: the empty disjunction.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 402

5 Knowledge Engineering (1)
5.3 Calculi for SL

Set-notation of clauses

A disjunction A ∨ ¬B ∨ C ∨ . . . ∨ ¬E is often
written as a set

{A,¬B,C, . . . ,¬E}.

Thus the set-theoretic union of such sets
corresponds again to a clause: {A,¬B} ∪ {A,¬C}
represents A ∨ ¬B ∨ ¬C. Note that the empty set
∅ is identified with �.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 403

5 Knowledge Engineering (1)
5.3 Calculi for SL

We define the following inference rule on FmlResLres:

Definition 5.19 (SL resolution)

Let C1, C2 be clauses (disjunctions). Deduce the
clause C1 ∨ C2 from C1 ∨ A and C2 ∨ ¬A:

(Res)
C1 ∨ A, C2 ∨ ¬A

C1 ∨ C2

If C1 = C2 = ∅, then C1 ∨ C2 = �.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 404

5 Knowledge Engineering (1)
5.3 Calculi for SL

If we use the set-notation for clauses, we can
formulate the inference rule as follows:
Definition 5.20 (SL resolution (Set notation))

Deduce the clause C1 ∪ C2 from C1 ∪ {A} and
C2 ∪ {¬A}:

(Res)
C1 ∪ {A}, C2 ∪ {¬A}

C1 ∪ C2

Again, we identify the empty set ∅ with �.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 405

5 Knowledge Engineering (1)
5.3 Calculi for SL

Definition 5.21 (Resolution Calculus for SL)

We define the resolution calculus
RobinsonSLLres = 〈∅, {Res}〉 as follows. The
underlying language is Lres ⊆ LSL defined on
Slide 402 together with the well-formed formulae
FmlResLres.

Thus there are no axioms and only one inference
rule. The well-formed formulae are just clauses.
Question:

Is this calculus correct and complete?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 406

5 Knowledge Engineering (1)
5.3 Calculi for SL

Answer:
It is correct, but not complete!

But every problem of the kind “T |= φ” is equivalent to

“T ∪ {¬φ} is unsatisfiable”

or rather to
T ∪ {¬φ} ` �

(` stands for the calculus introduced above).

Theorem 5.22 (Completeness of Resolution Refutation)

If M is an unsatisfiable set of clauses then the empty clause
� can be derived in RobinsonSLLres.

We also say that resolution is refutation complete.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 407

5 Knowledge Engineering (1)
5.4 Wumpus in SL

5.4 Wumpus in SL

Prof. Dr. Jürgen Dix Clausthal, SS 2013 408

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Prof. Dr. Jürgen Dix Clausthal, SS 2013 409

5 Knowledge Engineering (1)
5.4 Wumpus in SL

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 410

5 Knowledge Engineering (1)
5.4 Wumpus in SL

BB P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V
P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

Prof. Dr. Jürgen Dix Clausthal, SS 2013 411

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Language definition:
Si,j stench
Bi,j breeze
Piti,j is a pit
Gli,j glitters
Wi,j contains Wumpus

General knowledge:
¬S1,1 −→ (¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1)
¬S2,1 −→ (¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1)
¬S1,2 −→ (¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3)

S1,2 −→ (W1,3 ∨W1,2 ∨W2,2 ∨W1,1)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 412

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Knowledge after the 3rd move:

¬S1,1 ∧ ¬S2,1 ∧ S1,2 ∧ ¬B1,1 ∧B2,1 ∧ ¬B1,2

Question:

Can we deduce that the wumpus is located at
(1,3)?

Answer:

Yes. Either via resolution or using our
Hilbert-calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 413

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Problem:
We want more: given a certain situation we would like to
determine the best action, i.e. to ask a query which gives us
back such an action. This is impossible in SL: we can only
check for each action whether it is good or not and then, by
comparison, try to find the best action.

But we can check for each action if it should be done or not.
Therefore we need additional axioms:
A1,1 ∧ East ∧W2,1 −→ ¬Forward
A1,1 ∧ East ∧ Pit2,1 −→ ¬Forward
Ai,j ∧Gli,j −→ TakeGold

Prof. Dr. Jürgen Dix Clausthal, SS 2013 414

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Prof. Dr. Jürgen Dix Clausthal, SS 2013 415

5 Knowledge Engineering (1)
5.4 Wumpus in SL

Disadvantages

actions can only be guessed
database must be changed continuously
the set of rules becomes very big because
there are no variables

Using an appropriate formalisation (additional
axioms) we can check if

KB ` ¬ action or KB ` action

But it can happen that neither one nor the
other is deducible.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 416

5 Knowledge Engineering (1)
5.5 A Puzzle

5.5 A Puzzle

Prof. Dr. Jürgen Dix Clausthal, SS 2013 417

5 Knowledge Engineering (1)
5.5 A Puzzle

We now want to formalize a ”Logelei“ and solve it
with a theorem prover.
”Logelei“ from ”Die Zeit“ (1)

Alfred ist als neuer Korrespondent in
Wongowongo. Er soll über die
Präsidentschaftswahlen berichten, weiß aber noch
nichts über die beiden Kandidaten, weswegen er
sich unter die Leute begibt, um Infos zu sammeln.
Er befragt eine Gruppe von Passanten, von denen
drei Anhänger der Entweder-oder-Partei sind und
drei Anhänger der Konsequenten.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 418

5 Knowledge Engineering (1)
5.5 A Puzzle

”Logelei“ from ”Die Zeit“ (2)

Auf seinem Notizzettel notiert er stichwortartig die
Antworten.
A: »Nachname Songo: Stadt Rongo«,
B: »Entweder-oder-Partei: älter«,
C: »Vorname Dongo: bei Umfrage hinten«,
A: »Konsequenten: Vorname Mongo«,
B: »Stamm Bongo: Nachname Gongo«,
C: »Vorname Dongo: jünger«,
D: »Stamm Bongo: bei Umfrage vorn«,
E: »Vorname Mongo: bei Umfrage hinten«,
F: »Konsequenten: Stamm Nongo«,
D: »Stadt Longo: jünger«,
E: »Stamm Nongo: jünger«.
F: »Konsequenten: Nachname Gongo«.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 419

5 Knowledge Engineering (1)
5.5 A Puzzle

”Logelei“ from ”Die Zeit“ (3)

Jetzt grübelt Alfred. Er weiß, dass die Anhänger
der Entweder-oder-Partei (A, B und C) immer eine
richtige und eine falsche Aussage machen,
während die Anhänger der Konsequenten (D, E
und F) entweder nur wahre Aussagen oder nur
falsche Aussagen machen.
Welche Informationen hat Alfred über die beiden
Kandidaten?

(By Zweistein)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 420

5 Knowledge Engineering (1)
5.5 A Puzzle

Towards a solution

Selection of the language (Propositional Logic,
Predicate Logic,...).
Analysis and formalization of the problem.
Transformation to the input format of a prover.
Output of a solution, i.e. a model.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 421

5 Knowledge Engineering (1)
5.5 A Puzzle

Definition of the constants
Surx,Songo ≡ x’s surname is Songo
Surx,Gongo ≡ x’s surname is Gongo
Firstx,Dongo ≡ x’s first name is Dongo
Firstx,Mongo ≡ x’s first name is Mongo
Tribex,Bongo ≡ x belongs to the Bongos
Tribex,Nongo ≡ x belongs to the Nongos
Cityx,Rongo ≡ x comes from Rongo
Cityx,Longo ≡ x comes from Longo
Ax ≡ x is the senior candidate
Jx ≡ x is the junior candidate
Hx ≡ x’s poll is worse
Vx ≡ x’s poll is better

Here x is a candidate, i.e. x ∈ {a, b}. So we have 24
constants in total.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 422

5 Knowledge Engineering (1)
5.5 A Puzzle

The correspondent Alfred noted 12 statements
about the candidates (each interviewee gave 2
statements, φ, φ′) which we enumerate as follows

φA, φ
′
A, φB, φ

′
B, . . . , φF , φ

′
F ,

All necessary symbols are now defined, and we
can formalize the given statements.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 423

5 Knowledge Engineering (1)
5.5 A Puzzle

Formalization of the statements

φA ↔ (Sura,Songo ∧ Citya,Rongo)∨
(Surb,Songo ∧ Cityb,Rongo)

φ′A ↔ Firstb,Mongo

φB ↔ Aa

φ′B ↔ (Tribea,Bongo ∧ Sura,Gongo)∨
(Tribeb,Bongo ∧ Surb,Gongo)

...

Prof. Dr. Jürgen Dix Clausthal, SS 2013 424

5 Knowledge Engineering (1)
5.5 A Puzzle

Furthermore, explicit conditions between the
statements are given, e.g.

(φA ∧ ¬φ′A) ∨ (¬φA ∧ φ′A)

and
(φD ∧ φ′D) ∨ (¬φD ∧ ¬φ′D).

Analogously, for the other statements.

Is this enough information to solve the puzzle?
E.g., can the following formula be satisfied?

Sura,Songo ∧ Sura,Gongo

Prof. Dr. Jürgen Dix Clausthal, SS 2013 425

5 Knowledge Engineering (1)
5.5 A Puzzle

We also need implicit conditions (axioms) which
are required to solve this problem.
It is necessary to state that each candidate has
only one name, comes from one city, etc.
We need the following background knowledge...

Surx,Songo ↔ ¬Surx,Gongo

Firstx,Dongo ↔ ¬Firstx,Mongo
...

Hx ↔ ¬Vx

Can we abstain from these axioms by changing
our representation of the puzzle?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 426

5 Knowledge Engineering (1)
5.5 A Puzzle

What is still missing?
Can we prove that when a’s poll is worse, then s’s
poll is better?
We need to state the relationships between these
attributes:

Hx ↔ Vy

Ax ↔ Jy

Finally, we have modeled all “sensible”
information. Does this yield a unique model?

No! There are 6 models in total, but this is all
right. It just means there is no unique solution.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 427

5 Knowledge Engineering (1)
5.5 A Puzzle

What if a unique model is desirable?
Often, there are additional assumptions hidden
“between the lines”. Think, for example, of
deductions by Sherlock Holmes (or Miss Marple,
Spock etc).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 428

5 Knowledge Engineering (1)
5.5 A Puzzle

For example, it might be sensible to assume that
both candidates come from different cities:

Cityx,Rongo ↔ Cityy,Longo

Indeed, with this additional axiom there is an
unique model.

But, be careful...

... this additional information may not be justified
by the nature of the task!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 429

5 Knowledge Engineering (1)
5.5 A Puzzle

Tractatus Logico-Philosophicus
1 Die Welt ist alles was der Fall ist.

1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge.

2 Was der Fall ist, die Tatsache, ist das Bestehen
von Sachverhalten.

3 Das logische Bild der Tatsachen ist der
Gedanke.

4 Der Satz ist eine Wahrheitsfunktion der
Elementarsätze.

5 Die allgemeine Form der Wahrheitsfunktion
ist: [p, ξ,N(ξ)].

6 Wovon man nicht sprechen kann, darüber
muß man schweigen.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 430

6 Hoare Calculus

6. Hoare Calculus
6 Hoare Calculus

Verification
Core Programming Language
Hoare Logic
Proof Calculi: Partial Correctness
Proof Calculi: Total Correctness
Sound and Completeness

Prof. Dr. Jürgen Dix Clausthal, SS 2013 431

6 Hoare Calculus

Content of this chapter (1):

We introduce a calculus to prove correctness of computer
programs.
Verification: We argue why formal methods are

useful/necessary for program verification.
Core Programming Language: An abstract but powerful

programming language is introduced.
Hoare Logic: We introduce the Hoare Calculus which

operates on triples {φpre}P {ψpost}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 432

6 Hoare Calculus

Content of this chapter (2):

Proof Calculi (Partial Correctness): Here we present three
calculi (proof rules, annotation calculus, and
the weakest precondition calculus) for partial
correctness.

Proof Calculi (Total Correctness): Partial correctness is
trivially satisfied when a program does not
terminate. Therefore, we consider total
correctness as well and an extension of the
calculi to deal with it. We consider the partial
and total correctness of programs.

Sound & Completeness: We briefly discuss the sound and
completeness of the Hoare calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 433

6 Hoare Calculus
6.1 Verification

6.1 Verification

Prof. Dr. Jürgen Dix Clausthal, SS 2013 434

6 Hoare Calculus
6.1 Verification

Why to formally specify/verify code?

Formal specifications are often important for
unambiguous documentations.
Formal methods cut down software
development and maintenance costs.
Formal specification makes software easier to
reuse due to a clear specification.
Formal verification can ensure error-free
software required by safety-critical computer
systems.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 435

6 Hoare Calculus
6.1 Verification

Verification of Programs

How can we define the state of a program?

The state of a program is given by the contents
of all variables.

What about the size of the state-space of a
program?

The state space is usually infinite! Hence, the
technique of model checking is inappropriate.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 436

6 Hoare Calculus
6.1 Verification

Software Verification Framework

Main reasons for formal specifications:

Informal descriptions often lead to
ambiguities which can result in serious (and
potentially expensive) design flaws.
Without formal specifications a rigorous
verification is not possible!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 437

6 Hoare Calculus
6.1 Verification

Methodology

We assume the following methodology:

1 Build an informal description D of the
program and the domain.

2 Convert D into an equivalent formula φ in a
suitable logic.

3 (Try to) build a program P realizing φ.
4 Prove that P satisfies φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 438

6 Hoare Calculus
6.1 Verification

Methodology (2)

Some points to think about:
(i) Point 2 is a non-trivial and non-formal

problem and thus “cannot be proven”: D is an
informal specification!

(ii) Often there are alternations between 3 and 4.
(iii) Sometimes one might realize that φ is not

equivalent to D and thus one has to revise φ.
(iv) Often, P must have a specific structure to

prove it against ϕ.
In this lecture, we will focus on points 3 and 4.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 439

6 Hoare Calculus
6.1 Verification

Some Properties of the Procedure

Proof-based: Not every state of the system is
considered (there are infinitely many
anyway), rather a proof for
correctness is constructed: this works
then for all states.

Semi-automatic: Fully automatic systems are
desireable but they are not always
possible: undecidability, time
constraints, efficiency, and “lack of
intelligence”.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 440

6 Hoare Calculus
6.1 Verification

Some Properties of the Procedure (2)

Property-oriented: Only certain properties of a
program are proven and not the
“complete” behavior.

Application domain: Only sequential programs
are considered.

Pre/post-development: The proof techniques
are designed to be used during the
programming process (development
phase).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 441

6 Hoare Calculus
6.2 Core Programming Language

6.2 Core Programming Language

Prof. Dr. Jürgen Dix Clausthal, SS 2013 442

6 Hoare Calculus
6.2 Core Programming Language

Core Programming Language

To deal with an up-to-date programming
language like Java or C++ is out of scope of this
introductory lecture. Instead we identify some
core programming constructs and abstract away
from other syntactic and language-specific
variations.
Our programming language is built over

1 integer expressions,
2 boolean expressions, and
3 commands.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 443

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.1 (Program Variables)

We use Vars to denote the set of (program)
variables. Typically, variables will be denoted by
u, . . . , x, y, z or x1, x2,

Definition 6.2 (Integer Expression)

Let x ∈ Vars. The set of integer expressions I is
given by all terms generated according to the
following grammar:

I ::= 0 | 1 | x | (I + I) | (I − I) | (I · I)

We also use −I to stand for 0− I.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 444

6 Hoare Calculus
6.2 Core Programming Language

Although the term “1− 1” is different from “0”, its meaning
(semantics) is the same. We identify “1 + 1 + . . .+ 1” with
“n” (if the term consist of n 1’s). The precise notion of
meaning will be given in Definition 6.10.
Integer expressions are terms over a set of function symbols
Func, here

Func = Vars ∪ {0, 1,+,−, ·}
Note also, that we consider elements from Z as constants
with their canonical denotation! Thus we write “3” instead
of “1 + 1 + 1”.

Example 6.3 (Some integer expressions)

5, x, 6 + (3 · x), x · y + z − 3,−x · x, . . .

Note that xx or y! are not integer expressions. Do we need
them?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 445

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.4 (Boolean Expression)

The set of Boolean expressions B is given by all formulae
generated according to the following grammar:

B ::= > | (¬B) | (B ∧B) | (I < I)

We also use (B ∨B) as an abbreviation of ¬(¬B ∧ ¬B) and
� as an abbreviation for ¬>. Boolean expressions are
formulae over the set of relation symbols Pred = {>, <}.
So, boolean expressions are similar to sentential logic
formulae.

Note that we use I = I ′ to stand for ¬(I < I ′) ∧ ¬(I ′ < I).
We also write I 6= I ′ for ¬(I = I ′).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 446

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z
When describing the Hoare calculus, we also need formulae
to express (1) what should hold before a program is
executed, and (2) what should be the case after the
program has been executed. These formulae are built using
the boolean expressions just introduced.

Definition 6.5 (Formulae over Z)

The set of formulae FmlVars is given by all formulae
generated according to the following grammar:

φ ::= ∃xφ | B | (¬φ) | (φ ∧ φ)

where B is a boolean expression according to Definition 6.4
and x ∈ Vars.

We note that “∀xφ” is just an abbreviation for “¬∃x¬Φ”

Prof. Dr. Jürgen Dix Clausthal, SS 2013 447

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (2)

We have to give a meaning (semantics) to the syntactic
constructs! Our model is given by Z where Z is the set of
integer numbers. Note that in Z we have a natural meaning
of the constructs 0, 1,−,+, ·, <.

Which of the following formulae are true in Z?

1 ∀x∀y∀z (x · x+ y · y + z · z > 0),
2 ∀x∃y (y < x),
3 x · x < x · x · x,
4 x+ 4 < x+ 5.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 448

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (3)
Note that when evaluating a formula with free variables,
there are two possibilities:

1 Either we need to assign values to these variables, or
2 we add “∀” quantifiers to bind all variables.

The truth of a formula can only be established if the
formula is a sentence, i.e. does not contain free variables.
We will be more formal in Chapter 7.
Let φ(x, y) be the formula ∃z x+ z < y and let n, n′ ∈ Z.
Then we denote

by ∀φ(x, y) the formula ∀x∀y(∃z x+ z < y),
by φ(x, y)[n/x, n′/y] the formula where x is replaced by
n and y is replaced by n′: ∃z n+ z < n′.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 449

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (4)

How large is this class of formulae over Z? Is it
expressive enough?

1 How can we express the function x! or xx?
2 Which functions are not expressible? Are there

any?
3 Is there an algorithm to decide whether a

given sentence φ (formulae without free
variables) holds in Z, i.e. whether Z |= φ?

4 Attention: everything radically changes, when
we do not allow multiplication! Then the
resulting theory is decidable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 450

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (5)

Let us express some functions f : Z→ Z that are
not available as integer expressions.

Definition 6.6 (Functions Expressible over Z)

A function f : Z→ Z is expressible over Z if there
is a formula Φ(x, y) with x, y as the only free
variables such that the following holds for all
z, z′ ∈ Z:

Z |= Φ(x, y)[z/x, z′/y] iff f(z) = z′

Prof. Dr. Jürgen Dix Clausthal, SS 2013 451

6 Hoare Calculus
6.2 Core Programming Language

Formulae over Z (6)

x!: Not obvious.
xx: Not obvious.

Using Gödelization, it can be shown that all
naturally occurring functions can be expressed. In
fact, all recursive functions are expressible. We
shall therefore use functions like x! as macros
(knowing that they can be expressed as formulae
in the language).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 452

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.7 (Program)

The set Prog of (while) programs over Vars, I and
B is given by all well-formed sequences which can
be formed according to the following grammar:

C ::= skip | x := I | C;C | if B {C} else {C} | while B {C}

where B ∈ B, I ∈ I, and x ∈ Vars.

We usually write programs in lines (for better
readability).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 453

6 Hoare Calculus
6.2 Core Programming Language

skip: Do nothing.
x := I: Assign I to x.
C1;C2: Sequential execution: C2 is executed

after C1 provided that C1 terminates.
if B {C1} else {C2}: If B is true then C1 is

executed otherwise C2.
while B {C}: C is executed as long as B is true.

The statement “B is true” is defined in
Definition 6.11.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 454

6 Hoare Calculus
6.2 Core Programming Language

Example 6.8

What does the following program Fac(x)
calculate?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

Prof. Dr. Jürgen Dix Clausthal, SS 2013 455

6 Hoare Calculus
6.2 Core Programming Language

Is this class of programs large or small?
Can we express everything we want?

1 No, because we need better software engineering
constructs.

2 Yes, because we have "while" and therefore we can do
anything.

3 No, because we can not simulate (emulate) Java or C++.
4 It is already too large, because we assume that we can

store arbitrary numbers. This is clearly not true on real
computers.

5 Yes, because this class of programs corresponds to the
class of deterministic Turing machines. And we cannot
aim for more.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 456

6 Hoare Calculus
6.2 Core Programming Language

While Programs = Turing Machines

Turing Machines

The class of programs we have introduced corresponds
exactly to programs of Turing machines. Thus it is an
idealization (arbitrary numbers can be stored in one cell)
and therefore it is much more expressive than any real
programming language.
But playing quake requires a lot of coding . . .

In particular, there is no algorithm to decide whether a
given program terminates or not.
The set of all terminating programs is recursive
enumerable, but not recursive.
Therefore the set of non-terminating programs is not
even recursively enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 457

6 Hoare Calculus
6.2 Core Programming Language

Meaning of a Program

Definition 6.9 (State)

A state s is a mapping

s : Vars → Z

A state assigns to each variable an integer. The set
of all states is denoted by S.

The semantics of a program P is a partial
function

[[P]] : S → S

that describes how a state s changes after
executing the program.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 458

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.10 (Semantics: Integer Expression)

The semantics of integer expressions is defined:

[[0]]s = 0

[[1]]s = 1

[[x]]s = s(x) for x ∈ Vars

[[E ∗ E ′]]s = [[E]]s ∗ [[E ′]]s for ∗ ∈ {+,−, ·}

Definition 6.11 (Meaning: Boolean Expression)

The semantics of a Boolean expression is given
as for sentential logic; that is, we write Z, s |= B if
B is true in Z wrt to state (valuation) s.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 459

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.12 (Meaning: Satisfaction Z, s |= φ)

The semantics of a formula φ is defined
inductively. We have already defined it in
Definition 6.11 for atomic expressions. Arbitrary
formulae can also contain the quantifier ∃.

Z, s |= ∃xφ(x) iff there is a n ∈ Z
such that Z, s |= φ(x)[n/x]

1 ∃xφ : ∃x 3x < 4,
2 ∃xφ : ∃x 3x < 4y.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 460

6 Hoare Calculus
6.2 Core Programming Language

Definition 6.13 (Meaning: Program)

1 [[skip]](s) = s

2 [[x := I]](s) = t where t(y) =

{
s(y) if y 6= x

[[I]]s else.

3 [[C1;C2]](s) = [[C2]]([[C1]](s))

4 [[if B {C1} else {C2}]](s) =

{
[[C1]](s) if Z, s |= B,

[[C2]](s) else.

5 [[while B {C}]](s) ={
[[while B {C}]]([[C]](s)) if Z, s |= B,

s else.

Note that the recursive definition of the while cases is the
reason that [[·]] might be a partial function: it is (perhaps)
not everywhere defined.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 461

6 Hoare Calculus
6.3 Hoare Logic

6.3 Hoare Logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 462

6 Hoare Calculus
6.3 Hoare Logic

Hoare Triples

How can we prove that a program/method P
really does what it is intended to do?

We describe the desired state of the (overall)
program before and after the execution of P.

For example, let P(x) be a program that should
return a number whose square is strictly less than
x.

Is the correctness of the program ensured
when we require that P(x) · P(x) < x?

Not completely! What if x < 0? So, the
precondition is also very important!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 463

6 Hoare Calculus
6.3 Hoare Logic

Definition 6.14 (Hoare Triple)

Let φ and ψ be formulae of FmlVars and P be a
program. A Hoare triple is given by

{φ}P{ψ}

where φ is said to be the precondition and ψ the
postcondition.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 464

6 Hoare Calculus
6.3 Hoare Logic

A Hoare triple {φ}P{ψ} is read as follows:

If the overall program is in a state that satisfies
φ, then,
after the execution (and termination) of P the
resulting state of the program satisfies ψ.

Let P be the program given above and y be the
variable returned. Then the following Hoare triple
would be a valid specification:

{x > 0}P{y · y < x}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 465

6 Hoare Calculus
6.3 Hoare Logic

Partial and Total Correctness
We already introduced the informal reading of
Hoare triples. Now we will be more formal. There
are two cases one has to distinguish: Programs
that terminate and ones which do not.
Accordingly, we have two definitions of
correctness:
partially correct: ψ holds after execution of P,

provided that P terminates,
totally correct: we require in addition that P

terminates.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 466

6 Hoare Calculus
6.3 Hoare Logic

Definition 6.15 (Partial Correctness)

A triple {φ}P{ψ} is satisfied under partial
correctness, written as

|=p {φ}P{ψ},

if for each state s

Z, [[P]](s) |= ψ

provided that Z, s |= φ and [[P]](s) are defined.

The following program is always partially
correct: while > {x := 0}, for arbitrary pre and
postconditions.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 467

6 Hoare Calculus
6.3 Hoare Logic

Definition 6.16 (Total Correctness)

A triple {φ}P{ψ} is satisfied under total
correctness, written as

|=t {φ}P{ψ},

if for each state s, [[P]](s) is defined and

Z, [[P]](s) |= ψ

provided that Z, s |= φ.

The following program is usually not totally
correct: while > {x := 0}. Why “usually”?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 468

6 Hoare Calculus
6.3 Hoare Logic

Example 6.17

Consider the following program Succ(x):

a := x + 1;
if (a− 1 = 0){

y := 1
} else{

y := a
}

Under which semantics does the program satisfy
{>}Succ{y = x+ 1}?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 469

6 Hoare Calculus
6.3 Hoare Logic

Note, that the last program is only one program
(and a very silly one) that ensures the condition
{>}Succ{y = x+ 1}. There are many more.
Example 6.18

Recall the program Fac(x) stated in Example 6.8.
Which of the following statements are correct?
|=t {x ≥ 0}Fac{y = x!},
|=t {>}Fac{y = x!},
|=p {x ≥ 0}Fac{y = x!} and
|=p {>}Fac{y = x!}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 470

6 Hoare Calculus
6.3 Hoare Logic

Program and Logical Variables

The pre- and postconditions in a Hoare triple may
contain two kinds of variables:

program variables and
logical variables.

Given a program P the former kind occurs in the
program whereas the latter refers to fresh
variables.

The following example makes clear why we need
logical variables.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 471

6 Hoare Calculus
6.3 Hoare Logic

Example 6.19

The following program Fac2 works as well.

y := 1;
while (x 6= 0){

y := y · x;
x := x− 1

}

Why is it not a good idea to use the Hoare triple
{x ≥ 0}Fac2{y = x!} in this case?

What about {x = x0 ∧ x ≥ 0}Fac2{y = x0!}? The
variable x0 is a logical variable!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 472

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

6.4 Proof Calculi: Partial
Correctness

Prof. Dr. Jürgen Dix Clausthal, SS 2013 473

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Proof Rules
We have introduced a semantic notion of (partial
and total) correctness. As for resolution we are
after syntactic versions (`t and `p) which can be
used on computers.

Sound Calculus: Can we define a calculus, that
allows us to derive only valid Hoare
triples?

Complete Calculus: Can we define a calculus,
that generates all valid Hoare triples?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 474

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Answer to question 1: Yes, for both versions.
Answer to question 2: No, not even for `p:

`p {>}P {�} iff P is not terminating.
And this set is not recursive enumerable.

The following rules were proposed by R. Floyd
and C.A.R. Hoare. A rule for each basic program
construct is presented.

If a program is correct we may be able to show it
by only applying the following rules (compare
with Modus Ponens).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 475

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Composition

Definition 6.20 (Composition Rule (comp))

{φ}C1{η} {η}C2{ψ}
{φ}C1;C2{ψ}

In order to prove that {φ}C1;C2{ψ} we
have to prove the Hoare triples {φ}C1{η}
and {η}C2{ψ} for some appropriate η.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 476

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

An axiom
Definition 6.21 (Assignment Rule (assign))

{ψ[I/x]}x := I{ψ}

The rule is self-explanatory. Recall that
ψ[I/x] denotes the formula that is equal
to ψ but each free occurrence of x is
replaced by I.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 477

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Another axiom

Definition 6.22 (Skip Rule (skip))

{φ}skip{φ}

Prof. Dr. Jürgen Dix Clausthal, SS 2013 478

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

If Rule
Definition 6.23 (If Rule (if))

{φ ∧B}C1{ψ} {φ ∧ ¬B}C2{ψ}
{φ} if B {C1} else {C2}{ψ}

In order to prove the conclusion we prove
that ψ holds for both possible program
executions of the if-rule: when B holds
and when it does not.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 479

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Partial-While Rule
Definition 6.24 (Partial-While Rule (while))

{ψ ∧B}C{ψ}
{ψ} while B {C}{ψ ∧ ¬B}

The while-rule is the most sophisticated
piece of code; it may allow infinite
looping. The formula ψ in the premise
plays a decisive rule: ψ is true before and
after the execution of C, i.e. C does not
change the truth value of ψ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 480

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Invariant

Definition 6.25 (Invariant)

An invariant of the while-statement
while B {C} is any formula ψ such that
|=p {ψ ∧B}C{ψ}.

The conclusion says that ψ does not
change, even when C is executed several
times and if C terminates then B is false.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 481

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Example 6.26

What is an invariant of the following program?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

An invariant is y = z!.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 482

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Implication Rule

Definition 6.27 (Implication Rule (impl))

{φ}C{ψ}
{φ′}C{ψ′}

whenever Z |= ∀(φ′ → φ) and
Z |= ∀(ψ → ψ′).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 483

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Implication Rule (2)

The implication rule allows us to
strengthen the precondition φ to φ′ and
to weaken the postcondition ψ to ψ′,
provided that the two implications hold.

Note, that this rule links program logic
with the truths of formulae in Z, which
have to be established. We call them
proof obligations.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 484

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

An Example

We will try to prove the correctness of the
program Fac given in Example 6.8. That is, we
would like to derive

{>}Fac{y = x!}

For any input state after the execution of Fac
the return value y should have the value x!.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 485

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

We have to start with axioms (by the assignment rule):
{1=1}y:=1{y=1}
{>}y:=1{y=1} (impl) {y=1∧0=0}z:=0{y=1∧z=0}

{y=1}z:=0{y=1∧z=0} (impl)

{>}y := 1; z := 0{y = 1 ∧ z = 0}︸ ︷︷ ︸
ψ1

(comp)

Again, on top are axioms:
{y·(z+1)=(z+1)!}z:=z+1{y·z=z!}
{y=z!∧z 6=x}z:=z+1{y·z=z!} (impl) {y·z=z!}y:=y·z{y=z!}

{y=z!∧z 6=x}z:=z+1;y:=y·z{y=z!} (comp)

{y = z!} while z 6= x {z := z + 1; y := y · z}{y = z! ∧ z = x}︸ ︷︷ ︸
ψ2

(while)

Putting both parts together:

ψ1
ψ2

{y=1∧z=0} while z 6=x {z:=z+1;y:=y·z}{y=x!}(impl)

{>}Fac{y = x!}
(comp)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 486

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Proof obligations

We have to show that the following formulae hold
in Z:

1 > → 1 = 1,
2 ∀y(y = 1→ y = 1 ∧ 0 = 0),
3 ∀x∀y∀z(y = z! ∧ z 6= x→ (y(z + 1) = (z + 1)!)),
4 ∀y∀z(y = 1 ∧ z = 0→ y = z!),
5 ∀x∀y∀z(y = z! ∧ z = x→ y = x!).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 487

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Annotation Calculus

The proof rules just presented are very similar
to Hilbert style calculus rules.
They inherit some undesirable properties: The
proof calculus is not “easy to use”.
The proof given for the small Fac-program
looks already quite complicated.

In this section we present an annotation calculus
which is much more convenient for practical
purposes.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 488

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

We consider a program P as a sequence of basic
commands:

C1; C2; . . . ;Cn

That is, none of the commands Ci is directly
composed of smaller programs by means of
composition. Assume we intend to show that

`p {φ}P{ψ}
In the annotation calculus we try to find
appropriate φi, i = 0, . . . , n such that

if `p {φi}Ci{φi+1} for all i = 0, . . . , n− 1
then also `p {φ}P{ψ}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 489

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

In other words, we interleave the program P with
intermediate conditions φi

{φ0}C1{φ1} C2{φ2} . . . {φn−1}Cn{φn}
where each step {φi}Ci{φi+1} is justified by one of
the proof rules given above.

That is, an annotation calculus is a way of
summarizing the application of the proof rules to
a program.

How to find the appropriate φi?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 490

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

We determine “something like” the weakest
preconditions successively such that

`p {φ′0}C1{φ′1} C2{φ′2} . . . {φ′n−1}Cn{φ′n}
Under which condition would this guarantee
`p {φ0}P{φn}?
It must be the case that Z |= ∀φ0 → φ′0 and
Z |= ∀φ′n → φn

Why do we say “something like” the weakest
precondition? We come back to this point later.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 491

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

In the following we label the program P with
preconditions by means of rewrite rules

X

Y

Such a rule denotes that X can be rewritten (or
replaced) by Y .

Each rewrite rule results from a proof rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 492

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Definition 6.28 (Assignment Rule)

x := E{ψ}
{ψ[E/x]}x := E{ψ}

Definition 6.29 (If Rule (1))

if B {C1} else {C2}{ψ}
if B {C1{ψ}} else {C2{ψ}}{ψ}

Definition 6.30 (If Rule (2))

if B {{φ1} · · · } else {{φ2} · · · }
{(B → φ1) ∧ (¬B → φ2)} if B {{φ1} · · · } else {{φ2} · · · }

Prof. Dr. Jürgen Dix Clausthal, SS 2013 493

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Definition 6.31 (Partial-While Rule)

while B {P}
{φ} while B {{φ ∧ B}P{φ}}{φ ∧ ¬B}

where φ is an invariant of the while-loop.

Definition 6.32 (Skip Rule)

skip{φ}
{φ}skip{φ}

Prof. Dr. Jürgen Dix Clausthal, SS 2013 494

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Applying the rules just introduced, we end up with a finite
sequence

s1s2 . . . sm

where each si is of the form {φ} or it is a command of a
program (which in the case of if or while commands can also
contain such a sequence).
It can also happen that two subsequent elements have the
same form: . . . {φ}{ψ} Whenever this occurs, we have to
show that φ implies ψ: a proof obligation (see Slide 483).

Definition 6.33 (Implied Rule)
Whenever applying the rules lead to a situation where two
formulae stand next to each other . . . {φ}{ψ} . . ., then we
add a proof obligation of the form

Z |= ∀ (φ→ ψ).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 495

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Consider {φ} while B {P}{ψ}. Then the while-rule
yields the following construct:

{φ}{η} while B {{η ∧ B}P{η}}{η ∧ ¬B}{ψ}
That is, we have to show that the invariant η
satisfies the following properties:

1 Z |= ∀ (φ→ η),
2 Z |= ∀ ((η ∧ ¬B)→ ψ),
3 `p {η} while B {P}{η ∧ ¬B}, and
4 `p {η ∧B}P{η} (this is the fact that it is an

invariant).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 496

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Example 6.34

Prove: |=p {y = 5}x := y + 1{x = 6}
1 x := y + 1{x = 6}
2 {y + 1 = 6}x := y + 1{x = 6} (Assignment)
3 {y = 5}{y + 1 = 6}x := y + 1{x = 6} (Implied)

Example 6.35

Prove: |=p {y < 3}y := y + 1{y < 4}
1 y := y + 1{y < 4}
2 {y + 1 < 4}y := y + 1{y < 4} (Assignment)
3 {y < 3}{y + 1 < 4}y := y + 1{y < 4} (Implied)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 497

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Example 6.36

{y = y0}
z := 0;
while y 6= 0 do{

z := z + x;
y := y − 1

}
{z = xy0}

Firstly, we have to use the rules of the annotation
calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 498

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

{y = y0}
{I[0/z]}
z := 0;
{I}
while y 6= 0 do{
{I ∧ y 6= 0}
{I[y − 1/y][z + x/z]}
z := z + x;
{I[y − 1/y]}
y := y − 1
{I}

}
{I ∧ y = 0}
{z = xy0}

What is a suitable invariant?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 499

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

We have to choose an invariant such that the
following hold in Z:

1 y = y0 → I[0/z],
2 I ∧ y 6= 0→ I[y − 1/y][z + x/z],
3 I ∧ y = 0→ z = xy0.

What about I : >? What about I : (z + xy = xy0)?

It is easy to see that the latter invariant satisfies all
three conditions. This proves the partial
correctness of {y = y0}P{z = xy0}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 500

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

How to ensure that |=p {φ}P{ψ}?
Definition 6.37 (Valid Annotation)

A valid annotation of {φ}P{ψ} is given if

1 only the rules of the annotation calculus are
used;

2 each command in P is embraced by a post
and a precondition;

3 the assignment rule is applied to each
assignment;

4 each proof obligation introduced by the
implied rule has to be verified.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 501

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Proposition 6.38 (`p iff Valid Annotation)

Constructing valid annotations is equivalent to
deriving the Hoare triple {φ}P{ψ} in the Hoare
calculus:

`p {φ}P{ψ} iff there is a valid annotation of {φ}P{ψ}.

Note, this does not mean that the calculus is
complete!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 502

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Exercise

Let the program P be:

z := x;
z := z + y;
u := z

Use the annotation calculus to prove that
`p {>}P{u = x+ y}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 503

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Exercise

Given the program P:

a := x + 1;
if a− 1 = 0 {y := 1} else {y := a}

Use the annotation calculus to prove that
`p {>}P{y = x+ 1}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 504

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Exercise

Given the program Sum:

z := 0;
while x > 0 {

z := z + x;
x := x− 1

}

Use the annotation calculus to prove that
`p {x = x0 ∧ x ≥ 0}Sum{z = x0(x0+1)

2 }.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 505

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

Weakest Liberal Precondition
In principle, the annotation calculus determines the
weakest precondition of a program and checks whether the
given precondition implies the calculated precondition.
I.e. when we start with something of the form

P{ψ}
then the annotation calculus leads to a Hoare triple

{φ}P′{ψ}
where φ is “something like the weakest precondition”:

`p {φ}P{ψ}.
Without the while-command the annotation calculus does
calculate the weakest precondition! But in the rule for the
while-command some invariant is selected. This does not
ensure that the weakest precondition is determined!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 506

6 Hoare Calculus
6.4 Proof Calculi: Partial Correctness

A formula ψ is said to be weaker than χ if it holds
that Z |= ∀(χ→ ψ).
Theorem 6.39 (Weakest Liberal Precondition)

The weakest liberal precondition of a program P
and postcondition φ, denoted by wp(P, φ), is the
weakest formula ψ such that |=p {ψ}P{φ}. Such a
formula exists and can be constructed as a formula
in our language.

The reason for the last theorem is that the model
Z with +, ·, < is powerful enough to express all
notions we need.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 507

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

6.5 Proof Calculi: Total
Correctness

Prof. Dr. Jürgen Dix Clausthal, SS 2013 508

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Proof Rules
We extend the proof calculus for partial
correctness presented to one that covers total
correctness.

Partial correctness does not say anything about
the termination of programs. It is easy to see that
only the while construct can cause the
nontermination of a program. Hence, in addition
to the partial correctness calculus we have to
prove that a while loop terminates.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 509

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

The proof of termination of while statements
follows the following schema:

Given a program P, identify an integer
expression I whose value decreases after
performing P but which is always
non-negative.

Such an expression E is called a variant. Now, it is
easy to see that a while loop has to terminate if
such a variant exists. The corresponding rule is
given below.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 510

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Definition 6.40 (Total-While Rule)

{φ ∧B ∧ 0 ≤ E = E0}C{φ ∧ 0 ≤ E < E0}
{φ ∧ 0 ≤ E} while B {C}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-loop,
E0 represents the initial value of E before the
loop.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 511

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Example 6.41

Let us consider the program Fac once more:

y := 1;

z := 0;

while (z 6= x) {z := z + 1; y := y · z}

How does a variant for the proof of
{x ≥ 0}Fac{y = x!} look?

A possible variant is for instance x− z. The first
time the loop is entered we have that x− z = x

and then the expression decreases step by step
until x− z = 0.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 512

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Annotation Calculus
Definition 6.42 (Total-While Rule)

while B {P}
{φ ∧ 0 ≤ E} whileB{{φ ∧ B ∧ 0 ≤ E = E0}P{φ ∧ 0 ≤ E < E0}}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-looping,
E0 represents the initial value of E before the
loop.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 513

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Example 6.43

Prove that |=t {x ≥ 0}Fac{y = x!}. What do we
have to do at the beginning?

We have to determine a suitable variant and an
invariant. As variant we may choose x− z and as
invariant y = z!. Now we can apply the
annotation calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 514

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

{x ≥ 0}
{1 = 0! ∧ 0 ≤ x− 0}
y := 1;
{y = 0! ∧ 0 ≤ x− 0}
z := 0;
{y = z! ∧ 0 ≤ x− z}
while x 6= z {
{y = z! ∧ x 6= z ∧ 0 ≤ x− z = E0}
{y(z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) < E0}
z := z + 1;
{yz = z! ∧ 0 ≤ x− z < E0}
y := y · z
{y = z! ∧ 0 ≤ x− z < E0} }

{y = z! ∧ x = z}
{y = x!}

Prof. Dr. Jürgen Dix Clausthal, SS 2013 515

6 Hoare Calculus
6.5 Proof Calculi: Total Correctness

Weakest Precondition
Proposition 6.44 (wp- Total Correctness)

The weakest precondition for total correctness
exists and can be expressed as a formula in our
language.

Example 6.45

What is the weakest precondition for

while i < n {i := i + 1}{i = n+ 5}?

i = n+ 5.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 516

6 Hoare Calculus
6.6 Sound and Completeness

6.6 Sound and Completeness

Prof. Dr. Jürgen Dix Clausthal, SS 2013 517

6 Hoare Calculus
6.6 Sound and Completeness

Theoretical Aspects

Finally, we consider some theoretical aspects with
respect to the sound and completeness of the
introduced calculi.

Recall, that a calculus is sound if everything that
can be derived is also semantically true:

If `x {φ}P{ψ} then |=x {φ}P{ψ}

where x ∈ {p, t} stands for partial and total
correctness.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 518

6 Hoare Calculus
6.6 Sound and Completeness

The reverse direction is referred to as
completeness.
A calculus is complete if everything that can
semantically be derived is also derivable by the
calculus:

If |=x {φ}P{ψ} then `x {φ}P{ψ}

where x ∈ {p, t} stands for partial and total
correctness.

Which direction is more difficult to prove?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 519

6 Hoare Calculus
6.6 Sound and Completeness

For the soundness we just have to make sure that
all proof rules introduced make sense. That is,
given a rule X

Y it has to be shown that Y holds
whenever X holds.

Theorem 6.46

The Hoare calculus is sound.

Proof.

Exercise!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 520

6 Hoare Calculus
6.6 Sound and Completeness

Theorem 6.47

The Hoare calculus is complete.

The Hoare calculus contains axioms and rules
that require to determine whether certain
formulae (proof obligations) are true in Z.
The theory of Z is undecidable.
Thus any re axiomatization of Z is incomplete.
However, most proof obligations occurring in
practice can be checked by theorem provers.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 521

7 Knowledge Engineering: FOL

7. Knowledge Engineering: FOL
7 Knowledge Engineering: FOL

First Order Logic
Sit-Calculus
The Blocksworld
Higher order logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 522

7 Knowledge Engineering: FOL

Content of this chapter:

FOL: While sentential logic SL has some nice features,
it is quite restricted in expressivity. First order
logic (FOL) is an extension of SL which allows us
to express much more in a succinct way.

SIT-calculus: The Situation Calculus, introduced by John
McCarthy, is a special method for using FOL to
express the dynamics of an agent. Applying
actions to the world leads to a series of
successor worlds that can be represented with
special FOL terms.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 523

7 Knowledge Engineering: FOL

Content of this chapter (2):

Blocksworld: We consider the blocksworld scenario and
discuss how to formalize that with FOL.

HOL: Finally, we give an outlook to higher order
logics (HOL), in particular to second order
logic. While we can express much more than in
1st order logic, the price we have to pay is that
there is no correct and complete calculus.

Declarative: In this chapter we only consider the question
How to use FOL to model the world? We are
not concerned with deriving new information
or with implementing FOL. This will be done in
the next chapter.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 524

7 Knowledge Engineering: FOL
7.1 First Order Logic

7.1 First Order Logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 525

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.1 (First order logic LFOL, L ⊆ LFOL)

The language LFOL of first order logic (Prädikatenlogik
erster Stufe) is:

x, y, z, x1, x2, . . . , xn, . . .: a countable set Var of variables
for each k ∈ N0: P k

1 , P
k
2 , . . . , P

k
n , . . . a countable set

Predk of k-dimensional predicate symbols (the
0-dimensional predicate symbols are the propositional
logic constants from At of LSL, including �, >).
for each k ∈ N0: fk1 , f

k
2 , . . . , f

k
n , . . . a countable set

Functk of k-dimensional function symbols.
¬, ∧, ∨,→: the sentential connectives.
(,): the parentheses.
∀, ∃: the quantifiers.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 526

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

The 0-dimensional function symbols are called
individuum constants – we leave out the
parentheses. In general we will need – as in
propositional logic – only a certain subset of the
predicate or function symbols.

These define a language L ⊆ LFOL (analogously
to definition 5.1 on page 356). The used set of
predicate and function symbols is also called
signature Σ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 527

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

The concept of an L-term t and an L-formula ϕ
are defined inductively:

Term: L-terms t are defined as follows:
1 each variable is a L-term.
2 if fk is a k-dimensional function symbol from
L and t1, . . . ,tk are L-terms, then fk(t1, . . . , tk)
is a L-term.

The set of all L-terms that one can create from the
set X ⊆ Var is called TermL(X) or TermΣ(X).
Using X = ∅ we get the set of basic terms
TermL(∅), short: TermL.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 528

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

Formula: L-formulae ϕ are also defined
inductively:

1 if P k is a k-dimensional predicate symbol from
L and t1, . . . ,tk are L-terms then P k(t1, . . . , tk)
is a L-formula

2 for all L-formulae ϕ is (¬ϕ) a L-formula
3 for all L-formulae ϕ and ψ are (ϕ ∧ ψ) and

(ϕ ∨ ψ) L-formulae.
4 if x is a variable and ϕ a L-formula then are

(∃xϕ) and (∀xϕ) L-formulae.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 529

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

Atomic L-formulae are those which are
composed according to 1., we call them AtL(X)
(X ⊆ Var). The set of all L-formulae in respect to
X is called FmlL(X).

Positive formulae (Fml+L (X)) are those which are
composed using only 1, 3. and 4.

If ϕ is a L-formula and is part of an other
L-formula ψ then ϕ is called sub-formula of ψ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 530

7 Knowledge Engineering: FOL
7.1 First Order Logic

An illustrating example

Example 7.2 (From semigroups to rings)

We consider L = {0, 1,+, ·,≤, .=}, where 0, 1 are constants,
+, · binary operations and ≤, .= binary relations. What can
be expressed in this language?
Ax 1: ∀x∀y∀z x+ (y + z)

.
= (x+ y) + z

Ax 2: ∀x (x+ 0
.
= 0 + x) ∧ (0 + x

.
= x)

Ax 3: ∀x∃y (x+ y
.
= 0) ∧ (y + x

.
= 0)

Ax 4: ∀x∀y x+ y
.
= y + x

Ax 5: ∀x∀y∀z x · (y · z)
.
= (x · y) · z

Ax 6: ∀x∀y∀z x · (y + z)
.
= x · y + x · z

Ax 7: ∀x∀y∀z (y + z) · x .
= y · x+ z · x

Axiom 1 describes an semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 531

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.3 (L-structure A = (UA, IA))

A L-structure or a L-interpretation is a pair
A =def (UA, IA) with UA being an arbitrary non-empty set,
which is called the basic set (the universe or the
individuum range) of A. Further IA is a mapping which

assigns to each k-dimensional predicate symbol P k in L
a k-dimensional predicate over UA
assigns to each k-dimensional function symbol fk in L a
k-dimensional function on UA

In other words: the domain of IA is exactly the set of
predicate and function symbols of L.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 532

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)
The range of IA consists of the predicates and functions on
UA. We write:

IA(P) = PA, IA(f) = fA.

ϕ be a L1-formula and A =def (UA, IA) a L-structure. A is
called matching with ϕ if IA is defined for all predicate and
function symbols which appear in ϕ, i.e. if L1 ⊆ L.

FOL with Equality

Often, one assumes that the predicate symbol .= is built-in
and interpreted by identity in all structures A:
IA(

.
=) = {(x, x) : x ∈ A}. In that case, .= is not listed among

the predicates in a model A.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 533

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.4 (Variable assignment %)

A variable assignment % over a L-structure
A = (UA, IA) is a function

% : Var → UA; x 7→ %(x).

Note that this is exactly what we called state in
the chapter about the Hoare calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 534

7 Knowledge Engineering: FOL
7.1 First Order Logic

Some structures
The following will be explained in detail on the
blackboard.

We consider L = {≤, .=} and the following
structures

1 (Z,≤Z)
2 (R,≤R)
3 (Q,≤Q)
4 (Q+

0 ,≤Q+
0)

State formulae in L that are true in all structures,
just in some, Is there a formula φ which can
distinguish between (R,≤R) and (Q,≤Q)?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 535

7 Knowledge Engineering: FOL
7.1 First Order Logic

Some structures (2)

We have seen some formulae that are true in these
structures. Can we come up with a finite
axiomatization?

Dense linear order without endpoints

It turns out, that the set of all formulae true in
(R,≤R) coincides with the set all formulae true in
(Q,≤Q). An axiomatization is given by the finite
set of formulae stating that < is a dense, linear
order without endpoints. This theory is also
complete.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 536

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.5 (Semantics of first order logic, Model A)

Let ϕ be a formula, A a structure matching with ϕ
and % a variable assignment over A. For each term
t, which can be built from components of ϕ, we
define the value of t in the structure A, called
A(t).

1 for a variable x is A(x) =def %(x).
2 if t has the form t = fk(t1, . . . , tk), with t1, . . . , tk

being terms and fk a k-dimensional function
symbol, then A(t) =def f

A(A(t1), . . . ,A(tk)).

Compare with Definition 6.10.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 537

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

We define inductively the logical value of a formula ϕ in A:
1. if ϕ =def P

k(t1, . . . , tk) with the terms t1, . . . , tk and the
k-dimensional predicate symbol P k, then

A(ϕ) =def

{
>, if (A(t1), . . . ,A(tk)) ∈ PA,
�, else.

2. if ϕ =def ¬ψ, then

A(ϕ) =def

{
>, if A(ψ) = �,
�, else.

3. if ϕ =def (ψ ∧ η), then

A(ϕ) =def

{
>, if A(ψ) = > and A(η) = >,
�, else.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 538

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)

4. if ϕ =def (ψ ∨ η), then

A(ϕ) =def

{
>, if A(ψ) = > or A(η) = >,
�, else.

5. if ϕ =def ∀xψ, then

A(ϕ) =def

{
>, if ∀ d ∈ UA : A[x/d](ψ) = >,
�, else.

6. if ϕ =def ∃xψ, then

A(ϕ) =def

{
>, if ∃d ∈ UA : A[x/d](ψ) = >,
�, else.

For d ∈ UA let A[d/x] be the structure A′, identical to A except for the
definition of xA

′
: xA

′
=def d (whether IA is defined for x or not).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 539

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition (continued)
We write:

A |= ϕ[%] for A(ϕ) = >: A is a model for ϕ with respect to %.

If ϕ does not contain free variables, then A |= ϕ[%] is
independent from %. We simply leave out %.

If there is at least one model for ϕ, then ϕ is called
satisfiable or consistent.

A free variable is a variable which is not in the scope of a
quantifier. For instance, z is a free variable of ∀xP (x, z) but not
free (or bounded) in ∀z∃xP (x, z).
A variable can occur free and bound in the same formula. So we
have to talk about a particular occurrence of a variable: the very
position of it in the formula.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 540

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.6 (Tautology)

1 A theory is a set of formulae without free
variables: T ⊆ FmlL. The structure A satisfies
T if A |= ϕ holds for all ϕ ∈ T . We write A |= T
and call A a model of T .

2 A L-formula ϕ is called L-tautology, if for all
matching L-structures A the following
holds: A |= ϕ.

From now on we suppress the language L,
because it is obvious from context.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 541

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.7 (Consequence set Cn(T))

A formula ϕ follows semantically from T , if for
all structures A with A |= T also A |= ϕ holds.
We write: T |= ϕ.

In other words: all models of T do also satisfy ϕ.

We denote by CnL(T) =def {ϕ ∈ FmlL : T |= ϕ},
or simply Cn(T), the semantic consequence
operator.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 542

7 Knowledge Engineering: FOL
7.1 First Order Logic

Lemma 7.8 (Properties of Cn(T))

The semantic consequence operator Cn has the
following properties

1 T -extension: T ⊆ Cn(T),
2 Monotony: T ⊆ T ′ ⇒ Cn(T) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T)) = Cn(T).

Lemma 7.9 (ϕ 6∈ Cn(T))

ϕ 6∈ Cn(T) if and only if there is a structure A
with A |= T and A |= ¬ϕ.

Or: ϕ 6∈ Cn(T) iff there is a counterexample: a
model of T in which ϕ is not true.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 543

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.10 (MOD(T), Cn(U))

If T ⊆ FmlL, then we denote by MOD(T) the set of all
L-structures A which are models of T :

MOD(T) =def {A : A |= T}.

If U is a set of structures then we can consider all sentences, which
are true in all structures. We call this set also Cn(U):

Cn(U) =def {ϕ ∈ FmlL : ∀A ∈ U : A |= ϕ}.

MOD is obviously dual to Cn:

Cn(MOD(T)) = Cn(T), MOD(Cn(T)) = MOD(T).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 544

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.11 (Completeness of a theory T)

T is called complete, if for each formula
ϕ ∈ FmlL: T |= ϕ or T |= ¬ϕ holds.

Attention:

Do not mix up this last condition with the
property of a structure v (or a model): each
structure is complete in the above sense.

Lemma 7.12 (Ex Falso Quodlibet)

T is consistent if and only if Cn(T) 6= FmlL.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 545

7 Knowledge Engineering: FOL
7.1 First Order Logic

An illustrating example

Example 7.13 (Natural numbers in different languages)

NPr = (N0, 0
N ,+N ,

.
=N) („Presburger Arithmetik”),

NPA = (N0, 0
N ,+N , ·N , .=N) („Peano Arithmetik”),

NPA′ = (N0, 0
N , 1N ,+N , ·N , .=N) (variant of NPA).

These sets each define the same natural numbers, but in
different languages.

Question:
If the language is bigger then we might express more.
Is LPA′ strictly more expressive than LPA?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 546

7 Knowledge Engineering: FOL
7.1 First Order Logic

Answer:

No, because one can replace the 1N by a
LPA-formula: there is a LPA-formula φ(x) so that
for each variable assignment ρ the following
holds:

NPA′ |=ρ φ(x) if and only if ρ(x) = 1N

Thus we can define a macro for 1.
Each formula of LPA′ can be transformed into
an equivalent formula of LPA.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 547

7 Knowledge Engineering: FOL
7.1 First Order Logic

Question:

Is LPA perhaps more expressive than LPr, or can
the multiplication be defined somehow?

Indeed, LPA is more expressive:

the set of sentences valid in NPr is decidable,
whereas
the set of sentences valid in NPA is not even
recursively enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 548

7 Knowledge Engineering: FOL
7.1 First Order Logic

Question:

We have introduced Z = (Z, 0Z, 1Z,+Z,−Z, ·Z, <Z)
in the chapter about the Hoare calculus. How
does it compare with NPA?

“ .=” can be defined with < and vice versa in Z
and NPA (resp. in NPr).
“−” can also be defined with the other
constructs.
NPA can be defined in Z with an appropriate
formula φ(x):

Z |=ρ φ(x) if and only if ρ(x) ∈ N0

Prof. Dr. Jürgen Dix Clausthal, SS 2013 549

7 Knowledge Engineering: FOL
7.1 First Order Logic

Can NPA be defined in (Z,+Z, ·Z)?
To be more precise, for each LPA formula φ, there
is a LZ formula φ′ such that: if NPA′ |= φ then
Z |= φ′.

So Z is at least as difficult as NPA.
The converse is true as well. Therefore although
the theories of Z and NPA are not identical, the
truth of a formula in one of them can be reduced
to the truth of a translated formula in the other
one.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 550

7 Knowledge Engineering: FOL
7.1 First Order Logic

Question:

What about R = (R, 0R, 1R,+R,−R, ·R, <R) and
Q = (Q, 0Q, 1Q,+Q,−Q, ·Q, <Q)? How do they
compare with NPA?

State a formula that distinguishes both
structures.
Can one define Q within R (as we did define
NPA in Z)?
Is there an axiomatization of R?

In general, theories of particular structures
are undecidable. But it depends on the
underlying language.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 551

7 Knowledge Engineering: FOL
7.1 First Order Logic

As for sentential logic, formulae can be derived
from a given theory and they can also
(semantically) follow from it.
Syntactic derivability `: the notion that certain

formulae can be derived from other
formulae using a certain calculus,

Semantic validity |=: the notion that certain
formulae follow from other formulae
based on the semantic notion of a
model.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 552

7 Knowledge Engineering: FOL
7.1 First Order Logic

Definition 7.14 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a relation
|=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

Φ ` φ implies Φ |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

Φ |= φ implies Φ ` φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 553

7 Knowledge Engineering: FOL
7.1 First Order Logic

We have already defined a complete and correct calculus for
sentential logic LSL. Such calculi also exist for first order
logic LFOL.

Theorem 7.15 (Correct-, Completeness of FOL)

A formula follows semantically from a theory T if and only if
it can be derived:

T ` ϕ if and only if T |= ϕ

Theorem 7.16 (Compactness of FOL)

A formula follows follows semantically from a theory T if and
only if it follows semantically from a finite subset of T :

Cn(T) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′ finite}.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 554

7 Knowledge Engineering: FOL
7.1 First Order Logic

Predicate- or function- symbols?

How to formalize each animal has a brain?
1 Two unary predicate symbols: animal(x),
has_brain(x). The statement becomes

∀x (animal(x)→ has_brain(x))

2 Finally, what about a binary predicate
is_brain_of(y, x) and the statement

∀x (animal(x) → ∃y is_brain_of(y, x))

3 But why not introducing a unary function
symbol brain_of(x) denoting x’s brain? Then

∀x ∃y (animal(x) → y
.
= brain_of(x))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 555

7 Knowledge Engineering: FOL
7.1 First Order Logic

Unary function or binary predicate?

Given a unary function symbol f (x) and a
constant c. Then the only terms that can
be built are of the form fn(c). Assume we
have .

= as the only predicate. Then the
atomic formulae that we can built have
the form fn(c)

.
= fm(c). We call this

language L1.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 556

7 Knowledge Engineering: FOL
7.1 First Order Logic

Unary function or binary predicate? (2)

Assume now that instead of f and .
=, we

use a binary predicate pf(y, x) which
formalizes y .

= f (x). We call this language
L2.

Can we express all formulae of L1 in
L2?
And vice versa?
What is the difference between
both approaches?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 557

7 Knowledge Engineering: FOL
7.1 First Order Logic

Tuna the cat
We formalize again the example of the killed cat,
this time in FOL.

1 Jack owns a dog.
7→ owns(x, y), dog(x), jack.

2 Dog owners are animal lovers.
7→ animal_lover(x).

3 Animal lovers do not kill animals.
7→ killer_of(x, y), animal(x).

4 Either Jack or Bill killed Tuna, the cat.
7→ bill, tuna, cat(x), killer_of(x, y).

The formalization follows on the blackboard.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 558

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

7.2 Sit-Calculus

Prof. Dr. Jürgen Dix Clausthal, SS 2013 559

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Question:

How do we axiomatize the Wumpus-world in
FOL?

function KB-AGENT(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action�ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action

Prof. Dr. Jürgen Dix Clausthal, SS 2013 560

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Idea:
In order to describe actions or their effects consistently we
consider the world as a sequence of situations (snapshots of
the world). Therefore we have to extend each predicate by
an additional argument.

We use the function symbol

result(action, situation)

as the term for the situation which emerges when the
action action is executed in the situation situation.

Actions: Turn_right, Turn_left, Foreward, Shoot, Grab,
Release, Climb.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 561

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

Forward

S0

Forward

Turn (Right)
S1

S0S2

S3

Prof. Dr. Jürgen Dix Clausthal, SS 2013 562

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

We also need a memory, a predicate

At(person, location, situation)

with person being either Wumpus or Agent and location
being the actual position (stored as pair [i,j]).

Important axioms are the so called successor-state axioms,
they describe how actions effect situations. The most
general form of these axioms is

true afterwards ⇐⇒ an action made it true
or it is already true and
no action made it false

Prof. Dr. Jürgen Dix Clausthal, SS 2013 563

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Axioms about At(p, l, s):

At(p, l, result(Forward, s))↔((l
.
= location_ahead(p, s) ∧ ¬Wall(l))

At(p, l, s) →Location_ahead(p, s)
.
=

Location_toward(l, Orient.(p, s))
Wall([x, y]) ↔(x

.
= 0 ∨ x .

= 5 ∨ y .
= 0 ∨ y .

= 5)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 564

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Location_toward([x, y], 0)
.
= [x+ 1, y]

Location_toward([x, y], 90)
.
= [x, y + 1]

Location_toward([x, y], 180)
.
= [x− 1, y]

Location_toward([x, y], 270)
.
= [x, y − 1]

Orient.(Agent, s0)
.
= 90

Orient.(p, result(a, s)) .
= d↔

((a
.
= turn_right ∧ d .

= mod(Orient.(p, s)− 90, 360))
∨(a

.
= turn_left ∧ d .

= mod(Orient.(p, s) + 90, 360))
∨(Orient.(p, s)

.
= d ∧ ¬(a

.
= Turn_right ∨ a .

= Turn_left))

mod(x, y) is the implemented “modulo”-function,
assigning a value between 0 and y to each
variable x.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 565

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Axioms about percepts, useful new notions:

Percept([Stench, b, g, u, c], s) → Stench(s)
Percept([a,Breeze, g, u, c], s) → Breeze(s)
Percept([a, b,Glitter, u, c], s) → At_Gold(s)
Percept([a, b, g, Bump, c], s) → At_Wall(s)
Percept([a, b, g, u, Scream], s) → Wumpus_dead(s)

At(Agent, l, s) ∧Breeze(s) → Breezy(l)
At(Agent, l, s) ∧ Stench(s) → Smelly(l)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 566

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Adjacent(l1, l2) ↔ ∃ d l1
.
= Location_toward(l2, d)

Smelly(l1) → ∃l2 At(Wumpus, l2, s)∧
(l2

.
= l1 ∨ Adjacent(l1, l2))

Percept([none, none, g, u, c], s)∧
At(Agent, x, s) ∧ Adjacent(x, y)

→ OK(y)
(¬At(Wumpus, x, t) ∧ ¬Pit(x))

→ OK(y)
At(Wumpus, l1, s) ∧ Adjacent(l1, l2)

→ Smelly(l2)
At(Pit, l1, s) ∧ Adjacent(l1, l2)

→ Breezy(l2)
Prof. Dr. Jürgen Dix Clausthal, SS 2013 567

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Axioms to describe actions:

Holding(Gold, result(Grab, s)) ↔ At_Gold(s)∨
Holding(Gold, s)

Holding(Gold, result(Release, s)) ↔ �
Holding(Gold, result(Turn_right, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Turn_left, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Forward, s)) ↔ Holding(Gold, s)
Holding(Gold, result(Climb, s)) ↔ Holding(Gold, s)

Each effect must be described carefully.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 568

7 Knowledge Engineering: FOL
7.2 Sit-Calculus

Axioms describing preferences among actions:

Great(a, s)→ Action(a, s)
(Good(a, s) ∧ ¬∃bGreat(b, s))→ Action(a, s)
(Medium(a, s) ∧ ¬∃b (Great(b, s) ∨Good(b, s)))→ Action(a, s)
(Risky(a, s) ∧ ¬∃b (Great(b, s) ∨Good(b, s) ∨Medium(a, s)))

→ Action(a, s)
At(Agent, [1, 1], s) ∧Holding(Gold, s)→ Great(Climb, s)
At_Gold(s) ∧ ¬Holding(Gold, s)→ Great(Grab, s)
At(Agent, l, s) ∧ ¬V isited(Location_ahead(Agent, s))∧
∧OK(Location_ahead(Agent, s))→ Good(Forward, s)
V isited(l)↔ ∃sAt(Agent, l, s)
The goal is not only to find the gold but also to return safely.
We need additional axioms like

Holding(Gold, s)→ Go_back(s).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 569

7 Knowledge Engineering: FOL
7.3 The Blocksworld

7.3 The Blocksworld

Prof. Dr. Jürgen Dix Clausthal, SS 2013 570

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Blocksworld

The Blocks World (BW) is one of the most popular
domains in AI (first used in the 1970s). However,
the setting is easy:

Prof. Dr. Jürgen Dix Clausthal, SS 2013 571

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Domain

Blocks of various shapes, sizes and colors sitting
on a table and on each other.

(Here: Quadratic blocks of equal size.)

Actions

Pick up a block and put it to another position
(tower of blocks or table). Only the topmost
blocks can be used.

How to formalize this? What language to use?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 572

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Choosing the predicates: First try.

1 One action: move. We add a ternary predicate
move(b, x, y): The block b is moved from x to y
if both b and y are clear (nothing on top of
them).

2 So we need a predicate clear(x).
3 One predicate on(b, x) meaning block b is on x.
4 But then clear(x) can be defined by
∀y ¬on(y, x).

Problem: What about the table?

If we view the table as a simple block: clear(table)
means that there is nothing on the table.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 573

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Choosing the predicates: Second try.

Keep the current framework, view the table as a
block but add an additional binary predicate

move_to_table(b, x),

meaning that the block b is moved from x to the
table.

clear(x) is interpreted as there is free place on x to
put a block on x. This interpretation does also
work for x .

= table.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 574

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Choosing the predicates: Third try.

Definition 7.17 (LBW)

The BW language LBW ⊆ LFOL is the subset of FOL
having a signature consisting of the two binary
predicate symbols above and .

=.

We define the following macros:
on(x, y) : above(x, y) ∧ ¬(∃z(above(x, z) ∧ above(z, y)))

onTable(x) : ¬(∃y(above(x, y)))
clear(x) : ¬(∃y(above(y, x)))

How do the LBW -structures look like?

Do they all make sense?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 575

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Our blocksworld has a very specific structure,
which should be reflected in the models!

Definition 7.18 (Chain)

Let A be a nonempty set. We say that (A,<) is a
chain if < is a binary relation on A which is

1 irreflexive,
2 transitive, and
3 connected, (i.e., for all a, b ∈ A it holds that

either a < b, a = b, or a > b).

(A chain is interpreted as a tower of blocks.)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 576

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Definition 7.19 (LBW-BW-structure)

An BW-structure is a LBW-structure A = (U, I) in
which I(above) is a finite and disjoint union of
chains over U , i.e.

I(above) =
⋃

(A,<)∈A′
{(a, b) ∈ A2 | a > b}}

where A′ is a set of chains over U such that for all
(A1, <1), (A2, <2) ∈ A′ with (A1, <1) 6= (A2, <2) it
holds that A1 ∩ A2 = ∅.

(Note: I(above) is transitive!)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 577

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Definition 7.20 (BW-theory)

The theory Th(BW) consists of all LBW-sentences
which are true in all BW-structures.

Is the theory complete?
No, consider for example

∀x, y(onTable(x) ∧ onTable(y)→ x
.
= y)

What about planning in the blocksworld?
This should be done automatically as in the
case of the Sudoku game or the puzzle.
Thus we need a FOL theorem prover.

 An axiomatization is needed!
Prof. Dr. Jürgen Dix Clausthal, SS 2013 578

7 Knowledge Engineering: FOL
7.3 The Blocksworld

A complete axiomatization
The following set AX BW of axioms was proposed by Cook
and Liu (2003):

1 ∀x ¬above(x, x)
2 ∀x ∀y ∀z (above(x, y) ∧ above(y, z))→ above(x, z)
3 ∀x ∀y ∀z (above(x, y) ∧ above(x, z))→

(y = z ∨ above(y, z) ∨ above(z, y))
4 ∀x ∀y ∀z (above(y, x) ∧ above(z, x))→

(y = z ∨ above(y, z) ∨ above(z, y))
5 ∀x (onTable(x) ∨ ∃y(above(x, y) ∧ onTable(y)))
6 ∀x (clear(x) ∨ ∃y(above(y, x) ∧ clear(y)))
7 ∀x ∀y (above(x, y)→ (∃zon(x, z) ∧ ∃zon(z, y))

The last statement says that if an element is not on top (y)
then there is a block above it, and if an element is not at the
bottom (x) then there is an element below it.

Is every LBW-BW-structure also a model for AX BW?
 Exercise

Prof. Dr. Jürgen Dix Clausthal, SS 2013 579

7 Knowledge Engineering: FOL
7.3 The Blocksworld

Lemma 7.21

Cn(AX BW) ⊆ Th(BW).

Proof: Exercise

Indeed, both sets are identical:

Theorem 7.22 (Cook and Liu)

Cn(AX BW) = Th(BW).

Thus the axiomatization is sound and complete.

Additionally, the theory is decidable!

 We are ready to use a theorem prover!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 580

7 Knowledge Engineering: FOL
7.4 Higher order logic

7.4 Higher order logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 581

7 Knowledge Engineering: FOL
7.4 Higher order logic

Definition 7.23 (Second order logic LPL 2)

The language L2ndOL of second order logic consists of the
language LFOL and additionally

for each k ∈ N0: Xk
1 , X

k
2 , . . . , X

k
n, . . . a countable set

RelVark of k-ary predicate variables.
Thereby the set of terms gets larger:

if Xk is a k-ary predicate variable and t1, . . . , tk are
terms, then Xk(t1, . . . , tk) is also a term

and also the set of formulae:
if X is a predicate variable, ϕ a formula, then (∃Xϕ) and
(∀Xϕ) are also formulae.

Not only elements of the universe can be quantified but also
arbitrary subsets resp. k-ary relations.
The semantics do not change much – except for the new
interpretation of formulae like (∃Xϕ), (∀Xϕ)).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 582

7 Knowledge Engineering: FOL
7.4 Higher order logic

We also require from IA that the new k-ary
predicate variables are mapped onto k-ary
relations on UA.

if ϕ =def ∀Xk ψ, then

A(ϕ) =def

{
>, if for all Rk ⊆ UA × · · · × UA : A[Xk/Rk](ψ) = >,
�, else.

if ϕ =def ∃Xk ψ, then

A(ϕ) =def

{
>, if there is a Rk ⊆ UA × · · · × UA with A[Xk/Rk](ψ) = >,
�, else.

We can quantify over arbitrary n-ary relations,
not just over elements (like in first order logic).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 583

7 Knowledge Engineering: FOL
7.4 Higher order logic

Dedekind/Peano Characterization of N
The natural numbers satisfy the following axioms:

Ax1: 0 is a natural number.

Ax2: For each natural number n, there is exactly one
successor S(n) of it.

Ax3: There is no natural number which has 0 as its
successor.

Ax4: Each natural number is successor of at most one
natural number.

Ax5: The set of natural numbers is the smallest set N
satisfying the following properties:

1 0 ∈ N ,
2 n ∈ N ⇒ S(n) ∈ N .

The natural numbers are characterized up to isomorphy by these
axioms.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 584

7 Knowledge Engineering: FOL
7.4 Higher order logic

How to formalize the last properties?

Language: We choose “0” as a constant and
“S(·)” as a unary function symbol.

Axiom for 0: ∀x¬S(x)
.
= 0.

Axiom for S: ∀x∀y (S(x)
.
= S(y)→ x

.
= y).

Axiom 5: ∀X ((X(0) ∧ ∀x (X(x)→ X(S(x)))) →
∀yX(y)).

While the first two axioms are first-order, the last
one is essentially second-order.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 585

7 Knowledge Engineering: FOL
7.4 Higher order logic

Different languages for NPA

NPA = (N0, 0
N , 1N ,+N ,

.
=N)

NPA = (N0, 0
N , SN ,+N ,

.
=N)

NPA = (N0, 0
N , 1N , SN ,+N ,

.
=N)

NPA = (N0, 1
N ,+N ,

.
=N)

All these structures, resp. their formulae
are interdefinable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 586

7 Knowledge Engineering: FOL
7.4 Higher order logic

Question

What do the following two 2nd order sentences
mean?

∀x∀y (x
.
= y ⇐⇒ ∀X (X(x)⇐⇒ X(y))),

∀X (∀x∃!yX(x, y) ∧
∀x∀y∀z ((X(x, z) ∧X(y, z))→ x

.
= y))

→ ∀x∃yX(y, x))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 587

7 Knowledge Engineering: FOL
7.4 Higher order logic

Answer:

The first sentence shows that equality can be
defined in 2nd OL (in contrast to FOL).
The second sentence holds in a structure iff it is
finite. Note that this cannot be expressed in FOL.

While the semantics of L2ndOL is a canonical
extension of LFOL, this does not hold for the
calculus level. It can be shown that the set of
valid sentences in L2ndOL is not even recursively
enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 588

7 Knowledge Engineering: FOL
7.4 Higher order logic

Attention:

There is no correct and complete
calculus for 2nd Order Logic!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 589

8 Knowledge Engineering: Provers

8. Knowledge Engineering:
Provers

8 Knowledge Engineering: Provers
Theorem Proving
Resolution
Herbrand
Variants of resolution
SLD resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2013 590

8 Knowledge Engineering: Provers

Content of this chapter:

Provers: We describe several theorem provers that are
freely available and that can handle FOL.

Resolution: There are several calculi for implementing FOL.
While the classical ones are not really feasible,
resolution calculi can be efficiently
implemented (and are the basis of most
provers).

Variants: Resolution implementations often have huge
search spaces. There are several variants that can
be more efficiently implemented. SLD
resolution leads to PROLOG as a programming
language.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 591

8 Knowledge Engineering: Provers
8.1 Theorem Proving

8.1 Theorem Proving

Prof. Dr. Jürgen Dix Clausthal, SS 2013 592

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Automated Theorem Proving
Development of computer programs that show
that some statement (the conjecture) is a logical
consequence of a set of statements (axioms and
assumptions).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 593

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Examples

First year math students usually prove that
groups of order two are commutative.
Management consultants might formulate
axioms that describe how organizations grow
and interact, and from those axioms prove that
organizational death rates decrease with
age.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 594

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Examples (cont.)

Hardware developers might validate the
design of a circuit by proving a conjecture
that describes a circuit’s performance, given
axioms that describe the circuit itself.
Lazy crosswords fans might prepare a
database of words and rules of putting a
crossword together, and generate the
crosswords solution as a proof.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 595

8 Knowledge Engineering: Provers
8.1 Theorem Proving

The Idea

Specification of what we have (the system):
Assumptions/axioms A1, . . . , An

Specification of what we want: Goals
G1, . . . , Gk

Now, we want to prove or disprove that

A1 ∧ · · · ∧ An |= G1 ∧ · · · ∧Gk

 verification!
constructive proof synthesis!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 596

8 Knowledge Engineering: Provers
8.1 Theorem Proving

How can we use a theorem prover?
Correctness proving: We prove
A1 ∧ · · · ∧ An ` G1 ∧ · · · ∧Gk

Testing: We look for counterexamples
(models!)
Solution synthesis: The constructed
proof/model is the solution
 software synthesis
 hardware synthesis
 plan generation etc.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 597

8 Knowledge Engineering: Provers
8.1 Theorem Proving

The language = logic

Often: Classical First Order Logic
Possibly: A non-classical logic or higher order
logic

Prof. Dr. Jürgen Dix Clausthal, SS 2013 598

8 Knowledge Engineering: Provers
8.1 Theorem Proving

The system needs a formal description of the
problem in some logical form.

User prepares the description.
Prover attempts to solve the problem.
If successful: Proof is the output.
If unsuccessful: User can provide guidance,
simplify/split the problem, and/or revise the
description.

This formality is both the underlying strength
and handicap of ATP.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 599

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Pros of logical languages

Allow a precise formal statement of the
necessary information.
No ambiguity in the statement of the problem
(often the case when using natural language).
Force the user to describe the problem
precisely and accurately.
The process often leads to a clearer and
deeper understanding of the problem
domain.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 600

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Cons of logical languages

Require a precise formal statement of the
necessary information
 many problems are not formalizable!
Examples:
Creating a good user interface.
Creating a system which defends itself
reasonably well against unpredicted
situations.
Even for domains which are in principle
formalizable: Inaccurate formalizations are
easy to obtain.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 601

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Cons of logical languages (cont.)

Force the user to describe the problem
precisely and accurately.
 considerable skills needed!
Computational intractability.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 602

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Computational complexity of the problem

Propositional logic: co-NP-complete.
First-order logic: recursively enumerable
(re).
Higher-order logic: Not even re.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 603

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Way out of the complexity

Computer-assisted theorem proving

Fully automatic
theorem prover

← · · · · · · → Proof checker

Prof. Dr. Jürgen Dix Clausthal, SS 2013 604

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Interactive theorem provers require a human
to give hints to the system.
The interaction may be at a very detailed level,
where the user guides the inferences made by
the system, or at a much higher level where
the user determines intermediate lemmas to
be proved on the way to the proof of a
conjecture.
Often: the user defines a number of proof
strategies proving toolbox (e.g., Isabelle).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 605

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Popular ATP techniques

First-order resolution with unification,
Higher-order unification,
Model elimination,
Superposition and term rewriting,
Lean theorem proving,
Method of analytic tableaux,
Mathematical induction,
DPLL (Davis-Putnam-Logemann-Loveland algorithm).

All the previously mentioned complexity bounds still apply!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 606

8 Knowledge Engineering: Provers
8.1 Theorem Proving

CASC: CADE ATP System Competition, a yearly
contest of first-order provers for many important
classes of first-order problems.

http://www.cs.miami.edu/~tptp/CASC/

Prof. Dr. Jürgen Dix Clausthal, SS 2013 607

http://www.cs.miami.edu/~tptp/CASC/

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Some important first-order provers (all have won
at least one CASC competition division):

E
Gandalf
Otter Prover9/Mace4
SETHEO
SPASS
Vampire (won the "world cup for theorem
provers" for eight years: 1999, 2001–2007)
Waldmeister (won the CASC UEQ division for
the last ten years: 1997-2006); recently
embedded in Mathematica

Prof. Dr. Jürgen Dix Clausthal, SS 2013 608

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Other Important Systems

HOL
Isabelle
Mizar

Growing competition: Model checking (especially
in logics of time, action and knowledge).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 609

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Example: animals, cats, and Garfield

Assumptions:
cat(x) -> animal(x).
cat(Garfield).

Goals:
exists x animal(x).
-(exists x animal(x)).

 Ontologies, Semantic web

Prof. Dr. Jürgen Dix Clausthal, SS 2013 610

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Prover9 Syntax

Meaning Connective Example
negation – (–p)
disjunction | (p | q | r)
conjunction & (p & q & r)
implication –> (p –> q)
equivalence <–> (p <–> q)
universal quant. all (all x all y p(x,y))
existential quant. exists (exists x p(x,y))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 611

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Prover9 Syntax (cont.)

Variables start with (lower case) u through z
Otherwise: Constants
Free variables in clauses and formulas are
assumed to be universally quantified at the
outermost level

Prover9 uses resolution with refutation.
Thus, its inference rules operate on clauses.
If non-clausal formulas are input, Prover9
immediately translates them to clauses by
NNF, Skolemization, and CNF conversions.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 612

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Schubert’s Steamroller

Prof. Dr. Jürgen Dix Clausthal, SS 2013 613

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Success Stories

Fields where ATP has been successfully used:
Logic and mathematics.
Computer science and engineering (software
creation and verification, hardware design and
verification – esp. integrated circuit design and
verification, and knowledge based systems).
Social science.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 614

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Mathematics

EQP: Settling of the Robbins problem (open
for 63 years!)
Otter: Several results in quasi-groups;
axiomatizations of algebraic structures.
Mizar: Cross-verification of the Mathematical
Library (ongoing).
Geometry Expert: New results in Euclidean
geometry.
NUPRL helped to confirm Higman’s lemma
and Gerard’s paradox.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 615

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Mathematics (cont.)

Results by dedicated provers (no general
theorem provers):

Proof of four color theorem (very
controversial: The first mathematical proof
which was impossible to verify by humans due
to the enormous size of the program’s
calculation).

Solving the game of Connect Four.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 616

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Software creation

KIDS: Used to derive scheduling algorithms
that have outperformed currently used
algorithms.
Amphion (NASA): Determining subroutines
for satellite guidance
Certifiable Synthesis (NASA).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 617

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Software verification

KIV (Karlsruhe): Verified an implementation
of set functions, graph representations and
algorithms, and a Prolog to WAM compiler.
PVS: Diagnosis and scheduling algorithms for
fault tolerant architectures; requirements
specification for parts of the space shuttle
flight control system.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 618

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Hardware verification

Employed e.g. by IBM, Intel, and Motorola
(especially since the Pentium FDIV bug).
ACL2: Correctness proof of the floating point
divide code for AMD5K86 microprocessor.
ANALYTICA: Used to verify a division circuit
that implements the floating point standard of
IEEE.
RRL: Verification of adder and multiplier
circuits.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 619

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Hardware verification (cont.)

PVS: Used to verify a microprocessor for
aircraft flight control.
Nqthm: Correctness proof of the FM9001
microprocessor.
HOL: Hardware verification at Bell
Laboratories.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 620

8 Knowledge Engineering: Provers
8.1 Theorem Proving

Verification of critical section

Prof. Dr. Jürgen Dix Clausthal, SS 2013 621

8 Knowledge Engineering: Provers
8.2 Resolution

8.2 Resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2013 622

8 Knowledge Engineering: Provers
8.2 Resolution

Definition 8.1 (Most general unifier: mgU)

Given a finite set of equations between terms or
equations between literals.
Then there is an algorithm which calculates a
most general solution substitution (i.e. a
substitution of the involved variables so that the
left sides of all equations are syntactically identical
to the right sides) or which returns fail.
In the first case the most general solution
substitution is defined (up to renaming of
variables): it is called

mgU, most general unifier
Prof. Dr. Jürgen Dix Clausthal, SS 2013 623

8 Knowledge Engineering: Provers
8.2 Resolution

p(x, a) = q(y, b),
p(g(a), f (x)) = p(g(y), z).
Basic substitutions are:
[a/y, a/x, f (a)/z], [a/y, f (a)/x, f (f (a))/z],

and many more.
The mgU is: [a/y, f (x)/z] .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 624

8 Knowledge Engineering: Provers
8.2 Resolution

Given: f(x, g(h(y), y)) = f(x, g(z, a))

The algorithm successively calculates the
following sets of equations:

{ x = x, g(h(y), y) = g(z, a) }
{ g(h(y), y) = g(z, a) }
{ h(y) = z, y = a }
{ z = h(y), y = a }
{ z = h(a), y = a }

Thus the mgU is: [x/x, a/y, h(a)/z].

Prof. Dr. Jürgen Dix Clausthal, SS 2013 625

8 Knowledge Engineering: Provers
8.2 Resolution

The occur-check

Given: f(x, g(x)) = f(c, c)

Is there an mgU?
The algorithm gives the following:

{ x = c, g(x) = c }

But setting x = c is not a unifying substitution, because
c 6= g(c).
Therefore there is no mgU. And the algorithm has to do
this check, called occur check, to test whether the
substitution is really correct.
However, this check is computationally expensive and
many algorithms do not do it.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 626

8 Knowledge Engineering: Provers
8.2 Resolution

A resolution calculus for FOL
The resolution calculus is defined over the language
Lres ⊆ LFOL where the set of well-formed formulae FmlResLres
consists of all disjunctions of the following form

A ∨ ¬B ∨ C ∨ . . . ∨ ¬E,
i.e. the disjuncts are only atoms or their negations. No
implications or conjunctions are allowed. These formulae
are also called clauses.
Such a clause is also written as the set

{A,¬B,C, . . . ,¬E}.
This means that the set-theoretic union of such sets
corresponds again to a clause.
Note, that a clause now consists of atoms rather than
constants, as it was the case of the resolution calculus for SL.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 627

8 Knowledge Engineering: Provers
8.2 Resolution

Definition 8.2 (Robinson’s resolution for FOL)

The resolution calculus consists of two rules:

(Res)
C1 ∪ {A1} C2 ∪ {¬A2}
(C1 ∪ C2)mgU(A1, A2)

where C1 ∪ {A1} and C2 ∪ {A2} are assumed to be
disjunct wrt the variables, and the factorization
rule

(Fac)
C1 ∪ {L1, L2}

(C1 ∪ {L1})mgU(L1, L2)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 628

8 Knowledge Engineering: Provers
8.2 Resolution

Illustration of the resolution rule

Example 8.3

Consider the set
M = {r(x) ∨ ¬p(x), p(a), s(a)} and the
question M |= ∃x(s(x) ∧ r(x))?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 629

8 Knowledge Engineering: Provers
8.2 Resolution

Definition 8.4 (Resolution Calculus for FOL)

We define the resolution calculus
RobinsonFOLLres = 〈∅, {Res,Fac}〉 as follows. The
underlying language is Lres ⊆ LFOL defined on
Slide 627 together with the set of well-formed
formulae FmlResLres.

Thus there are no axioms and only two inference
rules. The well-formed formulae are just clauses.
Question:

Is this calculus correct and complete?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 630

8 Knowledge Engineering: Provers
8.2 Resolution

Question:
Why do we need factorization?

Answer:
Consider

M = {{s(x1), s(x2)}, {¬s(y1),¬s(y2)}}

Resolving both clauses gives

{s(x1)} ∪ {¬s(y1)}

or variants of it.
Resolving this new clause with one in M only leads to
variants of the respective clause in M .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 631

8 Knowledge Engineering: Provers
8.2 Resolution

Answer (continued):

� can not be derived (using resolution only).

Factorization solves the problem, we can deduce
both s(x) and ¬s(y), and from there the empty
clause.

Theorem 8.5 (Resolution is refutation complete)

Robinsons resolution calculus RobinsonFOLLres is
refutation complete: Given an unsatisfiable set,
the empty clause can eventually be derived using
resolution and factorization.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 632

8 Knowledge Engineering: Provers
8.2 Resolution

What to do if the formulae are not clauses?

In that case, we have to transform them into
clauses of the required form.

Let us consider
Example 8.6

Let
M = {∃x∃y Q(x) ∧ ¬Q(y), ∀x∃y P (x, y)→ ¬Q(y)}.
How to deal with the existential quantifiers?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 633

8 Knowledge Engineering: Provers
8.2 Resolution

The first formula is easy to transform: we just add
two new constants c, c′ and instantiate them for
the variables. This leads to Q(c) ∧ ¬Q(c′), or the
two clauses Q(c) and Q(c′).

The second formula is more complicated, because
there is no single y. We have to take into account,
that the y usually depends on the chosen x.
Therefore we introduce a function symbol f(x):
∀xP (x, f(x))→ ¬Q(f(x)). Then we have to
transform the formula into disjunctive form:
∀x¬P (x, f(x)) ∨ ¬Q(f(x)).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 634

8 Knowledge Engineering: Provers
8.2 Resolution

Transformation into a set of clauses
Applying the technique of the last slide
recursively, we can transform each set M in a
language L into a set M ′ of clauses in an extended
language L′ . It can be shown that the following
holds.
Theorem 8.7

Let M be a set of first-order sentences in a language
L and let M ′ be its transform. Then

M is satisfiable if and only if M ′ is satisfiable.

Because of the refutation completeness of the
resolution calculus, this property is all we need.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 635

8 Knowledge Engineering: Provers
8.3 Herbrand

8.3 Herbrand

Prof. Dr. Jürgen Dix Clausthal, SS 2013 636

8 Knowledge Engineering: Provers
8.3 Herbrand

The introduced relation T |= φ states that each
model of T is also a model of φ. But because
there are many models with very large universes
the following question comes up: can we restrict
to particular models ?
Theorem 8.8 (Löwenheim-Skolem)

T |= φ holds if and only if φ holds in all countable
models of T .

By countable we mean the size of the universe of
the model.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 637

8 Knowledge Engineering: Provers
8.3 Herbrand

Quite often the universes of models (which we are
interested in) consist exactly of the basic terms TermL(∅).
This leads to the following notion:

Definition 8.9 (Herbrand model)

A model A is called Herbrand model with respect to a
language if the universe of A consists exactly of TermL(∅)
and the function symbols fki are interpreted as follows:

fki
A

: TermL(∅)× . . .× TermL(∅) → TermL(∅);
(t1, . . . , tk) 7→ fki (t1, . . . , tk)

We write T |=Herb φ if each Herbrand model of T is also a
model of φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 638

8 Knowledge Engineering: Provers
8.3 Herbrand

Theorem 8.10 (Reduction to Herbrand models)

If T is universal and φ existential, then the
following holds:

T |= φ if and only if T |=Herb φ

Question:

Is T |=Herb φ not much easier, because we have to
consider only Herbrand models? Is it perhaps
decidable?

No, truth in Herbrand models is highly
undecidable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 639

8 Knowledge Engineering: Provers
8.3 Herbrand

The following theorem is the basic result for applying
resolution. In a way it states that FOL can be somehow
reduced to SL.
Theorem 8.11 (Herbrand)
Let T be universal and φ without quantifiers. Then:

T |= ∃φ if and only if there are t1, . . . , tn ∈ TermL(∅)
with: T |= φ(t1) ∨ . . . ∨ φ(tn)

Or: Let M be a set of clauses of FOL (formulae in the form
P1(t1) ∨ ¬P2(t2) ∨ . . . ∨ Pn(tn) with ti ∈ TermL(X)). Then:

M is unsatisfiable
if and only if
there is a finite and unsatisfiable set Minst of
basic instances of M .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 640

8 Knowledge Engineering: Provers
8.3 Herbrand

In automatic theorem proving we are always
interested in the question

M |= ∃x1, . . . xn
∧
i

φi

Then
M ∪ {¬∃x1, . . . xn

∧
i

φi}

is a set of clauses, which is unsatisfiable if and
only if the relation above holds.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 641

8 Knowledge Engineering: Provers
8.4 Variants of resolution

8.4 Variants of resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2013 642

8 Knowledge Engineering: Provers
8.4 Variants of resolution

Our general goal is to derive an existentially
quantified formula from a set of formulae:

M ` ∃ϕ.

To use resolution we must form M ∪ {¬∃ϕ} and
put it into the form of clauses. This set is called
input.

Instead of allowing arbitrary resolvents, we try to
restrict the search space.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 643

8 Knowledge Engineering: Provers
8.4 Variants of resolution

Example 8.12 (Unlimited Resolution)

Let M := {r(x) ∨ ¬p(x), p(a), s(a)} and
�← s(x) ∧ r(x) the query.
An unlimited resolution might look like this:

r(x) ∨ ¬p(x) p(a)

r(a)

s(a) ¬s(x) ∨ ¬r(x)

¬r(a)

�

Prof. Dr. Jürgen Dix Clausthal, SS 2013 644

8 Knowledge Engineering: Provers
8.4 Variants of resolution

Input resolution: in each resolution step one of the two
parent clauses must be from the input. In our
example:

¬s(x) ∨ ¬r(x) s(a)

¬r(a)
r(x) ∨ ¬p(x)

¬p(a)
p(a)

�
Linear resolution: in each resolution step one of the two

parent clauses must either be from the input
or must be a successor of the other parent
clause.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 645

8 Knowledge Engineering: Provers
8.4 Variants of resolution

Theorem 8.13 (Completeness of resolution variants)

Linear resolution is refutation complete.
Input resolution is correct but not refutation
complete.

Idea:

Maybe input resolution is complete for a
restricted class of formulae.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 646

8 Knowledge Engineering: Provers
8.5 SLD resolution

8.5 SLD resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2013 647

8 Knowledge Engineering: Provers
8.5 SLD resolution

Definition 8.14 (Horn clause)

A clause is called Horn clause if it contains at most
one positive atom.

A Horn clause is called definite if it contains
exactly one positive atom. It has the form

A(t)← A1(t1), . . . , An(tn).

A Horn clause without positive atom is called
query:

�← A1(t1), . . . , An(tn).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 648

8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.15 (Input resolution for Horn clauses)

Input resolution for Horn clauses is refutation complete.

Definition 8.16 (SLD resolution wrt P and query Q)

SLD resolution with respect to a program P and the
query Q is input resolution beginning with the query
�← A1, . . . , An. Then one Ai is chosen and resolved with a
clause of the program. A new query emerges, which will be
treated as before. If the empty clause �← can be derived
then SLD resolution was successful and the instantiation of
the variables is called computed answer.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 649

8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.17 (Correctness of SLD resolution)
Let P be a definite program and Q a query. Then each answer
calculated for P wrt Q is correct.

Question:
Is SLD completely instantiated?

Definition 8.18 (Computation rule)

A computation rule R is a function which assigns an atom
Ai ∈ {A1, . . . , An} to each query �← A1, . . . , An. This Ai is
the chosen atom against which we will resolve in the next
step.

Note:
PROLOG always uses the leftmost atom.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 650

8 Knowledge Engineering: Provers
8.5 SLD resolution

In the following, we are illustrating SLD resolution
on the following program:

p(x, z) ← q(x, y), p(y, z)
p(x, x)
q(a, b)

We would like to know, for which instances for x,
the fact p(x, b) follows from the above theory.

Obviously, there are two solutions: x = a and
x = b and these are the only ones.

We are now showing how to derive these
solutions using SLD resolution.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 651

8 Knowledge Engineering: Provers
8.5 SLD resolution

← p(x, b)

← q(x, y), p(y, b)

← p(b, b)

← q(b, u), p(u, b)

�
[b/x]

“Success”

“Failure”

�

“Success”
[a/x]

�
�
��

�
�

��

@
@
@@

@
@
@@

1

1

2

2

3

Prof. Dr. Jürgen Dix Clausthal, SS 2013 652

8 Knowledge Engineering: Provers
8.5 SLD resolution

← p(x, b)

← q(x, y), p(y, b)

← q(x, y), q(y, u), p(u, b) ← q(x, b)

← q(x, y), q(y, u), q(u, v), p(v, b) ← q(x, y), q(y, b)

← q(x, a)

�
[b/x]

“Success”

“Failure”

�

“Success”

�

“Success”

[a/x]

�
�
��

�
�

��

�
�

��

�
�

�
�

��

@
@
@@

@
@
@@

@
@
@@

@
@
@
@
@@

.

.

.
.
.
.

1

1

1

1

2

2

2

2
3

3

Prof. Dr. Jürgen Dix Clausthal, SS 2013 653

8 Knowledge Engineering: Provers
8.5 SLD resolution

A SLD tree may have three different kinds of
branches:

1 infinite ones,
2 branches ending with the empty clause

(and leading to an answer) and
3 failing branches (dead ends).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 654

8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.19 (Independence of computation rule)

Let R be a computation rule and σ an answer
calculated wrt R (i.e. there is a successful SLD
resolution). Then there is also a successful SLD
resolution for each other computation rule R’ and
the answer σ′ belonging to R’ is a variant of σ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 655

8 Knowledge Engineering: Provers
8.5 SLD resolution

Theorem 8.20 (Completeness of SLD resolution)

Each correct answer substitution is
subsumed through a calculated answer
substitution. I.e.:

P |= ∀QΘ
implies

SLD computes an answer τ with: ∃σ : Qτσ = QΘ

Prof. Dr. Jürgen Dix Clausthal, SS 2013 656

8 Knowledge Engineering: Provers
8.5 SLD resolution

Question:

How to find successful branches in a SLD
tree?
Definition 8.21 (Search rule)

A search rule is a strategy to search for
successful branches in SLD trees.
Note:

PROLOG uses depth-first-search.

A SLD resolution is determined by a
computation rule and a search rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 657

8 Knowledge Engineering: Provers
8.5 SLD resolution

SLD trees for P ∪ {Q} are determined by
the computation rule.

PROLOG is incomplete because of two
reasons:

depth-first-search
incorrect unification (no occur
check).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 658

8 Knowledge Engineering: Provers
8.5 SLD resolution

A third reason comes up if we also ask for
finite and failed SLD resolutions:

the computation rule must be fair, i.e.
there must be a guarantee that each
atom on the list of goals is eventually
chosen.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 659

8 Knowledge Engineering: Provers
8.5 SLD resolution

Programming versus knowledge engineering
programming knowledge engineering
choose language choose logic
write program define knowledge base
write compiler implement calculus
run program derive new facts

Prof. Dr. Jürgen Dix Clausthal, SS 2013 660

9 Planning

9. Planning
9 Planning

Planning vs. Problem-Solving
STRIPS
Partial-Order Planning
Conditional Planning
SHOP
Extensions

Prof. Dr. Jürgen Dix Clausthal, SS 2013 661

9 Planning

Content of this chapter (1):

Planning vs Search: While planning can be seen as a
purely search problem, available search
methods are not feasible. We need to use
knowledge about the problem and create a
newly planning agent.

STRIPS: The STRIPS approach is based on using logical
formulae as a representation language for
planning.

POP: We describe a sound and complete partial
order planning (POP) algorithm. POP is an
action-based planner.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 662

9 Planning

Content of this chapter (2):

Conditional Planning: Often a plan cannot be completely
constructed a priori, because the environment is
dynamic. The we need sensing actions that
have to be checked at run-time.

SHOP: We introduce HTN-planning, which is based on
Hierarchical Task networks. HTN planners use
domain knowledge and are more expressive
than action-based planners. SHOP is one of the
most efficient HTN planners.

Extensions: We briefly describe replanning and how to
combine it with conditional planning.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 663

9 Planning
9.1 Planning vs. Problem-Solving

9.1 Planning vs. Problem-Solving

Prof. Dr. Jürgen Dix Clausthal, SS 2013 664

9 Planning
9.1 Planning vs. Problem-Solving

Motivation:

problem-solving agent: The effects of a static
sequence of actions are determined.

knowledge-based agent: Actions can be chosen.

We try to merge both into a planning agent.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 665

9 Planning
9.1 Planning vs. Problem-Solving

function SIMPLE-PLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time

local variables: G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then

G�ASK(KB, MAKE-GOAL-QUERY(t))
p� IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then action�NoOp
else

action� FIRST(p)
p�REST(p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action

Prof. Dr. Jürgen Dix Clausthal, SS 2013 666

9 Planning
9.1 Planning vs. Problem-Solving

Example 9.1 (Running Example)

We want to drink freshly made banana shake and
drill some holes into a wall at home.
Thus an agent needs to solve the following
problem:

1 Get a quart of milk,
2 a bunch of bananas, and
3 a variable-speed cordless drill.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 667

9 Planning
9.1 Planning vs. Problem-Solving

Question:

How does a problem-solving agent handle this?

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

Prof. Dr. Jürgen Dix Clausthal, SS 2013 668

9 Planning
9.1 Planning vs. Problem-Solving

Planning in the situation calculus:

Initial state: At(Home, S0), ¬Have(Milk, S0),
¬Have(Bananas, S0), ¬Have(Drill, S0).

Goal: ∃s (At(Home, s) ∧Have(Milk, s) ∧
Have(Bananas, s) ∧Have(Drill, s)).

Axioms: e.g. “buy milk”:

∀a, s Have(Milk, result(a, s))↔
(a = Buy(Milk) ∧ At(Supermarket, s))∨
(Have(Milk, s) ∧ a 6= Drop(Milk))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 669

9 Planning
9.1 Planning vs. Problem-Solving

We also need a term Result′(l, s): the situation
that would emerge when the sequence of actions
l is executed in s.

∀s Result′([], s) := s
∀a, p, s Result′([a|p], s) := Result′(p, result(a, s))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 670

9 Planning
9.1 Planning vs. Problem-Solving

The task is now to find a p with
At(Home,Result′(p, S0)) ∧
Have(Milk,Result′(p, S0)) ∧
Have(Bananas,Result′(p, S0)) ∧
Have(Drill, Result′(p, S0)).

Problem solved!
This is the solution of our problem! We start a
theorem prover and collect the answers!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 671

9 Planning
9.1 Planning vs. Problem-Solving

Problems:

T ` φ is only semi-decidable for FOL.
If p is a plan then so are [Empty_Action|p] and
[A,A−1|p].

Result:

We should not resort to a general prover, but to
one which is specially designed for our domain.
We also should restrict the language.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 672

9 Planning
9.1 Planning vs. Problem-Solving

We should make clear the difference between
shipping a goal to a planner,
asking a query to a theorem prover.

In the first case we look for a plan so that after
the execution of the plan the goal holds.

In the second case we ask if the query can be
made true wrt the KB: KB |= ∃xφ(x).

The dynamics is in the terms. The logic itself is
static.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 673

9 Planning
9.2 STRIPS

9.2 STRIPS

Prof. Dr. Jürgen Dix Clausthal, SS 2013 674

9 Planning
9.2 STRIPS

STRIPS stands for STanford Research Institute
Problem Solver.

states: conjunctions of function-free ground-
atoms (positive literals).

goal: conjunctions of function-free literals
actions: STRIPS-operations consist of three

components
1 description, name of the action
2 precondition, conjunction of atoms
3 postcondition, conjunction of literals

Prof. Dr. Jürgen Dix Clausthal, SS 2013 675

9 Planning
9.2 STRIPS

At(there), At(here)

Go(there)

L

At(here), Path(here, there)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 676

9 Planning
9.2 STRIPS

Example 9.2 (Air Cargo Transportation)

Three actions: Load, Unload, F ly. Two predicates
In(c, p): cargo c is inside plane p,
At(x, a): object x is at airport a.

Is cargo c at airport a when it is loaded in a plane
p?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 677

9 Planning
9.2 STRIPS

� � � � � � � �
 � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � ! # % �
 � � � � � ! # % �
 � � � + , � � / � � � � � + , � � / � � � �
� � � ! 3 % ! � � � � � � � � � ! 3 % ! � � � � � �

7 % � , � � � �
 � � � � � � � � � �
 � � � � � �
� ; � � % � � = % � ? � A � C � E � �

PRECOND: � � � A � E � � � � � C � E � � � � ! # % � A � � + , � � / � C � � � � ! 3 % ! � � E �
EFFECT: I � � � A � E � � � � � A � C � �

� ; � � % � � J � , % � ? � A � C � E � �
PRECOND:

� � � A � C � � � � � C � E � � � � ! # % � A � � + , � � / � C � � � � ! 3 % ! � � E �
EFFECT: � � � A � E � � I � � � A � C � �

� ; � � % � � � , M � C � N ! % P � � % � �
PRECOND: � � � C � N ! % P � � + , � � / � C � � � � ! 3 % ! � � N ! % P � � � � ! 3 % ! � � � % �
EFFECT: I � � � C � N ! % P � � � � � C � � % � �

Prof. Dr. Jürgen Dix Clausthal, SS 2013 678

9 Planning
9.2 STRIPS

Example 9.3 (Spare Tire)

Four actions:
1 Remove(spare, trunk),
2 Remove(flat, axle),
3 PutOn,
4 LeaveOvernight.

One predicate At(x, a) meaning object x is at
location a.

Is the following a STRIPS description?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 679

9 Planning
9.2 STRIPS

� � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � ! � �
$ � � � � � � � � � � � � � � � �

� + � � $ � � / � 0 $ 2 � � � � � � � � � � � ! � ,
PRECOND: � � � � � � � � � � � � ! �
EFFECT: 3 � � � � � � � � � � � � ! � � � � � � � � � � # � $ � � 7 � �

� + � � $ � � / � 0 $ 2 � �
 � � � � � � � � ,
PRECOND: � � �
 � � � � � � � �
EFFECT: 3 � � �
 � � � � � � � � � � � �
 � � � # � $ � � 7 � �

� + � � $ � � 8 � � 9 � � � � � � � � � � � � ,
PRECOND: � � � � � � � � # � $ � � 7 � � 3 � � �
 � � � � � � � �
EFFECT: 3 � � � � � � � � # � $ � � 7 � � � � � � � � � � � � � � � �

� + � � $ � � < � 2 � 9 2 � � � � = > � ,
PRECOND:
EFFECT: 3 � � � � � � � � # � $ � � 7 � � 3 � � � � � � � � � � � � � � 3 � � � � � � � � � � � � ! �

� 3 � � �
 � � � # � $ � � 7 � � 3 � � �
 � � � � � � � � �

Prof. Dr. Jürgen Dix Clausthal, SS 2013 680

9 Planning
9.2 STRIPS

Example 9.4 (Blocks World)

One action: Move. Move(b, x, y) moves the
block b from x to y if both b and y are clear.
One predicate On(b, x) meaning block b is on x
(x can be another block or the table).

How to formulate that a block is clear?

“b is clear”: ∀x¬On(x, b).

Not allowed in STRIPS.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 681

9 Planning
9.2 STRIPS

Therefore we introduce another predicate
Clear(y).

What about Move(b, x, y) defined by
Precondition: On(b, x) ∧ Clear(b) ∧ Clear(y) and
Effect:
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 682

9 Planning
9.2 STRIPS

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� " � $ & ' � � � � " � $ & ' � � � � " � $ & ' � � �
� * � � � - � � � � * � � � - � � � � * � � � - � � � �

2 $ � � � � � � � � � � � � � � � � �
4 & � � $ � � 7 $ 9 � � < = > �

PRECOND: � � � < = � � * � � � - � < � � * � � � - � > � � " � $ & ' � < � �
� < @A = � � � < @A > � � � = @A > � ,

EFFECT: � � � < > � � * � � � - � = � � C � � � < = � � C * � � � - � > � �
4 & � � $ � � 7 $ 9 � � $ � � � � � � < = �

PRECOND: � � � < = � � * � � � - � < � � " � $ & ' � < � � � < @A = � ,
EFFECT: � � � < � � � � � � � * � � � - � = � � C � � � < = � �

Prof. Dr. Jürgen Dix Clausthal, SS 2013 683

9 Planning
9.2 STRIPS

ADL (Action Description Language) and its many
derivatives are extensions of STRIPS:

States: both positive and negative literals in
states.

OWA: Open World assumption (not CWA)
Effects: Add all positive and negative literals,

and delete their negations.
Quantification: Quantified variables in goals are

allowed.
Goals: disjunction and negation also allowed.

when P : Conditional effects allowed.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 684

9 Planning
9.2 STRIPS

(a) Progression (forward) and (b) Regression
(backward) state-space search

(a)

(b)

2At(P , A)

1At(P , A)

1At(P , A)

2At(P , B)

1At(P , B)

2At(P , A)

1At(P , B)

2At(P , A)

1At(P , A)

2At(P , B)

1At(P , B)

2At(P , B)

1Fly(P ,A,B)

2Fly(P ,A,B)

1Fly(P ,A,B)

2Fly(P ,A,B)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 685

9 Planning
9.2 STRIPS

At(there), At(here)

Go(there)

L

At(here), Path(here, there)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 686

9 Planning
9.2 STRIPS

Definition 9.5 (Applicable Operator)

An operator Op is applicable in a state s if there is
some way to instantiate the variables in Op so that
every one of the preconditions of Op is true in s:
Precond(Op) ⊆ s.

In the resulting state, all the positive literals in
Effect(Op) hold, as do all the literals that held in s,
except for those that are negative literals in
Effect(Op).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 687

9 Planning
9.2 STRIPS

Frame problem is handled implicitly: literals not
mentioned in effects remain unchanged
(persistence).
Effect is sometimes split into add and delete lists.
Up to now we can consider this as being
problem-solving.
We use STRIPS as an representation-formalism
and search a solution-path:

nodes in the search-tree ≈ situations
solution paths ≈ plans.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 688

9 Planning
9.2 STRIPS

Idea:

Perform a search in the space of all plans!

Begin with a partial plan and extend it
successively.

Therefore we need operators which operate on
plans. We distinguish two types:
refinement-op: constraints are attached to a

plan. Then a plan represents the set of
all complete plans (analogously Cn(T)
for MOD(T)).

modification-op: all others.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 689

9 Planning
9.2 STRIPS

Question:

How do we represent plans?

Answer:

We have to consider two things:
instantiation of variables: instantiate only if
necessary, i.e. always choose the mgU
partial order: refrain from the exact ordering
(reduces the search-space)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 690

9 Planning
9.2 STRIPS

Definition 9.6 (Plan)

A plan is formally defined as a data structure consisting of
the following four components:

A set of plan steps. Each step is one of the operators for
the problem.
A set of step ordering constraints. Each one of the
form Si ≺ Sj: Si has to be executed before Sj.
A set of variable binding constants. Each one of the
form v = x: v is a variable in some step, and x is either a
constant or another variable.
A set of causal links. Each one of the form Si

c−→ Sj: Si
achieves c for Sj.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 691

9 Planning
9.2 STRIPS

The initial plan consists of two steps, called START
and FINISH.

Finish

Start

Initial State

Finish

Start

Goal State

(a) (b)

LeftShoeOn, RightShoeOn

Prof. Dr. Jürgen Dix Clausthal, SS 2013 692

9 Planning
9.2 STRIPS

The initial plan of a problem is:

Plan(Steps : {S1 : START, S2 : FINISH}
Orderings : {S1 ≺ S2}
Bindings : ∅
Links : ∅

)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 693

9 Planning
9.2 STRIPS

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Prof. Dr. Jürgen Dix Clausthal, SS 2013 694

9 Planning
9.2 STRIPS

Question:
What is a solution?

Answer:
Considering only fully instantiated, linearly ordered
plans: checking is easy.

But our case is far more complicated:

Definition 9.7 (Solution of a Plan)

A solution is a complete and consistent plan.
complete: each precondition of each step is achieved by

some other step,
consistent: there are no contradictions in the ordering or

binding constraints.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 695

9 Planning
9.2 STRIPS

More precisely:
“Si achieves c for Sj” means

c ∈ Precondition(Sj),
c ∈ Effect(Si),
Si ≺ Sj ,
6 ∃Sk : ¬c ∈ Effect(Sk) with Si ≺ Sk ≺ Sj in any linearization of
the plan

“no contradictions” means
neither (Si ≺ Sj and Sj ≺ Si) nor (v = A and v = B for
different constants A,B).

Note: these propositions may be derivable,
because ≺ and = are transitive.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 696

9 Planning
9.3 Partial-Order Planning

9.3 Partial-Order Planning

Prof. Dr. Jürgen Dix Clausthal, SS 2013 697

9 Planning
9.3 Partial-Order Planning

We consider the banana-milk example. The
operators are Buy and Go.

Finish

Start

Have(Drill) Have(Milk) Have(Banana) At(Home)

At(Home) Sells(SM,Banana) Sells(SM,Milk) Sells(HWS,Drill)

Causal links are protected!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 698

9 Planning
9.3 Partial-Order Planning

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)

At(x)At(x)

At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(Home) At(Home)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 699

9 Planning
9.3 Partial-Order Planning

The last partial plan cannot be extended. How
do we determine this? By determining that a
causal link is threatened and the threat cannot
be resolved.

cL

cL

cLc cc

(a) (b) (c)

S 2

S 3

S 2

S 3

S 2

S 3

S1S11S

The way to resolve the threat is to add ordering
constraints (this will not always work!).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 700

9 Planning
9.3 Partial-Order Planning

Question:
We have to introduce a Go-step in order to ensure the last
precondition. But how can we ensure the precondition of
the Go-step?

Now there are a lot of threats and many of them are
unresolvable. This leads to

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

At(Home) At(HWS)

At(SM)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Go(Home)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 701

9 Planning
9.3 Partial-Order Planning

At(SM)

At(Home)

At(HWS)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(HWS) Sells(HWS,Drill)

At(SM) Sells(SM,Milk) At(SM) Sells(SM,Ban.)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 702

9 Planning
9.3 Partial-Order Planning

This leads to the following algorithm
In each round the plan is extended in order to ensure
the precondition of a step. This is done by choosing
an appropriate operator.
The respective causal link is introduced. Threats are
resolved through ordering constraints (two cases: the
new step threatens existing ones or the existing ones
threaten the new one).
If there is no operator or the threat cannot be resolved
then perform backtracking.

Theorem 9.8 (POP)
POP is complete and correct.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 703

9 Planning
9.3 Partial-Order Planning

function POP(initial, goal, operators) returns plan

plan�MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?(plan) then return plan
Sneed, c� SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, Sneed, c)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Sneed, c

pick a plan step Sneed from STEPS(plan)
with a precondition c that has not been achieved

return Sneed, c

procedure CHOOSE-OPERATOR(plan, operators, S need, c)

choose a step Sadd from operators or STEPS(plan) that has c as an effect
if there is no such step then fail
add the causal link Sadd

c
�� Sneed to LINKS(plan)

add the ordering constraint Sadd � Sneed to ORDERINGS(plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start � Sadd � Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
c
�� Sj in LINKS(plan) do

choose either
Promotion: Add Sthreat� Si to ORDERINGS(plan)
Demotion: Add Sj � Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail
end

Prof. Dr. Jürgen Dix Clausthal, SS 2013 704

9 Planning
9.3 Partial-Order Planning

So far we did not consider variable-substitutions.

Question:
Suppose S1 ensures the At(home) precondition of a step S2

and there is a concurrent step S3 with the postcondition
¬At(x). Is this a threat?

Prof. Dr. Jürgen Dix Clausthal, SS 2013 705

9 Planning
9.3 Partial-Order Planning

We call such a threat possible and ignore it for the time
being, but keep it in mind. If x is later instantiated with
home then a real threat is there which has to be resolved.

S1

At(home)

S2

At(home)

S3

¬At(x)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 706

9 Planning
9.3 Partial-Order Planning

procedure CHOOSE-OPERATOR(plan, operators, S need, c)

choose a step Sadd from operators or STEPS(plan) that has cadd as an effect
such that u = UNIFY(c, cadd, BINDINGS(plan))

if there is no such step
then fail

add u to BINDINGS(plan)
add Sadd

c
�� Sneed to LINKS(plan)

add Sadd � Sneed to ORDERINGS(plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start � Sadd � Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Si
c
�� Sj in LINKS(plan) do

for each Sthreat in STEPS(plan) do
for each c� in EFFECT(Sthreat) do

if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan),� c�) then
choose either

Promotion: Add Sthreat � Si to ORDERINGS(plan)
Demotion: Add Sj � Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan)
then fail

end
end

end

Prof. Dr. Jürgen Dix Clausthal, SS 2013 707

9 Planning
9.3 Partial-Order Planning

STRIPS was originally
designed for SHAKEY, a small
and mobile robot. SHAKEY is
described through 6
Operators: Go(x),
Push(b, x, y), Climb(b),
Down(b), Turn_On(ls),
Turn_Off(ls).

To turn the lights on or off SHAKEY has to stand
on a box. On(Shakey, floor) is a precondition of
the Go-action so that SHAKEY does not fall off.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 708

9 Planning
9.3 Partial-Order Planning

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Prof. Dr. Jürgen Dix Clausthal, SS 2013 709

9 Planning
9.3 Partial-Order Planning

POP for ADL

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 710

9 Planning
9.3 Partial-Order Planning

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

LeaveOvernight

At(Flat,Axle)
At(Flat,Ground)
At(Spare,Axle)
At(Spare,Ground)
At(Spare,Trunk)

Start
At(Flat,Axle)

At(Spare,Trunk)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 711

9 Planning
9.3 Partial-Order Planning

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 712

9 Planning
9.4 Conditional Planning

9.4 Conditional Planning

Prof. Dr. Jürgen Dix Clausthal, SS 2013 713

9 Planning
9.4 Conditional Planning

Question:

What to do if the world is not fully accessible?
Where to get milk? Milk-price has doubled and we
do not have enough money.

Idea:

Introduce new sensing actions to query certain
conditions and to react accordingly. (How much
does milk cost?)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 714

9 Planning
9.4 Conditional Planning

A flat tire
Op(Action : Remove(x),

P rec : On(x),
Effect : Off(x) ∧ Clear_Hub ∧ ¬On(x)

)
Op(Action : Put_on(x),

P rec : Off(x) ∧ Clear_Hub,
Effect : On(x) ∧ ¬Clear_Hub ∧ ¬Off(x)

)
Op(Action : Inflate(x),

P rec : Intact(x) ∧ Flat(x),
Effect : Inflated(x) ∧ ¬Flat(x)

)

goal: On(x) ∧ Inflated(x),
initial state: Inflated(Spare) ∧ Intact(Spare) ∧

Off(Spare) ∧On(Tire1) ∧ Flat(Tire1).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 715

9 Planning
9.4 Conditional Planning

Question:

What does POP deliver?

Answer:

Because of Intact(Tire1) not being present POP
delivers the plan

[Remove(Tire1), Put_on(Spare)].

Prof. Dr. Jürgen Dix Clausthal, SS 2013 716

9 Planning
9.4 Conditional Planning

Question:

Would you also do it like that?

Answer:

A better way would be a conditional plan:

If Intact(Tire1) then: Inflate(Tire1).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 717

9 Planning
9.4 Conditional Planning

Therefore we have to allow conditional steps in
the phase of plan-building:

Definition 9.9 (Conditional Step)

A conditional step in a plan has the form

If({Condition}, {Then_Part}, {Else_Part})

Prof. Dr. Jürgen Dix Clausthal, SS 2013 718

9 Planning
9.4 Conditional Planning

The respective planning-agent looks like this:

function CONDITIONAL-PLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time
G, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then p�CPOP(current, G, KB)
if p = NoPlan or p is empty then action�NoOp
else

action� FIRST(p)
while CONDITIONAL?(action) do

if ASK(KB, CONDITION-PART[action]) then p�APPEND(THEN-PART[action], REST(p))
else p�APPEND(ELSE-PART[action], REST(p))
action� FIRST(p)

end
p�REST(p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t� t + 1
return action

Prof. Dr. Jürgen Dix Clausthal, SS 2013 719

9 Planning
9.4 Conditional Planning

The agent has to know if the respective
if-condition holds or not when executing the plan
(at runtime). Therefore we introduce new
checking actions:

Op(Action : Check_Tire(x),
P rec : Tire(x),
Effect : “We know if Intact(x) holds or not.”

)

Definition 9.10 (Context)

We associate a context with each step: the set of
conditions which have to hold before executing a
step.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 720

9 Planning
9.4 Conditional Planning

Inflated(Spare)

On(Tire1)

Flat(Tire1)Start Finish
(True)

Inflated(x)

On(x)

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)
On(Tire1)

Inflated(Tire1)

Flat(Tire1)

Intact(Tire1)

Start Finish

Inflate(Tire1)
(True)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 721

9 Planning
9.4 Conditional Planning

Here POP would backtrack, because Intact(Tire1)
cannot be shown.

Hence we introduce a new type of links:
conditional links.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 722

9 Planning
9.4 Conditional Planning

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Check(Tire1)

Inflate(Tire1)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 723

9 Planning
9.4 Conditional Planning

We have to cover each case:

(Intact(Tire1))
L

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Finish

Check(Tire1)

Inflate(Tire1)

On(x)

Inflated(x)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 724

9 Planning
9.4 Conditional Planning

Question:

What if new contexts emerge in the second case?

Answer:

Then we have to introduce new copies of the
FINISH step: There must be a complete distinction
of cases in the end.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 725

9 Planning
9.4 Conditional Planning

Question:

How can we make Inflated(x) true in the FINISH
step? Adding the step Inflate(Tire1) would not
make sense, because the preconditions are
inconsistent in combination with the context.

(Intact(Tire1))
L

On(Spare)

Inflated(Spare)

(Intact(Tire1))

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))Flat(Tire1)

Intact(Tire1)

Start Finish

Finish

Check(Tire1)

Inflate(Tire1)

Prof. Dr. Jürgen Dix Clausthal, SS 2013 726

9 Planning
9.4 Conditional Planning

At last On(Spare).

(Intact(Tire1))
L

On(Spare)

Inflated(Spare)

(Intact(Tire1))

On(Tire1)

Inflated(Tire1)
(Intact(Tire1))

(Intact(Tire1))
L

(Intact(Tire1))
L

Inflated(Spare)

On(Tire1)

Flat(Tire1)

Intact(Tire1)
Flat(Tire1)

Intact(Tire1)

Start Finish

FinishPuton(Spare)

Check(Tire1)

Remove(Tire1)

Inflate(Tire1)

 Intact(Tire1)
L

Attention:

At first “True” is the context of
Remove(Tire1), Put_on(Spare). But
Remove(Tire1) threatens the On(Tire1) step
(precondition of the first Finish).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 727

9 Planning
9.4 Conditional Planning

We can resolve this threat by making the
contexts incompatible. The respective contexts
are inherited by the following steps.

More exactly:

Search a conditional step the precondition of
which makes the contexts incompatible and
thereby resolves threats.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 728

9 Planning
9.4 Conditional Planning

function CPOP(initial, goals, operators) returns plan

plan�MAKE-PLAN(initial, goals)
loop do

Termination:
if there are no unsatisfied preconditions

and the contexts of the finish steps are exhaustive
then return plan

Alternative context generation:
if the plans for existing finish steps are complete and have contexts C 1 . . . Cn then

add a new finish step with a context � (C1 � . . . � Cn)
this becomes the current context

Subgoal selection and addition:
find a plan step Sneed with an open precondition c

Action selection:
choose a step Sadd from operators or STEPS(plan) that adds c or

knowledge of c and has a context compatible with the current context
if there is no such step

then fail
add Sadd

c
�� Sneed to LINKS(plan)

add Sadd < Sneed to ORDERINGS(plan)
if Sadd is a newly added step then

add Sadd to STEPS(plan)
add Start < Sadd < Finish to ORDERINGS(plan)

Threat resolution:
for each step Sthreat that potentially threatens any causal link Si

c
�� Sj

with a compatible context do
choose one of

Promotion: Add Sthreat < Si to ORDERINGS(plan)
Demotion: Add Sj < Sthreat to ORDERINGS(plan)
Conditioning:

find a conditional step Scond possibly before both Sthreat and Sj, where
1. the context of Scond is compatible with the contexts of Sthreat and Sj;
2. the step has outcomes consistent with Sthreat and Sj, respectively

add conditioning links for the outcomes from Scond to Sthreat and Sj

augment and propagate the contexts of S threat and Sj

if no choice is consistent
then fail

end
end

Prof. Dr. Jürgen Dix Clausthal, SS 2013 729

9 Planning
9.5 SHOP

9.5 SHOP

Prof. Dr. Jürgen Dix Clausthal, SS 2013 730

9 Planning
9.5 SHOP

Up to now: Action-based planning (POP,
CPOP)

Each state of the world is represented by a set
of atoms, and each action corresponds to a
deterministic state transition.
Search space is still huge.
HTN planning has been proved to be more
expressive than action-based planning.
Moreover, HTN planning algorithms have
been experimentally proved to be more
efficient than their action-based counterparts.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 731

9 Planning
9.5 SHOP

HTN-Planning

Each state of the world is represented by a set
of atoms, and each action corresponds to a
deterministic state transition.
Hierarchical Task Networks: HTN planners
differ from classical planners in what they plan
for, and how they plan for it.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 732

9 Planning
9.5 SHOP

HTN-Planning (2)

Classical HTN planning (dating back to mid-70ies)
focused on particular application domains:
production-line scheduling, crisis management and
logistics, planning and scheduling for spacecraft,
equipment configuration, manufacturability analysis,
evacuation planning, and the game of bridge.
There are also domain-independent HTN planners:
Nonlin, Sipe-2 , O-Plan, UMCP , SHOP , ASHOP , and
SHOP2 .
We focus on SHOP.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 733

9 Planning
9.5 SHOP

Features of HTN planning

Why is HTN planning superior to classical
action-based planning?
The domain knowledge and the notion of
decomposing a task network while satisfying
the given constraints enable the planner to
focus on a much smaller portion of the
search space.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 734

9 Planning
9.5 SHOP

Features of SHOP

SHOP is based on ordered task decomposition.
SHOP plans for tasks in the same order that they will
later be executed.
Therefore we know the current state of the world at
each step in the planning process.
This eliminates a great deal of uncertainty about the
world.
It helps to incorporate inferencing and reasoning
power into the planning system.
It also enables to call external programs (e.g. to
perform numeric computations).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 735

9 Planning
9.5 SHOP

SHOP needs the following

Knowledge: about the domain. Can be given as a set of
axioms from which other facts can be deduced.

Operators: they describe what needs to be done to fulfill a
primitive task.

Methods: often a task can not be fulfilled in one single
step. In that case, the task needs to be reduced
to other (new) tasks. Methods are prescriptions
for how to decompose some compound
(abstract) task into a totally ordered sequence
of subtasks, along with various restrictions that
must be satisfied in order for the method to be
applicable.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 736

9 Planning
9.5 SHOP

Prof. Dr. Jürgen Dix Clausthal, SS 2013 737

9 Planning
9.5 SHOP

More than one method may be applicable to the same
task. Thus several methods can be used.
The SHOP algorithm nondeterministically chooses an
applicable method.
This method is instantiated to decompose the task into
(several) subtasks.
This goes on recursively.
The deterministic implementation of the SHOP
algorithm uses depth-first backtracking: If the
constraints on the subtasks prevent the plan from being
feasible, then the implementation will backtrack and try
other methods.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 738

9 Planning
9.5 SHOP

Prof. Dr. Jürgen Dix Clausthal, SS 2013 739

9 Planning
9.5 SHOP

Beware!

The planner may need to recognise and
resolve interactions among the subtasks.
(travel to airport: arrive in time)
It is not always obvious which method to use.
If it is not possible to solve the subtasks
produced by one method, SHOP will
backtrack and try another method instead.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 740

9 Planning
9.5 SHOP

SHOP (3 sorts of atoms)

Rigid Atoms: Atoms whose truth values never change
during planning. They appear in states, but not in the
effects of planning operators nor in the heads of Horn
clauses.
Primary Atoms: Atoms that can appear in states and in
the effects of planning operators, but cannot appear in
the heads of Horn clauses.
Secondary Atoms: These are the ones whose truth
values are inferred rather than being stated explicitly.
They can appear in the heads of Horn clauses, but
cannot appear in states nor in the effects of planning
operators.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 741

9 Planning
9.5 SHOP

SHOP (States, axioms)

Definition 9.11 (States (S), Axioms (AX))

A state S is a set of ground primary atoms. An
axiom is an expression of the form

a← l1, . . . , ln,

where a is a secondary atom and the l1, . . . , ln are
literals that constitute either primary or
secondary atoms.
Axioms need not be ground.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 742

9 Planning
9.5 SHOP

SHOP (3)

SHOP starts with a state and modifies this
state using add/delete lists.
Axioms are used only to check whether the
preconditions of methods are satisfied.
A precondition might not be explicitly satisfied
(an atom is not contained in S), but might be
caused by S and the axioms.
The precise definition of this relation “caused
by” is given as follows.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 743

9 Planning
9.5 SHOP

SHOP (Caused by)

Definition 9.12 (Literal caused by (S,AX))

A literal l is caused by (S,AX) if l is true in the
unique model of S ∪ AX .

Prof. Dr. Jürgen Dix Clausthal, SS 2013 744

9 Planning
9.5 SHOP

SHOP (Task list)

A task list is a list of tasks, like the following:

((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))
A ground task list is a task list that consists of
only ground tasks, like the following:

((!get-taxi umd) (!ride-taxi umd mit) (!pay-driver
umd mit)))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 745

9 Planning
9.5 SHOP

SHOP (Operator)

Definition 9.13 (Operator: (Op h εdel εadd))

An operator is an expression of the form (Op h εdel εadd),
where h (the head) is a primitive task and εadd and εdel are
lists of primary atoms (called the add- and delete-lists,
respectively). The set of variables in the atoms in εadd and
εdel must be a subset of the set of variables in h.

Unlike the operators used in action-based planning,
ours have no preconditions.
Preconditions are not needed for operators in our
formulation, because they occur in the methods that
invoke the operators.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 746

9 Planning
9.5 SHOP

SHOP

As an example, here is a possible implementation
of the get-taxi operator:

(:Op (!get-taxi ?x)
((taxi-called-to ?x))
((taxi-standing-at ?x)))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 747

9 Planning
9.5 SHOP

SHOP (Decomposing primitive tasks)

Operators are used in decomposition of primitive
tasks during planning:
Definition 9.14 (Decomposition of Primitive Tasks)

Let t be a primitive task, and let
Op = (Op h εdel εadd) be an operator. Suppose
that θ is a unifier for h and t. Then the ground
operator instance (Op)θ is applicable to t, in
which case we define the decomposition of t by
Op to be (Op)θ.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 748

9 Planning
9.5 SHOP

SHOP

The decomposition of a primitive task by an
operator results in a ground instance of that
operator – i.e., it results in an action that can be
applied in a state of the world. We now define
the result of such an application.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 749

9 Planning
9.5 SHOP

SHOP (Plan)

Definition 9.15 (Plans, result(S,π))

A plan is a list of heads of ground operator instances. A plan
π is called a simple plan if it consists of the head of just one
ground operator instance.
Given a simple plan π = (h), we define result(S, π) to be
the set S \ εdel ∪ εadd, obtained by deleting from S all atoms
in εdel and by adding all ground instances of atoms in εadd.
If π = (h1, h2, . . . , hn) is a plan and S is a state, then the
result of applying π to S is the state

result(S, π) = result(result(. . . (result(S, h1), h2), . . .), hn).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 750

9 Planning
9.5 SHOP

SHOP

In SHOP , a method specifies a possible way to
accomplish a compound task.
The set of methods relevant for a particular compound
task can be seen as a recursive definition of that task.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 751

9 Planning
9.5 SHOP

SHOP (Methods)

Definition 9.16 (Method: (Meth h ρ t))

A method is an expression of the form (Meth h ρ t) where h
(the method’s head) is a compound task, ρ (the method’s
preconditions) is a conjunction of literals and t is a
totally-ordered list of subtasks, called the decomposition list
of the method.

The set of variables that appear in the decomposition list of
a method must be a subset of the variables in h (the head of
the method) and ρ (the preconditions of the method).

Prof. Dr. Jürgen Dix Clausthal, SS 2013 752

9 Planning
9.5 SHOP

SHOP

Here is a possible implementation of the travel-by-taxi
method:

(:Meth (travel ?x ?y)
((smaller-distance ?x ?y))
((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))

Prof. Dr. Jürgen Dix Clausthal, SS 2013 753

9 Planning
9.5 SHOP

SHOP (Decomposing compound tasks)

Definition 9.17 (Decomposition of Compound Tasks)

Let t be a compound task, S be the current state,
Meth = (Meth h ρ t) be a method, and AX be an axiom set.
Suppose that θ is a unifier for h and t, and that θ′ is a unifier
such that all literals in (ρ)θθ′ are caused wrt. S and AX (see
Definition 9.12).
Then, the ground method instance (Meth)θθ′ is applicable
to t in S, and the result of applying it to t is the ground task
list r = (t)θθ′. The task list r is the decomposition of t by
Meth in S.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 754

9 Planning
9.5 SHOP

SHOP (Planning Problem)

Definition 9.18 (Planning Domain Description)

A planning domain description D is a triple
consisting of (1) a set of axioms, (2) a set of
operators such that no two operators have the
same head, and (3) a set of methods.

A planning problem is a triple (S, t,D), where S is
a state, t= (t1, t2, . . . , tk) is a ground task list, and
D is a planning domain description.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 755

9 Planning
9.5 SHOP

SHOP (Solutions)

Definition 9.19 (Solutions)

Let P = (S, t,D) be a planning problem and π = (h1, h2, . . . , hn)
be a plan. Then, π is a solution for P , if any of the following is
true:

Case 1: t and π are both empty, (i.e., k = 0 and n = 0);

Case 2: t = (t1, t2, . . . , tk), t1 is a ground primitive task, (h1) is
the decomposition of t1, and (h2 . . . hn) solves
(result(S, (h1)), (t2, . . . , tk),D);

Case 3: t = (t1, t2, . . . , tk), t1 is a ground compound task,
and there is a decomposition (r1 . . . rj) of t1 in S such
that π solves (S, (r1, . . . , rj , t2, . . . , tk),D).

The planning problem (S, t,D) is solvable if there is a plan that
solves it.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 756

9 Planning
9.5 SHOP

SHOP (Search Tree)
Edge labellings mi(t) (resp. o(t)) represent a method (resp. an
operator) application to a task t, which is compound
(resp. primitive).

<S, {}, {t1, t2, t3, …, tk} >
m1(t1)

m2(t1)
m3(t1)

<S, {}, {t111, t112, …, t11n, t2, t3, …,}>

<S, {}, {t121, t122, …,}>
<S, {}, {t131, t132, …,}>

…o(t121)

<result(S, o(t121)), {t121}, {t122, t12, …}>

m1(t122)

FAILURE!

m1(t111)

<S, {}, {t1111, t1112, t112, …}>

m2(t111)

…
o(t1111)

<result(S, o(t1111)), {t1111}, {t1112, t112, …}>

…
…
…

<result(result(…(result(result(S, o(t1111)), …), …), {t1111, ….}, {ti}>

o(ti)

<result(result(…(result(result(S, o(t1111)), …), …), {t111, …., ti}, {}>

SUCCESS!

Prof. Dr. Jürgen Dix Clausthal, SS 2013 757

9 Planning
9.6 Extensions

9.6 Extensions

Prof. Dr. Jürgen Dix Clausthal, SS 2013 758

9 Planning
9.6 Extensions

1. A plan can fail because of the following
reasons:

Actions may have unexpected
effects, but these can be
enumerated (as a disjunction).
The unexpected effects are known.
Then we have to replan.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 759

9 Planning
9.6 Extensions

function REPLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, an annotated plan, initially NoPlan
q, an annotated plan, initially NoPlan
G, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current� STATE-DESCRIPTION(KB, t)
if p = NoPlan then

p� PLANNER(current, G, KB)
q� p
if p = NoPlan or p is empty then return NoOp

if PRECONDITIONS(p) not currently true in KB then
p�
�CHOOSE-BEST-CONTINUATION(current, q)

p�APPEND(PLANNER(current, PRECONDITIONS(p �), KB), p�)
q� p

action� FIRST(p)
p�REST(p)
return action

I.e. we perceive and then plan only if something has
changed.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 760

9 Planning
9.6 Extensions

2. Combine replanning and conditional
planning. Planning and execution are
integrated.

Prof. Dr. Jürgen Dix Clausthal, SS 2013 761

	Introduction
	What Is AI?
	From Plato To Zuse
	History of AI
	Intelligent Agents

	Searching
	Problem Formulation
	Uninformed search
	Best-First Search
	A* Search
	Heuristics
	Limited Memory
	Iterative Improvements
	Online Search

	Supervised Learning
	Basics
	Decision Trees
	Ensemble Learning
	PL1 Formalisations
	PAC Learning
	Noise and overfitting

	Learning in networks
	The human brain
	Neural networks
	The Perceptron
	Multi-layer feed-forward

	Knowledge Engineering (1)
	Sentential Logic
	Sudoku
	Calculi for SL
	Wumpus in SL
	A Puzzle

	Hoare Calculus
	Verification
	Core Programming Language
	Hoare Logic
	Proof Calculi: Partial Correctness
	Proof Calculi: Total Correctness
	Sound and Completeness

	Knowledge Engineering: FOL
	First Order Logic
	Sit-Calculus
	The Blocksworld
	Higher order logic

	Knowledge Engineering: Provers
	Theorem Proving
	Resolution
	Herbrand
	Variants of resolution
	SLD resolution

	Planning
	Planning vs. Problem-Solving
	STRIPS
	Partial-Order Planning
	Conditional Planning
	SHOP
	Extensions

