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Preface

This volume contains the papers presented at the International GI/ITG Con-
ference on “Measurement, Modelling and Evaluation of Computing Systems”
and “Dependability and Fault Tolerance,” held during March 15–17, 2010 in
Essen, Germany, hosted by the University of Duisburg-Essen. The Technical
Committees of MMB and DFT cover all aspects of performance and dependabil-
ity evaluation of systems including networks, computer architectures, distributed
systems, software, fault-tolerant and secure systems. In 2010, both committees
joined forces in a common conference MMB & DFT 2010. This current confer-
ence was the 15th in a series of biannual conferences, initially started in 1981,
with previous editions in Aachen, Dresden, Nuremberg and Dortmund.

MMB & DFT 2010 received 42 submissions (37 regular papers and 5 tool
descriptions) by authors from 15 different countries. Each regular paper was
reviewed by at least three (and up to five) Program Committee members and
external reviewers; tool papers were reviewed by two reviewers. In total we re-
ceived 158 reviews and the Program Committee decided to accept 19 full papers
and 5 tool papers.

The program was completed by two invited talks and we were happy that Phil
Koopman from Carnegie Mellon University and Paul Kühn from the University
of Stuttgart accepted to give an invited talk at the conference.

We are grateful to all those involved in organizing the conference, to the
speakers and the attendees of MMB & DFT 2010. Our deepest thanks go to the
many Program Committee members and the external reviewers for their very
thorough and diligent opinions contributing to the high scientific standard of
the MMB conference series. We also appreciate the support of EasyChair for
managing the processes of submission, reviewing and preparing the production
of the proceedings.

January 2010 Bruno Müller-Clostermann
Klaus Echtle

Erwin Rathgeb
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Invited Talk 
Mitigating the Effects of Internet Timing Faults 

Across Embedded Network Gateways 

Philip Koopman and Justin Ray 

Carnegie Mellon University, ECE Department, 5000 Forbes Ave. 
Pittsburgh, PA 15213, USA 

koopman@cmu.edu, justinr2@cmu.edu 

Extended Abstract. Traditional embedded systems such as automobiles and 
industrial controls are increasingly being connected to enterprise computing fa-
cilities and the Internet. The usual approach to making such a connection is to 
install a gateway node which translates from Internet protocols to embedded 
field bus network protocols. Such connections raise obvious security concerns, 
because the gateway must guard against attacks on the embedded devices it 
serves. For our purposes, we’ll assume that typical enterprise and Internet vul-
nerabilities, such as buffer overflows, have already been taken care of. (Secur-
ing devices against traditional attacks is no small matter, but we are interested 
in uniquely embedded issues.) 

Beyond normal gateway functions, an Internet to embedded gateway must 
also prevent timing faults and timing attacks from crossing over the gateway to 
affect the operation of attached embedded systems. An example of timing fault 
propagation would be severe clumping of messages on the Internet side so that 
many messages arrive at the gateway all at once, disrupting embedded system 
operation. While a queue can reduce the loss of incoming data and mitigate 
network overload, it cannot necessarily protect against timing-related faults on 
the embedded side of the gateway. 

We report simulation results for several mechanisms to mitigate the effects of 
Internet message timing variations (whether due to faults or malicious attacks) 
on the performance of networked embedded systems using real-time data. Prob-
lems are caused primarily by excessive data delivery delay rather than messages 
being dropped from arriving clumps. This means that putting a queue in the 
gateway to manage arriving data clumps is typically worse than using no mitiga-
tion mechanism at all.  Using a predictive filter seems intuitively better than us-
ing a queue, but finding a good generalized predictive filter is also quite difficult. 

We believe that managing data streams from the Internet to embedded sys-
tems will require careful attention to the nature and time constants of data flow-
ing through the gateway. Moreover, it seems likely that each distinct data 
stream will need a different set of data management mechanisms and policies at 
the gateway. In this case, one size does not fit all, making the design of a robust 
gateway a difficult problem that will require careful modeling of data value be-
havior for every gateway built. 

Keywords: Embedded network, gateway, embedded security, timing fault, 
simulation, predictive filter. 
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Invited Talk  
Green IT - The Power Saving Challenge  

and ICT Solutions  

Paul J. Kühn 

Institute of Communication Networks and Computer Engineering (IKR) 
University of Stuttgart 

Pfaffenwaldring 47, 70569 Stuttgart, Germany 
paul.j.kuehn@ikr.uni-stuttgart.de, www.ikr.uni-stuttgart.de 

Extended Abstract. Energy consumption, the finite horizon of conventional 
fossile energy resources and maintaining sustainable environmental conditions 
form the biggest challenges in the near future. Renewable energy sources like 
wind, water, solar energy or biomass are limited and unsteady substitutes and 
require a radical rethinking of the energy problem. There are two main solution 
approaches: power saving and intelligent management of the use of energy. 
Both require advanced technologies and a close adaption between energy pro-
duction and energy usage. Information Technologies (IT) themselves account 
for a major energy consumer by contribution of about  10 % to the global C02 
production and will be a target for power saving but Information and Commu-
nication Technology (ICT) are the key for the intelligent power management. 

The first part of the contribution addresses in a systematic way power con-
sumption in ICT on different levels from hardware and device technologies up 
to application processes, as well as possible approaches and solutions such as 
new technologies (such as nanotubes), control of power consumption on the 
chip level, system level and application level by methods of dynamic power 
supply, adaptive sleep modes, disabling of temporarily unnecessary functional-
ities, and network virtualization. 

In the second part, the purpose and the architectures of energy information 
networks will be discussed, a comparatively new approach to monitor and to 
control the consumption of energy depending on the currently available energy 
sources (such as wind, solar energy or batteries of automotive vehicles), costs 
for the energy itself and for its transport to the customer. Such energy informa-
tion networks can be based on existing communication infrastructures (access 
networks, sensor networks, core networks) which have to be enhanced by other 
technologies (such as power line communications) and upgraded with respect to 
security, privacy protection and reliability. 

In the final part, the contribution addresses the specific aspect of performance 
modelling. From this point of view, the issue can be considered as a resource 
sharing problem. Examples will be given how queuing theory can be used to  
optimize the use of resources (such as processors, communication links, storage 
areas, etc.) under stochastic conditions and dynamic scheduling schemes. 

Keywords: Green IT, power saving, adaptive power control, energy informa-
tion networks, performance modelling, resource sharing. 



In Memory of Dr. Gunter Bolch

Martin Paterok1, Hermann de Meer2, and Patrick Wüchner2

1 Deutsche Bahn, DB Systel GmbH,
Kleyerstraße 27, 60326 Frankfurt am Main, Germany

martin.paterok@deutschebahn.com
2 Faculty of Informatics and Mathematics, University of Passau,

Innstraße 43, 94032 Passau, Germany
hermann.demeer@uni-passau.de

� December 26, 1940 – † May 29, 2008

The MMB Special Interest Group mourns for a highly valued member. Gunter
Bolch died on May 29, 2008 in Erlangen, after a serious illness. He was very open
minded, a beautifully moderate person, and a friend in its truest meaning. With
MMB, he shared his academic passion of performance modelling, in general, and
queueing networks, in particular.

Gunter was born in 1940 in Reichenbach, a small town near Aalen. He stud-
ied communications engineering in Karlsruhe and Berlin. In 1973, he finished his
PhD on the “Identifikation linearer Systeme durch Anwendung von Momenten-
methoden” in Karlsruhe. In the same year, he took a position as Akademischer

B. Müller-Clostermann et al. (Eds.): MMB & DFT 2010, LNCS 5987, pp. 3–7, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 M. Paterok, H. de Meer, and P. Wüchner

Rat at the Friedrich-Alexander University in Erlangen. From 1982, he led the
newly-founded Research Group on Analytical Modelling (ANA Group) which
achieved international reputation in the following years.

He has co-authored seven scholarly written books that have widely been cited
and have gained world-wide acknowledgment. One of his latest achievements was
the second edition of “Queueing Networks and Markov Chains” (2006) and the
corresponding Solution Manual (2008) published by John Wiley & Sons. The
book has been cited several hundred times. For the German performance model-
ing community, also his older book “Leistungsbewertung von Rechensystemen”
(1989) is a well-known classic.

In 2007, Gunter became the Honorary Chair of the “International Conference
on Analytical and Stochastic Modelling Techniques and Applications (ASMTA)”,
a conference series he started in 1995.

Gunter supervised more than 100 semester and M.Sc. theses (Studien- and
Diplomarbeiten). Thirteen doctorates have been conferred under his guidance
and four former members of the ANA Group are now professors: Ian Akyildiz,
Hermann de Meer, Helmut Herold, and Georg Trogemann. Likewise, many of
his students were motivated by his academic and personal spirit and followed up
contributing in similar research areas.

Many more colleagues from different continents have also taken pride in coop-
eration and joint publications with him during his overly productive life. Gunter
published more than fifty conference papers and more than thirty journal arti-
cles. These publications were supplemented by several contributions to books,
co-edited proceedings, and many technical reports.

Gunter’s algorithmic work was complemented by his initiatives to provide
corresponding software tool support. Here, we only mention the most promi-
nent ones PEPSY-QNS (performance evaluation of queueing networks using var-
ious methods; 1990), MOSES (Markovian performance and reliability analysis
of discrete-event systems; 1994), MOSEL (modeling language and evaluation en-
vironment for discrete-event systems; 1995, revised 2003), and WinPEPSY-QNS
(PEPSY-QNS for Windows, 2004).

But Gunter Bolch was not only a very productive professional. He was also
a pleasant person. His personality was calm and friendly, always trying to help,
in particular in difficult times. During the ups and downs of scientific work, he
always maintained an optimistic and positive view, thus helping us to find our
ways through the woods as we were students, assistant researchers, and even
later on. There was always time to talk about other topics, be it politics and
society, or his hobbies like jazz music or the family.

Traveling and research stays in foreign countries were opportunities that
Gunter enjoyed very much. He preferred countries like Brazil, Hungary, and
the former USSR, i.e., countries that were challenging but not en vogue for re-
searchers at that time. This behaviour is very typical for Gunter’s way of life
as well as his forward-looking way of thinking. His attitude of giving more than
taking is also reflected in his long-standing engagement for the Brasilieninitiative
Erlangen-Nürnberg e.V.
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In early 2006, Gunter retired as an Akademischer Direktor. Unfortunately, his
illness kept him from enjoying his retirement in an adequate way. Fortunately,
he did not wait until his retirement to find a balance between his profession and
his social life.

We will aways remember him as a remarkable person who was not only a
colleague but also a companion and friend to us.

Finally, we want to thank Ian Akyildiz and Udo Krieger for their contributions
to this memorial and the editors for giving us this opportunity to pay our respects
to Gunter in the name of many friends and colleagues.

Martin Paterok, Prof. Hermann de Meer, Patrick Wüchner
(Frankfurt am Main & Passau, November 30, 2009)

Eulogy for Gunter Bolch

On Thursday, May 29, 2008 when I was in Tashkent in Uzbekistan, I received
the sad news that Gunter Bolch had lost the long battle with his illness at a
relatively young age. This tragic news immediately triggered fond memories of
our association spanning the last 30 years.

I first met Gunter Bolch in May 1979, though it seems like yesterday to me.
At that time, I was writing a pre-master degree thesis under his guidance. He
had just come back from Rio de Janeiro, where he had spent his sabbatical for
more than two years.

In our first meeting, he introduced me to his beloved subject on queuing net-
works, which was then to become an important part of my professional research
for the next decade. Apart from academic discussions, he also shared his cul-
tural and social views with me. Our talks often ran into several hours, and ranged
from topics of research interest to general experiences in life. He taught me how
to conduct research and produce high quality results. My interaction with him
spurred me on to take his classes on queuing theory and process automation. It
was great fun and a rewarding experience to write a textbook together, which
was published in 1982. He was very dedicated to his teaching, research and over-
all to his profession. He advised numerous students who saw him as a father,
mentor and advisor.

Gunter, his spouse Monika and his children Jessica and Tobias were always
like a family to me. Gunter was the best man in my wedding in 1982. Gunter
and Monika were at the Nuremberg airport very early morning at 6 a.m. on
February 1, 1985 when I was immigrating to United States. Though we pursued
our careers in different continents, Gunter was always there for me when I needed
him. We visited each other often, and every time I visited Erlangen, I always
received a very warm welcome from them.

The last time I saw Gunter was during his retirement party in March 2006.
He was very happy that all of his former students and colleagues celebrated this
event with him. His stories and the collection of photos that he shared with us
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during his party vividly portrayed his love and enthusiasm for Brazil. In fact, the
theme of the party was totally based on the culture of Brazil, including the food,
music, and decorations. He looked forward to this retirement so that he would
have more opportunity to enjoy his hobbies, spend time with his grandchildren
and also continue his research. Unfortunately, his plans could not be realized in
their entirety due to his unexpected illness.

I have personally never met anybody like Gunter, who had a saint-like ap-
proach to life: he was not only always positive about himself but always had
positive thoughts about the events in his life, and for the people around him.
He had a very calm personality and looked forward to life with interest and
enthusiasm.

Gunter Bolch will be dearly missed and will be remembered forever by all of
us. He left a mark in our lives with his lovely wife Monika, his wonderful children,
beautiful grandchildren, successful students, excellent textbooks, several research
contributions, and above all, with his outstanding positive personality.

Prof. Ian F. Akyildiz
(Atlanta, March 18, 2009)

In Memoriam

Gunter Bolch has been one of the pioneers of performance analysis by numer-
ical methods in Germany. His interest in this topic stems from the analytic per-
formance investigations of multiprocessor architectures and process automation,
in particular by product-form networks, in the late seventies. The activity has
originated in the first instructive German textbook ”Analyse von Rechensyste-
men - Analytische Methoden zur Leistungsbewertung und Leistungsvorhersage”,
by I. Akyildiz and G. Bolch, 1982. It has been an absolutely essential tool for
the German performance analysis community MMB and all young students of
this field of applied stochastic in the 80s.

However, powerful numerical solution methods for finite Markov chains that
are not limited to BCMP networks were not treated in this book. To over-
come this issue, a fruitful information exchange of Gunter Bolch with Deutsche
Telekom Research Laboratories has been initiated after the MMB Conference
1987 in Erlangen and, in particular, after a talk in Erlangen on the memorable
November 9, 1989. The latter exchange was fed by Telekom’s MACOM project
carried out by Prof. Beilner’s team at University of Dortmund which tried to
model networks by Markovian arrival processes. Gunter Bolch has always been
open-minded to respond to new development and immediately realized the po-
tential of such concepts. Thus, together with his students he started to create
new public tools to extend these ideas and to apply them to relevant perfor-
mance engineering issues. MOSEL and the related publications of his group on
MAP modeling are a well known outcome in this respect.
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These efforts reflect in an excellent manner the unique altruistic personality
of Gunter Bolch. We have recognized him as a generous colleague who has never
claimed results by himself in a selfish manner. He has treated both his distin-
guished scientific collaborators and an unknown young student in the same polite
manner. His objective has been to serve the community at national and global
levels by his talents and efforts together with his co-workers. For those contribut-
ing to numerical solution methods for finite Markov chains it has been a great
honor to collaborate with Gunter Bolch. In the scientific world his achievements
in this field will be visible permanently due to the excellent book ”Queueing Net-
works and Markov Chains” written in cooperation with H. de Meer, S. Greiner,
and K.S. Trivedi.

However, Gunter Bolch’s humanitarian activities reach far beyond all scien-
tific investigations. For this reason we will always remember Gunter as a distin-
guished member of our community. His life has shown us that in a competitive
environment science can grow by an altruistic behavior and its development can
be dedicated to the good of humanity in ONE world if a humanist acts as its
convincing advocate.

Prof. Udo Krieger
(Bamberg, November 23, 2009)
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Abstract. Remote redundancy is a novel efficient TMR (triple modular redun-
dancy) structure for real-time control systems. It allows for 2-out-of-3 voting by 
using only two redundant computing nodes (called local nodes) with access to 
sensor and actuator peripherals. The third node of the TMR structure is replaced 
just by a remote process on any node in the network, where some computing 
capacity is available. This approach significantly reduces the amount of hard-
ware redundancy at the cost of both an increased communication overhead 
(which is not problematic in modern real-time networks) and an increased com-
plexity. To nevertheless assess the correctness of the approach, this paper pre-
sents a functional model using a network of timed automata, allowing to prove 
the accurate behavior of a fault-tolerant example system under the influence of 
different fault scenarios. By state space exploration, that verification has  
successfully been achieved, confirming the results of prior fault tree analysis 
conducted by the authors and thus providing a well-founded basis for further 
experimental research on the subject. 

Keywords: Fault-tolerant real-time control system, dedicated redundancy,  
remote redundancy, fault modeling, state space exploration, verification. 

1   Introduction 

High safety requirements of controlled systems cannot be satisfied without appropri-
ate countermeasures against technical faults [BFM03]. The intuitive approach for fail-
operational behaviour is the provision of a spare computing node. However, many 
control systems do not allow for such simple dynamic redundancy for two reasons: 
Switching to the spare node and recovery of the data may be so time- consuming that 
real-time constraints are violated. Furthermore, faults of the primary node can only be 
detected by absolute tests checking for consistency, plausibility, range violations etc. 
Even if numerous absolute tests are applied, the overall coverage is limited. Depend-
ing on the system, it may be closer to 99% than to 100%. 

For these reasons, static redundancy has been developed, where three nodes work 
concurrently as their outputs are voted 2-out-of-3. For other degrees of redundancy, 
according e.g. to the respective SIL-level [IEC09], this TMR concept has been ex-
tended to NMR (n-modular redundancy). Static redundancy works with relative tests. 
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As long as the processes are deterministic, the set of faulty nodes is the minority of 
the nodes and the set of faulty voters is the minority of voters, fault coverage reaches 
100% perfectly. 

At first sight, the overhead seems to amount to a factor of 3. However, communi-

cation between n redundant nodes and n redundant voters [EJT04] requires O(n2) 
messages (a special solution is the m-protocol [Echt86]). In addition, statically redun-
dant sensors and actuators are required. Some actuators cause further problems. Three 
connected motors, for example, would induce destructive high currents when driven 
in opposite directions. Hence, special (and often costly) solutions must be found. An 
additional problem is the wiring between nodes and peripherals, typically realized by 
a lot of direct wires and connectors, which tend to be unreliable anyway. 

In this paper we present a model and formal verification results of a control system 
built using a new approach called “remote reduncy” (introduced in [EKJM09], 
[EcKi09]) in order to prove that it is possible to reduce such overhead significantly 
without compromising fault tolerance characteristics. We start by describing the  
traditional approach mentioned above (here called “dedicated redundancy”, referring 
to the direct wiring between components) in two variants of a control system in  
chapter 2. The following chapter 3 contains both variants of the very same control 
system built using the concept of remote redundancy. In chapter 4, one of these sys-
tems is modeled as a network of timed automata using the UPPAAL model checker-
tool [UPPA09]. The design and results of according verification experiments are 
shown in chapter 5. In chapter 6, we finally summarize our results and present an 
outlook on our future work. 

2   Dedicated Redundancy 

The abovementioned reasons lead to a TMR structure of real-time control systems 
which is more complex than pure TMR. We call the structure exemplified in Fig. 1 
dedicated redundancy. The system implements a control loop with reference value vr 
(transmitted via the busses B1 and B2). The actual value is read from position sensors 
P1, P2 and P3, respectively. The nodes N1, N2 and N3 calculate the control value and 
send it to the bridge driver Q1 for motor M1, or bridge driver Q2 for motor M2, re-
spectively (in Fig. 1 black arrows represent cables and the direction of information 
flow). 

The motors are duplicated whereas control nodes are triplicated. A wrongly driven 
motor is passivated after a short delay, which is not critical due to inertia of motors. 
The motor driven by node N1 can only be passivated by joint passivation by both 
nodes N2 and N3. This is a special approach to 2-out-of-3 voting – requiring cables 
and potentially fault-prone connectors from each node to each motor. 

The bridges Q1 and Q2 obtain electrical energy from output stages O31 and O21, or 
O12 and O32, respectively (in Fig. 1 fat black arrows represent switched power lines). 
As soon as the nodes controlling the output stages detect wrong motion of the motor 
by reading the rotation sensors R1 or R2, respectively, they trigger their local output 
stages to withdraw energy. Thus, joint passivation decisions of N2 and N3 passivate 
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motor M1. Accordingly, joint passivation decisions of N1 and N3 passivate motor M2. 
However, unjustified passivation decisions of a single faulty node or energy with-
drawal of a single faulty output stage does not cause passivation. In the critical situa-
tion when node N3 is faulty it may stop providing energy towards both M1 and M2. 
But both motors are still supplied via O21 and O12. A faulty rotation sensor may pre-
tend wrong motor movement and thus cause unjustified passivation, but does not 
affect correct operation of the respective other motor. 

 
Fig. 1. Control system with dedicated redundancy. The fat grey arrows are mechanical 
shafts from the motors to the differential gear in the middle (grey box). 

In all, the system is equivalent to a TMR system covering a single fault in any of 
its components whether computing node, bus, sensor, electronic output peripheral, 
electro-mechanic motor, wire or connector. However, the system has its cost because 
of the redundant components. Approaches to cost reduction by fully preserving single 
fault tolerance are not obvious, as the following consideration shows. 

Replacement of the direct communication between nodes and peripherals by bus 
communication does not really help solving the wiring problem. When bus-connected 
a peripheral device must act as a communication node – which must not disturb bus 
communication. Consequently each node must exhibit at least a duplex structure, 
where each of the two subnodes is wired somehow to the peripheral device. When 
wires are saved, critical single points of failure are likely to be inserted. 

When safety-critical real-time control tasks have to be performed, TMR systems 
cause an overhead beyond triplication. If one had an “ideal decision component” 
always correctly informed about the fault state of the whole system, one would just 
need duplication. Such an ideal component can never be built, of course, but it moti-
vates the search for improved solutions. Ideally, the redundancy overhead would be 
cut down while the fault tolerance capability is fully preserved. Since most redundant 
systems tolerate only single faults (due to cost reasons) the fault hypothesis is simple: 
All malfunctions of any single component must be tolerated. Special care is necessary 
to guarantee the absence of any “hole” in the countermeasures against faults. Even 
unexpected very rare malfunctions must not lead to system failure. Violations of real-
time constraints must be avoided as well. 
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There are many variations of dedicated redundancy depending on the properties of 
the controlled process as well as the peripherals, mostly the actuators. Typically, the 
torques of the motors are added by a differential gear. If a motor is passivated, its 
shaft must be blocked by a holding brake – requiring fault-tolerant control of the 
brake in addition (by driver S21 and grounding driver G31 for holding brake H1, for 

example, as shown in Fig. 2). Whereas the energy flow from the output stages to the 
bridge drivers of the motors is or-connected (motor is only passivated if both output 
stages withdraw energy), the energy flow to the brake drivers is and-connected (close 
the brake only if required by both output stages). This way, the brakes’ behaviour is 
always the complement of the energy provision to the bridge drivers. Depending on 
the implementation of the brakes, further variants can be recommended (brakes may 
be driven by an electrical motor or just by a magnetic coil, for example). 

 
Fig. 2. Variant of dedicated redundancy with motors and brakes H1 and H2 

The brakes together with their fault-tolerant control can be omitted, if the motors 
own a worm gear or the differential gear owns worm screws itself, as we have devel-
oped for our experimental system (see Fig. 3). Worm screw W1 is driven by motor 
M1, worm screw W2 is driven by M2. The electronic system implementing the  
control loop may exhibit either dedicated redundancy or remote redundancy (see 
section 3). If both W1 and W2 rotate correctly, the cog-wheel C between then is 
moved linearly without being rotated. In case of passivating, say, M1 and W1, cog-
wheel C is moved by W2 on one side only. Consequently, it rotates and rolls along 
W1, causing linear movement as well – with half the speed as before, which is an 
inevitable natural property of any differential gear. In any case the linear movement 
of the cog-wheel can be taken as final “output” of the fault-tolerant system. Its only 
non-fault-tolerant elements are the cog-wheel itself, the space where it moves (must 
be free of obstacles), and the sprockets of the two worm screws (must not tear off). 

The question of more efficient solutions arises for all variants of dedicated redun-
dancy. By removing redundant elements, one must not limit the tolerance of any sin-
gle fault. In the next section, a significantly more efficient approach is presented 
which works for all variants of dedicated redundancy. 
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Fig. 3. Gear with two worm screws and cog-wheel C 

3   Remote Redundancy 

In an ideal approach, cross-wise links from nodes to peripherals are avoided. More-
over, in case of single fault tolerance, triplication is replaced by duplication. These 
challenging goals are almost achieved by the new concept of remote redundancy 
[EcKi09]. It comprises only two nodes (N1 and N2 in Fig. 4) to control actuators M1 
and M2. The third node is replaced just by a software process running on any node in 
the network (on N3 in Fig. 4, for example). This node – called “remote redundancy” – 
may serve for any other application as well. We only need sufficient free computing 
capacity for the process. In addition, the network must be redundant (busses B1 and 
B2), exhibit sufficient communication capacity, and guarantee real-time operation. All 
these points are satisfied well with nowadays real-time networks (like FlexRay 
[Raus07], for example). 

The remotely redundant node N3 is not connected to the peripherals of the consid-
ered control loop. Furthermore, node N2 does not own a line to bridge driver Q1 it 
should passivate if necessary. Likewise, bridge driver Q2 is missing incoming power 
lines from N1 and N3. Instead, local output stages O1 and O2 control the power of 
bridge drivers Q1 and Q2, respectively. A bridge driver is passivated by withdrawing 
energy, as was the case with dedicated redundancy. However, according to the con-
cept of remote redundancy, the output stages are controlled remotely via the network 
by N3 and the respective other node (N1 for N2 and N2 for N1). 

The problem of remote control is its sensitivity to faults in any unit which forwards 
control information. A faulty node N1, for example, could generate any control in-
formation for O1 regardless of the correct information it receives from N3. For this 
reason three countermeasures are taken when remote redundancy is realized: 

─ Control signals are always activation signals rather than passivation signals. If a 
faulty forwarding node drops an activation signal, the final receiver (O1 in the 
previous example) detects the missing signal by timeout and interprets this 
situation as a passivation command. 

─ Control signals are signed by the sender (N3). The receiver (O1 in the example) 
checks the signature for correctness. If it is wrong, the receiver interprets it as 
passivation command. By a digital signature we mean an individual check word, 
which length s is in the range of 8 to 32 bits. Compared to cryptographically 
strong signatures, remote redundancy may use simple signatures because they 
should reveal just technical faults in forwarding nodes, not intelligent attacks of 
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humans. In [EcKi09] we have presented a signature scheme consisting of CRC 
generation and multiplication by a secret factor. The corresponding signature 
check consists of CRC generation followed by two multiplications. All multipli-

cations are modulo 2s, not modulo a prime number. The whole signature scheme 
keeps the computation requirements very low, such that it can be performed 
even by components with very few resources. 

─ Sequence numbers are associated to messages to prevent faulty forwarding 
nodes from forwarding past signed information undetectably – see [EcKi09] for 
an efficient solution to the problem of re-sending a very old message with the 
correct sequence number from the previous cycle of sequence numbers. 

 

Fig. 4. Control system with remote redundancy. The arrows have the same meaning as in  
Fig. 1. Dotted lines indicate flow of signed information. 

Signatures are also used to protect the information flow from sensors to other 
nodes via the busses. If the forwarding nodes corrupt a signature, the receiver can 
conclude fault occurrence, but is unable to locate the fault either in the signing sensor 
or the forwarding node. Consequently, it stops sending activation signals in the direc-
tion of the forwarding node. In section 5 we will verify that nevertheless remote re-
dundancy works correctly in all single fault cases. 

In all, remote redundancy requires a flow of signed information between the fol-
lowing components (dotted lines in Fig. 4). 

─ from position sensor Pi via node Ni to the two remaining nodes 
─ from rotation sensor Ri via node Ni to the two remaining nodes 

─ from the remaining nodes via Ni to output stage Oi (where i ∈ {1, 2}). As is the 
case in dedicated redundancy, an output stage passivates itself if it does not re-
ceive a signed activation command from any of the remaining nodes in time. 

Remote redundancy allows for a solution with only two position sensors, if the ro-
tation sensors are accurate enough to reconstruct missing position information. Since 
the rotation information can be easily distributed to all nodes via the busses, they can 
integrate rotation over time. This information is not used directly in the control loop, 
but in case of significant deviation between P1 and P2, it may be used to decide for 
the value from either P1 or P2. The decision is taken consistently in the whole system,  
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because all position and rotation values are signed (under the assumption that signa-
tures cannot be corrupted undetectably). The consistency will also be verified in  
section 5.  

Remote redundancy also contributes to a reduction in the necessary amount of re-
dundancy when holding brakes have to be controlled in addition (see Fig. 2 for the 
solution with dedicated redundancy). In remote redundancy, cross-wise wiring can be 
avoided by adding two drivers for each brake – S1a and S1b for brake H1, for example 
(see Fig. 5). The brake is closed if at least one driver forces it to do so. A driver de-
cides for closing the brake, if the activation signals are missing from both remaining 
nodes. In other words: The complements of the activation signals are and-connected 
at the input side of the drivers. The drivers’ outputs are or-connected by the brake. 

 

Fig. 5. Control system with motors and brakes, all implemented by remote redundancy 

The main properties of remote redundancy are a very simple system structure con-
sisting of only few elements. A complete node (replaced by just a process), a position 
sensor, and – in particular – a lot of the wiring can be saved. 

4   Model 

4.1   Overall Structure 

In order to prove the fault-tolerance characteristics of remote redundancy, a model 
based on the system presented in Fig. 4 has been created using the UPPAAL model 
checker [UPPA09], [BDL04]. The tool allows for modeling real-time systems as 
networks of timed automata. The processes comprising such a model may communi-
cate via a mechanism called “channel synchronization” while exchanging data by 
means of shared global variables. Starting from a well-defined initial state, any valid 
sequence of actions through the state space can be simulated interactively. Further-
more it is possible to verify properties formulated in a formal query language, thus 
e. g. checking if a certain state is reachable. 

The overall structure of this model is depicted in Fig. 6. For the sake of legibility, 
data transmission over bus systems or wires is not modeled explicitly. Arrows thus 
only represent the control flow; information is passed by means of shared global 
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memory. A verification of the bus system itself may be conducted separately and is 
not subject of this paper, as thoroughly tested bus systems are commercially available. 
A timed Ticker-process cyclically triggers the computation and passes control flow 
to the three control processes CompCtrl. Two output stages OutpStg, which may 
be disabled by passivation processes CompPass, read the control information and 
trigger the Motor-processes. The resulting rotation is translated by a Carriage-
process into the movement of the controlled object. Both rotation of the motors and 
position of the carriage are measured by sensor processes R and, respectively, P. The 
third position sensor is, as illustrated in chapter 3, replaced by a remote software 
process CompSens which may be located anywhere in the system. Finally, a timed 
Target-process induces a control difference into the system, thus making it possible 
to verify that the system correctly responds to that disturbance. 

 

Fig. 6. Model structure 

4.2   Control Process (CompCtrlT) 

In each of the three instances of CompCtrlT (cf. Fig. 7), when synchronizing with 
the Ticker, the difference diff between actual value of the carriage (based on the 
information PosV[i] provided by the respective position sensor) and the target or 
reference value RefV is calculated. After a time of CtrlD, the local control com-
mand CtrlV[i] is calculated accordingly (with the values of -1, 0 and 1 being 
used for the commands left, still or right. The availability of this command is signaled 
via CompCtrlCh[i] to subsequent processes. 

4.3   Passivation Process (CompPassT) 

The template (as described in Fig. 8) is parameterized in such a way that the passiva-
tion process of node i observes the motor-rotation of node j (with i<>j). Passiva-
tion processes synchronize storing the control command in variable own. Not until 
time CheckD, however, the actual rotation RotV[j] of the observed motor is 
available and may be stored locally in variable ext. If those two values eventually 
deviate or if the signature of the external value (RotS[j]) is corrupt, passivation in 
variable PassV[i][j] is set accordingly and signed (PassS[i][j]) while the 
process itself returns to idle. 
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Fig. 7. Control process 

idle

check

wait
t <= CheckD

CompCtrlCh[i]?
own = CtrlV[i],
t = 0

own != ext or RotS[j] == 0

CompPassCh[i][j]!

PassV[i][j] = 0,
PassS[i][j] = 1,
own = 0,
ext = 0

own == ext and RotS[j] == 1

CompPassCh[i][j]!

PassV[i][j] = 1,
PassS[i][j] = 1,
own = 0,
ext = 0

t == CheckD
ext = RotV[j]

 

Fig. 8. Passivation process 

4.4   Output Stage (OutputStageT) 

The two output stages (see Fig. 9) are parameterized with i, j and k, indicating that 
motor i is jointly en-/disabled by passivation processes j and k. As a node may not 
passivate its own motor, these parameters are set to (1, 2, 3) and (2, 1, 3), res-
pectively. Each output stage updates its state according to the control value delivered 
by the control processes. At a later point in the control cycle, synchronization with the  
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power

passivated

checkidle

OutputStageCh[i]!

CompPassCh[j][i]?

CompPassCh[k][i]? CompPassCh[j][i]?

CompPassCh[k][i]?

CompCtrlCh[i]?
OutputV[i]= CtrlV[i]

(PassV[j][i] and PassS[j][i]) or (PassV[k][i] and PassS[k][i])
OutputStageCh[i]!

(not PassV[j][i] or not PassS[j][i]) and (not PassV[k][i] or not PassS[k][i])

OutputStageCh[i]!
OutputV[i] = 0

 
Fig. 9. Output stage process 

idle

newTarget

target

beforeChange
t <= MotorD

change

direction == MotorV[i]

OutputStageCh[i]?
direction = OutputV[i]

direction == MotorV[i]

direction != MotorV[i]
t = 0

OutputStageCh[i]?
direction = OutputV[i]

direction != MotorV[i]

t >= MotorD

direction > MotorV[i]

MotorCh[i]!
MotorV[i]++

direction < MotorV[i]

MotorCh[i]!
MotorV[i]--

 

Fig. 10. Motor process 

two passivation processes occurs (the sequence is non-deterministic). If at least one of 
these processes provides a correctly signed signal for continuation, the respective 
motor is powered on. Otherwise, it is permanently shut off. 

4.5 Motor (MotorT) 

Starting from its idle state, a motor process (cf. Fig. 10) locally stores the value 
delivered by the associated output stage in a local variable direction. In the case 
that no change of direction occurs (direction == MotorV[i]), it returns to the 
initial state. Otherwise, the process waits in state beforeChange until the time  
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halt

movement
tMovement <= CarriageD

newPosition

target

atLimit

tMovement ==
CarraigeD
tMovement = 0

MotorCh[1]? MotorCh[2]? MotorV[1] +
MotorV[2] == 0

MotorV[1] + MotorV[2] > 0 and
CarriageV < maxR
CarriageCh!
CarriageV++

MotorV[1] + MotorV[2] < 0 and
CarriageV > minR
CarraigeCh!
CarriageV--

MotorV[1] + MotorV[2] > 0 and
CarriageV >= maxR

MotorV[1] + MotorV[2] < 0 and
CarriageV <= minR

MotorV[1] +
MotorV[2] == 0

MotorV[1] +
MotorV[2] != 0
tMovement = 0

 
Fig. 11. Carriage process 

 
specified by MotorD passes. A change of the control command is still possible and 
leads to a transition to state newTarget. At time MotorD, the process moves into 
state change, subsequently increasing (or, respectively, decreasing) the rotation of 
the motor and triggering the rotation sensors, which store the actual rotation in 
RotV[i] and, if faultless, sign that value by setting RotS[i] = 1 (not depicted). 

4.6   Carriage (CarriageT) 

Synchronizing via channel MotorCh[1] or MotorCh[2], the carriage process 
(depicted in Fig. 11) changes to state target. If neither of the two motors rotates, 
the process returns into state halt. Otherwise, it waits in state movement until a 
time of CarriageD passes. At exactly that time, the transition into state newPosi-
tion takes place. In the case that a change into the positive or negative direction 
takes place, the process returns into state movement, increasing or decreasing the 
variable CarriageV and thus indicating its new position according to that move-
ment. The two position sensors synchronize and set PosV[i] accordingly (not de-
picted). Otherwise, the process returns to state idle. On exceeding a boundary of 
minR or maxR, respectively, the process changes to state atLimit, thus signaling 
that the carriage – as a result of a malfunction – has been moved too far. 



 Verification of a Control System Built Using Remote Redundancy 19 

4.7   Virtual Position Sensor (CompSensT) 

The process CompSens (see Fig. 12) models the virtual (third) position sensor. It 
uses both rotation values to obtain a reference for the case that the two physical posi-
tion sensors diverge. The computation of the corresponding value is triggered each 
time the two position sensors are updated. If one signature is corrupt, the respective 
other sensor is evaluated as PosV[3] (valid under one fault assumption). If both P1 
and P2 deliver the same position value, arbitrarily P1 is taken. Only in case that the 
two values deviate, the function correctP() is called, which is computing an ap-
proximation for P3 based on the rotation of the two motors and chooses the position 
sensor which deviates least to that reference value. 

 

Fig. 12. Virtual position sensor (program code) 

5   Analysis 

In order to verify the fault-tolerance characteristics of the example system described 
above, the model has been modified so that faults of specific processes may be  
observed.  

In the modified model, several components, namely position and rotation sensors 
as well as passivation processes (i. e. all units operating remotely) may exhibit arbi-
trarily wrong values and corrupt signatures. Components that do not interact with 
other nodes but act only locally (control processes and the virtual position sensor) 
may behave faulty with regard to the value domain only, as no remote communication 
is involved at all. Faulty motors always halt, as they cannot generate energy on their 
own. They may be controlled into a wrong direction by a faulty control process but 
this fault is not attributed to the affected motor. Selection of faulty values is modeled 
as by transitions in additional processes (cf. Fig. 13); components are actually made 
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behave faulty by replacing regular update-statements like e. g. RotW[i] = Mo-
torW[i] by RotW[i] = (i!=fiRotW?MotorW[i]:fidir) in the process 
template, where a global integer constant fiRotW = 2 would e. g. mark the second 
rotation sensor as faulty. 
 

 

Fig. 13. Fault model 

Due to space restrictions, only component variants without the fault model are de-
picted in this paper. Please note that delay, loss and corruption of messages are mod-
eled as corrupt signatures; faults of the output stage are modeled as a wrong direction 
of the associated control process. 

An adequate property to test the fault-tolerance capabilities of a system has to as-
sure that the system under test exhibits its specified behavior in the presence of all 
faults contained in the fault model. For our example, such a property may be formu-
lated as: “at most n cycles after a control difference has been induced, that difference 
has been regulated down by the system with a certain tolerance” (property P1, cf. 
following table 1). It is thus sufficient to verify this single property, as it models the 
very definition of fault-tolerance for the system under test. 

Additional properties P2-P5 allow observing whether or not a passivation always 
(or ever) occurs (for each motor separately). Those properties are, however, only 
“sanity-checks” as they do not imply the correct regulation of the control difference 
but only the detection of a fault by observing the expected counteraction. Properties 
P6-P7 are further plausibility-tests regarding the carriage position, while properties 
P8-P9 jointly guarantee that control differences are actually induced. Finally, property 
P10 requires the system not to create any deadlock-situations. 

The verification results presented in table 2 yield that property P1 always holds, 
i.e. the system does indeed regulate the induced control difference in the presence of 
all single faults (and also in the fault-free case). 

 

The results of properties P2-P5 indicate that any faults concerning Rot1, Pos1, 
CompCtrl1 or Motor1 always lead to the passivation of the affected motor, while 
Motor2 continues its operation correctly (i. e. it is not wrongly passivated) and vice 
versa. Faults in CompCtrl3, the virtual position sensor CompSens3 or any of the proc-
esses CompPass12, CompPass31, CompPass32 and CompPass21 do never lead to 
passivation, as a second vote would be necessary for that action. The plausibility tests 
in properties P6-P10 hold for all fault modes, thus confirming the correct operation of 
the overall system and the test case itself. 
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Table 1. Complete list of examined properties 

 
Nr. Property Explanation 
P1 A[] (cycle >= 6 imply  

(CarriageV-RefV>= -2 and 
CarriageV-RefV <= 2)) 

Six cycles after induced control difference, 
that difference is at most two. 

P2 A<> OutpStg1.passivated Output stage one will in any case be  
passivated. 

P3 A[] not OutpStg2.passivated Output stage two is never passivated. 
P4 A<> OutpStg2.passivated Output stage two will in any case be  

passivated. 
P5 A[] not OutpStg1.passivated Output stage one is never passivated. 
P6 A[] not Carriage.atLimit Carriage position will never be out of bounds. 
P7 A[] (CarriageV >= -2 and 

CarriageV-diffR <= 2) 
Overshoot/undershoot of carriage will never 
be more than | 2 |. 

P8 CarriageV >= diffR -->  
CarriageV >= diffR 

Each induced control difference is followed by 
another one. 

P9 A<> CarriageV >= diffR There is a first control difference induced in 
any case. 

P10 A[] not deadlock System is free of deadlocks. 

 
Table 2. Verification results 

Faulty unit Fault mode Property 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

- -           
wrong value  /  /  /  /       

Rot1/2 
corr. sign.  /  /  /  /       
wrong value  /  /  /  /       

Pos1/2 
corr. sign.  /  /  /  /       

CompSens3 wrong value           
CompCtrl1/2/3 wrong value  / / / / / / / /      

wrong value           CompPass 
12/31/32/21 corr. sign.           
Motor1/2 halt  /  /  /  /       

 
 
These results support the findings of an earlier fault-tree analysis presented in 

[EKJM09] insofar that all single faults in the fault model are tolerated also in the 
functional UPPAAL-model. Some double faults are tolerated as well, but this was not 
subject of the current investigations and depends on certain design decisions to be 
discussed separately. Please note that the criticality of common mode failures applies 
to any system not featuring diversity. The decision of whether using dedicated or 
remote redundancy thus has no influence on this issue whatsoever. 
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6   Conclusion and Outlook 

In this paper, we presented dedicated redundancy and the new concept of remote 
redundancy and pinpointed the possible advantage of the new scheme with regard to 
system design and hardware costs. Possible fields of application such as automotive 
and avionics provide examples for both fail-safe and fault-tolerant systems. 

As remote redundancy introduces in part radically new system variants, thorough 
analysis is necessary to prove that fault tolerance characteristics are not compromised. 
While previous investigations [EASI09], [EKJM09] concentrated on fundamental 
principles and a rather coarse model mainly based on fault trees, the present study 
displays a first functional demonstration. By using formal verification in UPPAAL, we 
were able to prove that an example system built using remote redundancy tolerates all 
single faults and thus exhibits the claimed behaviour. A similar system could be cre-
ated for the example with brakes (Fig. 5). 

Having thus elaborated a first prove of concept, planned further work includes a 
more detailed model in MATLAB/Simulink featuring simulated bus communication. 
A prototypical implementation of the signature scheme in VHDL using FPGA- and 
FlexRay-Boards will follow in order to demonstrate the technical feasibility of remote 
redundancy. 
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Abstract. This paper illustrates a practicable approach to reliability evaluation 
for highly reliable software systems based on the analysis of their operational 
experience and demonstrates its applicability to the control software of a  
gearbox system. The investigations were carried out within a cooperation of 
academia and automotive industry. The article also elaborates on the possibility 
of assessing software reliability at system level by combination of component-
specific software reliability estimates. 

Keywords: Highly reliable software, operational experience, statistical testing, 
component-based systems. 

1   Introduction 

The application of software systems in environments demanding ultrahigh 
dependability (e.g. safety-critical applications) requires extremely rigorous 
verification and validation procedures aimed at demonstrating prescribed reliability 
targets. Such applications often rely on re-usable components for manifold reasons: in 
addition to obvious economical benefits, the positive operating experience gained 
during past usage provides valuable evidence of ‘proven-in-use’-quality. For the 
purpose of a quantitative assessment of such evidence and of its impact on software 
reliability, sound and effective techniques are required. 

A well-founded and rigorous approach to the quantitative assessment of software 
reliability during testing makes use of statistical sampling theory [5, 6, 10, 12, 13, 14] 
and permits - at least in principle - to derive for any given confidence level a 
corresponding conservative reliability estimate. While the effort required to apply this 
technique during testing may reveal as prohibitively expensive [3, 9, 11] the 
exploitation of past operational experience actually helps to enhance its practical 
applicability. 

This potential is arousing the interest of developers in different industrial domains, 
especially concerning application variants based on reconfigurable pre-developed 
components. Among them, the automotive industry certainly plays a major role [8]. 
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Tailored on its specific needs, a feasibility study on software reliability assessment by 
evaluation of the operational experience is being conducted within an industrial 
research cooperation between academia and automotive industry. 

The practicality of the approach developed is first demonstrated by means of its 
application to the control software of a gearbox system developed by the automotive 
supplier ZF Friedrichshafen AG. Successively, the article presents novel techniques 
for assessing software reliability at system level by combining component-specific 
reliability estimates, thus allowing for a substantial effort reduction. 

The paper is organized as follows: in section 2 the basics of statistical sampling 
theory are summarized. Section 3 proposes a systematic procedure for the extraction 
of statistically relevant operational data, successively applied to the gearbox control 
software (section 4). In section 5, compositional reliability techniques are derived 
both for the case of parallel and serial architectures. Finally, chapter 6 illustrates 
potential benefits by means of examples. 

2   Reliability Estimation by Statistical Sampling Theory 

The basic concepts of statistical sampling theory applied to testing resp. operational 
evidence are briefly summarized in the following; for a more detailed description the 
reader is referred to [5, 10, 12]. This theory allows to derive - to any given confidence 
level β and any number n > 100 of correct runs - an upper bound p~  of the unknown 

probability p of observing failures during operation, i.e. 

( ) β=≤ p~pP  (1)

assuming the following assumptions being fulfilled: 
 
Assumption 1 - Independent selection of test cases resp. operational runs: the 
selection of a test case resp. operational run does not affect the selection of others. 
 
Assumption 2 - Independent execution of test cases resp. operational runs: the 
execution of a test case resp. operational run does not affect the outcome of others. 
 
Assumption 3 - Operationally representative profile: test cases resp. operational 
runs are selected according to the frequency of occurrence expected during operation. 
 
Assumption 4 – Positive test resp. operating experience: no failure occurs during 
the execution of any of the test cases resp. operational runs selected. A more general 
theory allows for a number of failure observations (s. [19, 21]) at the cost, however, 
of deriving correspondingly lower reliability estimates. For high software reliability 
demands (as in case of safety-critical applications), therefore, the strict assumption 
excluding failures during test is considered as more appropriate. 

The upper bound p~  that statistical sampling theory allows to derive under these 

assumptions reads [5, 10, 12]: 

( ) β−=− 1p~1 n  (2)
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Conversely, in order to claim this inequality (for p~  << 1) at a given confidence β it is 

required to observe n correct and independent runs with 

p~
)1ln(

n
β−−≅  (3)

For example, in order to bound the failure probability by p~ =10-4 at a confidence level 

of 99% this technique requires 46 052 correct and independent runs. 

3   Extraction of Statistically Relevant Operational Data 

In order to apply statistical sampling theory to operational data collected during us-
age, the data recorded has to be analyzed in terms of the validity of assumptions 1 – 5, 
as introduced in section 2 and, where required, accordingly filtered. For this purpose, 
the following practical procedure supporting the extraction of statistically relevant 
operational data was developed: 
 

Step 1 - Identification of component functionality to be assessed: define the appli-
cation, functionality or control flow path for which to assess reliability, in particular 
by delimitating the software component(s) to be considered. 
 

Step 2 - Identification of operationally independent runs: in order to ensure as-
sumption 2, characterize and determine memoryless execution sequences, i.e. se-
quences of operations whose behaviour does not depend on execution history. 
 
Step 3 - Definition of the structure of an operational run: identify all relevant 
input parameters and exclude from the test case structure all information without 
impact on the functionality to be assessed. 
 
Step 4 - Determination of the operational profile: determine the frequency of oc-
currence of each software-implemented functional demand during operation. 
 
Step 5 - Filtering of the operational data: extract from the operational data a repre-
sentative, independent subset, i.e. a subset fulfilling assumption 1 and reflecting the 
operational profile determined in step 4. 

4   Application to a Software-Controlled Gearbox System 

This section illustrates how the guideline described in section 3 is practically applied 
to the reliability assessment of a software-controlled gearbox system for trucks. This 
project is being carried out within an industrial research cooperation of the University 
of Erlangen-Nuremberg and the automotive provider ZF Friedrichshafen AG. For 
reasons of confidentiality the data presented was previously rendered anonymous. 

The software controls twelve forward gears, two reverse gears and one neutral gear, 
which can be controlled manually by the driver, or automatically by a software component 
implementing a strategy-based driving assistant. In addition to the “current gear” (in the 
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following abbreviated by CG) and to the “desired gear” (in the following abbreviated by 
DG) the functionality of the software controller also depends on further environmental 
parameters ρi, like the current speed or the position of the accelerator pedal. 

A substantial amount of operational experience was collected during extensive 
road testing based on typical functional demands. The value of all relevant parameters 
was recorded at each point in time. Table 1 visualizes the data, where for reasons of 
confidentiality the individual gears are symbolized by characters a, b, c, …, m, while 
the environmental parameters ρi are provided on a percentage scale. 

Based on the available operational data, the guideline proposed in section 3 is 
applied as follows. 
 
Step 1 - Identification of component functionality to be assessed: The underlying 
system architecture sketched in Figure 1 was first analyzed for the purpose of delimi-
tating the software functionality for which to assess reliability. 

 
 
 
 
 
 
 
 

 
Fig. 1. Software Architecture 

 
In accordance with the software developers the scope of the assessment was 

focused on the software component implementing the gearbox control functions. This 
component receives manual switching commands from the driver or automatic 
switching commands from an intelligent driving assistant, whose functionality is 
outside the scope of the reliability assessment. 
 

Step 2 - Identification of operationally independent runs: The operational data 
collection was preceded by an initialization phase devoted to parameter calibration 
after which the switching of gears performs in a memoryless way (s. assumption 2). 
In other words, switching from gear c to gear d does not depend on previous switch-
ing operations, i.e. it is not relevant for the functionality whether gear a or gear b was 
engaged before gear c. 
 

Step 3 - Definition of the structure of an operational run: Operational runs obvi-
ously depend on the current gear CG and on the desired gear DG, as well as on four 
further parameters ρ1, ρ2, ρ3 and ρ4, which are relevant for the switching functionality, 
like the speed and the accelerator pedal position. 

With respect to the data collected, relevant operational cases can be identified 
whenever a new switching command was risen (be it by a driver or by a driving 
assistant) by the values of the corresponding parameters. Table 1 shows an excerpt of 
the data collected and highlights the structure of a relevant operational case at time 
926.8, where a new switching command was given, which was successfully 
completed at time 927.5. 

gearbox control 

manual switch automatic switch 
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Table 1. Relevant operational case at time 926.8 

Time DG CG ρ1 ρ2 ρ3 ρ4 
926.5 g g 3.00 % 0.4 % 21.6 % 0 % 
926.6 g g 3.00 % 0.4 % 21.6 % 0 % 
926.7 g g 2.50 % 0.4 % 21.6 % 0 % 
926.8 f g 2.39 % 0.4 % 21.6 % 0 % 
926.9 f g 2.00 % 0.0 % 21.6 % 0 % 
927.0 f g 2.00 % 0.0 % 21.6 % 0 % 
927.1 f g 2.00 % 0.4 % 21.6 % 0 % 
927.2 f g 1.09 %  0.4 % 21.2 % 0 % 
927.3 f g 1.09 % 0.4 % 21.2 % 0 % 
927.4 f g 1.09 % 0.4 % 21.2 % 0 % 
927.5 f f 1.09 % 0.0 % 21.2 % 0 % 

 
On the basis of this structure, the operational data was filtered by extracting all 

switching commands with corresponding parameter values (s. Table 2). 

Table 2. Operational cases extracted (excerpt) 

Time CG DG ρ1 ρ2 ρ3 ρ4 
… … … … … … … 

5940.6 k l 64.35 88.8 0.0 0 
6012.3 l j 57.55 0.4 0.0 0 
6016.2 j h 42.23 0.4 16.0 0 

… … … … … … … 

 
Step 4 - Determination of the operational profile: According to the operational 
case structure identified in step 3, the operational profile was determined in two 
phases. First, the frequencies of switching commands, i.e. of combinations (CG, DG) 
were determined on the basis of the operational data (s. Table 3 and Fig. 2). 

Table 3. Frequencies of switching commands (matrix, excerpt) 

 d e f g h i … 
… … … … … … … … 
d -- 06.06 % 16.13 % 00.00 % 01.35 % 00.00 % … 
e … -- 16.13 % 13.33 % 00.00 % 00.00 % … 
f … 06.06 % -- 18.33 % 17.57 % 01.10 % … 
g … 63.64 % 19.35 % -- 25.68 % 15.38 % … 
h … 00.00 % 45.16 % 33.33 % -- 25.27 % … 
i … 00.00 % 00.00 % 33.33 % 43.24 % -- … 
j … 00.00 % 00.00 % 00.00 % 08.11 % 52.75 % … 
… … … … … … … … 
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Fig. 2. Frequencies of switching commands (histogram, excerpt) 

Successively, for each switching command (CG,DG) the profile of each parameter 
ρi, i ∈{1…4} was estimated by distribution fitting techniques [7] based on hypotheses 
on distribution classes, parameter estimation and goodness-of-fit assessment. This 
task was supported by a software tool helping in identifying the most suitable  
 

 
 

Fig. 3. Density / histogram overplot of parameter ρ1 for the command (CG,DG) = (k,j) 
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distribution classes as well as their parameters, as shown in Fig. 3 by a density 
histogram overplot of parameter ρ1 for the switching command (CG,DG) = (k,j). 

The fit of each distribution was assessed by classical goodness-of-fit tests 
including the Kolmogorow-Smirnow test [7], the Anderson-Darling test [7] and the 
χ2 test [7], as illustrated in Table 4 for the Fréchet distribution (which was estimated 
as the most suitable distribution for parameter ρ1 for the combination (CG,DG) = 
(k,j)). 

Table 4. Goodness-of-fit tests for parameter ρ1 and switching command (CG,DG) = (k,j) 

Distribution: Fréchet 
Distribution Parameters: 0.17241⋅10-9; 0.90725⋅10-9; -0.90725⋅10-9 
Kolmogorow-Smirnow test 
α 0.2 0.1 0.05 0.02 0.01 
Critical value 0.1968 0.22497 0.24993 0.27942 0.29971 
Reject? No No No No No 
Anderson-Darling test 
α 0.2 0.1 0.05 0.02 0.01 
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? No No No No No 
χ2 test 
α 0.2 0.1 0.05 0.02 0.01 
Critical value 3.2189 4.6052 5.9915 7.824 9.2103 
Reject? No No No No No 

 
Where fitting to generic distributions was not possible, empirical distributions were 

determined by linear interpolation of the samples collected. 
 
Step 5 - Filtering of the operational data: In order to guarantee the assumption of a 
statistically independent test set (s. assumption 1) and to preserve the operational 
profile determined in step 4 (s. assumption 3) it is necessary to filter the operational 
data to remove statistically dependent and operationally not representative sequences. 

For this purpose, a tool was designed and implemented, allowing for the statistical 
analysis of the operational data collected (s. Fig 4). It supports the determination of 
several correlation metrics, including autocorrelation, cross correlation, Spearman’s 
and Kendall’s rank correlation, as well as Cramer’s V and Pearson’s contingency 
coefficients (s. Fig 5). 

Furthermore, the tool developed also supports the extraction of statistically 
independent operational demands from collected data by heuristic optimization: a 
genetic algorithm extracts a maximum subset of negligibly correlated operational 
data. The tolerable correlation bounds are specified by the user (s. Fig. 5) such that 
the extracted data can be considered as statistically independent. 
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Fig. 4. Statistical analysis of the collected operational data 

 

Fig. 5. Input of correlation limits 
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5   Compositionality of Reliability Estimation 

In the following, parallel and serial systems consisting of k components will be con-
sidered, where each component may represent a complex program package or a sim-
ple execution path. 

It is additionally assumed that 
 
- the architecture (including interface consistency) was preliminarily validated by 

extensive integration testing (s. [16]), 
- the components fail independently, 
- past and future component-specific operational profiles are identical (if not, an 

adaptation of past usage experience to future usage profile is required, as proposed 
in [15]), 

- for each component i (i ∈ {1,…,k}) a certain amount ni > 0 of testing resp. opera-
tional runs (fulfilling all assumptions stated in section 2) was observed. 

 
The theory introduced in chapter 2 and applied at the level of the whole system and of 
the single components thus induces the complementary view illustrated in Tables 5 
and 6. 

Table 5. Complementary views at system level 

View A 
(taken for parallel systems) 

Complementary View B 
(taken for serial systems) 

p: system failure probability p r: system reliability = 1 - p 

p~ : upper bound of p p~1r~ −= : lower bound of r 

β= P[p ≤ p~ ] 

confidence at system level 

α = 1-β = ]r~r[P ≤  

significance at system level 

Table 6. Complementary views at component level 

View A Complementary View B 

pi : failure probability of comp. i ri =1-pi: reliability of comp. i 

ip~ : upper bound of pi ii p~1r~ −= : lower bound of ri 

βi= P[pi ≤ ip~ ] 

confidence 

αi = ]r~r[P ii ≤  

significance 

)p~nexp(1 iii ⋅−−=β  

(s. equation 3) 

in
ii r~=α  

(s. equation 2) 
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5.1   Compositional Reliability Assessment for Parallel Systems 

Let’s consider first the parallel system consisting of k mutually exclusive components 
shown in Fig. 6. 
 

 
Fig. 6. System consisting of mutually exclusive components 

If each component i ∈ {1,…,k} is selected at probability γi during operation, then 
the failure probability of the whole system is 

∑
=

γ=
k

1i
iipp  (4)

Due to  

( ) )p~
n

exp(1
p~

pPp~pP i
i
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iiii ⋅
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⎞
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γ
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for any i∈{1,…,k} and any γi with 0 ≤ γi≤ 1, each pi (s. Table 6, View A) can be taken 
as exponentially distributed with rates 

i

i
i

n

γ
=λ  (6)

Being p a linear combination of independent, exponentially distributed random 
variables, its distribution can be derived by convolution, yielding a hypo-
exponential distribution (for details, s. [17, 18, 4, 20, 1]), which allows the sharp 
determination of the confidence level β: 
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Summarizing, the operating experience gained at component level can be successfully 
merged to obtain a sharp reliability estimation at system level. 

.

γ1 

γ2 

γk 

Component 2 

..
Component k 

Component 1 
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5.2   Compositional Reliability Assessment for Serial Systems 

Similarly to the approach developed above for mutually exclusive components, also 
serial architectures as shown in Fig. 7 are investigated in terms of the compositional-
ity of component-specific software reliability estimations. 
 

 
Fig. 7. Serial system 

In this case the reliability of the whole system is 

∏
=

=
k

1i
irr  

Due to (s. Table 6, View B) 

in
iiii r~]r~r[P =≤=α  (8)

each ri can be taken as Beta-distributed with parameters ni and 1. Being the system 
reliability r the product of the individual component reliabilities 

∏
=

=
k

1i
irr  (9)

and therefore a product of k independent, Beta-distributed random variables 
(with parameters ni and 1, i ∈ {1,…,k}), its distribution can be analytically derived as 
done in [2] and used to identify a quantitative relationship between a lower reliability 
bound and its confidence level: 
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 for ni ≠ nj ∀ i ≠ j 

(10)

Summarizing, also for serial systems (and therefore also for arbitrary architectures 
combining parallel and serial component configurations) compositionality of reliabil-
ity estimations based on component-specific operating experiences could be ensured. 

6   Examples 

6.1   Examples for Parallel Systems 

In the following, a system is assumed to consist of two functionally independent 
components selected by mutual exclusion (as considered in section 5.1). For each of 
the components, operating experience amounting to n1=30000 runs resp. n2=60000 
runs was collected. Table 7 shows the upper bound p~  at a confidence level of 99%. 

component 1 component 2 component k 
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Table 7. System reliability estimation in case of 2 components with n1=30000, n2=60000 

β = 0.99 p~  

γ1 = 0.7, γ2 = 0.3 0.000114 

γ1 = 0.5, γ2 = 0.5 0.000088 

γ1 = 0.2, γ2 = 0.8 0.000071 

 
For the reliability target p~ = 0.0001 and different usage profiles Table 8 shows the 

corresponding confidence levels. 

Table 8. Confidence levels in case of 2 components with n1=30000, n2=60000 

p~  = 0.0001 β  

γ1 = 0.7, γ2 = 0.3 0.982 

γ1 = 0.5, γ2 = 0.5 0.995 

γ1 = 0.2, γ2 = 0.8 0.998 

 
Finally, Table 9 shows the optimal amount (estimated by the gradient approach 

described in [17]) of operational experience required in order to validate an upper 
bound of 0001.0p~ =  at confidence level 99% for a system consisting of 5 uniformly 

used components  (i.e. γi = 1/5, 1≤i≤k). 

Table 9. Amount of testing effort required for k=5 

n1 23 213 

n2 23 214 

n3 23 215 

n4 23 216 

n5 23 217 

Σ ni 116 075 

6.2   Examples for Serial Systems 

Table 10 shows the upper bound p~  which can be determined for a serial system with 

k=2, 3 resp. 4 components at confidence 99%. 
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Table 10. Upper bound for serial system 

k ni p~  

2 n1 = 46000 
n2 = 46001 

0.000144 

3 n1 = 46000 
n2 = 46001 
n3 = 46002 

0.000183 

4 n1 = 46000 
n2 = 46001 
n3 = 46002 
n4 = 46003 

0.000219 

 
Table 11 shows the confidence level β at which p~ =10-4 can be validated for a 

serial system with k = 2, 3 resp. 4 components. 

Table 11. Confidence level for serial system 

k ni β 

2 n1 = 46000 
n2 = 46001 

0.943723 

3 n1 = 46000 
n2 = 46001 
n3 = 46002 

0.837396 

4 n1 = 46000 
n2 = 46001 
n3 = 46002 
n4 = 46003 

0.674356 

 
Finally, Table 12 shows the number of test cases required at component level in 

order to validate an upper bound of p~ =10-4 at confidence 99% for a serial system 

with 4 components. 

Table 12. Operating experience for a serial system 

n1 100445 

n2 100446 

n3 100447 

n4 100448 

Σ ni 401786 
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7   Conclusion 

In this article a guideline for the estimation of software reliability based on 
operational experience was developed and illustrated by practical application to a 
software-controlled gearbox system. In addition, new methods supporting system 
reliability assessment on the basis of component-specific reliability estimates were 
derived. The benefits they offer were illustrated by means of several examples. 
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Abstract. We address the issue of establishing and maintaining a system-wide 
common time base in fault-tolerant multi-cluster time-triggered systems.  

We propose an approach how to synchronize system nodes among several 
clusters using the fault-tolerant mid-point algorithm. Before executing clock 
synchronization each node measures the clock deviation values and stores 
them in a convenient data structure. From these values the clock synchroniza-
tion algorithm calculates a correction term which should be added or  
subtracted from the local clock. For distributed real-time systems that are 
structured in a set of clusters the set of clock deviations can be subdivided 
into a set of local clock deviations and a set of global clock deviations. Local 
clock deviation values (respectively global clock deviation values) of a spe-
cific node are captured by building the time difference between the observed 
and expected arrival time of synchronization messages sent by a node belong-
ing to the same cluster (respectively to another cluster).    

In order to receive messages from other clusters the clock deviation between 
the sender and the receivers should be bounded. We derive the lower bound of 
the network precision of a multi-cluster system that executes the FlexRay pro-
tocol and will show that it depends mainly on the transmission delays and meas-
urement errors. Further, we inquire about the amount of the minimum time gap 
between two successive messages that could be exchanged via the FlexRay Sys-
tem. This time gap is an important parameter for developing a correct configu-
ration of multi-cluster systems. 

1   Introduction 

Distributed fault-tolerant real-time systems are deployed in a huge set of safety-critical 
applications i.e. in automotive, aerospace, railways, automation and process control. 
They meet their service requirements related to the timeliness and correctness of its 
reaction and resilience to faults. Time-triggered systems are often preferred due to their  
deterministic behaviour. They enable predictable transmission of messages and fault-
tolerant global notion of time among all nodes. Keeping the local times of these nodes 
synchronized even in the presence of arbitrary faults is a challenging task due, on  
the one hand to physical characteristics of the clock oscillators, on the other hand to 
varying message transmission delays (jitter). Thus, continuous clock synchronization is 
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an indispensable primitive function of time-triggered systems. Many of such systems 
consist of a single cluster i.e. a set of nodes that share a reliable communication medium 
and communicate over it in dedicated time intervals (see section 5). In order to ease the  
complexity in system design, to reduce the development effort and to overwhelm band-
width limitations large real-time systems should be organized in clusters. The intercon-
nection between clusters is realized by a well-defined interface called gateway. This 
structure demands additional effort regarding the inter-cluster communication and clock 
synchronization.  

Synchronization often relies on the precision of the clock oscillators which is an 
important quality attribute to be guaranteed by the manufacturer. Another not less 
important oscillator characteristic is the long-term stability which means that even 
though the clock is subject to massive transient disturbance the synchrony can be 
maintained. A good clock synchronization of a cluster strive to maintain the clock 
skew within the cluster precision which may facilitate the design of fault-tolerant 
services that can be built on it. The cluster precision is the upper limit for the time 
difference between the fastest and the slowest node within the cluster. In multi-cluster 
systems we distinguish between local and global synchronization. Two nodes are 
locally synchronized if they belong to the same cluster and if at any point in real-time 
the distance between their clock values is bounded by their cluster precision. A node 
is globally synchronized if at any point in real-time the distance between its clock 
value and the clock value of any node that belongs to a different cluster is bounded by 
a priori given constant called the global precision. The network precision is the time 
difference between any two node clocks in the whole system.  

The objective of this work is to discuss clock synchronization issues in multi-
cluster time-triggered systems and to provide the lower bound of the network preci-
sion as well as the calculation of the minimum time gap between two messages, by 
means of an example where at most two faulty nodes exist (see section 5). The ob-
tained results are not intended to be generalized, but rather to provide basis for the 
configuration of a functional multi-cluster system and to understand the added amount 
in comparison with single-cluster systems. A generalization of the results requires a 
formal verification that is still under work. 

2   Time-Triggered Communication Network 

Time-triggered networks are becoming the technology of choice for the design of 
safety-critical distributed systems because of their deterministic behaviour that can be 
incorporated with fault-tolerance mechanisms such as CRC and redundancy. Many 
time-triggered systems have been established over the last years. Examples are 
FlexRay[1], Time Triggered Protocol[2], Time triggered Controller area Network 
TTCAN[3], DACAPO[4]. Understanding the principle of operation of such protocols 
is an interesting topic.  

In this paper we to limit the multi-cluster clock synchronization analysis of 
FlexRay as a representative time-triggered protocol (see section 4) and by means of 
an example.  
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2.1   Basics of Clocks  

Hardware clock: In a time-triggered system each node possesses a timer control unit 
that generates an event to increase the time counter[5]. The periodic event is called 
tick of the clock. The duration between two consecutive ticks is called the granularity 

of the clock, denoted by g .       

A hardware clock of a given node i can be defined as: :i lkH R CΓ → Γ , 

where RΓ denotes the set of the real-time values, and lkC Γ the set of clock values. 

iH  is said correct at a given time t  if for all times 0t and 1t such that 

0 1,t t t≤ ≤ iH  measures the passage of time during real-time interval [ ]0 1,t t  with 

an error of at most 
1 0( ) ,t t gρ − +  where ρ refers to the maximum hardware drift rate 

specified by the manufacturer[13]:   

1 0 1 0 1 0(1 )( ) ( ) ( ) (1 )( )i it t g H t H t t t gρ ρ− − − ≤ − ≤ + − +            (1) 

Hardware Drift: The hardware drift of a clock k between two consecutive ticks i and 
i+1 is the frequency ratio between this clock and the real-time at the instant of tick i. 
The drift is determined by measuring the duration of a granular of clock k with real-

time t and dividing it by the nominal number kn of real-time’s ticks in a granular:  

1( ) ( )k k
k i i
i k

t tick t tick
drift

n
+ −=                                         (2) 

( )k
it tick denotes the point in real-time when the tick i of clock k occurs.     

The drift of a hardware clock comprises a systematic drift and a stochastic drift. 
The systematic part of the hardware drift is a constant deviation of the frequency from 
the specified nominal value. This part is mostly affected by numerous factors such as 
temperature variation and aging. The stochastic part of the drift appears randomly 
within a certain range. In practice this part is about 100 times smaller than the sys-
tematic part[6]. 

Drift rate:  The drift rate of a clock k ( kρ ) represents its deviation from real-time, 

measured in second per real second. Because a good clock has a drift close to 1, 

kρ can be defined as follows:  

1k
k idriftρ = −                                                          (3) 

Local time: The hardware clock of a node i is adjusted by a term that is calculated by 

the clock synchronization algorithm. Applying the calculated adjustment term iAdj  

the local clock may be faster or slower than other local clocks. The local clock of a 
node i  can be defined as follows:    
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:i lkClk R CΓ → Γ  and ( ) ( )i i iClk t H t Adj= +                         (4)  

2.2   Communication in Time-Triggered Systems 

In a distributed time-triggered system, communication is performed using the time 
division multiple access (TDMA) arbitration scheme. Thereby, the time is divided 
into slots. Slots are fixed time intervals within a communication round in which a 
transmission of a message (called frame) can be carried out. In an a priori given plan-
ning called schedule it is defined which slot is assigned to which node and which 
node should receive a message (see also section 4). 

2.3   Clock Synchronization in Time-Triggered Network 

Synchronization is necessary to bring all participating nodes of a network into timely 
agreement so that they communicate in correct order. It reduces the causal implica-
tions between events in the nodes[10]. The clock synchronization in time-triggered 
systems is a cyclic activity performed by each node. Two nodes i  and j  are clock-

synchronized with precision π if the following property holds:  

: ( ) ( )i jt R Clk t Clk t π∀ ∈ Γ − ≤                                      (5) 

Over a given period of time R the time difference between two clocks may increase 
up to 2 Rρ  due to the clock drift rate ρ . Assuming that the initial deviation between 

two correct clocks is inπ , then the skew grows up to 2in Rπ ρ+  during R . Therefore, 

the correction must be performed periodically to guarantee the tightness of synchroni-
zation. The time interval R is termed the re-synchronization interval where each node 
proceeds in the following steps: 

• Remote clock reading: Each node derives clock values of a specific set of 
nodes using the messages received from them. The obtained values repre-
sent only an estimation of the remote clocks because of jitters and clock 
drifts[11]. 

• Execute the clock synchronization algorithm: As previously mentioned 
the clock synchronization algorithm calculates the correction term relying 
on the remote clock values. 

• Clock adjustment: The calculated correction value should be applied to the 
local clock in a discrete or continuous manner (known as clock amortiza-
tion[11]) or a combination of the two. 

2.3.1   Clock Synchronization Algorithms  
The theory of clock synchronization algorithms has been exhaustively described in 
the literature. The most popular algorithms are: 

• Fault-tolerant midpoint algorithm (FTM): The fault tolerant midpoint al-
gorithm[12] has been established in many protocols over the last years. The 



 Clock Synchronization Issues in Multi-Cluster Time-Triggered Networks 43 

algorithm sorts the remote clock values 1,......, nx x  and returns the mid-

point 1

2
F n Fx x+ −+

of the range after discarding the F highest and F lowest 

values where F is the number of faulty clocks. The algorithm takes into ac-
count that faulty clocks may run either too slow or too fast and that correct 
clocks are in-between.  

• Egocentric average algorithm:  The egocentric average[14] returns the av-

erage of the remote clock values of all jx  (1 j n≤ ≤ ) where 

x x
j p

ω− ≤ whre px denotes the clock value of the node execut-

ing the algorithm andω  the achievable precision. By building the average, 

jx  is replaced by px if they deviate from each other by more than ω .  

• Fast convergence algorithm: The fast convergence algorithm is described 
in [16]. The algorithm returns the average of all remote clock values that are 
withinω  of at least n F− remote clock readings.  It has been proven that 
this technique provides better precision. However, it is costly as for each 

clock jx  a comparison with 1n − remaining clocks is necessary to determine 

the deviation [16]. 

3   The Time Triggered Protocol FlexRay 

FlexRay is a state-of-the-art communication system that provides flexibility and deter-
minism. Flexibility is achieved by combining a scalable static and dynamic message 
transmission and capturing the merits of synchronous and asynchronous protocols. 

 

Fig. 1. Timing levels in FlexRay 

3.1   Time Representation in FlexRay 

The time domain inside FlexRay nodes is organized in four timing levels as depicted 
in figure1:    
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Microtick level: Microticks ( Tsμ ) correspond to the ticks of the node’s oscillator 

and represent the time granularity in FlexRay. 

Macrotick: A macrotick is an integral number of microticks. It represents the global 
notion of time. Every action inside FlexRay nodes is triggered based on its local view 
of the global time (cluster time in macroticks). 

Slot: A time window where a message could be transmitted. In the static segment of 
FlexRay all slots exhibit the same slot-length (expressed in macroticks). 

Cycle: corresponds to the common round in a time-triggered protocol. It consists of a 
predefined set of slots. All nodes of a given cluster have the same nominal cycle 
length. A cycle in FlexRay is subdivided into a static segment, a dynamic segment, a 
symbol window and a network idle time where clock synchronization is executed[1]. 

3.2   Sync Frames in FlexRay 

Sync frames are special messages used to derive the clock value (estimation) of the 
sending nodes by measuring the time difference between the observed and the expected 
arrival time (expressed in Tsμ ). The transmission of a frame takes place after an offset 

called action point offset. The action point offset should be configured greater than the 
assumed worst-case precision so that even when the sender runs faster (respectively 
slower) than the receiver the frame could be received. However, unnecessary large 
values of action point offset result in lost bandwidth (large gap between messages).     

3.3   Calculation and Application of the Clock Correction Terms 

FlexRay uses the FTM algorithm to calculate the correction terms for the offset 
(phase differences) and rate (frequency differences) correction. As described before 
the FTM sorts the deviation values in ascending order and discards the k smallest and 

the k largest values. It builds then the average on the resulting range bounds. The 
average indicates the number of Tsμ the node’s communication cycle should be in-

creased or decreased[1].  
FlexRay uses a combination of discrete clock adjustment (offset correction) and 

continuous clock adjustment (rate correction). The calculated offset correction value 
is applied in the same cycle while rate correction is spread over the consecutive two 
cycles. It has been proven that continuous clock adjustment (clock amortization) has 
no impact on the clock skew[17]. 

In contrast to the common use of the FTM algorithm the value of k is determined 
dynamically and depends on the number of valid deviation values (including the own 
value if the node sends sync frames).  For the rate calculation the time difference from 
two consecutive cycles is used. The calculations for both offset correction and rate 
correction are performed in the network idle time of the communication cycle, i.e. in 
the absence of bus activities. 

The main motivation for the use of the FTM algorithm, in comparison with other 
algorithms that simply average the values, is attributed to the fact that faulty nodes are 
running either too fast or too slow and thus are automatically discarded, and conse-
quently have no impact on the calculated value.  
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4   Multi-Clusters 

Partitioning the system in multiple clusters is an enabling approach for the design of 
distributed critical applications. Moreover, multi-cluster structures permit the integra-
tion and the re-use of already known and best experienced single clusters. The  
interconnection between clusters is realized by an interface called gateway. In time-
triggered networks the interconnected clusters may operate in terms of executing  
different protocols and running at different baud rates (heterogeneous multi-cluster 
systems). In that case more effort should be placed on the design of the gateway 
which should execute numerous services such as conversion routines. The load 
caused by these services is significant in terms of the time spent by the execution. In 
this work we deal with multi-cluster systems that operate with identical protocols, in 
particular FlexRay (see figure 2).  

The example shown below consists of two clusters 1C  (with nodes A, B, C and D) 

and 2C (with nodes E, F and G) that operate with the same communication rate. Each 

node in the multi-cluster system adopts the same configuration of the parameters so 
that the nominal cycle, slot and even the macrotick durations are identical.  

 

Fig. 2. Example of a Multi-Cluster System 

4.1   FlexWay 

To name the gateway according to the used protocol we introduce the term of Flex-
Way. FlexWay is a device that connects two or more clusters with each other, thus 
enabling the inter-routing between them. Depending on the schedule FlexWay should 
forward frames from one cluster towards all (broadcast) or a subset thereof (multi-
cast). These frames are called global frames. FlexWay forwards global frames imme-
diately rather than buffering them. Frames that do not pass through the FlexWay are 
called local frames. The main objective is to enable local communication as well as 
global communication. For this purpose FlexWay should provide switching services 
and should have access to the global time.  

4.2   Schedule in Multi-Cluster Systems  

To achieve an efficient utilization of the system a good piece of work in forming a 
suitable schedule is required. In the meanwhile, many algorithms that provide a good 
or even an optimal schedule have been established. However, they cannot be applied 
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directly in our case due to the general conditions. Thus, it is essential to develop 
scheduling solutions that suit best to the individual needs of the application. A prom-
ising approach is the planning of global frames first, and local frames then. Figure3 
shows a simple schedule example for two FlexWay-connected clusters (The letters in 
the boxes show the sender of the respective frame).   

 

Fig. 3. Example of a communication Schedule in the Multi-Cluster System in one cycle 

4.3   Timing Analysis of Multi-Clusters  

For a correct execution of local and global synchronization the following require-
ments are needed:  

Bounded clock drift rate:  The drift rate of all nodes is bounded by a small con-
stant ρ . 

Minimum Redundancy: At least 3 1F + sync nodes are required to mask up to F ar-
bitrary failures[13].  

Transmission delays do not exceed a specific bound: We distinguish between the 
following delays: 

• Transmission delay caused by the bus driver of the transmitter: τ   
• Bus delay: β  

• Receiving delay caused by the bus driver of the receiver: Ω  
• Activity detection delay to detect the beginning of an incoming frame: α  
• Delay caused within the FlexWay due to the switching services: σ  

In what follows we define for each variable x  the minimum value minx and the maxi-

mum value maxx . Henceforth, *x  denotes the non-compensated portion of vari-

able x which should be then compensated by the clock synchronisation algorithm. The 
amount α σ+  will be replaced by a variableϕ which expresses the delay within the 

FlexWay. 

4.3.1   Network Delay 
In the case that the used topology consists of only a passive bus the network delay 

δ can be calculated as follows (see figure 4 and figure 5): 
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                    Fig. 4. Minimum Delay                                     Fig. 5. Maximum Delay 
 

min min min minδ τ β= + + Ω                                        (6) 

max max max maxδ τ β= + + Ω
                                      

(7) 

The network delay for a multi-cluster system where two clusters 1C  and 2C are con-

nected via the FlexWay can be calculated as follows (see figure 5 and figure 6): 

           

          Fig. 6. Minimum Delay                                   Fig. 7. Maximum Delay 
 

min min 1min 2min min min2 2δ τ β β ϕ= + + + + Ω                                   (8) 

max max 1max 2 max max max2 2δ τ β β ϕ= + + + + Ω                              
(9)  

1β refers to the incoming bus line and
2β refers to the outgoing bus line. 

4.3.2   Local Clock Synchronization 
The local synchronization aims at bringing all nodes inside a cluster xC  into  

agreement. 

For each, at time t, correct node i and node j in xC it holds:  
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: ( ) ( )
x

t R Clk t Clk t
i j C

π∀ ∈ Γ − ≤                               (10) 

The local clock synchronization should compensate the following term (see figure 4 
and 5):                                             

*
max max min max min max min max minδ δ δ τ τ β β= − = − + − + Ω − Ω

 
(11) 

4.3.3   Global Clock Synchronization 
The global synchronization aims at bringing all nodes of the multi-cluster system into 

agreement with respect to time. For each correct node i  in xC  (cluster x) and each 

correct node j  in yC (cluster y), where x y≠ , the following holds: 

: ( ) ( )t R Clk t Clk t
i j

∀ ∈ Γ − ≤ Δ                                             (12) 

A set of nodes are globally synchronized with precision Δ (do not confuse with net-
work precision defined in section 2), and are locally synchronized with precision 2Δ : 

: ( ) ( )t R Clk t Clk t
i j

∀ ∈ Γ − ≤ Δ     and   : ( ) ( )t R Clk t Clk t
k j

∀ ∈ Γ − ≤ Δ   (13) 

⇒  : ( ) ( ) 2t R Clk t Clk t
i k

∀ ∈ Γ − ≤ Δ  , where  , x yi k C j C∈ ∧ ∈              (14) 

For multi-cluster systems where the communication takes place through at most one 
FlexWay, the global synchronization should compensate the following term:         

*
max max min 1max 1min 2max 2min max min max min2( ) 2( )δ τ τ β β β β ϕ ϕ= − + − + − + − + Ω − Ω  (15) 

4.3.4   Calculation of the Worst-Case Network Precision  
As previously mentioned we investigate the worst case network precision maxΔ . This 

is done by means of a set of “timing scenarios” where the number F of faulty nodes is 
assumed to be 2 at most (F=2 holds for the remaining of this document). For our cal-
culation we introduce the following variables: 

 
μ : Measurement deviation when measuring the point in time when a frame has been 

received (caused by asynchrony between the receiver and the incoming message 
and by any further delay in the receiver affecting the accuracy of the measurement. 

λ :  Local influence in clock synchronization. This influence λ moves the local clock 
from the value calculated by the (fault-tolerant) clock correction algorithm to-
wards the local oscillator. In FlexRay this effect is achieved by “cluster drift 
damping” applied in the rate correction algorithm.  

The worst case scenario is characterized as shown in figure 8. The first x-axis shows 
the arrival points in time as viewed by the slowest node in the whole network (multi-
cluster system) during one communication cycle. The first two bars represent the 
point in time when two synchronization frames from two faulty nodes are observed. 
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The other bars represent the points in time when synchronization frames from fault-
free nodes arrive. From the value calculated by the FTM algorithm using only the 
correct values (marked by the triangle) the amount λ should be subtracted. The re-
ceived correct synchronization frames may come from any cluster, the network preci-
sion is then the difference between the first and last observed correct synchronization 
frames. 

The same holds for the second x-axis where the arrivals of synchronization frames 
are depicted as viewed by the fastest node. The synchronization frames of faulty 
nodes have collided with other frames and could not be received in this scenario. 

diffΔ is then the clock deviation between the slowest and the fastest node just after the 

application of the correction term calculated by the FTM algorithm.  

 

Fig. 8. All sync frames are exchanged via the FlexWay 

As shown in figure 8 the F slowest and the F fastest values are ignored. The mid-
point of the remaining ranges is then the result of the algorithm. 

The slowest node corrects its clock to:  

max

2s st FTM tλ λΔ= − = + −
                                        

 (16) 

The fastest node corrects its clock to:  

* *
max maxf ft FTM tλ δ μ λ= + = + + + Δ +                            (17) 

The maximum clock deviation after correction:  

* *max
max 2

2diff f st t δ μ λΔΔ = − = + + +                                (18) 

The clock deviation diffΔ should remain smaller than the worse case network preci-

sion maxΔ  to guarantee the convergence of the clock synchronization algorithm. 
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Convergence is achieved when:   

* *max
max max max2

2diff δ μ λΔΔ < Δ ⇒ + + + < Δ                 (19) 

Which is equivalent to:       
* *
max max2( 2 )δ μ λ+ + < Δ   and    

* *
max max2 2 4δ μ λ εΔ = + + +

                                    
 (20) 

Because the clock synchronization is a periodic process in FlexRay and the period is 
very short (every two cycles) the amount of ε is very small ( 2 Rρ + some ticks that 

build at most one macrotick. R refers to the duration of one cycle, see section 3.3). 
The maximum worst case precision is twice the sum of the non-compensated part of 
the network delay, the maximum measurement error and twice the maximum local 
influence, plus some epsilon.  

4.3.5   The Cost of Switching Inside FlexWay  
Depending on the physical characteristics of the device used to build up FlexWay and 
depending on the schedule the propagation delay within FlexWay can be significant 
high. For example, when a frame should be conveyed over FlexWay, it must detect 
the signal activity from the incoming link and decide (according to the schedule) 
whether this frame should be transmitted to all outgoing links (in case of global com-
munication) or not (local communication), and then execute the transmission routines 
which can by costly. 

The principle of its operation can be compared with a valve: When a global frame 
should be transmitted the valve is open (switch on) and closed otherwise (switch off). 
In case of three and more clusters we need a crossbar-switch (out of the scope of this 
work). If communication is not orchestrated well, an overexerting of the device may 
be caused, as depicted in figure 9. In this example switching must be executed six 
times with the cumulative delay of 6σ (section 5.3). 

 

Fig. 9. Switching behaviour of the FlexWay 

Figure 9 shows an example of a schedule for cluster 1 and cluster 2. Nodes A, B, 
C, D and G send global frames in slots 1, 3, 5, 6 and 8, respectively. In slots 2, 4 and 
7 local communication takes place. For example, node D sends a frame in slot 2 that 
can not be visible in cluster 2 and vice versa. In the same slot node E sends a frame 
that can not be visible in cluster 1. 

The amount of the switching delays within a cluster can be heavily reduced when 
the static window is divided into two parts (global and local part). In the global part 
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only global frames are transferred. At the end of this part the FlexWay switches off 
and local communication becomes feasible.  

4.3.6   Master/Slave Multi-Cluster Synchronization 
Another possibility to reduce the complexity of transmitting all sync frames over Flex-
Way is the master/slave clock synchronization technique. A cluster is called master 
cluster if it represents the only source of sync frames. A cluster plays the role of a slave 
cluster, if all its nodes rely on the sync frames that come from the master cluster to syn-
chronize their clocks. In many implementations the nodes of the master cluster send at 
least 3 1F +  global sync frames towards the slave cluster. In other words, if the master 
cluster is the only source of the sync frames it must send at least 3 1F + sync frames via 
the FlexWay. Nodes of the master cluster perform the local clock synchronization as 
stated in the previous sections. Based only on the received global sync frames nodes of 
the slave cluster perform clock synchronization. However, in the case when FlexWay 
crashes, nodes of the slave cluster cannot remain synchronized. Another possible im-
plementation allows slave nodes to transmit local sync frames and to obtain a subset of 
global sync frames from the master cluster. The benefit is that even if the FlexWay 
experiences a crash failure or a blackout local synchronization can be maintained as 
long as the slave nodes remain correct. In the subsequent section, we calculate the worst 
case network precision in umpteen scenarios where only 2 1F +  global sync frames are 
transmitted from the master cluster and F additional sync frames (termed local sync 
frames) come from the slave cluster itself. 

4.3.6.1   Determining the Worst-Case Network Precision for Master/Slave Multi-
Cluster. In this section we devote the amount of the network precision by means of 
various worst-case scenarios. We assume that the master cluster nodes submit 
2 1F +  global sync frames towards the slave cluster which consists of F sync nodes 
and any number of non-sync nodes in addition. The master nodes perform clock syn-
chronization independently from the slave cluster since each master node receives 
3 1F + local sync frames in total.  

For analysis purposes we introduce the following variables:  

Mπ : The assumed precision within the master cluster. 

Sπ : The assumed precision within the slave cluster, we assume that  

2M S Mπ π π≤ ≤                                                  (21) 

xπ  : Auxiliary variable that expresses the deviation between both clusters, where 

0 x Mπ π≤ ≤                                                      (22)  

Nδ  : Auxiliary variable so that:   

* *
max 2Nδ δ μ λ= + +                                            (23) 

The assumption made in (21) means that the slave cluster should be at most twice the 
precision in the master cluster (see also equation (12)). The assumption made in (22) 

results from the assumption in (21). The auxiliary variable Nδ will be used in many 
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equations; therefore we will substitute the right term with it. Nδ  denotes the overall 

network delay. 
In subsequent diagrams we use the following symbols to depict the events of sync 

frame observations: 
 
 
 
 
 
 
 
 
 

Case 1:  Only correct global sync frames have been sent towards the slave cluster.  

 

Fig. 10. Possible distribution of global/local sync frame’s arrivals (case1) 

The slowest node M in the master cluster corrects its clock to:    

2
M

M Mt FTM t
πλ λ= − = + −                                          (24) 

The fastest slave node S corrects its clock to: 

* *
maxS S Mt FTM tλ π δ μ λ= + = + + + +                               (25) 

After correction the maximum clock deviation is 

: * *
max 2

2 2
M M

diff S M Nt t
π πδ μ λ δΔ = − = + + + = +                   (26) 

Observation of a correct local sync frame within the master cluster. 

Observation of sync frame sent by a faulty node. 

Observation of a correct local sync frame within the slave cluster. 

Observation of a correct global sync frame at a slave node. 
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Clock synchronization achieves convergence if: 

maxdiff M x Sπ π πΔ < Δ = + =   ⇒    
2
M

N x

πδ π< +         (27)  

Considering the assumed bounds of xπ (22), it holds that: 

3

2 2 2
M M

x M

π π π π≤ + ≤  

The inequation (27) should hold for all values of xπ so that if 0xπ =  (27) becomes:  

 
2
M

N

πδ <                                                         (28)  

In the other case ( 0xπ > ) it holds that:   

3 2

2 3N M M Nδ π π δ≤ ⇒ ≥                                              (29) 

Considering the bounds of Sπ  (21) and (28) and (29) we obtain:  

max 2M Mπ π≤ Δ ≤  where  2M Nπ δ>                                (30)  

Case 2: Only three out-of five global sync frames could be received and the local 
sync frames’ arrival times are between their arrival times.  

 

Fig. 11. Possible distribution of global/local sync frame’s arrivals (case2) 

 
The slowest node M in the master cluster corrects its clock to:    

2
M

M Mt FTM t
πλ λ= − = + −                                   (31) 
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The fastest slave node S corrects its clock to:          

* *
maxS S xt FTM tλ π δ μ λ= + = + + + +                               (32) 

After correction the maximum clock deviation is:                            

* *
max 2

2 2
M M

diff S M x N xt t
π ππ δ μ λ δ πΔ = − = − + + + = + −             (33) 

Clock synchronization achieves convergence if: 

max 2diff M S x Mπ π π πΔ < Δ = + − =                               (34)  

(33) und  (34) ⇒       

3 3 7
2 2( )

2 2 2N M S x M S S M M Sδ π π π π π π π π π< + − = + − − = −   (35) 

This inequation must hold for all Mπ and all Sπ .Considering the bounds of Sπ (21) 

the necessary condition follows:  

7 3
2

2 2N M M Mδ π π π< − =                                         (36)  

This is equivalent to: 

2

3M Nπ δ>                                                      (37) 

Case 3:  The sync nodes within the slave cluster are faulty. In the slave cluster the 
fastest node which acts as a non-sync node can receive the global sync frames as 
depicted below:  

 

Fig. 12. Possible distribution of global/local sync frame’s arrival (case3) 
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The slowest node M in the master cluster corrects its clock to:      

2
M

M Mt FTM t
πλ λ= − = + −                                   (38)  

The fastest slave node S corrects its clock to:            

* *
maxS S Mt FTM tλ π δ μ λ= + = + + + +                          (39) 

After correction:                             

* *
max 2

2 2
M M

diff S M Nt t
π πδ μ λ δΔ = − = + + + = +             (40)  

Clock synchronization achieves convergence if:   

maxdiff M xπ πΔ < Δ = +     ⇒  
1

2N M xδ π π< +                     (41)  

Considering the bounds of xπ (22): 

1 3

2 2 2
M

M x M

π π π π≤ + ≤                                       (42) 

Similar to case1 and case2:                     

max 2M Mπ π≤ Δ ≤   where   2M Nπ δ>                               (43) 

Remark: The inequation (43) holds for all values of 0xπ ≥  regarding the range 

specified in (22). 
We conclude from the analysed worst-case scenarios that the worst-case network 

precision should be greater than twice the assumed precision within the master cluster 
to guarantee correct communication among several clusters where the maximum 
assumed number of faulty node is F = 2 (including case 2 since the right inequation  
of (43) fulfils also (37)) .  The precision of the master cluster should be itself greater 

than twice Nδ , which represents the sum of the maximum non-compensated propaga-

tion delay, the measurement deviation and twice the “cluster drift damping”.  

It holds.                 max 2 MπΔ ≤       and  2M Nπ δ>           max 4 Nδ εΔ = +    

(44)       

Remark: The result stated in (44) cannot be generalized for any number F of faulty 
nodes unless it is formally verified which is under work and out of the scope of this 
work. Further, not all worst case scenarios have been discussed in this document and 
should be analysed in the same manner as done for cases 1, 2 and 3. 

The master/slave clock synchronization principle may reduce the transmission com-
plexity since only 2 1F + global sync frames should be submitted towards the slave 
cluster that owns F  local sync nodes. However, this kind of clock synchronization 
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leads to inaccuracies in comparison with the approach where all sync frames in the 
multi-cluster system are exchanged.  

4.3.6.2   Blackout Analysis. The system designer must reckon with a blackout of Flex-
Way that may hold for a short/long period or permanently (crash). In that case, each 
node in each cluster rests upon the local sync frames to synchronize its clock. Both 
clusters may deviate from each other so that after the period of the blackout frame 
collisions occur and global resynchronization becomes necessary. The effect of Flex-
Way blackout can be shown by means of an example (see figure 13). In this example 
we assume that all nodes remain correct after the blackout and that it occurs after all 
global sync frames have been received by the nodes of the slave cluster in round x . 
Furthermore, we assume that all nodes of the master cluster drift with ρ−  but still 

maintain the master cluster precision Mπ . Nodes of the slave cluster behave similarly, 

but move in the opposite with ρ+ . After clock correction the network precision is 

0
diff

Δ  in round x , 1
diff

Δ in round 1x + , …., n
diff

Δ  in round x n+ , respectively. 

Let R  be the duration of the synchronization round in Tsμ (corresponds to the du-

ration of a double cycle in FlexRay). It holds:                                                          

1 0 02 2R R
d iff d i ff d iff

ρ ρΔ = Δ + = Δ +                             (45)  

2 1 02 2 ( 2 )R R
d iff d i ff d iff

ρ ρΔ = Δ + = Δ +  

                              .              .             .             .         . 
                              .              .             .             .         . 

                            
1 02 ( 2 )n n R n R

d iff d iff d iff
ρ ρ−Δ = Δ + = Δ +  (45) (can be eas-

ily proven by induction).  
Let n  be a round that fulfils the following properties: 

m ax m a x
1n n

d iff d if f
−Δ ≤ Δ ∧ Δ > Δ                                               (46) 

           ⇔         
m a x m ax

0 0( 1)( 2 ) ( 2 )n R n R
d iff d i ff

ρ ρΔ + − ≤ Δ ∧ Δ + > Δ  

⇔          
0 0

m ax m ax 1
2 2

d iff d iffn n
R Rρ ρ

Δ − Δ Δ − Δ
> ∧ ≤ +                        (47) 

If the blackout period is smaller than n  that fulfils the inequation (47), and if all 
nodes remain correct during the blackout, then slave cluster nodes remain globally 
synchronized. Otherwise, frame collisions are possible and global resynchronization 
of the slave cluster nodes is required. The FlexRay protocol provides means to estab-
lish resynchronization by changing the state of slave cluster nodes from active to 
passive. In that case, slave nodes do not send any sync frames, but still receive global 
sync frames on which they synchronize their clock to. However, during this operation 
the local communication service is not available which is not acceptable for some 
critical applications. This problem can be overcome by replication. Thereby, two 
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FlexWays could be used where each is attached to a FlexRay channel. When one of 
them crashes or suffers a blackout (degradated mode), slave cluster nodes can still 
receive global sync frames and thus maintain synchronized (see figure14).           

 

Fig. 13. Clock deviations of both clusters after the crash/blackout of the FlexWay 

 

Fig. 14. Multi-Cluster system with two FlexWays 

4.4    Slot Utilization 

FlexWay is time-controlled by a node which participates in clock synchronization and 
thus may suffer from inaccuracies. Moreover, global frames can be forwarded to-
wards slave cluster only after execution of the switching service (see section 5.3). 
Therefore, we distinguish between three transfer phases: 

• Phase 1 corresponds to the transfer from the sender to the FlexWay. The re-

spective delay is called 1δ , where 1 1δ τ β= + . 

• Phase 2 corresponds to the transfer within the FlexWay (including frame  
detection). 

The respective delay is x τ α σ= + + + Ω . 
• Phase 3 corresponds to the transfer from the FlexWay to the receiver in the 

slave cluster. The respective delay is 2δ , where 2 2δ β= + Ω . 
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In this section we calculate the necessary inter-frame gaps (the minimum distance in 
between two consecutive frames) for the case that all sync frames are exchanged 

using  (21) for maxΔ . The same calculation can be done for master/slave clock syn-

chronization mode using equation (44) for maxΔ . For this purpose, we introduce the 

following variables: 

•  s  : Slot duration. 
• f  : Frame duration. 

• g  : Gap duration (the difference g s f= − , as well as the 

sum s tg g g= + ). 

• sg : Starting gap duration (from the start of the slot to the beginning of frame 

transmission). 

• tg : terminating gap duration (from the end of frame transmission to the end of 

the slot). 

 

Fig. 15. Slot Utilization 

Figure 15 shows the minimum and maximum delays during the transmission of a 
global frame from the sender to the receiver which is situated in another cluster. It has 
been distinguished between the cases where this frame passes throughout a faster and 
a slower FlexWay. That means that the FlexWay itself may be operating faster (mini-
mum delays) or slower (maximum delays). The same holds for the receiver which is 
assumed to run faster or slower than the sender. 

As it is obvious from figure 16 the time gap can be calculated as follows: 

max max 1minsg σ δ= Δ + −                                          (48)     



 Clock Synchronization Issues in Multi-Cluster Time-Triggered Networks 59 

max max max 1max max 2max( )tg xδ δ δ= Δ + = Δ + + +                             (49) 

max max 1min max max 1min max2 2(2 )s t Ng g g δ δ σ δ ε δ δ σ= + = Δ + − + = + + − +   

 
* *
max max 1min max4 4 8 2δ μ λ ε δ δ σ= + + + + − +                                    (50) 

According to the definition of x and xδ : 

* * * * *
max 1max max 2max max max 1max max 2max max 1min max max4( ) ( ) 4 8 2g x xτ β β τ β β δ μ λ ε σ= + + + + Ω + + + + + Ω − + + + +  

* * * * *
max max min 1max 1max 1min 2 max 2 max max max max8 2 4 4 4 4τ τ τ β β β β β α α σ= + − + + − + + + + + +  

*
m ax m ax m ax m ax2 8 2 4 8 2σ μ λ ε+ Ω + Ω + + +                                              

 (51) 

4.4.1   Gap Comparison between Multi-Cluster and the Single Cluster 
When a single bus is used (without any gateway) the time gap can be calculated as 
follows: 

*
max max min max4 4 8 2busg δ δ δ μ λ ε= + − + + +  where 1 2β β β= +  and δ τ β= + + Ω  

* * *
max max min max min max min max max max4 4 4 4 8 2τ τ τ β β β μ λ ε= + − + − + Ω − Ω + + Ω + + +   (52) 

If we assume the absence of compensation (
*x x= ) and lack of minimum values 

( minx  = 0) we obtain: 

max max max max5 5 5 4 8 2busg τ β μ λ ε= + + Ω + + +                          (53) 

Using the FlexWay ( FWg g= ):  

max max max max max max10 5 5 6 10 4 8 2FWg τ β α σ μ λ ε= + + + + Ω + + +  

⇔                           max max max max5 5 6 5FW busg gτ α σ= + + + Ω +           (54) 

The amount of the minimum time gap in multi-cluster system in comparison with 
single cluster is: 

max max max max5 5 6 5FW busg g τ α σ− = + + + Ω                          (55) 

The FlexRay protocol specification[1] has defined typical values for the variables in 
equation(55): 

max maxτ = Ω ≈  100 ns ; maxα  = 450 ns ;  maxσ ≈ 1000 ns (estimated) 

The value of the maximum switching delay maxσ is estimated based on the delays 

caused by the star couplers (at most 700 ns plus 300 ns as a “safety margin”). Quanti-
tatively, the time gap difference in equation (55) is: 

9,25FW busg g sμ− ≈
                                               

 (56) 
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If the assumptions above are not considered, the previous equation can be generalized 
to:  

* * * *
max max max max max max max max min 2 min4 4 4 2 4FW busg g τ τ α α σ σ β− = + + + + + + Ω + Ω + Ω +  

5   Conclusion 

In this paper we investigated the clock synchronization in time-triggered multi-cluster 
systems by means of a FlexRay example. We presented two kinds of clock synchroni-
zations: clock synchronization using several global sync frames in the multi-cluster 
system, and synchronization called master/slave clock synchronization whereby a 
subset of global sync frames are submitted towards the slave cluster. In the considered 
worst case scenarios for F=2 we conclude that the network worst case precision is 
twice the sum of the non-compensated part of the network delay, the maximum meas-
urement error, and twice the maximum local influence, plus an epsilon in case several 
sync frames are exchanged. 

The clock synchronization relies on the fault-tolerant midpoint algorithm to calcu-
late the correction terms of each clock individually. The algorithm ensures that even 
in presence of up to F failures, the clock skew of correct nodes is bounded by the 
network precision. 

Clock synchronization that requires the exchanging of all sync frames provides 
better accuracy compared to master/slave clock synchronization. However, system 
designers may prefer the master/slave synchronization approach in order to reduce the 
overall complexity. 

We calculated also the amount of the necessary inter-frame gap in multi-clusters in 
comparison with the single cluster. 
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Abstract. The presentation of a landmark paper by Chu et al. at
SIGMETRICS 2000 introduced application layer multicast (ALM) as
completely new area of network research. Many researchers have since
proposed ALM protocols, and have shown that these protocols only put
a small burden on the network in terms of link-stress and -stretch. How-
ever, since the network is typically not a bottleneck, user acceptance
remains the limiting factor for the deployment of ALM. In this paper we
present an in-depth study of the user-perceived performance of the NICE
ALM protocol. We use the OverSim simulation framework to evaluate
delay experienced by a user and bandwidth consumption on the user’s
access link in large multicast groups and under aggressive churn models.
Our major results are (1) latencies grow moderate with increasing num-
ber of nodes as clusters get optimized, (2) join delays get optimized over
time, and (3) despite being a tree-dissemination protocol NICE handles
churn surprisingly well when adjusting heartbeat intervals accordingly.
We conclude that NICE comes up to the user’s expectations even for
large groups and under high churn.

1 Introduction

IP multicast is a technology with significant maturity that has been developed
for several decades. Nevertheless it lacks global deployment for reasons that are
manifold. They include, e. g., that IP multicast was designed without a specific
commercial use-case in mind, leading to insufficient support for address alloca-
tion, group management, authorization, protection against attacks, and network
management [7]. Nevertheless, many applications demand for multicast commu-
nication, and the demand is constantly growing in face of current trends towards
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video and TV transmission. A solution to this hassle was presented by [6], which
proposed to implement multicast distribution inside the end systems rather than
in the network itself, creating an completely new area of research. Many proto-
cols following this paradigm, denoted as end-system or application layer multicast
(ALM ), were developed. At the same time, it has been shown that the burden
that ALM puts on the network core is small. In particular, link stress, i. e., trans-
mitting the same multicast message across a physical link, and link stretch, i. e.,
extending the length of a delivery path compared to a unicast transmission, are
bounded and can be easily handled by todays over-provisioned provider net-
works. Thus, from a provider’s point of view ALM is an appealing alternative
to IP multicast.

However, pushing multicast away from the network core towards the end
systems also shifts the acceptance problem from the providers towards the users.
To this end, users must experience a sufficient performance in order to utilize an
ALM solution on a large scale. The user-perceived performance is determined
by three major factors: First, the user must be able to join an ALM multicast
group sufficiently fast, which is important, e. g., when zapping around between
multiple TV channels. Second, he should experience only a minimum delay, which
is important, e. g., for following a live broadcast or even more for interactive
applications like attending a video conference. Third, the bandwidth consumed
by the ALM protocol should be low, which is important, e. g., when using a
computer for other things than following a multicast transmission. Furthermore,
ALM must show the flexibility to be employed in different application scenarios,
where two scenarios are of particular interest: The first is broadcasting popular
events, which will on the one hand lead to multicast groups of significant size but
on the other hand of high stability, since many people will follow the transmission
for the entire duration. The second scenario is receiving a multicast transmission
along the way, which will lead to fewer, but rather instable users. Examples for
the second scenario include, again, zapping between TV stations.

In this paper, we present an in-depth evaluation study of the NICE appli-
cation layer multicast protocol that significantly extends the results presented
in [1,2,3]. In particular, we focus on the user-perceived performance of the proto-
col instead of the performance from the network perspective. The main work on
NICE [1,2,3] focused on underlay behavior in terms of stretch and stress. There-
with, the authors have taken a network-view, whereas our work evaluates NICE
from the end-user perspective. Similarly to the NICE studies, the work of Tang
et al. focused on hop-counts in NICE using different extensions for underlay-
awareness [11]. In terms of network dynamics the authors of NICE evaluated
the behavior of NICE using a bulk-churn model [3]. Our work uses realistic—but
aggressive—churn models to analyze NICE under real-world churn models. We
base our churn models on recent work by Stutzbach et al. that analyzed churn-
behavior of real-world P2P systems [10]. We do not cover extensions developed
to explicitly provide robustness like [5], but rather analyze the robustness of the
original NICE towards churn. In summary, we answer questions like: How long
does it take until I can view a multicast transmission? What is the transmission
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delay I have to expect? How much traffic is generated on my dial-up link? How
do other people constantly joining and leaving the system affect my transmission
quality?

To answer these questions, we conduct experiments using the overlay simu-
lation framework OverSim [4] that allows for large-scale simulations and use of
different churn models.

Our main findings are: (1) increasing the number of nodes by a factor of
16 increases latencies by only 31%, (2) join delays get optimized over time,
and (3) under a heavy churn configuration data success rates of 98.8% can be
achieved. From these results, we conclude that NICE is well suited to provide
user-perceived performance in large-scale and dynamic environments.

The remainder of this paper is structured as follows: To make the paper self-
contained, we give a description of the NICE protocol in Section 2. We also state
design decisions in our implementation concerning issues that are not clear in
the original proposal [2]. In Section 3 we describe our simulation methodology
that is used within the following Sections 4 and 5. In Section 4 we look at
NICE’s performance in scenarios with higher numbers of nodes. We evaluate the
protocol’s performance in face of churn in Section 5. Finally, concluding remarks
are given in Section 6.

2 NICE

The NICE protocol [1,2,3] is an early ALM approach that implements an un-
structured overlay (i. e. a node’s position in the overlay is not fixed). It explicitly
aims at scalability by establishing a cluster hierarchy among participating mem-
ber nodes. We first give a general protocol description in Section 2.1 before
detailing on specific implementational aspects in Section 2.2.

2.1 Basic Protocol

NICE divides all participating nodes into a set of clusters. In each cluster, a
cluster-leader is determined that is responsible for maintenance and refinement
in that cluster. Furthermore, all cluster-leaders themselves form a new set of
logical clusters in a higher layer, exchanging protocol data. Respective cluster-
leaders are determined from one layer for the next higher layer. This process is
iteratively repeated until a single cluster-leader in the topmost cluster is left,
resulting in a layered hierarchy of clusters (compare Figure 1). Protocol traffic
is mainly exchanged between nodes residing in the same cluster, leading to good
scalability.

Each cluster holds between k and (αk − 1) nodes, α and k being protocol
parameters. In case the number of nodes in a cluster exceeds the upper bound
the cluster is split into two clusters of equal size. If the lower bound is under-
cut, the cluster is merged with a nearby cluster. Clusters are formed on the
basis of a ‘distance’ evaluation between nodes, where distance is basically given
by network latency. Cluster-leader election is accomplished by determining the
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graph-theoretic center of the cluster and choosing the node closest to that point.
Nodes in the same cluster periodically exchange heartbeat messages to indicate
their liveliness and report measurements of mutual distance to other nodes in
that cluster. Cluster-leaders decide on splitting and merging of clusters as they
are aware of the current cluster size and all distances between nodes inside their
cluster.

The objective of NICE is to scalably maintain the hierarchy as new nodes join
and existing nodes depart. Therefore, the following invariants are maintained:

1. At every layer, nodes are partitioned into clusters of size between k
and (αk − 1).

2. All nodes belong to a L0 cluster and each node belongs only to one single
cluster at any layer.

3. Cluster-leaders are the center of their respective cluster and form the imme-
diate higher layer.

For bootstrapping, the joining node queries a Rendezvous Point (RP) for the set
of nodes that reside in the highest cluster. The node then queries the nearest of
these nodes for the set of the next lower layer, iteratively repeating this process
until the lowest layer L0 of the hierarchy is reached. As soon as this nearest
cluster is determined, the node requests from the L0 cluster’s leader to join
and finally becomes part of the cluster. Graceful or ungraceful leaving of nodes
is either detected by explicit protocol messages or through missing heartbeat
messages.

A node intending to send out multicast data sends its data to all nodes in
all clusters it currently resides in. A node receiving data from inside its cluster
forwards the packet to clusters it is part of except the cluster it received the
data from. This leads to each participant implicitly employing a dissemination
tree to all other nodes in the structure.

An exemplary NICE structure, consisting of three hierarchical layers (L0–
L2) is shown in Figure 1. Here, Layer L0 holds five clusters containing five
member nodes each. The four phases (a) to (d) demonstrate the steps in data
dissemination for a given initial sender. Members forwarding the data in each

Common Member Cluster Leader Current Forwarding Member

Fig. 1. Layered hierarchical NICE structure
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step are symbolized by crosses. Also in this example, the cluster-leader of the
highest cluster in the hierarchy constitutes the RP.

2.2 Design Decisions

We implemented NICE in the open-source overlay simulation framework Over-
Sim [4] based on the technical descriptions given in [3]. We will now detail on
relevant design decisions that are not specified by the protocol itself to ease the
understanding of the evaluations given in this paper.

Heartbeats and Distance Evaluation. Heartbeat messages are sent to direct
cluster neighbors participating in any cluster the sender resides in. The heart-
beat interval HBI triggers periodic heartbeat messages. We use heartbeats for
protocol information exchange and simultaneously for the evaluation of mu-
tual distances between nodes (cf. Figure 2a). Distances in NICE are evaluated
through round-trip time measurements between heartbeat-exchanging nodes. As
those evaluations are prone to variance we use an exponentially weighted moving
average to smooth distance measurements over time. Also, to avoid intersecting
heartbeats that would tamper with measurements, we use dedicated heartbeat
sequencing (cf. Figure 2b), helping to avoid error-prone distance evaluations
when out-of-order packet receptions occur.

A B

HBA

∆ tHB = 
[tHB(B)_send – tHB(A)_recv)]

tHB(A)_send

tHB(A)_recv

A B

seqNo = 2

seqRspNo = 1

seqNo = 3

∆ t

HBB
[∆ tHB]

t

tHB(B)_send

tHB(B)_recv

Dist(A,B) = tHB(B)_recv - tHB(A)_send -∆ tHB

t t t

seqRspNo = 2Evaluate 
Dist(A,B) for 
seqNo = 2

seqNo = 3

(a) Distance Evaluation via Heartbeats (b) Heartbeat Sequencing

Fig. 2. Distance Evaluation

Bootstrap and Join Phase. A joining node queries the RP for all nodes of
the highest cluster and starts sending probe packets for distance estimation. The
joining node descends towards its nearest node, iteratively repeating this process
until layer L0 is reached. In our implementation, we use an in-band RP, always
being the cluster-leader residing in the highest current hierarchy cluster.

Maintenance and Refinement. After a successful join phase nodes start
maintaining the overlay structure with respect to their point of view. This is
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realized by periodic heartbeats to all cluster neighbors to validate liveliness and
ensure protocol invariants (cf. Section 2.1).

Heartbeat messages are used for propagation of distance measurements. This
way nodes are able to make decisions autonomously. A node being cluster-leader
in cluster Ci in layer Li emits a special leader-heartbeat in this cluster, holding
contents of a normal heartbeat as well as information about members in the
direct super-cluster Ci+1 in layer Li+1. This information is used by neighbors in
Ci to find better cluster-leaders in Ci+1. A node in the super-cluster is considered
better if the distance to this node is at least min SC Dist percent smaller than
towards the current cluster-leader (min SC Dist being a protocol parameter).
Should a closer cluster-leader B in Ci+1 be found for a querying node A, the
latter will change its cluster membership to the cluster in layer Li that B is
leader of. Furthermore, neighbors in Ci use the neighbor information in the
leader-heartbeat to update their view of the current cluster memberships, i. e.
they add new nodes or delete nodes that are no longer part of the cluster.

If a cluster-leader detects a violation of the cluster size upper bound it deter-
mines the resulting two new clusters as follows: Let Ci be the cluster to split, Cj ,
Ck the resulting sub-clusters. For all possible combinations {Cj , Ck|Cj ⊆Ci\Ck∧
Ck ⊆ Ci\Cj} determine the particular resulting cluster-leader and check the
maximum distance from each such leader inside the respective cluster. The num-
ber of combinations is bounded by the clustersize parameter k. If Ci holds n
nodes, n ≤ (αk), this leads to n!

2(n
2 !)2 combinations to test. As soon as an appro-

priate cluster-split-set has been determined, the cluster-leader signals the change
throughout the specific cluster and all involved higher-layer clusters.

Should a cluster hold less than k nodes, it will be merged with one of its
neighboring clusters on the same layer. The leader of the specific cluster Ci in
layer Li is also part of cluster Ci+1 in layer Li+1, knowing its distances to the
nodes residing in the latter. With this information, the leader is able to determine
the nearest node of cluster Ci+1, being the candidate to merge cluster Ci with,
and initiate the merge operation.

As part of the periodic refinement process, cluster nodes decide if the cur-
rent cluster-leader remains optimal. This is accomplished by finding the node
with the smallest maximum distance to all other members in this cluster, based
on each nodes local distance knowledge. To avoid fluctuations we use a lower
bound min CL Dist which has to be exceeded in order to trigger a cluster-
leader change.

Protocol Recovery. Changes in the network or the NICE hierarchy can lead
to temporary soft-state inconsistencies between nodes. In case of severe hierar-
chy inconsistencies like partitioning or failure, nodes can decide to reconnect to
the structure. It can further occur that more than one cluster-leader becomes re-
sponsible for one node. This can happen due to temporary duplicate leaderships
in clusters, packet loss during leader transfer, or other inaccurate negotiation
procedures. In our implementation duplicate leaderships are detected by heart-
beat messages. If a node A after reception of heartbeat H1 at time t1 from leader
B receives a heartbeat H2 from leader C at time t2 with t2 − t1 < HBI it checks
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if the predecessing heartbeat before H1 was sent from leader B. This will with
high probability indicate a child relationship to both B and C. Node A will then
resolve the situation with a proactive cluster leave sent to leader C.

In addition to nodes detecting duplicate leaders, cluster-leaders also have to be
able to detect mutual duplicate leaderships inside a cluster. Duplicate cluster-
leaderships appear if one node decides to be new cluster-leader while the old
leader did not take this decision—or in some cases never will due to different
distance knowledge. Such situations are detected if a cluster-leader receives a
leader-heartbeat message in the same cluster he is leader of.

3 Evaluation Methodology

In this Section, we detail on the simulation environment and the setup of our
simulations. Furthermore, we discuss relevant performance measures that are
used in the remainder of this paper.

3.1 Simulation Environment

Our experiments are conducted using the peer-to-peer simulation framework
OverSim [4]. OverSim provides a flexible environment for simulation of struc-
tured and unstructured overlay networks with focus on scalability of the simu-
lation models with respect to the number of simulated nodes as well as re-use
of modules implementing overlay functionality. The core part of OverSim com-
prises various network models, that each model the underlying network with a
different level of detail, and thus, complexity of the simulation model and sim-
ulation runtime. The network model of our choice is OverSim’s SimpleUnderlay
that is frequently employed for performance evaluation from the end-system per-
spective. This network model abstracts from network and transport mechanisms
and arranges nodes in Euclidean space. The Euclidean distance of two nodes
determines the basic network latency between them. A random jitter between
0%–5% is added to this latency for each packet transmission. Note that this
network model does not capture packet losses, i. e., every packet that is sent t
is received by the destination. This behavior is consistent with the behavior in
other ALM simulation studies, e. g. [2]. We provide details on the setup of our
OverSim simulations in the next section.

3.2 Simulation Setup

We have implemented the NICE protocol as described in Section 2 as an OverSim
application that is executed by OverSim’s simulation models. In our simulations
we analyze up to 8 000 NICE nodes, where the number of nodes differs with
the experiments. Nodes are arranged randomly in a two dimensional field of size
[150,150], i. e., the maximum delay experienced for a transmission between two
nodes is ≈ 212 ms with addition of the random jitter. Based on the parameter
terms introduced in Section 2.2 we use the protocol parameter values given in
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Table 1 (unless stated different in the specific experiments). Furthermore, we
use a simulation setup that is given by the simulation parameters also shown in
Table 1.

Our simulation experiment can be subdivided into two phases. In the ini-
tial phase after the start of the simulation, the NICE hierarchy is incrementally
constructed. That is, one new node joins the network every second, until the an-
ticipated number of nodes is reached. We choose this approach to avoid difficult
effects that could appear in the initial phase and that are not subject to our eval-
uations. After the last node has joined we employ a backoff time of 60 seconds to
stabilize the hierarchy. The initial phase is followed by the data exchange phase.
In this phase, a given node, fixed but chosen uniformly at random from the set
of all nodes, sends a multicast packet every 5 seconds for evaluation of scalability
in Section 4, and every 1 seconds for evaluation of churn in Section 5. Note that
although the resulting data rate is very low, this is sufficient to compute the
performance measures of interest as described in Section 3.4. After 10 minutes
of data exchange, we again employ a backoff of 60 seconds before finishing the
simulation run.

Note that depending on the considered application scenario nodes may be
either stable during the data exchange phase or join/leave the NICE hierarchy
at arbitrary times due to churn. Since we consider both types of application
scenarios, we describe our model of dynamic node behavior in the next section.

Table 1. Protocol and simulation parameters

NICE-specific Simulation-specific
Parameter Value Parameter Value

α, k 3 Number of nodes 500–8 000
HBI {1,5,10} s Offset after last join 60 s
Maintenance Interval 3.3 s Measurement phase 300 s
Peer Timeout 2 HBI Joins ∼every 1 s
Query Timeout 2 s Data Interval 1 s (churn), 5 s (scalability)
Structure Timeout 3 HBI Field Size [150,150]
min CL Dist 30% Simulation Time 2 000 s
min SC Dist 30%

3.3 Churn Model

Churn is the process of nodes joining and leaving the overlay structure. As joins
and leaves trigger adaptation and therewith restructuring of the overlay, they can
cause packet loss due to inconsistencies, or partitioning. Resilience to churn is
conventionally achieved through redundant links in the overlay structure, result-
ing in higher cost [8]. Furthermore, dedicated mechanisms for overlay robustness
have been developed to cope with high churn [9].

To study the performance of NICE under heavy churn we have to define
appropriate churn models for our simulations. Several churn models have been
described in the literature, which use either Poisson, Random, Exponential, or
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Weibull distributions to model a node’s session length, i. e., its dwell time in
the hierarchy. A recent study of Stutzbach et al. [10] analyzed different real-
world networks (Gnutella, Kad, BitTorrent) and identified that (1) session length
distribution is quite similar over different networks, and (2) that the session
length distributed is best modeled through a Weibull distribution. Prior work on
NICE evaluated the protocol under bulk churn where groups of nodes collectively
join and leave the overlay simultaneously [2]. Opposed to [2], we use individual
churn following the Weibull distribution in our simulations according to the
Weibull PDF defined as follows:

f(x; λ, μ) =
{

μ
λ

(
x
λ

)μ−1
e−(x/λ)µ

x ≥ 0
0 x < 0

(1)

We use shape parameter μ = 0.5, as a compromise of shape values identified in
the work of Stutzbach. As the scale parameter λ varies greatly depending on the
observed system, we perform simulations with different λ values to achieve dif-
ferent mean lifetimes of the nodes, i. e., different degrees of churn. All parameter
values of the churn model together with the corresponding mean (in minutes and
seconds) and variance of the session length are shown in Table 2. As our goal
is to find the limits of robustness for NICE, our scaling values result in much
smaller mean lifetimes than the values presented by Stutzbach et al., which are
also shown in the table.

For churn simulations we use a mean of 128 nodes and single-source multicast.
The simulation time is 3 600 s, subdivided as follows: Again, we have an initial
phase where 128 are created in the first 128 s, one node per second. We start the
churn model together with the data transmission face at simulation time 200 s
and end it at simulation time 3 540 s. The source node of the transmission is
selected as described above and is not subject to churn. Finally, the simulation
ends at 3600 s. We evaluate different churn rates as detailed in Table 2. Finally
we perform one simulation with no churn as reference model.

3.4 Performance Measures

In our simulations, we consider four measures to capture user-perceived perfor-
mance of the ALM protocol:

Join Delay: This is the delay for integrating a new node into the NICE hier-
archy. Since it is the time a user has to wait until he can receive a multicast

Table 2. Weibull parameters and properties used for churn simulation in our work and
real-world observations from Stutzbach et al.

Our Work Stutzbach et al.

μ 0.50 0.34 0.38 0.59

λ 0.83 2.50 5.00 7.50 10.00 12.5 15 21.30 42.40 41.90

mean [minutes] 1.66 5 10 15 20 25 30 117.25 163.38 64.46

mean [seconds] 100 300 600 900 1 200 1 500 1 800 7 035 9 802 3 867

variance [minutes] 14 125 500 1 125 2 000 3 125 4 500 241 986 313 390 13 395
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transmission, we consider this measure of particular interest from the user’s per-
spective. For a given node, we measure this delay by the time between contacting
the rendezvous point and finally integrating the node in a cluster at layer L0

following the procedure described in Section 2.

Data and Heartbeat Latency: Data latency is the time required to transmit a
data packet from the multicast source to a given destination node. This latency
is of particular interest for users following a real-time transmission. It can be
measured by setting timestamps when sending and receiving a multicast packet,
respectively. Furthermore, the hopcount, i. e., the number of hops in the NICE
hierarchy that must be traversed to deliver a multicast packet, can be computed
using a field in the packet header. We will show that data latency depends to
some extent on the latency for transmissions inside a cluster. Thus, we will also
measure heartbeat latency, which is the delay experienced by heartbeat messages
as described in Section 2.2.

Overhead: Maintaining the NICE hierarchy comes at a cost, which is quantified
by the overhead for sending control messages. Overhead is relevant from the
user’s perspective since it must be transmitted over the user’s access link. We
measure the overhead for a given node by summing up the sizes of all control
messages it generates according to the protocol description in Section 2. We
assume addresses to be 32 bit and that e. g. heartbeat messages hold all known
cluster members together with their related distance evaluations, each stored
also in a 32 bit value.

Successfully Delivered Packets: Although OverSim’s simple underlay does not
consider packet losses, a multicast data packets may be lost due to structural
problems in the NICE hierarchy, in particular under heavy churn. Since data
packet losses directly affect the transmission quality, we consider them of partic-
ular interest from the user’s perspective. To compute the fraction of successfully
delivered packets is non trivial, since it is not clear how to count a node that is
part of the hierarchy when a data packet is send by the source, but leaves the
hierarchy before the packet is able to reach it. Thus, we measure successfully
delivered packets only for those nodes that are a part of the hierarchy when
a packet is sent and do not leave the hierarchy until transmission of the next
packet.

In the following sections, we use the performance measures defined here to
evaluate the performance of the NICE protocol.

4 Protocol Scalability

This section analyzes user-perceived performance of the NICE protocol from a
scalability perspective. Consistent with [2], it focuses on the performance during
initial construction and during stable operation of the multicast structure, while
the performance under churn is considered in Section 5. Opposed to [2], we
analyze large scenarios (i. e., up to 8000 nodes) and focus on user-perceived
rather then network-centric performance.
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In a first experiment, we analyze the join delay as defined in Section 3.4. We
plot join delay as a function of time in Figure 3 for different sizes N of the
multicast group. Recall that in the experiment one node per second joins the
hierarchy. In the figure, one line is drawn for each node’s join delay. Join delay
depends on the number of layers in the hierarchy, since a node starts to join at the
rendezvous point in the highest layer Lk and descends through the hierarchy. In
order to relate join delay and hierarchy depth, the figure also depicts the current
number of layers in the structure.

The figure shows that for N < 1500 the resulting hierarchy has four lay-
ers, while it has five layers for larger group sizes. Indeed, we find that the join
latency—as expected—depends on the current number of layers with the most
significant increase when raising the hierarchy depth from four to five layers.
As an interesting fact, the figure indicates that for a hierarchy with Layers
L0, . . . , Lk the join delay is highest directly after Layer Lk has been established.
Afterwards, it decreases constantly until Layer Lk+1 is added to the hierarchy.
This is due to the fact that a new established layer leads to few nodes in the
higher layer clusters, as illustrated in Figure 4. This figure plots the mean num-
ber of nodes in clusters of each layer computed once a second. The figure shows
that the cluster size in the lower layers stays quite constant over time. In con-
trast higher layer clusters are incrementally filled with nodes, confirming the
claim made above. For understanding the decrease in join latency depicted in
Figure 3, recall that a node must perform a distance estimation for one cluster
on each layer Lk, . . . L1 until it reaches the lowest layer L0. That means basically
waiting for a response by the cluster member that is closest in each cluster with
respect to latency. Since fewer nodes within a cluster reduces the probability
for having a nearby node—as we will illustrate later—this increases join delay
due to an higher delay for distance probing in the higher layers. However, the
join delays are significantly below two seconds with an average of 0.51 seconds.
We conclude from Figures 3 and 4 that even for large multicast groups NICE
provides a reasonable join delay for the users.
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In the next experiment, we focus on data latency as defined in Section 3.4.
We will restrict us to the latency achieved when the structure has stabilized, as
results for a structure with nodes entering and leaving are be shown in Section 5.
Figure 5 plots the cumulative distribution function (CDF) of the data latency.
One would expect data latency to increase with an increasing size N of the
multicast group. However, we find that it is quite stable regardless of group size,
e. g. a growth in number of nodes from 500 to 8 000 increases mean latencies
by 31% from 173.6ms to 228ms. To gain deeper insight into this behavior,
we plot the CDF of one hop heartbeat latency measured inside each cluster
as well as the hopcount distribution for multicast packets in Figures 6 and 7,
respectively. Confirming our claim made earlier, Figure 6 indicates that intra
cluster latency decreases significantly with an increasing number of nodes, since
the probability for clustering nearby nodes increases. Thus, every hop a data
packet must traverse for delivery takes less time. This fact compensates the
moderate increase in path length that results from increasing the depth of the
hierarchy, which is illustrated in Figure 7. We conclude from Figures 6 and 7
that NICE is highly scalable with respect to data latency.
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The last performance measure we consider is the overhead as defined in Sec-
tion 3.4. We plot overhead as a function of time in Figure 8. Since control over-
head may depend on the position of a node in the cluster hierarchy, we subdivide
the overhead by the layers. That is, we plot mean overhead for all nodes that
have the highest layer cluster membership on the same layer. The traffic is both
aggregated by 1 s and 10 s respectively. As expected, the figure shows that the
overhead for nodes in the highest layer cluster and especially for the rendezvous
point is significantly higher that for nodes that are only members of lower layer
clusters, since heartbeat messages etc. must be send for each cluster. As soon as
the depth of the hierarchy is increased from k to k + 1, the traffic for the nodes
that are member of cluster k but not of cluster k + 1 stabilizes. The fact that
each additional cluster membership adds a constant overhead for cluster main-
tenance leads to a linear grow in mean overheads with the number of clusters.
For the considered protocol configuration, each additional cluster membership
increases overhead by about 1–3kbit/s. Given a logarithmic growth of hierarchy
depth, we conclude from Figure 8 that NICE is scalable with respect to control
overhead. Nevertheless, more powerful nodes with high bandwidth connections
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seem more suited for membership in higher layer clusters, leading to the conclu-
sion that the choice of cluster leaders should not only be determined by average
latency. While we focus on user-perceived results in this paper, the experiments
also pose questions concerning reciprocal effects between the cluster parameters.
We are currently investigation issues like efficient parameter selection in specific
scenarios in the context of another work.

The experiments shown in this section indicate that the NICE protocol from
a user’s perspective performs well even for large but stable groups. However,
depending on the application scenario, coping with large group sizes might be
less important than providing stability of the multicast structure under high
node churn. We will enlighten this aspect in the next section.

5 Churn

In this section, we evaluate the user-perceived performance of the NICE protocol
under the realistic churn model introduced in Section 3.3. Recall that as our goal
is to find the limits of robustness for NICE, our scaling values result in much
smaller mean lifetimes than the values presented by Stutzbach. Furthermore, a
mean number of 128 nodes is considered in this scenario, being rather instable as
a result of churn. We believe this node number is sufficient to get an impression
of NICE’s abilities to handle fluctuations during multicast transmissions.

In a first experiment, we analyze the impact of churn on the structure of
the NICE hierarchy. Similar to Figure 3, we plot both the join delay and the
hierarchy depth as a function of time in Figure 9. The figure additionally shows
the number of group members. We find that during the data transmission phase
the hierarchy depth may alternate between two and three layers due to churn.
However, adding or removing layers does only delay the join operation of a few
nodes. In fact, the join delay of most nodes is with an average of 470ms almost
unaffected by churn. In an experiment not shown here due to space limitations we
find that data latency is not affected by churn, too, although multicast packets
may be lost as we show below. We conclude from Figure 9 that NICE performs
well under churn from the perspective of user-perceived latencies.

Since packet loss certainly affects user-perceived performance, we analyze the
fraction of successfully delivered multicast packets as defined in Section 3.4 in
a last experiment. Using variations in heartbeat intervals (HBI) defined in Sec-
tion 2 and using the churn rates given in Section 3.3 we evaluate the packet loss
ratio to find the robustness limits of the NICE structure. Figure 10 plots the
probability for successful delivery of a multicast packet as a function of mean
node lifetime together with the involved standard deviations. We alternate the
heartbeat-interval HBI between values 1s, 5s, and 10s. Note that without churn
(not shown in the figure), NICE delivers close almost 100% of the multicast pack-
ets successfully, since the NICE hierarchy is stable and packet losses on lower
layers are not considered by the underlay model. However, even under moderate
churn, a value of HBI larger than 1s implies significant packet loss, such that
10% and more of the packets are not delivered. Only an aggressive HBI value
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of 1s can compensate the churn up to a certain extend. Nevertheless, for node
lifetimes smaller that 900s even such aggressive parametrization of NICE fails to
successfully deliver more than 90% of the packets. We conclude from Figure 10
that high churn either requires aggressive efforts to maintain the NICE hierarchy
or some resilience mechanisms as introduced, e. g.in [5].

6 Conclusions

In this work we evaluated the NICE application layer multicast protocol from
a user perspective. Our focus is on scalability—using large groups of up to
8 000 nodes—and the behavior under churn—using aggressive versions of realistic
churn-models. By extensive simulations we achieve the following insights: (1) in-
creasing the number of nodes by a factor of 16 increases latencies by only 31% in
the considered scenario, (2) join delays get optimized over time, and (3) under a
heavy churn configuration data success rates of 98.8% can be achieved. Despite
not being designed for high churn, NICE can cope with such situations by using
smaller heartbeat intervals. Furthermore, NICE also achieves good scalability
for large groups.
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Abstract. In this paper, we bring together resilience analysis and routing opti-
mization for IP-based intra-domain networks. When link, node, or multiple fail-
ures occur, traffic is rerouted which increases the link load on backup paths and
possibly causes congestion. Resilience analysis detects the risk of overload situ-
ations a priori based on a large set of most likely failure scenarios. To counteract,
the routing can be optimized and configured that such bottlenecks are avoided at
least for a smaller set of failure scenarios. In this paper, we demonstrate the effec-
tiveness of this routing optimization in IP networks. We use resilience analysis
with suitable aggregate views on relative link loads. Furthermore, we compare
conventional IP rerouting with IP fast reroute (IP-FRR) and show that IP-FRR
can also significantly profit from routing optimization. This paper reviews ma-
jor parts of previous publications and presents a new method to visualize and
compare the resilience of different routing schemes.

1 Introduction

Outages in communication networks like link and node failures are a matter of fact
and cannot be avoided. However, the network can be prepared for such conditions by
using self-healing routing mechanisms. When elements on the primary path fail, traffic
is rerouted to a backup path. This mechanism alone just assures the connectivity of the
network provided that such a backup path exists and can be activated by the protection
mechanism. There is another aspect: capacity. Rerouted traffic causes increased load on
backup paths so that overload and traffic loss possibly occur. This can be avoided by
carefully choosing the layout of primary and backup paths.

In this work, we bring together three issues that have recently attracted attention in
the area of fault-tolerant networking. Resilience analysis is an efficient means to quan-
tify the risk of overload in networks due to failures. Optimization of resilient IP routing
improves the load conditions in IP networks at least for a small set of likely failure sce-
narios. Recently developed IP fast reroute (IP-FRR) mechanisms quickly switch traffic
to preconfigured backup paths instead of running into transient forwarding loops during
the IP rerouting process. We use resilience analysis to demonstrate the effectiveness of
routing optimization in IP networks. We compare the likelihood of overload for unop-
timized conventional IP rerouting and for IP-FRR. Finally, we illustrate the impact of
routing optimization also for IP-FRR.
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The remainder of this work is structured as follows. In Section 2 we explain the funda-
mentals of IP routing and introduce IP fast reroute. In Section 3, we give an overview of
resilience analysis and link cost optimization. In Section 4 we study the effectiveness of
routing optimization for IP rerouting and IP fast reroute. Section 5 concludes this work.

2 Fundamentals of IP Routing

We explain IP routing which follows the principle of least-cost (shortest) paths. We
show how ambiguities arising from several least-cost paths can be handled. Finally, we
review mechanisms for IP-FRR.

2.1 Conventional IP Routing and Reconvergence

In intra-domain IP networks, routers exchange information about the topology and ad-
ministrative link costs with each other. Based on these routing messages, each node
obtains a full view of the link topology including administrative link costs. It uses this
information to set up the routing table whereby it associates any destination in the net-
work with the interface leading towards a least-cost path to the destination. Thus, the
routing table helps to look up onto which outgoing interface packets destined to a cer-
tain node in the network should be forwarded.

In case of a modification of the topology, e.g., due to a link or router failure, a recon-
vergence process is invoked. The change is broadcast through the entire local network
and routers recalculate the outgoing interface mapping in their routing tables based on
the new topology. As long as the network is physically connected, IP routing finds new
routes for all source-destination pairs. This makes it very robust against network failures.

2.2 Handling Ambiguities Due to Several Least-Cost Paths

Depending on the link cost settings, possibly several least-cost paths exist between pairs
of nodes in a network. In that case the routing is undefined at first step. However, routers
use tie-breakers to decide which of the paths to prefer for routing. E.g., the interface
towards a least-cost path with the smallest port number may be chosen [1, Sect. 7.2.7].
However, port numbers within routers are not necessarily predictable. Therefore, it is
hard or even impossible to predict the route in case of several least-cost paths a priori. In
previous work [2], we quantified that optimized routing can lead to significantly larger
relative link loads than expected if traffic is forwarded on other least-cost paths than
assumed. Hence, predictable load distribution is important for routing optimization,
network planning, and traffic engineering in general.

One solution to that problem is equal-cost multipath (ECMP) routing. It splits the
traffic equally among all interfaces towards a least-cost path. As packet-by-packet load
balancing possibly causes packet reordering, load-balancing is done on the flow level.
To that end, hash-based load balancing is used, i.e., typical data of a flow like source and
destination IP and port numbers are hashed to some value based on which the packet is
forwarded to one of the potential interfaces.

Finally, it is possible to chose link costs such that several least-cost paths do not exist.
In [2] we implemented that objective as part of IP routing optimization and showed that
so-called unique shortest paths (USP) can be efficiently obtained.
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2.3 IP Fast Reroute (IP-FRR)

The reconvergence process in IP networks can take up to several minutes. During this
time, forwarding loops can appear when some of the routers have updated their routing
tables earlier than others. As a consequence, the affected traffic cannot be delivered to
its destination, looping the traffic causes high load on the respective links which causes
additional overload. To avoid this phenomenon, IP-FRR has been proposed. Routers
detecting a failure immediately switch the affected traffic to preestablished backup paths
that are likely to be unaffected by the observed failure. There are multiple proposals for
the implementation of IP-FRR [3].

With Loop-Free Alternates (LFAs) [4], routers store alternative next-hops in their
routing tables which are used when the primary next-hop fails. However, it is not always
possible to find neighbor hops that do not loop back the traffic or create routing loops
when more than a single link has failed. Therefore, LFAs cannot always provide 100%
failure coverage.

A promising alternative are not-via addresses which are currently being standardized
in the IETF [5,6]. For any node N there is a not-via address NF and packets addressed
to NF are forwarded to N while node F is avoided on the path. Hence, the routing
tables in the network require additional entries for these not-via addresses. They are
used for IP-FRR as follows. We assume that a node A receives a packet that is normally
forwarded over F and the next-next-hop N to its destination, but the next-hop F has
failed. Then the node A encapsulates this packet towards the not-via address NF to
tunnel it to N. N decapsulates the packet and forwards it to the destination. If the next-
hop F is already the destination, the packet can be delivered if only the link from A to F
is down but not F itself. Then, A encapsulates the packet to FA and forwards it to some
of its neighbor nodes so that the packet is carried towards F avoiding the link from
A to F . Hence, the not-via mechanism leads the traffic on the shortest path according
to administrative link costs around the next-hop to the next-next-hop or around the
next-link to the next-hop if the next-hop is the destination node. If due to an additional
network failure, traffic encapsulated with a not-via address is tunneled again, this can
lead to traffic loops in the network. To avoid this problem, already not-via encapsulated
traffic must not be tunneled to not-via addresses again but be dropped instead. In [2],
we have argued that IP-FRR needs USP to create a predictable backup path layout. We
have also shown that such IP link costs can be efficiently found while optimizing the
path layout for IP-FRR.

3 Resilience Analysis and IP Link Cost Optimization

In the following, we review resilience analysis and IP link cost optimization.

3.1 Resilience Analysis

Link and router failures may lead to disconnection of nodes within a network and to
rerouted traffic causing increased load on backup paths. The resilience analysis in [7]
quantifies the disconnection probability of nodes due to failures and the potential over-
load caused by backup traffic or abnormal traffic demands.
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The resilience analysis requires the network topology, the routing and rerouting
model, the link capacities, an availability model for network elements indicating fail-
ure probabilities as well as a model of the traffic matrix indicating the probability and
the structure of abnormal traffic demands. We define networking scenarios z = (s, h)
consisting of a failure scenario s and a traffic matrix h. Failure scenarios and traffic ma-
trices are associated with probabilities p(s) and p(h). We assume independence so that
the probability of a networking scenario can be calculated by p(z) = p(s) · p(h). The
idea of the analysis is to investigate the disconnection of nodes and relative link loads
for individual networking scenarios z and these results contribute with a probability
weight of p(z) to the final result. Due to computational limitations, it is not possible
to consider all possible failure scenarios and traffic matrices. Therefore, the analysis
considers only networking scenarios with a probability of at least pmin and this set is
denoted by Z . The final results of the analysis are probabilities for the disconnection of
a given node pair due to failures and complementary cumulative distribution functions
(CCDFs) of the relative load for each link in the network. Both the disconnection prob-
abilities and the CCDF of the relative link load values are conditional in the sense that
they refer only to the set of investigated scenarios Z , but upper and lower bounds on
the true value are given. In the following we omit this aspect for the sake of simplicity.
In this paper, we consider only network element failures as source for increased traffic
on links and use only a single standard matrix without anomalies.

Several aggregated views have been developed in [7] to visualize unavailability.
CCDFs of relative link loads are displayed per link. However, it is desirable to have
a visualization of potential overload in the entire network at a glance. To that end, the
information of the CCDF of the relative link loads can be condensed into a single over-
load value by various mapping functions. These values can be used to color links in a
topological representation of the network.

There are several possible applications of resilience analysis. Using this technique,
operators can, e.g., check if the network’s current state is sufficient to allow additional
clients, to sell better Service Level Agreements, or to deal with the traffic increase
arising in the next few months. If this is not the case, the resilience analysis can help to
decide where to add new links or routers. Furthermore, resilience analysis can be used
to study the influence of a new routing or to investigate the effectiveness of routing
optimization on potential overload. The latter application is the one addressed in this
publication.

Further details to our framework for resilience analysis together with an overview on
related work in this area including examples of resilience analysis, can be found in our
previous publication [7]. Our framework has been implemented as a software tool. It is
presented in [8].

3.2 IP Link Cost Optimization

IP routing follows the least-cost paths according to administrative link costs. Traffic
engineering is possible by appropriately choosing those link costs that lead to a good
load distribution on the links. An objective function defines what is understood by a
good load distribution and is later discussed in more detail. Searching for good IP link
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costs can be automated which is called link cost optimization, sometimes also referred
to as link weight optimization.

The input are a network topology, link capacities, a traffic matrix, and a given set
of so-called protected failure scenarios S for which the routing should be optimized.
The output of the process are administrative costs for all links in the network. The set S
usually comprises all single link and/or node failures (SL, SR, SRL). The failure-free
state s = ∅ is always part of this set. For computational reasons, the set of protected
failure scenarios S is usually smaller than the set of considered networking scenarios
Z that is used as a base for resilience analysis.

Finding optimum IP link costs for a given objective function is usually an NP-hard
problem even when only considering the failure-free case S∅. Therefore, heuristic algo-
rithms are used to search good link costs. An overview of related work including dif-
ferent objective functions and heuristic approaches can be found in [2,9]. The heuristic
we apply for this work is described in [9,10]. It is similar to the threshold accepting
heuristic proposed in [11]. We perform multiple optimization runs with our heuristic
and take the result of the best run as final result.
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Fig. 1. Fortz’s utilization-dependent penalty function φ

In [9] we have studied different objective functions for resilient and non-resilient IP
routing which can be used for different application scenarios. Two of them are explained
in more detail here. Both take the relative link load as a parameter. The relative load ρ(l)
of a link l is calculated as the quotient of the total traffic on a link and the link’s capacity.
To illustrate the severeness of possible overload, relative link loads larger than 100%
are allowed in the computation.

– Umax
S is the maximum relative link load of all links in all protected failure scenarios

S. It is a good choice, if routing optimization is used to guarantee that certain
constraints on the relative link load are kept.

– Fweighted
S sums up penalties over all links and all protected failure scenarios

whereby these penalties increase with increasing relative link load. The penalties
are calculated with Fortz’s continuous, piecewise linear, monotonically increasing
penalty function φ [12], which is illustrated in Figure 1. The objective function
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Fweighted
S is good if the main focus of the optimization lies on the overall link

loads and the average path lengths.

Different objective functions lead to significantly different optimization results. To vi-
sualize that, we consider routing based on the hop-count metric and optimized routing
based on objective function Umax

S and Fweighted
S whereby S comprises all single link

failures.

Fig. 2. CCDF of the maximum relative link load over all single link failure scenarios (COST239
network)

Figure 2 shows the maximum relative link load of all links in the COST239 network
[9] in all protected failure scenarios SL. The x-axis indicates the relative link load and
the y-axis the fraction of links whose maximum relative link load exceeds the value on
the x-axis. Hop-count (HC) routing leads to the highest relative link loads, optimized
routing based on Umax

S leads to the lowest maximum relative link loads. Objective func-
tion Fweighted

S achieves a compromise. The drawback of Umax
S is that it cannot improve

the second-worst link when the worst link cannot be improved further. Therefore, we
proposed in [9] to combine both objective functions, i.e., we first minimize Umax

S and
then Fweighted

S . This leads to the lowest maximum relative link loads and reduces also
the load on other highly loaded links. This is the objective function we use also in this
study. Additional constraints can be used, e.g., in [2], we accepted only link cost set-
tings where several least-cost paths are avoided. This is a valuable feature for traffic
engineering when ECMP is not used or also for IP-FRR based on not-via addresses.
The optimization of IP-FRR has been developed in that work, too.

4 Results

In the following, we study the effectiveness of routing optimization for IP routing and
IP-FRR. Therefore, we first analyze unoptimized hop-count routing and then compare
it to optimized USP routing. We show that even the link cost optimization with a small
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set of protected failure scenarios SL leads to routings that significantly improve the
overall resilience of the network. In a second step, we investigate the difference between
unoptimized and optimized routing using not-via IP-FRR techniques.

4.1 Networks under Study

We have run our experiments for different networks including the Rocketfuel topologies
[13]. All topologies yield similar results. Here, we show only the results of the Exodus
network. The geographical topology of this network is depicted in Figure 3. It is not
suitable to add link or node related information, because some nodes are so close to
each other that they cannot be differentiated and links overlap. Therefore, we propose
another representation of the same topology in Figure 5(a), that will be explained later.

Fig. 3. Exodus network, 22 nodes, 51 links

The used traffic matrix (TM) has been created resembling real-world data according
to the method proposed in [14] and enhanced in [15]. All links were expected to have
identical capacity and the TM was scaled so that the worst relative load experienced by
a link in case of single link failures and hop-count routing is 75%. However, relative link
loads larger than 100% can be achieved in single node and multiple failure scenarios.

Based on [7], we chose an unavailability of 10−6 for all nodes. Each link is un-
available with the same probability of 10−4. The set of investigated scenarios Z has
been calculated for pmin = 10−15. This results in a number of |Z| = 51577 consid-
ered scenarios, about a thousand times more, than the number of single link failures
considered for the link cost optimization |SL| = 52. Z consists of the failure patterns
∅, L, R, LL, LR, RR, LLL, LLR, where L denotes a single link and R a single router
failure. This way, a resilience analysis with Z reaches very high precision, while still be-
ing computationally feasible. On a ”Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz”
a resilience analysis of a single routing in the Exodus network with Z using our soft-
ware tool [8] took about 300 seconds. The link cost optimization to obtain the best USP
routing solution used in this paper took about 66 hours and involved a total number of
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18,654,149 routing evaluations with SL, the best not-via solution was obtained in about
205 hours and 21,816,259 routing evaluations. However good optimization results can
already be achieved after some minutes of optimization1.

4.2 IP Routing and Rerouting Based on the Hop-Count Metric

In the following, we analyze the potential overload in a network when hop-count routing
is used. We investigate the relative load for the link from Palo Alto to Santa Clara
because its potential overload is especially high in some failure scenarios. Figure 4
shows the CCDF of the relative link load ρ(l) for this link. The CCDF illustration
simplifies the observation of the potential overload for a single link. The probability
P (ρ(l) > x) that a relative link load ρ(l) exceeds a certain value x is directly displayed
in the graph. In this case, e.g., the probability that relative link loads higher than 60%
occur from Palo Alto to Santa Clara is about 0.06% P (ρ(l) > 0.6) ≈ 0.06%. This value
is later referred to as R0.6

r . On the other hand, in at least 99.999999% of all scenarios
the relative link load is not larger than about 116%,P (ρ(l) ≤ 116%) > 99.999999%.
This value is later referred to as R0.99999999

q . In particular, this is true for all single and
double link failures as well as single node failures.
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Fig. 4. CCDF of the relative link load ρ(l) for the link between Palo Alto and Santa Clara

If CCDFs are used, a complete figure is necessary to visualize the probabilistic load
condition on a link. Monitoring such information for all links in the network becomes
more difficult with an increasing network size. Therefore, in [7] we presented various
mapping functions to aggregate the information of the per link CCDF into one per link
value. Two of those functions are used in this work.

– Mapping function Rx
r (l) = P (ρ(l) > x) is based on overload probabilities. It

returns the probability with which the relative load ρ(l) of link l exceeds the relative
load value x. Figure 4 illustrates R0.6

r .

1 The routing optimization was parallelized on several CPUs so that the effective computation
time could be significantly reduced.
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– Mapping function Ry
q (l) = inf(x : P (ρ(l) ≤ x) ≥ y) is based on relative link load

quantiles. This mapping function returns the smallest relative link load value x
which is not exceeded by a fraction of at least y of all considered network scenarios.
Figure 4 depicts R0.99999999

q .

We use the mapping functions to convert the CCDF of each link to a single value. Then,
we map those values to a color scale indicating the severeness of the potential overload.

The geographical view in Figure 3 is not suitable to add link or node related informa-
tion. Some nodes are so close to each other that they cannot be differentiated. Forward
and backward directions of links cannot be distinguished, either. Therefore, we propose
an adjacency matrix to represent the network topology as in Figure 5. The cell of row i
column j in the adjacency matrix corresponds to the link between nodes i and j.

Figure 5 shows the adjacency matrix of the Exodus network colored according to
the quantile based mapping function R0.99999999

q for unoptimized hop-count routing
and optimized USP routing. This illustration shows the potential overload of the whole
network and the link with the risk of highest overload can be directly recognized. The
colors in the tiles can be converted to numerical relative load values using the color bar
on the right side of the graph.

4.3 Optimized IP Routing and Rerouting

In the following, we show the impact of routing optimization on the potential
overload.

Figure 6(a) shows the CCDF of the relative load on the link from Palo Alto to Santa
Clara for hop-count routing and optimized USP routing. The curve of the optimized
USP routing is at all values smaller than the one for hop-count routing. Thus, the routing
optimization indeed reduces the overload risk on this particular link. As a consequence,
all mapping functions yield smaller values for optimized USP routing than for hop-
count routing. This findings hold only for this particular link which was the worst for
hop-count routing. The link, depicted in Figure 6(b), between Santa Clara and Miami
presents an interesting counter example. Here, the risk of overload is larger after routing
optimization. An optimized path layout does not decrease the total amount of traffic in
the network but just distributes it differently over the links. However, Figure 6(b) shows
that the resulting load increase on some links does not cause any real problems because
the relative link loads still remain relatively low.

To visualize the impact of routing optimization on the potential overload, we need to
take all links of the network into account. Therefore, we calculate the overload values
according to any mapping function Rx

p or Ry
q based on the CCDFs for all links. Then,

we specify the fraction of links, whose potential overload exceeds a certain value. This
leads to a CCDF of the overload values of the chosen function Rx

p or Ry
q .

Figure 7 shows CCDFs of overload values according to both mapping functions for
hop-count routing and optimized USP routing as solid lines. Routing optimization re-
distributes the traffic in the network. On the one hand, this leads to a reduction of the
worst overload values in the network. On the other hand, on some links with lower po-
tential overload the values lightly increase. This effect is clearly visible in both graphs.
It is an interesting finding, that this result holds for both mapping functions. This shows



Effectiveness of Link Cost Optimization for IP Rerouting and IP Fast Reroute 87

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Weehawken, NJ: 22

Waltham, MA: 21

Tukwila, WA: 20

Toronto, Canada: 19

Tokyo: 18

Santa Clara, CA: 17

San Jose, CA: 16

Palo Alto, CA: 15

Oak Brook, IL: 14

New York, NY: 13

Miami, FL: 12

London: 11

Jersey City, NJ: 10

Irvine, CA: 09

Herndon, VA: 08

Frankfurt: 07

Fort Worth, TX: 06

El Segundo, CA: 05

Chicago, IL: 04

Austin, TX: 03

Atlanta, GA: 02

Amsterdam: 01

Green, 33.3%

Red, 75%

(a) Hop-count routing

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Weehawken, NJ: 22

Waltham, MA: 21

Tukwila, WA: 20

Toronto, Canada: 19

Tokyo: 18

Santa Clara, CA: 17

San Jose, CA: 16

Palo Alto, CA: 15

Oak Brook, IL: 14

New York, NY: 13

Miami, FL: 12

London: 11

Jersey City, NJ: 10

Irvine, CA: 09

Herndon, VA: 08

Frankfurt: 07

Fort Worth, TX: 06

El Segundo, CA: 05

Chicago, IL: 04

Austin, TX: 03

Atlanta, GA: 02

Amsterdam: 01

Green, 33.3%

Red, 75%

(b) Optimized USP routing

Fig. 5. Adjacency matrix of the Exodus network colored according to the potential overload risk
for different routings. The color of a link corresponds to the 99.999999% quantile of its CCDF
of the relative link load. Darker colors indicate higher overload values.

that the link cost optimization on a small set of protected failure scenarios SL is very
effective because it significantly improves the resilience calculated on a large set of
scenarios Z .
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(a) Link from Palo Alto to Santa Clara
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(b) Link from Santa Clara to Miami

Fig. 6. CCDF of the relative link load ρ(l) for hop-count routing and optimized USP routing

4.4 IP Fast Reroute Method Not-Via

We investigate not-via IP-FRR based on hop-count routing and based on optimized USP
routing in comparison to conventional IP rerouting.

We compare the overload values of the entire network for hop-count routing and
optimized USP routing to unoptimized and optimized not-via IP-FRR.Figure 7 displays
the overload values of not-via IP-FRR in dashed lines. The potential overload in case
of unoptimized not-via FRR is even higher than for conventional IP hop-count routing.
Routing optimization significantly improves these values. Optimized not-via IP-FRR
reaches overload values of similar quality as optimized USP routing. This holds for both
mapping functions R0.6

p and R0.99999999
q . The overload values caused by not-via IP-

FRR are higher than for conventional IP routing especially due to the increased load on
backup paths and the longer average path lengths due to local repair. However, routing
optimization can reduce the risk of overload to a secure level also for not-via IP-FRR.
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Fig. 7. Comparison of the CCDFs of the potential overload for IP rerouting and not-via IP-FRR

We have shown that not-via IP-FRR based on hop-count routing leads to even higher
potential overload than conventional hop-count routing. Therefore, routing optimization
is even more beneficial for not-via IP-FRR.

5 Conclusion

Resilience analysis evaluates the load conditions in communication networks for a large
set of likely failure scenarios Z whose probabilities are at least pmin. Routing optimiza-
tion is usually applied to improve load conditions only for a set of most likely failure
scenarios S which is up to a thousand times smaller than Z . Despite of this big dif-
ference in size of the considered failure sets, we have shown that routing optimization
significantly reduces potential overload in networks with conventional IP routing and
rerouting. Furthermore, we illustrated that without routing optimization IP fast reroute
(IP-FRR) possibly causes even more overload than conventional routing and rerouting.
However, routing optimization is again very effective for IP-FRR in avoiding potential
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bottleneck situations and thus even more beneficial for this case. Moreover, it is needed
for IP-FRR anyway because the link cost values should be chosen in such a way that
equal-cost paths are avoided in order to obtain unambiguous backup paths.
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Abstract. This paper presents a unified approach to load generation
in IP-based networks supported by a Unified Load Generator UniLoG
which incorporates a formal automata-based load specification technique.
The load specification technique is applied to two exemplarily chosen
models for VoIP and MPEG-coded video traffic sources in order to use
them for load generation in UniLoG. The performance characteristics of
UniLoG modules, which are responsible for the injection of real traffic
loads at different interfaces in IP networks, are discussed and the prac-
tical use of UniLoG is demonstrated in the context of a comprehensive
QoS study of video streaming via an IEEE 802.11g WLAN under various
background loads.

1 Introduction

The trend towards the convergence of media and communication services on the
basis of the IP protocol strongly increases the complexity of modern communica-
tion systems. Analysis of performance and behaviour of such systems and their
offered services under various load scenarios therefore have become a very im-
portant issue for owners of large networks, in particular during network planning
and administration [1]. At this point, there is a strong need for tools supporting
the experimenter at modeling and generation of artificial traffic loads at different
network interfaces [2].

A current practical method for generation of realistic artificial loads consists
in the realization of a load generator based on a load model which is inferred
from a large amount of measurements in the real network. A series of ded-
icated model-based load generators exists, e.g. for WWW traffic (Guernica
[3], ParaSynTG [4]), P2P and Email (LiTGen [5]), UDP and TCP (ITG [6],
Brute [7]) or IP traffic loads (Harpoon [8], Bruno [9]). The existing solutions
are usually tailored to a particular modeling task and, therefore, they frequently
do not provide an adequate flexibility in case the underlying traffic model is to
be modified or a completely new model is to be used. In Brute, for example, a
new traffic module (T-Module) has to be implemented in C programming lan-
guage in order to define a new traffic model. Some authors (cf. [4,5,8]) consider
only the generation of a trace with certain characteristics (e.g. in order to use
the resulting trace for generation of traffic in network simulation or emulation
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c© Springer-Verlag Berlin Heidelberg 2010



92 A. Kolesnikov and M. Kulas

environments) and do not clearly separate between the load specification and
load generation (in form of real requests injected at a particular network inter-
face). Some existing widely used benchmarks like Iperf [10] or Netperf [11]
concentrate on measuring the UDP or TCP throughput and do not provide the
possibility to exactly specify the interarrival times and the lengths of requests.

In this paper, a Unified Load Generator UniLoG is presented, which incorpo-
rates a formal automata-based load specification technique proposed in [12,13]
in order to provide a unified approach for specification and flexible parameteri-
zation of traffic loads at different interfaces in IP networks. The specification of
loads in UniLoG is accomplished by means of request types which are initially
abstract, i.e. the experimenter can omit load attributes, which are not relevant
for the given modeling study, and introduce some additional load attributes in
order to enrich the semantics of the load model. The possible sequences of re-
quests dynamically created by the users of the network services are described by
means of the corresponding user behavior automaton (UBA), which is parame-
terized by the experimenter (e.g. by supplying the values of the request attributes
and the request interarrival times). The parameterized user behavior automa-
ton (PUBA) represents the load model to be executed by the load-generating
components of UniLoG in the given modeling study.

During the execution of the PUBA, the generation of the correspondent real
traffic loads at a chosen target interface (e.g. at the IP interface) is carried out by
a particular interface-specific adapter (e.g. UniLoG.IP adapter, respectively).
The adapter is responsible for the conversion of every individual abstract request
into its real pendant in order to inject interface-conformant requests into the
network. Adapters for the HTTP, UDP, TCP and IP interfaces are available for
UniLoG at this moment [14,15]. So, many different traffic models (e.g. IP traffic
models) can be prepared in form of a UBA and used in UniLoG in conjunction
with the suitable adapter (e.g. UniLoG.IP adapter) for generation of real traffic
at the chosen target interface (e.g. IP interface).

With this approach, a relatively high level of abstraction and flexibility of
load specification is provided. The analyses of performance characteristics of the
implemented UniLoG adapters confirm the fact, that the precise and effective
generation of real traffic loads can be guaranteed at this high level of abstraction,
which is the main contribution of this paper.

In this contribution we mainly aim at generating of real traffic loads which
can be used, for instance, in various performance evaluation studies in real IP
networks. The UniLoG approach can also be applied to generation of traffic for
network simulation or emulation environments by means of a specific adapter.

The rest of the paper is organized as follows. In Section 2, the embedded formal
automata-based load specification technique is introduced followed by a brief
overview of the UniLoG architecture including its recent extension to a system
for distributed load generation. A presentation of the UniLoG.IP adapter for
generation of IP traffic loads and the discussion of its performance characteristics
conclude Section 2. In Section 3, two exemplarily chosen models for VoIP and
MPEG-coded video sources are presented and the load specification technique is
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applied to construct the correspondent automata-based models in order to use
them for load generation in UniLoG. The practical use of the UniLoG load
generator is demonstrated in Section 4 in the context of a comprehensive QoS
study for video streaming over IEEE 802.11g WLAN under different background
loads. Section 5 contains a summary and an outlook on future work.

2 Unified Load Generator UniLoG

2.1 A Formal Load Specification Technique

In order to achieve a unified and formal procedure of load generation at different
interfaces in IP networks, a formal load specification technique (proposed in [12]
and recently extended in [13]) has been integrated in UniLoG. The (offered) load
L = L(E, S, IF, T ) is thereby defined as a sequence of requests (ti, Ai), ti ∈ T , i
= 1, 2, . . . , n (ti ∈ R: arrival time of request Ai; ti ≤ tj for i < j; n ∈ N) offered
by an environment E to a service system S at a well-defined interface IF during
the time interval T. The specification of loads is thereafter accomplished by the
following four steps LS1-LS4.

At the first step LS1 the experimenter has to choose the target (network
or service) interface IF for load modeling (e.g. the interface to the network
service IP as presented in Fig. 1). A real network node will be conceptually
decomposed into a load-generating environment E and a service system S at
this step. The choice of the target interface is generally met in strict accordance
to the objectives of the performance analysis study being issued. For example,
the experimenter would set the target interface presumably to IP in order to
evaluate different routing algorithms, but he would rather select the HTTP as a
target interface for load generation in order to estimate the mean server response
time under various web-server loads.

At the next step LS2 the experimenter selects a subset of service users which
are relevant for the given modeling task and substitues them by “virtual” users
described by means of a finite user behaviour automaton (cf. right part of Fig. 1).

Ethernet (Data link)

IP (Network)

U1 U2 U3 U4

Load model components

E
UBA1,2

Abstract

Requests

Abstract

Reactions

UBA3UBA4

LS3 : modeling of user

activity by means of UBAs

IF

SService System

(S)

SU1
SU2 SU3 SU4

Environment (E)

Service Users

Conceptual model

LS1 :

System

Decomposition

Users of network

service

IF

LS2 :
Load

Modeling

Network node with TCP/IP

protocol stack

IF

Fig. 1. An abstract approach to load modeling with UniLoG (illustrated for the case
of load modeling at the network service interface IP)
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Furthermore, the relevant request types RT and their corresponding request
attributes as well as the possible types of system events ET (if the load model
should respond to them) are identified at this step. The request types are initially
abstract, i.e. the experimenter is allowed to skip some nonrelevant attributes of
real requests as well as to introduce some new request attributes which do not
exist in the real requests in order to enrich the semantics of the load model
being under construction. The definition of a possible abstract IP request type
InjectPacket to model the creation of the IP-frame by the IP protocol stack is
represented in Fig. 2. In section 3, some exemplarily chosen models for voice and
video traffic sources are presented and the construction of corresponding UBAs
for these models is explained.

i

RInjectPacket

a

SError

b

t

DIAT DError

St

Si
<? xml version="1.0" encoding="UTF-8"?>
<RequestType id="InjectPacket">

<Mandatory>Yes</Mandatory>
<Description>Inject an IPv4 datagram from

the specified source to the destination
</Description>
<RequestAttributes>

<Attribute id="payloadLength" dataType="uint16">
<Mandatory>Yes</Mandatory>
<Description>

The length of payload in bytes
</Description>

</Attribute>
<Attribute id="destAddr" dataType="ipv4addr">

<Mandatory>Yes</Mandatory>
<Description>

32-bit destination IP-address
</Description>

</Attribute>
<Attribute id="protocol" dataType="uint8">

<Mandatory>No</Mandatory>
<Description>Protocol field (17=UDP, 6=TCP, 

253-254=Test Traffic)</Description>
</Attribute>
...

<RequestAttributes>
</RequestType>

1.0
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0.99998

0.00002

1.0

0.43
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Fig. 2. An simplified user behavior automaton for a user of the IP network service
(left-hand). Definition of the abstract IP request type InjectPacket (right-hand).

At the following step LS3, a user behavior automaton (UBA) is elaborated
to specify the possible sequences of abstract requests generated by the service
users SU. A UBA U = {φ, Tφ} is an extended finite automaton consisting of the
set of macro states φ = {φi, φa, φb, φt} which describe the four typical types of
user activity (initializaton in φi, generation of requests in the active macro state
φa, waiting for system reactions in the blocked macro state φb, termination in
φt) and the set Tφ of transitions between these macro states.

To provide for more precise load specification, especially in order to offer the
possibility to model separately the generation of requests and the interarrival
times (IAT) between successsive requests, the macro states are further refined
by introduction of (R)equest-, (D)elay- and (S)ystem-states which have the fol-
lowing semantics:
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(R)equest states are used to model the (conceptually timeless) generation of
requests of exactly one abstract request type and appear only in the active
macro state φa. The corresponding abstract request type is to be assigned
by the experimenter during the creation of the UBA-model (e.g. requests
of the abstract request type InjectPacket are generated in the R-state
RInjectPacket, cf. Fig. 2).

(S)ystem states imply waiting for a certain type of event to occur, e.g. the
initialisation of the user in φi or termination of the user in φt. Furthermore,
S-states can be introduced in the blocked macro state φb if the UBA model
should respond to system events (consider the state SError in Fig. 2 to model
the situation of insufficient buffer space for the next generated IP frame).
The blocked macro state φb is empty, otherwise.

(D)elay states are introduced in the active macro state φa to model the inter-
arrival times between successive abstract requests (cf. DIAT state in Fig. 2)
or to model the times needed to respond to system events in the blocked
macro state φb (if φb is not empty, cf. DError state in Fig. 2).

At the last step LS4, the experimenter has to supply a series of load model
parameters, i.e. the correspondent state transition probabilities, the values of the
request attributes in R-states and the interarrival times of requests in D-states.
The experimenter can use constant values, various distribution functions, traces
of real measurements or special procedures to complete this task in UniLoG.
The resulting parameterized user behavior automaton (PUBA) presents the load
model to be executed by the load generating components of UniLoG.

The input set of a UBA is provided by the different types of external events
ET in S-states. The abstract request types RT in R-states in conjunction with
value domains of their corresponding request attributes build up the output set
of a UBA. The execution of a UBA-model constructed by the experimenter ac-
cording to the steps LS1-LS4 for the time interval T results in the sequence of
abstract requests (ti, Ai), which represent the specified load L at IF during T.

2.2 Overview of the UniLoG Architecture

The architecture of the Unified Load Generator UniLoG has been designed ac-
cording to the steps LS1-LS4 of the load modeling approach presented above. In
a recent work [17] of the TKRN group, the UniLoG architecture has been ex-
tended towards a system for distributed load generation UniLoG-Distributed.
The basic modules of UniLoG-Distributed are presented in Fig. 3.

Load Generators include software components, which are able to generate
specific traffic loads predefined by the experimenter in form of a PUBA. The
existing UniLoG components GAR and ADAPT (see below) are used in
UniLoG-Distributed in order to execute this task.

GAR (Generator for Sequences of Abstract Requests) is responsible for the ex-
ecution of the PUBA model being loaded and the generation of a sequence of
abstract requests (ti, Ai), ti ∈ T, i = 1, 2, . . . , n (n ∈ N), which are enqueued
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Fig. 3. Basic modules of the UniLoG-Distributed system

in the abstract request queue RQ. During the PUBA execution, the request
arrival times ti are chosen according to the specifications in D-states of the
PUBA. The attribute values of requests Ai are generated according to the
specifications in R-states.

ADAPT an interface-specific adapter is responsible for the generation of real
requests at the chosen target interface IF (e.g. at IP interface if the IP
adapter is to be used) on the basis of abstract requests generated by GAR
and enqueued into RQ. In case the PUBA model should respond to system
reactions, the adapter is also responsible for capturing real system events
(for example ICMP messages) and transforming them into correspondent
abstract system messages, which are enqueued into the event queue EQ.
Adapters for UDP/TCP [14], HTTP, and IP interfaces [15] have been im-
plemented already for UniLoG.

Load Agents provide the load generation service to the experimenter and have
the ability to control and to monitor the activities of the load generators. An
experimenter has to be authenticated and authorized to be able to use the
load generation service offered by the load agent. Load agents and load gen-
erators have to be installed in the nodes of the network before an experiment
can be run.

Management station is set up to allow the experimenter to remotely config-
ure, control and monitor the load generators from one central point. Trans-
port Layer Security (TLS) connections between the management station and
the associated load agents are established in order to execute these tasks se-
curely during the whole experiment. After the successful establishment of
the TLS connection, the experimenter can use the load generation service
by submitting different commands to the load agents (e.g. to upload a PUBA
or to start a load generator immediately or at a predefined time, see [17] for
details). The graphical tool support for construction and parameterization



Load Modeling and Generation for IP-Based Networks 97

of UBA models is provided by the LoadSpec module which is installed in
the management station (cf. Fig. 3, right-hand). Generally, values of request
attributes, interarrival times of requests and total load generation time have
to be specified by the experimenter.

The presented UniLoG-Distributed system provides support for specification
(in LoadSpec module) and generation (in GAR module) of initially abstract loads
as well as for generation of corresponding real traffic loads at a chosen target
interface by means of various adapters. The use of the UniLoG-Distributed
system in conjunction with the IP adapter for generation of various IP backround
loads is presented in the case study in Sec. 4 of this paper.

2.3 Adapters for Generation of Real Traffic Loads

At this moment, UniLoG adapters for HTTP, UDP and TCP (presented in [14])
as well as for IP interfaces are available. Due to the space limit, by way of exam-
ple, here we shortly discuss only the UniLoG.IP adapter and its performance
characteristics and refer to [15] and [16] for further details of the realization.

The injection of IP packets and the capturing of system events in UniLoG.IP
is implemented using the open source libraries libnet and libpcap, respectively.
The performance of UniLoG.IP is characterized mainly by the maximum packet
and data rate of the generated IP streams achievable by the adapter as well as
by the mean deadline missing time (MDMT) of IP packets, defined as the mean
of the absolute values of differences between the desired arrival times of IP
requests (specified in PUBA) and the factual injection times of IP packets (in
the IP adapter).

In order to estimate the maximum packet rate achievable by UniLoG.IP, a
sequence of abstract IP requests InjectPacket is generated according to the
UBA model presented in Fig. 2 (without the blocking macro state φb) with
a constant value of the attribute payloadLength and infinitesimal interarrival
times in the D-state DIAT . The abstract IP requests are handed over to the IP
adapter, which is executed on the commodity PC (Intel Core 2 Duo E6400, 2.13
GHz, 1 GByte DDR2 SDRAM 667 MHz, Broadcom BCM5754 Gigabit Eth-
ernet adapter, FreeBSD 7.2) connected to a Gigabit Ethernet testbed (IEEE
802.3ab, 1000BASE-T). The experiments were conducted in the laboratory of
the TKRN group at the University of Hamburg in December 2009 for different
packet lengths. Each experiment lasts about 15 seconds and is repeated at least
5 times in order to get reliable statistical results. The packet rate of the gen-
erated IP packet streams (cf. Fig. 4(a)) provides a very significant performance
characteristic of the IP adapter, as the expected generation overhead per packet
comes into play especially at smaller packet lengths. Comparing our results to
the performance characteristics of some selected traffic generators (presented e.g.
in [18], Fig. 1, left-hand) we can report a packet rate which is nearly linearly de-
creasing from 67000 to 60000 packets/s for IP packet lengths in the range from
46 to 1500 bytes. The small artefacts at packet lengths of 200 and 400 bytes
are (as supported by the first results of further experiments not presented here)
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presumably due to the optimizations in memory allocation methods being used
for the creation of the IP packet objects in FreeBSD 7.2 operating system.

The corresponding data rate of the generated IP packet stream exceeds
100 Mbit/s (Fast Ethernet) already at a packet length of 200 byte (cf. Fig. 4(a),
at the bottom). At a packet length of 1200 byte, the data rate increases to 600
Mbit/s, which corresponds to a utilization degree of 0.6 of the experimental Gi-
gabit Ethernet. At a packet length of 1500 byte, the resulting data rate achieved
by UniLoG.IP exceeds 725 Mbit/s, while e.g. the traffic generator D-ITG can
only achieve a data rate of 630 Mbit/s (cf. [18], Fig. 1, right-hand).

In order to estimate the precision of UniLoG.IP, another two series of exper-
iments are conducted for packet lengths of 1500 byte and 46 byte, respectively.
During an experiment, the interarrival times of IP requests are kept constant. In
every subsequent experiment within a series, the interarrival times are reduced
(in the range from 40 μs to 17 μs) and the MDMT of the injected IP packets is
calculated in the adapter (cf. Fig. 4(b)). In the first series of experiments with
a packet length of 1500 byte, the MDMT in the IP adapter escalates already
for interarrival times in the area of 30 μs, while only 12 μs are (theoretically)
required for a Gigabit Ethernet adapter to deliver an IP packet of this length
to the network. So, it can be concluded, that the remaining 30 - 12 = 18 μs
are required for the UniLoG.IP adapter to prepare a subsequent IP request
and, therefore, can be referred to as “generation overhead”. This conclusion is
supported by the observation of the MDMT in the second series of experiments
for the packet length of 46 byte. The MDMT escalates at interarrival times in
the area of 20 μs, whereas approximately 0.5 μs are required for the delivery of
an IP packet of this length in a Gigabit Ethernet.

In summary, we can conclude that UniLoG offers an astonishingly good ac-
curacy in generating load consisting of IP packets by means of the UniLoG.IP
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adapter. Our tool supports interarrival times up to 20 μs, while some traffic
generators (e.g. TG or MGEN with disabled precise feature) are not able to
reproduce a given IAT accurately (cf. [18], Fig. 2). In particular, it should be
noted that UniLoG is a software based solution with integrated flexible load
specification technique without any dedicated hardware components.

3 Modeling of Real Application Loads with UniLoG

3.1 VoIP Application Modeling

VoIP applications are traditionally characterized by a succession of active periods
(talkspurt or ON phases) followed by an inactive period (silence or OFF phase)
[19]. This is due to the fact, that most of the existing voice encoding schemes
(e.g. G.711 or G.729 codecs) employ the Voice Activity Detection (VAD) facility
to suppress periods with no speaker activity. During the ON phase, the source
sends packets at regular intervals of length Tp (referred to as packetization time).
The duration of active and inactive periods is generally estimated by independent
exponential laws of respective parameters α and β. A voice source may be viewed
as a two state birth-death process with birth rate β and death rate α. The model
is characterized by the following parameters (cf. Fig. 5):

T̄ON [sec]: the mean duration of the ON phase, T̄ON = 1/α, α denoting the
parameter of the exponential law of the active period ON.

T̄OFF [sec]: the mean duration of the OFF phase, T̄OFF = 1/β, β denoting the
parameter of the exponential law of the idle period OFF.

Tp [sec]: the constant packet interarrival time during the ON phase (given by
the packetization time of the voice coder being used).

L [byte]: the constant packet size including voice payload and additional packe-
tization overhead (in form of RTP, UDP and IP headers, if needed).

Given this simple two-state markov model for a VoIP traffic source, the corre-
sponding UBA is derived based on the following assumptions (cf. Fig. 5):

– After the initialization (in the S-state Si of φi) the VoIP source switches to
the ON phase (and not to the OFF phase, w.l.o.g.).
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Fig. 5. ON-OFF model (left-hand) and the corresponding UBA model (right-hand) for
a VoIP application
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– The ON and OFF phases are covered in the active macro state φa of
the UBA. The emission of voice packets during the ON phase is mod-
eled in the R-state RL by generating requests of the abstract request type
InjectPacket (cf. Fig. 2) with payloadLength attribute set to L [byte].

– The constant interarrival time Tp between packets during the ON phase is
modeled in the D-state DT . The mean number of packets generated during
the ON phase is n = T̄ON/Tp. The probability pON for a transition from
RL to DT (for the source to keep in the ON phase) can be calculated as
pON = (n − 1)/n = 1 − 1/n = 1 − Tp/T̄ON = 1 − α ∗ Tp.

– The interarrival time T̄OFF + Tp between the last packet of the actual ON
phase and the first packet of the subsequent ON phase (cf. Fig. 5, left-hand)
is modeled in the D-state DOFF . The probability pOFF for a transition
from RL to DOFF (for the source to switch to the OFF phase) yields to
pOFF = 1 − pON = Tp/T̄ON = α ∗ Tp).

– The source terminates in the S-state St of φt when the actual simulation
time t exceeds the maximum duration of the VoIP call Tmax.

– The blocked macro state φb is empty as the underlying model does not take
system reactions into account.

The illustrated UBA has to be parameterized before it can be used for load
generation in UniLoG. The values of parameters Tp and L for various codecs
(e.g. G.729, G.711) as well as the estimated mean durations of the ON phase
(T̄ON ) and the OFF phase (T̄OFF ) for different types of voice applications and
different languages can be found in [19,20].

3.2 Modeling of MPEG-Coded Video Sources

Several traffic models for VBR MPEG-coded video sources have been proposed
in the literature. To get the necessary details of the effect of loss during transmis-
sion, frame size models (FSM) are essential. Therefore, an exemplarily FSM for
a full-length video proposed by Sarkar et al. [21] is chosen and the construction
of the corresponding PUBA model is illustrated in this section.

The model of Sarkar et al. assumes, that the whole movie (Crocodile Dundee)
is encoded with one group-of-pictures (GOP) structure with IBBPBB sequenc-
ing of frames. In the corresponding UBA, the generation of the intra (I), pre-
dicted (P) and bidirectional (B) frames is modeled by the abstract request types
InjectI, InjectP and InjectB with the single request attribute FrameLength
in the R-states RI , RP and RB , respectively (cf. Fig. 6). The interframe time
(which is determined by the frequency of the MPEG encoder and assumed to be
constant, e.g. 40 ms) is modeled in the D-states D1-D6.

Due to fluctuations in motion intensity of the video, a sophisticated method
to determine an appropriate distribution for the size of I, B, and P frames is
essential. Sarkar et al. proposed to partition the video into clips, which are
identified by adding the sizes of all frames in a GOP to obtain a sequence of
GOP sizes for a movie and combining the adjacent GOPs of similar size to one
clip, using a moving average method. To reduce the number of resulting clips,
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Fig. 6. A UBA model for a MPEG video encoded with a (6,3) GOP structure

the clips are grouped into seven shot classes (illustrated as dashed circles in
Fig. 6), using geometrically separated class-size boundaries, so that the similar-
sized I, B, and P frames are grouped together. Thereafter, each frame type in a
shot class is modeled with an axis-shifted Gamma distribution, so that a total
of 3 ∗ 7 = 21 Gamma distributions are used in the correspondent RI , RP and
RB states of the UBA to specify the value of the request attribute FrameLength
(see [21] for concrete parameters of the Gamma distributions). Finally, the inter-
class transition probabilities in the UBA model are computed from the relative
frequency of transitions among shot classes by sequentially traversing all GOPs
in the original video.

4 Case Study: QoS Evaluation of Video Streaming over a
WLAN under Different Background Loads

4.1 Motivation

Wireless LANs (WLAN) according to IEEE 802.11 standard are widespread.
Nearly all of the currently sold mobile devices, like notebooks or mobile phones,
are equipped with WLAN adapters. Besides the ubiquitous use of WLANs
at home, many congresses, air ports, etc. run public access points (so called
hotspots) in order to enable their customers with WLAN capable devices to ac-
cess services on the Internet. The high data rates of current WLAN products
make it possible to use video on demand services (VoD) with high quality audio
and video contents. However, several WLAN users often share a single wireless
access point, so that a certain IP based background load exists in the WLAN
from a streaming user’s point of view.

This case study reproduces a typical hotspot situation where a user accesses a
video on demand service by means of RTP/RTSP [23,24] over an IEEE 802.11g
WLAN in order to receive a high quality audio and video stream of the movie.
In addition to the movie consumer, several load generators imitate network be-
haviour of other WLAN stations by producing an IP based background load
within the wireless network. At this point the following questions emerge: (1) At
which level of background load does the quality of the movie degrade signifi-
cantly? (2) Does the type of background load play an important role? (3) At
which level of background load does the streaming service become “unusable”?
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4.2 Experimental Environment

The case study’s network is constructed like a hotspot where mobile computers
equipped with WLAN adapters access services on the Internet. For that purpose,
the case study uses a network consisting of one Fast Ethernet segment, with the
VoD server and the load sink, and of one WLAN segment, with the VoD client
and the load generators, (cf. Fig. 7). The load generators produce artificial IP
based background loads by running UniLoG.IP.

load sink

load generator
VoD client

load generator

full−duplex Fast Ethernet

VoD server

Fast Ethernet switch

WLAN access point

Fig. 7. Experimental setup

D-Link’s access point “DWL-2100 AP” is connected to the wired network
and allows WLAN stations to send packets with data rates up to 54 Mbit/s on
channel 1 in the 2.4 GHz band (OFDM modulation). This access point transmits
frames with the maximum transmitting power (100 mW). The distance from
access point to VoD client and load generators is about 4 meter. Furthermore,
the distance between all three WLAN stations is nearly 2 meter. Therefore,
no hidden station problem should occur and the RTS/CTS mechanism on each
WLAN station and the access point is deactivated (threshold is set to 2346 byte).

The VoD server (VLC Media Player, version 0.9.8a) streams the high quality
movie “Big Buck Bunny” [22] with a high definition resolution of 1280x720 pixels,
whose video is compressed as H.264/AVC and whose audio format is MPEG-4.
The streaming session lasts about 10 minutes. The VoD client receives the audio
and video streams from the VoD server over the WLAN while the load gener-
ators inject IP packets into the same WLAN destined to the load sink. Hence,
the VoD client and the load generators compete for access to the shared com-
munication media. During the experiments, the load sink does not send out any
packets.

The series of experiments were conducted in the TKRN research group’s lab-
oratory at the University of Hamburg during the working time of the university
staff (from about 9 a.m. to 6 p.m.) in September 2009. In that laboratory, bea-
con frames are received from eleven other active access points. Three of these
external access points transmit data on the same channel as the access point of
the case study. Therefore, signal collisions can occur during the experiments.
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4.3 Choice of Background Load

In order to achieve various degrees of utilization in the WLAN, a set of different
PUBAs based on the UBA model illustrated in Fig. 2 is prepared, which specify
traffic loads for constant (CBR) and variable (VBR) throughput on the IP layer
of 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12 and 14 Mbit/s. Both load generators execute the
same PUBA and produce aggregated background loads with 1, 2, 3, 4, 8, 12,
16, 20, 24 and 28 Mbit/s throughput on the IP layer. In the experiments with
CBR traffic, the value of the request attribute payloadLength of the abstract
IP request type InjectPacket is set either to 50 or to 1480 byte. The VBR
experiments use constant values for the request attribute payloadLength of 50
or 1480 byte whereas the interarrival times between successive requests (modeled
in the D-state DIAT , cf. Fig. 2) are negatively exponentially distributed. In
the experiments with a payloadLength of 50 byte, the PUBA models for the
aggregated background loads up to 4 Mbit/s are used due to the fact, that IEEE
802.11g WLANs only support a maximum IP throughput of 4.9 Mbit/s for such
small packet lengths [25].

4.4 Streaming Quality Metrics

The values determining the quality of the transmission of video and audio
streams are extracted from the captured RTP and IP packets. This offers the
advantage that no modifications to the VoD software are required. The following
streaming quality metrics are considered in this case study:

jitter. The variability in the delays of the packets from the same packet stream
is called jitter [24]. This case study picks the jitter from RTCP receiver
reports (RR) and considers only the jitter in the audio stream as the jitter
values from RR for H.264 encoded video streams are useless (RFC 3984).

packet loss. The VoD client reports (within the RR) about the difference be-
tween the number of expected and received RTP packets.

number of sequence errors. A sequence error occures in the situation, when
a RTP packet arrives at the VoD client and its sequence number does not
equal the increment of the last received packet.

number of duplicates. The case study defines that a RTP packet is a dupli-
cate when at least one other packet received during the last two seconds, has
the same sequence number.

IP throughput. The throughput on the IP layer is defined as the amount of
data that the VoD client has sent to the VoD server and received from it
(including the IP header) during the streaming session.

In order to obtain statistically significant results and to minimize the effect of
outliers, each experiment for a given level of background load was conducted at
least five times.
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4.5 Results

The drop in streaming quality is noticeable in a quantitative way (by means of
the streaming quality measurements) and in a qualitative way (the user perceived
quality of the movie playback). The streaming quality becomes unacceptable
when the background load reaches the WLAN’s high-performance range. In that
range, the VoD client receives so little audio and video data that the client is
unable to playback frames and sound. As a consequence of that, the movie
playback frequently stalls and the frames often contain artifacts.
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Fig. 8. Video streaming quality in the case study (95% confidence intervals)

This case study has found out that small IP packets have a disastrous im-
pact on the performance of 802.11g WLANs. This kind of WLANs already reach
their limits under loads with relatively small packet size of 70 byte and with a
low mean IP throughput (4 Mbit/s). This behaviour is due to the fact, that the
data-link layer and the physical layer of WLAN stations use several techniques
in order to achieve a reliable data transfer. These techniques cause an overhead
during data transmission and, therefore, the IP throughput degrades especially
for small IP packets. The results of the case study demonstrate that UniLoG.IP
pushes the WLAN into the high-performance range when it generates load start-
ing at 16 Mbit/s with 1480 byte long payload (both CBR and VBR). From this
load level on, the mean IP throughput on the VoD client side degrades undoubt-
fully, the jitter rises strongly and the number of sequence errors, lost packets
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and packet duplicates (not shown) increases heavily (cf. Fig. 8). The partially
strong fluctuations are due to the only incompletely controllable experimental
environment. But it is clearly evident that the streaming quality of the movie
degrades with increasing IP based background loads.

Finally, the results of the case study show that the streaming quality only dif-
fers marginally when CBR and VBR experiments use levels of background load
with the same mean IP throughput and the same packet lengths. Interestingly,
the results demonstrate that the packet length is significantly more important
than the distribution of the interarrival times because the packet length deter-
mines how long a WLAN station allocates the communication medium.

5 Summary and Outlook

In this paper, we presented a unified approach to load generation in IP based
networks, supported by a Unified Load Generator UniLoG. With the embedded
formal automata-based load specification technique, our tool provides a high
level of abstraction and flexibility during the load modeling. The analyses of the
performance characteristics of the UniLoG adapters, which are implemented
by the authors for IP, UDP and TCP as well as for HTTP interfaces, confirm,
that an astonishingly precise and effective generation of real traffic loads can be
guaranteed by UniLoG respecting the fact, that this is a software based solution
without any dedicated hardware components.

Furthermore, we illustrated the construction of the corresponding UBA for
two exemplarilly chosen models for VoIP and MPEG video traffic sources. In con-
junction with various UBA models, adapters and the distributed load generation
facility, UniLoG provides a highly universal and effective tool for load generation
in IP based networks. In the context of the comprehensive case study for a praxis-
oriented WLAN scenario, we obtained concrete results for QoS parameters of
video streaming under various background loads and demonstrated the practical
use and the potential application fields of distributed load generators.

As a continuation of this work, the autors intend to provide additional models
for aggregated VoIP and MPEG-coded video sources in the form of a UBA as
well as to design adapters for other interfaces (e.g. FTP, CIFS).

Acknowledgement. The authors would like to thank Prof. Wolfinger for his
great support during the preparation of this paper.
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Abstract. In this paper, we analyze the energy-efficiency of a TDMA
protocol (gMAC) for gossiping-based wireless sensor networks. In con-
trast to most schedule-based TDMA protocols, slot allocation in gMAC
is decentralized, allowing adaptation to evolving network configurations.
The protocol, modeled in the MoDeST language, is evaluated using the
discrete-event simulator of the Möbius tool suite. We investigate the im-
pact of collision-detection mechanisms, initiator positioning, and random
silence on the gMAC energy efficiency. As a result, we find the number of
active slots that optimize the trade-off between low energy consumption
and fast information dissemination.

Keywords: TDMA, energy, wireless sensor networks, formal modeling,
simulation.

1 Introduction

The Dutch company CHESS develops wireless sensor networks (WSN) com-
prising battery-powered mobile sensors that exchange data via gossiping-based
communication. The sensors are mobile, act in a fully decentralized manner—
there is, e.g., no leader—and battery recharging is not possible. CHESS WSNs
are, for instance, used in the Dutch flower auction market in Aalsmeer where
thousands of trolleys carrying flowers are equipped with autonomous routing
capabilities.

To realize an energy-efficient communication mechanism supporting sensor
mobility, CHESS developed a TDMA-variant, called gossip-based MAC [15]
(gMAC, for short) to control medium access. In TDMA, the time is divided
into frames which are subdivided into slots in which nodes send or receive or
idle. Whereas in most TDMA protocols a central access node decides which slot
is to be used by which node, in a setting with mobile nodes, a fixed sched-
ule can no longer be maintained: ever changing neighborhood relations between
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nodes invalidate defined schedules and cause collisions in communication. There-
fore, gMAC exploits a fully decentralized slot allocation—each node decides on
its own when to send and when not. Moreover, the sensors communicate with
each other in an epidemic broadcast-like manner. This forms the basis of gossip-
ing applications in which nodes continuously exchange data [10]. This all-to-all
communication prevents the usage of simple (and frequently adopted) energy-
conserving strategies like switching off a radio when no communication with the
central access node takes place. In our setting, nodes have to listen to messages
sent by all their neighbors and only idle during the non-active slots. To enable
an implementation with simple (and cheap) microprocessors, CHESS designed
gMAC as simple as possible. Therefore, gMAC does not incorporate techniques
such as dynamic frame lengths as in EC-TDMA [16], transmission length indi-
cations as in A-MAC [12], or organizing neighbor information in a spanning tree
as in TreeMAC [14].

gMAC is designed to work with a rather simple radio working in the 2.4 GHz
band. Like any TDMA protocol, time is divided into frames. A frame consists of
an idle and an active period. The active period is divided into equal-length slots,
in which nodes send (once per frame and node) or receive. The beginning of new
frames is synchronized among all neighboring nodes up to a certain precision.
As nodes decide autonomously in which slot they send, collisions may occur.
gMAC supports an indirect collision avoidance mechanism: node X keeps track
of the slots in which it received something. This list is communicated by X to
its neighbor Y as piggy-back information in the payload. If X did not receive
an item in Y ’s send slot, Y infers that it is using the same send slot as another
node, and randomly chooses a new, free one. As this mechanism cannot ensure
the complete absence of collisions, a node can randomly decide to not use its
send slot, and listen instead.

In this paper, we focus on the energy-efficiency of the protocol under the
assumption of perfect clock synchronization. In particular, we investigate the
effectiveness of the gMAC collision-detection mechanism (which fraction of real
collisions is detected?), initiator positioning of gossiping messages (what is the
influence of the position of the gossip initiator on latency?), and random silence
on the gMAC energy efficiency (how does this protocol aspect impact collision
detection?). As a result, we find the number of active slots that optimize the
trade-off between low energy consumption and fast information dissemination for
various system configurations. We consider first static network configurations to
study the basic protocol mechanisms, and then determine the influence of node
mobility. The main findings of our study that were also of interest to CHESS
are (i) random silence improves collision detection significantly, (ii) the optimal
number of active slots is about the number of neighbors plus one, and (iii)
mobility lowers the number of failed transmissions.

Although our analysis technique is simulation, we deliberately take a drasti-
cally different approach from using standard simulation packages such as NS2,
Opnet, OMNET or GloMoSim, to mention a few. Our starting point is a model
of the protocol in the MoDeST language [3], a formalism that supports the
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modular specification of distributed systems in a mathematically rigorous, though
user-friendly, manner. As MoDeST has a formal operational semantics in terms
of stochastic timed automata, the simulation model obtained from the protocol
models is unambiguous. The automata underlying MoDeST models are simu-
lated using Möbius [7,5], a discrete-event simulator that has been intensively
used in dependability analysis. The formality of the modeling language allows
not only the integration with other formal analysis tools (such as model check-
ers), but, more importantly, yields semantically sound simulation runs. Together
with the fact that we do not model entire protocol stacks but rather abstract
from lower layer effects, this avoids many of the credibility problems of standard
simulations [6,1]. This approach has, amongst others, been applied to analyze
the energy consumption of Zigbee and IEEE 802.15 [8], and the analysis of
a plug-and-play communication protocol [4]. Main limitation of our approach
is that MoDeST models may exhibit nondeterminism, which cannot be simu-
lated. We thus have to check our models prior to simulation on the presence of
nondeterminism.

Organization of the paper. Section 2 describes the CHESS gMAC protocol. Sec-
tion 3 describes the modeling assumptions and the experimental set-up. Section 4
focuses on results concerning collision detection, and Section 5 focuses on energy
consumption. Section 6 concludes.

2 The gMAC Protocol

The gMAC protocol divides time in fixed-length frames. A frame is divided in
an active and idle period, and both periods are subdivided into slots of equal
length. A node in the network is synchronized with its immediate neighbors at
the beginning of a frame. A node randomly chooses an active slot as send slot
(the TX slot). All other active slots are receive slots (RX slots). During the idle
period, the radio is put in idle mode to save energy. In an RX slot, a node listens
for incoming messages from neighboring nodes, in its TX slot it sends a message.
When the active period is over, it switches to idle mode again, and so forth.

Table 1. Energy demands of the
nRF24L01 radio

mode current
transmit 11.3 mA
receive 12.3 mA

idle 0.9 µA

Let S be the number of slots within a frame,
and A ≤ S the number of active slots. A is
a crucial parameter in the protocol design, as
the active operation phase costs much more en-
ergy than the idle phase. The CHESS network
nodes are equipped with an ATMega64 micro-
controller and a Nordic nRF24L01 [13] packet
radio. The energy demands of the nRF24L01
radio are summarized in Table 1. A is usually
much smaller than S. In the gMAC protocol
implementation with the aforementioned processor, S=1129, and A = 8.

When a node is powered on, it randomly chooses an active slot as TX slot.
In each RX slot, it can receive a message of at most one other node. The
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well-known hidden node problem describes the scenario when more than one
node sends messages to the same node in the same slot.

X ZY

Send slot of X and Z

(a) Hidden node situation

X ZY

0 0

Piggy-back Information

(b) Piggybacking

Fig. 1. Hidden node problem and its detection

Figure 1(a) depicts a
situation where nodes
X , Y , Z are positioned
such that the middle
node Y is within the
transmission range (the
circles) of both other
nodes, and both X and
Z are outside each oth-
ers range. If X and Z
select the same TX slot,
then their messages will
collide in the intersection of their ranges. They cannot sense this themselves, and
Y will receive no message at all as it cannot distinguish a collision from the sit-
uation where no message was sent.

The gMAC protocol provides a piggy-back technique to make collisions de-
tectable. With each pay-load message, the sender’s perspective on the current
slot allocation is also transmitted, which we call the piggy-back information.
The piggy-back information is a sequence (b0, b1, ..., bA−1), where bi ∈ {0, 1} for
0 ≤ i < A. bi = 0 indicates that nothing has been received in slot i, either
because nobody sent something, or due to a collision or message loss. bi = 1 in-
dicates that the sender received something in slot i, or that slot i is the sender’s
own current send slot. In the example in Figure 1(a), since Y cannot receive
anything in the second slot, it writes a 0 in its piggy-back information at the
corresponding position and reports this to X and Z on its turn to send, in the
third slot (cf. Figure 1(b)). Based on this information from Y , nodes X and Z
can conclude that there was a collision in their send slot. The gMAC protocol
then stipulates that X and Z pick randomly a new send slot among the free
active slots, to avoid further collisions. Note that it is possible that no free slot
is available when a node needs one. This can happen when the nodes are in a
very crowded environment and the number of neighbors exceeds the number of
active slots (some of our simulation configurations cover this situation). In this
case, the node will keep the old send slot despite the detected collision in that
slot.

X ZY

Fig. 2. Problematic scenario for
piggy-back technique

Although the piggy-back technique helps
to detect many collisions, there are still some
it cannot find. In Figure 2, node Y has the
same send slot as X and Z, i.e., they send
and receive at the same time and will there-
fore never receive anything from each other in
this slot, hence the collisions between them
will not be detected or resolved. The rea-
son for this is that the piggy-back technique
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requires at least one common neighbor which is not involved in the conflict, so
that it can report the collision. The gMAC protocol provides one more mech-
anism to break this kind of conflict. When a node reaches its send slot, it can
decide with a certain probability p to not send, but to listen. This gives a node
a chance to overhear what is going on in its own send slot, and an opportunity
to pick a new send slot, if necessary.

3 Experimental Setup

Modeling assumptions. In the real world, the interference range of a node’s radio
signal is usually larger than its effective transmission range. The magnitude of
the interference range is not necessarily equal in every direction. Besides, the
ranges can vary from time to time. Depending on the environment, the Nordic
nRF24L01 radio has a range between 0.5m to 50m. For the sake of simplicity,
we adopt the approach chosen in [2] and use the closed unit disk model in which
the interference range equals the transmission range, and is given by a radius
r. All network nodes are assumed to have the same transmission range, which
means the transmission between nodes is symmetric. We further abstract from
other link layer mechanisms, i.e., message losses are assumed to be due to colli-
sions only. gMAC incorporates a mechanism to synchronize clocks of neighboring
nodes. Sufficient criteria that ensure the correctness of this clock-synchronization
mechanism have recently been mathematically analyzed [9]. As our simula-
tion models satisfy these criteria, we abstract from the clock-synchronization
algorithm.

The gMAC protocol accommodates for tolerable de-synchronization by short-
ening the actual sending period and uses the difference to the slot length as a
lead-in to and lead-out from the send period (the so-called guard times). This
does of course influence the energy consumption, and therefore we incorporate
the guard times in our model.

Set-up. The base model of our experiments is a 15 × 15 grid network of 225
nodes. Each node has a distance of 1 to its respective horizontal and vertical
neighbors (i.e., the distance to the diagonal neighbors is

√
2). A frame consists

of 1129 slots. The number A of active slots is a crucial parameter in the protocol,
and we analyze the behavior of the gMAC protocol for various A. Since in the
real implementation A=8, we choose the transmission range r such that each
inner node of the grid has 4 or 8 direct neighbors, respectively. We say a node
is randomly silent, if it stays silent in its TX slot with some probability. This
probability in the current implementation of the CHESS sensor node is p = 1

16 .
We adopt this value in our model and use it for all experiments. To get insight
into the influence of this parameter, we also performed experiments with other
values of p, e.g. p = 1

8 . It turns out that the results pattern is similar to that with
p = 1

16 , which that is with random silence, a higher percentage of collisions can be
detected. The experiments focus on two major aspects: (i) the effect of the gMAC
collision detection mechanism (piggy-backing and random silence), and (ii) the
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latency of message dissemination versus the required energy consumption. The
confidence level of all simulations is set to 0.95 and the relative confidence interval
is 0.1.

Collision analysis. We estimate the effectiveness of the collision detection mecha-
nisms by counting both the real number of collisions that occurred in the network
(referred to as Failed Transmissions, FT for short) and the number of collisions
that are detected using the piggy-backing technique (the number of Detected
Collisions, DC for short) in each frame. Note that although a node can detect
collisions, it can neither distinguish with whom it collided nor how many nodes
collided. Hence, when considering DC, we can only count the number of nodes
that report collisions and not the real number of collisions, i.e. DC represents
actually the number of nodes that detect collisions. The values for FT and DC
are illustrated for different scenarios in Figure 3 where the number next to a
node (small circles) indicates its TX slot. The right-most figure represents an
extreme case, where the respective diagonal nodes send and receive at the same
time, i.e., while the upper righthand and the lower lefthand nodes are sending,
their messages collide at the upper lefthand and lower righthand nodes, and
vice versa. Hence communication between all nodes fails, but no node is able to
detect it. We vary the transmission range r and the number A of active slots as
follows. In networks with at most 4 neighbors, A ranges from 4 to 10, and for
at most 8 neighbors, A ranges from 6 to 12. Each of the experiments is run 100
times and lasts at least 1000 frames.

2

00   1

2

: Failed transmission: Detected  Collision

2 1

1 2

2

1 1

0

8

0DC

FT

Fig. 3. Three collision situations

Latency vs. energy consumption.
Second, we focus on the latency of
message dissemination and the en-
ergy consumed by that. We con-
sider the average time required
and the total average energy con-
sumed until a message is delivered
to all network nodes. We say a
node is infected if it has received
a message. Initially, only one node
is infected, the initiator. To get in-
sight into the effect of the position
in the network of the message initiator, we consider (cf. Figure 4): a corner node,
a middle node at the border, and a center node. Again, the simulations are run
for different values of r and A to investigate the influence of these parameters
on gMAC’s energy consumption. Each experiment is run 600 times.

Different settings. We run all aforementioned experiments for three network
settings:

1. A static network without randomly silent nodes (for short grid),
2. A static network with randomly silent nodes (for short grid+p),



Analyzing Energy Consumption in a Gossiping MAC Protocol 113

3. A network with node mobility but no randomly silent nodes (for short
grid+m), so that we can obtain a clear comparison between static and mobile
scenarios without influence of randomly silent nodes.

Since we want to investigate the influence of local changing of node position
on the network, we model the mobility by rotating a fixed row (the fifth row)
in the grid one position to the right. The node shifted out is shifted in on the
other side. The row is rotated one position every 100 frames for the collision
experiment, so that the network has enough time to stabilize after each shift.
Since the average time required to deliver a message to all nodes is less than 30
frames, we rotate every 1 or 3 frames to investigate the influence of the moving
rate on the latency.

4 Collision Analysis

 Start sending from corner Start sending from border   Start sending from center

Fig. 4. Three different initiator positions

The different variants of
gMAC in the different
scenarios have been mod-
elled in the MoDeST mod-
elling language [3], and
simulated in the Möbius
tool set [7]. The mod-
els are available from
http://moves.rwth-aachen.
de/~henrik/mmb10/.

Static network. We consider the static grid model grid without randomly silent
nodes. The transmission range is r = 1.1 <

√
2, i.e., each inner node has 4 neigh-

bors. Figure 5(a) shows the fraction DC
FT versus the number of frames for different

values of A. A larger percentage means that a larger fraction of collisions is de-
tected by the gMAC piggy-backing method. The graph shows that for increasing
A, a larger fraction of collisions is detected. This is confirmed for a network with
8 neighbors, cf. Figure 5(b). The almost horizontal straight lines show that for
small A the randomly changing slot allocation does not reduce the number of col-
lisions, but yields a more or less stable number of collisions. If A is large enough,
DC
FT goes to zero, as no collisions are detected anymore. This phenomenon occurs,
e.g., for A=10 and r = 1.1, as can be seen in Figure 5(a). Failed transmissions
may still occur, however; for A=10, e.g., on average 7 transmissions in the whole
network fail without being detected (not depicted in Figure 5(a)). Apart from
the fact that some collisions can never be detected, it is generally the case that A
needs to be large—in comparison to the number of neighbors—before DC tends
to go to 0. Our simulations have shown that, in the case of 4 neighbors, this is
the case for A ≥ 9; for 8 neighbors, this holds for A ≥ 23.

Random silence. Figure 6(a) depicts the results of the same experiment run on
grid+p with 4 neighbors. The comparison with Figure 5(a) reveals that grid+p
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Fig. 5. Collision detection in a static network
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Fig. 6. Collision detection under random silence

can detect a significantly larger percentage of collisions than grid. This percent-
age increases for larger A. Furthermore, in grid+p, even with A=10, the fraction
DC
FT does not go to 0 anymore. Our explanation for that is that in grid+p nodes
are more often receiving than in grid, and thus more collisions are detected. In-
deed, for A=8, DC in grid+p is significantly higher than for grid, cf. Figure 6(b).
Figure 6(b) also shows that FT increases compared to grid. This is unexpected.
We believe that the reason for this phenomenon is that, when A is at least the
number of neighbors, then randomly silent nodes can turn a good slot allocation
into a bad one. Consider Figure 7 (left), with 11 nodes (the numbers indicating
their TX slots) and only two neighboring nodes in conflict (in slot 2). Let A=5.
When the boxed node is silent in slot 2, it will detect a collision, and (randomly)
chooses a free send slot, which is slot 3 (all others are in use). As the right figure
shows, the boxed node is suddenly in conflict with four nodes (2-hop neighbors)
rather than one, causing eight failed transmissions. The new slot allocation is
worse than before. Of course, the case illustrated in Figure 7 is quite extreme. In
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general, when A is larger than the number of direct neighbors it will probably
collide only with relatively fewer 2-hop neighbors.

4

1

23 0

4

3 3 2 3

1

0

3

3

2

3

1

1

3

4

3

4

Fig. 7. Changing slot allocation by silent node

Node mobility. We now con-
sider the influence of node
mobility on DC

FT . Figure 8(a)
shows the results for a network
with r = 1.1 and a shifting fre-
quency of 1

100 frames. We can
see for A = 10 that the ampli-
tudes of the curves shortly af-
ter every 100 frames are quite
significant, and between each
two peaks, the curve tends to
go down. For A ≤ 8, the peaks nearly vanish. This means that for A so small
that the static network can not reach a collision-free state, the influence of mo-
bility on collision detection diminishes. In fact, when A is small, DC

FT , as well
as DC and FT , especially DC, are almost unchanged under node mobility (cf.
Figure 8(b)). For a higher rate of node shifting, i.e., shifting every 30 frames,
the result pattern is similar.

5 Latency vs. Energy Consumption

Static network. The second type of simulation is concerned with the energy
efficiency of message propagation. By latency we mean the average time required
to deliver a message to all nodes. Again, we first consider a static network.
Figure 9(a) shows the experimental results for transmission range r=1.1, and
A ranging from 4 to 7. The message initiator is positioned in the corner. The
circle-lines show the energy consumption (right y-axis) versus the number of
frames, and the black, curved lines (left y-axis) show the ratio of infected nodes
(i.e., nodes that have received a message) versus the number of frames.

The results confirm that for fixed A, there is a linear dependency between the
energy consumption and the number of frames, which is characteristic for TDMA
protocols. The slope depends on A; the larger A, the steeper the energy curves.
For the message dissemination, it can be observed that after a short warm-up
phase, the fraction of infected nodes drastically grows, after which this slowly
progresses to one. For increasing A, the percentage of infected nodes converges
to more quickly to one, i.e., message dissemination is faster.

Obviously, the larger the A is, the lower the message latency becomes, but as
a pay-off, the energy consumptions increases with larger A. In order to get in-
sight into the trade-off between message dissemination and energy consumption,
Figure 9(b) depicts an energy-percentage diagram, which shows the percentage
of infected nodes versus the total energy needed to infect all nodes. One clearly
sees that A=4 and A=7 are not economical and in the considered scenario, a net-
work with 5 or 6 active slots provides the best result in terms of energy efficiency.
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Performing the experiments for A = 8, 9 and 10 reveals that these settings are
less energy-efficient than for A = 7. For A = 10, e.g., the network tends to be
collision-free, but requires twice as much energy as for A = 5 without offering
a doubled propagation speed. We performed the experiment for three different
initial sending positions and different transmission ranges. All of them exhibit
a pattern similar to Figure 9(b). The optimal values of A are summarized in
Table 2.

Table 2. Optimal A values

��������Range
Position

corner border center

4 neighbors 6 5 5
8 neighbors 8 9 8

Figure 9(c) shows another effect
of changing the initial sending po-
sition. We put the most energy-
efficient results from a network
with 4 neighbors and initial sending
position at the corner or the cen-
ter in one graph. Obviously, start-
ing from the center needs only two
third energy of that starting from
the corner. It does not come as a surprise that message dissemination from the
center is more efficient than from a corner. However, when we consider the in-
fluence of network density on latency, we can see that with a fixed initiator, a
network with 4 neighbors or 8 neighbors exhibits almost the same performance
(cf. Figure 9(d)). This means, although a denser network can propagate mes-
sages faster (a result which we have not shown here), it takes still as much energy
as in a less dense network to deliver a message to the whole network.
Random silence. The results for grid+p show a similar behavior, hence we will
not present them here. Interesting is however the comparison between grid and
grid+p. In Figure 9(e), we see the most economical results of grid and grid+p,
both with 4 neighbors and the same initial sending position. The superiority
of grid+p is quite clear, since roughly 15% energy can be saved if nodes are
randomly silent. This is not self-evident, since for the used radio, receiving costs
actually more energy than sending. We believe that the 15% drop in energy



Analyzing Energy Consumption in a Gossiping MAC Protocol 117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

E
ne

rg
y 

in
 u

ni
t

Frames

Latency: grid, 4 neighbors, start from corner

active slots = 7

active slots = 6

active slots = 4

active slots = 5

(a) grid, 4 neighbors, start sending from
corner

 0.9

 0.95

 1

 300  350  400  450  500

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: 4 neighbors, start from corner, Energy-Percentage

active slots = 7

active slots = 5

active slots = 4

active slots = 6

(b) Energy-percentage: grid, 4 neighbors,
start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 100  150  200  250  300  350  400

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

Latency: grid, 4 neighbors, corner vs. center

cornercenter
active slots = 5 active slots = 6

Energy in unit

(c) corner vs. center, grid, both 4 neigh-
bors

 0.8

 0.85

 0.9

 0.95

 1

 200  250  300  350  400

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid, 4 neighbors, corner vs. center

4 neighbors
active slots = 6

active slots = 8
8 neighbors

(d) 4 neighbors vs. 8 neighbors: grid,
both start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200  250  300  350  400

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid vs. grid+p,4 neighbors, start sending from corner

grid
active slots = 6

grid + p
active slots = 6

(e) grid vs. grid+p, both have 4 neighbors
and start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200  250  300  350  400

R
at

io
 o

f 
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid+m, 4 neighbors vs. 8 neighbors, speed=1 vs. speed=3

4 neighbors
speed = 1

8 neighbors
speed = 1

8 neighbors
speed = 3

4 neighbors
speed = 3

(f) different transmission ranges and
shifting rates

Fig. 9. Latency vs. energy consumption



118 H. Yue, H. Bohnenkamp, and J.-P. Katoen

consumption is because grid+p has in general more opportunities to receive
messages, which accelerates information dissemination.

Node mobility. For a network with mobility, we consider first the case of start
sending from the corner. There are two options for transmission range (4 neigh-
bors or 8 neighbors) and for the speed of shifting: every frame, or every third
frame. As before, we combine the best results from each of these combinations in
one graph (Figure 9(f)) to compare them. Recall that in the simple grid network,
the density does not have a significant influence on the latency (see Figure 9(d)).
However, in grid+m, if the other parameters are identical, the difference between
a network with 4 neighbors and 8 neighbors cannot be neglected (compare the
left-most curve with the right-most one, or the two middle curves). The influence
of the speed of shifting is not very significant (compare the left-most two curves
or the right-most two curves), and it is difficult to judge which speed overcome
the others, for instance, speed=3 performs better than speed=1 for neighbors=4
while the trend is reversed for neighbors=8. This is due to the way we modeled
mobility. In our mobility scenario, it takes circa 15 frames to deliver messages
to the whole network, and a shifting of every 1 frame or every 3 frames cannot
have much influence on the result. Under other mobility models, different results
will be obtained.

6 Conclusions and Future Work

We reported on the simulative analysis of the CHESS gMAC protocol, aimed
for gossiping-based applications in sensor networks. Our analysis reveals that
randomly deciding to refrain from using send slots significantly increases the
effectiveness of gMAC’s collision detection mechanism, and reduces energy con-
sumption by about 15%. Node mobility does not affect the number of detected
collisions. We determined the number of active slots that optimize the trade-
off between latency and energy consumption. In the setting with 8 neighbor
nodes, our experimental results confirm the optimality of CHESS’s current node
implementation (i.e., A=8).

The presented results are the first quantitative evaluation of the gMAC proto-
col. More analysis is needed. Future work will focus on considering more realistic
radio models based on [11], and to find mathematical explanations for the opti-
mal values. Moreover, a comparison of the given results with the gMAC variant
described in [2] is planned.

All simulation models can be downloaded from:

http://moves.rwth-aachen.de/~henrik/mmb10/
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Abstract. In this paper, we provide a study of current PC video games’ perfor-
mance across several different metrics conducted at the Intel Labs. As a hardware
manufacturer, Intel needs to look at the performance characteristics of these ap-
plications on its current hardware. The information is used to help predict future
processor needs and performance characteristics. Additionally, the information
can help Independent Software Vendors (ISV) understand opportunities to im-
prove their applications in the future. Furthermore, as an educational institution
we have the suggestion of a measurement set-up that we can use for practical
lectures in Computer Architecture education.

The main findings are that the CPU and memory are no bottleneck for current
games and that e.g. SIMD-instructions are more widely used than assumed. An
important result is also that the Scalable Link Interface (SLI) does not necessarily
improve performance.

1 Introduction

One goal of the study was to develop a consolidated guide providing a single standard
methodology of doing measurements for all Intel engineers. Another goal was to check
hypotheses, the Intel performance engineers had on the performance effects of their
hardware features. Concretly we wanted to check the following hyptheses:

1. The memory interface is a bottleneck.
2. SLI drastically improves the performance of games.
3. SIMD instructions are not widely used.

Besides this there are several use cases for the results of this paper of common inter-
est: Game developers can detect, where their performance bottlenecks are. Second, the
results give hints to the hardware developers on where further improvements will pay
off for software developers of high-end applications such as games. Game developers
demand for an improvement of at least 20% of a new feature, otherwise their necessary
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code changes to adapt the feature are not justifiable. Third gamers can see that they have
to combine high-end CPU and high-end GPU to get a powerful PC. Finally the mea-
surement methodology can be used in teaching Computer Architecture from a practical
point of view.

This study is also interesting because it is a step towards the challenge proposed by
Donald E. Knuth [1] to Make a thorough analysis of everything your computer does
during one second of computation.

In the following we first describe our measurement environment in terms of hardware
and computer game workload. Then we describe the metrics we want to measure and
present tools to measure these quantities. The last section presents the most interesting
results we have found so far.

2 Measurement Set-Up and Video Game Workload

This section describes our hardware environment and the workload in terms of games
analyzed. As basis for our testing system we chose a current Intel Software Devel-
opment Platform or short SDP. These SDPs are standardized i.e. a definition exists
for these systems about what the exact hardware is. We switched the normal graphics
board to a more recent one. For the measurements using Scalable Link Interface (SLI)
we installed a second graphics board of the same type. SLI is a Multi-GPU technol-
ogy by NVIDIA which can be used to connect two similiar graphics boards to the end
of improving overall performance or support multiple monitors. We used the option to
improve graphics performance. Besides that no other hardware changes were applied.

2.1 Hardware Configuration

Table 1 gives details about the exact hardware parts used in the testing system.

Table 1. Specification of the test system

Part Specification

CPU Core i7 965 @ 3.2GHz
RAM 3× 1GiB DDR3 @ 666.7MHz
Graphics Board 2× NVIDIA GeForce GTX 260 — Driver: 7.15.0011.8208
Mainboard X58 rev. 12
BIOS SOX5810J.86A.3504.2009.0218.0058
Hard Drive Seagate Barracuda 7200.11 SATA – 3GiB/s 500GiB

2.2 Video Games

For this study we chose a significant set of video games. There was a certain set of
criteria applied to choose this set of titles.

– A repeatable workload is available. This means that the measured games must offer
the possibility to reproduce a concrete situation in the action’s flow. In some games,
a demo mode helps to establish this.
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– The game uses either DirectX 9 or DirectX 10 and
– The game is a good representative of its genre.

Since most games do not have a built in benchmark or a demo mode, a function to record
gameplay and replay it later, using not pre-calculation but doing the same calculations
each time, we needed another process to have repeatable workloads. To this end we used
textual descriptions, with detailed step-by-step instructions, which had to be followed
to achieve repeatable results. Obviously there is a human factor involved, but we found
that the results weren’t deviating from one another too much.

A game is considered a good representative of its genre if it technologically is up
to date, received good critics and is played by many people. As an indication of good
critics we used the rating provided by www.metacritics.com, which aggregates
many different ratings. We analyzed the following games:

First Person Shooters. Games of this action-oriented genre usually require high-end
hardware. Call of Duty 4: Modern Warfare is a First Person Shooter that features many
modern graphical features, such as High Dynamic Range (HDR) lighting effect, dy-
namic shadows, dynamic lighting, and depth of field effects. It was released November
2007.

Crysis Warhead is a product by Crytek that is one of the most performance-hungry
games. The game was released in September 2008. It uses the CryENGINE 2 that is
also developed by Crytek.

Far Cry 2 by Ubisoft-Montreal. The developers of the previous Far Cry, Crytek were
not involved in developing this title. The game was released in October 2008. The game
engine is able to display dynamic effects such as fire that is spreading through dry grass
realistically. Another fact that makes this engine interesting to us is that the game is said
to take exceptional advantage of multi-core processors.

Unreal Tournament 3 (UT3) is done by Epic Games that is using the Unreal Engine
3. The game was released in November 2007 but the latest patch was released in May
2009.

Racing Games. This genre is one of the oldest gaming genres. There are still many
games of this genre released every year. These games usually require the player to race
against time and/or opponents. Games in this genre consistently push the envelope in
terms of graphical effects.

Race Driver: GRID is a racing game that has done very well in reviews. It was
released end of May 2008. GameStar’s review, translated and condensed by Metacritic
also mentions the technically impressive aspects of the game.

Real-Time Strategy. Real-time strategy (RTS) games is a genre of games usually hav-
ing a warlike theme, that in difference to turn-based strategy do not progress in turns,
but in real-time. RTSs are now one of the pillars of the gaming market. They are of-
ten graphically and computationally intense, featuring lots of models and much AI to
calculate.

Warhammer 40,000: Dawn of War II is a RTS game that is set in the world of
Warhammer 40,000, originally a tabletop war game produced by Games Workshop.
Dawn of War II was developed by Relic Entertainment. The game was released in
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February of 2009. Although the game is listed here as RTS some call it a Real-time
tactics (RTT) game and consider this to be a sub-genre of RTS. RTTs have no or mini-
mal base or unit building, do not have resource gathering as part of the game and often
give greater importance to single units. This manifests in Dawn of War II in having a
few key characters with special abilities, that need to survive each mission and have
special abilities.

World in Conflict: Soviet Assault by Massive Entertainment is the sequel to World in
Conflict and was released in March of 2009. It is a RTS belonging to the sub-genre of
RTT games.

Role-Playing Video Games. This genre of games is characterized by the player con-
trolling one or several characters that he usually steers through a series of quests. The
characters gain more power and new abilities as the game progresses. Which powers or
abilities these are is most of the time controlled by the player.

The story for these games is usually highly developed, often reaching the complex-
ity and length of big novels. The rules of these games often derive from non-video
RPGs like Dungeons & Dragons or similar gaming systems. These games have lots of
different denominations, sometimes bordering into action or strategy genres.

World of Warcraft: Wrath of the Lich King for example is a first- or third-person
Massively Multiplayer Online RPG or short MMORPG that has qualities usually found
in action (adventure) games. The add-on was released during November 2008.

Wrath of the Lich King (WotLK) is the latest installment of World of Warcraft. It fea-
tures a new continent to explore and also the level-cap has been raised. More interesting
are the graphical improvements that come with WotLK. New shaders to render ice, new
fire effects and better shadows where among those.

Since WotLK is a purely online game there are more aspects to look for regarding
repeatability. The more other players are online in and in the sight of the player, the
more objects have to be rendered. To this end we used a server located in the US and
so we could measure when most people playing on it were asleep. One could think that
the workload on the system could change significantly with the quality of the internet
connection. We found that this is not the case. Almost all calculations are done on the
machine, sending just the interactions back and forth between server and client. So even
if the network experienced round-trip delays, we would see other players having a jerky
movement, but still have the same workload on our machine.

2.3 General Game Settings

To be able to compare obtained results between games, a standard has to be defined as to
which settings to use. A game usually lets the user choose between a bunch of different
options for settings such as resolution, graphical effects, texture sizes, or sound effects
and controls.

For the graphics, physics and gameplay settings of the application, we opted to let
the application decide which settings are best. Most current games do have some mech-
anism to detect the capabilities of the system they are running on and to adopt their
settings accordingly. So they would set high quality settings on a high end system and
low quality settings on a low end system.
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So we let the games decide the settings in the first step, if they had no such option
we hand-set high quality were the steps usually are low medium high and sometimes
very high. But we did not let the games decide on each of the resolutions seen below,
but we let the game decide once and then kept to those settings. So the only variable (in
the game) was the resolution.

We did have three different base configurations that we ran the measurements on,
namely

1. Resolution of 1280×768,
2. Resolution of 1600×1200 and
3. Resolution of 1600×1200 with two graphics boards operating in SLI mode.

By increasing the resolution from 1280×768 to 1600×1200 we increase the amount
of pixels by a factor of approximately two. This potentially increases the workload of
the graphics board which needs to process more pixels. Adding another graphics board
and coupling the two boards in SLI mode we then can find out how much games really
benefit from SLI and what the effect on the whole system is.

3 Metrics

Here we define those metrics that are of interest for our study. We restrict our analysis
to MS-Windows platforms due to the fact that Windows is the de-facto standard PC
gaming platform. However, most metrics defined in this paper can also be measured on
other operating systems.

There are three general types of metrics that we will look at: Utilization metrics that
measure the utilization of system resources, Instruction-mix metrics that describe the
percentage one specific set of instructions is being used in comparison to the overall
number of instructions retired, and finally metrics that count other values of interest
(called Miscellaneous Metrics).

3.1 Utilization Metrics

The following three utilization metrics have been considered in this project:

Utilization of the CPU. This metric covers the minimum, maximum and average per-
centage the CPU is utilized by the workload in total, and per physical core. This is
interesting to determine how good a given application is parallelized and to what extent
the CPU as an important resource is used.

Utilization of the Memory Bandwidth. This metric is helpful to find bottlenecks in
the overall performance of an application [2]. We are using the unit of giga binary
byte per second, short: GiB/s. When talking about bandwidth utilization we mean the
fraction of the maximum achievable system bandwidth that an application uses.

There are three DDR3 Dual Inline Memory Modules (DIMM) installed in our testing
systems (see table 1), to fully utilize the three memory channels and operate in Triple
Channel Mode. Triple Channel in comparison to Dual Channel is a memory interface
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that was introduced with the new Nehalem architecture and triples the maximum trans-
fer of a Single Channel interface. We can easily calculate the maximum theoretical
bandwidth of a standard system that uses current Double Data Rate (DDR) memory.

Assuming a memory clock-frequency of 666.5 MHz, 64 data lines per DIMM, and
two words that can be read or written with DDR-memory during each cycle, we get for
the maximum theoretical memory bandwidth Bmax:

Bmax =
(

666.5 ∗ 106∗ cycles
s

)
∗ (3 channels)∗

(
64 ∗ lines

channel

)
∗
(

2 ∗ bit
line

cycle

)

≈ 29.79 GiB/s (1)

This theoretical maximum is most probably not the real practical system maximum.
So this bandwidth is not what we wanted to use as a reference point. There is how-
ever a widely known memory benchmark called Stream to measure the real memory
bandwidth of the system [3].

Using Stream compiled on the testing system with the current Intel compiler and
utilizing all 4 hardware threads using OpenMP, we obtained 19.4GiB/s as the practical
system maximum. This value is the result of Stream’s triad test which is regarded as
the most significant of Stream’s tests [3].

To sum up, this metric is defined as the percentage of traffic, generated during the
workload of the systems practical maximum bandwidth. And the pratical maximum
bandwith is defined as the maximal data-rate as measured by Stream.

Bandwidth Utilization =
Measured bandwidth[GiB/s]

Practical System Maximum[GiB/s]
(2)

Utilization of the Hard Disk. The other I/O that can potentially be a bottleneck for
a game’s overall performance is the hard disk drive (HDD). For this metric we are
interested in the sum of read and write operations per second averaged over the runtime
of the workload. This again needs to be put into relation to the system maximum.

There are measurement results available on http://ht4u.net. They tested the
exact same mainboard and chipset that we used and even used the same hard drives as
we did (see table 1).

Their results are:
Average Reads = 89.4MiB/s (3)

Average Writes = 80.5MiB/s (4)

Since we do not know the distribution of reads and writes in a workload, we simply use
the average of these values (84.95MiB/s) as an approximation for the maximum disk
utilization and define:

Utilization of Disk =
Measured Reads per second+ Measured Writes per second

84.95 MiB/s
(5)
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3.2 Instruction-Mix Metrics

Here we are interested in the fraction a certain set of instructions is used with respect
to the total number of instructions retired. The classes of instructions that are of main
interest are:

1. Floating point operations. These calculations are computationally intensive. On
some CPUs a single floating point division can take more than 24 cycles for ex-
ecution.

2. SIMD instructions. In 1997 Intel introduced the first set of Single Instruction Mul-
tiple Data instructions (SIMD) branded as MMX. In the following years, Streaming
SIMD Extensions (SSE), SSE2, SSE3 and SSE4 followed. A common scenario for
the use of these vector instructions in multimedia applications is the simultaneous
manipulation of several pixels in a digital picture.

The metric for each instruction class is defined as the percentage of instructions of the
respective instruction class during the workload:

Percentage of instructions of the class =
∑ Instructions of the class

∑ All Instructions
∗ 100 (6)

In case of the SIMD instructions it is important to know if this feature of our CPU is
accepted and valued or disregarded by game developers. Together with data on SIMD
usage in other areas, such as multi-media applications or high-performance computing,
this could or could not be a reason for a change in effort on this topic. We might decide
to encourage and help developers, to be able to use these kinds of special instructions,
thereby increasing the performance of their software.

Similar to this metric we are looking at floating point instructions with the interest
shifted from the total percentage of floating point instruction executed to their distri-
bution on the four cores The reason for this is to find out if the Windows scheduler
happens to put computationally expensive threads of the workload on the same core,
therefore potentially negatively influencing the overall performance of the application.
This metric is defined as percentage of floating point operations on each core.

3.3 Miscellaneous Metrics

The metrics listed in this section don’t fit directly in either of the above described cate-
gories. However, they are neither less significant nor less interesting.

Frames Per Second. Frames per second (FPS – not meaning First Person Shooter
here!) is one of the most common metrics for evaluation of video game performance,
because it is the most important performance metric to the end user [4].

A rule of thumb is that most games are enjoyable with a frame rate beyond 30 FPS.
There are, however, games that try to achieve exactly 60 FPS and thus are able to syn-
chronize with the refresh-rate of most modern displays. But it is also possible to obtain
FPS rates higher than the refresh-rate of the display.

How many frames can be produced per second is a direct result of the whole system
performance and the settings of a game. The higher the graphics quality settings are,
the fewer FPS will be produced.
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Another aspect of this metric is that the fraction can be easily inverted, resulting
in time per Frame, the so called the frame-budget. A game running at 60 FPS gives
a frame-budget of 16.67ms. So the FPS-metric is a direct measure for what a certain
performance increase is worth in terms of better effects, higher quality textures, more
calculations for the game logic.

The metrics that we are looking for regarding FPS are minimum, maximum and
average FPS of the workload.

Instructions and Clock Cycles per Module. It is interesting to find out how much
work each part of a workload generates. We call these parts modules. The term mod-
ule may summarize a bundle of binaries that belong to the same part of the system. A
module consists at least of a library, a driver or an executable. For example the Win-
dows module is a bundle consisting of hal.dll, ntkrnlpa.exe, ntdll.dll,
kernel32.dll, and several others.

There are four key modules required to run a video game. These are:

1. The Game itself
2. The Graphics driver
3. The Direct 3d runtime library
4. The Windows operating system together with the Windows API

4 Measurement Tools

Some of the tools used for this project are only for use by Intel employees. And these
private tools can not be mentioned or described here. However details as to what is
measured will be given.

Fraps. We used the tool Fraps
TM

(www.fraps.com) for measuring Frames per Sec-
ond. Fraps is not an open source project. It probably works by hooking into the graphic
modules and listening for either swap-buffer or draw-function calls. Fraps does there-
fore have a minimal but existing impact on the performance.

To use Fraps
TM

for measuring FPS one has to start the program and to go to the FPS
tab. There one can set a hot-key that can in turn be used inside the game to start the
measurement. Every game measurement has a description as when to start benchmark-
ing and for how long it should last. This time can also be entered in Fraps

TM
so that the

recording of FPS automatically stops after a defined time.
There are two potential problems measuring FPS in a game.

1. Games sometimes lock the framerate at 60 or 30 frames per second. If this is not
optional, no FPS measurement beyond this limit can take place.

2. Games often allow V-Sync to be enabled, which at todays 60 Hertz, flat screens,
locks the framerate at 60 FPS. This, however, is optional in almost all titles and one
just has to take care not to activate it. Most graphics boards’ drivers will allow to
override the games settings and turn V-Sync off globally, if it can not be turned off
in the game. This was never necessary and could cause bad side effects in a game
expecting to have fixed FPS.
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Perfmon. For measuring CPU and disk utilization, we decided to make use of perfmon,
a tool that is installed by default on all Windows machines.

Perfmon offers the following counters that are of interest for our measurements:

– The counter % Processor Time measures the total processing time
– and % Processor Time measures the processing time per core
– The counter Disk Write bytes/s measures the total number of disk reads
– and Disk Read bytes/s measures the total number of disk writes

These counters were measured each second for the workloads duration of each game.
The measurement was set up to save the resulting data in csv-format for later analysis.

Performance Tuning Utility. The next tool to use is the Intel R©Performance Tuning
Utility, Intel R©PTU. We used Intel R©PTU for measuring of Cycles and Instructions per
Module.

For these modules named above, we restricted ourselves to the top 95% of binaries
in a measurement. Top 95% means that if we sort the list of binaries by the amount of
cycles spent in them and in descending order, we cut off the list after 95% of all cycles
during the sampling were accounted for. That is done because usually the 5% of least
cycle contributing modules amount to over 80% percent of the binaries. Not cutting
off the list would make the task of bundling modules together much harder while not
changing the overall result significantly. This is acceptable for us, but needs to be kept
in mind.

Intel R©PTU can also be used to measure the total percentage of floating point instruc-
tions, but not the percentage of these instructions per core.

Sampling Collector (SEP). For the measurements of the Percentage of SIMD Instruc-
tions we used Intel’s sampling and profiling tool. SEP is part of the Intel R©VTune

TM
-

Performance Analyzer, but can be used as a command-line tool. This is used to
generate text files that contain the exact instructions executed in each module together
with the count of how often the instructions were executed. It also prints a summary of
each module and again an overall summary. These summaries already are grouped by
instruction type and show the sum of instructions each type accounts for.

Some Proprietary Tools. were used in this study. The events we measure however are
documented publicly1 and one could write his own tool to measure those. Most of them
can also be collected with SEP but this is a little bit more difficult. The proprietary tools
are used for convience and for some of the data sorting that they provide.

As mentioned above, we are interested in the number of floating point instructions
per core. The tool used for measuring this is an Intel proprietary application.

Counting memory accesses became quite easy on current Intel hardware. The mem-
ory controller was put into the CPU, in a section Intel calls the Uncore area. This in-
tegrated memory controller (IMC) also offers counters to measure its performance. We
used countersUNC IMC NORMAL READS.ANY and UNC IMC WRITES.FULL.ANY.
These counters count the number of 64-byte-cache-lines being transferred between
memory and IMC.

1 See the developer guides: http://www.intel.com/products/processor/manuals/
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To get the transfer rate however, the duration in seconds of the measurement needs
to be known. The tool used for measuring is also not public, but what we essentially
do is to also measure the clock cycles spent during the measurement, from this one can
calculate the time spent measuring.

Table 2 provides an overview of which tool was used to measure the desired metrics.

Table 2. Tools used to measure the metrics listed in section 3

Metric Used Tool

CPU Utilization Perfmon
Memory Bandwidth Utilization Intel proprietary
Harddisk Utilization Perfmon
Floaing Point OPs Intel proprietary
Percentage of SIMD instructions SEP
Frames Per Second Fraps

TM

Cycles Per Module Intel R©PTU

5 Measured Data and Analysis

In this section we present the top findings we got from our measurements. I.e. those
results that are considered to be most significant and that will probably influence how
we are looking at game-workloads in general.

5.1 The CPU Is Not a Bottleneck

The first important result is that the CPU cannot be considered a bottleneck. As can be
seen from Figure 1 the average CPU utilization varies between 26.5 and 64 percent.

Fig. 1. Average CPU loads; Profiteers of SLI encircled
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Fig. 2. Average FPS; Profiteers of SLI regarding CPU utilization encircled – Sorted by FPS with
SLI

Table 3. Impact of increased resolution and SLI on Framerate and CPU Utilization – Averaged
over all workloads

Impact on Impact on
CPU utilization Framerate

Increased resolution by factor 1.95 0.86× 0.78×
SLI 1.32× 1.56×

The maximum of 64% utilization was achieved by Far Cry 2 which is said to be very
well parallelized. At least in this study it is the best parallelized – regarding utilization,
not necessarily effectiveness. We found an average CPU utilization of

– 43.95% for 1280×768,
– 37.65% for 1600×1200 and
– 49.78% for 1600×1200 with SLI enabled.

Figure 2 shows that the same games that displayed increased CPU utilization also show
increased FPS when using SLI compared to the case without SLI. What this essentially
means is that if the processing power of the GPU is increased, more performance is
gained from the total system, while at the same time showing that the CPU can do more
work without a problem.

Note that this is not meant exclusive, as can be seen in the same figures, some more
games also benefit from SLI. In fact we found no game performing worse when SLI was
used2. The encircled games however benefit the most in both regards, CPU and FPS.

2 Comparing 1600x1200 SLI with 1600x1200 without SLI.
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When we scanned the data, we also found that not all four available cores were
utilized evenly. We found that two cores always showed roughly 50 to 70 percent uti-
lization while two others only showed roughly 30 to 50 percent utilization. So there is
some potential to optimize games in that regard.

Table 3 shows in the first line what impact the step up in resolution has regard-
ing CPU utilization and framerate. In the second line it shows the impact that SLI
has in relation to the 1600×1200 setting without SLI. These are averages over all
workloads.

5.2 The Game Module Only Accounts for 50% of Cycles

Although there is a high variance between the different games in that regard, the results
show that the game modules very rarely are accountable for more than 50% of all cycles
during the workload. The minimum is Race Driver: GRID at 1600×1200 pixels spend-
ing 30.84% of total cycles in the game module. The maximum is World in Conflict:
Soviet Assault with 56.86% closely followed by Crysis Warhead with roughly 55.52%
of cycles spent in the game module. The average is 44.85% over all titles.

Figure 3 shows how each of the four modules changed its footprint in every game
and all configurations.

Taking a look at Section 5.1 the conclusion can be drawn that if the CPU is roughly
utilized 50% and the game module is accountable for 4

10 of these cycles, then the game
module uses less than 25% of the processor capacity (i.e. available cycles) on the average.

Figure 4 shows data for the metric ”Instructions and Clock Cycles per Module” with
SLI enabled at 1600×1200 pixels. From this figure we see that the game module is
responsible for roughly 40-60% of the CPU’s work. When looking at Figure 4 the set of
instructions named ”Unaccounted” summarizes all binaries that we have not been able
to uniquely assign to a module.

5.3 No Significant Difference in Instruction Mix between the Configurations

We found that interestingly most games’ instruction mix did not significantly change
at all. Only World in Conflict: Soviet Assault showed variance in the SIMD usage. Fig-
ures 5 and 6 show these data. Figure 6 shows the average percentage of Floating Point
Instructions. Furthermore it shows the minimum and maximum measured percentage
of Floating Point Instructions measured on a single CPU core.

This is of great interest because we believed games to dynamically adjust the preci-
sion and amount of certain calculations based on their self profiling. This believe needs
to be revised now. At least games do not ‘change’ what they do, perhaps they still do
more of what they normally do, but this can not be proven or disproven here.

5.4 Disk and Memory Bandwidth Utilization

The measured utilization of disk and memory is much less than the system maxi-
mum. The memory bandwidth utilization is also much less than the Practical System
Maximum determined using the Stream benchmark. Table 4 shows the maximum disk
and memory utilization we measured.
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Fig. 3. Cycles spent per Module – all games, all configurations



Defining and Measuring Performance Characteristics of Current Video Games 133

Fig. 4. Cycles per Module – 1600×1200 with SLI enabled

Fig. 5. Percentage of SIMD Instructions

Table 4. Maximum measured memory and disk bandwidth utilization per game

Bandwidth Utilization
Game Memory Disk

Call of Duty 19.9% 0.4%
Crysis Warhead 12.4% 25.9%
Dawn of War 12.7% 7.7%
Far Cry 2 26.9% 2.23%
GRID 20.0% 0.6%
Unreal Tournament 3 16.8% 1.7%
World in Conflict 14.7% 1.5%
World of Warcraft 37.5% 6.4%
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Fig. 6. Average, minimum and maximum measured percentage of Floating Point Instructions per
CPU core

6 Conclusions

Using this set-up we derived some interesting results. Some results did and some did
not confirm the hypotheses of Intel engineers:

1. Hypothesis: The memory interface is a bottleneck. This is not true (see Table 4).
2. Hypothesis: SLI drastically improves the performance of games. This is not gener-

ally true. SLI increase the FPS of half of the tested games, but also increases CPU
utilization. This is an indication for the GPU being more of a bottleneck than the
CPU (see Figure 2).

3. Hypothesis: SIMD instructions are not widely used. This also has proven to be
wrong. In fact most games make intensive use of these instructions (see Figure 5).

From an educational point of view the measurement methodology proves to be very
helpful. In a course on Computer Architecture at Munich University of Applied Sci-
ences our students will have to do measurements and performance comparisons using
the tools described here.

Finally we must mention that Computer games have been attracting an increasing
amount of attention during the last years. One driving force is the emergence of Serious
Gaming. This is the use of games and gaming technology for educational purposes.
Becoming more serious, there is an increasing scientific interest in this area [5].
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Abstract. Web traffic measurement and modeling have contributed to
understanding the effect of Web traffic on Internet resources since the
1990s. In the past years, a number of new Web features have gained more
and more importance, e.g. content delivery networks (CDNs), increased
amount of advertisement, personalization, usage tracking, client scripting
and Web 2.0 style “mashups”. This paper uses active Web measurements
to assess the efficiency of client side caching for modern Web sites, inves-
tigating some Web features in detail. As expected, we see that more than
50 % of the average downstream traffic volume is saved when loading a
page using client side caching. More unexpected results comprise the
actual distribution of cache effectiveness, varying between extreme and
no reduction of traffic, the cachability of “Web bugs” and the variance
between sites in cachable image pixels and CDN based files.

1 Introduction

1.1 Evolution of Web Applications

Since the early 1990s the World Wide Web (the Web) has evolved from a network
of files allowing links from information in one file to information in another file
to a network of sites and services that is generating substantial economic revenue
and has become indispensable for most of our everyday business.

Web site structure has changed from static to dynamic pages, from pages
consisting of only a single file to pages made up of hundreds of files, including
latest news, advertisements, personalized pages, highly distributed Web services
(“mashups”). Client side scripts allow browsers to perform certain operations lo-
cally without any delay from retrieving further content or re-loading pages over
the network. Content delivery networks (CDNs) such as the Akamai service [3,22]
now bring frequently requested files closer to users’ networks to improve avail-
ability and reduce page loading latency.

Those changes are driven by a number of interests, such as increasing com-
pany value by attracting more customers, increasing turnover on Internet sales
platforms with well performing sites or collecting end customer knowledge us-
ing excessive tracking and data mining to increase advertisement value. Service
hosting, CDNs and mashups also simplify the creation of new services and sites.

Correspondingly, it is not straightforward how all those changes affect the
client side cachability of Web contents, which has been one of the early but

B. Müller-Clostermann et al. (Eds.): MMB & DFT 2010, LNCS 5987, pp. 136–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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drastic performance improvements for browsing required when the Web spread
from high capacity academic network onto the general public parts of the Internet
dominated by low speed dial-up access. Personalized pages will look different to
different visitors. Tracking requires browsers to retrieve information again and
again just for the server to know that the site has been visited again. Latest news
are updated frequently, and advertisement companies make sure that every time
a page is redisplayed the user receives another advertisement banner.

In this paper we make an attempt at investigating the client side cachability
of popular Web pages. For a well-defined and reasonably representative set of
pages to visit, we compare the client side traffic from loading the page the first
time with an empty cache and for loading the page again after a short time.

1.2 Overview of the Paper

Section 2 presents an excerpt of related work in the fields of Web measurement
and caching touched by this paper. In Section 3, the selection of measurement
targets, measurement and evaluation methodology and measured quantities are
described. Results on the effect of client side caching on basic page characteristics
are presented in Section 4. The relation between client side caching and further
mechanisms (CDNs, Web 2.0 methods, graphics, “Web bugs”, cookies and cache
expiry distributions) are investigated in Section 5.

2 Related Work

A large number of papers assessed Web traffic characteristics in the past. Due
to the Web 2.0 and contents tracking developments on Web sites, however, some
characteristics of Web traffic have changed. Williams et al. [23] characterize
Web workload from the point of view of a Web server and find that a number
of characteristics such as the median transfer size, ratio of distinct requests,
the percentage of files accessed only once, the file size distribution, the ratio of
busiest files to all files, inter-reference time distributions and the ratio of remote
to local requests did not change significantly over that period of time. Williams
et al. study one server and a large number of requests to different resources on
that one server whereas in this paper we study requests from one client to a
large number of different servers, which limits the amount of comparable results
to the document size and type distributions. Bent et al. [6] studied properties of
commercial Web sites hosted by one ISP on a large server farm to estimate the
potential performance benefits of CDNs, finding that a large degree of responses
is not cachable in the network (mostly due to cookies), that CDNs can benefit
most Web sites and that inappropriate usage of cookies and cache control limit
the possible benefit from caching.

There are some studies which explicitly cover the effects of selected Web 2.0
mechanisms on Web traffic. Kiciman and Livshits [15] look at Web 2.0 appli-
cations from a client side profiling point of view with a focus on scripting. By
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remotely instrumenting browsers through scripts provided on their Web pages,
the authors explore performance properties and problems of different browsers.
Duarte et al. [10] explore another aspect of Web 2.0, blogging. They analyze
the new communication patterns from blog-related traffic such as the one-to-
many broadcast-like dissemination of new blog contents and the many-to-one
registration-like traffic.

Also, the topic of caching has been intensively studied in the past, however,
mostly with an emphasis on network based cache architectures and management
strategies. Rabinovich and Spatschek [20] give an extensive overview of different
Web caching and replication technologies and their potential impact on traffic,
mostly from a network point of view. Barish and Obraczka [13] give an overview
of caching architectures, designs and cache management for the World Wide
Web. While they do not show performance results, they review the state of the
art of available cache mechanisms. A 1997 study of Duska et al. [11] shows that
with a proper cache server structure, 24–45% of Web elements can be served
from caches if serving a sufficiently large population. The authors also give cache
dimensioning guidelines and expected hit rates for cache hierarchies.

Most client side studies focused on proactive caching (prefetching) of elements.
Eden et al. [12] show the effect of client prefetching on Web latencies. They
used a combination of anonymized passive traces and instrumented Web pages
to measure latencies, concluding that prefetching can significantly reduce page
loading latency. Balamash and Krunz [4] focus on an analytical model for the
gain from prefetching or proactive caching on the client side and investigate the
effect of a combination of prefetching and proxy caching. The traffic model is
purely synthetic.

Mahanti et al. [18] used proxy access logs to analyze transfer size distributions,
document popularity, proxy cachability and rate of change of documents.

Saroiu et al. [21] analyze characteristics of the Akamai CDN and peer-to-
peer (P2P) mechanisms for content distribution. Their emphasis is on capacity
consumption from different traffic types, finding that it is mainly the larger
average size of files available through P2P networks that is responsible for the
large P2P share in overall traffic and transfer durations.

Logical locality properties of popular Web services and dedicated mashup
services have been investigated by the author of this paper in a previous study [8],
analyzing application properties and logical locations such as domain ownership
and routing towards the large number of different servers that make up a single
Internet service such as google maps, weather.com or myspace.com. The study
in [8] was based on active measurements while using each site’s service for 2–
5 minutes, which included following links on the site beyond the main page.
In this way, the results described part of the real service usage beyond home
pages1 but are difficult to repeat. In contrast, in [9] and in this paper, site usage
is restricted to the sites’ home pages, but in turn the number of sites investigated
is increased, and more Web page properties are analyzed. Whereas in [9] the focus

1 The term “home page” is used to denote the page that is loaded when only the host
part of a URL is entered.
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is on the static properties of the sites, this paper analyzes mainly the impact of
local caching and statistics related to the usage of CDNs.

3 Measurements

In order to obtain replicable results per site, an approach of actively initiated
observations similar to [5,16] was chosen for this paper. Unlike classical active
measurements concerning the Internet infrastructure, e.g. [7], which generate
traffic on IP level and observe metrics related to delay, loss or path through
the network, actively initiated observations of Web traffic use a defined set of
URLs to make a browser download everything that is required to display the
corresponding Web pages. All traffic sent and received by a client machine while
downloading the whole Web page including all elements for a given page URL
was recorded in a set of trace files per page. The complete workload is defined
by the set of URLs to visit and client side cache control.

Compared to passive observations of a number of users, which create a larger
amount of traffic and potentially more representative workloads, our approach
allowed us to correctly associate traffic to Web pages and to have full access to
all transmitted contents without the hassle of anonymization that comes with
real user traces. On the other hand, defined workloads are always artificial and
do not represent any user group’s real usage of the Web. Despite this, they do
yield valuable insight into some properties of Web applications.

For this paper, the URLs to visit were selected as the home pages of the
worldwide top 500 Web sites as extracted from the Alexa [1] Web statistics
service which ranks Web sites based on popularity among a large number of
users. This list of home page URLs includes a mixture of search, news, trading,
contents sharing, adult services and social networking sites. Only the home pages
on the URL list were visited and no further browsing on the sites was performed.

For each site on the list, a Web browser was started with empty cache and
cookies list, and all traffic between the client and the network was traced. After
a timeout of one minute, (to limit the effect of quasi-streaming services on some
sites), the browser was closed using wmctrl -c in order to simulate normal client
re-start and the trace file saved. A new trace file was opened and the browser
was started to visit the same page again (this time with contents and cookies
from the first visit), again recording traffic for one minute before stopping the
browser process and tracing, clearing the cache and moving on to the next site.
This process was fully automated using shell scripts on a Linux machine running
kernel 2.6.25, using firefox 3.0 as Web browser and tcpdump [19] for tracing. In
order to prevent firefox from clearing its cache when being stopped from a shell
script, the wmctrl -c command was used instead of the kill command after
the first session. Data were recorded in February 2009 using an Arcor (Ger-
many) DSL connection with a maximum of 6Mbit/s downstream and 640kbit/s
upstream.

Restricting the pages to visit to services’ home pages only allows simple repli-
cation of the same measurement in other places and at other times and does not



140 J. Charzinski

introduce personal bias with respect to navigation preferences. A large number
of sites has home pages which are of the same degree of complexity as the rest
of the site (e.g. yahoo.com). On the other hand, it is clear that there are also a
large number of sites where the home page is much less complex than the rest of
the site (e.g. google.com, where the pages returned e.g. by an image search are
significantly more complex than the home page, or some access restricted sites
which require login or age verification before giving access to contents).

The properties presented in Section 4 and 5 were extracted from the recorded
traces using tcpdump [19] and a number of special purpose shell scripts. In the
following, “S1” denotes the session where a given page was loaded the first time
(with empty cache) and “S2” denotes the session when the page was loaded
the second time, utilizing the data available in the browser’s disk cache. As
an unmodified standard firefox browser was used for the measurements, the
interpretation of cachability in the measurements is exactly the same that firefox
applies under normal usage. It should be noted that other browsers may have
different caching efficiency.

Table 1. Key characteristics of the collected traces

pages unique conns. bytes elements unique unique
visited hosts received retrieved NPs ASs

total 2x500 2683 17734 297MB 39.7k 941 532

S1 500 2291 12377 249MB 31.8k 891 512

S2 500 1696 5357 48MB 7.9k 770 476

Table 1 summarizes the key characteristics of the measured traces. NPs are
network prefixes determined by looking for the longest matching prefix from
the OIX route-views BGP table [2]. The AS numbers (ASNs) for a server’s IP
addresses were taken from the same table. Note that there are quite a number
of hosts, NPs and ASs contacted by more than one site, so the per-site statistics
cannot be derived from Table 1.

4 Main Results and Effects of Client Side Caching

Table 2 gives the minimum, average and maximum values per site visited for the
traffic characteristics. 9 of the 500 sites did not transfer anything in S1 and were
excluded from the evaluations. 17 of the remaining 491 sites (mainly Chinese
sites) allowed complete client side caching of their home pages, bringing the
minimum values for the “S2” sessions to zero. The largest average reductions
from caching are in the number of elements per page (75%) and the number of
bytes received per page (81%). Maximum values as well as the locality measures
(number of ASs or network prefixes contacted) show much less reduction from
caching.

Figure 1 shows the correlation between the downstream volume received in
S1 sessions (empty cache) and S2 (second attempt) for each Web site. Most
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Table 2. Minimum, average and maximum of the traffic and locality properties per
Web site in S1 (initial session from empty cache) and S2 (repeated session with cache
filled from S1). 9 sites where nothing was loaded in S1 were omitted.

hosts connections bytes received elements retrieved NPs ASs

S1 min. 1 1 897 2 1 1
S1 avg. 7.6 25.2 507k 64.7 4.8 4.1
S1 max. 38 172 6.9M 314 18 18

S2 min. 0 0 0 0 0 0
S2 avg. 5.5 10.9 98.5k 16.1 4.1 3.5
S2 max. 27 82 3.5M 162 16 14

sites require between 10% and 100% of the initial volume when being visited
again, nearly independent of the original size. However, smaller pages are un-
likely to require less than 10% of their original volume in S2 whereas this still
occurred fairly frequently for pages that originally were between 100kB and
1MB in size. Six pages actually were slightly larger in the S2 session than in the
cache-less S1 session, probably due to different pictures being shown. A comple-
mentary distribution function for the S2/S1 ratio of volumes is given later in
Figure 10.
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Fig. 1. Correlation between the downstream volume received in S1 sessions (empty
cache) and S2 (second attempt) for each Web site, one point per site. Helper lines are
at y = x and y = x/10.

Figure 2 depicts the cumulative complementary distribution functions (ccdf)
of received traffic volume per home page for S1 and S2. The effect of volume
reduction from caching is clearly visible. There are even cases where in S2 the
page is completely displayed from the cache without network traffic.

The number of connections in S1 and S2 is depicted as a scatter plot in
Figure 3. The plot clearly shows that almost all sites require between 10% and
100% of the connections initially used in S1 when navigating again to the site
in S2 except for the cases where in S2 the page is rendered completely from the
cache without any network activity.
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The number of elements that make up a complete page is visible in the number
of HTTP GET requests issued by the browser. The scatter plot in Figure 4 shows
this number for the S1 and S2 sessions per site visited. Again, except for the
cases where in S2 the pages were rendered directly from the disk cache, most
home pages required between 10% and 100% of the initially required elements
again when visited in S2.

As shown in Table 2, the number of hosts contacted per home page varied
between 1 and 38 in S1. Caching introduces less reduction here than in the
number of elements or bytes. This is a clue for a certain type of sites being
constructed in such a distributed fashion (e.g. as Web 2.0 “mashups” or making
use of a lot of classically included advertisement banners) that the structural
complexity is nearly immune to caching, even though the site’s main elements
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are cachable. Figure 5 shows that there is also a number of sites that made the
browser contact one or two more distinct hosts at the second attempt (S2) than
at the first (S1). This may be due to dynamic load balancing and parallel loading
schemes where elements can be loaded from a number of equivalent hosts.

Similar to the number of hosts, also the number of Autonomous Systems
(ASs) those hosts are located in is only slightly reduced when loading a cached
page, see Figure 6. Among the 500 home pages visited, only those consisting of
data from less than eight different ASs allowed being completely cached. More
distributed services always required nearly the same degree of distribution in
S2 as in S1. The corresponding graph for the number of network prefixes (NPs)
shows the same properties and has therefore not been included here.
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5 Effects of Web Site and Delivery Design

In this section, we take a closer look at correlations between the traffic properties
observed in the caching experiments and some advanced features of Web site
and delivery design, such as the usage of CDNs for improving contents delivery,
scripting and page design associated with “Web 2.0” services, the handling of
images and “Web bugs” – tiny 1 pixel images designed with no other function
than tracking visitors as browsers have to load the images to render a page.

5.1 Content Delivery Networks (CDNs)

For each host contacted by the browser, the following steps were taken to deter-
mine a DNS (Domain Name System) domain name: (a) the corresponding DNS
A query and response as recorded in the trace was evaluated, (b) the host’s IP
address was used for a reverse (in-addr.arpa) DNS lookup and (c) a DNS NS
record was requested for the network prefix that the host’s IP address belonged
to. All three domain names were matched against a list of CDN services. Table 3
summarizes the characteristic data for those CDNs that had a data volume share
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Table 3. CDN services with at least 1% volume share identified in the traces

CDN service DNS domains Byte ratio Byte ratio ASNs used by
S1 S2 sites

Akamai akamai.net, akadns.net,
akam.net,
akamaitechnologies.com 22.3% 25.8% 14779, 20940 + various 218/500

Limelight llnw.net, llnwd.net, llns.net 5.2% 2.8% 8068, 22822 41/500
Footprint footprint.net 3.1% 1.0% 3356 16/500
Panther Express panthercdn.com 2.5% 6.8% 36408 43/500
Google l.google.com 2.1% 1.9% 15169, 36561 (youtube) 258/500
Cotendo cotcdn.net 2.0% 1.1% 46281 1/500

of at least 1% in S1 or S22. All connections to hosts matching a CDN service
were counted as CDN connections, similarly the traffic transferred within such
connections was counted as CDN traffic.

Figure 7 shows the ratio of CDN traffic to all traffic in session S2 versus session
S1 for each site. If CDNs only delivered static contents (and allowed clients to
cache it), the S2 traces should not contain much CDN traffic any more and all
points in Figure 7 would gather around the lower part of the plot. Instead, nearly
the full heterogeneity of combinations is actually observed. There are some sites
that show the expected behavior of turning from high CDN byte ratio in S1
to low CDN byte ratio in S2, but most sites show a behavior around the main
diagonal, i.e. they maintain their CDN traffic share before and after caching.
There are even some sites that cause the browser to load mostly CDN based
elements in S2 while the rest is effectively cached (top left corner of the plot).

The above observation is further substantiated by the cumulative comple-
mentary distribution functions of the CDN byte ratio (ratio of traffic volume
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2 The further CDNs with less volume share were: mirrorimage/instacontent, vox-
cdn, fastwebcdn, tomcdn, txcdn, cdnetworks.net, fastcdn, tecache.china.com, edge-
castcdn, cdn20.com, cachefly, cdn.hiido.cn, cdn.allyes.com, viacdn.net.
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delivered via CDN hosts versus all traffic) plotted in Figure 8. A slightly over-
proportional caching effect is visible at high CDN byte ratios: Sites that have
a high portion of their traffic delivered via CDNs in S1 will see that portion
slightly decreased in S2. In numbers this means e.g. that while 30% of the sites
got more than 80% of their traffic delivered through a CDN if nothing is cached,
it is only 36% of the traffic in the cached case. However, it has to be noted that
the overall traffic in the cached case is lower, so this does not mean that the
non-cached traffic increased.

5.2 Web 2.0 Scripting and Interactivity

Of the 500 home pages surveyed, 100 employed the XmlHttpRequest (XHR)
primitive to improve direct user interaction by dynamically changing parts of a
page. 107 used the JSON (JavaScript Object Notation) data exchange format
that is used to enable client-side mashups [24] where clients are instructed by
the visited site to collect raw information from several servers and build the page
to be displayed on their own. 48 sites used the Google Web Toolkit (GWT) that
supports writing AJAX (asynchronous Javascript and XML) applications linking
into services such as Google Maps or Gmail. As some of the sites employed
multiple mechanisms, the total number of sites employing at least one of the
three mechanisms (XHR, JSON or GWT) is only 167. Those three mechanisms
are characteristic for technical aspects of the “Web 2.0” development. There
are a lot of other components (blogging, social networks, tagging, folksonomies,
etc.) that are part of Web 2.0, but those do not have the same kind of directly
observable impact on Web traffic.

The cumulative complementary distribution functions of downloaded traffic
volume are plotted in Figure 9 for S1 and S2 both for all sites and for those sites
that were identified to employ at least one of the Web 2.0 mechanisms (XHR,
JSON, GWT). The graphs show that Web 2.0 sites have a tendency to transmit
more traffic than the overall ensemble, they have a much smaller probability to be
fully cachable but they profit from caching roughly by the same factor as all sites.
This effect is also visible in the corresponding mean sizes summarized in Table 4.
Care must however be taken not to confuse correlation with causality. It cannot
be determined from the measurements if it is the Web 2.0 mechanisms that make
Web pages larger (or make it easier to create large sites) or if large Web pages
are more likely to employ Web 2.0 mechanisms or if there is a common driver
behind both the size and the mechanisms employed. Another quick conclusion to
be avoided is that the 333 sites not identified as employing Web 2.0 mechanisms
on their home pages are not Web 2.0 enabled. Many of them may employ those
mechanisms behind the site’s home page. On the other hand, one may safely
assume that a site that already employs Web 2.0 mechanisms on the home page
will continue using those mechanisms on other pages of the site.

Figure 10 takes a closer look at the traffic volume reduction due to caching.
The distributions show that Web 2.0 sites have a slightly higher probability of
showing less volume savings than the whole ensemble of sites. The distributions
shows roughly negative exponential shape (note the single logarithmic scaling).
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Table 4. Mean page sizes and usage of Web 2.0 mechanisms

mean S1 volume mean S2 volume

all sites 498 kB 97 kB
Web 2.0 sites 859 kB 165 kB
other sites 307 kB 97 kB

5.3 Image Files

Hardly any modern Web page can afford to present its contents without images.
In some cases (e.g. flickr.com), images are the primary contents and often they
support identification of other contents (videos, news stories). Many advertise-
ment banners are images and a lot of navigation elements are designed as images
to give Web pages a certain look and feel.

In order to get a first estimate on the amount of page space occupied by the
downloaded images, the following exercise was conducted: GIF and JPEG images
were extracted from the files using a slightly modified version of the driftnet
tool [17]. Properties of the extracted image files were then collected using the
identify tool (part of ImageMagick, available on many Linux and Unix distri-
butions). The number of pixels in all pictures contained in a trace was summed
up and taken as representative of the screen area covered by images. This ap-
proach is very coarse because flash animations, videos and some image file types
(png, bitmap) were not counted and some images could not be correctly read by
the identify tool. Correspondingly, the given numbers are lower bounds, and
there can be more image information in the traces than actually analyzed here.

Figure 11 shows a plot of the cumulative complementary distribution func-
tions of the total screen size occupied by the sum of all images received per page
(in pixels). A typical screen size of 1280x1024 corresponds to 1.31M pixels, which
is exceeded by 16% of the sites in S1. Those sites can take unnecessarily long
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to load. In S2 in contrast, only one site actually loaded more than 1.3M pixels.
The jump at 33k pixels in both distributions is due to the Google logo which
has 301x110 = 33110 pixels. Note that the global top 500 Web sites include
50 national versions of the Google home page.

The scatter plot in Figure 11 shows the resulting relation between screen
pixels loaded per page in the corresponding S1 and S2 sessions. There are three
distinct areas showing different site behavior. (a) in the top right corner there
are that load a large amount of image space and allow caching only for parts of
it, or replace the images on the page at the second loading, e.g. to cycle through
different advertisements. (b) below that there is a region where the amount of
image pixels in S2 is drastically less than in S1. Here all real images are cached
but the so-called “Web bugs” (see Section 5.4) are not cached. (c) at y = 0 there
are a number of sites that allow complete caching of all (recognized) images.

5.4 “Web Bugs” and Cookies

“Web bugs” are single pixel images employed by Web site designers to track
user behavior. They mainly serve two purposes: Every time a page is loaded,
the tiny but usually not cachable picture also needs to be loaded, so the server
serving the image can log a request to the image that can be used e.g. to count
page views. In addition, the server serving the image can set and check cookies
to personalize tracking, i.e. to correlate page views among different pages (and
sites!) with users. Even if users instruct their browsers to accept and send cookies
only for the same domain as the related contents, sites can include Web bug
images from third party tracking providers that cover multiple sites but get
their (tracking provider site specific) cookies accepted and sent within the same
origin policy [14]. Another trick often employed in conjunction with Web bugs is
to personalize URLs instead of or in addition to using cookies. This allows even
cross-application tracking between personal links or image URLs in e-mails and
the Web server serving the Web bug.
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In 11, Web bugs were clearly visible in the small total screen size portions of
the S2 data. With each file only accounting for a single pixel, the S2 curve in
Figure 11 indicates that 58 sites (12%) transmit a single Web bug and another
80 sites (16%) transmit 2–10 Web bugs in the S2 session.

The correlation plot in Figure 12 shows that the more Web bugs a site em-
ploys, the more are also explicitly loaded when rendering the cached page. How-
ever, surprisingly some Web bugs are cachable, which is indicated by the fact
that some sites show a significantly lower number of Web bugs in the S2 data
than in the S1 data.
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Figure 12 (right) depicts the number of cookies set per home page at initial
(S1) and following (S2) visits. Although the total traffic is reduced in S2, the
number of cookies rather has a tendency to increase. This is a further indication
for a large part of the S2 traffic being due to user tracking.

5.5 Cache Expiry

The cache expiry information per element as indicated in the HTTP headers, is
plotted as a ccdf in Figure 13 for large (≥ 1kB) and small (< 1kB) elements.
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Expiry times were limited to one year in line with to the HTTP standard. Non-
cachable elements were recorded as if they had zero expiry time. There is a
general tendency for larger elements to have longer cachability than smaller el-
ements and for elements in S1 to be more cachable than elements in S2. As
could be expected, the ratio of non-cachable elements in S2 is much higher than
in S1, but even the S2 sessions still contain a significant amount of cachable
elements due to sites exchanging the URLs to embedded elements (e.g. for ad-
vertisements).

6 Conclusions

When designing systems and networks to transport Internet traffic, it is impor-
tant to have a precise knowledge about the properties of the traffic to be trans-
ported. As the Web evolved, Web traffic locality and cachability have changed.

Using actively initiated measurements on the Web’s most popular sites, a
number of properties of modern Web sites’ traffic were explored. It was shown
that while client side caching significantly reduces the volume and number of
elements loaded at a second visit to a page, other measures such as the number
of hosts contacted and the number of networks they belong to are much less
reduced. An investigation of the graphics files loaded for each page showed that
each 6th page loads more images than required to fill a full computer screen, and
that Web bugs (single pixel images used for user tracking) are in widespread use.
As Web bugs are loaded before a page is displayed, they are an example of low
volume traffic that requires low latency treatment. Personalization (via cookies),
changing contents and rotating advertisements are responsible for a large part
of the traffic observed when pages are loaded again. While a lot of elements are
cachable, this does not mean they are actually re-used when a page is loaded
again because many sites change the contents to be displayed from visit to visit.
This is no problem for PCs which usually have abundant space for caching (if
properly configured) but can be critical for handheld terminals. ISPs will usually
be able to cache less than what was found in this study, as cookies restrict cross-
user caching and some contents may not be stored in the network for copyright
reasons.
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Abstract. We present and investigate the multi class extension of the recently 
proposed analytical model for performance evaluation of a bandwidth allocation 
and admission control scheme in mobile integrated services networks – called 
MATS. The proposed model allows for a prioritization of different service 
classes and for considering different levels of QoS requirements. The MATS 
scheme is based on bandwidth units and it implements an upgrade / degrade (u-
d) mechanism. This mechanism maintains the negotiated QoS levels of connec-
tions as good as possible and prevents connections from getting lost (blocked, 
dropped) at the same time. Instead of focusing only on the traditional metrics, 
we propose two new metrics to evaluate the relative frequency of the u-d 
mechanism and to measure the provided QoS level. A comparison with other 
recently published schemes concludes that our proposed scheme is mandatory if 
it is essential to respect the priority among classes and shows good performance 
from both user and service provider perspectives. Simulation results counter 
check the results of the Markov model and show its applicability for non-
Markovian service time distributions. 

Keywords: Call admission control, handoff, bandwidth allocation, flexible QoS. 

1   Introduction 

The rapid growth of multimedia service networks has forced the network providers to 
consider flexibility as a key issue [1-21]. Managing multimedia streams with different 
QoS requirements on the one hand and minimizing resource wastage on the other, has 
renewed the importance of the resource allocation problem in the new context. This 
could also become more critical in the advent of networks where service providers 
have SLAs to guarantee and the possibility of incurring penalties [13, 17]. In this 
scenario, analytical modeling can be viewed as a powerful tool to investigate different 
resource allocation algorithms to highlight future directions. Originally, the concept 
of adaptive multimedia networking was introduced for the wired network. It is well 
known that in comparison to wired networks, the fluctuation in resource availability 
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in wireless/mobile networks is much more severe. Therefore the multimedia wireless 
network is one of the most challenging application fields of the “adaptive paradigm”. 
Bandwidth is the most important resource and an adaptive allocation mechanism has 
to instantly adapt the network to changing conditions within the system while main-
taining the negotiated QoS. 

Over the past ten years and more the literature has been full of contributions with 
regards to flexible resource allocation, for both wireless mobile networks and fixed 
ones. See two recent surveys and references therein [18, 19]. Many papers deal with 
the flexible quality case [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15] at different levels 
and with different approaches. In the following, we briefly sketch their contribution. 

In [1] an adaptive bandwidth allocation scheme is proposed, based on user quality 
satisfaction curves provided by each application. The curves are used by the adapta-
tion algorithm to achieve global fairness. In [2] an analytical model for an adaptive 
bandwidth allocation for a QoS provisioning scheme is proposed. Groups of different 
QoS level users are considered, and the analytical model includes user mobility. The 
authors define two performance metrics to deal with flexibility: the fraction of time a 
user receives degraded QoS, and the frequency of QoS changes for each user. CDMA 
cellular networks are considered in [3], where a CAC scheme is introduced with the 
aim of performing online management of QoS and provider revenue. Two classes of 
calls are considered, with two different priority levels. A complete analytical model, 
incorporating specific features like soft handover, is provided. A provider revenue 
function for the cell is presented in [4], by deriving formulas for calculating the reve-
nue of each call, based on priorities and degradation tolerance. By maximizing this 
function, the degradation framework evaluates the optimal call mix that can be ac-
commodated by the system. An adaptive resource allocation based on a genetic algo-
rithm is proposed in [5]. Different QoS levels for each stream are considered, and 
degradation is activated to achieve a maximum utilization of the resources. The opti-
mization problem is solved by using genetic algorithms. In [6] a multilayer resource 
management architecture is presented for real and non-real time traffic classes. The 
multilayer interaction of different algorithms for adaptation and reservation is de-
scribed to deal with scarce and dynamic resources. Network, service and revenue 
models are also provided. Again, two classes of traffic, real and non-real time, are 
considered in [7]. A "degraded mode" of operation for a call is described, in which the 
call releases one channel. A bandwidth degradation policy is introduced with the aim 
of maximizing a cost function based on QoS parameters. An investigation on the 
tradeoff between the overhead due to network messages and the fairness criteria of 
adaptive schemes is presented in [8], where an adaptation scheme is proposed which 
reconciles the two properties. A fair bandwidth allocation algorithm for multiple 
classes of adaptive multimedia services is proposed in [9]. Fairness between classes 
and between calls of the same class is considered, the bandwidth requirement of each 
call is defined in terms of multimedia layers for the respective class (layered coding 
approach). The authors define two QoS measures to characterize the degradation: the 
frequency and the degree of the degradation. In [10] an analytical model for the com-
bined graceful degradation and traffic restriction mechanism is proposed. A simplified 
scheme, where a call receives either a full or degraded service depending on the sys-
tem load, and its extension to a generic multilevel degradable service are both de-
scribed in the model. In [11] a distributed CAC and bandwidth adaptation algorithm 
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(BAA) is proposed for a single class of calls taking a discrete quantity of bandwidth 
units from a set of possible values. The CAC algorithm guarantees the upper bound of 
the cell overload probability, while the BAA seeks to minimize the cell overload 
probability. A CAC and bandwidth adaptation algorithm is proposed in [12]. All calls 
belong to a single class and they take varying bandwidth values from the same set. 
Only real-time streaming services are considered. The bandwidth degradation is per-
formed by means of evaluating the system “adaptability”, that is the number of calls 
that can be degraded. A threshold-based admission control algorithm with negotiation 
for two priority classes of requests is proposed in [13], where a reward-penalty 
scheme is adopted. The server capacity is partitioned, and each request has a reward 
and a penalty (related to the acceptance of the call in the system) as high as its prior-
ity. The analytical model aims to find the best partitions (i.e. the thresholds) optimiz-
ing the system performance based on the objective function of the total reward minus 
the total penalty. An integrated analytical framework for analyzing the QoS perform-
ance is presented in [15]. The framework integrates the physical, the data link and the 
network layer to analyze call-level and packet-level performances. CAC and Adaptive 
Channel Allocation algorithms are proposed. Three different types of traffic, real-
time, non real-time and best-effort are considered. 

Very few papers offer an analytical approach for handling multimedia services 
with flexible quality demands. In [14, 16] the authors use an analytical approach for 
handling multimedia services with priority, but they don’t include the flexible re-
source allocation. An adaptive channel reservation scheme for multiclass traffic is 
proposed in [14]. In this particular guard channel scheme, a new call can access the 
reserved handoff channels with a certain probability that depends on the current num-
ber of occupied channels and the mobility of the user. Access probability is evaluated 
with heuristic formulas. Note that in this case the “adaptive” characteristic is related 
to the fractional threshold for guard channels. Two different dynamic bandwidth allo-
cation strategies, based on guard channel schemes, are proposed in [16]. A single cell 
accessed by two of traffic classes is considered. In the first scheme (Guard Channel 
Fixed Reservation), bandwidth is divided into fixed groups, while in the second 
scheme (Guard Channel Dynamic Reservation) one group is allowed to have a vari-
able number of channels and a special rule for its channel allocation. 

An adaptive bandwidth allocation and admission control scheme for wireless inte-
grated service networks, called MATS, was proposed in [20] for the two classes case. 
MATS was derived by extending the scheme in [14] to include adaptive bandwidth 
allocation inspired by [15]. In this paper we extend the MATS scheme and its analyti-
cal Markov model to any number of classes. As introduced above, the contribution of 
our proposed scheme is combining the multiclass characteristics and priorities with 
adaptive bandwidth allocation. To deal with the integrated services characteristic of 
the considered networks, the scheme allows the inclusion of different classes and each 
request of a given class can be served according to different service levels [5]. For 
each class a reservation scheme is used to prefer handoff calls over new calls by 
means of a threshold defined for that class. We define an analytical model to investi-
gate the efficiency of the proposed scheme. Additionally, we used a simulation 
framework [21] to counter check the results of the analytical approach. Thus the main 
contribution of the paper is twofold: the extension of the MATS scheme to the multi-
class characteristic of actual multimedia wireless networks and the investigation of 
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the robustness of the traditional analytical assumptions compared to more realistic 
scenarios. 

The paper is organized as follows. The system characteristics and the proposed 
MATS scheme are presented in the following sections 2 and 3 respectively. The ana-
lytical model and the performance indices are defined in section 4. Section 5 presents 
the model and the simulation framework. Section 6 presents the investigation of the 
model behavior through the comparison with other schemes and via simulation results 
(section 6.1), the investigation of the analytical assumptions robustness (section 6.2) 
and the results for a realistic scenario case (section 6.3). Finally section 7 concludes 
the paper. 

2   The Network and the Resource Allocation Problem 

We consider a wireless network with a cellular infrastructure that carries different 
classes of traffic, for example voice and data traffic, or classes of real-time traffic with 
different QoS requirements. We assume the system uses Fixed Channel Allocation 
(FCA), which means each cell has a fixed capacity that is equal to B basic bandwidth 
units (bbu). The bandwidth units can be interpreted as system capacity slices. The 
definition of the amount of needed bbu for each service is based on the QoS demand 
of the service and the used radio access technology (FDMA, TDMA, or CDMA). 

The infrastructure can support mobile users running multimedia services that de-
mand a wide range of bandwidth allocations. The bandwidth of a multimedia call can 
be dynamically adjusted depending on the network load situation during the call’s 
lifetime. Moreover, since the mobile user can freely roam within a network’s cover-
age area, he/she may undergo a number of handoff events during a typical session. 
The number of handoffs mainly depends on the cell layout and the mobility of the 
user. During the lifetime of the service it may experience low and high loaded cells. 
In case of high loaded cells the “adaptive” allocation of bandwidth prevents the call 
from being dropped but instead it will suffer from bandwidth degradation. Most mul-
timedia services like video, voice or radio can be described as realtime services. 
Therefore we concentrate our modeling efforts on realtime services for which service 
times can be seen as independent from the received bandwidth. 

QoS requirements of the users can be quantitatively expressed in terms of probabil-
istic connection-level QoS parameters [22, 23] related to connection establishment 
and management: blocking probability PB of a new call and dropping probability PD 
of a handoff call. While minimizing these QoS parameters is very desirable from the 
user’s point of view, this often comes at the expense of the resource utilization, which 
is extremely undesirable from the service provider’s perspective. This proves the 
importance of providing a balance between the user’s connection-level QoS satisfac-
tion and system utilization. Two major components in multimedia wireless networks 
(MWN) contribute in solving the above problems. The first is a Call Admission Con-
trol (CAC) algorithm. It is performed at the connection-level whenever a mobile initi-
ates communication in a new cell, either through a new or handoff call. The CAC 
algorithm accepts or rejects an arriving request according to the amount of available 
resources versus QoS requirements. The second component is the Adaptive Band-
width Allocation (ABA) algorithm which is responsible for bandwidth management 
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of ongoing calls in the system. In MWNs it is possible to overcome cell overload 
situations by dynamically adjusting the bandwidth of individual ongoing calls. In this 
process “fairness” amongst users is an important issue. 

3   The MATS Scheme 

3.1   The Threshold Reservation Scheme 

A MWN with C classes of requests is considered. Class i is assumed to have priority 
over class i-1, i= 1, 2, …, C. A radio resource management entity (RRM) manages a 
fixed amount B of bandwidth per cell. The bandwidth is partitioned into basic band-
width units (bbu). To give priority to class i, the RRM adopts a bandwidth partition: 
Bi-1<Bi bbu can be used for class i-1 requests, while Bi bbu can be used for class i 
requests. Finally all available bandwidth B can be used for the highest priority class 
C, that is BC=B. It is well known that blocking a new call is more tolerated than drop-
ping a handoff call. This is the motivation of the traditional Guard Channel (GC) 
scheme which uses thresholds to reserve bandwidth to the handoff calls. Let us define 
Ti < Bi as the threshold for the class i new calls. As a consequence, the class i handoff 
calls have Bi-Ti bbu exclusively reserved in respect to the class i new calls. Despite 
these class i calls have to share these reserved bbu with higher class j calls, with i <j ≤ 
C, without regarding the type of the class j calls (new or handoff). Similarly, the class 
C handoff calls have B-TC bbu exclusively reserved according to the highest priority 
characteristic of class C. Without loss of generality, in this paper we assume Ti<Ti+1 
and Ti+1=Bi. Figure 1 illustrates the threshold reservation scheme for the case with 
C=3 classes.  

Each class has flexible QoS requirements. Let us define Li={l1,i, l2,i,… lmaxi,i
} the 

QoS levels for a call of class i, i=1, 2, …, C. We assume that, for class i, l1,i is the 
minimum number of bbu to maintain the connection, and lmaxi,i

 is the amount of bbu 

which provides the highest QoS level for the connection. The proposed Multimedia 
Adaptive Threshold Strategy (MATS) accepts new calls at the maximum possible 
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Fig. 1. The threshold reservation scheme 
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QoS level. So, if the bandwidth is available, lmaxi,i
 bbu are allocated to an incoming 

call (new or handoff) of class i, otherwise the available amount li
* is allocated, with 

li
*=max{l⏐l ∈ Li, l < lmaxi,i

}. 

The threshold mechanism of the GC scheme yields a reduction of the dropping 
probabilities at the cost of increased blocking probabilities. To overcome this prob-
lem, we propose an upgrade-degrade (u-d) mechanism which allows the acceptance of 
a class i incoming call at its minimum QoS level l1,i by degrading the quality level of 
the ongoing calls in the cell. The degradation mechanism is performed fairly among 
all the ongoing calls and by taking into account the priority characteristic. As soon as 
some bbu are released by a departure, an upgrade mechanism is activated for allocat-
ing these released bbu, thus increasing the QoS offered to the users and maintaining a 
higher system utilization. For the multiclass case, we generalize and optimize the u-d 
mechanism presented in [20] for the two classes case. In [20] the admission control 
algorithm, used by the MATS scheme, is defined for a generic class i. So it can be 
immediately used for the multiclass case. In the following, we just sketch the admis-
sion control behavior. The MATS algorithm takes into account the class and the type 
(new or handoff) of the incoming call. In case of a new call arrival of class i the RRM 
checks if there are less than Ti bbu occupied. In this case, the RRM checks if the call 
can be admitted at the maximum possible level as described above. If the available 
number of free bbu is not sufficient for admitting the call even at its minimum level 
l1,i, the degradation mechanism is activated. If the degradation is successful the new 
call is admitted at the minimum level l1,i and within the threshold Ti, otherwise it is 
refused. 

If Ti bbu are occupied then the RRM starts the degrade mechanism for the ongoing 
calls to admit the new one within the limit threshold Ti. If the degradation is success-
ful the new call is admitted at the minimum level l1,i, otherwise it is refused. 

If the arrival call is a handoff, the scheme proceeds as for the case of a new call just 
by using the appropriate threshold Bi instead of Ti. 

3.2   The Upgrade-Degrade Mechanism 

This section describes the above mentioned MATS u-d mechanism in more detail. For 
an incoming call of class i, the mechanism starts to degrade the calls of the minimum 
priority class 1, and subsequently proceeds in increasing order of priority. The degra-
dation stops after it is applied to the ongoing calls of class i itself. Note that, with 
respect to the hierarchy among classes, an ongoing call of class j with j>i cannot be 
degraded to admit an incoming call of class i. 

Assume that a class i request arrives. The degrade mechanism is performed accord-
ing to the following steps: 

 
d0. Start from the minimum priority class j=1. 
d1. If j≤i, the class j ongoing calls at the maximum available QoS level k such that 

lk,j> l1,j, are selected. For fairness purposes the calls are selected in a random way 
(uniform). The QoS level of the calls is degraded to l(k-1),j, until l1,i bbu have been 
released or there are no more calls to degrade. 

d2. If the released bbu are sufficient to allocate the incoming call and the thresholds 
Ti and Bi are preserved (for the new and handoff calls respectively), the algorithm 
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stops. Otherwise, step d1 is repeated for the class j QoS level k-1, if k-1>1. If k-
1=1, step d1 is repeated for higher priority classes j+1. 

 

Note that if all class j ongoing calls are at the minimum level, for all j≤i, or the re-
leased bbu are not enough (released bbu < l1,i) the degradation is not possible and the 
incoming call is lost (blocked or dropped for new or handoff respectively). 

When a class i departure occurs, an upgrade mechanism is activated. Let us denote 
by fbbu the bbu released by the class i departure. The upgrade mechanism is performed 
in the following steps: 

 
u0. Select the maximum class j≤C such that there are ongoing calls to be upgraded. 
u1. Let k≥1 be the minimum QoS level such that lk+1,j - lk,j ≤fbbu. A class j ongoing call 

at the QoS level k is selected. For fairness purposes the call is selected in a ran-
dom way (uniform). The QoS level is upgraded to l(k+1),j whenever the threshold 
Bj is preserved. On the contrary step u1 is repeated for k+1<maxj. 

u2. If the bbu released from the departure are not completely utilized, step u1 is re-
peated until all the released bbu are allocated or the level lmaxj,j

 is reached for all 

the ongoing class j calls, j=1, …, C (the Bj thresholds are preserved). 
 

Note that when a call is accepted into the system it is becoming an ongoing call and 
the distinction between new or handoff is meaningless. As a consequence, in step u1 
of the upgrade mechanism, we use only the threshold Bi. It is worth noting that, with 
respect to the priority criterion, while the degrading process starts from the minimum 
priority class and proceeds (j=1 in step d0), the upgrading process starts from the 
maximum priority class that has ongoing calls to be upgraded (j≤C in step u0). 
Analogously, to be consistent with the “highest-QoS policy” of MATS, while the 
degrading mechanism starts from the maximum possible QoS level, the upgrading 
mechanism starts from the minimum possible QoS level. This yields a minimized 
number of calls served at the minimum QoS level. 

4   The Analytical Model 

In this section the analytical model we use to evaluate the proposed MATS scheme is 
defined. For simplicity, a homogenous cellular network is considered. In other words, 
all cells are assumed to be statistically identical so that we can focus on one particular 
cell. 

The arrivals for each class are assumed to follow a Poisson process with mean rates 
λn,i and λh,i for new and handoff calls respectively. The service time for each class i is 
assumed to be exponentially distributed with a mean rate μi. Note that the service time 
represents both the call holding time and the cell residence time. For the memoryless 
property, it is easy to extend the model to include two different mean rates. 

Under these assumptions, the model is a continuous time Markov chain with a fi-
nite state space. The system state space E is defined as follows: E={ s={(n1,1, …, 
nmax1,1), …, (n1,C, …, nmaxC,C)}⏐ 1≤ nk,i ≤Bi, 1≤ k ≤maxi, 1≤ i ≤C}. In a generic system 

state s, the subset (n1,i, …, nmaxi,i
) represents the number of class i ongoing calls for 

each QoS level, that is nk,i being the number of class i ongoing calls at QoS level lk,i 
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with lk,i ∈ Li={l1,i, l2,i,… lmaxi,i
}. The interested reader can refer [20] for an illustrative 

example of the Markov process. Let π(s) denote the equilibrium probability of state s 
and π=[π(s1), …, π(s|E|)]  the steady state probability vector. The system solution can 

then be expressed as: π S = 0,   

  

π s( )
∀s: s∈E
∑ = 1. where S is the generator matrix of the 

model. 
The performance indices considered in the paper for the evaluation of the proposed 

scheme are opportunely defined from the steady state probability vector. The blocking 
and dropping probabilities for each class are traditionally used as a measure of the 
QoS received by the user of mobile networks. They are defined simply as the sum of 
the steady state probabilities in which the request is lost (new call = blocked; ongoing 
call = dropped). 

The system utilization is a QoS measure from the service provider’s point of view. 
It is  defined as the mean percentage of the used bbu. The following two less tradi-
tional metrics are defined in order to capture the cost of the proposed upgrade-degrade 
mechanism and the QoS delivered to the users. 

For each class i, the quality level QLi is a measure of the probabilities in which 
calls are served at the maximum QoS level. This is defined as follows: 

    

QLi = π' s( )
ymaxi

y tot∀s∈E: ymaxi >0
∑    i= 1, …, C. 

where s is a given state and y is the state component related to class i, that is, for ex-
ample, for class 1: ymax1

=nmax1,1 and 

 

y tot = n j,1
j=1

max1
∑ . 

π’(s) is the steady state probability distribution normalized to the subspace with class i 
ongoing calls. 

A measure of the relative frequency of application of the u-d mechanism Fu-d can 
be defined as follows:  

    
Fu-d = π s( ) tu−d

t tot∀s: s∈E
∑  

where tu-d is the transition rate from state s for effect of the application of u-d mecha-
nism, ttot is the total out-transition rate from state s. 

Note that the mechanism application yields a cost for the system that is dependent 
on the underlying technology and the system implementation. Of course this “flexibil-
ity cost” grows with Fu-d. 

5   The Simulation Model 

We used a common radio resource management (CRRM) model and simulation 
framework [21] to counter check the results of our Markov model. This framework 
was developed to represent the fundamental structure of wireless systems of different 
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radio access technologies. The simulator is designed for the fast creation and evalua-
tion of different scenarios and algorithms via a hybrid simulation approach, where a 
simulation model and an analytic model operate in parallel over time [24]. All sub-
models of the scenario showing dynamic process behavior (like mobility or informa-
tion transfer) are described by discrete event simulation. The analytic submodels are 
parameterized during run time via the simulation state variables and provide station-
ary performance results (like mean response times) that are again used by the simula-
tion model. Since the Markov model is based on an analytical bbu-model (to describe 
radio access technologies as well as QoS demands) and CAC algorithms are a sub-
class of CRRM algorithms, the simulation framework is well suited to model and test 
different scenarios implementing the MATS scheme. Please refer to [21] for a more 
comprehensive description of the framework. 

The MATS algorithm is implemented into the radio access system (RAS) compo-
nent of the simulation framework. The RAS consists of cells which use the bbu radio 
access technology model. For each cell a maximum number of bbu and the B and T 
thresholds of the different service classes are defined. The service class characteristics 
are defined in the user equipment (UE) component. The services are defined as real 
time services, since their service times don’t depend on the allocated number of bbu. 
For each service class a priority and the quality level demands in bbu are defined; 
additionally their arrival and service time distribution are described via the type of 
distribution, mean value and coefficient of variation. 

A special characteristic of the analytical MATS Markov model described in sec-
tion 4, is the assumption of a homogenous cellular network. All cells are assumed to 
be statistically identical so that only one cell is considered with new and handoff 
connections incoming into the cell. Hence only handoffs towards the cell are mod-
eled; handoffs away from the cell are not considered. In contrast to that the simulation 
framework needs at least two cells to generate handoffs. The underlying random way-
point mobility model produces handoffs towards and away from the cells. The distri-
bution of this handoff process is based on the parameters of the mobility model and 
the cell layout. However, our aim was to reproduce the analytical Markov model 
assumptions as closely as possible in the simulation model to be able to counter check 
the Markov model results. Therefore we used a workaround to reproduce the Markov 
model assumptions for the single cell simulation scenarios. For each service class in 
the original scenario definition for the Markov model we defined two classes (sim-
classes) in the simulation model with identical priorities. One sim-class represents the 
new connections; the other sim-class represents handoff connections. The parameter 
definition (bbu demands, thresholds etc.) is based on their type (new, handoff) and 
service class. This workaround has the disadvantage that handovered connections 
appear everywhere (uniformly distributed) in the cell, not mostly at cell borders as 
one would expect. This is becoming a problem if the modeled cell supports different 
signal quality areas. Therefore we do not use different signal quality areas in the pre-
sented scenarios. The advantage of this workaround is that we can reproduce the 
Markov model assumptions and we are able to directly define the handoff process. 

All the simulated scenarios cover a scenario time of 14 days (excluding the tran-
sient phase) and results are derived from 70 repetitions. The simulation framework is 
based on OMNeT++ which uses the Mersenne Twister pseudo random generator and 
provides means for the generation of non-correlated random number streams. 
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6   Investigation of Model Behavior 

In this section we present several experiments to investigate the model behavior. The 
first set of results (section 6.1) gives a comparison of the MATS scheme with other 
CAC algorithms presented in the literature. 

For the aim of comparison, we consider among the proposed schemes those that 
are more consistent with our approach. In particular, we consider the Multi-Guard 
Channel Scheme (MGC) proposed in [14] and the Guard Channels with Fixed Reser-
vation (GCFR) recently proposed in [16]. It is worth noting that while the MGC 
scheme uses the same criterion of priority as we consider, the GCFR uses a less strin-
gent concept of priority since it allows handoff calls of all types to completely share 
the reserved guard channels (bbu). Note that both MGC and GCFR schemes consider 
no adaptive bandwidth allocation algorithm, in other words they assume only one 
QoS level for each class of requests. On the other hand, this is the main contribution 
of the MATS scheme. To some extend the proposed MATS scheme is the extension 
of the MGC scheme for providing more flexibility by including the u-d mechanism. 
The next scenarios (section 6.2) are based on the scenario descriptions in 6.1 and 
investigate the accuracy of the system behavior forecast of the analytical MATS 
Markov model if we deviate from the stated assumptions in section 4. Hence the sce-
narios show the influence of different distributions for the service and arrival process 
on blocking, dropping and the cell utilization. The last scenarios (section 6.3) describe 
the transfer of real world situations into input parameters for the MATS Markov 
model and show the applicability of the MATS scheme. We evaluate the blocking and 
dropping probability under MATS for three service classes representing radio, video 
and voice connections. The state space of the MATS Markov model for this scenario 
comprises only 3307 states. This shows that the Markov modeling approach is well 
suited for investigating applications of the MATS scheme. 

6.1   The Comparison with Other Schemes 

In the first set of experiments, the proposed MATS scheme is compared to the MGC 
and GCFR schemes. Note that the used parameter set doesn’t originate from any par-
ticular application but is conform with the blocking probability and utilization levels 
investigated in [14, 16] for illustrating the scheme behavior. 

A single-cell with B=100 bbu is considered. Three classes of calls are assumed, 
with class 3 having strict priority over both classes 2 and 1, and with class 2 having 
strict priority over class 1. The three classes have the following flexible QoS levels: 
L1= {6, 10}, L2= {8, 10}, L3= {20}. Note that the highest priority class 3 has the most 
stringent QoS with a sole level. We select the different QoS levels for investigating 
the effect of the adaptability on more (class 1) or less (class 2) flexible requirements 
and on non-flexible requirement (class 3). 

The bandwidth partition allows the three classes to use the following bandwidth 
portions: B1=70 bbu, B2=80 bbu and B3=100 bbu. To guarantee that dropping prob-
abilities are as low as possible, the following thresholds are assumed: T1= 60, T2= 70 
and T3= 80. For each class, we assume λh,i = λn,i/2 [15, 16], with λi = λn,i+ λh,i. We con-
sider the following values for the total arrival rates: λtot = λ1+ λ2+ λ3 = 0.135, 0.27, 0.405, 
0.54, 0.675, 0.81 calls/min. For example for the first value 0.135, we assume arrival 
rates λn,1 = 0.04,  λn,2 = 0.03 and  λn,3=0.02, and we use the increment Δi =  λn,i to obtain 
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the next values. By that we assume decreasing values of arrival rates versus increas-
ing priorities, thus limiting the dominant effect of the higher priorities classes. The 
following figures report the performance measures as a function of the total arrival 
rates (λtot on the x-axis). Finally, we assume μi=0.05 calls/min for each class. 

Figures 2-(a), (b) and (c) show the blocking and dropping probabilities for the three 
classes according to the different schemes. These are the QoS measures from the user 
perspective. It is worth noting that since the other two schemes don’t allow different 
levels for each class, we use the maximum level for this experiment. In other words 
for MGC and for GCFR the levels L1= {10}, L2= {10}, L3= {20} are assumed for the 
three classes. 

The results suggest that the MATS scheme performs better than the other two 
schemes for each class of request for new and handoff calls. We believe the reason is 
the u-d mechanism of the MATS: incoming call requests, that are probably blocked / 
dropped according to the other schemes are accepted according to the MATS by 
means of degradation. This is even true for the highest priority class 3 that has a sole 
level, but it can benefit from the degradation of the other two classes to free band-
width. In particular, regarding the dropping probabilities, note the worsening of the 
behavior of GCFR scheme from class 1 until class 3. This is probably the conse-
quence of allowing handoff calls of any class to fully share the bandwidth region 
reserved for handoff calls. So for example class 3, according to GCFR, shares the 20 
bbu which are strictly reserved for handoff with the other two classes. Instead, accord-
ing to MATS and MGC, the 20 bbu would be strictly reserved for class 3 handoff. 
Regarding the difference in performance between MATS and MGC, in our experience 
(see also [20]) the results are strongly dependent on the combination of the values of 
QoS levels and thresholds for each class. However, we can conclude that MATS 
shows in general better performance than MGC. 

Figure 2-(d) shows the bandwidth utilization under the three schemes. The MGC 
scheme shows the lowest utilization, while the GCFR and MATS schemes show the 
highest utilization. 

As stated in section 3.1, we define a less traditional metric to measure the percent-
age of time the highest QoS is delivered to the users. Figure 2–(e) shows the QLi 
delivered to class i calls according to the MATS scheme. We omit class 3 because of 
its sole QoS level. We can conclude that class 1 calls receive the highest quality level 
more than 75% of the time, while class 2 calls receive the highest quality level more 
than the 87% of the time. 

Figure 2–(f) shows the relative frequency of the application of the upgrade-degrade 
mechanism. It is not surprising that this is increasing, because the u-d mechanism is 
activated more frequently for higher utilization levels. Note that as we stated in sec-
tion 4, the real cost of the mechanism application will be of course dependent on its 
relative frequency besides on system implementation and characteristics. 

Finally, as introduced in section 5, to counter check the Markov model results, we 
used a simulation framework for simulating a comparable single cell scenario. The 
results would show virtually no difference in the graphs, therefore we omit them in 
figure 2 for the sake of clarity. Just to give an example, in the following table we display 
the blocking PB / dropping PD probability values in % for class 1 which we obtained for 
the above scenario by the analytical and simulation approach respectively. The simula-
tion results are given with their respective 95% confidence intervals. 
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Fig. 2. Comparison among the MATS, MGC and GCFR schemes: (a), (b), (c) blocking and 
dropping probabilities for the three classes respectively; (d) utilization; (e) quality degradation; 
(f) relative frequency of the adaptive mechanism application 

Table 1. Check of simulation and Markov model results 
 

tot 
class 1 PB 
 [± 95%] 

class 1 PB 
Markov model 

class 1 PD 
[± 95%] 

class 1 PD 
Markov model 

0.135 8.60 [0.40] 8.81 3.47 [0.27] 3.55 
0.27 36.90 [0.67] 36.63 20.19 [0.61] 20.22 
0.405 59.51 [0.74] 59.49 39.02 [0.88] 38.85 
0.54 73.37 [0.72] 73.48 53.17 [0.84] 53.31 
0.675 81.85 [0.68] 81.83 64.13 [0.83] 63.70 
0.81 87.00 [0.68] 87.00 71.10 [0.76] 71.16 
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6.2   Influence of the Markov Model Assumptions 

In this section we deviate from the assumptions made in the section 4 and investi-
gate their influence on the accuracy of the Markov model results for the scenarios 
presented in the section 6.1. The Markov model assumes exponentially distributed 
interarrival and service times (or session times) which corresponds to an M/M/- 
model. In real systems the service times most likely will deviate from the memory-
less property whereas the arrival process of new connections most likely could be 
seen as a Poisson process. Therefore we setup scenarios with different coefficients 
of variations for the service times of the service classes, which leads to an M/G/- 
like model. We did investigate service times with coefficients of variations (cS) of 
2.0 (two phase Hyperexponential distribution: H2) and 0.5 (Erlang-4 distribution: 
E4) to model more and less variable service times. Note that all services in one 
scenario have identical service time distributions. The results showed no significant 
difference in the blocking/dropping probability of the different service classes as 
well as an identical utilization for the M/G/- system compared to the Markov model 
results (all the Markov model results are within the 95% confidence interval of less 
than 1 % of the simulated M/G/- model results). This is consistent with the results 
in [25] that blocking probabilities are independent of the service time distribution 
for M/G/m/m systems. Our results confirm that this is even true for different 
thresholds and adaptable bbu demands per service class. Thus the Markov model 
results can be used in case of an M/G/- like system, which is most likely the case at 
the session level in communication systems. We do not show the detailed result 
tables here for the sake of briefness. 

Additionally we also investigate the influence of the arrival process distribution in 
conjunction with the service time distribution. Thus the next scenarios model a G/G/- 
system and therefore they deviate from the Markov model assumption for the interar-
rival time and service time distribution. The results are presented in table 2. for the 
low and high utilization case. For each class we show the blocking PB and dropping 
PD probability together with a 95% confidence interval. The results show that if the 
arrival process also violates the memory less property the Markov model results for 
MATS can not be used any more. The results for the different distributions differ 
sometimes greatly not only in absolute numbers but also in general behavior for low 
and high system utilizations. For example the results for λtot =0.135 1/min show a 
higher blocking probability of class 1 connections for the H2/H2/- case in comparison 
to the Markov model results. In case of λtot =0.81 1/min this is reversed (see bold 
numbers in column “class 1 PB” in table 4). We highlighted some other cases in italic 
and bold plus underlined which illustrate the change in behavior for the different 
distributions and utilization levels. In column “class 2 PB” the results for different 
distributions change for low and high utilization levels. The bold plus underlined 
results show a change in behavior for different distributions at the same utilization 
level.  

The G/M/- model scenario results also differ significantly from the Markov model 
results. We again omit them for the sake of briefness. 
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Table 2. Results for G/G/- system scenarios 

Scenario 
tot 

model 

Class 1 
PB 

[± 95%] 

Class 1 
PD 

[± 95%] 

Class 2 
PB 

[± 95%] 

Class 2 
PD 

[± 95%] 

Class 3 
PB 

[± 95%] 

Class 3 
PD 

[± 95%] 

Utilization 
[± 95%] 

0.135 
M/M/- 

8.60 
[0.40] 

3.47 
[0.27] 

2.65 
[0.20] 

0.73 
[0.12] 

3.54 
[0.32] 

0.11 
[0.05] 

31.54 
[0.18] 

0.135 
E4/E4/- 

5.22 
[0.21] 

1.43 
[0.12] 

0.60 
[0.06] 

0.10 
[0.04] 

0.43 
[0.07] 

0.00 
[0.00] 

32.41 
[0.09] 

0.135 
H2/H2/- 

13.00 
[1.00] 

6.39 
[0.81] 

6.63 
[0.60] 

2.77 
[0.53] 

15.60 
[1.56] 

4.27 
[0.79] 

29.47 
[0.39] 

0.81 
M/M/- 

87.00 
[0.68] 

71.10 
[0.76] 

61.07 
[0.56] 

31.15 
[0.56] 

66.69 
[0.88] 

12.91 
[0.40] 

72.67 
[0.05] 

0.81 
E4/E4/- 

89.67 
[0.39] 

75.00 
[0.47] 

61.87 
[0.35] 

29.36 
[0.38] 

65.67 
[0.39] 

2.82 
[0.11] 

74.04 
[0.03] 

0.81 
H2/H2/- 

82.22 
[1.44] 

64.58 
[1.41] 

60.81 
[1.17] 

35.26 
[1.16] 

72.03 
[1.40] 

34.84 
[1.17] 

68.19 
[0.11] 

 

6.3   MATS Application Scenario 

The scenario in this section illustrates the transfer of real world situations into input 
parameters for the MATS Markov model. Numbers for cell capacities are derived 
from results published in [26 p. 167] for the uplink direction of a WCDMA cell. The 
approximate cell capacities given in this reference for the data rates of different ser-
vices are transferred into bbu demands for different service classes. Please note that 
this bbu-model is simplified and neglects the influence of different interference situa-
tions for different service mixes, user locations and neighbor cell utilization levels. A 
capacity of 100 bbu is assumed for the cell. Common realtime services in today’s 
wireless wide area networks are voice, radio and video connections. We assume that 
voice is the most important service to the provider followed by video and radio. In 
table 3 we show the assumed high and low quality level data rates (DH, DL) for the 
services, the respective capacities of the cell and the transfer into the input parameters 
of the Markov model. For all services we assume that the user mobility creates a 
handoff rate λh,i of half the arrival rate for new connections (λh,i = λn,i / 2). Our tests 
with multi cell scenarios show that this ratio corresponds to a pedestrian mobility 
pattern. Table 4 presents the performance comparison of the MATS scheme with 
MGC and GCFR schemes. As we mentioned above, these two schemes don’t allow 
for the multilevel characteristic. Hence, for the aim of consistency with the “highest-
QoS policy” of MATS, we consider the maximum levels of QoS for all classes in case 
of both MGC and GCFR schemes (MGC_max, GCFR_max). From the results, one 
can be convinced that the lack of flexibility dramatically worsens the performance 
from both the point of views of the users (blocking and dropping probabilities) and of 
the service provider (utilization of system/network components). For the aim of com-
pleteness, we extend the two schemes MGC and GCFR to include the multilevel 
characteristic (MGC_ext, GCFR_ext). Hence the two schemes behave similarly to 
MATS by starting to accept a call at the highest possible level. If this is not possible, 
the call will be accepted at the minimum level (for example the arriving call at the 
maximum level would not be within the right threshold). It is obvious that the multi-
level characteristic improves the performance from all points of view. However, it is 
the flexibility of MATS with the upgrade-degrade mechanism that yields the best 
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results. This claim is further confirmed by the last experiment, where we enhance the 
GCFR scheme with flexibility (GCFR_flex). Now, the behavior of the two schemes 
(MATS and GCFR_flex) is quite similar except for the fully shared channels for 
handoff in the GCFR. 

Table 5 shows the two less traditional metrics defined in section 3.1 (“na” stands 
for not available). First of all, note that class 3, when it is present in the system, re-
ceives always the highest quality. This is obvious since the voice traffic has a strin-
gent sole QoS level, in particular L3= {2}. Similarly, all calls in MGC_max and in 
GCFR_max receive the highest quality, since in this case only the maximum level for 
each class is considered. In case of the MATS scheme one can be easily convinced 
that the gain in performance showed in Table 4, is reached at a very modest cost. 
Indeed, the radio traffic suffers the quality degradation only in about 1% of time, 
while the video traffic is degraded in about 9% of time. The relative frequency of the 
application of the upgrade-degrade mechanism is about 4%. 

Table 3. Transfer into MATS Markov model input parameters 

Input paramters Service 
type 

Data rates 
(kbit/s) 

Cell-
capacities 
(channel) 

Cell thresh-
olds (%) Service parameters 

DL = 32 20 radio DH = 128 8 
T1 = 70 
B1 = 80 

L1 {5,13}; n,1 = 1/60 1/min;  
1 = 1/20 1/min; Prio = 1 

DL = 144 6 video DH = 384 2 
T2 = 80 
B2 = 90 

L2 {17,50}; n,2 = 1/30 1/min;  
2 = 1/5 1/min; Prio = 2 

voice DH=DL=12 60 T3 = 90 
B3 = 100 

L3 {2}; n,3 = 2 1/min;  
3 = 2/3 1/min; Prio = 3  

Table 4. The realistic case: performance comparison 
 

 PB in % PD in % Utilization 
 radio video voice radio video voice  
MATS 6.49 0.08 0.00 1.77 0.01 0.00 26.59 
MGC_max 14.66 25.64 0.04 5.42 20.54 0.00 24.25 
GCFR_max 14.75 25.87 0.11 5.58 20.63 0.01 24.39 
MGC_ext 8.13 9.48 0.09 2.14 3.11 0.00 24.99 
GCFR_ext 8.28 9.61 0.24 2.36 3.30 0.01 25.14 
GCFR_flex 6.52 0.09 0.00 1.79 0.01 0.00 26.63 

 

Table 5. The realistic case: quality levels and cost 
 

 Quality levels u-d relative fre-
quency 

 radio video voice  
MATS 0.990 0.912 1 0.043 
MGC_max 1 1 1 na 
GCFR_max 1 1 1 na 
MGC_ext 0.930 0.830 1 na 
GCFR_ext 0.946 0.828 1 na 
GCFR_flex 0.990 0.912 1 0.044 
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7   Conclusions 

In this paper, we considered an adaptive resource allocation problem, which is a very 
critical issue in the new framework of differentiated services in heterogeneous net-
works. In particular, we considered wireless mobile integrated service networks and 
proposed the MATS (CAC and ABA algorithm) for a multiclass environment with 
flexible QoS requirements and priority. Despite the fact of extensive research in the 
field of admission control and resource allocation in wireless networks, very few 
papers combine the multiclass characteristic with the adaptive issue [3, 15]. This 
combination is the main contribution of MATS. We developed a general analytical 
model to include the characteristics of the considered services and networks. We 
considered traditional performance metrics and we also defined two additional met-
rics for measuring the relative frequency of the ABA algorithm activation and to scale 
the amount of high level service time received by users. 

We compared MATS with schemes recently proposed in the literature that are con-
sistent with our assumptions. It is worth noting that these schemes do not include an 
adaptive mechanism for flexible QoS. From the first set of experiments one can con-
clude that an adaptive mechanism is mandatory for efficient resource utilization and 
for respecting the priority criterion.  

Our simulation experiments confirm the results of the Markov model and show that 
they are even valid in the presence of non-Markovian service times. Future simula-
tions will investigate the influences of multi cell scenarios, the user mobility and more 
sophisticated radio access technology models on the applicability of the Markov 
model results. Additionally we investigate means of increasing the cell utilization and 
to improve the control of blocking/dropping probabilities for different service classes 
via MATS. 
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Abstract. Two-hop ad-hoc networks, in which some nodes forward traf-
fic for multiple sources, with which they also compete for channel access
suffer from large queues building up in bottleneck nodes. This prob-
lem can often be alleviated by using IEEE 802.11e to give preferential
treatment to bottleneck nodes. Previous results have shown that differ-
entiation parameters can be used to allocate capacity in a more efficient
way in the two-hop scenario. However, the overall throughput of the bot-
tleneck may differ considerably, depending on the differentiation method
used. By applying a very fast and accurate analysis method, based on
steady-state analysis of an QBD-type infinite Markov chain, we find the
maximum throughput that is possible per differentiation parameter. All
possible parameter settings are explored with respect to the maximum
throughput conditioned on a maximum buffer occupancy. This design
space exploration cannot be done with network simulators like NS2 or
Opnet, as each simulation run simply takes to long.

The results, which have been validated by detailed simulations, show
that by differentiating TXOP it is possible to achieve a throughput that
is about 50% larger than when differentiating AIFS and CWmin.

1 Introduction

The availability of cheap yet powerful wireless access technology, most notably
IEEE 802.11 (“wireless LAN”), has given an impulse to the development of wire-
less ad hoc networks. In such networks, the stations (nodes) that are in reach
of each other, help each other in obtaining and maintaining connectivity. At the
same time they are also competitors, as they all contend for the same resource,
i.e., the shared ether as transmission medium. The medium access control of
IEEE 802.11 (based on CSMA/CA) is commonly referred to as the distributed
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coordination function (DCF) [6,12]. Research has shown that, effectively, the
DCF tends to equally share the capacity among contending stations [2,7]. Al-
though this appears to be a nice fairness property, this fairness does lead to
undesirable situations in case one of the nodes that functions as bridge toward
either another group of nodes, or via an access point to the wired internet, as
illustrated in Figure 1. In such cases, it appears fair to allocate more bandwidth
to the bridging node.

Fig. 1. Bottleneck in a two-hop ad hoc network

Recently, a quality-of-service (QoS)-extension of the IEEE 802.11 standard,
the so-called EDCA (“e”) version has been released [1]. Roughly speaking, this
extension provides mechanisms to provide preferential treatment of certain traffic
classes (or nodes) over others. Four different parameters can be used to reallocate
the amount of radio capacity given to each station, corresponding to a large
number of different parameter settings.

The current paper analyzes how we can optimize IEEE 802.11e parameter
settings such that maximum throughput is obtained for a given buffer size in
this 2-hop ad hoc network scenario?

Even though single parameter settings can be simulated with network simula-
tors like NS2 or Opnet, it is practically impossible to find the optimal parameter
setting for a given scenarios using costly and slow simulations. In contrast to
the simulations a very fast analytical approach has been proposed in [10], where
we presented a new model for analyzing IEEE 802.11e access mechanism in a
two-hop ad hoc network. Our high-level model is flow-based, and uses results
from packet-based models (such as those proposed by Bianchi and Engelstad et
al. [2,4]), and allows for the numerical evaluation of the buffer occupancy at the
bottleneck node, the system throughput, as well as provides information on the
mean number of active sources. This analytical approach has been verified by
extensive simulations.

However, the key result of the current paper is that we use these models
in a variety of scenarios, and show how they can be used to optimize system
parameters. By exploring the parameter choices for all stations and the chosen
threshold for the buffer occupancy, we obtain the maximum load parameter λ for
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which the buffer occupancy still remains below the threshold and then compute
the throughput that corresponds to this load. Note that we only differentiate
one parameter at a time.

This cannot be achieved with detailed simulation models, simply because they
are too time-consuming to be executed so often. We do, however, show that also
for the optimized parameter scenarios, the results obtained with the analytical
models, do coincide very well with detailed simulation studies.

The only paper we are aware of explicitly addressing an analytical evaluation
of the two-hop case is [13]. They obtain explicit (closed-form) equations for the
expected overall delay and the expected delay at the bottleneck by translating
the model at hand into a generalized processor sharing model, as studied by
Cohen [3]. Although the analysis is approximate, good results are obtained,
as confirmed by simulations. However, this evaluation approach is limited in
that it only allows for an equal sharing of transmission capacity between all
active stations (including the bottleneck). They do not address the differentiation
parameters introduced in the protocol IEEE 802.11e.

In this paper, the system of interest and the modeling approach is described in
Section 2. We compare the maximum throughput that can be obtained with the
different QoS parameters with the maximum obtainable throughput in the basic
setting in Section 3. Conclusions and future work are discussed in Section 4.

2 System of Interest and Modeling Approach

In Section 2.1 we describe the scenario of interest, in Section 2.2 the quality
of service parameters are described and in Section 2.3 the analytical modeling
approach is discussed.

2.1 Bottleneck Scenario

The scenario under study, as illustrated in Figure 1, has a varying number N of
active nodes, the so-called sources, which are all within reach of each other. Ad-
ditionally there is the bottleneck node B, that is the only node that can reach
via an access point the wired internet. Hence, all traffic originating from the
sources and the traffic passing through the bridge has to share the same radio
transmission capacity. It has been shown that the DCF access mechanism effec-
tively shares the radio capacity equally over all competing nodes [2,7]. Clearly,
this situation benefits the sources as a group, as they can use a relatively large
share of radio capacity to send their packets, whereas the bottleneck only gets
the same share as every other individual node. Because it has to support the
traffic of all other nodes, fairness leads to a very high buffer occupancy in B,
eventually also buffer overflow, and in any case, long delays.

2.2 IEEE 802.11e

The Enhanced Distributed Channel Access Function (EDCA) of IEEE 802.11e
allows multiple contention instances to be simultaneously active in a single sta-
tion, each supporting a certain access category (AC). Furthermore, the standard
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introduces four differentiation parameters (EDCA parameters), as discussed be-
low, which can be set individually for each access category of each individual
station to enable QoS provisioning [11].

We facilitate adaptive capacity sharing between stations by letting each sta-
tion have a single access category, and using the EDCA parameters for differen-
tiating between the source stations and the bottleneck station. In principle the
EDCA parameters are meant for service differentiation, while we apply it here
for node differentiation. Another relevant scenario for such node level differen-
tiation is the case of uplink versus downlink transfer in an infrastructure-based
WLAN, where the access point should get a bigger share of the resources to
achieve fairness between both directions [9,5]. In the remainder of this paper we
will analyze the following four scenarios:

1. With standard IEEE 802.11, the medium needs to be idle for at least one
distributed inter-frame spacing (DIFS) period before stations can start to
contend for medium access. A station then needs to wait a random number of
slots, drawn from the so-called contention window ({0, CW}), before starting
to transmit if the medium is still idle. After winning contention a station is
allowed to send exactly one packet. The range of the window grows with
every collision (until the maximum is reached) and is reset to its minimum
after a successful transmission.

In the IEEE 802.11e QoS extension, two contention-based methods are proposed
to change the above procedure:

2. The initial value of the contention window (CWmin−1 ) and/or the maximum
value of the contention window (CWmax − 1) are set smaller for a given
station, thus, this station draws its backoff from a smaller contention window,
hence, has a higher probability to win contention.

3. With so-called arbitration inter-frame spacing (AIFS) it is possible to assign
different inter-frame spacings for different service classes (or nodes) instead
of the fixed DIFS. Thus, high-priority nodes can be assigned shorter AIFS,
so that they can start counting off their backoff earlier, hence, have an ad-
vantage when contending for medium access.

A way to adapt the capacity sharing that does not alter the actual contention
mechanism is the following:

4. The transmission opportunity limit (TXOPlimit) provides a time period dur-
ing which a station may send packets after having won a contention. Thus,
a station with a sufficiently high TXOPlimit is able to send several packets
and will thus be able to grab a larger share of the channel capacity than a
station with a smaller TXOPlimit.

The above four parameters (CWmin and CWmax, AIFS and TXOPlimit) in the
IEEE 802.11e standard can be used to reallocate the amount of radio capacity
given to the sources and to the bottleneck.
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2.3 An Abstract Analytical Model

In this section we briefly recall the analytical model, for a more detailed descrip-
tion please refer to [10].

input buffer output
NK-N

inactive sources

source arrival

active sources

source departure

B

Fig. 2. High-level model as iSPN

We model the bottleneck B, cf. Figure 1, using an infinite-state stochastic
Petri net (iSPN), as given in Figure 2. The left part of this figure contains an
unbounded place (double circle) buffer that models the (buffer of the) bottleneck
of the system. Transition input models the total arrival stream of packets from
all active sources, whereas transition output models the transmission of packets
leaving the bottleneck B. We limit the maximum number of active sources to
some finite number K and do not distinguish between individual active sources,
modeled by the right part of the iSPN in Figure 2. An inactive source becomes
active after a negative exponentially distributed amount of time (with mean
1/λ) and immediately instantiates a flow, which has a geometrically distributed
length, measured in packets. The average size of a data packet is assumed to
be E[P ] = 1500 bytes, with exponentially distributed length. The duration of a
flow does not only depend on its size but also on the radio capacity a source can
use to transmit the flow. Note that the duration of a flow implicitly gives the
source departure rate, as well. Hence, the behavior of the sources depends on
the system behavior. This traffic model is realistic for interactive applications,
such as web browsing. Following the parametric assumptions made in [13], the
expected amount of work put forward per flow (the amount of packets compris-
ing the flow) equals E[F ] = 500 packets; the other values for the key system
parameters are summarized in Table 1.

Table 1. Values for the system parameters

parameter

arrival rate λ ∈ [0.1, 0.4] sec−1

average flow size E[F ] = 500 packets
overall radio capacity C = 917 packets/sec
maximum of active sources K = 10
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Table 2. State-dependent transition rates for the iSPN

transition rates

input: if N = 0 then 0 else C · Ss(·);
output: if B = 0 then 0 else C · Sb(·);
source departure: C · Ss(·)/E[F ];
source arrival: (K − N)λ;

In Table 2 we list the four state-dependent transition rates of the iSPN, where
N refers to the current number of active sources (i.e., the number of tokens in
place active sources), and B to the current number of packets queued in the
bottleneck (i.e., the number of tokens in place buffer). Note that the transitions
input and output in fact make use of the same medium, hence, they have to share
the available capacity; this is exactly what the IEEE 802.11e access mechanism
is for! The functions Sb(·) and Ss(·) (for bottleneck and source) now give the
normalized data rate at which the bottleneck and all sources can transmit, re-
spectively. Note that Sb(·) and Ss(·) depend on the number of currently active
sources (N), as well as whether or not the bottleneck has packets queued, or not
(B > 0).

The explicit expressions for the functions Ss(·) and Sb(·) that express the share
of the wireless capacity that sources and the bottleneck receive, resp., for each of
the QoS enhancements are taken from Engelstad’s model [4], which proposes an
analytical evaluation of the throughput, for a fixed number of independent sta-
tions, including the impact of the QoS enhancements on the effectively available
capacity in IEEE 802.11e.

Hence, we have obtained one generic model at the iSPN level, that can be
specialized toward different QoS enhancements, by “plugging in” the appropriate
bandwidth sharing functions Sb(·) and Ss(·).

3 Setting the Parameters Right

In this section, we compute the maximum throughput that can be achieved
for a given constraint on the buffer occupancy, per differentiation parameter.
Note that we only differentiate one parameter at a time but allow for different
choices for the sources as opposed to the bottleneck. For AIFS, this is discussed
in Section 3.1, in Section 3.2 for CWmin and in Section 3.3 for TXOP. Finally,
we compare the maximum throughput that can be obtained for the different
QoS settings with the maximum throughput obtained with basic IEEE 802.11
in Section 3.4. Moreover, for each setting that has been found to be optimal, we
compare the results with Opnet simulations [8].

3.1 Throughput for Different AIFS

The constrained maximum throughput of a given combination of AIFSb (the
chosen value for the bottleneck) and AIFSs (the chosen value for the sources)
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is obtained as illustrated in Figure 3. First the value of λ is identified for which
the buffer occupancy equals the maximum of the buffersize that has been set
as threshold (step 1). In Figure 3 the buffer occupancy for λ = 0.024 equals
the threshold of 50 packets (steps 2). Then the corresponding throughput of 108
packets per second for this value of λ is computed (step 3).
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Fig. 3. Average buffer occupancy versus throughput for a given parameter setting

Modeling the buffer in the bottleneck with infinite capacity facilitates our
analysis approach, however, bounding the maximum buffer occupancy to a given
threshold when computing the maximum throughput results in more realistic
results and additionally keeps the maximum delay low.

Figure 4 shows the maximum throughput that can be achieved per parameter
setting when the buffer occupancy is bound to be at most 50. AIFSb is between
2 and 9 and AIFSs is between 5 and 12. Note that this value has been chosen to
realistically model the buffer size of an ad hoc node. Evaluating the system for
other values can be done without additional modeling and analysis effort.

For combinations of large AIFSb and small AIFSs the bound on the average
buffer occupancy can only be met for λ = 0. Clearly, the resulting throughput
is zero as well. For increasing values of AIFSs the achievable throughput grows.
The maximum throughput of 195.21 packets per second is achieved for AIFSb =
2 and AIFSs = 10, as marked with x in Figure 3. If AIFSs is increased above
10 and AIFSb above 2, the achieved throughput declines. This is due to a waste
of capacity, as stations have to wait longer before they can start decrementing
their backoff. Too high values for AIFS reveal an inherent inefficiency in the
MAC protocol.
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x =
(throughput = 195.21,
threshold = 50,
AIFSb = 2, AIFSs = 10,
λ = 0.149)
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Fig. 4. Maximum throughput for different combinations of AIFSb and AIFSs
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Fig. 5. Maximum throughput for different combinations of AIFSs and the threshold
on the average buffer occupancy
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Figure 5 shows the maximum throughput that can be achieved for AIFSb = 2,
when AIFSs ranges between 2 and 12 slots and the threshold on the average
buffer occupancy ranges between 10 and 100.

Again, the maximum throughput is 195 packets per second. This throughput
is obtained for AIFSs = 10 and AIFSb = 2, independent of the bound on the
threshold. When AIFSs is increased beyond 10, the throughput decreases due
to the waste of capacity, evenly for all considered thresholds. When AIFSs is
set smaller than 10, the throughput decreases overall and even faster for smaller
thresholds. Only with small values of λ, the low threshold on the average buffer
occupancy can be met. This, of course, keeps the throughput low. For several
combinations of small AIFSs and low thresholds the value of λ even has to be zero
to match the constraint on the buffer occupancy, resulting in zero throughput.

Concluding, we can state that a maximum throughput of 195 packets per
second can be achieved, when differentiating AIFS. Moreover, this maximum
appears independent of the threshold on the average buffer occupancy. Regarding
the throughput and the buffer occupancy, AIFSs should be chosen rather too
big than too small, whereas AIFSb should be set to 2.

3.2 Throughput for Different CWmin

Figure 6 shows the maximum throughput that can be achieved for different
combinations of CWmin,b and CWmin,s, when the average buffer occupancy is,
again, bounded to 50. CWmin,b ranges between 31 and 287 and CWmin,s ranges
between 31 and 447. The maximum throughput of 193 packets per second is
obtained for CWmin,b = 31 and CWmin,s = 255 (point x in Figure 6). For higher
values of CWmin,b the throughput decreases due to several reasons: first, capac-
ity is wasted as randomly chosen backoffs become unnecessarily large, second
the difference between CWmin,b and CWmin,s is too small, resulting in already
high buffer occupancy for still small values of λ. Consequently the throughput
remains small. For the same reason, several combinations of high CWmin,b and
low CWmin,s result in zero throughput. When CWmin,s is increased above 255,
the throughput decreases slowly, as capacity is wasted due to large backoffs in
the sources.

Figure 7 shows the maximum throughput that can be achieved when CWmin,s

ranges from 31 to 447 and the bound on the average buffer occupancy ranges
from 10 to 100. The throughput increases evenly for larger values of CWmin,s.
The maximum throughput is obtained for CWmin,b = 31 and CWmin,s = 255
and a threshold on the buffer occupancy of at least 40 packets. For values of
CWmin,s above 255 the throughput decreases slowly, due to the waste of capac-
ity. We can conclude that maximum throughput is obtained for CWmin,b = 31
and CWmin,s = 255 and a threshold of at least 40 packets. As for AIFSs, the
parameter CWmin,s should be chosen rather too big than too small.

Note that we only use CWmin and not CWmax to differentiate, as we found
CWmax to have little influence on the performance results.
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x =
(throughput = 193.888,
threshold = 50,
CWb = 31, CWs = 255,
λ = 0.149)
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Fig. 6. Maximum throughput for different combinations of CWb and CWs
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3.3 Throughput for Different TXOP

Figure 8 shows the maximum throughput that can be obtained for different
combinations of TXOPb and TXOPs, when the average buffer occupancy is,
again, bound to be at most 50 packets. When TXOPb ranges between 1 and
30 and TXOPs between 1 and 15 the maximum of 281.103 packets is reached
for TXOPb = 30 and TXOPs = 4. The maximum throughput, obtained when
differentiating via TXOP is almost 50% higher than when differentiating via
AIFS or CWmin. On the one hand every increase in TXOPb leads to an increase
in the effective capacity as several packets can be transmitted upon winning
contention, i.e., the medium is idle less often due to less contention.

On the other hand the choice of TXOPs highly depends on the value of
TXOPb, as can be seen in Figure 8. Again, combinations of small TXOPb and
large TXOPs lead to zero throughput, because the constraint on the buffer occu-
pancy cannot be met. Figure 9 shows the maximum throughput that is obtained
for TXOPb ranging from 1 to 30 and the threshold on the average buffer occu-
pancy ranging from 10 to 100. The throughput increases evenly for larger values
of TXOPb and for larger thresholds, and the maximum throughput of 283 pack-
ets per second is achieved for the largest considered TXOPb = 30 and the largest
considered threshold of 100 packets. This is due to the fact that every increase
in TXOPb leads to an increased capacity.

3.4 Overall Comparison

To conclude this case study, we compare the maximum throughput that can be
obtained for a given threshold on the buffer occupancy per differentiation param-
eter. Figure 10 shows this throughput as a function of λ under the constraint that
the average buffer occupancy is smaller than 100 packets. All three differentia-
tion parameters are able to keep the buffer occupancy below the given threshold
of 100 packets for all considered values of λ. However, the throughput that can
be obtained when differentiating via TXOPb and TXOPs is about 50% higher
for large values of λ than when differentiating via AIFS or CWmin. Differentiat-
ing AIFS and CWmin results in approximately the same maximum throughput.
Note that the throughput that can be obtained with standard EDCA parameters
is not included in this figure, as the buffer occupancy constraint is only met for
λ < 0.015.

To validate our analytical results, Figure 10 also shows simulation results for
the three parameter settings that we found in our optimization in the previous
section. Simulation results are derived with the network simulator OPNET [8]
using the included IEEE 802.11e model, which take into account the full details
of the MAC protocols. Except for AIFS differentiation with load larger than 0.6
all analytical results lie well within the confidence intervals. This discrepancy is
probably due to the inaccuracy of the AIFS approximation in Engelstad’s model.

Figure 11 shows the maximum throughput that can be obtained for the three
differentiated settings and for basic IEEE 802.11 as a function of the threshold on
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the buffer occupancy. As one would expect, the smallest throughput is obtained
in the non-differentiated setting. The throughput that can be obtained when
differentiating via AIFS and CWmin is about the same. The highest throughput
is obtained when differentiating via TXOPb and TXOPs. Note that we only
consider thresholds between 45 and 100 packets, as smaller threshold constraints
cannot be met with non-differentiated EDCA parameters. The throughput in the
differentiated cases is almost independent of the chosen threshold, whereas the
throughput in the basic setting grows slightly with growing thresholds on the
buffer occupancy.

We conclude that in a two-hop bottleneck scenario it is advisable to differenti-
ate, using TXOPb and TXOPs, as increasing these differentiation parameter re-
sults in an increase of the effective capacity. Differentiating TXOPb and TXOPs

results in a maximum throughput that is 300% larger than the throughput in the
non-differentiated setting and about 50% larger than when differentiating AIFS
and CWmin. However, note that differentiating TXOP may affect performance
metrics not considered by our models, especially delay jitter, since the traffic is
more and more served in bursts.

4 Conclusions

Previous results have shown that all IEEE 802.11e EDCA parameters can be
used to allocate capacity in a better way between the bottleneck and the sources.
However, as we have shown, the overall throughput of the bottleneck differs,
significantly, depending on the differentiation method used.

Exploiting a very fast and accurate analysis method, we explore all possible
parameter settings to find the setting that provides the maximum throughput
conditioned on a maximum buffer occupancy, in order to make the results more
realistic and to provide a bound on the induced delay.

We have shown that the largest throughput can be obtained when using dif-
ferentiation parameters TXOPb and TXOPs. The resulting throughput is about
50% larger than when differentiating using AIFS of CWmin. This is due to the
fact that a larger TXOP increases the effective capacity, whereas differentiat-
ing CW and AIFS decreases the effective capacity. Even though the conclusions
drawn from this case study may seem rather evident we can quantify the impact
of the choices relative to each other, quantitatively.

We have compared our results for the optimal parameter settings per param-
eter with simulations (using Opnet [8]) and show that our models provide very
accurate results at almost negligible cost in comparison to the simulations. No
other analytical models that allow for similar evaluations have been proposed so
far.

Future work will analyze the possibilities of efficiently modelling and optimiz-
ing multi-hop networks with several bottlenecks. Furthermore, our analytical
approach will be compared to a control-theoretic approach for simulating the
scenario under study [14].
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Abstract. In this paper, we introduce and evaluate CrossTrace, a framework for 
performing cross-layer measurements in IEEE 802.11 based wireless networks. 
CrossTrace allows tracing of parameters at MAC-, routing and transport layer 
in a controlled environment and in a repeatable manner. Possible areas of appli-
cation include network performance analysis and  protocol optimization. Using 
CrossTrace, we conduct a comprehensive measurement study in a miniaturized 
testbed, in which we analyze the behavior of the IEEE 802.11 MAC-layer with 
respect to signal strength and bit error rate. We derive the delivery probability 
and bit error rate dependent on signal strength and MAC-layer data rate with 
and without interfering background traffic. We show that even moderate back-
ground traffic can significantly degrade network performance.  

Keywords: Design and implementation of wireless mesh testbeds, IEEE 802.11 
wireless networks, performance evaluation, real-world experiments. 

1   Introduction 

With the emergence of the IEEE 802.11 standard, wireless networking has experi-
enced a rapid growth. In this context design and evaluation of wireless networking 
protocols becomes increasingly important. Wireless testbeds provide a real-world 
platform for implementing and evaluating next-generation network protocols. Such 
testbeds allow more accurate evaluations than network simulators such as ns-2 [16] 
and Qualnet [17]. The latter are often build on simplified wireless channel models and 
rely on optimistic assumptions compared to the real world. Such models typically 
neglect wireless characteristics such as multipath fading and spatial diversity. As a 
consequence, simulations do not always deliver accurate results. Therefore simulation 
is only applicable in the early design phase of new protocols and needs to be rein-
forced by testbed studies. 

Opposed to wired networks, in IEEE 802.11 networks the wireless channel is a 
scarce resource shared among nodes within their radio range. Furthermore, hidden 
and exposed terminal effects [6], interference-aware routing [9], security [12] and 
QoS deficiencies [18] are features of wireless networks. However these features have 



184 S. Frohn, S. Gübner, and C. Lindemann 

 

not been considered in the design of classic network protocol stack with its rigid layer 
architecture. 

Cross-layer design has been becoming increasingly popular within the research 
community due to the described deficiencies of the classic network protocol stack. 
Instead of incremental and isolated improvements new network protocols are de-
signed from scratch levering the strict boundaries between different layers of the 
protocol stack. For example a routing protocol may access information available at 
MAC-layer to estimate interference and identify high throughput paths. Also a routing 
protocol may select paths according to the QoS constraints of a transport protocol. 
Such cross-layer design approaches require a comprehensive understanding of the 
parameters observable at MAC-, routing and transport layer. 

In this paper we introduce and evaluate CrossTrace, a framework for performing 
cross-layer measurements in IEEE 802.11 based wireless networks. CrossTrace allows 
tracing of parameters at MAC-, routing and transport layer in a controlled environment 
and in a repeatable manner. We give a detailed description of the design of CrossTrace 
and the underlying testbed architecture and its miniaturization technology. Possible 
areas of application include network performance analysis and protocol optimization. 
Using CrossTrace we conduct a comprehensive measurement study in a miniaturized 
wireless testbed, in which we analyze the behavior of the 802.11 MAC-layer with 
respect to signal strength and bit error rate. In this study we focus on the behavior of 
single hop links. We derive the transmission probability dependent on signal strength 
and MAC-layer data rate with and without interfering background traffic. 

The remainder of this paper is organized as follows. Section 2 summarizes related 
work on real deployments of wireless mesh networks as well as testbed prototypes. 
Section 3 describes the architecture of CrossTrace as well as the architecture of the 
underlying testbed infrastructure and outlines potential application scenarios, whereas 
in Section 4 we present an experimental cross-validation of our framework and results 
from a measurement study. Finally, concluding remarks are given. 

2   Related Work 

Bicket et al. [1] evaluated a 37-node 802.11b community mesh network over an area 
of approximately four square kilometers in Cambridge, Massachusetts. The mesh 
network, denoted as MIT Roofnet, adopts off-the-shelf equipment, e.g. IEEE 802.11 
wireless cards and standard omni-directional antennas. The authors evaluated multiple 
aspects of the architecture such as the effect of node density on connectivity and 
throughput as well as the characteristics of wireless links. 

Camp et al. [2] deployed a two-tier mesh network in Houston, Texas, that aims at 
providing Internet access over a wide area with minimal infrastructure. The deployed 
network comprises an access tier and a backhaul tier. The access tier connects mobile 
clients with mesh nodes, whereas the backhaul tier interconnects the mesh nodes and 
forwards traffic to and from the Internet. Using this network, the authors presented a 
measurement driven deployment strategy and a data driven model to study the impact 
of design and topology decisions on network-wide performance. 
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Opposed to [1] and [2], we introduce a miniaturized wireless testbed and a meas-
urement framework rather than a large-scale wireless network. Using our testbed, net-
works such as [1] and [2] can be emulated within a miniaturized experimentation area. 

De et al. [4] proposed a mobile 12-node testbed for multihop wireless networks. 
Each node in the testbed comprises a wireless computing device and a mobile robot. 
Fixed signal attenuators are used to limit the transmission range of the mobile nodes. 

Eriksson et al. [8] evaluated the feasibility of an all-wireless office mesh network 
consisting of 21 multi-radio mesh nodes. The authors captured user traffic on office 
PCs with wired ethernet connectivity and replayed them on the mesh network. A set 
of parameters, such as different routing metrics and hardware settings were evaluated. 

Krop et al. presented JiST/MobNet [10] an approach for the quantitative evaluation of 
wireless multi-hop networks, using simulation, emulation and real-world measurements. 

Lundgren et al. reported in [11] on their experience in designing and deploying the 
UCSB MeshNet, a 30-node wireless mesh testbed which covers several floors inside a 
building. 

Ott et al. [14] proposed an open access research testbed called Orbit for evaluating 
next-generation wireless network protocols. The testbed consists of an indoor radio 
grid for experiments and an outdoor field trial software for end user evaluations. 

Su et al. introduced and evaluated IvyNet [15] a miniaturized IEEE 802.11 testbed 
using fixed attenuators. They also presented initial measurement results. 

Zimmermann et al. introduced the UMIC wirelss testbed [19], which allows paral-
lel execution of experiments using a virtualization approach. 

Similar to [4], [8], [10], [14], [15] and [19], our testbed aims at emulating large-
scale wireless networks in a controlled environment. Opposed to [4], [8], [10], [14], 
[15] and [19] our testbed comprises variable attenuators to variably adjust the trans-
mission range and thus flexibly emulate large-scale networks. Deploying fixed signal 
attenuators significantly limits the spectrum of network topologies which can be con-
sidered due to the fixed transmission range associated with the attenuators. 

We introduced a miniaturization approach for wireless testbeds [7] and presented 
initial measurement results regarding transport-layer performance. Opposed to [7], in 
this paper we focus on the measurement framework and provide comprehensive 
measurement results regarding MAC-layer performance in the presence of interfering 
background traffic.  

3   CrossTrace Architecture 

CrossTrace is build upon a miniaturized wireless testbed. In the following section a 
detailed description of the hard- and software components is given. 

3.1   Hardware Components 

The testbed comprises 20 wireless mesh nodes. Each node consists of a PC with an 
Intel Celeron 3.2 GHz processor and two IEEE 802.11b/g Netgear WG311T wireless 
PCI network interface cards (NICs) with Atheros chipsets. Each wireless card is con-
nected to a variable signal attenuator and a 2.1dBi low-gain antenna. The deployment 
of the testbed is shown in Figure 1, the architecture is shown in Figure 2. 
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The variable attenuators are connected to the wireless PCI cards through 50 Ohm, 
7m long, highly shielded aircell5 coaxial cables, whereas the antennas are connected 
to the signal attenuators through a 50 Ohm, 3m long RG-174 coaxial cable. According 
to the technical specifications, Both cables add a total of 12.5dB signal attenuation. 

Testbed nodes run a SuSE Linux 10.2 operating system with a standard kernel ver-
sion 2.6.26. As driver for the wireless PCI cards, we employ the Linux Madwifi ker-
nel device driver version 0.9.4.1 for Atheros chipsets. 

 

Fig. 1. Deployment of miniaturized wireless testbed 

 
Fig. 2. Architecture of the miniaturized wireless testbed 

Each wireless node further possesses a Gigabit ethernet NIC, which is connected to 
the subnet of the University of Leipzig through a Gigabit switch. This allows a remote 
management of the wireless nodes from any wired host in the subnet. Hence, wireless 
experiments can be managed from a remote computer and traces can be copied and 
evaluated through the wired network. Table 1 shows a detailed description of hard-
ware and software components of the miniaturized testbed. 

Multi-hop topologies can be emulated by adjusting the positions of the antenna-
stations according to the desired topology. An antenna-station is a joint magnetic 
board, on which every two antennas of each mesh node are mounted. Such antenna-
stations define the logical structure of a mesh node. Since ScaleMesh is deployed in 
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an indoor environment, the shadowing and fading characteristics of wireless signals 
correspond to the indoor propagation model, which takes into account reflections on 
walls and floors. For all-wireless office mesh networks as introduced in [8], these 
indoor shadowing characteristics are identical. 

To scale down a distance  to a distance  assuming a path loss expo-
nent  the required attenuation can be calculated as follows: 

 
(1) 

A detailed derivation and validation of this formula can be found in [7]. 
For mesh networks operating in free space, different shadowing characteristics ap-

ply. These different characteristics may as well be considered using outdoor instead of 
indoor propagation models for downscaling mesh networks. While the signal-to-noise 
ratio in the testbed may not deliver one-to-one identical results as in a free space mesh 
network, the acquired results are representative due to the identical characteristics of 
the IEEE 802.11 wireless link (opposed to simulations). Furthermore, while a large-
scale free space multi-hop network has a fixed topology, nodes in our testbed are 
variably adjustable, making it more convenient for evaluating network protocols. A 
more comprehensive discussion of our miniaturization approach and its limitations 
can be found in [7]. 

Table 1. Hardware and software componentents of the miniaturized wireless testbed 

HARDWARE 

Component Description 

PC Fujitsu-Siemens P2510 3.2 GHz, 512 Mbytes RAM, 80 Gbytes HDD 

Wireless NIC Netgear IEEE 802.11b/g wireless PCI card WG311T with Atheros chipset 

Variable attenuator Broadwave variable attenuator, attenuation range 0-30dB in 1 dB steps 

Coaxial cable 7m aircell5 + 3m RG-174, 50 Ohm with SMA / RPSMA connectors 

Antenna Maldol mini 2.1dBi antenna with magnetic mount and 3m SMA cable 
SOFTWARE 

Component Description 

Operating System SuSE Linux 10.2 with standard kernel version 2.6.26 

Wireless NIC driver Madwifi Linux kernel device driver for Atheros chipsets version 0.9.4.1 

Routing protocol OLSR for Linux version 0.5.5 with ETX support 

3.2   Software Components 

To allow cross-layer performance studies we developed CrossTrace, a software 
framework for tracing various parameters at MAC-, routing and transport layer. 
CrossTrace possesses a multi-layer interface and allows tracing of parameters such as 
MAC retransmission count, per packet receive signal strength and number of bit er-
rors in received frames. These parameters are essential for the understanding of the 
interaction of layers in IEEE 802.11 based wireless networks. However these parame-
ters cannot be traced using standard network measurement tools such as ping and 
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iperf. CrossTrace consists of a central control and storage instance (trace server) and 
local node clients (trace client). 

The trace server is responsible for preparing and controlling the testbed nodes, in-
cluding configuration of the wireless network cards and setting up static routes if 
required. The trace server also provides a web interface for experiment definition and 
to obtain experiment results. Figure 3 shows the architecture of CrossTrace. 

The trace clients are responsible for local data collection at each node. For this 
purpose the Linux libpcap library is used to trace all frames within transmission range 
of the wireless network interface. The amount of collected frames can be limited by 
applying a filter according to certain criteria, such as source address, target address 
and protocol type. 

To allow tracing of MAC-layer parameters, the wireless interface operates in a 
special monitor mode to allow tracing of frames destined for other nodes in the test-
bed. Each trace client is connected to the trace server and to a central database where 
a record for every collected frame is stored. Communication with the trace server and 
the database is handled by the wired Ethernet interface of the testbed node, therefore 
running experiments in the wireless testbed are not biased. 

To allow tracing of routing layer parameters, the trace client possesses an interface 
to the OLSR routing client [3] running on the same node. Using this interface the 
whole topology information known to the OLSR client can be obtained. This includes 
hop count and ETX metric [5] to any known host. 

For traffic generation, CrossTrace contains a module, which starts and controls di-
verse generator programs. The tracing of the transport layer information is independ-
ent of the chosen traffic generator, because it is done through packet header analyz-
ing, currently for UDP and TCP packets. 

A challenge in the design of the trace client was the processing of the high-volume 
trace data. Consider a broadcast experiment with  nodes, where one node is 
transmitting and the remaining nodes are receiving. For a detailed description of such 
an experiment refer to section 5.2. Given a MAC-layer data rate = 54  MBit/s and a 
frame size = 1500  Byte an upper bound for the number of traced frames  at a 
single node can be calculated as follows: 

 
(2) 

Overall  entries per second are generated and have to be 
stored in the database. To allow such high volume processing we introduced a local 
queue at each testbed node where each record is temporally stored. When the queue 
length reaches a certain threshold (approx. 1000 records) we transmit the whole re-
cord as a batch to the database. 

A further goal in the design of CrossTrace was to ensure repeatability of experi-
ments. Therefore metadata is stored for each experiment, alleviating the reconstruc-
tion of the experiments environment. Metadata includes among others time of day, 
used nodes, used attenuation and the average signal strength between nodes at the 
beginning of the experiment. 
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Fig. 3. Software architecture of CrossTrace 

3.3   Application Scenarios 

Currently CrossTrace is mainly employed for performance studies of IEEE 802.11 
based wireless networks, particularly focusing on MAC-layer performance. Further 
application scenarios include protocol optimization. Using CrossTrace, protocols such 
as TCP can be analyzed with respect to a broad set of parameters, allowing to setup 
completely passive network traffic measurement experiments. Furthermore the proto-
col program code does not need to be altered (eg. adding debug code), because pack-
ets are directly captured at the wireless interface. The remote access capability also 
provides the opportunity that the testbed is made available to other research groups as 
well as students for educational use. 

4   Performance Study 

Using CrossTrace we conduct a comprehensive performance study, in which we ana-
lyze the behavior of the 802.11 MAC-layer with respect to signal strength, frame 
delivery probability and bit error rate. We derive the transmission probability and 
MAC-layer bit error rate dependent on signal strength and MAC-layer data rate with 
and without interfering background traffic. If not stated otherwise experiments are 
performed with a MAC-layer data rate for unicast and broadcast transmissions set to 
11 Mbit/s and rate adaption turned off. This eliminates undesired effects that may be 
caused by the rate adaption algorithm, which can influence the results when evaluat-
ing and comparing certain performance aspects. Moreover, prior work such as [13] 
showed that the rate adaptation functionality of 802.11 can influence the throughput 
of other hosts that share the same radio channel. That is, a host with a lower bit rate 
can pull down bit rates of other hosts in the vicinity, degrading their performance. The  
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Fig. 4. Effect of external interference on TCP goodput over a 24h period 

RTS/CTS mechanism is disabled for all experiments. The default payload size for 
TCP/UDP packets is set to 1000 bytes, unless otherwise stated.  

Due to the increased number of IEEE 802.11 access points as well as other devices 
operating in the ISM 2.4 GHz band, external interference within the testbed's envi-
ronment (i.e. in nearby offices) may affect running experiments. In order to eliminate 
such external interference, we conduct a 24-hour experiment to identify time slots 
with the least external interference. Figure 4 shows the TCP goodput for a single hop 
link over a 24h interval. We see that during the core working time between 8am and 
8pm, the measured goodput is influenced by external interference, especially due to 
students who access the web wirelessly through their IEEE 802.11 equipped laptops. 
Therefore, experiments in this paper are conducted in the time with the least external 
interference, between 8pm and 8am. 

4.1   Framework Validation 

To assure that the measurements retrieved from our trace data are consistent with 
measurements obtained using standard tools, we conducted a cross validation with 
ping and iperf. A validation of the miniaturization approach can be found in [7]. 

In a first experiment we compare the Round Trip Time (RTT) of an ICMP Echo 
Request respectively ICMP Echo Response packet measured with ping to the RTT 
calculated by CrossTrace. To obtain a more representative scenario, we introduced 
bursty background traffic to provoke RTT fluctuations. Although we are currently 
focusing on the characterization of IEEE 802.11 single hop behavior, we also consid-
ered a multi hop path. Figure 5 shows the result of our validation. We observe that the 
RTT values measured with CrossTrace are qualitatively and quantitatively compara-
ble to the values obtained with ping. We note that the average RTT value calculated 
by CrossTrace is slightly lower compared with ping. This is due to the fact that 
CrossTrace measures the time a packet enters or leaves the MAC-Layer, while ping 
measures the time a packet enters or leaves the application layer. 
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Fig. 5. Round Trip Time (RTT) measured at MAC-layer with our framework and at application 
layer with the standard tool ping for a one-hop (top) and four-hop (bottom) path in the wireless 
testbed 

In a second experiment we compare the throughput measured with iperf to the 
throughput calculated by CrossTrace. Therefore we use iperf to establish a TCP con-
nection. Again, this validation is conducted for both a single hop and a multi hop 
path. Figure 6 shows the result of our validation. We observe that there is a slightly 
higher fluctuation of throughput values when using iperf than CrossTrace. This is due 
to the fact that iperf measures the number of bytes arriving at application layer. This 
process shows more burstiness than the arrival of frames at MAC-layer, because of 
the involved buffering and processing of frame data by the operating system. 
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Fig. 6. Throughput measured at MAC-layer with CrossTrace and at application layer with iperf 
for a one-hop (top) and four-hop (bottom) path in the wireless testbed 

4.2   One-Hop Link-Level Measurements 

Using CrossTrace we conduct a comprehensive measurement study in which we ana-
lyze the behavior of the IEEE 802.11 MAC-layer with respect to signal strength and 
bit error rate with and without interfering background traffic. 

4.2.1   Delivery Probability 
In this experiment we analyze the correlation of signal-to-noise ratio and delivery 
probability in the wireless testbed. We set up a random topology where each node is 
in the transmission of each other node. Due to the varying inter-node distance the 
signal strength varies over the different node pairs. During this experiment one node 
starts a broadcast transmission with a batch of 500.000 frames and the remaining 
nodes listen to this transmission and record the percentage of correctly received 
frames and the average signal-to-noise ratio. The experiment is repeated 20 times. In 
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each round a different one of the 20 testbed nodes is chosen as transmitting node. The 
use of broadcast transmission is required to prevent automatic retransmission, which 
is used for unicast transmissions by the IEEE 802.11 standard. The experiment is 
conducted using 11 Mbit/s and 54 Mbit/s MAC-layer data rate. 

 

 

Fig. 7. Signal-to-Noise Ratio versus delivery probability for an 11 Mbit/s (top) and 54 Mbit/s 
(bottom) link in the wireless testbed 

Figure 7 shows the delivery probability dependent on the signal-to-noise ratio. We 
observe that at a MAC-layer data rate of 11Mbit/s all links with signal-to-noise ratio 
of 10dbm or greater have a delivery probability of at least 90%. We note that at a 
MAC-layer data rate of 54 Mbit/s the situation changes drastically. At a signal-to-
ratio of 16dbm there is no successful frame transmission at all. Only links with a 
signal-to-noise ratio of 23dbm or greater have a delivery probability of at least 90%. 
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Fig. 8. Signal-to-noise ratio versus delivery probability with 2 Mbit/s (top) and 6 Mbits/s (bot-
tom) interfering background traffic in the wireless testbed 

4.2.2   Delivery Probality in the Presence of Interference 
In this experiment we use CrossTrace to analyze the correlation of signal-to-noise 
ratio and delivery probability in presence of interfering background traffic. We vary 
the aforementioned broadcast experiment and introduce an interfering node. We use 
the variable attenuators to attenuate the output signal of the interfering node, such that 
interfering and transmitting node are out of carrier sensing range but within interfer-
ence range. Hence both nodes cannot synchronize their transmissions resulting in 
frame collisions at the receiving nodes. We repeat this experiment 2 times considering 
background traffic intensities of 2 Mbit/s and 6 Mbit/s, while the MAC-layer data rate 
of all nodes is set to 11 Mbit/s.  

Figure 8 shows the delivery probability dependent on the signal-to-noise ratio for 2 
different background traffic intensities. We observe that opposed to Figure 7 the  
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scatterplot is much more diffuse. Note that in Figure 7 the delivery probability given a 
certain signal-to-noise ratio lies within a small interval. For example, all links with a 
signal-to-noise ratio of 10dbm have a delivery probability between 90% and 100%. 

 

 

Fig. 9. Log plot showing Cumulative Distribution Function (CDF) of Bit Error Rate with inter-
fering background traffic over a one-hop link in the wireless testbed 

In the presence of interfering background traffic this interval is increasing signifi-
cantly. For example, with a traffic intensity of 6 Mbit/s links with a signal-to-noise 
ratio of 10dbm or greater have a delivery probability between 2% and 100%. We 
conclude that interfering background traffic significantly degrades network perform-
ance with respect to delivery probability. We conclude further that signal-to-noise 
ratio in presence of interfering background traffic only is a weak indicator for delivery 
probability.  

4.2.3   Bit Error Rate in the Presence of Interference 
To gain deeper insight at the effect of interfering background traffic we use Cross-
Trace to analyze the Bit Error Rate (BER). Therefore we modified the software driver 
of the wireless cards to also accept packets for which the IEEE 802.11 CRC check-
sum check failed. We setup a one hop unicast connection between two nodes and 
transmit UDP packets with a random payload. We also setup an interfering node, 
which transmits with a given traffic intensity. Again, we use the variable attenuators 
to attenuate the output signal of the interfering node, such that interfering and trans-
mitting node are out of carrier sensing range but within interference range. At the end 
of the experiment we compared the payload of the transmitted and received packet 
and calculated the bit error rate for each packet. We repeat this experiment 3 times 
accounting for different intensities of background traffic. 

Figure 9 shows a log plot of the Cumulative Distribution Function of BER with 
and without interfering background traffic. We observe that consistent with our find-
ings in section 5.2.1 the BER with no background traffic is close to 0% for almost all 
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packets. However with interfering background traffic the BER significantly increases 
indicating overlapping transmissions at the receiver due to the hidden terminal effect. 

5   Conclusion 

We introduced the software architecture of CrossTrace, as well as the underlying 
miniaturized wireless testbed. The current focus of CrossTrace is on cross-layer 
measurements in IEEE 802.11 based wireless networks. Further areas of application 
include protocol optimization. We validated CrossTrace and conducted a comprehen-
sive measurement study. We analyzed the behavior of the 802.11 MAC-layer with 
respect to signal strength and bit error rate in presence of hidden terminals. Further we 
derived the delivery probability dependent on signal strength and MAC-layer data rate 
with and without interfering background traffic. Our results indicate that even moder-
ate background traffic can significantly degrade network performance with respect to 
delivery probability.  

Potential areas of future research include the extension of our measurement study 
to consider multi-hop paths and dual-radio communication. 
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Abstract. We consider a finite buffer system where the buffer content
moves in a Markov-additive way while it is strictly between the buffer
boundaries. Upon reaching the upper boundary of the buffer the content
is not allowed to go higher and for every additional input into the sys-
tem a penalty must be paid (to negotiate buffer overflow). At the lower
boundary (empty buffer) the process terminates. For this system we de-
termine the joint distribution of the total overflow and the last time of
being at the upper boundary. The analysis is performed using excursion
theory for Markov-additive processes.

1 Introduction

We shall consider a finite buffer system where the buffer content changes ac-
cording to a Markov-additive process (MAP) while it is strictly between the
buffer boundaries. Upon reaching the upper boundary of the buffer the con-
tent is not allowed to go higher and for every additional input into the system
a penalty must be paid (to negotiate buffer overflow). At the lower boundary
(empty buffer) the process terminates.

Such a system plays an important role in different areas of applied probability.
It might represent a dam and its storage (or capacity) process. It is also used
in insurance mathematics to model dividend payments. In queueing theory a
penalty for buffer overflow is a standard consequence and termination once the
buffer is empty is a natural restriction to the busy cycle. The content of the
buffer is often called work load or virtual waiting time in queueing applications.

The model to be analysed in this paper is general enough to encompass a
large variety of popular modelling approaches. Among them are Markovian sin-
gle server queues (with BMAP input, see [17] for definition and [10] for esti-
mation, and phase-type service time distributions, see [18] for definition, [7] for
estimation, and [11] for a recent continuity result) or stochastic fluid flows with
possible Brownian perturbation (see the seminal paper [3] or [1,9] for recent
related results without perturbation). An algorithmic solution for the time to
buffer overflow in a Markov-additive framework is given in [6], section 6, see also
[2]. An algorithmic solution for the expectation of the total overflow during a
cycle is presented in [13], albeit in terms of insurance risk.
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Assuming that the penalty to be paid is simply the amount of system input
while the buffer is full (the total buffer overflow), we shall determine the joint
distribution of this penalty and the last time of being at the upper boundary.
We do not assume necessarily that the system starts with an empty buffer.

The analysis is performed mainly by matrix-analytic methods using proba-
bilistic arguments wherever possible. This naturally results in formulas contain-
ing matrices which are to be computed via fixed point iterations. We shall present
examples for the simple cases allowing explicit scalar solutions. This restriction
is due to the circumstance that only for these there are solutions in the literature
which can be compared with results in the present paper.

The paper is structured as follows. Section 2 contains an exact definition of
the model to be analysed and the performance measures we wish to determine.
Section 3 presents preparatory results from recent literature that will be needed
in this paper. Section 4 finally contains the main result. Examples will be devel-
oped throughout the paper in subsequent stages.

2 The Model

Let J̃ = (J̃t : t ≥ 0) be an irreducible Markov process with finite state space
Ẽ and infinitesimal generator matrix Q̃ = (q̃ij)i,j∈Ẽ . We call J̃t the phase at
time t ≥ 0 (another common name is regime). Define the real–valued process
X̃ = (X̃t : t ≥ 0) as evolving like a Lévy process X̃ (i) with parameters μ̃i

(drift), σ̃2
i (variation), and ν̃i (Lévy measure) during intervals when the phase

equals i ∈ Ẽ. For the sake of a more concise presentation we exclude the case
of μ̃i = σ̃2

i = 0, i.e. a pure jump process or the constant zero process, for any
phase i ∈ Ẽ. Whenever J̃ jumps from a state i ∈ Ẽ to another state j ∈ Ẽ,
this may be accompanied by a jump of X̃ with some distribution function Fij .
Then the two–dimensional process (X̃ , J̃ ) is called a Markov–additive process
(or shortly MAP). In short, a MAP is a Markov-modulated Lévy process with
possible jumps at phase changes. For a textbook introduction to MAPs see [4],
chapter XI.

We now turn to define our model B = (Bt : t ≥ 0) for the buffer content, where
Bt shall denote the content level at time t. Let b ≥ 0 denote the upper buffer
boundary beyond which overflow occurs and penalty must be paid. As long as
0 < Bt < b, the process B equals X̃ . Upon passing the upper boundary b from
below, B does not increase above b and any additional buffer input is recorded as
overflow. If a positive jump of size x occurs at time t and b− x < Bt− < b, then
we agree upon the rule that the buffer content rises up to b and the overflow
increases by Bt− − (b− x). Upon passing the lower boundary 0 from above, the
busy cycle concludes and we stop our examination. Thus we consider B as a
MAP that is reflected at the upper boundary b and terminates upon passing the
lower boundary 0. In exact terms,

Bt := X̃t −
(

sup
s≤t

X̃s − b

)+
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for all t < τB(0), where (V )+ := max(V, 0) and

τB(0) := inf

{
t ≥ 0 : X̃t −

(
sup
s≤t

X̃s − b

)+

≤ 0

}
(1)

For the sake of defining B at all times, say Bt := 0 for all t ≥ τB(0).
Denote the initial buffer content by u := B0 ≥ 0. We may assume u ≤ b

without loss of generality, since b < u would entail an immediate pay-out of
a penalty of u − b and the buffer content process would continue with initial
surplus b.

Let D denote the total overflow during a busy cycle. This can be defined as
follows. First, let

S̃(t) :=
(

sup
s≤t

X̃s − b

)+

denote the overflow until time t ∈ [0, τB(0)]. Then D := S̃(τB(0)) is the total
overflow during a busy cycle. Define the generalised inverse of the function S̃(t)
by

S̃−1(x) := inf{t ≥ 0 : S̃(t) ≥ x}
for x ≥ 0. Then S̃−1(D) is the last time of overflow before the end of the busy
cycle.

In this paper we shall determine the joint distribution of D and S̃−1(D) in
the form of an expression for

F̄ (x, γ) := E

(
e−γS̃−1(x);D > x

)

where x ≥ 0 and γ ≥ 0. Note that S̃−1(D) signifies the time of the last overflow
and may be strictly smaller than τB(0), the end of the busy cycle. Further note
that the process B and hence F̄ (x, γ) is completely determined by X̃ .

Example 1. We consider the classical M/M/1 queue. Inter–arrival and service
times are iid exponential with parameter λ > 0 and β > 0, respectively. The total
work load at time t ≥ 0 (including the overflow) within a busy cycle starting
with a buffer content u > 0 is given by

X̃t = u+
Nt∑

n=0

Cn − t (2)

where (Nt : t ≥ 0) is a Poisson process with intensity λ and the Cn, n ∈ N, are
iid random variables with exponential distribution of parameter β.

The total work load process can be analysed as a MAP with exponential (and
hence phase–type) positive jumps with parameter β. For this, we would need
only one phase, i.e. |Ẽ| = 1. This phase governs a Lévy process with parameters
σ̃ = 0, μ̃ = −1, and ν̃(dx) = λe−βxβdx for all x > 0.
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Before we can proceed by analysing our model, we first need to collect some
necessary preliminary results for MAPs. This shall be the purpose of the next
section.

3 Preliminaries

3.1 Markov–Additive Processes with Phase–Type Jumps

In this section we introduce the restriction that all jumps have a phase-type
distribution. Then we construct a new MAP (X ,J ) from the given MAP (X̃ , J̃ )
without losing any information. This new MAP will have continuous paths, which
simplifies the one- and two-sided exit problems (cf. sections 3.2 and 3.3) consid-
erably.

Denote the indicator function of a set A by IA. We assume that the Lévy
measures ν̃i have the form

ν̃i(dx) = λ+
i I{x>0} α(ii)+ exp(T (ii)+x)η(ii)+dx

+ λ−i I{x<0} α(ii)− exp(−T (ii)−x)η(ii)−dx (3)

for all i ∈ Ẽ, where λ±i ≥ 0 and (α(ii)±, T (ii)±) are representations of phase–
type distributions without an atom at 0. The η(ii)± := −T (ii)±1 are called the
exit vectors, where 1 denotes a column vector of appropriate dimension with all
entries being 1. This means that the jump process induced by the Lévy measure
νi is compound Poisson with jump sizes of a doubly phase–type distribution.
Denote the order of PH(α(ii)±, T (ii)±) by m±

ii . Further write λi := λ+
i + λ−i .

Likewise, let p+
ij (resp. p−ij) denote the probability that a positive (resp. nega-

tive) jump is induced by a phase change from i ∈ Ẽ to j ∈ Ẽ, and assume that
these jumps have a PH(α(ij)±, T (ij)±) distribution without an atom at 0. Note
that p+

ij +p−ij ≤ 1 for all i, j ∈ Ẽ. Let m±
ij denote the order of PH(α(ij)±, T (ij)±)

and define η(ij)± := −T (ij)±1.
The class of Markov–additive processes with these assumptions of phase–type

jumps is dense within the class of all MAPs, see [5], proposition 1. The main
advantage of the phase–type restriction on the jump distributions is the possi-
bility of transforming the jumps into a succession of linear pieces of exponential
duration (each with slope 1 or -1) and retrieving the original process via a simple
time change, see [8].

This is done in the following way. Without the jumps, the Lévy process X̃ (i)

during a phase i ∈ Ẽ is either a linear drift (i.e. σ̃i = 0) or a Brownian motion
(with parameters σ̃i > 0 and μ̃i ∈ R). Considering this MAP (without the
jumps) we can partition its phase space Ẽ into the subspaces Ep (for positive
drifts), Eσ (for Brownian motions), and En (for negative drifts). We thus define

Ep := {i ∈ Ẽ : μ̃i > 0, σ̃i = 0}, En := {i ∈ Ẽ : μ̃i < 0, σ̃i = 0} (4)

and Eσ := {i ∈ Ẽ : σ̃i > 0}
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Note that Ẽ = Ep ∪ Eσ ∪ En, since we have excluded the case of μ̃i = σ̃2
i = 0

for any phase i ∈ Ẽ. Then we introduce two new phase spaces

E± := {(i, j, k,±) : i, j ∈ Ep ∪Eσ ∪ En, 1 ≤ k ≤ m±
ij} (5)

to model the jumps. Define now the enlarged phase space E = E+ ∪ Ẽ ∪ E−.
We define the modified MAP (X ,J ) over the phase space E as follows. Set the
parameters (μi, σ

2
i , νi) for i ∈ E as

(μi, σ
2
i , νi) :=

{
(±1, 0,0), i ∈ E±
(μ̃i, σ̃i,0), i ∈ Ẽ = Ep ∪ Eσ ∪ En

(6)

This leads to the cumulant functions

ψi(α) =

⎧⎪⎨
⎪⎩
±α, i ∈ E±
μiα, i ∈ Ep ∪ En

1
2σ

2
i α

2 + μiα, i ∈ Eσ

(7)

We shall order the new phase space E = E+ ∪ Ep ∪ Eσ ∪ En ∪ E− such that
i+ < ip < iσ < in < i− for phases i∗ ∈ E∗. Let Ec := Ep ∪ Eσ ∪ En denote
the subspace of E that contains all phases under which the real time movements
are continuous. The modified phase process J is determined by its generator
Q = (qij)i,j∈E . For this the construction above yields

qih =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̃ii − λi, h = i ∈ Ec

q̃ih · (1 − p+
ih − p−ih), h ∈ Ec, h �= i

λ±i α
(ii)±
k , h = (i, i, k,±)

q̃ij · p±ij · α(ij)±
k , h = (i, j, k,±)

(8)

for i ∈ Ec as well as

q(i,j,k,±),(i,j,l,±) = T
(ij)±
kl and q(i,j,k,±),j = η

(ij)±
k (9)

for i, j ∈ Ec and 1 ≤ k, l ≤ m±
ij . For later use we define qi := −qii for all i ∈ E.

The original level process X̃ is retrieved via the time change

c(t) :=
∫ t

0

I{Js∈Ec} ds and X̃c(t) = Xt (10)

for all t ≥ 0. Likewise, we obtain

S(t) :=
(

sup
s≤t

Xs − b

)+

=

(
sup

s≤c(t)

X̃s − b

)+

= S̃(c(t))

and for the generalised inverse

S̃−1(x) = c(S−1(x))
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The inverses of the cumulant functions ψi can be given explicitly as

φi(β) =

⎧⎪⎪⎨
⎪⎪⎩
±β, i ∈ E±
β
μi
, i ∈ Ep ∪ En

1
σi

√
2β + μ2

i

σ2
i
− μi

σ2
i
, i ∈ Eσ

(11)

We shall, however, use them only for the so–called ascending phases i ∈ Ea :=
E+ ∪ Ep ∪Eσ.

Example 2. Continuing example 1, we obtain the MAP (X ,J ) as follows. In
equation (3) we have λ+

2 = λ and λ−2 = 0. Further m+
22 = 1 since the positive

jumps have an exponential distribution. Hence the enlarged phase space is given
by E+ = {1}, En = {2}, and Ep = Eσ = E− = ∅. The parameters are given by
σ1 = σ2 = 0, μ1 = 1, μ2 = −1, ν1 = ν2 = 0, and

Q =
(−β β
λ −λ

)

3.2 First Passage Times

Of central use in the present paper will be the recent derivation of the Laplace
transforms for the first passage times of MAPs as given in [12]. We call the
phases i ∈ Ed := En ∪ E− descending. Define the first passage times

τ̃ (x) := inf{t ≥ 0 : X̃t > x} and τ(x) := inf{t ≥ 0 : Xt > x}

for all x ≥ 0 and assume that X̃0 = X0 = 0. Note that τ̃(x) is the first passage
time over the level x for the original MAP X̃ , meaning that we do not count the
time spent in jump phases i ∈ E±. This means that

τ̃ (x) = c(τ(x)) =
∫ τ(x)

0

I{Js∈Ec}ds

according to (10). In particular, we may compute expectations over τ̃ (x) using
the distribution of the modified MAP (X ,J ) only and without needing to recur
to the original MAP (X̃ , J̃ ). For γ ≥ 0 denote

Eij(e−γτ̃(x)) := E(e−γτ̃(x); Jτ(x) = j|J0 = i,X0 = 0)

for all i, j ∈ E. Let E(e−γτ̃(x)) denote the matrix with these entries and write

E(e−γτ̃(x)) =
(

E(a,a)(e−γτ̃(x)) E(a,d)(e−γτ̃(x))
E(d,a)(e−γτ̃(x)) E(d,d)(e−γτ̃(x))

)

in obvious block notation with respect to the subspaces Ea = E+ ∪ Ep ∪ Eσ

(ascending phases) and Ed = En ∪ E− (descending phases).
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Since a first passage to a level above cannot occur in a descending phase, we
obtain first P(Jτ(x) = j) = 0 for all j ∈ Ed and thus

E(d,d)(e−γτ̃(x)) = E(a,d)(e−γτ̃(x)) = 0

where 0 denotes a zero matrix of suitable dimension. Equation (6) in [12] states
that

E(d,a)(e−γτ̃(x)) = A(γ)eU(γ)x

and
E(a,a)(e−γτ̃(x)) = eU(γ)x

for some sub–generator matrix U(γ) of dimension Ea ×Ea and a sub–transition
matrix A(γ) of dimension Ed × Ea. Altogether we can write

E(e−γτ̃(x)) =
(

Ia
A(γ)

)(
eU(γ)x 0

)
(12)

where Ia denotes the identity matrix of dimension Ea ×Ea.
Write Δq := diag(qi)i∈E and let P = Δ−1

q Q+ I denote the transition matrix
of phase changes. Note that pii = 0 for all i ∈ E.

In order to shorten notation, we shall write A = A(γ) and U = U(γ) unless
we wish to stress dependence on γ. According to theorem 3 in [12], A and U
satisfy the following equations:

e′hU =
m+

ij∑
l=1

T
(ij)+
kl e′(i,j,l,+) + η

(ij)+
k e′j

(
Ia
A

)
for h = (i, j, k,+) ∈ E+,

e′iU = φi(qi)
∑
j∈E

pij e
′
j

(
Ia
A

)
Li(−U) − φi(qi + γ)e′i for i ∈ Ep ∪ Eσ,

e′iA =
∑

j∈E,j�=i

qije
′
j

(
Ia
A

)
((qi + γ)Ia − ψi(−U))−1 for i ∈ En, and

e′iA =
∑

j∈E,j�=i

qije
′
j

(
Ia
A

)
(qiIa − ψi(−U))−1 for i ∈ E−.

where e′i, e
′
j and e′h denote canonical row base vectors with suitable dimension.

For the MAP (X ,J ) with continuous level process, the matrix function

Li(−U) =
qi

φi(qi)
· (φi(qi + γ)Ia + U) · ((qi + γ)Ia − ψi(−U))−1

can be simplified considerably. For i ∈ Eσ, the same arguments as in [12], ex-
ample 2, lead to

Li(−U) = φ∗i (qi) · (φ∗i (qi + γ)Ia − U)−1 (13)

with

φ∗i (β) =
1
σi

√
2β +

μ2
i

σ2
i

+
μi

σ2
i

(14)
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Furthermore, Li(−U) = Ia for i ∈ Ep (see example 3 in [12]), while according
to (7) ψi(−U) = −μiU for i ∈ En, and ψi(−U) = U for i ∈ E−. Hence the
equations above involve rather simple expressions only.

Considering (11), the matrices A(γ) and U(γ) can be determined by successive
approximation as the limit of the sequence ((An, Un) : n ≥ 0) with initial values
A0 := 0, U0 := −diag(φi(qi + γ)1i∈Eσ∪Ep + φi(qi)1i∈E+)i∈Ea , and the following
iteration:

e′hUn+1 =
m+

ij∑
l=1

T
(ij)+
kl e′(i,j,l,+) + η

(ij)+
k e′j

(
Ia
An

)
for h = (i, j, k,+) ∈ E+,

e′iUn+1 = −qi + γ

μi
e′i +

1
μi

∑
j∈E,j�=i

qij e
′
j

(
Ia
An

)
for i ∈ Ep,

e′iAn+1 =
∑

j∈E,j�=i

qije
′
j

(
Ia
An

)
((qi + γ)I + μiUn)−1 for i ∈ En,

e′iAn+1 =
∑

j∈E,j�=i

qije
′
j

(
Ia
An

)
(qiI − Un)−1 for i ∈ E−, and

e′iUn+1 =
2
σ2

i

∑
j∈E,j�=i

qij e
′
j

(
Ia
An

)
(φ∗i (qi + γ)I − Un)−1 − φi(qi + γ)e′i

for i ∈ Eσ. For the last equality the relation φi(qi)φ∗i (qi) = 2qi/σ2
i has been

used. Note that the only difference between the iterations for En and E− is the
missing γ in the last factor for E−, reflecting that we do not discount the time
for phases i ∈ E− as they are jump phases in real time.

Example 3. Continuing example 2, first note that phase 1 represents the up-
wards jumps and we will not discount the time during sojourns in it. As shown
in [12], example 5, the Laplace transform of the first passage time over a level
x > 0, is given by

E(e−γτ̃(x)) = AeUx where A =
β −R

β
, U = −R

and
−R =

1
2

(
λ+ γ − β −

√
(β − γ − λ)2 + 4βγ

)

This coincides with equation (4.24) in [15], noting that γ is denoted as δ there
and c = 1 in our case.

3.3 The Two-Sided Exit Problem

Define the stopping times τ(0, b) := inf{t ≥ 0 : Xt < 0 or Xt > b} and

τ̃ (0, b) :=
∫ τ(0,b)

0

I{Js∈Ec}ds = inf{t ≥ 0 : X̃t < 0 or X̃t > b} (15)
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which are the exit times of X and X̃ from the interval [0, b], respectively. For the
main result we need an expression for

Ψ+
ij (b|x) := E

(
e−γτ̃(0,b);Xτ(0,b) = b, Jτ(0,b) = j|J0 = i,X0 = x

)

where x ∈ [0, b] and i, j ∈ E. Clearly Ψ+
ij (b|x) = 0 for j ∈ Ed since an exit over

the upper boundary can occur only in an ascending phase. Define the matrix
Ψ+(b|x) := (Ψ+

ij (b|x))i∈E,j∈Ea . A formula for Ψ+(b|x) has been derived in [16].
In order to state it we need some additional notation.

Let (X+,J ) denote the MAP as constructed in section 3.1 and define the
process X− = (X−

t : t ≥ 0) by X−
t := −X+

t for all t > 0 given that X+
0 =

X−
0 = 0. Thus (X−,J ) is the negative of (X+,J ). The two processes have the

same generator matrix Q for J , but the cumulant functions of the Lévy process
governed by phase i ∈ E are different and relate as ψ−

i (α) = ψ+
i (−α). Denoting

variation and drift parameters for X± by σ±
i and μ±

i , respectively, this means
σ+

i = σ−
i and μ−

i = −μ+
i for all i ∈ E. This of course implies that phases

i ∈ E+∪Ep (resp. i ∈ E−∪En) are descending (resp. ascending) phases for X−.
Let A±(γ) and U±(γ) denote the matrices that determine the first passage

times in (12). We shall write A± = A±(γ) and U± = U±(γ) except in cases
when we wish to underline the dependence on γ. Define the matrices

C+ :=
(

0 IEσ

A+

)
and C− :=

(
A−

IEσ 0

)

of dimensions (Eσ ∪ Ed) ×Ea and Ea × (Eσ ∪ Ed), respectively. Further define

W+ :=
(
IEa

A+

)
and W− :=

(
A−

IEσ∪Ed

)

which are matrices of dimensions E ×Ea and E × (Eσ ∪Ed). Finally, let Z± :=
C±eU±·b. Then equation (23) in [16] states that

Ψ+(b|x) =
(
W+eU+·(b−x) −W−eU−·xZ+

)
· (I − Z−Z+

)−1 (16)

for 0 ≤ x ≤ b. Note that this expression depends on a choice of γ ≥ 0.

Remark 1. Noting that (I − Z−Z+)−1 =
∑∞

n=0 (Z−Z+)n and Z−Z+ repre-
sents a crossing of the interval [0, b] from b to 0 and back, this formula has
a clear probabilistic interpretation. The term W+eU+·(b−x) simply yields the
event that X exits from b. The correction term W−eU−·xZ+ refers to the event
that X descends below 0 before exiting from b. Multiplication by (I − Z−Z+)−1

yields all possible combinations with any number of subsequent (down and up)
crossings over the complete interval [0, b].

Remark 2. Since Z+ = C+eU+·b we can write Ψ+(b|x) in the form

Ψ+(b|x) =
(
W+e−U+·x −W−eU−·xC+

)(
e−U+·b − C−eU−·bC+

)−1
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This comes closer to the usual expression of the exit time distribution in terms of
scale functions. For instance, let X be a Brownian motion with variation σ > 0
and drift μ ∈ R. We then obtain

U± =
±μ−

√
μ2 + 2γσ2

σ2

Denote −r := U+ and s := U−. Then

Ψ+(b|x) =
erx − esx

erb − esb

cf. [14], (2.12 - 2.15), where the γ-scale function is given as g(x) = erx − esx.

Example 4. Another example is the M/M/1 queue during a busy cycle, which
is the negative of the classical compound Poisson model with exponential jumps
used in insurance mathematics. This continues example 3. We obtain

U± =
1
2

(
±(λ+ γ − β) −

√
(β − γ − λ)2 + 4βγ

)

Denote R := −U+ and ρ := −U− and compare this to [15], equations (3.12)
and (4.24), with δ = γ and c = 1. Section 3.2 further yields A− = β/(β+ ρ) and
A+ = (β −R)/β. Thus, starting with buffer content x in the descending phase,
we obtain

Ψ+(b|x) =
(
A+e−U+·x − eU−·xA+

)(
e−U+·b −A−eU−·bA+

)−1

=
(
β −R

β
eRx − e−ρx β −R

β

)/(
eRb − β

β + ρ
e−ρbβ −R

β

)

= (β + ρ) · β −R

β
· eRx − e−ρx

(β + ρ)eRb − (β −R)e−ρb

This is the Laplace transform of the time to buffer overflow within a busy cycle.

4 Main Result

Starting with an initial buffer content u < b or with u = b but in a descending
phase, there is a positive probability of no overflow at all before the buffer
empties. Let α denote the initial phase distribution of (X ,J ), i.e. αi = P(J0 = i)
for all i ∈ E. Then equation (16) yields, with γ := 0,

P(D = 0) =

⎧⎪⎨
⎪⎩

1 − αΨ+(b|u)1, u < b

1 − α

(
0 0
0 IEd

)
Ψ+(b|b)1, u = b

where IEd
denotes the identity matrix of dimension |Ed|. Clearly the eventD = 0

means that X exits the interval [0, b] at the lower boundary first. We further
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observe that an overflow can occur only in ascending phases, i.e. on the time set
{t ≥ 0 : Jt ∈ Ea}.

We wish to derive an expression for the function

F̄ (x, γ) := E

(
e−γS̃−1(x);D > x

)

where x, γ ≥ 0. The strong Markov property and the fact that an exit from [0, b]
at the upper boundary can occur only in an ascending phase yield together

F̄ (x, γ) = Ψ+(b|u) E

(
e−γS̃−1(x);D > x|X0 = b

)

where the last factor (written as an expectation) is an Ea × Ea matrix with
entries

E

(
e−γS̃−1(x);D > x, JS−1(x) = j|X0 = b, J0 = i

)
for i, j ∈ Ea. This observation may be compared with equation (2.16) in [14].
Thus it suffices to determine the matrix-valued function

M(x, γ) := E

(
e−γS̃−1(x);D > x|X0 = b

)

This is the content of our main result.

Theorem 1. The distribution of the total overflow above the level b, given that
X0 = b and J0 ∈ Ea, is matrix-exponential. Specifically,

M(x, γ) = eG(b)·x

for γ, x ≥ 0, where

G(b) =
(
U+e−U+b + C−eU−bU−C+

)(
e−U+b − C−eU−bC+

)−1

Proof. We employ the following approximation. Assume that the penalty for
an overflow is paid out in small batches of sizes ε > 0 rather than continuously.
More exactly, we define a process (X ε,J ε) as follows. The phase process J ε

shall equal J almost surely. The level process X ε behaves like X in the interval
[0, b] but may go above the level b. Whenever X ε reaches the level b+ε, we pay a
penalty of amount ε whereupon X ε jumps back to the level b. The phase process
J ε remains unchanged by this jump. The original process (X ,J ) is obtained if
we let ε tend to 0.

Let Dε denote the total penalty obtained for (X ε,J ε). Then Dε has a matrix-
geometric distribution, i.e.

Mε(n, γ) := E

(
e−γTn(ε);Dε ≥ n · ε|Xε

0 = b
)

=
(
Ψ+

(a,a)(b+ ε|b)
)n

for n ∈ N and γ ≥ 0, where

Ψ+
(a,a)(b+ ε|b) =

(
eU+ε − C−eU−bC+eU+·(b+ε)

)

×
(
I − C−eU−·(b+ε)C+eU+·(b+ε)

)−1

according to (16), and Tn(ε) denotes the time of the nth payment of an ε-penalty.
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Now letting ε tend to 0 we obtain that M(x, γ) has a matrix-exponential
distribution with parameter

G(b) = lim
ε↓0

1
ε

(
Ψ+

(a,a)(b+ ε|b) − I
)

= lim
ε↓0

1
ε

(
eU+ε − I + C−eU−b

(
eU−ε − I

)
C+eU+·(b+ε)

)

×
(
I − C−eU−·(b+ε)C+eU+·(b+ε)

)−1

=
(
U+ + C−eU−bU−C+eU+b

)(
I − C−eU−bC+eU+b

)−1

which is equivalent to the statement. �

Remark 3. Defining an analogue of the γ-scale function by

W (x) := e−U+x − C−eU−xC+

for x > 0, we see first that G(b) = −W ′(b)[W (b)]−1 where W ′(b) denotes the
derivative of the function W (x) at b. Setting γ = 0, the mean total overflow
during a busy cycle can be computed as

V (b|u) := E (D|X0 = u) = Ψ+(b|u) E (D|X0 = b)

= Ψ+(b|u)
∫ ∞

0

P(D > x|X0 = b) dx

= Ψ+(b|u)
∫ ∞

0

M(x, 0) dx = Ψ+(b|u) [−G(b)]−1

=
(
W+e−U+u −W−eU−uC+

)(
−U+e−U+b + C−eU−b

(−U−)C+
)−1

Example 5. We continue the example in remark 2 of a Brownian motion fluid
flow. Since there is only one phase, we get W+ = W− = C+ = C− = 1 and
hence

V (b|u) =
eru − esu

rerb − sesb

which is equation (2.11) in [14]. Note that for γ = 0 we obtain

(s, r) =

{(−2 μ
σ2 , 0

)
, μ > 0(

0,−2 μ
σ2

)
, μ < 0

This implies

E(D) =

⎧⎪⎪⎨
⎪⎪⎩

σ2

2μ

(
e2μb/σ2 − e2μ(b−u)/σ2

)
, μ > 0

−σ
2

2μ

(
e2μ(b−u)/σ2 − e2μb/σ2

)
, μ < 0

cf. equation (2.22) in [14] for the case μ > 0.
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Example 6. Another example is the M/M/1 queue. Starting in the descending
phase with initial buffer content X0 = u, we obtain for the mean discounted
overflow during a busy cycle

V (b|u) =
(
A+e−U+u − eU−uA+

)(
−U+e−U+b +A−eU−b

(−U−)A+
)−1

=
β−R

β eRu − e−ρu β−R
β

ReRb + β
β+ρe

−ρbρβ−R
β

=
β −R

β
(β + ρ)

eRu − e−ρu

(β + ρ)R · eRb + (β −R)ρ · e−ρb

Note that this is different from formula (7.8) in [15], as the M/M/1 queue is
the negative of the compound Poisson model in risk theory. Setting γ = 0 and
assuming the stability condition β > λ holds, we obtain

R = β − λ and ρ = 0

This yields

E(D) =
λ

β · (β − λ)

(
e(λ−β)·(b−u) − e(λ−β)·b

)

for the mean total overflow during a busy cycle.
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Abstract. Quality of performance measure bounds is crucial for an ac-
curate dimensioning of computer network resources. We study stochastic
comparisons of multidimensional Markov processes for which quantita-
tive analysis could be intractable if there is no specific solution form. On
partially ordered state space, different stochastic orderings can be de-
fined as the strong or the less constrained weak ordering. The goal of the
present paper is to compare these two orderings with respect the quality
of derived bounds. We propose to study a system similar to a Jackson net-
work except that queues have finite capacity. Different bounding systems
are built either in the sense of the strong ordering with hard constraints,
or in the sense of the weak ordering with less ones. The proofs of the
stochastic comparisons are done using the coupling and the increasing
set methods, with an intuitive event based formalism. The qualities of
bounding systems are compared regarding to blocking probabilities.

Keywords: Markov processes, Jackson networks, stochastic compar-
isons, blocking probabilities.

1 Introduction

With the complexity of network architectures, and the variety of technology it
is crucial to evaluate the performance of the whole network for end to end QoS
(Quality of Sercice) requirements. These systems are usually represented by mul-
tidimensional processes with very large state spaces. As a result, quantitative
analysis is difficult if there is no specific solution form (product form, matrix-
geometric solutions, ...). We propose to use a mathematical method based on
stochastic comparisons of Markov processes [18,19]. The key idea of this method
is that given a large size Markov process, we bound it by other Markov processes
easier to study, and which provide bounds on performance measures. Different
solutions are proposed using stochastic comparisons [18]. The bounding process
either has a probability distribution with a specific form, thus we can compute
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bounding performance measures, or it is defined on a smaller state space, thus
using stochastic comparisons by mapping functions we can define aggregated
bounding Markov process [4]. The advantage of this method is that it can be
applied for different kinds of network architectures [17]. In [2], we apply this
method on mobile networks in order to obtain dropping handover bounds, and
in [3] for the loss rates packets in an IP switch. A stochastic ordering is defined as
an ordering relation between random variables, or stochastic processes [19]. The
most known stochastic order is the strong stochastic ordering (�st), equivalent
to a sample path ordering [19]. When the state space is multidimensional, weak
stochastic orderings (�wk, and �wk∗) can also be defined using increasing sets
families [19,15]. The goal of the present paper is to compare the strong order-
ing “�st” with the weak ordering “�wk”, from the point of view of the applied
stochastic comparison method and also for the quality of the performance mea-
sure. Each stochastic ordering generates special relations between probability
distributions. The strong ordering yields to comparisons of increasing function-
als (the expectations of all increasing functions of the probability distributions)
while the weak ordering is equivalent to tail probability distribution compar-
isons. We apply stochastic comparison methods on a general queueing network
similar to a Jackson network except that queues have a finite capacity. This
system is very difficult to study as there is no product form for the stationnary
probability distribution. In [20], tandem queueing networks with blocking have
been studied. Bounding systems have been defined by modifying the behavior of
the system in order to obtain product forms for steady state probabilities. In our
paper, the approach is different as we define stochastic bounds for both station-
nary and transient probability distributions. We define from the exact system
two bounding systems by creating independence between queues. The first idea
is to make infinite the queues in order to obtain a Jackson network. The second
one is to cut the links between the queues in order to obtain a system with in-
dependent M/M/1/K queues [15,14]. We prove using the coupling [11,13,9] that
the Jackson network represents an upper bound for the strong ordering (strong
bound). We apply the increasing set formalism [5] in order to prove that the
second system represents an upper bound in the sense of weak ordering (weak
bound). As the strong ordering has harder conditions than the weak ordering,
then it is interesting to study the quality of derived bounds. To our knowledge,
there is no study which aims to compare the quality of the bounds regarding to
the sense of the applied stochastic ordering. In this paper, from different input
parameters values (routing probabilities, load) we compute blocking probability
bounds in order to compare these values. The relevance of this paper is to pro-
pose the best bounding system according to the input parameters. This paper
is organized as follows. Next, we present the studied system and the bounding
systems, and we give the proofs of the stochastic comparisons using the coupling
and increasing sets methods. In section 3, we present analytical results of the
blocking probabilities for the different bounding systems in order to study the
accuracy of bounds. As a conclusion, we explain how to choose the more precise
bounding system according to the input parameters.
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2 Bounding Systems and Stochastic Comparisons

The system understudy is similar to a Jackson network except that queues have
finite capacities. This system may represent a telecommunication system with
series of interconnected nodes. Performance evaluation of this system is crucial
for end to end QoS requirements.

2.1 System Description

The system is represented by n queues, and each queue i ( 1 ≤ i ≤ n) has a
finite capacity Ki, and is characterized by the following parameters:

– Exponential inter-arrival times, with parameters λi

– Exponential service times, with parameters μi, and after the service, we have
two cases:
• with the probability pij the customer transits from queue i to queue j if

the queue is not full. If queue j is full, then the customer goes out.
• with the probability di the customer goes out.

With the following assumptions: pii = 0, and
∑

j�=i pij + di = 1, ∀i = 1 . . . n.
Let {X(t), t ≥ 0} be the Markov process representing the evolution of this sys-
tem with infinitesimal generator, Q. We denote by Π the stationary probability
distribution which has no product form solution. Thus its computation is very
difficult due to the state space explosion with n the number of queues.

2.2 Bounding Systems

We propose to define from the exact system different bounding processes easier
to analyze. We study two different ways for the definition of these systems. In
order to compute easily the stationary probability distribution of {X(t), t ≥ 0}
we propose to make the queues independent in order to obtain a product form.
Two kinds of systems are defined: the first one is obtained by removing the links
between the queues, and so the bounding system is represented by independent
M/M/1/Ki queues. Note that cuting links between queues is a general approach,
so could be also applied in the case of multiserver stations. The system can be
represented by a Markov process {Y (t), t ≥ 0}, with infinitesimal QY , and sta-
tionary probability distribution ΠY . The second system is obtained by making
infinite capacities, so it represents a Jackson network. This system can be repre-
sented by a Markov process {Z(t), t ≥ 0}, with infinitesimal QZ , and stationary
probability distribution ΠZ . For both systems, the stationary probability distri-
bution can be easily computed, as they have a product form. We apply stochastic
comparisons in order to prove that these systems represent really bounds. The
stochastic comparison for the strong ordering called “�st”-comparison used in
this paper is based on the coupling of the processes. It remains to compare the
realizations by considering events happening in the systems. We apply the �st-
comparison to prove that {Z(t), t ≥ 0} represents an upper bound for the system
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understudy. The strong ordering between processes could be very useful in per-
formance evaluation as it generates the comparison of performance measures
written as increasing functions on the stationary and transient distributions. So
we can compare performance measures as : blocking probabilities, delays, and
resource utilization. As the strong ordering is hard constrained, in some cases
it could not be defined between the underlying processes. So it could be inter-
esting to search if weakers orderings could be defined. In [15,14], it has been
proved that cutting links between queues makes that the �st ordering could
not exists. So the strong ordering could not exist between {X(t), t ≥ 0} and
{Y (t), t ≥ 0}. We propose to apply the increasing sets method [15,14] to prove
that the �wk ordering exists. We call �wk-comparison the stochastic compari-
son based on increasing sets in order to generate the �wk-ordering. Note that
in [16], others bounding systems have been defined by generalizing the approach
to any partition of the set of nodes. Some interesting features will be studied
in these stochastic comparison methods. For the �st-comparison, we compare a
Markov process defined on a finite state space with another on an infinite state
space. For the �wk-comparison, we define the increasing sets from events, in
order to limit the number of increasing sets effectively used for the comparison.
Another objective of the present paper is to compare the bounding systems with
respect to a performance measure which is the blocking probability. Considering
the quality of the bounding systems from different input parameter values could
be very interesting in order to see the impact of the stochastic orderings. The
processes understudy are multidimensional, defined on E = N

n. We propose to
use the component-wise partial ordering denoted by � on this state space:

∀x, y ∈ N
n, x � y ⇔ xi ≤ yi, ∀i = 1, . . . , n (1)

This order is widely used for multidimensional state spaces as it allows us to
compare queue by queue the behavior of queueing networks. Next, we present
the �wk-comparison with independent M/M/1/Ki queues.

2.3 �wk-Comparisons with Independent M/M/1/Ki Queues

The bounding process {Y (t), t ≥ 0} is represented by n independent M/M/1/Ki

queues, obtained from the exact system by removing the links between the queues
[15,14]. For each pairs of queues j and i interconnected, the flow of packets
leaving node j and entering node i with rate μjpji is forbidden. As compensation
this flow is added to the flow of packets entering node i. So each queue i is an
M/M/1/Ki with an arrival rate λi +

∑
j�=i μjpji, and a service rate μi. The

interest of this bounding system is that both stationary and transient behavior
can be computed easily. We give the following proposition:

Proposition 1
{X(t), t ≥ 0} �wk {Y (t), t ≥ 0} (2)
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Proof. In [14] similar systems with infinite queues have been studied. The �wk-
comparison has been presented using an operator-analytic approach. In this pa-
per, we try to develop increasing sets using an event based formalism in order to
provide a more intuitive approach for �wk-comparison. We apply theorem 2 of
the Appendix, where �Φ represents �wk. There are two steps in theorem 2: first
we must verify the monotonicity of one of the processes, and secondly we have
to compare the transition rates of the processes in the increasing set. We can
remark easily that Y (t) is �st-monotone (since it is a Jackson network with null
routing probabilities between queues, and Jackson networks are �st-monotone
[11]) then it is also �wk-monotone from proposition 5 in the Appendix. Accord-
ing to theorem 2, we also have to compare the transition rates of each process
using the increasing sets. So we have to check if

∑
z∈Γ Q(x, z) is lower than∑

z∈Γ QY (x, z), ∀Γ ∈ Φwk(E). As E is multidimensional, then Φwk(E) could be
very large. So we need to define the increasing sets which are necessary for the
verification of the �wk-comparison. As the transitions from a state happened
due to the events, then we define the increasing sets from these events. Let ei be
a vector from Nn such that all components are null except component i which
equals 1. We use ei to represent the transitions from x when events happen.
From x, we have three kinds of events in queue i (∀i = 1 . . . n) : arrivals, ser-
vices, and transits to queue j �= i. Arrivals generate transition from x to x + ei,
so we define the increasing set {x + ei} ↑ if xi < Ki. From other events we
define the increasing sets {x − ei} ↑, if xi > 0, and {x − ei + ej} ↑, if xi > 0,
and xj < Ki. We add also the increasing set {x} ↑ corresponding to the process
staying in state x. We denote by Γx+ei = {x+ ei} ↑, Γx−ei+ej = {x− ei + ej} ↑,
Γx = {x} ↑, and Γx−ei = {x − ei} ↑. Let Swk(E) be the set of states which are
necessary for the �wk-comparison. So:

Swk(E) = {Γx+ei , Γx−ei+ej , Γx, Γx−ei}, where Swk(E) ⊂ Φwk(E)

Table 1. Transition rates comparison

Γ
∑

z∈Γ Q(x, z)
∑

z∈Γ QY (x, z)

Γx+ei λi λi +
∑n

k=1,k �=i μkpki

Γx−ei+ej μipij + λj λj +
∑n

k=1,k �=i μkpkj

Γx −∑n
k=1 μk1xk>0 −∑n

k=1 μk1xk>0

Γx−ei −∑n
k=1,k �=i μk1xk>0 −∑n

k=1,k �=i μk1xk>0

It is easy to see from table 1 that:
∑

z∈Γ

Q(x, z) ≤
∑

z∈Γ

QY (x, z), ∀Γ ∈ Swk(E)

So we can deduce from theorem 2 that {X(t), t ≥ 0} �wk {Y (t), t ≥ 0}, and
we call {Y (t), t ≥ 0} a weak bounding system.
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From the stochastic comparisons of the processes we have : P (X(t) ∈ Γ ) ≤
P (Y (t) ∈ Γ ), ∀Γ ∈ Φwk(E). And so for the stationary probability distributions
we have: ∑

x∈Γ

Π(x) ≤
∑

x∈Γ

ΠY (x), ∀Γ ∈ Φwk(E) (3)

As we will see after, these results could be very interesting, as the right term
can be easily computed as the product of probability distributions of independent
M/M/1/Ki queues. In the next section, we propose to compare {X(t), t ≥ 0}
with {Z(t), t ≥ 0}, using �st-comparison.

2.4 The �st-Comparison with Jackson Network

We propose to bound the process {X(t), t ≥ 0} by {Z(t), t ≥ 0}, in order to
compute performance measure bounds. Using the coupling, we aim to prove the
following proposition:

Proposition 2
{X(t), t ≥ 0} �st {Z(t), t ≥ 0} (4)

Proof. In most of the cases, the coupling concerns processes which have either
both infinite state space, or both finite state space [11]. Here, it is not the case
as {X(t), t ≥ 0} has a finite state space, and {Z(t), t ≥ 0} an infinite. We use
Theorem 1, so we prove that there exists two processes {X̂(t), t ≥ 0} (resp.
{Ẑ(t), t ≥ 0} ) with the same infinitesimal generator matrix than {X(t), t ≥ 0}
(resp. {Z(t), t ≥ 0}) representing two different realizations and we prove that:

X̂(0) � Ẑ(0) ⇒ X̂(t) � Ẑ(t), t > 0 (5)

Let suppose that: X̂(t) � Ẑ(t). We show if X̂(t+Δt) � Ẑ(t+Δt) by considering
the evolution from events occurring during the time interval Δt:

1. an arrival in queue i: we can see easily that the arrival rate in queue i is λi

from X̂(t) (if queue i is not full) and also from Ẑ(t). So if X̂(t) increases with
an arrival in queue i, then Ẑ(t) will increase also. From the component X̂i(t),
we obtain X̂i(t + Δt) = min{Ki, X̂i(t) + 1}, and from Ẑi(t) as the capacity
is infinite then the component always increases: Ẑi(t + Δt) = Ẑi(t) + 1.
Since other components do not change, and X̂(t) � Ẑ(t) then X̂(t + Δt) �
Ẑ(t + Δt).

2. a transit from queue i to queue j: as the transition rate is μipij for X̂(t) and
Ẑ(t) then the evolutions are the same, and a transit with this event of one of
the process can be compensated by another. The transit occurs if X̂i(t) > 0
and the customer is accepted in queue j if X̂j(t) < Kj, otherwise it is lost.
From X̂(t), we obtain X̂i(t + Δt) = max{0, X̂i(t) − 1}, and X̂j(t + Δt) =
min{Kj, X̂j(t) + 1}. From Ẑ(t), similarly, Ẑi(t + Δt) = max{0, Ẑi(t) − 1},
and as the queue j is infinite, Ẑj(t+Δt) = Ẑj(t)+1. Since other components
do not change, and X̂(t) � Ẑ(t) then Ẑ(t + Δt) � Ẑ(t + Δt).
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3. a service from queue i to the outside: as the service rate is μidi for the
two processes, then if we have a service in queue i for Ẑ(t), we have also
a service for Ẑ(t). So X̂i(t + Δt) = max{0, X̂i(t) − 1}, and Ẑi(t + Δt) =
max{0, Ẑi(t) − 1}, then X̂(t + Δt) � Ẑ(t + Δt).

As the process {Z(t), t ≥ 0} is time-homogeneous, even it is defined on an
infinite state space, the coupling of the processes for the comparison of the
realizations is still verified. We deduce that {X(t), t ≥ 0} �st {Z(t), t ≥ 0}, and
so {Z(t), t ≥ 0} represents a strong bounding system.

Thus we have the comparison of transient probability distributions: P (X(t) ∈
Γ ) ≤ P (Z(t) ∈ Γ ), ∀Γ ∈ Φst(E). If the stability condition is satisfied, then
the stationary probability distribution ΠZ exists. So we have the following
inequality: ∑

x∈Γ

Π(x) ≤
∑

x∈Γ

ΠZ(x), ∀Γ ∈ Φst(E) (6)

3 Accuracy of Bounding Systems

The goal of this section is to study the quality of bounding systems regarding
to the blocking probability. As bounding systems are generated either by the
strong ordering or the weak ordering then the objective is to conclude which
order could provide the most precise bounds. First, we give blocking probability
equations for the exact and bounding systems.

3.1 Blocking Probability

The exact blocking probability Bi on queue i for the process {X(t), t ≥ 0} is
given by the following formula :

Bi =
∑

x�x∗
Π(x) (7)

where x∗ is the vector where all components are null except component i which
equals Ki. We can remark that Bi is very difficult to compute because there is
not a product form for Π and the state space size could be very large (equals to
: K1× . . .Ki× . . .×Kn). So we propose to compute different blocking probability
bounds for queue i : the weak bound BYi on the weak bounding system, and
the strong bound BZi on the strong bounding system. These bounds can be
computed easily as the stationary probability distributions have a product form.
BYi is given by : BYi =

∑
x�x∗ ΠY (x). We can remark that the set of states

Γ = {x � x∗} used for the computation of the blocking probability Bi is an
increasing set such that Γ ∈ Φwk(E). Moreover, in the inequality (3), if we take
Γ = {x � x∗}, then for any queue i we have : Bi ≤ BYi. The blocking probability
BYi is equivalent to the blocking probability in an M/M/1/Ki queue:

BYi = aKi

i

1 − ai

1 − aKi+1
i

where ai =
λi +

∑n
k=1,k�=i μkpki

μi
(8)
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The blocking probability BZi is given by: BZi =
∑

x�x∗ ΠZ(x). As Γ = {x �
x∗} is such that Γ ∈ Φwk(E), then Γ ∈ Φst(E) (see Proposition 3). Furthermore
from the comparison of stationary probability distributions (see equation (6)),
we have also for any queue i : Bi ≤ BZi.

We explain now how to compute BZi. Let Λi be the input traffic in queue i.
It equals the sum of traffic coming from the outside λi and the traffic coming
from other queues k (k �= i): Λkpki. We denote by:

bi =
Λi

μi
where Λi = λi +

n∑

k=1,k�=i

Λkpki (9)

We suppose that the stability condition bi < 1 is satisfied, so the stationary
probability distribution could be computed. The blocking probability BZi is :

BZi =
∞∑

xi=Ki

bxi

i (1 − bi) (10)

Since
∑∞

xi=0 bxi

i (1−bi) = 1, then BZi = bKi

i . For the comparison of the blocking
probabilities BZi and BYi, first, we can compare ai with bi. As Λk < μk, ∀1 ≤
k ≤ n, then:

λi +
n∑

k=1,k�=i

Λkpki ≤ λi +
n∑

k=1,k�=i

μkpki (11)

thus we deduce that bi ≤ ai, and also bKi

i ≤ aKi

i . Since 1−ai

1−a
Ki+1
i

< 1, we could

not conclude for the comparison between BZi and BYi.

3.2 Numerical Results

We give now some numerical results in order to study the quality of the bounds.
As we need to compare the different bounds with the same input parameters,
then we choose them under the stability conditions of the strong bound. First,
we study a simple system in order to compare the exact blocking probabilities
with bounding measures. The system is represented by two queues : queue 1 and
queue 2 in tandem. The arrival rate in queue 1 is λ1= 100, and the service rate
μ1 = 110, the probability p12 = 1, and d1 = 0. So a2 = 0.95, and b2 = 0.90. In
table 2, we give the exact blocking probabilities B2 of queue 2 (obtained from
QNAP simulator) and also upper bounding measures BY2 and BZ2. We can
easily see that BY2 provides better bounds for K2 = 20, 30, 40, 50, 60, but for
upper values of K2, BZ2 is better.

Next, we study a more complex system, given by figure 1. The input parame-
ters for each queue are given in Table 3. The system is represented by 10 queues
with finite capacities. We can suppose easily that this system could represent a
telecommunication network with nodes as routers, and arrival and service rates
given in term of bit rates. The goal of our study is to compute blocking probabil-
ities of queue 9. As the exact blocking probability B9 is very difficult to compute
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Table 2. Blocking probabilities

K2 B2 (Exact) BY2(Weak) BZ2(Strong)

20 0.137 ∗ 10−1 0.28 ∗ 10−1 0.148

30 0.485 ∗ 10−2 0.14 ∗ 10−1 0.57 ∗ 10−1

40 0.178 ∗ 10−2 0.83 ∗ 10−2 0.92 ∗ 10−2

50 0.643 ∗ 10−3 0.48 ∗ 10−2 0.8 ∗ 10−2

60 0.223 ∗ 10−3 0.29 ∗ 10−2 0.32 ∗ 10−2

70 0.14 ∗ 10−3 0.18 ∗ 10−2 0.12 ∗ 10−2

80 0.268 ∗ 10−4 0.11 ∗ 10−2 4.88 ∗ 10−4

90 0.199 ∗ 10−5 0.700 ∗ 10−3 1.88 ∗ 10−4

100 0.787 ∗ 10−5 4.377 ∗ 10−4 7.2565 ∗ 10−5

1

4

2

3

5

6

7

8

9 1 0

Fig. 1. Queueing system understudy

Table 3. Input parameters values

Queue : i λi μi di pij

1 168 170 0.2 0.8

2 40 41 0.2 0.8

3 110 112 0.2 0.8

4 82 84 0.2 0.8

5 82 84 0.2 0.8

6 0 170 0.1 0.9

7 0 91 0.1 0.9

8 0 136 0.1 0.9

9 0 480 0.8 0.2

10 0 500 1 0

due to the state space explosion, then we compute the upper bounds BY9 and
BZ9, and we compare them. From input parameters, we obtain a9 = 0.743, and
b9 = 0.722. In Table 4 we can see that the weak bound is better only for small
buffers : 20, 30, 40. For higher buffer sizes, the strong bound is better. We sup-
pose now that μ9 = 360, in order to increase the load of queue 9, and other input
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Table 4. Blocking probability bounds : a9 = 0.743, b9 = 0.722

K9 BY9(Weak) BZ9(Strong)

20 6.887 ∗ 10−4 0.0015

30 3.560 ∗ 10−5 5.9244 ∗ 10−5

40 1.8439 ∗ 10−6 2.3095 ∗ 10−6

50 9.5501 ∗ 10−8 9.0035 ∗ 10−8

60 4.9463 ∗ 10−9 3.5098 ∗ 10−9

70 2.5618 ∗ 10−10 1.3682 ∗ 10−10

80 1.326 ∗ 10−11 5.3340 ∗ 10−12

90 6.87 ∗ 10−13 2.0794 ∗ 10−13

100 3.559 ∗ 10−14 8.106 ∗ 10−15

parameters are the same as in Table 3. We obtain b9 = 0.9638, and a9 = 0.991,
and the blocking probability bounds are given in Table 5. In Table 5, we can
see that the Weak bound gives always the most accurate blocking probability
bounds. We aim to decrease more the load of queue 9. We modify the routing
probabilities of queues 6,7 and 8 into queue 9. We take 0.8 instead of 0.9. We
obtain b9 = 0.51, and a9 = 0.52. We can remark that in Table 6, the Strong
bound provides better results than the weak bound, except for buffer size 20. At
the end, we can conclude that when the buffer size is large, the strong bound is
better, and when the load is high the Weak bound is better. Furthermore, it is
difficult to generalize to other systems, and to say in the general case which or-
dering provides the best system. The important idea is how the original system
is modified in order to obtain the bounding systems. Indeed the modification
is related to the kind of the stochastic ordering. For example, cutting the links
seems generate a weak ordering, and making infinite queues a strong bound.

For general systems, the most important thing to see is how bounding systems
are built, and how parameters of the original systems are modified in bounding
systems. So we will be able to identify the most accurate system.

In the case of the dimensioning problem, we can see the relevance of com-
puting different bounds. For example, in the case of table 5, if the threshold

Table 5. Blocking probability bounds : b9 = 0.9638, a9 = 0.991

K9 BY9(Weak) BZ9(Strong)

20 0.043 0.479

30 0.028 0.331

40 0.020 0.229

50 0.0157 0.158

60 0.0126 0.11

70 0.010 0.076

80 0.0086 0.052

90 0.00736 0.0365

100 0.006 0.025
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Table 6. Blocking probability bounds : a9 = 0.52, b9 = 0.51

K9 BY9(Weak) BZ9(Strong)

20 1.38 ∗ 10−6 1.674 ∗ 10−6

30 2.365 ∗ 10−9 2.165 ∗ 10−9

40 4.04 ∗ 10−12 2.80 ∗ 10−12

50 6.93 ∗ 10−15 3.62 ∗ 10−15

60 1.18 ∗ 10−17 4.69 ∗ 10−18

70 2.03 ∗ 10−20 6.07 ∗ 10−21

80 3.48 ∗ 10−23 7.85 ∗ 10−24

90 5.96 ∗ 10−26 1.01 ∗ 10−26

100 1.02 ∗ 10−28 1.31 ∗ 10−29

blocking probability is 0.05, then the weak bound provides a buffer size equal
to 20, and the strong bound 90. So the weak bound is very interesting in this
case. Furthermore, in table 6, for a threshold equals to 10−20, the strong bound
provides a buffer size equals to 70 and the weak bound 80.

4 Conclusion

We propose in this paper different bounding systems using different stochastic
orderings for networks of queues with finite capacities. We develop a method-
ology based on the coupling and increasing sets for Markovian discrete event
systems to establish stochastic comparisons. This leads to an intuitive way to
build bounding systems having product form solutions. We compute blocking
probability bounds, and we compare the values derived from the bounding sys-
tems for different input parameters. For systems with large buffers, the strong
bounding system provides more accurate bounds, while when the load is large,
the weak bounding system provides more accurate bounds. These results are
interesting to see that even the strong stochastic ordering has more constraints
than the weak ordering, they may provide more accurate bounds. This depends
indeed on the bounding system and its capacity to capture the dynamic of the
considered system. Therefore, one can derive both bounds and use the most
accurate bound to dimension buffers in a network.
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Appendix

The stochastic comparisons are established by means of two methods on partially
ordered state spaces: increasing sets, and the coupling. The goal of stochastic
comparisons is to generate stochastic orderings, which can be defined as a re-
lation order between random variables (probability distributions), or stochastic
processes.
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A Stochastic Ordering Theory

Let E be a discrete, and countable state space, and � be at least a preorder
(reflexive, transitive but not necessarily an anti-symmetric binary relation) on E.
We suppose that E is a multidimensional state space, where each component is
discrete, as it is the case in the queueing models. Several stochastic orderings can
be defined, the most known is the strong stochastic ordering �st, but also weaker
orderings can be defined: �wk, and �wk∗ [15]. The strong stochastic ordering is
equivalent to a sample path ordering [19], the �wk ordering leads to a comparison
of tail distributions, and �wk∗ serves the same role for cumulative distribution
functions [15,14]. Different formalisms can be used to define a stochastic ordering:
increasing functions, and increasing sets [19]. We focus on the increasing set
formalism in this paper, as we will use it for the comparison of the processes in
this paper. Let Γ ⊆ E, we denote by Γ ↑= {y ∈ E | y � x, x ∈ Γ}.
Definition 1. Γ is called an increasing set if and only if Γ = Γ ↑
From the general definition of an increasing set, three stochastic orderings have
been defined from families of increasing sets [15]. The first one is Φst(E) which
is defined from all the increasing sets of E:

Φst(E) = {all increasing sets on E} (12)

The other families Φwk(E) and Φwk∗(E) are defined from particular kinds of
increasing sets.

Φwk(E) = {{x} ↑, x ∈ E} and Φwk∗(E) = {E − {x} ↓, x ∈ E} (13)

Where {x} ↓= {y ∈ E | y � x}. We can easily derive the following inclusion
relations between the families of increasing sets [15]:

Proposition 3

Φwk(E) ⊂ Φst(E) and Φwk∗(E) ⊂ Φst(E)

As it is mentioned in [15], increasing sets of Φst(E) are generated by successive
unions of increasing sets of Φwk(E). As it is explained in [15], a family Φ(E) of
increasing sets induces a stochastic ordering if and only if it is a strongly sepa-
rating family of increasing sets. Let X and Y be two random variables defined on
E, and their probability measures given respectively by the probability vectors
p and q where p[i] = Prob(X = i), ∀i ∈ E (resp. q[i] = Prob(Y = i), ∀i ∈ E).
If Φ(E) represents one of these families (Φst(E), Φwk(E), or Φwk∗(E)), then
a stochastic ordering �Φ representing (�st, �wk, or �wk∗) can be defined as
follows [15]:

Definition 2

X �Φ Y ⇔
∑

x∈Γ

p[x] ≤
∑

x∈Γ

q[x], ∀Γ ∈ Φ(E) (14)
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From the inclusion relations between families of increasing sets, we have the
following relations between the random variables:

Proposition 4

X �st Y ⇒ X �wk Y and X �wk∗ Y

Next, we expand the stochastic ordering theory to Continuous Time Markov
Chains (CTMC). As we have explained in this paper, stochastic comparison of
Markov processes is very efficient for computing performance measures bounds
on stationary or transient distributions. The increasing set theory could be very
useful, with the different kinds of increasing sets. In fact, sometimes when the
strong ordering could not be defined, then less constrained orderings called
weaker orderings could be defined for deriving performance measure bounds.

B Stochastic Comparisons of Markov Processes

Let {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) be a CTMC defined on E. We give the
definition of the �Φ-stochastic comparison [15]:

Definition 3. We say that {X(t), t ≥ 0} �Φ {Y (t), t ≥ 0}

if X(0) �Φ Y (0) =⇒ X(t) �Φ Y (t), ∀t > 0 (15)

In the case of the �st ordering, the coupling method can be used for the stochas-
tic comparison of CTMCs. As presented in [11], [12], it remains to define two
CTMCs: {X̂(t), t ≥ 0} and {Ŷ (t), t ≥ 0} governed by the same infinitesimal
generator matrix as respectively {X(t), t ≥ 0}, and {Y (t), t ≥ 0}, represent-
ing different realizations of these processes with different initial conditions. The
following theorem establishes the �st-comparison using the coupling [11]:

Theorem 1
{X(t), t ≥ 0} �st {Y (t), t ≥ 0} (16)

if there exists the coupling {(X̂(t), Ŷ (t)), t ≥ 0} such that:

X̂(0) � Ŷ (0) ⇒ X̂(t) � Ŷ (t), ∀t > 0 (17)

If we suppose that {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0} ) is a CTMC with
infinitesimal generator matrix A (resp. B), then we present the theorem of the
�Φ-stochastic comparison of CTMCs using increasing set formalism (theorem
3.4 in [15]):
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Theorem 2. If the following conditions are verified:

1. X(0) �Φ Y (0)
2. {X(t), t ≥ 0} or {Y (t), t ≥ 0} is �Φ-monotone
3.

∀x ∈ E,
∑

z∈Γ

A(x, z) ≤
∑

z∈Γ

B(x, z), ∀Γ ∈ Φ(E) (18)

then
{X(t), t ≥ 0} �Φ {Y (t), t ≥ 0} (19)

The monotonicity is a property used in this theorem, corresponding to an in-
creasing (decreasing) in time of a process. Next we give the definition of the
�Φ-monotonicity (see definition 5.5.1 in [19]).

Definition 4. We say that {X(t), t ≥ 0} is �Φ −monotone if:

X(t) �Φ (�Φ)X(s), ∀t, s ∈ R
+ | t < s (20)

The �st monotonicity of {X(t), t ≥ 0} can be proved from its generator Q as
follows [15]:

Theorem 3. {X(t), t ≥ 0} is �st- monotone, if and only if
∀Γ ∈ Φst(E), ∀x � y ∈ E| x, y ∈ Γ or x, y �∈ Γ we have :

∑

z∈Γ

Q(x, z) ≤
∑

z∈Γ

Q(y, z)

In [6], we generalize the theorem 3 to the stochastic ordering �Φ. From the
implication relations between stochastic orderings (see prop. 4), we can deduce
the following proposition [7]

Proposition 5. If {X(t), t ≥ 0} is �st-monotone then it is �wk-monotone and
�wk∗-monotone.
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Abstract. Computing tight performance bounds in feed-forward net-
works under general assumptions about arrival and server models has
turned out to be a challenging problem. Recently it was even shown to
be NP-hard [1]. We now address this problem in a heuristic fashion, build-
ing on a procedure for computing provably tight bounds under simple
traffic and server models. We use a decomposition of a complex problem
with more general traffic and server models into a set of simpler problems
with simple traffic and server models. This set of problems can become
prohibitively large, and we therefore resort to heuristic methods such
as Monte Carlo. This shows interesting tradeoffs between performance
bound quality and computational effort.

1 Motivation and Related Work

When designing or analyzing a network, one of the most important aspects is its
performance under various load conditions. A number of methods for that kind
of analysis have been devised, among them network calculus, which describes
methods for calculating performance bounds, i.e., describing worst-case behavior.

Network calculus is a (min, +) system theory for deterministic queuing sys-
tems which builds on the calculus for network delay in [2,3]. The important
service curve concept was introduced in [4,5,6,7,8] to perform efficient analysis
of tandem queues. Scaling properties in the number of traversed network nodes
are linear, as is shown in [9], a phenomenon also known as pay bursts only once
phenomenon [10]. Detailed descriptions of the (min, +) algebra and of network
calculus can be found in [11] and [10,12].

Network calculus has found numerous applications, most prominently in the
Internet’s Quality of Service (QoS) proposals IntServ and DiffServ [13,14], but
it has also become a valuable method in other fields, such as wireless sensor
networks [15,16], switched Ethernets [17], Systems-on-Chip (SoC) [18], or even
to speed-up simulations [19].

However, as a relatively young theory, compared to, e.g., traditional queueing
theory, there is also a number of challenges network calculus still has to mas-
ter. A very tough challenge is found in the treatment of non-tandem topologies
with aggregate multiplexing of multiple flows. While this has been addressed
from the beginning [3], there are still many open issues. For aggregate multi-
plexing in general network topologies there is a very fundamental issue about
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the circumstances under which a finite delay bound exists at all [20,21]. In [22]
a sufficient condition for stability in general network topologies and an explicit
delay bound are given. Extensions of this approach are provided in [23,24]. Yet,
for larger networks this severely limits the utilization of the network since the
maximum allowable utilization is inversely proportional to the network diameter.
The problems in the analysis of general topologies arise from cyclic dependencies
between flows and the resulting difficulties in bounding their network-internal
burstiness. A special class of topologies which avoids those problems are feed-
forward networks, which are known to be stable for all utilizations ≤ 1 [3]. In this
paper, we focus on this class of networks. While many networks are obviously not
feed-forward, many important instances like switched networks, wireless sensor
networks, or MPLS networks with multipoint-to-point label switched paths are,
or can be made, feed-forward by using, e.g., the turn-prohibition algorithm [25].

In feed-forward networks, there has been some work on aggregate multiplexing
recently: [26] treats the case of feed-forward networks under FIFO multiplexing
for token-bucket constrained flows and rate-latency servers, showing that the
derived left-over service curve for a flow of interest is again of the rate-latency
type with minimally possible latency. [27] shows that this does not result in
a tight delay bound, and derives tight delay bounds under knowledge about
the arrival curve of the flow of interest for the special case of sink-trees and,
again, under token bucket constrained flows and rate-latency servers. Another
work [28] also investigates sink-tree networks, but now under dual token-bucket
constrained flows and constant rate servers, for which delay bounds are derived
by summing per-node bounds, which unsurprisingly does not yield tight bounds
but is still reported as being close under practical conditions.

Besides being very specific with respect to traffic and server models, all of
the above work assumes FIFO aggregate multiplexing. However in practice, as
argued in [29], many devices cannot be accurately described by FIFO because
packets arriving at the output queue from different input ports may experi-
ence different delays when traversing a node. This is due to the fact that many
networking devices like routers are implemented using input-output buffered
crossbars and/or multistage interconnections between input and output ports.
Hence, packet reordering on the aggregate level is a frequent event (unlike on the
flow level) and should not be neglected in modelling. Therefore, in this work we
drop the FIFO multiplexing assumption and make essentially no assumptions
on the way aggregates are multiplexed at servers, i.e. we assume arbitrary mul-
tiplexing also known as general or blind multiplexing [2,10]. On the level of a
single flow, however, we still assume FIFO. This assumption is sometimes called
FIFO-per-microflow [30] or locally FCFS multiplexing [2].

Work on bounds for networks with arbitrary multiplexing has become frequent
only recently, but there are already several important results. Some older results
are reported in [10] (see Section 2), and there is some work on the burstiness
increase due to arbitrary multiplexing at a single node [31]. Adversarial queueing
theory [32] provides results for general networks, however it is more concerned
with network stability than with the determination of performance bounds. In
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previous work related to network calculus tool support, we have proposed and
implemented a number of network calculus analysis methods for arbitrary mul-
tiplexing in feed-forward networks [33], but as will be demonstrated here, they
were not the ultimate solution. A similar approach has been taken in [34], re-
garding a wider class of traffic and service specifications.

The goal of our work is to search for tight delay bounds in feed-forward
networks of arbitrary multiplexers. With respect to traffic and server models
we address a more general case than previous work on FIFO multiplexing, in
particular we assume piecewise linear concave arrival curves and convex service
curves, which encompass the majority of practical traffic and server models.
Compared to our previous work in [35], we now try to solve an issue that arises
from the algebra used in network calculus, which, while allowing for an easy
analysis, hides certain properties, and may lead to pessimistic bounds.

After a short introduction to network calculus, we present an approach to
network analysis based on an optimization problem, and show how a solution to
that problem can be approximated by heuristics. We show how the quality of
the performance bounds obtained by that new method compares with traditional
results.

2 Network Calculus Background

As network calculus is built around the notion of cumulative functions for input
and output flows of data, the set of real-valued, non-negative, and wide-sense
increasing functions passing through the origin plays a major role:

F = {f : R
+ → R

+ |∀t ≥ s : f (t) ≥ f (s) , f (0) = 0}
In particular, the input function F (t) and the output function F ′(t), which
cumulatively count the number of bits that are input to, respectively output
from, a system S, are in F . Throughout the paper, we assume in- and output
functions to be continuous in time and space. Note that this is not a general
limitation as there exist transformations between discrete and continuous time
models [10].

Definition 1. (Min-plus Convolution and Deconvolution) The min-plus convo-
lution ⊗ and deconvolution � of two functions f, g ∈ F are defined as

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)}

(f � g) (t) = sup
u≥0

{f(t + u) − g(u)}

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the pointwise mini-
mum operator, constitutes a dioid [10]. Also, the min-plus convolution is a linear
operator on the dioid (R ∪ {+∞},∧, +), whereas the min-plus deconvolution is
not. These algebraic characteristics result in a number of rules that apply to
those operators, many of which can be found in [10,12]. Let us now turn to the
performance characteristics of flows which can be bounded by network calculus
means:
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Definition 2. (Backlog and Delay) Assume a flow with input function F that
traverses a system S resulting in the output function F ′. The backlog of the flow
at time t is defined as

x(t) = F (t) − F ′(t)

Assuming FIFO delivery, the virtual delay for a bit input at time t is defined as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)}
Next, the arrival and departure processes specified by input and output functions
are bounded based on the central network calculus concepts of arrival and service
curves:

Definition 3. (Arrival Curve) Given a flow with input function F a function
α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F ≤ F ⊗ α

A typical example of an arrival curve is given by an affine arrival curve γr,b (t) =
b + rt, t > 0 and γr,b (t) = 0, t ≤ 0 which corresponds to token-bucket traffic
regulation.

Definition 4. (Service Curve) If the service provided by a system S for a given
input function F results in an output function F ′ we say that S offers a service
curve β iff

F ′ ≥ F ⊗ β

A typical example of a service curve is given by a so-called rate-latency function
βR,T (t) = R [t − T ]+, where [x]+ := x∨0, and ∨ denotes the maximum operator.
A number of systems fulfill, however, a stricter definition of the service curve
[10], which is particularly useful as it permits certain derivations that are not
feasible under the more general minimum service curve model.

Definition 5. (Strict Service Curve) Let β ∈ F . System S offers a strict service
curve β to a flow if during any backlogged period of duration u, the output of the
flow is at least equal to β(u).

Note that any strict service curve is also a service curve, but not the other way
around. Many schedulers offer strict service curves, for example most of the
generalized processor sharing-emulating schedulers offer a strict service curve
of the rate-latency type. Strict service curves will play a crucial role in this
paper, since they, in contrast to service curves, allow to bound the maximum
backlogged period of a system. More specifically, that bound d̄ is given as the
non-zero intersection point between arrival and service curve, i.e. α

(
d̄
)

= β
(
d̄
)
.

Using those concepts it is possible to derive tight performance bounds on
backlog, (virtual) delay and output:

Theorem 1. (Performance Bounds) Consider a system S that offers a service
curve β. Assume a flow F traversing the system has an arrival curve α. Then
we obtain the following performance bounds:
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Fig. 1. General network topology. Arrival processes and service characteristics are la-
beled as described in Section 2. Flows are specified as Fi,j , where i and j denote the
ingress and egress nodes. The analysis covers all nodes that the flow of interest Fint

passes through.

Backlog: ∀t : x(t) ≤ (α � β) (0) =: v(α, β)
Delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α � β) (−t) ≤ 0} =: h (α, β)
Output (arrival curve α′ for F ′): α′ =α � β

One of the strongest results of network calculus (albeit being a simple conse-
quence of the associativity of ⊗) is the concatenation theorem that enables us
to investigate tandems of systems as if they were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a flow
that traverses a tandem of systems S1 and S2. Assume that Si offers a service
curve βi, i = 1, 2 to the flow. Then the concatenation of the two systems offers
a service curve β1 ⊗ β2 to the flow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of a
tandem of servers still achieves tight performance bounds, which in general is
not the case for an iterative per-node application of Theorem 1.

So far we have only covered the single flow case, the next result factors in the
existence of other interfering flows. In particular, it states the minimum service
curve available to a flow at a single node under cross-traffic from other flows at
that node.

Theorem 3. (Left-over Service Curve under Arbitrary Multiplexing) Consider
a node multiplexing two flows 1 and 2 in arbitrary order. Assume that the node
guarantees a strict minimum service curve β to the aggregate of the two flows.
Assume that flow 2 has α2 as an arrival curve. Then

β1 = [β − α2]
+

is a service curve for flow 1 if β1 ∈ F , often also called the left-over service
curve for the flow of interest. Note that we require the service curve to be strict.
In [10], an example is given showing that the theorem otherwise would not hold.

3 Optimization-Based Approach

To analyze a network as shown in Figure 1, conventional methods are the Sep-
arated Flow Analysis (SFA) and the Pay Multiplexing Only Once analysis, ab-
breviated PMOO-SFA since it is an extension of the SFA. A detailed discussion
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Fig. 2. Bound quality comparison. Results are taken from a feed-forward network at
50% utilization. “TIGHT” shows results of the method presented in [36].

Fig. 3. Sample topology that exposes the weakness of the PMOO-SFA. Also shown are
the slack variables s

(n)
i,j that are used by the optimization-based approach. The indices

i, j denote the ingress and egress servers of a flow, and (n) denotes the hop.

of those methods can be found in [33]. Those methods, as mentioned, offer rela-
tively simple algebraic means to calculate delay bounds for a given feed-forward
network, but as shown in [36,37], those bounds can be made arbitrarily pes-
simistic by choosing an antagonistic network topology. An example of numerical
results comparing different analysis methods is shown in Figure 2. It is obvious
that the delay bounds obtained by the SFA are exceedingly pessimistic, while
PMOO results at least expose a saner growth behavior. In a similar manner, it
can be shown that for some traffic characteristics, the PMOO yields arbitrarily
worse results than the SFA, even for very simple topologies like the one shown
in Figure 3.

We now introduce an approach based on the transformation of the problem to
a system of linear programs that was first presented in [36]. The motivation for
this new approach becomes obvious when exploring a weakness of the PMOO-
SFA. While that analysis looks like a perfect application of network calculus
principles, it can be shown that applying the convolution to obtain an end-to-
end service curve for the flow of interest destroys information about the sequence
of servers. While the commutativity of the convolution is algebraically nice, it
also means that the burstiness of the traffic is always paid for at the rate of
the slowest server, even if the structure of the network and the cross-traffic do
not require it. While that is not a serious shortcoming in rather homogeneous
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networks, it becomes more of an issue in networks where servers are successively
faster towards the sink.

To work around that shortcoming, we need to find a way to distribute the
burst to the servers where it has to be paid, as opposed to the slowest server.
To allow for that, slack variables are introduced to represent the accumulated
burstiness up to a given server. Those variables are shown as s

(n)
i,j in Figure 3.

From those slack variables and with constraints resulting from the traffic and
service specifications, it is possible to construct a linear program that finds the
left-over service curve for the flow of interest. A thorough discussion of generating
the linear programs for a given network, as well as an example can be found in
[37]. We will present the core result for analyzing networks with traffic adhering
to arrival curves composed from a number of token-buckets, and service curves
composed from a number of rate-latency curves, the decomposition theorem,
along with a method to use it, as well as numerical results in the following
sections.

4 Heuristic Search

When looking at the results so far, we are facing a dilemma: we can either
choose to use computationally cheap algorithms at the expense of potentially
highly pessimistic bounds, or we can achieve tight bounds at the cost of possibly
prohibitively high costs.

As is often the case in such a situation, a heuristic approach seems promising,
so we propose a new approach to search for tight bounds based on the following
decomposition theorem (see [36] for the proof):

Theorem 4. (Decomposition theorem) Let
∧ C and

∨ C denote the minimum
and maximum over a set C of curves. Then given piecewise linear concave arrival
curves αi =

∧ni

ki=1 γrki
,bki

for each interfering flow i = 1, . . . , n and piecewise
linear convex service curves βj =

∨mj

lj=1 βRlj
,Tlj

for each node j = 1, . . . , m on
the path of the flow of interest, the left-over service curve for the flow of interest
is given by

βl.o. ≥
n∨

i=1

m∨

j=1

ni∨

ki=1

mj∨

lj=1

βl.o.
{ki},{li} (1)

where βl.o.
{ki},{lj} are end-to-end left-over service curves for a specific combination

of a single token bucket per interfering flow and a single rate-latency curve per
node.

This leads to a set of linear programs that have to be solved, since each combi-
nation of arrival and service segment generates one. For piecewise linear curves,
we get systems of

∏n
i=1

∏m
j=1 nimj programs. So if we assume for example ar-

rivals adhering to a T-Spec curve (i.e., two segments), and mj-segment service
curves for two flows (n = 2) over m servers, we get (2m)2mj linear programs, so
the problem size is polynomial in the number of nodes, but exponential in the
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number of segments in the arrival and service curves. This means a large number
of linear programs with a discrete search space.

Since a complete coverage of such a huge search space would mean an extreme
expense of computational resources, we decided on a heuristic approach.

4.1 Monte Carlo Search

For reference, we implemented a pure Monte Carlo search. That method does
not make any assumptions about the structure of the search space, and is rel-
atively easy to implement. The search space consists of the token-bucket and
rate-latency segments the arrival and service curves are composed of, and one
iteration of the Monte Carlo method just picks a random segment of each arrival
curve and service curve, and calculates a delay for the resulting left-over service
curve.

While that approach may lead to some intermediate infinite delay values when
the arrival curve segments have a higher rate than the service curve segments,
those results will be discarded as soon as a feasible combination is encountered.

4.2 Hooke and Jeeves “Direct Search”

For our heuristic search, we combined the Monte Carlo search with a local search
algorithm, the “Direct Search” by Hooke and Jeeves [38] (H-J). This search
minimizes a function S (φ) of several arguments φ = (φ1, . . . , φk) that can be
interpreted as a k-dimensional space. The strategy is to vary the arguments of
φ until a minimum of S (φ) is found. Here, we are minimizing the delay bound.

The algorithm is separated into two important phases. The first phase is to
acquire knowledge of the behaviour of S (φ). Therefore, the neighbourhood of
a point is explored to establish a pattern of movement for which it is likely to
find a lesser value. Each exploratory move is expected to be simple, that means
each move varies only a single argument φi at a time by first increasing and
afterwards decreasing it by the current step size Δ.

The second phase applies the resulting pattern to the point with the lowest
value of S (φ) found up to that point. If that pattern move is successful, i.e.,
the corresponding functional value is lower, then the new point is the base point
for the next exploration. Otherwise, the exploration starts from the point with
the minimal functional value so far. The regularly performed exploration revises
the pattern continually. If the exploration is a failure, the current step size Δ is
reduced by a reduction factor ρ < 1 until the minimum step size δ is reached.

Figure 4 illustrates the process. Starting at an arbitrarily chosen base point,
both the increase of the first and second dimension φ1 and φ2 are successful.
The acquired pattern is used for the following pattern move to get to the next
base point. At each base point, the exploration phase starts again to revise the
pattern and, in this example, leads to a changed direction and a new base point.
The revised pattern is applied, but the move is a failure, so the next base point is
set to the last successful move, and the exploration phase continues from there.
The search now stops because no successful move can be made.
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Fig. 4. Illustration of the moves taken by the Hooke and Jeeves optimization method.
Exploratory moves to the top/right are steps of size +Δ, and −Δ towards the bot-
tom/left. The first two exploratory moves e1 and e2 establish the pattern p1 which is
then used for the first pattern move.

To apply the H-J algorithm to our workspace, we need to map the arrival and
service curves to the k dimensions φi and define how to increase and decrease it
by the step size Δ. Each dimension will contain a list composed of segments of
individual curves. If, for example, a dimension consists of two arrival curves, α1

with 2 token-bucket components and α2 with 3 token-bucket components, then
the dimension is made up from lists [i1, i2] with i1 ∈ {0, 1} and i2 ∈ {0, 1, 2} as
the zero-based indices of the token-bucket components of the individual curves.
Stepping through such a dimension is implemented through an appropriate enu-
meration scheme.

We analyze the Optimization-Based Approach (OBA) with two mappings of
curves to dimensions:

– A two-dimensional mapping (OBA-HJTwo), using one dimension to repre-
sent all arrival curves, and the other for the services.

– A multi-dimensional mapping (OBA-HJMulti) with still only one dimension
for the services, but the arrivals are handled as one dimension for each ingress
node.

5 Results

For the numerical experiments, our network calculus tool, the DISCO Network
Calculator [39,40] was extended significantly to perform the decomposition and
generation of the linear programs. The generated programs were handed off
to lp solve [41], but other linear solvers can also be used by implementing an
interface. The implementation involved major refactoring, and we are planning
to make that implementation publicly available with an upcoming new release.
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The hardware used for the calculations was similar to commonly available
desktop computers, running on Intel’s Core 2 architecture Xeons. An optimiza-
tion run with 15 nodes used only up to 1.1GB of RAM. Since the implemen-
tations of the DNC and lp solve are single-threaded, a single instance of the
problem would run comparably on common off-the-shelf hardware.

5.1 Experimental Design

For our experiments, we used the general network topology as shown in Figure 1.
This is a simplified view of the network from the flow of interest’s perspective and
implies that all flows that share the same ingress and egress node are seen as only
one flow. We assumed a fully occupied network – so for each pair of nodes (i, j)
with i ≤ j there was a flow Fi,j – and realistic data flow characteristics for our
workload. Hence, to generate arrival curves for the cross-traffic, we have chosen
the following setup. At first arbitrary T-SPECs [42] (M, p, r, b) are generated
to simulate realistic envelopes. Each T-SPEC is constrained by the following
constant parameters burst size b = 1Mb, maximum packet size M = 1500bit,
and sustained rate r = 1Mbps. The peak rate p is arbitrarily chosen amongst 18
fixed values between pmax = 10Mbps and pmin = 1.5Mbps. For each flow Fi,j ,
32 random T-SPECs are added up.

Each node offers a strict rate-latency service curve with a latency of 0.1ms and
a service rate dimensioned so that a target utilization of 50% is achieved. The
flow of interest is constrained by a token-bucket with a burstiness of b = 8Mb
and a rate of r = 1Mbps.

In the experiment we compare, under a varying number of server nodes, the
SFA as a representative of the traditional methods, and the heuristic meth-
ods OBA-MC (Monte Carlo), OBA-HJTwo, and OBA-HJMulti as described in
Section 4.

For the runtime, there is a tradeoff to be made between the search space and
the number of points sampled by the heuristics. Regardless of the maximum
number of combinations, MC samples always 5000 points, even in topologies
with less than three nodes (in those cases, we achieve a maximum coverage of
over 100%). Since the “intelligent” optimization methods can stop early if they
get trapped in a local minimum, there would be a disparity if we had strict
limits for the number of starting points and the maximum number of steps. We
decided to let the H-J methods run for the same number of points as the MC
search with a maximum of 50 steps from a given starting point, and repeat this
until it did 5000 steps, so those methods sample upwards of 100 starting points.

All experiments were repeated 20 times with new randomly generated traffic
and service characteristics.

5.2 Evaluation

The delay bounds for different methods over number of nodes are shown in Fig-
ure 5, connecting the mean values for visual reference. Overall, the results of the
heuristic methods look very promising, and expose similar growth properties for
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Fig. 5. Comparison of delay bound quality stating 95% confidence level. Also shown is
the coverage of the search space on a logarithmic scale (decreasing series). From best to
worst, the delay bounds are: multi-dimensional H-J, Monte Carlo, 2-dimensional H-J,
and SFA.

the delay bound as the delay bounds obtained by complete coverage in Figure 2,
even though they only cover a small part of the search space.

When comparing the results of the Direct Search methods with the pure
Monte Carlo search, we see two trends:

It can be said with 95% confidence, that from 12 nodes on, the HJMulti
method does significantly better than Monte Carlo. For 8 to 11 nodes the mean
differs, but we cannot make a clear statement with 95% confidence. The fig-
ure also shows, that there is a difference between H-J with two and multiple
dimensions, which is significant with 95% confidence for 4 nodes and up.

However, the two-dimensional direct search has a tendency to yield worse re-
sults than Monte Carlo. This can be explained by taking a look at the different
structure or the search spaces. Because in our setting, each service curve has
only one rate-latency component, that dimension will not change during explo-
ration. Grouping all arrival curves in only one dimension in the two-dimensional
approach will then severely restrict the exploration steps.

The figure also shows another metric: coverage of the search space. For each
number of nodes, the mean coverage of the corresponding replications is drawn.
It becomes obvious that with an increasing number of nodes, only a minis-
cule portion of all possible combinations can be examined; the runtime savings
compared to a thorough search for the best bound can be estimated from that
fraction when looking at the runtime behavior.

Figure 6 shows a comparison between the median values of the computation
time of the analysis methods over the number of nodes: since the calculations are
very much the same for the optimization-based methods, the runtime only varies
slightly. Overall, SFA has an advantage in that regard, since it does not suffer
from combinatorial explosion like the other methods do. Although the runtime
scales quadratically, the increase is irrelevant for the networks examined here.
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Table 1. Delay bound and runtime comparison for 15 nodes

analysis mean delay bound [s] median runtime [min]

SFA 81.360 0.162

OBA-HJTwo 7.443 36.950

OBA-MC 6.140 36.784

OBA-HJMulti 5.386 36.389

The important question is how much of an advantage the intelligent methods can
draw from the increased amount of runtime. The comparison of the mean delay
bound with 15 nodes in Table 1 shows, that we can achieve an about 76 seconds
better delay bound with HJMulti, but for about 36 minutes longer runtime.

When judging that trade-off, it has to be considered that such a network anal-
ysis will likely be performed offline to help in the dimensioning of a network. In
such a case, the quality of the results will be more important than a quick
calculation, since a pessimistic bound would have to be countered with over-
provisioning of the infrastructure. That would mean deploying more expensive
hardware, or just hardware with a higher energy consumption, making projects
more expensive to deploy and to maintain.

In that light, the proposed heuristics all appear very capable of providing
good-quality bounds in an acceptable timeframe. The multi-dimensional Hooke
and Jeeves direct search yields the best results of the methods we examined, at
no runtime overhead.

6 Conclusion

We have presented a novel method for finding performance bounds in feed-
forward networks that does not make overly restrictive assumptions about arrival
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and server models. While tight bounds still remain elusive, this new approach
shows far better behavior for the performance bounds as network size increases.
Furthermore, only very general assumptions are made about the characteristics
of data arrivals and server models, keeping it compatible with previous appli-
cations of network calculus. In the course of the work, our DISCO Network
Calculator tool was extended to allow integration of new analysis methods more
easily.

Numerical experiments show a good scaling behavior with respect to the de-
lay bounds and calculation time in relation to the network size. Even though
the computational complexity increases exponentially if the traffic and service
specifications become complex, it remains polynomial with the network diame-
ter. The heuristics used for finding the best bounds hold up favorably while only
searching a diminuitive portion of the search space, and fairly simple methods
such as Monte Carlo can be used to achieve good results.

An interesting point that came up during experimentation was a highly ir-
regular structure of the search space of the optimization problem that does not
lend itself very well to local optimization schemes. More work towards an opti-
mization scheme that suits the search space better, or a way to restructure it,
would thus be advised to reach global optimization and thus better bounds.

Another area of interest is to find ways to simplify traffic curves as much
as possible by culling completely irrelevant segments, or without impacting the
resulting bounds too much. Since the overall complexity is exponential in the
number of curve segments, such a reduction could massively speed up compu-
tation, but would require a careful error analysis when relevant segments are
removed.

References

1. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst-case
analysis of feed-forward networks. Tech. Rep. RR-7012, Unité de recherche INRIA
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Abstract. The present paper contains a specification of the EM algorithm in or-
der to fit an empirical counting process, observed at discrete times, to a Marko-
vian arrival process. The given data are the numbers of observed events in disjoint
time intervals. The underlying phase process is not observable. An exact numeri-
cal procedure to compute the E and M steps is given.

1 Introduction

Markovian arrival processes have been introduced by [25] and [21]. They have exten-
sively been used as models for input streams to queueing systems (for a survey see [22]).
Their appealing feature is that they are Markovian (and hence analytically tractable) on
the one hand but very versatile (even dense in the class of point processes, see [3])
on the other hand. Although the concept of Markovian arrival processes (MAPs1) has
gained widespread use in stochastic modelling of communication systems and other ap-
plication areas, the quest for the best statistical methods of parameter estimation is far
from finished yet.

A survey of estimation methods is given in [2]. His emphasis is on maximum like-
lihood estimation and its implementation via the EM algorithm (see [12]). [4] derived
a fitting procedure for phase-type distributions via the EM algorithm. Markov chain
Monte Carlo methods for the estimation of phase-type distributions (and functionals of
these) are given in [5]. For a special case of MAPs, the Markov–modulated Poisson
Process (MMPP), an EM algorithm has been developed in [27]. [6] specify the EM
algorithm for the case of discretely observed Markov jump processes (MJPs). We will
have to deal with discretely observed MJPs, for which even the observations at discrete
times are partial only. [13] provide a simulation method for MMPPs. Our results ex-
tend this paper in so far in that we provide a maximum likelihood approach for a more
general class of processes.

Statistical model fitting depends of course on the type of data observation that is
available. In practice, we think of essentially two types of data:

(a) Exact times are recorded for each observed event.
(b) The arrival process is observed at a grid of discrete times only. This yields only the
information of how many arrivals have occurred in each interval of the grid.

1 There is some confusion in the literature about this acronym. It is used also for Markov–
additive processes, which form a much more general class than Markovian arrival processes.
However, since MAP is the most common abbreviation for Markovian arrival processes, we
will use it in this article.
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We always assume that the underlying phase process is unobservable. An EM algorithm
for case (a) has been given in [7]. The present paper contains a specification of the EM
algorithm for MAPs in the case (b) of discrete time observation. One of the referees
brought to our attention that a similar approach to ours is also considered in [28]. Our
approach here differs essentially from theirs in the method of calculating the elementary
steps of the EM algorithm. One of the methods proposed here is based on the matrix
exponential function which is easily implementable. Other contributions in this area are
either based on the method of moments approach or EM for data of type (a). See for
example [8], [9], [11] [15] and [18].

In section 2, we review shortly the main definitions and notations for MAPs. The
EM algorithm is specified to discretely observed MAPs with hidden phases in section
3. Exact expressions for the integrals appearing in the E–step are given in sections 4
and 5. In the remainder of this section, we describe the kind of data available from
observations and give a short remark on estimating the order of the MAP which is to fit
the empirical time series.

We assume to be in the following, for many applications typical, situation of data
retrieval: An empirical counting process is observed at discrete times tn, n = 0, . . . , N ,
where t0 := 0. To simplify later notation we assume that tn := n. It will be apparent
that this assumption of equidistant observation points is not necessary. We further as-
sume that the observed point process is stationary in time. The only information that
can be measured is the number of observed events in the interval ]tn−1, tn], denoted by
zn, n = 1, . . . , N . Thus the given data has the form z = (z1, . . . , zN ). Due to the result
that MAPs are dense in the class of all point processes on the positive real axis (see [3]),
the approach of model fitting by a MAP is reasonable. By the nature of the problem, no
information is given on the underlying phase process, not even the number of phases.

Throughout this article, we fix the number of phases for the MAP model to be a
known integer m ≥ 1. Procedures for estimating the number m of phases are discussed
in [29] for the MMPP.

Since the adaptation of the model increases with the assumed number of phases m,
the likelihood gain at the ML estimates is always positive if we increase m by 1. If this
gain is not bigger than some threshold value, we can assume that we have found the
right value for m. This incremental method was proposed by [16]. The threshold value
reflects the limit of accuracy beyond which the gain in model adaptation is not worth
the additional computation time.

2 Markovian Arrival Processes

A Markovian arrival process is a homogeneous Markov process Y = (Yt : t ≥ 0) with
state space E = N0 × {1, . . . , m}, where m is some positive integer, and a generator
matrix of the (block) form

G =

⎛
⎜⎝

D0 D1

D0 D1

. . .
. . .

⎞
⎟⎠
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In this generator, only the main and the first upper block diagonals have non–zero en-
tries. Apart from that there are no restrictions for the matrices D0 and D1, except of
course the generator conditions

(D0 + D1)1 = 0, D0;ij ≥ 0 for i �= j, D1;ij ≥ 0 for all i, j

where 1 and 0 denote the vectors with all entries being ones and zeroes, respectively.
In order to avoid absorbing states, we assume that D0;ii is strictly negative for all i =
1, . . . , m.

As Yt is two–dimensional, it is natural to write Y = (N ,J ) = ((Nt, Jt) : t ≥ 0).
The marginal processes N and J are called the counting process and the phase process
associated with Y . For any state (n, i) ∈ E, the first dimension is called the level and
the second one is called the phase.

Under this interpretation, the entries D0;ij of D0 give the infinitesimal transition
rates among phases {1, . . . , m} without an arrival if i �= j. The entries D1;ij of D1 give
the infinitesimal transition rates among phases accompanied by an arrival. The diagonal
entries D0;ii are the negative parameters of the exponential sojourn times in any state
(n, i), independently of n ∈ N0.

The special case of a Markov–modulated Poisson Process (MMMP), also called a
Cox process, arises if D1 is chosen to be a diagonal matrix. This has of course a large
impact on the modelling power. The matrix D1 governs correlations between inter–
arrival times (which are crucial in many applications). If D1 is restricted to be diagonal,
there is no way to control these. This is the main reason why MMPPs can be employed
only in special modelling situations.

The process has stationary increments if it starts in phase equilibrium π, which is
determined as the stationary distribution of the phase process, i.e. by π(D0 + D1) = 0.
As we wish to fit a stationary empirical point process by a MAP, we can hence assume
that P(Y0 = (0, i)) = πi.

The likelihood of a complete sample path x on [0, tN ] under parameters D0 =
(D0;ij) and D1 = (D1;ij) is given by

l(x|D0, D1) =
m∏

i=1

exp (D0;iiZi)
m∏

i=1

m∏
j=1,j �=i

D
Bij

0;ij

m∏
i=1

m∏
j=1

D
Aij

1;ij (1)

where Zi = Zi(x) denotes the total time spent in phase i, Bij = Bij(x) the number of
jumps from phase i to phase j without arrival, and Aij = Aij(x) the number of jumps
from phase i to phase j with accompanying arrival. These variables form a sufficient
statistic for likelihood based estimations. They can of course be decomposed into the
sum of the respective variables over all the intervals ]tn−1, tn], n = 1, . . . , N . Thus we
can write

Zi =
N∑

n=1

Zn
i , Bij =

N∑
n=1

Bn
ij , Aij =

N∑
n=1

An
ij

where Zn
i , Bn

ij , and An
ij refer to the nth interval.
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Acknowledging the relation D0;ii = −
(∑m

j=1 D1;ij +
∑m

j=1,j �=i D0;ij

)
, the maxi-

mum likelihood estimators D̂0 and D̂1 for the matrices D0 and D1 are then given by

D̂0;ij =
Bij

Zi
, D̂1;ij =

Aij

Zi
, (2)

D̂0;ii = −
⎛
⎝

m∑
j=1

D̂1;ij +
m∑

j=1,j �=i

D̂0;ij

⎞
⎠ (3)

for 1 ≤ i, j ≤ m, see [1].

Remark 1

The above equation (1) shows that under the complete statistics, written as a row vector

T (x) = (Zi(x) : i ≤ m; Bij(x) : i �= j; Aij(x) : i, j ≤ m)

we are dealing with an exponential family in T and a parameter column vector

ζ(D0, D1) = (D0;ii : i ≤ m; log D0;ij : i �= j; log D1;ij : i, j ≤ m)T

where we define by natural extension log 0 := −∞ and (−∞) · 0 := 0. Under this
setting we obtain

l(x|D0, D1) = exp(T (x)ζ(D0, D1)) (4)

This shows that results obtained by [30] are applicable to the problem studied here. If
for example, we have some missing information and we only observe z = (z1, . . . , zN)
indicating the number of observed arrivals within each interval. The likelihood function
is then obtained as

f(z|D0, D1) =
∫

Ωz

l(x|D0, D1)dx (5)

where Ωz is the set of all the possible paths with zi arrivals at ith interval. Note that
f(z|D0, D1) is a likelihood with respect to the counting measure on NN0 , all possible
values for z. EM algorithm is based on maximizing with respect to D0, D1:

∫
log l(x|D0, D1)dF (x|z, (D̂0, D̂1)) =

∫
Ωz

T (x)ζ(D0, D1)l(x|D̂0, D̂1)dx

f(z|D̂0, D̂1)
(6)

where F (x|z, (D̂0, D̂1)) is the conditional distribution of the full data x given the ob-
served data z and (D̂0, D̂1) are the current estimates of D0, D1.

One can easily maximize (6) with respect to D0, D1 by equating their par-
tial derivatives to zero and by transferring the derivative sign inside the integra-
tion sign and proceeding as in [1]. We obtain similar equations as in (2) as in (3)
with the only difference that Zi, Aij and Bij there are replaced by E(D̂0,D̂1)

(Zi),
E(D̂0,D̂1)

(Aij) and E(D̂0,D̂1)(Bij): the corresponding conditional expectations with re-

spect to dF (x|z, D̂0, D̂1). This observation has two implications:
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1. These expectations are proportional to the partial derivatives of the likelihood (5).
Differentiating (5) with respect to D0;ii we obtain

∂

∂D0;ii

∫

Ωz

l(x|D0, D1)dx =
∫

Ωz

Zi(x)l(x|D0, D1)dx

= E(D0,D1)(Zi|z)f(z|D0, D1) (7)

Other expectations are similarly obtained. For example,

∂

∂D0;ij

∫

Ωz

l(x|D0, D1)dx =
∫

Ωz

Bij(x)
D0;ij

l(x|D0, D1)dx

= E(D̂0,D̂1)
(Bij |z)

f(z|D0, D1)
D0;ij

, i �= j (8)

and analogously for E(D̂0,D̂1)(Aij)/D1;ij .
2. The ratios (as in (2) and (3)) of expectations E(D̂0,D̂1)

(Zi), E(D̂0,D̂1)
(Aij) and

E(D̂0,D̂1)
(Bij) generate the expressions for the update steps needed for the EM

algorithm. As indicated above, the EM steps are involving only the partial deriva-
tives of the likelihood function. Hence EM in this case is a version of a gradient
optimization.

In a more detailed approach, the explicit calculations of these EM steps are explained
below. They can also be obtained using probabilistic arguments analogous to those in
in [4].

3 The EM Algorithm

The typical property of observing time series derived from a MAP is that only the
arrivals but not the phases can be seen. If the phases were observable, then one could
apply the maximum likelihood estimators for finite state Markov processes (see [1]).
To make things worse, we cannot even observe the exact arrival times. Thus we have a
problem of estimation from incomplete data. For this type of statistical problems, the
so–called EM algorithm has proven to be a good means of approximating the maximum
likelihood estimator (see [12], [23] or [24]). The name EM algorithm stems from the
alternating application of an expectation step (for E) and a maximization step (for M)
which yield successively higher likelihoods of the estimated parameters.

In our case, the incomplete sample consists only of the sequence z = (z1, . . . , zN)
indicating the number of observed arrivals within each interval. Denote the the maximal
observed number of arrivals within one interval by M .

Given the parameters D0 and D1 as well as the stationary phase distribution π (which
is determined by D0 + D1), the likelihood of the incomplete sample z is

f(z|D0, D1) = π

N∏
n=1

g(zn|D0, D1)1 (9)
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with g(0|D0, D1) = eD0 and

g(i|D0, D1) =
∫

u0+...+ui=1

(
i−1∏
n=0

eD0unD1

)
eD0ui du0 . . . dui−1

for i ≥ 1.
Assume that the estimates after the kth EM iteration are given by the matrices

(D̂(k)
0 , D̂

(k)
1 ). Then in the first step of the k + 1st cycle, the conditional expectations

of the variables Zi, Aij and Bij given the incomplete observation and the current esti-

mates (D̂(k)
0 , D̂

(k)
1 ) are computed.

In order to simplify notations, define the column vectors

ηN := 1 and ηn−1 := g(zn|D̂(k)
0 , D̂

(k)
1 ) ηn =

N∏
i=n

g(zi|D̂(k)
0 , D̂

(k)
1 )1 (10)

iteratively for 2 ≤ n ≤ N .
Since the empirical time series is observed in a stationary regime, we can set the

phase distribution α0 at time 0 to be the estimated phase equilibrium, i.e. satisfying
α0(D̂

(k)
0 + D̂

(k)
1 ) = 0. Then we define iteratively the row vectors

αn+1 := αn g(zn+1|D̂(k)
0 , D̂

(k)
1 ) = π

n∏
i=0

g(zi|D̂(k)
0 , D̂

(k)
1 ) (11)

for 0 ≤ n ≤ N − 2. Clearly f(z|D̂(k)
0 , D̂

(k)
1 ) = αnηn.

We begin the E–step with the accumulated sojourn times in a phase i. These are
given by

Z
(k+1)
i := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Zi|z) =
N∑

n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Zn
i |z)

where i = 1 ≤ m and Zn
i denotes the random variable of the total amount of time spent

in phase i within the nth interval. The terms in the sum are given by

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Zn
i |z) =

αn−1 czn(i, i|D̂(k)
0 , D̂

(k)
1 ) ηn

f
(
z|D̂(k)

0 , D̂
(k)
1

) (12)
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for all 0 ≤ n ≤ N , where the matrix–valued functions cn are defined as

c0(i, j|D̂(k)
0 , D̂

(k)
1 ) :=

∫ 1

0

exp (D̂(k)
0 u)ei · eT

j exp (D̂(k)
0 (1 − u)) du (13)

cn(i, j|D̂(k)
0 , D̂

(k)
1 ) :=

∫

u0+...+un=1

n∑
h=0

(
h−1∏
l=0

exp (D̂(k)
0 ul)D̂

(k)
1

)
(14)

∫ uh

0

exp (D̂(k)
0 v)ei · eT

j exp (D̂(k)
0 (uh − v)) dv

(
n∏

l=h+1

D̂
(k)
1 exp (D̂(k)

0 ul)

)
du0 . . . dun−1

for 1 ≤ i, j ≤ m and 1 ≤ n ≤ M . Here ei denotes the ith canonical column base vector
and eT

i its transpose, i.e. the row vector. The empty products
∏−1

l=0 . . . and
∏n

l=n+1 . . .

are defined as the identity matrix. The values for cn(i, j|D̂(k)
0 , D̂

(k)
1 ) can be rewritten in

terms of the n + 2-dimensional simplex as

n∑
h=0

∫

u0+...+un+1=1

(
h−1∏
l=0

exp (D̂(k)
0 ul)D̂

(k)
1

)
exp (D̂(k)

0 uh)ei · eT
j exp (D̂(k)

0 uh+1)

(
n+1∏

l=h+2

D̂
(k)
1 exp (D̂(k)

0 ul)

)
du0 . . . duh . . . dun (15)

The derivation of (12) is completely analogous to the one in [4], p.439. Likewise,

B
(k+1)
ij := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Bij |z) =
N∑

n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Bn
ij |z)

with

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Bn
ij |z) =

D̂
(k)
0;ij · αn−1 czn(i, j|D̂(k)

0 , D̂
(k)
1 ) ηn

f
(
z|D̂(k)

0 , D̂
(k)
1 )
) (16)

for 1 ≤ n ≤ N is derived using completely the same arguments as in [4], p.440. The
E–step is completed by

A
(k+1)
ij := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Aij |z) =
N∑

n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(An
ij |z)

with

E
(D̂

(k)
0 ,D̂

(k)
1 )

(An
ij |z) =

⎧⎨
⎩

0, zn = 0
D̂

(k)
1;ij ·αn−1 czn−1(i,j|D̂(k)

0 ,D̂
(k)
1 ) ηn

f
(

z|D̂(k)
0 ,D̂

(k)
1

) , zn > 0
(17)

for 1 ≤ n ≤ N .
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Remark 2

It can be seen from the general expression of the likelihood function (9) that its partial
derivatives with respect to the (i, j) entry of D0 and D1 respectively are

∂f

∂D0;ij
=

N∑
k=1

αk−1
∂g(zk|D0, D1)

∂D0;ij
ηk and

∂f

∂D1;ij
=

N∑
k=1

αk−1
∂g(zk|D0, D1)

∂D1;ij
ηk.

Based on the fact that (see [14])

∂ exp(D(k)
0 uh)

∂D
(k)
0;ij

= uh

∫ 1

0

exp(tD(k)
0 uh)eie

T
j exp((1 − t)D(k)

0 uh)dt

=
∫ uh

0

exp(D(k)
0 v)eie

T
j exp(D(k)

0 (uh − v))dv

and by transferring the derivative inside the integration sign one can easily see that

∂g(n|D(k)
0 , D

(k)
1 )

∂D
(k)
0;ij

= cn(i, j|D(k)
0 , D

(k)
1 ) and

∂g(n|D(k)
0 , D

(k)
1 )

∂D
(k)
1;ij

= cn−1(i, j|D(k)
0 , D

(k)
1 ).

Therefore
∂f(z|D(k)

0 , D
(k)
1 )

∂D
(k)
0;ij

=
N∑

r=1

αr−1czr (i, j|, D(k)
0 , D

(k)
1 )ηr

and
∂f(z|D(k)

0 , D
(k)
1 )

∂D
(k)
1;ij

=
N∑

r=1

αr−1czr−1(i, j|D(k)
0 , D

(k)
1 )ηr .

Similarly, one could easily obtain the second or higher order derivatives of the like-
lihood. These derivatives can be easily adopted for the cases when there is some simple
functional relationship between the entries of the parameter matrices D

(k)
0 and D

(k)
1 .

Now, the next step of the k + 1st cycle of the EM consists of the computation of
maximum likelihood estimates given the new (conditional but complete) statistic com-
puted in the E–step. This can be done by simply replacing the variables in equations
(2) and (3) by the conditional expectations computed above. This leads to re-evaluated
estimates

D̂
(k+1)
0;ij =

B
(k+1)
ij

Z
(k+1)
i

, D̂
(k+1)
1;ij =

A
(k+1)
ij

Z
(k+1)
i

,

and

D̂
(k+1)
0;ii = −

⎛
⎝

m∑
j=1

D̂
(k+1)
1;ij +

m∑
j=1,j �=i

D̂
(k+1)
0;ij

⎞
⎠

for 1 ≤ i, j ≤ m.
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Using these, one can compute the likelihood f(z|D̂(k+1)
0 , D̂

(k+1)
1 ) of the empirical

time series under the new estimates according to equation (9). If the likelihood ratio

ρ =
f(z|D̂(k+1)

0 , D̂
(k+1)
1 )

f(z|D̂(k)
0 , D̂

(k)
1 )

remains smaller than a threshold 1+ε, then the EM iteration process can be stopped, and
the latest estimates may be adopted. The threshold value reflects the limit of accuracy
beyond which the gain in model adaptation is considered not to be worth the additional
computation time.

4 Implementation of EM

In this section we focus on the implementation of the EM algorithm.
It is clear that in order to evaluate the update rules we need to be able to calculate the

value of the matrix integral of the type

I =
∫

u0+···+uk=1

eD0u0P1e
D0u1 · · ·PkeD0ukdu

where D0 is our parameter square matrix of order m and Pr’s are equal to D1 except
for calculating the elementary terms for ck−1(i, j|D̂0, D̂1) in (15) where one Pr needs
to replaced with eie

T
j . Note that the true likelihood function is also constructed in terms

of such expectations.
In the following, we show two ways to calculate I. The first operates with the ma-

trices of the same dimension as D0 and D1 and the second is based on the matrix
exponentials of some large dimension depending on k and m. The choice of these ap-
proaches for practical implementation will depend on the computing limitations related
to large values of m and k.

4.1 Direct Evaluation

The purpose of this sub-section is two fold:
First, to demonstrate a direct method of evaluating the density function of a convolu-

tion of Erlang distributions. To our knowledge this is not reported before and we show
it to be closely related to the normalizing constant of a particular spherical distribution.

Secondly, the expression of the density function of the convolutions of Erlang’s is
shown to be closely related to the close form expression of I. In particular, if the Jordan
decomposition of D0 is known, we have a closed-form expression for evaluating both
the likelihood function and the EM update steps.

Convolutions of Erlang Distributions: Let assume that the random variables Xi have
distribution Gamma(ni + 1, λi) for i = 0, · · · , k. Since we will obtain the pdf of
Y = X0 + X1 + · · · + Xk, we can assume without loss of generality that all λi’s are
distinct.
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It is now clear that the pdf of Y at point s is

fY (s) =
k∏

i=0

λni+1
i

ni!

∫

v0+···+vk=s

e−
∑k

i=0 viλi

k∏
i=0

vni

i dv

where dv =
∏k

i=1 dvi. A change of variables ui = vi/s leads to

fY (s) =
k∏

i=0

λni+1
i

ni!
sk+

∑k
i=0 ni

∫

u0+···+uk=1

e−
∑k

i=0 uisλi

k∏
i=0

uni

i du (18)

Integrals of the type
∫

u0+···+uk=1

e−
∑k

i=0 uiλi
∏k

i=0 uni

i du are obtained in the closed-

form in [19]. The authors provide the value of the normalizing constant for Complex
Bingham Distributions (see [17]) with multiplicities in the eigenvalues of the parameter
matrix. In particular, provided that all λi’s are distinct, it is shown in Proposition 2 there
that

∫

u0+···+uk=1

e−
∑k

i=0 uiλi

k∏
i=0

uni

i du

=
k∑

i=0

∑
|J0(i)|=ni

(−1)ni+je−λini!
j!j0! . . . ji−1!ji+1! . . . jk!

∏
r �=i

(nr + jr)!
(λr − λi)nr+jr+1

(19)

where the second summation is performed along all J0(i) = (j, j0 . . . , ji−1, ji+1, . . . ,
jk), which are integer partitions (including zeros) of ni in k + 1 components. A simple
algorithm which generates such partitions is given on page 49 of [26] where the number
of such partitions is shown to be Cni

ni+k. Replacing λi’s in (19) by sλi’s we have

∫

u0+···+uk=1

e−
∑k

i=0 uisλi

k∏
i=0

uni

i du

= s−k−∑k
i=0 ni

k∑
i=0

∑
|J0(i)|=ni

(−1)ni+je−sλisjni!
j!j0! . . . ji−1!ji+1! . . . jk!

∏
r �=i

(nr + jr)!
(λr − λi)nr+jr+1

(20)

which implies that

fY (s)=
k∏

i=0

λni+1
i

ni!

k∑
i=0

e−sλi

∑
|J0(i)|=ni

(−1)ni+jsjni!
j!j0! . . . ji−1!ji+1! . . . jk!

∏
r �=i

(nr+jr)!
(λr−λi)nr+jr+1

(21)
The expression (19) is also valid for complex values of λi. This fact is important in
calculating our expectations if the eigenvalues of D0 are complex.
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Evaluating I: Assume that D0 has p distinct eigenvalues with Jordan decomposition

D0 =OΔO−1 =O

⎛
⎜⎝

Δ1(r1)
. . .

Δp(rp)

⎞
⎟⎠O−1 with Δj(rj) =

⎛
⎜⎜⎜⎝

λj 1

λj
. . .

1
λj

⎞
⎟⎟⎟⎠

where rj is the dimension of Δj(rj) and O is an invertible matrix. Without loss of
generality we can assume that O is the identity matrix. This can easily be seen from the
fact that exD0 = OexΔO−1 and so

I = O

∫

u0+···+uk=1

eΔu0Q1e
Δu1 · · ·QkeΔukdu O−1 Qj = O−1DjO.

We need to make the following remarks

Remark 1

exΔ =

⎛
⎜⎝

exΔ1(r1)

. . .
exΔp(rp)

⎞
⎟⎠

Remark 2. From the decomposition Δj(rj) = λjI + N(rj) with

N(rj) =

⎛
⎜⎜⎜⎝

1
. . .

1

⎞
⎟⎟⎟⎠

and noting that N(rj) is a nilpotent matrix of order rj , it follows that

exΔj(rj) = exλj

rj−1∑
w=0

xwN(rj)w

w!
.

with N(rj)0 = I .
Let denote by M(j, w) the p× p matrix related to the block matrix N(rj) defined as

M(j, w) =

⎛
⎝ N(rj)

w

w!

⎞
⎠

It is now easy to see that the required value of I is given in terms of a finite sum of
elementary integrals of the type

I =
p∑

j0=1

rj0−1∑
wj0=1

· · ·
p∑

jk=1

rjk
−1∑

wjk
=1

J (j0 . . . jk; wj0 . . . wjk
)



An EM Algorithm for Markovian Arrival Processes Observed at Discrete Times 253

where

J (j0 . . . jk; wj0 . . . wjk )=

∫

u0+···+uk=1

eu0λj0 u
wj0
0 M(j0, wj0)

k∏
l=1

Ple
ulλjl u

wjl
l M(jl, wjl )du.

In the summation above each of j0, j1, · · · , jk take values independently of 1, 2, · · · , p
and for each jl the corresponding wjl

takes values in 1, 2, · · · , rjl
. Note that p is the

number of distinct eigenvalues of D0 and rjl
denotes the multiplicity of the eigenvalue

λjl
.
It can be seen that the integrating factors in J (j0 . . . jk; wj0 . . . wjl

) are only scalars
which can be grouped together such that

J (j0 . . . jk; wj0 . . . wjl) = M(j0, wj0)
k∏

l=1

PlM(jl, wjl)

∫

u0+···+uk=1

e
∑k

l=0 ulλjl

k∏
l=0

u
wjl
l du

It is now clear that we only need to evaluate the value of
∫

u0+···+uk=1

e
∑k

l=0 ulλjl

∏k
l=0 u

wjl

l du. Using the result (19) we can exactly evaluate I. Note that for imple-
menting directly (19) in this case we need all λjl

’s distinct, otherwise, we then need to
initially collapse to a single ui all those ul’s such that λjl

’s share the same value.

4.2 Matrix Exponential Approach

A novel idea for calculating I is reported in [10] who describe a method for calculating
the matrix integrals of the type

∫

u0+···+uk=t

eA0u0P1e
A1u1 · · ·PkeAkukdu

where Ai’s and Pi’s are square of dimension m × m. Their method relies heavily on
the matrix exponential function and expands to any k the approach of [31] for k ≤ 4. In
particular, they show that the resulting matrix above is in fact the top-right m×m sub-
matrix of exp(tA), where A is a two-diagonal square matrix of dimension (k + 1)m
defined as

A =

⎛
⎜⎜⎜⎜⎜⎝

A0 P1 0 · · · 0
0 A1 P2 0 · · · 0
...

. . .
...

0 · · · 0 Ak−1 Pk

0 · · · 0 0 Ak

⎞
⎟⎟⎟⎟⎟⎠

.

Our expectation I is the top-right m × m sub-matrix of exp(A) where all Ai’s are
equal to D0.

The implementation of this approach is straightforward, but rather inefficient since
we need to calculate the (k + 1)m× (k + 1)m matrix exp (A) and extract only a small
part. If its dimension however is unmanageably large for the computer we can apply the
same result to low order matrices as shown below.
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Applying the result of [10] for a scalar case i.e. all Ai = λi are numbers and Pi = 1
see that the corresponding integral in (19) for ni = 0 is simply the top right entry of
exp(A), where

A =

⎛
⎜⎜⎜⎜⎜⎝

λ0 1 0 · · · 0
0 λ1 1 0 · · · 0
...

. . .
...

0 · · · 0 λk−1 1
0 · · · 0 0 λk

⎞
⎟⎟⎟⎟⎟⎠

.

One can easily show that the values in (19) for ni �= 0 can be similarly obtained by
expanding each dimension of A to

∑k
i=0 ni + k + 1 such that each λi is repeated

ni + 1 times and the resulting value obtained after evaluating exp(A) needs re-scaling
by
∏k

i=0 Γ (ni + 1). We can use this method to then evaluate the elementary integrals
J (j0 . . . jk; wj0 . . . wjl

) in the direct approach in subsection 4.1.

5 Numerical Examples

The purpose of this section is to show that the proposed algorithm can indeed be im-
plemented in a tractable way on a normal PC. We utilized the first matrix exponential
approach of subsection 4.2 where A has matrix blocks and performed the calculations
in the Statistical package R.

Example 1. We consider an application where we know that all inter–arrival times have
an exponential distribution. This makes an estimation simpler as we can set the off–
diagonal elements of D̂0 as zero. The EM algorithm guarantees that initial estimates of
zero remain zero, see equations (16) and (17). We set the original parameters as

D0 =
(−0.2 0

0 −5

)
and D1 =

(
0 0.2

0.5 4.5

)

With these parameters we ran a simulation of 500 arrivals, yielding a time series of
N = 353 intervals. This served as the input to our EM algorithm. The initial estimates
were set as

D̂
(0)
0 =

(−N/d 0
0 −M

)
and D̂

(0)
1 =

(
N/2d N/2d
M/2 M/2

)

where M = max{zn : n ≤ N} is the maximal number of arrivals within one interval,
d is the total number of intervals without arrivals, and N is the total number of intervals
in the time series. After 28 EM steps, the estimates for D0 and D1 are

D̂0 =
(−0.207 0.000

0.000 −4.727

)
and D̂1 =

(
0.000 0.207
0.555 4.172

)

The likelihood of the time series under these estimates is l̂ = 2.017871e − 203 as
compared to the likelihood l = 6.151147e − 204 under the original parameters. Note
that the qualitative entry D0;11 = 0 has been found by the algorithm on its own.
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Example 2. The second example is a Markov–modulated Poisson process (MMPP).
The original parameters were set as

D0 =
(−1 0.5

0.5 −2

)
and D1 =

(
0.5 0
0 1.5

)

Again, we used these parameters to run a simulation of 500 arrivals, yielding a time
series of N = 479 intervals. This served as the input to our EM algorithm. The initial
estimates were set as

D̂
(0)
0 =

(−N/d N/2d
M/2 −M

)
and D̂

(0)
1 =

(
N/2d 0

0 M/2

)

with M and d as defined in example 1. After 142 steps, the algorithm produced the
following estimates for D0 and D1:

D̂0 =
(−1.509 1.130

1.370 −3.220

)
and D̂1 =

(
0.378 0.000
0.000 1.850

)

The likelihood of the time series under these estimates is l̂ = 7.820401e− 285, under
the original parameters it is l = 7.218375e− 285.

Example 3. Now a full Markovian arrival process with two phases: Original parameters
are

D0 =
(−2.5 1

2.5 −5

)
and D1 =

(
1 0.5

1.5 1

)

Again, we used these parameters to run a simulation of 500 arrivals, this time yielding
a time series of N = 293 intervals. The initial estimators were set as

D̂
(0)
0 =

(−N/d N/3d
M/3 −M

)
and D̂

(0)
1 =

(
N/3d N/3d
M/3 M/3

)

After only two steps, the estimates for D0 and D1 are

D̂0 =
(−2.432 0.992

2.521 −4.948

)
and D̂1 =

(
0.961 0.479
1.458 0.970

)

The likelihood of the time series under these estimates is l̂ = 6.623291e− 209, under
the original parameters it is l = 4.625924e− 209.

If we apply the same algorithm to the first part of the same data such that there are
N = 200 intervals only, we obtain after 28 steps

D̂0 =
(−2.323 1.175

3.361 −6.757

)
and D̂1 =

(
0.576 0.572
1.635 1.761

)

Here the likelihoods are l̂ = 9.80752e− 147 under the estimates and l = 2.817786e−
147 under the original parameters.
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Example 4. The last example deals with real data taken from measurements of fetal
lamb movements. They have been analysed in [20] via discrete time hidden Markov
models. Here we apply our continuous time model to these data. In [20] the assumption
was that in each interval the number of counts follows a Poisson distribution. The equiv-
alent assumption in a continuous time model is that of exponential inter-arrival times.
We can model this by setting D0 to be diagonal, which means that the underlying phase
can change only upon an arrival (i.e. together with an observed movement). In order to
find the most suitable number m of phases, we just try increasing values of m until the
likelihood gain does not appear to be worthwhile anymore.

The estimates for m = 2 are

D̂0 =
(−0.243 0.000

0.000 −2.775

)
and D̂1 =

(
0.222 0.021
0.435 2.340

)

where the achieved likelihood is 3.638315e− 78. For m = 3 the estimates are

D̂0 =

⎛
⎝

−0.096 0.000 0.000
0.000 −0.548 0.000
0.000 0.000 −3.631

⎞
⎠ and D̂1 =

⎛
⎝

0.059 0.028 0.009
0.044 0.504 0.000
0.221 0.000 3.410

⎞
⎠

They generate a likelihood of 1.264017e − 73. The estimates for m = 4 yield a like-
lihood of 1.275225e − 72. This last likelihood gain appears as too small to justify an
extra phase. Hence we stop here and decide for the model with three phases.

It is remarkable that the qualitative entries D̂1(2, 3) = D̂1(3, 2) = 0 have been
picked up by the discrete time model in [20], table 4 under m = 3, too. The interpreta-
tion is that phase 1 serves as an intermediate phase, over which also changes between
phases 2 and 3 need to occur.
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Abstract. The paper presents an empirical comparison of different
methods to fit the parameters of a MAP according to the quantities
derived from three different real traces. The results indicate that for two
of the three traces an adequate fitting with low order MAPs is possible
whereas almost all approaches failed for the third trace. Apart form this
the question for the best approach for fitting MAPs is still open although
there seems to be a tendency that the most costly EM algorithms provide
the best fitting results.

1 Introduction

In stochastic modeling, the appropriate representation of arrival and service pro-
cesses is of major importance to build realistic models. It turns out that many
real processes include some correlation which implies that random variables that
are identically and independently distributed are not sufficient to describe real
behavior, instead stochastic processes have to be used to model the distribution
and the autocorrelation structure. Markovian arrival processes (MAPs) [17] are
stochastic processes which can be applied to capture a wide range of different
stochastic behaviors and can be used in queuing network models as arrival or
service processes. Queuing networks with MAPs can be analyzed numerically
by solving the global balance equations [23], if the state space is not too large,
they can be analyzed with matrix analytical methods [18], if they are of the
MAP/MAP/m type, they may as well be analyzed approximately [9] or by sim-
ulation.

To capture real behavior by MAPs, the parameters of a MAP have to be fitted
according to some trace resulting from observations or measured behavior. The
fitting problem of MAPs is a nonlinear optimization problem which becomes even
more complex since the matrix representation of MAPs is redundant [24] and a
canonical representation is only available for MAPs of order two [3]. Different
fitting approaches have been proposed in the literature which all have their pros
and cons. The most general approach is to find a MAP that maximizes the
likelihood according to the available trace. The EM algorithm [2] can be used
for this purpose and many specific variants of the algorithm for MAP fitting are
available [4,5,14,22]. However, EM algorithms have several disadvantages since

B. Müller-Clostermann et al. (Eds.): MMB & DFT 2010, LNCS 5987, pp. 259–273, 2010.
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they have a slow convergence, may converge towards local minima and require
a huge effort that grows linearly in the length of a trace. Since for MAP fitting
very long traces are required to adequately match the autocorrelation structure,
in practice, EM approaches are not sufficient to obtain good fitting result with
an acceptable effort. Alternative approaches first derive some quantities from a
trace, like higher order moments, joint moments or lag-k autocorrelations and
then fit the parameters of a MAP according to these quantities. This implies
that fitting becomes independent of the trace length. As shown in [24], a non
redundant MAP of order n which is characterized by 2n2 − n free parameters is
completely determined by n2 parameters, e.g., by the first 2n− 1 moments and
(n − 1)2 joint moments. Thus, one may fit a MAP according to the empirical
moments and joint moments of a trace as done in [7]. Other approaches use the
lag-k autocorrelation instead of the joint moments for fitting [10,13].

However, all these approaches have their limitations since in practice n2 pa-
rameters of a trace hardly define a MAP. In [7] we used least square fitting to
obtain the nearest MAP of order n according to some measured moments and
joint moments. It turns out that it is hard to fit even approximately in the range
of n2 parameters of a real trace with a MAP of order n. Another problem which
is also considered in [7] is the reliability of quantities derived from a trace. In
general, a trace is only a sample of the behavior of a system such that the quan-
tities computed from the trace are only estimates. If one computes confidence
intervals for these quantities, it turns out that confidence intervals become very
wide for higher order moments or joint moments of traces from the Internet
archive [1] which already contain more than a million entries. This observation
implies that for MAP fitting long traces are required.

Although many approaches for MAP fitting are available, it is completely un-
clear which is the best approach and it is not even clear how to measure whether
one approach is better than another. It seems that a lot of empirical work is
necessary to find reliable and efficient fitting methods. In this paper we perform
such empirical observations by comparing different fitting approaches and differ-
ent quantities that are fitted. We apply a standard EM approach and two classes
of fitting methods that fit first order quantities like joint moments and higher
order quantities like lag-k autocorrelations. For this purpose we slightly extend
available fitting methods that are based on a two step approach which first fits
a phase type (PH) distribution, then possibly do some equivalence transforma-
tion on the representation and finally fit a MAP that leaves the distribution
unchanged.

The paper is structured as follows. In the next section we introduce the basic
notation and recall some basic results for PH distributions and MAPs. In chapter
3 we present several MAP fitting approaches. We start with a brief introduction
of EM based MAP fitting and present afterwards two classes of approaches that
expand an available PH distribution into a MAP. In the first case, the expansion
is done by a least squares approach to fit joint moments. Then we consider the
fitting of lag-k autocorrelations. In the following section we use the different
fitting methods to fit MAPs according to specific quantities derived from real
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traces and we compare MAPs fitted with different approaches. The paper ends
with the conclusions.

2 Background

We first introduce the basic notation and define PH distributions, then we briefly
outline fitting methods for PH distributions and, finally, we present basic results
for MAPs.

2.1 Basic Definitions and Results for PH Distributions

A PH distribution [18] of order n is defined by a non-singular n × n matrix D0

with D0(i, j) ≥ 0 for i �= j, D0(i, i) ≤ −∑n
j=1,j�=i D0(i, j) and a row vector π

with π(i) ≥ 0 and π 1I = 1 where 1I is the unit column vector of length n. Let
M = (−D0)

−1, the so called moment matrix. The distribution function, density
and the moments of a random variable X with a PH distribution (D0, π) are
given by

FX(t) = 1 − πetD0 1I (1)
fX(t) = πetD0(−D0 1I) (2)

μk = E(Xk) = k!π (M)k 1I . (3)

It has been shown [19] that every non negative random variable with a continuous
density that is non-zero in (0,∞) can be approximated arbitrarily close by a PH
distribution.

2.2 Fitting Methods for PH Distributions

The task of fitting PH distributions is to choose the parameters of a PH distri-
bution in such a way that some measured quantities are matched. Usually these
quantities result from a trace which is an observation of some real behavior.
From a trace different quantities like moments, joint moments, lag-k coefficients
of autocorrelation or values of the empirical distribution function or density can
be computed. Since a trace is only a sample of some real behavior, all values
are estimates. The goal of a fitting approach is to find a PH distribution that
matches the quantities of the trace as good as possible. A large number of fitting
methods for PH distributions exist, an overview can be found in [11].

We only outline a few approaches which we later use as a first step for MAP
fitting. In general one can distinguish between fitting methods that work on
the whole trace and those that try to match some quantities derived from the
trace. Methods of the former type usually maximize the likelihood value which
is defined for a trace t1, . . . tm as

L(D0,π)(t1, . . . , tm) =
m∏

k=1

πetkD0 (−D0 1I) . (4)
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Maximization is done with the so called EM algorithm [2]. However, the general
variant of this algorithm is rather inefficient but if one restricts the class of
PH distributions, much more efficient variants can be defined. In [25] an EM
algorithm which fits the parameters of a generalized Erlang distribution is shown
to be rather efficient. We will use this approach as a first step for MAP fitting.

Alternatively, one may fit the PH distribution according to the moments of
the trace. In this case acyclic phase type distributions are used since for this
subclass a canonical representation exists. Methods for moment fitting which we
also apply as a first step for MAP fitting are proposed in [7,12].

2.3 Basic Definitions and Results for MAPs

A MAP [17] of order n is a stochastic process defined by two n × n matrices
(D0,D1) where D0 is as defined for a PH distribution above and D1 ≥ 0 such
that Q = D0 + D1 and Q1I = 0. Matrix D0 contains the rates of internal
transitions without an arrival and matrix D1 contains the rates of transitions
generating an arrival. We assume that Q is an irreducible generator matrix.
Define P = −D−1

0 D1 as the transition matrix of the embedded discrete time
Markov chain after an arrival. The stationary vector πP = π, π 1I = 1 includes
the distribution just after an arrival. Consequently, (D0, π) describes the inter-
arrival time distribution of a MAP. Similarly each PH distribution (D0, π) can
be expanded into a MAP by defining D1 = −D0 1Iπ.

The joint moments of consecutive arrivals of a MAP (D0,D1) are given by

μk,l = E(Xk
i X l

i+1) = k! l!πMkPMl 1I , (5)

the lag-k autocorrelation equals

ρk =
μ−2

1 π(−D0)−1Pk(−D0)−1 1I − 1
2μ−2

1 π(−D0)−1(−D0)−1 1I − 1
(6)

and the joint density of the first m interarrival times is defined as

f(τ1, . . . , τm) = π

(
m∏

i=1

eτiD0D1

)

1I . (7)

Fitting methods as introduced in the subsequent section try to approximate
the empirical measures of a trace by a MAP. As for fitting PH distributions either
the complete trace may be used resulting in the maximization of the likelihood

L(D0,D1)(t1, . . . , tm) = π

(
m∏

k=1

etkD0D1

)

1I . (8)

or some derived quantities like joint moments or lag-k autocorrelations may be
used for fitting.

One approach which has been applied successfully [7,8,13] is to separate dis-
tribution and dependency fitting. In a first step, a PH distribution is generated
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that captures the distribution of the elements in the trace and in a second step
the distribution is expanded into a MAP by considering the dependencies in
the trace. This expansion implies that matrix D0 remains unchanged and D1 is
chosen such that −D0 1I = D1 1I and πMD1 = π which puts 2n constraints for
the elements of D1.

3 MAP Fitting Approaches

3.1 Expectation Maximization

We begin with a brief look on EM algorithms for MAP fitting and refer for the
details of the approaches to the literature [2,4,5]. All EM algorithms perform
an alternating sequence of expectation (E) and maximization (M) steps which
improve the likelihood values in each step. Due to the structure of the M-step
zero values in the matrices remain zero which implies that no fill in occurs if the
algorithm is initially started with sparse matrices. The effort of a single iteration
depends linearly on the length of the trace and the number of non-zero elements
in the D1 matrix. Furthermore, it depends on the values in the trace in relation
to the matrix entries since etiQ0 has to be evaluated for each entry ti in the trace
and the effort depends on the number of non zero entries in D0 and the relation
between transition rates and time steps. Unfortunately, the convergence of EM
algorithms is very slow such that a large number of iterations is required.

If the likelihood is the measure to be maximized, then EM algorithms are
currently the best alternative. However, one should start the EM algorithm with
a MAP that has already been fitted to the trace using one of the approaches
presented in the following two subsections. In this case, the EM algorithm im-
proves the likelihood value but may reduce the fitting quality according to other
measures like joint moments or lag-k autocorrelations which have been used to
fit the initial MAP. The effort of EM algorithms applied to real traces is usually
very high, e.g. for LBL-TCP-3, one of the traces we use later, the EM algorithm
from [5] requires about 5 minutes per iteration with a MAP of order 5 and about
100 iterations are needed to reach convergence.

3.2 Fitting of Joint Moments

If fitting of the distribution and the autocorrelation structure are done separately,
then the matrix D0 and vector π result from distribution fitting. Since we use the
moment fitting approach from [7] or the EM algorithm of [25] for distribution
fitting, the result is in both cases an acyclic PH distribution with an upper
triangular matrix D0. Acyclic PH distributions of order n have n(n+1)/2+(n−1)
free parameters but only 2n − 1 parameters are necessary to characterize the
distribution such that different representations of the same distribution exist. [6]
summarizes three methods to perform equivalence transformations that generate
different acyclic representations of the same distribution. For MAP fitting the
number of non zero entries in π and D0 1I has to be maximized to maximize
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the number of possible non zero entries in D1. However, even with this goal the
transformation is non unique and different approaches may be tried.

Define vk = πMk+1 and wk = Mk 1I, then

μk,l = k! l! vkD1wl . (9)

Now assume that J is a set of joint moments that should be matched by the
MAP and let for (k, l) ∈ J νk,l be the joint moments of the trace. Then the
following constrained non negative least squares problem has to be solved to
find the nearest MAP.

min
D1:D1≥0, D1 1I=−D0 1I, πMD1=π

⎛

⎝
∑

(k,l)∈J

(

βk,l
μk,l

νk,l
− βk,l

)2
⎞

⎠ (10)

βk,l are some weights which allow one to discriminate higher order joint mo-
ments. In our experiments we present later, all weights are set to 1. However, if
the resulting MAP cannot match the required moments adequately, it is often
appropriate to set the weights such that lower order joint moments get a higher
weight, e.g., by choosing βk,l = 2−(k−1)(l−1). In this case, lower order joint mo-
ments are often matched exactly or almost exactly with the price of a bad fit for
higher order moments.

The least squares solution can be computed with available algorithms [15].
The major advantage of joint moment fitting is the efficiency. I.e., to fit the
joint moments νk,l with 1 ≤ k, l ≤ 3 for LBL-TCP-3 with a MAP of order 5
requires less than 1 second which is negligible compared to the fitting times of
EM-algorithms.

3.3 Fitting of Autocorrelations

The approach for the fitting of autocorrelation works similarly to joint moment
fitting. In a first step, the initial probability vector π and the matrix D0 are
determined by a PH fitting algorithm like [7] or [25] and are transformed such
that the number of non zero entries is maximized. Then matrix D1 is generated
such that the autocorrelations ρ = (ρ1, · · · , ρn) of the MAP (D0,D1) (cf. Eq. 6)
approximate the autocorrelations ρ̂ = (ρ̂1, · · · , ρ̂n) that have been estimated
from the trace, i.e. we have to solve the following minimization problem:

min
D1:D1≥0, D1 1I=−D0 1I, πMD1=π

(
n∑

i=1

(βi|ρi − ρ̂i|)
)

(11)

where the βi are weights which again may be used to privilege lower lag auto-
correlations.

In this paper, we use a slightly modified approach of the two step algorithm
presented in [13]. For minimizing Eq. 11 we use the Nelder-Mead algorithm [16].
An implementation can for example be found in [21]. For a MAP of order n we
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have n2 variables from matrix D1 and Nelder-Mead requires n2 + 1 initial solu-
tions D

(i)
1 , i = 1, · · · , n + 1. The first initial solution is the MAP representation

of the given PH distribution (π,D0), i.e. D(1)
1 = (−D0 1I)π. The possible range

for other valid initial solutions is bounded by the constraints on the row sums
(−D0 1I = D1 1I) and on the steady-state vector (πP = π). Let x be a vector
that contains the first row of matrix D1 in positions 1, · · · , n, the second row
in positions n + 1, · · · , 2n etc. Then we can define a linear system of equations
using the conditions on row sums and steady-state vector (cf. [13]):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
...

...
. . .

...
0 0 · · · 0

π′(1) 0 · · · 0
...

...
. . .

...
0 0 · · · π′(1)

0 · · · 0
. . .

0 · · · 0
· · ·
. . .
· · ·

0 0 · · · 0
...

...
. . .

...
1 1 · · · 1

π′(n) 0 · · · 0
...

...
. . .

...
0 0 · · · π′(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1(1, 1)
D1(1, 2)

...
D1(1, n)
D1(2, 1)
D1(2, 2)

...
D1(n, n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
x

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎣
−D0 1I

⎤

⎥
⎥
⎦

π(1)
π(2)

...
π(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
b

(12)

where π′ = π(M).
If initial solutions of the Nelder-Mead algorithm differ only slightly, the algo-

rithm gets stuck at a local minimum close to one of the starting points. Therefore
we apply the simplex algorithm to find the initial solutions for Nelder-Mead: For
each xi of Eq. 12 we solve

maxxi , Ax = b , and x ≥ 0

which ensures that the Nelder-Mead algorithm has initial solutions with a large
stepwidth for each xi.

Fitting according to autocorrelations is not as efficient as fitting according
to joint moments, since the minimization problem is not a simple least squares
problem. Depending on the number of lag-k autocorrelations that are considered
the approach takes between some seconds and few minutes, e.g. to fit the first
30 lags for LBL-TCP-3 with a MAP of order 5 the algorithm required less than
10 seconds, for the first 100 lags it took 2 minutes.

4 Experimental Results

To compare the different fitting algorithms we use three different traces. The
trace BC-pAug89 contains a million packet arrivals observed at the Bellcore
Morristown Research and Engineering facility in August 1989. The trace LBL-
TCP-3 [20] contains two hours of TCP traffic from the Lawrence Berkeley Labo-
ratory and was recorded in January 1994. Both traces are taken from the Internet
Traffic Archive [1]. The third trace TUDo contains the interarrival times of one
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million packets that have been measured from the Squid proxy server at the
Computer Science Department of TU Dortmund in 2006.

We fitted MAPs of different order (from n = 2 to n = 6) with the three fitting
approaches from Sec. 3. Since fitting according to joint moments and autocorre-
lations both require a given distribution that is fitted in the first step, we used
Gfit [25] and a moment matching approach [7]. In a first step of our empirical
evaluation we will compare the joint moments, lag-k autocorrelations and the
likelihood of MAPs that have been fitted according to one of the characteristics
with MAPs for which other properties have been used in the fitting process. The
second part of our empirical evaluation compares the queueing behavior. In the
following we will present the results for some of the fitted MAPs.

4.1 Comparison of Quantities

We start with the comparison of the fitted MAPs for the trace BC-pAug89.
Figs. 1 and 2 show the results for MAPs of order 4 and 6 that we obtained for
the different fitting algorithms. The curves resulting from autocorrelation fitting
are labeled with AC and the number of lags that have been considered for fitting.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5  10  15  20  25  30  35  40  45  50

au
to

co
rr

el
at

io
n

lag

Autocorrelations for lags 1-50

Trace pAug89
MAP(4) AC50

MAP(4) EM
MAP(4) JM Gfit

MAP(4) JM
MAP(4) JM Gfit + EM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

de
ns

ity

t

probability density function

Trace pAug89
MAP(4) AC50

MAP(4) EM
MAP(4) JM Gfit

MAP(4) JM
MAP(4) JM Gfit + EM

a) Autocorrelation b) pdf

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5

moment

Moments 1-5

MAP(4) AC50
MAP(4) EM

MAP(4) JM Gfit
MAP(4) JM

MAP(4) JM Gfit + EM

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5

joint moment

Joint Moments 1-5

MAP(4) AC50
MAP(4) EM

MAP(4) JM Gfit
MAP(4) JM

MAP(4) JM Gfit + EM

c) Moments d) Joint moments

Fig. 1. Fitting results for MAPs of order 4 for the trace BC-pAug89
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Fig. 2. Fitting results for MAPs of order 6 for the trace BC-pAug89

Curves from joint moment fitting and expectation maximization are labeled with
JM and EM, respectively. For moment matching we used the first five moments
νk, (k = 1...5) and for joint moment fitting 25 joint moments νk,l, (k, l = 1...5)
and set all weights βk and βk,l to 1. Usually we used moment matching [7] to
obtain the distribution for joint moment and autocorrelation fitting. In cases
where Gfit [25] was used this is denoted in the plots. In addition to the pure
EM algorithm that starts with a random MAP to improve the likelihood we
used the MAPs resulting from AC and JM fitting as initial solutions for the EM
algorithm as mentioned in Sec. 3.1. These MAPs are labeled with JM + EM or
AC + EM. The likelihood values for the MAPs are shown in Table 1.

The MAPs resulting from joint moment fitting failed to capture the auto-
correlations, while both autocorrelation fitting and EM algorithm resulted in
a much better approximation of the lag-k autocorrelations, although the latter
tends to underestimate the autocorrelation. In contrast EM and AC fitting do
not capture the joint moments of the trace, while, of course, JM fitting provides a
good approximation as one can see from Figs. 1 d) and 2 d). The curves show the
joint moments μk,k of the MAPs relative to the joint moments of the trace. Joint
moments μk,l(k �= l) are not shown but are similar. Additionally the confidence
intervals of the joint moments are printed in red. For all the MAPs we fitted with
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Table 1. Likelihood for the MAPs of order 4 and 6 for the trace BC-pAug89

Likelihood Trace pAug89 Likelihood Trace pAug89

MAP(4) AC50 -891757.644354 MAP(6) AC100 -1138434.529730
MAP(4) EM -857368.761951 MAP(6) EM -850032.779585

MAP(4) JM Gfit -833728.156640
MAP(4) JM -879217.986678 MAP(6) JM -1142582.505733

MAP(4) JM Gfit + EM -806247.089218 MAP(6) AC100 + EM -804071.232488

the EM algorithm the joint moments are smaller than the ones of the trace, while
AC fitting resulted in larger joint moments. Similarly the MAPs resulting from
the EM algorithm underestimated the higher moments of the trace (cf. Figs. 1 c)
and 2 c)). The distributions of the MAPs are shown in Figs. 1 b) and 2 b). Note,
that AC fitting and JM fitting used the same PH distribution. Regarding the
likelihood EM fitting provides a larger likelihood than AC fitting and JM fitting
that used a PH distribution obtained from the moment matching algorithm (cf.
Table 1). Interestingly, using a PH distribution that has been fitted by Gfit as
basis for MAP fitting resulted in a very high likelihood. As a drawback those
PH distributions showed to be less flexible for the subsequent AC fitting and
JM fitting compared to PH distributions resulting from the moment matching
approach.

As already mentioned we used the MAPs resulting from AC and JM fitting
as initial solution for the EM algorithm. In these cases EM fitting was able to
improve the likelihood significantly, although the fitting quality according to
other measures was reduced as one can see from Figs. 1 and 2.

Figs. 3 and 4 and Table 2 show fitting results for the trace LBL-TCP-3. The
results are similar to the previous trace: JM fitting and to a lesser degree EM
fitting underestimate the autocorrelations, while AC fitting over- and EM fitting
underestimate the joint moments.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1  2  3  4  5  6  7  8  9  10

au
to

co
rr

el
at

io
n

lag

Autocorrelations for lags 1-10

Trace lbl3
MAP(3) AC10

MAP(3) EM
MAP(3) JM

MAP(3) JM + EM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  2  3  4  5

joint moment

Joint Moments 1-5

MAP(3) AC10
MAP(3) EM
MAP(3) JM

MAP(3) JM + EM

a) Autocorrelation b) Joint moments

Fig. 3. Fitting results for MAPs of order 3 for the trace LBL-TCP-3
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Fig. 4. Fitting results for MAPs of order 4 for the trace LBL-TCP-3

Table 2. Likelihood for the MAPs of order 3 and 4 for the trace LBL-TCP-3

Likelihood Trace lbl3 Likelihood Trace lbl3

MAP(3) AC10 -1652039.018594 MAP(4) AC10 -1654146.788752
MAP(3) EM -1637813.770617 MAP(4) EM -1627420.100721
MAP(3) JM -1639440.176623 MAP(4) JM -1647272.298004

MAP(3) JM + EM -1626938.629808 MAP(4) JM + EM -1626267.526219

Table 3. Likelihood for the MAPs of order 2 and 4 for the trace TUDo

Likelihood Trace TUDo Likelihood Trace TUDo

MAP(2) AC30 Gfit 409209.247942 MAP(4) AC30 Gfit 450455.635351
MAP(2) AC5 17874.468130 MAP(4) AC10 297622.747212
MAP(2) EM 34339.840111 MAP(4) EM 134878.147095
MAP(2) JM 33220.591429 MAP(4) JM 285171.814999

MAP(2) AC30 Gfit+EM 487457.907053 MAP(4) AC10 + EM 385977.643978

The last trace we used for our comparison was observed at a proxy server
at TU Dortmund. It contains various bursts with very small interarrival times
followed by a larger break until the next burst and therefore has high autocor-
relations. As one can see from Figs. 5 and 6 the trace was difficult to fit for all
algorithms. Again we used the MAPs resulting from AC and JM fitting as initial
solutions for the EM algorithm. The MAP (4) resulting from AC fitting using a
PH distribution obtained from Gfit showed to be unsuitable for this task, since
the structure of the MAP caused a very poor runtime performance of the EM
algorithm. Hence, we only used the MAPs that resulted from moment matching
and subsequent AC or JM fitting as initial solutions.
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Fig. 5. Fitting results for MAPs of order 2 for the trace TUDo
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Fig. 6. Fitting results for MAPs of order 4 for the trace TUDo

4.2 Comparison of Queueing Behavior

Table 4 shows the queueing results for the different traces. The original traces
and the fitted MAPs are used as arrival processes, for the service process we used
an exponential distribution with different rates between μ = 0.6 and μ = 1.2.
We use a single server system with capacity 10. The system was simulated for
each of the traces until all of the interarrival times from the trace have been
used. After that we simulated the model with the fitted MAPs for the same
amounts of time. Table 4 contains the mean queue length and the probability
that the queue is completely filled for all combinations of arrival and service
processes. For each trace and order of the MAPs the results that are closest to
the results of the trace are emphasized. For the Trace BC-pAug89 one can see
that the MAPs resulting from the EM algorithm result in a mean queue length
that is closest to the one of the trace. Regarding the probability that the queue
is completely filled all the fitted MAPs provide an appropriate approximation
of the results from the trace, although in almost all cases either the pure EM
or the EM algorithm combined with one of the other approaches provided the
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Table 4. Queueing results

Model Mean queue length Probability for full queue
µ = 0.6 0.8 1.0 1.2 µ = 0.6 0.8 1.0 1.2

Trace pAug89 6.688 5.530 4.333 3.282 0.347 0.234 0.150 0.094

MAP(4) AC50 7.466 6.315 4.955 3.540 0.3779 0.246 0.139 0.066
MAP(4) EM 6.749 5.556 4.352 3.321 0.328 0.219 0.140 0.089
MAP(4) JM Gfit 7.363 6.290 5.027 3.627 0.374 0.249 0.143 0.068
MAP(4) JM 7.316 6.156 4.909 3.626 0.367 0.243 0.145 0.072
MAP(4) JM Gfit+EM 6.752 5.645 4.521 3.428 0.341 0.231 0.146 0.087

MAP(6) AC100 7.462 6.298 4.941 3.532 0.383 0.251 0.143 0.068
MAP(6) EM 6.736 5.617 4.459 3.392 0.333 0.226 0.145 0.091
MAP(6) JM 7.367 6.151 4.899 3.609 0.370 0.246 0.147 0.075
MAP(6) AC100+EM 6.926 5.861 4.868 3.797 0.361 0.253 0.164 0.093

Trace lbl3 7.081 5.407 4.009 2.969 0.304 0.183 0.110 0.067

MAP(3) AC10 7.309 6.015 4.590 3.312 0.333 0.206 0.115 0.059
MAP(3) EM 7.467 5.641 4.117 3.019 0.309 0.178 0.103 0.061
MAP(3) JM 7.461 5.838 4.325 3.163 0.313 0.184 0.105 0.059
MAP(3) JM+EM 7.302 5.591 4.121 3.020 0.310 0.183 0.107 0.064

MAP(4) AC10 7.311 6.016 4.593 3.313 0.335 0.208 0.116 0.059
MAP(4) EM 7.376 5.580 4.029 2.939 0.308 0.178 0.103 0.063
MAP(4) JM 7.528 5.941 4.432 3.212 0.323 0.193 0.108 0.058
MAP(4) JM+EM 7.295 5.565 4.092 3.012 0.309 0.183 0.108 0.065

Trace TUDo 2.510 2.226 1.999 1.816 0.137 0.114 0.098 0.086

MAP(2) AC30 Gfit 1.317 1.163 1.088 1.038 0.087 0.083 0.080 0.078
MAP(2) AC5 4.202 4.110 3.997 3.849 0.317 0.279 0.241 0.204
MAP(2) EM 4.894 4.552 4.245 3.934 0.308 0.260 0.214 0.172
MAP(2) JM 4.383 4.254 4.116 3.945 0.322 0.283 0.244 0.204
MAP(2) AC30 Gfit+EM 3.645 2.886 2.417 2.100 0.119 0.096 0.083 0.074

MAP(4) AC30 Gfit 2.118 2.051 1.999 1.949 0.156 0.142 0.129 0.118
MAP(4) AC10 4.343 3.930 3.547 3.186 0.236 0.193 0.158 0.131
MAP(4) EM 4.283 3.949 3.688 3.457 0.267 0.232 0.200 0.169
MAP(4) JM 3.862 3.507 3.161 2.847 0.211 0.172 0.141 0.117
MAP(4) AC10+EM 3.541 3.214 2.951 2.732 0.215 0.185 0.162 0.144

closest approximation. For the trace LBL-TCP-3 we obtained similar results.
As already mentioned all fitting algorithms had problems with the MAP TUDo.
This becomes also visible in Table 4. Only the MAP(4) that has been fitted
with Gfit and a subsequent fitting of the autocorrelations provided a sufficient
approximation of the queueing behavior.

5 Conclusions

This paper presents a comparison of different MAP fitting approaches applied to
three different traces. Two of the traces have been taken from the Internet archive
and have been used several times as benchmarks for MAP fitting approaches.
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However, these traces are also very old. The third trace is much newer and shows
different characteristics. Our results indicate that the older traces can be fitted
adequately with most approaches whereas the new trace exhibits a much stronger
autocorrelation and is much harder to fit. It is an interesting question whether
current network traffic, which probably differs from the traffic analyzed twenty
years ago, really contains higher autocorrelations or whether this is an artifact
in our measurements. However, to answer this question, more measurements are
necessary.

The comparison of the different fitting methods gives a mixed picture. Obvi-
ously, using a method that fits a MAP according to one quantity, like the joint
moments or the autocorrelation, gives good results according to this quantity but
usually results in a bad fitting according to other quantities that are not used
for fitting. Thus, no approach is superior to all others according to all quantities.
However, our results indicate that fitting according to the likelihood using the
EM algorithm gives the best results but is, unfortunately, also the by far most
costly method. Furthermore, it should be mentioned that the fitting quality and
the effort of the EM algorithm depends on the initial MAP and might be poor
for badly chosen initial MAPs.
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Abstract. Phase-type (PH) distributions are proven to be very powerful
tools in modelling and analysis of a wide range of phenomena in computer
systems. The use of these distributions in simulation studies requires
efficient methods for generating PH-distributed random numbers. In this
work, we discuss algorithms for generating random numbers from PH
distributions and propose two algorithms for reducing the cost associated
with generating random numbers from Acyclic Phase-Type distributions
(APH).

1 Introduction

Phase-type (PH) distributions have been widely used in modelling various phe-
nomena such as response times, inter-arrival times and failure times in computer
systems [1,2,3], and several tools that fit phase-type distributions to trace data
have been developed [4,5]. The fact that there are simple and elegant solution
techniques available for PH distributions has made them appealing for analytic
solutions.

PH distributions can also be employed in simulation studies, where they allow
the introduction of realistic response-time distributions obtained from measure-
ments into simulations without modification of the typically Markovian simu-
lation tool. As such simulations often require many random variates and are
repeated many times, generating PH-distributed random numbers efficiently is
important. In this work we investigate the efficiency of generating random num-
bers from continuous PH distributions. Due to the fact that the Markovian
representation of PH distributions is not unique the key issue to investigate is
which representation of a PH distribution is most efficient for random-number
generation.

In [6] we posed the following optimisation problem: Starting from a Markovian
representation of a PH distribution, find the (not necessarily minimal) Marko-
vian representation that minimises the cost associated with generating random
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numbers. In this paper we study this optimisation problem for Acyclic Phase-
Type (APH) distributions. We provide a result on the optimal representation
and develop two algorithms that transform a given APH representation into a
representation with lower simulation cost.

The paper is structured as follows. In the next section we introduce the consid-
ered model class and the notation used throughout the paper. We then describe
a number of algorithms for generating random numbers from phase-type distri-
butions (Section 3) and derive average costs (Section 4). In Section 5 we study
the problem of optimising bi-diagonal representations for random-number gener-
ation. Section 6 illustrates the application of our algorithms to several theoretic
and fitted phase-type distributions. Finally, in Section 7 we conclude with an
outlook on future work.

2 Definitions and Notation

Continuous phase-type (PH) distributions represent the time to absorption in
a continuous-time Markov chain with one absorbing state [7]. PH distributions
are commonly specified as a tuple (α,A) of the initial probability vector α =
(α1, . . . , αn) and the transient part A = {aij}, 1 ≤ i, j ≤ n of the generator
matrix, also referred to as transient generator matrix. The probability density
function, the cumulative distribution function, the Laplace-Stieltjes Transform
(LST) of the CDF, and the kth moment, respectively, are [4,7,8]:

f(x) = αeAxa,

F (x) = 1 − αeAx1l,
F̃ (s) = αn+1 + α(sI − A)−1a, and

E
[
Xk

]
= k!α(−A)−k1l.

where a = −A1l, I is the identity matrix, and 1l is the column vector of ones,
both of appropriate size.

Phase-type distributions have rational LST. It follows that the eigenvalues of
the transient generator matrix are the poles of the LST of the distribution [9].

Definition 1. The (α,A) representation of a phase-type distribution is called
Markovian if α ≥ 0, α1l = 1, aij ≥ 0, 1 ≤ i �= j ≤ n and a = −A1l ≥ 0. Then,
the generator matrix of the associated CTMC is

A =
(

A a
0 0

)
.

Definition 2. The size of the (α,A) representation is the size of the vector α,
which is equal to the size of the square matrix A.

The (α,A) representation is not unique. In particular, another representation of
the same size can be obtained by a similarity transformation using a matrix B:
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Fig. 1. CTMC for a bi-diagonal representation

Definition 3. When B is invertible and B1l = 1l, then the similarity transform

(αB,B−1AB)

provides another representation of the same distribution, since its CDF is

1 − αBeB
−1ABx1l = 1 − αBB−1eAxB1l = 1 − αeAx1l.

In the following we refer to a PH representation as being bi-diagonal (cf. Figure 1)
if it meets the following requirements:

Definition 4. A bi-diagonal representation of a PH distribution (α,A) has
aii < 0, aii+1 = −aii and aij = 0 for j < i and j > i+1. An alternative notation
is (α, Λ), with Λ = (a1, . . . , an) a row vector of length n and ai = −aii.

Note that for a bi-diagonal representation the eigenvalues of the transient gen-
erator matrix A, and thus the poles of the LST of the distribution function, are
given by the entries of the diagonal, aii.

In this paper we are concerned with acyclic phase-type distributions (APH):

Definition 5. An acyclic phase-type distribution (APH) is a phase-type distri-
bution that has an acyclic Markovian representation.

We make use of the following important bi-diagonal representation:

Definition 6. [10] The Canonical Form 1 (CF-1 form) is a bi-diagonal repre-
sentation (α, Λ) where α is Markovian and the rates ai in Λ are in increasing
order: a1 ≤ a2 ≤ · · · ≤ an.

The next theorem, which we state without proof, ensures that the distributions
we consider have at least one bi-diagonal representation with a Markovian initial
vector:

Theorem 1. [10,11] Every acyclic phase-type distribution with a representation
of size n has a unique CF-1 representation of the same size.

We remark that smaller CF-1 representations may exist if there is redundancy
in the original representation [7,12,13].

The CF-1 form for an APH given as (α,A) can be obtained by the transfor-
mation provided in [12]. It presents a way to construct a similarity matrix B,
which transforms A to a bi-diagonal matrix G where the entries of the diago-
nal are the ordered eigenvalues of the matrix A, i.e., G = B−1AB. The same
similarity matrix can be used to compute the initial vector γ = αB.
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Example 1. Consider the phase-type distribution given by

α = (0.3, 0.4, 0.3), A =

⎛

⎝
−1 1 0
1 −2 0.5
0 3 −3

⎞

⎠ .

The eigenvalues of A are −0.205168,−1.85629, and −3.93854. Let G be the cor-
responding CF-1 bi-diagonal matrix. From G = B−1AB we obtain the similarity
transformation matrix

B =

⎛

⎝
0.931611 0.0683893 0
0.740474 0.132575 0.126951
0.794832 0.205168 0

⎞

⎠ .

We compute the initial probability vector as γ = αB and get the CF-1 form
(γ, ΛG) = ((0.814123, 0.135097, 0.0507803), (0.205168, 1.85629, 3.93854)).

3 Generation of PH-Distributed Random Numbers

We now discuss two methods for generating random variates from a general PH
distribution given in Markovian form. While one may apply numerical inversion
of the distribution [14], we consider approaches based explicitly on the CTMC
interpretation. The discussed algorithms all rely on the following elementary
operation for drawing an exponentially distributed random number:

Exp(λ) = − 1
λ

ln(U),

where U denotes a [0, 1] uniformly distributed pseudo-random number.
The most natural way to obtain a PH-distributed random number is to play

the CTMC until absorption. By ‘play’ we mean to simulate the state transitions
of the CTMC according to the following basic steps. Let ei denote the row vector
with 1 at position i, and 0 everywhere else.

Procedure Play:

1) clock= 0, draw an α-distributed discrete sample for the initial state,
2) the chain is in state i

• draw an ei(−diag〈1/aii, 0〉A+I)-distributed discrete sample for the next
state,

• clock += Exp(−aii),
• if the next state is the absorbing one go to 3), otherwise go to 2)

3) return the clock value

We point out that Play is suited to general PH distributions in an arbitrary
form, where each phase may have several successor phases. If our simulation is
such that it involves only acyclic-phase type distributions in a bi-diagonal repre-
sentation (such as the CF-1 form), we can make use of the following structural
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restriction: For each phase, there is exactly one successor phase; consequently,
there is no need to randomly choose the next state. This observation allows the
following simplification of Play:

Procedure SimplePlay:

1) clock= 0, draw an α-distributed discrete sample for the initial state.
2) The chain is in state i.

• clock += Exp(−aii),
• i += 1,
• if the next state is the absorbing state go to 3), otherwise go to 2).

3) Return the clock value.

In the next section we discuss costs of random-number generation using these
algorithms.

4 Average Costs of Generating PH-Distributed Random
Numbers

As we saw in the previous section, PH random number generation requires uni-
form random variates, both for state selection and for generating exponential
random variates. Furthermore, for each exponential random variate a logarithm
operation must be performed. Both operations are expensive in terms of com-
puting time and can significantly increase the running-time of simulations that
require many random variates. Therefore, we consider the following complexity
metrics:

• #uni, the number of required uniform random variates, and
• #ln, the number of logarithms that need to be computed.

The average cost associated with drawing a random variate from a phase-
type distribution depends on the average number n∗ of state transitions up to
absorption,

n∗ = α(diag〈1/aii〉A)−11l.

For APH in bi-diagonal form this reduces to

n∗ = ανT,

where ν = (n, n − 1, . . . , 1). Thus n∗ =
∑n

i=1 αi(n − i + 1).
Both procedures require one uniform random variate to choose the initial

state. The Play procedure then needs two uniform random variates per step,
because the next phase is chosen randomly. Play therefore requires #uni =
2n∗ + 1 uniform random variates, while SimplePlay requires only #uni = n∗ +
1 uniforms. The number of logarithms required for the Play and SimplePlay
procedures is #ln = n∗, since in each phase an exponentially distributed random
variate is drawn.

We can thus conclude that for generating random numbers from an APH
efficiently we should transform the distribution into a bi-diagonal representation
and then apply the SimplePlay procedure.
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5 Optimal Representations for APH-PRNG

As illustrated in Section 4, average costs for random-number generation depend
mainly on the number of visited states, n∗. In [6] we posed the problem of finding
a Markovian representation that minimises n∗.

In the following we tackle this optimisation problem for acyclic phase-type
(APH) distributions (α,A) in CF-1 form. We choose the CF-1 form as our
starting point because bi-diagonal forms allow efficient random-variate genera-
tion, using the procedure SimplePlay, and because APHs are commonly given
in CF-1 form (e.g. by the phase-type fitting tool PhFit [4]). Furthermore, The-
orem 1 ensures that the results for CF-1 are applicable to the whole APH class.

In order to solve the optimisation problem, we try to find a bi-diagonal rep-
resentation (α∗,A∗) for which the average number of traversed states,

n∗ = α∗ν =
n∑

i=1

α∗
i (n − i + 1). (1)

is minimal.
From the right side of (1) it is immediately obvious that, in order to reduce n∗,

probability mass must be shifted to the higher indices of the initial probability
vector α. Formally, the new probability vector α′ must be stochastically larger
than α:

Definition 7. The stochastic ordering [15] on the set of stochastic vectors of
size n is defined as follows:

α ≤st α′ ⇔ 1 − Pr{α ≤ k} ≤ 1 − Pr{α′ ≤ k} for k = 1, . . . , n,

where

Pr{α ≤ k} :=
k∑

i=1

αi.

At the same time, (α∗,A∗) must represent the same distribution as (α,A), and
hence the LST of its distribution function must have the same poles. This implies
that the matrices A and A∗ must have the same eigenvalues. In the bi-diagonal
form the eigenvalues are the entries of the diagonals. Changing the order of the
diagonal elements does not change the eigenvalues, hence a representation where
A∗ is obtained by re-ordering the diagonal elements is guaranteed to have the
same poles as (α,A). Consequently, we consider shifting probability mass to the
right by modifying the order of the rates along the diagonals. We propose the
following operator:

Definition 8. The Swap(α,A, i) operator exchanges the ith rate with the (i +
1)th rate (1 ≤ i ≤ n − 1) on the diagonals in a bi-diagonal representation by
swapping the ith and (i + 1)th entry in the vector Λ. The associated similarity
transformation matrix B has the form
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B =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

. . . 0 0 0 0
0 1 0 0 0
0 bi+1,i bi+1,i+1 0 0
0 0 0 1 0

0 0 0 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

where
bi+1,i =

ai − ai+1

ai
, and bi+1,i+1 =

ai+1

ai
for 1 ≤ i ≤ n − 1.

Where appropriate, we also use the Swap(α, Λ, i) notation to denote the same
operator.

Remark 1. Swap(α, Λ, i) only involves the ith and (i + 1)th entries of α and Λ,
which allows for the analytically tractable expressions employed in the following.
Operators that produce more complex permutations in a single step do not have
this property. Furthermore, the Swap operator is sufficiently powerful to generate
all permutations of a list [16].

Let (α′,A′) denote the result of applying Swap(α,A, i) on (α,A). Because
(α′,A′) is derived by applying a similarity transformation to (α,A), both tuples
represent the same distribution. Recall from Definition 3 that

α′ = αB.

From this equation and the definition of B we immediately get the following
properties of the result of the Swap operation:

∀j �∈ {i, i + 1} : α′
j = αj (2)

α′
i = αi + αi+1

ai − ai+1

ai
= αi + αi+1(1 − ai+1

ai
) (3)

α′
i+1 = αi+1

ai+1

ai
. (4)

Putting (α′, A′) into (1) we obtain

n∗(α′,A′) = n∗(α,A) + αi+1(1 − ai+1

ai
). (5)

Equations (2)–(5) are valid for Markovian (α ≥ 0) and non-Markovian (α ∈ R
n)

bi-diagonal representations.
If we restrict our attention to the Markovian bi-diagonal representations then

we observe the following: The Swap operation with adjacent rates ai < ai+1,
results in n∗(α′, A′) ≤ n∗(α, A) according to (5), because in this case 1 < ai+1

ai
,

and αi+1 is non-negative. Consequently, by repeatedly exchanging adjacent rates
ai < ai+1 such that each resulting representation is Markovian until no such
operations are possible anymore, we can obtain a representation that has minimal
costs n∗.
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On the other hand, we note that the Swap operator will result in a non-
stochastic vector α′ if αi < αi+1(1 − ai+1

ai
), since then the resulting α′

i < 0. In
this case (α′,A) is a non-Markovian representation of the original phase-type
distribution. This representation is not suitable as input for the random-number
generation algorithms discussed in Section 3. Furthermore, both the stochastic
ordering and n∗ are only defined for (sub-)stochastic α. We must therefore avoid
Swap operations that will result in non-stochastic α′. Based on these observations
we propose the following.

Lemma 1. Given a Markovian representation (α,A) in CF-1 form, the repre-
sentation (α∗,A∗) that reverses the order of the rates is optimal with respect
to n∗ if α∗ is a stochastic vector. In this case, all bi-diagonal representations
constructed by the Swap operator are Markovian.

Proof. The proof is composed by two steps. First we show that all bi-diagonal
representations are Markovian if (α∗,A∗) is Markovian. In the second step we
show by contradiction that (α∗,A∗) is optimal with respect to n∗.

According to property (3), a Swap operation applied to a Markovian represen-
tation can result in a non-Markovian representation only if a larger rate ai+1

is exchanged for a smaller rate ai. Starting from (α∗,A∗), all representations
can be obtained by a series of Swap operations in which a smaller rate ai+1 is
exchanged for a larger rate ai. If (α∗,A∗) is Markovian, none of these Swap

operations can result in a non-Markovian representation.
To prove the first part of the lemma, assume that (α′,A′) with rates

a′
1, . . . , a

′
i, a

′
i+1, . . . , a

′
n

ordered such that a′
i < a′

i+1 is optimal. Then from (5) it follows that by exchang-
ing a′

i, a
′
i+1 using the Swap operator we can obtain a representation (α′′,A′′) =

Swap(α′,A′, i) for which n∗(α′′,A′′) < n∗(α′,A′). 
�

5.1 Heuristic Algorithms for Computing Optimal APH
Representations

Lemma 1 states that if the reversed CF-1 form is Markovian, then it is optimal
with respect to n∗. This optimal representation is easily computed by applying
a similarity transformation, as illustrated in Example 1. In the following we
develop algorithms for finding a Markovian APH representation that is close to
optimal (with respect to n∗) when the reversed CF-1 form is non-Markovian.

The algorithms are best thought of as operating on the graph of all permu-
tations of the rate vector Λ. From each permutation exactly n − 1 other per-
mutations can be reached by applying the Swap operation. If the reversed CF-1
is non-Markovian, then some of the permutations have non-Markovian initial
vectors.

The most obvious approach proceeds by exploring the complete graph. This
is equivalent to generating all permutations of Λ and minimising n∗ over the
subset of permutations whose initial vector is stochastic. The approach is easily
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implemented, e.g. as a modification to the Steinhaus-Johnson-Trotter algorithm
for enumerating permutations [16] and is guaranteed to find the optimum. Un-
fortunately, since this method explores all n! permutations for an APH of size n,
it is infeasible for larger APH.

Lemma 1 provides the basis for the two computationally less expensive al-
gorithms presented in this section. The underlying intuition is as follows: The
optimal representation with respect to n∗ is somewhere on the Markovian side of
the boundary between the Markovian and the non-Markovian representations.
Lemma 1 implies that the Markovian optimum is along one of the paths from
the CF-1 to the reversed CF-1. We thus need to find the (Markovian) point
where the path between CF-1 and reversed CF-1 crosses the boundary between
the Markovian and non-Markovian representations.

Starting with the CF-1 form (i.e. inside the Markovian representations), we
know from (5) that each exchange of two adjacent rates such that after the ex-
change the larger rate is moved to the left constructs a new element of the path
that has lower n∗, provided the new representation is Markovian. Properties (3)
and (4) thus define the direction along which to search for the optimal Marko-
vian representation without enumerating all permutations and without explicitly
computing n∗ for the new representation. Our first algorithm follows from this
intuition. It is a modified version of the Bubblesort algorithm [17] that attempts
to re-order the rates into the reversed CF-1 form:

Algorithm BubblesortOptimise(α, Λ):
For i = 1, . . . , n − 1 do

For j = 1, . . . , n − 1 do
If Λ[j] < Λ[j + 1] ∧ (α′, Λ′) := Swap(α, Λ, i) is Markovian then

(α, Λ) := (α′, Λ′)
Else

break
done

done
Return (α, Λ)

Note that the algorithm does not perform Swap operations whose result would
be non-Markovian, i.e. it does not cross the boundary between both types of
representations. The algorithm terminates once either the reversed CF-1 form
is reached or there are no re-orderings left that would result in a Markovian
representation with lower cost n∗. While this may mean that the algorithm does
not find Markovian representations hidden ‘behind’ non-Markovian ones, it is
necessary because n∗ has no meaning for non-Markovian representations.

Our second algorithm starts from the reversed CF-1 form and searches for the
point where the path towards the CF-1 first crosses the border to the Markovian
representations. The path is constructed by swapping pairs of rates such that in
the result the higher rate is to the right (which means that the result is closer to
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the CF-1). The algorithm stops when it encounters a Markovian representation.
Termination is ensured by the fact that the CF-1 is Markovian:

Algorithm FindMarkovian:
Let (α′,A′) be the reversed CF-1 of (α,A).
While ∃i ∈ {1, . . . , n − 1} : α′

i < 0
i := argmini {α′

i < 0}
i := max(2, i)
While α′ is not Markovian ∧ ∃k : Λ[k] ≥ Λ[k + 1]

k := argminj{i − 1 ≤ j ≤ n − 1 : Λ[j] ≥ Λ[j + 1]}
(α′, Λ′) := Swap(α′, Λ′, k)

end
end
Return (α′, Λ′)

Note that FindMarkovian is also not guaranteed to find the optimum, since
it stops when it finds the first Markovian representation.

6 Illustrative Examples

We will now illustrate our results on several APH distributions.

Example 2. Consider the generalised Erlang distribution with Λ = (1, 2, 3, 4)
and α = (1, 0, 0, 0). For this distribution, every order of rates in Λ has costs
n∗ = 4, since no probability mass can be shifted to the right. As expected, both
BubblesortOptimise and FindMarkovian identify ((1, 0, 0, 0), (4, 3, 2, 1)) as the
optimal representation.

Example 3. Let Λ = (1, 2, 3, 4), as before, and the initial probability vector
α = (0.7, 0.15, 0.09, 0.06). Then, the average number of visited states is

n∗(α, Λ) = 3.49.

Application of BubblesortOptimise results in the reversed CF-1 form with
Λ′ = (4, 3, 2, 1), α′ = (0.46, 0.12, 0.18, 0.24) and costs

n∗(α′, Λ′) = 2.8.

Since the reversed CF-1 is Markovian, FindMarkovian gives the same result. We
observe that probability mass in the initial probability vector has been shifted
towards higher indices.

Example 4. We study (α, Λ) with α = (0.5, 0.4, 0.05, 0.05) and again Λ =
(1, 2, 3, 4). This representation has costs

n∗(α, Λ) = 3.35.
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The initial vector for the reversed CF-1 is (−0.6, 1.4, 0, 0.2), and hence the re-
versed CF-1 form is non-Markovian. Applying the BubblesortOptimise algo-
rithm to the CF-1 form provides us with a representation (α′, Λ′) with Λ′ =
(2, 4, 3, 1) and α′ = (0.1, 0.7, 0, 0.2), for which

n∗(α′, Λ′) = 2.7.

FindMarkovian starts on the non-Markovian reversed CF-1 representation and
generates the Markovian representation Λ′′=(2, 3, 4, 1) and α′′=(0.1, 0.7, 0, 0.2),
which has the same costs of 2.7. A complete enumeration of all permutations
shows that both orderings are optimal with respect to n∗.

Example 5. As the last example, we fit an APH(8) to the loss1-50-opc-1 data-
set from [3] using the PhFit tool [4]. This data set contains response-time mea-
surements from a SOA system under high load and with network packet loss.
The resulting APH has initial probability vector α = (0.019, 0.006, 0.069, 0.104,
0.164, 0.371, 0.216, 0.051) and rate vector

Λ = (7.181 · 10−05, 2.4280 · 10−04, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04).

For this representation,
n∗(α, Λ) = 3.38.

Again, the reversed CF-1 for this representation has negative entries in the initial
vector. Application of BubblesortOptimise results in (α′, Λ′) with initial prob-
ability vector α′ = (0.0047, 0.0203, 0.0614, 0.0929, 0.1327, 0.3911, 0.2417, 0.0552)
and

Λ′ = (2.4280 · 10−04, 7.181 · 10−05, 6.332 · 10−04, 6.178 · 10−04,

5.965 · 10−04, 5.956 · 10−04, 5.863 · 10−04, 5.854 · 10−04),

which has n∗(α′, Λ′) = 3.256. According to a complete enumeration, this is also
the Markovian optimum. FindMarkovian returns α′′ = (0.0047, 0.0203, 0.069,
0.104, 0.164, 0.371, 0.216, 0.051) and

Λ′′ = (2.4280 · 10−04, 7.181 · 10−05, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04),

for which n∗(α′′, Λ′′) = 3.366.

6.1 Discussion

In general, our examples indicate that there are phase-type distributions for
which re-ordering of rates results in a cost reduction. The highest reduction was
observed in Example 2 (20%), while for the fitted distribution in Example 5
the reduction was 3.6%. In Monte-Carlo simulations with many simulation runs,
these reductions lead to significant time-savings.
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On the other hand, we also observe that the effectiveness of the algorithms de-
pends strongly on the initial representation. Representations with (generalised)
Erlang structure (Example 2) are invariant to re-ordering of rates. The same
holds within blocks of subsequent phases with zero initial probability. For rep-
resentations where the probability mass is already concentrated at the higher
indices in the CF-1, there is also little room for improvement.

We can thus identify (generalised) Erlang structure and large probability mass
at the higher indices as two properties of representations that are not susceptible
to the proposed optimisation. However, so far we have not been able to find
more formal criteria for when and why the optimisation procedures fail. Such
criteria would not only help in improving the optimisation algorithms, but may
also enable the development of specialised PH-fitting methods that give APH
distributions suited for efficient random-number generation.

7 Conclusion and Future Work

In this paper we considered the complexity of generating random numbers from
acyclic phase-type distributions. Our focus lay on bi-diagonal representations of
APH distributions, whose structural limitations enable the SimplePlay proce-
dure which is more effective than the more general Play. By re-ordering rates
along the diagonal we undertook a first attempt at optimising the bi-diagonal
representation for efficient random-number generation. We presented a limited
result for the optimal ordering and proposed two algorithms to optimise the
representation, given an APH in CF-1 form.

We note that the effectiveness of our approach depends on the given APH.
While we can provide a number of intuitive guidelines, formal criteria for deciding
when re-ordering rates may offer an advantage are still future work. Furthermore,
in the near future we will extend our approach to eliminate the limitations of
our result, and we will apply the approach to general phase-type distributions
in Monocyclic form [18].
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Abstract. Bisimulation reduction is a classical means to fight the infa-
mous state space explosion problem, which limits the applicability of au-
tomated methods for verification like model checking. A signature-based
method, originally developed by Blom and Orzan for labeled transition
systems and adapted for Markov chains by Derisavi, has proved to be
very efficient. It is possible to implement it symbolically using binary
decision diagrams such that it is able to handle very large state spaces
efficiently. We will show, however, that for Markov chains this algorithm
suffers from numerical instabilities, which often result in too large quo-
tient systems. We will present and experimentally evaluate two different
approaches to avoid these problems: first the usage of rational arithmetic,
and second an approach not only to represent the system structure but
also the transition rates symbolically. In addition, this allows us to mod-
ify their actual values after the quotient computation.

1 Introduction

The state space explosion problem denotes the observation that the state space of
a system grows exponentially in the number of components the system consists
of. The size of realistic systems limits the applicability of formal verification
techniques to large designs. To alleviate this effect, numerous techniques have
been developed like the usage of symbolic methods (e. g. decision diagrams in
various flavors, see [1]) and abstraction techniques (e. g. partial-order reduction
and symmetry reduction). Bisimulation minimization can be considered as a
kind of abstraction technique which can be performed fully automatically. The
idea behind bisimulation minimization is to group the states into equivalence
classes such that states are considered equivalent if and only if they exhibit the
same step-wise behavior. A system with a minimal number of states which has
the same behavior as the original system—this means that it satisfies the same
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formulas of a temporal logic like CTL or CSL—can be obtained by replacing
each equivalence class of the bisimulation with a single state.

While Fisler and Vardi [2] observed that bisimulation minimization does not
speed up checking invariant properties of labeled transitions systems, the con-
trary is often the case for stochastic systems like discrete- and continuous-time
Markov chains. There, model checking involves the solution of a linear equa-
tion system and is much more expensive than in the purely digital case. Hence,
model checking can benefit a lot from minimizing the model prior to checking
properties [3,4].

This has led to a revival of bisimulation techniques for stochastic systems
in the last few years (cf. for example [5,6,7,8,9]). One of the most efficient ap-
proaches is based on signature-based partition refinement, originally developed
by Blom and Orzan [10] for labeled transition systems (LTSs). Wimmer et al. [11]
extended this approach such that a large number of different kinds of bisimu-
lations for LTSs can be computed symbolically using OBDDs. Derisavi [7] ap-
plied it successfully to continuous-time Markov chains. The problem with this
signature-based approach for Markov chains is, as we will show, that it is very
sensitive to numerical problems. In many cases they lead to quotient systems
with too many states, and sometimes they can even prevent termination. In
this paper we will address these problems: by using rational arithmetic to avoid
numerical problems. Although considered to be computationally expensive typ-
ically, we will show that this is not the case for our bisimulation algorithm.
Another possibility, which we will present, is to handle the transition rates not
as numbers but as pure symbols. Besides avoiding numerical problems this has
the advantage that the rates can be adjusted after the quotient computation
without redoing the minimization. We will also present experimental results for
this technique.

We have structured this paper as follows: in the next section we review
the foundations which consist of continuous-time Markov chains, bisimulations,
and the principle of signature-based bisimulation computation. In Section 3 we
present methods which yield bisimulation relations in a reliable and/or para-
metric manner. Section 4 provides an experimental evaluation of these methods.
Finally, in Section 5, we conclude and point out directions for future research.

2 Foundations

In this section we will briefly review the basics of continuous-time Markov chains
(CTMCs), bisimulations and the signature-based algorithm for computing bisim-
ulations on CTMCs symbolically.

Definition 1. Let AP be a finite set of atomic propositions. A continuous-time
Markov chain (CTMC) is a tuple M = (S, s0, R, L) such that S is a finite, non-
empty set of states; s0 ∈ S, the initial state; R : S × S → R

≥0, the matrix of
transition rates; and L : S → 2AP , a labeling function which assigns each state
a set of atomic propositions from AP .
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For a set S′ ⊆ S of states, we use the notation R(s, S) =
∑

s′∈S′ R(s, s′). The
transitions of a CTMC are governed by a negative exponential distribution, i. e.
the probability to take the transition from s to s′ within time t is given by

p(s, s′, t) =
R(s, s′)
R(s, S)

·
(
1− e−R(s,S)·t

)
. (1)

A partition of a set S is a set P ⊆ 2S \ {∅} such that the union of all elements
(called blocks) of P equals S and all blocks of P are pairwise disjoint. If P is
a partition of S, we write for states s, t ∈ S: s ≡P t iff there is a block B ∈ P
such that {s, t} ⊆ B. A partition P is a refinement of a partition P ′ (denoted
P � P ′) if ∀B ∈ P ∃B′ ∈ P ′ : B ⊆ B′.

Definition 2. Let M = (S, s0, R, L) be a continuous-time Markov-Chain. A
partition P of S is a bisimulation on M if for all s, t ∈ S with s ≡P t and for
all blocks B ∈ P the following conditions hold:

L(s) = L(t) and R(s, B) = R(t, B).

States s, t ∈ S are bisimilar (written s ≈ t) if there is a bisimulation P on M
such that s ≡P t.

The practically most important property of bisimilarity is that states are bisim-
ilar if and only if they satisfy the same formulas of the temporal logic CSL [12],
which is widely used for specification of requirements. This enables us to use the
quotient system for checking the validity of these formulas instead of the larger
original system.

The idea behind signature-based bisimulation computation is to compute for
each state a kind of fingerprint, such that states can only be bisimilar if their
fingerprints are identical. To obtain a refined partition, the blocks are grouped
according to the signatures of their states. This is formally captured in the
following definition:

Definition 3. Let M = (S, s0, R, L) be a CTMC, P (0) an initial partition of S,
and P a partition of S with P � P (0). The signature of a state s with respect to
P is then given by

sig(s, P ) =
{
(B, r) ∈ P × R

≥0
∣
∣ r = R(s, B)

}
.

The refinement sigref(P ) of P is defined as

sigref(P ) =
{{t ∈ S | sig(s, P ) = sig(t, P ) ∧ s ≡P (0) t} ∣

∣ s ∈ S
}
.

The initial partition is needed if one wants the bisimulation quotient to preserve
the validity of a certain logic like CSL or if additional information like state
rewards has to be taken into account. If we have to preserve CSL properties, we
set P (0) =

{{s ∈ S |L(s) = L(t)} ∣
∣ t ∈ S

}
; if state rewards r : S → R

≥0 have
to be considered, we use P (0) =

{{s ∈ S | r(s) = r(t)} ∣
∣ t ∈ S

}
; otherwise, when
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Algorithm 2.1: SigRefine(CTMC M , partition P (0))
begin

i← 0 (1)
repeat (2)

P (i+1) ← sigref(P (i)) (3)
i← i + 1 (4)

until P (i) = P (i−1) (5)
return P (6)

end

there are no such requirements, we can use the trivial partition P (0) = {S},
which consists of only one block containing all states.

We iteratively apply the sigref-operator until a fixed point is reached. The
pseudo-code of this procedure is given in Algorithm 2.1.

Derisavi has shown in [7] that this algorithm terminates after at most |S| −
|P (0)|+ 1 iterations and yields the coarsest bisimulation on M that refines P (0).

Now we will show how this algorithm can be implemented using (MT)BDDs
such that their ability to represent large state spaces in a compact way is ex-
ploited.

Symbolic Implementation: Ordered binary decision diagrams (OBDDs) [13] are
a data structure which represents boolean functions f : {0, 1}n → {0, 1} as a
rooted acyclic digraph. They can be considered as a compressed form of the
truth table of the represented function. Each assignment of the input variables
corresponds to a path in the OBDD which ends at a leaf that is labeled with the
value of the function under that assignment.

Multi-terminal BDDs are an extension of OBDDs for pseudo-boolean func-
tions f : {0, 1}n → R. The only difference to OBDDs is that leaves may be
labeled with arbitrary numbers (instead of being restricted to {0, 1}). Both,
OBDDs and MTBDDs, are called reduced if the sub-function represented at
each node, is unique.

For a BDD B(x, y) over the vectors x=(xn−1, . . . , x0) and y=(ym−1, . . . , y0)
of boolean variables and a bitvector v ∈ {0, 1}n, the expression B(x ← v,y)
denotes the cofactor of B(x, y) which results from fixing the variables xi to the
values given by v.

We assume that the reader is familiar with OBDDs and MTBDDs. For more
information we refer the reader to Wegener’s monograph [1].

OBDDs can be used to represent sets S ⊆ {0, 1}n of bit vectors via their
characteristic function χS such that s ∈ S ⇔ χS(s) = 1. This will be used
to represent the state space of the CTMC under consideration and for parti-
tions of its state space. Several possibilities for partition representation have
been proposed in the literature (cf. [9]). For the implementation of signature
refinement the following technique is suited best, since it allows to execute the
refinement step in linear time in the size of the signature-MTBDD [9]: each
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block of the partition is assigned a unique number, which is encoded using a set
of m ≥ ⌈

log2 |P |
⌉

new OBDD variables k = (km−1, . . . , k0). The partition P of
S is then represented by an OBDD P(s, k) such that, for a block Bi of P , s ∈ Bi

iff P(s← 〈s〉, k← 〈i〉) = 1. Here, 〈i〉 denotes the binary encoding of i.
We will use MTBDDs to represent the transition rate matrix of the CTMC

under consideration and signatures of its states. For the signatures we use an
MTBDD σ(s, k) such that σ(s ← 〈s〉, k ← 〈i〉) = r iff (r, Bi) ∈ sig(s, P ). Given
the transition rate matrix R(s, t) and the representation P(s, k) of the current
partition, the MTBDD representing the signatures of all states can be computed
by

σ(s, k) = Q+
t .

(R(s, t) · P(t, k)
)
. (2)

Thereby Q◦
a :

(B(x, a)
)

=©2l−1
i=0 B(x, a← 〈i〉) is the quantification operator for

an associative and commutative binary operator ◦. It is a standard operation for
MTBDDs.

In order to ensure that the initial partition is taken into account, we modify
the signatures in Equation (2) such that two states can only have identical
signatures if they are contained in the same block of the initial partition. Let p
be a new BDD variable. We modify the signatures as follows:

σ′(s, k, p) = σ(s, k) + p · P(0)(s, k). (3)

Once we have computed the signatures, we have to get the refined partition.
For this, we can exploit the following observation: if we use a variable order
for the BDDs such that the state variables precede the block number variables
(and the auxiliary variable p), the encoding of a state s corresponds to a path in
σ′(s, k, p) which ends in the node that represents the signature of s. Furthermore,
since we only use reduced BDDs, the encodings of all states with the same
signature as s lead to the same node. To obtain the refined partition, we have
to replace all nodes that represent signatures by new block numbers. This can
be done in linear time by traversing σ′(s, k, p) recursively. More details on the
symbolic implementation can be found in [11,7].

3 Reliable Bisimulation Computation

Almost all of today’s personal computers use floating-point arithmetic according
to the IEEE standard 754 [14] for numerical computations. The problem of all
fixed-length representations is that the result of arithmetical operations is often
not representable but has to be rounded to the nearest representable number.

Example 1. We compute 0.5 = 3 ·0.1+4 ·0.05 by adding three times 0.1 and four
times 0.05 on a IEEE 754 compatible processor (left-associative). Depending on
the order of the summands we obtain the following results (using the 64-bit
representation):
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– 0.05 + 0.05 + 0.05 + 0.05 + 0.1 + 0.1 + 0.1
Result:1 0.01111111110.052

– 0.05 + 0.1 + 0.05 + 0.1 + 0.05 + 0.1 + 0.05
Result: 0.01111111110.0511

– 0.1 + 0.1 + 0.05 + 0.05 + 0.05 + 0.1 + 0.05
Result: 0.01111111101.152

We can observe that the result depends on the order of the operands.

For more detailed information about floating-point arithmetic and its problems
we refer the reader to [15].

These rounding problems also affect arithmetical operations on MTBDDs.
In our application, this is mainly the signature computation. Their effect is, in
general, that too many leaves with only slightly different values are created,
unnecessarily blowing up the size of MTBDD. For most applications this has no
impact on the correctness, but only on the speed and memory consumption of
the algorithm. To weaken this effect, most implementations apply the following
strategy: if a leaf with value v is requested from the MTBDD manager, it is
not only checked if a leaf with exactly the same value v already exists, but
also if there is a leaf whose value is close enough to v. That means, a new
leaf with value v is created if there exists no leaf with value v′ such that |v −
v′| ≤ ε for a predefined constant ε > 0. Otherwise the already existing leaf is
returned. In general, there is no value of ε which ensures that the effect of inexact
computations is compensated correctly.

The signature-based refinement algorithm, however, is very sensitive to round-
ing errors. If the signatures of two equivalent states differ slightly due to round-
ing, they are represented at two different nodes in the MTBDD of signatures.
Therefore they are placed in different blocks of the refined partition.

This leads to the following effects: since equivalent states may be placed in
different blocks, the resulting bisimulation is often unnecessarily fine. Round-
ing effects can also cause signatures of states with slightly different rates to be
mapped onto the same value. Then these states are erroneously placed in the
same block. The resulting partition may therefore be no correct bisimulation.
As we will see in the experimental section, rounding effects can even prevent
termination.

We therefore consider it important to develop techniques which avoid the
problems caused by inexact computations.

3.1 Rational Arithmetic

To avoid the problems we have observed for our floating-point implementation
of the bisimulation algorithm, we implemented a version which makes use of
rational arithmetic. Rational numbers are represented as the quotient of two ar-
bitrarily long integer numbers. Then all operations we need (mainly the addition
of numbers) can be performed precisely.
1 The dots separate the sign bit from the exponent and the exponent from the man-

tissa. 0n means that the digit 0 is repeated n times.
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The MTBDDs used by our implementation have been modified such that
rational numbers are stored in the leaves instead of floating-point values. The
operations on the MTBDDs have also been adapted to cope with rational num-
bers. Besides this, we have set the value of ε to 0 such that the BDD package
itself does not introduce errors.

3.2 Parametric Bisimulation Computation

Another idea how numerical problems can be avoided is not to work with con-
crete numbers for the transition rates but with pure symbols. Since there can be
several transitions with the same rate from a state into a block of the current
partition, we cannot use sets to collect the transition symbols leading into a
given block. Instead, we have to use multisets.

Multisets allow an arbitrary (finite) number of copies of each element. For
a multiset S, we let 1S(x) denote the multiplicity of element x in the multiset
S. The element-wise union S � T is the multiset such that for all elements the
equation 1S�T (x) = 1S(x) + 1T (x) holds. The set of multisets with elements
from a set S is denoted by M(S).

We can now define the symbolic counterpart of a CTMC:

Definition 4. A symbolic CTMC is a tuple M = (S, s0, V, R, L) such that S is a
non-empty finite set of states, s0 ∈ S the initial state, and L : S → 2AP a labeling
function. V = {μn−1, . . . , μ0} is a finite set of symbols. R : S × S →M(V ) is a
labeling function which labels each transition with a multiset of symbols.

If V is a set of symbols, we call a function I : V → R
≥0 an interpretation of V .

For a multiset S ∈ M(V ), we set I(S) =
∑

µ∈S

(
1S(μ) · I(μ)

)
. For a symbolic

CTMC M = (S, s0, V, R, L) an interpretation I induces an ordinary CTMC
MI = (S, s0, R, L) by setting R(s, s′) = I(R(s, t)).

We now modify the definition of the signature of a state as follows:

sig(s, P ) =
{
(r, B) ∈M(V )× P | r =

⊎

t∈B

R(s, t)
}

The refinement operator remains unchanged with the exception that it now
uses the modified signature:

sigref(P ) =
{{s ∈ S | sig(s, P ) = sig(t, P ) ∧ s ≡P (0) t} ∣

∣ t ∈ S
}
.

If we use this operator for partition refinement, we obtain a partition which
is a bisimulation for all possible interpretations of the symbols in V . We call
such a bisimulation interpretation-independent. Our algorithm yields the coarsest
interpretation-independent bisimulation which refines the initial partition P (0).
The reason why not the coarsest bisimulation is computed is that under a certain
interpretation I different multisets of symbols may lead to the same value, i. e.
that there are S and T with S �= T and I(S) = I(T ).
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Fig. 1. Signature computation for symbolic Markov chains

If the coarsest bisimulation for a fixed interpretation is needed, it can be ob-
tained by applying the signature refinement algorithm to the DTMC which results
from applying the interpretation to the interpretation-independent quotient.

Example 2. We now consider the part of a symbolic CMTC M depicted in
Figure 1 and compute the signatures of s1 and s2:

sig(s1, P ) =
{
({|μ1, μ1|}, B)

}

sig(s2, P ) =
{
({|μ2|}, B), ({|μ3|}, B)

}

Since the states do not exhibit the same signatures, the refinement operator
sigref puts them in different blocks.

What are the advantages of this method? We can choose the actual transition
rates, i. e., the interpretation, after the minimization without recomputation
of the quotient. This can be beneficial if during the design phase the system
structure has already been fixed, but the exact rates have to be determined
experimentally. Another scenario is that the analysis shows that the error rates
of some components are too high to yield the required dependability. So some
components have to be replaced by more robust ones. This changes the rates of
the transitions. If an interpretation-independent bisimulation quotient has been
obtained, only the interpretation of its symbols has to be changed. So we can
save the time for computing the quotient from scratch.

The drawback of this approach is that not always the coarsest bisimulation
quotient for the current interpretation of the rates can be computed. This has the
effect that the quotient sometimes consists of more states than the one which
would be returned by the version with rational arithmetic. Our experimental
results (see Section 4), however, indicate that this effect does not occur for most
of the models, and for the others the increase in size compared to the optimal
quotient is not dramatic.

Example 3. Let us again consider the Markov chain M in Figure 1. We assume
that the current interpretation is given by I(μ1) = 3, I(μ2) = 1, and I(μ3) = 5.
If we compute the signatures of s1 and s2 for the ordinary Markov chain MI , we
obtain

sig(s1, P ) = sig(s2, P ) =
{
(6, B)

}
.

Since both states have the same signatures, sigref places them in the same block.
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Symbolic Implementation: We now show how to integrate the symbolic handling
of transition rates into our BDD-based algorithm. There are mainly two possi-
bilities: we could represent multisets as vectors in which the multiplicities of the
symbols in V are stored. The leaves of the MTBDDs for the signatures would
then be labeled with the representation of R(s, B) instead of with real numbers.
The drawback of this option is that we have to make considerable changes in
the BDD-library, since all operations and in particular the caching strategies for
BDD nodes are optimized for storing integer or floating-point values.

A much simpler approach is to represent the multisets as MTBDDs in the same
way as we have done for representing partitions. We pre-suppose an arbitrary,
but fixed order on the symbols in V , i. e. V = (μ0, . . . , μn−1). We introduce
l = �log2 n� new BDD variables a = (al−1, . . . , a0) which encode the index of
the symbols. A multiset S ∈ M(V ) is then encoded by an MTBDD S(a) such
that S(a ← 〈i〉) = 1S(μi) (here 〈i〉 again denotes the binary encoding of i).
Instead of leaves which carries the transition rates, we have MTBDDs for the
multiset encoding, resulting in an MTBDD R(s, t, a) for the transition rate
matrix.

This representation integrates seamlessly into our BDD-based framework: if
we use a variable order such that the variables for block numbers and multiset
encoding are placed after the state variables, we do not need to modify any
operations—not even the signature computation and partition refinement. Since
all leaves are now labeled with multiplicities of symbolic rates, no floating-point
numbers are necessary anymore. The algorithm works with integer values solely.
A further advantage is that this technique allows sharing of parts of the multiset
encoding.

Obtaining an ordinary CTMC from a symbolic one, given an interpretation
of the symbols is efficiently possible:

If the interpretation I : V → R
≥0 is given by an MTBDD I(a) such that

I(a ← 〈i〉) = I(μi), we can obtain the transition rate matrix R(s, t) from
R(s, t, a) by

R(s, t) = Q+
a :

(I(a) · R(s, t, a)
)
. (4)

4 Experiments

We have implemented the three variants of the SigRefine algorithm described
in this paper using C++ as the programming language and the g++ compiler
version 4.4.1. For the construction and manipulation of OBDDs and MTBDDs
we used the Cudd library [16]. For the rational arithmetic we took the GNU
Multiprecision Library (GMP) [17]. The three variants of the refinement algo-
rithms are denoted by SigrefR for the rational arithmetic; SigrefF , for the
floating-point arithmetic; and SigrefS , for the version with symbolic represen-
tation of the transition rates. We used the default value 10−12 for the parameter
ε, which controls the creation of new leaves in the floating-point version.

The experiments were conducted on a Dual Core AMD OpteronTM 2.4 GHz
CPU with 4 GB of main memory running Linux in 64-bit mode. We have stopped
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Table 1. Size of the example models

Model States Transitions Model States Transitions

cycling-2 4666 18342 robot-25 61200 325917
cycling-3 57667 305502 robot-26 68900 367397
cycling-4 431101 2742012 robot-27 77220 412253
fgf 80616 562536 robot-28 86184 460617
polling-12 73728 503808 robot-29 95816 512621
polling-13 159744 1171456 robot-30 106140 568397
polling-14 344064 2695168 p2p-4-4 65536 524289
polling-15 737280 6144000 p2p-4-5 1048576 10485761
polling-16 1572864 13893632 p2p-4-6 16777216 201326593
ftwc-2-2 15769 91232 p2p-5-4 1048576 10485761
ftwc-2-3 256932 1697760 p2p-5-5 33554432 419430401
ftwc-2-4 3803193 27771984 p2p-5-6 1073741824 16106127361
ftwc-3-1 23040 153600 p2p-6-5 1073741824 16106127361
ftwc-3-2 1889947 15302784 p2p-7-5 34359738368 601295421441
kanban-3 58400 446400 kanban-4 454475 3979850

any experiment that took more than 7200 seconds or required more than 3 GB
of main memory.

We consider seven different example models from the literature to evaluate
the performance of the algorithms: a fault-tolerant worstation cluster system
(FTWC) [18], a peer-to-peer (P2P) protocol based on BitTorrent (studied in [19]),
a cyclic server polling system [20], a robot moving through an n × n grid [21]
(robot), a Kanban production system [22], and two biological models: the first
one describes the Fibroblast growth factor signaling (FGF) within cells [23],
and the second one is a probabilistic model of cell cycle control in eukaryotes
(cycling) [24].

For the FTWC model, we converted the SAN (Stochastic Activity Network)
specification to the PRISM input language. We obtained the PRISM speci-
fications of the other six models from http://www.prismmodelchecker.org/
casestudies/index.php.

All but the FGF model are parametrized. The first two models have two
parameters. For FTWC, they denote the number of computers in the system
and the number of memory modules in each computer, respectively. For P2P,
they represent the number of clients and the number of blocks of the file to be
transmitted, respectively. The remaining models have only one parameter: for
the polling benchmark, the parameter denotes the number of servers; for the
robot benchmark, the size of the grid; in the Kanban benchmark, the parameter
denotes the number of tokens in the system, and for the cell cycle control it
denotes the initial number of molecules.

For the sake of simplicity, we start with the trivial initial partition P (0) = {S}.
With the exception of the Kanban model, all of these Markov chains can be min-
imized, i. e., the quotient system is smaller than the original one. The quotient
model of the Kanban system, however, has the same size as the input model.
Table 1 contains the number of states and transitions of all model instances
before minimization.
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The results we obtained with the three program versions are shown in Table 2.
For each benchmark, the table contains three lines of information; the first is
for SigrefR; the second, for SigrefF ; and the third line contains the results
obtained using SigrefS .

If we compare the rational and the floating-point variant, the first observation
is that there is a benchmark, namely fgf, for which the floating-point variant
did not terminate. A more detailed look at the program output for this case
shows that after eight iterations, the algorithm starts alternating between a
partition consisting of 38829 blocks and one with 38833 blocks, thereby never
reaching a fixed point. Numerical errors are the reason why an unnecessarily
fine partition P is computed. When the signatures are computed w. r. t. P , the
rounding error which had made the signatures of two blocks B, B′ different,
does not occur. Therefore the signatures of the states in B and B′ become
identical again. Therefore, B and B′ are merged again. The refinement of this
finer partition results in P , closing the cycle.

The second observation is that there are some benchmarks, e. g. cycling-3,
cycling-4, and all ftwc-benchmarks (with the exception of ftwc-2-2) for which
SigrefF yields a finer result due to rounding errors than SigrefR. It cannot
be guaranteed that this partition is a correct bisimulation at all, since rounding
errors can make the signatures of states with slightly different rate equal. Fur-
thermore, in these cases SigrefF needs more iterations to reach the fixed point.
This increases the runtime considerably.

On benchmarks for which both the variant with rational and with floating-
point arithmetic yield the same result, the runtime and memory consumption
of both tools are almost identical (with rational arithmetic a few hundred kilo-
bytes more memory are required). That the runtimes are almost identical may be
surprising: typically, rational arithmetic is considered much slower than floating-
point arithmetic which is directly supported by the CPU. We performed a de-
tailed profiling of SigrefR and measured the fraction of the runtime consumed
by the rational arithmetic. In no case was it more than a few percent, because
the only affected function is the computation of the signatures. The runtime of
this operation—like most BDD operations—is clearly dominated by cache look-
ups. They are needed to keep the BDD reduced (so-called UniqueTable) and to
avoid unnecessary re-computations of intermediate results (ComputedTable).

Next we compare the version with rational arithmetic, SigrefR, and the
version with the symbolic representation of transition rates, SigrefS . SigrefR

always returns the coarsest bisimulation for the current interpretation of the
rate symbols, whereas SigrefS yields the coarsest interpretation-independent
bisimulation. The latter may be finer, but—as we can see in Table 2—for most
of the models, the sizes of the quotient systems are identical. The only exceptions
are the three cycling benchmarks, for which SigrefS creates more blocks.

On the benchmarks for which both tools return the same result, SigrefS is
in most cases slightly slower than SigrefR. This is due to the additional BDD
variables for encoding the rates, which make the MTBDDs larger. This is also
the reason why SigrefS requires a few Megabytes more memory. An exception
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Table 2. Experimental results (first line: SigrefR, second line: SigrefF , third line:
SigrefS)

Model Iter. Blocks Time [s] Mem. [MB] Model Iter. Blocks Time [s] Mem. [MB]

cycling-2 6 3511 0.87 69.09 robot-25 49 60600 72.18 132.50
6 3511 0.84 66.91 49 60600 72.09 130.24
6 3997 1.14 57.17 49 60600 108.91 123.61

cycling-3 6 40659 19.55 146.18 robot-26 51 68250 87.48 134.40
13 43742 48.29 149.07 51 68250 87.23 132.15
6 48138 23.81 176.58 51 68250 127.78 137.68

cycling-4 6 282943 213.69 972.87 robot-27 53 76518 99.56 135.78
13 321416 573.04 972.64 53 76518 99.51 133.53
6 339367 311.98 1304.48 53 76518 146.66 149.06

fgf 9 38639 70.63 226.49 robot-28 55 85428 120.03 139.88
— No termination — 55 85428 119.81 137.63

9 38639 73.52 254.45 55 85428 162.63 163.19

polling-12 23 6144 17.20 94.79 robot-29 57 95004 140.98 145.19
23 6144 17.11 92.55 57 95004 140.88 142.92
23 6144 20.56 85.52 57 95004 197.68 168.32

polling-13 25 12288 52.60 121.39 robot-30 59 105270 201.14 162.48
25 12288 52.44 119.15 59 105270 164.18 160.21
25 12288 58.27 125.39 59 105270 228.92 181.07

polling-14 27 24576 139.42 198.44 p2p-4-4 3 70 0.07 39.72
27 24576 139.44 196.19 3 70 0.06 37.46
27 24576 166.96 200.02 2 70 0.04 37.50

polling-15 29 49152 342.98 417.63 p2p-4-5 3 126 0.72 65.90
29 49152 342.37 415.39 3 126 0.69 63.61
29 49152 429.88 377.95 2 126 0.48 63.65

polling-16 31 98304 870.61 806.26 p2p-4-6 3 210 12.33 122.77
31 98304 869.71 804.01 3 210 12.27 120.64
31 98304 1101.67 749.89 2 210 7.41 120.56

ftwc-2-2 3 703 0.31 49.20 p2p-5-4 3 105 0.36 45.83
13 703 1.25 55.79 3 105 0.36 43.62
3 703 0.27 45.43 2 105 0.23 43.62

ftwc-2-3 3 2145 1.32 75.31 p2p-5-5 3 196 8.00 83.20
16 10557 56.35 139.35 3 196 7.93 80.96
3 2145 1.24 70.59 2 196 8.77 81.11

ftwc-2-4 3 5151 6.18 90.96 p2p-5-6 3 336 887.49 263.14
20 93866 919.41 854.40 3 336 885.55 261.18
3 5151 5.08 94.14 2 336 563.10 260.90

ftwc-3-1 3 969 0.71 69.04 p2p-6-5 3 266 267.64 88.79
13 2126 7.03 70.64 3 266 266.60 86.43
3 969 0.71 66.18 2 266 137.60 85.89

ftwc-3-2 3 9139 14.73 185.31 p2p-7-5 3 336 2844.46 110.22
21 24249 273.34 387.83 3 336 3780.50 107.53
3 9139 15.61 185.93 2 336 1580.29 106.73

kanban-3 7 58400 49.40 267.68 kanban-4 8 454475 741.55 2582.63
7 58400 52.31 248.10 8 454475 749.98 2483.12
7 58400 52.59 284.11 8 454475 816.14 2604.74

to this trend are the p2p benchmarks. On these, SigrefS requires one iteration
less than SigrefR to reach the fixed point. This also demonstrates the effect that
R(s, S′) �= R(t, S′), but for the current Interpretation I, I(R(s, S′)) = I(R(t, S′))
for some set S′ ⊆ S. Therefore, after one refinement step, SigrefR yields a
coarser partition than SigrefS , although in the end they return the same result.
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5 Conclusion

In this paper we have presented two different approaches which can be used for
reliable bisimulation computation: the first one is the usage of rational arith-
metic for all numerical computations. This yields an algorithm which is clearly
superior to the standard variant that is based on floating-point arithmetic: using
rational arithmetic, we can always obtain the coarsest bisimulation, the runtime
and memory overhead is negligible, and in those cases where floating-point arith-
metic creates a partition which is unnecessarily fine, rational arithmetic is even
faster than floating-point arithmetic. Furthermore, termination is guaranteed if
rational arithmetic is used, which is not the case for floating-point arithmetic,
as one of our example benchmarks has shown.

The second approach relies on a symbolic representation of the transi-
tion rates. Using this technique we can compute the coarsest interpretation-
independent bisimulation, i. e. the coarsest bisimulation which does not depend
on the actual values of the transition rates. Our benchmarks have shown that we
nevertheless obtain in many cases the same result as with rational arithmetic.
Only for a few exceptions the algorithm returns a finer partition. This symbolic
handling of the transition rates causes a little overhead due to additional BDD-
variables. But its advantage is that the actual values of the rates can be chosen
after quotient computation.

In summary, we can conclude that there is no reason to use floating-point
arithmetic for signature-based bisimulation computation. Rational arithmetic
produces reliably the coarsest bisimulation without any noticeable overhead. If
the option to modify the transition rates after minimization is required, it is
advantageous to use the algorithm with symbolic transition rates instead of re-
computing the quotient after changing the rates.

The techniques presented here are not restricted to (strong) bisimulation for
CMTCs. They can also be applied to other types of bisimulation, for instance
weak and backward bisimulation for CTMCs, to strong, weak, and branch-
ing bisimulation on interactive Markov chains, and to (strong) bisimulation on
discrete-time Markov chains.

Acknowledgement. We thank Holger Hermanns from the Saarland University for
his helpful comments.
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Abstract. We present a tool for the analysis of fault-tolerance in packet-switched
communication networks. Network elements like links or routers can fail or un-
expected traffic surges may occur. They lead to service disruptions and degrada-
tions. Our tool quantifies these risks and presents a comprehensive digest of the
results. We explain the core idea of the analysis and illustrate the tool.

1 Resilience Analysis

In previous work [1], we developed a framework for resilience analysis of packet-
switched communication networks. Before we present the tool, we give a brief insight
into the theoretical concept.

To analyze the resilience of a packet-switched communication network we require a
model of the network’s topology and the link bandwidths. The routing is known for the
failure-free case and it can be computed for all possible failure cases. Further inputs are
the expected traffic matrix as well as a probabilistic model for traffic surges h. Finally,
a probabilistic model for link and router failures s is needed.

A networking scenario z = (s, h) is characterized by a failure pattern s and traffic
pattern h. An analysis of all possible networking scenarios is prohibitive because their
number increases exponentially with the network size. Therefore, the most probable
networking scenarios Z are identified and only they are used for the analysis. The se-
lection process is controlled by a threshold pmin which controls the probability of the
not-considered networking scenarios and provides error bounds on the obtained results.

In case of a network element failure, traffic can be rerouted which increases the
relative load on the links of the backup paths. Such an increase can also be observed
due to traffic surges. To analyze this effect, we calculate the distribution of the relative
load for all links in the network by analyzing the relative link load for each considered
networking scenario z ∈ Z and weighting these partial results with the probability of
that networking scenario. If a network is physically partitioned by the failure of network
elements or if the routing algorithm cannot provide a backup path, the network may be
unavailable for some ingress-egress pairs. This unavailability is also calculated.

This analysis leads to extensive results which are hard to monitor. We use a comple-
mentary cumulative distribution function (CCDF) of the relative load per link. Further-
more, we propose to condense the information of the CCDF into a single value and use
� This work is funded by Deutsche Forschungsgemeinschaft (DFG) under grant TR257/23-2.
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this value to color the corresponding link in the network graph. This allows to easily
view the risk of overload in a network. The unavailability can be presented per ingress-
egress pair, it can be aggregated per router, or it can be expressed relative to the overall
traffic.

Further details and algorithms are available in [1]. In [2] we proposed additional
illustrations to compare the potential overload for different routings.

2 ResiLyzer

The ResiLyzer has been developed to implement the presented concept into a software
tool. An analysis with the ResiLyzer normally consists of four steps. First, the necessary
input data is provided by loading existing topology, traffic matrix, and link cost files or
creating new ones via the corresponding panels or menu bars. Second, the relevant
networking scenarios including effective topologies and traffic matrices are configured.
Third, the general analysis is invoked and the analytical results are computed. Fourth,
the analytical results are interpreted by choosing one of the proposed comprehensive
views or exporting the raw data for further analysis.

The ResiLyzer is implemented as an Eclipse RCP application. All elements of the
tool are modular which makes them easily extensible. Figure 1 shows an overview of

Fig. 1. Program structure of the ResiLyzer
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the program structure. Each module is displayed together with its main features that are
currently implemented. The application core is formed by the Eclipse RCP application
and the corresponding GUI. There are currently four input modules: modules for topolo-
gies, traffic matrices, link costs, and routing. The ResiLyzer has been equipped with a
large collection of precalculated example scenarios including the Rocketfuel topologies
[3] and a selection of random topologies created with the Waxman model [4]. These
scenarios consist of the topologies, corresponding traffic matrices created with a simple
gravity model [5], and link costs optimized with our NetOpt tool [6,7]. The currently
implemented routings of the ResiLyzer include ECMP, OSPF as well as Unique Short-
est Path (USP) [8]. Additionally, several Fast ReRoute (FRR) mechanisms have been
implemented.

The calculation of the considered networking scenarios z including failure scenarios
s and traffic surges h is realized by special modules. Failure scenarios can be created
either probabilistic with a threshold pmin or by selection of failure types, e.g., all single
link and node failures. The currently supported types of traffic scenarios are hot-spot
scenarios and interdomain rerouting scenarios.

Fig. 2. Screenshot of the ResiLyzer

The interpretation and illustration of the analytical results are performed by the un-
availability and the overload module. Our tool offers different views and graphs to allow
for a simple monitoring of fault-tolerance. The views can be activated and deactivated
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separately. The user can reach a certain view intuitively by selecting the corresponding
element, e.g., links or failure scenarios. For instance, selecting a failure scenario shows
the unavailability and load situation in the network in this failure scenario, selecting a
link shows the relative link load of this link in all failure scenarios.

Figure 2 shows a screenshot of the ResiLyzer graphical user interface. It allows the
user to highly adapt one’s personal view on the tool, selecting the needed menus, panels,
windows, etc. In the displayed example, a possible view configured for the analysis of
the resilience data is shown. The menu (1) gives access to all functionality and also
allows to toggle the different views. Area (2) contains a graph of the network topology.
Depending on the current mode this topology graph can be displayed differently. In
this case, the links are colored indicating the potential overload due to network failures.
(3a) shows a summary of the input data and the values configured for the networking
scenario computation. (3b) shows the properties of the link Madrid - Bordeaux and the
traffic distribution on this link. (3c) contains a conditional CCDF of the relative link
load for the same link together with a lower and an upper bound for the unconditioned
CCDF. (3d) contains the network unavailability perceived by all aggregates of router
Madrid. Further information about these graphs can be found in [1].

3 Conclusion

We presented the ResiLyzer, a tool for resilience analysis in packet-switched commu-
nication networks. The ResiLyzer offers a clear interface to input network data and
calculates disconnection probabilities per ingress-egress pair and overload probabilities
per link. In addition, it provides many options for the visualization of the computed
results. Our approach defines a set of networking scenarios for the analysis whose size
can be controlled by parameters so that the accuracy of the results can be traded for
computation time.
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1 Introduction

Measuring run time behaviour of systems under load can cause the need for
complex workload definitions, measurement strategies and integration of load
generation techniques. In this contribution we present SyLaGen (“Synthetic
Load Generator”), a load generation environment that focuses on extendability
with respect to four different aspects: First, a system under test may offer differ-
ent interfaces for handling external requests, thus a load generator must be able
to handle different protocols randomly and in parallel. Second, load generation
for a client-server system may require complex client behaviour that cannot be
formulated in a simple descriptive way, but instead with non-trivial algorithms
that have to be implemented programmatically. Third, more than simple atomic
measurements may be required in complex environments, so that strategies ap-
plying sequences of measurements to a system should be configured. Finally,
comprehensive requirements engineering may result in complex use cases that
cannot be modelled as linear scripts.

The extendability of SyLaGen considering these four aspects is realized by an
architecture providing a platform with load generation functionality upon which
modules can be created descriptively or programmatically. They are integrated
in the system by a simple provision of libraries. Thus, SyLaGen can be easily
supplemented with project-specific complex functionality. SyLaGen has been
in productive use with this concept since 2002.

To generate load on different independent computers, SyLaGen has a dis-
tributed architecture. The Master component controls the measurement process
and directs Clients that run on different hardware nodes in a network. On each
client several Worker threads are running that generate the actual load. Mas-
ter and clients communicate by means of a socket-based protocol that can be
used in a variety of programming languages. This architecture is not unusual
and can be found in other load generator tools, too. However, we instrument the
distribution for our purpose in special ways, as we will now describe.

2 Load Models

Load being generated is often modeled after the behaviour of human users. In
many cases no linear or otherwise exactly predictable user behaviour can be
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assumed. In addition, a realistic scenario may require generation of moderate
load during the whole measurement as well as load peeks in some rare moments.
Thus the synthetic load generation faces the challenge to represent probabilistic
paths being taken between singular actions. SyLaGen employs probabilistic
load models which also exist as additions to other tools like JMeter [1]. Based
upon this, actual workloads can be defined for different use cases measuring a
system under test.

In SyLaGen workload is described in terms of flows which are mainly a
transition system F = 〈S, T, W 〉. S = {S1 . . . Sn} is a set of states that contain
load generating operations, i.e. requests to the system under test. T = S × S
is a set of transitions connecting states. W = {WS1 . . . WSn} is a set of integer
weights assigned to each transition. From all weights the relative probability for
each path in the transition system can be calculated. A workload may consist of
several flows, again each with a weight, so different flows can be performed with
different probability. Flows can also be invoked in states of other flows, providing
even more flexibility. While the transition system defines possible sequences of
load generating actions and their probability, expectations about the system
performance are formulated in terms of turnaround times: SyLaGen considers
the whole time needed by the system under test to respond to a request, including
the complete stack of underlying platforms, e.g. the network. For each flow,
two times can be defined: The mean turnaround time is mandatory and defines
which turnaround time for the related flow is expected in the average case.
The maximum turnaround time is optional and may define an upper bound for
turnaround times that are acceptable. These time requirements are interpreted
by load generation strategies (see section 4) for different purposes.

3 Adapters

Modularity with respect to different load generation technologies is realized with
an adapter concept: SyLaGen is not limited to access a fixed set of protocols
or platforms, but allows to plug in individual libraries. These libraries can be
specific for different protocols, platforms, systems under test or even single use
cases. Adapters for protocols exist e.g. for web services (SOAP), Java RMI, file
servers (SMB), and simple web applications (HTTP). Rich Internet Applications
with AJAX [2] are an example for non-trivial platforms that are supported by
existing adapters. Among others, a use-case-specific adapter exists that controls
a graphical user interface using macros accessing its visual components.

Although adapters are specialized, they are encapsulated by a common ab-
straction level allowing to address them in a consistent way in load models. The
abstraction is described by adapter methods: Each adapter publishes the names
of provided load generating operations and optionally a list of typed parameters
as well as a typed result value. A global storage for return values allows to use
them as parameters in other invocations, thus enabling to realize complex load
scenarios and the related data flow.

During measurement, adapters are distributed in a centralized way by the
Master that transfers the libraries to all participating clients. In the clients,
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each worker creates a dedicated instance of the adapter. Master and clients are
decoupled with a simple protocol, so that libraries containing adapters can be
created using different languages and platforms. So far, clients and adapters for
Java and C# exist. In the case of Java, the libraries are Java Archives (JAR)
including class files, other libraries and arbitrary binary resources. The Java
client is run using the Java runtime environment. The same client can also be
run with the IKVM virtual machine [3] allowing to integrate libraries for adapters
written in C#.

4 Load Generation Strategies

Another point of extendability in SyLaGen is the support of different load
generation strategies by providing an abstraction layer: On the one hand, the
platform performs the measurement with given parameters like number of work-
ers and computes the results afterwards. On the other hand, modules for load
generation can be created on top of this that decide about the measurements to
perform and the parameters to use. Currently, the following strategies are used:

The single measurement strategy performs exactly one measurement with
the given workload and number of workers. The mean turnaround time defined
in the workload is interpreted as user behaviour: If the system under test re-
sponds faster, SyLaGen takes random pauses before triggering the next re-
quest so that the request frequency meets the expected mean turnaround time.
In contrast, the stress strategy does not follow any restrictions, but makes as
many requests as possible to generate the maximum possible load. In both cases
the results of interest are the turnaround times for the requests sent during
measurement.

In the exploration strategy the number of workers is increased or decreased
stepwise depending on the desired turnaround times. A system is considered
overloaded if the mean turnaround time of all workers exceeds the desired mean
turnaround time or the maximum turnaround time is violated by at least one
adapter call. The result of this strategy is the number of workers that the
system under test can serve with the given limitations regarding turnaround
times.

The abstraction layer implies that load generation strategies work with a lim-
ited number of variables and describe different well-defined states in the load
generation process to fulfill their purpose. They are thus candidate for modeling
with state machines, but are also integrated in arbitrary program code and con-
tain complex business logic like calculations based on measurement results. Thus
their code cannot be generated from abstract model specifications. Instead, the
decision was made to employ embedded models [4] that represent model specifi-
cations in a well-defined program code pattern. Since the approach bridges the
gap between different abstraction levels, it is appropriate for modeling the load
generation strategies. However, this is not mandatory since any Java component
using the abstraction layer can serve as a load generation strategy.
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Fig. 1. Schematic view on the SyLaGen components

5 Conclusion

In this contribution we presented SyLaGen, a load generation environment that
focuses on extendability to realize complex scenarios. This concerns different in-
terfaces of systems under test, representation of complex client activities, indi-
vidual load generation strategies and non-linear client behaviour. The resulting
architecture is illustrated in figure 1: The Master controlling the measurement
delegates control to load generation modules. The underlying platform transfers
measurement data to clients where worker threads execute probabilistic load
scripts. The nodes in the scripts access adapters that provide a unified interface,
but can invoke a system under test with arbitrary technologies and protocols.

Since 2002, this architecture has proven to be a dependable solution for load
generation with complex use cases, unusual protocols, and problem-specific im-
plementations of requirements. However, since SyLaGen does mainly provide
the environment and not ready solutions, simple use cases require the same effort
when adapters or strategies must be created. Future work will thus focus on in-
strumenting the adapter concept to provide out-of-the-box solutions for different
technologies and protocols.
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Abstract. The Processes Fitting Toolkit Dortmund (ProFiDo) provides
a graphical user interface supporting the use of a variety of tools for the
fitting and modelling of arrival processes. In this paper we present the
first version of ProFiDo emphasising the fitting of Markovian Arrival
Processes (MAPs).

1 Introduction

Very often arrival processes are specified by independent and identically dis-
tributed random variables and several tools and methods are available for fitting
specific types of distributions [6,7,12]. In a variety of application areas, like com-
puter networks, this type of specification has turned out as being insufficient
(cf. [10]), since time-dependencies and correlations between arrival events are
not captured. For the specification of time-dependent stationary input processes
two directions are well-known: AR (Auto Regressive), ARMA (Auto Regressive
Moving Average), ARIMA (Auto Regressive Integrated Moving Average) and
ARTA (Auto Regressive To Anything [4] ) models became prominent with the
work of Box and Jenkins [2] and MAPs (Markovian Arrival Processes) whose
intensive investigation started with the work of Neuts [8].

In recent years several of these input models have been incorporated into
software for statistical computing, e.g. [11], or are supported by specific tools like
ARTAFACTS [5], ARTAFIT [1], MAP EM [3], MAP MOEA [9]. Even though
all these tools address the fitting of input models, there handling is different,
since (command-line) interfaces and input/output formats differ. This makes
the use and comparison of these tools and their corresponding fitting methods
cumbersome.

The Processes Fitting Toolkit Dortmund (ProFiDo) described in the following
section aims at reducing these deficits by providing a graphical user interface
and an XML-based interchange format supporting the consistent use of tools for
fitting input models.

� This research is supported by the Deutsche Forschungsgemeinschaft (DFG) within
the project “Markovsche Ankunfts- und Bedienprozesse zur Leistungs- und Zu-
verlässigkeitsanalyse” (Markovian Arrival and Service Processes for Performance
and Reliability Analysis).
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2 The Processes Fitting Toolkit Dortmund

ProFiDo is a Java based software integrating different command-line based tools
into a consistent interface allowing the user to specify a custom workflow of
program execution and result propagation. To enable maximum flexibility we
choose a graph based approach for displaying the workflow.

Within the graph each node, also called job in the following, represents one
execution of a command-line tool. Currently a first set of jobs is supported,
including fitting tools like G-FIT and MAP EM and additional utilities for in-
put/output purposes. The latter type of jobs includes a tool Plot, which is able
to visualise model characteristics, such as cumulative distribution functions and
autocorrelation lags for given MAP descriptions or traces. Jobs can be placed
arbitrarily on a grid-based canvas presented by the GUI’s main window. Each
job has its own properties window in which its parameters are defined. In or-
der to avoid errors and to support the user, instant value checks and optional
information texts for each parameter value are provided within the properties
window.

The arcs of the graph represent the data flow between different jobs, with
the output of a job being used as input for a subsequent job. Due to various
origins and authors, most fitting tools use different input/output formats, leading
to difficulties in exchanging results directly. To overcome these difficulties, we
introduced an XML-based interchange format enabling a consistent data flow
between different tools. In order to achieve this interchangeability we provide
a set of tool specific converter scripts, which are used by the GUI to convert
the input/output of each tool into the corresponding XML-description and vice
versa. Since this conversion happens automatically and hidden from the user,
no further consideration of different formats is needed when connecting different
jobs. In this way a simple specification of workflows is possible. E.g., the output of
a fitting tool can be used as input for a trace generator or a trace and the output
of several fitting tools can be used as input for a plot. The GUI additionally
supports the user in defining parameters for the jobs and manages default result
filenames helping to avoid error-prone manual specifications. A sample workflow
used to compare the fitting quality of two different tools by incorporating the
above mentioned plot generator can be seen in Fig. 1. In addition to the main
window’s canvas the properties window of the G-FIT job is shown. The properties
window allows for a check of parameters and to specify whether a parameter
should be visible in the graph.

Since data flow within the graph is represented by arcs and only involves the
XML-based interchange format, an additional type of node representing the con-
version of external non XML-files (e. g. a trace file) into the corresponding XML-
format (and accordingly vice versa) has been introduced. Those “file-nodes” (see
nodes I and O in Fig. 1) can be directly connected to jobs and thus allow an
easy import of data into the workflow and also enable a wide range of different
outputs (Images, PS-files, etc.).

After creation of a workflow the GUI allows for the export of a folder con-
taining all needed binaries and scripts. By analysing the data flow, the GUI
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Fig. 1. Sample Workflow

is able to determine the execution order of the jobs and creates a bash script
which executes the entire workflow. In order to allow a wide use of the workflow,
several features for documentation purposes are implemented, including graph-
ical export of the workflow displaying all needed information such as parameter
details, result types and more.

The GUI supports the user with other helpful features like an unlimited undo
history which can be saved and loaded with the graph. ProFiDo can be easily
extended to incorporate other command-line based tools, since the core function-
ality of the GUI is specified in an XML-based configuration file which is parsed
on each startup. The different job types are determined by the different tools
specified in this configuration file. Therefore the GUI can be extended easily by
adding a tool’s description and providing corresponding converter scripts, i.e. a
converter for transforming data in the XML-based interchange format into the
tool’s input format and a converter which transforms the tool’s output into the
XML-based interchange format.

3 Conclusions

We presented ProFiDo, which provides an easy to extend graphical user interface
for consistent use of a variety of tools for fitting input models and uses an XML-
based interchange format for model descriptions.
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This paper presented a first prototype of the GUI. Future work will be directed
towards integrating additional, especially “AR-based” fitting tools that have
been mentioned in Sec. 1. Since some of the fitting tools might require a long
runtime we plan to add support for a parallel execution of tasks on different
machines. In addition to the existing feature of exporting plots of traces and
fitted models as graphics we intend to add further export functions like exporting
properties of the models into LaTeX tables. Furthermore, we plan to implement
support for the specification of experiment series by providing a simple way to
specify a series of fitting tasks for which only some of the parameters for the
fitting tools are varied while other parameters are kept constant.
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1 Introduction

The ProC/B toolset [1] is used to model an analyze process chain models in ap-
plication fields ranging from logistics systems to service oriented architectures.
The language comes with an GUI supporting users with different levels of ex-
perience. Simulative analysis can be performed with OMNeT++ [2]. A different
but also OMNeT++-based class of models are communication networks created
with the popular INET 1 framework. Network and process chain models have
been two separate worlds. Recently we presented a hybrid approach for model-
ing SOA systems using ProC/B combined with INET models [3].

Our prototype offered combined models to a small group of expert users as it
did not offer a user interface. Model description files had to be modified manually,
a process prone to errors taking detailed knowledge of the simulation internals.
To address this, a well integrated GUI was developed in [4]. The extensions to
the ProC/B -editor shown in this paper are based on Mr. Kaufmanns [4] work.

2 Bridging Two Model Worlds

ProC/B is used to model process chains by graphic notation. The language
defines two main elements: process chain elements (PCEs) and function units
(FUs). PCEs are used to describe behavior in systems. They can be combined as
chains to model complex activities. FUs offer services to process chains, ProC/B
defines basic FUs like servers as waiting queues, counters for storage functions as
well as composed FUs. Operators for decisions, parallelism and synchronization
are available in process chains, variables assignable to model objects support
them.

Model time is defined in ProC/B as follows: Calling a service or movement of
objects along process chains is timeless. Time progress can by found at delaying
process chain elements and basic function units with limited resources. Service
or queueing times are located in them, several queueing strategies are choosable
[1]. Synchronization of process chains also brings time consumption.

1 http://inet.omnetpp.org
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Fig. 1. ProC/B online booking example

Fig. 2. INET network example

Figure 1 shows a small online booking system as an example. The process chain
handles arriving customers with two PCEs: reserve Transaction in will call
service Server.request to reserve transaction time instantaneous on process
arrival. The server will work for the time necessary given by amount. When Server
is done the process returns immediately and continues to PCE do Booking. The
second PCE will call service process in FU Booking System. Further details on
ProC/B can be found in [1].

A tool to simulate communication networks is the OMNeT++ discrete event
simulation environment. The basic model entities called modules. Modules can
either be simple or composed of other modules. Their definitions, relations and
compositions are described in OMNeT++’s textual *.ned -files. The modeling in-
terface of OMNeT++ is geared towards computer networks but does not specify
any specific protocol or technology. Hence several modeling libraries have been
developed for OMNeT++. One of the most common for TCP/IP networks is
the INET library. It provides models of TCP/IP Stacks and predefined modes
of data transmission like ethernet or wireless connections. It also offers predefined
modules for common network elements like routers, switches and hosts. Figure 2
shows a typical example of an INET network structure with hosts connected via
several routers.

As described above, both languages use OMNeT++ as common simulator.
Using the same simulation environment opens the possibilities to build hybrid
simulation models with interaction between the world of process chains and in-
formation networks. In [3] we used the combined simulation approach to analyze
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models of SOAs. Services are described as process chains, the used communica-
tion system by INET .

The domains of ProC/B and INET are merged at model events when PCEs
call the services of a FUs. For simulation of SOAs the process starting a call
and the service provider being triggered can be located on distinct hosts, both
connected with an communication network. Service calls are interpreted as data
transmissions. This adds a third option of time progress to ProC/B : former
timeless service calls in pure ProC/B are delayed by usage of a communication
network. The delay introduced into the call is calculated with help of the INET
model.

3 Integration of INET into the ProC/B-Editor

This requires process chain elements and function units to be related to hosts in
the INET model. Additionally, service call packet sizes in bytes have to be spec-
ified. Our implementation used in [3] was already usable for arbitrary ProC/B
and a wide set of INET models although it lacked intuitivity and user friendli-
ness. The biggest shortfall was the required manual editing of OMNeT++’s *.ned
files resulting from the original ProC/B model after automatic conversion. To
activate hybrid simulation the file path to *.ned files of an existing INET model
had to be inserted into ProC/B models. The network is used as an submodule.
Additionally, the relations between elements of the ProC/B model and hosts in
the INET world were formed by transferring valid hostnames to property fields
available in *.ned -files of converted ProC/B models. This had to be done for
every FU as there was no default host relationship. With none of the properties
being able to be stored in ProC/B model files the complete editing had to be
repeated when the original model was changed.

The editor has been improved in several ways: Now, when setting up a new
ProC/B model, the hybrid simulation can be activated by loading the appendant
INET model via file-chooser. The user is requested to choose a default host for
every function unit. This can be done with an improved property dialog in the
ProC/B -editor. It allows visual selection of an INET host that shall be allocated
to a function unit. The dialog renders a representation of the INET model close
to the known form of other OMNeT++ tools including element positions and
icons (Figure 3). When the model gets more detailed, function units can be
easily assigned via the same user interface to other hosts than the default one.
Choosing a host with GUI support also prevents simulation errors caused by
typing errors in host names.

A technic improvement is the persistence of the relationships between hosts
and FUs in ProC/B ’s model files and incorporation in the model analysis process.
The relationships and the transmission sizes are stored in comment fields in
*.procb files. This format decision has two advantages: tools still unaware of the
included INET model can read new models, thus they can interpret them in the
normal way. Second, ProC/B models stay independent towards their INET part
and can still be analyzed in isolation. In addition, the FU-host relationship is
also transfered into the *.ned input files to the OMNeT++ simulator.
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Fig. 3. Relating a host to a Function Unit in ProC/B -Editor

4 Conclusions

The formerly distinct model worlds of ProC/B and INET can be used in com-
bination. Both models are simulated in a single OMNeT++ process.

To support modellers several enhancements to the ProC/Beditor have been
made. A process chain model can be connected to one INET model. Function
units are related to network nodes within a common user interface. A default
node has to be choosen to keep the model valid. To store the relationship addi-
tional entries have been added to the original ProC/B file format.
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1   Introduction 

1.1   Web-Based Simulation 

Web-based simulation has its major application in teaching, education and 
collaborative model development. Keywords are virtual training environments (VTE), 
virtual classrooms, virtual labs and advanced distance learning [7, 4]. A VTE allows 
its participants to share editing and running of simulation models, to publish self-
developed models and to collaborate in model development. The teacher (in the role 
of an administrator) can provide examples of good practice, templates as basis for 
further development and is able to supervise the participants of a simulation course.  

1.2   DEMOS and JavaDEMOS 

The concepts of the scenario approach of DEMOS (Discrete Event Modelling On 
Simula) due to Graham Birtwistle [8] have been used for purposes of teaching for 
nearly four decades. Many simulationists have been appreciating the concepts of 
building blocks like Res, Bin, CondQueue and WaitQueue, which allow the flexible 
and effective construction of simulation programs. These objects model resources, 
condition queues and other useful simulation concepts. Active elements (processes) 
are defined as entities that follow certain behaviour patterns [1, 5, 6]. 

Nowadays reimplementations of these concepts exist in Java, one of them is 
JavaDEMOS [3]. JavaDEMOS is a Java package that has been developed in a series 
of student projects at the University of Duisburg-Essen. In particular, a GUI for 
execution, control, and observation of JavaDEMOS simulation models has been 
created. JavaDEMOS is freely available for teaching and research .[3]. 

1.3   Motivation for the Development of DELTA 

The major motivation for the development of DELTA ((Discrete Event Simulation 
Learn and Training Application) was to further improve and alleviate the teaching of 
process oriented simulation. To this end the ideas from Web- based simulation as 
described e.g. in [7] have been merged with the JavaDEMOS package into a virtual 
training environment to be used in teaching simulation courses. 
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Fig. 1. Class diagram displaying acquire/release operations on a resource object 

A DELTA administrator (in the role of a teacher) can provide simulation models 
and supervise the progress of students. Students have simple access to simulation 
resources, can develop and run simulation models with the help of a teacher and are 
able to work collaboratively in simulation projects. 

2   Concepts of DELTA 

The DELTA tool implements a Web service that liberates the students from installing 
and configuring a simulation software kit on their own. The only requirement from 
the user side is a Web browser. The DELTA software including JavaDEMOS is 
installed on the server side, where a set of simulation models is ready to be used by 
the students. Moreover DELTA is a platform to exchange simulation models and 
problem solutions among students and to let teachers provide example simulations. 

Users of the DELTA environment can fully implement a JavaDEMOS-project with 
a Web browser. A simple development environment with syntax highlighting, line 
numbering, basic templates and other features is available via the Web interface. 
Upon completion the user can command the Web server to compile and run the 
simulation. After a successful run the results are accessible in various ways. 

In addition to compiler messages DELTA generates class diagrams which are to 
support the user in identifying structural mistakes in the simulation source code. As 
illustrated in Fig.1, basic building blocks and associated operations are provided as a 
graphical representation and the correct allocation of resources can be inspected by 
the user. 

Of course, the user generated code can be saved on the server for further 
refinement or presentation. A simple but effective project manager is integrated in 
DELTA that not only allows students to create and save simulations, but also grants 
administrators the right to make simulations of their choice visible to everyone. 
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Fig. 2. The editor after a compilation error. Basic editing functions and syntax and parenthesis 
highlighting are available. Clicking the error message placed the cursor in the according line. 

Shared editing however is not possible. Simulation code can only be edited by its 
author and by administrators/teachers. 

3   Working with DELTA 

After the login an overview of the available projects is presented. These projects 
include globally visible example simulations as well as private simulation projects of 
the user. All projects can be executed, whereas editing is only allowed for private 
projects. Upon clicking on a simulation one enters the editing mode. The editor 
features syntax and parenthesis highlighting, line numbering, line jumping, text search 
and text replacement, the basic tools one could expect for a development 
environment. Macro functions further alleviate the editing process by preparing code 
fragments that usually reappear in JavaDEMOS simulations. Upon finishing the user 
can leave the editing mode by either saving or discarding the progress so far (Fig. 2). 

The standard overview (Fig. 3, left) is entered that shows the code and enables the 
user to enter the editing mode (the pen), compile and run the simulation (the 
cogwheel), view a class diagram generated from the simulation code (the diagram) 
and view the results of the simulation run (the file). The last two options are only 
available after a successful compilation of the simulation. The steps of compiling and 
running a simulation are executed as one. If the compilation of the source code shows 
errors, the user is guided back to the editor. Additionally to the presented editor 
environment all java error messages are visible and a line throwing an error can be 
easily found by just clicking on the error message (Fig. 2). 

After successful compilation and execution of the simulation we can view the class 
diagram (Fig. 1) and the simulation results by clicking the according symbols which 
are now coloured to indicate their availability. In the result section (Fig. 3, right) the 
provided JavaDEMOS reports are visible. These results are also available as 
spreadsheet. If histograms are part of the simulation the result page provides tabs for 
detailed examination of these histograms.  
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Fig. 3. Simulation overview (left) and results overview (right) 

4   Availability, System Requirements and Future Work 

The DELTA software has been developed as student work at the University of 
Duisburg-Essen [2] and is freely available for teaching and research. The system 
requirements on the server side include Unix or Linux as operating system, a Web 
server (typically Apache), PHP5, MySQL, the JavaJDK and of course the DELTA-
software including the JavaDEMOS package. The use of a dedicated server is 
strongly recommended, as the security aspects of compiling and executing arbitrary 
code on the Web server have not been dealt with yet. On the user side only a Web 
browser is necessary. DELTA is expected to be in use for teaching and training. 
Future versions will include an improved administration of users and groups as well 
as improved security for the Web server. 
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