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Preface

The rapid growth of the World Wide Web over the past two decades tremendously changed
the way we share, collect, and publish data. Firms, public institutions, and private users
provide every imaginable type of information and new channels of communication generate
vast amounts of data on human behavior. What was once a fundamental problem for the
social sciences—the scarcity and inaccessibility of observations—is quickly turning into
an abundance of data. This turn of events does not come without problems. For example,
traditional techniques for collecting and analyzing data may no longer suffice to overcome
the tangled masses of data. One consequence of the need to make sense of such data has
been the inception of “data scientists,” who sift through data and are greatly sought after by
researchers and businesses alike.

Along with the triumphant entry of the World Wide Web, we have witnessed a second
trend, the increasing popularity and power of open-source software like R. For quantitative
social scientists, R is among the most important statistical software. It is growing rapidly
due to an active community that constantly publishes new packages. Yet, R is more than a
free statistics suite. It also incorporates interfaces to many other programming languages and
software solutions, thus greatly simplifying work with data from various sources.

On a personal note, we can say the following about our work with social scientific data:

� our financial resources are sparse;

� we have little time or desire to collect data by hand;

� we are interested in working with up-to-date, high quality, and data-rich sources; and

� we want to document our research from the beginning (data collection) to the end
(publication), so that it can be reproduced.

In the past, we frequently found ourselves being inconvenienced by the need to manually
assemble data from various sources, thereby hoping that the inevitable coding and copy-and-
paste errors are unsystematic. Eventually we grew weary of collecting research data in a
non-reproducible manner that is prone to errors, cumbersome, and subject to heightened risks
of death by boredom. Consequently, we have increasingly incorporated the data collection and
publication processes into our familiar software environment that already helps with statistical
analyses—R. The program offers a great infrastructure to expand the daily workflow to steps
before and after the actual data analysis.
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Although R is not about to collect survey data on its own or conduct experiments any
time soon, we do consider the techniques presented in this book as more than the “the poor
man’s substitute” for costly surveys, experiments, and student-assistant coders. We believe
that they are a powerful supplement to the portfolio of modern data analysts. We value the
collection of data from online resources not only as a more cost-sensitive solution compared
to traditional data acquisition methods, but increasingly think of it as the exclusive approach
to assemble datasets from new and developing sources. Moreover, we cherish program-based
solutions because they guarantee reliability, reproducibility, time-efficiency, and assembly of
higher quality datasets. Beyond productivity, you might find that you enjoy writing code and
drafting algorithmic solutions to otherwise tedious manual labor. In short, we are convinced
that if you are willing to make the investment and adopt the techniques proposed in this book,
you will benefit from a lasting improvement in the ease and quality with which you conduct
your data analyses.

If you have identified online data as an appropriate resource for your project, is web
scraping or statistical text processing and therefore an automated or semi-automated data
collection procedure really necessary? While we cannot hope to offer any definitive guidelines,
here are some useful criteria. If you find yourself answering several of these affirmatively, an
automated approach might be the right choice:

� Do you plan to repeat the task from time to time, for example, in order to update your
database?

� Do you want others to be able to replicate your data collection process?

� Do you deal with online sources of data frequently?

� Is the task non-trivial in terms of scope and complexity?

� If the task can also be accomplished manually—do you lack the resources to let others
do the work?

� Are you willing to automate processes by means of programming?

Ideally, the techniques presented in this book enable you to create powerful collections of
existing, but unstructured or unsorted data no one has analyzed before at very reasonable cost.
In many cases, you will not get far without rethinking, refining, and combining the proposed
techniques due to your subjects’ specifics. In any case, we hope you find the topics of this
book inspiring and perhaps even eye opening: The streets of the Web are paved with data that
cannot wait to be collected.

What you won’t learn from reading this book

When you browse the table of contents, you get a first impression of what you can expect to
learn from reading this book. As it is hard to identify parts that you might have hoped for but
that are in fact not covered in this book, we will name some aspects that you will not find in
this volume.

What you will not get in this book is an introduction to the R environment. There are
plenty of excellent introductions—both printed and online—and this book won’t be just
another addition to the pile. In case you have not previously worked with R, there is no reason
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to set this book aside in disappointment. In the next section we’ll suggest some well-written
R introductions.

You should also not expect the definitive guide to web scraping or text mining. First, we
focus on a software environment that was not specifically tailored to these purposes. There
might be applications where R is not the ideal solution for your task and other software
solutions might be more suited. We will not bother you with alternative environments such
as PHP, Python, Ruby, or Perl. To find out if this book is helpful for you, you should ask
yourself whether you are already using or planning to use R for your daily work. If the answer
to both questions is no, you should probably consider your alternatives. But if you already
use R or intend to use it, you can spare yourself the effort to learn yet another language and
stay within a familiar environment.

This book is not strictly speaking about data science either. There are excellent intro-
ductions to the topic like the recently published books by O’Neil and Schutt (2013), Torgo
(2010), Zhao (2012), and Zumel and Mount (2014). What is occasionally missing in these
introductions is how data for data science applications are actually acquired. In this sense,
our book serves as a preparatory step for data analyses but also provides guidance on how to
manage available information and keep it up to date.

Finally, what you most certainly will not get is the perfect solution to your specific
problem. It is almost inherent in the data collection process that the fields where the data are
harvested are never exactly alike, and sometimes rapidly change shape. Our goal is to enable
you to adapt the pieces of code provided in the examples and case studies to create new pieces
of code to help you succeed in collecting the data you need.

Why R?

There are many reasons why we think that R is a good solution for the problems that are
covered in this book. To us, the most important points are:

1. R is freely and easily accessible. You can download, install, and use it wherever and
whenever you want. There are huge benefits to not being a specialist in expensive
proprietary programs, as you do not depend on the willingness of employers to pay
licensing fees.

2. For a software environment with a primarily statistical focus, R has a large community
that continues to flourish. R is used by various disciplines, such as social scientists,
medical scientists, psychologists, biologists, geographers, linguists, and also in busi-
ness. This range allows you to share code with many developers and profit from
well-documented applications in diverse settings.

3. R is open source. This means that you can easily retrace how functions work and mod-
ify them with little effort. It also means that program modifications are not controlled
by an exclusive team of programmers that takes care of the product. Even if you are
not interested in contributing to the development of R, you will still reap the benefits
from having access to a wide variety of optional extensions—packages. The num-
ber of packages is continuously growing and many existing packages are frequently
updated. You can find nice overviews of popular themes in R usage on http://cran.r-
project.org/web/views/.

http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
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Figure 1 The research process not using R—stylized example

4. R is reasonably fast in ordinary tasks. You will likely agree with this impression if you
have used other statistical software like SPSS or Stata and have gotten into the habit of
going on holiday when running more complex models—not to mention the pain that is
caused by the “one session, one data frame” logic. There are even extensions to speed
up R, for example, by making C code available from within R, like the Rcpp package.

5. R is powerful in creating data visualizations. Although this not an obvious plus for data
collection, you would not want to miss R’s graphics facilities in your daily workflow.
We will demonstrate how a visual inspection of collected data can and should be a
first step in data validation, and how graphics provide an intuitive way of summarizing
large amounts of data.

6. Work in R is mainly command line based. This might sound like a disadvantage to
R rookies, but it is the only way to allow for the production of reproducible results
compared to point-and-click programs.

7. R is not picky about operating systems. It can generally be run under Windows, Mac
OS, and Linux.

8. Finally, R is the entire package from start to finish. If you read this book, you are
likely not a dedicated programmer, but hold a substantive interest in a topic or specific
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Figure 2 The research process using R—stylized example

data source that you want to work with. In that case, learning another language will
not pay off, but rather prevent you from working on your research. An example of a
common research process is displayed in Figure 1. It is characterized by a permanent
switching between programs. If you need to make corrections to the data collection
process, you have to climb back down the entire ladder. The research process using
R, as it is presented in this book, takes place within a single software environment
(Figure 2). In the context of web scraping and text processing, this means that you
do not have to learn another programming language for the task. What you will need
to learn are some basics in the markup languages HTML and XML and the logic of
regular expressions and XPath, but the operations are executed from within R.

Recommended reading to get started with R

There are many well-written books on the market that provide great introductions to R.
Among these, we find the following especially helpful:

Crawley, Michael J. 2012. The R Book, 2nd edition. Hoboken, NJ: John Wiley & Sons.
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Adler, Joseph. 2009. R in a Nutshell. A Desktop Quick Reference. Sebastopol, CA: O’Reilly.

Teetor, Paul. 2011. R Cookbook. Sebastopol, CA: O’Reilly.

Besides these commercial sources, there is also a lot of free information on the Web. A
truly amazing online tutorial for absolute beginners by the Code School is made available at
http://tryr.codeschool.com/. Additionally, Quick-R (http://www.statmethods.net/) is a good
reference site for many basic commands. Lastly, you can also find a lot of free resources and
examples at http://www.ats.ucla.edu/stat/r/.

R is an ever-growing software, and in order to keep track of the developments you might
periodically like to visit some of the following websites: Planet R (http://planetr.stderr.org/)
provides the history of existing packages and occasionally some interesting applications.
R-Bloggers (http://www.r-bloggers.com/) is a blog aggregator that collects entries from many
R-related blog sites in various fields. It offers a broad view on hundreds of R applications
from economics to biology to geography that is mostly accompanied by the necessary code to
replicate the posts. R-Bloggers even features some basic examples that deal with automated
data collection.

When running into problems, R help files are sometimes not too helpful. It is often more
enlightening to look for help in online forums like Stack Overflow (http://stackoverflow.com)
or other sites from the Stack Exchange network. For complex problems, consider the
R experts on GitHub (http://github.com). Also note that there are many Special Interest
Group (SIG) mailing lists (http://www.r-project.org/mail.html) on a variety of topics and
even local R User Groups all around the world (http://blog.revolutionanalytics.com/local-
r-groups.html). Finally, a CRAN Task View has been set up, which gives a nice overview
over recent advances in web technologies and services in the R framework: http://cran.r-
project.org/web/views/WebTechnologies.html

Typographic conventions

This is a practical book about coding, and we expect you to often have it sitting somewhere
next to the keyboard. We want to facilitate the orientation throughout the book with the
following conventions: There are three indices—one for general topics, one for R packages,
and one for R functions. Within the text, variables and R (and other) code and functions
are set in typewriter typeface, as in summary(). Actual R code is also typewriter style and
indented. Note that code input is indicated with “R” and a prompt symbol (“R>”); R output
is printed without the prompt sign, as in

R> hello <- "hello, world"
R> hello
[1] "hello, world"

The book’s website

The website that accompanies this book can be found at http://www.r-datacollection.com

http://tryr.codeschool.com/
http://tryr.codeschool.com/
http://www.statmethods.net/
http://www.statmethods.net/
http://www.ats.ucla.edu/stat/r/
http://www.ats.ucla.edu/stat/r/
http://planetr.stderr.org/
http://planetr.stderr.org/
http://www.r-bloggers.com/
http://www.r-bloggers.com/
http://stackoverflow.com
http://stackoverflow.com
http://github.com
http://github.com
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://cran.r-project.org/web/views/WebTechnologies.html
http://cran.r-project.org/web/views/WebTechnologies.html
http://cran.r-project.org/web/views/WebTechnologies.html
http://cran.r-project.org/web/views/WebTechnologies.html
http://www.r-datacollection.com
http://www.r-datacollection.com
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Among other things, the site provides code from examples and case studies. This means
that you do not have to manually copy the code from the book, but can directly access and
modify the corresponding R files. You will also find solutions to some of the exercises, as
well as a list of errata. If you find any errors, please do not hesitate to let us know.

Disclaimer

This is not a book about spidering the Web. Spiders are programs that graze the Web for
information, rapidly jumping from one page to another, often grabbing the entire page content.
If you want to follow in Google’s Googlebot’s footsteps, you probably hold the wrong book
in your hand. The techniques we introduce in this book are meant to serve more specific and
more gentle purposes, that is, scraping specific information from specific websites. In the
end, you are responsible for what you do with what you learn. It is frequently not a big leap
from the code that is presented in this book to programs that might quickly annoy website
administrators. So here is some fundamental advice on how to behave as a practitioner of
web data collection:

1. Always keep in mind where your data comes from and, whenever possible, give credit
to those who originally collected and published it.1

2. Do not violate copyrights if you plan to republish data you found on the Web. If the
information was not collected by yourself, chances are that you need permission from
the owners to reproduce them.

3. Do not do anything illegal! To get an idea of what you can and cannot do in your data
collection, check out the Justia BlawgSearch (http://blawgsearch.justia.com/), which
is a search site for legal blogs. Looking for entries marked ‘web scraping’ might help
to keep up to date regarding legal developments and recent verdicts. The Electronic
Frontier Foundation (http://www.eff.org/) was founded as early as 1990 to defend the
digital rights of consumers and the public. We hope, however, that you will never have
to rely on their help.

We offer some more detailed recommendations on how to behave when scraping content
from the Web in Section 9.3.3.
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Introduction

Are you ready for your first encounter with web scraping? Let us start with a small example
that you can recreate directly on your machine, provided you have R installed. The case study
gives a first impression of the book’s central themes.

1.1 Case study: World Heritage Sites in Danger

The United Nations Educational, Scientific and Cultural Organization (UNESCO) is an
organization of the United Nations which, among other things, fights for the preservation
of the world’s natural and cultural heritage. As of today (November 2013), there are 981
heritage sites, most of which of are man-made like the Pyramids of Giza, but also natural
phenomena like the Great Barrier Reef are listed. Unfortunately, some of the awarded places
are threatened by human intervention. Which sites are threatened and where are they located?
Are there regions in the world where sites are more endangered than in others? What are the
reasons that put a site at risk? These are the questions that we want to examine in this first
case study.

What do scientists always do first when they want to get up to speed on a topic? They Wikipedia—
information
source of choice

look it up on Wikipedia! Checking out the page of the world heritage sites, we stumble across
a list of currently and previously endangered sites at http://en.wikipedia.org/wiki/List_of_
World_Heritage_in_Danger. You find a table with the current sites listed when accessing the
link. It contains the name, location (city, country, and geographic coordinates), type of danger
that is facing the site, the year the site was added to the world heritage list, and the year it
was put on the list of endangered sites. Let us investigate how the sites are distributed around
the world.

While the table holds information on the places, it is not immediately clear where they
are located and whether they are regionally clustered. Rather than trying to eyeball the table,
it could be very useful to plot the locations of the places on a map. As humans deal well with
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visual information, we will try to visualize results whenever possible throughout this book.
But how to get the information from the table to a map? This sounds like a difficult task, but
with the techniques that we are going to discuss extensively in the next pages, it is in fact
not. For now, we simply provide you with a first impression of how to tackle such a task with
R. Detailed explanations of the commands in the code snippets are provided later and more
systematically throughout the book.

To start, we have to load a couple of packages. While R only comes with a set of
basic, mostly math- and statistics-related functions, it can easily be extended by user-written
packages. For this example, we load the following packages using the library() function:1

R> library(stringr)
R> library(XML)
R> library(maps)

In the next step, we load the data from the webpage into R. This can be done easily using
the readHTMLTable() function from the XML package:

R> heritage_parsed <- htmlParse("http://en.wikipedia.org/wiki/
List_of_World_Heritage_in_Danger",

encoding = "UTF-8")
R> tables <- readHTMLTable(heritage_parsed, stringsAsFactors = FALSE)

We are going to explain the mechanics of this step and all other major web scraping
techniques in more detail in Chapter 9. For now, all you need to know is that we are telling R
that the imported data come in the form of an HTML document. R is capable of interpreting
HTML, that is, it knows how tables, headlines, or other objects are structured in this file format.
This works via a so-called parser, which is called with the function htmlParse(). In the next
step, we tell R to extract all HTML tables it can find in the parsed object heritage_parsed
and store them in a new object tables. If you are not already familiar with HTML, you will
learn that HTML tables are constructed from the same code components in Chapter 2. The
readHTMLTable() function helps in identifying and reading out these tables.

All the information we need is now contained in the tables object. This object is a list of
all the tables the function could find in the HTML document. After eyeballing all the tables,
we identify and select the table we are interested in (the second one) and write it into a new
one, named danger_table. Some of the variables in our table are of no further interest,
so we select only those that contain information about the site’s name, location, criterion of
heritage (cultural or natural), year of inscription, and year of endangerment. The variables in
our table have been assigned unhandy names, so we relabel them. Finally, we have a look at
the names of the first few sites:

R> danger_table <- danger_table <- tables[[2]]
R> names(danger_table)
[1] "NULL.Name" "NULL.Image" "NULL.Location"
[4] "NULL.Criteria" "NULL.Area.ha..acre." "NULL.Year..WHS."

1This assumes that the packages are already installed. If they are not, type the following into your console:
install.packages(c("stringr", "XML", "maps"))

http://en.wikipedia.org/wiki/List_of_World_Heritage_in_Danger
http://en.wikipedia.org/wiki/List_of_World_Heritage_in_Danger
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[7] "NULL.Endangered" "NULL.Reason" "NULL.Refs"
R> danger_table <- danger_table[, c(1, 3, 4, 6, 7)]
R> colnames(danger_table) <- c("name", "locn", "crit", "yins", "yend")

R> danger_table$name[1:3]
[1] "Abu Mena" "Air and Ténéré Natural Reserves"
[3] "Ancient City of Aleppo"

This seems to have worked. Additionally, we perform some simple data cleaning, a step
often necessary when importing web-based content into R. The variable crit, which contains
the information whether the site is of cultural or natural character, is recoded, and the two
variables y_ins and y_end are turned into numeric ones.2 Some of the entries in the y_end
variable are ambiguous as they contain several years. We select the last given year in the
cell. To do so, we specify a so-called regular expression, which goes [[:digit:]]4$—we
explain what this means in the next paragraph:

R> danger_table$crit <- ifelse(str_detect(danger_table$crit, "Natural") ==
TRUE, "nat", "cult")
R> danger_table$crit[1:3]
[1] "cult" "nat" "cult"

R> danger_table$yins <- as.numeric(danger_table$yins)
R> danger_table$yins[1:3]
[1] 1979 1991 1986

R> yend_clean <- unlist(str_extract_all(danger_table$yend, "[[:digit:]]4$"))
R> danger_table$yend <- as.numeric(yend_clean)
R> danger_table$yend[1:3]
2001 1992 2013

The locn variable is a bit of a mess, exemplified by three cases drawn from the data-set:

R> danger_table$locn[c(1, 3, 5)]
[1] "EgyAbusir, Egypt30◦50'30<U+2033>N 29◦39'50<U+2033>E<U+FEFF> /
<U+FEFF>30.84167◦N 29.66389◦E<U+FEFF> / 30.84167; 29.66389<U+FEFF>
(Abu Mena)"
[2] "Syria !Aleppo Governorate, Syria36◦14'0<U+2033>N 37◦10'0<U+2033
>E<U+FEFF> / <U+FEFF>36.23333◦N 37.16667◦E<U+FEFF> / 36.23333; 37.16667
<U+FEFF> (Ancient City of Aleppo)"
[3] "Syria !Damascus Governorate, Syria33◦30'41<U+2033>N 36◦18'23
<U+2033>E<U+FEFF> / <U+FEFF>33.51139◦N 36.30639◦E<U+FEFF> / 33.51139;
36.30639<U+FEFF> (Ancient City of Damascus)"

The variable contains the name of the site’s location, the country, and the geographic The first
regular
expression

coordinates in several varieties. What we need for the map are the coordinates, given by the
latitude (e.g., 30.84167N) and longitude (e.g., 29.66389E) values. To extract this information,
we have to use some more advanced text manipulation tools called “regular expressions”,

2We assume that you are familiar with the basic object classes in R. If not, check out the recommended readings
in the Preface.
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which are discussed extensively in Chapter 8. In short, we have to give R an exact description
of what the information we are interested in looks like, and then let R search for and extract
it. To do so, we use functions from the stringr package, which we will also discuss in detail
in Chapter 8. In order to get the latitude and longitude values, we write the following:

R> reg_y <- "[/][ -]*[[:digit:]]*[.]*[[:digit:]]*[;]"
R> reg_x <- "[;][ -]*[[:digit:]]*[.]*[[:digit:]]*"
R> y_coords <- str_extract(danger_table$locn, reg_y)
R> y_coords <- as.numeric(str_sub(y_coords, 3, -2))
R> danger_table$y_coords <- y_coords
R> x_coords <- str_extract(danger_table$locn, reg_x)
R> x_coords <- as.numeric(str_sub(x_coords, 3, -1))
R> danger_table$x_coords <- x_coords
R> danger_table$locn <- NULL

Do not be confused by the first two lines of code. What looks like the result of a monkey
typing on a keyboard is in fact a precise description of the coordinates in the locn variable.
The information is contained in the locn variable as decimal degrees as well as in degrees,
minutes, and seconds. As the decimal degrees are easier to describe with a regular expression,
we try to extract those. Writing regular expressions means finding a general pattern for
strings that we want to extract. We observe that latitudes and longitudes always appear
after a slash and are a sequence of several digits, separated by a dot. Some values start
with a minus sign. Both values are separated by a semicolon, which is cut off along with
the empty spaces and the slash. When we apply this pattern to the locn variable with the
str_extract() command and extract the numeric information with str_sub(), we get the
following:

R> round(danger_table$y_coords, 2)[1:3]
[1] 30.84 18.28 36.23

R> round(danger_table$x_coords, 2)[1:3]
[1] 29.66 8.00 37.17

This seems to have worked nicely. We have retrieved a set of 44 coordinates, corresponding
to 44 World Heritage Sites in Danger. Let us have a first look at the data. dim() returns the
number of rows and columns of the data frame; head() returns the first few observations:

R> dim(danger_table)
[1] 44 6
R> head(danger_table)

name crit yins yend y_coords x_coords
1 Abu Mena cult 1979 2001 30.84 29.66
2 Air and Ténéré Natural Reserves nat 1991 1992 18.28 8.00
3 Ancient City of Aleppo cult 1986 2013 36.23 37.17
4 Ancient City of Bosra cult 1980 2013 32.52 36.48
5 Ancient City of Damascus cult 1979 2013 33.51 36.31
6 Ancient Villages of Northern Syria cult 2011 2013 36.33 36.84
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Figure 1.1 Location of UNESCO World Heritage Sites in danger (as of March 2014).
Cultural sites are marked with triangles, natural sites with dots

The data frame consists of 44 observations and 6 variables. The data are now set up in a A first look at
the dataway that we can proceed with mapping the sites. To do so, we use another package named

“maps.” In it we find a map of the world that we use to pinpoint the sites’ locations with
the extracted y and x coordinates. The result is displayed in Figure 1.1. It was generated as
follows:

R> pch <- ifelse(danger_table$crit == "nat", 19, 2)
R> map("world", col = "darkgrey", lwd = 0.5, mar = c(0.1, 0.1, 0.1, 0.1))
R> points(danger_table$x_coords, danger_table$y_coords, pch = pch)
R> box()

We find that many of the endangered sites are located in Africa, the Middle East, and
Southwest Asia, and a few others in South and Central America. The endangered cultural
heritage sites are visualized as the triangle. They tend to be clustered in the Middle East and
Southwest Asia. Conversely, the natural heritage sites in danger, here visualized as the dots,
are more prominent in Africa. We find that there are more cultural than natural sites in danger.

R> table(danger_table$crit)

cult nat
26 18

We can speculate about the political, economic, or environmental conditions in the affected The UNESCO
behaves
politically

countries that may have led to the endangerment of the sites. While the information in the
table might be too sparse for firm inferences, we can at least consider some time trends
and potential motives of the UNESCO itself. For that purpose, we can make use of the two
variables y_ins and y_end, which contain the year a site was designated a world heritage
and the year it was put on the list of endangered World Heritage Sites. Consider Figure 1.2,
which displays the distribution of the second variable that we generated using the hist()
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Figure 1.2 Distribution of years when World Heritage Sites were put on the list of endan-
gered sites

command. We find that the frequency with which sites were put on the “red list” has risen in
recent decades—but so has the number of World Heritage Sites:

R> hist(danger_table$yend,
R> freq = TRUE,
R> xlab = "Year when site was put on the list of endangered sites",
R> main = "")

Even more interesting is the distribution of time spans between the year of inscription
and the year of endangerment, that is, the time it took until a site was put on the “red list”
after it had achieved World Heritage Site status. We calculate this value by subtracting the
endangerment year from the inscription year. The result is plotted in Figure 1.3.
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Figure 1.3 Distribution of time spans between year of inscription and year of endangerment
of World Heritage Sites in danger
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R> duration <- danger_table$yend - danger_table$yins
R> hist(duration,
R> freq = TRUE,
R> xlab = "Years it took to become an endangered site",
R> main = "")

Many of the sites were put on the red list only shortly after their designation as world
heritage. According to the official selection criteria for becoming a cultural or natural heritage,
it is not a necessary condition to be endangered. In contrast, endangered sites run the risk
of losing their status as world heritage. So why do they become part of the List of World
Heritage Sites when it is likely that the site may soon run the risk of losing it again? One
could speculate that the committee may be well aware of these facts and might use the list as
a political means to enforce protection of the sites.

Now take a few minutes and experiment with the gathered data for yourself! Which is the
country with the most endangered sites? How effective is the List of World Heritage Sites in
Danger? There is another table on the Wikipedia page that has information about previously
listed sites. You might want to scrape these data as well and incorporate them into the map.

Using only few lines of code, we have enriched the data and gathered new insights, which
might not have been obvious from examining the table alone.3 This is a variant of the more
general mantra, which will occur throughout the book: Data are abundant—retrieve them,
prepare them, use them.

1.2 Some remarks on web data quality

The introductory example has elegantly sidestepped some of the more serious questions that
are likely to arise when approaching a research problem. What type of data is most suited to
answer your question? Is the quality of the data sufficiently high to answer your question?
Is the information systematically flawed? Although this is not a book on research design or
advanced statistical methods to tackle noise in data, we want to emphasize these questions
before we start harvesting gigabytes of information.

When you look at online data, you have to keep its origins in mind. Information can be What is the
primary source
of secondary
data?

firsthand, like posts on Twitter or secondhand data that have been copied from an offline
source, or even scraped from elsewhere. There may be situations where you are unable to
retrace the source of your data. If so, does it make sense to use data from the Web? We think
the answer is yes.

Regarding the transparency of the data generation, web data do not differ much from
other secondary sources. Consider Wikipedia as a popular example. It has often been debated
whether it is legitimate to quote the online encyclopedia for scientific and journalistic pur-
poses. The same concerns are equally valid if one cares to use data from Wikipedia tables or
texts for analysis. It has been shown that Wikipedia’s accuracy varies. While some studies
find that Wikipedia is comparable to established encyclopedias (Chesney 2006; Giles 2005;
Reavley et al. 2012), others suggest that the quality might, at times, be inferior (Clauson
et al. 2008; Leithner et al. 2010; Rector 2008). But how do you know when relying on one
specific article? It is always recommended to find a second source and to compare the content.

3The watchful eye has already noticed a link on the site that leads to a map visualizing the locations as we did
in Figure 1.1. We acknowledge the work, but want to be able to generate such output ourselves.
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If you are unsure whether the two sources share a common source, you should repeat the
process. Such cross-validations should be standard for the use of any secondary data source,
as reputation does not prevent random or systematic errors.

Besides, data quality is nothing that is stuck to the data like a badge, but rather dependsData quality
depends on the
user’s purposes

on the application. A sample of tweets on a random day might be sufficient to analyze the
use of hash tags or gender-specific use of words, but is less useful for predicting electoral
outcomes when the sample happens to have been collected on the day of the Republican
National Convention. In the latter case, the data are likely to suffer from a bias due to the
collection day, that is, they lack quality in terms of “representativeness.” Therefore, the only
standard is the one you establish yourself. As a matter of fact, quality standards are more alike
when dealing with factual data—the African elephant population most likely has not tripled
in the past 6 months and Washington D.C., not New York, is the capital of the United States.

To be sure, while it is not the case that demands on data quality should be lower whenWhy web data
can be of

higher quality
for the user

working with online data, the concerns might be different. Imagine you want to know what
people think about a new phone. There are several standard approaches to deal with this
problem in market research. For example, you could conduct a telephone survey and ask
hundreds of people if they could imagine buying a particular phone and the features in
which they are most interested. There are plenty of books that have been written about the
pitfalls of data quality that are likely to arise in such scenarios. For example, are the people
“representative” of the people I want to know something about? Are the questions that I pose
suited to solicit the answers to my problem?

Another way to answer this question with data could be to look for “proxies,” that is,
indicators that do not directly measure the product’s popularity itself, but which are strongly
related. If the meaning of popularity entails that people prefer one product over a competing
one, an indirect measurement of popularity could be the sales statistics on commercial
websites. These statistics usually contain rankings of all phones currently on sale. Again,
questions of representativeness arise—both with regard to the listed phones (are some phones
not on the list because the commercial website does not sell them?) and the customers (who
buy phones from the Web and from a particular site?). Nevertheless, the ranking does provide
a more comprehensive image of the phone market—possibly more comprehensive than any
reasonably priced customer survey could ever hope to be. The availability of entirely new
information is probably the most important argument for the use of online data, as it allows
us to answer new questions or to get a deeper understanding of existing questions. Certainly,
hand in hand with this added value arise new questions of data quality—can phones of
different generations be compared at all, and can we say anything about the stability of such
a ranking? In many situations, choosing a data source is a trade-off between advantages and
disadvantages, accuracy versus completeness, coverage versus validity, and so forth.

To sum up, deciding which data to collect for your application can be difficult. We propose
five steps that might help to guide your data collection process:

1. Make sure you know exactly what kind of information you need. This can be
specific (“the gross domestic product of all OECD countries for the last 10 years”) or
vague (“peoples’ opinion on company X’s new phone,” “collaboration among members
of the US senate”).

2. Find out whether there are any data sources on the Web that might provide direct
or indirect information on your problem. If you are looking for hard facts, this is
probably easy. If you are interested in rather vague concepts, this is more difficult.
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A country’s embassy homepage might be a valuable source for foreign policy action
that is often hidden behind the curtain of diplomacy. Tweets might contain opinion
trends on pretty much everything, commercial platforms can inform about customers’
satisfaction with products, rental rates on property websites might hold information
on current attractiveness of city quarters....

3. Develop a theory of the data generation process when looking into potential
sources. When were the data generated, when were they uploaded to the Web, and by
whom? Are there any potential areas that are not covered, consistent or accurate, and
are you able to identify and correct them?

4. Balance advantages and disadvantages of potential data sources. Relevant aspects
might be availability (and legality!), costs of collection, compatibility of new sources
with existing research, but also very subjective factors like acceptance of the data
source by others. Also think about possible ways to validate the quality of your data.
Are there other, independent sources that provide similar information so that random
cross-checks are possible? In case of secondary data, can you identify the original
source and check for transfer errors?

5. Make a decision! Choose the data source that seems most suitable, document your
reasons for the decision, and start with the preparations for the collection. If it is
feasible, collect data from several sources to validate data sources. Many problems
and benefits of various data collection strategies come to light only after the actual
collection.

1.3 Technologies for disseminating, extracting, and storing
web data

Collecting data from the Web is not always as easy as depicted in the introductory example.
Difficulties arise when data are stored in more complex structures than HTML tables, when
web pages are dynamic or when information has to be retrieved from plain text. There are
some costs involved in automated data collection with R, which essentially means that you
have to gain basic knowledge of a set of web and web-related technologies. However, in
our introduction to these fundamental tools we stick to the necessary basics to perform web
scraping and text mining and leave out the less relevant details where possible. It is definitely
not necessary to become an expert in all web technologies in order to be able to write good
web scrapers.

There are three areas that are important for data collection on the Web with R. Figure 1.4
provides an overview of the three areas. In the remainder of this section, we will motivate
each of the subfields and illustrate their various linkages. This might help you to stay on top
of things when you study the fundamentals in the first part of the book before moving on to
the actual web scraping tasks in the book’s second part.

1.3.1 Technologies for disseminating content on the Web

In the first pillar we encounter technologies that allow the distribution of content on the Web.
There are multiple ways of how data are disseminated, but the most relevant technologies in
this pillar are XML/HTML, AJAX, and JSON (left column of Figure 1.4).
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Technologies for

disseminating content

on the Web

HTTP

XML/HTML

JSON

AJAX

Plain text

Technologies for

information extraction

R

XPath

JSON parsers

Selenium

Regular expressions

Technologies for data

storage

R

SQL

Binary formats

Plain-text formats

Figure 1.4 Technologies for disseminating, extracting, and storing web data

For browsing the Web, there is a hidden standard behind the scenes that structures howHTML

information is displayed—the Hypertext Markup Language or HTML. Whether we look for
information on Wikipedia, search for sites on Google, check our bank account, or become
social on Twitter, Facebook, or YouTube—using a browser means using HTML. Although
HTML is not a dedicated data storage format, it frequently contains the information that we
are interested in. We find data in texts, tables, lists, links, or other structures. Unfortunately,
there is a difference between the way data are presented in a browser on the one side and how
they are stored within the HTML code on the other. In order to automatically collect data
from the Web and process them with R, a basic understanding of HTML and the way it stores
information is indispensable. We provide an introduction to HTML from a web scraper’s
perspective in Chapter 2.

The Extensible Markup Language or XML is one of the most popular formats for exchang-XML

ing data over the Web. It is related to HTML in that both are markup languages. However,
while HTML is used to shape the display of information, the main purpose of XML is to store
data. Thus, HTML documents are interpreted and transformed into pretty-looking output by
browsers, whereas XML is “just” data wrapped in user-defined tags. The user-defined tags
make XML much more flexible for storing data than HTML. In recent years, XML and its
derivatives—so-called schemes—have proliferated in various data exchanges between web
applications. It is therefore important to be familiar with the basics of XML when gathering
data from the Web (Chapter 3). Both HTML and XML-style documents offer natural, often
hierarchical, structures for data storage. In order to recognize and interpret such structures,
we need software that is able to “understand” these languages and handle them adequately.
The necessary tools—parsers—are introduced in Chapters 2 and 3.

Another standard data storage and exchange format that is frequently encountered on theJSON

Web is the JavaScript Object Notation or JSON. Like XML, JSON is used by many web
applications to provide data for web developers. Imagine both XML and JSON as standards
that define containers for plain text data. For example, if developers want to analyze trends
on Twitter, they can collect the necessary data from an interface that was set up by Twitter



INTRODUCTION 11

to distribute the information in the JSON format. The main reason why data are preferably
distributed in the XML or JSON formats is that both are compatible with many programming
languages and software, including R. As data providers cannot know the software that is
being used to postprocess the information, it is preferable for all parties involved to distribute
the data in formats with universally accepted standards. The logic of JSON is introduced in
the second part of Chapter 3.

AJAX is a group of technologies that is now firmly integrated into the toolkit of modern AJAX

web developing. AJAX plays a tremendously important role in enabling websites to request
data asynchronously in the background of the browser session and update its visual appearance
in a dynamic fashion. Although we owe much of the sophistication in modern web apps to
AJAX, these technologies constitute a nuisance for web scrapers and we quickly run into a
dead end with standard R tools. In Chapter 6 we focus on JavaScript and the XMLHttpRequest,
two key technologies, and illustrate how an AJAX-enriched website departs from the classical
HTML/HTTP logic. We also discuss a solution to this problem using browser-integrated Web
Developer Tools that provide deep access to the browser internals.

We frequently deal with plain text data when scraping information from the Web. In a Plain text

way, plain text is part of every HTML, XML, and JSON document. The crucial property we
want to stress is that plain text is unstructured data, at least for computer programs that simply
read a text file line by line. There is no introductory chapter to plain text data, but we offer a
guide on how to extract information from such data in Chapter 8.

To retrieve data from the Web, we have to enable our machine to communicate with HTTP

servers and web services. The lingua franca of communication on the Web is the Hypertext
Transfer Protocol (HTTP). It is the most common standard for communication between web
clients and servers. Virtually every HTML page we open, every image we view in the browser,
every video we watch is delivered by HTTP. Despite our continuous usage of the protocol
we are mostly unaware of it as HTTP exchanges are typically performed by our machines.
We will learn that for many of the basic web scraping applications we do not have to care
much about the particulars of HTTP, as R can take over most of the necessary tasks just fine.
In some instances, however, we have to dig deeper into the protocol and formulate advanced
requests in order to obtain the information we are looking for. Therefore, the basics of HTTP
are the subject of Chapter 5.

1.3.2 Technologies for information extraction from web documents

The second pillar of technologies for web data collection is needed to retrieve the information
from the files we gather. Depending on the technique that has been used to collect files,
there are specific tools that are suited to extract data from these sources (middle column of
Figure 1.4). This section provides a first glance at the available tools. An advantage of using
R for information extraction is that we can use all of the technologies from within R, even
though some of them are not R-specific, but rather implementations via a set of packages.

The first tool at our disposal is the XPath query language. It is used to select specific XPath

pieces of information from marked up documents such as HTML, XML or any variant of
it, for example SVG or RSS. In a typical data web scraping task, calling the webpages is an
important, but usually only intermediate step on the way toward well-structured and cleaned
datasets. In order to take full advantage of the Web as a nearly endless data source, we have
to perform a series of filtering and extraction steps once the relevant web documents have
been identified and downloaded. The main purpose of these steps is to recast information that
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is stored in marked up documents into formats that are suitable for further processing and
analysis with statistical software. This task consists of specifying the data we are interested
in and locating it in a specific document and then tailoring a query to the document that
extracts the desired information. XPath is introduced in Chatper 4 as one option to perform
these tasks.

In contrast to HTML or XML documents, JSON documents are more lightweight andJSON parsers

easier to parse. To extract data from JSON, we do not draw upon a specific query language,
but rely on high-level R functionality, which does a good job in decoding JSON data. We
explain how it is done in Chapter 3.

Extracting information from AJAX-enriched webpages is a more advanced and complexSelenium

scenario. As a powerful alternative to initiating web requests from the R console, we present
the Selenium framework as a hands-on approach to getting a grip on web data. Selenium
allows us to direct commands to a browser window, such as mouse clicks or keyboard inputs,
via R. By working directly in the browser, Selenium is capable of circumventing some of
the problems discussed with AJAX-enriched webpages. We introduce Selenium in one of
our scraping scenarios of Chapter 9 in Section 9.1.9. This section discusses the Selenium
framework as well as the RWebdriver package for R by means of a practical application.

A central task in web scraping is to collect the relevant information for our researchRegular
expressions problem from heaps of textual data. We usually care for the systematic elements in textual

data—especially if we want to apply quantitative methods to the resulting data. Systematic
structures can be numbers or names like countries or addresses. One technique that we
can apply to extract the systematic components of the information are regular expressions.
Essentially, regular expressions are abstract sequences of strings that match concrete, recurring
patterns in text. Besides using them to extract content from plain text documents we can also
apply them to HTML and XML documents to identify and extract parts of the documents that
we are interested in. While it is often preferable to use XPath queries on markup documents,
regular expressions can be useful if the information is hidden within atomic values. Moreover,
if the relevant information is scattered across an HTML document, some of the approaches
that exploit the document’s structure and markup might be rendered useless. How regular
expressions work in R is explained in detail in Chapter 8.

Besides extracting meaningful information from textual data in the form of numbers orText mining

names we have a second technique at our disposal—text mining. Applying procedures in this
class of techniques allows researchers to classify unstructured texts based on the similarity
of their word usages. To understand the concept of text mining it is useful to think about the
difference between manifest and latent information. While the former describes information
that is specifically linked to individual terms, like an address or a temperature measurement,
the latter refers to text labels that are not explicitly contained in the text. For example, when
analyzing a selection of news reports, human readers are able to classify them as belonging
to particular topical categories, say politics, media, or sport. Text mining procedures provide
solutions for the automatic categorization of text. This is particularly useful when analyzing
web data, which frequently comes in the form of unlabeled and unstructured text. We elaborate
several of the available techniques in Chapter 10.

1.3.3 Technologies for data storage

Finally, the third pillar of technologies for the collection of web data deals with facilities for
data storage (right column of Figure 1.4). R is mostly well suited for managing data storage
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technologies like databases. Generally speaking, the connection between technologies for
information extraction and those for data storage is less obvious. The best way to store data
does not necessarily depend on its origin.

Simple and everyday processes like online shopping, browsing through library catalogues, SQL

wiring money, or even buying a couple of sweets at the supermarket all involve databases. We
hardly ever realize that databases play such an important role because we do not interact with
them directly—databases like to work behind the scenes. Whenever data are key to a project,
web administrators will rely on databases because of their reliability, efficiency, multiuser
access, virtually unlimited data size, and remote access capabilities. Regarding automated
data collection, databases are of interest for two reasons: One, we might occasionally be
granted access to a database directly and should be able to cope with it. Two, although, R has
a lot of data management facilities, it might be preferable to store data in a database rather
than in one of the native formats. For example, if you work on a project where data need to
be made available online or if you have various parties gathering specific parts of your data,
a database can provide the necessary infrastructure. Moreover, if the data you need to collect
are extensive and you have to frequently subset and manipulate the data, it also makes sense
to set up a database for the speed with which they can be queried. For the many advantages
of databases, we introduce databases in Chapter 7 and discuss SQL as the main language for
database access and communication.

Nevertheless, in many instances the ordinary data storage facilities of R suffice, for
example, by importing and exporting data in binary or plain text formats. In Chapter 11, we
provide some details on the general workflow of web scraping, including data management
tasks.

1.4 Structure of the book

We wrote this book with the needs of a diverse readership in mind. Depending on your
ambition and previous exposure to R, you may read this book from cover to cover or choose
a section that helps you accomplish your task.

� If you have some basic knowledge of R but are not familiar with any of the scripting
languages frequently used on the Web, you may just follow the structure as is.

� If you already have some text data and need to extract information from it, you might
start with Chapter 8 (Regular expressions and string functions) and continue with
Chapter 10 (Statistical text processing).

� If you are primarily interested in web scraping techniques, but not necessarily in
scraping textual data, you might want to skip Chapter 10 altogether. We recommend
reading Chapter 8 in either case, as text manipulation basics are also a fundamental
technique for web scraping purposes.

� If you are a teacher, you might want to use the book as basic or supplementary
literature. We provide a set of exercises after most of the chapters in Parts I and II for
this purpose. Solutions are available on the book’s website www.r-datacollection.com
for about half the exercises, so you can assign them as homework or use them for test
questions.

www.r-datacollection.com
www.r-datacollection.com
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For all others, we hope you will find the structure useful as well. The following is a short
outline of the book’s three parts.

Part I: A primer on web and data technologies In the first part, we introduce the fun-
damental technologies that underlie the communication, exchange, storage, and display of
information on the World Wide Web (HTTP, HTML, XML, JSON, AJAX, SQL), and provide
basic techniques to query web documents and datasets (XPath and regular expressions). These
fundamentals are especially useful for readers who are unfamiliar with the architecture of
the Web, but can also serve as a refresher if you have some prior knowledge. The first part
of the book is explicitly focused on introducing the basic concepts for extracting the data
as performed in the rest of the book, and on providing an extensive set of exercises to get
accustomed quickly with the techniques.

Part II: A practical toolbox for web scraping and text mining The book’s second part
consists of three core chapters: The first covers several scraping techniques, namely the use
of regular expressions, XPath, various forms of APIs, other data types and source-specific
techniques. We present a set of frequently occurring scenarios and apply popular R packages
for these tasks. We also address legal aspects of web scraping and give advice on how to
behave nicely on the Web. The second core chapter deals with techniques for statistical text
processing. Data are frequently available in the form of text that has to be further analyzed to
make it fit for subsequent analyses. We present several techniques of the two major methods for
statistically processing text—supervised and unsupervised text classification—and show how
latent information can be extracted. In the third chapter, we provide insights into frequently
occurring topics in the management of data projects with R. We discuss how to work with the
file system, how to use loops for more efficient coding, how to organize scraping procedures,
and how to schedule scraping tasks that have to be executed on a regular basis.

Part III: A bag of case studies In the third part of the book, we provide a set of applications
that make use of the techniques introduced in the previous parts. Each of the case studies
starts out with a short motivation and the goal of the analysis. The case studies go into more
detail than the short examples in the technical chapters and address a wide range of problems.
Moreover, they provide a practical insight into the daily workflow of data scraping and text
processing, the pitfalls of real-life data, and how to avoid them. Additionally, this part comes
with a tabular overview of the case studies’ contents’ with a view of the main techniques to
retrieve the data from the Web or from texts and the main packages and functions used for
these tasks.
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A PRIMER ON WEB AND
DATA TECHNOLOGIES
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HTML

There is a hidden standard behind almost everything that we see and do when surfing the
web, the HyperText Markup Language, short: HTML. Whether we look for information on
Wikipedia, search for sites on Google, check our bank account, or become social on Twitter,
Facebook, and YouTube—when we use a browser—we use HTML.

HTML is a language for presenting content on the Web that was first proposed by Tim
Berners-Lee (1989). The standard has continuously evolved since the initial introduction, the
most recent incarnation is HTML5 that is being developed by the World Wide Web Consor-
tium (W3C) and the Web Hypertext Application Technology Working Group (WHATWG).1

Although each revision of HTML has established new features and restructured old ones, the
basic grammar of HTML documents has not changed much over the years and is likely to
remain fairly stable in the foreseeable future, making it one of the most important standards
for working with and on the Web.

This chapter introduces the fundamentals of HTML from the perspective of a web data
collector. We will learn how to use browsers to display the source code of webpages and inspect
specific HTML elements (Section 2.1). Section 2.2 develops the logic of markup languages
in general and the syntax of HTML as a specific instance of a markup language. We go on to
present the most important vocabulary in HTML (Section 2.3). Finally, we consider parsing—
the process of reconstructing the structure and semantics of HTML documents—and how it
helps to retrieve information from web documents in Section 2.4.

1The W3C develops standards for web technologies. It was founded by Tim Berners-Lee and currently comprises
a staff of a couple dozen employees as well as hundreds of member organizations (see www.w3.org). In the course
of this book we will mainly get in touch with W3C because of their recommended techniques. For example, HTML,
XML, HTTP, and other technologies we are discussing in this volume are W3C recommendations. Endorsements
by the W3C are a strong signal to web developers that they can and should rely on these techniques.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

www.w3.org
www.w3.org
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Figure 2.1 Browser view of a simple HTML document

2.1 Browser presentation and source code

An HTML file is basically nothing but plain text—it can be opened and edited with any text
editor. What makes HTML so powerful is its marked up structure. HTML markup allows
defining the parts of a document that need to be displayed as headlines, the parts that contain
links, the parts that should be organized as tables, and numerous other forms. The markup
definitions rely on predefined character sequences—the tags—that enclose parts of the text.
Markup tells browsers (more specifically, parsers; see Section 2.4) how the document is
structured and the function of its various parts.

What you see in your browser is therefore not the HTML document itself but an interpre-
tation of it. Let us elaborate this idea with a small example. Figures 2.1 and 2.2 show the same
HTML document—OurFirstHTML.html. Figure 2.1 displays an interpreted version of the file
like we are used to; Figure 2.2 shows the source code of the document. Try it yourself. Use your
browser and go to http://www.r-datacollection.com/materials/html/OurFirstHTML.html.
Right-click on the window and select view source code from the context menu. Now check
out other websites and inspect their source code. Under ordinary circumstances there is little
reason to inspect the source code, but in online data collection it is often crucial. Inciden-
tally, as we introduce the specifics of the HTML format over the course of this chapter

Figure 2.2 Source view of a simple HTML document

http://www.r-datacollection.com/materials/html/OurFirstHTML.html
http://www.r-datacollection.com/materials/html/OurFirstHTML.html
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Figure 2.3 Inspect elements view of a simple HTML document

we will make reference to several supplementary files that are available at http://www.r-
datacollection.com/materials/html/.

It might seem that a lot of information from the source code gets lost in the interpretation Markup in
actionof the document. After all, there is considerably more text in the source code than just the

single sentence we see in Figure 2.1. In fact, the scale of structuring information and actual
content is clearly tipped in favor of the former. There is a fair amount of text in the source code
that contains instructions for the browser that is not printed to the screen. Nevertheless, part
of the information is in fact displayed, but in more subtle ways. Have a look at the browser
tab headings in Figure 2.1. The page title is First HTML, which was defined in the source
code: <title>First HTML</title>. This is HTML markup in action: First HTML was
marked up by <title> and </title> to define it as the title of the document.

To identify which parts of the source code correspond to which elements in the browser
window and vice versa, we can use an element inspector, which is implemented in most
browsers. Again, try it yourself. Highlight the sentence in the browser window that we
opened above, right-click on the window, and select inspect element from the context menu.
The browser will display the part of the HTML document that is responsible for the selected
element (Figure 2.3). We can also reverse the process by clicking on parts of the source code
to highlight the corresponding parts in the interpreted version of the document. Try to do the
same with other websites and start inspecting elements.

2.2 Syntax rules

Now that we have checked out our first HTML document and learned about the difference
between the interpreted version of a document and its source code, let us dive deeper into the
rules and concepts that underlie HTML.2

2Note that although there are several versions of HTML and you might encounter websites that adhere to older
standards, we present documents that follow HTML5 rules. Either way, for the purposes of data collection the
differences are negligible.

http://www.r-datacollection.com/materials/html/
http://www.r-datacollection.com/materials/html/
http://www.r-datacollection.com/materials/html/
http://www.r-datacollection.com/materials/html/


20 AUTOMATED DATA COLLECTION WITH R

2.2.1 Tags, elements, and attributes

Plain text is turned into an HTML document by tags that can be interpreted by a browser.Elements

They can be thought of as named braces that enclose content and define its structural function.
For instance, the <title> tags in our introductory example designated the enclosed text as
title to be displayed in the head of the browser tab. The combination of start tag, content, and
end tag is called element, as in:

1 <title>First HTML</title>

Start tags and end tags are also known as opening and closing tags. Tags are always
enclosed by < and > to distinguish them from the content. Start and end tags carry the same
name, but the end tag is preceded by a slash /. When referring to an element, it is common
to leave out the angle brackets and just use the name within the tags, as in body tag, title
tag and so on. We sometimes find that elements and tags are actually used synonymously.
Throughout the book, we will refer to the start tag—for example, <name>—to address the
entire element.

Although it is recommended that each element has a start and an end tag, this is not
common practice for all types of elements. For example, the <br> tag indicates a line break
and is not closed by a </br> counterpart. Tags can also be closed within the start tag by
adding a slash at the end, as in <body/>. We call such elements empty because they do not
hold any content. Otherwise they would have to be written as <body></body>. It is possible
to write a tag as <tagname>, <TAGNAME>, <TagName> or any other combination of capital
and small letters, as standard HTML is not case sensitive. It is nevertheless recommended to
always use small letters as in <tagname>.

Another feature of tags are attributes. A widely used attribute is the following:Attributes

1 <a href="http://www.r-datacollection.com/">Link to Homepage</a>

The anchor tag <a> allows the association of text—here, ‘Link to Homepage’—
with a hyperlink—http://www.r-datacollection.com/—that points to another address. The
href="http://www.r-datacollection.com/" attribute specifies the anchor. Browsers
automatically format such elements by underlining the content and making it clickable. In
general, attributes enable the specification of options for how the content of a tag should be
handled. Which attributes are permitted depends on the specific tag.

Attributes are always placed within the start tag right after the tag name. A tag can hold
multiple attributes that are simply separated by a space character. Attributes are expressed
as name–value pairs, as in name="value". The value can either be enclosed by single or
double quotation marks. However, if the attribute value itself contains one type of quotation
mark, the other type has to be used to enclose the value:

1 <example quote='He sat down and spoke: "What?", he said.'>
2 <example quote="He sat down and spoke: 'What?', he said.">

http://www.r-datacollection.com/
http://www.r-datacollection.com/
http://www.r{{-}}datacollection.com/
http://www.r-datacollection.com/
http://www.r-datacollection.com/
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1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>First HTML</title>
5 </head>
6 <body>
7 I am your first HTML file!
8 </body>
9 </html>

Figure 2.4 Source code of OurFirstHTML.html

2.2.2 Tree structure

Have another look at the source code of OurFirstHTML.html in Figure 2.4. Ignoring <!DOC-
TYPE html> for now, the first element in the example is the <html> element. Between
the tags of this element, several tags are opened and closed again: <head>, <title>, and
<body>. The <head> and <body> tags are directly enclosed by the <html> element; the
<title> element is enclosed by the <head> tag. A good way to describe the multiple layers
of an HTML document is the tree analogy. Figure 2.5 illustrates the simple tree structure of
OurFirstHTML.html. The <html> element is the root element that splits into two branches,
<head> and <body>. <head> is followed by another branch called <title>.

Elements need to be strictly nested within each other in a well-formed and valid HTML
file. A pair of start and end tags has to be completely enclosed by another pair of tags. An
obvious violation of this rule would be:

1 <head>
2 <title>Do not
3 </head>
4 do this</title>

<html>

<body>

I am your first

HTML-file!

<head>

<title>

First HTML

Figure 2.5 A tree perspective on OurFirstHTML.html (see Figure 2.4)



22 AUTOMATED DATA COLLECTION WITH R

2.2.3 Comments

HTML offers the possibility to insert comments into the code that are not evaluated and
therefore not displayed in the browser. Comments are marked by <!-- at the beginning
and --> at the end. All text between these character sequences will be ignored. In practice, a
comment could look like this:

1 <!-- Hi, I am a comment.
2 I can span several lines and I am able to store additional

content that is not displayed by the browser. -->

Note that comments are still part of the document and can be read by anyone who inspects
the source code of a page.

2.2.4 Reserved and special characters

Reserved characters are used for control purposes in a language. We have learned that HTML
content is written in plain text, which is true both for the markup and the content part of the
document. As some characters are needed for the markup, they cannot be used literally in the
content. For example, we have learned that < and > are used to form tags in HTML. They are
markup characters. Imagine we want to display something like this in the browser: 5 < 6 but
7 > 3. It is impossible to include them plainly into an HTML file, like…

1 <p>5 < 6 but 7 > 3 </p>

… as the parser would interpret the < and > signs as enclosing a tag name. In order toCharacter
entities display the characters literally in a browser window, HTML relies on specific sequences of

characters called character entities or simply entities. All the entities start with an ampersand
& and end with a semicolon ;. Thus, < and > can be included in the content of a file with their
entity expressions &lt; and &gt;. When interpreting the HTML file, the browser will now
display the character that these entities represent. The above example therefore needs to be
rewritten as follows:

1 <p>5 &lt; 6 but 7 &gt; 3 </p>

Since HTML documents can be written in numerous languages that often contain non-
simple latin characters like Ö, É, or Ø, there is an extensive list of entities, all starting with an
ampersand (&) and ending with a semicolon (;). Table 2.1 provides a couple of examples of
characters and their entity representation—note that entities can be written either by number
or name.
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Table 2.1 HTML entities

Character Entity number Entity name Explanation

" &#34; &quot; quotation mark
' &#39; &apos; apostrophe
& &#38; &amp; ampersand
< &#60; &lt; less than
> &#62; &gt; greater than

&#160; &nbsp; non-breaking space
§ &#167; &sect; section
Á &#192; &Agrave; A with grave accent
É &#200; &Egrave; E with grave accent
á &#224; &agrave; a with grave accent
é &#232; &egrave; e with grave accent
♡ &#9829; &hearts; heart

&#66001; plumed head (Phaistos Disc)

Note: For a more comprehensive list of HTML entities, visit http://unicode-table.com

2.2.5 Document type definition

Recall the example from the beginning of the chapter? The first line of the HTML read
<!DOCTYPE html>. It contains the so-called document type definition (DTD) that informs
the browser about the version of the HTML standard the document adheres to. HTML emerged
more than 20 years ago and has since seen some reformulation of the rules that might lead to
misinterpretations if the HTML version of the document was not made explicit. As the DTD
plays a more crucial role in XML, we postpone an extensive elaboration of the concept to
Section 3.3. For now, it suffices to know that DTDs are found—if included—in the first line
of the HTML document. Below you find a list of various DTDs.

� HTML5:

1 <!DOCTYPE HTML>

� Strict HTML version 4.01:

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">

2.2.6 Spaces and line breaks

Spaces and line breaks in HTML source code do not translate directly into spaces and line
breaks in the browser presentation. While line breaks are ignored altogether, any number
of consecutive spaces are presented as a single space. To force spaces into the interpreted

http://unicode-table.com
http://unicode-table.com
http://www.w3.org/TR/html4/strict.dtd
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version of the document, we use the non-breaking space entity &nbsp; and the line break tag
<br> for line breaks:

1 <p>Writing<br>&nbsp;&nbsp;&nbsp;code<br>&nbsp;&nbsp;&nbsp;&nbsp;
2 &nbsp;is<br>&nbsp;poetry</p>

For a more extensive treatment of the subject, you may want to look into SpacesAndLin
eBreaks.html from the book’s materials.

2.3 Tags and attributes

HTML has plenty of legal tags and attributes, and it would go far beyond the scope of this book
to talk about each and every one. Instead, we will focus on a subset of tags that are of special
interest in the context of web data collection. Note that if not specified otherwise working
examples of the tags introduced in the following can be found in the TagExample.html from
the book’s materials.

2.3.1 The anchor tag <a>

The anchor tag <a> is what turns HTML from just a markup language into a hypertext markupThe H in
HTML language by enabling HTML documents to link to other documents. Much of the site-to-site

navigation in browsers works via anchor elements.
We often find ourselves in situations where we want to extract information not from a

single page but from a whole series of pages. If we are lucky, the pages are listed on an index
page. More frequently, however, we have to collect links from one page that points to the next
page, which points to the next page, and so on. In both cases the information we are looking
for—the location of another page—is stored in an <a> element.

In fact, <a> elements are even more flexible as they can not only link to other files, butThe flexibility
of <a> and

href
also link to specific parts of a document. It is possible to link to anchors in a document to
make navigation on a site more convenient.

Have a look at TagExample.html. The parts of the HTML that are most interesting to us at
the moment are the blue underlined text snippets—the hyperlinks. There should be three links.
One refers to another webpage and two other point to the top and bottom, respectively, of the
current page. Have a look at the source code or the following list to see how this was achieved.

� Linking to another document:

1 <a href="en.wikipedia.org/wiki/List_of_lists_of_lists">Link with
absolute path</a>

� Setting a reference point:

1 <a id="top">Reference Point</a>
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� Linking to a reference point:

1 <a href="#top">Link to Reference Point</a>

� Linking to reference point in another document:

1 <a href="http://en.wikipedia.org/wiki/List_of_pharaohs#New_Kingdom">
Link to Reference Point</a>

2.3.2 The metadata tag <meta>

The <meta> tag is an empty tag written in the head element of an HTML document. <meta>
elements do not have to be closed and thus differ from the general rule that empty elements
have to be closed with a dash /. As the name already suggests, <meta> provides meta
information on the HTML document and answers questions like: Who is the author of the
document? Which encoding scheme is used? Are there any keywords characterizing the page?
What is the language of the document?

In general, two attributes are specified in a meta element. The first attribute can be either
name or http-equiv; the second is always content. <meta> elements with name as first
attribute refer to information on the document while meta elements with http-equiv define
how the document needs to be handled by HTTP (see Chapter 5). Below you find several
examples showing the diverse usage of meta. To see <meta> in a real HTML document,
check out TagExample.html again. Some popular <meta> tags are used for:

� specifying keywords:

1 <meta name="keywords" content="Automation, Data, R">

� asking robots not to index the page or to follow its links (on robots see Section 9.3.2):

1 <meta name="robots" content="noindex, nofollow">

� declaring character encodings (since HTML5):

1 <meta charset="ISO-8859-1"/>

� defining character encodings (prior to HTML5):

1 <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
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2.3.3 The external reference tag <link>

The link tag is used to link to and include information and external files. External information
linked to the the HTML document might be license information for the website, a document
listing authors, a help page for the website, an icon that appears in the browser tab or one or
more style sheets that are used for layouts. The <link> element is empty and used within the
<head> element. All information is provided with attributes. Below you find two examples
of the most common use.

� specifying style sheets to use:

1 <link rel="stylesheet" href="htmlresources/awesomestyle.css"
2 type="text/css"/>

� specifying the icon associated with the website:

1 <link rel="shortcut icon" href="htmlresources/favicon.ico"
2 type="image/x-icon"/>

Again, you might also like to check the source code of TagExample.html. Note that the
rel attribute describes the type of relationship between the current and the linked document.
The href attribute specifies the location of the external file. The type attribute describes the
file type according to the MIME scheme3.

2.3.4 Emphasizing tags <b>, <i>, <strong>

Tags like <b>, <i>, <strong> are layout tags that refer to bold, italics, and strong emphasis.
We can make use of the information in emphasis tags to locate content with a specific
layout. Imagine a document that contains a list of addresses where the name is set in italics.
Looking for the <i> tag makes it easy to identify the useful information. The examples below
exemplify the usage of these various layout tags. TagExample.html shows how they work in
a full-fledged HTML document.

� Text with bold type setting:

1 <b>some text set in bold</b>

� Text set in italics:

1 <i>some text set in italics</i>

3The MIME scheme is a standardized two-part identifier for file formats. For a more extensive discussion of the
subject, see Chapter 5.
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� Text defined as important:

1 <strong>some text so important to be emphasized</strong>

2.3.5 The paragraphs tag <p>

The <p> tag labels its content as being a paragraph and ensures that line breaks are inserted <p>

before and after its content:

1 <p>This text is going to be a paragraph one day and separated from other
text by line breaks.</p>

2.3.6 Heading tags <h1>, <h2>, <h3>,…
In order to define different levels of headlines—level 1 to level 6—HTML provides a series <h1>, <h2>,…
of tags <h1>, <h2>,… down to <h6>. See below for some examples:

1 <h1>heading of level 1 -- this will be BIG</h1>
2 <h2>heading of level 2 -- this will be big</h2>
3 ...
4 <h6>heading of level 6 -- the smallest heading</h6>

2.3.7 Listing content with <ul>, <ol>, and <dl>

Several tags exist to list content. They are used depending on whether they wrap around an
ordered list (<ol>), an unordered list (ul), or a description list (<dl>). The former two tags
make use of nested <li> elements to define list items, while the latter needs two further
elements: <dt> for keyword and <dd> for its description. An example for an unordered list
would be:

1 <ul>
2 <li>Dogs</li>
3 <li>Cats</li>
4 <li>Fish</li>
5 </ul>

2.3.8 The organizational tags <div> and <span>

Another way of defining the appearance of parts of the HTML document are the <div>
and <span> tags. While <div> and <span> themselves do not change the appearance of
the content they enclose, these tags are used to group parts of the document—the former is
used to define groups across lines, tags, and paragraphs, while the latter is used for in-line
grouping.
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Grouping parts of an HTML document is handy when combined with Cascading StyleCSS

Sheets (CSS), a language for describing the layout of HTML and other markup documents
like XML, SVG, and XHTML. Below you find example definitions of two styles. The first
style definition applies to all <div> elements of class happy, while the second does the same
for <span> elements:

1 div.happy { color:pink;
2 font-family:"Comic Sans MS";
3 font-size:120% }
4 span.happy { color:pink;
5 font-family:"Comic Sans MS";
6 font-size:120% }

Style definitions are commonly stored in separate CSS files, for example, awesomestyle
.css, and are later included via <link> tags in the header:

1 <link href="htmlresources/awesomestyle.css"
2 rel="stylesheet" type="text/css"/>

Later in the document they are passed to an element using an additional class attribute:

1 <div class="happy"><p>I am a happy styled paragraph</p></div>
2 non-happy text with <span class="happy">some happiness</span>

Alternatively, the style can be directly defined within the style attribute of an element:

1 <div
2 style="color:pink; font-family:"Comic Sans MS"; font-size:120%">
3 <p>I am a happy styled paragraph</p></div>

The purpose of CSS is to separate content from layout to improve the document’s accessi-
bility. Defining styles outside of an HTML and assigning them via the class attribute enables
the web designer to reuse styles across elements and documents. This enables developers to
change a style in one single place—within the CSS file—with effects on all elements and
documents using this style.

So why should we care about style? First of all, one should always care about style.
But second, as CSS is so handy for developers, <div>, <span>, and class tags are used
frequently. They thus provide structure to the HTML document that we can make use of to
identify where our desired information is stored.
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2.3.9 The <form> tag and its companions

An advanced feature of HTML are forms. HTML forms do more than just layout content.
They enable users to interact with servers by sending data to them instead of only receiving
data from them. Forms are introduced by the <form> tag and supported by other tags
like <fieldset>, <input>, <textarea>, <select>, and <option> and their respective
attributes. This two-way exchange of information between user and server allows for a more
dynamic browsing experience. Instances where we use forms on a daily basis are search
engines like Google. We type in a query in the text field and a new site is called based on our
request. Let us proceed with an example to explain various concepts of HTML forms. The
code snippet below is part of FormExample.html from the book’s materials:

1 <form name="submitPW" action="Passed.html" method="get">
2 password:
3 <input name="pw" type="text" value="">
4 <input type="submit" value="SubmitButtonText">
5 </form>

The form in the example consists of one <form> element and two <input> elements How HTML
forms worknested within the former. The <form> tag has a name attribute, an action attribute, and

a specific method. The name of the form serves as an internal identifier. The action and
method attributes define what the browser is supposed to do once the submit button is pressed.
action defines the location of the response.

The most common protocol for requesting and receiving resources on the Web is HTTP
(Hypertext Transfer Protocol). The method attribute refers to the HTTP method that is used
to send the information to the server. Most likely it will be POST or GET. For now it suffices
to say that when GET is used, the information that is sent to the server is appended to the
URL. Conversely, when POST is used the information is not transmitted via the requested
URL. For details on HTTP methods, see Chapter 5.

Regarding the <input> elements we can distinguish between several flavors. There are
normal inputs, hidden inputs, reset inputs, and those that are used to define the submit button.
Normal inputs collect the data to be sent to the server and come in various forms like text
fields, color selectors, check boxes, date selectors, and sliders. Hidden inputs define data that
is sent to the server but the user has no option to manipulate the input. Reset inputs simply
reset all inputs and selections made so far. Inputs that form submit buttons result in sending
the supplied data. The input flavor is defined by the value of the type attribute. For hidden
inputs the type is hidden, for reset inputs reset, and for submit buttons submit. The types
for normal inputs depend on the type of information that is collected, for example, text,
color, checkbox, date, and range.

Inputs require two attributes. First, the name attribute unambiguously associates the
information with a specific input; the type attribute is required to tell the browser how to
gather the information. An optional attribute, value, supplies a default value that is sent to
the server if no information is supplied by the user.

Three other tags can be used to gather information in a form—<textarea> and
<select> in combination with <option>. <textarea> elements are used to gather text
that spans multiple lines. To select one or multiple items from a list, HTML documents use
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<select>. While the <select> element serves to set attribute values, the nested option
elements define the list of items the user can select from. Similar to the <input> elements,
a name attribute is needed for sending the data from <textarea> and <select> elements.
For an overview of the various types of inputs, check out InputTypes.html.

To see forms in action, go to: http://www.r-datacollection.com/materials/html/FormEx
ample.html. The page pretends to be a gate keeper and asks for a password. As we are about
halfway through the HTML chapter we trust that you are able to guess the password with
three tries at most. Go ahead and give it a try! In the example the action attribute is set to
Passed.html, meaning that the password gathered on the first page gets submitted to this new
page. Try it out once more and select another password. Again, we get to the new document
and the page contains the information that we typed into the text field. HTML forms turn
the static HTML dinosaur into a flexible and mighty tool.4 The takeaway point is that the
information gets sent and the response changes according to our inputs.

Let us consider the example form from above again. We notice that pw is the name of
the first <input> element. We already know that the name attribute of <input> serves
as a label for transporting the information. If you inspect the URL of the response you
notice that the password has been appended to the URL, which now looks something like
.../Passed.html?pw=xxxxxxx. From this we conclude that the form uses a GET method
rather than a POST method—otherwise the pasword would not show up in the URL. The
part of the URL that contains our password is called query string. Query strings always
appear at the end of the URL and start with ?. The information in query strings is written as
parameter=value pairs—just like HTML tag attributes—and are separated by & if more
than one pair is specified.

Now that you know about HTML forms and query strings, take a moment and use your
browser to check out forms in actions. Find pages that use forms and look carefully if and
how they use query strings. You might also want to go back to Passed.html in your browser
and manipulate the pw value directly within the address bar to see what happens.

2.3.10 The foreign script tag <script>

HTML itself is not a programming language. HTML is a markup language that describes
content and defines its presentation. Once an HTML file is loaded in the browser, it remains
stable and does not change by events or user interaction. Nevertheless, we all know examples
of highly dynamic websites. Most of them probably make heavy use of the <script>
element.5

The <script> element is a container for scripts that enable HTML to include function-A first stab at
JavaScript ality from other programming languages. This other language will frequently be JavaScript.

JavaScript allows the browser to change the content and structure of the document after it has
been loaded from the server, enabling user interaction and event handling.

In FormExample.html and Passed.html we already made use of the <script> element.
There are two <script> elements in the Passed.html document. The first is placed within
the header and defines the function that extracts the value of a specific parameter from the
URL. The second is placed directly within the body and executes the function that searches

4To be fair, Passed.html is not pure HTML but includes some JavaScript, which we will touch upon in Chapter 6.
5See Chapter 6 for a more elaborate discussion of the topic.

http://www.r-datacollection.com/materials/html/FormExample.html
http://www.r-datacollection.com/materials/html/FormExample.html
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for the value of the pw parameter. After storing the value in a variable, it writes the value into
the HTML document.

Once again, go ahead and try it yourself: Open Passed.html and manipulate the URL so
it looks something like this: .../Passed.html?pw=xxxx. Save the page on your hard disk
(right click, save as) and reopen the saved page in your browser. Now check out the source
code of the page before and after saving. While the original page contained the original source
code, the second includes the changes your browser made after loading the page.

Let us get back to HTML and how we can recognize that JavaScript has been used.
JavaScript can appear broadly in three forms: explicitly in a <script> element, implicitly
by referring to an external JavaScript within a <script> element, and implicitly as an event
in an HTML element. Below you find examples of all three types of JavaScript usage.

� Explicit JavaScript (printing the current time and date):

1 <script> document.write( Date() ); </script>

This snippet adds the current date and time to the document.

� Reference to an external JavaScript and using its functions within another script
element (printing the browser used to view the document):

1 <script src="htmlresources/browserdetect.js"></script>
2 <script> document.write(BrowserDetect.browser); </script>

This snippet loads an external JavaScript file (browserdetect.js) and uses the functions
it contains (BrowserDetect) to add information about the browser of the document.

� Triggering JavaScript with events (changing the style class when hovering over the
element)

1 <p onmouseover="this.className='over'"
2 onmouseout="this.className='out'">
3 Hover Me!</p>

This snippet triggers two events, one when the mouse cursor hovers over the element
and one when the mouse cursor leaves the area of the element—onmouseover and
onmouseout—and assigns two JavaScript functions that are executed whenever the
events take place. The functions change the class of the element to over or out and the
styles associated with these two classes take effect.

Now open http://www.r-datacollection.com/materials/html/JavaScript.html in your
browser and have a look at the examples. The document displays the time you opened
the document, shows the current time, indicates which browser you are using (the version
number as well as the platform it is running on), changes colors from white to black as long

http://www.r-datacollection.com/materials/html/JavaScript.html
http://www.r-datacollection.com/materials/html/JavaScript.html
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Table 2.2 Nominal GDP per capita

Nominal GDP
Rank (per capita, USD) Name

1 170,373 Lichtenstein
2 167,021 Monaco
3 115,377 Luxembourg
4 98,565 Norway
5 92,682 Qatar

as you hover over the Hover Me! text, and adds text to the document when you fill out the
text field and press enter.

Have a look at the source code and try to map which parts of the document are plain
HTML and which are the work of JavaScript.

2.3.11 Table tags <table>, <tr>, <td>, and <th>

The next group of elements enables HTML to display tables. Check out Table 2.2 and compare
it to its HTML code representation below. To begin a table we make use of <table>. We
start new lines with <tr>. Within <tr>, we can either use <td> for defining cells or <th>
for header cells.

Table 2.2 as HTML code—the full HTML document is HTMLTable.html from the book’s
materials:

<table>
<tr> <th>Rank</th> <th>Nominal GDP</th> <th>Name</th> </tr>
<tr> <th></th> <th>(per capita, USD)</th> <th></th> </tr>
<tr> <td>1</td> <td>170,373</td> <td>Lichtenstein</td> </tr>
<tr> <td>2</td> <td>167,021</td> <td>Monaco</td> </tr>
<tr> <td>3</td> <td>115,377</td> <td>Luxembourg</td> </tr>
<tr> <td>4</td> <td>98,565</td> <td>Norway</td> </tr>
<tr> <td>5</td> <td>92,682</td> <td>Qatar</td> </tr>

</table>

2.4 Parsing

After having learned the key features of HTML documents, we now turn to loading and
representing the contents of HTML/XML files in an R session.6 This step is crucial if we care
to extract information from web documents in a principled and robust fashion from within R.7

6Although different in many respects, HTML and XML are similar regarding their grammar and thus, the
discussion on HTML parsing is very relevant for XML parsing, too. XML is subject of the next chapter (Chapter 3).

7See Chapter 4 on how to exploit the parsed representation of parsed documents for data extraction.
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While performing web scraping, we usually get in touch with HTML in two steps: First,
we inspect content on the Web and examine whether it is attractive for further analyses.
Second, we import HTML files into R and extract information from them. Parsing HTML
occurs at both steps—by the browser to display HTML content nicely, and also by parsers in
R to construct useful representations of HTML documents in our programming environment.
In the remainder of this chapter we begin by motivating the use of parsers and then discuss
some of the problems inherent in the process as well as their solutions.

2.4.1 What is parsing?

Before showing the application of a parser, let us think about why we need to parse the
contents of marked up web documents such as HTML compared to merely reading them into
an R session. The difference between reading and parsing is not just a semantic one. Instead,
reading functions differ from parsing functions in that the former do not care to understand
the formal grammar that underlies HTML but merely recognize the sequence of symbols
included in the HTML file. To see that, let us employ base R’s readLines() function,
which loads the content of an HTML file. As a stylized, running example in this part, we
consider fortunes.html (see the chapter’s materials)—a simple HTML file that consists of
several nuggets of R wisdoms. We apply readLines() on the document, store the output in
an object called fortunes, and print its content to the screen:

R> url <- "http://www.r-datacollection.com/materials/html/fortunes.html"
R> fortunes <- readLines(con = url)
R> fortunes

readLines() maps every line of the input file to a separate value in a character vector.
Although easy to use, readLines() creates a flat representation of the document, which is
of limited use for extracting information from it. The main problem is that readLines() is
agnostic about the different tag elements (name, attribute, values, etc.) and produces results
that do not reflect the document’s internal hierarchy as implied by the nested tags in any
sensible way.

To achieve a useful representation of HTML files, we need to employ a program that under- Document
Object Model
(DOM)

stands the special meaning of the markup structures and reconstructs the implied hierarchy
of an HTML file within some R-specific data structure. This representation is also referred to
as the Document Object Model (DOM). It is a queryable data object that we can build from
any HTML file and is useful for further processing of document parts. This transformation
from HTML code to the DOM is the task of a DOM-style parser. Parsers belong to a general
class of domain-specific programs that traverse over symbol sequences and reconstruct the
semantic structure of the document within a data object of the programming environment.
In the remainder of this book, we will use functionality from the XML package to parse web
documents (Temple Lang 2013c). XML provides an interface to libxml2, a powerful parsing
library written in C that is able to cope with many parsing-specific problems. To get started,
let us parse fortunes.html and store it in a new object called parsed_fortunes using XML’s
htmlParse() function:

R> library(XML)
R> parsed_fortunes <- htmlParse(file = url)
R> print(parsed_fortunes)
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

http://www.r-datacollection.com/materials/html/fortunes.html
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<html>
<head><title>Collected R wisdoms</title></head>
<body>
<div id="R Inventor" lang="english" date="June/2003">

<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

<div lang="english" date="October/2011">
<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering
a request for automatic generation of 'data from a known mean and 95% CI'

</emph></p>
<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">

R-help</a></p>
</div>

<address>
<a href="http://www.r-datacollectionbook.com"><i>The book homepage</i></a>
<a></a>
</address>

</body>
</html>

Printing the object to the screen, we receive a visual feedback that we created a copy
of the file inside the R session. For conventional parsing tasks, htmlParse() will be all
that is necessary to create a properly parsed document object. At a minimum, the function
needs to be handed the file path via its file argument. This may either be an HTML file (or
compressed archive of HTML files) that already exists on the hard drive or an URL pointing
to a web document.

htmlParse() and other DOM-style parsers effectively conduct the following steps.DOM parsing:
A two-step

process 1. htmlParse()first parses the entire target document and creates the DOM in a tree-like
data structure of the C language. In this data structure every element that occurs in the
HTML is now represented as its own entity, or as an individual node. All nodes taken
together are referred to as the node set. The parsing process also includes an automatic
validation step for malformation. From its source code (see object fortunes) we learn
that fortunes.html contains two structural errors. Not only have some of the attribute
values been left unquoted but also a closing tag for the second paragraph tag (<p>)
is missing. Yet, as we see from the parsed output, these two flaws have both been
remedied. This is due to libxml2 which is capable to work on non-well-formed HTML
documents because it recognizes errors and corrects them in order to create a valid
DOM.

2. In the next step the C-level node structure is converted into an object of the R language.
This is necessary because further processing of the DOM, for example, modifying and
extracting information from it, is tremendously more convenient in a higher-level
language such as R. Internally, R uses lists to reflect the hierarchical order of nodes.
More specifically, the transformation between C and R is managed through so-called

https://stat.ethz.ch/mailman/listinfo/r-help
http://www.r-datacollectionbook.com
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handler functions. These handler functions regulate the translation of a C-level node
into an R list element and can be intercepted by the user to determine whether and how
a node should be reflected in the R object.

For most parsing tasks, you will find that htmlParse()’s default options are sufficiently
powerful to create the DOM. Nevertheless, some control over the parsing process can be
beneficial in cases where the target document is of considerable size, carries unnecessary
information, or needs to be altered in some predefined way. To deal with these situations,
the next section looks at ways to affect the building process of the DOM, for example, by
formulating rules that structure the mapping of specific elements into an R object.

2.4.2 Discarding nodes

Discarding unnecessary parts of web documents in the parsing stage can help mitigate memory
issues and enhance extraction speed. Handlers provide a comfortable way to manipulate (i.e.,
delete, add, modify) nodes in the tree construction stage. As we have already noted, handler
functions regulate the conversion of the C-level node structure into the R-object. By default,
that is, when the handlers are left unchanged, all nodes will be mapped into the R list structure,
but we are free to manipulate this process.

We specify handlers as a list of named functions, where the name corresponds to a node Specifying
handler
functions

name and the function specifies what should happen with the node. The function is executed
on encountering a node with a specific name. To exemplify, consider the problem of deleting
the <body> node in our example HTML file. In the parsing stage, we can easily get rid of this
node including all of its children, that is, nodes that are nested deeper in the tree as follows:

R> h1 <- list("body" = function(x){NULL})

R> parsed_fortunes <- htmlTreeParse(url, handlers = h1, asTree = TRUE)
R> parsed_fortunes$children
$html
<html>
<head>
<title>Collected R wisdoms</title>

</head>
</html>

We first create an object h1 containing a list of a function named after the node we want
to delete. We then pass this object to the htmlTreeParse() function via its handlers
argument. Printing parsed_doc to the screen shows that the <body> node is not part of the
DOM tree anymore. Internally, the handler has replaced all instances of the <body> node with
the NULL object, which is equivalent to deleting these nodes. When using handler functions,
one needs to set the asTree argument to TRUE to indicate that the DOM should be returned
and not the handler function itself.

Via the XML package we can pass generic handler functions to operate on specific XML Generic
handlerselements such as the processing instructions, XML comments, CDATA, or the general node

set.8 A complete overview over these generic handlers is presented in Table 2.3. To illustrate

8For an explanation of XML comments and CDATA see Chapter 3.
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Table 2.3 Generic handlers for DOM-style parsing

Function name Node type

startElement() XML element
text() Text node
comment() Comment node
cdata() <CDATA> node
processingInstruction() Processing instruction
namespace() XML namespace
entity() Entity reference

Source: Adapted from Nolan and Temple Lang (2014, p. 153).

their use, consider the problem of deleting all nodes with name div or title as well as
comments that appear in the document. We start again by creating a list of handler functions.
Inside this list, the first handler element specifies a function for all XML nodes in the document
(startElement). Handlers of that name allow describing functions that are executed on all
nodes in the document. The function specifies a request for a node’s name (xmlName) and
implements a control structure that returns the NULL object if the node’s name is either div
or title (meaning we discard this node) or else includes the full node in the DOM tree. The
second handler element (comment) specifies a function for discarding any HTML comment:

R> h2 <- list(
startElement = function(node, ...){

name <- xmlName(node)
if(name %in% c("div", "title")){NULL}else{node}

},
comment = function(node){NULL}

)

Let us pass the handler function to htmlTreeParse():

R> parsed_fortunes <- htmlTreeParse(file = url, handlers = h2, asTree = TRUE)

If we print parsed_fortunes to the screen, we find that we rid ourselves of the nodes
specified in the handlers:

R> parsed_fortunes$children
$html
<html>
<head/>
<body>
<address>
<a href="http://www.r-datacollectionbook.com">
<i>The book homepage</i>
</a>
<a/>
</address>
</body>
</html>

http://www.r-datacollectionbook.com
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2.4.3 Extracting information in the building process

We motivated the parsing of HTML files as a necessary intermediate step to extracting
information from web documents. In this process, we usually want the parser to traverse the
entire C-level node set and then build the document tree in an R data structure from which
we extract a particular information. Conceptually, there is an alternative strategy where we
conduct the extraction directly during the parsing process. Under some circumstances, this
strategy can provide considerable advantages since multiple loadings of a document can be
avoided, although it is also a little bit more challenging compared to the DOM-style parsing
approach presented before. Once again, handler functions play a key role in this process. But
rather than using the handler to describe how a C-level node should be converted into an
element of the R DOM tree, we now want to specify the handlers to route specific nodes into
an R object of our own choosing. Ultimately, this saves us an additional traversal step and thus
constitutes a more efficient way to pull out target information. Before we dive deeper into
this section, we would like to point out that the contents of this section are fairly advanced. If
you are not too familiar with R scoping issues, you might like to skip ahead to the summary
of this chapter. You can continue with the book just fine without having read this part.

For an example, consider the problem of extracting the information from fortunes.html Scope issues

that is written in italics, that is, encapsulated with <i> tags. Underlying this task is a tricky
problem of functional scope that we need to address. Ultimately, we want to create a data object
containing the information in our current workspace or global environment. But functions
in R—and our handler functions are no different—operate on local variables and have no
writing access to the global environment, which is a necessary requirement for this problem.

The solution is to define the handler function for the <i> nodes in the document as a Using closure
handler
functions

so-called closure—a function that is capable of referencing objects that are not local to it. A
closure function not only contains a function’s arguments and body, but also an environment.
Here, the environment is needed to define container variables to which we route the handler’s
output, as well as a return function for the variables’ contents.

We start by defining a nesting function getItalics(). i_container is our local
container variable that will hold all information set in italics. Next, we define the handler
function for the <i> nodes. On the right side of the first line of this function, we concatenate
the contents of the container variable with a new instance of the <i> node value. The resulting
vector then overwrites the existing container object by using the super assignment operator
<< − , which allows making an assignment to nonlocal variables. Lastly, we create a function
called returnI() with the purpose of returning the container object just created:

R> getItalics = function() {
i_container = character()
list(i = function(node, ...) {

i_container <<- c(i_container, xmlValue(node))
}, returnI = function() i_container)

}

Next, we execute getItalics() and route its return values into a new object h3.
Essentially, h3 now contains our handler function, but additionally, the function can access
i_container and returnI() as these two objects were created in the same environment
as the handler function:

R> h3 <- getItalics()
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Now we can pass this function to htmlTreeParse()’s handlers argument:

R> invisible(htmlTreeParse(url, handlers = h3))

For clarity, we employ the invisible() function to suppress printing of the DOM to the
screen. To take a look at the fetched information we can make a call to h3()’s returnI()
function to print all the occurrences of <i> nodes in the document to the screen:

R> h3$returnI()
[1] "'What we have is nice, but we need something very different'"
[2] "'R is wonderful, but it cannot work magic'"
[3] "The book homepage"

Summary

In this chapter we focused on getting a basic understanding of HTML. We learned that what
we get presented when surfing the web is an interpreted version of the marked up source
code that holds the content. Tags form the core of the markup used in HTML and can be
used to define structure, appearance, and content. Furthermore, elements not only contain
information but can also be used to transmit information from user to server or to incorporate
functionality from other computer languages, most notably JavaScript. We should be able at
this point to locate information we seek in the source code and to connect source code to
browser interpretation and vice versa. Along with knowledge about the structure of HTML
elements we are ready to learn how to exploit structure and layout of HTML files to collect
the information we need.

Parsing is an important step in processing information from web documents. The native
structure of HTML does not naturally map into R objects. We can import HTML files as raw
text, but this deprives us of the most useful features of these documents. We have learned in
this chapter how to parse the tree structure of HTML documents, giving them a representation
in the R environment. We will learn powerful tools to locate and extract nodes within these
objects and the information they hold in Chapter 4. But first we turn to XML, a more generic
counterpart to HTML and a frequently used format to exchange data on the Web.

Further reading

As HTML is a W3C standard, we recommend a look at the W3 pages and the accompanied
W3schools pages (http://www.w3schools.com) if you want to dive deeper into HTML and
JavaScript. As HTML is also a WHATWG standard, you might like to check out their web
pages for further information on HTML and related technologies (http://www.whatwg.org/).
For example, the history section explains why W3C and WHATWG develop HTML5 paral-
lelly. Further helpful web sources are the following.

� A complete list of tags with description and example:
http://www.w3schools.com/tags

� A long list of special characters, symbols, and their entity representation:
http://www.w3schools.com/charsets/ref_html_8859.asp

http://www.w3schools.com
http://www.w3schools.com
http://www.whatwg.org/
http://www.whatwg.org/
http://www.w3schools.com/tags
http://www.w3schools.com/charsets/ref_html_8859.asp
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� A much much longer list of characters and their entity representation:
http://unicode-table.com

� An HTML validator:
http://validator.w3.org

For those who like it short but also like to hold a real book in their hands there is Niederst
Robbins’s (2013) less than 200 pages HTML5 Pocket Reference. You can find more thorough
treatments of the subjects in Castro and Hyslop (2014) for HTML and CSS and Flanagan
(2011) for JavaScript.

Problems

1. Why is it important that HTML is a web standard?

2. Write down the HTML tags for (a) the primary heading, (b) starting a new paragraph,
(c) inserting foreign code, (d) constructing ordered lists, (e) creating a hyperlink, and
(f) creating an email link!

3. HTML source code inspection.
(a) Open three webpages you frequently use in your browser.
(b) Have a look at the source code of all three.
(c) Inspect various elements with the Inspect Elements tool of your browser.
(d) Save each of them to your hard drive.

4. Building a basic HTML document, part I.
(a) Write a minimal HTML file.
(b) Add your name as a comment.
(c) Add a level one and a level two headline.
(d) Add some further content, for example, a sentence about the current weather.
(e) Add a paragraph with some further content, for example, a sentence about tomor-

row’s weather.

5. Building a basic HTML document, part II.
(a) Write a minimal HTML document.
(b) Include a paragraph that contains 10 special characters—only five of them may be

mentioned in Table 2.1.
(c) Use http://www.r-datacollection.com/materials/html/simple.css as your default

style file.
(d) Check the validity of your document at http://validator.w3.org.

6. Building a basic HTML document, part III.
(a) Write a minimal HTML document.
(b) Include a table with two columns and three rows.
(c) The first column should contain first, second, and third. The second column should

contain links to your top three web pages.
(d) Have a look at the list of tags at http://www.w3schools.com/tags. Try to use some

of the tags you are not yet familiar with in your HTML document.

http://www.r-datacollection.com/materials/html/simple.css
http://www.r-datacollection.com/materials/html/simple.css
http://validator.w3.org
http://validator.w3.org
http://www.w3schools.com/tags
http://www.w3schools.com/tags
http://unicode-table.com
http://validator.w3.org
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7. The base R function download.file() is a standard tool to gather data from the Web
with R. Investigate the function’s syntax and try to use it to save the front pages of your
three most favorite websites to your local disk.

8. The base R functions readLines() and writeLines() can be used to import and
export character data to and from R Try to use them to import the webpages you have
gathered in the previous exercise and save them in different objects. Next, combine the
three objects into a list object. Finally, use writeLines() to store the pages again in
external files.

9. An encounter with JavaScript.
(a) Check out http://www.r-datacollection.com/materials/html/fortunes3.html in your

browser.
(b) View the page’s source code.
(c) Download both JavaScript files linked to the document using the download

.file() function.

10. Building a basic HTML document, part IV.
(a) Write a minimal HTML document.
(b) Include a form that has two inputs—name and age.
(c) Define the form in a way that it sends data to http://www.r-datacollection.com/

materials/http/GETexample.php via the GET method.
(d) Make sure it works—the server should respond with Hello YourName! You are

YourAge years old.
(e) Try to send high age values. At what point does the response message change?

http://www.r-datacollection.com/materials/html/fortunes3.html
http://www.r-datacollection.com/materials/html/fortunes3.html
http://www.r-datacollection.com/materials/http/GETexample.php
http://www.r-datacollection.com/materials/http/GETexample.php
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XML and JSON

XML, the eXtensible Markup Language, is one of the most popular formats for exchanging
data over the Web. But it is more than that. It is ubiquitous in our daily life. As Harold and
Means (2004, xiii) note:

XML has become the syntax of choice for newly designed document formats
across almost all computer applications. It’s used on Linux, Windows, Macintosh,
and many other computer platforms. Mainframes on Wall Street trade stocks with
one another by exchanging XML documents. Children playing games on their
home PCs save their documents in XML. Sports fans receive real-time game
scores on their cell phones in XML. XML is simply the most robust, reliable, and
flexible document syntax ever invented.

XML looks familiar to someone with basic knowledge about HTML, as it shares the same
features of a markup language. Nevertheless, HTML and XML both serve their own specific
purposes. While HTML is used to shape the display of information, the main purpose of XML
is to store data. Therefore, the content of an XML document does not get much nicer when it
is opened with a browser—XML is data wrapped in user-defined tags. The user-defined tags
make XML much more flexible for storing data than HTML. The main goal of this chapter
is not to turn you into an XML coding expert, but to get you used to the key components of
XML documents.

We start with a look at a running XML example (Section 3.1) and continue with an
inspection of the XML syntax (Section 3.2). There are several ways to limit the endless
flexibility in XML markup. We cover technologies that allow extending XML as well as
defining new standards that simplify exchanging specific data on the Web efficiently in
Sections 3.3 and 3.4. Section 3.5 shows how to handle XML data with R. If your web
scraping task does not specifically involve XML data you might be fine to just scan this part

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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of the chapter as you are already familiar with the most important concepts of the XML
language from the previous chapter.

Another standard for data storage and interchange we frequently find on the Web is the
JavaScript Object Notation, abbreviated JSON. JSON is an increasingly popular alternative
to XML for data exchange purposes that comes with some preferable features. The second
part of this chapter therefore turns to JSON. We introduce the format with a small example
(Section 3.6), talk about the syntax (Section 3.7), and learn how to import JSON content into
R and process the information (Section 3.8).

3.1 A short example XML document

We start with a short example of an XML file. The XML code in Figure 3.1 provides a sample
of three James Bond movies, along with some basic information. Probably the most distinctive
feature of XML code is that human readers have no problem in interpreting the data. Values
and names are wrapped in meaningful tags. Each of the three movies is attributed with a
name, a year, two actors, the budget, and the box office results. Indentation further facilitates
reading but is not a necessary component of XML. It highlights the hierarchical structure
of the document. The document starts with the root element <bond_movies>, which also
closes the document. The elements are repeated for each movie entry—the content varies.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <bond_movies>
3 <movie id="1">
4 <name>Dr. No</name>
5 <year>1962</year>
6 <actors bond="Sean Connery" villain="Joseph Wiseman"/>
7 <budget>1.1M</budget>
8 <boxoffice>59.5M</boxoffice>
9 </movie>

10 <movie id="2">
11 <name>Live and Let Die</name>
12 <year>1973</year>
13 <actors bond="Roger Moore" villain="Yaphet Kotto"/>
14 <budget>7M</budget>
15 <boxoffice>126.4M</boxoffice>
16 </movie>
17 <movie id="3">
18 <name>Skyfall</name>
19 <year>2012</year>
20 <actors bond="Daniel Craig" villain="Javier Bardem"/>
21 <budget>175M</budget>
22 <boxoffice>1108.6M</boxoffice>
23 </movie>
24 </bond_movies>

Figure 3.1 An XML code example: James Bond movies



XML AND JSON 43

Some elements are special. The element in the first line (<?xml...>) is not repeated, and
this and the <actors> element hold some additional information between the <...> signs.

The XML language works quite intuitively. You should have no problems to expand and
refine the dataset before even knowing every rule of the syntax. In fact, why not try it? Copy
the file, go to Wikipedia, look for other details on the movies, and try to add them to the file!
You can check later if you have written correct XML code. This is because information is
stored as plain text and the tags that allow arranging the data in meaningful ways are entirely
user-defined and should be comprehensible. While the tags might not even be necessary to
interpret the data, they make XML a computer language and as such useful for communication
on and between computers.

The fact that XML is a plain text format is what makes it ultimately compatible. This Why XML is so
popularmeans that whatever browser, operating system, or PC hardware we use, we can process it.

No further information or decoder is needed to interpret the data and their structure. The tags
are delivered along with the data and fully describe the document—this is commonly called
self-describing. Further, as tags can be nested within each other, XML documents can be used
to represent complex data structures (Murrell 2009, p. 116). We will discuss these structures in
the following section. To be sure, although XML is so flexible, it possesses a clear set of rules
that defines the basic layout of a document. We can use simple tools to check if these rules are
obeyed.1 There are also tools to further restrict structure and content in an XML document.
Many developers have used the syntax of XML to create new XML-based languages that
basically restrict XML to a fixed set of elements, structure, and content, which we will look
deeper into in Sections 3.4.3 and 3.4.4. Still, these derived languages remain valid XML.
XML has gained a considerable amount of its popularity through these extensions.

The downside of storing information in XML files is a lack of efficiency. Plain text XML
documents often hold a lot of redundant information. Note that in standard XML, the starting
and closing tags are repeated for every entry. This can consume more space in the document
than the actual data. Especially when we deal with large datasets or data that provide highly
hierarchical structure, it may take up a lot of memory to try to import and manipulate the data.

The preferred program to open XML files are programs that are capable of highlighting How to view
XML filesthe syntax of the documents and automatically indent the elements according to their level

in the hierarchical structure. Current versions of all mainstream browsers are able to layout
XML files adequately, and it is quite likely that your favorite code editor is capable of XML
highlighting as well. Note, however, that XML files can be very large and contain millions of
lines of data, so it may take a while to open them.

In the following sections we will talk more about the syntax of XML. We will learn how
to import XML data into R and how to transform it into other data formats that are more
convenient for analysis. We will also look at other XML “flavors” that are used to store a
variety of data types. You might be surprised about the numerous applications that rely on
XML and how one can make use of this knowledge for data scraping purposes.

3.2 XML syntax rules

As any other computer language, XML has a set of syntax rules and key elements we have to
know in order to find our way in any document. But fear not: XML rules are very simple.

1However, as mostly passive users of XML, this is rarely of interest to us.
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3.2.1 Elements and attributes

Take another look at Figure 3.1. It helps explain large parts of what we have to know aboutXML
declaration XML. An XML document always starts with a line that makes declarations for the XML

document:

1 <?xml version="1.0" encoding="ISO-8859-1"?>

version="1.0" indicates the version of XML that is being used. There are currently
two versions: XML 1.0 and XML 1.1.2 Additionally, the declaration can, but need not hold
the character encoding of the document, which in our case is encoding="ISO-8859-
1".3 Another attribute the declaration can contain—but does not in our example—is the
standalone attribute, which take values of yes or no and indicates whether there are
external markup declarations that may affect the content of the document.4

An XML file must contain one and only one root element that embraces the wholeRoot element

document. In our case, it is:

1 <bond_movies>
2 ...
3 <\bond_movies>

Information is usually stored in elements. An XML element is defined by its start tag andElement syntax

the content. An element frequently has an end tag, but can also be closed in the start tag with
a slash /. It can contain

� other elements.

� attributes, bits of information that describe the element in more detail. Attributes,
like elements, are slots for information, but they cannot contain further elements or
attributes.

� data of any form and length, for example, text, numbers or symbols.

� a mixture of everything, which sounds complicated but is a rather ordinary case when
elements contain other elements that contain data. For example, the <movie> elements
in Figure 3.1 all contain an attribute, other elements, and data within the children
elements.

� nothing, which means really nothing—no data, no other element, not even white
spaces.

2The differences between the two existing versions are marginal and relate to encoding issues that are usually of
no interest to us.

3To learn more about encodings, see Section 8.3.
4For more information, see the elucidations by W3C on http://www.w3.org/TR/xml/#sec-rmd

http://www.w3.org/TR/xml/#sec-rmd
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Consider the first <title> element from above:

1 <title>Dr. No</title>

Its constituent parts are

the element title title
the start tag <title>
the end tag </title>
the data value Dr. No

We are already familiar with the start tag–end tag logic from HTML. The benefit of this
syntax is that we can easily locate data of a certain element in the document, regardless
of where, that is, on which line or hierarchical level it is located. The element <title>
occurs three times in the example. We could retrieve all of these elements by building a query
like “give me the content of all elements named <title>.” This is what we will learn in
Chapter 4 when we learn how to use the query language XPath. A more compact way of
writing elements is

1 <actors bond="Sean Connery" villain="Joseph Wiseman"/>

This element contains

the element name actors
the start tag <actors.../>
first attribute’s name bond
first attribute’s value Sean Connery
second attribute’s name villain
second attribute’s value Joseph Wiseman

In this case there is no end tag but only a start tag. This is a so-called empty element Attributes

because the element contains no data. Empty elements are closed with a slash /. The element
in the example is of course not literally empty. Just like in HTML, XML elements can contain
attributes that provide further information. There is no limit to the number of attributes an
element can contain. The example element has two attributes. They are separated by a white
space. Attributes are always part of a start tag and hold their values in quotes after an equal
sign. The information stored in attributes is called attribute value. Attribute values always
have to be put in quotes, either using single quotes like bond='Sean Connery' or double
quotes like bond="Daniel Craig". However, if the attribute value itself contains quotes,
you should use the opposed pair of quotes for the attribute value:

1 <actors henchman="Richard 'Jaws' Kiel"/>
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As the structure of an XML document is inherently flexible, there are many ways to storeElements vs.
attributes the same content. Note how the actors were stored in the running example in Figure 3.1.

Another way would have been the following:

1 <actors>
2 <bond>Sean Connery</bond>
3 <villain>Jospeh Wiseman</villain>
4 </actors>

All information is retained, but the actors’ names are now stored in elements, not attributes.
Both ways are equally valid. The problem with attributes is that they do not allow fur-
ther branching—attributes cannot be expanded and can only contain one value. Besides,
we find them more difficult to read and more inconvenient to extract compared to ele-
ments. They are, however, not altogether useless. Take a look at the code in Figure 3.1.
Attributes named id are used to make elements with the same name uniquely identifiable.
This can be of help when we need to manipulate information in a particular element of the
XML tree.

3.2.2 XML structure

Each XML document can be represented as a hierarchical tree. The fact that data are stored
in a hierarchical manner is well suited for many data structures we are confronted with:
Survey participants are nested within countries. Survey participants’ responses are nested
within survey participants. Votes are nested within polling stations that are nested within
electoral districts that are nested within countries, and so on. Figure 3.2 gives a graphical
representation of the XML data from the XML code in Figure 3.1. At the very top stands
the root element <bond_movies>. All other elements have one and only one parent. In
fact, we can apply a family tree analogy to the entire document, describing each element as
a node:

� the movie nodes are children of the root node bond_movies;

� the movie nodes are siblings;

� the bond_movie node is the parent of the movie nodes, which are parents of the
title,..., boxoffice nodes;

� the title,..., boxoffice nodes are grandchildren of bond_movies.

Note that the attributes and their values are presented in the element value boxes in
Figure 3.2, even though they could be viewed as further leaves in the XML tree. However, as
attributes cannot be parents to other elements or attributes, they are rather element-describing
content than autonomous nodes. Nevertheless, they are strictly speaking attribute nodes.
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<bond_movies>

<movie>
id="1"

<movie>
id="2"

<movie>
id="3"

<title>
Dr. No

<year>
1962

<actors>
bond="Sean Connery"

villain="Joseph Wiseman"

<budget>

1.1M

<boxoffice> <boxoffice><boxoffice>
59.9M

<title>
Live and Let Die

<year>
1973

<actors>
bond="Roger Moore"

villain="Yaphet Kotto"

<budget>

7M

126.4M

<title>
Skyfall

<year>
2012

<actors>
bond="Daniel Craig"

villain="Javier Bardem"

<budget>

175M

1108.6M

Figure 3.2 Tree perspective on an XML document

Elements must be strictly nested, which means that no cross-nesting is allowed. An illegal
document structure would be:

1 <family>
2 <father>Jack</father>
3 <mother>Josephine</mother>
4 <child>Jonathan
5 <family>
6 <mother>Julia</mother>
7 <child>Jeff</child>
8 </family>
9 </family>

10 </child>

While it is theoretically sensible that the element <child> with the value Jonathan
opens a new <family> branch containing Jonathan’s wife Julia and their child Jeff,
Jonathan’s <child> element has to be closed before the <family> element.
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3.2.3 Naming and special characters

One of the strengths of XML is that we are basically free to chose the names of elements.Element names

However, there are some naming rules:

� Element names can be composed of letters, numbers, and other characters, like
in <name1>… </name1>. Special characters like ä, ö, ü, é, è, or à are allowed,
but not recommended—they might limit the compatibility of XML files across
systems.

� Names must not start with a number, like in <123name>… </123name>.

� Names must not start with a punctuation character, like in <.name>… </.name>.

� Names must not start with the letters xml (or XML, or Xml, etc.), like in
<xml.rootname>… </xml.rootname>.

� Element names and attribute names are case sensitive. <movie> is not the same as
<MOVIE> or <Movie>.

� Names must not contain spaces, like in <my family>… </my family>.

As in HTML, there are some characters that cannot be used literally in the content as they
are needed for markup. To represent these characters in the content, they have to be replaced
by escape sequences. These entities are listed in Table 3.1 and used as follows

1 <actor protagonist="Scarlett O&apos;Hara"/>
2 <math_wisdom>pi&gt;3</math_wisdom>

You do not always need to escape special characters. For example, apostrophes are
sometimes left unescaped, like in "Richard 'Jaws' Kiel" in the example above. In this
case, the apostrophes are unambiguous because the attribute value is enclosed by double
quotes. Using apostrophes in XML element values is usually no problem either, because
they have no special meaning in the value slot of the element, only inside tags as limiters to
attribute values.

Table 3.1 Predefined entities in XML

Character Entity reference Description

< &lt; Less than
> &gt; Greater than
& &amp; Ampersand
" &quot; Double quotation mark
' &apos; Single quotation mark
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3.2.4 Comments and character data

XML provides a way to comment content with the syntax Comments

1 <!-- an arbitrary comment -->

Everything in between <!-- and --> is not treated as part of the XML code and therefore
ignored by parsers. Comments may be used between tags or within element content, but not
within element or attribute names.

The use of escape sequences can be cumbersome when the elements to be escaped are
common in the data values. For example, imagine the following character sequence needs to
be stored in an XML file

1 1 < 3 < pi < 9 <= sqrt(81) < 1'081 > -2 > -999

In XML code, this would translate to

1 1 &lt; 3 &lt; pi &lt; 9 &lt;= sqrt(81) &lt; 1&apos;081 &gt; -2 &gt; -999

To avoid this mess, XML provides an environment that prevents the content from being CDATA

interpreted. It is called CDATA and works as follows

1 <![CDATA[
2 1 < 3 < pi < 9 <= sqrt(81) < 1'081 > -2 > -999
3 ]]>

All characters in the CDATA section are taken as is. The difference between comments
and a CDATA section is that a comment is not part of the document…

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <bond_movies>
3 <movie id="1">
4 <title>Dr. No</title>
5 <year>1962</year>
6 <actors bond="Sean Connery" villain="Joseph Wiseman"/>
7 <budget>1.1M</budget>
8 <boxoffice>59.5M</boxoffice>
9 </movie>

10 <!-- more movies & details to follow here! -->
11 </bond_movies>
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… whereas a CDATA section is:

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <bond_movies>
3 <movie id="1">
4 <title>Dr. No</title>
5 <year>1962</year>
6 <actors bond="Sean Connery" villain="Joseph Wiseman"/>
7 <budget>1.1M</budget>
8 <boxoffice>59.5M</boxoffice>
9 <deadpeople>

10 <![CDATA[
11 "John Strangways" & "Chauffeur" & "Prof R.J. Dent"
12 & "Quarrel" & "Dr. No"
13 ]]>
14 </deadpeople>
15 </movie>
16 </bond_movies>

If we write both snippets in an XML file and open it with a browser, the comments are not
displayed or explicitly highlighted as part of the XML tree. In contrast, the CDATA section
is displayed in the tree. If we delete the CDATA tags, this will produce an error because the
browser fails to interpret the ampersands and quotation marks.

You may want to try this out yourself. Save the last code snippet with your text editor as
an XML file and open it with your browser. Modify the content of the XML file, save it, and
reload the content with the browser. Experiment with allowed and disallowed changes. Try
special characters, cross-nested tags, and forbidden element names.

3.2.5 XML syntax summary

To sum up, the XML syntax comprises the following set of rules:

1. An XML document must have a root element.

2. All elements must have a start tag and be closed, except for the declaration, which is
not part of the actual XML document.

3. XML elements must be properly nested.

4. XML attribute values must be quoted.

5. Tags are named with characters and numbers, but may not start with a number or
“xml.”

6. Tag names may not contain spaces and are case sensitive.

7. Space characters are preserved.

8. Some characters are illegal and have to be replaced by meta characters.
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9. Comments can be included as follows: <!-- comment -->.

10. Content can be excluded from parsing using: <![CDATA[...]]>.

3.3 When is an XML document well formed or valid?

In short, an XML document is well formed when it follows all of the syntax rules from the Well-formed
and valid XMLprevious section. Techniques to extract information from XML documents rely on properly

written syntax. If we are in doubt that an XML document is well formed, there are ways
to check. For instance, the XML Validator on http://www.xmlvalidation.com/ checks for
mismatches between start and end tags, whether attribute values are quoted, whether illegal
characters have been used, in short: whether any of the rules are violated.

We can distinguish between well formed and valid XML. An XML document is valid The Document
Type Definition
(DTD)

when it

1. is well formed and

2. conforms to the rules of a Document Type Definition.

As we have seen, the structure of an XML document is arbitrary—tag names and levels
of hierarchy are defined by the user. However, there is a way to restrict this arbitrariness by
using Document Type Definitions, DTDs. A DTD is a set of declarations that defines the
XML structure, how elements are named, and what kind of data they should contain. A DTD
for our running example in Figure 3.1 could look like this

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE bond_movies [
3 <!ELEMENT bond_movies (movie)>
4 <!ELEMENT movie (title,year,actors,budget,boxoffice)>
5 <!ELEMENT title (#PCDATA)>
6 <!ELEMENT year (#PCDATA)>
7 <!ELEMENT actors (#PCDATA)>
8 <!ELEMENT budget (#PCDATA)>
9 <!ELEMENT boxoffice (#PCDATA)>

10 <!ATTLIST actors
11 bond CDATA #IMPLIED
12 villain CDATA #IMPLIED>
13 <!ATTLIST movie id CDATA #IMPLIED>
14 ]>
15 <bond_movies>
16 ...
17 <\bond_movies>

In this variant, the DTD is included in the XML document and wrapped in a DOCTYPE
definition, <!DOCTYPE bond_movies [...]>. This is called an internal DTD. For the
purpose of web scraping we normally do not need to be able to write DTDs, so we will

http://www.xmlvalidation.com/
http://www.xmlvalidation.com/
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not explain every detail of the declaration syntax but just provide some fundamentals on the
appearance of DTDs. Elements can be declared like

1 <!ELEMENT element (#PCDATA)> <!-- element contains only parsed
character data -->

2 <!ELEMENT element ANY> <!-- element contains any data that can be
parsed -->

Children of elements are declared as follows

1 <!ELEMENT element (child1,child2,child3,...)>
2 <!ELEMENT element (child1)> <!-- child occurs only once -->
3 <!ELEMENT element (child1+)> <!-- child occurs 1 or more times -->
4 <!ELEMENT element (child1*)> <!-- child occurs 0 or more times -->
5 <!ELEMENT element (child1?)> <!-- child occurs at most once -->

It gets a bit more complicated with the declaration of mixed content. If, for example, an
element contains one or more occurrences of the <child1> to <child3> elements or simply
parsed character data, the declaration would look like

1 <!ELEMENT element (child1|child2|child3|#PCDATA)+>

Declaring attributes can look as follows

1 <!ATTLIST element attribute CDATA #IMPLIED>

The IMPLIED attribute value means that the corresponding attribute is optional;REQUIRED
would mean that the attribute is required. There are multiple online tools that allow validating
XML files against a DTD. Just type “dtd validation” into a search engine and pick one of the
first results.

Why should we care whether an XML document is well formed or valid? Above all,
it is important to know that many files come with an internal DTD at the beginning of the
document. In general, DTDs serve several purposes. Data exchanges can be standardized as
senders and receivers know in advance what they are supposed to send and get. As a sender,
you can check if your own XML files are valid. As a receiver it is possible to check whether
the XML you retrieve is of the kind you or your program expects.

DTD itself is only one of several XML schema languages. Such languages help to describeXML schemas

and constrain the structure and content of an XML document. Another schema language is
XML Schema (XSD), developed by W3C. It allows defining a schema in XML syntax and
has some merits that are of little interest for our purposes. One area where XML schemas
play an important role is XML extensions, which are the topic of the next section.
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3.4 XML extensions and technologies

We have seen that XML has advantages compared to HTML for exchanging data on the
Web as it is extensible—and thus flexible. However, flexibility also carries the potential
for uncertainty or inconsistency, for example, when the same element names are used for
different content. Several extensions and technologies exist that improve the usability of
XML by suggesting standards or providing techniques to set such standards. Some of the
most important of these techniques are described in this section.

3.4.1 Namespaces

Consider the following two pieces of HTML and XML:

1 <head>
2 <title>Basic HTML Sample Page</title>
3 </head>

1 <book id="1">
2 <author>Douglas Crockford</author>
3 <title>JavaScript: The Good Parts</title>
4 </book>

Both pieces store information in the element <title>. If the XML code were embedded
in HTML code, this might create confusion. As we will see, there are many XML extensions
to store specific data, for example, geographic, graphical, or financial data. All of these
languages are basically XML with limited vocabulary. When several of these XML-based
languages are used in one document, element or attribute names can become ambiguous if
they are multiply assigned. XML namespaces are used to circumvent such problems. The
idea is very simple: Ambiguous elements become distinguishable if some unique identifier is
added. Just like zip codes allow distinguishing between many different Springfields and area
codes make phone numbers unambiguous, namespaces help make elements and attributes
uniquely identifiable.

The implementation of namespaces is straightforward:

1 <root xmlns:h="http://www.w3.org/1999/xhtml"
2 xmlns:t="http://funnybooknames.com/crockford">

4 <h:head>
5 <h:title>Basic HTML Sample Page</h:title>
6 </h:head>

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://funnybooknames.com/crockford
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8 <t:book id="1">
9 <t:author>Douglas Crockford</t:author>

10 <t:title>JavaScript: The Good Parts</t:title>
11 </t:book>

13 </root>

In this example, namespaces are declared in the root element using the xmlns attribute
and two prefixes, h and t. The namespace name, that is, the namespace attribute value, usually
carries a Uniform Resource Identifier (URI) that points to some Internet address. The URIs
in the example are two URLs that refer to an existing Internet resource on the W3C homepage
and the fictional domain funnybooknames.com. When dealing with namespaces, note the
following rules:

(i) Namespaces can be declared in the root element or in the start tag of any other
element. In the latter case, all children of this element are considered part of this
namespace.

(ii) The namespace name does not necessarily have to be a working URL. Parsers will
never try to follow the link, not even a URI. Any other string is fine. However, it is
common practice to use URIs for two reasons: First, as they are a long, unique string
of characters, duplicates are unlikely, and second, actual URLs can point the human
reader to pages where more information about the namespace is given.5

(iii) Prefixes do not have to be explicitly stated, so the declaration can either be xmlns
or xmlns:prefix . If the prefix is dropped, the xmlns is assumed to be the default
namespace and any element without a prefix is considered to be in that namespace.
When prefixes are used, it is bound to a namespace in the declaration. Attributes,
however, never belong to the default namespace.

3.4.2 Extensions of XML

Thus far, we have praised XML for its flexibility and extensibility. However, standardization
also has its benefits in data exchange scenarios. Recall how browsers deal with HTML. They
“know” what a table looks like, how headings should be formatted, and so on. In general,
many data exchange processes can be standardized because sender and recipient agree on the
content and structure of the data to be exchanged.

Following this logic, a multitude of extensions of the XML language has been developed
that combine the classical XML features of openness with the benefits of standardization. In
that sense, XML has become an important metalanguage—it provides the general architecture
for other XML markup languages. Varieties of XML rely on XML schemas that specify

5When the same URL is used again and again—such as http://www.w3.org/1999/xhtml—this reduces the
usefulness of namespaces. Therefore, one should think of references to locations one has full control over, like an
owned web domain where a DTD or XML schema is stored.

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
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Table 3.2 List of popular XML markup languages

Name Purpose Common filename extensions

Atom web feeds .atom
RSS web feeds .rss
EPUB open e-book .epub
SVG vector graphics .svg
KML geographic visualization .kml, .kmz
GPX GPS data (waypoint, tracks, routes) .gpx
Office Open XML Microsoft Office documents .docx, .pptx, .xlsx
OpenDocument Apache OpenOffice documents .odt, .odp, .ods, .odg
XHTML HTML extension and standardization .xhtml

For a more comprehensive list, see http://en.wikipedia.org/wiki/List_of_XML_markup_languages.

allowed structure, elements, attributes, and content. Table 3.2 lists some of the most popular
XML derivations. Among them are languages for geographic applications like KML or GPX
as well as for web feeds and widely used office document formats. You might be surprised
to find that MS Word makes heavy use of XML. To gain basic insight into XML extensions
that are ubiquitous on the Web, we focus on two popular XML markup languages—RSS
and SVG.

3.4.3 Example: Really Simple Syndication

Web users commonly cultivate a list of bookmarks of their favorite webpages. It can be rather
tiresome to regularly check for new content on the sites. Really Simple Syndication (RSS)6

was built to solve this problem—both for the user and the content providers. The basic idea
is that news sites, blog owners, etc., convert their content into a standardized format that can
be syndicated to any user.

We illustrate the logic of RSS in Figure 3.3. Authors of a blog or news site set up an RSS The logic of
RSSfile that contains some information on the news provider, which is stored on a web server.

The file is updated whenever new content is published on the blog. Both are usually done
by an RSS creation program like RSS builder. The list of entries or notifications is often
called RSS feed or RSS channel and might be located at http://www.example.net/feed.rss. It is
written in XML that follows the rules of the RSS format. Common elements that are allowed
in this XML flavor are listed in Table 3.3. There are elements that describe the channel and
others that describe single entries. Users collect channels by subscribing to an RSS reader
or aggregator like Feedly, which automatically locates the RSS feed on a given website and
lays out the content. These readers automatically update subscribed feeds and offer further
management functionalities. This way, users are able to assemble their own online news.

There are several versions of RSS, the current one being RSS 2.0. RSS syntax has remained
fairly simple, especially for users who are familiar with XML. The rules are strict, that is,

6Originally, RSS was an abbreviation of RDF Site Summary and was later redefined as Rich Site Summary. In
2002, it was redubbed again to Really Simple Syndication.

http://en.wikipedia.org/wiki/List_of_XML_markup_languages
http://en.wikipedia.org/wiki/List_of_XML_markup_languages
http://www.example.net/feed.rss
http://www.example.net/feed.rss
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Schema

• Subscription to feeds

• Use of browser, desktop

or mobile RSS readers

• RSS reader manages

subscriptions, parses

feeds, offers handsome

display of content

Demand

SyndicationAggregation
RSS • Blogs, news media,

audio, video, . . .

• Stored on web server

• Standardization of

content in RSS channel

• Provides full or summa-

rized content, metadata

Supply

Example

The squirrels blog

A squirrel’s daily business
October 23, 2013
Today, I saw a squirrel in

the . . .

...

The ADCR blog

Scraping the NFL
October 23, 2013
Today’s finger exercise

will be to scrape historical

data from NFL games . . .

End user

<rss version="2.0">
<channel>
<title>The squirrels blog</title>
<link>http://www.cutesquirrels.com/</link>
<description>All about squirrels!
</description>
<item>
<title>A squirrel’s daily business</title>
<link>http://www.cutesquirrels.com/131023
</link>
<description>Today, I saw a squirrel in
the... </description>
</item>

...

</channel>
</rss>

RSS/XML file

A squirrel’s daily business
October 23, 2013
Today, I saw a squirrel

in the neighbor’s garden

collecting food for the

winter.

Squirrelogy #127: breeding
October 26, 2013
This time in our popular

squirrelogy section, I want

to talk about the breeding

behavior of . . .

Website content

Figure 3.3 How RSS works

there is a very limited set of allowed elements and a clear document structure. Consider the
following example of a fictional RSS channel accompanying this book:

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <rss version="2.0">
3 <channel>
4 <title>The ADCR blog</title>
5 <description>Blog to the ADCR book; Wiley 2014</description>
6 <link>http://www.r-datacollection.com/blog</link>
7 <lastBuildDate>Tue, 22 Oct 2013 00:01:00 +0000 </lastBuildDate>
8 <item>
9 <title>Why R is useful for web scraping</title>

10 <description>R is becoming the most popular statistical
software and is growing fast due to an active community
publishing several additional packages every day. Yet,
R is more than [...]</description>

http://www.r-datacollection.com/blog
http://www.r-datacollection.com/blog
http://www.cutesquirrels.com/</link
http://www.cutesquirrels.com/131023
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11 <link>http://www.r-datacollection.com/blog/why-r-is-useful</link>
12 <pubDate>Tue, 22 Oct 2013 00:01:00 +0000 </pubDate>
13 </item>
14 </channel>
15 </rss>

RSS documents start with an XML and RSS declaration in the first two lines. The
<channel> element wraps around both meta information and the actual entries. The channel’s
meta block has three required elements—<title>, <description>, and <link>. In the
example, there is another optional element, <lastBuildDate>, that indicates the last time
content was changed on the channel. The content block consists of a set of <item> elements.
Whenever a new story, blog entry, etc., is published, a new <item> element is added to
the feed. <item> elements have three obligatory children—again, they are called <title>,
<description>, and <link>. The main content is usually stored in the <description>
element. Sometimes the whole entry is stored here, sometimes just the first few lines or a
summary. In general, RSS syntax obeys the same set of rules as XML syntax.

Table 3.3 List of common RSS 2.0 elements and their meaning

Element name Meaning

root elements
rss The feed’s root element
channel A channel’s root element

channel elements
description* Short statement describing the feed
link* URL of the feed’s website
title* Name of the feed
item The core information element: each item contains an entry of the feed

item elements
link* URL of the item
title* Title of the item
description* Short description of the item
author Email address of the item’s author
category Classification of item’s content
enclosure Additional content, for example, audio
guid Unique identifier of the item
image Display of image (with children <url>, <title>, and <link>)
language Language of the feed
pubDate Publishing date of item
source RSS source of the item
ttl “Time-to-live,” number of minutes until the feed is refreshed from the

RSS

Elements marked with “*” are mandatory. For more information on RSS 2.0 specification, see
http://www.rssboard.org/rss-specification

http://www.r-datacollection.com/blog/why{{-}}r{{-}}is{{-}}useful
http://www.r-datacollection.com/blog/why-r-is-useful
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
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1 <?xml version="1.0" standalone="no"?>
2 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
3 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

5 <svg xmlns="http://www.w3.org/2000/svg" version="1.1">
6 <ellipse cx="100" cy="70" rx="100" ry="70" style="fill:grey"/>
7 <ellipse cx="110" cy="75" rx="80" ry="50" style="fill:white"/>
8 <text x="65" y="160" fill="blue" style="font-size:160; font-stretch:

ultraexpanded;font-family:sans;font-weight:bold">R</text>
9 </svg>

Figure 3.4 SVG code example: R logo

Take a moment to look at actual RSS feeds. They are all around the Web and indi-
cated with the RSS icon ( ). There are several popular news and blogging platforms
about R. For example, have a look at http://planetr.stderr.org/ where new R packages are
posted (via Dirk Eddelbuettel’s CRANberries blog http://dirk.eddelbuettel.com/cranberries/),
and at http://www.r-bloggers.com/, a meta-blogging platform that collects content from the
R blogosphere.

RSS 2.0 is not the only content syndication format. Besides various predecessors, another
popular standard is Atom, which is also XML-based and has a very similar syntax. In order
to grab RSS feeds into R, we can use the same XML extraction tools that are presented in
Section 3.5.

3.4.4 Example: scalable vector graphics

A more peculiar but incredibly popular extension of XML is scalable vector graphics (SVG).
SVG is used to represent two-dimensional vector graphics. It has been developed at the W3C
since 1999 and was initially released in 2001 (Dailey 2010). The idea was to create a vector
graphic format that stores graphic information in lightweight, flexible form for exchange over
the Web.

Vector graphic formats consist of basic geometric forms such as points, curves, circles,Vector graphics
versus raster

graphics
lines, or polygons, all of which can be expressed mathematically. In contrast, raster graphic
formats store graphic information as a raster of pixels, that is, rectangular cells of a certain
color. In contrast to raster graphics, vector graphics can be resized without any loss of
quality and are usually smaller. As the SVG format is based on XML, SVG graphics can
be manipulated with an ordinary text editor. There are, however, SVG editors that simplify
this task. For example, Inkscape is an open-source graphics editor that implements SVG by
default and runs on all common operating systems.7 In order to view SVG files, we can use
current versions of the common browsers.

To get a first impression of how SVG works, Figure 3.4 provides code of a small SVGAn SVG
example file. This code generates a stylized representation of the R icon just like the one displayed

in Figure 3.5. In fact, if we open an SVG file with the content of the sample code with our
browser, we see the graphic shown in Figure 3.5. The syntax does not only resemble XML, it

7See http://inkscape.org/ for further information and download.

http://planetr.stderr.org/
http://planetr.stderr.org/
http://dirk.eddelbuettel.com/cranberries/
http://dirk.eddelbuettel.com/cranberries/
http://www.r-bloggers.com/
http://www.r-bloggers.com/
http://inkscape.org/
http://inkscape.org/
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg
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Figure 3.5 The R logo as SVG image from code in Figure 3.4

is XML with a limited set of legal elements and attributes. An SVG file starts with the usual
XML declaration. The standalone attribute indicates that the document refers to an external
file, in this case an external DTD in lines 2 and 3. This DTD is stored at the www.w3.org
webpage and describes which elements and attributes are legal in the current SVG version 1.1
(as of March 2014). The actual SVG code that describes the graphic is enclosed in the <svg>
element. It contains a namespace and a version attribute.

SVG uses a predefined set of elements and attributes to represent parts of a graphic SVG basics

(‘SVG shapes’). Among the basic shapes of SVG are lines (<line>), rectangles (<rect>),
circles (<circle>), ellipses (<ellipse>), polygons (<polygon>), (<text>), and, the most
general of all, paths (<path>). Each of these elements comes with a specific set of attributes
to tune the object’s properties, for example, the position of the corners, the size and radius
of a circle, and so on. Elements are placed on a virtual coordinate system, with the origin
(0,0) in the upper-left corner. Formatted text can also be placed into the graphic. The order
of elements is important. A later-listed element covers a previous element—elements can
therefore be thought of as layers. Further, there is a palette of special effects like blurs or
color gradients. Elements can even be animated. A complex SVG graphic is often generated
by quite complex SVG code. The complexity usually does not stem from a highly hierarchical
structure—most of the elements are often just children of the root element—but from the
mass of elements and their attributes. Our basic graphic in Figure 3.5 is composed of only
three elements—two ellipses and one text element. By default, elements come in the compact
form of XML element syntax: Elements are usually empty and contain no further information
than those given in the attributes.

Back to the example, the locations of the ellipses are defined by their attributes cx and
cy, their shape by the horizontal and vertical radius in rx and ry. Colors and other effects
can be passed via arguments in the style attribute. The white ellipse is plotted on the top
of the grey ellipse simply because it appears second in the code, creating the donut effect.
Finally, shape, color, font, and location of the “R” is defined in the <text> element.

Beyond the principle advantages of vector over raster graphics, SVG, in particular, has SVG and the
Websome features that make it attractive as a graphic standard on the Web: It can be edited with

any text editor, opened with the common browsers, follows a familiar syntax as it is basically
just XML, and has been developed for a wide range of applications. We have learned that
XML is flexible but because of the flexibility cannot be interpreted further by a browser. This
is not true for XML extensions such as SVG. As the set of elements and attributes is clearly
defined, browsers can be programmed to display SVG content as meaningful graphic, not as

www.w3.org
www.w3.org


60 AUTOMATED DATA COLLECTION WITH R

code—just as they interpret and display HTML code. In HTML5, SVG graphics can even be
embedded as simply as this

1 <html>
2 <body>
3 <svg> <rect width="300" height="100"/> </svg>
4 </body>
5 </html>

Why could SVG be useful in the context of automated data collection? At first glance, SVGSVG is useful
for data

gatherers
is a flexible and widely used vector graphics format. From the data collection perspective,
however, it is more than that. The information in these graphs—and often more than just the
visible parts—are stored in text form and can therefore be searched, subsetted, etc. SVG is
becoming more and more popular on the Web and is used for increasingly complex tasks,
for example, to store geographic information, create interactive maps, or visualize massive
amounts of data.8

The takeaway message of these two examples is that XML is present in many different
areas, and many of these applications hold potentially useful information. And the neat thing
is: We will learn how easy it is to retrieve and process this information with R, regardless of
whether the information is stored in “pure” XML or any of its extensions.

3.5 XML and R in practice

Let us now turn to practice. How can XML files be viewed, how can they be imported and
accessed in an R session, and how can we convert information from an XML document
into data structures that are more convenient for further graphical or statistical analysis, like
ordinary data frames, for example?

As we said before, XML files can be opened and viewed in all text editors and browsers.
However, while text editors usually take the XML file as is, modern web browsers automati-
cally parse the XML and try to represent its structure. This fails when the XML document is
not valid. In this case, the browser might tell you why it thinks the parsing failed, for example,
because of an opening and ending tag mismatch on a certain line. From this perspective, the
web browser is a decent tool to check if your XML is well formed. In standard web scraping
tasks, we usually do not view XML documents file by file but download them in a first step
and import them into our R workspace in a second (see Chapter 9).

3.5.1 Parsing XML

We parse XML for the same reason that we parse HTML documents (see Section 2.4.1),
to create a structure-aware representation of XML files that allows a simple information

8To learn more about SVG check out Eisenberg (2002) and the elucidations on the W3C pages: http://www.w3
.org/Graphics/SVG/. For a quick access to the language, the SVG primer by Dailey (2010) should prove useful.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
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1 <?xml version="1.0"?>
2 <!DOCTYPE document SYSTEM "technologystocks.dtd">
3 <document>
4 <Apple>
5 <date>2013/11/13</date>
6 <close>520.634</close>
7 <volume>7022001.0000</volume>
8 <open>518</open>
9 <high>522.25</high>

10 <low>516.96</low>
11 <company>Apple</company>
12 <year>2013</year>
13 </Apple>
14 <Apple>
15 <date>2013/11/12</date>
16 <close>520.01</close>
17 <volume>7295400.0000</volume>
18 <open>517.67</open>
19 <high>523.92</high>
20 <low>517</low>
21 <company>Apple</company>
22 <year>2013</year>
23 </Apple>
24 (...)
25 </document>

Figure 3.6 XML example document: stock data

extraction from these files. Similar to what was outlined in the HTML parsing section, the
process of parsing XML essentially includes two steps. First, the symbol sequence that
constitutes the XML file is read in and used to build a hierarchical tree-like data structure
from its elements in the C language, and second, this data structure is translated into an R
data structure via the use of handlers.

The package we use to import and parse XML documents is, appropriately enough, called
XML (Temple Lang 2013c). Using the XML package we can read, search, and create XML
documents—although we only care about the former two tasks. Let us see how to load XML
files into R. For DOM-style parsing of XML files one can use xmlParse(). The arguments
of the function coincide with those of htmlParse() for the most part. We illustrate the
process with the help of technology.xml, an XML file that holds stock information for three
technology companies. The first few lines of the document are presented in Figure 3.6. As
we see, the file contains stock information like the closing value, lowest and highest value for
a day, and the traded volume. To obtain the XML tree with R, we pass the path of the file to
xmlParse()’s file argument:

R> library(XML)
R> parsed_stocks <- xmlParse(file = "stocks/technology.xml")
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1 <!ELEMENT document (Apple,IBM,Google)>
2 <!ELEMENT Apple (date,close,volume,open,high,low,company,year)>
3 <!ELEMENT Google (date,close,volume,open,high,low,company,year)>
4 <!ELEMENT IBM (date,close,volume,open,high,low,company,year)>
5 <!ELEMENT close (#PCDATA)>
6 <!ELEMENT company (#PCDATA)>
7 <!ELEMENT date (#PCDATA)>
8 <!ELEMENT high (#PCDATA)>
9 <!ELEMENT low (#PCDATA)>

10 <!ELEMENT open (#PCDATA)>
11 <!ELEMENT volume (#PCDATA)>
12 <!ELEMENT year (#PCDATA)>

Figure 3.7 DTD of stock data XML file (see Figure 3.6)

The xmlParse() function is used to parse the XML document.9 The parsing function
offer a set of options that can be ignored in most settings but are still worth knowing. It is
possible to treat the input as XML and not as a file name (option asText), to decide whether
both namespace URI and prefix should be provided on each node or just the prefix (option
fullNamespaceInfo), to determine whether an XML schema is parsed (option isSchema),
or to validate the XML against a DTD (option validate). Let us consider this last option in
more detail.

Although HTML and XML are very similar in most respects, a noteworthy differenceXML
validation exists in that XML is confined to much stricter specification rules. As we have seen in

Section 3.3, valid XML not only has to be well formed, that is, tags must be closed, attributes
names must be in quotes, etc., but also has to adhere to the specifications in its DTD. To check
whether the document conforms to the specification, a validation step can be included after
the DOM has been created by setting the validate argument to TRUE. We try to validate
technology.xml with the corresponding external technologystocks.dtd (see Figure 3.7), which
is deposited in our folder and referred to in line 2 of the XML file (see Figure 3.6):

R> library(XML)
R> parsed_stocks <- xmlParse(file = "stocks/technology.xml", validate = TRUE)

There is no complaint; the validation has succeeded. To demonstrate what happens if an
XML does not conform to a given DTD, we manipulate the DTD such that the document node
is no longer defined. As a consequence, the XML file does not conform to the (corrupted)
DTD anymore and the function raises a complaint:

R> library(XML)
R> stocks <- xmlParse(file = "stocks/technology-manip.xml", validate = TRUE)
No declaration for element document
Error: XML document is invalid

9The XML package provides a set of other XML parsing functions, namely xmlTreeParse(),
xmlInternalTreeParse(), xmlNativeTreeParse(), and xmlEventParse(). As their names suggest, they
differ in the way how the XML tree is parsed. xmlInternalTreeParse() and xmlNativeTreeParse() are
equivalent to xmlParse(). Further, all are almost equivalent to xmlTreeParse(), except that the parser automat-
ically relies on the internal nodes (the useInternalNodes parameter is set TRUE).
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In general, the rather bulky logic of XML validation with DTD, XSD, or other schemas
should not discourage you from making use of the full power of the XML DOM structure. In
most web scraping scenarios, there is no need to validate the files and we can simply process
them as they are.

3.5.2 Basic operations on XML documents

Once an XML document is parsed we can access its content using a set of functions in the
XML package. While we recommend using the more general and robust XPath for searching
and pulling out information from XML documents, here we present some basic operations
that might suffice for less complex XML documents. To see how they work, let us go back to
our running example: We start by parsing the bond.xml file:

R> bond <- xmlParse("bond.xml")
R> class(bond)
[1] "XMLInternalDocument" "XMLAbstractDocument"

When we type bond into our console, the output looks pretty much like the original XML
file. We know, however, that the object is anything but pure character data. For instance, we
can perform some basic operations on the root element. The top-level node is extracted with
the xmlRoot() function; xmlName() and xmlSize() return the root element’s name and
the number of children:

R> root <- xmlRoot(bond)
R> xmlName(root)
[1] "bond_movies"
R> xmlSize(root)
[1] 3

Within the node sets, basic navigation or subsetting works in analogy to indexing ordinary Navigation

lists in R. That is, we can use numerical or named indices to select certain nodes. This is not
possible with objects of class XMLInternalDocument that are generated by xmlParse().
We therefore work with the root object, which belongs to the class XMLInternalEle-
mentNode. Indexing with predicate “1” yields the first child:

R> root[[1]]
<movie id="1">

<name>Dr. No</name>
<year>1962</year>
<actors bond="Sean Connery" villain="Joseph Wiseman"/>
<budget>1.1M</budget>
<boxoffice>59.5M</boxoffice>

</movie>

We have to use double brackets to access the internal node. By adding another index, we
can move further down the tree and extract the first child of the first child:

R> root[[1]][[1]]
<name>Dr. No</name>
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Element names can be used as predicates, too. Using double brackets yields the first
element in the tree, single brackets return objects of class XMLInternalNodeList. To see
the difference, compare

R> root[["movie"]]
<movie id="1">

<name>Dr. No</name>
<year>1962</year>
<actors bond="Sean Connery" villain="Joseph Wiseman"/>
<budget>1.1M</budget>
<boxoffice>59.5M</boxoffice>

</movie>

with

R> root["movie"]
$movie
<movie id="1">

<name>Dr. No</name>
<year>1962</year>
<actors bond="Sean Connery" villain="Joseph Wiseman"/>
<budget>1.1M</budget>
<boxoffice>59.5M</boxoffice>

</movie>

$movie
<movie id="2">

<name>Live and Let Die</name>
<year>1973</year>
<actors bond="Roger Moore" villain="Yaphet Kotto"/>
<budget>7M</budget>
<boxoffice>126.4M</boxoffice>

</movie>

$movie
<movie id="3">

<name>Skyfall</name>
<year>2012</year>
<actors bond="Daniel Craig" villain="Javier Bardem"/>
<budget>175M</budget>
<boxoffice>1108.6M</boxoffice>

</movie>

attr(,"class")
[1] "XMLInternalNodeList" "XMLNodeList"

Names and numbers can also be combined. To return the atomic value of the first <name>
element, we could write

R> root[["movie"]][[1]][[1]]
Dr. No
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The structure of the object is retained and can be used to locate elements and values. How-
ever, content retrieval from XML files via ordinary predicates is quite complex, error prone,
and anything but convenient. Further, this method does not capitalize on node relations—a
core feature of parsed XML documents. For anybody who is seriously working with XML
data, there are good reasons to learn the very powerful query language XPath. We will show
how this is done in the next chapter.

In general, all methods and all those to follow are applicable to other XML-based lan- Accessing
documents of
the XML
family

guages as well. The parser does not care about naming and structure of documents as long as
the code is valid. Therefore, documents like the RSS sample code from above can be imported
just as easy as

R> xmlParse("rsscode.rss")
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>
<title>The ADCR blog</title>
<description>Blog to the ADCR book; Wiley 2014</description>
<link>http://www.r-datacollection.com/blog</link>
<lastBuildDate>Tue, 22 Oct 2013 00:01:00 +0000 </lastBuildDate>
<item>
<title>Why R is useful for web scraping</title>
<description>R is becoming the most popular statistical software

and is growing fast due to an active community publishing several
additional packages every day. Yet, R is more than [...]</description>

<link>http://www.r-datacollection.com/blog/why-r-is-useful</link>
<pubDate>Tue, 22 Oct 2013 00:01:00 +0000 </pubDate>

</item>
</channel>

</rss>

3.5.3 From XML to data frames or lists

Sometimes it suffices to transform an entire XML object into common R data structures like
vectors, data frames, or lists. The XML package provides some appropriate functions that
make such operations straightforward if the original structure is not too complex.

Single vectors can be extracted with xmlSApply(), a wrapper function for lapply()
and sapply() that is built to deal with children of a given XML node. The function operates
on an XML node (provided as first argument), applies any given function on its children
(given as the second argument), and commonly returns a vector. We can use the function in
combination with xmlValue() and xmlGetAttr() (and other functions; see Table 4.4) to
extract element or attribute values:

R> xmlSApply(root[[1]], xmlValue)
name year actors budget boxoffice

"Dr. No" "1962" "" "1.1M" "59.5M"
R> xmlSApply(root, xmlAttrs)
movie.id movie.id movie.id

"1" "2" "3"
R> xmlSApply(root, xmlGetAttr, "id")
movie movie movie

"1" "2" "3"

http://www.r-datacollection.com/blog
http://www.r-datacollection.com/blog
http://www.r-datacollection.com/blog/why{{-}}r{{-}}is{{-}}useful
http://www.r-datacollection.com/blog/why-r-is-useful
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As long as XML documents are flat in the hierarchical sense, that is, the root node’s most
distant relatives are grandchildren or children, they can usually be transformed easily into a
data frame with xmlToDataFrame()

R> (movie.df <- xmlToDataFrame(root))
name year actors budget boxoffice

1 Dr. No 1962 1.1M 59.5M
2 Live and Let Die 1973 7M 126.4M
3 Skyfall 2012 175M 1108.6M

Note, however, that this function already runs into trouble with the <actor> element,
which is itself empty except for two attributes. The corresponding variable in thedata.frame
object is left empty with a shrug.

Similarly, a conversion into a list is possible with xmlToList():

R> movie.list <- xmlToList(bond)

XML and other data exchange formats like JSON can store much more complicated data
structures. This is what makes them so powerful for data exchange over the Web. Forcing
such structures into one common data frame comes at a certain cost—complicated data
transformation tasks or the loss of information. xmlToDataFrame() is not an almighty
function to achieve the task for which it is named. Rather, we are typically forced to develop
and apply own extraction functions.

3.5.4 Event-driven parsing

While parsing the XML example files in Section 3.5.1 was processed quickly by R, files
of larger size can lead to overloaded working memory and concomitant data management
problems. As a format primarily designed for carrying data across services, XML files are
oftentimes of substantially greater size than HTML files. In many instances, file sizes can
exceed the memory capacity of ordinary desktop PCs and laptops. This problem is aggravated
when data streams are concerned, where XML data arrives iteratively. These applications
obstruct the DOM-based parsing approach we have been applying in this and the previous
chapter and demand for a more iterative parsing style.

The root of the problem stems from the way the DOM-style parsers process and storeEvent-driven/
SAX parser information. The parser creates two copies of a given XML file—one as the C-level node set

and the second as the data structure in the R language. To detect certain elements in an XML
file, we can deal with this problem by employing a parsing technique called event-driven
parsing or SAX parsing (Simple API for XML). Event-driven parsing differs from DOM-
style parsing in that it skips the construction of the complete DOM at the C level. Instead,
event-driven parsers sequentially traverse over an XML file, and once they find a specified
element of interest they prompt an instant, user-defined reaction to this event. This procedure
provides a huge advantage over DOM-style parsers because the machine’s memory never has
to hold the complete document.

Let us reconsider technology.xml and the problem of extracting information about the
Apple stock. Assume we are interested in obtaining Apple’s daily closing value along with
the date. Once again, we make use of a handler function to specify how to handle a node
of interest. Similar to the extraction problem considered in Section 2.4.3, we define the
handler as a nested function to combine it with a reference environment and container



XML AND JSON 67

1 branchFun <- function(){
2 container_close <- numeric()
3 container_date <- numeric()

5 "Apple" = function(node,...) {
6 date <- xmlValue(xmlChildren(node)[[c("date")]])
7 container_date <<- c(container_date, date)
8 close <- xmlValue(xmlChildren(node)[[c("close")]])
9 container_close <<- c(container_close, close)

10 #print(c(close, date));Sys.sleep(0.5)
11 }
12 getContainer <- function() data.frame(date=container_date,

close=container_close)
13 list(Apple=Apple, getStore=getContainer)
14 }

Figure 3.8 R code for event-driven parsing

variables (see Figure 3.8). branchFun() defines two local variables container_close
and container_date, serving as the container variables. Since we are interested in Apple
stock information, we suggest the following approach: We start by defining a handler function
for the <Apple> nodes (lines 6 and 8). Conditional on these elements, we look for their
children called date and close and return their values (lines 7 and 9). A return function
getContainer() is defined (line 12) that assembles the container variable’s contents into a
data frame and returns this object.

To generate a usable instance of the handler function, we execute the function and pass
its return value into a new object called h5:

R> (h5 <- branchFun())
$Apple
function (node, ...)
{

date <- xmlValue(xmlChildren(node)[[c("date")]])
container_date <<- c(container_date, date)
close <- xmlValue(xmlChildren(node)[[c("close")]])
container_close <<- c(container_close, close)

}
<environment: 0x0000000008c4afa8>

$getStore
function ()
data.frame(date = container_date, close = container_close)
<environment: 0x0000000008c4afa8>

We are now ready to run the SAX parser over our technology.xml file using XML’s
xmlEventParse() function. Instead of the handlers argument we will pass the han-
dler function to the branches argument. The branches is a more general version of the
handlers argument, which allows to specify functions over the entire node content, includ-
ing its children. This is exactly what we need for this task since in our handler function h5
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we have been making use of the xmlChildren function for retrieving child information.
Additionally, for the handlers argument we need to pass an empty list:

R> invisible(xmlEventParse(file = "stocks/technology.xml",
branches = h5, handlers = list()))

To get an idea about the iterative traversal through the document, remove the commented
line in the handler and rerun the SAX parser. Finally, to fetch the information from the local
environment we employ the getStore() function and route the contents into a new object:

R> apple.stock <- h5$getStore()

To verify parsing success, we display the first five rows of the returned data frame:

R> head(apple.stock, 5)
R> # date close 1 2013/11/13 520.634 2 2013/11/12 520.01 3 2013/11/
11 519.048 4
R> # 2013/11/08 520.56 5 2013/11/07 512.492

As we have seen, the event-driving parsing works and returns the correct information.
Nonetheless, we do not recommend users to resort to this style of parsing as their preferred
means to obtain data from XML documents. Although event-style parsing exceeds the DOM-
style parsing approach with respect to speed and may, in case of really large XML files, be the
only practical method, it necessitates a lot of code overhead as well as background knowledge
on R functions and environments. Therefore, for the small- to medium-sized documents that
we deal with in this book, in the coming chapters we will focus on the DOM-style parsing
and extraction methods provided through the XPath query language (Chapter 4).

3.6 A short example JSON document

In this section, we will become acquainted with the benefits of the data exchange standard
JSON. The acronym (pronounced “Jason”) stands for JavaScript Object Notation. JSON was
designed for the same tasks that XML is often used for—the storage and exchange of human-
readable data. Many APIs by popular web applications provide data in the JSON format.

As its name suggests, JSON is a data format that has its origins in the JavaScript pro-
gramming language. However, JSON itself is language independent and can be parsed with
many existing programming languages, including R. JSON has turned into one of the most
popular formats for web data provision. It is therefore worth studying for our purposes. We
start again with a synthetic example and continue with a more systematic look at the syntax.
In the final part of the chapter, we will learn the JSON syntax and how to access JSON data
with R.

The JSON code in Figure 3.9 holds some basic information on the first three IndianaIndiana Jones
and the first

JSON example
Jones movies. We observe that JSON has a more slender appearance than XML. Data are
stored in key/value pairs, for example, "name" : "Raiders of the Lost Ark", which
obviates the need for end tags. Different types of brackets (curly and square ones) allow
describing hierarchical structures and to differentiate between unordered and ordered data.
Just as in XML, JSON data structures can become arbitrarily complex regarding nestedness.
Apart from differences in the syntax, JSON is as intuitive as XML, particularly when indented
like in the example code, although this is no necessary requirement for valid JSON data.
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1 {"indy movies" :[
2 {
3 "name" : "Raiders of the Lost Ark",
4 "year" : 1981,
5 "actors" : {
6 "Indiana Jones": "Harrison Ford",
7 "Dr. René Belloq": "Paul Freeman"
8 },
9 "producers": ["Frank Marshall", "George Lucas", "Howard Kazanjian"],

10 "budget" : 18000000,
11 "academy_award_ve": true
12 },
13 {
14 "name" : "Indiana Jones and the Temple of Doom",
15 "year" : 1984,
16 "actors" : {
17 "Indiana Jones": "Harrison Ford",
18 "Mola Ram": "Amish Puri"
19 },
20 "producers": ["Robert Watts"],
21 "budget" : 28170000,
22 "academy_award_ve": true
23 },
24 {
25 "name" : "Indiana Jones and the Last Crusade",
26 "year" : 1989,
27 "actors" : {
28 "Indiana Jones": "Harrison Ford",
29 "Walter Donovan": "Julian Glover"
30 },
31 "producers": ["Robert Watts", "George Lucas"],
32 "budget" : 48000000,
33 "academy_award_ve": false
34 }]
35 }

Figure 3.9 JSON code example: Indiana Jones movies

3.7 JSON syntax rules

JSON syntax is easy to learn. We only have to know (a) how brackets are used to structure
the data, (b) how keys and values are identified and separated, and (c) which data types exist
and how they are used.

Brackets play a crucial role in structuring the document. As we see in the example data in
Figure 3.9, the whole document is enclosed in curly brackets. This is because indy movies
is the first object that holds the three movie records in an array, that is, an ordered sequence.
Arrays are framed by square brackets. The movies, in turn, are also objects and therefore
enclosed by curly brackets. In general, brackets work as follows:

1. Curly brackets, “{” and “},” embrace objects. Objects work much like elements in
XML and can contain collections of key/value pairs, other objects, or arrays.
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2. Square brackets, “[” and “],” enclose arrays. An array is an ordered sequence of
objects or values.

Actual data are stored in key/value pairs. The rules for keys and values are

1. Keys are placed in double quotes, data are only placed in double quotes if they are
string data

1 "name" : "Indiana Jones and the Temple of Doom"
2 "year" : 1984

2. Keys and values are always separated by a colon

1 "year" : 1981

3. Key/value pairs are separated by commas

1 {"Indiana Jones": "Harrison Ford",
2 "Dr. Rene Belloq": "Paul Freeman"}

4. Values in an array are separated by commas

1 ["Frank Marshall", "George Lucas", "Howard Kazanjian"]

JSON allows a set of different data types for the value part of key/value pairs. They are
listed in Table 3.4.

Table 3.4 Data types in JSON

Data type Meaning

Number integer, real, or floating point (e.g., 1.3E10)
String white space, zero, or more Unicode characters (except " or \; \ introduces

some escape sequences)
Boolean true or false
Null null, an unknown value
Object content in curly brackets
Array ordered content in square brackets
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And that is it.10 From the perspective of an XML user, note what is not possible in
JSON: We cannot add comments, we do not distinguish between missing values and null
values, there are no namespaces and no internal validation syntax like XML’s DTD. But this
does not make JSON inferior to XML in absolute terms. They are rather based on different
concepts. JSON is not a markup language and not even a document format. It is anticipated
to be versionless—there is no JSON 1.0—and no change in the grammar is expected. It is
just a data interchange standard that is so general that it can be parsed by many languages
without effort.

Although there is not much to highlight in JSON data, there are some tools that facil- JSON
pocketknife
tools

itate accessing JSON documents for human readers. The JSON Formatter & Validator at
http://jsonformatter.curiousconcept.com/ is just one of several tools on the Web that automat-
ically indent JSON input. This makes it much easier to read because JSON data frequently
come without indentation or line breaks. The tool also helps check for bugs in the data. If
you want to convert XML to JSON data, take a look at http://www.freeformatter.com/xml-
to-json-converter.html or similar tools. However, such conversions are never isomorphic and
rules have to be set to deal with, for example, attributes and namespaces.

Why is JSON so important for the Web even though XML already provides a popular data The importance
of JSON for the
Web

exchange format? First of all, there are some technical properties that make JSON preferable to
XML. Generally, it is more lightweight due to its less verbose syntax and only allows a limited
set of data types that are compatible with many if not most existing programming languages.
Regarding compatibility, JSON has another crucial feature: We cover only basics of JavaScript
in this book (see Chapter 6), but JavaScript is a major player on the Web to generate dynamic
content and user–browser interactions. JSON is ultimately compatible with JavaScript and
can be directly parsed into JavaScript objects. From a practical point of view, JSON seems to
become the most widely used data exchange format for web APIs; Twitter as well as YouTube
and many bigger and smaller web services have begun using JSON-only APIs.

3.8 JSON and R in practice

While R has one standard set of tools to handle XML-type data—the XML package—there
are several packages that allow importing, exporting, and manipulating JSON data. The first
published package was rjson (Couture-Beil 2013) and is still used in some R-based API
wrappers. The package that is currently more established, however, is RJSONIO (Temple
Lang 2013b), which we will use in this section. Finally, we also discuss the recently published
package jsonlite (Ooms and Temple Lang 2014), which builds on RJSONIO and improves
mapping between R objects and JSON strings.

We begin the discussion with an inspection of the RJSONIO package. In its current version
(1.0.3), the package offers 24 functions, most of which we usually do not apply directly. We
now return to the running example, the data in the indy.json file. Using the isValidJSON()
function, we first check whether the document consists of valid JSON data:

R> isValidJSON("indy.json")
[1] TRUE

10There are some encoding details we do not dwell on here—if you want to go a little bit more into details,
http://www.json.org/ provides further information.

http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://www.freeformatter.com/xml-to-json-converter.html
http://www.freeformatter.com/xml-to-json-converter.html
http://www.freeformatter.com/xml-to-json-converter.html
http://www.freeformatter.com/xml-to-json-converter.html
http://www.json.org/
http://www.json.org/
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This seems to be the case. The two core functions are fromJSON() and toJSON().
fromJSON() reads content in JSON format and converts it to R objects, toJSON() does the
opposite:

R> indy <- fromJSON(content = "indy.json")

content is the function’s main argument. In our case, indy.json is a file in the workingfromJSON()

directory, but it could also be a character string possibly from the Web via getURL()
or imported with readLines(). The fromJSON() function offers several other useful
arguments, and as the package is well maintained, the documentation—accessible with
?fromJSON—is worth a look. A very useful argument is simplify, controlling whether
the function tries to combine identical elements to vectors. Otherwise the individual elements
remain separate list elements. The nullValue argument allows specifying how to deal with
JSON nulls. In general, JSON data types (see Table 3.4) match R data types nicely (numeric,
integer, character, logical). The null value is a little more differentiated in R, however. There
is NULL for empty objects and NA for indicating a missing value. Therefore, the nullValue
argument helps to specify how to deal with these cases, like turning them into NAs. The
function maps the JSON data structure into an R list object:

R> class(indy)
[1] "list"

From this point on we can deal with the data the standard R way, that is, decomposeThere is no
ultimate XML/

JSON-to-R

function

or subset the list or force (parts of) it into vectors, data frames, or other structures. We
have already observed that seemingly powerful functions like xmlToDataFrame() can
be of limited use when we face real data. Data frames are useful to represent a simple
“observations by variables” structure, but become very complex if they are used to represent
highly hierarchical data. In contrast, JSON and XML can represent far more complex data
structures. When loading JSON or XML data into R, one often has to decide which subsets
of information are necessary and need to be inserted into a data frame. Consequently, there
cannot be a global and universal function for JSON/XML to R data format conversion. We
have to build our own tools case by case. In our example, we might want to try to map the
list to a data frame, consisting of three observations and several variables. The problem is
that actors and producers have several values. One option is to extract the information
variable by variable and merge in the end. This could work as follows:

R> library(stringr)
R> indy.vec <- unlist(indy, recursive = TRUE, use.names = TRUE)
R> indy.vec[str_detect(names(indy.vec), "name")]

indy movies.name
"Raiders of the Lost Ark"

indy movies.name
"Indiana Jones and the Temple of Doom"

indy movies.name
"Indiana Jones and the Last Crusade"

This strategy first flattens the complex list structure into one vector. The recursive argu-
ment ensures that all components of the list are unlisted. Since the key names are retained in
the vector by setting use.names to TRUE, we can identify all original key/value pairs with
the name name using a simple regular expression and the str_detect() function from the
stringr package (see also Chapter 8). This strategy has its drawbacks. First, all list elements
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are coerced to a common mode, resulting in character vectors in most cases. This is useful
for the names variable, but less appropriate for the years variable. Further, this step-by-step
approach is tedious when many variables have to be extracted. An only slightly more comfort-
able option uses sapply() and feeds it with the [[ operators and the variable name for ele-
ment subsetting, calling indy[[1]][[1]][['name']], indy[[1]][[2]][['name']],
and so on:

R> sapply(indy[[1]], "[[", "year")
[1] 1981 1984 1989

The benefit of this approach over the first is that data types are retained. Finally, to pull
all variables and directly assemble them into a data frame, we have to take into account that
some variables do not exist or vary in structure from observation to observation in the sample
data. For example, the number of producers varies. We do the conversion as follows:

R> library(plyr)
R> indy.unlist <- sapply(indy[[1]], unlist)
R> indy.df <- do.call("rbind.fill", lapply(lapply(indy.unlist, t),
data.frame, stringsAsFactors = FALSE))

We first unlist the elements within the list. The second command is more complex. First,
we transpose each list element, turn them into data frames, and finally make use of the
rbind.fill() function of the plyr package to combine the data frames into one single data
frame, taking care of the fact that some variables do not exist in some data frames. The
result reveals that we would have to continue with some data cleansing—note for example
the split-up producer variables:

R> names(indy.df)
[1] "name" "year"
[3] "actors.Indiana.Jones" "actors.Dr..René.Belloq"
[5] "producers1" "producers2"
[7] "producers3" "budget"
[9] "academy_award_ve" "actors.Mola.Ram"

[11] "producers" "actors.Walter.Donovan"

It is clear that importing JSON data, or working with lists in general, can be painful. Even
if data structures are simpler, we need to use apply functions. Consider this last example of a
JSON data import with a simple Peanuts dataset:

1 [
2 {
3 "name":"van Pelt, Lucy",
4 "sex":"female",
5 "age":32
6 },
7 {
8 "name":"Peppermint, Patty",
9 "sex":"female",

10 "age":null
11 },
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12 {
13 "name":"Brown, Charlie",
14 "sex":"male",
15 "age":27
16 }
17 ]

We turn the data into an ordinary data frame with the following expression:

R> peanuts.json <- fromJSON("peanuts.json", nullValue = NA,
simplify = FALSE )
R> peanuts.df <- do.call("rbind", lapply(peanuts.json, data.frame,
stringsAsFactors = FALSE))

We parse the JSON snippet with the fromJSON function and tell the parser to set null
values to zero. We also set simplify to FALSE in order to retain the list structure in
all elements. Otherwise, the parser would convert the second entry to a character vector,
rendering the data.frame() apply function useless. We use the lapply() function to turn
the lists into data frames and keep strings as strings with the stringsAsFactors = FALSE
argument. Finally, we join the data frames with a do.call() on rbind(). The result looks
acceptable:

R> peanuts.df
name sex age

1 van Pelt, Lucy female 32
2 Peppermint, Patty female NA
3 Brown, Charlie male 27

To do the conversion the other way round, that is from R to JSON data, the function wetoJSON()

need is toJSON():

R> peanuts.json <- toJSON(peanuts.df, pretty = TRUE)
R> file.output <- file("peanuts_out.json")
R> writeLines(peanuts.json, file.output)
R> close(file.output)

While transforming JSON data into appropriate R objects cannot always be done withMore consistent
mapping with

jsonlite
preexisting functions, but require some postprocessing of the resulting objects, the recently
developed jsonlite package offers more consistency between both data structures. It builds
upon the parser of the RJSONIO package and provides the main functions fromJSON()
and toJSON as well, but implements a different mapping scheme (see Ooms 2013). A
set of rules ensures that data from an external source like an API are transformed in a
way that guarantees consistent transformations. Some important conventions for JSON-to-R
conversions for arrays are

� arrays are encoded as character data if at least one value is of type character;

� null values are encoded as NA;

� true and false values are encoded as 1 and 0 in numerical vectors and TRUE and
FALSE in character and logical vectors.
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There are more conventions for the transformation of vectors, matrices, lists, and data
frames. They are documented in Ooms (2013). For our purposes, the rules concerning JSON-
to-R conversion are most important, as this is part of the regular scraping workflow. Consider
the following set of transformations from JSON arrays into R objects to see how the conven-
tions cited above work in practice:

R> library(jsonlite)
R> x <- '[1, 2, true, false]'
R> fromJSON(x)
[1] 1 2 1 0
R> x <- '["foo", true, false]'
R> fromJSON(x)
[1] "foo" "TRUE" "FALSE"
R> x <- '[1, "foo", null, false]'
R> fromJSON(x)
[1] "1" "foo" NA "FALSE"

The consistent mapping rules of jsonlite not only ensure that data are transformed ade-
quately on the vector level, but also make mapping of JSON data into R data frames a lot
easier. Reconsidering the Peanuts example with jsonlite, it turns out that the JSON data are
conveniently mapped into the desired R object of type data.frame right away:

R> (peanuts.json <- fromJSON("peanuts.json"))
name sex age

1 van Pelt, Lucy female 32
2 Peppermint, Patty female NA
3 Brown, Charlie male 27

In the Indiana Jones example, the Indy JSON is also mapped into a list. However, the
only element in the list is a data frame of the desired content. We simply pull the data frame
from the list to access the variables

R> (indy <- fromJSON("indy.json"))
$'indy movies'

name year actors.Indiana Jones
1 Raiders of the Lost Ark 1981 Harrison Ford
2 Indiana Jones and the Temple of Doom 1984 Harrison Ford
3 Indiana Jones and the Last Crusade 1989 Harrison Ford
actors.Dr. René Belloq actors.Mola Ram actors.Walter Donovan

1 Paul Freeman <NA> <NA>
2 <NA> Amish Puri <NA>
3 <NA> <NA> Julian Glover

producers budget academy_award_ve
1 Frank Marshall, George Lucas, Howard Kazanjian 18000000 TRUE
2 Robert Watts 28170000 TRUE
3 Robert Watts, George Lucas 48000000 FALSE
R> indy.df <- indy$'indy movies'
R> indy.df$name
[1] "Raiders of the Lost Ark"
[2] "Indiana Jones and the Temple of Doom"
[3] "Indiana Jones and the Last Crusade"

In short, whenever RJSONIO returns a list when you would expect a data frame, jsonlite
manages to generate tabular data from JSON data structures as long as it is appropriate,
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because the mapping scheme acknowledges the way in which tabular data are stored in R,
which is column based, and JSON—and many other formats, languages, or databases—which
is row based (see Ooms 2013).

To be sure, the functionality of jsonlite does not solve all problems of JSON-to-R transfer.
However, the choice of rules implemented in jsonlite makes the import of JSON data into R
more consistent. We therefore suggest to make this package the standard tool when working
with JSON data even though it is still in an early version.

Summary

Both XML and JSON are very important standards for data exchange on the Web, and as
such will occur several times in the course of this book (for example in Chapter 4 and the
case study on Twitter, Chapter 14). Knowing how to handle both data types is helpful in many
web data collection tasks.

We have seen that XML serves as a basic standard for many other formats, such as GPX,
KML, RSS, SVG, XHTML. Whenever we encounter such data on the Web we are able to
import and process them in Rtoo. JSON is an increasingly popular alternative to XML for the
exchange of data on the Web, especially when working with web services/web APIs. JSON
is derived from JavaScript and can be parsed in many languages, including R.

Further reading

There are many books that go far beyond this basic introduction to XML and JSON. If you
have acquired a taste for the languages of the Web and plan to go deeper into web developing,
you could have a look at XML in a Nutshell by Harold and Means (2004) or at Ray (2003). For
the web scraping tasks presented in this book, however, deeper knowledge of XML should
not be necessary.

If you want to dig deeper into JSON and JavaScript, the book JavaScript: The Good Parts
by JSON developer Douglas Crockford (2008) might be a good start. For a quick overview,
the excellent website http://www.json.org/ is highly recommended.

Problems

1. Describe the relationship between XML and HTML.

2. What are possible ways to import XML data into R? What are the advantages and
disadvantages of each approach?

3. What is the purpose of namespaces in XML-style documents?

4. What are the main elements of the JSON syntax?

5. Write the smallest well-formed XML document you can think of.

6. Why do we need an escape sequence for the ampersand in XML?

7. Take a look at the invalid XML code snippet in Section 3.2.2. How could the family
structure be represented in a valid XML document so that it is possible to identify
Jonathan both as a child and as a father?

http://www.json.org/
http://www.json.org/
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8. Go to your vinyl record, CD, DVD, or Blu-ray Disc shelf and randomly pick three titles.
Create an XML document that holds useful information about your sample of discs.

9. Inform yourself about the Election Markup Language (EML).
(a) Find out the purpose of EML.
(b) Look for the current specification of the language and identify the key concepts.
(c) Search for a real EML document, load it into R and turn parts of it into native

data structures.

10. Working with SVG files.
(a) Manipulate the ricon.svg file such that the icon is framed with a black box. Redefine

the color, size, and font of the image.
(b) Rebuild the RSS icon as an SVG document.

11. Find the formatting errors in the following JSON piece.11

1 {
2 "text": "@slowpoketweeter @yaaawn123: Just saw a cat on

the road. Awesome! #YOLO",
3 "truncated": false,
4 "favorited": "true",
5 "source": "<a href= \"http://twitter.com/ \" rel= \"

nofollow \">Twitter for iPhone</a>",
6 "id_str": "61723550048377463",
7 "user_mentions": ["slowpoketweeter" "yaaawn123"],
8 "screen_name": "SlowpokeTweeter",
9 "id",

10 "retweet_count": 4,
11 "geo": NULL,
12 "created_at": "Sun Apr 03 23:48:36 +0000 2011";
13 user: {
14 "statuses_count": 3,511,
15 "profile_background_color": "C0DEED",
16 "followers_count": "48",
17 "description": "watcha doin in my waters?",
18 "screen_name": "OldGREG85",
19 "time_zone": "Hawaii",
20 'lang': "en",
21 "friends_count": 81,
22 "geo_enabled": false,
23 }

12. Convert the James Bond XML example from Figure 3.1 into valid JSON.

13. Convert the Indiana Jones example from Figure 3.9 into valid XML.

14. Import the indy.json file into R and extract the values of all budget keys.

11The example is a shortened fragment of the content that is being returned by the Twitter Streaming API.

http://twitter.com/\
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15. The XML file potus.xml (available in the book’s materials) contains biographical infor-
mation on US presidents.
(a) Use the DOM-style XML parser and parse the document into an R object called

potus. Inspect the source code. The <occupation> nodes contain additional
white space at the end of the text string. Find the appropriate argument to remove
them in the parsing stage.

(b) The XML file contains <salary> nodes. Discard them while parsing the file.
Remove the additional white space in the <occupation> nodes by using a custom
handler function and a string manipulation function (see Section 8.2).

(c) Write a handler for extracting the <hometown> nodes’ value and pass it to the
DOM-style parser. Repeat the process with an event-driven parser. Inspect the
results.



4

XPath

In Chapters 2 and 3 we introduced and illustrated how HTML/XML documents use markup
to store information and create the visual appearance of the webpage when opened in the
browser. We also explained how to use a scripting language like R to transform the source
code underlying web documents into modifiable data objects called the DOM with the use
of dedicated parsing functions (Sections 2.4 and 3.5.1). In a typical data analysis workflow,
these are important, but only intermediate steps in the process of assembling well-structured
and cleaned datasets from webpages. Before we can take full advantage of the Web as a nearly
endless data source, a series of filtering and extraction steps follow once the relevant web
documents have been identified and downloaded. The main purpose of these steps is to recast
information that is encoded in formats using markup language into formats that are suitable
for further processing and analysis with statistical software. Initially, this task comprises
asking what information we are interested in and identifying where the information is located
in a specific document. Once we know this, we can tailor a query to the document and obtain
the desired information. Additionally, some data reshaping and exception handling is often
necessary to cast the extracted values into a format that facilitates further analysis.

This chapter walks you through each of these steps and helps you to build an intuition for
querying tree-based data structures like HTML/XML documents. We will see that accessing
particular information from HTML/XML documents is straightforward using the concise,
yet powerful path statements provided by the XML Path language (short XPath), a very
popular web technology and W3C standard (W3C 1999). After introducing the basic logic
underlying XPath, we show how to leverage the full power of its vocabulary using predicates,
operators, and custom extractor functions in an application to real documents. We further
explore how to work with namespace properties (Section 4.3.2). The chapter concludes with
a pointer to helpful tools (Section 4.3.3) and a more high-level discussion about general
problems in constructing efficient and robust extraction code for HTML/XML documents
(Section 4.3.3).

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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4.1 XPath—a query language for web documents

XPath is a query language that is useful for addressing and extracting parts from HTML/XML
documents. XPath is best categorized as a domain-specific language, which indicates that its
field of application is a rather narrow one—it is simply a very helpful tool for selecting
information from marked up documents such as HTML, XML, or any variant of it such as
SVG or RSS (see Sections 3.4.3 and 3.4.3). XPath is also a W3C standard, which means
that the language is subjected to constant maintenance and widely employed in modern web
applications. Among the two versions of XPath that are in current use, we apply XPath 1.0
as it provides sufficiently powerful statements and is implemented in the XML package for R.

As a stylized, running example, we revisit fortunes.html—a simple HTML file thatFirst stop:
Parsing includes short quotes of R wisdoms. A first, necessary step prior to applying XPath is to

parse the document and make its content available in the workspace of the R session, since
XPath only works on the DOM representation of a document and cannot be applied on the
native code. We begin by loading the XML package and use htmlParse() to parse the file
into the object parsed_doc:

R> library(XML)
R> parsed_doc <- htmlParse(file = "fortunes.html")

The document is now available in the workspace and we can examine its content using
XML’s print() method on the object:

R> print(parsed_doc)
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head><title>Collected R wisdoms</title></head>
<body>
<div id="R Inventor" lang="english" date="June/2003">

<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

<div lang="english" date="October/2011">
<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">
R-help</a></p>
</div>

<address>
<a href="http://www.r-datacollection.com"><i>The book homepage</i>
</a><a></a>
</address>

</body>
</html>

Before proceeding, we would like to restate a crucial idea from Chapter 2 that will be
helpful in understanding the basic logic of XPath statements. HTML/XML documents use
tags to markup information and the nestedness of the tags describe a hierarchical order.

http://www.r-datacollection.com
http://www.r-datacollection.com
https://stat.ethz.ch/mailman/listinfo/r-help
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<html>

<head> <body> <address>

<title>

value:
Collected ...

<a>

href: https ...

<i>

href: https ...

<div>

id: R-Inventor
lang: english
date: June/2003

<h1>

value:Robert
Gentleman

<p>

<i>

value:What
we ...

<p>

value:
Statistical ...

<b>

value:
Source ...

<div>

lang: english
date:
October/2011

<h1>

value:Robert
Turner

<p>

<i>

value:R is ...

<emph>

value:
answering ...

<p>

<b>

value:
Source ...

<a>

value:R-help
href: http ...

Figure 4.1 A tree perspective on parsed_doc

One way to depict this hierarchical order of tags is by means of a tree as it is portrayed in
Figure 4.1. In the tree, edges represent the nestedness of a lower-level node inside a higher-
level node. Throughout this chapter we will not only refer to this image but also adopt graph
language to describe the location of the tags in the document as well as their relations.
Therefore, if we refer to the <div> node, we mean the entire information that is encapsulated
within the div tags, that is, the value of the node, its set of attributes as well as their values, and
its children nodes. When we use the word node set, we refer to a selection of multiple nodes.

4.2 Identifying node sets with XPath

4.2.1 Basic structure of an XPath query

To get started, let us put ourselves to the task of extracting information from the <i> nodes, Hierarchical
addressing
mechanism

that is, text that is written in italics, which contain the actual quotes. A look at either HTML
code or the document tree in Figure 4.1 reveals that there are two nodes of interest and they
are both located at the lowest level of the document. In XPath, we can express this hierarchical
order by constructing a sequence of nodes separated by the / (forward slash). This is called a
hierarchical addressing mechanism and it is similar to a location path on a local file system.
The resemblance is not accidental but results from a similar hierarchical organization of the
underlying document/file system. Just like folders can be nested inside other folders on a
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local hard drive, the DOM treats an XML document as a tree of nodes, where the nestedness
of nodes within other nodes creates a node hierarchy.

For our HTML file we can describe the position of the <i> nodes by describ-Absolute paths

ing the sequence of nodes that lead to it. The XPath that represents this position is
“/html/body/div/p/i.” This statement reads from left to right: Start at the root node
<html>—the top node in a tree is also referred to as the root note—proceed to the <body>
node, the <div> node, the <p> node, and finally the <i> node. To apply this XPath we use
XML’s xpathSApply() function. Essentially, xpathSApply() allows us to conduct two
tasks in one step. First, the function returns the complete node set that matches the XPath
expression. Second, if intended, we can pass an extractor function to obtain a node’s value,
attribute, or attribute value.1 In our case, we set xpathSApply()’s first argument doc to the
parsed document and the second argument path to the XPath statement that we wish to apply:

R> xpathSApply(doc = parsed_doc, path = "/html/body/div/p/i")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

[[2]]
<i>'R is wonderful, but it cannot work magic'</i>

In the present case, the specified path is valid for two <i> nodes. Thus, the XPath queryRelative paths

extracts more than one node at once if it describes a valid path for multiple nodes. The path
that we just applied is called an absolute path. The distinctive feature about absolute paths is
that they always emanate from the root node and describe a sequence of consecutive nodes to
the target node. As an alternative we can construct shorter, relative paths to the target node.
Relative paths tolerate “jumps” between nodes, which we can indicate with //. To exemplify,
consider the following path:

R> xpathSApply(parsed_doc, "//body//p/i")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

[[2]]
<i>'R is wonderful, but it cannot work magic'</i>

This statement reads as follows: Find the <body> node at some level of the document’s
hierarchy—it does not have to be the root—then find one or more levels lower in the hierarchy
a <p> node, immediately followed by an <i> node. We obtain the same set of <i> nodes as
previously. An even more concise path for the <i> nodes would be the following:

R> xpathSApply(parsed_doc, "//p/i")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

[[2]]
<i>'R is wonderful, but it cannot work magic'</i>

1These two steps may be conducted separately from one another. You can use getNodeSet() to apply the XPath.
Using a looping structure or functionality from the apply() family, the received node set can be postprocessed and
the information recast.
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These three examples help to stress an important point in XPath’s design. There are Deciding
between
relative and
absolute paths

virtually always several ways to describe the same node set by means of different XPath
statements. So why do we construct a long absolute path if a valid relative path exists that
returns the same information? xpathSApply() traverses through the complete document
and resolves node jumps of any width and at any depth within the document tree. The
appeal of relative paths derives from their shortness, but there are reasons for favoring
absolute paths in some instances. Relative path statements result in complete traversals of
the document tree, which is rather expensive computationally and decreases the efficiency
of the query. For the small HTML file we consider here, computational efficiency is of
no concern. Nonetheless, the additional strain will become noticeable in the speed of code
execution when larger file sizes or extraction tasks for multiple documents are concerned.
Hence, if speed is an issue to your code execution, it is advisable to express node locations by
absolute paths.

Beyond pure path logic, XPath allows the incorporation of symbols with special meaning Wildcard
operatorin the expressions. One such symbol is the wildcard operator *. The wildcard operator

matches any (single) node with arbitrary name at its position. To return all <i> nodes from
the HTML file we can use the operator between the <div> and <i> node to match the
<p> nodes:

R> xpathSApply(parsed_doc, "/html/body/div/*/i")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

[[2]]
<i>'R is wonderful, but it cannot work magic'</i>

Two further elements that we repeatedly make use of are the . and the .. operator. Selection
expressionsThe . operator selects the current nodes (or self-axis) in a selected node set. This operation

is occasionally useful when using predicates. We postpone a detailed exploration of the .
operator to Section 4.2.3, where we discuss predicates. The .. operator selects the node one
level up the hierarchy from the current node. Thus, if we wish to select the <head> node we
could first locate its child <title> and then go one level up the hierarchy:

R> xpathSApply(parsed_doc, "//title/..")
[[1]]
<head>

<title>Collected R wisdoms</title>
</head>

Lastly, we sometimes want to conduct multiple queries at once to extract elements that Multiple paths

lie at different paths. There are two principal methods to do this. The first method is to use
the pipe operator ∣ to indicate several paths, which are evaluated individually and returned
together. For example, to select the <address> and the <title> nodes, we can use the
following statement:

R> xpathSApply(parsed_doc, "//address | //title")
[[1]]
<title>Collected R wisdoms</title>
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[[2]]
<address>

<a href="http://www.r-datacollectionbook.com">
<i>The book homepage</i>

</a>
<a/>

</address>

Another option is to store the XPath queries in a vector and pass this vector to xpathSAp-
ply(). Here, we first generate a named vector twoQueries where the elements represent
the distinct XPath queries. Passing twoQueries to xpathSApply() we get

R> twoQueries <- c(address = "//address", title = "//title")
R> xpathSApply(parsed_doc, twoQueries)
[[1]]
<title>Collected R wisdoms</title>

[[2]]
<address>

<a href="http://www.r-datacollectionbook.com">
<i>The book homepage</i>

</a>
<a/>

</address>

4.2.2 Node relations

The XPath syntax introduced so far is sufficiently powerful to select some of the nodes in the
document, but it is of limited use when the extraction tasks become increasingly complex.
Connected node sequences simply lack expressiveness, which is required for singling out
specific nodes from smaller node subsets. This issue is nicely illustrated by the queries that
we used to identify the <i> nodes in the document. Assume we would like to identify the
<i> node that appears within the second section element <div>. With the syntax introduced
so far, no path can be constructed to return this single node since the node sequence to this
node is equally valid for the <i> nodes within the first section of the document.

In this type of situation, we can make use of XPath’s capability to exploit other featuresThe family tree
analogy of the document tree. One such feature is the position of a node relative to other nodes

in the document tree. These relationships between nodes are apparent in Figure 4.1. Most
nodes have nodes that precede or follow their path, an information that is often unique and
thus differentiates between nodes. As is usual in describing tree-structured data formats, we
employ notation based on family relationships (child, parent, grandparent, …) to describe the
between-node relations. This feature allows analysts to extract information from a specific
target node with an unknown name solely based on the relationship to another node with a
known name. The construction of a proper XPath statement that employ this feature follows
the pattern node1/relation::node2, where node2 has a specific relation to node1. Let
us try to apply this technique on the problem discussed above, selecting the second <div>
node in the document. We learn from Figure 4.1 that only the second <div> node has an <a>

http://www.r-datacollectionbook.com
http://www.r-datacollectionbook.com
http://www.r-datacollectionbook.com
http://www.r-datacollectionbook.com
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node as one of its grandchildren. This constitutes a unique feature of the second <div> node
that we can extract as follows:

R> xpathSApply(parsed_doc, "//a/ancestor::div")
[[1]]
<div lang="english" date="October/2011">

<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">
R-help</a></p>
</div>

Here, we first select the <a> nodes in the document and then subselect among this set all
ancestor nodes with name div. Comparing the resulting node set to the results from above,
we find that a smaller set is returned. If we were interested on extracting only the text in italics
from this node set, we can make a straightforward extension to this expression. To proceed
from the thus selected <div> node to all the <i> that come one or more levels lower in the
hierarchy, we add //i to the expression:

R> xpathSApply(parsed_doc, "//a/ancestor::div//i")
[[1]]
<i>'R is wonderful, but it cannot work magic'</i>

As a testament to XPath’s capability to reflect complex relationships between nodes,
consider the following statement:

R> xpathSApply(parsed_doc, "//p/preceding-sibling::h1")
[[1]]
<h1>Robert Gentleman</h1>

[[2]]
<h1>Rolf Turner</h1>

Here, we first select all the <p> nodes in the document and then all the <h1> siblings that
precede these nodes.2

Generally, XPath statements are limitless with respect to their length and the number of
special symbols used in it. To illustrate the combination of the wildcard operator with another
node relation, consider the following statement:

R> xpathSApply(parsed_doc, "//title/parent::*")
[[1]]
<head>

<title>Collected R wisdoms</title>
</head>

2When we apply XPath in real scraping scenarios, we usually cannot draw on visual representations of node
relations like the one in Figure 4.1. Such information must be read directly from the page’s source code. This often
is the most demanding part in information extraction tasks that use XPath.

https://stat.ethz.ch/mailman/listinfo/r-help
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Table 4.1 XPath axes

Axis name Result

ancestor Selects all ancestors (parent, grandparent, etc.) of the
current node

ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the
current node and the current node itself

attribute Selects all attributes of the current node
child Selects all children of the current node
descendant Selects all descendants (children, grandchildren, etc.) of the

current node
descendant-or-self Selects all descendants (children, grandchildren, etc.) of the

current node and the current node itself
following Selects everything in the document after the closing tag of

the current node
following-sibling Selects all siblings after the current node
namespace Selects all namespace nodes of the current node
parent Selects the parent of the current node
preceding Selects all nodes that appear before the current node in the

document except ancestors, attribute nodes, and
namespace nodes

preceding-sibling Selects all siblings before the current node
self Selects the current node

Source: http://www.w3schools.com/xpath/xpath_axes.asp

The parent selects nodes in the tree that appear one level higher with respect to the
reference node <title. The wildcard operator is used to express indifference regarding the
node names. In combination, this statement returns every parent node for every <title>
node in the document. For a full list of available relations, take a look at Table 4.1. A visual
impression of all available node relationships is displayed in Figure 4.2.

4.2.3 XPath predicates

Beside exploiting relationship properties of the tree, we can use predicates to obtain and
process numerical and textual properties of the document. Applying these features in a
conditioning statement for the node selection adds another level of expressiveness to XPath
statements. Put simply, predicates are nothing but simple functions that are applied to a node’s
name, value, or attribute, and which evaluate whether a condition (or set of conditions) is
true or false. Internally, a predicate returns a logical response. Nodes where the response is
true are selected. Their general use is as follows: After a node (or node set) we specify the
predicate in square brackets, for example, node1[predicate]. We select all <node1> nodes
in the document that comply with the condition formulated by the predicate. As a complete
coverage of all predicates is neither possible nor helpful for this introduction, we restrict our
attention to the most frequent—and in our view most helpful—predicates in XPath. We have

http://www.w3schools.com/xpath/xpath_axes.asp
http://www.w3schools.com/xpath/xpath_axes.asp
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Parent

Ancestor

Ancestor-or-self

Attribute

Preceding Following

Self

Child

Descendant

Descendant-or-self

Namespace

Figure 4.2 Visualizing node relations. Descriptions are presented in relation to the white
node

listed some of the available predicates in Table 4.2. Our goal is not to provide an exhaustive
examination of this topic, but to convey the inherent logic in applying predicates. We will see
that some predicates work in combination with so-called operators. A complete overview of
available operators is presented in Table 4.3.

4.2.3.1 Numerical predicates

XPath offers the possibility to take advantage of implied numerical properties of documents, Implicit
numerical
properties

such as counts or positions. There are several predicates that return numerical properties,
which can be used to create conditional statements. The position of a node is an important
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Table 4.3 XPath operators

Operators Description Example

∣ Computes two node sets //i | //b
+ Addition 5 + 3
- Subtraction 8 - 2
* Multiplication 8 * 5
div Division 8 div 5
= Equal count = 27
!= Not equal count != 27
< Less than count < 27
≤ Less than or equal to count <= 27
> Greater than count > 27
≥ Greater than or equal to count >= 27
or Or count = 27 or count = 28
and And count > 26 and count < 30
mod Modulo (division remainder) 7 mod 2

Source:Adapted from http://www.w3schools.com/xpath/xpath_operators.asp

numerical characteristic that we can easily implement. Let us collect the <p> nodes that
appear on first position:

R> xpathSApply(parsed_doc, "//div/p[position()=1]")
[[1]]
<p>

<i>'What we have is nice, but we need something very different'</i>
</p>

[[2]]
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a
request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

The predicate we use is position() in combination with the equal operator =.3 The
statement returns two nodes. The position predicate does not evaluate which <p> node is on
first position among all <p> nodes in the document but on first position in each node subset
relative to its parent. If we wish to select the last element of a node set without knowing the
number of nodes in a subset in advance, we can use the last() operator:

R> xpathSApply(parsed_doc, "//div/p[last()]")
[[1]]
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

[[2]]
<p>

<b>Source: </b>
<a href="https://stat.ethz.ch/mailman/listinfo/r-help">R-help</a>

</p>

3Please note that an even more concise way of expressing the same query is //div/p[1].

http://www.w3schools.com/xpath/xpath_operators.asp
http://www.w3schools.com/xpath/xpath_operators.asp
https://stat.ethz.ch/mailman/listinfo/r-help
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Output from numerical predicates may be further processed with mathematical operations.
To select the next to last <p> nodes, we extend the previous statement:

R> xpathSApply(parsed_doc, "//div/p[last()-1]")
[[1]]
<p>

<i>'What we have is nice, but we need something very different'</i>
</p>

[[2]]
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a
request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

A count is another numerical property we can use as a condition for node selection. One
of the most frequent uses of counts is selecting nodes based on their number of children
nodes. An implementation of this logic is the following:

R> xpathSApply(parsed_doc, "//div[count(.//a)>0]")
[[1]]
<div lang="english" date="October/2011">

<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">
R-help</a></p>
</div>

Piece by piece, the statement reads as follows. We start by selecting all the <div> nodes
in the document (//div). We refine the selection by using the count() predicate, which
takes as argument the thing we need to count. In this case we count the number of <a>
nodes that precede the selected <div> nodes (.//a). The . element is used to condition on
the previous selection. Internally, this results in another node set, which we then pass to the
count() function. Combining the operator with a value >0, we ask for those <div> nodes
in the document that have more than zero <a> nodes as children. Besides nodes, we can also
condition on the number of attributes in a node:

R> xpathSApply(parsed_doc, "//div[count(./@*)>2]")
[[1]]
<div id="R Inventor" lang="english" date="June/2003">

<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

The @ element retrieves the attributes from a selected node. Here, the ./@* expression
returns all the attributes—regardless of their name—from the currently selected nodes. We
pass these attributes to the count function and evaluate whether the number of attributes is
greater than 2. Only the nodes returning TRUE for this function are selected.

The number of characters in the content of an element is another kind of count we can
obtain and use to condition node selection. This is particularly useful if all we know about
our extraction target is that the node contains some greater amount of text. It is implemented
as follows:

https://stat.ethz.ch/mailman/listinfo/r-help
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R> xpathSApply(parsed_doc, "//*[string-length(text())>50]")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

[[2]]
<emph>answering a request for automatic generation of 'data from a
known mean and 95% CI'</emph>

We first obtain a node set of all the nodes in the document (//*). On this set, we impose
the condition that the content of these nodes (as returned by text()) must contain more than
50 characters.

It is sometimes useful to invert the node selection and return all nodes for which the Boolean
functionspredicate does not return TRUE. XPath includes a couple of functions that allow employing

Boolean logic in the query. To express an inversion of a node set, one can use the Boolean
not function to select all nodes that are not selected by the query. To select all <div> with
two or fewer attributes, we can write

R> xpathSApply(parsed_doc, "//div[not(count(./@*)>2)]")
[[1]]
<div lang="english" date="October/2011">

<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">
R-help</a></p>
</div>

4.2.3.2 Textual predicates

Since HTML/XML files or any of their variants are plain text files, textual properties of the
document are useful predicates for node selection. This might come in handy if we need
to pick nodes on the basis of text in their names, content, attributes, or attributes’ values.
Besides exact matching, working with strings often requires tools for partial matching of
substrings. While XPath 1.0 is sufficiently powerful in this respect, version 2.0 has seen huge
improvements with the implementation of a complete library of regular expression predicates
(for an introduction to string manipulation techniques see Chapter 8). Nonetheless, XPath 1.0
fares well enough in most situations, so that switching to other XPath implementations is not
necessary. To begin, let us explore methods to perform exact matches for strings. We already
introduced the = operator for equalizing numerical values, but it works just as well for exact
string matching. To select all <div> nodes in the document, which contain quotes written
in October 2011, that is, contain an attribute date with the value October/2011, we can
write

R> xpathSApply(parsed_doc, "//div[@date='October/2011']")
[[1]]
<div lang="english" date="October/2011">

<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br/><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

https://stat.ethz.ch/mailman/listinfo/r-help
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<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">
R-help</a></p>
</div>

We first select all the <div> nodes in the document and then subselect those that have
an attribute date with the value October/2011. In many instances, exact matching for
strings as implied by the equal sign is an exceedingly strict operation. One way to be more
liberal is to conduct partial matching for strings. The general use of these methods is as
follows: string_method(text1, 'text2'), where text1 refers to a text element in the
document and text2 to a string we want to match it to. To select all nodes in a document
that contain the word magic in their value, we can construct the following statement:

R> xpathSApply(parsed_doc, "//*[contains(text(), 'magic')]")
[[1]]
<i>'R is wonderful, but it cannot work magic'</i>

In this statement we first select all the nodes in the document and condition this set
using the contains() function on whether the value contains the word magic as returned
by text(). Please note that all partial matching functions are case sensitive, so capitalized
versions of the term would not be matched. To match a pattern to the beginning of a string, the
starts_with() function can be used. The following code snippet illustrates the application
of this function by selecting all the <div> nodes with an attribute id, where the value starts
with the letter R:

R> xpathSApply(parsed_doc, "//div[starts-with(./@id, 'R')]")
[[1]]
<div id="R Inventor" lang="english" date="June/2003">

<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

ends_with() is used to match a string to the end of a string. It is frequently useful toPreprocessing
node strings preprocess node strings before conducting matching operations. The purpose of this step is to

normalize node values, attributes, and attribute values, for example, by removing capitaliza-
tion or replacing substrings. Let us try to extract only those quotes that have been published
in 2003. As we see in the source code, the <div> nodes contain a date attribute, which holds
information about the year of the quote. To condition our selection on this value, we can issue
the following expression:

R> xpathSApply(parsed_doc, "//div[substring-after(./@date, '/')='2003']//i")
[[1]]
<i>'What we have is nice, but we need something very different'</i>

Let us consider the statement piece by piece. We first select all the <div> nodes in
the document (//div). The selection is further conditioned on the returned attribute value
from the predicate. In the predicate we first obtain the date value for all the selected nodes
(./@date). This yields the following vector: June/2003, October/2011. The values are
passed to the substring-after() function where they are split according to the /, specified
as the second argument. Internally, the function outputs 2003, 2011. We then conduct exact
matching against the value 2003, which selects the <div> node we are looking for. Finally,
we move down to the <i> node by attaching //i to the expression.

https://stat.ethz.ch/mailman/listinfo/r-help
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4.3 Extracting node elements

So far, we have used xpathSApply() to return nodes that match specified XPath statements.
We learned that the function returns a list object that contains the nodes’ name, value, and
attribute values (if specified). We usually do not care for the node in its entirety, but need to
extract a specific information from the node, for example, its value. Fortunately, this task is
fairly straightforward to implement. We simply pass an extractor function to the fun argument
in the function call. The XML package offers an extensive set of these functions to select the
pieces of information we are interested in. A complete overview of all extractor functions is
presented in Table 4.4. For example, in order to extract the value of the <title> node we
can simply write

R> xpathSApply(parsed_doc, "//title", fun = xmlValue)
[1] "Collected R wisdoms"

Instead of a list with complete node information, xpathSApply() now returns a vector Extractor
functionsobject, which only contains the value of the node set that matches the XPath statement. For

nodes without value information, the functions would return an NA value. Beside the value, we
can also extract information from the attributes. Passing xmlAttrs() to the fun argument
will select all attributes that are in the selected nodes:

R> xpathSApply(parsed_doc, "//div", xmlAttrs)
[[1]]

id lang date
"R Inventor" "english" "June/2003"

[[2]]
lang date

"english" "October/2011"

In most applications we are interested in specific rather than all node attributes. To select
a specific attribute from a node, we use xmlGetAttr() and add the attribute name:

R> xpathSApply(parsed_doc, "//div", xmlGetAttr, "lang")
[1] "english" "english"

Table 4.4 XML extractor functions

Function Argument Return value

xmlName Node name
xmlValue Node value
xmlGetAttr name Node attribute
xmlAttrs (All) node attributes
xmlChildren Node children
xmlSize Node size
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4.3.1 Extending the fun argument

Processing returned node sets from XPath can easily extend beyond mere feature extraction
as introduced in the last section. Rather than extracting information from the node, we can
adapt the fun argument to perform any available numerical or textual operation on the node
element. We can build novel functions for particular purposes or modify existing extractor
functions for our specific needs and pass them to xpathSApply(). The goal of further
processing can either lie in cleansing the numeric or textual content of the node, or some kind
of exception handling in order to deal with extraction failures.

To illustrate the concept in a first application, let us attempt to extract all quotes from theCustom
functions for

xpathSApply()
document and convert the symbols to lowercase during the extraction process. We can use
base R’s tolower() function, which transforms strings to lowercase. We begin by writing a
function called lowerCaseFun(). In the function, we simply feed the information from the
node value to the tolower() function and return the transformed text:

R> lowerCaseFun <- function(x) {
x <- tolower(xmlValue(x))
x

}

Adding the function to xpathSApply()’s fun argument, yields:

R> xpathSApply(parsed_doc, "//div//i", fun = lowerCaseFun)
[1] "'what we have is nice, but we need something very different'"
[2] "'r is wonderful, but it cannot work magic'"

The returned vector now consists of all the transformed node values and spares us an
additional postprocessing step after the extraction. A second and a little more complex
postprocessing function might include some basic string operations that employ functionality
from the stringr package. Again, we begin by writing a function that loads the stringr package,
collects the date and extracts the year information4:

R> dateFun <- function(x) {
require(stringr)
date <- xmlGetAttr(node = x, name = "date")
year <- str_extract(date, "[0-9]{4}")
year

}

Passing this function to the fun argument in xpathSApply() yields:

R> xpathSApply(parsed_doc, "//div", dateFun)
[1] "2003" "2011"

We can also use the fun argument to cope with situations where an XPath statement
returns an empty node set. In XML’s DOM the NULL object is used to indicate a node that

4See Chapter 8 for an introduction to string manipulation. In particular, the function str_extract() in the
custom extractor function collects four consecutive digits using a so-called regular expression. The concept and
details of regular expressions will also be explained in Chapter 8.
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does not exist. We can employ a custom function that includes a test for the NULL object and
makes further processing dependent on positive or negative evaluation of this test:

R> idFun <- function(x) {
id <- xmlGetAttr(x, "id")
id <- ifelse(is.null(id), "not specified", id)
return(id)

}

The first line in this custom function saves the node’s id value into a new object id.
Conditional on this value being NULL, we either return not specified or the id value in
the second line. To see the results, let us pass the function to xpathSApply():

R> xpathSApply(parsed_doc, "//div", idFun)
[1] "R Inventor" "not specified"

4.3.1.1 Using variables in XPath expressions

The previous examples were simple enough to allow querying all information with a single,
fixed XPath expression. Occasionally, though, it becomes inevitable to treat XPath expressions
themselves as variable parts of the extraction program. Data analysts often find that a specific
type of information is encoded heterogeneously across documents, and hence, constructing a
valid XPath expression for all documents may be impossible, especially when future versions
of a site are expected to change. To illustrate this, consider extracting information from the
XML file technology.xml, which we introduced in Section 3.5.1. Previously, we extracted
the Apple stock from this file, but now we tackle the problem of pulling out all companies’
stock information. The problem is that the target closing stock information (<close>) is
encapsulated in parent nodes with different names (Apple, Google, IBM). Instead of creating
separate query functions for each company, we can help ourselves by using the sprintf()
function to create flexible XPath expressions. We start by parsing the document again and
building a character vector with the relevant company names:

R> parsed_stocks <- xmlParse(file = "technology.xml")
R> companies <- c("Apple", "IBM", "Google")

Next, we use sprintf() to create the queries. Inside the function, we set the basic
template of the XPath expression. The string %s is used to indicate the variable part, where
s stands for a string variable. The object companies indicates the elements we want to
substitute for %s:

R> (expQuery <- sprintf("//%s/close", companies))
[1] "//Apple/close" "//IBM/close" "//Google/close"

We can proceed as usual by first laying out an extractor function…

R> getClose <- function(node) {
value <- xmlValue(node)
company <- xmlName(xmlParent(node))
mat <- c(company = company, value = value)

}
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… and then passing this extractor function to xpathSApply(). Here, we additionally
convert the output to a more convenient data frame format and change the vector type:

R> stocks <- as.data.frame(t(xpathSApply(parsed_stocks, expQuery, getClose)))
R> stocks$value <- as.numeric(as.character(stocks$value))
R> head(stocks, 3)

company value
1 Apple 520.6
2 Apple 520.0
3 Apple 519.0

4.3.2 XML namespaces

In our introduction to XML technologies in Chapter 3, we introduced namespaces as a feature
to create uniquely identified nodes in a web document. Namespaces become an indispensable
part of XML when different markup vocabularies are used inside a single document. Such
may be the result of merging two different XML files into a single document. When the
constituent XML files employ similar vocabulary, namespaces help to resolve ambiguities
and prevent name collisions.

Separate namespaces pose a problem to the kinds of XPath statements we have been
considering so far, since XPath ordinarily considers the default namespace. In this section
we learn how to specify the namespace under which a specific node set is defined and thus
extract the elements of interest. Let us return to the example we used in our introduction
to XML namespaces (Section 3.4). The file books.xml not only contains an HTML title but
also information on a book enclosed in XML nodes. We start by parsing the document with
xmlParse() and print its contents to the screen:

R> parsed_xml <- xmlParse("titles.xml")
R> parsed_xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE presidents SYSTEM "presidents.dtd">
<root xmlns:h="http://www.w3.org/1999/xhtml" xmlns:t="http://
funnybooknames.com/crockford">

<h:head>
<h:title>Basic HTML Sample Page</h:title>

</h:head>
<t:book id="1">
<t:author>Douglas Crockford</t:author>
<t:title>JavaScript: The Good Parts</t:title>

</t:book>
</root>

For the sake of the example, let us assume we are interested in extracting information
from the <title> node, which holds the text string JavaScript: The Good Parts. We
can start by issuing a call to all <title> nodes in the document and retrieve their values:

R> xpathSApply(parsed_xml, "//title", fun = xmlValue)
list()

Evidently, the call returns an empty list. The key problem is that neither of the twoBypassing
namespaces <title> nodes in the document has been defined under the default namespace on which

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://funnybooknames.com/crockford
http://funnybooknames.com/crockford
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standard XPath operates. The specific namespaces can be inspected in the xmlns statements
in the attributes of the <root> node. Here, two separate namespaces are declared, which are
referred to by the letters h and t. One way to bypass the unique namespaces is to make a
query directly to the local name of interest:

R> xpathSApply(parsed_xml, "//*[local-name()='title']", xmlValue)
[1] "Basic HTML Sample Page" "JavaScript: The Good Parts"

Here, we first select all the nodes in the document and then subselect all the nodes with
local name title. To conduct namespace-aware XPath queries on the document, we can extend
the function and use the namespaces argument in the xpathSApply() function to refer
to the particular namespace under which the second <title> node has been defined. We
know that the namespace information appears in the <root> node. We can pass the second
namespace string to the namespaces argument of the xpathSApply() function:

R> xpathSApply(parsed_xml, "//x:title", namespaces = c(x = "http://
funnybooknames.com/crockford"),

fun = xmlValue)
[1] "JavaScript: The Good Parts"

Similarly, if we were interested in extracting information from the <title> node under
the first namespace, we would simply change the URI:

R> xpathSApply(parsed_xml, "//x:title", namespaces = c(x = "http://
www.w3.org/1999/xhtml"),

fun = xmlValue)
[1] "Basic HTML Sample Page"

These methods require the namespaces under which the nodes of interest have been
declared to be known in advance. The literal specification of the URI can be circum-
vented if we know where in the document the namespace definition occurs. Namespaces are
always declared as attribute values of an XML element. For the sample file, the information
appears in the <root> node’s xmlns attribute. We capitalize on this knowledge by extracting
the namespace URI for the second namespace using the xmlNamespaceDefinitions()
function:

R> nsDefs <- xmlNamespaceDefinitions(parsed_xml)[[2]]
R> ns <- nsDefs$uri
R> ns
[1] "http://funnybooknames.com/crockford"

Having stored the information in a new object, the namespace URI can be passed to the
XPath query in order to extract information from the <title> node under that namespace:

R> xpathSApply(parsed_xml, "//x:title", namespaces = c(x = ns), xmlValue)
[1] "JavaScript: The Good Parts"

4.3.3 Little XPath helper tools

XPath’s versatility comes at the cost of a steep learning curve. Beginners and experienced
XPath users may find the following tools helpful in verifying and constructing valid statements
for their extraction tasks:

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://funnybooknames.com/crockford
http://funnybooknames.com/crockford
http://funnybooknames.com/crockford
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SelectorGadget SelectorGadget (http://selectorgadget.com) is an open-source bookmarklet
that simplifies the generation of suitable XPath statements through a point-and-click approach.
To make use of its functionality, visit the SelectorGadget website and create a bookmark for
the page. On the website of interest, activate SelectorGadget by clicking on the bookmark.
Once a tool bar on the bottom left appears, SelectorGadget is activated and highlights the
page’s DOM elements when the cursor moves across the page. Clicking an element adds
it to the list of nodes to be scraped. From this selection, SelectorGadget creates a general-
ized statement that we can obtain by clicking on the XPath button. The XPath expression
can then be passed to xpathSApply()’s path argument. Please note that in order to use
the generated XPath expressions in xpathSApply(), you need to be aware that the type
of quotation mark that embrace the XPath expression may not be used inside the expres-
sion (e.g., for the attribute names). Replace them either with double (" ") or single (‘’)
quotation marks.

Web Developer Tools Many modern browsers contain a suite of developer tools to help
inspect elements in the webpage and create valid XPath statements that can be passed to
XML’s node retrieval functions. Beyond information on the current DOM, developer tools
also allow tracing changes to DOM elements in dynamic webpages. We will make use of
these tools in Section 6.3.

Summary

In this chapter we made a broad introduction to the XPath language for querying XML
documents. We hope to have shown that XPath constitutes an indispensable investment for
data analysts who want to work with data from webpages in a productive and efficient manner.
With the tools introduced at the end of this chapter, many extraction problems may even be
solved through simply clicking elements and pasting the returned expression. Despite their
helpfulness, these tools may fail for rather intricate extraction problems, and, thus, knowing
how to build expressions from scratch remains a necessary skill. We also would like to assert
that the construction of an applicable XPath statement is rarely a one-shot affair but requires
an iterative learning process. This process can be described as a cycle of three steps. In the
construction stage, we assemble an XPath statement that is believed to return the correct
information. In the testing stage, we apply the XPath, observe the returned node set or error
message, and find that perhaps the returned node set is too broad or too narrow. The learning
stage is a necessary stage when the XPath query has failed. Learning from this failure, we
might infer a more suitable XPath expression, for example, by making it more strict or more
lax in order to obtain only the desired information. Going back to step number one, we apply
the refined XPath to check whether it now yields the correct set of nodes. For many extraction
problems we find that multiple traverses through this cycle are necessary to build confidence
in the robustness of the programmed extraction routine. We are going to elaborate on the
XPath scraping strategy again in Section 9.2.2.

The issue of XPath robustness is exacerbated when the code is to work on unseen instances
of a webpage, for example, when the extraction code is automatically executed daily (see
Section 11.2). Inevitably, websites undergo changes to their structure; elements are removed
or shifted, new features are implemented, visual appearances are modified, which ultimately
affect the page’s contents as well. This is especially true for popular websites. But we will

http://selectorgadget.com
http://selectorgadget.com
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see that certain dispositions can be made in the XPath statements and auxiliary code design
to increase robustness and warn the analyst when the extraction fails. One possibility is to
rely on textual predicates when textual information should be extracted from the document.
Adding information to the query on the substantive interest can add necessary robustness to
the code.

Further reading

A full exploration of XPath and the XML package is beyond the scope of this chapter. For
an extensive overview of the XML package, interested readers are referred to Nolan and
Temple Lang (2014). A more concise introduction to the package is provided by Temple
Lang (2013c). Tennison provides a comprehensive overview of XPath 1.0 (Tennison 2001).
Another helpful overview of XPath 1.0 and 2.0 methods can be found in Holzner (2003). For
an excellent online documentation on web technologies, including XPath, consult Mozilla
Developer Network (2013).

Problems

1. What makes XPath a domain-specific language?

2. XPath is the XML Path language, but it also works for HTML documents. Explain why.

3. Return to the fortunes1.html file and consider the following XPath expression:
//a[text()[contains(., 'R-help')]]§. Replace § to get the <h1> node with
value “Robert Gentleman.”

4. Construct a predicate with the appropriate string functions to test whether the month of
a quote is October.

5. Consider the following two XPath statements for extracting paragraph nodes from a
HTML file. 1. //div//p, 2. //p. Decide which of the two statements makes a more
narrow request. Explain why.

6. Verify that for extracting the quotes from fortunes.html the XPath expression //i does
not return the correct results. Explain why not.

7. The XML file potus.xml contains biographical information on US presidents. Parse the
file into an object of the R session.
(a) Extract the names of all the presidents.
(b) Extract the names of all presidents, beginning with the 40th term.
(c) Extract the value of the <occupation> node for all Republican presidents.
(d) Extract the<occupation> node for all Republican presidents that are also Baptists.
(e) The <occupation> node contains a string with additional white space at the

beginning and the end of the string. Remove the white space by extending the
extractor function.

(f) Extract information from the <education> nodes. Replace all instances of “No
formal education” with NA.

(g) Extract the <name> node for all presidents whose terms started in or after the year
1960.
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8. The State of Delaware maintains a repository of datasets published by the Delaware
Government Information Center and other Delaware agencies. Take a look at Natural-
izations.xml (included in the chapter’s materials at http://www.r-datacollection.com).
The file contains information about naturalization records from the Superior Court.
Convert the data into an R data frame.

9. The Commonwealth War Graves Commission database contains geographical informa-
tion on burial plots and memorials across the globe for those who lost their lives as a
result of World War I. The data have been recast as a KML document, an XML-type
data structure. Take a look at cwgc-uk.kml (included in the chapter’s materials). Parse
the data and create a data frame from the information on name and coordinates. Plot
the distribution on a map.

10. Inspect the SelectorGadget (see Section 4.3.3). Go to http://planning.maryland.gov/
Redistricting/2010/legiDist.shtml and identify the XPath expression suited to extract
the links in the bottom right table named Maryland 2012 Legislative District Maps
(with Precincts) using SelectorGadget.

http://www.r-datacollection.com
http://www.r-datacollection.com
http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
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HTTP

To retrieve data from the Web, we have to enable our software to communicate with
servers and web services. The lingua franca of communication on the Web is HTTP, the
Hypertext Transfer Protocol. HTTP dates back to the late 1980s when it was invented by Tim
Berners-Lee, Roy Fielding and others at the CERN near Geneva, Switzerland (Berners-Lee
2000; Berners-Lee et al. 1996). It is the most common protocol for communication between
web clients (e.g., browsers) and servers, that is, computers that respond to requests from
the network. Virtually every HTML page we open, every image we view in a browser,
every video we watch is delivered by HTTP. When we type a URL into the address bar,
we usually do not even start with http:// anymore, but with the hostname directly (e.g.,
r-datacollection.com) as a request via HTTP is taken for granted and automatically processed
by the browser. HTTP’s current official version 1.1 dates back to 1999 (Fielding et al. 1999),
a fact that nicely illustrates its reliability over the years—in the same time period, other web
standards such as HTML have changed a lot more often.

We hardly ever come into direct contact with HTTP. Constructing and sending HTTP
requests and processing servers’ HTTP responses are tasks that are automatically processed
by our browsers and email clients. Imagine how exhausting it would be if we had to formulate
requests like “Hand me a document called index.html from the host www.nytimes.com/ in
the directory pages/science/ using the HTTP protocol” every time we wanted to search for
articles. But have you ever tried to use R for that purpose? To maintain our heroic claim that R
is a convenient tool for gathering data from the Web, we need to prove that it is in fact suited
to mimic browser-to-web communication. As we will see, for many of the basic web scraping
tasks we still do not have to care much about the HTTP particulars in the background, as R
handles this for us by default. In some instances, however, we have to dig deeper into protocol
file transfers and formulate precise requests in order to get the information we want. This
chapter serves as an introduction to those parts of HTTP that are most important to us to
become successful web scrapers.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

www.nytimes.com/
www.nytimes.com/
http://anymore
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The chapter starts with an introduction to client–server conversation (Section 5.1.1).
Before we turn to the technical details of HTTP, we briefly digress to talk about URLs,
standardized names of resources on the Internet (Section 5.1.2). Our presentation of HTTP is
then subdivided into a fundamental look at the logic of HTTP messages (Section 5.1.3), request
methods (Section 5.1.4), status codes (Section 5.1.5), and headers (Section 5.1.6). In the
second part, we inspect more advanced features of HTTP for identification and authentication
purposes (Sections 5.2.1 and 5.2.2) and talk about the use of proxies (Section 5.2.3). Although
HTTP is by far the most widespread protocol on the Web, we also take a look at HTTPS
and FTP (Section 5.3). We conclude with the practical implementation of HTTP-based
communication using R (Section 5.4). All in all, we have tried to keep this introduction
to HTTP as nontechnical as possible, while still enabling you to use R as a web client in
situations that are not explicitly covered in this book.

5.1 HTTP fundamentals

5.1.1 A short conversation with a web server

To access content on the Web, we are used to typing URLs into our browser or to simply
clicking on links to get from one place to another, to check our mails, to read news, or
to download files. Behind this program layer that is designed for user interaction there are
several more layers—techniques, standards, and protocols—that make the whole thing work.
Together they are called the Internet Protocol Suite (IPS). Two of the most prominent players
of this Protocol Suite are TCP (Transmission Control Protocol) and IP (Internet Protocol).
They represent the Internet layer (IP) and the transportation layer (TCP). The inner workings
of these techniques are beyond the scope of this book, but fortunately there is no need to
manually manipulate contents of either of these protocols to conduct successful web scraping.
What is worth mentioning, however, is that TCP and IP take care of reliable data transfer
between computers in the network.1

On top of these transportation standards there are specialized message exchange protocols
like HTTP (Hyper Text Transfer Protocol), FTP (File Transfer Protocol), Post Office Protocol
(POP) for email retrieval, SMTP (Simple Mail Transfer Protocol) or IMAP (Internet Message
Access Protocol) for email storage and retrieval. All of these protocols define standard
vocabulary and procedures for clients and servers to talk about specific tasks—retrieving
or storing documents, files, messages, and so forth. They are subsumed under the label
application layer.

Other than the name suggests, HTTP is not only a standard for hypertext document
retrieval. Although HTTP is quite simple, it is flexible enough to ask for nearly any kind of
resource from a server and can also be used to send data to the server instead of retrieving it.

Figure 5.1 presents a stylized version of ordinary user–client interactions. Simply put,Client-server
communication when we access a website like www.r-datacollection.com/index.html, our browser serves

as the HTTP client. The client first asks a DNS server (Domain Name System) which IP

1If you care to learn more about the Transmission Control Protocol or the Internet Protocol, both Fall and Stevens
(2011) and Forouzan (2010) provide extensive introductions to the topic. For a more accessible introduction, check
out https://www.netbsd.org/docs/guide/en/chap-net-intro.html

www.r-datacollection.com/index.html
www.r-datacollection.com/index.html
https://www.netbsd.org/docs/guide/en/chap-net-intro.html
https://www.netbsd.org/docs/guide/en/chap-net-intro.html
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Figure 5.1 User–server communication via HTTP

address is associated with the domain part of the URL we typed in.2 In our example, the
domain part is www.r-datacollection.com.3 After the browser has received the IP address as
response from the DNS server, it establishes a connection to the requested HTTP server via
TCP/IP. Once the connection is established, client and server can exchange information—in
our case by exchanging HTTP messages. The most basic HTTP conversation consists of one
client request and one server response. For example, our browser asks for a specific HTML
document, an image, or some other file, and the server responds by delivering the document
or giving back an error code if something went wrong. In our example, the browser would ask
for index.html and start parsing the content of the response to provide the representation of the
website. If the received document contains further linked resources like images, the browser
continues sending HTTP requests to the server until all necessary resources are transmitted.
In the early days of the Internet, one could literally observe how the browser loaded webpages
piece by piece. By now, it almost seems like webpages are received all at once due to the avail-
ability of higher bandwidths, keeping HTTP connections alive or posing numerous requests
in parallel.

There are two important facts about HTTP that should be kept in mind. First, HTTP is
not only a protocol to transport hypertext documents but is used for all kinds of resources.
Second, HTTP is a stateless protocol. This means that without further effort each pair of
request and response between client and server is handled by default as though the two
were talking to each other for the first time no matter how often they previously exchanged
information.

Let us take a look at one of these standardized messages. For the sake of the example we HTTP
messagesestablish a connection to www.r-datacollection.com and ask the server to send us index.html.

The HTTP client first translates the host URL into an IP address and then establishes a
connection to the server on the default HTTP port (port 80). The port can be imagined as a
door at the server’s house where the HTTP client knocks. Consider the following summary
of the client-side of the conversation:4

2Note that we only scratch the surface of the technologies of client–server communication. If you want to learn
more about the technologies behind it, for example, how DNS servers are contacted, we point you to the “Further
reading” section of this chapter.

3We consider the structure of URLs in the next section.
4We will elaborate further below how to monitor the HTTP exchanges.

www.r-datacollection.com
www.r-datacollection.com
www.r-datacollection.com
www.r-datacollection.com
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1 About to connect() to www.r-datacollection.com port 80 (#0)
2 Trying 173.236.186.125... connected
3 Connected to www.r-datacollection.com (173.236.186.125) port 80 (#0)
4 Connection #0 to host www.r-datacollection.com left intact

After having established the connection the server expects a request and our client sends
the following HTTP request to the server:

1 GET /index.html HTTP/1.1
2 Host: www.r-datacollection.com
3 Accept: */*

Now it is the client’s turn to expect a response from the server. The server responds with
some general information followed by the content of our requested document.5 The HTTP
response reads as follows:

1 HTTP/1.1 200 OK
2 Date: Thu, 27 Feb 2014 09:40:35 GMT
3 Server: Apache
4 Vary: Accept-Encoding
5 Content-Length: 131
6 ...

8 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
9 <html> <head>

10 <title></title>
11 </head>
12 ...

After having received all the data, the connection is closed again by the client…

1 Closing connection #0

… and the transaction is completed.

5.1.2 URL syntax

The location of websites and other web content are identified by Uniform Resource
Locators (URLs). They are not part of HTTP but make communication via HTTP and

5Several lines of the server response have been omitted for purposes of presentation.

www.r{{-}}datacollection.com
www.r-datacollection.com
www.r{{-}}datacollection.com
www.r-datacollection.com
www.r{{-}}datacollection.com
www.r-datacollection.com
www.r{{-}}datacollection.com
www.r-datacollection.com
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other protocols straightforward for users.6 The general URL format can be expressed as
follows:

scheme://hostname:port/path?querystring#fragment

A corresponding real-life example would be

http://www.w3.org:80/People/Berners-Lee/#Bio

Each URL starts with a scheme that defines the protocol that is used to communicate
between client/application and server. In the example, the scheme is http, separated by a
colon. There are other schemes like ftp (File Transfer Protocol) or mailto, which corre-
sponds to email addresses that rely on the SMTP (Simple Mail Transfer Protocol) standard.
Most enable communication in networks, but you will also find the file scheme familiar,
which addresses files on local or network drives.

The hostname provides the name of the server where the resource of interest is stored.
It is a unique identifier of a server. The hostname along with the port component tell the
client at which door it has to knock in order to get access to the requested resource. The
information is provided in the example as www.w3.org:80. Port 80 is the default port in the
Transmission Control Protocol (TCP). If the client is fine with using the default port, this part
of the URL can be dropped. Hostnames are usually human readable, but every hostname also
has a machine-readable IP address. In the example, www.w3.org belongs to the IP address
128.30.52.37, making the following an equivalent URL:7

http://128.30.52.37/People/Berners-Lee/#Bio

As we usually provide the human-friendly versions of URLs, the Domain Name System
(DNS) translates hostnames into numerical IP addresses. Therefore, the DNS is frequently
compared to a worldwide phone book that redirects users who provide hostnames to services
or devices.

The path determines the location of the requested resource on the server. It works like
paths on any conventional file system where files are nested in folders that may again be
nested in folders and so on. Path segments are separated by slashes (/).

In some cases, URLs provide supplementary information in the path that helps the server
to process the request correctly. The additional information is delivered in query strings that
hold one or more name=value pairs. The query string is separated from the rest of the URL
by a question mark. It encodes data using a ‘field = value’ format and uses the ampersand
symbol (&) to separate multiple name–value pairs.

https://www.google.com/search?q=RCurl+filetype%3Apdf

A comparable URL is constructed when we search for “RCurl” documents on Google
that are of type PDF. The name–value pair q=RCurl+filetype%3Apdf is the transformed

6We will learn in Section 9.1.3 that one of the easiest ways to collect data from websites is often to inspect
and manipulate the URLs that refer to content of interest. Sometimes the URLs follow a simple logic, for example,
when they contain a running index. It is simple to generate a set of URLs, automatically access them, and store their
content.

7We can use services like the one at http://whatismyipaddress.com/ip-lookup to look up the corresponding IP
addresses of hostnames.

www.w3.org
www.w3.org
www.w3.org
www.w3.org
http://whatismyipaddress.com/ip-lookup
http://whatismyipaddress.com/ip-lookup
scheme://hostname:port/path?querystring#fragment
http://www.w3.org:80/People/Berners-Lee/#Bio
http://128.30.52.37/People/Berners-Lee/#Bio
https://www.google.com/search?q=RCurl+filetype%3Apdf
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actual request written in the search form as “RCurl filetype:pdf,” a compact syntax to search
for PDF files that include the term “RCurl.” One could easily extend the request with further
search parameters such as tbs=qdr:y. This would limit the results to hits that are younger
than one year.8

Finally, fragments help point to a specific part of a document. This works well if the
requested resource is HTML and the fragment identifier refers to a section, image, or similar.
In the example above, the fragment #Bio requests a direct jump to the biography section of
the document. Note that fragments are handled by the browser, that is, on the client side. After
the server has returned the whole document, the fragment is used to display the specified part.

There are some encoding rules for URLs. URLs are transmitted using the ASCII characterURL encoding

set, which is limited to a set of 128 characters. All characters not included in this set and most
special characters need to be escaped, that is, they are replaced by a standardized representa-
tion. Consider once again the example. The expression “RCurl filetype:pdf” is converted to
q=RCurl+filetype%3Apdf. Both white space and the colon character seem to be “unsafe”
and have been replaced with a + sign and the URL encoding%3A, respectively. URL encodings
are also called percent-encoding because the percent character % initializes each of these
encodings. Note that the plus character is a special case of a URL escape sequence that is only
valid in the query part. In other parts, the valid URL encoding of space is %20. A complete
list of URL encodings can be found at http://www.w3schools.com/tags/ref_urlencode.asp.

We can encode or decode characters in URLs with the base functions URLencode()
and URLdecode() in R. The reserved argument in the former function ensures that non-
alphanumeric characters are encoded with their percent-encoding representation:

R> t <- "I'm Eddie! How are you & you? 1 + 1 = 2"
R> (url <- URLencode(t, reserve = TRUE))
[1] "I'm%20Eddie!%20How%20are%20you%20%26%20you%3f%201%20+%201%20%3d%202"

R> URLdecode(url)
[1] "I'm Eddie! How are you & you? 1 + 1 = 2"

These functions can be useful when we want to construct URLs manually, for example,
to specify a GET form (see below), without having to insert the percent-encodings by hand.

5.1.3 HTTP messages

HTTP messages, whether client requests or server response messages, consist of three parts:
start line, headers, and body—see Figures 5.2 and 5.3. While start lines differ for request
and response, the messages’ header and body sections are structured identically.

To separate start line from headers and headers from body, carriage return and line feed
characters (CRLF) are used.9 Note that start line and headers are separated by one sequence of
CRLF while the last header before the body is followed by two CRLF. In R, these characters
are represented as escaped characters \r for carriage return and \n for new line feed.

The start line is the first and indispensable line of each HTTP message. In requests,
the start line defines the method used for the request, followed by the path to the resource

8We can identify additional parameters by specifying advanced searches and observing the changes in the URL.
For a comprehensive overview, see http://jwebnet.net/advancedgooglesearch.html

9Carriage return and line feed are control characters that are inherited from typewriters. Using a typewriter,
starting a new line required returning the carriage to the left and moving the plate one line further down.

http://www.w3schools.com/tags/ref_urlencode.asp
http://www.w3schools.com/tags/ref_urlencode.asp
http://jwebnet.net/advancedgooglesearch.html
http://jwebnet.net/advancedgooglesearch.html
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[method] [path] [version]  [CRLF]

[header name:] [header value]    [CRLF]
[CRLF]

[body]

Start line

Header

Body

POST /greetings.html HTTP/1.1

Host: www.r-datacollection.com

Hi, there.
How are you?

Schema Example

Figure 5.2 HTTP request schema

[version] [status] [phrase]   [CRLF]

[header name:] [header value]    [CRLF]
[CRLF]

[body]

Start line

Header

Body

HTTP/1.1 200 OK

Content-type: text/plain

I am fine, thank you very much.
What else might I help you with?

Schema Example

Figure 5.3 HTTP response schema

requested, followed by the highest HTTP version the client can handle. In our example we use
the POST method requesting greetings.html and indicate that our client understands HTTP
up to version 1.1.

The server response start line begins with a statement on the highest HTTP version the
server can handle, followed by a status code, followed by a human-readable explanation of
the status. Here, www.r-datacollection.com tells us that it understands HTTP up to version
1.1, that everything went fine by returning 200 as status code, and that this status code means
something like OK.

The header section below the start line provides client and server with meta information
about the other sides’ preferences or the content sent along with the message. Headers contain
a set of header fields in the form of name–value pairs. Ordinarily, each header field is placed
on a new line and header field name and value are separated by colon. If a header line becomes
very long, it can be divided into several lines by beginning the additional line with an empty
space character to indicate that they belong to the previous header line.

The body of an HTTP message contains the data. This might be plain text or binary MIME types

data. Which type of data the body is composed of is specified in the content-type header,
following the MIME type specification (Multipurpose Internet Mail Extensions). MIME
types tell the client or server which type of data it should expect. They follow a scheme of
main-type/sub-type. Main types are, for example, application, audio, image, text, and video
with subtypes like application/pdf, audio/mpg, audio/ogg, image/gif, image/jpeg, image/png,
text/plain, text/html, text/xml, video/mp4, video/quicktime, and many more.10

10For the full set, see the list provided by IANA (Internet Assigned Numbers Authority) at http://www.iana.org/
assignments/media-types/media-types.xhtml.

www.r-datacollection.com
www.r-datacollection.com
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.r-datacollection.com
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Table 5.1 Common HTTP request methods

Method Description

GET Retrieves resource from server
POST Retrieves resource from server using the message body to

send data or files to the server
HEAD Works like GET, but server responds only with start line

and header, no body
PUT Stores the body of the request message on the server
DELETE Deletes a resource from the server
TRACE Traces the route of the message along its way to the server
OPTIONS Returns list of supported HTTP methods
CONNECT Establishes a network connection

Source: Fielding et al. (1999).

5.1.4 Request methods

When initiating HTTP client requests, we can choose among several request methods—see
Table 5.1 for an overview. The two most important HTTP methods are GET and POST. Both
methods request a resource from the server, but differ in the usage of the body. Whereas
GET does not send anything in the body of the request, POST uses the body to send data. In
practice, simple requests for HTML documents and other files are usually executed with the
GET method. Conversely, POST is used to send data to the server, like a file or inputs from
an HTML form.

If we are not interested in content from the server we can use the HEAD method. HEAD
tells the server to only send the start line and the headers but not transfer the requested
resource, which might be convenient to test if our requests are accepted. Two more handy
methods for testing are OPTIONS, which asks the server to send back the methods it supports
and TRACE, which requests the list of proxy servers (see Section 5.2.3) the request message
has passed on its way to the server.

Last but not least there are two methods for uploading files to and deleting files from
a server—PUT and DELETE—as well as CONNECT, a method for establishing an HTTP
connection that might be used, for example, for SSL tunneling (see Section 5.3.1).

We will elaborate the methods GET and POST, the two most important methods for web
scraping, when we discuss HTTP in action (see Section 5.4).

5.1.5 Status codes

When a server responds to a request, it will always send back a status code in the start line
of the response. The most famous response that nearly everybody knows from browsing the
Web is 404, stating that the server could not find the requested document. Status codes can
range from 100 up to 599 and follow a specific scheme: the leading digit signifies the status
category—1xx for informations, 2xx for success, 3xx for redirection, 4xx for client errors
and 5xx for server errors—see Table 5.2 for a list of common status codes.
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Table 5.2 Common HTTP status codes

Code Phrase Description

200 OK Everything is fine
202 Accepted The request was understood and accepted but no

further actions have yet taken place
204 No Content The request was understood and accepted but no

further data needs to be returned except for
potentially updated header information

300 Multiple Choices The request was understood and accepted but the
request applies to more than one resource

301 Moved Permanently The requested resource has moved, the new location is
included in the response header Location

302 Found Similar to Moved Permanently but temporarily
303 See Other Redirection to the location of the requested resource
304 Not Modified Response to a conditional request stating that the

requested resource has not been changed
305 Use Proxy To access the requested resource a specific proxy

server found in the Location header should be used

400 Bad Request The request has syntax errors
401 Unauthorized The client should authenticate itself before progressing
403 Forbidden The server refuses to provide the requested resource

and does not give any further reasons
404 Not Found The server could not find the resource
405 Method Not Allowed The method in the request is not allowed for the

specific resource
406 Not Acceptable The server has found no resource that conforms to the

resources accepted by the client

500 Internal Server Error The server has encountered some internal error and
cannot provide the requested resource

501 Not Implemented The server does not support the request method
502 Bad Gateway The server acting as intermediate proxy or gateway got

a negative response forwarding the request
503 Service Unavailable The server can temporarily not fulfill the request
504 Gateway Timeout The server acting as intermediate proxy or gateway got

no response to its forwarded request
505 HTTP Version Not

Supported
The server cannot or refuses to support the HTTP

version used in the request

Source: Fielding et al. (1999).

5.1.6 Header fields

Headers define the actions to take upon reception of a request or response. Headers can
be general or belong to one specialized group: header fields for requests, header fields for
responses, and header fields regarding the body of the message. For example, request header
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fields can inform the server about the type of resources the client accepts as response,
like restricting the responses to plain HTML documents or give details on the technical
specification of the client, like the software that was used to request the document. They can
also describe the content of the message, which might be plain text or binary, an image or
audio file and might also have gone through encoding steps like compression. Header fields
always follow the same, simple syntax. The name comes first and is separated with a colon
from the value. Some header fields contain multiple values that are separated by comma.

Let us go through a sample of common and important header fields to see what they can
do and how they are used. The paragraphs in the following overview provide the name of
the header in bold and the field type in parentheses, that is, whether the header is used for
request, response, or body.

Accept (request)

1 Accept: text/html,image/gif,image/*,*/*;q=0.8

Accept is a request header field that tells the server about the type of resources the client
is willing to accept as response. If no resource fits the restrictions made in Accept, the server
should send a 406 status code. The specification of accepted content follows the MIME type
scheme. Types are separated by commas; semicolons are used to specify so-called accept
parameters type/subtype;acceptparameter=value,type/.... The asterisk (*) can
be used to specify ranges of type and subtypes. The rules of content-type preferences are
as follows: (1) more specific types are preferred over less specific ones and (2) types are
preferred in decreasing order of the q parameter while (3) all type specifications have a
default preference of q = 1 if not specified otherwise.

The above example can be read as follows: The client accepts HTML and GIF but if
neither is available will accept any other image type. If no other image type is available, the
client will also accept any other type of content.

Accept-Encoding (request)

1 Accept-Encoding: gzip,deflate,sdch;q=0.9,identity;q=0.8;*;q=0

Accept-Encoding tells the server which encodings or compression methods are
accepted by the client. If the server cannot send the content in the specified encoding, it
should return a 406 status code.

The example reads as follows: The client accepts gzip and deflate for encoding. If
neither are available it also accepts sdch and otherwise content that was not encoded at all.
It will not accept any other encodings as the value of the acceptance parameter is 0, which
equals nonacceptance.

Allow (response; body)

1 Allow: GET, PUT
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Allow informs the client about the HTTP methods that are allowed for a particular
resource and will be part of responses with a status code of 405.

Authorization (request)

1 Authorization: Basic cm9va2llOjEyM0lzTm90QVNlY3VyZVBX

Authorization is a simple way of passing username and password to the server.
Username and password are first merged to username:password and encoded according
to the Base64 scheme. The result of this encoding can be seen in the header field line above.
Note that the encoding procedure does not provide encryption, but simply ensures that all
characters are contained in the ASCII character set. We discuss HTTP authorization methods
in more detail in Section 5.2.2.

The Authorization header field in the example indicates that the authorization method
is Basic and the Base64-encoded username–password combination is cm9va2...

Content-Encoding (response; body)

1 Content-Encoding: gzip

Content-Encoding specifies the transformations, for example, compression methods,
that have been applied to the content—see Accept-Encoding for further details.

Content-Length (response; body)

1 Content-Length: 108

Content-Length provides the receiver of the message with information on the size of
the content in decimal number of OCTETs (bytes).

Content-Type (response; body)

1 Content-Type: text/plain; charset=UTF-8

Content-Type provides information on the type of content in the body. Content types
are described as MIME types—see Accept for further details.

Cookie (request)

1 Cookie: sessionid=2783321; path=/; domain=r-datacollection.com;
expires=Mon, 31-Dec-2035 23:00:01 GMT
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Cookies are information sent from server to client with the Set-Cookie header field.
They allow identifying clients—without cookies servers would not know that they have
had contact with a client before. The Cookie header field returns the previously received
information. The syntax of the header field is simple: Cookies consist of name=value pairs
that are separated from each other by semicolon. Names like expires, domain, path, and
secure are reserved parameters that define how the cookie should be handled by the client.
expires defines a date after which the cookie is no longer valid. If no expiration date is
given the cookie is only valid for one session. domain and path specify for which resource
requests the cookie is needed. secure is used to indicate that the cookie should only be sent
over secured connections (SSL; see Section 5.3.1). We introduce cookies in greater detail in
Section 5.2.1.

The example reads as follows: The cookie sessionid=2783321 is valid until 31st of
December 2035 for the domain www.r-datacollection.com and all its subdirectories (declared
with /).

From (response)

1 From: eddie@r-datacollection.com

From provides programmers of web crawlers or scraping programs with the option to send
their email address. This helps webmasters to contact those who are in control of automated
robots and web crawlers if they observe unauthorized behavior. This header field is useful for
web scraping purposes, and we discuss it in Section 5.2.1.

Host (request)

1 Host: www.r-datacollection.com:80

Host is a header field required in HTTP/1.1 requests and helps servers to decide upon
ambiguous URLs when more than one host name redirects to the same IP address.

If-Modified-Since (request)

1 If-Modified-Since: Thu, 27 Feb 2014 13:05:34 GMT

If-Modified-Since can be used to make requests conditional on the time stamp
associated with the requested resource. If the server finds that the resource has not been
modified since the date provided in the header field, it should return a 304 (Not Modified)
status code. We can make use of this header to write more efficient and friendly web scrapers
(see Section 9.3.3).

www.r-datacollection.com
www.r-datacollection.com
mailto:eddie@r-datacollection.com
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Connection (request, response)

1 Connection: Keep-Alive

1 Connection: Close

Connection is an ambiguous header field in the sense that it has two completely different
purposes in HTTP/1.0 and HTTP/1.1. In HTTP/1.1, connections are persistent by default. This
means that client and server keep their connection alive after the request–response procedure
has finished. In contrast, it is standard in HTTP/1.0 to close connections after the client has
got its response. Since establishing connections for each request, the value Keep-Alive can
be specified in HTTP/1.0, while this is the default procedure in HTTP/1.1 and thus does not
have to be explicitly stated. Instead, the server or client can force the connection to be shut
down after the request–response exchange with the Close value.

Last-Modified (response; body)

1 Last-Modified: Tue, 25 Mar 2014 19:24:50 GMT

Last-Modified provides the date and time stamp of the last modification of the
resource.

Location (response; body)

1 Location: redirected.html

Location serves to redirect the receiver of a message to the location where the requested
resource can be found. This header is used in combination with status code 3xx when content
has moved to another place or in combination with status code 201 when content was created
as result of the request.

Proxy-Authorization (request)

1 Proxy-Authentication: Basic bWFnaWNpYW5zYXlzOmFicmFrYWRhYnI=

The same as Authorization, only for proxy servers. For more information on proxies,
see Section 5.2.3.

Proxy-Connection (request)

1 Proxy-Connection: keep-alive
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The same as Connection, only for proxy servers. For more information on proxies, see
Section 5.2.3.

Referer (request)

1 Referer: www.r-datacollection.com/index.html

Referer is a header field that informs the server what referred to the requested resource.
In the example, www.r-datacollection.com/index.html might provide a link to a picture (e.g.,
/pictures/eddie.jpg). In a request for this picture the referer header field can be added
to signal that the user has already been on the site and does not want to access the image from
elsewhere, like another website.

Server (response)

1 Server: Apache/2.4.7 (Unix) mod_wsgi/3.4 Python/2.7.5 OpenSSL/1.0.1e

1 Server: Microsoft-IIS/8.0

Server provides information about the server addressed in the request. The first server
above is based on Apache software using a Unix platform (httpd.apache.org/), while the
second one is based on Microsoft’s Internet Information Service (www.microsoft.com/).

Set-Cookie (response)

1 Set-Cookie: sessionid=2783321; path=/; domain=r-datacollection.com;
2 expires=Mon, 31-Dec-2035 23:00:01 GMT

Set-Cookie asks the client to store the information contained in the Set-Cookie header
field and send them along in subsequent requests as part of the Cookie header. See Cookie
and Section 5.2.1 for further explanation.

User-Agent (request)

1 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

The User-Agent header field indicates the type of client that makes a request to the
server. These more or less cryptic descriptions can indicate the use of a certain browser
on a certain operating system. This information can be helpful for the server to adapt the
content of the response to the system of the client. Nevertheless, the User-Agent can contain
arbitrary user-defined information, such as User-Agent: My fabulous web crawler or
User-Agent: All your base are belong to us. Web scrapers can and should use
User-Agents responsibly. We discuss how this is done in Sections 5.2.1 and 9.3.3.

www.r{{-}}datacollection.com/index.html
www.r-datacollection.com/index.html
www.r-datacollection.com/index.html
www.r-datacollection.com/index.html
httpd.apache.org/
httpd.apache.org/
www.microsoft.com/
www.microsoft.com/
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Vary (response)

1 Vary: User-Agent, Cookie, Accept-Encoding

1 Vary: *

The server response sometimes depends on certain parameters, for example, on the
browser or device of the client (e.g., a desktop PC or a mobile phone), on whether the user
has previously visited a site and has received a cookie, and on the encoding format the client
accepts. Servers can indicate that content changes according to these parameters with the
Vary header field.

The first example above indicates that the content might vary with changes in User-
Agent, Cookie, or Accept-Encoding. The second example is rather unspecific. It states
that changes on an unspecified set of parameters lead to changes in the response. This header
field is important for the behavior of browser caches that try to load only new content and
retrieve old and unchanged content from a local source.

Via (request, response)

1 Via: 1.1 varnish

1 Via: 1.1 www.spiegel.de, 1.0 lnxp-3960.srv.mediaways.net (squid/3.1.4)

Via is like Server but for proxy servers and gateways that HTTP messages pass on their
way to the server or client. Each proxy or gateway can add its ID to this header, which is
usually a protocol version and a platform type or a name.

WWW-Authenticate (response)

1 WWW-Authenticate: Basic realm="r-datacollection"

1 WWW-Authenticate: Digest realm="r-datacollection" qop="auth"
2 nonce="ecf88f261853fe08d58e2e903220da14"

WWW-Authenticate asks the client to identify itself and is sent along a 401 Unauthorized
status code. It is the counterpart to the Authorization request header field. The WWW-
Authenticate header field describes the method of identification as well the “realm” this
identification is valid for, as well as further parameters needed for authorization. The first
example requests basic authentication while the second asks for digest authentication, which
ensures that passwords cannot be read out by proxies. We explain both types of authentication
in Section 5.2.2.

http://www.spiegel.de
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5.2 Advanced features of HTTP

What we have learned so far are just the basics of HTTP-based communication. There are
more complex tasks that go beyond the default configuration of standard HTTP methods.
Both web users and server maintainers may ask questions like the following:

� How can servers identify revisiting users?

� How can users avoid being identified?

� How can communication between servers and clients be more than “stateless,” that is,
how can they memorize and rely on previous conversations?

� How can users transfer and access confidential content securely?

� How can users check if content on the server has changed—without requesting the full
body of content?

Many of these tasks can be handled with means that are directly implemented in HTTP.
We will now highlight three areas that extend the basic functionality of HTTP. The first
comprises issues of identification, which are useful to personalize web experiences. The
second area deals with different forms of authentication that serve to make server–client
exchanges more secure. The third area covers a certain type of web intermediaries, that is,
middlemen between clients and servers, namely proxy servers. These are implemented for
a variety of reasons like safety or efficiency. As the availability of content may depend on
the use of such advanced features, basic knowledge about them is often useful for web data
collection tasks.

To showcase some advanced HTTP requests, we use the server at http://httpbin.org. ThisUsing
httpbin.org to

test HTTP
requests

server, set up by Kenneth Reitz, offers a testing environment for HTTP requests and returns
JSON-encoded content. It is a useful service to test HTTP calls before actually implementing
them in real-life scenarios. We use it to formulate calls to the server via RCurl commands and
evaluate the returned message within R.

Further, we will gently introduce the RCurl package to demonstrate some advanced HTTP
features by example. RCurl provides means to use R as a web client software. The package is
introduced in greater detail in Section 5.4.

5.2.1 Identification

The communication between client and server via the HTTP protocol is an amnesic matter.
Connections are established and closed for each session; the server does not keep track of
earlier requests from the same user by default. It is sometimes desirable that server responses
are built upon results from previous conversations. For example, users might prefer that sites
are automatically displayed in their language or adapted to fit a specific device or operating
system. Moreover, customers of an online shop want to place items into a virtual shopping
cart and continue browsing other products, while the website keeps track of these operations.
Apart from scenarios like these that enhance user experience, some basic knowledge about
clients is interesting for web administrators who want to know, for example, from which other
sites their pages are visited most frequently.

http://httpbin.org
http://httpbin.org
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HTTP offers a set of procedures that are used for such purposes. We discuss the most
popular and relevant ones in the context of web scraping—basic identification header fields
and cookies.

5.2.1.1 HTTP header fields for client identification

By default, modern web browsers deliver basic client identification in the HTTP header when
sending a request to a server. This information is usually not sufficient to uniquely identify
users but may improve surfing experience. As we will see, it can also make sense to pass
these fields to servers when the request does not come from a browser but, for example, from
a program like R that processes a scraping script.

The User-Agent header field contains information about the software that is used on the User-Agent

client side. Ordinary browsers deliver User-Agent header fields like the following:

1 GET /headers HTTP/1.1
2 Host: httpbin.org
3 User-Agent: Mozilla/5.0 (Windows NT 6.3) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/31.0.1650.57 Safari/537.36

What is hidden behind this cryptic string is that the request was performed by a Chrome
browser, version 31.0.1650.57. The browser is ‘Mozilla-compatible’ (this is of no further
interest), operates on a Windows system, and draws upon the web kit.11 This information
does not suffice to uniquely identify the user. But they still serve an important purpose: They
allow web designers to deliver content that is adapted to the clients’ software.

While an adequate layout is hardly relevant for web scraping purposes, we can deliver
information on the software we use for scraping in the User-Agent field to keep our work as
transparent as possible. Technically, we could put any string in this header. A both useful and
convenient approach is to provide the current R version number along with the platform that
R is run on. This way, the webmaster at the other end of the interaction is told what kind of
program puts a series of requests to the server. The following command returns the current R
version number and the corresponding platform:

R> R.version$version.string
[1] "R version 3.0.2 (2013-09-25)"

R> R.version$platform
[1] "x86_64-w64-mingw32"

We can use this string to configure a GET request that we conduct with the getURL()
function of the RCurl package:

R> cat(getURL("http://httpbin.org/headers",
useragent = str_c(R.version$platform,

R.version$version.string,
sep=", ")))

11If you care to see the User-Agent of your default browser, copy the string that is given back when you request
the site http://httpbin.org/user-agent and paste it into the ‘Analyze’ form at http://useragentstring.com.

http://httpbin.org/user-agent
http://httpbin.org/user-agent
http://useragentstring.com
http://useragentstring.com
http://httpbin.org/headers
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{
"headers": {

"X-Request-Id": "0726a0cf-a26a-43b9-b5a4-9578d0be712b",
"User-Agent": "x86_64-w64-mingw32, R version 3.0.2 (2013-09-25)",
"Connection": "close",
"Accept": "*/*",
"Host": "httpbin.org"

}
}

cat() is used to concatenate and print the results over several lines. The useragent
argument allows specifying a User-Agent header field string. RCurl takes care of writing
this string into a header field and passes it to the server. http://httpbin.org/headers returns the
sent header information in JSON format.12 Beside the set of header fields that are used by
default, we find that a User-Agent header field has been added.13

We will later learn that the basis of the RCurl package is the C library libcurl. Many
of the options that libcurl offers can also be used in RCurl’s high-level functions (for more
details, see Section 5.4.1). We will return to the use of User-Agents in practical web scraping
in Section 9.3.3.

The second header field that is informative about the client is the Referer. It stores theReferer

URL of the page that referred the user to the current page. Referrers can be used for traffic
evaluation to asses where visitors of a site come from. Another purpose is to be able to limit
access to specific server content like image files. A webmaster could modify the settings of
the server such that access to images is only possible from another resource on the server
in order to prevent other people from using images on their own webpage by referring to
the location on the original server. This causes unwanted traffic and is therefore unwelcome
behavior. The default browser setting is that the Referer header is delivered automatically.
This may look as follows:

1 GET /headers HTTP/1.1
2 Host: httpbin.org
3 Referer: http://www.r-datacollection.com/

We can provide the Referer header field with R using getURL()’s referer argument.
We test the request to http://httpbin.org/headers with:14

R> getURL("http://httpbin.org/headers", referer = "http://www.r-
datacollection.com/")

12Note that we use the cat() function to concatenate and print the returned JSON string.
13We do not have to care about the X-Request-Id and Heroku-Request-Id header fields, they are added by

the service at http://httpbin.org for debugging purposes.
14We do not print the JSON output from now on—you can easily see the returned content by loading RCurl and

pasting the command in your R console.

http://httpbin.org/headers
http://httpbin.org/headers
http://www.r{{-}}datacollection.com/
http://www.r-datacollection.com/
http://httpbin.org/headers
http://httpbin.org/headers
http://www.r{{-}}datacollection.com/
http://www.r{{-}}datacollection.com/
http://www.r-datacollection.com/
http://www.r-datacollection.com/
http://httpbin.org
http://httpbin.org
http://httpbin.org/headers
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Note that adding information on the Referer from within R is misleading when R has
not actually been referred from the site provided. We suggest that if it is necessary to provide
a valid referrer in order to get access to certain resources, stay identifiable, for example, by
properly specifying the From header field as described below, and contact the webmaster if
in doubt. Providing wrong information in the Referer header field in order to disguise the
source of the access request is called referrer spoofing. This may have its legitimacy for data
privacy purposes but is not encouraged by scraping etiquette (see Section 9.3.3).

TheFrom header field for client identification is not delivered by browsers but a convenient From

header for well-behaved web spiders and robots. It carries the user’s email address to make
her identifiable for web administrators. In web scraping, it is good practice to specify the
From header field with a valid email address, as in

1 GET /headers HTTP/1.1
2 Host: httpbin.org
3 From: eddie@r-datacollection.com

Providing contact details signals good intentions and enables webmasters who note
unusual traffic patterns on their sites to get in touch. We thus reformulate our request:

R> getURL("http://httpbin.org/headers", httpheader = c(From =
"eddie@r-collection.com"))

Note that we have to use the httpheader option here to add the From header field, as
from is not a valid option—in contrast to “referer,” for example. httpheader allows us
to specify additional other header fields.

5.2.1.2 Cookies

Cookies help to keep users identifiable for a server. They are a tool to turn stateless HTTP
communication into a stateful conversation where future responses depend on past conver-
sations. Cookies work as follows: Web servers store a unique session ID in a cookie that is
placed on the client’s local drive, usually in a text file. The next time a browser sends an
HTTP request to the same web server, it looks for stored cookies that belong to the server
and—if successful—adds the cookie information to the request. The server then processes
this “we already met” information and adapts its response. Usually, further information on
the user has been stored on the server over the course of several conversations and can be
“reactivated” using cookies. In other words, cookies enable browsers and servers to continue
conversations from the past.

Cookies are shared via the HTTP header fields “Set-Cookie” (in the response header)
and “Cookie” (in the request header). A typical conversation via HTTP that results in a
cookie exchange looks as follows. First, the client makes a request to a web server:

1 GET /headers HTTP/1.1
2 Host: httpbin.org

mailto:eddie@r-datacollection.com
http://httpbin.org/headers
mailto:eddie@r-collection.com
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If the request is successful, the server responds and passes the cookie with the Set-
Cookie response header field. The field provides a set of name–value pairs:

1 HTTP/1.1 200 OK
2 Set-cookie: id="12345"; domain="httpbin.org"
3 ...

The id attribute allows the server to identify the user in a subsequent request and the
domain attribute indicates which domain the cookie is associated with. The client stores the
cookie and attaches it in future requests to the same domain, using the Cookie request header
field:

1 GET /headers HTTP/1.1
2 Host: httpbin.org
3 Cookie: id="12345"

There are several types of cookies that differ in terms of persistence and range. SessionDifferent types
of cookies cookies are kept in memory only as long as the user visits a website and are deleted as soon

as the browser is closed. Persistent cookies, or tracking cookies, last longer—their lifetime
is defined by the value of the max-age attribute or the expires attribute (not shown in
the examples above). The browser delivers the cookie with every request during a cookie’s
lifetime, which makes the user traceable for the server across several sessions. Third-party
cookies are used to personalize content across different sites. They do not belong to the
domain the client visits but to another domain. If you have ever wondered how personalized
ads are placed on pages you visit—this is most likely done with third-party cookies that are
placed by advertising companies on domains you visit and which can be used by advertisers
to tailor ads to your interests. The use of cookies for such purposes surely has contributed to
the fact that cookies have a bad reputation regarding privacy. In general, however, cookies are
only sent to the server that created them. Further, the user can decide how to handle locally
stored cookies. And in the end, cookies are useful as they often enhance the web experience
considerably.

If cookies influence the content a server returns in response to a request, they can be
relevant for web scraping purposes as well. Imagine we care to scrape data from our crammed
shopping cart in an online store. During our visit we have added several products to the cart.
In order to track our spending spree, the server has stored a session ID in a cookie that keeps
us identifiable. If we want to request the webpage that lists the shopped items, we have to
deliver the cookie with our request.

In order to deliver existing cookies with R, we can draw upon the cookie argument:

R> getURL("http://httpbin.org/headers", cookie = "id=12345;domain=
httpbin.org")

It is usually not desirable to manage cookies manually, that is, retrieve them, store them,
and send them. This is why browsers automatically take care of such operations by default.

http://httpbin.org/headers
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In order to achieve similar convenience in R, we can rely on libcurl’s cookiefile and
cookiejar options that, if specified correctly, manage cookies for us. We show in detail how
this can be done in Section 9.1.8.

5.2.2 Authentication

While techniques for client identification are useful to personalize web content and enable
stateful communication, they are not suited to protect content that only the user should see.
A set of authentication techniques exist that allow qualified access to confidential content.
Some of these techniques are part of the HTTP protocol. Others, like OpenID or OAuth (see
Section 9.1.11), have been developed more recently to extend authentication functionality on
the Web.

The simplest form of authentication via the HTTP protocol is basic authentication (Franks Basic
authenticationet al. 1999). If a client requests a resource that is protected by basic authentication, the server

sends back a response that includes the WWW-Authenticate header. The client has to repeat
its request with a username and password in order to be granted access to the requested
resource. Both are stored in the response’s Authorization header. If the server can verify
that the username/password combination is correct, it returns the requested resource in a
HTTP 200 message. Technically, basic authentication looks as follows.

1. The client requests a protected resource:

1 GET /basic-auth/user/passwd HTTP/1.1

2. The server asks the client for a user name and password:

1 HTTP/1.1 401 Authorization required
2 WWW-Authenticate: Basic realm="Protected area"

3. The client/user provides the requested username and password in Base64 encoding:

1 GET /basic-auth/user/passwd HTTP/1.1
2 Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

4. The server returns the requested resource:

1 HTTP/1.1 200 OK
2 ...

Note that in the third step, the username/password combination has been automatically
“encrypted” into the string sequence “dXNlcm5hbWU6cGFzc3dvcmQ=.” This transformation
is done via Base64 encoding. Base64 encoding is not actually an encrypting technique but
follows a rather trivial and static scheme (see Gourley and Totty 2002, Appendix E). We can
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perform Base64 encoding and decoding with R; the necessary functions are implemented in
the RCurl package:

R> (secret <- base64("This is a secret message"))
[1] "VGhpcyBpcyBhIHNlY3JldCBtZXNzYWdl"
attr(,"class")
[1] "base64"

R> base64Decode(secret)
[1] "This is a secret message"

The example reveals the insecurity of basic HTTP authentication: As long as it is done
via standard HTTP, the sensitive information is sent practically unencrypted across the net-
work. Therefore, basic authentication should only be used in combination with HTTPS (see
Section 5.3.1).

A more sophisticated authentication technique is digest authentication (Franks et al.Digest
authentication 1999). The idea behind digest authentication is that passwords are never sent across the Web

in order to verify a user, but only a “digest” of it. The server attaches a little random string
sequence to its response, called nonce. The browser transforms username, password, and the
nonce into a hash code, following one of several algorithms that are known to both server and
browser. This hash code is then sent back, compared to the hash calculations of the server,
and if both match the server grants access to the client. The crucial point is that the hash alone
does not suffice to learn anything about the password; it is just a “digest” of it. This makes
digest authentication an improvement relative to basic authentication, as the encrypted client
message is incomprehensible for an eavesdropper.

Steps 2 and 3 in the authentication procedure sketched above are slightly different. The
server returns something like the following:15

2a. The server asks the client for a username and password and delivers a nonce, reports
a “quality of protection” value (qop) and describes the realm as Protected area:

1 HTTP/1.1 401 Authorization required
2 WWW-Authenticate: Digest realm="Protected area",
3 qop="auth",nonce="f7hf4xu8n2kxuujnszrctx4fexqnahopjdrn4zbi"

3a. The client provides the encrypted username and password in the response attribute,
as well as the unencrypted username, the qop and nonce parameters and a client nonce
(cnonce):

1 GET /basic-auth/user/passwd HTTP/1.1
2 Authorization: Digest username="user", nonce="

f7hf4xu8n2kxuujnszrctx4fexqnahopjdrn4zbi", qop="auth",
cnonce="1g443t8b", response="
y1h5uafdsda8r2wsxdy1vxzhqnht5ngry2m5argc"

15Note that this is a simplified example. We have left out some intermediate steps, but the fundamental logic
remains the same.
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Figure 5.4 The principle of web proxies

In Section 9.1.6 we give a short demonstration of HTTP authentication in practice with
RCurl.

5.2.3 Proxies

Web proxy servers, or simply proxies, are servers that act as intermediaries between clients
and other servers. HTTP requests from clients are first sent to a proxy, which evaluates the
request and passes it to the desired server. The server response takes the way back via the
proxy. In that sense, the proxy serves as a server to clients and as a client to other servers (see
Figure 5.4).

Proxies are useful for several purposes. They are deployed for performance, economic, The use of
proxiesand security reasons. For users, proxies can help to

� speed up network use;

� stay anonymous on the Web;

� get access to sites that restrict access to IPs from certain locations;

� get access to sites that are normally blocked in the country from where the request
is put; or

� keep on querying resources from a server that blocks requests from IPs we have
used before.

Especially when proxies are used for any of the last three reasons, web scrapers might get
into troubles with the law. Recent verdicts point in the direction that it is illegal to use proxy
servers in order to get access to public websites that one has been disallowed to visit (see
Kerr 2013). We therefore do not recommend the use of proxies for any of these purposes.

In order to establish connections via a proxy server, we have to know the proxy’s IP Types of
proxiesaddress and port. Some proxies require authentication as well, that is, a username and a

password. There are many services on the Web that provide large databases of open and free
proxies, including their location and specification. Open proxies can be used by anyone who
knows their IP address and port. Note that proxies vary in the degree to which they provide
anonymity to the user. Transparent proxies specify a Via header field in their request to
the server, filling it with their IP. Further, they offer an X-Forwarded-For header field
with your IP. Simple anonymous proxies replace both the Via and the X-Forwarded-For
header field with their IP. As both fields are delivered only when a proxy is used, the server
knows that the requests comes from a server, but does not easily see the client’s IP address
behind it. Distorting proxies are similar but replace the value of the X-Forwarded-For
header field with a random IP address. Finally, High anonymity proxies or elite proxies
behave like normal clients, that is, they neither provide the Via nor the X-Forwarded-For
header field but only their IP and are not immediately identifiable as proxy servers.
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Figure 5.5 The principle of HTTPS

To send a request to a server detouring via a proxy with R, we can add the proxy argument
to the request command. In the following, we choose a fictional proxy from Poland that has
the IP address 109.205.54.112 and is on call on port 8080:

R> getURL("http://httpbin.org/headers",
R> proxy = "109.205.54.112:8080",
R> followlocation = TRUE)

IP address and port of the proxy are specified in the proxy option. Further, we set
the followlocation argument to TRUE to ensure that we are redirected to the desired
resource.

5.3 Protocols beyond HTTP

HTTP is far from the only protocol for data transfer over the Internet. To get an overview of
the protocols that are currently supported by the RCurl package, we call

R> library(RCurl)
R> curlVersion()$protocols
[1] "tftp" "ftp" "telnet" "dict" "ldap" "ldaps" "http"
[8] "file" "https" "ftps" "scp" "sftp"

Not all of them are relevant for web scraping purposes. In the following, we will high-
light two protocols that we often encounter when browsing and scraping the Web: HTTPS
and FTP.

5.3.1 HTTP Secure

Strictly speaking, the Hypertext Transfer Protocol Secure (HTTPS) is not a protocol of
its own, but the result of a combination of HTTP with the SSL/TLS (Secure Sockets
Layer/Transport Security Layer) protocol. HTTPS is indispensable when it comes to the
transfer of sensitive data, as is the case in banking or online shopping. To transfer money or
credit card information we need to ensure that the information is inaccessible to third parties.
HTTPS encrypts all the client–server communication (see Figure 5.5). HTTPS URLs have
the scheme https and use the port 443 by default.16

16Recall that the default HTTP port is 80.

http://httpbin.org/headers
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HTTPS serves two purposes: First, it helps the client to ensure that the server it talks
to is trustworthy (server authentication). Second, it provides encryption of client–server
communication so that users can be reasonably sure that nobody else reads what is exchanged
during communication.

The SSL/TLS security layer runs as a sublayer of the application layer where HTTP SSL/TLS

operates. This means that HTTP messages are encrypted before they get transmitted. The
SSL protocol was first defined in 1994 by Netscape (see Freier et al. 2011) and was updated
as TLS 1.0 in 1999 (see Dierks and Allen 1999). When using the term “SSL” in the following,
we refer to both SSL and TLS as their differences are of no importance to us.

A crucial feature of SSL that allows secure communication in an insecure network is
public key, or asymmetric, cryptography. As the name already indicates, encryption keys are
in fact not kept secret but publicly available to everyone. In order to encrypt a message for
a specific receiver, the receiver’s public key is used. In order to decrypt the message, both
the public and a private key is needed, and the private key is only known to the receiver. The
basic idea is that if a client wants to send a secret message to a server, it knows how to encrypt
it because the server’s public key is known. After encryption, however, nobody—not even
the sender—is able to decipher the message except for the receiver, who possesses both the
public and the private key.

We do not have to delve deeply into the details of public key encryption, how the secret SSL handshake

codes (ciphers) work, and why it is so hard to crack them in order to understand HTTPS’s
purpose. For the details of cryptography behind SSL, we refer to the excellent introductions
by Gourley and Totty (2002) and Garfinkel (2002). If you want to get a more profound
understanding of digital cryptography, the books by Ferguson et al. (2010) and Paar and Pelzl
(2011) are a good choice. What is worth knowing though is how secure channels between
client and server are actually established and how we can achieve this from within R. A very
simplified scheme of the “SSL handshake,” that is, the negotiation between client and server
about the establishment of an HTTPS connection before actually exchanging encrypted HTTP
messages, works as follows (see Gourley and Totty 2002, pp. 322–328).

1. The client establishes a TCP connection to the server via port 443 and sends information
about the SSL version and cipher settings.

2. The server sends back information about the SSL and cipher settings. The server also
proves his identity by sending a certificate. This certificate includes information about
the authority that issued the certificate, for whom it was issued and its period of validity.
As anybody can create his or her own certificates without much effort, the signature of
a trusted certificate authority (CA) is of great importance. There are many commercial
CAs, but some providers also issue certificates for free.

3. The client checks if it trusts the certificate. Browsers and operating systems are shipped
with lists of certificate authorities that are automatically trusted. If one of these author-
ities has signed the server’s certificate, the client trusts the server. If this is not the
case, the browser asks the user whether she finds the server trustworthy and wants to
continue, or if communication should be stopped.

4. By using the public key of the HTTPS server, the client generates a session key that
only the server can read, and sends it to the server.

5. The server decrypts the session key.
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6. Both client and server now possess a session key. Thus, knowledge about the key is not
asymmetric anymore but symmetric. This reduces computational costs that are needed
for encryption. Future data transfers from server to client and vice versa are encrypted
and decrypted through this symmetric SSL tunnel.

It is important to note that what is protected is the content of communication. This
includes HTTP headers, cookies, and the message body. What is not protected, however, are
IP addresses, that is, websites a client communicates with.

We will address how connections via HTTPS are established in R and how much of the
technical details are hidden deeply in the respective functions in Section 9.1.7—using HTTPS
with R is not difficult at all.

5.3.2 FTP

The File Transfer Protocol (FTP) was developed to transfer files from client to server (upload),FTP vs. HTTP

from server to client (download), and to manage directories. FTP was first specified in 1971
by Abhay Bhushan (1971); its current specification (see Postel and Reynolds 1985) is almost
30 years old. In principle, HTTP has several advantages over FTP. It allows persistent, keep-
alive connections, that is, connections between client and server that are maintained for several
transfers. This is not possible with FTP, where the connection has to be reestablished after
each transfer. Further, FTP does not natively support proxies and pipelining, that is, several
simultaneous requests before receiving an answer. On the upside, FTP may be faster under
certain circumstances, as it does not come with a bunch of header fields like HTTP—just the
binary or ASCII files are transferred.

FTP uses two ports on each side, one for data exchange (“data port,” the default is port 20)Active and
passive modes and one for command exchange (“control port,” the default is port 21). Just like HTTP, FTP

comes with a set of commands that specify which files to transfer, what directories to create,
and many other operations.17 FTP connections can be established in two different modes:
the active mode and the passive mode. In active FTP, the client connects with the server’s
command port and then requests a data transfer to another port. The problem with this mode
is that the actual data connection is established by the server. As the client’s firewall has not
been told that the client expects data to come in on a certain port, it usually blocks the server’s
attempt to deliver the data. This issue is tackled with the passive mode in which the client
initiates both the command and the data connection. We are going to demonstrate accessing
FTP servers with R in Section 9.1.2.

5.4 HTTP in action

We now learn to use R as an HTTP client. We will have a closer look at two available
packages: the powerful RCurl package (Temple Lang 2013a), and the more lightweight but
sometimes also more convenient httr package (Wickham 2012) that rests on the voluminous
RCurl package.

17For an overview over existing commands, see http://www.nsftools.com/tips/RawFTP.htm

http://www.nsftools.com/tips/RawFTP.htm
http://www.nsftools.com/tips/RawFTP.htm
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Base R already comes with basic functionality for downloading web resources. The
download.file() function handles many download procedures where we do not need
complex modifications of the HTTP request. Further, there is a set of basic functions to set
up and manipulate connections. For an overview, type ?connections in R. However, using
these functions is anything but convenient. Regarding download.file(), there are two
major drawbacks for sophisticated web scraping. First, it is not very flexible. We cannot use
it to connect with a server via HTTPS, for example, or to specify additional headers. Second,
it is difficult to adhere to our standards of friendly web scraping with download.file(),
as it lacks basic identification facilities. However, if we just want to download single files,
download.file() works perfectly fine. For more complex tasks, we can apply the func-
tionality of the RCurl and the httr package.

5.4.1 The libcurl library

Much of what we need to do with R on the web is dramatically facilitated by libcurl (Stenberg
2013). libcurl is an external library programmed in C. Development began in 1996 by Daniel
Stenberg and the cURL project and has since been under continuous development. The
purpose of libcurl is to provide an easy interface to various Internet protocols for programs
on many platforms. Over time, the list of features has grown and now comprises a multitude
of possible actions and options to configure, among others, HTTP communication. We can
think of it as a tool that knows how to

� specify HTTP headers;

� interpret URL encoding;

� process incoming streams of data from web servers;

� establish SSL connections;

� connect with proxies;

� handle authentication;

and much more. In contrast, R’s url() and download.file() are precious little help
when it comes to complex tasks like filling forms, authentication, or establishing a stateful
conversation. Therefore, libcurl has been tapped to enable users to work with the libcurl
library in their ordinary programming environment. In his manifest of RCurl and libcurl’s
philosophy, Temple Lang points out the benefits of libcurl: Being the most widely used
file transfer library, libcurl is extraordinarily well tested and flexible (Temple Lang 2012a).
Further, being programmed in C makes it fast. To get a first impression about the flexibility of
libcurl, you might want to start by taking a look at the available options of libcurl’s interface at
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html. Alternatively, you can type the following
into R to get the comprehensive list of libcurl’s “easy” interface options that can be specified
with RCurl:

R> names(getCurlOptionsConstants())

Currently, there are 174 available options. Among them are some that we have already
relied on above, like useragent or proxy. We sometimes speak of curl options instead of

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html
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libcurl options for reasons of convenience. curl is a command line tool also developed by the
cURL software project. With R we draw on the libcurl library.18

5.4.2 Basic request methods

5.4.2.1 The GET method

In order to perform a basic GET request to retrieve a resource from a web server, theHigh-level
functions RCurl package provides some high-level functions—getURL(), getBinaryURL(), and

getURLContent(). The basic function is getURL(); getBinaryURL() is convenient when
the expected content is binary, and getURLContent() tries to identify the type of content
in advance by inspecting the Content-Type field in the response header and proceeding
adequately. While this seems preferable, the configuration of getURLContent() is some-
times more sophisticated, so we continue to use getURL() by default except when we expect
binary content.

The function automatically identifies the host, port, and requested resource. If the call
succeeds, that is, if the server gives a 2XX response along with the body, the function
returns the content of the response. Note that if everything works fine, all of the negotia-
tion between R/libcurl and the server is hidden from us. We just have to pass the desired
URL to the high-level function. For example, if we try to fetch helloworld.html from
www.r-datacollection.com/materials/http, we type

R> getURL("http://www.r-datacollection.com/materials/http/helloworld.html")
[1] "<html>\n<head><title>Hello World</title></head>\n<body><h3>Hello World
</h3>\n</body>\n</html>"

The body is returned as character data. For binary content, we use getBinaryURL()
and get back raw content. For example, if we request the PNG image file sky.png from
www.r-datacollection.com/materials/http, we write

R> pngfile <- getBinaryURL("http://www.r-datacollection.com/materials/http/
sky.png")

It depends on the format how we can actually process it; in our case we use the
writeBin() function to locally store the file:

R> writeBin(pngfile, "sky.png")

Sometimes content is not embedded in a static HTML page but returned after we sub-GET forms

mit an HTML form. The little example at http://www.r-datacollection.com/materials/http/
GETexample.html lets you specify a name and age as input fields. The HTML source code
looks as follows:

1 <!DOCTYPE HTML>
2 <html>
3 <head>
4 <title>HTTP GET Example</title></head> <body>
5 <h3>HTTP GET Example</h3>

18See also http://daniel.haxx.se/docs/curl-vs-libcurl.html for the differences between cURL, curl, and libcurl.

www.r-datacollection.com/materials/http
www.r-datacollection.com/materials/http
http://www.r{{-}}datacollection.com/materials/http/helloworld.html
http://www.r-datacollection.com/materials/http/helloworld.html
www.r-datacollection.com/materials/http
www.r-datacollection.com/materials/http
http://daniel.haxx.se/docs/curl-vs-libcurl.html
http://daniel.haxx.se/docs/curl-vs-libcurl.html
http://www.r-datacollection.com/materials/http/helloworld.html
http://www.r-datacollection.com/materials/http/sky.png
http://www.r-datacollection.com/materials/http/sky.png
http://www.r-datacollection.com/materials/http/
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6 <form action="GETexample.php" method="get">
7 Name: <input type="text" name="name" value="Anny Omous"><br>
8 Age: <input type="number" name="age" value="23"><br><br>
9 <input type="submit" value="Send Form and Evaluate"><br><br>

10 <input type="submit" value="Send Form and Return Request" name="return">
11 </form>
12 </body>
13 </html>

The <form> element indicates that data put into the form is sent to a file
called GETexample.php.19 After having received the data from the GET request, the
PHP script evaluates the input and returns “Hello <name>! You are <age> years
old.” In the browser, we see an URL of form http://www.rdatacollection.com/materials/
http/GETexample.php?name=<name>&age=<age>, which indicates that a PHP script has
generated the output.

How can we process this and similar requests from within R? There are several ways to
specify the arguments of an HTML form. The first is to construct the URL manually using
paste() and to pass it to the getURL() function:

R> url <- "http://www.r-datacollection.com/materials/http/GETexample.php"
R> namepar <- "Eddie"
R> agepar <- "32"
R> url_get <- str_c(url, "?", "name=", namepar, "&", "age=", agepar)

R> cat(getURL(url_get))
Hello Eddie!
You are 32 years old.

An easier way than using getURL() and constructing the GET form request manually is
to use getForm(), which allows specifying the parameters as separate values in the function.
This is our preferred procedure as it simplifies modifying the call and does not require manual
URL encoding (see Section 5.1.2). In order to get the same result as above, we write

R> url <- "http://www.r-datacollection.com/materials/http/GETexample.php"
R> cat(getForm(url, name = "Eddie", age = 32))
Hello Eddie!
You are 32 years old.

5.4.2.2 The POST method

When using HTML forms we often have to use the POST method instead of GET. In POST forms

general, POST allows more sophisticated requests, as the request parameters do not have do
be inserted into the URL, which may be limited in length. The POST method implies that
parameters and their values are sent in the request body, not in the URL itself. We replicate
the example from above, except that now a POST request is required. The form is located at

19PHP, Hypertext Preprocessor or previously Personal Home Page Tools is a scripting language which is
frequently implemented on the server side to create dynamic webpages. The ending .php indicates that the content
is generated by a PHP script.

http://www.r{{-}}datacollection.com/materials/http/GETexample.php
http://www.r-datacollection.com/materials/http/GETexample.php
http://www.r{{-}}datacollection.com/materials/http/GETexample.php
http://www.r-datacollection.com/materials/http/GETexample.php
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http://www.r-datacollection.com/materials/http/POSTexample.html. The HTML source code
reads as follows:

1 <!DOCTYPE HTML>
2 <html>
3 <head>
4 <title>HTTP POST Example</title></head>
5 <body>
6 <h3>HTTP POST Example</h3>
7 <form action="POSTexample.php" method="post">
8 Name: <input type="text" name="name" value="Anny Omous"><br>
9 Age: <input type="number" name="age" value="23"><br><br>

10 <input type="submit" value="Send Form and Evaluate" name="send"><br><br>
11 <input type="submit" value="Send Form and Return Request" name="return">
12 </form>
13 </body>
14 </html>

We find that the <form> element has remained almost identical, except for the required
method, which is now POST. When we submit the POST form in the browser we see that
the URL changes to ../POSTexample.php and no query parameters have been added as in the
GET query. In order to replicate the POST query with R, we do not have to construct the
request manually but can use the postForm() function:

R> url <- "http://www.r-datacollection.com/materials/http/POSTexample.php"
R> cat(postForm(url, name = "Eddie", age = 32, style = "post"))
Hello Eddie!
You are 32 years old.

postForm() automatically constructs the body and fills it with the pre-specified parame-
ter pairs. Unfortunately, there are several ways to format these pairs, and we sometimes have
to explicitly specify the one that is accepted in advance using the style argument (see Nolan
and Temple Lang 2014, p. 270–272 and http://www.w3.org/TR/html401/interact/forms.html
for details on the form content types). For the application/x-www-form-urlencoded
form content type, we have to specify style = "post" and for the multipart/form-
data form content type, style = "httppost". This formats the parameter pairs in the
body correctly and adds the request header "Content-Type" = "application/x-
www-form-urlencoded" or "Content-Type" = "multipart/form-data". To find
the adequate POST format, we can look for an attribute named enctype in the <form>
element. If it is specified as enctype='application/x-www-form-urlencoded', we
use style = "post". If it is missing (as above), leaving out the style parameter should
also work.

5.4.2.3 Other methods

RCurl offers functions to deal with other HTTP methods as well. We can change meth-
ods in calls to getURL(), getBinaryURL(), getURLContent() by making use of the
customrequest option, for example,

http://www.r{{-}}datacollection.com/materials/http/POSTexample.php
http://www.r-datacollection.com/materials/http/POSTexample.php
http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/interact/forms.html
http://www.r-datacollection.com/materials/http/POSTexample.html
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R> url <- "r-datacollection.com/materials/http/helloworld.html"
R> res <- getURL(url = url, customrequest = "HEAD", header = TRUE)
R> cat(str_split(res, "\r")[[1]])
HTTP/1.1 200 OK
Date: Wed, 26 Mar 2014 00:20:07 GMT
Server: Apache
Vary: Accept-Encoding
Content-Type: text/html

As we hardly encounter situations where we need these methods, we refrain from going
into more detail.

5.4.3 A low-level function of RCurl

RCurl builds on the powerful libcurl library, making it a mighty weapon in the hands of
the initiated and an unmanageable beast in the hands of others. The low-level function
curlPerform() is the workhorse of the package. The function gathers options specified
in R on how to perform web requests—which protocol or methods to use, which headers to
set—and patches them through to libcurl to execute the request. Everything in this function
has to be specified explicitly so later on we will come back to more high-level functions.
Nevertheless, it is useful to demonstrate how the high-level functions work under the hood.

We start with a call to curlPerform() to request an HTML document:

R> url <- "www.r-datacollection.com/materials/http/helloworld.html"
R> (pres <- curlPerform(url = url))
OK
0

Instead of getting the content of the URL we only get the information that everything seems
to have worked as expected by the function. This is because we have to specify everything
explicitly when using curlPerform(). The function did retrieve the document but did not
know what to do with the content. We need to define a handler for the content. Let us create
one ourselves. First, we create an object pres to store the document and a function that takes
the content as argument and writes it into pres. As the list of options can get extensive we
save them in a separate object performOptions and pass it to curlPerform():

R> pres <- NULL
R> performOptions <- curlOptions(url = url,

writefunc = function(con) pres <<- con )
R> curlPerform(.opts = performOptions)
OK
0

R> pres
[1] "<html>\n<head><title>Hello World</title></head>\n<body><h3>Hello
World</h3>\n</body>\n</html>"

That looks more like what we would have expected. In addition to the content handler, there
are other handlers that can be supplied to curlPerform(): a debug handler via debugfunc,
and a HTTP header handler via headerfunc. There are sophisticated functions in RCurl for
each of these types that spare us the need to specify our own handler functions. For content

www.r{{-}}datacollection.com/materials/http/helloworld.html
www.r-datacollection.com/materials/http/helloworld.html
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and headers, basicTextGatherer() turns an object into a list of functions that handles
updates, resets, and value retrieval. In the following example we make use of all three. Note
that in order for debugfunc to work we need to set the verbose option to TRUE:

R> content <- basicTextGatherer()
R> header <- basicTextGatherer()
R> debug <- debugGatherer()
R> performOptions <- curlOptions(url = url,

writefunc = content$update,
headerfunc = header$update,
debugfunc = debug$update,
verbose = T)

R> curlPerform(.opts=performOptions)
OK
0

Using the value() function of content we can extract the content that was sent from the
server.

R> str_sub(content$value(), 1, 100)
[1] "<html>\n<head><title>Hello World</title></head>\n<body><h3>Hello
World</h3>\n</body>\n</html>"

header$value() contains the headers sent back from the server:

R> header$value()
[1] "HTTP/1.1 200 OK\r\nDate: Wed, 26 Mar 2014 00:20:10 GMT\r\nServer:
Apache\r\nVary: Accept-Encoding\r\nContent-Length: 89\r\nContent-Type:
text/html\r\n\r\n"

debug$value() stores various pieces of information on the HTTP request. See Sec-
tion 5.4.6 for more information on this topic:

R> names(debug$value())
[1] "text" "headerIn" "headerOut" "dataIn" "dataOut"
[6] "sslDataIn" "sslDataOut"
R> debug$value()["headerOut"]

headerOut
"GET /materials/http/helloworld.html HTTP/1.1\r\nHost: www.r-datacollection.
com\r\nAccept: */*\r\n\r\n"

5.4.4 Maintaining connections across multiple requests

It is a common scenario to make multiple requests to a server, especially if we are interested
in accessing a set of resources like multiple HTML pages. The default setting in HTTP/1.0 is
to establish a new connection with each request, which is slow and inefficient. Connections
in HTTP/1.1 are persistent by default, meaning that we can use the same connection for
multiple requests. RCurl provides the functionality to reuse established connections, which
we can exploit to create faster scrapers.
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Reusing connections works with the so-called “curl handles.” They serve as containers Curl handles

for the connection itself and additional features/options. We establish a handle as follows:

R> handle <- getCurlHandle()

The handle in the handle object is of classCURLHandle and currently an empty container.
We can add useful curl options from the list listCurlOptions(), for example:

R> handle <- getCurlHandle(useragent = str_c(R.version$platform,
R> R.version$version.string,
R> sep=", "),
R> httpheader = c(from = "ed@datacollection.com"),
R> followlocation = TRUE,
R> cookiefile = "")

In the example, we specify a User-Agent header field that contains the current R version
and a From header field containing an email address, set the followlocation argument to
TRUE, and activate cookie management (see Section 5.4.5). The curl handle can now be used
for multiple requests using the curl argument. For instance, if we have a vector of URLs in
the object url, we can retrieve them with getURL() fed with the settings in the curl handle
from above.

R> lapply(urls, getURL, curl = handle)

Note that the curl handle container is not fixed across multiple requests, but can Cloning
handlesbe modified. As soon as we specify new options in a request, these are added—or old

ones overridden—in the curl handle, for example, with getURL(urls, curl = handle,
httpheader = c(from = "max@datacollection.com")). To retain the status of the
handle but use a modified handle for another request, we can duplicate it and use the “cloned”
version with dupCurlHandle():

R> handle2 <- dupCurlHandle(curlhandle,
R> httpheader = c(from = "ed@datacollection.com"))

Cloning handles can be especially useful if we want to reuse the settings specified in a
handle in requests to different servers. Not all settings may be useful for every request (e.g.,
protocol settings or referrer information), and some of the information should probably be
communicated only to one specific server, like authentication details.

When should we use curl handles? First, they are generally convenient for specifying and
using curl options across an entire session with RCurl, simplifying our code and making it
more reliable. Second, fetching a bunch of resources from the same server is faster when we
reuse the same connection.

5.4.5 Options

We have seen that we can use curl handles to specify options in RCurl function calls. However,
there are also other means. Generally, RCurl options can be divided into those that define the
behavior of the underlying libcurl library and those that define how information is handled
in R. The list of possible options is vast, so we selected the ones we frequently use and listed
them in Table 5.3. Some of these options were already introduced above, the others will be
explained below. Let us begin by showing the various ways to declare options.

mailto:ed@datacollection.com
mailto:max@datacollection.com
mailto:ed@datacollection.com
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We can declare options for single calls to the high-level functions (e.g., getURL, getURL-Options as
arguments Content, and getBinaryURL). In this case the options will only affect that single function

call. In the following example we add header = TRUE in order to not only retrieve the
content but also the response header:20

R> url <- "www.r-datacollection.com/materials/http/helloworld.html"
R> res <- getURL(url = url, header = TRUE)
R> cat(str_split(res, "\r")[[1]])
HTTP/1.1 200 OK
Date: Wed, 26 Mar 2014 00:20:11 GMT
Server: Apache
Vary: Accept-Encoding
Content-Length: 89
Content-Type: text/html

<html>
<head><title>Hello World</title></head>
<body><h3>Hello World</h3>
</body>
</html>

Another, more persistent way of specifying options is to bind them to a curl handle asOptions in
handles described in the previous section. Every function using this handle via the curl option will

use the same options. If a function uses the handle and redefines some options or adds others,
these changes will stick to the handle. In the following example we create a new handle and
specify that the HTTP method HEAD should be used for the request:

R> handle <- getCurlHandle(customrequest = "HEAD")
R> res <- getURL(url = url, curl = handle)
R> cat(str_split(res, "\r")[[1]])

The first function call using the handle results in an empty vector because HEAD provides
no response body and the header option was not specified. In the second call we add the
header argument to retrieve header information:

R> res <- getURL(url = url, curl = handle, header = TRUE)
R> cat(str_split(res, "\r")[[1]])
HTTP/1.1 200 OK
Date: Wed, 26 Mar 2014 00:20:14 GMT
Server: Apache
Vary: Accept-Encoding
Content-Type: text/html

The added header specification has become part of the handle. When we reuse it, we do
not need to specify header = TRUE anymore:

R> res <- getURL(url = url, curl = handle)
R> cat(str_split(res, "\r")[[1]])

20Note that unfortunately not all options work the same way for each of the high-level functions. The header
argument, for example, does not expect Boolean input in getURLContent(). We will point to exceptions when we
come across them.

www.r{{-}}datacollection.com/materials/http/helloworld.html
www.r-datacollection.com/materials/http/helloworld.html
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HTTP/1.1 200 OK
Date: Wed, 26 Mar 2014 00:20:16 GMT
Server: Apache
Vary: Accept-Encoding
Content-Type: text/html

With dupCurlHandle() we can also copy the options set in one handle to another
handle:

R> handle2 <- dupCurlHandle(handle)
R> res <- getURL(url = url, curl = handle2)

Two more global approaches exist. First, we can define a list of options, save it in an object, Global options

and pass it to .opts when initializing a handle or calling a function. The curlOptions()
function helps to expand and match option names:

R> curl_options <- curlOptions(header = TRUE, customrequest = "HEAD")
R> res <- getURL(url = url, .opts = curl_options)

To specify further curl options when using getForm() and postForm(), we have to use
the .opts argument. Otherwise the function cannot distinguish between form parameters and
curl options. Further, instead of specifying the parameters of POST directly after the URL,
they can also be processed in a list passed to the .params option:

R> cat(postForm(url, .params = c(name = "Eddie", age = "32"),
style = "post",
.opts = list(useragent = "Eddie's R scraper",

referer = "www.r-datacollection.com")))
<html>
<head><title>Hello World</title></head>
<body><h3>Hello World</h3>
</body>
</html>

Second, we can even use R’s global option system to specify standard values that will be
part of each curl handle or function call unless specified otherwise:

R> options(RCurlOptions = list(header = TRUE, customrequest = "HEAD"))
R> res <- getURL(url = url)
R> options(RCurlOptions = list())

Now that we know how to set options, we should inspect two options a little closer because
they can control HTTP methods and HTTP headers: customrequest and httpheader.
The customrequest option was already used throughout the examples above and tells
libcurl to use whatever method specified—for example, POST, HEAD, or PUT instead of
the default GET. For instance, we can transform getURL() into a function that posts form
information:

R> res <- getURL("www.r-datacollection.com/materials/http/POSTexample.php",
customrequest = "POST",
postfields = "name=Eddie&age=32")

R> cat(str_split(res, "\r")[[1]])
Hello Eddie!
You are 32 years old.

www.r{{-}}datacollection.com
www.r-datacollection.com
www.r{{-}}datacollection.com/materials/http/POSTexample.php
www.r-datacollection.com/materials/http/POSTexample.php
http://www.r-datacollection.com/materials/http/POSTexample.php
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Individual HTTP headers can be added using the httpheaders option. We add themAdding request
header fields as a list where names of the list items identify the header name and their values correspond

to header values. Let us specify some helpful standard headers and pass them to a call to
getURL(). To check which headers are sent along the HTTP request, we send our request
to a page that simply returns the HTTP request that was received. First we send a request
without any further specifications:

R> url <- "r-datacollection.com/materials/http/ReturnHTTP.php"
R> res <- getURL(url = url)
R> cat(str_split(res, "\r")[[1]])
GET /materials/http/ReturnHTTP.php HTTP/1.1
Authorization:
Host: r-datacollection.com
Accept: */*
Connection: close

The results from above show that only few headers are sent along our HTTP request. Now
we want to add a from and user-agent header specification to the list:21

R> standardHeader <- list(
from = "eddie@r-datacollection.com",
'user-agent' = str_c(R.version$platform,

R.version$version.string,
sep=", "))

R> res <- getURL(url = url, httpheader = standardHeader)
R> cat(str_split(res, "\r")[[1]])
GET /materials/http/ReturnHTTP.php HTTP/1.1
Authorization:
Host: r-datacollection.com
Accept: */*
From: eddie@r-datacollection.com
User-Agent: x86_64-w64-mingw32, R version 3.0.2 (2013-09-25)
Connection: close

To conclude this section we provide an example of a list of default options. We recommendA set of default
options setting these options via options() directly at the start of a session after loading RCurl.

This way it is transparent which options are set as default values for all functions and
handles with the convenience of having to type the options only once. First, we include
the from and user-agent options from above to always identify ourselves. Next we set
followlocation to TRUE to tell libcurl to automatically follow redirections—maxredirs
restricts these redirections to avoid infinite loops. Next, we specify a default connection
timeout as well as a completion timeout (connecttimeout and timeout). The former
tells libcurl to stop trying to connect to a server after 10 seconds while the latter timeout is
for the maximum time we give libcurl to complete a request altogether. The standard libcurl
connection timeout is 300 seconds. Setting the cookiefile option enables libcurl to receive,

21For a list of other conventional header fields, see Section 5.1.6 or the comprehensive list at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
mailto:eddie@r-datacollection.com
mailto:eddie@r-datacollection.com
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save, and send back cookies. The last option specifies the location for files that contain digital
signatures for SSL certificate verification:

R> defaultOptions <- curlOptions(
httpheader = list(
from = "Eddie@r-datacollection.com",
'user-agent' = str_c(R.version$platform,

R.version$version.string,
sep=", ")),

followlocation = TRUE,
maxredirs = 10,
connecttimeout = 10,
timeout = 300,
cookiefile = "RCurlCookies.txt",
cainfo = system.file("CurlSSL","cacert.pem", package = "RCurl"))

R> options(RCurlOptions = defaultOptions)

The list of default options can be emptied using

R> options(RCurlOptions = list())

5.4.6 Debugging

What happens in case of an error in an HTTP call? We have documented in Section 5.1.5 that
many things can go wrong and the server communicates the presumed type of error. In the
simplest of cases, we might have gotten the URL wrong:

R> getURL("http://www.stata-datacollection.com")
Error: Could not resolve host: www.stata-datacollection.com; Host
not found

Some errors might be less obvious but still prevent us from receiving content from a
server. In this section we will show some tools that help identify reasons why things do not
work as expected. We know already that we can ask RCurl functions to capture the response
headers in addition to the content by setting the header option to TRUE. Often, however, we
want to have more information, for example the information that arrives at the server after
we put a request to it.

A generally useful tool for HTTP debugging is the service at http://httpbin.org, which
provides a set of endpoints for specific HTTP requests. To check whether a GET request is
specified correctly and what information arrives at the server, we write

R> url <- "httpbin.org/get"
R> res <- getURL(url = url)
R> cat(res)
{

"args": {},
"origin": "134.34.221.149",
"headers": {
"Accept": "*/*",
"X-Request-Id": "348467d6-6641-4863-abb3-a79a602f17e5",

http://www.stata{{-}}datacollection.com
http://www.stata-datacollection.com
http://httpbin.org
http://httpbin.org
mailto:Eddie@r-datacollection.com
http://www.stata-datacollection.com
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"Host": "httpbin.org",
"Connection": "close"

},
"url": "http://httpbin.org/get"

}

Moreover, RCurl provides its own way of checking HTTP calls by specifying a debugRCurl
debugging
functions

gatherer within the function call. The procedure is powerful and does not rely on exter-
nal resources. It works as follows. First, we create an object that contains three functions
(update(), value(), reset()) by calling the debugGatherer():

R> debugInfo <- debugGatherer()
R> names(debugInfo)
[1] "update" "value" "reset"
R> class(debugInfo[[1]])
[1] "function"

In a second step, we request a document using the ordinary getURL() function and
use the debugfunction option. With this option we specify a function that gathers debug
information as is supplied by libcurl—the update() function we stored in debugInfo. To
make the necessary debugging information available, we have to set the verbose option
to TRUE:

R> url <- "r-datacollection.com/materials/http/helloworld.html"
R> res <- getURL(url = url, debugfunction = debugInfo$update,
verbose = T)

In a third and last step, we access the debugging information gathered during the execution
of getURL() by calling the value() function stored in the debugInfo object. The value
function provides seven items:

R> names(debugInfo$value())
[1] "text" "headerIn" "headerOut" "dataIn" "dataOut"
[6] "sslDataIn" "sslDataOut"

The first item of the resulting vector—text—captures information libcurl provides about
the procedure:

R> cat(debugInfo$value()["text"])
About to connect() to r-datacollection.com port 80 (#0)

Trying 173.236.186.125... connected
Connected to r-datacollection.com (173.236.186.125) port 80 (#0)
Connection #0 to host r-datacollection.com left intact
Closing connection #0

headerIn stores the HTTP response header:

R> cat(str_split(debugInfo$value()["headerIn"], "\r")[[1]])
HTTP/1.1 200 OK
Date: Wed, 26 Mar 2014 00:20:25 GMT
Server: Apache

http://httpbin.org/get
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Vary: Accept-Encoding
Content-Length: 89
Content-Type: text/html

The HTTP request header is stored in headerOut:

R> cat(str_split(debugInfo$value()["headerOut"], "\r")[[1]])
GET /materials/http/helloworld.html HTTP/1.1
Host: r-datacollection.com
Accept: */*

The body of the response is contained in dataIn:

R> cat(str_split(debugInfo$value()["dataIn"], "\r")[[1]])
<html>
<head><title>Hello World</title></head>
<body><h3>Hello World</h3>
</body>
</html>

The body of the sent data—for example, if we use the POST method—is found in
dataOut:

R> cat(str_split(debugInfo$value()["dataOut"], "\r")[[1]])

In this example it is empty as we used the GET method, which, by definition, does not
send any data along with the request body.

The remaining two items sslDataIn and sslDataOut are analogous to dataIn and
dataOut but for encrypted connections. They are also empty in our request:

R> cat(str_split(debugInfo$value()["sslDataIn"], "\r")[[1]])
R> cat(str_split(debugInfo$value()["sslDataOut"], "\r")[[1]])

Another source of valuable information might be the getCurlInfo() function, which
provides additional information on the present state of a curl handle. To get the information
we first specify a handle, use it in a function call, and then apply getCurlInfo() to the
handle:

R> handle <- getCurlHandle()
R> url <- "r-datacollection.com/materials/http/helloworld.html"
R> res <- getURL(url = url, curl = handle)
R> handleInfo <- getCurlInfo(handle)

The information provided is manifold:

R> names(handleInfo)
[1] "effective.url" "response.code"
[3] "total.time" "namelookup.time"
[5] "connect.time" "pretransfer.time"
[7] "size.upload" "size.download"
[9] "speed.download" "speed.upload"

[11] "header.size" "request.size"
[13] "ssl.verifyresult" "filetime"
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[15] "content.length.download" "content.length.upload"
[17] "starttransfer.time" "content.type"
[19] "redirect.time" "redirect.count"
[21] "private" "http.connectcode"
[23] "httpauth.avail" "proxyauth.avail"
[25] "os.errno" "num.connects"
[27] "ssl.engines" "cookielist"
[29] "lastsocket" "ftp.entry.path"
[31] "redirect.url" "primary.ip"
[33] "appconnect.time" "certinfo"
[35] "condition.unmet"

A useful operation might be to consider the total time it took to complete the request
and the time it took to do all the things necessary to start the transfer—that is, resolve the
host name, establish the connection to the host, and send the request—to get an idea where
possible bottlenecks occur:

R> handleInfo[c("total.time", "pretransfer.time")]
$total.time
[1] 0.219

$pretransfer.time
[1] 0.11

If the time before the actual download takes up a substantial part of the overall time it
takes to complete a request, we should—for multiple requests to the same server—ensure
that connections are reused. Let us gather the ratio of pre-transfer time to total time ten times
in succession with and without reusing the same handle:

R> preTransTimeNoReuse <- rep(NA, 10)
R> preTransTimeReuse <- rep(NA, 10)
R> url <- "r-datacollection.com/materials/http/helloworld.html"

R> # no reuse
R> for (i in 1:10) {

handle <- getCurlHandle()
res <- getURL(url = url, curl = handle)
handleInfo <- getCurlInfo(handle)
preTransTimeNoReuse[i] <- handleInfo$pretransfer.time

}

R> # reuse
R> handle <- getCurlHandle()
R> for (i in 1:10) {

res <- getURL(url = url, curl = handle)
handleInfo <- getCurlInfo(handle)
preTransTimeReuse[i] <- handleInfo$pretransfer.time

}

The gathered times show quite nicely how connection times can accumulate when estab-
lishing connections for each request and how this can be prevented by reusing curl handles
that establish a connection once and reuse this connection to send multiple requests:
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R> preTransTimeNoReuse
[1] 0.110 0.094 0.109 0.109 0.094 0.109 0.110 0.109 0.125 0.110

R> preTransTimeReuse
[1] 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5.4.7 Error handling

After discussing tools for discovering why things might not work, this section presents an
RCurl specific way to handle errors. We can experience various types of errors—those that
we generated ourselves (e.g., by specifying a wrong host name or asking for a nonexisting
resource), those that are due to a broken connection, and those generated on the server side.
The set of functions provided by RCurl to retrieve content know a lot of different error types.
We get a list by calling the getCurlErrorClassNames() function. We selected a couple
of the most common ones:

R> getCurlErrorClassNames()[c(2:4, 7, 8, 10, 23, 29, 35, 64)]
[1] "UNSUPPORTED_PROTOCOL" "FAILED_INIT" "URL_MALFORMAT"
[4] "COULDNT_RESOLVE_HOST" "COULDNT_CONNECT" "REMOTE_ACCESS_DENIED"
[7] "HTTP_RETURNED_ERROR" "OPERATION_TIMEDOUT" "HTTP_POST_ERROR"

[10] "FILESIZE_EXCEEDED"

Using tryCatch()22 we can specify individual actions to react to different types of
errors. As an example we choose a user-generated error. We have a set of two URLs. We
begin by trying to collect the first one. This operation fails because the host does not exist.
The second URL serves as a replacement in case the first URL produces an error of class
COULDNT_RESOLVE_HOST:

R> url1 <- "wwww.r-datacollection.com/materials/http/helloworld.html"
R> res <- getURL(url1)
Error: Could not resolve host: wwww.r-datacollection.com; Host not
found

The call produces an error and res is not created. This can cause further errors in the
program if we try to process the res object.

Now let us try to react to the error. In the following snippet, the object res stores the
results from a call to tryCatch(). Within the function we first state the default—retrieving
the URL. The next two statements are of the form errorType = errorFunction. For each error
tryCatch checks whether the class of the error matches one of the error names provided—in
our case COULDNT_RESOLVE_HOST and error—and executes the matching function. In
the example the default statement produces a resolve host error and the second URL will be
retrieved. Any other error would have produced an NA that would have been assigned to res
and the default error message would have been printed.

R> url2 <- "www.r-datacollection.com/materials/http/helloworld.html"
R> res <- tryCatch(

getURL(url = url1),
COULDNT_RESOLVE_HOST = function(error) {

getURL(url = url2)
},

22See Section 11.3.2 for a more general elaboration of this function.

www.r{{-}}datacollection.com/materials/http/helloworld.html
www.r-datacollection.com/materials/http/helloworld.html
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error = function(error) {
print(error$message)
NA

}
)
R> cat(str_split(res,"\r")[[1]])
<html>
<head><title>Hello World</title></head>
<body><h3>Hello World</h3>
</body>
</html>

5.4.8 RCurl or httr—what to use?

RCurl is a quite powerful package that helps to make the most sophisticated requests and to
receive and process the incoming response. At times, it is a bit bulky, however. Fortunately,
there is a package that offers a more slender interface: the httr package (Wickham 2012). It
builds upon RCurl by wrapping the functions we have discussed so far.

In Table 5.4 we contrast functions of both packages to perform selected HTTP and
authentication tasks. Some of the functions have quite a different syntax and do not always
provide the same functionality. Although we do not want to go into more details of the httr
package at this point, there is no reason to be dogmatic and work with only one of the two
packages. In fact, httr offers several features that considerably ease some data collection tasks,
for example, authentication via OAuth (see Section 9.1.11).

Summary

A basic knowledge of HTTP is fundamental to specify advanced requests to web servers
with R. In this chapter, we gave a brief overview of the basic concepts of HTTP and some
more intricate features that prove useful in web scraping. We also introduced RCurl, which
provides excellent facilities to use R as an HTTP client and for other protocols.

There may be R users who have performed some rudimentary web scarping tasks with
download.file() and have thus largely disregarded most of the features of RCurl and
libcurl to specify advanced HTTP requests. We have argued that the RCurl toolbox offers a
number of handy features that should pay off even for basic scraping tasks. And after all, even
though the package is not too easily accessible for users who are not yet experienced with
HTTP, the fundamentals can be learned and implemented quickly. For those who are deterred
by the vast range of functions in the manual, the httr package offers convenient wrappers
for the most useful RCurl features and a couple more handy functions. In Section 9.1 we
will come back to some scenarios of HTTP communication with R. We will show, among
other things, how to efficiently deal with forms, use HTTP authentication, and collect data
via HTTP Secure.

Further reading

Gourley and Totty (2002) offer an encyclopedic introduction to HTTP. The shorter—and a
little less useful—version is the “HTTP Pocket Reference” by Wong (2000). A very thorough
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Table 5.4 Selected HTTP and authentication tasks and how to realize them with RCurl or
httr

Task RCurl function/option httr function

HTTP methods (verbs)

Specify GET request getURL(),
getURLContent(),
getForm()

GET()

Specify POST request postForm() POST()
Specify HEAD request httpHEAD() HEAD()
Specify PUT request httpPUT() PUT()

Content extraction

Extract raw or character content
from response

content <-
getURLContent()

content()

Curl handle specification

Specify curl handle getCurlHandle(), curl handle()

Request configuration

Specify curl options .opts config()
Specify glocal curl options options(RCUrlOptions =

list()), .opts
set_config()

Execute code with curl options with_config()
Add headers to request httpheaders add_headers()
Authenticate via one type of

HTTP authentication
userpwd authenticate()

Specify proxy connection proxy use_proxy()
Specify User-Agent header field useragent user_agent()
Specify cookies cookiefile set_cookies()

Error and exception handling

Display HTTP status code getCurlInfo(handle)
$response.code

http_status()

Display R error if request fails stop_for_status()
Display R warning if request fails warn_for_status()
Return TRUE if returned status

code is exactly 200
url_ok()

Return TRUE if returned status
code is in the 200s

url.exists() url_success()

Set maximum request time timeout timeout()
Provide more information about

client–server communication
verbose verbose()

(continued)
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Table 5.4 (Continued)

Task RCurl function/option httr function

URL modification

Parse URL into constituent
components

parse_url()

Replace components in parsed
URL

modify_url()

Build URL string from parsed
URL

build_url()

OAuth registration

Retrieve OAuth 1.0 access token oauth1.0_token()
Retrieve OAuth 2.0 access token oauth2.0_token()
Register OAuth application oauth_app()
Describe Oauth endpoint oauth_endpoint()
Sign Oauth 1.0 request sign_oauth1.0()
Sign Oauth 2.0 request sign_oauth2.0()

Functions are indicated as function(), arguments within RCurl high-level functions, as argument.

treatment of the subject can be found in “DNS and BIND” (Liu and Albitz 2006), although
we doubt that this will add much to your practical web scraping skills. While libcurl is
generally well documented on the Web at http://curl.haxx.se/libcurl/, RCurl and httr are less
so. Fortunately, the recently published “XML and Web Technologies for Data Sciences with
R” (Nolan and Temple Lang 2014) provides an extensive overview of RCurl’s functionality.

Problems

1. What are the common methods defined in HTTP/1.1? Describe what they are used for.
Which are most important for web scraping?

2. Describe the basic makeup of an HTTP message!

3. What are the five basic status types a server can respond with?

4. What headers can be used for identification purposes?

5. Why can cookies be necessary or even useful when we scrape information from
websites?

6. Browse to http://curl.haxx.se/libcurl/c/curl_easy_setopt.html and read about the
autoreferer, followlocation, and customrequest options. Are these options
part of the RCurl package?

7. Create a handle called problemsH that defines options to identify yourself and provide
information about your software.

http://curl.haxx.se/libcurl/
http://curl.haxx.se/libcurl/
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html
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8. Using the problemsH handle, download http://www.r-datacollection.com/materials/
http/simple.html with…
(a) …getURL() and save it as simple1.html.
(b) …getBinaryURL() and save it as simple2.html.
(c) …getURLContent() and save it as simple3.html.
(d) Add cookie management to the handler and download all verses from http://www

.r-datacollection.com/materials/http/SessionCookie.php

9. Create a debug gatherer object called info and a new handle called problemsD with
the following features:
(a) Cookie management is enabled.
(b) info is used as debugfunction.
(c) You should identify yourself and your software.

10. Using problemsD as handle, replicate the previous problem and save all request headers
(outgoing headers) in hout.txt and response headers (incoming headers) in hin.txt.
Inspect both files with a text editor and answer the following questions.
(a) How many times did the server ask for a specific cookie in subsequent requests?
(b) Which parameters did the server send in the request(s) for sending a specific cookie

in subsequent requests?
(c) How many times was the cookie sent to the server?
(d) Which parameters/values where sent to the server as cookies?
(e) Learn about the details of the last request executed by problemsD, specifically:

response code, time it took to complete the request, download size, download speed,
list of cookies, number of times the request was redirected, and content type of the
response.

11. Declare the following options as default values for all RCurl functions:
(a) Server redirections should be followed.
(b) The maximum number of redirects should be 10.
(c) Identify yourself and your software.
(d) Enable cookie management.
Create a new handle called problemsG. Check whether your specifications
work by downloading http://httpbin.org/cookies/set?myname=Eddie, http://httpbin.org/
redirect/20, and http://httpbin.org/headers using getURL() and problemsG.

12. Write a function called presentHTTP() that prints header and content information to
the screen in a readable format. Use str_split() and cat() to solve the problem.

13. Create a debug gatherer object info or reset the one you created in a previous problem.
Create a new handle called problemsM that uses info’s update function as debug
function parameter.
(a) Use readLines() to read http://www.r-datacollection.com/materials/http/

bunchoffiles.html into a vector called urls.
(b) Use the following functions to download the files and save them to disk: getURL(),

getURLContent(),download.file()—names should be of form: geturl1.html,
geturl2.html,…; geturlcontent1.html, geturlcontent2.html,…; downloadfile1.html,
downloadfile2.html.

(c) Which of the functions accept a vector of urls as argument?

http://www.r-datacollection.com/materials/http/SessionCookie.php
http://www.r-datacollection.com/materials/http/SessionCookie.php
http://httpbin.org/cookies/set?myname$=$Eddie
http://httpbin.org/cookies/set?myname$=$Eddie
http://httpbin.org/headers
http://httpbin.org/headers
http://www.r-datacollection.com/materials/http/bunchoffiles.html
http://www.r-datacollection.com/materials/http/bunchoffiles.html
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14. Use getForm() and postForm() to send five query parameters to http://www.r-
datacollection.com/materials/http/return.php and capture the returned document in
objects getParameters and postParameters.

15. Replicate the following RCurl commands with httr functions:
(a) getURL("www.r-datacollection.com/index.html", useragent =

"R", httpheader = c(From = your@email.address))
(b) getForm("www.r-datacollection.com/materials/http/GETexample

.php", name = "Eddie", age = 32)
(c) postForm("www.r-datacollection.com/materials/http/POSTexample

.php", name = "Eddie", age = 32, style = "post")
(d) getCurlHandle(useragent ="R", httpheader = c(from

= "your@email.address"), followlocation = TRUE,
cookiefile = "")

http://www.r-datacollection.com/materials/http/return.php
http://www.r-datacollection.com/materials/http/return.php
http://www.r-datacollection.com/materials/http/return.php
http://www.r-datacollection.com/materials/http/return.php
www.r{{-}}datacollection.com/index.html
www.r-datacollection.com/index.html
file:www.r-datacollection.com/materials/http/GETexample.php
file:www.r-datacollection.com/materials/http/GETexample.php
file:www.r-datacollection.com/materials/http/POSTexample.php
file:www.r-datacollection.com/materials/http/POSTexample.php
mailto:your@email.address
mailto:your@email.address
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AJAX

At this point in the book you are familiar with HTML’s versatile markup vocabulary for
structuring content (Chapter 2) and HTTP, the primary protocol for requesting information
from web servers (Chapter 5). In combination, these two technologies not only provide the
foundation for virtually all web services, but they also define a reliable infrastructure for
disseminating information throughout the Web.

Despite their popularity, HTML/HTTP impose strict constraints on the way users access
information. If you abstract from the examples we have previously introduced, you find that
the HTML/HTTP infrastructure implies a rather static display of content in a page layout,
which is retrieved through sequential, iterative requests initiated by the user. The inherent
inflexibility of HTML/HTTP is most apparent in its inability to create more dynamic displays
of information, such as we are used to from standard desktop applications. After receiving an
HTML document from the server the visual appearance of the screen will not change since
HTTP provides no mechanism to update a page after it has been downloaded. What impedes
HTML/HTTP from providing content more dynamically is its lack of three critical elements:

1. a mechanism to register user behavior in the browser (and not just on the server);

2. a scripting engine to formulate responses to those events;

3. a more versatile data requesting mechanism for fetching information asynchronously.

Because HTML/HTTP is technically unable to provide any of the above features, a
series of additional web technologies have found their way into the toolkit of modern web
developers over the last 15 years. A prominent role in this transformation is assumed by a
group of technologies that are subsumed under the term AJAX, short for “Asynchronous
JavaScript and XML.” AJAX has become a staple web technology to which we owe much of
the sophistication of modern web applications such as Facebook, Twitter, the Google services,
or any kind of shopping platform.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Although AJAX-enriched websites provide tremendous advantages from a user perspec-
tive, they create difficulties for our efforts to automatically gather web data. This is so because
AJAX-enriched webpages constitute a significant departure from the static HTML/HTTP site
model in which a HTTP-requested webpage is displayed equally for all users and all infor-
mation that is displayed on screen is delivered upfront. This presents a serious obstacle to
analysts who care to collect web data since a simple HTTP GET request (see Section 5.1.4)
may not suffice if information is loaded iteratively only after the site has been requested. We
will see that the key to circumventing this problem is to understand at which point the data
of interest is loaded and apply this knowledge to trace the origin of the data.

The remainder of this chapter introduces AJAX technologies that turn static into dynamic
HTML. We will focus on the conceptual ideas behind AJAX that will inform solutions for data
retrieval. In Section 6.1 we start by introducing JavaScript, the most popular programming
language for web content and show how it turns HTML websites into dynamic documents
via DOM manipulation. In Section 6.2 we discuss the XMLHttpRequest, an Application
Programming Interface (API) for browser–server communication and important data retrieval
mechanism for dynamic web applications. Finally, to solve problems caused by AJAX,
Section 6.3 explicates how browser-implemented Developer Tools can be helpful for gathering
insight into a page’s underlying structure as well as tracing the source of dynamic data requests.

6.1 JavaScript

The JavaScript programming language has a prominent role in the group of AJAX technolo-
gies. Developed by Brendan Eich at Netscape in 1995, JavaScript is a complete, high-level
programming language (Crockford 2008). What sets JavaScript apart from other languages
is its seamless integration with other web technologies (e.g., HTML, CSS, DOM) as well as
its support by all modern browsers, which contain powerful engines to interpret JavaScript
code. Because JavaScript has become such an important part in the architecture of web
applications, the language has been raised to a W3C web standard. Similar to R’s packaging
system, extra functionality in JavaScript is incorporated through the use of libraries. In fact,
most web development tasks are not executed in native JavaScript code anymore, but are car-
ried out using special purpose JavaScript libraries. We follow this practice for the examples
in this chapter and use functionality from jQuery—the self-ascribed “write less, do more”
library—with a particular focus on easing DOM manipulation.

6.1.1 How JavaScript is used

To recognize JavaScript in the wild, it is important to know that there are three methods for
enhancing HTML with JavaScript functionality. A dedicated place for in-line code to appear is
between the HTML <script> tags (see also Section 2.3.10). These tags are typically located
before the <head> section of the document but they may as well be placed at any other
position of the document. Another way is to make reference to an externally stored JavaScript
code file via a path passed to the scr attribute of the <script> element. This method helps
to organize HTML and JavaScript at two separate locations and thus eases maintainability.
Lastly, JavaScript code can appear directly in an attribute of a specific HTML element in so-
called event handlers. Regardless of the method, a JavaScript-enhanced HTML file requires
the browser to not only parse the HTML content and construct the DOM, but also to read the
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JavaScript code and carry out its commands. Let us illustrate this process with JavaScript’s
DOM manipulation functionality.

6.1.2 DOM manipulation

A popular application for JavaScript code is to create some kind of alteration of the information
or appearance of the current browser display. These modifications are called DOM manip-
ulations and they constitute the basic procedures for generating dynamic browser behavior.
The possible alterations allowed in JavaScript are manifold: HTML elements may either be
removed, added or shifted, attributes to any HTML element can be added or changed, or CSS
styles can be modified. To show how such scripts may be employed, consider fortunes1.html
for a lightly JavaScript-enriched webpage.

1 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

2 <html>

4 <script type="text/javascript" src="jquery-1.8.0.min.js"></script>

5 <script type="text/javascript" src="script1.js"></script>

7 <head>
8 <title>Collected R wisdoms</title>

9 </head>

11 <body>

12 <div id="R Inventor" lang="english" date="June/2003">

13 <h1>Robert Gentleman</h1>
14 <p><i>'What we have is nice, but we need something very different'</i></p>

15 <p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>
16 </div>

18 <div lang="english" date="October/2011">
19 <h1>Rolf Turner</h1>

20 <p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering a
request for automatic generation of 'data from a known mean and 95% CI’
</emph></p>

21 <p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">R-
help</a></p>

22 </div>

24 <address><a href="http://www.r-datacollection.com"><i>The book homepage</i></a>
</address>

25 </body>

26 </html>

For the most part, the code is identical to the fortunes example we introduced in Sec-
tion 2.4.1. The only modification of the file concerns the extra code appearing in lines 4 and
5. The HTML <script> element offers a way to integrate HTML with functionality drawn
from other scripting languages. The type of scripting language to be used is set via the type
attribute. Since browsers expect that incorporated code is written in JavaScript by default, we
can leave this attribute unspecified. Here, we include JavaScript using the reference method
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as it helps emphasize the conceptual difference between the two documents and enhances
clarity. In line 4 we make a reference to the jQuery library for which there exists a copy in
the folder of the HTML document. By referencing the file jquery-1.8.0.min.js, jQuery can
be accessed throughout the program. The next line makes a reference to the file script1.js,
which includes the code responsible for the DOM alterations. To view the file’s content, you
can open the file in any text processor:

1 $(document).ready(function() {
2 $("p").hide();
3 $("h1").click(function(){
4 $(this).nextAll().slideToggle(300);
5 });
6 });

Before explaining the script, take the time to download the fortunes1.html file from the
materials section at http://www.r-datacollection.com and open it in a browser to discover
differences to the example file in Section 2.4.1. Opening the file you should see two named
headers and a hyperlink to the book’s homepage (see Figure 6.1, panel (a)). Apparently, some
information that is contained in the HTML code, such as the quotes and their contexts, has
been concealed in the browser display of the webpage. Assuming that JavaScript is enabled
in your browser, a click on one of the headers should initiate a rolling transition and further
content relating to the quote should become visible (see Figure 6.1, panel (b)). Another click
on the header results in the content being hidden again. The dynamic behavior just observed
is the result of the code in script1.js. To get an understanding of how these behaviors are
produced, let us parse this code line by line and discuss what it does.

The first line starts with the $() operator, jQuery’s method for selecting elements in the
DOM. Inside the parentheses we write document to indicate that all elements that are defined

(a) initial state

(b) after a click on ‘Robert Gentleman’

Figure 6.1 Javascript-enriched fortunes1.html (a) Initial state (b) After a click on “Robert
Gentleman”

http://www.r-datacollection.com
http://www.r-datacollection.com
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in the DOM are to be selected. The returned selection of the $() operator is passed to the
ready() method. Essentially, the document ready handler ready() instructs the script to
pause all JavaScript code execution until the entire DOM has been built inside the browser,
meaning that all the HTML elements are in existence. This is necessary for any reasonably
sized HTML file since the browser will take some time to build the DOM. Not instructing the
script to pause until all HTML information is loaded could lead to a situation where the script
acts on elements that do not yet exist in the DOM. The essential part starts in line 2, which
defines the dynamic behaviors. Once again we employ the $() operator but only to select all
the <p> nodes in the document. As you can see in fortunes1.html, these are the elements that
contain more information on the quote and its source. The selection of all paragraph nodes is
passed to the hide() method, which accounts for the behavior that in the initial state of the
page all paragraph elements are hidden. The third line initiates a selection of all <h1> header
nodes in the document, which are used to mark up the names of the quoted. We bind an
event handler to this selection for the “click” JavaScript event. The click() handler allows
recognizing whenever a mouse click on a <h1> element in the browser occurs and to trigger
an action. What we want the action to be is defined in the parentheses from lines 3 to 5. On line
4, we first return the element on which the click has occurred via $(this). The nextAll()
method selects all the nodes following after the node on which the click has occurred (see
Section 4.1 for the DOM relations) and binds the slideToggle() method to this selection,
which defines a rather slow (300 ms) toggle effect for fading the elements in and out again.

On a conceptual level, this example illustrates that the underlying HTML code and the Implications of
JavaScript for
scraping, 1

information displayed in the browser do not necessarily coincide in a JavaScript-enriched
website. This is due to the flexibility of the DOM and JavaScript that allow HTML elements
to be manipulated, for example, by fading them in and out. But what are the implications of this
technology for scraping information from this page? Does DOM manipulation complicate
the scraping process with the tools introduced earlier? To address this question, we parse
fortunes1.html into an R object and display its content:

R> library(XML)
R> (fortunes1 <- htmlParse("fortunes1.html"))
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<script type="text/javascript" src="jquery-1.8.0.min.js"></script><script
type="text/javascript" src="script1.js"></script><title>Collected R wisdoms
</title>
</head>
<body>
<div id="R Inventor" lang="english" date="June/2003">

<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

<div lang="english" date="October/2011">
<h1>Rolf Turner</h1>
<p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering a
request for automatic generation of 'data from a known mean and 95% CI'

</emph></p>
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<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">R-
help</a></p>

</div>

<address><a href="http://www.r-datacollection.com"><i>The book homepage</i></a>
</address>

</body>
</html>

Evidently, all the information is included in the HTML file and can be accessed via
the HTTP request, parsing, and extraction routines we previously presented. As we will see
further below, this is unfortunately not always the case.

6.2 XHR

A limitation of the HTTP protocol is that communication between client and server necessarily
follows a synchronous request–response pattern. Synchronous communication means that the
user’s interaction with the browser is being disabled while a request is received, processed,
and a new page is delivered by the web server.

A more flexible data exchange mechanism is required to enable a continuous user expe-
rience that resembles the behavior of desktop applications. A popular method to allow for
a continuous exchange of information between the browser and the web server is the so-
called XMLHttpRequest (XHR), an interface that is implemented in nearly all modern web
browsers. It allows initiating HTTP or HTTPS requests to a web server in an asynchronous
fashion. XHR’s principal purpose is to allow the browser to fetch additional information in
the background without interfering with the user’s behavior on the page.

To illustrate this process, take a look at the graphical illustration of the XHR-enrichedUser–server
communication

with XHR
communication model in Figure 6.2. As in the traditional HTTP communication process (see
Section 5.1.1), XHR provides a mechanism to exchange data between a client and a server.
A typical communication proceeds as follows.

1. Commonly, but not necessarily, the user of a webpage is also the initiator of the AJAX
request. The initiating event can be any kind of event that is recognizable by the
browser, for example, a click on a button. JavaScript then instantiates an XHR object

XMLHttpRequest
XHR callback function

User Interface

HTTP Server

Data Storage
1

2

34

HTTP response

HTTP request

HTML &
CSS data

JavaScript

Data
exchange

Figure 6.2 The user–server communication process using the XMLHttpRequest. Adapted
from Stepp et al. (2012)
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that serves as the object that makes the request and may also define how the retrieved
data is used via a callback function.

2. The XHR object initiates a request to the server for a specified file. This request may
either be sent through HTTP or HTTPS. Due to JavaScript’s Same Origin Policy,
cross-domain requests are forbidden in native AJAX applications, meaning that the
file to be requested must be in the domain of the current webpage. While the request
is taking place in the background, the user is free to continue interacting with the site.

3. On the server side, the request is received, processed, and the response including data
is sent back to the browser client via the XHR object.

4. Back in the browser client, the data are received and an event is triggered that is caught
by an event handler. If the content of the file needs to be displayed on the page, the file
may be relayed through a previously defined callback event handler. Via this handler
the content can be manipulated to present it in the browser. Once the process handler
has processed the information, it can be fed back into the current DOM and displayed
on the screen.

To see XHR in action, we now discuss two applications.

6.2.1 Loading external HTML/XML documents

The simplest type of data to be fetched from the server via an XHR request is a document
containing HTML code. The task we illustrate here is to gather an HTML code and feed
it back into the current webpage. The proper method to carry out this task in jQuery is its
load() method. The load() method instantiates an XHR object that sends an HTTP GET
request to the server and retrieves the data. Consider the following empty HTML file named
fortunes2.html, which will serve as a placeholder document:

1 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

2 <html>

4 <script type="text/javascript" src="jquery-1.8.0.min.js"></script>

5 <script type="text/javascript" src="script2.js"></script>

7 <head>

8 <title>Collected R wisdoms</title>
9 </head>

11 <body>

13 <address><a href="http://www.r-datacollection.com"><i>The book homepage</i></a>
</address>

14 </body>

15 </html>

The task is to insert substantially interesting information from another HTML document
into fortunes2.html. Key to this task is once again a JavaScript code to which we refer in line 5.

http://www.r-datacollection.com
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1 $(document).ready(function() {
2 $("body").load("quotes/quotes.html", function() {
3 alert("Quotes.html was fetched.");
4 });
5 });

Like the previous script, script2.js starts with the document ready handler ready() to
ensure the DOM is completely loaded before executing the script. In line 2 we initiate a
selection for the <body> node. The <body> node serves as an anchor to which we link
the data returned from the XHR data request. The essential part of the script uses jQuery’s
load() method to fetch information that is accessible in “quotes/quotes.html.” The load()
method creates the XHR object, which is not only responsible for requesting information
from the server but also for feeding it back into the HTML document. The file quotes.html
contains the marked up quotes.

1 <div id="R Inventor" lang="english" date="June/2003">
2 <h1>Robert Gentleman</h1>
3 <p><i>'What we have is nice, but we need something very different'</i></p>
4 <p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>
5 </div>

7 <div lang="english" date="October/2011">
8 <h1>Rolf Turner</h1>
9 <p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering a

request for automatic generation of 'data from a known mean and 95% CI'
</emph></p>

10 <p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">R-
help</a></p>

11 </div>

As part of the load() method, we also assign a callback function that is executed in case
the XHR request is successful. In line 3, we use JavaScript to open an alert box with the
text in quotation marks. This is purely for illustrative purpose and could be omitted without
causing any problems. To check the success of the method, open fortunes2.html in a browser
and compare the displayed information with the HTML code outlined above.

How does the XHR object interfere with attempts to obtain information from the quotes?Implications of
JavaScript for

scraping, 2
Once again we compare the information displayed in the browser with what we get by parsing
the document in R:
R> library(XML)

R> (fortunes2 <- htmlParse("fortunes2.html"))

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<script type="text/javascript" src="jquery-1.8.0.min.js"></script><script

type="text/javascript" src="script2.js"></script><title>Collected R wisdoms</title>

</head>

<body>

<address><a href="http://www.r-datacollection.com"><i>The book homepage</i></a>

</address>

</body>

</html>

https://stat.ethz.ch/mailman/listinfo/r-help
http://www.r-datacollection.com
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Unlike in the previous example, we observe that information shown in the browser is not
included in the parsed document. As you might have guessed, the reason for this is the XHR
object, which loads the quote information only after the placeholder HTML file has been
requested.

6.2.2 Loading JSON

Although the X in AJAX stands for the XML format, XHR requests are not limited to
retrieving data formatted this way. We have introduced the JSON format in Chapter 3, which
has become a viable alternative, preferred by many web developers for its brevity and wide
support. jQuery not only provides methods for retrieving JSON via XHR request but it also
includes parsing functions that facilitate further processing of JSON files. Compared to the
example before, we need to remind ourselves that JSON content is displayed unformatted
in the browser. In this example, we therefore show first how to instruct jQuery to access a
JSON file and second, how to convert JSON information into HTML tags, to obtain a clearer
and more attractive display of the information. Take a look at fortunes3.html for our generic
placeholder HTML document.

1 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
2 <html> <head>

3 <title>Collected R wisdoms (JavaScript Extension)</title>
4 </head>

5 <body>

7 <button id="quoteButton">Click for quotes!</button>

9 </body>

11 <script type="text/javascript" src="jquery-1.8.0.min.js"></script>
12 <script type="text/javascript" src="script3.js"></script>

14 <address><a href="http://www.r-datacollection.com"><i>The book homepage</i></a>

</address>

15 </body> </html>

The new element here is an HTML button element to which we assign the id quote
Button. Inside the HTML code there is a reference to script3.js.

1 $("#quoteButton").click(function(){
2 $.getJSON("quotes/all_quotes.json", function(data){
3 $.each(data, function(key, value){
4 $("body").prepend("<div date='"+value.date+"'><h1>"+value.author+"

</h1><p><i>'"+value.quote+"'</i></p><p><b>Source: </b>'"+value.
source+"'</p></div>");

5 });
6 });
7 });

Once again, go ahead and open fortunes3.html to check out the behavior of the document.
What you should observe is that upon clicking on the button, new quote information appears
that is visually similar to what we have seen in fortunes.html.

http://www.r-datacollection.com
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Let us dismantle the script into its constituent parts. In the top line, the scripts initiates a
query for a node with id quoteButton. This node is being bound to the click event handler.
The next lines detail the click’s functionality. If a click occurs a data request is sent via
jQuery’s getJSON() method. This method does two things. First, the request for the file is
initiated and the data fetched using a HTTP GET request. Second, the data are parsed by a
JSON parser, which disassembles the file’s key and value pairs into usable JavaScript objects.
The file to be requested is specified as all_quotes.json, which contains the complete set of R
wisdoms and is located in the folder named quotes. The first couple of lines of this file are
printed below:

1 [
2 {
3 "quote": "What we have is nice, but we need something very different.",
4 "author": "Robert Gentleman",
5 "context": null,
6 "source": "Statistical Computing 2003, Reisensburg",
7 "date": "June 2003"
8 },
9 {

10 "quote": "R is wonderful, but it cannot work magic.",
11 "author": "Rolf Turner",
12 "context": "answering a request for automatic generation of 'data from a

known mean and 95% CI'",
13 "source": "R-help",
14 "date": "October 2011"
15 },

Line 3 initiates a looping construct that iterates over the objects of the retrieved JSON file
and defines a function for the key and value variables. The function first performs a selection
of the HTML document’s <body> node to which it prepends the expression in parentheses. As
you can see, this expression is a mixture of HTML markup and some sort of variable objects
(encapsulated by + signs) through we can inject JSON information. Effectively, this statement
produces familiar HTML code that includes data, author, quote, and source information from
each object of the JSON file.

6.3 Exploring AJAX with Web Developer Tools

When sites employ more sophisticated request methods, a cursory look at the source code
will usually not suffice to inform our R scraping routine. To obtain a sufficient understanding
of the underlying structure and functionality we need to dig a little deeper. Despite our praise
for the R environment, using R would render this task unnecessarily cumbersome and, at least
for AJAX-enriched sites, it simply does not provide the necessary functionality. Instead, we
examine the page directly in the browser. The majority of browsers comes with functionality
that has turned them into powerful environments for developing web projects—and helpful
companions for web scrapers. These tools are not only helpful for on-the-fly engagement with
a site’s DOM, but they may also be used for inspecting network performance and activities
that are triggered through JavaScript code. In this section, we make use of Google Chrome’s
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suite of Web Developer Tools (WDT), but tools of comparable scope are available in all the
major browser clients.

6.3.1 Getting started with Chrome’s Web Developer Tools

We return to the previously introduced fortunes2.html file, which caused some headache due
to its application of XHR-based data retrieval. Open the file in Google Chrome to accustom
yourself once again with the site’s structure. By default, WDT are not visible. To bring them
to the forefront, you can right-click on any HTML element and select the Inspect Element
option. Chrome will split the screen horizontally, with the lower panel showing the WDT and
the upper panel the classical page view of fortunes2.html. IInside the WDT (Chrome version
33.0.1750.146), the top-aligned bar shows eight panels named Elements, Network, Sources,
Timeline, Profiles, Resources, Audits, and Console and which correspond to the different
aspects of a site’s behavior that we can analyze. Not all of these panels will be important for
our purposes, so the next sections only discuss the Elements and the Network panels in the
context of investigating a site’s structure and creating an R scraping routine.

6.3.2 The Elements panel

From the Elements panel, we can learn useful information about the HTML structure of the Perspective on
the DOM treepage. It reveals the live DOM tree, that is, all the HTML elements that are displayed at any

given moment. Figure 6.3 illustrates the situation upon opening the WDT on fortunes2.html.
The Elements panel is particularly useful for learning about the links between specific HTML
code and its corresponding graphical representation in the page view. By hovering your cursor
over a node in the WDT, the respective element in the HTML page view is highlighted. To do
the reverse and identify the code piece that produces an element in the page view, click on the
magnifying glass symbol at the top right of the panel bar. Now, once you click on an element
in the page view, the WDT highlights the respective HTML element in the DOM tree. The
Elements panel is also helpful for generating an XPath expression that can be passed directly
to R’s extractor functions (see Chapter 4). Simply right-click on an element and choose “Copy
XPath” from the menu.

Figure 6.3 View on fortunes2.html from the Elements panel
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Figure 6.4 View on fortunes2.html from the Network panel

6.3.3 The Network panel

The Network panel provides insights into resources that are requested and downloaded overTracing
resources the network in real time. It is thus an ideal tool to investigate resource requests that have

been initiated by JavaScript-triggered XHR objects. Make sure to open the Network panel tab
before loading a webpage, otherwise the request will not be captured. Figure 6.4 shows the
Network panel after loading fortunes2.html. The panel shows that altogether four resources
have been requested since the fortunes2.html has been opened. The first column of the panel
displays the file names, that is, fortunes2.html, jquery-1.8.0.min.js, script2.js, and quotes.html.
The second column provides information on the HTTP request method that provided the file.
Here, all four files have been requested via HTTP GET. The next column displays the HTTP
status code that was returned from the server (see Section 5.1.5). This can be of interest when
an error occurs in the data request. The type column depicts the files’ type such as HTML
or JavaScript. From the initiator column we learn about the file that triggered the request.
Lastly, the size, time, and timeline columns provide auxiliary information on the requested
resources.

We are interested in collecting the quote information. Since the information is not
part of the source HTML, we can refrain from further inspecting fortunes2.html. From
the other three files, we can also ignore jquery-1.8.0.min.js as this is a library of meth-
ods. While script2.js could include the required quote information in principle, good web
development practice usually separates data from scripts. By the principle of exclusion, we
have thus identified quotes.html as the most likely candidate for containing the quotes. To
take a closer look, click on the file, like in Figure 6.5. From the Preview tab we observe
that quotes.html indeed contains the information. In the next step we need to identify
the request URL for this specific file so we can pass it to R. This information is easily
obtained from the Headers tab, which provides us with the header information that requested
quotes.html. For our purpose, we only need the URL next to the Request URL field, which is
http://r-datacollection.com/materials/ajax/quotes/quotes.html. With this information, we can
return to our R session and pass the URL to RCurl’s getURL() command:

R> (fortunes_xhr <- getURL("r-datacollection.com/materials/ajax/quotes/
quotes.html"))
[1] "<div id=\"R Inventor\" lang=\"english\" date=\"June/2003\">\n <h1>
Robert Gentleman</h1>\n <p><i>'What we have is nice, but we need something
very different'</i></p>\n <p><b>Source: </b>Statistical Computing 2003,
Reisensburg</p>\n</div>\n\n<div lang=\"english\" date=\"October/2011\">\n

http://r-datacollection.com/materials/ajax/quotes/quotes.html
http://r-datacollection.com/materials/ajax/quotes/quotes.html
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(a) Preview

(b) Headers

Figure 6.5 Information on quotes.html from the Network panel (a) Preview (b) Headers

<h1>Rolf Turner</h1>\n <p><i>'R is wonderful, but it cannot work magic'</i>
<br><emph>answering a request for automatic generation of 'data from a known
mean and 95% CI'</emph></p>\n <p><b>Source: </b><a href=\"https://stat.
ethz.ch/mailman/listinfo/r-help\">R-help</a></p>\n</div>"

The results do in fact contain the target information, which we can now process with all
the functions that were previously introduced.

Summary

AJAX has made a lasting impact on the user friendliness of services provided on the Web.
This chapter gave a short introduction to the principles of AJAX and it sought to convey the
conceptual differences between AJAX and classical HTTP-transmitted contents. From the
perspective of a web scraper, AJAX constitutes a challenge since it encourages a separation
of the stylistic structure of the page (HTML, CSS) and the information that is displayed (e.g.,
XML, JSON). Therefore, to retrieve data from a page it might not suffice to download and
parse the front-end HTML code. Fortunately, this does not prevent our data scraping efforts.
As we have seen, the AJAX-requested information was located in a file on the domain of the
main page that is accessible to anyone who takes an interest in the data. With Web Developer
Tools such as provided in Chrome, we can trace the file’s origin and obtain a URL that
oftentimes leads us directly to the source of interest. We will come back to problems created

https://stat.ethz.ch/mailman/listinfo/r-help\
https://stat.ethz.ch/mailman/listinfo/r-help\
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by dynamically rendered pages when we discuss the Selenium/Webdriver framework as an
alternative solution to these kinds of scraping problems (see Section 9.1.9).

Further reading

To learn more about AJAX consult Holdener III (2008) or Stepp et al. (2012). A good way
to learn and discover useful features of the Chrome Web Developer Tools is on the tool’s
reference pages Google (2014) or for a book reference Zakas (2010).

Problems

1. Why are AJAX-enriched webpages often valuable for web users, but an obstacle to web
scrapers?

2. What are the three methods to embed JavaScript in HTML?

3. Why are Web Developer Tools particularly useful for web scraping when the goal is to
gather information from websites using dynamic HTML?

4. Return to fortunes3.html. Implement the JavaScript alert() function at two points of
the document. First, put the function in the <node> section of the document with text
“fortunes3.html successfully loaded!” Second, open script3.js and include the alert()
function here as well with text “quotes.html successfully loaded!” Watch the page’s
behavior in the browser.

5. Use the appropriate parsing function for fortunes3.html and verify that it does not
contain the quotes of interest.

6. Use the Web Developer Tools to identify the source of the quote information in for-
tunes3.html. Obtain the request URL for the file and create an R routine that parses it.

7. Write a script for fortunes2.html that extracts the source of the quote. Conduct the
following steps:
(a) Parse fortunes2.html into an R object called fortunes2.
(b) Write an XPath statement to extract the names of the JavaScript files and create

a regular expression for extracting the name of the JavaScript script (and not the
library).

(c) Import the JavaScript code using readLines() and extract the file path of the
requested HTML document quotes.html.

(d) Parse quotes.html into an R object called quotes and query the document for the
names.

8. Repeat exercise two for fortunes3.html. Extract the sources of the quotes.

9. The website http://www.parl.gc.ca/About/Parliament/FederalRidingsHistory/hfer.asp?
Language=E&Search=C provides information on candidates in Canadian federal elec-
tions via a request to a database.
(a) Request information for all candidates with the name “Smith.” Inspect the live

DOM tree with Web Developer Tools and find out the HTML tags of the returned
information.

http://www.parl.gc.ca/About/Parliament/FederalRidingsHistory/hfer.asp?Language=E&Search=C
http://www.parl.gc.ca/About/Parliament/FederalRidingsHistory/hfer.asp?Language=E&Search=C
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(b) Which mechanism is used to request the information from the server? Can you
manipulate the request manually to obtain information for different candidates?

10. The city of Seattle maintains an open data platform, providing ample information
on city services. Take a look at the violations database at https://data.seattle.gov/
Community/Seattle-code-violations-database/8agr-hifc
(a) Use the Web Developer Tools to learn about how the database information is stored

in HTML code.
(b) Assess the data requesting mechanism. Can you access the underlying database

directly?

https://data.seattle.gov/Community/Seattle-code-violations-database/8agr-hifc
https://data.seattle.gov/Community/Seattle-code-violations-database/8agr-hifc
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SQL and relational databases

Handling and analyzing data are key functions of R. It is capable of handling vectors, matrices,
arrays, lists, data frames as well as their import and export, aggregation, transformation,
subsetting, merging, appending, plotting, and, not least, analysis. If one of the standard data
formats does not suffice there is always the possibility of defining new ones and incorporating
them into the R data family. For example, the sp package defines a special purpose data object
to handle spatial data (see Bivand and Lewin-Koh 2013; Pebesma and Bivand 2005). So, why
should we care about databases and yet another language called SQL?

Simple and everyday processes like shopping online, browsing through library catalogs,
wiring money, or even buying sweets in the supermarket all involve databases. We hardly ever
realize that databases play an important role because we neither see nor interact with them
directly—databases like to work behind the scenes. Whenever data are key to a project, web
administrators will rely on databases because of their reliability, efficiency, multiuser access,
virtually unlimited data size, and remote access capabilities.

Regarding automated data collection, databases are of interest for two reasons: First, weWhen
databases

become useful
might occasionally get direct access to a database and should be able to cope with it. Second,
and more importantly, we can use databases as a tool for storing and managing data. Although
R has a lot of useful data management facilities, it is after all a tool designed to analyze data,
not to store it. Databases on the other hand are specifically designed for data storage and
therefore offer some features that base R cannot provide. Consider the following scenarios.

� You work on a project where data needs to be presented or made accessible on a
website—using a database, you only need one tool to achieve this.

� In a data collection project, you do not gather all the data yourself but have other
parties gathering specific parts of it—with a database you have a common, current,
always accessible, and reliable infrastructure at hand that several users can access at the
same time.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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� When several parties are involved, most databases allow for defining different users
with different rights—one party might only be able to read, others have access only
to parts of the data, and yet others are equipped with administrative rights but cannot
create new users.

� You have loads of data that exceed the RAM available on your computer—databases
are only limited by the available disk size. In fact, databases can even be distributed
across multiple disks or several machines altogether.

� If your data are complex it might be difficult to write into one data table—databases
are best at storing such kind of data. Not only do they allow storing but also retrieving
and subsetting data with complex data structures.

� Your data are large and you have to subset and manipulate them frequently—querying
databases is fast.

� Your data are complex and you use them for various purposes—for example, the
information is distributed across several tables but depending on the context you need
to combine information from specific tables in a task-specific way. Databases allow the
definition of virtual tables to have data always up to date, organized in a specific way
without using much disk space.

� You care about data quality and have several rules when data are valid and when they
are not. Using databases you can define specific rules for extending or updating your
database.

Section 7.1 provides a brief overview of how R and databases are related to one another
and defines some of the vocabulary indispensable for talking about databases. Subsequently,
Section 7.2 dives into the conceptual basics of relational databases, followed by an introduc-
tion to SQL fundamentals, the language to handle relational databases in Section 7.3. In the
last part (Section 7.4) we learn how to deal with databases using R—establishing connections,
passing through SQL queries, and using convenient functions of the numerous R packages
that provide database connectivity.

7.1 Overview and terminology

For a start let us consider a schematic overview of how R, SQL, the database and the
database management system are related (see Figure 7.1). As you can see, we do not access
the database directly. Instead, R provides facilities to connect to the database management
system—DBMS—which then executes the user requests written as SQL queries. The tasks
are defined by the user, but how the tasks are achieved is up to the DBMS. SQL is the tool for
speaking to a whole range of DBMS. It is the workhorse of relational database management.

Let us define some of the terms that we have used up to this point to have a common basis Some
definitionsto build upon throughout the remainder of the chapter.

Data are basically a collection of information such as numbers, logical values, text, or
some other format. Sometimes collections of information might be data for one purpose but
a useless bunch of bits and bytes for another. Imagine that we have collected names of people
that have participated in the Olympic Games. If we only care to know who has participated,
it might suffice if our data has the format of: "Carlo Pedersoli". If, however, we want to
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• Defines structure of data

• Defines validity of data

• Inputs data

• Manipulates data

• Queries data

• Sets user rights

USER

• Connects to database

• Provides convenience functions

• Sends SQL-queries

• Recieves results

R

• Data control language

• Data definition language

• Data manipulation language

• Transaction control language

SQL

• Executes SQL-queries and sends

back results

• Manages user rights

• Manages users access

• Manages data structure

• Manages data

DBMS

Figure 7.1 How users, R, SQL, DBMS, and databases are related to each other

sort the data by last name, a format like "Pedersoli, Carlo" is more appropriate. To be
on the safe side, we might even consider splitting the names into first name ("Carlo") and
last name ("Pedersoli"). Being on the safe side plays a crucial role in database design and
we will come back to it.

In general a database is simply a collection of data. Within most database systems and
relational database systems, the data are related to each other. Consider for example a table
that contains the bodyweights of various people. We have at least two types of data in the
table: bodyweights and names. What is more, not only does the table store the two variables,
but additionally it provides information on how these two pieces of information are related to
each other. The most basic rule is this: Every piece of information in a single row is related to
each other. We are familiar with handling tables that are structured in this way. In relational
databases, these relations between data can be far more complex and will typically be spread
across multiple tables.

A database management system (DBMS) is an implementation of a specific database
concept bundled together with software. The software is responsible for managing the user
rights and access, the way data and meta information are stored physically, or how SQL
statements are interpreted and executed. DBMS are numerous and exist as open source as
well as commercial products for all kinds of purposes, operation systems, data sizes, and
hardware architectures.

Relational database management systems (RDBMS) are a specific type of DBMS
based on the relational model and the most common form of database management systems.
Relational databases have been around for a while. The concept goes back to the 1970s when
Edgar F. Codd proposed to store data in tables that would be related and the relations again
stored in tables (Codd 1970). Relational databases, although simple in their conceptual basics,



SQL AND RELATIONAL DATABASES 167

are general and flexible enough to store all kinds of different data structures, while the specific
parts of the database remain easy to understand. Popular relational DBMS are Oracle, MySQL,
Microsoft SQL Server, PostgreSQL, DB2, Microsoft Access, Sybase, SQLite, Teradata, and
File-Maker.1 In this book we exclusively talk about RDBMS and use DBMS and RDBMS
interchangeably.

SQL2 is a language to communicate with relational database management systems. When
Codd proposed the relational model for databases in 1970, he also proposed to use a language
to communicate with database systems that should be general and work only on a meta level.
The idea was to be able to express exactly what a DBMS should do—the same statement
on different DBMS should always lead to the same result—but leave it completely up to
the DBMS how to achieve it computationally (Codd 1970). Such a language would be
user friendly and would allow using a common framework for different implementations
of the relational model. Based on these conceptual ideas, SQL was later developed by
Donald D. Chamberlin and Raymond F. Boyce (1974) and, although occasionally revised
throughout the decades, still lives on today as the one common language for relational
database communication.

A query is strictly speaking a request sent to a DBMS to retrieve data. In a broader
and more frequently used sense it refers to any request made to a DBMS. Such requests
might define or manipulate the structure of the data, insert new data, or retrieve data from the
database.

7.2 Relational Databases

7.2.1 Storing data in tables

The main concept of relational databases is that any kind of information can be represented in Tables and
relationsa table. We already know that tables are devices to store data as well as relations—each piece

of information within the same row is related to the same entity. To achieve more complex
relations—for example, a persons’ weight is measured twice, or the weight is measured for
a persons’ children as well—we can relate data from one table to another.

Let us take a look at an example to make this point clear. Imagine that we have collected
data on some of our friends—Peter, Paul, and Mary. We collected information on their
birthdays, their telephone numbers, and their favorite foods—see Tables 7.1 and 7.2. We
had trouble putting the data into one table and ended up separating the data into two tables.
Because we do not like to duplicate information, we did not add the full names to the telephone
table(Table 7.2), but specified IDs referring to the names in a column called nameid. Now
how do we find Peter’s telephone number? First, we look up Peter’s ID in the birthdays table
(Table 7.1) because we know that data on the same line is related—Peter’s ID is 1. Second,
we check which row in the telephone table has a 1 on nameid—rows one and three. Third, we
look up the telephone numbers for these rows—001665443 and 001878345—and realize

1See also http://db-engines.com/en/ranking/relational+dbms
2There is an ongoing debate about whether or not SQL is an acronym and how to pronounce it correctly—well,

no and S-Q-L are the correct answers. SQL is the successor name of SEQUEL, which was the name of an airplane
and thus had to be changed (McJones et al. 1997, p. 22). SEQUEL (not SQL) was an acronym for: Structured English
QUery Language (McJones et al. 1997, p. 14). The pronunciation of SQL was officially declared as S-Q-L (Gillespie
2012).

http://db-engines.com/en/ranking/relational+dbms
http://db-engines.com/en/ranking/relational+dbms
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Table 7.1 Our friends’ birthdays and favorite foods

nameid name birthday favoritefood1 favoritefood2 favoritefood3

1 Peter Pascal 01/02/1991 spaghetti hamburger
2 Paul Panini 02/03/1992 fruit salad
3 Mary Meyer 03/04/1993 chocolate fish fingers hamburger

that Peter has two telephone numbers. We can also reverse the process and ask which name
of the birthdays table belongs to a specific telephone number or what number we need to call
to speak to a fruit salad or spaghetti lover.

The relation in our example is called 1:m or one-to-many, as one person can be related to
zero, one, or more telephone numbers. There are of course also 1:1, n:1, and n:m relations
(one-to-one, many-to-one, many-to-many), which work just the same way except that the
number of data that might show up on one or the other side of the relation differs.

This connection of tables to express relations between data is one of the most importantKeys

concepts in relational database models. But note that to make it work we had to include
identifiers in both tables. These so-called keys ensure that we know which entity the data
belongs to and how to combine information from different tables.

Including keys makes some parts of the data redundant—the nameid column exists inRedundancy
and

exclusiveness
Table 7.1 and in Table 7.2—but it also reduces redundancy. Let us consider the example again
to make this point clear. Have another look at Table 7.1. There are three columns to store the
same type of data. We have to store the data somewhere and what can we do about the fact
that some of our friends did name more than one preference? Imagine what it would look
like if we recorded more than just these 3 preferences, maybe 5 or 7 or even 10. We would
have to add another column for each preference and if somebody only had one preference all
the other columns would remain empty. Clearly there has to be another way to cope with this
kind of data rather than adding column after column to store some more preferences. Indeed
there is.

We divide the data contained in the birthdays table into two separate tables that are related
to each other via a key. Have a look at Tables 7.3 and 7.4 for the result. Now we do not have
to care how many favorite foods somebody names, because we always have the option of
adding another row whenever necessary and still all preferences are unambiguously related
to one person.

Even though the data are stored in a cleaner way, we still have some redundancy in our
food preference table. Is it necessary to have hamburgers in the table twice? In our example
it does not change much, but if the example was just a little more complex, for example, with

Table 7.2 Our friends’ telephone numbers

telephoneid nameid telephonenumber

1 1 001665443
2 2 00255555
3 1 001878345
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Table 7.3 Our friends’ birthdays—revised

name id first name last name birthday

1 Peter Pascal 01/02/1991
2 Paul Panini 02/03/1992
3 Mary Meyer 03/04/1993

Table 7.4 Our friends’ food preferences

nameid foodname rank

1 spaghetti 1
1 hamburger 2
2 fruit salad 1
3 chocolate 1
3 fish fingers 2
3 hamburger 3

10 instead of 3 friends and 80% of them being fans of hamburgers, the table would grow
quickly. What if we would like to add further information on the food types? Do we store it in
the same table—repeating the information for hamburger over and over again? No, we would
do something similar to what we did when putting telephone numbers in a separate table
(Table 7.2). In the new food preference table (Table 7.5) all information on the preferences
itself remains untouched, because this will be the table on preferences. Furthermore, the key
relating it to the birthdays table (Table 7.3)—nameid—and the key relating it to the new
table on food (Table 7.6)—foodid—are kept.

After restructuring our data, we now have a decent database. Take a look at Figure 7.2
to see how the data are structured. In the schema each table is represented by a square. As
we can see, there are four tables. Let us call them birthdays, telephone, foodranking, and
foodtypes. The upper part of the square gives the name of the table, the column names are
listed in the lower part. The double-headed arrows show which tables are related by pointing
to the columns that serve as keys—the columns set in bold and the columns set in italics.

Table 7.5 Our friend’s food preferences—revised

rankid nameid foodid rank

1 1 1 1
2 1 2 2
3 2 3 1
4 3 4 1
5 3 5 2
6 3 2 3
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Table 7.6 Food types

foodid food name healthy kcalp100g

1 spaghetti no 0.158
2 hamburger no 0.295
3 fruit salad yes 0.043
4 chocolate no 0.546
5 fish fingers no 0.290

The reason why some keys are set in bold and some are set in italics is because there arePrimary keys
and foreign

keys
two types of keys: primary keys and foreign keys. Primary keys are keys that unambiguously
identify each row in a table—nameid in our birthdays table (Table 7.3) is an example where
each person is associated with exactly one unique nameid. nameid is not a primary key in
our telephone table (Table 7.2), as subjects might well have more than one telephone number,
making the ID value non-unique. Thus, while nameid in the telephone table is still a key, it is
now called a foreign key. Foreign keys are keys that unambiguously identify rows in another
table. In other words, each nameid found in the telephone table refers to one and only one
row in the birthdays table. There cannot be a nameid in the telephone table that matches
more than one nameid in the birthdays table.

Note that it does not matter whether keys consist of one single value per row or a com-Combined keys

bination of values. Nor does it matter whether the identifier is a number, a string, something
else, or a combination of those. A key can span across several columns as long as the value
combinations fulfill the requirements for primary or foreign keys. Primary keys in our exam-
ple are restricted to one single column and are always running integers, but they could look
different.

Let us consider an example of an alternative primary key to make this point clear. In our
food preference table (Table 7.5) neither nameid nor foodid are sufficient as primary keys,
because individuals appear multiple times depending on their stated preferences and the same
food might be preferred by several subjects. However, as no one prefers the same food twice,
the combination of name identifier and food identifier would be valid as primary key for the
food preference table.

7.2.2 Normalization

In the previous paragraphs we decomposed our data step by step. We did so because it saves
unnecessary work in the long run and keeps redundancy at bay. Normalization is the process

birthdays

nameid
firstname

lastname

birthday

foodranking

rankid
foodid
nameid
rank

telephone

telephoneid
nameid
telephone

foodtypes

foodid
foodname

healthy

kcalp100g

Figure 7.2 Database scheme
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of getting rid of redundancies and possible inconsistencies. In the following section, we will
learn about this procedure, which is quite helpful to cope with complex data. If you do not
plan to use databases to store data—for example, you only want to store large amounts of
data that otherwise fit nicely into a single table, or you only need it for its user management
capabilities—you can simply skip this section or come back to it later on.

Let us go through the formal rules for normalization to ensure we understand why
databases often look the way they do and how we might do it ourselves. While there are
numerous ways of decomposing data stored in tables—called normal forms—we will only
cover the first three, as they are the most important and most common.

First normal form
1. One column shall refer to one thing and to one thing only and any column row

intersection should contain only one piece of data (the atomacy of data requirement).

This rule requires that different types of information are not mixed within one column.
One could argue that we violated this rule by storing both first and last names in
the name column of our first birthdays table (Table 7.1). We corrected this in the
updated birthdays table (Table 7.3), where first name and last name were split up
into two columns. Furthermore, it requires that the same data are saved in only one
column.

This rule was violated in the first version of our birthdays table, where we had three
columns to store a person’s favorite food. By exporting the information to the favorite
food table (Tables 7.4 and 7.5) and food type table (Table 7.6), this problem was taken
care of—a person’s favorite food is now stored in a single column. In addition it is not
allowed to store more than one piece of the same information in an intersection of row
and column. For example, it is not allowed to store two telephone numbers in a single
cell of a table. Take a look at Tables 7.7, 7.8, and 7.9 for three examples that violate
the first normal form.

2. Each table shall have a primary key.

This rule is easy to understand as keys were covered at length in the previous section.
It ensures that data can be related across tables and that data in one row is related to
the same entity.

Table 7.7 First normal form error—1

zip code and city

789222 Big Blossom
43211 Little Hamstaedt
123456 Bloomington
…

This table fails the first rule of the first normal
form because two different types of information
are saved in one column—a city’s zip code and
a city’s name.
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Table 7.8 First normal form error—2

telephone

0897729344, 0666556322
123123454
675345334
…

This table fails the first rule of the first nor-
mal form because two telephone numbers
are saved within the first row.

Table 7.9 First normal form error—3

telephone1 telephone2

0897729344 0666556322
123123454
675345334
…

This table fails the first rule of the first nor-
mal form because it uses two columns to
store the same kind of information.

Second normal Form
1. All requirements for the first normal form shall be met.

2. Each column of a table shall relate to the complete primary key.

We have learned that a primary key can be a combination of the values of more than
one column. This rule requires that all data in a table describe one thing only: only
people, only telephone numbers, only food preferences or only food types. One can
think of this rule as a topical division of data among tables.

Consider Table 7.10 for a violation of this rule. The primary key of the table is a
combination of nameid and foodid. The problem is that firstname and birthday
relate to nameid only while favoritefood relates to foodid only. The only column
that depends on the whole primary key—the combination of nameid and foodid—is
rank, which stores the rank of a specific food in a specific person’s food preference
order.

A solution to this violation of the second normal form is to split the table into several
tables. One table to capture information on persons, one on food and yet another on
food preferences. Take a look at Tables 7.3, 7.5, and 7.6 from the previous section for
tables that are compliant with the second normal form.

Third normal form
1. All requirements for the second normal form shall be met.



SQL AND RELATIONAL DATABASES 173

Table 7.10 A second normal form error

nameid firstname birthday favoritefood foodid rank

1 Peter 01/02/1991 spaghetti 1 1
1 Peter 01/02/1991 hamburger 2 2
2 Paul 02/03/1992 fruit salad 3 1
3 Mary 03/04/1993 chocolate 4 1
3 Mary 03/04/1993 fish fingers 5 2
3 Mary 03/04/1993 hamburger 1 3

This table does not comply to second normal form because all columns
except rank either relate to one part of the combined primary key (nameid
and foodid) or to other part but not to both.

2. Each column of a table shall relate only and directly to the primary key.

The third normal form is actually a more strict version of the second normal form.
Simply stated, it excludes that data on different things are kept in one table.

Consider Table 7.11. The table only contains three entries, so we could easily use
nameid as primary key. Because the primary key only consists of one column, every
piece of information depends on the whole primary key. But the table remains odd,
because it contains two kinds of information—information related to individuals and
information related to food. As the primary key is based on subjects, all information
on them relates directly to the primary key. Things look different for information that
relates to food. Food-specific information is only related to the primary key insofar as
subjects have food preferences. Therefore, including information on food in the table
violates the third normal form. Again, the information should be stored in separate
tables like in Tables 7.3, 7.5, and 7.6 from the previous subsection.

Keep in mind that there are several other normal forms, but for our purposes these three
should suffice. Recall that normalization is primarily done to ensure data consistency—
meaning that any given piece of information is stored only once in a database. If the same
piece of information is stored twice, changes would have to be made in multiple places and
might contradict each other if forgotten.

There are, however, no technical restrictions that prevent us from putting redundant or
inconsistent data structures into a database. Whether this benefits our goal strongly depends on
questions like: What purpose does the database serve? What do we describe in our database?
How are the elements in our database related to each other? Will information be added
in the future? Will the database serve other purposes in the future? How much effort is it

Table 7.11 A third normal form error

nameid firstname birthday favoritefood healthy kcalp100g

1 Peter 01/02/1991 spaghetti no 0.158
2 Paul 02/03/1992 fruit salad yes 0.043
3 Mary 03/04/1993 chocolate no 0.546

This table does not comply to third normal form because favoritefood,
healthy and kcalp100g do not relate directly to persons which the primary
key (nameid) is based on.
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to completely normalize our database? The higher the complexity of the data, the higher
the number of different purposes a database might serve and the higher the probability that
information might be added in the future, the greater the effort that should be put into planning
and rigorously designing the database structure. Generally speaking, when you try to extract
data from an unknown database, you should always check the structure of the database to
make sure you get the right information.

7.2.3 Advanced features of relational databases and DBMS

Understanding how to store data in tables, how to decompose the data, and how relations
work in databases is enough for a basic understanding of the nature of databases. But often
DBMS have implemented further features like data type definitions, data constraints, virtual
tables or views, procedures, triggers, and events that make DBMS powerful tools but go far
beyond what can be captured in this short introduction. Nonetheless, we will briefly describe
these concepts to provide an idea of what is possible when working with DBMS.

One aspect we usually have to take care of when building up a database is to specify eachData types

column’s data type. The data type definition tells the DBMS how to handle and store the
data; it affects the required disk space and also impacts efficiency. There are several broad
data types that are implemented in one way or another in every DBMS: boolean data, that is,
true and false values, numeric data (integer and float), character or text data, data referring to
dates, times, and time spans as well as data types for files (so-called BLOBs—binary large
objects). Which types are available and how they are implemented depends on the specific
DBMS, so we will not go into details here. The manual section of each DBMS should list
and describe the supported data types, how they are implemented, and further features that
are associated with it. To get an idea, consider Table 7.11 once more. Column by column the
data types can be specified as: integer, character, date, character, boolean, and float.

Beyond fixing columns to specific types of data, some DBMS even implement the possibil-Constraints

ity to constrain data. Constraining data enables the user to define under which circumstances—
for which values and value ranges—data should be accepted and in which cases the DBMS
should reject to store the data. In general, there are two ways to constrain data validity:
Specifying columns as primary or foreign keys and explicitly specifying which values or
value ranges are valid and which are not. Setting a column as primary key results in the
rejection of duplicated values because primary keys must identify each row unambiguously.
Defining a column as foreign key will lead to the rejection of values that are not already part
of the primary key it relates to. Explicit constraining of data instead is user-defined and might
be as simple as forbidding negative values or more complex involving several clauses and
references to other tables. No matter which type of constraint is used the general behavior of
the DBMS is to reject values that do not fulfill the constraint.

DBMS are designed for consistent handling of data. This entails that queries to theTransactions

database should not break it, for example, if an invalid change is requested or a data import
suddenly breaks up—for example, when our system crashes. This is ensured by enforcing that
a manipulation is completely carried out or not at all. Furthermore, DBMS usually provide a
way to define transactional blocks. This feature is useful whenever we have a manipulation
that takes several steps and we want all steps to take effect or none—that is, we do not want
the process to stop halfway through because one statement causes an error, leaving us with
data that is partially manipulated.

Nearly all DBMS provide a way to secure access to the database. The simplest possibilityUser
management is to ask for a password before granting access to the whole database but more elaborate
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frameworks are common like having several users with their own passwords. Furthermore,
each user account can be accompanied with different user rights. One user might only be
allowed to read a single table, while another can read all tables and even add new data. Yet
other users might be allowed to create new tables and grant user rights to other users.

DBMS can easily handle accesses of more than one user to the same database at the same Multi-user
accesstime. That is, DBMS will always give you the present state of the database as response to a

query including changes made by other users but only those that were completely executed.
How a DBMS precisely solves problems of concurrent access is DBMS specific.

As the normalization of data and complex structures makes it more cumbersome to Views

assemble the data needed for a specific purpose, most DBMS have the possibility to define
virtual tables called views. Imagine that we want to retrieve and compose data from different
data tables frequently. We can define a query each time we need the specific combination of
data. Alternatively, we can define the query once and save it in a separate table. The downside
of this operation is that it takes up additional disk space. Further, we have to recreate the table
each time to make sure it is up to date, which is identical to defining the query anew each
time we need the specific combination of data.

Another, more elegant solution is to store the query that provides the data we need as a
virtual table. This table is virtual because instead of the data only the query that provides the
data is stored. This virtual table behaves exactly as if the data was stored in the table, but
potentially saves a lot of rewriting and rethinking. Compared to executing the query once and
saving the results in the database, the data in the virtual table will always be up to date.

All DBMS provide functions for data manipulation and aggregation in addition to the Functions

simple data storage capacities. These functions might provide us with the current date, the
absolute value of a number, a substring, the mean for a set of values, and so on. Note that
while R functions can return all kinds of data formats, database functions are restricted
to scalars. Which functions are provided and how they are named is DBMS dependent.
Furthermore, most DBMS allow user-defined functions as well but, again, the syntax for
function definition might vary.

Another DBMS-dependent feature is procedures and triggers. Procedures and triggers Procedures and
triggershelp extending the functionality of SQL. Imagine a database with a lot of tables, where

adding a new entry involves changes to many tables. Procedures are stored sequences of
queries that can be recalled whenever needed, thus making repeating tasks much easier.
While procedures are executed upon user request, triggers are procedures that are executed
automatically when certain events, like changes in a table, take place.

7.3 SQL: a language to communicate with Databases

7.3.1 General remarks on SQL, syntax, and our running example

Now that we have learned how databases and DBMS work and which features they provide, SQL, a
multi-purpose
language

we can turn our attention to SQL, the language to communicate with DBMS. SQL is a
multipurpose language that incorporates vocabulary and syntax for various tasks:

� DCL (data control language)
The DCL part of SQL helps us to define who is allowed to do what and where in our
database and allows for fine-grained user rights definitions.
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� DDL (data definition language)
DDL is the part of SQL that defines the structure of the data and its relations. This
means that the vocabulary enables us to create tables and columns, define data types,
primary keys and foreign keys, or to set constraints.

� DML (data manipulation language)
The DML part of SQL takes care of actually filling our database with data or retrieving
information from it.

� TCL (transaction control language)
The last part of SQL is TCL, which enables us to commit or rollback previous queries.
This is similar to save and undo buttons in ordinary desktop programs.

The syntax and vocabulary of SQL is rather simple. Let us first consider the general syntaxGeneral syntax

before moving on to specific vocabularies and syntaxes of the different language branches
of SQL.

SQL statements generally start with a command describing which action should be
executed—for example, CREATE, SELECT, UPDATE, or INSERT INTO—followed by the unit
on which it should be executed—for example, FROM table1—and one or more clauses—for
example, WHERE column1 = 1. Below you find four SQL statement examples.

1 > CREATE DATABASE database1 ;
2 > SELECT column1 FROM table1 WHERE column2 = 1 ;
3 > UPDATE table1 SET column1 = 1 WHERE column2 > 3 ;
4 > INSERT INTO table1 (column1, column2)

VALUES ('rc11', 'rc12'), ('rc21', 'rc22') ;

Although it is customary to write all SQL statements in capital letters, SQL is actually
case insensitive towards its key words. Using capital or small case does not change the
interpretation of the statements. Note however, that depending on the DBMS, the DBMS
might be case sensitive to table and column names. For purposes of readability we will stick
to the capitalized key words and lower case table and column names.

Each SQL statement ends with a semicolon—therefore, SQL statements might span across
multiple lines.

1 > CREATE TABLE table (
2 > column1 INTEGER NOT NULL AUTO_INCREMENT ,
3 > column2 VARCHAR(100) NOT NULL ,
4 > PRIMARY KEY (column1)
5 > ) ;

Comments either start with -- or have to be put in between /* and */.

1 > -- One line comment.
2 > /*
3 > Comment spanning
4 > several lines
5 > */
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For the remainder of this section we will use the birthdays, foodranking, and foodtypes Running
example and
SQL execution

tables (Tables 7.3, 7.5, and 7.6) from the database that we built up in the previous sections.
As SQL is the common standard for a broad range of DBMS, the examples should work
with most DBMS that speak SQL. However, there might always be slight differences—for
example, SQLite does not support user management.

To access the database, you can either use R as client—you will find a description of
the possible ways in the next section—or install and use another client software. Before you
can access the database, you have to create your own server—except when using SQLite,
which works with the R package RSQLite out of the box. We recommend using a MySQL
community server in combination with MySQL Workbench CE for a start. Both the MySQL
server and MySQL Workbench are easy to install, easy to use, and can be downloaded
free of charge. Furthermore, MySQL ODBC drivers are reliable, are available for a large
range of platforms, and it is easy to connect to the server from within R by making use of
RODBC.3

7.3.2 Data control language—DCL

To control access and privileges to our database, we first ask the DBMS to create a database
called db1:

1 > CREATE DATABASE db1 ;

Next, we create and delete several users identifying themselves by password:

1 > CREATE USER 'tester' IDENTIFIED BY '123456' ;
2 > CREATE USER 'tester2' IDENTIFIED BY '123456' ;
3 > CREATE USER 'tester3' IDENTIFIED BY '123456' ;
4 > DROP USER 'tester3' ;

Now we can use two powerful SQL commands to define what a user is allowed to
do. GRANT for granting privileges and REVOKE to remove privileges. A full SQL statement
granting user tester all privileges; all privileges for a certain database, and all privileges
for a certain table in a database looks as follows:

1 > GRANT ALL ON *.* TO 'tester2' ;
2 > GRANT ALL ON db1.* TO 'tester2' ;
3 > GRANT ALL ON db1.table1 TO 'tester2' ;

3The examples were checked with MySQL 5.5.34 and MySQL Workbench CE 5.2.47 to establish the connection.
You can download the MySQL Community Server and MySQL Workbench from http://www.mysql.com. When
asked for an account login or sign up, look for the No thanks, just start my download button—or create an account
if you like.

http://www.mysql.com
http://www.mysql.com
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We can also grant specific privileges only, for example, for selecting and inserting
information:

1 > GRANT SELECT, INSERT ON *.* TO 'tester2' ;

We can add the right to grant privileges to other users as well:

1 > GRANT SELECT, INSERT ON *.* TO 'tester2' WITH GRANT OPTION ;

To remove all privileges from our test user, we can useREVOKE or delete the user altogether.

1 > REVOKE ALL ON *.* FROM 'tester2' ;
2 > DROP USER 'tester2' ;

7.3.3 Data definition language—DDL

After having created a database and a user and having set up the user rights, we can turnCREATE TABLE

to those statements that define the structure of our data. The commands for data definition
are CREATE TABLE for the definition of tables, ALTER TABLE for changing aspects of an
existing table, and DROP TABLE to delete a table from the database. Let us start by defining
Table 7.3, the revised birthdays table.

1 > CREATE TABLE birthdays (
2 > nameid INTEGER NOT NULL AUTO_INCREMENT ,
3 > firstname VARCHAR(100) NOT NULL ,
4 > lastname VARCHAR(100) NOT NULL ,
5 > birthday DATE ,
6 > PRIMARY KEY (nameid)
7 > ) ;

Let us go through this line by line. The first line starts the statement by using CREATE
TABLE to indicate that we want to define a new table and also specifies the name ‘birthdays’
for this new table. The details of the columns follow in parentheses. Each column definition
is separated by a colon and always starts with the name of the column. After the name we
specify the data type and may add further options. While the data types of nameid and
birthday—INTEGER and DATETIME—are self-explaining, the name variables were defined
as characters with a maximum length of 100 characters—VARCHAR(100).

Using the options NOT NULL and AUTO_INCREMENT we define some basic constraints.
NOT NULL specifies that this column cannot be left empty—we demand that each person
included in birthdays has to have a name identifier, a first name and a last name. Should we
try to add an observation to the table without all of these pieces of information, the DBMS
will refuse to include it in birthdays. The AUTO_INCREMENT parameter for the nameid
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column adds the option that whenever no name identifier is manually specified when inserting
data, the DBMS takes care of that by assigning a unique number. The last line before we
close the parentheses and terminate the statement with a semicolon adds a further constraint
to the table. With PRIMARY KEY (nameid) we define that nameid should serve as primary
key. The DBMS will prevent the insertion of duplicated values into this column.

Let us add two more tables to our database to add some complexity and to showcase
some further concepts. We define the structure of Tables 7.5 and 7.6, where we recorded food
preferences and food attributes.

1 > CREATE TABLE foodtypes (
2 > foodid INT NOT NULL AUTO_INCREMENT,
3 > foodname VARCHAR(100) NOT NULL,
4 > healthy INT,
5 > kcalp100g float,
6 > PRIMARY KEY (foodid)
7 > );

1 > CREATE TABLE foodranking (
2 > rankid INT NOT NULL AUTO_INCREMENT ,
3 > foodid INT ,
4 > nameid INT ,
5 > rank INT NULL ,
6 > PRIMARY KEY (rankid) ,
7 > FOREIGN KEY (foodid) REFERENCES foodtypes (foodid) ON UPDATE CASCADE,
8 > FOREIGN KEY (nameid) REFERENCES birthdays (nameid) ON UPDATE CASCADE ) ;

The creation of foodtypes is quite similar to that of birthdays. More interesting is
the creation of the food preference table, because it relates to data about subjects as well as to
information about food—captured in birthdays and foodtypes. Take a look at the lines
starting with FOREIGN KEY. First, we choose the column that serves as foreign key, then we
define which primary key this column refers to, followed by further options. By specifying
ON UPDATE CASCADE we choose that whenever the primary key changes, this change is
cascaded down to our foreign key column that is changed accordingly.

To change the definition of a table later on, we can make use of the ALTER TABLE ALTER TABLE

command. Below you find several examples for adding a column, changing the data type of
this column, and dropping it again.

1 > ALTER TABLE foodtypes ADD COLUMN dummy INT ;
2 > ALTER TABLE foodtypes MODIFY COLUMN dummy FLOAT ;
3 > ALTER TABLE foodtypes DROP COLUMN dummy ;

To get rid of a table, we can use DROP TABLE. DROP TABLE

1 > CREATE TABLE dummy (dcolumn INT) ;
2 > DROP TABLE dummy ;
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Figure 7.3 SQL example database scheme

7.3.4 Data manipulation language—DML

Now that we have defined some tables in our database, we need to learn how to insert,
manipulate, and retrieve data from it. Figure 7.3 provides an overview of the structure of our
database—bold column names refer to primary keys while italics denote foreign keys; the
arrows show which foreign keys relate to which primary keys.

The following three SQL statements use the INSERT INTO command to fill our tablesINSERT INTO

with data. After selecting the name of the table to fill, we also specify column names—
enclosed in parentheses—to specify for which columns data are provided and in which order.
If we had not specifed column names, data for all columns would be provided in the same
order as in the definition of the table. As each table contains one column that is automatically
filled with identification numbers—nameid, foodid, rankid—we do not want to specify
this information manually but let the DBMS take care of it. Note that every non-numeric
value—text and dates—is enclosed in single quotes’.

1 > INSERT INTO birthdays (firstname, lastname, birthday)
2 > VALUES ('Peter', 'Pascal', '1991-02-01'),
3 > ('Paul', 'Panini', '1992-03-02'),
4 > ('Mary', 'Meyer', '1993-04-03') ;
5 >
6 > INSERT INTO foodtypes (foodname, healthy,kcalp100g)
7 > VALUES ('spaghetti', 0, 0.158),
8 > ('hamburger', 0, 0.295),
9 > ('fruit salad', 1, 0.043),

10 > ('chocolate', 0, 0.546),
11 > ('fish fingers', 0, 0.290) ;
12 >
13 > INSERT INTO foodranking (nameid, foodid, rank)
14 > VALUES (1, 1, 1),
15 > (1, 2, 2),
16 > (2, 3, 1),
17 > (3, 4, 1),
18 > (3, 5, 2),
19 > (3, 2, 3) ;

To update and delete rows of data, we have to specify for which rows the update orUPDATE

deletion takes place. For this we can make use of the WHERE clause. Let us create a new
column that captures whether or not the energy of a food type is above 0.2 kcal per 100 g. To
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achieve this, we tell the DBMS to create a new column and to update the column.4 In a last
step, we delete the column again:

1 > SET SQL_SAFE_UPDATES = 0 ;
2 > ALTER TABLE foodtypes ADD COLUMN highenergy INT ;
3 > UPDATE foodtypes SET highenergy=1 WHERE kcalp100g > 0.2 ;
4 > UPDATE foodtypes SET highenergy=0 WHERE kcalp100g <= 0.2 ;
5 > ALTER TABLE foodtypes DROP COLUMN highenergy ;

Let us have another example of deleting data. We first create a row with false data and DELETE

then drop the row:

1 > INSERT INTO foodtypes (foodname, healthy, kcalp100g)
2 > VALUES ("Dominic's incredible pancakes", NULL, NULL) ;
3 > DELETE FROM foodtypes WHERE foodname = "Dominic's incredible pancakes" ;

Data retrieval works similar to insertion of data and is achieved using the SELECT com- SELECT

mand. After the SELECT command we specify the columns we want to retrieve, followed
by the keyword FROM and the name of the table from which we want to get the data. The
following query retrieves all columns of the birthday table:

1 > SELECT * FROM birthdays ;
2 +--------+-----------+----------+------------+
3 | nameid | firstname | lastname | birthday |
4 +--------+-----------+----------+------------+
5 | 1 | Peter | Pascal | 1991-02-01 |
6 | 2 | Paul | Panini | 1992-03-02 |
7 | 3 | Mary | Meyer | 1993-04-03 |
8 +--------+-----------+----------+------------+

This retrieves only the birthdays:

1 > SELECT birthday FROM birthdays ;
2 +------------+
3 | birthday |
4 +------------+
5 | 1991-02-01 |
6 | 1992-03-02 |
7 | 1993-04-03 |
8 +------------+

4The first line is only relevant for MySQL. By default, MySQL prevents updates that have a WHERE clause not
referring to a primary key.
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Retrieving birthdays and first names:

1 > SELECT firstname, birthday FROM birthdays ;
2 +-----------+------------+
3 | firstname | birthday |
4 +-----------+------------+
5 | Peter | 1991-02-01 |
6 | Paul | 1992-03-02 |
7 | Mary | 1993-04-03 |
8 +-----------+------------+

So far we only retrieved data from a single table but often we need to combine data fromJOIN

multiple tables. Combining data is done with the JOIN command—similar to the merge()
function in R. There are four possible joins:5

1. INNER JOIN will return a row whenever there is a match in both tables.

2. LEFT JOIN will return a row whenever there is a match in the first table.

3. RIGHT JOIN will return a row whenever there is a match in the second table.

4. FULL JOIN will return a row whenever there is a match in one of the tables.

To show how joins work, let us consider three examples in which data from the birthdays
table and the foodranking table are combined. Both tables are related by nameid. We will
match rows on this identifier, meaning that information from both tables is merged by identical
values on nameid.

To show the differences in the join statements, let us add a row to the birthdays table with
a nameid value that is not included in the foodranking table:

1 > INSERT INTO birthdays (nameid,firstname,lastname,birthday)
2 > VALUES (10,"Donald","Docker","1934-06-09") ;

The birthdays table now has one additional row:

1 > SELECT * FROM birthdays ;
2 +--------+-----------+----------+------------+
3 | nameid | firstname | lastname | birthday |
4 +--------+-----------+----------+------------+
5 | 1 | Peter | Pascal | 1991-02-01 |
6 | 2 | Paul | Panini | 1992-03-02 |
7 | 3 | Mary | Meyer | 1993-04-03 |
8 | 10 | Donald | Docker | 1934-06-09 |
9 +--------+-----------+----------+------------+

5Note that support of the different join commands is DBMS dependent. For example, SQLite only supports
INNER JOIN and LEFT JOIN while MySQL has no implementation of FULL JOIN.
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Recall the food ranking table (Table 7.5). The first JOIN command is an inner join, which
needs matching keys in both tables. Therefore, only information related to Peter, Paul, and
Mary should show up in the resulting table, because Donald does not have a nameid in both
tables:

1 > SELECT birthdays.nameid, firstname, lastname, birthday, foodid, rank
2 > FROM birthdays
3 > INNER JOIN foodranking
4 > ON birthdays.nameid=foodranking.nameid ;
5 +--------+-----------+----------+------------+--------+------+
6 | nameid | firstname | lastname | birthday | foodid | rank |
7 +--------+-----------+----------+------------+--------+------+
8 | 1 | Peter | Pascal | 1991-02-01 | 1 | 1 |
9 | 1 | Peter | Pascal | 1991-02-01 | 2 | 2 |

10 | 2 | Paul | Panini | 1992-03-02 | 3 | 1 |
11 | 3 | Mary | Meyer | 1993-04-03 | 4 | 1 |
12 | 3 | Mary | Meyer | 1993-04-03 | 5 | 2 |
13 | 3 | Mary | Meyer | 1993-04-03 | 2 | 3 |
14 +--------+-----------+----------+------------+--------+------+

Joins are de facto extended SELECT statements. As in an ordinary SELECT statement we
first specify the command followed by the names of the columns to be retrieved. Note that
the columns to be retrieved can be from both tables. If columns with the same name exist
in both tables they should be preceded by the table name to clarify which column we are
referring to—for example, birthdays.nameid refers to the name identification column in
the birthdays table. The column specification is followed by FROM and the name of the first
table. In contrast to ordinary SELECT statements we now specify the join keywords—in this
case INNER JOIN—followed by the name of the second table. Using the keyword ON we
specify which columns serve as keys for the match.

As expected, Donald does not show up in the resulting table because his id is not included
in the foodranking table. Furthermore, the resulting table has a row for each food preference
so that information from the birthdays table like name and birthday is duplicated as needed.

1 > SELECT birthdays.nameid, firstname, lastname, birthday, foodid, rank
2 > FROM birthdays
3 > LEFT JOIN foodranking
4 > ON birthdays.nameid=foodranking.nameid ;
5 +--------+-----------+----------+------------+--------+------+
6 | nameid | firstname | lastname | birthday | foodid | rank |
7 +--------+-----------+----------+------------+--------+------+
8 | 1 | Peter | Pascal | 1991-02-01 | 1 | 1 |
9 | 1 | Peter | Pascal | 1991-02-01 | 2 | 2 |

10 | 2 | Paul | Panini | 1992-03-02 | 3 | 1 |
11 | 3 | Mary | Meyer | 1993-04-03 | 4 | 1 |
12 | 3 | Mary | Meyer | 1993-04-03 | 5 | 2 |
13 | 3 | Mary | Meyer | 1993-04-03 | 2 | 3 |
14 | 10 | Donald | Docker | 1934-06-09 | NULL | NULL |
15 +--------+-----------+----------+------------+--------+------+
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Because LEFT JOIN only requires that a key appears in the first—or left—table, Donald
Docker is now included in the resulting table, but there is no information on food preference—
both columns show NULL values for Donald Docker. If we had specified the join the other
way around with foodranking being the first table and birthdays second, Donald would
not have been included as his id is not part of foodranking.

More than one table can be combined with join statements. To get the individuals’
preferences as well as the actual name of the food—we need columns from three tables. We
gather this information by extending the INNER JOIN of our previous example with another
join that specifies that tables foodranking and foodtypes are related via their foodid
columns and a request for the foodname column:

1 > SELECT firstname, rank, foodname FROM birthdays
2 > INNER JOIN foodranking
3 > ON birthdays.nameid = foodranking.nameid
4 > INNER JOIN foodtypes
5 > ON foodranking.foodid = foodtypes.foodid ;
6 +-----------+------+--------------+
7 | firstname | rank | foodname |
8 +-----------+------+--------------+
9 | Peter | 1 | spaghetti |

10 | Peter | 2 | hamburger |
11 | Mary | 3 | hamburger |
12 | Paul | 1 | fruit salad |
13 | Mary | 1 | chocolate |
14 | Mary | 2 | fish fingers |
15 +-----------+------+--------------+

Let us clean up before moving to the next section by dropping the data on Donald from
the database:

1 > DELETE FROM birthdays WHERE firstname = 'Donald' ;

7.3.5 Clauses

We have already used the WHERE clause in SQL statements to restrict data manipulations to
certain rows, but we have neither treated the clause thoroughly nor have we mentioned that
SQL also has other clauses.

Let us begin by extending our knowledge of the WHERE clause. We already know thatWHERE and
operators it restricts data manipulations and retrievals to specific rows. Restrictions are specified in

the form of column_name operator value, where operator defines the type of compar-
ison and value, the content of the comparison. Possible operators are = and != for equal-
ity/inequality, <, <=, >, >= for smaller (or equal) and greater (or equal) values, LIKE for basic
matching of text patterns and IN to specify a set of acceptable values.

We can also use AND and OR to build more complex restrictions and even nest restrictions
by using parentheses. Let us start with a composite WHERE clause with two conditions—see



SQL AND RELATIONAL DATABASES 185

the code snippet below. This statement retrieves data from all three tables but the resulting
set of rows is restricted by the WHERE clause to those lines that have a food preference rank
equal or larger than 2 and where the firstname matches 'Mary'.

1 > SELECT firstname, foodname, rank FROM birthdays
2 > INNER JOIN foodranking ON birthdays.nameid = foodranking.nameid
3 > INNER JOIN foodtypes ON foodranking.foodid = foodtypes.foodid
4 > WHERE rank >= 2 AND firstname = 'Mary' ;
5 +-----------+--------------+------+
6 | firstname | foodname | rank |
7 +-----------+--------------+------+
8 | Mary | hamburger | 3 |
9 | Mary | fish fingers | 2 |

10 +-----------+--------------+------+

The next statement has a nested composite WHERE clause and uses alphabetical sorting of
text (firstname < 'Peter'). While firstname should never match 'Mary', the other
part of the clause states that either healthy should equal to 1 or firstname should be a
string that precedes Peter alphabetically.

1 > SELECT firstname, foodname, healthy FROM birthdays
2 > INNER JOIN foodranking ON birthdays.nameid = foodranking.nameid
3 > INNER JOIN foodtypes ON foodranking.foodid = foodtypes.foodid
4 > WHERE (healthy = 1 OR firstname < 'Peter') AND firstname != 'Mary' ;
5 +-----------+-------------+---------+
6 | firstname | foodname | healthy |
7 +-----------+-------------+---------+
8 | Paul | fruit salad | 1 |
9 +-----------+-------------+---------+

The following statement is an example of using IN—the value of firstname should
match one of three names:

1 > SELECT firstname, lastname FROM birthdays
2 > WHERE firstname IN ('Peter','Paul','Karl') ;
3 +-----------+----------+
4 | firstname | lastname |
5 +-----------+----------+
6 | Peter | Pascal |
7 | Paul | Panini |
8 +-----------+----------+

The last statement showcases the usage of LIKE—% is a wildcard for any number of any
character and _ is a wildcard for any one character. The statement requires that a row is part
of the resulting table if either firstname contains er at the end of the string preceded by
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any number of characters or that lastname contains an e that is preceded by any number of
characters and followed by exactly one character.

1 > SELECT firstname, lastname FROM birthdays
2 > WHERE firstname LIKE '%er' OR lastname LIKE '%e_';
3 +-----------+----------+
4 | firstname | lastname |
5 +-----------+----------+
6 | Peter | Pascal |
7 | Mary | Meyer |
8 +-----------+----------+

A second clause is the ORDER BY clause, which enables us to order results by columnORDER BY

values. Below you find several examples that order the results of a data retrieval. The standard
for sorting is to do it in ascending order.

1 > SELECT firstname FROM birthdays ORDER BY firstname ;
2 +-----------+
3 | firstname |
4 +-----------+
5 | Mary |
6 | Paul |
7 | Peter |
8 +-----------+

To revert this behavior, we can add the keyword DESC. We can also specify more than
one column to define the sort order and choose for every column whether it should be used
in ascending or descending order.

1 > SELECT firstname FROM birthdays
2 > ORDER BY birthday DESC, firstname ASC ;
3 +-----------+
4 | firstname |
5 +-----------+
6 | Mary |
7 | Paul |
8 | Peter |
9 +-----------+

The GROUP BY clause allows aggregating values. The type of aggregation depends on theGROUP BY

specific aggregation function that we use.6 In the following example the use of GROUP

6Aggregation functions are, for example, averages (AVG), counts (COUNT), first values (FIRST), maxima (MAX),
and sums (SUM).
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BY is exemplified with the COUNT aggregation function, which returns a count of how
many food preferences each person has—the result is a table with a row for each unique
nameid from the birthdays table and a count of how many times a food preference was
recorded.

1 > SELECT firstname, COUNT(rank) FROM birthdays
2 > INNER JOIN foodranking ON birthdays.nameid = foodranking.nameid
3 > INNER JOIN foodtypes ON foodranking.foodid = foodtypes.foodid
4 > GROUP BY birthdays.nameid ;
5 +-----------+-------------+
6 | firstname | COUNT(rank) |
7 +-----------+-------------+
8 | Peter | 2 |
9 | Paul | 1 |

10 | Mary | 3 |
11 +-----------+-------------+

To filter the aggregation table resulting from a GROUP BY clause, a special clause is HAVING

needed—a WHERE clause can be used in combination with GROUP BY, but this excludes
rows only before aggregation not after. Using HAVING we can filter the aggregation
results.

1 > SELECT firstname, COUNT(rank) FROM birthdays
2 > INNER JOIN foodranking ON birthdays.nameid = foodranking.nameid
3 > INNER JOIN foodtypes ON foodranking.foodid = foodtypes.foodid
4 > GROUP BY birthdays.nameid
5 > HAVING COUNT(rank) > 1 ;
6 +-----------+-------------+
7 | firstname | COUNT(rank) |
8 +-----------+-------------+
9 | Peter | 2 |

10 | Mary | 3 |
11 +-----------+-------------+

7.3.6 Transaction control language—TCL

SQL statements are usually executed after a statement is sent to the DBMS and made START

TRANSACTION

and COMMIT
permanent unless some error occurs. This standard behavior can be modified by explicitly
starting a transacting with START TRANSACTION. Using this statement a save point is created.
Instead of executing each SQL statement immediately and making them permanent, each
statement is executed temporarily until it is explicitly committed by the user with the COMMIT
command. If an error occurs before COMMIT was specified all changes until the last save point
are reversed.
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We can achieve the same behavior by asking the DBMS to ROLLBACK until the last saveROLLBACK

point. Below you find an example where some data are added and then the database is reversed
to the status when the save point was set.

1 > START TRANSACTION ;
2 > INSERT INTO birthdays (firstname, lastname)
3 > VALUES ('Simon', 'Sorcerer') ;
4 > SELECT firstname, lastname FROM birthdays ;
5 +-----------+-----------+
6 | firstname | lastname |
7 +-----------+-----------+
8 | Peter | Pascal |
9 | Paul | Panini |

10 | Mary | Meyer |
11 | Simon | Sorcerer |
12 +-----------+-----------+
13 > ROLLBACK ;
14 > SELECT firstname, lastname FROM birthdays ;
15 +-----------+----------+
16 | firstname | lastname |
17 +-----------+----------+
18 | Peter | Pascal |
19 | Paul | Panini |
20 | Mary | Meyer |
21 +-----------+----------+

7.4 Databases in action

7.4.1 R packages to manage databases

R has several packages to connect to DBMS: One way is to use packages that rely on the DBI
package (R Special Interest Group on Databases 2013) like RMySQL (James and DebRoy
2013), ROracle (Denis Mukhin and Luciani 2013), RPostgreSQL (Conway et al. 2013) and
RSQLite (James and DebRoy 2013) to establish a “native” connection to a specific DBMS.
While the DBI package defines virtual functions, the database-specific packages implement
these functions in database-specific ways. The added value of this approach is that while
there is a common set of functions that are expected to work the same way, different package
authors can concentrate on developing and maintaining solutions for one type of database
only.

Another approach to work with DBMS via R is to rely on RODBC (Ripley and Lapsley
2013). This package uses open database connectivity (ODBC) drivers as an indirect way to
connect to DBMS and requires that the user installs and configures the necessary driver before
using it in R. ODBC drivers are available across platforms and for a wide variety of DBMS.
They even exist for data storage formats that are no databases at all, like CSV or XLS/XLSX.
The package also delivers a general approach to manage different types of databases with the
same set of functions. On the downside, this approach depends on whether ODBC drivers are
available for the DBMS type to be used in combination with the platform R is working on.
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Which package to use is essentially a matter of taste and how difficult it is to get the
package or driver running—at the moment and to the authors’ best knowledge RSQLite is
the only package that works completely out of the box across multiple platforms. All other
packages need driver installation and/or package compilation.

7.4.2 Speaking R-SQL via DBI-based packages

As the DBI package defines a common framework for working with databases from within
R, all database packages that rely on this framework work the same way, regardless of which
particular DBMS we establish a connection to. To show how things work for DBI-based
packages, we will make use of RSQLite. Let us load the birthdays database, which has been
bundled as an SQLite file and execute a simple SELECT statement:

R> # loading package
R> library(RSQLite)

R> # establish connection
R> sqlite <- dbDriver("SQLite")
R> con <- dbConnect(sqlite, "birthdays.db")

R> # 'plain' SQL
R> sql <- "SELECT * FROM birthdays"
R> res <- dbGetQuery(con, sql)
R> res

nameid firstname lastname birthday
1 1 Peter Pascal 1991-02-01
2 2 Paul Panini 1992-03-02
3 3 Mary Meyer 1993-04-03

R> res <- dbSendQuery(con, sql)
R> fetch(res)

nameid firstname lastname birthday
1 1 Peter Pascal 1991-02-01
2 2 Paul Panini 1992-03-02
3 3 Mary Meyer 1993-04-03

Using these functions we are able to perform basic database operations from within R.
Let us go through the code line by line. First we load the RSQLite package so that R knows
how to handle SQLite databases. Next, we build up a connection to the database by first
defining the driver and then using the driver in the actual connection. Because our SQLite
database has no password, we do not have to specify much except the database driver and
the location of the database. Now we can query our database. We have two functions to do
so: dbGetQuery() and dbSendQuery(). Both functions ask the DBMS to execute a single
query, but differ in how they handle the results returned by the DBMS. The first one fetches
all results and converts them to a data frame, while the second one will not fetch any results
unless we explicitly ask R to do so with the fetch() function.

Because we can send any SQL query that is supported by the specific DBMS, these four
functions suffice to fully control databases from within R. Nonetheless, there are several other
functions provided by DBI-based packages. These functions do not add further features but
help to make communication between R and DBMS more convenient. There are, for example,
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functions for getting an overview of the database properties—dbGetInfo()—and the tables
that are provided—dbListTables():

R> # general information
R> dbGetInfo(con)[2]
$serverVersion
[1] "3.7.17"

R> # listing tables
R> dbListTables(con)
[1] "birthdays" "foodranking" "foodtypes" "sqlite_sequence"

There are also functions for reading, writing, and removing tables, which are as convenient
as they are self-explanatory: dbReadTable(), dbWriteTable(), dbExistsTable(), and
dbRemoveTable().

R> # reading tables
R> res <- dbReadTable(con, "birthdays")
R> res
nameid firstname lastname birthday
1 1 Peter Pascal 1991-02-01
2 2 Paul Panini 1992-03-02
3 3 Mary Meyer 1993-04-03

R> # writing tables
R> dbWriteTable(con, "test", res)
[1] TRUE

R> # table exists?
R> dbExistsTable(con, "test")
[1] TRUE

R> # remove table
R> dbRemoveTable(con, "test")
[1] TRUE

To check the data type an R object would be assigned if stored in a database, we use
dbDataType():

R> # checking data type
R> dbDataType(con, res$nameid)
[1] "INTEGER"
R> dbDataType(con, res$firstname)
[1] "TEXT"
R> dbDataType(con, res$birthday)
[1] "TEXT"

We can also start, revert, and commit transactions as well as close a connection to a
DBMS:

R> # transaction management
R> dbBeginTransaction(con)
[1] TRUE
R> dbRollback(con)
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[1] TRUE
R> dbBeginTransaction(con)
[1] TRUE
R> dbCommit(con)
[1] TRUE
R> # closing connection
R> dbDisconnect(con)
[1] TRUE

7.4.3 Speaking R-SQL via RODBC

Communicating with databases by relying on the RODBC package is quite similar to the
DBI-based packages. There are functions that forward SQL statements to the DBMS and
convenience functions that do not require the user to specify SQL statements.7

Let us start by establishing a connection to our database and passing a simple SELECT *
statement to read all lines of the birthdays table:

R> # reading package
R> require(RODBC)

R> # establishing connection
R> con <- odbcConnect("db1")

R> # 'plain' SQL
R> sql <- "SELECT * FROM birthdays ;"
R> res <- sqlQuery(con, sql)
R> res
nameid firstname lastname birthday

1 1 Peter Pascal 1991-02-01
2 2 Paul Panini 1992-03-02
3 3 Mary Meyer 1993-04-03

The code to establish a connection and pass the SQL statement to the DBMS is quite
similar to what we have seen before. One difference is that we do not have to specify any
driver as the driver and all other connection information have already been specified in the
ODBC manager so that we only have to refer to the name we gave this particular connection
in the ODBC manager.

Besides the direct execution of SQL statements, there are numerous convenience functions
similar to those found in the DBI-based packages. To get general information on the connection
and the drivers used or to list all tables in the database, we can use odbcGetInfo() and
sqlTables():

R> # general information
R> odbcGetInfo(con)[3]
Driver_ODBC_Ver

"03.51"

7The example works with MySQL drivers. They are available at http://dev.mysql.com/downloads/
connector/odbc/. MySQL ODBC drivers are reliable and available for a whole range of platforms. If you have
followed the examples in the last section with your own MySQL database, you can now connect to it to follow the
example.

http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/


192 AUTOMATED DATA COLLECTION WITH R

R> # listing tables
R> sqlTables(con)[, 3:5]

TABLE_NAME TABLE_TYPE REMARKS
1 birthdays TABLE
2 foodranking TABLE
3 foodtypes TABLE

To get an overview of the ODBC driver connections that are currently specified in our
ODBC manager, we can use odbcDataSources(). The function reveals that db1 to which
we are connected is based on MySQL drivers version 5.2:

R> odbcDataSources()
db1

"MySQL ODBC 5.2 ANSI Driver"

We can also ask for whole tables without specifying the SQL statement by a simple call
to sqlFetch():

R> # 'plain' SQL
R> res <- sqlFetch(con, "birthdays")
R> res

nameid firstname lastname birthday
1 1 Peter Pascal 1991-02-01
2 2 Paul Panini 1992-03-02
3 3 Mary Meyer 1993-04-03

Similarly, we can write R data frames to SQL tables with convenience functions. We can
also empty tables or delete them altogether:

R> # writing tables
R> test <- data.frame(x = 1:3, y = letters[7:9])
R> sqlSave(con, test, "test")
R> sqlFetch(con, "test")

x y
1 1 g
2 2 h
3 3 i

R> # empty table
R> sqlClear(con, "test")
R> sqlFetch(con, "test")
[1] x y
<0 rows> (or 0-length row.names)

R> # drop table
R> sqlDrop(con, "test")

Summary

In this chapter we learned about databases, SQL, and several R packages that enable us to
connect to databases and to access the data stored in them. Simply put, relational databases
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are collections of tables that are related to one another by keys. Although R is capable of
handling data, databases offer solutions to certain data management problems that are best
dealt with in a specific environment. SQL is the lingua franca for communication between
the user and a wide range of database management systems. While SQL allows us to define
what should be done, it is in fact the DBMS that manages how this is achieved in a reliable
manner. As a multipurpose language we can use SQL to manage user rights, define data
structures, import, manipulate, and retrieve data as well as to control transactions. We have
seen that R is capable of communicating with a variety of databases and provides additional
convenience functions. As DBMS were designed for reliable and efficient handling of data
they might be solutions to limited RAM size, multipurpose usages of data, multiuser access
to data, complex data storage, and remote access to data.

Further reading

Relational databases and SQL are part of the web technology community and are therefore
treated in hundreds of forums, blogs, and manuals. Therefore, you can easily find a solution
to most problems by typing your question into any ordinary search engine. To learn the
full spectrum of options for a specific DBMS, you might be better advised to turn to a
comprehensive treatment of the subject. For an introduction to MySQL we recommend
Beaulieu (2009). Those who like it a little bit more fundamental might find the SQL Bible
(Kriegel and Trukhnov 2008) or Relational Database Design and Implementation (Harrington
2009) helpful sources. Last but not least the SQL Pocket Guide (Gennick 2011) is a gentle
pocket reference that fits in every bookshelf.

Problems

The following problems are built around two—more or less—real-life databases, one on
Pokemon characters, the other on data about elections, governments, and parties. The Poke-
mon data was gathered and provided by Francisco S. Velazquez. We extracted some of the
tables and provide them as CSV files along with supplementary material for this chapter. The
complete database is available at https://github.com/kikin81/pokemon-sqlite. The ParlGov
database is provided by Döring (2013). It combines data on “elections, parties, and govern-
ments for all EU and most OECD members from 1945 until today” gathered from multiple
sources. More information is available at http://parlgov.org. Downloading the whole database
will be part of the exercise.

Pokemon problems

1. Load the RSQLite package and create a new RSQLite database called pokemon.sqlite.

2. Use read.csv2() to read pokemon.csv, pokemon_species.csv, pokemon_stats.csv,
pokemon_types.csv, stats.csv, type_efficacy.csv, and types.csv into R and write the tables
to pokemon.sqlite. Have a look at PokemonReadme.txt to learn about the tables you
imported.

3. Use functions from DBI/RSQLite to read the tables that you stored in the database
back into R and save them in objects named: pokemon, pokemon_species,
pokemon_stats, pokemon_types, stats, type_efficacy, and types.

https://github.com/kikin81/pokemon-sqlite
https://github.com/kikin81/pokemon-sqlite
http://parlgov.org
http://parlgov.org
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4. Build a query that SELECTs those pokemon from table pokemon that are heavier than
4000. Next, build a SELECT query that JOINs tables pokemon and pokemon_species.

5. Combining the previous SQL queries, build a query that JOINs both tables and restricts
the results to Pokemon that are heavier than 4000.

6. Build a query that SELECTs all Pokemon names from table pokemon_species that have
Nido as part of their name.

7. Fetching names.
(a) Build a query that SELECTs Pokemon names.
(b) Send the query to the database using dbSendQuery() and save the result in an

object.
(c) Use fetch() three times in a row, each time retrieving another set of five names.
(d) Use dbClearResult() to clean up afterwards.

8. Creating views.
(a) Create a VIEW called pokeview …
(b) … that JOINs table pokemon with table pokemon_species,
(c) … and contains the following information: height and weight, species identifier,

Pokemon id from which the Pokemon evolves, the id of the evolution chain, and
ids for Pokemon and species.

(d) Create a VIEW called typeview …
(e) … that JOINs pokemon_types and types …
(f) … and contains the following information: slot of the type, identifier of the type,

and ids for Pokemon, damage class, and type.
(g) Create a VIEW called statsview …
(h) … that JOINs pokemon_stats and stats …
(i) … and contains the following information: identifier of the statistic, base value of

the statistics, and ids for Pokemon, statistics, and damage class.

9. Using the views you created, which Pokemon are of type dragon? Which Pokemon has
most health points, which has the best attack, defense, and speed?

ParlGov problems

10. Use download.file() with mode="wb" to save the following resource http://parlgov
.org/stable/static/data/parlgov-stable.db as parlgov.sqlite and establish a connection.

11. Get a list of all tables in the database. According to info_data_source, which external
data sources were used for the database?

12. Figure out for which countries the database offers data.

13. Which time span is covered by the election table?

14. How many early elections were there in Spain, the United Kingdom, and Switzerland?

15. Creating views.
(a) CREATE a VIEW named edata …
(b) … that JOINs table election_result …
(c) …with tables election, country, and party …

http://parlgov.org/stable/static/data/parlgov-stable.db
http://parlgov.org/stable/static/data/parlgov-stable.db
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(d) … so that the view contains the following information: country name, date of the
election, the abbreviated party name, party name in English, seats to be won in
total, seats won by party, vote share won by the party, as well as ids for country,
election, election results, and party.

(e) Make sure the VIEW is restricted to elections of type 13 (elections to parliament).
(f) Read the data of the view into R and save it in an object.
(g) Add a variable storing the seat share.
(h) Plot vote shares versus seat shares. Use text() to add the name of the country if

vote share and seat share differ by more than 20 percentage points.

16. Find answers to the following questions in the database.
(a) Which country had a cabinet lead by Lojze Peterle?
(b) Which parties were part of that government?
(c) What were their vote shares in the election?

17. More SELECT queries.
(a) Build a query that SELECTs column tbl_name and type from table sqlite_master.
(b) Build a query that SELECTs column sql from table sqlite_master WHERE column

tbl_name equals edata. Save the result in an object and use cat() to display the
contents of the object.

(c) Do the same for tbl_name equal to view_election.



8

Regular expressions and essential
string functions

The Web consists predominantly of unstructured text. One of the central tasks in web scraping
is to collect the relevant information for our research problem from heaps of textual data.
Within the unstructured text we are often interested in systematic information—especially
when we want to analyze the data using quantitative methods. Systematic structures can be
numbers or recurrent names like countries or addresses. We usually proceed in three steps.
First we gather the unstructured text, second we determine the recurring patterns behind the
information we are looking for, and third we apply these patterns to the unstructured text
to extract the information. This chapter will focus on the last two steps. Consider HTML
documents from the previous chapters as an example. In principle, they are nothing but
collections of text. Our goal is always to identify and extract those parts of the document that
contain the relevant information. Ideally we can do so using XPath—but sometimes the crucial
information is hidden within atomic values. In some settings, relevant information might
be scattered across an HTML document, rendering approaches that exploit the document
structure useless. In this chapter we introduce a powerful tool that helps retrieve data in such
settings—regular expressions. Regular expressions provide us with a syntax for systematically
accessing patterns in text.

Consider the following short example. Imagine we have collected a string of names andA short
example corresponding phone numbers from fictional characters of the “The Simpsons” TV series.

Our task is to extract the names and numbers and to put them into a data frame.

R> raw.data <- "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery555
-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226Simpson,
Homer5553642Dr. Julius Hibbert"

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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The first thing we notice is how the names and numbers come in all sorts of formats. Some
numbers include area codes, some contain dashes, others even parentheses. Yet, despite these
differences we also notice the similarities between all the phone numbers and the names. Most
importantly, the numbers all contain digits while all the names contain alphabetic characters.
We can make use of this knowledge by writing two regular expressions that will extract only
the information that we are interested in. Do not worry about the details of the functions
at this point. They simply serve to illustrate the task that we tackle in this chapter. We will
learn the various elements the queries are made up of and also how they can be applied in
different contexts to extract information and get it into a structured format. We will return to
the example in Section 8.1.3.

R> library(stringr)

R> name <- unlist(str_extract_all(raw.data, "[[:alpha:]., ]{2,}"))
R> name
[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson, Homer" "Dr. Julius Hibbert"

R> phone <- unlist(str_extract_all(raw.data, "\\(?(\\d{3})?\\)?
(-| )?\\d{3}(-| )?\\d{4}"))
R> phone
[1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
[5] "636-555-3226" "5553642"

We can input the results into a data frame:

R> data.frame(name = name, phone = phone)
name phone

1 Moe Szyslak 555-1239
2 Burns, C. Montgomery (636) 555-0113
3 Rev. Timothy Lovejoy 555-6542
4 Ned Flanders 555 8904
5 Simpson, Homer 636-555-3226
6 Dr. Julius Hibbert 5553642

Although R offers the main functions necessary to accomplish such tasks, R was not
designed with a focus on string manipulation. Therefore, relevant functions sometimes lack
coherence. As the importance of text mining and natural language processing in particular has
increased in recent years, several packages have been developed to facilitate text manipulation
in R. In the following sections—and throughout the remainder of this volume—we rely
predominantly on the stringr package, as it provides most of the string manipulation capability
we require and it enforces a more consistent coding behavior (Wickham 2010).

The following section introduces regular expressions as implemented in R. Section 8.2
provides an overview on how string manipulation can be used in practice. This is done by
presenting commands that are available in the stringr package. If you have previously worked
with regular expressions, you can skip Section 8.1 without much loss. Section 8.3 concludes
with some aspects of character encodings—an important concept in web scraping.
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8.1 Regular expressions

Regular expressions are generalizable text patterns for searching and manipulating text data.
Strictly speaking, they are not so much a tool as they are a convention on how to query strings
across a wide range of functions. In this section, we will introduce the basic building blocks
of extended regular expressions as implemented in R. The following string will serve as a
running example:

R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

8.1.1 Exact character matching

At the most basic level characters match characters—even in regular expressions. Thus,
extracting a substring of a string will yield itself if present:

R> str_extract(example.obj, "small")
[1] "small"

Otherwise, the function would return a missing value:

R> str_extract(example.obj, "banana")
[1] NA

The function we use here and in the remainder of this section is str_extract() from
the stringr package, which we assume is loaded in all subsequent examples. It is defined as
str_extract(string, pattern) such that we first input the string that is to be operated
upon and second the expression we are looking for. Note that this differs from most base
functions, like grep() or grepl(), where the regular expression is typically input first.1 The
function will return the first instance of a match to the regular expression in a given string.
We can also ask R to extract every match by calling the function str_extract_all():

R> unlist(str_extract_all(example.obj, "sentence"))
[1] "sentence" "sentence"

The stringr package offers both str_whatever() and str_whatever_all() in many
instances. The former addresses the first instance of a matching string while the latter
accesses all instances. The syntax of all these functions is such that the character vector in
question is the first element, the regular expression the second, and all possible additional
values come after that. The functions’ consistency is the main reason why we prefer to use
the stringr package by Hadley Wickham (2010). We introduce the package in more detail
in Section 8.2. See Table 8.5 for an overview of the counterparts of the stringr functions in
base R.

As str_extract_all() is ordinarily called on multiple strings, the results are returned
as a list, with each list element providing the results for one string. Our input string in the
call above is a character vector of length one; hence, the function returns a list of length
one, which we unlist() for convenience of exposition. Compare this to the behavior of the
function when we call it upon multiple strings at the same time. We create a vector containing

1See also Table 8.5 for a comparison between base R and stringr string manipulation functions.
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the strings text, manipulation, and basics. We use the function str_extract_all()
to extract all instances of the pattern a:

R> out <- str_extract_all(c("text", "manipulation", "basics"), "a")
R> out
[[1]]
character(0)

[[2]]
[1] "a" "a"

[[3]]
[1] "a"

The function returns a list of the same length as our input vector—three—where each
element in the list contains the result for one string. As there is no a in the first string, the first
element is an empty character vector. String two contains two as, string three one occurrence.

By default, character matching is case sensitive. Thus, capital letters in regular expressions
are different from lowercase letters.

R> str_extract(example.obj, "small")
[1] "small"

small is contained in the example string while SMALL is not.

R> str_extract(example.obj, "SMALL")
[1] NA

Consequently, the function extracts no matching value. We can change this behavior by
enclosing a string with ignore.case().2

R> str_extract(example.obj, ignore.case("SMALL"))
[1] "small"

We are not limited to using regular expressions on words. A string is simply a sequence
of characters. Hence, we can just as well match particles of words…

R> unlist(str_extract_all(example.obj, "en"))
[1] "en" "en" "en" "en"

… or mixtures of alphabetic characters and blank spaces.

R> str_extract(example.obj, "mall sent")
[1] "mall sent"

Searching for the pattern en in the example string returns every instance of the pattern, Matching
beginnings and
ends

that is, both occurrences in the word sentence, which is contained twice in the example
object. Sometimes we do not simply care about finding a match anywhere in a string but are

2This behavior is a property of the stringr package. For case-insensitive matching in base functions, set the
ignore.case argument to TRUE. Incidentally, if you have never worked with strings before, tolower() and
toupper() will convert your string to lower/upper case.



200 AUTOMATED DATA COLLECTION WITH R

concerned about the specific location within a string. There are two simple additions we can
make to our regular expression to specify locations. The caret symbol (ˆ) at the beginning
of a regular expression marks the beginning of a string—$ at the end marks the end.3 Thus,
extracting 2 from our running example will return a 2.

R> str_extract(example.obj, "2")
[1] "2"

Extracting a 2 from the beginning of the string, however, fails.

R> str_extract(example.obj, "ˆ2")
[1] NA

Similarly, the $ sign signals the end of a string, such that…

R> unlist(str_extract_all(example.obj, "sentence$"))
character(0)

… returns no matches as our example string ends in a period character and not in theThe pipe
operator word sentence. Another powerful addition to our regular expressions toolkit is the pipe,

displayed as |. This character is treated as an OR operator such that the function returns all
matches to the expressions before and after the pipe.

R> unlist(str_extract_all(example.obj, "tiny|sentence"))
[1] "sentence" "tiny" "sentence"

8.1.2 Generalizing regular expressions

Up to this point, we have only matched fixed expressions. But the power of regular expressions
stems from the possibility to write more flexible, generalized search queries. The most general
among them is the period character. It matches any character.

R> str_extract(example.obj, "sm.ll")
[1] "small"

Another powerful generalization in regular expressions are character classes, which are
enclosed in brackets—[]. A character class means that any of the characters within the
brackets will be matched.

R> str_extract(example.obj, "sm[abc]ll")
[1] "small"

The above code extracts the word small as the character a is part of the character class
[abc]. A different way to specify the elements of a character class is to employ ranges of
characters, using a dash -.

R> str_extract(example.obj, "sm[a-p]ll")
[1] "small"

3Note that inside a character class a caret has a different meaning (see p. 202).
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Table 8.1 Selected predefined character classes in R regular expressions

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9
[:lower:] Lowercase characters: a–z
[:upper:] Uppercase characters: A–Z
[:alpha:] Alphabetic characters: a–z and A–Z
[:alnum:] Digits and alphabetic characters

[:punct:] Punctuation characters: . , ; etc.
[:graph:] Graphical characters: [:alnum:] and [:punct:]
[:blank:] Blank characters: Space and tab
[:space:] Space characters: Space, tab, newline, and other space characters
[:print:] Printable characters: [:alnum:], [:punct:] and [:space:]

Source: Adapted from http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html

In this case, any characters from a to p are valid matches. Apart from alphabetic characters
and digits, we can also include punctuation and spaces in regular expressions. Accordingly,
they can be part of a character class. For example, the character class [uvw. ] matches the
letters u, v and w as well as a period and a blank space. Applying this to our running example
(Recall: "1. A small sentence. - 2. Another tiny sentence.") yields all of its
constituent periods and spaces but neither u, v, or w as there are none in the object. Note that
the period character in the character class loses its special meaning. Inside a character class,
a dot only matches a literal dot.

R> unlist(str_extract_all(example.obj, "[uvw. ]"))
[1] "." " " " " " " "." " " " " "." " " " " " " "."

So far, we have manually specified character classes. However, there are some typical Character
classescollections of characters that we need to match in a body of text. For example, we are often

interested in finding all alphabetic characters in a given text. This can be accomplished with
the character class [a-zA-Z], that is, all letters from a to z as well as all letters from A
to Z. For convenience, a number of common character classes have been predefined in R.
Table 8.1 provides an overview of selected predefined classes.

In order to use the predefined classes, we have to enclose them in brackets. Otherwise,
R assumes that we are specifying a character class consisting of the constituent characters.
Say we are interested in extracting all the punctuation characters in our example. The correct
expression is

R> unlist(str_extract_all(example.obj, "[[:punct:]]"))
[1] "." "." "-" "." "."

Notice how this differs from

R> unlist(str_extract_all(example.obj, "[:punct:]"))
[1] "n" "t" "n" "c" "n" "t" "t" "n" "n" "t" "n" "c"

Not enclosing the character class returns all the :, p, u, n, c, and t in our running
example. Note that the duplicate : does not throw off R. A redundant inclusion of a character
in a character class will only match each instance once.

http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
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R> unlist(str_extract_all(example.obj, "[AAAAAA]"))
[1] "A" "A"

Furthermore, while [A-Za-z] is almost identical to [:alpha:], the former disregards
special characters, such that…

R> str_extract("François Hollande", "Fran[a-z]ois")
[1] NA

… returns no matches, while…

R> str_extract("François Hollande", "Fran[[:alpha:]]ois")
[1] "François"

… does. The predefined character classes will cover many requests we might like to make
but in case they do not, we can even extend a predefined character class by adding elements
to it.

R> unlist(str_extract_all(example.obj, "[[:punct:]ABC]"))
[1] "." "A" "." "-" "." "A" "."

In this case, we extract all punctuation characters along with the capital letters A, B, and C.
Incidentally, making use of the range operator we introduced above, this extended character
class could be rewritten as [[:punct:]A-C]. Another nifty use of character classes is to
invert their meanings by adding a caret (ˆ) at the beginning of a character class. Doing so,
the function will match everything except the contents of the character class.

R> unlist(str_extract_all(example.obj, "[ˆ[:alnum:]]"))
[1] "." " " " " " " "." " " "-" " " "." " " " " " " "."

Accordingly, in our case every non-alphanumeric character yields every blank spaceQuantifiers

and punctuation character. To recap, we have learned that every digit and character matches
itself in a regular expression, a period matches any character, and a character class will
match any of its constituent characters. However, we are still missing the option to use
quantification in our expressions. Say, we would like to extract a sequence starting with
an s, ending with a l, and any three alphabetic characters in between from our running
example. With the tools we have learned so far, our only option is to write an expression like
s[[:alpha:]][[:alpha:]][[:alpha:]]l. Recall that we cannot use the . character as
this would match any character, including blank spaces and punctuation.

R> str_extract(example.obj, "s[[:alpha:]][[:alpha:]][[:alpha:]]l")
[1] "small"

Writing our regular expressions in this manner not only quickly becomes difficult to read
and understand, but it is also inefficient to write and more prone to errors. To avoid this we
can add quantifiers to characters. For example, a number in {} after a character signals a
fixed number of repetitions of this character. Using this quantifier, a sequence such as aaaa
could be shortened to read a{4}. In our case, we thus write…

R> str_extract(example.obj, "s[[:alpha:]]{3}l")
[1] "small"
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Table 8.2 Quantifiers in R regular expressions

? The preceding item is optional and will be matched at most once
* The preceding item will be matched zero or more times
+ The preceding item will be matched one or more times
{n} The preceding item is matched exactly n times
{n,} The preceding item is matched n or more times
{n,m} The preceding item is matched at least n times, but not more than m times

Source: Adapted from http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html

…where [[:alpha:]]{3} matches any three alphabetic characters. Table 8.2 provides
an overview of the available quantifiers in R. A common quantification operator is the + sign,
which signals that the preceding item has to be matched one or more times. Using the . as
any character we could thus write the following in order to extract a sequence that runs from
an A to sentence with any number—greater than zero—of any characters in between.

R> str_extract(example.obj, "A.+sentence")
[1] "A small sentence. - 2. Another tiny sentence"

R applies greedy quantification. This means that the program tries to extract the greatest Greedy
quantification
and how to
avoid it

possible sequence of the preceding character. As the . matches any character, the function
returns the greatest possible sequence of any characters before a sequence of sentence. We
can change this behavior by adding a ? to the expression in order to signal that we are only
looking for the shortest possible sequence of any characters before a sequence of sentence.
The ? means that the preceding item is optional and will be matched at most once (see again
Table 8.2).

R> str_extract(example.obj, "A.+?sentence")
[1] "A small sentence"

We are not restricted to applying quantifiers to single characters. In order to apply a
quantifier to a group of characters, we enclose them in parentheses.

R> unlist(str_extract_all(example.obj, "(.en){1,5}"))
[1] "senten" "senten"

In this case, we are asking the function to return a sequence of characters where the first
character can be any character and the second and third characters have to be an e and an n.
We are asking the function for all instances where this sequence appears at least once, but
at most five times. The longest possible sequence that could conform to this request would
thus be 3× 5 = 15 characters long, where every second and third character would be an e
and an n. In the next code snippet we drop the parentheses. The function will thus match all
sequences that run from any character over e to n where the n has to appear at least once but
at most five times. Consider how the previous result differs from the following:

R> unlist(str_extract_all(example.obj, ".en{1,5}"))
[1] "sen" "ten" "sen" "ten"

http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
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Table 8.3 Selected symbols with special meaning

\w Word characters: [[:alnum:]_]
\W No word characters: [ˆ[:alnum:]_]
\s Space characters: [[:blank:]]
\S No space characters: [ˆ[:blank:]]
\d Digits: [[:digit:]]
\D No digits: [ˆ[:digit:]]
\b Word edge
\B No word edge
\< Word beginning
\> Word end

So far, we have encountered a number of characters that have a special meaning in regularMetacharacters

expressions.4 They are called metacharacters. In order to match them literally, we precede
them with two backslashes. In order to literally extract all period characters from our running
example, we write

R> unlist(str_extract_all(example.obj, "\\."))
[1] "." "." "." "."

The double backslash before the period character is interpreted as a single literal backslash.
Inputting a single backslash in a regular expression will be interpreted as introducing an escape
sequence. Several of these escape sequences are quite common in web scraping tasks and
should be familiar to you. The most common are \n and \t which mean new line and tab.
For example, “a\n\n\na” is interpreted as a, three new lines, and another a. If we want the
entire regular expression to be interpreted literally, we have a better alternative than preceding
every metacharacter with a backslash. We can enclose the expression with fixed() in order
for metacharacters to be interpreted literally.

R> unlist(str_extract_all(example.obj, fixed(".")))
[1] "." "." "." "."

Most metacharacters lose their special meaning inside a character class. For example, a
period character inside a character class will only match a literal period character. The only
two exceptions to this rule are the caret (ˆ) and the -. Putting the former at the beginning
of a character class matches the inverse of the character class’ contents. The latter can be
applied to describe ranges inside a character class. This behavior can be altered by putting
the - at the beginning or the end of a character class. In this case it will be interpreted
literally.

One last aspect of regular expressions that we want to introduce here are a number ofFurther
shortcuts shortcuts that have been assigned to several specific character classes. Table 8.3 provides an

overview of available shortcuts.

4We have encountered ., |, (, ), [, ], {, }, ˆ, $, *, +, ? and -.
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Consider the \w character. This symbol matches any word character in our running
example, such that…

R> unlist(str_extract_all(example.obj, "\\w+"))
[1] "1" "A" "small" "sentence" "2" "Another"
[7] "tiny" "sentence"

… extracts every word separated by blank spaces or punctuation. Note that \w is equivalent
to [[:alnum:]_] and thus the leading digits are interpreted as whole words. Consider further
the useful shortcuts for word edges \>, \<, and \b. Using them, we can be more specific in
the location of matches. Imagine we would like to extract all e from our running example
that are at the end of a word. To do so, we could apply one of the following two expressions:

R> unlist(str_extract_all(example.obj, "e\\>"))
[1] "e" "e"
R> unlist(str_extract_all(example.obj, "e\\b"))
[1] "e" "e"

This query extracts the two e from the edges of the word sentence. Finally, it is even Backreferencing

possible to match a sequence that has been previously matched in a regular expression. This
is called backreferencing. Say, we are looking for the first letter in our running example
and—whatever it may be—want to match further instances of that particular letter. To do
so, we enclose the element in question in parentheses—for example, ([[:alpha:]]) and
reference it using \1.5

R> str_extract(example.obj, "([[:alpha:]]).+?\\1")
[1] "A small sentence. - 2. A"

In our example, the letter is an A. The function returns this match and the subsequent
characters up to the next instance of an A. To make matters a little more complicated, we now
look for a lowercase word without the letter a up to and including the second occurrence of
this word.

R> str_extract(example.obj, "(\\<[b-z]+\\>).+?\\1")
[1] "sentence. - 2. Another tiny sentence"

The expression we use is (\\<[b-z]+\\>).+?\\1. First, consider the [b-z]+ part.
The expression matches all sequences of lowercase letters of length one or more that do not
contain the letter a. In our running example, neither the 1 nor the A fulfill this requirement.
The first substring that would match this expression is the double l in the word small. Recall
that the + quantifier is greedy. Hence, it tries to capture the longest possible sequence which
would be ll instead of l. This is not what we want. Instead, we are looking for a whole word
of lowercase letters that do not contain the letter a. Thus, to exclude this finding we add the
\\< and \\> to the expression to signal a word’s beginning and end. This entire expression is
enclosed in parentheses in order to reference it further down in the expression. The first part
of the string that this expression matches is the word sentence. Next, we are looking for
the subsequent occurrence of this substring in our string using the \\1—regardless of what
comes in between (.+?). Not so easy, is it?

5There can be up to nine backreferences, which would be labeled \1, \2, etc.
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8.1.3 The introductory example reconsidered

Now that we have encountered the main ingredients of regular expressions, we can come
back to our introductory example of sorting out the Simpsons phone directory. Take another
look at the raw data.

R> raw.data
[1] "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery555-6542Rev.
Timothy Lovejoy555 8904Ned Flanders636-555-3226Simpson, Homer5553642Dr.
Julius Hibbert"

In order to extract the names, we used the regular expression [[:alpha:]., ]{2,}. Let
us have a look at it step by step. At its core, we used the character class [:alpha:], which
signals that we are looking for alphabetic characters. Apart from these characters, names can
also contain periods, commas and empty spaces, which we want to add to the character class to
read [[:alpha:]., ]. Finally, we add a quantifier to impose the restriction that the contents
of the character class have to be matched at least twice to be considered a match. Failing to add
a quantifier would extract every single character that matches the character class. Moreover,
we have to specify that we only want matches of at least length two; otherwise the expression
would return the empty spaces between some of the phone numbers.

R> name <- unlist(str_extract_all(raw.data, "[[:alpha:]., ]{2,}"))
R> name
[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson, Homer" "Dr. Julius Hibbert"

We also wanted to extract all the phone numbers from the string. The regular expression
we used for the task was a little more complicated to conform to the different formats of the
phone numbers. Let us consider the elements that phone numbers consist of, mostly digits
(\\d). The primary source of difficulty stems from the fact that the phone numbers were not
formatted identically. Instead, some contained empty spaces, dashes, parentheses, or did not
have an area code attached to them.

Applying our knowledge of regular expressions, we are now able to dismantle the regular
expression. In its entirety it reads \\(?(\\d{3})?\\)?(-| )?\\d{3}(-| )?\\d{4}. Let
us go through the expression. The first part of the expression reads \\(?(\\d{3})?\\)?. In
the center we find \\d{3}, which we use to collect the three-digit area code. As this is not
contained in every phone number we enclose the expression with two parentheses and add
a question mark, signaling that this part of the expression can be dropped. Before and after
this core element we add \\( and \\) to incorporate two literal parentheses surrounding the
three-digit area code. These too can be dropped, if the phone number does not contain them,
using the ?. Next, our regular expression contains the expression (-| )?. This means that
either a dash or an empty space will be matched, but again, we enclose the entire expression
with parentheses and add a question mark in order to signal that this part of the expression
might be missing. These elements are then simply repeated. Specifically, we are looking for
three digits, another dash or empty space that might or might not be part of the phone number,
and four more digits. Applying this to our mock example yields

R> phone <- unlist(str_extract_all(raw.data, "\\(?(\\d{3})?\\)?(-| )?\\d
{3}(-| )?\\d{4}"))
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R> phone
[1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
[5] "636-555-3226" "5553642"

Before moving on to discuss how regular expressions can be used in practice in the Regular
expression
flavors

subsequent section, we would like to conclude this part with some general observations on
regular expressions. First, even though we have provided a fairly comprehensive picture on
how we can go about generalizing regular expressions to meet our string manipulation needs,
there are still several aspects that we have not covered in this section. In particular, there
are two flavors of regular expressions implemented in R—extended basic and Perl regular
expressions. In the above example we have exclusively relied on the former. While Perl
regular expressions provide some additional features, most tasks can be accomplished by
relying on the default flavor—the extended basic variant.6

Although there is no harm in learning Perl regular expressions we advise you to stick to
the default for several reasons. One, it is generally confusing to keep two flavors in mind—
especially if this is your first time approaching regular expressions. Two, most tasks can be
accomplished with the default implementation. Sometimes this means solving a task in two
steps rather than one but in many instances this behavior is even preferable. We believe that
it is poor practice to try and come up with a “golden expression” that accomplishes all your
string manipulation needs in just one line. For the sake of readability one should try to restrict
the number of steps that are taken in any given line of code. This simplifies error detection
and furthermore helps grasp what is going on in your code when revisiting it at a later stage.
Keeping this rule in mind, the use of such intricate concepts as backreferences becomes
dubious. While there may be instances when they cannot be avoided, they also tend to make
code confusing. Splitting all the steps that are taken inside a backreference expression into
several smaller steps is often preferable.

Now we have the building blocks ready to take a look at what can be accomplished with
regular expressions in practice.

8.2 String processing

8.2.1 The stringr package

In this section we present some of the available functions that rely on regular expressions.
To do so we look at functions that are implemented in the stringr package. Two functions
we have used throughout the last section were str_extract() and str_extract_all().
They extract the first/all instance/s of a match between the regular expression and the string.
To reiterate, str_extract() extracts the first matching instance to a regular expression…
R> str_extract(example.obj, "tiny")
[1] "tiny"

…while str_extract_all() extracts all of the matches.

R> str_extract_all(example.obj, "[[:digit:]]")
[[1]]
[1] "1" "2"

6If you care to use Perl regular expressions, simply enclose the expression with perl(). This behavior is a
convention of the stringr package. For Perl regular expressions in base functions, set the perl switch to TRUE. For
information on additional functionality in Perl regular expressions, check out http://www.pcre.org/.

http://www.pcre.org/
http://www.pcre.org/
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Table 8.4 Functions of package stringr in this chapter

Function Description Output

Functions using regular expressions
str_extract() Extracts first string that matches

pattern
Character vector

str_extract_all() Extracts all strings that match
pattern

List of character vectors

str_locate() Returns position of first pattern
match

Matrix of start/end
positions

str_locate_all() Returns positions of all pattern
matches

List of matrices

str_replace() Replaces first pattern match Character vector
str_replace_all() Replaces all pattern matches Character vector
str_split() Splits string at pattern List of character vectors
str_split_fixed() Splits string at pattern into fixed

number of pieces
Matrix of character vectors

str_detect() Detects patterns in string Boolean vector
str_count() Counts number of pattern

occurrences in string
Numeric vector

Further functions
str_sub() Extracts strings by position Character vector
str_dup() Duplicates strings Character vector
str_length() Returns length of string Numeric vector
str_pad() Pads a string Character vector
str_trim() Discards string padding Character vector
str_c() Concatenates strings Character vector

We have pointed out that the function outputs differ. In the former case a character vector
is returned, while a list is returned in the latter case. Table 8.4 gives an overview of the
different functions that will be introduced in the present chapter. Column two presents a short
description of the function’s purpose, column three specifies the format of the return value. If
instead of extracting the result we are interested in the location of a match in a given string,
we use the functions str_locate() or str_locate_all().

R> str_locate(example.obj, "tiny")
start end

[1,] 35 38

The function outputs a matrix with the start and end position of the first instance of aSubstring
extraction match, in this case the 35th to 38th characters in our example string. We can make use of

positional information in a string to extract a substring using the function str_sub().

R> str_sub(example.obj, start = 35, end = 38)
[1] "tiny"
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Here we extract the 35th to 38th characters that we know to be the word tiny. Possibly,
a more common task is to replace a given substring. As usual, this can be done using the
assignment operator.

R> str_sub(example.obj, 35, 38) <- "huge"
R> example.obj
[1] "1. A small sentence. - 2. Another huge sentence."

str_replace() and str_replace_all() are used for replacements more generally.

R> str_replace(example.obj, pattern = "huge", replacement = "giant")
[1] "1. A small sentence. - 2. Another giant sentence."

We might care to split a string into several smaller strings. In the easiest of cases we simply String splitting

define a split, say at each dash.

R> unlist(str_split(example.obj, "-"))
[1] "1. A small sentence. " " 2. Another huge sentence."

We can also fix the number of particles we want the string to be split into. If we wanted
to split the string at each blank space, but did not want more than five resulting strings, we
would write

R> as.character(str_split_fixed(example.obj, "[[:blank:]]", 5))
[1] "1." "A"
[3] "small" "sentence."
[5] "- 2. Another huge sentence."

So far, all the examples we looked at have assumed a single string object. Recall our little
running example that consists of two sentences—but only one string.

R> example.obj
[1] "1. A small sentence. - 2. Another huge sentence."

We can apply the functions to several strings at the same time. Consider a character vector
that consists of several strings as a second running example:

R> char.vec <- c("this", "and this", "and that")

The first thing we can do is to check the occurrence of particular pattern inside a character String detection

vector. Assume we are interested in knowing whether the pattern this appears in the elements
of a given vector. The function we use to do this is str_detect().

R> str_detect(char.vec, "this")
[1] TRUE TRUE FALSE

Moreover, we could be interested in how often this particular word appears in the elements String counting

of a given vector…

R> str_count(char.vec, "this")
[1] 1 1 0
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… or how many words there are in total in each of the different elements.

R> str_count(char.vec, "\\w+")
[1] 1 2 2

We can duplicate strings…String
duplication

R> dup.obj <- str_dup(char.vec, 3)
R> dup.obj
[1] "thisthisthis" "and thisand thisand this"
[3] "and thatand thatand that"

… or count the number of characters in a given string.

R> length.char.vec <- str_length(char.vec)
R> length.char.vec
[1] 4 8 8

Two important functions in web data manipulation are str_pad() and str_trim().String padding

They are used to add characters to the edges of strings or trim blank spaces.

R> char.vec <- str_pad(char.vec, width = max(length.char.vec),
side = "both", pad = " ")
R> char.vec
[1] " this " "and this" "and that"

In this case we add white spaces to the shorter string equally on both sides such that eachString
trimming string has the same length. The opposite operation is performed using str_trim(), which

strips excess white spaces from the edges of strings.

R> char.vec <- str_trim(char.vec)
R> char.vec
[1] "this" "and this" "and that"

Finally, we can join strings using the str_c() function.String joining

R> cat(str_c(char.vec, collapse = "\n"))
this
and this
and that

Here, we join the three strings of our character vector into a single string. We add a new
line character (\n) and produce the result using the cat() function, which interprets the
new line character as a new line. Beyond joining the contents of one vector, we can use the
function to join two different vectors.

R> str_c("text", "manipulation", sep = " ")
[1] "text manipulation"

If the length of one vector is the multiple of the other, the function automatically recycles
the shorter one.

R> str_c("text", c("manipulation", "basics"), sep = " ")
[1] "text manipulation" "text basics"
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Table 8.5 Equivalents of the functions in the stringr
package in base R

stringr function Base function

Functions using regular expressions
str_extract() regmatches()
str_extract_all() regmatches()
str_locate() regexpr()
str_locate_all() gregexpr()
str_replace() sub()
str_replace_all() gsub()
str_split() strsplit()
str_split_fixed() –
str_detect() grepl()
str_count() –

Further functions
str_sub() regmatches()
str_dup() –
str_length() nchar()
str_pad() –
str_trim() –
str_c() paste(), paste0()

Throughout this book we frequently rely on the stringr package for strings processing.
However, base R provides string processing functionality as well. We find the base functions
less consistent and thus more difficult to learn. If you still want to learn them or want to
switch from base R functionality to the stringr package, have a look at Table 8.5. It provides
an overview of the analogue functions from the stringr package as implemented in base R.

8.2.2 A couple more handy functions

Many string manipulation tasks can be accomplished using the stringr package we introduced Approximate
matchingin the previous section. However, there are a couple of additional functions in base R we would

like to introduce in this section. Text data, especially data scraped from web sources, is often
messy. Data that should be matched come in different formats, names are spelled differently—
problems come from all sorts of places. Throughout this volume we stress the need to cleanse
data after it is collected. One way to deal with messy text data is the agrep() function,
which provides approximate matching via the Levenshtein distance. Without going into too
much detail, the function calculates the number of insertions, deletions, and substitutions
necessary to transform one string into another. Specifying a cutoff, we can provide a criterion
on whether a pattern should be considered as present in a string.

R> agrep("Barack Obama", "Barack H. Obama", max.distance = list(all = 3))
[1] 1
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In this case, we are looking for the pattern Barack Obama in the string Barack H.
Obama and we allow three alterations in the string.7 See how this compares to a search for
the pattern in the string Michelle Obama.

R> agrep("Barack Obama", "Michelle Obama", max.distance = list(all = 3))
integer(0)

Too many changes are needed in order to find the pattern in the string; hence there is no
result. You can change the maximum distance between pattern and string by adjusting both
the max.distance and the costs parameter. The higher the max.distance parameter
(default = 0.1), the more approximate matches it will find. Using the costs parameter you
can adjust the costs for the different operations necessary to liken to strings.

Another handy function is pmatch(). The function returns the positions of the strings inDetecting
positions the first vector in the second vector. Consider the character vector from above, c("this",

"and this", "and that").

R> pmatch(c("and this", "and that", "and these", "and those"), char.vec)
[1] 2 3 NA NA

We are looking for the positions of the elements in the first vector (c("and this",
"and that", "and these", "and those") in the character vector. The output signals
that the first element is at the second position, the second at the third. The third and fourth
elements in the first vector are not contained in the character vector. A final useful function
is make.unique(). Using this function you can transform a collection of nonunique strings
by adding digits where necessary.

R> make.unique(c("a", "b", "a", "c", "b", "a"))
[1] "a" "b" "a.1" "c" "b.1" "a.2"

Although there are a lot of handy functions already available, there will always beExtending base
functionality problems and situations when the one special function desperately needed is missing. One of

those problems might be the following. Imagine we have to check for more than one pattern
within a character vector and want to get a logical vector indicating compliant rows or an
index listing all the compliant row numbers. For checking patterns, we know that grep(),
grepl(), or str_detect() might be good candidates. Because grep() offers a switch
for returning the matched text or a row index vector, we try to build a solution starting with
grep(). We begin by downloading a test dataset of Simpsons episodes and store it in the
local file episodes.Rdata.

R> library(XML)
R> # download file
R> if(!file.exists("listOfSimpsonsEpisodes.html")){

link <- "http://en.wikipedia.org/wiki/List_of_The_Simpsons_episodes"
download.file(link, "listOfSimpsonsEpisodes.html", mode="wb")
}

R> # getting the table

7An alternative way to specify the maximum distance between two strings is to input a fraction of changes over
the entire length of a string.

http://en.wikipedia.org/wiki/List_of_The_Simpsons_episodes
http://en.wikipedia.org/wiki/List_of_The_Simpsons_episodes
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R> tables <- readHTMLTable("listOfSimpsonsEpisodes.html",
header=T, stringsAsFactors=F)

R> tmpcols <- names(tables[[3]])
R> for(i in 3:20){

tmpcols <- intersect(tmpcols, names(tables[[i]]))
}

R> episodes <- NULL
R> for(i in 3:20){

episodes <- rbind(episodes[,tmpcols],tables[[i]][,tmpcols])
}

R> for(i in 1:dim(episodes)[2]){
Encoding(episodes[,i]) <- "UTF-8"
}

R> names(episodes) <- c("pnr", "nr", "title", "directedby",
"Writtenby", "airdate", "productioncode")

R> save(episodes,file="episodes.Rdata")

Let us load the table containing all the Simpsons episodes.

R> load("episodes.Rdata")

As you can see below, it is easy to switch between different answers to the same
question—which episodes mention Homer in the title—usinggrep(),grepl() and using the
value = TRUE option. The easy switch makes these functions particularly valuable when
we start developing regular expressions, as we might need an index or logical vector at the
end, but we can use the value option to check if the used pattern actually works.

R> grep("Homer",episodes$title[1:10], value=T)
[1] "Homer's Odyssey" "Homer's Night Out"
R> grepl("Homer",episodes$title[1:10])
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

What is missing, however, is the option to ask for a whole bunch of patterns to be matched
at the same time. Imagine we would like to know whether there are episodes where Homer
and Lisa are mentioned in the title. The standard solution would be to make a logical vector
for each separate pattern to be matched and later combine them to a logical vector that equals
TRUE when all patterns are found.

R> iffer1 <- grepl("Homer",episodes$title)
R> iffer2 <- grepl("Lisa",episodes$title)
R> iffer <- iffer1 & iffer2
R> episodes$title[iffer]
[1] "Homer vs. Lisa and the 8th Commandment"

Although this solution might seem acceptable in the case of two patterns, it becomes more
and more inconvenient if the number of patterns grows or if the task has to be repeated. We
will therefore create a new function built upon grep().

R> grepall <- function(pattern, x,
ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE,
value=FALSE, logic=FALSE){



214 AUTOMATED DATA COLLECTION WITH R

# error and exception handling
if(length(pattern)==0 | length(x)==0){

warning("Length of pattern or data equals zero.")
return(NULL)

}
# apply grepl() and all()
indicies <- sapply(pattern, grepl, x,

ignore.case, perl, fixed, useBytes)
index <- apply(indicies, 1, all)

# indexation and return of results
if(logic==T) return(index)
if(value==F) return((1:length(x))[index])
if(value==T) return(x[index])

}
R> grepall(c("Lisa","Homer"), episodes$title)
[1] 26
R> grepall(c("Lisa","Homer"), episodes$title, value=T)
[1] "Homer vs. Lisa and the 8th Commandment"

The idea of the grepall() function is that we need to repeat the pattern search for a series
of patterns—as we did in the previous code snippet when doing two separate pattern searches.
Going through a series of things can be done by using a loop or more efficiently by using apply
functions. Therefore, we first apply the grepl() function to get the logical vectors indicating
which patterns were found in which row. We use sapply() because we have a vector as
input and would like to have a matrix like object as output. What we get is a matrix with
columns referring to the different search patterns and rows referring to the individual strings.
To make sure all patterns were found in a certain row we use a second apply—this time we use
apply() because we have a matrix as input—where the all() function returns TRUE when
all values in a row are true and FALSE if any one value in a row is false. Depending on whether
or not we want to return a vector containing the row numbers or a vector containing the text
for which all the patterns were found the value option switches between two different uses
of the internal logical vector to return row numbers or text accordingly. To get the full logical
vector we can use the logic option. Besides providing functionality that works like grep()
and grepl() for multiple search terms, all other options like ignore.case, perl, fixed,
or useBytes are forwarded to the first apply step, so that this functionality is also part of the
new function.

8.3 A word on character encodings

When working with web-based text data—particularly non-English data—one quickly runs
into encoding issues. While there are no simple rules to deal with these problems, it is
important to keep the difficulties that arise from them in mind. Generally speaking, character
encodings refer to how the digital binary signals are translated into human-readable characters,
for example, making a “d” from “01100100.” As there are many languages around the world,
there are also many special characters, like ä, ø, ç, and so forth. The issues arise since there
are different translation tables such that without knowing which particular table is used to
encode a binary signal it is difficult to draw inferences on the correct content of a signal. If
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you have not changed the defaults, R works with the system encoding scheme to present the
output. You can query this standard with the following function:

R> Sys.getlocale()
[1] "LC_COLLATE=German_Germany.1252;LC_CTYPE=German_Germany.1252;
LC_MONETARY=German_Germany.1252;LC_NUMERIC=C;LC_TIME=German_Germany.1252"

If you have not figured it out already from the names on the cover, this book was written
by four guys from Germany on a computer with a German operating system. The name of
the character encoding, hidden behind the number 1252, is Windows-1252 and it is the
default character encoding on systems that run Microsoft Windows in English and some
other languages. Your output is likely to be a different one. For example, if you are working
on a Windows PC and are located in the United States, R will give you a feedback like
English_United States.1252. If you are operating on a Mac, the encoding standard is
UTF-8.8 Let us input a string with some special characters. Consider this fragment from a
popular Swedish song, called “small frogs” (små grodorna):

R> small.frogs <- "Små grodorna, små grodorna är lustiga att se."
R> small.frogs
[1] "Små grodorna, små grodorna är lustiga att se."

There are several special characters in this fragment. By default, our inputs and outputs Convert
encodingsare assumed to be of Windows-1252 standard; thus the output is correct. Using the function

iconv(), we can translate a string from one encoding scheme to another:

R> small.frogs.utf8 <- iconv(small.frogs, from = "windows-1252",
to = "UTF-8")
R> Encoding(small.frogs.utf8)
[1] "UTF-8"
R> small.frogs.utf8
[1] "Små grodorna, små grodorna är lustiga att se."

In this case, the function applies a translation table from the Windows-1252 encoding to Declare
encodingsthe UTF-8 standard. Thus, the binary sequence is recast as a UTF-8-encoded string. Consider

how this behavior differs from the one we encounter when applying the Encoding() function
to the string.

R> Encoding(small.frogs.utf8) <- "windows-1252"
R> small.frogs.utf8
[1] "SmÃ¥ grodorna, smÃ¥ grodorna Ã¤r lustiga att se."

Doing so, we force the system to treat the UTF-8-encoded binary sequence as though it
were generated by a different encoding scheme (our system default Windows-1252), resulting
in the well-known garbled output we get, for example, when visiting a website with malspeci-
fied encodings. There are currently 350 conversion schemes available, which can be accessed
using the iconvlist() function.

8This is quite convenient for working with data from the Web, as UTF-8 is probably the most popular scheme
and therefore used on many websites.
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R> sample(iconvlist(), 10)
[1] "PT154" "latin7" "UTF-16BE" "CP51932"
[5] "IBM860" "CP50221" "IBM424" "CP1257"
[9] "WINDOWS-50221" "IBM864"

Having established the importance of keeping track of the encodings of text and web-
based text, in particular, we now turn to the question of how to figure out the encoding of an
unknown text. Luckily, in many instances a website gives a pointer in its header. Consider the
<meta> tag with the http-equiv attribute from the website of the Science Journal, which
is located at http://www.sciencemag.org/.

R> library(RCurl)
R> enc.test <- getURL("http://www.sciencemag.org/")

R> unlist(str_extract_all(enc.test, "<meta.+?>"))
[1] "<meta http-equiv=\"Content-Type\" content=\"text/html;
charset=UTF-8\" />"
[2] "<meta name=\"googlebot\" content=\"NOODP\" />"
[3] "<meta name=\"HW.ad-path\" content=\"/\" />"

The first tag provides some structured information on the type of content we can expectTesting for
encodings on the site as well as how the characters are encoded—in this case UTF-8. But what if such a

tag is not available? While it is difficult to guess the encoding of a particular text, a couple of
handy functions toward this end have been implemented in the tau package. There are three
functions available to test the encoding of a particular string, is.ascii(), is.locale(),
and is.utf8(). What these functions do is to test whether the binary sequences are “legal”
in a particular encoding scheme. Recall that the letter “å” is stored as a particular binary
sequence in the local encoding scheme. This binary sequence is not valid in the ASCII
scheme—hence, the string cannot have been encoded in ASCII. And in fact, this is what we
find:

R> library(tau)
R> is.locale(small.frogs)
[1] TRUE
R> is.ascii(small.frogs)
[1] FALSE

Summary

Many aspects of automated data collection deal with textual data. Every step of a typical
web scraping exercise might involve some form of string manipulation. Be it that you need
to format a URL request according to your needs, collect information from an HTML page,
(re-)arrange results that come in the form of strings, or general data cleansing. All of these
tasks could require some form of string manipulation. This chapter has introduced the most
important tool for any of these tasks—regular expressions. These expressions allow you to
search for information using highly flexible queries.

The chapter has also outlined the main elements of string manipulation. First, we consid-
ered the ingredients of regular expressions as implemented in R. Starting with the simplest of

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
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all cases where a character represents itself in a regular expression, we subsequently treated
more elaborate concepts to generalize searches, such as quantifiers and character classes. In
the second step, we considered how regular expressions and string manipulation is generally
performed. To do so, we principally looked at the function range that is provided by the
stringr package and several functions that go beyond the package. The chapter concluded
with a discussion on how to deal with character encodings.

Further reading

In this chapter, we introduced extended basic regular expressions as implemented in R. Check
out http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html for an overview of
the available concepts. We restricted our exposition to extended regular expressions, as
these suffice to accomplish most common tasks in string manipulation. There is, however,
a second flavor of regular expressions that is implemented in R—Perl regular expressions.
These introduce several aspects that allow string manipulations that were not discussed in
this chapter.9 Should you be interested in finding out more about Perl regular expressions,
check out http://www.pcre.org/.

Problems

1. Describe regular expressions and why they can be used for web scraping purposes.

2. Find a regular expression that matches any text.

3. Copy the introductory example. The vector name stores the extracted names.

R> name
[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson, Homer" "Dr. Julius Hibbert"

(a) Use the tools of this chapter to rearrange the vector so that all elements conform to
the standard first_name last_name.

(b) Construct a logical vector indicating whether a character has a title (i.e., Rev. and
Dr.).

(c) Construct a logical vector indicating whether a character has a second name.

4. Describe the types of strings that conform to the following regular expressions and
construct an example that is matched by the regular expression.
(a) [0-9]+\\$
(b) \\b[a-z]{1,4}\\b
(c) .*?\\.txt$
(d) \\d{2}/\\d{2}/\\d{4}
(e) <(.+?)>.+?</\\1>

9In almost all cases, however, one can break up search queries into several smaller queries that can easily be
handled by the extended regular expressions.

http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://www.pcre.org/
http://www.pcre.org/
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5. Rewrite the expression [0-9]+\\$ in a way that all elements are altered but the
expression performs the same task.

6. Consider the mail address chunkylover53[at]aol[dot]com.
(a) Transform the string to a standard mail format using regular expressions.
(b) Imagine we are trying to extract the digits in the mail address. To do so we write

the expression [:digit:]. Explain why this fails and correct the expression.
(c) Instead of using the predefined character classes, we would like to use the predefined

symbols to extract the digits in the mail address. To do so we write the expression
\\D. Explain why this fails and correct the expression.

7. Consider the string <title>+++BREAKING NEWS+++</title>. We would like to
extract the first HTML tag. To do so we write the regular expression <.+>. Explain why
this fails and correct the expression.

8. Consider the string (5-3)ˆ2=5ˆ2-2*5*3+3ˆ2 conforms to the binomial
theorem. We would like to extract the formula in the string. To do so we write the
regular expression [ˆ0-9=+*()]+. Explain why this fails and correct the expression.

9. The following code hides a secret message. Crack it with R and regular expressions.
Hint: Some of the characters are more revealing than others! The code snippet is also
available in the materials at www.r-datacollection.com.

clcopCow1zmstc0d87wnkig7OvdicpNuggvhryn92Gjuwczi8hqrfpRxs5Aj5dwpn0Tanwo
Uwisdij7Lj8kpf03AT5Idr3coc0bt7yczjatOaootj55t3Nj3ne6c4Sfek.r1w1YwwojigO
d6vrfUrbz2.2bkAnbhzgv4R9i05zEcrop.wAgnb.SqoU65fPa1otfb7wEm24k6t3sR9zqe5
fy89n6Nd5t9kc4fE905gmc4Rgxo5nhDk!gr

10. Why it is important to be familiar with character encodings when working with string
data?

chunkylover53[at]aol[dot]com
chunkylover53[at]aol[dot]com
http://www.r-datacollection.com


Part Two

A PRACTICAL TOOLBOX
FOR WEB SCRAPING AND
TEXT MINING





9

Scraping the Web

Having learned much about the basics of the architecture of the Web, we now turn to data
collection in practice. In this chapter, we address three main aspects of web scraping with
R. The first is how to retrieve data from the Web in different scenarios (Section 9.1). Recall
Figure 1.4. The first part of the chapter looks at the stage where we try to get resources from
servers into R. The principal technology to deal with in this step is HTTP. We offer a set
of real-life scenarios that demonstrate how to use libcurl to gather data in various settings.
In addition to examples based on HTTP or FTP communication, we introduce the use of
web services (web application programming interfaces [APIs]) and a related authentication
standard, OAuth. We also offer a solution for the problem of scraping dynamic content that
we described in Chapter 6. Section 9.1.9 provides an introduction to Selenium, a browser
automation tool that can be used to gather content from JavaScript-enriched pages.

The second part of the chapter turns to strategies for extracting information from gathered
resources (Section 9.2). We are already familiar with the necessary technologies: regular
expressions (Chapter 8) and XPath (Chapter 4). From a technology-based perspective, this
corresponds to the second column of Figure 1.4. In this part we shed light on these techniques
from a more practical perspective, providing a stylized sketch of the strategies and discuss
their advantages and disadvantages. We also consider APIs once more. They are an ideal
case of automated web data collection as they offer a seamless integration of the retrieval and
extracting stages.

Whatever the level of difficulty for scraping information from the web, the circle of On the art of
web scrapingscraping remains almost always identical. The followings tasks are part of most scraping

exercises:

1. Information identification

2. Choice of strategy

3. Data retrieval

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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4. Information extraction

5. Data preparation

6. Data validation

7. Debugging and maintenance

8. Generalization

The art of scraping lies in cleverly combining and redefining these tasks, and we can only
sketch out some basic principles, either theoretically (as in Section 9.2) or by examples in
the set of retrieval scenarios and case studies. In the end, questions such as “Is automation
efficient?,” “Is R the right tool for my web data collection work?,” and “Is my data source of
choice reliable in the long run?” are project-specific and lack a generally helpful answer.

The third part of this chapter addresses an important, but sometimes disregarded aspect of
web scraping. It deals with the question of how to behave nicely on the Web as a web scraper.
We are convinced that the abundance of online data is something positive and opens up
new ways for understanding human interactions. Whether collecting these data is inherently
positive depends in no small part on (a) the behavior of data gatherers and (b) on the purpose
for which data are collected. The latter point is entirely up to you. For the former point, we
offer some basic advice in Section 9.3. We discuss legal implications of web scraping, show
how to take robots.txt, an informal standard for web crawler behavior, into account, and offer
a practical guideline for friendly web-scraping practice.

We conclude the chapter with a glimpse of ongoing efforts for giving R more interfaces
with web data and on lighthouses of web scraping more generally (Section 9.4).

A final remark before we get started: This chapter is mostly about how to build special-Spiders versus
scrapers purpose web scrapers. In our definition scrapers are programs that grab specific content from

web pages. Such information could be telephone data (see Chapter 15), data on products (see
Chapter 16), or political behavior (see Chapter 12). Spiders (or crawlers or web robots), in
contrast, are programs that grab and index entire pages and move around the Web following
every link they can find. Most scraping work involves a spidering component. In order to
extract content from webpages, we usually first download them as a whole and then continue
with the extraction part. In general, however, we disregard scenarios in which the goal is to
wander through the Web without a specific data collection target.

9.1 Retrieval scenarios

For the following scenarios of web data retrieval, we rely on the following set of R packages
which were introduced in the first part of the book. We assume that you have loaded them for
the exercises. We will indicate throughout the chapter whenever we make use of additional
packages.

R> library(RCurl)
R> library(XML)
R> library(stringr)
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9.1.1 Downloading ready-made files

The first way to get data from the Web is almost too banal to be considered here and actually
not a case of web scraping in the narrower sense. In some situations, you will find data
of interest ready for download in TXT, CSV, or any other plain-text/spreadsheet or binary
format like PDF, XLS, or JPEG. R can still prove useful for such simple tasks, as (a) the
data acquisition process remains reproducible in principle and (b) it may save a considerable
amount of time. We picked two common examples to illustrate the benefits of using R in
scenarios like these.

9.1.1.1 CSV election results data

The Maryland State Board of Elections at http://www.elections.state.md.us/ provides a rich
data resource on past elections. We identified a set of comma-separated value spreadsheets that
comprise information on state-, county-, and precinct-level election results for the 2012 Pres-
idential election in Maryland in one of the page’s subdirectories at http://www.elections.
state.md.us/elections/2012/election_data/index.html. The targeted files are accessible via
“General” hyperlinks. Suppose we want to download these files for analyses.

The links to the CSV files are scattered across several tables on the page. We are only
interested in some of the documents, namely those that contain the raw election results for
the general election. The page provides data on the primaries and on ballot questions, too. In
order to retrieve the desired files, we want to proceed in three steps.

1. We identify the links to the desired files.

2. We construct a download function.

3. We execute the downloads.

The XML package provides a neat function to identify links in an HTML document—
getHTMLLinks(). We introduce this and other convenience functions from the package in
greater detail in Section 9.1.4.

We use getHTMLLinks() to extract all the URLs and external file names in the HTML Identifying
locationsdocument that we first assign to the object url. The list of links in links comprises more

entries than we are interested in, so we apply the regular expression _General.csv to retrieve
the subset of external file names that point to the general election result CSVs. Finally, we
store the file names in a list to be able to apply a download function to this list in the next step.

R> url <- "http://www.elections.state.md.us/elections/2012/election_
data/index.html"

R> links <- getHTMLLinks(url)

R> filenames <- links[str_detect(links, "_General.csv")]

R> filenames_list <- as.list(filenames)
R> filenames_list[1:3]
[[1]]

http://www.elections.state.md.us/
http://www.elections.state.md.us/
http://www.elections.state.md.us/elections/2012/election_data/index.html
http://www.elections.state.md.us/elections/2012/election_data/index.html
http://www.elections.state.md.us/elections/2012/election_data/index.html
http://www.elections.state.md.us/elections/2012/election_data/index.html
http://www.elections.state.md.us/elections/2012/election_data/index.html
http://www.elections.state.md.us/elections/2012/election_data/index.html
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[1] "http://www.elections.state.md.us/elections/2012/election_data/
State_Legislative_Districts_2012_General.csv"

[[2]]
[1] "http://www.elections.state.md.us/elections/2012/election_data/
Allegany_County_2012_General.csv"

[[3]]
[1] "http://www.elections.state.md.us/elections/2012/election_data/
Allegany_By_Precinct_2012_General.csv"

Next, we set up a function to download all the files and call the function downloadCSV().Constructing a
download

function
The function wraps around the base R function download.file(), which is perfectly
sufficient to download URLs or other files in standard scenarios. Our function has three
arguments. filename refers to each of the entries in the filenames_list object. baseurl
specifies the source path of the files to be downloaded. Along with the file names, we can
thus construct the full URL of each file. We do this using str_c() and feed the result to
the download.file() function. The second argument of the function is the destination on
our local drive. We determine a folder where we want to store the CSV files and add the
file name parameter. We tweak the download by adding (1) a condition which ensures that
the file download is only performed if the file does not already exist in the folder using the
file.exists() function and (2) a pause of 1 second between each file download. We will
motivate these tweaks later in Section 9.3.3.

R> downloadCSV <- function(filename, baseurl, folder) {
R> dir.create(folder, showWarnings = FALSE)
R> fileurl <- str_c(baseurl, filename)
R> if (!file.exists(str_c(folder, "/", filename))) {
R> download.file(fileurl,
R> destfile = str_c(folder, "/", filename))
R> Sys.sleep(1)
R> }
R> }

We apply the function to the list of CSV file names filenames_list using l_ply()Executing the
download from the plyr package. The function takes a list as main argument and passes each list element

as argument to the specified function, in our case downloadCSV(). We can pass further
arguments to the function. For baseurl we identify the path where all CSVs are located.
With folder we select the local folder where want to store the files.

R> library(plyr)
R> l_ply(filenames_list, downloadCSV,
R> baseurl = "www.elections.state.md.us/elections/2012/election_data/",
R> folder = "elec12_maryland")

To check the results, we consider the number of downloaded files and the first couple of
entries.

R> length(list.files("./elec12_maryland"))
[1] 68

http://www.elections.state.md.us/elections/2012/election_data/State_Legislative_Districts_2012_General.csv
http://www.elections.state.md.us/elections/2012/election_data/State_Legislative_Districts_2012_General.csv
http://www.elections.state.md.us/elections/2012/election_data/Allegany_County_2012_General.csv
http://www.elections.state.md.us/elections/2012/election_data/Allegany_County_2012_General.csv
http://www.elections.state.md.us/elections/2012/election_data/Allegany_By_Precinct_2012_General.csv
http://www.elections.state.md.us/elections/2012/election_data/Allegany_By_Precinct_2012_General.csv
www.elections.state.md.us/elections/2012/election_data/
http://www.elections.state.md.us/elections/2012/election_data/
http://www.elections.state.md.us/elections/2012/election_data/
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R> list.files("./elec12_maryland")[1:3]
[1] "Allegany_By_Precinct_2012_General.csv"
[2] "Allegany_County_2012_General.csv"
[3] "Anne_Arundel_By_Precinct_2012_General.csv"

Sixty-eight CSV files have been added to the folder. We could now proceed with an
analysis by importing the files into R using read.csv(). The web scraping task is thus
completed and could easily be replicated with data on other elections stored on the website.

9.1.1.2 PDF legislative district maps

download.file() frequently does not provide the functionality we need to download
files from certain sites. In particular, download.file() does not support data retrieval via
HTTPS by default and is not capable of dealing with cookies or many other advanced features
of HTTP. In such situations, we can switch to RCurl’s high-level functions which can easily
handle problems like these—and offer further useful options.

As a showcase we try to retrieve PDF files of the 2012 Maryland legislative district
maps, complementing the voting data from above. The maps are available at the Maryland
Department of Planning’s website: http://planning.maryland.gov/Redistricting/2010/legiDist.
shtml.1 The targeted PDFs are accessible in a three-column table at the bottom right of the
screen and named “1A,” “1B,” and so on. We reuse the download procedure from above, but
specify a different base URL and regular expression to detect the desired files.

R> url <- "http://planning.maryland.gov/Redistricting/2010/legiDist.shtml"
R> links <- getHTMLLinks(url)
R> filenames <- links[str_detect(links, "2010maps/Leg/Districts_")]
R> filenames_list <- str_extract_all(filenames, "Districts.+pdf")

The download function downloadPDF() now relies on getBinaryURL(). We allow Download with
RCurlfor the use of a curl handle. We cannot specify a destination file in the getBinaryURL()

function, so we store the raw data in a pdffile object first and then pass it to writeBin().
This function writes the PDF files to the specified folder. The other components of the function
remain the same.

R> downloadPDF <- function(filename, baseurl, folder, handle) {
R> dir.create(folder, showWarnings = FALSE)
R> fileurl <- str_c(baseurl, filename)
R> if (!file.exists(str_c(folder, "/", filename))) {
R> content <- getBinaryURL(fileurl, curl = handle)
R> writeBin(content, str_c(folder, "/", filename))
R> Sys.sleep(1)
R> }
R> }

We execute the function with a handle that adds a User-Agent and a From header field
to every call and keeps the connection alive. We could specify further options if we had to
deal with cookies or other HTTP specifics.

1Note that the “2010” in the URL is misleading—it is the 2012 election maps that are offered at this address.

http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
http://planning.maryland.gov/Redistricting/2010/legiDist.shtml
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R> handle <- getCurlHandle(useragent = str_c(R.version$platform,
R.version$version.string, sep=", "), httpheader = c(from =
"eddie@datacollection.com"))

R> l_ply(filenames_list, downloadPDF,
R> baseurl = "planning.maryland.gov/PDF/Redistricting/2010maps/Leg/",
R> folder = "elec12_maryland_maps",
R> handle = handle)

Again, we examine the results by checking the number of files in the folder and the first
couple of results.

R> length(list.files("./elec12_maryland_maps"))
[1] 68

R> list.files("./elec12_maryland_maps")[1:3]
[1] "Districts_10.pdf" "Districts_11.pdf" "Districts_12.pdf"

Everything seems to have worked out fine—68 PDF files have been downloaded. The
bottom line of this exercise is that downloading plain-text or binary files from a website is one
of the easiest tasks. The core tools are download.file() and RCurl’s high-level functions.
getHTMLLinks() from the XML package often does a good job of identifying the links to
single files, especially when they are scattered across a document.

9.1.2 Downloading multiple files from an FTP index

We have introduced an alternative network protocol to HTTP for pure file transfer, the File
Transfer Protocol (FTP) in Section 5.3.2. Downloading files from FTP servers is a rewarding
task for data wranglers because FTP servers host files, nothing else. We do not have to care
about getting rid of HTML layout or other unwanted information. Again, RCurl is well-suited
to fetch files via FTP.

Let us have a look at the CRAN FTP server to see how this works. The server has the URL
ftp://cran.r-project.org/. It stores a lot of R-related data, including older R versions, CRAN
task views, and all CRAN packages. Say we want to download all CRAN task view HTML
files for closer inspection. They are stored at ftp://cran.r-project.org/pub/R/web/views/. Our
downloading strategy is similar to the one in the last scenario.

1. We identify the desired files.

2. We construct a download function.

3. We execute the downloads.

In order to load the FTP directory list into R, we assign the URL to ftp. Next, weFetch FTP
directory save the list of file names to the object ftp_files with getURL().2 By setting the libcurl

option dirlistonly to TRUE, we ensure that only the file names are fetched, but no further
information about file size or creation date.

2For FTP servers the getHTMLLinks() command is not an option, because the documents are not structured as
HTML.

ftp://cran.r-project.org/
ftp://cran.r-project.org/
ftp://cran.r-project.org/pub/R/web/views/
ftp://cran.r-project.org/pub/R/web/views/
mailto:eddie@datacollection.com
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R> ftp <- "ftp://cran.r-project.org/pub/R/web/views/"
R> ftp_files <- getURL(ftp, dirlistonly = TRUE)

It is sometimes the case that the default FTP mode in libcurl, extended passive (EPSV),
does not work with some FTP servers. In this case, we have to add the ftp.use.epsv =
FALSE option. In our example, we have successfully downloaded the list of files and stored it
in a character vector, ftp_files. The information is corrupted with line feeds and carriage
returns representations \r \n, however, and still contains CTV files.

R> ftp_files

[1] "Bayesian.ctv\r\nBayesian.html\r\nChemPhys.ctv\r\nChemPhys.html\r..."

To get rid of them we use them as splitting patterns for str_split(). We also apply a Extract file
namesregular expression to select only the HTML files with str_extract_all():

R> filenames <- str_split(ftp_files, "\r\n")[[1]]
R> filenames_html <- unlist(str_extract_all(filenames, ".+(.html)"))

R> filenames_html[1:3]
[1] "Bayesian.html" "ChemPhys.html" "ClinicalTrials.html"

An equivalent, but more elegant way to get only the HTML files would be

R> filenames_html <- getURL(ftp, customrequest = "NLST *.html")
R> filenames_html = str_split(filenames_html, "\\\r\\\n")[[1]]

This way we pass the FTP command NLST *.html to our function. This returns a list
of file names in the FTP directory that end in .html. We thus exploit the libcurl option
customrequest that allows changing the request method and do not have to extract the
HTML files ex post.3

In the last step, we construct a function downloadFTP() that fetches the desired files
from the FTP server and stores them in a specified folder. It basically follows the syntax of Download files

the downloadPDF() function from the previous section.

R> downloadFTP <- function(filename, folder, handle) {
R> dir.create(folder, showWarnings = FALSE)
R> fileurl <- str_c(ftp, filename)
R> if (!file.exists(str_c(folder, "/", filename))) {
R> content <- try(getURL(fileurl, curl = handle))
R> write(content, str_c(folder, "/", filename))
R> Sys.sleep(1)
R> }
R> }

3Recall that FTP has a list of commands of its own, just as there are HTTP commands like GET and POST. A list
of FTP commands—some of which can easily be implemented with curl’s customrequest option—can be found
at http://www.nsftools.com/tips/RawFTP.htm.

ftp://cran.r{{-}}project.org/pub/R/web/views/
ftp://cran.r-project.org/pub/R/web/views/
http://www.nsftools.com/tips/RawFTP.htm
http://www.nsftools.com/tips/RawFTP.htm
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We set up a handle that disables FTP-extended passive mode and download the CRAN
task HTML documents to the cran_tasks folder:

R> handle <- getCurlHandle(ftp.use.epsv = FALSE)

R> l_ply(filenames_list, downloadFTP,
R> folder = "cran_tasks",
R> handle = handle)

A quick inspection of our newly created folder reveals that the files were successfully
downloaded.

R> length(list.files("./cran_tasks"))
[1] 34
R> list.files("./cran_tasks")[1:3]
[1] "Bayesian.html" "ChemPhys.html" "ClinicalTrials.html"

It is also possible to upload data to an FTP server. As we do not have any rights to upload
content to the CRAN server, we offer a fictional example.

R> ftpUpload(what = "example.txt", to = "ftp://example.com/",
userpwd = "username:password")

To get a taste of the good old FTP times where there was no more than just data andWhere to find
FTP archives directories, visit http://www.search-ftps.com/ or http://www.filesearching.com/ to search for

existing archives. What you will find might occasionally be content of dubious quality,
however.

9.1.3 Manipulating URLs to access multiple pages

We usually care little about the web addresses of the sites we visit. Sometimes we might
access a web page by entering a URL into our browser, but more frequently we come to a site
through a search engine. Either way, once we have accessed a particular site we move around
by clicking on links, but do not take note of the fact that the URL changes when accessing
the various sites on the same server. We already know that directories on a web server are
comparable to the folders on our local hard drive. Once we realize that the directories of
the website follow specific systematics, we can make use of this fact and apply it in web
scraping by manipulating the URL of a site. Compared with other retrieval strategies, URL
manipulation is a “quick and dirty” approach, as we usually do not care about the internal
mechanisms that create URLs (e.g., GET forms).

Imagine we would like to collect all press releases from the organization TransparencyNavigating
through pages

by URL
manipulation

International. Check out the organization’s press releases under the heading “News” at
http://www.transparency.org/news/pressreleases/. Now select the year 2011 from the drop-
down menu. Notice how the statement year/2011 is appended to the URL. We can apply
this observation and call up the press releases from 2010 by changing the figure in the URL.
As expected, the browser now displays all press releases from 2010, starting with releases in
late December. Notice how the webpage displays 10 hits for each search. Click on “Next” at
the bottom of the page. We find that the URL is appended with the statement P10. Apparently,
we are able to select specific results pages by using multiples of 10. Let us try this by choosing

http://www.search-ftps.com/
http://www.search-ftps.com/
http://www.filesearching.com/
http://www.filesearching.com/
http://www.transparency.org/news/pressreleases/
http://www.transparency.org/news/pressreleases/
ftp://example.com/
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the fourth site of the 2010 press releases by selecting the directory http://www.transparency.
org/news/pressreleases/year/2010/P30. In fact, we can wander through the pages by manipu-
lating the URL instead of clicking on HTML buttons.

Now let us capitalize on these insights and implement them in small scraper. We proceed
in five steps.

1. We identify the running mechanism in the URL syntax.

2. We retrieve links to the running pages.

3. We download the running pages.

4. We retrieve links to the entries on the running pages.

5. We download the single entries.

We begin by constructing a function that returns a list of URLs for every page in the index. URL
manipulationWe have already identified the running mechanism in the URL syntax—a P and a multiple

of 10 is attached to the base URL for every page other than the first one. To know how many
of these pages exist, we retrieve the total number of pages from the bottom line on the base
page, which reads “Page x of X”. “X” is the total number of pages. We fetch the number with
the XPath command //div[@id='Page']/strong[2] and use the result (total_pages)
to construct a vector add_url with string additions to the base URL. The first entries are
stored on the base URL page which does not need an addition. Therefore, we construct X − 1
snippets to be added to the base URL. We store this number 10 times, as the index runs from
10 to X * 10, rather than from 1 to X in max_url and merge it with /P10 and store it in the
object add_url.

R> baseurl <- htmlParse("http://www.transparency.org/news/
pressreleases/year/2010")
R> xpath <- "//div[@id='Page']/strong[2]"
R> total_pages <- as.numeric(xpathSApply(baseurl, xpath, xmlValue))
R> total_pages
[1] 16

R> max_url <- (total_pages - 1) * 10
R> add_url <- str_c("/P", seq(10, max_url, 10))
R> add_url
[1] "/P10" "/P20" "/P30" "/P40" "/P50" "/P60" "/P70" "/P80"
[9] "/P90" "/P100" "/P110" "/P120" "/P130" "/P140" "/P150"

Next, we construct the full URLs and put them in a list. To fetch entries from the
first page as well, we add the base URL to the list. Everything is wrapped into a function
getPageURLs() that returns the URLs of single index pages as a list.

R> getPageURLs <- function(url) {
baseurl <- htmlParse(url)
xpath <- "//div[@id='Page']/strong[2]"
total_pages <- as.numeric(xpathSApply(baseurl, xpath, xmlValue))
max_url <- (total_pages - 1) * 10
add_url <- str_c("/P", seq(10, max_url, 10))

http://www.transparency.org/news/pressreleases/year/2010/P30
http://www.transparency.org/news/pressreleases/year/2010/P30
http://www.transparency.org/news/pressreleases/year/2010
http://www.transparency.org/news/pressreleases/year/2010
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urls_list <- as.list(str_c(url, add_url))
urls_list[length(urls_list) + 1] <- url
return(urls_list)

}

Applying the function yields

R> url <- "http://www.transparency.org/news/pressreleases/year/2010"
R> urls_list <- getPageURLs(url)
R> urls_list[1:3]
[[1]]
[1] "http://www.transparency.org/news/pressreleases/year/2010/P10"

[[2]]
[1] "http://www.transparency.org/news/pressreleases/year/2010/P20"

[[3]]
[1] "http://www.transparency.org/news/pressreleases/year/2010/P30"

In the third step, we construct a function to download each index page. The function takesDownloading
index pages the returned list from getPageURLs(), extracts the file names, and writes the HTML pages

to a local folder.
Notice that we have to add a file name for the base URL index manually because the

regular expression "/P.+" which identifies the file names does not apply here. This is done
in the fourth line of the function. As usual, the download is conducted with getURL:

R> dlPages <- function(pageurl, folder ,handle) {
dir.create(folder, showWarnings = FALSE)
page_name <- str_c(str_extract(pageurl, "/P.+"), ".html")
if (page_name == "NA.html") { page_name <- "/base.html" }
if (!file.exists(str_c(folder, "/", page_name))) {

content <- try(getURL(pageurl, curl = handle))
write(content, str_c(folder, "/", page_name))
Sys.sleep(1)

}
}

We perform the download with l_ply to download the files stored in the
baselinks_list list elements.

R> handle <- getCurlHandle()
R> l_ply(urls_list, dlPages,

folder = "tp_index_2010",
handle = handle)

R> list.files("tp_index_2010")[1:3]
[1] "base.html" "P10.html" "P100.html"

Sixteen files have been downloaded. Now we parse the downloaded index files to identify
the links to the individual press releases. The getPressURLs() function works as follows.
First, we parse the documents into a list. We retrieve all links in the documents using
getHTMLLinks(). Finally, we extract only those links that refer to one of the press releases.

http://www.transparency.org/news/pressreleases/year/2010
http://www.transparency.org/news/pressreleases/year/2010
http://www.transparency.org/news/pressreleases/year/2010/P10
http://www.transparency.org/news/pressreleases/year/2010/P10
http://www.transparency.org/news/pressreleases/year/2010/P20
http://www.transparency.org/news/pressreleases/year/2010/P20
http://www.transparency.org/news/pressreleases/year/2010/P30
http://www.transparency.org/news/pressreleases/year/2010/P30
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To do so, we apply the regular expression "http.+/pressrelease/" which uniquely
identifies the releases and stores them in a list.

R> getPressURLs <- function(folder) {
pages_parsed <- lapply(str_c(folder, "/", dir(folder)), htmlParse)
urls <- unlist(llply(pages_parsed, getHTMLLinks))
press_urls <- urls[str_detect(urls, "http.+/pressrelease/")]
press_urls_list <- as.list(press_urls)
return(press_urls_list)

}

Applying the function we retrieve a list of links to roughly 150 press releases.

R> press_urls_list <- getPressURLs(folder = "tp_index_2010")
R> length(press_urls_list)
[1] 152

The press releases are downloaded in the last step. The function works similarly to Downloading
press releasesthe one that downloaded the index pages. Again, we first retrieve the file names of the

press releases based on the full URLs. We apply the rather nasty regular expression
[ˆ//][[:alnum:]_.]+$. We download the press release files with getURL() and store
them in the created folder.

R> dlPress <- function(press_url, folder, handle) {
dir.create(folder, showWarnings = FALSE)
press_filename <- str_c(str_extract(press_url,

"[ˆ//][[:alnum:]_.]+$") , ".html")
if (!file.exists(str_c(folder, "/", press_filename))) {

content <- try(getURL(press_url, curl = handle))
write(content, str_c(folder, "/", press_filename))
Sys.sleep(1)

}
}

We apply this function using

R> handle <- getCurlHandle()
R> l_ply(press_urls_list, dlPress,

folder = "tp_press_2010",
handle = handle)

R> length(list.files("tp_press_2010"))
[1] 152

All 152 files have been downloaded successfully. To process the press releases, we would
have to parse them similar to the getPressURLs() function and extract the text. Moreover,
to accomplish the task that was specified at the beginning of the section we would also have
to generalize the functions to loop over the years on the website but the underlying ideas do
not change.

In scenarios where the range of URLs is not as clear as in the example described above, we
can make use of the url.exists() function from the RCurl package. It works analogously
to file.exists() and indicates whether a given URL exists, that is, whether the server
responds without an error.
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In many web scraping exercises, we can apply URL manipulation to easily access all the
sites that we are interested in. The downside of this type of access to a website is that we need
a fairly intimate knowledge of the website and of the websites’ directories in order to perform
URL manipulations. This is to say that URL manipulation cannot be used to write a crawler
for multiple websites as the specific manipulations must be developed for each website.

9.1.4 Convenient functions to gather links, lists, and tables from
HTML documents

The XML package provides powerful tools for parsing XML-style documents. Yet it offers
more commands that considerably ease information extraction tasks in the web-scraping
workflow. The functions readHTMLTable(), readHTMLList(), and getHTMLLinks()
help extract data from HTML tables, lists, and internal as well as external links. We illustrate
their functionality with a Wikipedia article on Niccolò Machiavelli, an “Italian historian,
politician, diplomat, philosopher, humanist, and writer” (Wikipedia 2014).

The first function we will inspect is getHTMLlinks() which serves to extract linksExtracting
links from HTML documents. To illustrate the flexibility of the convenience functions, we prepare

several objects. The first object stores the URL for the article (mac_url), the second stores
the source code (mac_source), the third stores the parsed document (mac_parsed), and the
fourth and last object (mac_node) holds only one node of the parsed document, namely the
<p> node that includes the introductory text.

R> mac_url <- "http://en.wikipedia.org/wiki/Machiavelli"
R> mac_source <- readLines(mac_url, encoding = "UTF-8")
R> mac_parsed <- htmlParse(mac_source, encoding = "UTF-8")
R> mac_node <- mac_parsed["//p"][[1]]

All of these representations of an HTML document (URL, source code, parsed document,
and a single node) can be used as input for getHTMLLinks() and the other convenience
functions introduced in this section.

R> getHTMLLinks(mac_url)[1:3]
[1] "/w/index.php?title=Machiavelli&redirect=no"
[2] "/wiki/Machiavelli_(disambiguation)"
[3] "/wiki/File:Portrait_of_Niccol%C3%B2_Machiavelli_by_Santi_di_Tito.jpg"

R> getHTMLLinks(mac_source)[1:3]
[1] "/w/index.php?title=Machiavelli&redirect=no"
[2] "/wiki/Machiavelli_(disambiguation)"
[3] "/wiki/File:Portrait_of_Niccol%C3%B2_Machiavelli_by_Santi_di_Tito.jpg"

R> getHTMLLinks(mac_parsed)[1:3]
[1] "/w/index.php?title=Machiavelli&redirect=no"
[2] "/wiki/Machiavelli_(disambiguation)"
[3] "/wiki/File:Portrait_of_Niccol%C3%B2_Machiavelli_by_Santi_di_Tito.jpg"

R> getHTMLLinks(mac_node)[1:3]
[1] "/wiki/Help:IPA_for_Italian" "/wiki/Renaissance_humanism"
[3] "/wiki/Renaissance"

http://en.wikipedia.org/wiki/Machiavelli
http://en.wikipedia.org/wiki/Machiavelli
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We can also supply XPath expressions to restrict the returned documents to specific
subsets, for example, only those links of class extiw.

R> getHTMLLinks(mac_source,
xpQuery="//a[@class='extiw']/@href")[1:3]

[1] "//en.wiktionary.org/wiki/chancery"
[2] "//en.wikisource.org/wiki/Catholic_Encyclopedia_(1913)/Niccol%
C3%B2_Machiavelli"
[3] "//commons.wikimedia.org/wiki/Niccol%C3%B2_Machiavelli"

getHTMLLinks() retrieves links from HTML as well as names of external files. We
already made use of the latter feature in Section 9.1.1. An extension of getHTMLLinks() is
getHTMLExternalFiles(), designed to extract only links that point to external files which
are part of the document. Let us use the function along with its xpQuery parameter. We
restrict the set of returned links to those mentioning Machiavelli to hopefully find a URL that
links to a picture.

R> xpath <- "//img[contains(@src, 'Machiavelli')]/@src"
R> getHTMLExternalFiles(mac_source,

xpQuery = xpath)[1:3]
[1] "//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Portrait
_of_Niccol%C3%B2_Machiavelli_by_Santi_di_Tito.jpg/220px-Portrait_
of_Niccol%C3%B2_Machiavelli_by_Santi_di_Tito.jpg"
[2] "//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/
Machiavelli_Signature.svg/128px-Machiavelli_Signature.svg.png"
[3] "//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/
Cesare_borgia-Machiavelli-Corella.jpg/220px-Cesare_borgia-
Machiavelli-Corella.jpg"

The first three results look promising; they all point to image files stored on the
Wikimedia servers.

The next convenient function is readHTMLList() and as the name already suggests, it Extracting lists

extracts list elements (see Section 2.3.7). Browsing through the article we find that under
Discourses on Livy several citations from the work are pooled as an unordered list that we
can easily extract. Note that the function returns a list object where each element corresponds
to a list in the HTML. As the citations are the tenth list within the HTML, we figured this out
by eyeballing the output of readHTMLList() and we use the index operator [[10]].

R> readHTMLList(mac_source)[[10]][1:3]
[1] "\"In fact, when there is combined under the same constitution
a prince, a nobility, and the power of the people, then these three
powers will watch and keep each other reciprocally in check.\" Book
I, Chapter II"
[2] "\"Doubtless these means [of attaining power] are cruel and
destructive of all civilized life, and neither Christian, nor even
human, and should be avoided by every one. In fact, the life of a
private citizen would be preferable to that of a king at the expense
of the ruin of so many human beings.\" Bk I, Ch XXVI"
[3] "\"Now, in a well-ordered republic, it should never be necessary
to resort to extra-constitutional measures. ...\" Bk I, Ch XXXIV"
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The last function of the XML package we would like to introduce at this point isExtracting
tables readHTMLTable(), a function to extract HTML tables. Not only does the function locate

tables within the HTML document, but also transforms them into data frames. As before, the
function extracts all tables and stores them in a list. Whenever the extracted HTML tables
have information that can be used as name, they are stored as named list item. Let us first get
an overview of the tables by listing the table names.

R> names(readHTMLTable(mac_source))
[1] "Niccolò Machiavelli" "NULL" "NULL"
[4] "NULL" "NULL" "NULL"
[7] "NULL" "NULL" "NULL"
[10] "persondata"

There are ten tables; two of them are labeled. Let us extract the last one to retrieve personal
information on Machiavelli.

R> readHTMLTable(mac_source)$persondata
V1 V2

1 Name Machiavelli, Niccolò
2 Alternative names Machiavelli, Niccolò
3 Short description Italian politician and political theorist
4 Date of birth May 3, 1469
5 Place of birth Florence
6 Date of death June 21, 1527
7 Place of death Florence

A powerful feature of readHTMLList() and readHTMLTable() is that we can defineApplying
element

functions
individual element functions using the elFun argument. By default, the function applied to
each list item (<li>) and each cell of the table (<td>), respectively, is xmlValue(), but we
can specify other functions that take XML nodes as arguments. Let us use another HTML table
to demonstrate this feature. The first table of the article gives an overview of Machiavelli’s
personal information and, in the seventh and eighth rows, lists persons and schools of thought
that have influenced him in his thinking as well as those that were influenced by him.

R> readHTMLTable(mac_source, stringsAsFactors = F)[[1]][7:8, 1]
[1] "Influenced by\nXenophon, Plutarch, Tacitus, Polybius, Cicero,
Sallust, Livy, Thucydides"
[2] "Influenced\nPolitical Realism, Bacon, Hobbes, Harrington,
Rousseau, Vico, Edward Gibbon, David Hume, John Adams, Cuoco,
Nietzsche, Pareto, Gramsci, Althusser, T. Schelling, Negri, Waltz,
Baruch de Spinoza, Denis Diderot, Carl Schmitt"

In the HTML file, the names of philosophers and schools of thought are also linked to
the corresponding Wikipedia articles, but this information gets lost by relying on the default
element function. Let us replace the default function by one that is designed to extract links—
getHTMLLinks(). This allows us to extract all links for influential and influenced thinkers.

R> influential <- readHTMLTable(mac_source,
elFun = getHTMLLinks,
stringsAsFactors = FALSE)[[1]][7,]

R> as.character(influential)[1:3]
[1] "/wiki/Xenophon" "/wiki/Plutarch" "/wiki/Tacitus"
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R> influenced <- readHTMLTable(mac_source,
elFun = getHTMLLinks,
stringsAsFactors = FALSE)[[1]][8,]

R> as.character(influenced)[1:3]
[1] "/wiki/Political_Realism" "/wiki/Francis_Bacon"
[3] "/wiki/Thomas_Hobbes"

Extracting links, tables, and lists from HTML documents are ordinary tasks in web
scraping practice. These functions save a lot of time or otherwise we would have to spend on
constructing suited XPath expressions and keeping our code tidy.

9.1.5 Dealing with HTML forms

Forms are a classical feature of user–server interaction via HTTP on static websites. They
vary in size, layout, input type, and other parameters—just think about all the search bars you
have used, the radio buttons you have slided, the check marks you have set, the user names
and passwords typed in, and so on. Forms are easy to handle with a graphical user interface
like a browser, but a little more difficult when they have to be disentangled in the source code.
In this section, we will cover the general approach to master forms with R. In the end you
should be able to recognize forms, determine the method used to pass the inputs, the location
where the information is sent, and how to specify options and parameters for sending data to
the servers and capture the result.

We will consider three different examples throughout this section to learn how to prepare
your R session, approach forms in general, use the HTTP GET method to send forms to
the server, use POST with url-encoded or multipart body, and let R automatically generate
functions that use GET or POST with adequate options to send form data.

Filling out forms in the browser and handling them from within R differs in many respects,
because much of the work that is usually done by the browser in the background has to be
specified explicitly. Using a browser, we

1. fill out the form,

2. push the submit, ok, start, or the like! button.

3. let the browser execute the action specified in the source code of the form and send
the data to the server,

4. and let the browser receive the returned resources after the server has evaluated the
inputs.

In scraping practice, things get a little more complicated. We have to

1. recognize the forms that are involved,

2. determine the method used to transfer the data,

3. determine the address to send the data to,

4. determine the inputs to be sent along,

5. build a valid request and send it out, and

6. process the returned resources.
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In this section, we use functions from the RCurl, XML, stringr, and the plyr packages.Preparations

Furthermore, we specify an object that captures debug information along the way so that
we can check for details if something goes awry (see Section 5.4.3 for details). Addition-
ally, we specify a curl handle with a set of default options—cookiejar to enable cookie
management, followlocation to follow page redirections which may be triggered by the
POST command, and autoreferer to automatically set the Referer request header when
we have to follow a location redirect. Finally, we specify the From and User-Agent header
manually to stay identifiable:

R> info <- debugGatherer()
R> handle <- getCurlHandle(cookiejar = "",

followlocation = TRUE,
autoreferer = TRUE,
debugfunc = info$update,
verbose = TRUE,
httpheader = list(
from = "eddie@r-datacollection.com",
'user-agent' = str_c(R.version$version.string,

", ", R.version$platform)
))

Another preparatory step is to define a function that translates lists of XML attributes
into data frames. This will come in handy when we are going to evaluate the attributes of
HTML form elements of parsed HTML documents. The function we construct is called
xmlAttrsToDF() and takes two arguments. The first argument supplies a parsed HTML
document and the second an XPath expression specifying the nodes from which we want
to collect the attributes. The function extracts the nodes’ attributes via xpathApply() and
xmlAttrs() and transforms the resulting list into a data frame while ensuring that attribute
names do not get lost and that each attribute value is stored in a separate column:

R> xmlAttrsToDF <- function(parsedHTML, xpath) {
x <- xpathApply(parsedHTML, xpath, xmlAttrs)
x <- lapply(x, function(x) as.data.frame(t(x)))
do.call(rbind.fill, x)

}

9.1.5.1 GETting to grips with forms

To presenting how to generally approach forms and specifically how to handle forms that
demand HTTP GET, we use WordNet. WordNet is a service provided by Princeton University
at http://wordnetweb.princeton.edu/perl/webwn. Researchers at Princeton have built up a
database of synonyms for English nouns, verbs, and adjectives. They offer their data as an
online service. The website relies on an HTML form to gather the parameters and send a
request for synonyms—see Princeton University (2010a) for further details and Princeton
University (2010b) for the license.

Let us browse to the page and type in a word, for example, data. Hitting the Search
WordNet button results in a change to the URL which now contains 13 parameters.

1 http://wordnetweb.princeton.edu/perl/webwn?s=data&sub=Search+
WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
mailto:eddie@r-datacollection.com
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We have been redirected to another page, which informs us that data is a noun and that it
has two semantic meanings.

From the fact that the URL is extended with a query string when submitting our search
term we can infer that the form uses the HTTP GET method to send the data to the server.
But let us verify this conclusion. To briefly recap the relevant facts from Chapter 2: HTML
forms are specified with the help of <form> nodes and their attributes. The <form> nodes’
attributes define the specifics of the data transfer from client to server. <input> nodes are
nested in <form> nodes and define the kind of data that needs to be supplied to the form.

We can either use view source code feature of a browser to check out the attributes of the Inspecting
forms with Rform nodes, or we use R to get the information. This time we do the latter. First, we load the

page into R and parse it.

R> url <- "http://wordnetweb.princeton.edu/perl/webwn"
R> html_form <- getURL(url, curl = handle)
R> parsed_form <- htmlParse(html_form)

Let us have a look at the form node attributes to learn the specifics of sending data to the
server. We use the xmlAttrsToDF() that we have set up above for this task.

R> xmlAttrsToDF(parsed_form, "//form")
method action enctype name

1 get webwn multipart/form-data f
2 get webwn multipart/form-data change

There are two HTML forms on the page, one called f and the other change. The first
form submits the search terms to the server while the second takes care of submitting further
options on the type and range of data being returned. For the sake of simplicity, we will ignore
the second form.

With regard to the specifics of sending the data, the attribute values tell us that we
should use the HTTP method GET (method) and send it to webwn (action) which is the
location of the form we just downloaded and parsed. The enctype parameter with value
multipart/form-data comes as a bit of a surprise. It refers to how content is encoded
in the body of the request. As GET explicitly does not use the body to transport data, we
disregard this option.

The next task is to get the list of input parameters. When GET is used to send data, we
can easily spot the parameters sent to the server by inspecting the query string added to the
URL. But those parameters might only be a subset of all possible parameters. We therefore
use xmlAttrsToDF() again to get the full set of inputs and their attributes.

R> xmlAttrsToDF(parsed_form, "//form[1]/input")
type name maxlength value

1 text s 500 <NA>
2 submit sub <NA> Search WordNet
3 hidden o2 <NA>
4 hidden o0 <NA> 1
5 hidden o8 <NA> 1
6 hidden o1 <NA> 1
7 hidden o7 <NA>
8 hidden o5 <NA>
9 hidden o9 <NA>
10 hidden o6 <NA>

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
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11 hidden o3 <NA>
12 hidden o4 <NA>
13 hidden h <NA>

As suggested by the long query string added to the URL after searching for our first
search term, we get a list of 13 input nodes. Recall that there was only one input field on the
page—the text field where we specified the search term. Inspecting the inputs reveals that 11
of the input fields are of type hidden, that is, input fields which cannot be manipulated by
the user. Moreover, input fields of type submit are hidden from user manipulation as well,
so there is only one parameter left for us to take care of. It turns out that the other parameters
are used for submitting options to the server and have nothing to do with the actual search.
To make simple search requests, the s parameter is sufficient.

Combining the informations on HTTP method, request location, and parameters, we canSpecifying GET
requests with R now build an adequate request by using one of RCurl’s form functions. As the HTTP method

to send data to the server is GET, we use getForm(). Since the location to which we send
the request remains the same, we can reuse the URL we used before. As parameter we only
supply the s parameter with a value equal to the search term that we want to get synonyms for.

R> html_form_res <- getForm(uri = url, curl = handle, s = "data")
R> parsed_form_res <- htmlParse(html_form_res)
R> xpathApply(parsed_form_res, "//li", xmlValue)
[[1]]
[1] "S: (n) data, information (a collection of facts from which
conclusions may be drawn) \"statistical data\""

[[2]]
[1] "S: (n) datum, data point (an item of factual information
derived from measurement or research) "

Let us also have a look at the header information we supply by inspecting the information
stored in the info object with the debugGatherer() function and reset it afterwards.

R> cat(str_split(info$value()["headerOut"], "\r")[[1]])
GET /perl/webwn HTTP/1.1
Host: wordnetweb.princeton.edu
Accept: */*
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32

GET /perl/webwn?s=data HTTP/1.1
Host: wordnetweb.princeton.edu
Accept: */*
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32
R> info$reset()

We find that the requests for fetching the form information and sending the form data are
nearly identical, except that in the latter case the query string ?s=data is appended to the
requested resource.

mailto:eddie@r-datacollection.com
mailto:eddie@r-datacollection.com


SCRAPING THE WEB 239

The same could have been achieved by supplying a URL with appended query string and
a call to getURL():

R> url <- "http://wordnetweb.princeton.edu/perl/webwn?s=data"
R> html_form_res <- getURL(url = url, curl = handle)

9.1.5.2 POSTing forms

Forms that use the HTTP method POST are in many respects identical to forms that use
GET. They key difference between the two methods is that with POST, the information is
transferred in the body of the request. There are two common styles for transporting data in
the body, either as url-encoded or as multipart. While the former is efficient for text data, the
latter is better suited for sending files. Thus, depending on the purpose of the form, one or the
other POST style is expected. The next two sections will show how to handle POST forms
in practice. The first example deals with a url-encoded body and the second one showcases
sending multipart data.

POST with url-encoded body In the first example, we use a form from http://www.read-
able.com. The website offers a service that evaluates the readability of webpages and texts.
As before, we use the precomposed handle to retrieve the page and directly parse and save it.

R> url <- "http://read-able.com/"
R> form <- htmlParse(getURL(url = url, curl = handle))

Looking for <form> nodes reveals that there are two forms in the document. An exam- Inspecting
POST formsination of the site reveals that the first is used to supply a URL to evaluating a webpage’s

readability, and the second form allows inputting text directly.

R> xmlAttrsToDF(form, "//form")
method action

1 get check.php
2 post check.php

There is no enctype specified in the attributes of the second form, so we expect the
server to accept both encoding styles. Because url-encoded bodies are more efficient for text
data, we will use this style to send the data.

An inspection of the second form’s input fields indicates that there seem to be no inputs
other than the submit button.

R> xmlAttrsToDF(form, "//form[2]//input")

Looking at the entire source code of the form, we find that there is a textarea node that
gathers text to be sent to the server.

R> xpathApply(form, "//form[2]")
[[1]]
<form method="post" action="check.php">

<p class="instructions">

http://wordnetweb.princeton.edu/perl/webwn?s$=$data
http://wordnetweb.princeton.edu/perl/webwn?s$=$data
http://www.read-able.com
http://www.read-able.com
http://www.read-able.com
http://www.read-able.com
http://read-able.com/
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<label title="Paste
a complete (HTML) Document here" for="directInput">Enter text to
check the readability:</label><br /><textarea id="directInput"
name="directInput" rows="10" cols="60"></textarea>

HTML is allowed - it
will be stripped from the text.

</p>

<p>
<input type="submit"

value="Calculate Readability" /></p>

</form>

attr(,"class")
[1] "XMLNodeSet"

Its name attribute is directInput which serves as parameter name for sending the
text. Let us use a famous quote about data found at http://www.goodreads.com/ to check its
readability.

R> sentence <- "\"It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to suit theories, instead
of theories to suit facts.\" -- Arthur Conan Doyle, Sherlock Holmes"

We send it to the read-able server for evaluation. Within the call to postForm() we setSpecifying
POST requests

with R
style to "POST" for an url-encoded transmission of the data.

R> res <- postForm(uri = str_c(url, "check.php"),
curl = handle,
style = "POST",
directInput = sentence)

Most of the results are presented as HTML tables as shown below.

R> readHTMLTable(res)
$'NULL'

Flesch Kincaid Reading Ease 66.5
1 Flesch Kincaid Grade Level 6.6
2 Gunning Fog Score 6.8
3 SMOG Index 5
4 Coleman Liau Index 11.4
5 Automated Readability Index 5.7

$'NULL'
No. of sentences 3

1 No. of words 32
2 No. of complex words 2
3 Percent of complex words 6.25%
4 Average words per sentence 10.67
5 Average syllables per word 1.53

http://www.goodreads.com/
http://www.goodreads.com/
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All in all, with a Grade Level of 6.6, 12- to 13-year-old children should be able to
understand Sherlock Holmes’ dictum. Let us check out the header information that was sent
to the server.

R> cat(str_split(info$value()["headerOut"], "\r")[[1]])
GET / HTTP/1.1
Host: read-able.com
Accept: */*
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32

POST /check.php HTTP/1.1
Host: read-able.com
Accept: */*
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32
Content-Length: 277
Content-Type: application/x-www-form-urlencoded

The second header confirms that the data have been sent via POST, using the following
url-encoded body.4

R> cat(str_split(info$value()["dataOut"], "\r")[[1]])
directInput=%22It%20is%20a%20capital%20mistake%20to%20theorize%20
before%20one%20has%20data%2E%20Insensibly%20one%20begins%20to%20
twist%20facts%20to%20suit%20theories%2C%20instead%20of%20theories%20
to%20suit%20facts%2E%22%20%2D%2D%20Arthur%20Conan%20Doyle%2C%20
Sherlock%20Holmes

R> info$reset()

POST with multipart-encoded body The second example considers a POST with a
multipart-encoded body. Fix Picture (http://www.fixpicture.org/) is a web service to trans-
form image files from one format to another. In our example we will transform a picture from
PNG format to PDF.

Let us begin by retrieving a picture in PNG format and save it to our disk.

R> url <- "r-datacollection.com/materials/http/sky.png"
R> sky <- getBinaryURL(url = url, curl = handle)
R> writeBin(sky, "sky.png")

Next, we collect the main page of Fix Picture including the HTML form.

R> url <- "http://www.fixpicture.org/"
R> form <- htmlParse(getURL(url = url, curl = handle))

4Recall that URL encoding refers to the process of replacing special characters with their percent-escaped
representations. For more information on the topic see Section 5.1.2.

http://www.fixpicture.org/
http://www.fixpicture.org/
http://www.fixpicture.org/
http://www.fixpicture.org/
mailto:eddie@r-datacollection.com
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We check out the attributes of the form nodes.

R> xmlAttrsToDF(form, "//form")
name id action method enctype

1 form form resize.php?LANG=en post multipart/form-data

We find that there is only one form on the page. The form expects data to be sent with
POST and a multipart-encoded body. The list of possible inputs is extensive, as we can not
only transform the picture from one format to another but also flip and rotate it, restrict it
to grayscale, or choose the quality of the new format. For the sake of simplicity, we restrict
ourselves to a simple transformation from one format to another.

R> xmlAttrsToDF(form, "//input")[1:2, c("name", "type", "class", "value")]
name type class value

1 image file upload-file <NA>
2 <NA> image btn_submit <NA>

The important input is the image. The upload-file value for the class attribute in one
of the <input> nodes suggests that we supply the file’s content under this name.

There is no input node for selecting the format of the output file. Inspecting the source
code reveals that a select node is enclosed in the form. Select elements allow choosing
between several options which are supplied as option nodes:

R> xmlAttrsToDF(form, "//select")
onchange id name

1 changeSelect() format format

The name attribute of the select node indicates under which name (format) the value—
listed within the option nodes should be sent to the server.

R> xmlAttrsToDF(form, "//select/option")
value

1 jpeg
2 png
3 tiff
4 pdf
5 bmp
6 gif

Disregarding all other possible options, we are ready to send the data along with param-
eters to the server. For RCurl to read the file and send it to the server, we have to use
RCurl’s fileUpload() function that takes care of providing the correct information for the
underlying libcurl library. The following code snippet sends the data to the server.

R> res <- postForm(uri = "http://www.fixpicture.org/resize.php?LANG=en",
image = fileUpload(filename = "sky.png",

contentType = "image/png"),
format = "pdf",
curl = handle)

The result is not the transformed file itself but another HTML document from which we
extract the link to the file.

R> doc <- htmlParse(res)
R> link <- str_c(url, xpathApply(doc, "//a/@href", as.character)[[1]])

http://www.fixpicture.org/resize.php?LANG$=$en
http://www.fixpicture.org/resize.php?LANG$=$en
http://www.fixpicture.org/resize.php?LANG=en
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We download the transformed file and write it to our local drive.

R> resImage <- getBinaryURL(link, curl = handle)
R> writeBin(resImage, "sky.pdf", useBytes = TRUE)

The result is the PNG picture transformed to PDF format. Last but not least let us have a
look at the multipart body with the data that have been sent via POST:

R> cat(str_split(info$value()["dataOut"], "\r")[[1]])
----------------------------30059d14e820
Content-Disposition: form-data; name="image"; filename="sky.png"
Content-Type: image/png

[[BINARY DATA]]
----------------------------30059d14e820
Content-Disposition: form-data; name="format"

pdf
----------------------------30059d14e820--

The [[BINARY DATA]] snippet indicates binary data that cannot be properly displayed
with text. Finally, we reset the info slot again.

R> info$reset()

9.1.5.3 Automating form handling—the RHTMLForms package

The tools we have introduced in the previous paragraphs can be adapted to specific cases to
handle form interactions. One shortcoming is that the interaction requires a lot of manual
labor and inspection of the source code. One attempt to automate some of the necessary steps
is the RHTMLForms package (Temple Lang et al. 2012). It was designed to automatically
create functions that fill out forms, select the appropriate HTTP method to send data to the
server, and retrieve the result. The RHTMLForms package is not hosted on CRAN. You can
install it by supplying the location of the repository.

R> install.packages("RHTMLForms", repos = "http://www.omegahat.org/R",
type = "source")
R> library(RHTMLForms)

The basic procedure of RHTMLForms works as follows:

1. We use getHTMLFormDescription() on the URL where the HTML form is located
and save its results in an object—let us call it forms.

2. We use createFunction() on the first item of the forms object and save the results
in another object, say form_function.

3. formFunction() takes input fields as options to send them to the server and return
the result.

http://www.omegahat.org/R
http://www.omegahat.org/R
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Let us go through this process using WordNet again. We start by gathering the formPurpose-built
form functions description information and creating the form function.

R> url <- "http://wordnetweb.princeton.edu/perl/webwn"
R> forms <- getHTMLFormDescription(url)
R> formFunction <- createFunction(forms[[1]])

Having created formFunction(), we use it to send form data to the server and retrieve
the results.

R> html_form_res <- formFunction(s = "data", .curl = handle)
R> parsed_form_res <- htmlParse(html_form_res)
R> xpathApply(parsed_form_res,"//li", xmlValue)
[[1]]
[1] "S: (n) data, information (a collection of facts from which
conclusions may be drawn) \"statistical data\""

[[2]]
[1] "S: (n) datum, data point (an item of factual information
derived from measurement or research) "

Let us have a look at the function we just created.

R> args(formFunction)

function ( s = "",
.url = "http://wordnetweb.princeton.edu/perl/webwn",
...,

.reader = NULL,

.formDescription = list(formAttributes = c(
"get",
"http://wordnetweb.princeton.edu/perl/webwn",
"multipart/form-data",
"f"),

elements = list(
s = list(name = "s",

nodeAttributes = c("text", "s", "500"),
defaultValue = ""),

o2 = list(name = "o2", value = "" ),
o0 = list(name = "o0", value = "1"),
o8 = list(name = "o8", value = "1"),
o1 = list(name = "o1", value = "1"),
o7 = list(name = "o7", value = "" ),
o5 = list(name = "o5", value = "" ),
o9 = list(name = "o9", value = "" ),
o6 = list(name = "o6", value = "" ),
o3 = list(name = "o3", value = "" ),
o4 = list(name = "o4", value = "" ),
h = list(name = "h" , value = "" )),

url = "http://wordnetweb.princeton.edu/perl/webwn"),
.opts = structure(list(

referer = "http://wordnetweb.princeton.edu/perl/webwn"),
.Names = "referer"),

.curl = getCurlHandle(),

.cleanArgs = NULL)

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
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Although it might look intimidating at first, it is easier than it looks because most of the
options are for internal use. The options are set automatically and we can disregard them—
.reader, .formDescription, elements, .url, url, and .cleanArgs. We are already
familiar with some of the options like .curl and .opts. In fact, when looking at the call
to formFunction() above you will notice that the same handler was used as before and
the updation of info was successful. That is because under the hood of these functions all
requests are made with the RCurl functions getForm() and postForm() so that we can
expect .opts and .curl to work in the same way as when using pure RCurl functions.

The last set of options are the names of the inputs we fill in and send to the server. In
our case, createFunction() correctly recognized o0 to o8 and h as inputs that need not
be manipulated by users. The elements argument stores the default values, but in contrast
to the input that stores the search term—s—which got an option with the same name,
createFunction() did not create arguments for formFunction() that allow specifying
values for o0, o1, and so on, as they are not necessary for the POST command.

The RHTMLForms packages might sound like they simplify interactions with HTML
forms to a great extent. While it is true that we save some of the actual coding, the interactions
still require a fairly intimate knowledge of the form in order to be able to interact with it.
This is to say that it is difficult to interact sensibly with a form if you do not know the type
of input and output for a form.

9.1.6 HTTP authentication

Not all places on the Web are accessible to everyone. We have learned in Section 5.2.2 that
HTTP offers authentication techniques which restrict content from unauthorized users, namely
basic and digest authentication. Performing basic authentication with R is straightforward with
the RCurl package.

As a short example, we try to access the “solutions” section at www.r-datacollection.com/
materials/solutions. When trying to access the resources with our browser, we are confronted
with a login form (see Figure 9.1). In R we can pass username and password to the server
with libcurl’s userpwd option. Base64 encoding is performed automatically.

R> url <- "www.r-datacollection.com/materials/solutions"
R> cat(getURL(url, userpwd = "teacher:sesame", followlocation = TRUE))
solutions coming soon

The userpwd option also works for digest authentication, and we do not have to manually
deal with nonces, algorithms, and hash codes—libcurl takes care for these things on its own.

To avoid storing passwords in the code, it can be convenient to put them in the .Rprofile Storing
passwordsfile, as R reads it automatically with every start (see Nolan and Temple Lang 2014, p. 295).

R> options(RDataCollectionLogin = "teacher:sesame")

We can retrieve and use the password using getOption().

R> getURL(url, userpwd = getOption("RDataCollectionLogin"),
followlocation = TRUE)

http://www.r-datacollection.com/materials/solutions
http://www.r-datacollection.com/materials/solutions
www.r{{-}}datacollection.com/materials/solutions
http://www.r-datacollection.com/materials/solutions
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Figure 9.1 Screenshot of HTTP authentication mask at http://www.r-datacollection.com/
materials/solutions

9.1.7 Connections via HTTPS

The secure transfer protocol HTTPS (see Section 5.3.1) becomes increasingly common. In
order to retrieve content from servers via HTTPS, we can draw on libcurl/RCurl which
support SSL connections. In fact, we do not have to care much about the encryption and SSL
negotiation details, as they are handled by libcurl in the background by default.

Let us consider an example. The Inter-university Consortium for Political and Social
Research (ICPSR) at the University of Michigan provides access to a huge archive of social
science data. We are interested in just a tiny fraction of it—some meta-information on survey
variables. At https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search, the ICPSR offers a
fielded search for variables. The search mask allows us to specify variable label, question text
or category label, and returns a list of results with some snippets of information. What makes
this page a good exercise is that it has to be accessed via HTTPS, as the URL in the browser
reveals. In principle, connecting to websites via HTTPS can be just as easy as this

R> url <- "https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search"
R> getURL(url)
Error: SSL certificate problem, verify that the CA cert is OK.
Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate
verify failed

Setting up a successful connection does not seem to always be straightforward. The error
message states that the server certificate signed by a trusted certificate authority (CA)—
necessary to prove the server’s identity—could not be verified. This error could indicate that
the server should not be trusted because it is not able to provide a valid proof of its identity. In
this case, however, the reason for this error is different and we can easily remedy the problem.
What libcurl tries to do when connecting to a server via HTTPS is to access the locally
stored library of CA signatures to validate the server’s first response. On some systems—ours
included—libcurl has difficulties finding the relevant file (cacert.pem) on the local drive. We

http://www.r-datacollection.com/materials/solutions
http://www.r-datacollection.com/materials/solutions
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/search
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therefore have to specify the path to the file manually and hand it to our gathering function
with the argument cainfo. We can either supply the directory where our browser stores its
library of certificates or use the file that comes with the installation of RCurl.

R> signatures = system.file("CurlSSL", cainfo = "cacert.pem",
package = "RCurl")

R> res <- getURL(url, cainfo = signatures)

Alternatively, we can update the bundle of CA root certificates. A current version can be
accessed at http://curl.haxx.se/ca/cacert.pem. In cases where validation of the server certificate
still fails, we can prevent libcurl from trying to validate the server altogether. This is done
with the ssl.verifypeer argument (see Nolan and Temple Lang 2014, p. 300).

R> res <- getURL(url, ssl.verifypeer = FALSE)

This might be a potentially risky choice if the server is in fact not trustworthy. After all,
it is the primary purpose of HTTPS to provide means to establish secure connections to a
verified server.

Returning to the example, we examine the GET form with which we can query the
ICPSR database. The action parameter reveals that the GET refers to /icpsrweb/ICPSR/
ssvd/variables. The <input> elements are variableLabel, questionText, and
categoryLabel. We re-specify the target URL in u_action and set up a curl handle.
It stores the CA signatures and can be used across multiple requests. Finally, we formulate a
getForm() call searching for questions that contain ‘climate change’ in their label, and
extract the number of results from the query.

R> url_action <- "https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/
variables?"
R> handle <- getCurlHandle(cainfo = signatures)
R> res <- getForm(url_action,

variableLabel = "climate+change",
questionText = "",
categoryLabel = "",
curl = handle)

R> str_extract(res, "Your query returned [[:digit:]]+ variables")
[1] "Your query returned 263 variables"

This is a minimal evaluation of our search results. We could easily extract more informa-
tion on the single questions and query other question specifics, too.

9.1.8 Using cookies

Cookies are used to allow HTTP servers to re-recognize clients, because HTTP itself is a
stateless protocol that treats each exchange of request and response as though it were the first
(see Section 5.2.1). With RCurl and its underlying libcurl library, cookie management with R
is quite easy. All we have to do is to turn it on and keep it running across several requests with
the use of a curl handle—setting and sending the right cookie at the right time is managed in
the background.

In this section, we draw on functions from the packages RCurl, XML, and stringr for HTTP Preparations

client support, HTML parsing, and XPath queries as well as convenient text manipulation.
Furthermore, we create an object info that logs information on exchanged information

http://curl.haxx.se/ca/cacert.pem
http://curl.haxx.se/ca/cacert.pem
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/variables?
https://www.icpsr.umich.edu/icpsrweb/ICPSR/ssvd/variables?


248 AUTOMATED DATA COLLECTION WITH R

between our client and the servers we connect to. We also create a handle that is used
throughout this section.

R> info <- debugGatherer()
R> handle <- getCurlHandle(cookiejar = "",

followlocation = TRUE,
autoreferer = TRUE,
debugfunc = info$update,
verbose = TRUE,
httpheader = list(
from = "eddie@r-datacollection.com",
'user-agent' = str_c(R.version$version.string,

", ", R.version$platform)
))

The most important option for this section is the first argument in the handle—
cookiejar = "". Specifying the cookiejar option even without supplying a file name
for the jar—a place to store cookie information in—activates cookie management by the
handle. The two options to follow (followlocation and autoreferer) are nice-to-have
options that preempt problems which might occur due to redirections to other resources. The
remaining options are known from above.

The general approach for using cookies with R is to rely on RCurl’s cookie management
by reusing a handle with activated cookie management, like the one specified above, in
subsequent requests.

9.1.8.1 Filling an online shopping cart

Although cookie support is most likely needed for accessing webpages that require logins in
practice, the following example illustrates cookies with a bookshop shopping cart at Biblio,
a page that specializes in finding and ordering used, rare, and out-of-print books.

Let us browse to http://www.biblio.com/search.php?keyisbn=data and put some books
into our cart. For the sake of simplicity, the query string appended to the URL already issues
a search for books with data as keyword. Each time we select a book for our cart by clicking
on the add to cart button, we are redirected to the cart (http://www.biblio.com/cart.php). We
can go back to the search page, select another book and add it to the cart.

To replicate this from within R, we first define the URL leading to the search results page
(search_url) as well as the URL leading to the shopping cart (cart_url) for later use.

R> search_url <- "www.biblio.com/search.php?keyisbn=data"
R> cart_url <- "www.biblio.com/cart.php"

Next, we download the search results page and directly parse and save it in searchPage.

R> search_page <- htmlParse(getURL(url = search_url, curl = handle))

Adding items to the shopping cart is done via HTML forms.

R> xpathApply(search_page, "//div[@class='order-box'][position()<2]/
form")
[[1]]
<form class="ob-add-form" action="http://www.biblio.com/cart.php"
method="get">

http://www.biblio.com/search.php?keyisbn$=$data
http://www.biblio.com/search.php?keyisbn$=$data
http://www.biblio.com/cart.php
http://www.biblio.com/cart.php
www.biblio.com/search.php?keyisbn$=$data
http://www.biblio.com/search.php?keyisbn$=$data
www.biblio.com/cart.php
http://www.biblio.com/cart.php
http://www.biblio.com/cart.php
http://www.biblio.com/cart.php
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<input type="hidden" name="bid" value="652559100" />
<input type="hidden" name="add" value="1" />
<input type="hidden" name="int" value="keyword_search" />
<input type="submit" value="Add to cart" class="add-cart-button"

title="Add this item to your cart" onclick="_gaq.push(['_trackEvent',
'cart_search_add', 'relevance', '1']);" />
</form>

attr(,"class")
[1] "XMLNodeSet"

We extract the book IDs to later add items to the cart.

R> xpath <- "//div[@class='order-box'][position()<4]/form/input
[@name='bid']/@value"
R> bids <- unlist(xpathApply(search_page, xpath, as.numeric))
R> bids
[1] 652559100 453475278 468759385

Now we add the first three items from the search results page to the shopping cart by Requests with
cookiessending the necessary information (bid, add, and int) to the server. Notice that by passing

the same handle to the request via the curl option, we automatically add received cookies
to our requests.

R> for (i in seq_along(bids)) {
res <- getForm(uri = cart_url, curl = handle, bid = bids[i],

add = 1, int = "keyword_search")
}

Finally, we retrieve the shopping cart and check out the items that have been stored.

R> cart <- htmlParse(getURL(url = cart_url, curl = handle))
R> clean <- function(x) str_replace_all(xmlValue(x), "(\t)|(\n\n)", "")
R> cat(xpathSApply(cart, "//div[@class='title-block']", clean))

DATA
by Hill, Anthony (ed)
Developing Language Through Design and Technology
by DATA
Guide to Design and technology Resources
by DATA

As expected, there are three items stored in the cart. Let us consider again the headers sent Reconsidering
the headerswith our requests and received from the server. We first issued a request that did not contain

any cookies.

R> cat(str_split(info$value()["headerOut"], "\r")[[1]][1:13])

GET /search.php?keyisbn=data HTTP/1.1
Host: www.biblio.com
Accept: */*
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32

www.biblio.com
http://www.biblio.com
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The server responded with the prompt to set two cookies—one called vis, the other
variation.

R> cat(str_split(info$value()["headerIn"], "\r")[[1]][1:14])

HTTP/1.1 200 OK
Server: nginx
Date: Thu, 06 Mar 2014 10:27:23 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=60
Set-Cookie: vis=language%3Ade%7Ccountry%3A6%7Ccurrency%3A9%7Cvisitor
%3AVrCZ...; expires=Tue, 05-Mar-2019 10:27:21 GMT; path=/;
domain=.biblio.com; httponly
Set-Cookie: variation=res_a; expires=Fri, 07-Mar-2014 10:27:21 GMT;
path=/; domain=.biblio.com; httponly
Vary: User-Agent,Accept-Encoding
Expires: Fri, 07 Mar 2014 10:27:23 GMT
Cache-Control: max-age=86400
Cache-Control: no-cache

Our client responded with a new request, now containing the two cookies.

R> cat(str_split(info$value()["headerOut"], "\r")[[1]][1:13])

GET /cart.php?bid=652559100&add=1&int=keyword%5Fsearch HTTP/1.1
Host: www.biblio.com
Accept: */*
Cookie: variation=res_a; vis=language%3Ade%7Ccountry%3A6%7Ccurrency
%3A9%7Cvisitor%3AVrCZz...
from: eddie@r-datacollection.com
user-agent: R version 3.0.2 (2013-09-25), x86_64-w64-mingw32

If we had failed to supply the cookies, our shopping cart would have remained empty.
The following request is identical to the request made above—we use the same handler and
code—except that we use cookielist = "ALL" to reset all cookies collected so far.

R> cart <- htmlParse(getURL(url = cart_url, curl = handle,
cookielist = "ALL"))
R> clean <- function(x) str_replace_all(xmlValue(x), "(\t)|(\n\n)", "")
R> cat(xpathSApply(cart, "//div[@class='title-block']", clean))

Consequently, the cart is returned empty because without cookies the server has no way
of knowing which actions, like adding items to the shopping cart, have been taken so far.

9.1.8.2 Further tricks of the trade

The approach from above—define and use a handle with enabled cookie management and let
RCurl and libcurl take care of further details of HTTP communication—will be sufficient in
most cases. Nevertheless, sometimes more control of the specifics is needed. In the following
we will go through some further features in handling cookies with RCurl.

www.biblio.com
http://www.biblio.com
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We have specified cookiejar = "" in the previous section to activate automatic Adding cookies
manuallycookie management. If a file name is supplied to this option, for example, cookiejar =

"cookies.txt", all cookies are stored in this file whenever cookielist = "FLUSH" is
specified as option to an RCurl function using the handle or via curlSetOpt().

R> handle <- getCurlHandle(cookiejar = "cookies.txt")
R> res <- getURL("http://httpbin.org/cookies/set?k1=v1&k2=v2",
curl = handle)
R> handle <- curlSetOpt(cookielist = "FLUSH", curl = handle)

An example of a cookie file looks as follows:

R> readLines("cookies.txt")
[1] "# Netscape HTTP Cookie File"
[2] "# http://curl.haxx.se/rfc/cookie_spec.html"
[3] "# This file was generated by libcurl! Edit at your own risk."
[4] ""
[5] "httpbin.org\tFALSE\t/\tFALSE\t0\tk2\tv2"
[6] "httpbin.org\tFALSE\t/\tFALSE\t0\tk1\tv1"

We can use the information in the file to get a set of initial cookies using the cookiefile
option.

R> new_handle <- getCurlHandle(cookiefile = "cookies.txt")

Besides writing collected cookies to a file, we can also clear the list of cookies collected
so far with cookielist="ALL".

R> getURL("http://httpbin.org/cookies", curl = new_handle,
cookielist = "ALL")
[1] "{\n \"cookies\": {\n \"k2\": \"v2\",\n \"k1\": \"v1\" n
}\n}"

Last but not least, although RCurl and libcurl will handle cookies set via HTTP reliably if
cookies are set by other technologies, for example, by JavaScript—it is necessary to provide
some cookies manually. We can do this by providing the cookie option with the exact
specification of the contents of cookies.

R> getURL("http://httpbin.org/cookies", cookie = "name=Eddie;age=32")
[1] "{\n \"cookies\": {\n \"name\": \"Eddie\",\n \"age\":
\"32\"\n }\n}"

9.1.9 Scraping data from AJAX-enriched webpages with
Selenium/Rwebdriver

We learned in Chapter 6 that accessing particular information in webpages may be impeded
when a site employs methods for dynamic data requests, especially through XHR objects. We
illustrated that in certain situations this problem can be circumvented through the use of Web
Developer Tools which can reveal the target source from which AJAX-enriched webpages
query their information. Unfortunately, this approach does not constitute a universal solution
to all extraction problems where dynamic data requests are involved. For one reason, the

http://httpbin.org/cookies/set?k1=v1&k2=v2
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source may not be so easily spotted as in the stylized examples that we introduced but requires
time-consuming investigation of the respective code and considerably more knowledge about
JavaScript and the XHR object. Another problem that renders this approach infeasible is
that AJAX is frequently not directly responsible for accessing a specific data source but only
interacts with an intermediate server-side scripting language like PHP. PHP allows evaluating
queries and sending requests to a database, for example, a MySQL database (see Chapter 7),
and then feeds the returned data back to the AJAX callback function and into the DOM tree.
Effectively, such an approach would conceal the target source and eliminate the option of
directly accessing it.

In this section, we introduce a generalized approach to cope with dynamically rendered
webpages by means of browser control. The idea is the following: Instead of bypassing web
browsers, we leverage their capabilities of interpreting JavaScript and formulating changes to
the live DOM tree by directly including them into the scraping process. Essentially, this means
that all communication with a webpage is routed through a web browser session to which we
send and from which we receive information. There are numerous programs which allow such
an approach. Here, we introduce the Selenium/Webdriver framework for browser automation
(Selenium Project 2014a,b) and its implementation in R via the Rwebdriver package. We start
by presenting the problems caused by a running example. We then turn to illustrating the
basic idea behind Selenium/Webdriver, explain how to install the Rwebdriver package, and
show how to direct commands to the browser directly from the R command line. Using the
running example, we discuss the implemented methods and how we can leverage them for
web scraping.

9.1.9.1 Case study: Federal Contributions Database

As a running example we try to obtain data from a database on financial contributions to US
parties and candidates. The data have originally been collected and published by OpenSe-
crets.org under a non-restrictive license (Center for Responsive Politics 2014). A sample
of the data has been fed to a database that can be accessed at http://r-datacollection.com/
materials/selenium/dbQuery.html. As always, we start by trying to learn the structure of the
page and the way it requests and handles information of interest. The tool of choice for this
task are browser-implemented Web Developer Tools which were introduced in Section 6.3.
Let us go through the following steps:

1. Open a new browser window and go to http://r-datacollection.com/materials/selenium/
dbQuery.html. In the Network tab of your Web Developer Tools you should spot that
opening the page has triggered requests of three additional files: dbQuery.html which
includes the front end HTML code as well as the auxiliary JavaScript code, jquery-
1.8.0.min.js which is the jQuery library, and bootstrap.css, a style sheet. The visual
display of the page should be more or less similar to the one shown in Figure 9.2.

2. Choose input values from the scroll-down menus and click the submit button.
Upon clicking, your Network tab should indicate the request of a file named
getEntry.php?y=2013&m=01&r=&p=&t=T or similar, depending on the values you
have picked.

3. Take a look again at the page view to ensure that an HTML table has been created
at the lower end of the page. While it is not directly obvious where this information

http://r-datacollection.com/materials/selenium/dbQuery.html
http://r-datacollection.com/materials/selenium/dbQuery.html
http://r-datacollection.com/materials/selenium/dbQuery.html
http://r-datacollection.com/materials/selenium/dbQuery.html
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Figure 9.2 The Federal Contributions database

comes from, usually a request to a PHP file is employed to fetch information from an
underlying MySQL database using the parameter value pairs transmitted in the URL to
construct the query to the database. This complicates extraction matters, since working
directly with the database is usually not possible because we do not have the required
access information and are thus restricted to working with the retrieved output from
the PHP file.

9.1.9.2 Selenium and the Rwebdriver package

Selenium/Webdriver is an open-source suite of software with the primary purpose of providing
a coherent, cross-platform framework for testing applications that run natively in the browser.
In the development of web applications, testing is a necessary step to establish expected func-
tionality of the application, minimize potential security and accessibility issues, and guarantee
reliability under increased user traffic. Before the creation of Selenium this kind of testing
had been carried out manually—a tedious and error-prone undertaking. Selenium solves this
problem by providing drivers to control browser behavior such as clicks, scrolls, swipes,
and text inputs. This enables programmatic approaches to the problem by using a scripting
language to characterize sequences of user behaviors and report if the application fails.

Selenium’s capability to drive interactions with the webpage through the browser is of Installing the
Rwebdriver
package

more general use besides testing purposes. Since it allows to remote-control the browser, we
can work with and request information directly from the live DOM tree, that is, how the visual
display is presented in the browser window. Accessing Selenium functionality from within R
is possible via the Rwebdriver package. It is available from a GitHub repository and can be
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Figure 9.3 Initializing the Selenium Java Server

installed with the install_github() function from the devtools package (Wickham and
Chang 2013).

R> library(devtools)
R> install_github(repo = "Rwebdriver", username = "crubba")

Getting started with Selenium Webdriver Using Selenium requires initiating the Sele-
nium Java Server. The server is responsible for launching and killing browsers as well as
receiving and interpreting the browser commands. The communication with the server from
inside the programming environment works via simple HTTP messages. To get the server up
and running, the Selenium server file needs to be downloaded from http://docs.seleniumhq.
org/download/ to the local file system. The server file follows the naming convention
(selenium-server-standalone-<version-number>.jar).5 In order to initiate the server, open
the system prompt, change the directory to the jar-file location, and execute the file.

1 cd Rwebdriver/
2 java -jar selenium-server-standalone-2.39.0.jar

The console output should resemble the one printed in Figure 9.3. The server is now
initiated and waits for commands. The system prompt may be minimized and we can turn

5At the time of writing, the latest server version is 2.39.0.

http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/
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our attention back to the R console. Here, we first load the Rwebdriver as well as the XML
package.

R> library(Rwebdriver)
R> library(XML)

The first step is to create a new browser window. This can be accomplished through
the start_session() function which requires passing the address of the Java server—
by default http://localhost:4444/wd/hub/. Additionally, we pass firefox to the browser
argument to instruct the server to produce a Firefox browser window.

R> start_session(root = "http://localhost:4444/wd/hub/", browser =
"firefox")

Once the command is executed, the Selenium API opens a new Firefox window to which
we can now direct browser requests.

Using Selenium for web scraping We now return to the running example and explore some
of Selenium’s capabilities. Note that we are not introducing all functionality of the package
but focus our attention to functions most commonly used in the web scraping process. For a
full list of implemented methods, see Table 9.1.

Let us assume we wish to access the database through its introductory page at Accessing a
webpagehttp://www.r-datacollection.com/materials/selenium/intro.html. To direct the browser to a

specific webpage, we can use post.url() with specified url parameter.

R> post.url(url = "http://www.r-datacollection.com/materials/
selenium/intro.html")

The browser should respond and display the intro webpage. When a page forwards the Retrieving the
current URLbrowser to another page, it can be helpful to retrieve the current browser URL, since this may

differ from the one that was specified in the query. We can obtain the information through the
get.url() command.

R> get.url()

[1]"http://r-datacollection.com/materials/selenium/intro.html"

The returned output is a standard character vector. To pull the page title of the browser Retrieving the
page titlewindow, use page_title().

R> page_title()

[1]"The Federal Contributions Database"

To arrive at the form for querying the database, we need to perform a click on the Performing
clicksenter button at the bottom right. Performing clicks with Selenium requires a two-step pro-

cess. First, we need to create an identifier for the button element. Selenium allows spec-
ifying such an identifier through multiple ways. Since we already know how to work
with XPath expressions (see Chapter 4), we will employ this method. By using the Web
Developer Tools, we can obtain the following XPath expression for the button element,
/html/body/div/div[2]/form/input. When we pass the XPath expression as a string

http://localhost:4444/wd/hub/
http://localhost:4444/wd/hub/
http://www.r-datacollection.com/materials/selenium/intro.html
http://www.r-datacollection.com/materials/selenium/intro.html
http://www.r-datacollection.com/materials/selenium/intro.html
http://www.r-datacollection.com/materials/selenium/intro.html
http://localhost:4444/wd/hub/
http://r-datacollection.com/materials/selenium/intro.html
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Table 9.1 Overview of Selenium methods (v.0.1)

Command Arguments Output

start_session() root, browser Creates a new session
quit_session() Closes session
status() Queries the server’s current status
active_sessions() Retrieves information on active

sessions
post.url() url Opens new url
get.url() Receives URL from current

webpage
element_find() by, value Finds elements by method and the

value
element_xpath_find() value Finds elements corresponding to

XPath string value
element_ptext_find() value Finds elements corresponding to

text string value
element_css_find() value Finds elements corresponding to

CSS selector string value
element_click() ID, times, button Clicks on element ID
element_clear() ID Clears input value from element

ID’s text field
page_back() times One page backward
page_forward() times One page forward
page_refresh() Refreshes current webpage
page_source() Receives HTML source string
page_title() Receives webpage title string
window_handle() Returns handle of the activated

window
window_handles() Returns all window handles in

current session
window_change() handle Changes focus to window with

handle
window_close() handle Closes window with handle
get_window_size() handle Returns vector of current window

size
post_window_size() size, handle Posts a new window size for

window handle
get.window_position() handle Returns x,y coordinates of window

handle
post_window_position() position, handle Changes coordinates of window

handle
key terms Post keyboard term values
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to the element_xpath_find() function, we are returned the corresponding element ID
from the live DOM. Let us go ahead and save the ID in a new object called buttonID.

R> buttonID <- element_xpath_find(value = "/html/body/div/div[2]/
form/input")

The second step is to actually perform the left-mouse click on the identified element. For
this task, we make use of element_click(), and pass buttonID as the ID argument.

R> element_click(ID = buttonID)

This causes the browser to change the page to the one displayed in Figure 9.2. Additionally, Window
handlesyou might have observed a pop-up window opening upon clicking the button. The occurrence

of pop-ups generates a little complication, since they cause Selenium to switch the focus of
its activate window to the newly opened pop-up. To return focus to the database page, we
need to first obtain all active window handles using window_handles().

R> allHandles <- window_handles()

To change the focus back on the database window, you can use the window_change()
function and pass the window handle that corresponds to the correct window. In this case, it
is the first element in allHandles.6

R> window_change(allHandles[1])

Now that we have accessed the database page, we can start to query information from it. Identifying
elementsLet us try to fetch contribution records for Barack Obama from January 2013. To accomplish

this task, we change the value in the Month field. Again, this requires obtaining the ID for
the Month input field. From the Web Developer Tools we learn that the following XPath
expression is appropriate: '//*[@id="yearSelect"]'. At the same time, we save the IDs
for the month and the recipient text field.

R> yearID <- element_xpath_find(value = '//*[@id="yearSelect"]')
R> monthID <- element_xpath_find(value = '//*[@id="monthSelect"]')
R> recipID <- element_xpath_find(value = '//*[@id="recipientSelect"]')

In order to change the year, we perform a mouse click on the year field by executing
element_click() with the appropriate ID argument.

R> element_click(yearID)

Next, we need to pass the keyboard input that we wish to enter into the database field. Passing
keyboard inputSince we are interested in records from the year 2013, we use the keys() function with the

first argument set to the correct term.

R> keys("2013")

6Another option would be to close the window using close_window(). This automatically returns the focus to
the previous window.
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In a similar fashion, we do the same for the other fields.7

R> element_click(monthID)
R> keys("January")
R> element_click(recipID)
R> keys("Barack Obama")

We can now send the query to the database with a click on the submit button. Again, we
first identify the button using XPath and pass the corresponding ID element to the clicking
function.

R> submitID <- element_xpath_find(value = '//*[@id="yearForm"]
/div/button')
R> element_click(submitID)

This action should have resulted in a new HTML table being displayed at the bottom ofAccessing
source code the page. To obtain this information, we can extract the underlying HTML code from the live

DOM tree and search the code for a table.

R> pageSource <- page_source()
R> moneyTab <- readHTMLTable(pageSource, which = 1)

With a few last processing steps, we can bring the information into a displayable format.

R> colnames(moneyTab) <- c("year", "name", "party", "contributor",
"state", "amount")
R> moneyTab <- moneyTab[-1, ]
R> head(moneyTab)

year name party contributor state amount
2 2013 Barack Obama D ROBERTS, GARY TX -50
3 2013 Barack Obama D TOENNIES, MICHAEL MR CO -55
4 2013 Barack Obama D PENTA, NEELAM NY -100
5 2013 Barack Obama D VALENSTEIN, JILL NY -15
6 2013 Barack Obama D SPRECHER KEATING, KAREN DC -100
7 2013 Barack Obama D FISCHER, DAMIEN CA -100

Concluding remarks The web scraping process laid out in this section departs markedly
from the techniques and tools we have previously outlined. As we have seen, Selenium
provides a powerful framework and a way for working with dynamically rendered webpages
when simple HTTP-based approaches fail. It helps keep in mind that this flexibility comes
with a cost, since the browser itself takes some time to receive the request, process it, and
render the page. This has the potential to slow down the extraction process drastically, and we
therefore advise users to use Selenium only for tasks where other tools are unfit. We oftentimes
find using Selenium most helpful for describing transitions between multiple webpages and
posting clicks and keyboard commands to a browser window, but once we encounter solid
URLs, we switch back to the R-based HTTP methods outlined previously for speed purposes.

7If necessary, we can also remove any input from a text field with the element_clear() function on the
respective element.
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Besides the Rwebdriver package there is a package called Relenium which resembles the
package introduced in this chapter (Ramon and de Villa 2013). Although Relenium provides
a more straightforward initiation process of the Selenium server, it has, at the time of writing,
a more limited functionality.

9.1.10 Retrieving data from APIs

We have mentioned APIs in passing when introducing XML, JSON, and other fundamentals.
Generally, APIs encompass tools which enable programmers to connect their software with
“something else.” They are useful in programming software that relies on external soft- or
hardware because the developers do not have to go into the details of external soft- or hardware
mechanics.

When we talk about APIs in this book, we refer to web services or (web) APIs, that is, The rise of web
APIsinterfaces with web applications. We treat the terms “API” and “web service” synonymously,

although the term API encompasses a much larger body of software. The reason why APIs
are of importance for web data collection tasks is that more and more web applications offer
APIs which allow retrieving and processing data. With the rise of Web 2.0, where web APIs
provided the basis for many applications, application providers recognized that data on the
Web are interesting for many web developers. As APIs help make products more popular and
might, in the end, generate more advertising revenues, the availability of APIs has rapidly
increased.

The general logic of retrieving data from web APIs is simple. We illustrate it in Figure 9.4. Basic logic

The API provider sets up a service that grants access to data from the application or to the
application itself. The API user accesses the API to gather data or communicate with the
application. It may be necessary to write wrapper software for convenient data exchange
with the web service. Wrappers are functions that handle details of API access and data
transformation, for example, from JSON to R objects. The modus operandi of APIs varies—
we shortly discuss the popular standards REST and SOAP further below. APIs provide data
in various formats. JSON has probably become the most popular data exchange format of

API provider

(e.g., Twitter, Yahoo!)

Web application

Web service / Data API

API user

User application

API wrapper software

User software (e.g., R)
Data formats:

JSON, XML,...

Modus operandi:

REST, SOAP,...

Figure 9.4 The mechanics of web APIs
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modern web APIs, but XML is still frequently used, and any other formats such as HTML,
images, CSVs, and binary data files are possible.

APIs are implemented for developers and thus must be understandable to humans. There-Documentation

fore, an extensive documentation of features, functions, and parameters is often part of an API.
It gives programmers an overview of the content and form of information an API provides,
and what information it expects, for example, via queries.

Standardization of APIs helps programmers familiarize themselves with the mechanics ofStandards

an API quickly. There are several API standards or styles, the more popular ones being REST
and SOAP. It is important to note that in order to tap web services with R, we often do not
have to have any deeper knowledge of these techniques—either because others have already
programmed a handy interface to these APIs or because our knowledge about HTTP, XML,
and JSON suffices to understand the documentation of an API and to retrieve the information
we are looking for. We therefore consider them just briefly.

REST stands for Representational State Transfer (Fielding 2000). The core idea behindREST

REST is that resources are referenced (e.g., via URLs) and representations of these resources
are exchanged. Representations are actual documents like an HTML, XML, or JSON file. One
might think of a conversation on Twitter as a resource, and this resource could be represented
with JSON code or equally valid representations in other formats. This sounds just like what
the World Wide Web is supposed to be—and in fact one could say that the World Wide Web
itself conforms to the idea of REST. The development of REST is closely linked to the design
of HTTP, as the standard HTTP methods GET, POST, PUT, and DELETE are used for the
transfer of representations. GET is the usual method when the goal is to retrieve data. To
simplify matters, the difference between a GET request of a REST API and a GET request
our browser puts to a server when asking for web content is that (a) parameters are often
well-documented and (b) the response is simply the content, not any layout information.
POST, PUT, and DELETE are methods that are implemented when the user needs to create,
update, and delete content, respectively. This is useful for APIs that are connected to personal
accounts, such as APIs from social media platforms like Facebook or Twitter. Finally, a
RESTful API is an API that confirms to the REST constraints. The constraints include the
existence of a base URL to which query parameters can be added, a certain representation
(JSON, XML,...), and the use of standard HTTP methods.

Another web service standard we sometimes encounter is SOAP, originally an acronymSOAP

for Simple Object Access Protocol. As the technology is rather difficult to understand and
implement, it is currently being gradually superseded by REST. SOAP-based services are fre-
quently offered in combination with a WSDL (Web Service Description Language) document
that fully describes all the possible methods as well as the data structures that are expected and
returned by the service. WSDL documents themselves are based on XML and can therefore
be interpreted by XML parsers. The resulting advantage of SOAP-based web services is that
users can automatically construct API call functions for their software environment based
on the WSDL, as the API’s functionality is fully described in the document. For more infor-
mation on working with SOAP in R, see Nolan and Temple Lang (2014, Chapter 12). The
authors provide the SSOAP package that helps work with SOAP and R (Temple Lang 2012b)
by transforming the rules documented in a WSDL document into R functions and classes.8

Generating wrapper functions on-the-fly has the advantage that programs can easily react to

8At the time of writing, the package is not yet listed on CRAN.
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API changes. However, as the SOAP technology is becoming increasingly uncommon, we
focus on REST-based services in this section.

Using a RESTful API with R can be very simple and not very different from what we Example:
Yahoo Weather
RSS Feed

have learned so far regarding ordinary GET requests. As a toy example we consider Yahoo’s
Weather RSS Feed, which is documented at http://developer.yahoo.com/weather/. It provides
information on current weather conditions at any given place on Earth as well as a five-day
forecast in the form of an RSS file, that is, an XML-style document (see Section 3.4.3). The
feed basically delivers the data part of what is offered at http://weather.yahoo.com/. We could
use the API to generate our own forecasts or to build an R-based weather gadget. According
to the Terms of Use in the documentation, the feeds are provided free of charge for personal,
non-commercial uses.

Making requests to the feed is pretty straightforward when studying the documentation.
All we have to specify is the location for which we want to get a feedback from the API
(the w parameter) and the preferred degrees unit (Fahrenheit or Celsius; the u parameter).
The location parameter requires a WOEID code, the Where On Earth Identifier. It is a 32-
bit identifier that is unique for every geographic entity (see http://developer.yahoo.com/geo/
geoplanet/guide/concepts.html). From a manual search on the Yahoo Weather application, we
find that the WOEID of Hoboken, New Jersey, is 2422673. Calling the feed is simply done
using the HTTP GET syntax. We already know how to do this in R. We specify the API’s
base URL and make a GET request to the feed, providing the w parameter with the WOEID
and the u parameter for degrees in Celsius.

R> feed_url <- "http://weather.yahooapis.com/forecastrss"
R> feed <- getForm(feed_url, .params = list(w = "2422673", u = "c"))

As the retrieved RSS feed is basically just XML content, we can parse it with XML’s
parsing function.

R> parsed_feed <- xmlParse(feed)

The original RSS file is quite spacious, so we only provide the first and last couple of
lines.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <rss xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos}" version="2.0">
3 <channel>
4 <title>Yahoo! Weather - Hoboken, NJ</title>
5 <link>http://us.rd.yahoo.com/dailynews/rss/weather/Hoboken__NJ/*

http://weather.yahoo.com/forecast/USNJ0221_c.html</link>
6 <description>Yahoo! Weather for Hoboken, NJ</description>
7 <language>en-us</language>
8 <lastBuildDate>Tue, 18 Feb 2014 7:35 am EST</lastBuildDate>
9 <ttl>60</ttl>

10 <yweather:location city="Hoboken" region="NJ" country="United
States"/>

11 <yweather:units temperature="C" distance="km" pressure="mb"
speed="km/h"/>

12 <yweather:wind chill="-3" direction="40" speed="11.27"/>

http://developer.yahoo.com/weather/
http://developer.yahoo.com/weather/
http://weather.yahoo.com/
http://weather.yahoo.com/
http://developer.yahoo.com/geo/geoplanet/guide/concepts.html
http://developer.yahoo.com/geo/geoplanet/guide/concepts.html
http://weather.yahooapis.com/forecastrss
http://weather.yahooapis.com/forecastrss
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://weather.yahoo.com/forecast/USNJ0221_c.html
http://weather.yahoo.com/forecast/USNJ0221_c.html
http://weather.yahoo.com/.We
http://us.rd.yahoo.com/dailynews/rss/weather/Hoboken__NJ/*
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13 <yweather:atmosphere humidity="93" visibility="1.21"
pressure="1015.92" rising="2"/>

14 ...
15 <item>
16 ...
17 <yweather:condition text="Cloudy" code="26" temp="0" date="Tue,

18 Feb 2014 7:35 am EST"/>
18 <yweather:forecast day="Tue" date="18 Feb 2014" low="-2"

high="4" text="Rain/Snow" code="5"/>
19 <yweather:forecast day="Wed" date="19 Feb 2014" low="-2"

high="7" text="Showers" code="11"/>
20 <yweather:forecast day="Thu" date="20 Feb 2014" low="3" high="7"

text="Partly Cloudy" code="30"/>
21 <yweather:forecast day="Fri" date="21 Feb 2014" low="1"

high="12" text="Rain/Thunder" code="12"/>
22 <yweather:forecast day="Sat" date="22 Feb 2014" low="-1"

high="9" text="Partly Cloudy" code="30"/>
23 </item>
24 </channel>
25 </rss>

We can process the parsed XML object using standard XPath expressions and convenience
functions from the XML package. As an example, we extract the values of current weather
parameters which are stored in a set of attributes.

R> xpath <- "//yweather:location|//yweather:wind|//yweather:condition"
R> conditions <- unlist(xpathSApply(parsed_feed, xpath, xmlAttrs))
R> data.frame(conditions)

conditions
city Hoboken
region NJ
country United States
chill -3
direction 40
speed 11.27
text Cloudy
code 26
temp 0
date Tue, 18 Feb 2014 7:35 am EST

We also build a small data frame that contains the forecast statistics for the next 5 days.

R> location <- t(xpathSApply(parsed_feed, "//yweather:location", xmlAttrs))
R> forecasts <- t(xpathSApply(parsed_feed, "//yweather:forecast", xmlAttrs))
R> forecast <- merge(location, forecasts)
R> forecast

city region country day date low high text code
1 Hoboken NJ United States Tue 18 Feb 2014 -2 4 Rain/Snow 5
2 Hoboken NJ United States Wed 19 Feb 2014 -2 7 Showers 11
3 Hoboken NJ United States Thu 20 Feb 2014 3 7 Partly Cloudy 30
4 Hoboken NJ United States Fri 21 Feb 2014 1 12 Rain/Thunder 12
5 Hoboken NJ United States Sat 22 Feb 2014 -1 9 Partly Cloudy 30
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Processing the result from a REST API query is entirely up to us if no R interface to a Web service
interfaces for Rweb service exists. We could also construct convenient wrapper functions for the API calls.

Packages exist for some web services which offer convenience functions to pass R objects to
the API and get back R objects. Such functions are not too difficult to create once you are
familiar with an API’s logic and the data technology that is returned. Let us try to construct
such a wrapper function for the Yahoo Weather Feed example.

There are always many ways to specify wrapper functions for existing web services. We Building a
wrapper
function

want to construct a command that takes a place’s name as main argument and gives back the
current weather conditions or a forecast for the next few days. We have seen above that the
Yahoo Weather Feed needs a WOEID as input. To manually search for the corresponding
WOEID of a place and then feed it to the function seems rather inconvenient, so we want to
automate this part of the work as well. Indeed, there is another API that does this work for us.
At http://developer.yahoo.com/geo/geoplanet/ we find a set of RESTful APIs subsumed under
the label Yahoo! GeoPlanet which offer a range of services. One of these services returns the
WOEID of a specific place.

http://where.yahooapis.com/v1/places.q(’northfield%20mn%20usa’)?appid=[yourappidhere]

The URL contains the query parameter appid. We have to obtain an app ID to be able
to use this service. Many web services require registration and sometimes even involve a
sophisticated authentication process (see next section). In our case we just have to register for
the Yahoo Developer Network to obtain an ID. We register our application named RWeather
at Yahoo. After providing the information, we get the ID and can add it to our API query.
In order to be able to reuse the ID without having to store it in the code, we save it in the R
options:9

R> options(yahooid = "t.2cnduc0BqpWb7qmlc14vEk8sbL7LijbHoKS.utZ0")

The call to the WOEID API is as follows. We start with the base URL and add the place we
are looking for in the URL’s placeholder between the parentheses. The sprintf() function
is useful because it allows pasting text within another string. We just have to mark the string
placeholder with %s.

R> baseurl <- "http://where.yahooapis.com/v1/places.q('%s')"
R> woeid_url <- sprintf(baseurl, URLencode("Hoboken, NJ, USA"))

Notice also that we have to encode the place name with URL encoding (see Section 5.1.2).

http://where.yahooapis.com/v1/places.q(’Hoboken,%20NJ,%20USA’)

Next we formulate a GET call to the API. We add our Yahoo app ID which we retrieve
from the options. The service returns an XML document which we directly parse into an
object named parsed_woeid.

R> parsed_woeid <- xmlParse((getForm(woeid_url, appid = getOption
("yahooid"))))

9See Section 9.1.6. Needless to say that the printed ID is fictional.

http://developer.yahoo.com/geo/geoplanet/
http://developer.yahoo.com/geo/geoplanet/
http://where.yahooapis.com/v1/places.q('northfield%20mn%20usa')?appid$=$[yourappidhere]
http://where.yahooapis.com/v1/places.q('northfield%20mn%20usa')?appid$=$[yourappidhere]
http://where.yahooapis.com/v1/places.q
http://where.yahooapis.com/v1/places.q
http://where.yahooapis.com/v1/places.q('Hoboken,%20NJ,%20USA')
http://where.yahooapis.com/v1/places.q('Hoboken,%20NJ,%20USA')
http://where.yahooapis.com/v1/places.q('%s
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The XML document itself looks as follows.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <places xmlns="http://where.yahooapis.com/v1/schema.rng" xmlns:

yahoo="http://www.yahooapis.com/v1/base.rng" yahoo:start="0"
yahoo:count="1" yahoo:total="1">

3 <place yahoo:uri="http://where.yahooapis.com/v1/place/2422673"
xml:lang="en-US">

4 <woeid>2422673</woeid>
5 <placeTypeName code="7">Town</placeTypeName>
6 <name>Hoboken</name>
7 <country type="Country" code="US" woeid="23424977">United

States</country>
8 <admin1 type="State" code="US-NJ" woeid="2347589">New Jersey

</admin1>
9 <admin2 type="County" code="" woeid="12589266">Hudson</admin2>

10 <admin3/>
11 <locality1 type="Town" woeid="2422673">Hoboken</locality1>
12 ...
13 <timezone type="Time Zone" woeid="56043648">America/New_York

</timezone>
14 </place>
15 </places>

There are several WOEIDs stored in the document, one for the country, one for the
state, and one for the town itself. We can extract the town WOEID with an XPath query
on the retrieved XML file. Note that the document comes with namespaces. We access the
<locality1> element where the WOEID is stored with the XPath expression //*[local-
name()='locality1'] which addresses the document’s local names.

R> woeid <- xpathSApply(parsed_woeid, "//*[local-name()='locality1']",
xmlAttrs)[2,]
R> woeid

woeid
"2422673"

Voilà, we have retrieved the corresponding WOEID. Recall that our goal was to construct
one function which returns the results of a query to Yahoo’s Weather Feed in a useful R
format. We have seen that such a function has to wrap around not only one, but two APIs—
the WOEID returner and the actual Weather Feed. The result of our efforts, a function named
getWeather(), are displayed in Figure 9.5.

The wrapper function splits into five parts. The first reports errors if the function’sThe wrapper
function arguments ask—to determine if current weather conditions or a forecast should be reported—

and temp—to set the reported degrees Celsius or Fahrenheit—are wrongly specified. The
second part (get woeid) replicates the call to the WOEID API which we have considered
in detail above. The third part (get weather feed) uses the WOEID and makes a call
to Yahoo’s Weather Feed. The fourth part (get current conditions) is evaluated if the
user asks for the current weather conditions at a given place. We have stored some condition

http://where.yahooapis.com/v1/schema.rng
http://where.yahooapis.com/v1/schema.rng
http://www.yahooapis.com/v1/base.rng
http://www.yahooapis.com/v1/base.rng
http://where.yahooapis.com/v1/place/2422673
http://where.yahooapis.com/v1/place/2422673
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1 getWeather <- function(place = "New York", ask = "current", temp = "c") {
2 if (!ask %in% c("current","forecast")) {
3 stop("Wrong ask parameter. Choose either 'current' or

'forecast'.")
4 }
5 if (!temp %in% c("c", "f")) {
6 stop("Wrong temp parameter. Choose either 'c' for Celsius or

'f' for Fahrenheit.")
7 }
8 ## get woeid
9 base_url <- "http://where.yahooapis.com/v1/places.q('%s')"

10 woeid_url <- sprintf(base_url, URLencode(place))
11 parsed_woeid <- xmlParse((getForm(woeid_url, appid = getOption("

yahooid"))))
12 woeid <- xpathSApply(parsed_woeid, "//*[local-name()='locality1']",

xmlAttrs)[2,]
13 ## get weather feed
14 feed_url <- "http://weather.yahooapis.com/forecastrss"
15 parsed_feed <- xmlParse(getForm(feed_url, .params = list(w = woeid,

u = temp)))
16 ## get current conditions
17 if (ask == "current") {
18 xpath <- "//yweather:location|//yweather:condition"
19 conds <- data.frame(t(unlist(xpathSApply(parsed_feed, xpath,

xmlAttrs))))
20 message(sprintf("The weather in %s, %s, %s is %s. Current

temperature is %s degrees %s.", conds$city, conds$region,
conds$country, tolower(conds$text), conds$temp, toupper(temp)))

21 }
22 ## get forecast
23 if (ask == "forecast") {
24 location <-

data.frame(t(xpathSApply(parsed_feed, "//yweather:
location", xmlAttrs)))

25 forecasts <- data.frame(t(xpathSApply(parsed_feed,
"//yweather:forecast", xmlAttrs)))

26 message(sprintf("Weather forecast for %s, %s, %s:",
location$city, location$region, location$country))

27 return(forecasts)
28 }
29 }

Figure 9.5 An R wrapper function for Yahoo’s Weather Feed

parameters in a data frame conds and input the results into a single sentence—not very useful
if we want to post-process the data, but handy if we just want to know what the weather is like
at the moment.10 If a forecast is requested, the function’s fifth part is activated. It constructs
a data frame from the forecasts in the XML document and returns it, along with a short
message.

10Seasoned programmers will appreciate the possibility of getting a weather update without having to leave the
basement, not even the familiar programming environment.

http://where.yahooapis.com/v1/places.q('%s
http://weather.yahooapis.com/forecastrss
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Let us try out the function. First, we ask for the current weather conditions in San
Francisco.

R> getWeather(place = "San Francisco", ask = "current", temp = "c")
The weather in San Francisco, CA, United States is cloudy. Current
temperature is 9 degrees C.

This call was successful. Note that Yahoo’s Weather API is tolerant concerning the definition
of the place. If place names are unique, we do not have to specify the state or country. If the
place is not unique (e.g., “Springfield”), the API automatically picks a default option. Next,
we want to retrieve a forecast for the weather in San Francisco.

R> getWeather(place = "San Francisco", ask = "forecast", temp = "c")
Weather forecast for San Francisco, CA, United States:

day date low high text code
1 Tue 18 Feb 2014 10 18 Partly Cloudy 30
2 Wed 19 Feb 2014 13 19 Partly Cloudy 30
3 Thu 20 Feb 2014 12 18 Cloudy 26
4 Fri 21 Feb 2014 11 17 Few Showers 11
5 Sat 22 Feb 2014 10 19 Partly Cloudy 30

We could easily expand the function by adding further parameters or returning more useful RWhere to find
APIs on the

Web
objects. This example served to demonstrate how REST-based web services work in general
and how easy it is to tap them from within R. There are many more useful APIs on the Web.
At http://www.programmableweb.com/apis we get an overview of thousands of web APIs.
Currently, there are more than 11,000 web APIs listed as well as over 7,000 mashups, that
is, applications which make use and combine existing content from APIs. We provide some
additional advice on finding useful data sources, including APIs, in Section 9.4.

9.1.11 Authentication with OAuth

Many web services are open to anybody. In some cases, however, APIs require the user to reg-Authentication
and

authorization
ister and provide an individual key when making a request to the web service. Authentication
is used to trace data usage and to restrict access. Related to authentication is authorization.
Authorization means granting an application access to authentication details. For example, if
you use a third-party twitter client on your mobile device, you have authorized the app to use
your authentication details to connect to your Twitter account. We have learned about HTTP
authentication methods in Section 5.2.2. APIs often require more complex authentication via
a standard called OAuth.

OAuth is an important authorization standard serving a specific scenario. Imagine you
have an account on Twitter and regularly use it to inform your friends about what is currently
on your mind and to stay up to date about what is going on in your network. To stay tuned
when you are on the road, you use Twitter on your mobile phone. As you are not satisfied
with the standard functions the official Twitter application offers, you rely on a third-party
client app (e.g., Tweetbot), an application that has been programmed by another company and
that offers additional functionality. In order to let the app display the tweets of people you
follow and give yourself the opportunity to tweet, you have to grant it some of your rights
on Twitter. What you should never want to do is to hand out your access information, that
is, login name and password, to anybody—not even the Twitter client. This is where OAuth

http://www.programmableweb.com/apis
http://www.programmableweb.com/apis
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comes into play. OAuth differs from other authentication techniques in that it distinguishes
between the following three parties:

� The service or API provider. The provider implements OAuth for his service and is
responsible for the website/server which the other parties access.

� The data owners. They own the data and control which consumer (see next party) is
granted access to the data, and to what extent.

� The data consumer or client. This is the application which wants to make use of the
owner’s data.

When we are working with R, we usually take two of the roles. First, we are data owners
when we want to authorize access to data from our own accounts of whatever web service.
Second, we are data consumers because we program a piece of R software that should be
authorized to access data from the API.

OAuth currently exists in two flavors, OAuth 1.0 and OAuth 2.0 (Hammer-Lahav 2010; OAuth versions

Hardt 2012). They differ in terms of complexity, comfort, and security.11 However, there
have been controversies on the question whether OAuth is indeed more secure and useful
than its predecessor.12 As users, we usually do not have to make the choices between the two
standards; hence, we do not go into more into detail here. OAuth’s official website can be
found at http://oauth.net/. More information, including a beginner’s guide and tutorials, are
available at http://hueniverse.com/oauth/.

How does authorization work in the OAuth framework? First of all, OAuth distinguishes The OAuth
workflowbetween three types of credentials: client credentials (or consumer key and secret), temporary

credentials (or request token and secret), and token credentials (or access token and secret).
Credentials serve as a proof for legitimate access to the data owner’s information at various
stages of the authorization process. Client credentials are used to register the application
with the provider. Client credentials authenticate the client. When we use R to tap APIs,
we usually have to start with registering an application at the provider’s homepage which
we could call “My R-based program” or similar. In the process of registration, we retrieve
client credentials, that is, a consumer key and secret that is linked with our (and only our)
application. Temporary credentials prove that an application’s request for access tokens is
executed by an authorized client. If we set up our application to access data from a resource
owner (e.g., our own Twitter account), we have to obtain those temporary credentials, that is,
a request token and secret, first. If the resource owner agrees that the application may access
his/her data (or parts of it), the application’s temporary credentials are authorized. They now
can be exchanged for token credentials, that is, an access token and secret. For future requests
to the API, the application now can use these access credentials and the user does not have
to provide his/her original authentication information, that is, username and password, for
this task.

The fact that several different types of credentials are involved in OAuth authorization OAuth use
with Rpractice makes it clear that this is a more complicated process that encompasses several

11See “Introducing OAuth 2.0” by Eran Hammer-Lahav at http://hueniverse.com/2010/05/introducing-oauth-2-
0/.

12See “OAuth 2.0 and the Road to Hell” by Eran Hammer-Lahav at http://hueniverse.com/2012/07/oauth-2-0-
and-the-road-to-hell/.

http://oauth.net/
http://oauth.net/
http://hueniverse.com/oauth/
http://hueniverse.com/oauth/
http://hueniverse.com/2010/05/introducing-oauth-2-0/
http://hueniverse.com/2010/05/introducing-oauth-2-0/
http://hueniverse.com/2010/05/introducing-oauth-2-0/
http://hueniverse.com/2010/05/introducing-oauth-2-0/
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
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steps. Fortunately, we can rely on R software that facilitates OAuth registration. The ROAuth
package (Gentry and Lang 2013) provides a set of functions that help specify registration
requests from within R. A simplified OAuth registration interface is provided by the httr
package (Wickham 2012). We illustrate OAuth authentication in R with the commands from
the httr package.

oauth_endpoint() is used to define OAuth endpoints at the provider side. Endpoints
are URLs that can be requested by the application to gain tokens for various steps of the autho-
rization process. These include an endpoint for the request token—the first, unauthenticated
token—and the access token to exchange the unauthenticated for the authenticated token.

oauth_app() is used to create an application. We usually register an application manually
at the API provider’s website. After registration we obtain a consumer key and secret. We
copy and paste both into R. The oauth_app() function simple bundles the consumer key and
secret to a list that can be used to request the access credentials. While the consumer key has
to be specified in the function, we can let the function fetch the consumer secret automatically
from the R environment by placing it there in the APPNAME_CONSUMER_SECRET option. The
benefit of this approach is that we do not have to store the secret in our R code.

oauth1.0_token() and oauth2.0_token() are used to exchange the consumer key
and secret (stored in an object created with the oauth_app() function) for the access key
and secret. The function tries to retrieve these credentials from the access endpoint specified
with oauth_endpoint().

Finally, sign_oauth1.0() and sign_oauth2.0() are used to create a signature from
the received access token. This signature can be added to API requests from the registered
application—we do not have to pass our username and password.

We demonstrate by example how OAuth registration is done using Facebook’s Graph API.Tapping the
Facebook

Graph API
The API grants access to publicly available user information and—if granted by the user—
selected private information. The use of the API requires that we have a Facebook account.
We first have to register an application which we want to grant access to our profile. We go to
https://developers.facebook.com and sign in using our Facebook authentication information.
Next, we create a new application by clicking on Apps and Create a new app. We have
to provide some basic information and pass a check to prove that we are no robot. Now,
our application RDataCollectionApp is registered. We go to the app’s dashboard to retrieve
information on the app, that is, the App ID and the App secret. In OAuth terms, these are
consumer key and consumer secret.

Next, we switch to R to obtain the access key. Using httr’s functionality, we start by
defining Facebook’s OAuth endpoints. This works with the oauth_endpoint() function.

R> facebook <- oauth_endpoint(
R> authorize = "https://www.facebook.com/dialog/oauth",
R> access = "https://graph.facebook.com/oauth/access_token")

We bundle the consumer key and secret of our app in one object with the oauth_app()
function. Note that we have previously dumped the consumer secret in the R environment with
Sys.setenv(FACEBOOK_CONSUMER_SECRET = "3983746230hg8745389234...") to
keep this confidential information out of the R code. oauth_app() automatically retrieves
it from the environment and writes it to the new fb_app object.

R> fb_app <- oauth_app("facebook", "485980054864321")

https://developers.facebook.com
https://developers.facebook.com
https://www.facebook.com/dialog/oauth
https://www.facebook.com/dialog/oauth
https://graph.facebook.com/oauth/access_token
https://graph.facebook.com/oauth/access_token
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Now we have to exchange the consumer credentials with the access credentials. Face-
book’s Graph API uses OAuth 2.0, so we have to use the oauth2.0_token() function. How-
ever, before we execute it, we have to do some preparations. First, we add a website URL to our
app account in the browser. We do this in the Settings section by adding a website and specify-
ing a site URL. Usually this should work with the URL http://localhost:1410/ but you can also
call oauth_callback() to retrieve the callback URL the for the OAuth listener, a web server
that listens for the provider’s OAuth feedback.13 Second, we define the scope of permissions
to apply for. A list of possible permissions can be found at https://developers.facebook.
com/docs/facebook-login/permissions/. We pick some of those and write them into the
permissions object.

R> permissions <- "user_birthday, user_hometown, user_location,
user_status, user_checkins, friends_birthday, friends_hometown,
friends_location, friends_relationships, friends_status, friends_
checkins, publish_actions, read_stream, export_stream"

Now we can ask for the access credentials. Again, we use httr’s oauth2.0_token()
command to perform OAuth 2.0 negotiations.

R> fb_token <- oauth2.0_token(facebook, fb_app, scope = permissions,
type = "application/x-www-form-urlencoded")

starting httpd help server ... done
Waiting for authentication in browser...
Authentication complete.

During the function call we approve the access in the browser. The authentication process
is successful. We use the received access credentials to generate a signature object.

R> fb_sig <- sign_oauth2.0(fb_token)

We are now ready to access the API from within R. Facebook’s web service provides a
large range of functions. Fortunately, there is an R package named Rfacebook that makes the
API easily accessible (Barberá 2014). For example, we can access publicly available data
from Facebook users with

R> getUsers("hadleywickham", fb_sig, private_info = FALSE)
id name username first_name last_name ...

1 16910108 Hadley Wickham hadleywickham Hadley Wickham ...

The package also allows us to access information about our personal network.

R> friends <- getFriends(fb_sig, simplify = TRUE)
R> nrow(friends)
[1] 143
R> table(friends_info$gender)
female male

71 72

13This step departs from the simplified OAuth workflow from above. Unfortunately, we often face departures
from the norm when working with OAuth and have to adapt the procedure.

http://localhost:1410/
http://localhost:1410/
https://developers.facebook.com/docs/facebook-login/permissions/
https://developers.facebook.com/docs/facebook-login/permissions/
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It provides a lot more useful functions. For a more detailed tutorial, check out http://
pablobarbera.com/blog/archives/3.html.

9.2 Extraction strategies

We have learned several methods to gather data from the Web. There are three standard proce-
dures. Scraping with HTTP and extracting information with regular expressions, information
extraction via XPath queries, and data gathering using APIs. They should usually be preferred
over each other in ascending order (i.e., scraping with regular expressions is least preferable
and gathering data via an API is most preferable), but there will be situations where one of the
approaches is not applicable or some of the techniques have to be combined. It thus makes
sense to become familiar with all of them.

In the following, we offer a general comparison between the different approaches. Each
scraping scenario is different, so some of the advantages or disadvantages of a method may
not apply for your task. Besides, as always, there is more than one way to skin a cat.

If data on a site are not provided for download in ready-made files or via an API, scraping
them off the screen is often the only alternative. With regular expressions and XPath queries we
have introduced two strategies to extract information from HTML or XML code. We continue
discussing both techniques according to some practical criteria which become relevant in the
process of web scraping, like robustness, complexity, flexibility, or general power. Note that
these elaborations primarily target static HTML/XML content.

9.2.1 Regular expressions

Figure 9.6 provides a schema of the scraping procedure with regular expressions. In step ①,
we identify information on-site that follows a general pattern. The decision to use regular
expressions to scrape data or another approach depends on our intuition whether the informa-
tion is actually generalizable to a regular expression. In some cases, the data can be described
by means of a regular expression, but the pattern cannot distinguish from other irrelevant
content on the page. For example, if we identify important information wrapped in <b> tags,
this can be difficult to distinguish from other information marked with <b> tags. If data need
to be retained in their context, regular expressions also have a rough ride.

Step ② is to download the websites. Many of the methods described in Section 9.1 might
prove useful here. Additionally, regular expressions can already be of help in this step. They
could be used to assemble a list of URLs to be downloaded, or for URL manipulation (see
Section 9.1.3).

In step ③, the downloaded content is imported into R. When pursuing a purely regex-
based scraping strategy, this is done by simply reading the content as character data with the
readLines() or similar functions. When importing the textual data, we have to be excep-
tionally careful with the encoding scheme used for the original document, as we want to avoid
applying regular expressions to get rid of encoding errors. If you start using str_replace()
in order to get ä, ó, or ç, you are likely to have forgotten specifying the encoding argument in
the readLines() or the parsing function (see Section 8.3). Incidentally, regular expressions
do not make use of an HTML or XML DOM, so we do not need to parse the documents. In
fact, documents parsed with htmlParse() or xmlParse() cannot be accessed with regular
expressions directly. If we use regular expressions in combination with an XPath approach,

http://pablobarbera.com/blog/archives/3.html
http://pablobarbera.com/blog/archives/3.html
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1 Identify information that

follows a regular pattern

Browser, HTML source code, intuition

2
Download documents / websites

RCurl, download.f ile(), regular expressions

3
Import documents

readLines(), encoding

4
Develop regular expression

General expression → optimal match

special case → optimal match

5
Extract information

Regular expressions applied with stringr package

6
Debug code

Inspection, validation

Figure 9.6 Scraping with regular expressions

we first parse the document, extract information with XPath queries and finally modify the
retrieved content with regular expressions.

Step ④ is the crucial one for successful web scraping with regular expressions. One has to
develop one or more regular expressions which extract the relevant information. The syntax
of regular expressions as implemented in R often allows a set of different solutions. The
problem is that these solutions may not differ in the outcome they produce for a certain
sample of text to be regexed, but they can make a difference for new data. This makes
debugging very complex. There are some useful tools which help make regex development
more convenient, for example, http://regex101.com/ or http://www.regexplanet.com/.14 These

14For a more complete overview, see http://scraping.pro/10-best-online-regex-testers/

http://regex101.com/
http://regex101.com/
http://www.regexplanet.com/
http://www.regexplanet.com/
http://scraping.pro/10-best-online-regex-testers/
http://scraping.pro/10-best-online-regex-testers/
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pages offer instant feedback to given regular expressions on sample text input, which makes
the process of regex programming more interactive. In general, we follow one of two strategies
in regular expression programming. The first is to start with a special case and to work toward
a more general solution that captures every piece. For example, only one bit of information
is matched with a regular expression—this is the information itself, as characters match
themselves. The second strategy is to start with a general expression and introduce restrictions
or exceptions that limit the number of matched strings to the desired sample. One could label
the first approach the “inductive” and the second one “deductive.” The “deductive” approach
is probably more efficient because it starts at an abstract level—and regular expressions are
often meant to be abstract—, but usually requires more knowledge about regular expressions.
Another feasible strategy which could be located between the two is to start with several
rather different pieces of information to be matched and find the pick lock that fits for all
of them.

As soon as the regular expression is programmed, extracting the information is the next
step (⑤). As shown in Chapter 8, the stringr package (Wickham 2010) is enormously useful
for this purpose, possibly in combination with apply-like functions (the native R functions or
those provided by the plyr package (Wickham 2011)) for efficient looping over documents.

In the last step ⑥, the code has to be debugged. It is likely that applying regular expressions
on the full sample of strings reveals further problems, like false positives, that is, information
that has been matched should not be matched, or false negatives, that is, some information
to be matched is not matched. It is sometimes necessary to split documents or delete certain
parts before regexing them to exclude a bunch of false positives a priori.

9.2.1.1 Advantages of regular expressions for web scraping

What are the advantages of scraping with regular expressions? In the opinion of many seasoned
web scrapers, there are not too many. Nevertheless, we think that there are circumstances
under which a purely regex-based approach may be superior to any other strategy.

Regular expressions do not operate on context-defining parts of a document. This can be anRobustness to
malformed

XML
advantage over an XPath strategy when the XML or HTML document is malformed. When
DOM parsers fail, regular expressions, ignorant as they are of DOM structure, continue
to search for information. Moreover, to retrieve information from a heterogeneous set of
documents, regular expressions can deal with them as long as they can be converted to a
plain-text format. Generally, regular expressions are powerful for parsing unstructured text.

String patterns can be the most efficient way to identify and extract content in a document.Efficiency

Imagine a situation where you want to scrape a list of URLs which are scattered across a
document and which share a common string feature like a running index. It is possible to
identify these URLs by searching for anchor tags, but you would have to sort out the URLs
you are looking for in a second step by means of a regular expression.

Regular expression scraping can be faster than XPath-based scraping, especially whenSpeed

documents are large and parsing the whole DOM consumes a lot of time. However, the
speed argument cannot be generalized, and the construction of regular expressions or XPath
queries is also an aspect of speed. And after all, there are usually more important arguments
than speed.

Finally, regular expressions are a useful instrument for data-cleansing purposes as theyPower for data
cleansing enable us to get extracted information in the desired shape.



SCRAPING THE WEB 273

9.2.1.2 Disadvantages of regular expressions for web scraping

As soon as information in a document are connected, and should remain so after harvesting, Lack of context
sensitivityregular expressions are stretched to their limits. Data without context are often rather uninter-

esting. Think back to the introductory example from Chapter 8. It was already a complex task
to extract telephone numbers from an unstructured document, but to match the corresponding
names is often hardly possible if a document does not follow a specific structure. When
scraping information from web pages, sticking to regular expressions as a standard scraping
tool means ignoring the virtue that sites are hierarchically or sometimes even semantically
structured by construction. Markup is structure, and while it is possible to exploit markup
with regular expressions, elements which are anchored in the DOM can usually be extracted
more efficiently by means of XPath queries.

Besides, regular expressions are difficult to master. Building regular expressions is a Difficult to
develop and
debug

brain-teaser. It is sometimes very challenging to identify and then formulate the patterns of
information we need to extract. In addition, due to their complexity it is hard to read what is
going on in a regular expression. This makes it hard to debug regex scraping code when one
has not looked at the scraper for a while.

Many scraping tasks cannot be solved with regular expressions because the content to be Lack of
flexibilityscraped is simply too heterogeneous. This means that it cannot be abstracted and formulated

as a generalized string pattern. The structure of XML/HTML documents is inherently hierar-
chical. Sometimes this hierarchy implies different levels of observations in your final dataset.
It can be a very complex task to disentangle these information with regular expressions alone.
If regular expressions make use of nodes that structure the document, the regex strategy soon
becomes very fragile. Incremental changes in the document structure can break. We have
observed that such errors can be fixed more easily when working with XPath.

The usefulness of regular expressions depends not least on the kind of information one
is looking for. If content on websites can be abstracted by means of a general string pattern,
regular expressions probably should be used, as they are rather robust toward changes in
the page layout. And even if you prefer to work with XPath, regular expressions are still an
important tool in the process. First, when parsing fails, regular expressions can constitute a
“last line of defense.” Second, when content has been scraped, the desired information is often
not available in atomic pieces but is still raw text. Regular expressions are extraordinarily
useful for data-cleaning tasks, such as string replacements, string deletions, and string splits.

In the third part of the book, we provide an application that relies mainly on regular
expressions to scrape data from web resources. In Chapter 13, we try to convert an unstructured
table—a “format” we sometimes encounter on the Web—into an appropriate R data structure.

9.2.2 XPath

Although the specifics of scraping with XPath are different from regex scraping, the road
maps are quite similar. We have sketched the path of XPath scraping in Figure 9.7. First, we
identify the relevant information that is stored in an XML/HTML document and is therefore
accessible with XPath queries (step ①). In order to identify the source of information, we can
inspect the source code in our browser and rely on Web Developer Tools.

Step ② is equivalent to the regular expressions scraping approach. We download the
required resources to our local drive. In principle, we could bypass this step and instantly
parse the document “from the webpage.” Either way, the content has to be fetched from the
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Figure 9.7 Scraping with XPath

server, and by first storing it locally, we can repeat the parsing process without having to
scrape documents multiple times.

In step ③, we parse the downloaded documents using the parsers from the XML package.
We suggest addressing character-encoding issues in this step—the later we resolve potential
encoding problems, the more difficult it gets. We have learned about different techniques
of document subsetting and parsing (e.g., SAX parsing methods)—which method we chose
depends upon the requirements or restrictions of the data resources.

Next, we extract the actual information in step ④ by developing one or more XPath
queries. The more often you work with XPath, the more intuitive this step becomes. For a
start, we recommend two basic procedures. The first is to construct XPath expressions with
SelectorGadget (see Section 4.3.3). It returns an expression that usually works, but is likely
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not the most efficient way to express what you want. The other strategy is the do-it-yourself
method. We find it most intuitive to pursue a “backwards induction” approach here. This
means that we start by defining where the actual information is located and develop the
expression from there on, usually up the tree, until the expression uniquely identifies the
information we are looking for. One could also label this a bottom-up search procedure—
regardless of how we name it, it helps construct expressions that are slim and potentially
more robust to major changes in the document structure.

Once we have constructed suitable XPath expressions, extracting the information from
the documents (step ⑤) is easy. We apply the expression with adequate functions from the
XML package. The most promising procedure is to use xpathSApply() in combination
with one of the XML extractor functions (see Table 4.4). In practice, steps ④ and ⑤ are not
distinct. Finding adequate XPath expressions is a continuous trial-and-error process and we
frequently jump between expression construction and information extraction. Additionally,
XML extractor functions often produce not as clear-cut results as we wish them to be, and
bringing the pieces of information into shape takes more than one iteration. Imagine, for
example, that we want to extract reviews from a shopping website. While each of these
reviews could be stored in a leaf in the DOM, we may want to extract more information that
is part of the text, either in a manifest (words, word counts) or latent (sentiments, classes)
manner. We can draw upon regular expressions or more advanced text mining algorithms to
gather information at this level.

In the final step ⑥, we have to debug and maintain the code. Again, this is not literally
the last step, but part of an iterative process.

9.2.2.1 Advantages of XPath

We have stressed that we prefer XPath over regular expressions for scraping content from Naturally fits
XML/HTMLstatic HTML/XML. XPath is the ideal counterpart for working with XML-style files, as it

was explicitly designed for that purpose. This makes it the most powerful, flexible, easy to
learn and write, and robust instrument to access content in XML/HTML files.

More specifically, the fact that XPath was designed for XML documents makes queries Easy to read
and writeintuitive to write and read. This is all the more true when you compare it with regular

expressions, which are defined on the basis of content, not context. As context follows a
clearly defined structure, XPath queries are easier, especially for common cases.

XPath is an expressive language, as it allows the scraping task to be substantially informed Powerful and
flexibleabout a node of interest using a diverse set of characteristics. We can use a node’s name,

numeric or character features, its relation to other nodes, or content-like attributes. Single
nodes can be uniquely defined. Additionally, working with XPath is efficient because it allows
returning node sets with comparatively minimal code input.

As this strategy mainly relies on structural features of documents, XPath queries are robust Robust toward
changes in
content

to content changes. Certain content is fundamentally heterogeneous, such as press releases,
customer reviews, and Wikipedia entries. As long as the fundamental architecture of a page
remains the same, an XPath scraping strategy remains valid.

9.2.2.2 Disadvantages of XPath

Although XPath is generally superior for scraping tasks compared with regular expressions,
there are situations where XPath scraping fails.
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When the parser fails, that is, when it does not produce a valid representation of theRestriction to
valid XML

content
document, XPath queries are essentially useless. While our browser may be tolerant toward
broken HTML documents and still interpret them correctly, our R XML parser might not. If
we work on non-XML-style data, XPath expressions are of no help either.

Complementary to the advantages of regular expression scraping for clearly definedFragile in
fragile contexts patterns in a fragile environment, using XPath expressions to extract information is difficult

when the context is highly variable, for example when the layout of a webpage is constantly
altered.

9.2.3 Application Programming Interfaces

There is little doubt that gathering data from APIs/web services is the gold standard for web
data collection. Scraping data from HTML websites is often a difficult endeavor. We first
have to identify in which slots of the HTML tree the relevant data are stored and how to
get rid of everything else that is not needed. APIs provide exactly the information we need,
without any redundant information. They standardize the process of data dissemination, but
also retain control for the provider over who accesses what data. Developers use different pro-
gramming languages and use data for many different purposes. Web services allow providing
standardized formats that most programming languages can deal with.

We illustrate the data collection procedure with APIs and R in Figure 9.8. In step ①, we
have to find an API and become familiar with the terms of use or limits and the available
methods. Commercial APIs can be very restrictive or offer no data at all if you do not
pay a monthly fee, so you should find out early what you get for which payment. And do
not invest time for nothing—not all web services are well-maintained. Before you start to
program wrappers around an existing API, check whether the API is regularly updated. The
API directory at http://www.programmableweb.com/apis also indicates when services are
deprecated or moved to another place.

Steps ② and ③ are optional. Some web services require the users to register. Authenti-
cation or authorization methods can be quite different. Sometimes it suffices to register by
email to obtain an individual key that has to be delivered with every request. Other ways
of authentication are based on user/password combinations. Authentication via OAuth as
described in Section 9.1.11 can be even more complex.

In step ④, we formulate a call to the API to request the resources. If we are lucky, we can
draw upon an existing set of R functions that provide an interface to the API. We suggest some
possible repositories which may offer the desired piece of R software that helps work with
an API in Section 9.4. However, as the number of available web services increases quickly,
chances are that we have to program our own R wrapper. Wrappers are pieces of software
which wrap around existing software—in our case to be able to use R functions to call an
API and to make the data we retrieve from an API accessible for further work in R.

In step ⑤, we process the incoming data. How we do this depends upon the data format
delivered by the web service. In Chapter 3, we have learned how to use tools from the XML
and jsonlite packages to parse XML and JSON data and eventually convert them to R objects.
R packages which provide ready-made interfaces to web services (see Section 9.4) usually
take care of this step and are therefore exceptionally handy to use.

As always, we should regularly check and debug our code (step ⑥). Be aware of the fact
that API features and guidelines can change over time.

http://www.programmableweb.com/apis
http://www.programmableweb.com/apis
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Figure 9.8 Data collection with APIs

9.2.3.1 Advantages of working with APIs

The advantages of web services over the other techniques stem from the fact that tapping ‘Pure’ data
collectionAPIs is in fact not web scraping. Many of the disadvantages of screen scraping, malformed

HTML, other robustness to legal issues, do not apply to data collection with web services.
As a result, we can draw upon clean data structures and have higher trust in the collection
outcomes.

Further, by registering an application for an API we make an agreement between provider Standardized
data access
procedures

and user. In terms of stability, chances are higher that databases from maintained APIs are
updated regularly. When scraping data from HTML, we are often less sure about this. Some
APIs provide exclusive access to content which we could not otherwise access. In terms of
transparency, as data access procedures are standardized across many computer languages,
the data collection process of projects based on data from web services can be replicated in
other software environments as well.
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As the focus of web services is on the delivery of data, not layout, our code is generallyRobustness

more robust. Web services usually satisfy a certain demand and we are often not the only ones
interested in the data. If many people create interfaces to the API from various programming
environments, we can benefit from this “wisdom of the crowds” and adding robustness to
our code.

To sum up, APIs provide important advantages which make them—if available—the
source of choice for any project that involves automated online data collection.

9.2.3.2 Disadvantages of working with APIs

The fact that the overwhelming majority of resources on the Web are still not accessed by
web APIs motivates large parts of this book. This is no drawback of web services as a tool
for data collection per se but merely reflects the fact that there are more data sources on the
Web people like to work with than data providers who are willing to offer neat access to their
databases.

Although there are not many general disadvantages of using APIs for automated dataDependency on
API providers collection, relying on web service infrastructure can have its own drawbacks. Data providers

can decide to limit their API’s functionality from one day to the other, as has happened with
popular social media APIs.

From the R perspective, we have to acknowledge that we work in a software environmentLack of natural
connection to R that is not naturally connected to the data formats which plop out of ordinary web services.

However, the advantages of web services often easily outweigh the disadvantages, and
even more so because the potential disadvantages do not necessarily apply to every web
service and some of the drawbacks can partly be attributed to the other approaches as well.

9.3 Web scraping: Good practice

9.3.1 Is web scraping legal?

In the disclaimer of the book (see p. xix), we noted a caveat concerning the unauthorized
use or reproduction of somebody else’s intellectual work. As Dreyer and Stockton (2013)
put it: “Scraping inherently involves copying, and therefore one of the most obvious claims
against scrapers is copyright infringement.” Our advice is to work as transparently as possible
and document the sources of your data at any time. But even if one follows these rules,
where is the line between legal scraping of public content and violations of copyright or other
infringements of the law? Even for lawyers who are devoted to Internet issues the case of
web crawling seems to be a difficult matter. Additionally, as the prevailing law varies across
countries, we are unfortunately not able to give a comprehensive overview of what is legal
in which context. To get an impression of what currently seems to be regarded as illegal, we
offer some anecdotal evidence on past decisions. It should be clear, however, that you should
not rely on any of these cases to justify your doings.

Most of the prominent legal cases involve commercial interests. The usual scenario iseBay v.
Bidder’s Edge that one company crawls information from another company, processes, and resells it. In the

classical case eBay v. Bidder’s Edge,15 eBay successfully defended itself against the use of

15http://en.wikipedia.org/wiki/EBay_v._Bidder%27s_Edge, https://www.law.upenn.edu/fac/pwagner/law619/
f2001/week11/bidders_edge.pdf

http://en.wikipedia.org/wiki/EBay_v._Bidder%27s_Edge
http://en.wikipedia.org/wiki/EBay_v._Bidder%27s_Edge
https://www.law.upenn.edu/fac/pwagner/law619/f2001/week11/bidders_edge.pdf
https://www.law.upenn.edu/fac/pwagner/law619/f2001/week11/bidders_edge.pdf
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bots on their website. Bidder’s Edge (BE), a company that aggregated auction listings, had
used automated programs to crawl information from different auction sites. Users could then
search listings on their webpage instead of posing many requests to each of the auction sites.
According to the verdict,16

BE accessed the eBay site approximate 100,000 times a day. (...) eBay allege[d]
that BE activity constituted up to 1.53% of the number of requests received by
eBay, and up to 1.10% of the total data transferred by eBay during certain periods
in October and November of 1999.

Further,

eBay allege[d] damages due to BE’s activity totaling between $ 45,323 and
$ 61,804 for a ten month period including seven months in 1999 and the first
three months in 2000.

The defendant did not steal information that was not public to anyone, but harmed the
plaintiff by causing a considerable amount of traffic on its servers. eBay also complained
about the use of deep links, that is, links that directly refer to content that is stored somewhere
“deeply” on the page. By using such links clients are able to circumvent the usual process of
a website visit.

In another case, Associated Press v. Meltwater, scraper’s rights were also curtailed.17 AP v.
MeltwaterMeltwater is a company that offers software which scrapes news information based on

specific keywords. Clients can order summaries on topics which contain excerpts of news
articles. Associated Press (AP) argued that their content was stolen by Meltwater and that
they need to license before distributing it. The judge’s argument in favor of the AP was that
Meltwater is rather a competitor of AP than an ordinary search engine like Google News.
From a more distant perspective, it is hard to see the difference to other news-aggregating
services like Google News (Essaid 2013b; McSherry and Opsahl 2013).

A case which was settled out of court was that of programmer Pete Warden who scraped Facebook v.
Pete Wardenbasic information from Facebook users’ profiles (Warden 2010). His idea was to use the data

to offer services that help manage communication and networks across services. He described
the process of scraping as “very easy” and in line with the robots.txt (see next section), an
informal web bot guideline Facebook had put on its pages. After he had put a first visualization
of the data on his blog, Facebook contacted and pushed him to delete the data. According
to Warden, “Their contention was robots.txt had no legal force and they could sue anyone
for accessing their site even if they scrupulously obeyed the instructions it contained. The
only legal way to access any web site with a crawler was to obtain prior written permission”
(Warden 2010).

In the tragic case of Aaron Swartz, the core of contention was scientific work, not United States v.
Aaron Swartzcommercial reuse. Swartz, who co-created RSS (see Section 3.4.3), Markdown, and Infogami

(a predecessor of Reddit), was arrested in 2011 for having illegally downloaded millions of
articles from the article archive JSTOR. The case was dismissed after Swartz’ suicide in
January 2013 (United States District Court District of Massachusetts 2013).

16https://www.law.upenn.edu/fac/pwagner/law619/f2001/week11/bidders_edge.pdf
17https://www.eff.org/sites/default/files/ap_v._meltwater_sdny_copy.pdf

https://www.law.upenn.edu/fac/pwagner/law619/f2001/week11/bidders_edge.pdf
https://www.law.upenn.edu/fac/pwagner/law619/f2001/week11/bidders_edge.pdf
https://www.eff.org/sites/default/files/ap_v._meltwater_sdny_copy.pdf
https://www.eff.org/sites/default/files/ap_v._meltwater_sdny_copy.pdf
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In an interesting, thoughtful comment, Essaid (2013a) points out that the jurisdiction on
the issue of web scraping has changed direction several times over the last years, and there
seem to be no clear criteria about what is allowed and what is not, not even in a single judicial
system like the United States. Snell and Care (2013) deliver further anecdotal evidence and
put court decisions in the context of legal theories.

The lesson to be learned from these disconcerting stories is that it is not clear which
actions that can be subsumed under the “web scraping” label are actually illegal and which
are not. In this book we focus on very targeted examples, and republishing content for a
commercial purpose is a much more severe issue than just downloading pages and using
them for research or analysis. Most of the litigations we came across involved commercial
intentions. The Facebook v. Warden case has shown, however, that even following informal
rules like those documented in the robots.txt does not guard against prosecution. But after
all, as Frances Irwing from ScraperWiki puts it, “Google and Facebook effectively grew up
scraping,” and if there were significant restrictions on what data can be scraped then the Web
would look very different today.18

In the next sections, we describe how to identify unofficial web scraping rules and how
to behave in general to minimize the risk of being put in a difficult position.

9.3.2 What is robots.txt?

When you start harvesting websites for your own purposes, you are most likely only a small
fish in the gigantic data ocean. Besides you, web robots (also named “crawlers,” “web spiders,”
or just “bots”) are hunting for content. Not all of these automatic harvesters act malevolently.
Without bots, essential services on the Web would not work. Search engines like Google or
Yahoo use web robots to keep their indices up-to-date. However, maintainers of websites
sometimes want to keep at least some of their content prohibited from being crawled, for
example, to keep their server traffic in check. This is what the robots.txt file is used for. This
“Robots Exclusion Protocol” tells the robots which information on the site may be harvested.

The robots.txt emerged from a discussion on a mailing list and was initiated by MartijnThe robots
exclusion
standard

Koster (1994). The idea was to specify which information may or may not be accessed by web
robots in a text file stored in the root directory of a website (e.g., www.r-datacollection.com/
robots.txt). The fact that robots.txt does not follow an official standard has led to inconsis-
tencies and uncontrolled extensions of the grammar. There is a set of rules, however, that is
followed by most robots.txt on the Web. Rules are listed bot by bot. A set of rules for the
Googlebot robot could look as follows:

1 User-agent: Googlebot
2 Disallow: /images/
3 Disallow: /private/

This tells the Googlebot robot, specified in the User-agent field, not to crawl content
from the subdirectories /images/ and /private/. Recall from Section 5.2.1 that we can
use the User-Agent field to be identifiable. Well-behaved web bots are supposed to look for

18See Mark Ward’s article on business web scraping efforts at http://www.bbc.co.uk/news/technology-23988890.

http://www.r-datacollection.com/robots.txt
http://www.r-datacollection.com/robots.txt
http://www.bbc.co.uk/news/technology-23988890
http://www.bbc.co.uk/news/technology-23988890
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their name in the list of User-Agents in the robots.txt and obey the rules. The Disallow field
can contain partial or full URLs. Rules can be generalized with the asterisk (*).

1 User-agent: *
2 Disallow: /private/

This means that any robot that is not explicitly recorded is disallowed to crawl the
/private/ subdirectory. A general ban is formulated as

1 User-agent: *
2 Disallow: /

The single slash / encompasses the entire website. Several records are separated by one
or more empty lines.

1 User-agent: Googlebot
2 Disallow: /images/

3 User-agent: Slurp
4 Disallow: /images/

A frequently used extension of this basic set of rules is the use of the Allow field. As
the name already states, such fields list directories which are explicitly accepted for scraping.
Combinations of Allow and Disallow rules enable webpage maintainers to exclude direc-
tories as a whole from crawling, but allow specific subdirectories or files within this directory
to be crawled.

1 User-agent: *
2 Disallow: /images/
3 Allow: /images/public/

Another extension of the robots.txt standard is the Crawl-delayfield which asks crawlers
to pause between requests for a certain number of seconds. In the following robots.txt,
Googlebot is allowed to scrape everything except one directory, while all other users may
access everything but have to pause for 2 seconds between each request.19

1 User-agent: *
2 Crawl-delay: 2
3 User-Agent: Googlebot
4 Disallow: /search/

19The example is taken from the US Congress webpage: http://beta.congress.gov/

http://beta.congress.gov/
http://beta.congress.gov/
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One problem of using robots.txt is that it can become quite voluminous for large webpagesThe robots
<meta> tag with multiple subdirectories and files. In addition, the way some crawlers work makes them

ignorant to the centralized robots.txt. A disaggregated alternative to robots.txt is the robots
<meta> tag which can be stored in the header of an HTML file.

1 <meta name="robots" content="noindex,nofollow" />

A well-behaved robot will refrain from indexing a page that contains this <meta> tag
because of the noindex value in the content attribute and will not try to follow any link on
this page because of the nofollow value in the content attribute.

This book is not about web crawling, but focuses on retrieving content from specific sitesAn R parser for
robots.txt with a specific purpose. But what if we still have to scrape information from several sites

and do not want to manually inspect every single robots.txt file to program a well-behaved
web scraper? For this purpose, we wrote a program that parses robots.txt by means of regular
expressions and helps identify specific User-agents and corresponding rules of access. The
program is displayed in Figure 9.9.

The robotsCheck() program reads the robots.txt which is specified in the first argument,
robotstxt. We can specify the bot or User-agent with the second argument, useragent.
Further, the function can return allowed and disallowed directories or files. This is specified
with the dirs parameter. We do not discuss this program in greater detail here, but it can
easily be extended so that a robot stops scraping pages that are stored in one of the disallowed
directories.

We test the program on the robots.txt file of Facebook. First, we specify the link to the file.

R> facebook_robotstxt <- "http://www.facebook.com/robots.txt"

Next, we retrieve the list of directories that is prohibited from being crawled by any bot
which is not otherwise listed. If we create our own bot, this is most likely the set of rules we
have to obey.

R> robotsCheck(robotstxt = facebook_robotstxt, useragent = "*",
dirs = "disallowed")
This bot is blocked from the site.

Facebook generally prohibits crawling from its pages. Just to see how the program works,
we make another call for a bot named “Yeti.”

R> robotsCheck(robotstxt = facebook_robotstxt, useragent = "Yeti",
dirs = "disallowed")
[1] "/ajax/" "/album.php" "/autologin.php"
[4] "/checkpoint/" "/contact_importer/" "/feeds/"
[7] "/file_download.php" "/l.php" "/p.php"
[10] "/photo.php" "/photo_comments.php" "/photo_search.php"
[13] "/photos.php" "/sharer/"

Facebook disallows the “Yeti” bot to access a set of directories. It is important to say that
robots.txt has little to do with a firewall against robots or any other protection mechanism. It
does not prevent a website from being crawled at all. Rather, it is an advice from the website
maintainer.

http://www.facebook.com/robots.txt
http://www.facebook.com/robots.txt
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1 robotsCheck <- function(robotstxt = "", useragent = "*", dirs =
"disallowed") {

2 # packages
3 require(stringr)
4 require(RCurl)
5 # read robots.txt
6 bots <- getURL(robotstxt, cainfo = system.file("CurlSSL", "cacert.pem",

package = "RCurl"))
7 write(bots, file = "robots.txt")
8 bots <- readLines("robots.txt")
9 # detect if defined bot is on the list

10 useragent <- ifelse(useragent == "*", "\\*", useragent)
11 bot_line1 <- which(str_detect(bots, str_c("[Uu]ser-

[Aa]gent:[ ]{0,}", useragent, "$"))) + 1
12 bot_listed <- ifelse(length(bot_line1)>0, TRUE, FALSE)
13 # identify all user-agents and user-agent after defined bot
14 ua_detect <- which(str_detect(bots, "[Uu]ser-[Aa]gent:[ ].+"))
15 uanext_line <- ua_detect[which(ua_detect == (bot_line1 - 1)) + 1]
16 # if bot is on the list, identify rules
17 bot_d_dir <- NULL
18 bot_a_dir <- NULL
19 bot_excluded <- 0
20 if (bot_listed) {
21 bot_eline <- which(str_detect(bots, "ˆ$"))
22 bot_eline_end <- length(which(bot_eline - uanext_line < 0))
23 bot_eline_end <- ifelse(bot_eline_end == 0, length(bots), bot_eline

[bot_eline_end])
24 botrules <- bots[bot_line1:bot_eline_end]
25 # extract forbidden directories
26 botrules_d <- botrules[str_detect(botrules, "[Dd]isallow")]
27 bot_d_dir <- unlist(str_extract_all(botrules_d, "/.{0,}"))
28 # extract allowed directories
29 botrules_a <- botrules[str_detect(botrules, "ˆ[Aa]llow")]
30 bot_a_dir <- unlist(str_extract_all(botrules_a, "/.{0,}"))
31 # bot totally excluded?
32 bot_excluded <- str_detect(bot_d_dir, "ˆ/$")
33 }
34 # return results
35 if (bot_excluded[1]) { message("This bot is blocked from the site.")}
36 if (dirs == "disallowed" & !bot_excluded[1]) { return(bot_d_dir) }
37 if (dirs == "allowed" & !bot_excluded[1]) { return(bot_a_dir) }
38 }

Figure 9.9 R code for parsing robots.txt files

To the best of our knowledge, there is no law which explicitly states that robots.txt contents
must not be disregarded. However, we strongly recommend that you have an eye on it every
time you work with a new website, stay identifiable and in case of doubt contact the owner
in advance.

If you want to learn more about web robots and how robots.txt works, the page
http://www.robotstxt.org/ is a good start. It provides a more detailed explanation of the
syntax and a useful collection of Frequently Asked Questions.

http://www.robotstxt.org/
http://www.robotstxt.org/


284 AUTOMATED DATA COLLECTION WITH R

9.3.3 Be friendly!

Not everything that can be scraped should be scraped, and there are more and less polite
ways of doing it. The programs you write should behave nicely, provide you with the data
you need, and be efficient—in this order. We suggest that if you want to gather data from
a website or service, especially when the amount of data is considerable, try to stick to our
etiquette manual for web scraping. It is shown in Figure 9.10.

As soon as you have identified potentially useful data on the Web, you should look for an
“official” way to gather the data. If you are lucky, the publisher provides ready-made files of
the data which are free to download or offers an API. If an API is available, there is usually
no reason to follow any of the other scraping strategies. APIs enable the provider to keep
control over who retrieves which data, how much of it, and how often.

As described in Section 9.2.2, accessing an API from within R usually requires one orFriendly
cooperation

with APIs
more wrapper functions which pose requests to the API and process the output. If such
wrappers already exist, all you have to do is to become familiar with the program and use it.
Often, this requires the registration of an application (see Section 9.1.11). Be sure to document
the purpose of your program. Many APIs restrict the user to a certain amount of API calls
per day or similar limits. These limits should generally be obeyed.

If there is no API, there might still be a more comfortable way of getting the data thanGet into contact
with the data

providers
scraping them. Depending on the type and structure of the data, it can be reasonable to assume
that there is a database behind it. Virtually any data that you can access via HTTP forms is
likely to be stored in some sort of database or at least in a prestructured XML. Why not ask
proprietors of data first whether they might grant you access to the database or files? The
larger the amount of data you are interested in, the more valuable it is for both providers and
you to communicate your interests in advance. If you just want to download a few tables,
however, bothering the website maintainer might be a little over the top.

Once you have decided that scraping the data directly from the page is the only feasibleObey robots.txt
and terms of

use
solution, you should consider the Robots Exclusion Protocol if there is any. The robots.txt is
usually not meant to block individual requests to a site, but to prevent a webpage to be indexed
by a search engine or other meta search applications. If you want to gather information from a
page that documents disallowance of web robot activity in its robots.txt, you should reconsider
your task. Do you plan to scrape data in a bot-like manner? Has your task the potential to do
the web server any harm? In case of doubt, get into contact with the page administrator or
take a look at the terms of use, if there are any. Ensure that your plans are with no ill intent,
and stay identifiable with an adequate use of the identifying HTTP header fields.

If what you are planning is neither illegal nor has the potential to harm the provider inScraping dos
and don’ts any way, there are still some scraping dos and don’ts you should consider with care.

As an example, we construct a small scraping program step-by-step, implementing all
techniques from the bouquet of friendly web scraping. Say we want to keep track of the 250
most popular movies as rated by users of the Internet Movie Database (IMDb). The ranking
is published at http://www.imdb.com/chart/top. Although the techniques implemented in this
example are a bit over the top as we do not actually scrape large amounts of data, the procedure
is the same for more voluminous tasks.

Suppose we have already worked through the checklist of questions of Figure 9.10 (as of
March 2014, there is no IMDb API) and have decided that there is no alternative to scraping
the content to work with the data. An inspection of IMDb’s robots.txt reveals that robots are
officially allowed to work in the /chart subdirectory.

http://www.imdb.com/chart/top
http://www.imdb.com/chart/top
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The standard scraping approach using the RCurl package would be something like

R> library(RCurl)
R> library(XML)
R> url <- "http://www.imdb.com/chart/top"
R> top <- getURL(url)
R> parsed_top <- htmlParse(top, encoding = "UTF-8")
R> top_table <- readHTMLTable(parsed_top)[[1]]
R> head(top_table[1:10, 1:3])

Rank & Title IMDb Rating
1 1. The Shawshank Redemption (1994) 9.2
2 2. The Godfather (1972) 9.2
3 3. The Godfather: Part II (1974) 9.0
4 4. The Dark Knight (2008) 8.9
5 5. Pulp Fiction (1994) 8.9
6 6. The Good, the Bad and the Ugly (1966) 8.9
7 7. Schindler’s List (1993) 8.9
8 8. 12 Angry Men (1957) 8.9
9 9. The Lord of the Rings: The Return of the King (2003) 8.9
10 10. Fight Club (1999) 8.8

The first rule is to stay identifiable. We have learned in Chapter 5 how this can be done.
When sending requests via HTTP, we can use the User-agent and From header fields.
Therefore, we respecify the GET request as

R> getURL(url, useragent = str_c(R.version$platform, R.version$version.
string, sep = ", "), httpheader = c(from = "eddie@datacollection.com"))

The second rule is to reduce traffic. To do so, we should accept compressed files. One can
specify which content codings to accept via the Accept-Encoding header field. If we leave
this field unspecified, the server delivers files in its preferred format. Therefore, we do not
have to specify the preferred compression style, which would probably be gzip, manually.
The XML parser which is used in the XML package can deal with gzipped XML documents.
We do not have to respecify the parsing command—the xmlParse() function automatically
detects compression and uncompresses the file first.

Another trick to reduce traffic is applicable if we scrape the same resources multiple
times. What we can do is to check whether the resource has changed before accessing and
retrieving it. There are several ways to do so. First, we can monitor the Last-Modified
response header field and make a conditional GET request, that is, access the resources
only if the file has been modified since the last access. We can make the call conditional
by delivering an If-Modified-Since or, depending on the mechanics of the function,
If-Unmodified-Since request header field. In the IMDb example, this works as fol-
lows. First, we define a curl handle with the debugGatherer() function to be able to
track our HTTP communication. Because we want to modify the HTTP header along the
way, we store the standard headers for identifying ourselves in an extra object to use and
redefine it.

R> info <- debugGatherer()
R> httpheader <- list(from = "Eddie@r-datacollection.com", 'user-
agent' = str_c(R.version$version.string, ", ", R.version$platform))
R> handle <- getCurlHandle(debugfunc = info$update, verbose = TRUE)

http://www.imdb.com/chart/top
http://www.imdb.com/chart/top
mailto:eddie@datacollection.com
mailto:Eddie@r-datacollection.com
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We define a new function getBest() that helps extract the best movies from the
IMDb page.

R> getBest <- function(doc) readHTMLTable(doc)[[1]][, 1:3]

Applying the function results in a data frame of the top 250 movies. To be able to analyze
it in a later step, we store it on our local drive in an .Rdata file called bestFilms.Rdata if it
does not exist already.

R> url <- "http://www.imdb.com/chart/top"
R> best_doc <- getURL(url)
R> best_vec <- getBest(best_doc)

R> if (!file.exists("bestFilms.Rdata")) {
save(best_vec, file = "bestFilms.Rdata")

}
R> head(best_vec)

Rank & Title IMDb Rating
1 1. The Shawshank Redemption (1994) 9,2
2 2. The Godfather (1972) 9,2
3 3. The Godfather: Part II (1974) 9,0
4 4. The Dark Knight (2008) 8,9
5 5. Pulp Fiction (1994) 8,9
6 6. The Good, the Bad and the Ugly (1966) 8,9

Now we want to update the file once in a while if and only if the IMDb page has been
changed since the last time we updated the file. We do that by using the If-Modified-Since
header field in the HTTP request.

R> httpheader$"If-Modified-Since" <- "Tue, 04 Mar 2014 10:00:00 GMT"
R> best_doc <- getURL(url, curl = handle, httpheader = httpheader)

It becomes a little bit more complicated if we want to use the time stamp of our .Rdata
file’s last update. For this we have to extract the date and supply it in the right format to the
If-Modified-Since header field. As the extraction and transformation of the date into the
format expected in HTTP request is cumbersome, we solve the problem once and put it into
two functions: httpDate() and file.date()—see Figure 9.11. You can download the
function from the book’s webpage with

R> writeLines(str_replace_all(getURL("http://www.r-datacollection.
com/materials/http/HTTPdate.r"),"\r",""),"httpdate.r")

Let us source the functions into our session and extract the date of last modification for
our best films data file with a call to file.date().

R> source("http://www.r-datacollection.com/materials/http/HTTPdate.r")

R> (last_mod <- file.date("bestFilms.Rdata"))
[1] "2014-03-11 15:00:31 CET"

http://www.imdb.com/chart/top
http://www.imdb.com/chart/top
http://www.r-datacollection.com/materials/http/HTTPdate.r
http://www.r-datacollection.com/materials/http/HTTPdate.r
http://www.r{{-}}datacollection.com/materials/http/HTTPdate.r
http://www.r-datacollection.com/materials/http/HTTPdate.r
http://www.r-datacollection.com/materials/http/HTTPdate.r
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1 httpDate <- function(time="now", origin="1970-01-01", type="rfc1123"){
2 if(time=="now") {
3 tmp <- as.POSIXlt(Sys.time(), tz="GMT")
4 }else{
5 tmp <- as.POSIXlt(as.POSIXct(time, origin=origin), tz="GMT")
6 }
7 nday <- c("Sun", "Mon" , "Tue" ,
8 "Wed", "Thu" , "Fri" ,
9 "Sat")[tmp$wday+1]

10 month <- tmp$mon+1
11 nmonth <- c("Jan" , "Feb" , "Mar" ,
12 "Apr", "May" , "Jun" ,
13 "Jul" , "Aug", "Sep" ,
14 "Oct" , "Nov" , "Dec")[month]
15 mday <- formatC(tmp$mday, width=2, flag="0")
16 hour <- formatC(tmp$hour, width=2, flag="0")
17 min <- formatC(tmp$min , width=2, flag="0")
18 sec <- formatC(round(tmp$sec) , width=2, flag="0")
19 if(type=="rfc1123"){
20 return(paste0(nday, ", ",
21 mday," ", nmonth, " ", tmp$year+1900, " ",
22 hour, ":", min, ":", sec, " GMT") )
23 }else{
24 stop("Not implemented")
25 }
26 }

28 file.date <- function(filename, timezone=Sys.timezone() ) {
29 as.POSIXlt( min(unlist( file.info(filename)[4:6] )),
30 origin = "1970-01-01",
31 tz = timezone)
32 }

34 # usage:
35 # httpDate()
36 # httpDate( file.date("WorstFilms.Rdata") )
37 # httpDate("2001-01-02")
38 # httpDate("2001-01-02 18:00")
39 # httpDate("2001-01-02 18:00:01")
40 # httpDate(60*60*24*30.43827161*12*54+60*60*24*32)
41 # httpDate(-10*24*60*60,origin="2014-02-01")

Figure 9.11 Helper functions for handling HTTP If-Modified-Since header field

Now we can pass the date to the If-Modified-Since header field by making use of
httpDate().

R> httpheader$"If-Modified-Since" <- httpDate(last_mod)
R> best_doc <- getURL(url, curl = handle, httpheader = httpheader)

Via getCurlInfo() we can gather information on the last request and control the
status code.

R> getCurlInfo(handle)$response.code
[1] 200
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If the status code of the response equals 200, we extract new information and update our data
file. If the server responds with the status code 304 for “not modified” we leave it as is.

R> if (getCurlInfo(handle)$response.code == 200) {
best_list <- getBest(best_doc)
save(best_list, file = "bestFilms.Rdata")

}

Using the If-Modified-Since header is not without problems. First, it is not clear what
the Last-Modified response header field actually means. We would expect the server to
store the time the file was changed the last time. If the file contains dynamic content, however,
the header field could also indicate the last modification of one of its component parts. In
fact, in the example the IMDb website is always delivered with a current time stamp, so the
file will always be downloaded—even if the ranking has not changed. We should therefore
first monitor the updating frequency of the Last-Modified header field before adapting our
scraper to it. Another problem can be that the server does not deliver a Last-Modified at
all, even though HTTP/1.1 servers should provide it (see Fielding et al. 1999, Chapters 14.25,
14.28, and 14.29).

Another strategy is to retrieve only parts of a file. We can do this by specifying the
libcurl option range which allows defining a byte range. If we know, for example, that
the information we need is always stored at the very beginning of a file, like a title, we
could truncate the document and specify our request function with range = "1-100" to
only receive the first 100 bytes of the document. The drawbacks of this approach are that
not all servers support this feature and we cut a document in two, making it not inaccessible
with XPath.

In another scenario, we might want to download specific files from an index of files, but
only those which we have not been downloaded so far. We implement a check if the file
already exists on the local drive and start the download only if we have not already retrieved
it. The following generic code snippet shows how to do this. Say we have generated a vector
of HTML file names which are stored on a page like www.example.com with filenames
<- c("page1.html", "page2.html", page3.html). We can initiate a download of
the files that have not yet been downloaded with:

R> for (i in 1:length(filenames)) {
if (!file.exists(filenames[i])) {

download.file(str_c(url, filenames[i]), destfile = filenames[i])
}

}

The file.exists() function checks if the file already exists. If not, we download it.
To know in advance how many files are new, we can compare the two sets of file names—the
ones to be downloaded and the ones that are already stored in our folder—like this

R> existing_files <- list.files("directory_of_scraped_files")
R> online_files <- vector_of_online_files
R> new.files <- setdiff(online_files, existing_files)

The list.files() function lists the names of files stored in a given directory. The
setdiff() function compares the content of two vectors and returns the asymmetric differ-
ence, that is, elements that are part of the first vector but not of the second. Note that these
code snippets works properly only if we download websites that carry a unique identifier in

www.example.com
http://www.example.com
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the URL that remains constant over time, for example, a date, and if it is reasonable to assume
that the content of these pages has not changed, while the set of pages has.

We also do not want to bother the server with multiple requests. This is partly because many
requests per second can bring smaller servers to their knees, and partly because webmasters
are sensitive to crawlers and might block us if our scraper behaves this way. With R it is
straightforward to restrict our scraper. We simply suspend execution of the request for a
time. In the following, a scraping function is programmed to process a stack of URLs and
is executed only after a pause of one second, which is specified with the Sys.sleep()
function.

R> for (i in 1:length(urls)) {
scrape_function(urls[1])
Sys.sleep(1)

}

There is no official rule how often a polite scraper should access a page. As a rule of
thumb we try to make no more than one or two requests per second if Crawl-delay in the
robots.txt does not dictate more modest request behavior.

Finally, writing a modest scraper is not only a question of efficiency but also of politeness.
There is often no reason to scrape pages daily or repeat the same task over and over again.
Although bandwidth costs have sunken over the years, server traffic still means real costs
to website maintainers. Our last piece of advice for creating well-behaved web scrapers is
therefore to make scrapers as efficient as possible. Practically, this means that if you have
a choice between several formats, choose the lightweight one. If you have to scrape from
an HTML page, it could prove useful to look for a “print version” or a “text only” version,
which is often much lighter HTML than the fully designed page. This helps both you to extract
content and the server who provides the resources. More generally, do not “overscrape” pages.
Carefully select the resources you want to exploit, and leave the rest untouched. In addition,
monitor your scraper regularly if you use it often. Webpage design can change quickly,
rendering your scraping approach useless. A broken scraper may still consume bandwidth
without any payoff.20

One final remark. We do not think that there is a reason to feel generally bad for scraping
content from the Web. In all of the cases we present in this book this has nothing to do
with stealing any private property or cheap copying of content. Ideally, processing scraped
information comes with real added value.

9.4 Valuable sources of inspiration

Before starting to set up a scraping project, it is worthwhile to do some research on things
others have done. This might help with specific problems, but the Internet is also full of
more general inspirations for scraping applications and creative work with freely available
data. In the following, we would like to point you to some resources and projects we find
extraordinarily useful or inspiring.

20Much of this advice is inspired by the excellent “Walking Softly” introduction to web scraping with Perl by
Hemenway and Calishain (2003).
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The CRAN Task View on web technologies (http://cran.r-project.org/web/views/ CRAN Task
ViewWebTechnologies.html) provides a very useful overview of what is possible with R in terms

of accessing and parsing data from the Web. You will see that not all of the available packages
are covered in this book, which is partly due to the fact that the community is currently very
active in this field, and partly because we intentionally tried to focus on the most useful pieces
of software. It might be a good exercise to set up an automated scraper that checks for updates
of this site from time to time.

GitHub is a hosting service for software projects or rather, users who publish their ongoing GitHub

coding work (https://github.com/). It is not restricted to any programming language, so
one can find many users who publish R code. Hadley Wickham and Winston Chang have
provided the handy CRAN package devtools (Wickham and Chang 2013) which makes
it easy to install R software that is not published on CRAN but on GitHub using the
install_github() function.

rOpenSci (http://ropensci.org/) is a fascinating project that aims at establishing convenient rOpenSci

connections between R and existing science or science-related APIs. Their motto is nothing
less than “Wrapping all science APIs.” This implies a philosophy of “meta-sharing”: The con-
tributors to this project share and maintain software that helps accessing open science data. As
we have shown in Section 9.1.10, maintenance of API access is indeed an important topic. The
project’s website provides R packages which serve as interfaces to several data repositories,
full-texts of journals and altmetrics data. Some of the packages are also available on CRAN,
some are stored on GitHub. To pick some examples, the rgbif package provides access to
the Global Biodiversity Information Facility API which covers several thousand datasets on
species and organisms (Chamberlain et al. 2013). The RMendeley package offers access to the
personal Mendeley database (Boettiger and Temple Lang 2012). And with the rfishbase pack-
age it is possible to access the database from www.fishbase.org via R (Boettiger et al. 2014).
Further, the site offers a potentially helpful overview of R packages that enable access to sci-
ence APIs but that are not affiliated with rOpenSci—http://ropensci.org/related/index.html.
It is well worth browsing this list to find R wrappers for APIs of popular sites such as Google
Maps, the New York Times, the NHL Real Time Scoring System Database, and many more.
All in all, the rOpenSci team works on an important goal for future scientific practice—the
proliferation and accessibility of open data.

Large parts of what we can do with R and web scraping would likely not be possible with- Omega Project

out the work of the “Omega Project for Statistical Computing” at http://www.omegahat.org/.
The project’s core group is basically a Who is Who in R’s core development team with
Duncan Temple Lang being its most diligent contributor. With the creation of packages like
RCurl and XML the project laid the foundation to R-Web communication. Today, the project
makes available an impressive list of (not only) R-based software for interaction with web
services and database systems. Not all of them are updated regularly or are of immediate use
for standard web scraping tasks, but a look at the page is indispensable before any attempt
to program a new interface to whatever web service. Chances are that it has been already
done and published on this site. Many of the packages are also extensively discussed in an
impressive new book by Nolan and Temple Lang (2014), which is well worth a read.

Summary

In this chapter, we demonstrated the practical use of the techniques from the book’s first part—
HTTP, HTML, regular expressions, and others—to retrieve information from webpages. Web

http://cran.r-project.org/web/views/WebTechnologies.html
http://cran.r-project.org/web/views/WebTechnologies.html
https://github.com/
https://github.com/
http://ropensci.org/
http://ropensci.org/
www.fishbase.org
http://www.fishbase.org
http://ropensci.org/related/index.html
http://ropensci.org/related/index.html
http://www.omegahat.org/
http://www.omegahat.org/
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scraping is more of a skill than a science. It is difficult to generalize web scraping practice,
as every scenario is different. In the first part of this chapter, we picked some of the more
common scenarios you might encounter when collecting data from the Web in an automated
manner. If you felt overwhelmed from the vast amount of fundamental web technologies in
the first part of the book, you might have been surprised how easy it is in many scenarios to
gather data from the Web with R by relying on powerful network client interfaces like RCurl,
convenient packages for string processing like stringr, and easy-to-implement parsing tools
as provided by the XML package.

Regarding information extraction from web documents we sketched three broad strategies.
Regular expression scraping, XPath scraping, and data collection with interfaces to web APIs.
You will figure out for yourself which strategy serves your needs best in which scenarios
as soon as you become more experienced in web scraping. Our description of the general
procedure to automate data collection with each of the strategies may serve as a guideline.
One intention of our discussion of advantages and disadvantages of each of the strategies
was, however, to clarify that there is no single best web scraping strategy, and it pays of to be
familiar with each of the presented techniques.

We dedicated the last section of this chapter to an important topic, the good practice of
web scraping. Collecting data from websites is nothing inherently evil—successful business
models are based on massive online data collection and processing. However, some formal
and less formal rules we can and should obey exist. We have outlined an etiquette that gives
some rules of behavior when scraping the Web.

Having worked through this chapter you have learned the most important tools to gather
data from the Web with R. We discuss some more tricks of the trade in Chapter 11. If you
deal with text data, information extraction can be a more sophisticated matter. We present
some technical advice on how to handle text in R and to estimate latent classes in texts in
Chapter 10.

Further reading

Many of the tutorials and how-to guides for web scraping with R which can be found online
are rather case-specific and do not help much to decide which technique to use, how to behave
nicely, and so on. With regard to the foundations of R tools to tap web resources, the recently
published book by Nolan and Temple Lang (2014) offers great detail, especially regarding
the use of RCurl and other packages which are not published on CRAN but serve specific,
yet potentially important tasks in web scraping. They also provide a more extensive view
on REST, SOAP, and XML-RPC. If you want to learn more about web services that rely on
the REST technology on the theoretical side, have a look at Richardson et al. (2013). Cerami
(2002) offers a more general picture of web services.

During the writing of this book, we found some books on practical web scraping inspiring,
interesting, or simply fun to read, and do not want to withhold them from you. “Webbots,
Spiders, and Screen Scrapers” by Schrenk (2012) is a fun-to-read introduction to scraping
and web bot programming with PHP and Curl. The focus is clearly on the latter, so if you
are interested in web bots and spiders, this book might be a good start. “Spidering Hacks”
by Hemenway and Calishain (2003) is a comprehensive collection of applications and case
studies on various scraping tasks. Their scraping workhorse is Perl, but the described hacks
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serve as good inspiration for programming R-based scrapers, too. Finally, “Baseball Hacks”
by Adler (2006) is practically a large case study on scraping and data science mostly based
on Perl (for the scraping part) and R (for data analysis). If you find the baseball scenario
entertaining, Adler’s hands-on book is a good companion on your way into data science.

Problems

1. What are important tools and strategies to build a scraper that behaves nicely on the
Web?

2. What is an good extraction strategy for HTML lists on static HTML pages? Explain
your choice.

3. Imagine you want to collect data on the occurrence of earthquakes on a weekly basis.
Inform yourself about possible online data sources and develop a data collection strategy.
Consider (1) an adequate scraping strategy, (2) a strategy for information extraction (if
needed), and (3) friendly data collection behavior on the Web.

4. Reconsider the CSV file download function in Section 9.1.1. Replicate the download
procedure with the data files for the primaries of the 2010 Gubernatorial Election.

5. Scraping data from Wikipedia, I: The Wikipedia article at http://en.wikipedia.org/wiki/
List_of_cognitive_biases provides several lists of various types of cognitive biases.
Extract the information stored in the table on social biases. Each of the entries in the
table points to another, more detailed article on Wikipedia. Fetch the list of references
from each of these articles and store them in an adequate R object.

6. Scraping data from Wikipedia, II: Go to http://en.wikipedia.org/wiki/List_of_MPs_
elected_in_the_United_Kingdom_general_election,_1992 and extract the table con-
taining the elected MPs int the United Kingdom general election of 1992. Which party
has most Sirs?

7. Scraping data from Wikipedia, III: Take a look at http://en.wikipedia.org/wiki/List_of_
national_capitals_of_countries_in_Europe_by_area and extract the geographic coordi-
nates of each European country capital. In a second step, visualize the capitals on a
map. The code from the example in chapter 1 might be of help.

8. Write your own robots.txt file providing the following rules: (a) no Google bot is allowed
to scrape your web site, and (b) scraping your /private folder is generally not allowed.

9. Reconsider the R-based robots.txt parser on Figure 9.9. Use it as a start to construct a
program that makes any of your scrapers follow the rules of the robots.txt on any site.
The function has to fulfill the following tasks: (a) identification of the robots.txt on any
given host if there is one, (b) check if a specific User-Agent is listed or not, (c) check if
the path to be scraped is disallowed or not, and (d) adhere to the results of (a), (b), and
(c). Consider scraping allowed if the robots.txt is missing.

10. Google Search allows the user to tune her request with a set of parameters. Make use
of these parameters and set up a program that regularly informs you about new search
results for your name.

http://en.wikipedia.org/wiki/List_of_cognitive_biases
http://en.wikipedia.org/wiki/List_of_cognitive_biases
http://en.wikipedia.org/wiki/List_of_MPs_elected_in_the_United_Kingdom_general_election,_1992
http://en.wikipedia.org/wiki/List_of_MPs_elected_in_the_United_Kingdom_general_election,_1992
http://en.wikipedia.org/wiki/List_of_MPs_elected_in_the_United_Kingdom_general_election,_1992
http://en.wikipedia.org/wiki/List_of_MPs_elected_in_the_United_Kingdom_general_election,_1992
http://en.wikipedia.org/wiki/List_of_national_capitals_of_countries_in_Europe_by_area
http://en.wikipedia.org/wiki/List_of_national_capitals_of_countries_in_Europe_by_area
http://en.wikipedia.org/wiki/List_of_national_capitals_of_countries_in_Europe_by_area
http://en.wikipedia.org/wiki/List_of_national_capitals_of_countries_in_Europe_by_area
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11. Reconsider the Yahoo Weather Feed from Section 9.1.10.
(a) Check out the wrapper function displayed in Figure 9.5 and rebuild it in R.
(b) The API returns a weather code that has not been evaluated so far (see also the

last column in the table on page 238). Read the API’s documentation to figure out
what the code stands for and implement the result in the feedback of the wrapper
function.

12. The CityBikes API at http://api.citybik.es/ provides free access to a global bike sharing
network. Choose a bike sharing service in a city of your choice and build an R interface
to it. The interface should enable the user to get information about the list of stations
and the number of available bikes at each of the stations. For a more advanced extension
of this API, implement a feature such that the function automatically returns the station
closest to a given geo-coordinate.

13. The New York Times provides a set of APIs at http://developer.nytimes.com/docs. In
order to use them, you have to sign up for an API key. Construct an R interface to their
best-sellers search API which can retrieve the current best-seller list and transform the
incoming JSON data to an R data frame.

14. Let us take another look at the Federal Contributions Database.
(a) Find out what happens when the window is not changed back from the pop-up

window. Does the code still work?
(b) Write a script building on the code outlined above that downloads all contributions

to Republication candidates from 2007 to 2011.
(c) Download all contributions from March 2011, but have the data returned in a plot.

Try to extract the amount and party information from the plot.

15. Apply Rwebdriver to other example files introduced in this book:
(a) fortunes2.html
(b) fortunes3.html
(c) rQuotes.php
(d) JavaScript.html

http://api.citybik.es/
http://api.citybik.es/
http://developer.nytimes.com/docs
http://developer.nytimes.com/docs
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Statistical text processing

Any quantitative research project that hopes to make use of statistical analyses needs to
collect structured information. As we have demonstrated in countless examples up to this
point, the Web is an invaluable source of structured data that is ready for analysis upon
collection. Unfortunately, in terms of quantity such structured information is far outweighed
by unstructured content. The Internet is predominantly a vast collection of more or less
unclassified text.

Consequently, the advent of the widespread use of the Internet has seen a contemporaneous
interest in natural language processing—the automated processing of human language. This
is by no means coincidental. Never before have such massive amounts of machine-readable
text been available. In order to access such data, numerous techniques have been devised to
assign systematic meaning to unstructured text. This chapters seeks to elaborate several of
the available techniques to make use of unclassified data.

In a first step, the next section presents a small running example that is used throughout the
chapter. Subsequently, Section 10.2 elaborates how to perform large-scale text operations in
R. Textual data can quickly become taxing on resources. While this is a more general concern
when dealing with textual data, it is particularly relevant in R, which was not designed to deal
with large-scale text analysis. We will introduce the tm package that allows the organization
and preparation of text and also provides the infrastructure for the analytical packages that
we will use throughout the remainder of the chapter (Feinerer 2008; Feinerer et al. 2008).

In terms of the techniques that are presented in order to make sense of unstructured
text data, we start out by presenting supervised methods in Section 10.3. This broad class
of techniques allows the categorization of text based on similarities to pre-classified text.
Simply put, supervised methods allow users to label texts based on how much they resemble
a hand-coded training set. The classic example in this area deals with the organization of text
into topical categories. Say we have 1000 texts of varied content. Imagine further that half of
the texts have been assigned a label of their topical emphasis. Using supervised methods we

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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can estimate the content of the unlabeled half.1 Several supervised methods have been made
available in R. This chapter introduces the RTextTools package which provides a wrapper to a
number of the available packages. This allows a convenient access to several classifiers from
within a single function call (Jurka et al. 2013).

A second approach to classifying text is presented in Section 10.4—unsupervised clas-
sifiers. In contrast to supervised learning algorithms that rely on similarities between pre-
classified and unlabeled text, unsupervised classifiers estimate the categories along with the
membership of texts in the different categories. The major advantage of techniques in this
group is the possibility of circumventing the cumbersome hand-coding of training data. This
advantage comes at the price of having to interpret the content of the estimated categories
a posteriori.

As a word of caution we would like to point out that this chapter can only serve as a
cursory introduction to the topics in question. We investigate some of the most important
topics and packages that are available in R. It should be emphasized, however, that in many
instances we cannot do full justice to the details of the topics that are being covered. You
should be aware that if you care to deal with these types of models, there is a lot more out
there that might serve your purposes better than what is being presented in this chapter. We
provide some guidance for further readings in the last section of the chapter.

10.1 The running example: Classifying press releases
of the British government

Before turning to the statistical processing of text, let us collect some sample text data that will
serve as a running example throughout this chapter. For the running example, we want all the
data to be labeled such that we have a benchmark for the accuracy of our classifiers. We have
selected press releases from the UK government as our test case. The data can be accessed at
https://www.gov.uk/government/announcements. Opening the website in a browser, you see
several selection options at the left side of the screen. We want to restrict our analysis to press
releases in all topics, from all departments, in all locations that were published before July
2010. At the time of writing this yields 747 results that conform to the request. The results
page presents the title of the press release, the date of publication, an acronym signaling the
publishing department, as well as the type of publication. For the statistical analysis in the
subsequent chapters, we will consider the publishing agency as a marker of the press releases’
content.

Notice how the URL of the page changes when you make the selections.

https://www.gov.uk/government/announcements?keywords=&announcem
ent_type_option=press-releases&topics[]=all&departments[]=all&
world_locations[]=all&from_date=&to_date=01%2F07%2F2010

1We are not technically restricted to statements on the overall topical content of texts. We can use the same
techniques to estimate the content of particular text aspects, say sentences, as long as we are able to provide some
pre-classified training data. The present chapter sticks to topical classification as the most common task in statistical
text analysis. As a side note, learning algorithms are not limited to the analysis of text at all and are used in such
diverse research fields as bio-informatics or speech and, more generally, pattern recognition.

https://www.gov.uk/government/announcements
https://www.gov.uk/government/announcements
https://www.gov.uk/government/announcements?keywords$=$&announcement_type_option$=$press-releases&topics[]$=$all&departments[]$=$all&world_locations[]$=$all&from_date$=$&to_date$=$01%2F07%2F2010
https://www.gov.uk/government/announcements?keywords$=$&announcement_type_option$=$press-releases&topics[]$=$all&departments[]$=$all&world_locations[]$=$all&from_date$=$&to_date$=$01%2F07%2F2010
https://www.gov.uk/government/announcements?keywords$=$&announcement_type_option$=$press-releases&topics[]$=$all&departments[]$=$all&world_locations[]$=$all&from_date$=$&to_date$=$01%2F07%2F2010
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You can clearly see how the selections we make become integrated into the URL. As
the data are not too large to be stored locally, we will, in accordance with our rules of good
practice in web scraping, start by downloading all 747 results onto our hard drive before
collecting the text data in a tm corpus in a subsequent step. Check out the source code of the
page. You will find the first results toward the end of the page. However, not all 747 results
are contained in the source code. To collect them, we have to use the link that is contained at
the bottom of the press releases. It reads

<a href="/government/announcements?announcement_type_option=press-
releases&amp;departments%5B%5D=all&amp;from_date=&amp;keywords=&amp;
page=2&amp;to_date=01%2F07%2F2010&amp;topics%5B%5D=all&amp;world_
locations%5B%5D=all">Next page <span>2 of 19</span></a>

To assemble the links to all press releases, we collect the publication links in one page, Gathering
press release
hyperlinks

select the link to the next page, and repeat the process until we have all the relevant links.
This is achieved with the following short code snippet. First, we load the necessary scraping
packages.

R> library(RCurl)
R> library(XML)
R> library(stringr)

We move on to download all the results. Notice that because the content is stored on
an HTTPS server, we specify the location of our CA signatures (see Section 9.1.7 for
details).

R> all_links <- character()
R> new_results <- 'government/announcements?keywords=&announcement_
type_option=press-releases&topics[]=all&departments[]=all&world_
locations[]=all&from_date=&to_date=01%2F07%2F2010'
R> signatures = system.file("CurlSSL", cainfo = "cacert.pem",
package = "RCurl")
R> while(length(new_results) > 0){
R> new_results <- str_c("https://www.gov.uk/", new_results)
R> results <- getURL(new_results, cainfo = signatures)
R> results_tree <- htmlParse(results)
R> all_links <- c(all_links, xpathSApply(results_tree,
R> "//li[@id]//a",
R> xmlGetAttr,
R> "href"))
R> new_results <- xpathSApply(results_tree,
R> "//nav[@id='show-more-documents']
R> //li[@class='next']//a",
R> xmlGetAttr,
R> "href")
R> }

We are left with a vector of length 747 but possibly some changes have been made
since this book was published. Each entry contains the link to one press release. To be sure

https://www.gov.uk/
https://www.gov.uk/
https://www.gov.uk/
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that your results are identical to ours, check the first item in your vector. It should read
as follows

R> all_links[1]
[1] "/government/news/bianca-jagger-how-to-move-beyond-oil"
R> length(all_links)
[1] 747

To download all press releases, we iterate over our results vector.Download
procedure

R> for(i in 1:length(all_links)){
R> url <- str_c("https://www.gov.uk", all_links[i])
R> tmp <- getURL(url, cainfo = signatures)
R> write(tmp, str_c("Press_Releases/", i, ".html"))
R> }

If everything was proceeded correctly, you should find the folder Press_Releases in your
working directory which contains all press releases as HTML files.

R> length(list.files("Press_Releases"))
[1] 747
R> list.files("Press_Releases")[1:3]
[1] "1.html" "10.html" "100.html"

10.2 Processing textual data

The widespread application of statistical text analysis is a fairly recent phenomenon. It
coincides with the almost universal storage of text in digital formats. Such massive amounts
of machine-readable text created the need to come up with methods to automate the processing
of content. A number of techniques in the tradition of performing statistical text analysis have
been implemented in R. Concurrently, infrastructures had to be implemented in order to
handle large collections of digital text. The current standard for statistical text analysis in R
is the tm package. It provides facilities to manage text collections and to perform the most
common data preparation operations prior to statistical text analysis.

10.2.1 Large-scale text operations—The tm package

Let us load all press releases that we have collected in the previous section into R and store
them in a tm corpus.2 Ordinarily, this could be accomplished by calling the relevant functions
on the entire directory in which we stored the press releases. In this case, however, the press
releases are still in the HTML format. Thus, before inputting them into a corpus, we want to
strip out all the tags and text that is not specific to the press release.

Let us consider the first press release as an example. Open the press release in a browser
of your choice. The press release starts with the words “Bianca Jagger, Chair of the Bianca
Jagger Human Rights Foundation and a Council of Europe Goodwill Ambassador, has called
for a “Copernican revolution” in moving beyond carbon to a decentralized, sustainable energy
system.” There is more layout information in the document. In a real research project, one
might want to consider stripping out the additional noise. In addition to the text of the press

2A text corpus in linguistics simply refers to a structured collection of texts.

https://www.gov.uk
https://www.gov.uk
https://www.gov.uk
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release we find the publishing organization and the date of publication toward the top of the
page. We extract the first two bits of information and store them along with the press release as
meta information. Let us investigate the source code of the press release. We find that the press
release is stored after the tag <div class="block-4">. Thus, we get the release by calling

R> tmp <- readLines("Press_Releases/1.html")
R> tmp <- str_c(tmp, collapse = "")
R> tmp <- htmlParse(tmp)
R> release <- xpathSApply(tmp, "//div[@class='block-4']", xmlValue)

The extracted release is not evenly formatted since we discarded all the tags. However, as Extracting
meta
information

we will drop the sequence of the words later on, this is of no concern. Also, while we might
like to drop several bits of text like (opens in new window), this should not influence
our estimation procedures.3 Before iterating over our entire corpus of results, we write two
queries to extract the meta information. The information on the publishing organization is
stored under <span class="organisation lead", the information on the publishing
date under <dd class="change-notes">.

R> organisation <- xpathSApply(tmp, "//span[@class='organisation
lead']", xmlValue)
R> organisation
[1] "Foreign & Commonwealth Office"
R> publication <- xpathSApply(tmp, "//dd[@class='change-notes']",
xmlValue)
R> publication
[1] "Published 1 July 2010"

Now that we have all the necessary elements set up, we create a loop that performs Creating a
corpusthe operations on all press releases and stores the resulting information in a corpus. Such a

corpus is the central element for text operations in the tm package. It is created by calling the
Corpus() function on the first press release we just assembled. The text release is wrapped
in a VectorSource() function call. This specifies that the corpus is created from text which
is stored in a character vector.4

R> library(tm)
R> release_corpus <- Corpus(VectorSource(release))

The corpus can be accessed just like any ordinary list by specifying the name of the Adding meta
informationobject (release_corpus) and adding the subscript of the element that we are interested

in, enclosed by two square brackets. So far, we have only stored one element in our corpus
that we can call using release_corpus[[1]]. To add the two pieces of meta information
to the text, we use the meta() function. The variable specifies the document that we want

3Not discarding these technical pieces of text is identical to making the—not overly problematic—assumption
that particular governmental departments do not systematically include features such as external links more often
than others. If this were the case, then this could very well be picked up by the estimation procedures.

4Several alternatives have been implemented. We could, for example, create a text corpus from a directory
(DirSource()) directly if we did not have to extract the press releases from the HTML files—or if we cared to
store the entire source code in the text corpus.

Incidentally, using the Corpus() function creates a volatile corpus in the memory of R that is destroyed when
the program is terminated. Alternatively, we could have created a permanent corpus that is stored in a database
outside of R.
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the meta information to be assigned to and the second variable specifies the tag name of the
meta information, in our case we select organisation and publication. Note that we
select the first organization for the meta information. Several press releases have more than
one organizational affiliation. For convenience, we simply choose the first one. Again, this
creates a little bit of imprecision in our data that should not throw off the classifiers terribly.

R> meta(release_corpus[[1]], "organisation") <- organisation[1]
R> meta(release_corpus[[1]], "publication") <- publication
R> meta(release_corpus[[1]])
Available meta data pairs are:

Author :
DateTimeStamp: 2014-03-26 00:21:46
Description :
Heading :
ID : 1
Language : en
Origin :

User-defined local meta data pairs are:
$organisation
[1] "Foreign & Commonwealth Office"

$publication
[1] "Published 1 July 2010"

The meta information of any document can be accessed using the same function. Several
meta information tags are predefined, such as Author and Language. Some are filled
automatically upon creation of the entry. At the bottom of the meta information we see
the two elements that we have created—the date of publication and the organization that has
published the press release. In the next step, we perform the operations that we have introduced
above for all the documents that we downloaded. We collect the text of the press release and
the two pieces of meta information and add them our corpus using simple concatenation
(c()). A potential problem of the automated document import is that the XPath queries may
fail on press releases which have a different layout. Usually, this should not be the case.
Nevertheless, if it did happen, our temporary corpus object tmp_corpus code would not
be created and the loop would fail. We therefore specify a condition to conduct the corpus
creation only if the release object exists, that is, has a length greater 0.5

R> n <- 1
R> for(i in 2:length(list.files("Press_Releases/"))){
R> tmp <- readLines(str_c("Press_Releases/", i, ".html"))
R> tmp <- str_c(tmp, collapse = "")
R> tmp <- htmlParse(tmp)
R> release <- xpathSApply(tmp,
R> "//div[@class='block-4']",
R> xmlValue)
R> organisation <- xpathSApply(tmp,
R> "//span[@class='organisation lead']",
R> xmlValue)

5Such exceptions are typically the result of debugging our code when the functions fail.
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R> publication <- xpathSApply(tmp,
R> "//dd[@class='change-notes']",
R> xmlValue)
R> if (length(release)!=0) {
R> n <- n + 1
R> tmp_corpus <- Corpus(VectorSource(release))
R> release_corpus <- c(release_corpus, tmp_corpus)
R> meta(release_corpus[[n]], "organisation") <-

organisation[1]
R> meta(release_corpus[[n]], "publication") <- publication
R> }
R> }

A look at the full corpus reveals that all but one document have been added to the corpus
object.

R> release_corpus
A corpus with 746 text documents

Recall that meta information is internally linked to the document. In many cases we are Collect meta
information
from the corpus

interested in a tabular form of the meta data to perform further analyses. Such a table can be
collected using the prescindMeta() function. It allows selecting pieces of meta information
from the individual documents to input them into a common data.frame.

R> meta_data <- prescindMeta(release_corpus, c("organisation",
"publication"))
R> head(meta_data)

MetaID organisation publication
1 0 Foreign .... Publishe....
2 0 Ministry.... Publishe....
3 0 Ministry.... Publishe....
4 0 Departme.... Publishe....
5 0 Departme.... Publishe....
6 0 Departme.... Publishe....

Let us inspect the meta data for a moment. As a simple summary statistic we call a count
of the different publishing organizations. We find that the publishing behavior of the various
governmental departments is fairly diverse. Assuming that the website of the UK government
truly collects all the press releases from all governmental departments we find that while
two departments have released over 100 announcements, others have published less than
a dozen.

R> table(as.character(meta_data[, "organisation"]))

Cabinet Office
31

Department for Business, Innovation & Skills
65

Department for Communities and Local Government
22

Department for Culture, Media & Sport
12
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Department for Education
5

Department for Environment, Food & Rural Affairs
35

Department for Transport
13

Department for Work & Pensions
17

Department of Energy & Climate Change
20

Deputy Prime Minister's Office
3

Driver and Vehicle Licensing Agency
4

Foreign & Commonwealth Office
204

HM Treasury
14

Home Office
8

Ministry of Defence
177

Prime Minister's Office, 10 Downing Street
62

Scotland Office
16

Vehicle and Operator Services Agency
4

Wales Office
34

As we will elaborate in greater detail in the upcoming sections, we need a certain levelCorpus
filtering with
sFilter()

of coverage in each of the categories that we would like the classifiers to pick up. Thus, we
discard all press releases from departments that have released 20 press statements or less.
There are eight departments that have published more than 20 press releases for the period
that is covered by the website up to July 2010. We select them to remain in the corpus. In
addition to the rare categories, we exclude the cabinet office and the prime minister’s office.
These bodies are potentially more difficult to classify as they are not bound to a particular
policy area. We perform the exclusion of documents using the sFilter() function. This
function takes the corpus in question as the first argument and one or more value pairs of the
form "tag == 'value"'. Recall that the pipe operator (|) is equivalent to OR.

R> release_corpus <- release_corpus[sFilter(release_corpus, "
organisation == 'Department for Business, Innovation & Skills' |
organisation == 'Department for Communities and Local Government' |
organisation == 'Department for Environment, Food & Rural Affairs' |
organisation == 'Foreign & Commonwealth Office' |
organisation == 'Ministry of Defence' |
organisation == 'Wales Office"')]
R> release_corpus
A corpus with 537 text documents
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Excluding the sparsely populated categories as well as the umbrella offices, we are left Corpus
filtering with
tm_filter()

with a corpus of 537 documents. As a side note, corpus filtering is more generally applicable
in the tm package. For example, imagine we would like to extract all the documents that
contain the term “Afghanistan.” To do so, we apply the tm_filter() function which does
a full text search and returns all the documents that contain the term.

R> (afgh <- tm_filter(release_corpus,
FUN = function(x) any(str_detect(x, "Afghanistan"))))

A corpus with 131 text documents

We find that no fewer than 131 documents out of our sample contain the term.

10.2.2 Building a term-document matrix

Let us now turn our attention to preparing the text data for the statistical analyses. A great
many applications in text classification take term-document matrices as input. Simply put,
a term-document matrix is a way to arrange text in matrix form where the rows represent
individual terms and columns contain the texts. The cells are filled with counts of how often
a particular term appears in a given text. Hence, while all the information on which terms
appear in a text is retained in this format, it is impossible to reconstruct the original text, as
the term-document matrix does not contain any information on location. To make this idea a
little clearer, consider a mock example of four sentences A, B, C, and D that read

A “Mary had a little lamb, little lamb”
B “whose fleece was white as snow”
C “and everywhere that Mary went, Mary went”
D “the lamb was sure to go”

These four sentences can be rearranged in a matrix format as depicted in Table 10.1. The
majority of cells in the table are empty, which is a common case for term-document matrices.

The function in the tm package to turn a text corpus into a term-document matrix is
TermDocumentMatrix(). Calling this on our corpus of press releases yields

R> tdm <- TermDocumentMatrix(release_corpus)
R> tdm
A term-document matrix (23350 terms, 537 documents)

Non-/sparse entries: 99917/12439033
Sparsity : 99%
Maximal term length: 252
Weighting : term frequency (tf)

Not surprisingly, the resulting matrix is extremely sparse, meaning that most cells have
not a single entry (approximately 99%). In addition, upon closer inspection of the terms in the
rows, we find that several are errors that can probably be traced back to unclean data sources.
This concern is validated by looking at the figure of Maximal term length that takes on
an improbably high value of 252.
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Table 10.1 Example of a term-document matrix

A B C D
a 1 . . .
and . . 1 .
as . 1 . .
had 1 . . .
everywhere . . 1 .
fleece . 1 . .
go . . . 1
lamb 2 . . 1
little 2 . . .
Mary 1 . 2 .
to . . . 1
that . . 1 .
the . . . 1
snow . 1 . .
sure . . . 1
was . 1 . 1
went . . 2 .
white . 1 . .
whose . 1 . .

10.2.3 Data cleansing

10.2.3.1 Word removals

In order to take care of some of these errors, one typically runs several data preparation
operations. Furthermore, the data preparation addresses some of the concerns that are leveled
against (semi-)automated text classification which will be discussed in the next section. Sev-
eral preparation operations have been made available in tm. For example, one might consider
removing numbers and period characters from the texts without losing much information.
This can either be done on the raw textual data or while setting up the term-document matrix.
For convenience of exposition, we will run each of these functions on the original documents.

The main function we will be using in this section is tm_map(), which takes a functionRemoving
numbers and runs it on the entire corpus. To remove numbers in our documents, we call

R> release_corpus <- tm_map(release_corpus, removeNumbers)

We could use the removePunctuation() function to remove period characters. How-Removing
punctuation

characters
ever, this function simply removes punctuation without inserting white spaces. In case of
formatting errors of the text this might accidentally join two words. Thus, to be safe, we use
the str_replace_all() function from the stringr package. The additional arguments to
the function are simply added to the call to tm_map().6

6The downside of this operation is that it takes out all punctuation indiscriminately. If one cares to be a little
more elaborate, one might want to retain dashes within words, for example.
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R> release_corpus <- tm_map(release_corpus, str_replace_all, pattern
= "[[:punct:]]", replacement = " ")

Another common operation is the removal of so-called stop words. Stop words are the Removing stop
wordsmost common words in a language that should appear quite frequently in all the texts.

However, for the estimation of the topics they should not be very helpful as we would expect
them to be evenly distributed across the different texts. Hence, the removal of stop words is
rather an operation that is performed to increase computational performance and less in order
to improve the estimation procedures. The list of English stop words that is implemented in
tm contains more than a hundred terms at the time of writing.

R> length(stopwords("en"))
[1] 174
R> stopwords("en")[1:10]
[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"

Again, we remove these using the tm_map() function.

R> release_corpus <- tm_map(release_corpus, removeWords, words =
stopwords("en"))

Next, one typically converts all letters to lower case so that sentence beginnings would Removing
upper casesnot be treated differently by the algorithms.

R> release_corpus <- tm_map(release_corpus, tolower)

10.2.3.2 Stemming

The following operation is potentially of greater importance than those that have been intro-
duced so far. Many statistical analyses of text will perform a stemming of terms prior to
the estimation. What this operation does is to reduce the terms in documents to their stem,
thus combining words that have the same root. A number of stemming algorithms have been
proposed and there are implementations for different languages available in R. Once more,
we apply the relevant function from the tm package, stemDocument() via the tm_map()
function.7

R> library(SnowballC)
R> release_corpus <- tm_map(release_corpus, stemDocument)

10.2.4 Sparsity and n-grams

Now that we have performed all the document preparation that we would like to include
in our analysis, we can regenerate the term-document matrix. Note again that we did not
have to perform the single operations on the original texts. We could just as easily have
performed the operations concurrently with the generation of the term-document matrices.
This is accomplished via the control parameters in the TermDocumentMatrix() function.

7Note that the stemming procedure requires the SnowballC package to be installed.



306 AUTOMATED DATA COLLECTION WITH R

Note further that there are a number of common weighting operations available that are more
elaborate than the mere term frequency. For simplicity of exposition, we will not discuss them
in this chapter. Now let us see how the operations have changed the main parameters of our
term-document matrix.

R> tdm <- TermDocumentMatrix(release_corpus)
R> tdm
A term-document matrix (9452 terms, 537 documents)

Non-/sparse entries: 74000/5001724
Sparsity : 99%
Maximal term length: 34
Weighting : term frequency (tf)

The list of terms has become a lot cleaner and we also observe a more realistic value forSparse terms

the Maximal term length parameter. One more operation that is commonly performed is
the removal of sparse terms from a text corpus prior to running the classifiers. The primary
reason for this operation is computational feasibility. Apart from that, the operation can also
be viewed as a safeguard against formatting errors in the data. If a term appears extremely
infrequently, it is possible that it contains an error. The downside of removing sparse terms
is, however, that sparse terms might provide valuable insight into the classification which is
stripped out. The following operation discards all terms that appear in 10 documents or less.

R> tdm <- removeSparseTerms(tdm, 1-(10/length(release_corpus)))
R> tdm
A term-document matrix (1546 terms, 537 documents)

Non-/sparse entries: 57252/772950
Sparsity : 93%
Maximal term length: 22
Weighting : term frequency (tf)

A common concern that is voiced against the statistical analysis of text in the way thatBigrams

is proposed in the subsequent two sections is its utter disregard of structure and context.
Furthermore, terms might have meaning associated to them that resides in several terms that
follow one after another rather than in single terms. Moreover, concerns are often voiced that
the methods have no way of dealing with negations. While there are diverse solutions to all of
these problems, one possibility is to construct term-document matrices on bigrams. Bigrams
are all two-word combinations in the text, that is, in the sentence “Mary had a little lamb,”
the bigrams are “Mary had,” “had a,” “a little,” and “little lamb.” Within the tm framework, a
term-document matrix of bigrams can easily be constructed using the R interface to the Weka
program using the RWeka package (Hornik et al. 2009; Witten and Frank 2005).

R> library(RWeka)
R> BigramTokenizer <- function(x){
R> NGramTokenizer(x, Weka_control(min = 2, max = 2))}
R> tdm_bigram <- TermDocumentMatrix(release_corpus,
R> control = list(
R> tokenize =
R> BigramTokenizer))
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The disadvantages of a term-document matrix based on bigrams is the fact that the matrix
becomes substantially larger and even more sparse.

R> tdm_bigram
A term-document matrix (87040 terms, 537 documents)

Non-/sparse entries: 116592/46623888
Sparsity : 100%
Maximal term length: 39
Weighting : term frequency (tf)

Especially the former point is relevant, as the computational task grows with the size of
the matrix. In fact, depending on the specific task, the accuracy of classification using this
operationalization does not increase dramatically. What is more, some of the aforementioned
concerns are not too severe. Consider the negation problem. As long as negations are randomly
distributed they should not greatly influence the classification task.

Before moving on, let us consider an interesting summary statistic of the resulting matrix.
Using the findAssocs() function, we are able to capture associations between terms in the
matrix. Specifically, the function calculates the correlation between a term and all other terms
in the matrix.

R> findAssocs(tdm, "nuclear", .7)
nuclear

weapon 0.93
disarma 0.91
treati 0.90
materi 0.80

In the above call we request the associations for the term “nuclear” where the correlation
is 0.7 or higher. The output provides a matrix of all the terms for which this is true, along
with the correlation value. We find that the stems “weapon,”“disarma,”“treati,” and “materi”
are most correlated with “nuclear” in the press releases that we collected.

10.3 Supervised learning techniques

In this and the following sections, we try to estimate the topical affiliation of the documents
in the corpus. A first and important distinction we have to make in this regard is the one
between latent and manifest characteristics of a document. Manifest characteristics describe
aspects of a text that are clearly observable in the text itself. For example, whether or not a
text contains numbers is typically not a quality up for debate. This is not the case for latent
characteristics of a text. The topical emphasis of a text might be very well debatable. This
distinction is important when thinking about the uncertainty that is part of our measure-
ments. In text classification, we can distinguish between different forms of uncertainty and
misclassification.

The first kind of uncertainty resides in the algorithms themselves and can be traced back Simplifying
assumptionsto limited data availability and a number of simplifying assumptions one typically makes

when using the algorithms—not least the assumption that the sequence of the words in the
text has no effect on the topic it signals. This point becomes obvious when thinking about
the way the data are structured that is underlying our analysis. The so-called bag-of-word
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approaches hold that the mere presence or absence of a term is a strong indicator of a
text’s topical emphasis—regardless of its specific location. When creating a term-document
matrix of the texts, we discard any sequence information and treat the texts as collections
of words. Consider the following example. If you observe that a particular text contains
the terms “Roe,”“Wade,”“Planned,”and “Parenthood”you have a decent chance of correctly
guessing that the text in some way revolves around the issue of abortion. Moreover, many
classifiers rely on the Naı̈ve Bayes assumption. This suggests that observing one term in a
text is independent from observing another term. This is to say that the presence of one term
contributes independently to the probability that a text is written about a particular topic from
all other terms.

Apart from misclassifications based on these simplifying assumptions, there is a second,Origins of mis-
classification more fundamental aspect of uncertainty in text classification. This is related to the classi-

fication of latent traits in text. As the topical emphasis of a text is not a quantity that is
directly observable, there can even be misclassification by human coders. This leads to two
challenges in classifying latent traits. One, we are frequently faced with training data that was
human-coded and thus might contain errors. Two, it is difficult for us to differentiate between
the origins of a misclassification, that is, we cannot be certain whether a text is misclassified
for technical or conceptual reasons.

Regardless of the origin, misclassification often poses a formidable problem for socialLack of
benchmarks scientists. Oftentimes, we would like to perform text classification and include the estimated

categories in a subsequent analysis in order to explain external factors. This second step
in a typical research program is frequently hampered by misclassification. In fact, in a real
research situation we have no way of knowing the degree of misclassification. If we did
have a benchmark, we would not need to perform text classification in the first place. What
is worse, it cannot be assumed that classification errors are randomly distributed across the
categories, which would pose a less dramatic problem. Instead, the classification errors might
be systematically biased toward specific categories (Hopkins and King 2010).

Keeping these shortcomings of the techniques in mind, we now turn to the technical aspectsThe
“supervised”in

supervised
methods

of supervised learners. The supervised in the term reflects the commonality of classifiers in this
class that some pre-coded data are used to estimate membership of non-classified documents.
The pre-coded data are called the training dataset. It is difficult to provide an estimate of
the size of the needed pre-coded data, as the accuracy of classification depends among other
things on the length of pre-coded documents and on how well the term usage in the documents
is separable, that is, the more the language in the classes differs the easier the classification
task. In general, however, the level of misclassification should decrease with the size of the
available training data. In addition, it is important to guarantee a sufficient coverage of all
categories in the training data. Recall that we discarded press releases from departments that
published 20 pieces or less. Even if the overall training data are sizable—which, in our case, it
is not—it is possible that one or several categories dominate the training data, thus providing
little information on what the algorithm might expect in the less covered categories.

The major advantage of supervised classifiers is that they provide researchers with theThe advantage
of setting a

scheme
opportunity to specify a classification scheme of their choosing. Keeping in mind that we are
interested in a latent trait of the document, the topic, we could potentially be interested in a
number of other latent categories of documents, say, their ideological or sentiment orientation.
Supervised classifiers provide a simple solution to estimating different properties by supplying
different training data for the estimation procedure. Before moving on to estimating the topical
emphasis in our corpus, let us introduce three supervised classifiers.
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10.3.1 Support vector machines

The first model we will estimate below is the so-called support vector machine (SVM).
This model was selected as it is currently one of the most well-known and most commonly
applied classifiers in supervised learning (D’Orazio et al. 2014). The SVM employs a spatial
representation of the data. In our application, the term occurrences which we stored in the
term-document matrices represent the spatial locations of our documents in high-dimensional
spaces. Recall that we supplied the group memberships, that is, publishing agencies, of the
documents in the training data. Using the SVMs, we try to fit vectors between the document
features that best separate the documents into the various groups. Specifically, we select the
vectors in a way that they maximize the space between the groups. After the estimation
we can classify new documents by checking on which sides of the vectors the features of
unlabeled documents come to lie and estimate the categorical membership accordingly. For
a more detailed introduction to SVMs, see Boswell (2002).

10.3.2 Random Forest

The second model which will be applied is the random forest classifier. This classifier creates
multiple decision trees and takes the most frequently predicted membership category of many
decision trees as the classification that is most likely to be accurate. To understand the logic,
let us consider a single tree first. A decision tree models the group membership of the object
we care to classify based on various observed features. In the present case, we estimate the
topical category of documents based on the observed terms in the document. A single decision
tree consists of several layers that consecutively ask whether a particular feature is present or
absent in a document. The decisions at the branches are based on the observed frequencies of
presence and absence of features in the training dataset. In a classification of a new document
we move down the tree and consider whether the trained features are present or absent to
be able to predict the categorical membership of the document. The random forest classifier
is an extension of the decision tree in that it generates multiple decision trees and makes
predictions based on the most frequent prediction from the various decision trees.

10.3.3 Maximum entropy

The last classification algorithm we have selected is the maximum entropy classifier. We
have selected this model as it might be familiar to readers who have some experience with
advanced multivariate data analysis. The maximum entropy classifier is analogous to the
multinomial logit model which is a generalization of the logit model. The logit model predicts
the probability of belonging to one of two categories. The multinomial logit model generalizes
this model to a situation where the dependent variable has more than two categories. In our
classification task we try to estimate the membership in six different topical categories.

10.3.4 The RTextTools package

Several packages have been made available in R to perform supervised classification. For
the present exposition we turn to the RTextTools package. This package provides a wrapper
to several packages that have implemented one or several classifiers. At the time of writing,
the package provides wrappers to nine different classification algorithms. Using a common
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framework, the RTextTools package allows a simple access to different classifiers without
having to rearrange the data to the needs of the various packages, as well as a common
framework for evaluating the model fit.

The most obvious advantage of applying several classifiers to the same dataset lies in the
possibility that individual shortcomings of the classifiers cancel each other out. It is often
most effective to choose the modal prediction of multiple classifiers as the category that most
resembles the true state of the latent category of a text. For simplicity’s sake, the present
exposition will provide an introduction to three of the classifiers. Nevertheless, all of the
algorithms perform an identical task in principle. In each case, the task of the classifiers is
to assess the degree to which a text resembles the training dataset and to choose the best
fitting label.

10.3.5 Application: Government press releases

Turning to the practical implementation, we first need to rearrange the data a little so thatCreating a
Document-term

matrix
it conforms to the needs of the RTextTools package. First and foremost, the package takes
a document-term matrix as input. So far, we generated a term-document matrix but tm can
just as easily output document-term matrices. Appropriately enough the relevant function
is called DocumentTermMatrix(). After generating the new matrix we discard terms that
appear in ten documents or less. We assemble a vector of the labels that we collected from
the press releases using the prescindMeta() function that we have introduced above.

R> dtm <- DocumentTermMatrix(release_corpus)
R> dtm <- removeSparseTerms(dtm, 1-(10/length(release_corpus)))
R> dtm
A document-term matrix (537 documents, 1546 terms)

Non-/sparse entries: 57252/772950
Sparsity : 93%
Maximal term length: 22
Weighting : term frequency (tf)

R> org_labels <- unlist(prescindMeta(release_corpus, "organisa-
tion")[,2])
R> org_labels[1:3]
[1] "Foreign & Commonwealth Office" "Ministry of Defence"
[3] "Ministry of Defence"

Finally, we create a container with all relevant information for use in the estimation
procedures. This is done using the create_container() function from the RTextTools
package. Apart from the document-term matrix and the labels we have generated we specify
that the first 400 documents are training data while we want the documents 401–537 to be
classified. We set the virgin attribute to FALSE, meaning that we have labels for all 537
documents.

R> library(RTextTools)
R> N <- length(org_labels)
R> container <- create_container(

dtm,
labels = org_labels,
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trainSize = 1:400,
testSize = 401:N,
virgin = FALSE

)

The generatedcontainer object is an S4 object of classmatrix_container. It contains
a set of objects that are used for the estimation procedures of the supervised learning methods:

R> slotNames(container)
[1] "training_matrix" "classification_matrix" "training_codes"
[4] "testing_codes" "column_names" "virgin"

In a next step, we simply supply the information that we have stored in the container Estimation
procedureobject to the models. This is done using the train_model() function.8

R> svm_model <- train_model(container, "SVM")
R> tree_model <- train_model(container, "TREE")
R> maxent_model <- train_model(container, "MAXENT")

Having set up the models, we want to use the model parameters to estimate the membership
of the remaining 137 documents. Recall that we do have information on their membership
which is stored in the container. This information is not used for estimating the membership
of the remaining documents. Instead, the membership is estimated solely on the basis of the
word vectors contained in the supplied matrix.

R> svm_out <- classify_model(container, svm_model)
R> tree_out <- classify_model(container, tree_model)
R> maxent_out <- classify_model(container, maxent_model)

Let us inspect the outcome for a moment. In all three models the output consists of a Evaluation

two-column data frame, where the first column represents the estimated labels and the second
column provides an estimate of the probability of classification.

R> head(svm_out)
SVM_LABEL SVM_PROB

1 Foreign & Commonwealth Office 0.9854
2 Foreign & Commonwealth Office 0.8667
3 Foreign & Commonwealth Office 0.9900
4 Ministry of Defence 0.9878
5 Ministry of Defence 0.9842
6 Foreign & Commonwealth Office 0.5800
R> head(tree_out)

TREE_LABEL TREE_PROB
1 Foreign & Commonwealth Office 0.9848
2 Foreign & Commonwealth Office 0.9848
3 Foreign & Commonwealth Office 0.9615
4 Ministry of Defence 1.0000
5 Ministry of Defence 1.0000
6 Ministry of Defence 0.6667

8Note that we use the default settings for the three classifiers. Using the additional arguments in the
train_model() function, we could change the default behavior.
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R> head(maxent_out)
MAXENTROPY_LABEL MAXENTROPY_PROB

1 Foreign & Commonwealth Office 1.0000
2 Foreign & Commonwealth Office 0.9960
3 Foreign & Commonwealth Office 1.0000
4 Ministry of Defence 1.0000
5 Ministry of Defence 1.0000
6 Foreign & Commonwealth Office 0.5204

Since we know the correct labels, we can investigate how often the algorithms have
misclassified the press releases. We construct a data frame containing the correct and the
predicted labels.

R> labels_out <- data.frame(
correct_label = org_labels[401:N],
svm = as.character(svm_out[,1]),
tree = as.character(tree_out[,1]),
maxent = as.character(maxent_out[,1]),
stringsAsFactors = F)

R> ## SVM performance
R> table(labels_out[,1] == labels_out[,2])

FALSE TRUE
20 117

R> prop.table(table(labels_out[,1] == labels_out[,2]))

FALSE TRUE
0.146 0.854

R> ## Random forest performance
R> table(labels_out[,1] == labels_out[,3])

FALSE TRUE
37 100

R> prop.table(table(labels_out[,1] == labels_out[,3]))

FALSE TRUE
0.2701 0.7299

R> ## Maximum entropy performance
R> table(labels_out[,1] == labels_out[,4])

FALSE TRUE
18 119

R> prop.table(table(labels_out[,1] == labels_out[,4]))

FALSE TRUE
0.1314 0.8686

We observe that the maximum entropy classifier correctly classified 119 out of 137 or
about 87% of the documents correctly. The SVM fared just a little worse and got 117 out
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of 137 or about 85% of the documents right. The worst classifier in this application is the
random forest classifier, which correctly estimates the publishing organization in merely 100
or 73% of cases.

At the beginning of this section, we have elaborated factors that might be driving errors
in topic classification. We suggested that above and beyond technical features of the models,
there are conceptual aspects of topic classification that might be driving errors, that is,
it might not always be self-evident which category a particular document belongs to. In
the present application, there is an additional feature that could potentially increase the
likelihood of topic misclassifications. We classified press releases of the British government.
For convenience, we selected the publishing organization as a proxy for the document label.
However, as governmental departments deal with lots of different issues, it is likely that the
announcements cover a wide range of issues. Put differently, we might be able to boost the
classification accuracy by including more training data so that we have a more complete
image of the departmental tasks.

Having said that, we might in fact want to add that the classification outcome is remarkably What is driving
the results?accurate, given how little data we input into the classifier. Considering that some categories

have a coverage in the training data of little more than 20 documents, it is extraordinary
that we are able to get classification accuracy of roughly 80%. This puts the aforementioned
question on its head and asks not what is driving the errors in our results but rather what
is driving the classification accuracy. One common concern that is voiced against machine
learning is the inability of the researcher to know precisely what is driving results. As we are
not specifying variables like we are used to from classical regression analysis but are rather
just throwing loads of data at the models, it is difficult to know what prompts the results. It is
entirely possible that the algorithms are picking up something in the data that is not strictly
related to topics at all. Imagine that each departmental press release is signed by a particular
government official. If this were the case the algorithms might pick up the different names as
the indicator that best separates the documents into the different categories.

In summary, the obvious advantage of supervised classifiers stems from their ability to
apply a classification scheme of the researcher’s choice. Conversely, the most obvious disad-
vantage stems from the need to either collect labels or to manually code large chunks of the data
of interest that can serve as training data. In the next section, we introduce a way to circumvent
this latter disadvantage by automatically estimating the topical categories from the data.

10.4 Unsupervised learning techniques

An alternative to supervised techniques is the use of unsupervised text classification. The
main difference between the two lies in the fact that the latter does not require training data
in order to perform text categorization. Instead, categories are estimated from the documents
along with the membership in the categories. Especially for individual researchers without
supporting staff, unsupervised classification might seem like an attractive option for large-
scale text classification—while also conforming to the endeavor of this volume to automate
data collection.

The downside of unsupervised classification lies in the inability of researchers to specify Limits

a categorization scheme. Thus, instead of having to manually input content information, the
difficulty in unsupervised classification lies in the interpretation of results in a context-free
analysis. Recall that we are estimating latent traits of texts. We established that texts express
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more than one latent category at a time. Consider as an example a research problem that
investigates agenda-setting of media and politics. Say we would like to classify a text corpus
of political statements and media reports. If we ran an unsupervised classification algorithm
on the entire corpus, it is quite possible that it might pick up differences in tonality rather than
in content. To put that in different terms, it might be that the unsupervised algorithms will
take the ideologically charged rhetoric of political statements to be different from the more
nuanced language that is used in political journalism. One possible solution for the problem
would be to run the classifier on both classes of texts sequentially. Unfortunately, running a
pure unsupervised algorithm on the two parts of the corpus creates yet another problem, as
the categories in one run of the algorithm do not necessarily match up with the categories in
a second run. In fact, this poses a more general problem in supervised classification when a
researcher wants to match data thus classified to external data that is topically categorized,
say, survey responses.

Depending on the specific research goal, it is quite possible that one finds these features
of unsupervised classification an advantage of the technique rather than a disadvantage. For
instance, the fact that unsupervised methods generate categories out of themselves might
be interesting in research that is interested in the main lines of division in a text corpus.
Conversely, unsupervised classification often expects the researchers to specify the number
of categories that the corpus is to be grouped into. This requires some theoretically driven
account of the documents’ main lines of division.

10.4.1 Latent Dirichlet allocation and correlated topic models

The technique that we briefly explore in the remainder of this section is called the Latent
Dirichlet Allocation (Blei et al. 2003). The model assumes that each document in a text corpus
consists of a mixture of topics. The terms in a document are assigned a probability value of
signaling a particular topic. Thus, the likelihood of a text belonging to particular categories is
driven by the pattern of words it contains and the probability with which they are associated
to particular topics. The number of categories that a corpus is to be split into is arbitrarily set
and should be carefully selected to reflect the researcher’s interest and prior beliefs.

A shortcoming of the latent Dirichlet model is the inability to include relationships
between the various topics. This is to say that a document on topic A is not equally likely to
be about topic B, C, or D. Some topics are more closely related than others and being able
to include such relationships creates more realistic models of topical document content. To
include this intuition into their model, Blei and Lafferty (2006) have proposed the correlated
topic model which allows for a correlation of the relative prominence of topics in the
documents.

10.4.2 Application: Government press releases

Before turning to the more complex models of topical document content, we begin byShortening the
corpus investigating the similarity relationships between the documents using hierarchical clustering.

In this technique, we cluster similar texts on the basis of their mutual distances. As before, this
method also relies on the term occurrences. The hierarchical part in hierarchical clustering
means that the most similar texts are joined in small clusters which are then joined with other
texts to form larger clusters. Eventually all texts are joined if the distance criterion has been
relaxed enough.
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For simplicity, we select the first 20 texts of the categories “defence,”“Wales,”and “envi-
ronment, food & rural affairs”and store them in a shorter corpus.

R> short_corpus <- release_corpus[c(
which(tm_index(

release_corpus,
FUN = sFilter,
s = "organisation == 'Ministry of Defence"'

))[1:20],
which(tm_index(

release_corpus,
FUN = sFilter,
s = "organisation == 'Wales Office"'

))[1:20],
which(tm_index(

release_corpus,
FUN = sFilter,
s = "organisation == 'Department for

Environment, Food & Rural Affairs"'
))[1:20]

)]

R> table(as.character(prescindMeta(short_corpus, "organisation")[,2]))

Department for Environment, Food & Rural Affairs
20

Ministry of Defence
20

Wales Office
20

We create a document-term matrix of the shortened corpus and discard sparse terms. We
also set the names of the rows to the three categories.

R> short_dtm <- DocumentTermMatrix(short_corpus)
R> short_dtm <- removeSparseTerms(short_dtm, 1-(5/length(short_
corpus)))
R> rownames(short_dtm) <- c(rep("Defence", 20), rep("Wales", 20),
rep("Environment", 20))

The similarity measure in this application is the euclidean distance between the texts. To
calculate this metric, we subtract the count for each term in document A from the count in
document B, square the result, sum over the entire vector, and take the square root of the
result. This is done using the dist() function. The resulting matrix is clustered using the
hclust() function which clusters the resulting matrix by iteratively joining the two most
similar clusters. The similarities can be visually inspected using a dendrogram where the
clusters are increasingly joined from the bottom to the top. This is to say that the higher up
the clusters are joined, the more dissimilar they are.

R> dist_dtm <- dist(short_dtm)
R> out <- hclust(dist_dtm, method = "ward")
R> plot(out)
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Figure 10.1 Output of hierarchical clustering of UK Government press releases

The resulting clusters roughly recover the topical emphasis of the various press releases
(see Figure 10.1). Particularly toward the lower end of the graph we find that two press
releases from the same governmental department are frequently joined. However, as we move
up the dendrogram, the patterns become less clear. To a certain extent we find a cluster of
the “environment”press releases at one end of the graph and particularly the “Wales” press
releases are mostly joined. Conversely, the press releases pertaining to “defence” are dispersed
across the various parts of the dendrogram.

Let us now move on to a veritable unsupervised classification of the texts—the LatentEstimating
LDA Dirichlet Allocation. One implementation of the Latent Dirichlet model is provided in the

topicmodels package. The relevant function is supplied in the LDA() function. As we know
that our corpus consists of six “topics,” we select the number of topics to be estimated as
six. As before, the function takes the document-term matrix that we created in the previous
section as input.

R> library(topicmodels)
R> lda_out <- LDA(dtm, 6)

After calculating the model, we can determine the posterior probabilities of a document’s
topics as well as the probabilities of the terms’ topics using the function posterior(). We
store the topics’ posterior probabilities in the data frame lda_topics and investigate the
mean probabilities assigned to the press releases of the government agencies. We set up a
6-by-6 matrix to store the mean topic probabilities by governmental body.

R> posterior_lda <- posterior(lda_out)
R> lda_topics <- data.frame(t(posterior_lda$topics))
R> ## Setting up matrix for mean probabilities
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R> mean_topic_matrix <- matrix(
NA,
nrow = 6,
ncol = 6,
dimnames = list(

names(table(org_labels)),
str_c("Topic_", 1:6)

)
)
R> ## Filling matrix
R> for(i in 1:6){

mean_topic_matrix[i,] <- apply(lda_topics[, which(org_labels ==
rownames(mean_topic_matrix)[i])], 1, mean)
}
R> ## Outputting rounded matrix
R> round(mean_topic_matrix, 2)

Topic_1 Topic_2 Topic_3
Department for Business, Innovation & Skills 0.01 0.61 0.00
Department for Communities and Local Government 0.00 0.04 0.04
Department for Environment, Food & Rural Affairs 0.02 0.24 0.12
Foreign & Commonwealth Office 0.01 0.07 0.05
Ministry of Defence 0.49 0.02 0.25
Wales Office 0.00 0.10 0.33

Topic_4 Topic_5 Topic_6
Department for Business, Innovation & Skills 0.02 0.02 0.33
Department for Communities and Local Government 0.02 0.08 0.82
Department for Environment, Food & Rural Affairs 0.06 0.07 0.49
Foreign & Commonwealth Office 0.32 0.50 0.05
Ministry of Defence 0.13 0.05 0.06
Wales Office 0.04 0.13 0.39

We find that some topics tend to be strongly associated with the press releases from
individual government agencies. For example, topic 2 is often highly associated with the
Department for Business, Innovation & Skills, topic 5 has a high probability of occurring in
announcements from the Foreign & Commonwealth Office. Topic 1 is most associated with
the Ministry of Defence. We investigate the estimated probabilities more thoroughly when
considering the correlated topic model.

Another way to investigate the estimated topics is to consider the most likely terms for Terms
associated with
topics

the topics and try to come up with a label that summarizes the terms. This is done using the
function terms().

R> terms(lda_out, 10)
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

[1,] "oper" "busi" "forc" "nation" "minist" "will"
[2,] "said" "bis" "defenc" "british" "will" "govern"
[3,] "command" "will" "royal" "forc" "foreign" "local"
[4,] "base" "univers" "arm" "peopl" "secretari" "new"
[5,] "royal" "depart" "servic" "will" "secur" "work"
[6,] "troop" "educ" "said" "afghan" "nuclear" "busi"
[7,] "forc" "gov" "day" "secur" "intern" "can"
[8,] "soldier" "skill" "will" "govern" "govern" "council"
[9,] "marin" "colleg" "personnel" "travel" "meet" "make"

[10,] "will" "innov" "fox" "can" "state" "communiti"
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Particularly topics 1, 3, and 4 have a focus on aspects of the military, the terms in topic
5 tend to relate to foreign affairs, the emphasis in topic 6 is local government and topic
2 is related to business and education. This ordering nicely reflects the observations from
the previous paragraph. Nevertheless, we also find that the dominance of press releases
by the department of defence results in topics that classify various aspects of the defence
announcements in multiple topics, thus lumping together the releases from other departments.
This is to say that while there is some plausible overlap between the known labels and the
estimated categories, this overlap is far from perfect.

Let us move on to estimating a correlated topic model to run a more realistic model of topicEstimating
CTM mixtures. Again, we select the number of topics to be six since there are six governmental

organizations for which we include press releases.

R> ctm_out <- CTM(dtm, 6)

R> terms(ctm_out, 10)
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

[1,] "afghan" "foreign" "will" "forc" "govern" "will"
[2,] "said" "minist" "busi" "royal" "will" "new"
[3,] "forc" "will" "local" "arm" "wale" "work"
[4,] "oper" "secur" "govern" "command" "peopl" "project"
[5,] "local" "secretari" "bis" "defenc" "can" "provid"
[6,] "afghanistan" "intern" "council" "servic" "work" "plan"
[7,] "secur" "british" "new" "day" "must" "said"
[8,] "base" "meet" "year" "personnel" "right" "system"
[9,] "area" "nation" "depart" "oper" "said" "use"
[10,] "patrol" "nuclear" "fund" "air" "make" "build"

We now find two topics—1 and 4—to be clearly related to matters of defense.9 Topic 2
is associated with foreign affairs, topic 3 with local government. The terms of topic 5 in the
correlated topic model strongly suggest Welsh politics. A label for topic 6 is more difficult to
make out.

We can plot the document-specific probabilities to belong to one of the three topics. ToEvaluation of
posterior

probabilities
do so, we calculate the posterior probabilities of the topics and set up 2-by-3 panels to plot
the sorted probabilities of the topics in the press releases. The result is displayed in Figure
10.2. Note that to save space we only displayed two of the estimated six topics. We invite you
to run the models and plot all posterior probabilities yourself.

R> posterior_ctm <- posterior(ctm_out)
R> ctm_topics <- data.frame(t(posterior_ctm$topics))
R>
R> par(mfrow = c(2,3), cex.main = .8, pty = "s", mar = c(5, 5, 1, 1)
R> for(topic in 1:2){
R> for(orga in names(table(org_labels))){
R> tmp.data <- ctm_topics[topic, org_labels == orga]
R> plot(
R> 1:ncol(tmp.data),
R> sort(as.numeric(tmp.data)),

9Note that the numbers of the topics are arbitrary.
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Figure 10.2 Output of Correlated Topic Model of UK Government press releases
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R> type = "l",
R> ylim = c(0,1),
R> xlab = "Press releases",
R> ylab = str_c("Posterior probability, topic ",
topic),
R> main = str_replace(orga, "Department for", "")
R> )
R> }
R> }

The figures are nicely aligned with expectations from looking at the terms most indicative
of the various topics. The posterior probability of topic 1 is highest in press releases from the
ministry of defense, whereas topic 2 has the highest probability in press releases from the
foreign office. In summary, we are able to make out some plausible agreement between our
labels and the estimated topical emphasis from the correlated topic model.

Summary

The chapter offered a brief introduction to statistical text processing. To make use of the
vast data on the Web, we often have to post-process collected information. Particularly when
confronted with textual data we need to assign systematic meaning to otherwise unstructured
data. We provided an introduction to a framework for performing statistical text processing
in R—the tm package—and two classes of techniques for making textual data applicable as
data in research projects: supervised and unsupervised classifiers.

To summarize the techniques, the major advantage of supervised classification is the ability
of the researcher to specify the categories for the classification algorithm. The downside of
that benefit is that supervised classifiers typically require substantial amounts of training data
and thus manual labor. Conversely, the major advantage of unsupervised classification lies
in the ability of researchers to skip the coding of data by hand which comes at the price of
having to interpret the estimation results ex post.

At the end, we would like to add that there is a vibrant research in the field of automated
analysis of text, such that this chapter is potentially one of the first to contain somewhat dated
information. For example, some headway has been made to allow researchers to specify the
categories they are interested in without having to code a large chunk of the corpus for training
data. This is accomplished using seed words. They allow the researcher to specify words that
are most indicative of a particular category of interest (Gliozzo et al. 2009; Zagibalov and
Carroll 2008).

Further reading

We introduced the most important features of the tm package in the first section of this chapter.
However, we have not explored its full potential. If you care to learn more about the package
check out the extensive introduction in Feinerer et al. (2008).

Natural language processing and the statistical analysis of text remain actively researched
topics. Therefore, there are both numerous contributions to the topic as well as research
papers with current developments in the field. For further insight into the topics that were
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introduced in this chapter take a look at Grimmer and Stewart (2013) for a brief but insightful
introduction to some of the topics that were discussed in this chapter. For a more extensive
treatment of the topics, see Manning et al. (2008).

A topic that is heavily researched in the area of automated text classification is the
classification of the sentiment or opinion in a text. We will return to this topic in Chapter 17
where we try to classify the sentiment in product reviews on http://www.amazon.com. For an
excellent introduction to the topic, take a look at Liu (2012).

http://www.amazon.com
http://www.amazon.com
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Managing data projects

Deploying a successful data collection project requires more than knowledge of web tech-
nologies. The focus of this chapter is on R and operation system functionality that will
be required for setting up and maintaining large-scale, automated data collection projects.
Additionally, we discuss good practices to organize and write code that adds robustness and
traceability in case of errors. In Section 11.1, we start by providing an overview of R func-
tions for interacting with the local file system. In Section 11.2, we show methods for iterative
code execution for downloading pages or extracting relevant information from multiple web
documents. Section 11.3 provides a template for organizing extraction code and making it
more robust to failed specification. We conclude the chapter with an overview of system tools
that can executive R scripts automatically, which is a key requirement for building datasets
from regularly updated Internet resources (Section 11.4).

11.1 Interacting with the file system

One type of R function that appears frequently in data projects is dedicated to working
with files and folders on the local file system. Over the course of a data project, we are
continuously interacting with the file system of our operating system. Web documents are
stored locally, loaded into R, processed, and saved again after the post-processing or analysis.
The file system has an important role in the data collection and analysis workflow and a
firm command over the hard drive constitutes a valuable auxiliary skill. For the numerous
virtues of a scripted approach, any interaction with the file management system should be
performed in a programmable fashion. Luckily, R provides an extensive list of functions for
interacting with the system and files located in it. Table 11.1 provides an overview of the
basic file management functions which we rely upon in the case studies and in data projects
more generally.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Table 11.1 Basic R functions for folder and file management

Function
Important
arguments Description

Functions for folder management
dir() path Returns character vector of the names of files

and directories in path
dir.create() path, recursive Creates new directory in path (only the last

element). If recursive=T all elements on
the path are created.

Functions for file management
file.path() ... Constructs a file path of character elements
file.info() path Returns character vector with information about

a file in path
file.exists() path Returns logical value whether a file already

exists in path
file.access() names, mode Tests files in names for existence (mode=0),

execute permission (mode=1), writing
permission (mode=2), read permission
(mode=4). Returns integer with values 0 for
success and −1 for failure

file.rename() from, to Renames a file in path from to a name in to
file.remove() path Deletes a file in path from the hard drive
file.append() file1, file2 Appends contents in file2 to file1
file.copy() from, to Creates a copy of a file in path from to path to
basename() path Returns the lowest level in a path
dirname() path Returns all but the lower level in a path

Functions for working with compressed files
zip() zipfile, files Create a zip file in path zipfile of files
unzip() zipfile, files Extracts specific files (all when unspecified)

from a zip file in path zipfile

Path arguments may usually be passed as complete or incomplete paths. In the latter case, paths are
expanded to the working directory (getwd()). File paths may be passed in abbreviated form without the
user’s home directory. (path.expand() is used to replace a leading tilde by the user’s home directory.)

11.2 Processing multiple documents/links

A frequently encountered task in web scraping is executing a piece of code repeatedly. In fact,
using a programming language for data collection is most valuable as it allows the researcher
to automate tasks that would otherwise have to be done in tedious and time-consuming
manual processing of every file, URL, or document. To exemplify, consider the problem of
downloading a bunch of HTML sites from a vector of URLs. Another job is the processing of
multiple web documents, such as the pages from a news website where the task is extracting
the text corpora, or the extraction of tabular information from economic indicators organized
in XML files to create a single database.
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This section illustrates that with only a little bit of overhead one can instruct R to repeatedly
execute a function on a set of files and, thus, comfortably download countless pages or scan
thousands of documents and reassemble the extracted information. We introduce two ways
to accomplish this goal; the first one is through the use of standard R looping structures and
the second one is through functionality from the plyr package.

11.2.1 Using for-loops

For illustrative purposes, we consider the set of 11 XML files that are located in the folder
/stocks.1 The XML files contain stock information for four technology companies. Our interest
is in extracting the daily closing values for the Apple stock over all years (2003–2013). We
can divide this problem into two subtasks. First, we need to come up with an extraction code
that loads the file, extracts, and recasts the target information into the desired format. The
second task is executing the extraction code on all XML files. A straightforward approach
is to wrap the extraction code in a for-loop. Loops are standard programming structures that
help formulate an iterating statement over the set of documents from which information needs
to be extracted.

A first step is to obtain the names of the files that we would like to process. To this end,
we use the dir() function to produce a character vector with all the file names in the current
directory. The file names are inserted into a new object called all_files and its content is
printed to the screen.

R> all_files <- dir("stocks")
R> all_files
[1] "stocks_2003.xml" "stocks_2004.xml" "stocks_2005.xml"
[4] "stocks_2006.xml" "stocks_2007.xml" "stocks_2008.xml"
[7] "stocks_2009.xml" "stocks_2010.xml" "stocks_2011.xml"
[10] "stocks_2012.xml" "stocks_2013.xml"

Next, we need to create a placeholder in which we can store the extracted stock information
from each file. Although it might be necessary to obtain a data frame at the end of the process
for analytical purposes, we set up a list as an intermediate data structure. Lists provide the
flexibility to collect the information which we recast only afterwards. We create an empty
list that we name closing_stock and which serves as a container for the yearly stock
information from each file.

R> closing_stock <- list()

The core of the extraction routine consists of a for-loop over the number of elements
in the all_files character vector. This structure allows iterating over each of the files and
work on their contents individually.

R> for (i in 1:length(all_files)) {
path <- str_c("stocks/", all_files[i])
parsed_stock <- xmlParse(path)
closing_stock[[i]] <- xpathSApply(parsed_stock, "//Apple", getStock)

}

1You can find the data on www.r-datacollection.com/materials.

http://www.r-datacollection.com/materials
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First, we construct the path of each XML file and save the information in a new object
called path. The information is needed for the next step, where we pass the path to the parsing
function xmlParse(). This creates the internal representation of the file inside a new object
called parsed_stock. Finally, we obtain the desired information from the parsed object by
means of an XPath statement. Here, we pull the entire Apple node and do the post-processing
in the extractor function, which we discuss below. The return value from xpathSApply()
is stored at the ith position our previously defined list. The get_stock() extractor function
is a custom function that works on the entire Apple node and returns the date and closing
value for each day.

R> getStock <- function(x) {
date <- xmlValue(x[["date"]])
value <- xmlValue(x[["close"]])
c(date, value)

}

We go ahead and unlist the container list to process each information individually and
put it into a more convenient data format. Here we go for a data frame and choose more
appropriate column names.

R> closing_stock <- unlist(closing_stock)
R> closing_stock <- data.frame(matrix(closing_stock, ncol = 2, byrow = T))
R> colnames(closing_stock) <- c("date", "value")

Finally, we recast the value information into a numerical vector and the date information
into a vector of class Date.

R> closing_stock$date <- as.Date(closing_stock$date, "%Y/%m/%d")
R> closing_stock$value <- as.numeric(as.character(closing_stock$value))

We are ready to create a visual representation of the extracted data. We use plot() to
create a time-series of the stock values. The result is displayed in Figure 11.1.

R> plot(closing_stock$date, closing_stock$value, type = "l", main
= "", ylab = "Closing stock", xlab = "Time")
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Figure 11.1 Time-series of Apple stock values, 2003–2013



326 AUTOMATED DATA COLLECTION WITH R

11.2.2 Using while-loops and control structures

A second control statement that we can use for iterations is the while() expression. Instead
of iterating over a fixed sequence, it will run an expression as long as a particular condition
evaluates to TRUE. Consider the snippet below for an abstract usage of the expression.

R> a <- 0
R> while(a < 3){

a <- a + 1
print(a)

}
[1] 1
[1] 2
[1] 3

We set the a to 0 and while the a is lower than 3 it will continue looping. In each iteration
we add 1 to a and print the value of a to the screen. Once the a has reached the critical value
of 3, the loop will break.

Apart from setting a condition in the while() statement that evaluates to FALSE at some
point, thus breaking the loop, we can also break a loop with an if() clause and a break
command.

R> a <- 0
R> while(TRUE){

a <- a + 1
print(a)
if(a >= 3){

break
}

}
[1] 1
[1] 2
[1] 3

In the above snippet, we set a condition in the while() statement that will always evaluate
to TRUE, thus creating an infinite loop. Instead, in each iteration we test whether a is equal
to or greater than 0. If that condition is TRUE, the break is encountered which forces R to
break the current loop. Notice how we used the if() clause in the snippet.

In web scraping practice, thewhile() statement is handy to iterate over a set of documents
where you do not know the total number of documents in advance. Consider the following
scenario. You care to download a selection of HTML documents where the link to additional
documents is embedded in the source code of the last inspected HTML document, say in a
link to a NEXT document. If you do not happen to find a counter at the bottom of the page that
contains information on the total number of pages, there is no way of specifying the number
of pages you can expect. In such a case, you can apply the while() statement to check for
the existence of a link before accessing the document.

R> # Load packages
R> library(XML)
R> library(stringr)
R>
R> # Mock URL
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R> url <- "http://www.example.com"
R>
R> # XPath expression to look for additional pages
R> xpath_for_next_page <- "//a[@class='NextPage']"
R>
R> #Create index for pages
R> i <- 1
R>
R> # Collect mock URL and write to drive
R> current_document <- getURL(url)
R> write(tmp, str_c(i, ".html"))
R>
R> # Download additional pages while there are links to additional pages
R> while(length(xpathSApply(current_document, xpath_for_next_page,
xmlGetAttr, "href")) > 0){
R> current_url <- xpathSApply(current_document, xpath_for_next_page,
xmlGetAttr, "href")
R> current_document <- getURL(current_url)
R> write(current_document, str_c(i, ".html"))
R> i <- i + 1

11.2.3 Using the plyr package

The data structure which we typically wish to produce is tabular with variables populating the
columns and each row presenting a case or unit of analysis. Producing tabular data structures
from multiple web documents can be achieved easily using functionality from the plyr package
(Wickham 2011) which allows performing an extraction routine more quickly on multiple
documents. To illustrate, let us run through the previous example in the plyr framework. As
the first step, we construct the paths to the XML files on the local hard drive.

R> files <- str_c("stocks/", all_files)

We create a function getStock2() that parses an XML file and extracts relevant infor-
mation. This code is similar to the one we used before.

R> getStock2 <- function(file){
parsedStock <- xmlParse(file)
closing_stock <- xpathSApply(parsedStock,

"//Apple/date | //Apple/close",
xmlValue)

closing_stock <- as.data.frame(matrix(closing_stock,
ncol = 2,
byrow = TRUE))

}

The function returns an n × 2 data frame with the first column holding information on the
date and the second one on the closing stock. We are now set to evoke ldply() and initiate
the extraction process.

R> library(plyr)
R> appleStocks <- ldply(files, getStock2)

http://www.example.com
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For its input ldply() requires a list or a vector and it returns a dataframe. ldply()
executes getStock2() on every element in files and binds the results row-wise. We
confirm that the procedure has worked correctly by printing the first five lines to the console.

R> head(appleStocks, 3)
V1 V2

1 2013/11/13 520.634
2 2013/11/12 520.01
3 2013/11/11 519.048

If you are dealing with larger file stacks, plyr also provides the option parallel which,
if set to TRUE, parallelizes the code execution which can speed up the process.

11.3 Organizing scraping procedures

When you begin scraping the Web regularly, you will find that numerous tasks come upDon’t repeat
yourself over and over again. One of the central principles of good coding practice states that you

should never repeat yourself. If you find yourself rewriting certain lines of code or copy-
pasting elements of your code, then it is time to start thinking about organizing your code
in a more efficient way. Problems arise when you need to trace all the places in your
scripts where some particular functionality has been defined. The solution to this problem
is to wrap your code in functions and store them in dedicated places. Not only does this
guarantee that revisions happen in only one place, but it also greatly simplifies the maintenance
of code.

Besides ensuring a better maintenance of code, writing functions also allows a general-
ization of functionality. This is a great improvement of your code when you want to apply
a sequence of operations to lots of data, as is often the case in web scraping. In fact, by
writing your code into functions you can frequently speed up the execution time of your R
code dramatically by applying the function on a list or a vector via one of the apply functions
from the plyr package as shown in the previous section. This section serves to elaborate how
to modularize your code by using functions.

We demonstrate the use of functions with a scenario that we already discussed in Section
9.1.4. Imagine that we want to collect all links from a website. We have learned that the XML
package provides the function getHTMLLinks() which makes link collection from HTML
documents quite convenient. In fact, this function is a good example for a function which
help tackle a frequently occurring task. Imagine that the function did not exist and we needed
to build it.

We have learned in Chapter 2 that links are stored in href attributes of <a> elements.
Our task is thus simply to collect the content of all nodes with this attribute. Let us begin
by loading the necessary packages and specifying a URL that will serve as our running
example.

R> library(RCurl)
R> library(XML)
R> url <- "http://www.buzzfeed.com"

http://www.buzzfeed.com


MANAGING DATA PROJECTS 329

We can perform the task for this single website by calling and parsing it via htmlParse()
and collecting the relevant information via xpathSApply() .

R> parsed_page <- htmlParse(url)
R> links <- xpathSApply(parsed_page, "//a[@href]", xmlGetAttr, "href")

R> length(links)
[1] 945

Now imagine that we care to apply these steps to several websites. To apply these three Setting up
functionssteps to other sites we wrap them into a single function we call collectHref(). This is

done by storing the necessary steps in an object and calling the function function(). The
argument in the function call represents the object that the function is supposed to run on, in
this case the URL.

R> collectHref <- function(url){
parsed_page <- htmlParse(url)
links <- xpathSApply(parsed_page, "//a[@href]", xmlGetAttr, "href")
return(links)

}

Now we can simply run the function on various sites to collect all the links. First we apply
it to the URL we specified above and then we try out a second page.

R> buzzfeed <- collectHref("http://www.buzzfeed.com")

R> length(buzzfeed)
[1] 945

R> slate <- collectHref("http://www.slate.com")

R> length(slate)
[1] 475

We are able to generalize functions by adding arguments to it. For example, we can add a Adding
argumentsvariable to our function that will discard all links that do not explicitly begin with http. This

could be done with a simple regular expression that detects whether a string begins in http,
using the str_detect() function from the stringr package.

R> collectHref <- function(url, begins.http){
if(!is.logical(begins.http)){

stop("begins.http must be a logical value")
}
parsed_page <- htmlParse(url)
links <- xpathSApply(parsed_page, "//a[@href]", xmlGetAttr, "href")
if(begins.http == TRUE){

links <- links[str_detect(links, "ˆhttp")]
}
return(links)

}

Notice that we also added a test to the function that checks whether begins.http is a
logical value. If not, the function will throw an error (produced by stop()) and not return

http://www.buzzfeed.com
http://www.slate.com
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any results. Let us run the altered function on our example URL, and set begins.http to
TRUE.

R> buzzfeed <- collectHref(url, begins.http = TRUE)
R> length(buzzfeed)
[1] 63

The vector of links has shrunk considerably. Now let us call the function on the base URL
again, but change the begins.http variable to the wrong type.

R> testPage <- collectHref(url, begins.http = "TRUE")
Error: begins.http must be a logical value

We can add any number of arguments to the function. In order not to have to specify
the value for each argument whenever we call the function, we can set predefined values for
the arguments. For example, we can set begins.http to TRUE by default in the function
definition.

R> collectHref <- function(url, begins.http = TRUE){
if(!is.logical(begins.http)){

stop("begins.http must be a logical value")
}
parsed_page <- htmlParse(url)
links <- xpathSApply(parsed_page, "//a[@href]", xmlGetAttr, "href")
if(begins.http == TRUE){

links <- links[str_detect(links, "ˆhttp")]
}
return(links)

}

Thus, whenever we call the function, it will assume that we care to collect only those
links that explicitly contain the sequence http.

Once you start writing functions in R, you will find that grouping them into topical filesStoring and
calling

functions
is the most sensible way to collect functions for use in various projects. The advantage of
generating a set of functions in modules ensures that you have to modify specific functions
only in one location and that you do not have to create the same functionality over and over
again with each project that you are beginning. Instead you can call the necessary module
when you start a new project, almost like you would load a library that you download from
CRAN.

A reasonable approach for storing such recurring functions is to create a dedicated folder
where functions are stored in dedicated R script files. Whenever you want to draw on one
of these functions, you can access them using the source() command. This automatically
evaluates code from foreign R source files. Imagine we have stored our function from above
in a file named collectHref.r. In order to run the command, we proceed as follows:

R> source("collectHref.r")
R> test_out <- collectHref("http://www.buzzfeed.com")
R> length(test_out)
[1] 63

Eventually you can also go one step further and create R packages yourself and upload
them to CRAN or GitHub .

http://www.buzzfeed.com
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11.3.1 Implementation of progress feedback: Messages
and progress bars

When performing a web scraping task, it can often be useful to receive a visual feedback on
the progress that our program has made in order to get a sense of when your program will have
finished. A very basic version of such a feedback would be a simple textual printout directly
to the R console. We can accomplish this with the cat() function. To illustrate, consider the
problem of downloading the stock XML files from the book homepage. The files are stored in
the following path: http://www.r-datacollection.com/materials/workflow/stocks. Let us start
by building a character vector for their URLs and save them in a new object called links.

R> baseurl <- "http://www.r-datacollection.com/materials/workflow/stocks"
R> links <- str_c(baseurl, "/stocks_", 2003:2013, ".xml")

Next, we set up a loop over the length of links. Inside the loop, we download the file, Progress
feedback with
cat()

create a sensible name using basename() to return the source file name, and then write the
XML code to the local hard drive.

R> N <- length(links)
R> for(i in 1:N){
R> stocks <- getURL(links[i])
R> name <- basename(links[i])
R> write(stocks, file = str_c("stocks/", name))
R> cat(i, "of", N, "\n")
R> }
1 of 11
2 of 11
3 of 11
...
11 of 11

In the final line, we ask R to print the number of the document just downloaded to the
console. We append the message with a \n so each new output is written to a new line.

We can enrich the information in the feedback, for example, by adding the name of the
file that is currently being downloaded.

R> for(i in 1:N){
R> stocks <- getURL(links[i])
R> name <- basename(links[i])
R> write(html, file = str_c("stocks/", name))
R> cat(i, "of", N, "-", name, "\n")
R> }
1 of 11 - stocks_2003.xml
2 of 11 - stocks_2004.xml
3 of 11 - stocks_2005.xml
...
11 of 11 - stocks_2013.xml

In some cases, you might not want to get output on each individual case but only cre-
ate summary information. One possibility for this is to shorten the output by providing

http://www.r-datacollection.com/materials/workflow/stocks
http://www.r-datacollection.com/materials/workflow/stocks
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information on, say, each tenth download. We add an if() statement to our code such that
only those iterations are printed where the i divided by 10 does not result in a fraction.

R> for(i in 1:30)
if(i %% 10 == 0){

cat(i, "of", 30, "\n")
}

}
10 of 30
20 of 30
30 of 30

Incidentally, you might want to store the progress information in an external file for laterWriting
progress to a

log file
inspection to be able to trace potential errors. Possibly, this should consist of more extensive
information than what is printed to your screen. For example, you can use the write()
command to write the progress to a log file that is appended in each iteration. We begin by
creating an empty file on our local hard drive.

R> write("", "download.txt")

We then append the information that is written to the screen to the external file. To make
the information a little more useful for later inspection, we add information on the number
of characters in the downloaded file. We also add dashes and a space to visually separate the
various downloads.

R> N <- length(links)
R> for(i in 1:N){
R> stocks <- getURL(links[i])
R> name <- basename(links[i])
R> write(html, file = str_c("stocks/", name))
R> feedback <- str_c(i, "of", N, "-", name, "\n", sep = " ")
R> cat(feedback)
R> write(feedback, "download.txt", append = T)
R> write(nchar(stocks), "download.txt", append = T)
R> write("------------\n", "download.txt", append = T)
R> }

In many instances, the best feedback is textual. Nevertheless, you can also create otherUsing built-in
progress bars types of feedback. For instance, you can easily create a simple progress bar for your function

using the txtProgressBar() that is predefined in R. For our example we start by initializing
a progress bar with the extreme values of 0 and N, that is 3. We set the style of the progress
bar to 3, which generates a progress bar that displays the percentage of the task that is done
at the right end of the bar.

R> progress_bar <- txtProgressBar(min = 0, max = N, style = 3)

Next, we download the documents once more with the shortest version of the code that
was introduced previously. We add the command setTxtProgressBar() to our call which
sets the value of the progress bar that we initialized above. The first argument specifies which
progress bar we want to change the value of, the second argument sets the value, in this case
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the values 1, 2, and 3. We add a 1 second delay after each iteration using the Sys.sleep()
function, so you can clearly see the development of the progress bar.

R> for(i in 1:N){
R> stocks <- getURL(links[i])
R> name <- basename(links[i])
R> write(stocks, name)
R> setTxtProgressBar(progress_bar, i)
R> Sys.sleep(1)
R> }

|================================ | 73%

You can even create audio cues to signal that the execution of a piece of code is complete. Audio feedback

For example, the escape sequence \a calls the alert bell.2

R> for(i in 1:N){
R> tmp <- getURL(websites[i])
R> write(tmp, str_c(str_replace(websites[i], "http://www\\.", ""), ".
html"))
R> }
R> cat("\a")

Imagine a ping! when reading cat("\a") in the last code snippet.

11.3.2 Error and exception handling

When you start to scrape the Web seriously, you will begin to stumble across exceptions.
For example, websites might not be formatted consistently such that you will not find all the
elements that you are looking for. It is sometimes difficult to build your functions sufficiently
robust to be able to deal with all the exceptions. This section introduces some simple tech-
niques that can help you overcome such problems. Let us consider as an example the same
task that we have looked at in Section 11.3—downloading a list of websites. First, we expand
the list with a mistyped URL.

R> wrong_pages <- c("http://www.bozzfeed.com", links)

When we try to download the content of all of the sites to our hard drive using a simple The try()
functionloop over all the entries, we find that this operation fails as the function is unable to collect

the first entry in our vector. The problem with errors is that they break the execution of the
entire piece of code. Even though the remaining three entries could have been collected with
the code snippet as we have previously shown, the single false entry stops the execution
altogether. The simplest way to change this behavior is to wrap the getURL() expressions in
a try() statement.

R> for(i in 1:N){
R> url <- try(getURL(wrong_pages[i]))
R> if(class(url) != "try-error"){

2Users have implemented more fun notification sounds in R. Be sure to check out the pingr package (see
https://github.com/rasmusab/pingr).

http://www.bozzfeed.com
https://github.com/rasmusab/pingr


334 AUTOMATED DATA COLLECTION WITH R

R> name <- basename(wrong_pages[i])
R> write(url, name)
R> }
R> }

Notice that we added a statement to test the class of the url object. If the object is of classThe
tryCatch()

function
try-error, we do not write the content of the object to the hard drive. The disadvantage of
wrapping code in try() statements is that you discard errors as inconsequential. This is a
strong assumption, as something has gone wrong in your code and frequently it makes sense
to consider more carefully what exception you encountered. R also offers the tryCatch()
function which is a more flexible device for catching errors and defining actions to be
performed as errors occur. For example, you could log the error to consider the systematics
of the errors later on. First, we create a function that combines the two steps of our task in
a single function. We also set up a log file to export errors and the relevant URL during the
execution of the code.

R> collectHTML <- function(url){
R> html <- getURL(url)
R> write(html, basename(url))
R> }
R> write("", "error_log.txt")

We customize the error handling in the tryCatch() statement by making it print Not
available and the name of the website that cannot be accessed.3

R> for (i in 1:N) {
html <- tryCatch(collectHTML(site404[i]), error = function(err){

errMess <- str_c("Not available - ", site404[i])
write(str_c(errMess, "error_log.txt"))

})
}

11.4 Executing R scripts on a regular basis

On many websites, smaller or larger parts of the contents are changed on a regular basis,
which renders these resources dynamic. To exemplify, imagine a news site that publishes new
articles every other hour or the press release repository of a non-governmental organization
that adds new releases sporadically.

Implicitly, we assumed so far that scraping can be carried out in a one-time job. Yet,
when dynamic web resources are concerned, it might be a key aspect of a data project to
collect information over a longer period of time. While nothing prevents us from manually
executing a script in regular intervals, this process is cumbersome and error-prone. This

3The added value of using the tryCatch() function compared to the try() statement in this case is fairly
limited, as the error messages of the former are similarly informative and could easily be written to an external
file. The added value of tryCatch() relative to try() stems from the fact that we can define customized action
upon encounter of an error. The simple example only serves the purpose of exposition. For error handling with
specification of alternative behavior see Section 5.4.7.
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section discusses ways to free the data scientist from this responsibility by setting up a system
task that initiates the scraping automatically and in the background. To this end, we employ
tools that are built right into the architecture of all modern operating systems for scheduling
the execution of programs. We provide an introduction to these tools and show how an R
scraping script can be invoked in user-defined intervals.

We motivate this section with the problem of downloading information from http://www.r-
datacollection.com/materials/workflow/rQuotes.php. Scraping this site is complicated by its
very dynamic nature—the site changes every minute and displays a different R quote. We
set ourselves to the task of downloading a day’s worth of quotes. Clearly, a manual approach
is out of the question for obvious reasons. We approach the problem by first assembling an
R script that allows downloading and storing information from one instance of the site. The
first line loads the stringr package and the second makes sure that we have a folder called
quotes that serves as a container for the downloaded pages. The next three lines are overhead
for the file names that include the date and time of the download. The last line conducts the
download, using R’s built-in download.file() function. We save the downloading routine
under the name getQuotes.R.

R> library(stringr)
R> if (!file.exists("quotes")) dir.create("quotes")
R> time <- str_replace_all(as.character(Sys.time()), ":", "_")
R> fname <- str_c("quotes/rquote ", time, ".html")
R> url <- "http://www.r-datacollection.com/materials/workflow/rQuotes.php"
R> download.file(url = url, destfile = fname)

In the remainder of this section, we describe how to embed the R script with system
utilities for regular execution in predefined intervals. We discuss solutions for Linux, Mac
OS, and Windows.

11.4.1 Scheduling tasks on Mac OS and Linux

For users working on a UNIX-like operating system such as Mac OS or Linux, we propose
using Cron for the creation and administration of time-based tasks. Cron is a preinstalled
general-purpose system utility that allows setting up so-called jobs that are being run period-
ically or at designated times in the background of the system.

For the administration of tasks, Cron uses a simple text-based table structure called a How Cron
workscrontab. A crontab includes information on the specific actions and the times when the

actions should be executed. Notice that Cron will run the jobs regardless of whether the user
is actually logged into the system or not. Although graphical interfaces exist to set up a task,
it is convenient and quick to edit tasks using a text editor. To create a new task, open a system
shell4 and write.

1 crontab -e

4Depending or your system, the shell may be accessed differently. On Mac OS open ‘Terminal,’ on Ubuntu find
Terminal or press CTRL+ALT+T.

http://www.r-datacollection.com/materials/workflow/rQuotes.php
http://www.r-datacollection.com/materials/workflow/rQuotes.php
http://www.r-datacollection.com/materials/workflow/rQuotes.php
http://www.r-datacollection.com/materials/workflow/rQuotes.php
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Table 11.2 The five field Cron time format

Field Description Allowed values

MIN Minute field 0–59
HOUR Hour field 0–23 (0 = midnight)
DOM Day of Month field 1–31
MON Month field 1–12 or literals
DOW Day of Week field 0–6 (0 = Sunday) or literals

Source: Adapted from http://www.thegeekstuff.com/2009/06/15-practical-
crontab-examples/

This command opens the crontab specific to your logged in user in the default editor of
your system. If you prefer a different text editor, prepend the command with the respective
editor’s name (e.g., nano, emacs, gedit). Conditional on the OS you use, the text file you are
being shown can be empty or include some general comments on how this file can be edited.
In any case, since crontab requires that each task has to appear on a separate line, go ahead
and point the prompt to the last line of the file. The general layout of a crontab follows the
pattern “[time] [script],”where the script component refers to a shell command and the time
component describes the temporal pattern by which the script is executed.

Cron has its own time format to express chronological regularity. Essentially, this time
format consists of five fields, separated by white space, that refer to the minute, hour, day,
month, and weekday on which the task is to be executed. Take a look at Table 11.2 to
learn about the allowed values for each of the five time fields. Notice, that any of the five
fields may be left unspecified which in the Cron time format is indicated by the asterisk
symbol *.

From this basic template, we can construct a wide range of temporal patterns for task
execution. To illustrate their capability, take a look at the following three specifications.

15 16 * * * executes the script everyday quarter past four
15 16 * 1 * executes the script everyday quarter past four when the

month is January
15 16 * 1 0 executes the script everyday quarter past four when the

month is January and it’s Sunday

In any of these five fields, one can produce an unconnected or connected series of time
units by using “,” or “-” respectively.

15 10-20 * * * executes the script quarter past every hour from 10 am
to 8 pm

15 10-20 * * 6,0 executes the script quarter past every hour from 10 am
to 8 pm on Saturdays and Sundays

In many circumstances, exact specification of a time is overly rigid for a given task.
Instead, one can use the Cron time schema to express the intention of having a task executed in

http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples/
http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples/
http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples/
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certain time intervals. The preferred way to do this is by using a “*/n”construct that specifies
an interval of length n for the respective time unit. To illustrate, consider the following
examples.

*/15 * * * * executes the script every 15 minutes
15 0 */2 * * executes the script 15 minutes past midnight on every second day

The second piece of information in any Cron job is the shell command that has to be Executing tasks
from the shellexecuted regularly. If you have never worked with the shell before, think of it as a command

line based user-interface for accessing the operating system and installed programs (such as
R). In order to set up a new task for the execution of getQuotes.r every minute, we append
the following line to the crontab:

1 */1 * * * * cd [DIRECTORY] && Rscript getQuotes.r

We first specify the chronological pattern “*/1 * * * *” for every-minute repeated
execution. This is followed by the scripting part, where we first change the directory to the
folder in which getQuotes.r is saved and then use the Rscript-executable on getQuotes.r.
Rscript is a scripting front-end that should be used in cases when an R script is executed via
the shell. Once you have saved the crontab, the task is active and should be executed in the
background.

For the maintainability of Cron-induced R routines, it is helpful to retain an overview over
the outputs that are generated from the script, such as warnings or errors. The UNIX shell
allows to route the output of the R script to a log file by extending the Cron job as follows:

1 */1 * * * * cd [DIRECTORY] && Rscript getQuotes.r >> log.txt 2>&1

11.4.2 Scheduling tasks on Windows platforms

On Windows platforms, the Windows Task Scheduler is the tool for scheduling tasks. To find
the tool click Start > All Programs > Accessories > System Tools > Scheduled Tasks.

To set up a new task, double-click on Create Task. From here, the procedure differs Working with
the Windows
Task Scheduler

according to your version of Windows, but the presented options should be very similar. On
Windows 7, we are presented with a window with five tabs—General, Triggers, Actions,
Conditions, and Settings. Under General we can provide a name for the task. Here we put in
Testing R Batch Mode for a descriptive title.

In the field Triggers we can add several triggers for starting the task—see Figure 11.2.
There are schedule triggers which start the task every day, week, or month and also triggers
that refer to events like the startup of the computer or when it is in idle mode, and many
more. To execute getQuotes.r every minute for 24 hours, we select On a schedule as general
trigger and define that it should be executed only once but repeated every 1 minutes for 1
day. Last but not least, we should make sure that the start date and time of our one-time
scheduled task should be placed somewhere in the future when we will be done specifying
the schedule.
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Figure 11.2 Trigger selection on Windows platform

After the trigger specification we still have to tell the program what to do if the task is
triggered. The Actions tab is the right place to do that—see Figure 11.3. We choose Start a
program for action and use the browse button to select the destination of Rscript.exe, which
should be placed under, for example, C:\ProgramFiles\R\R-3.0.2\bin\x64\. Furthermore,
we add getQuotes.r in the Add arguments field and type in the directory where the script is
placed in the Start in field. If logging is needed we modify the procedure.

Program/script field: replace Rscript.exe by R.exe

Add arguments field: replace getQuotes.r by CMD BATCH –vanilla getQuotes.r
log.txt

Figure 11.3 Action selection on Windows platform
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While CMD BATCH tells R to run in batch mode, –vanilla ensures that no R profiles
or saved workspaces are stored or restored that might interfere with the execution of the
script. log.txt provides the name for the logfile. Now we can confirm our configuration
and click on Task Scheduler Library in the left panel to get a list of all tasks available on
our system.
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Collaboration networks in
the US Senate

The inner workings of legislatures are inherently difficult to investigate. Political scientists
have been interested in collaborations among parliamentarians as explanatory factors in
legislative behavior for decades. Scholars have encountered difficulties, however, in collecting
comprehensive data over time to investigate patterns of cooperation. The advent of large-scale,
machine-readable databases on legislative behavior have opened up promising new research
avenues in this regard. Among these, scholars have considered the possibility of treating bill
cosponsorships as proxies for legislative cooperation in the United States. We follow this lead
and investigate who cooperates with whom in the US Senate.

Every bill that is introduced to the US Senate is tied to one senator as its main sponsor, but
other senators are free to cosponsor a bill in order to support the bill’s content—a common
practice in senatorial procedures. In fact, in many instances, a bill will have numerous
cosponsors. Several authors have recently begun to truly appreciate the network-like structure
in bill cosponsorships that is best analyzed using network-analytic methodology.1 Using the
rich and well accessible data source on bill cosigners provides researchers with an interesting
insight into the black box of collaboration among senators. What is more, bill cosponsorships
are moving targets. New proposals are constantly put on record. Being able to collect these
data automatically provides researchers with a unique opportunity to consider structural
changes in the networks as they are happening.

In this application, we generate the necessary data to replicate some of the analyses that
have been put forward in recent years. For simplicity’s sake, we only assemble data on bill
cosponsorships for the US Senate in the 111th Congress, which was in session from 2009 to

1For recent contributions on the topic, see Bratton and Rouse (2011), Burkett (1997), Cho and Fowler (2010),
Fowler (2006a), Fowler (2006b), and Zhang et al. (2008).

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Table 12.1 Desired data structure for sponsorship matrix

Senator A Senator B Senator C ...

S.1 Cosponsor Sponsor Cosponsor ...
S.2 . . . ...
S.3 . Cosponsor Sponsor ...
S.4 . . Sponsor ...
S.5 . . . ...
S.6 Cosponsor . Cosponsor ...
S.7 Sponsor . . ...
⋮ ⋮ ⋮ ⋮ ⋱

The table displays a mock example of the dataset we wish to generate. The rows list each bill, the
columns list each senator. The cells display whether a senator was the main sponsor of a bill (Sponsor),
has cosponsored a bill (Cosponsor) or did not sign a bill at all (.).

2010. Sections 12.1 and 12.2 provide the technical details on how the underlying data sources
are generated. Again, our focus in this chapter is on data gathering; hence, we only analyze
the data with simple metrics. Section 12.3 gives a brief overview on how the data can be
employed—both descriptively and in a basic network application. Section 12.4 concludes the
chapter.

12.1 Information on the bills

Our first task is to assemble a list of all sponsors and cosponsors on each bill. To keep matters
simple, we will only gather data for the 111th Senate, which ran from 2009 to 2010. As we
are more interested in the process of data gathering than in the actual application, there is
more than enough material in one senatorial term. Should you wish to analyze the data for an
actual application, it is fairly straightforward to adapt the script to encompass more legislative
periods.

Our specific goal in this section is to construct a matrix that holds information on whether
a senator has sponsored, cosponsored, or not participated at all in a given bill. A mock example
of the data structure is presented in Table 12.1. Storing the data in this format provides the
greatest flexibility for subsequent analyses. We could, for example, be interested in analyzing
which senator was better able to collect cosponsors, or we might want to analyze which
Senators were often cosponsors on the same piece of legislation to find collaboration clusters in
the Senate. We can easily rearrange the proposed table using the facilities of R without having
to reassemble all the data from scratch if we tailor the table to a particular application from the
start. Furthermore, this data matrix even allows performing an ideal point estimation (Alemán
et al. 2009; Desposato et al. 2011; Peress 2010) that we will, however, not tackle in this chapter.

Let us have a look at the database. Luckily, the bills of the US Congress are stored in
a database that is relatively accessible at http://thomas.loc.gov.2 The first step in our web

2Rather inadvertently, this case study is an example of rapid changes in the Web and their consequences for web
scraping. The website of the Library of Congress at http://thomas.loc.gov/ will be retired by the end of 2014 and

http://thomas.loc.gov
http://thomas.loc.gov
http://thomas.loc.gov/
http://thomas.loc.gov/


COLLABORATION NETWORKS IN THE US SENATE 345

scraping exercise is an inspection of the way the data are stored. In order to be able to track
the scraping procedure,

1. Call http://thomas.loc.gov/home/thomas.php

2. Go to “Try the Advanced Search”

3. Click on “Browse Bills & Resolutions” right above it

4. Select “111” at the top of the page

5. On the resulting page click on “Senate Bills”

The resulting page holds the main information on the first 100 of 4059 bills proposed dur- A scraping
strategying the 111th Senate. Specifically, we see the title of the proposed bill, its sponsor, the number

of cosponsors, and the latest major action for each item. Now click on Cosponsors of the first
bill S.1. Apart from the previously mentioned elements, we additionally see a list of the bill’s
17 cosponsors. This page holds all the information we are interested in for now which greatly
facilitates our task. Check out the URL of the page—http://thomas.loc.gov/cgi-bin/bdquery/
D?d111:1:./list/bss/d111SN.lst:@@@P. Despite its somewhat peculiar format the numerator
of this piece of legislation, 1, is hidden right in the middle next to the senate term 111. To
be sure, click on the NEXT:COSPONSORS button. Now the URL reads http://thomas.loc
.gov/cgi-bin/bdquery/D?d111:2:./list/bss/d111SN.lst:@@@P:&summ2=m&. Disregarding
the altered ending of the URL, we notice that the middle of the URL now reads 2 for
the second bill in the 111th Senate.

As the attached ending is not a necessary prerequisite to get the information, we are
looking for, but is rather added due to the referral from one site to the next, we can safely
drop it. Choosing a random number, 42, we rewrite the original URL by hand to read
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:42:./list/bss/d111SN.lst:@@@P. Works like
a charm. Now, in line with our rules of good practice in web scraping, we will download
the web pages of all 4059 bills to our local hard drive and try to read it out in the second
step.3 We start our R session by loading some packages which we need for the rest of the
exercise.

R> library(RCurl)
R> library(stringr)
R> library(XML)
R> library(igraph)

The scraping function we set up comprises three simple steps—generating a unique URL Data retrieval

for every bill, downloading the page, and finally writing the page as HTML file to the local

replaced by the new domain http://congress.gov/ (see http://beta.congress.gov/about). At the time of writing both
http://thomas.loc.gov/ and http://beta.congress.gov/ were active. Changing websites frequently take us by surprise
and changes in the page structure or even complete shutdowns are rarely communicated as transparently as in this
case. On the upside, the case study demonstrates how data from abandoned sources can be used for analyses if they
are stored appropriately.

3You can skip this step by downloading the files provided on the book’s website.

http://thomas.loc.gov/home/thomas.php
http://thomas.loc.gov/home/thomas.php
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:1:./list/bss/d111SN.lst:@@@P
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:1:./list/bss/d111SN.lst:@@@P
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:2:./list/bss/d111SN.lst:@@@P:&summ2$=$m&
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:2:./list/bss/d111SN.lst:@@@P:&summ2$=$m&
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:42:./list/bss/d111SN.lst:@@@P
http://thomas.loc.gov/cgi-bin/bdquery/D?d111:42:./list/bss/d111SN.lst:@@@P
http://congress.gov/
http://congress.gov/
http://beta.congress.gov/about
http://beta.congress.gov/about
http://thomas.loc.gov/
http://thomas.loc.gov/
http://beta.congress.gov/
http://beta.congress.gov/


346 AUTOMATED DATA COLLECTION WITH R

folder Bills_111. We have also added a simple progress indicator to monitor the downloading
process.

R> # Iterate over all 4059 pieces of legislation
R> for(i in 1:4059){
R> # Generate the unique URL for each piece of legislation
R> url <- str_c("http://thomas.loc.gov/cgi-bin/bdquery/D?d111:",
R> i, ":./list/bss/d111SN.lst:@@@P")
R> # Download the page
R> bill_result <- getURL(url,
R> useragent = R.version$version.string,
R> httpheader = c(from = "i@datacollection.com"))
R> # Write the page to local hard drive
R> write(bill_result, str_c("Bills_111/Bill_111_S", i, ".html"))
R> # Print progress of download
R> cat(i, "\n")
R> }

When you are finished downloading the data, inspect the source code of the first bill inExtracting
sponsors and

cosponsors
a text editor of your choice. Notice that each senator—both sponsors and cosponsors—is
provided with links which makes the task all the easier for us as we simply have to extract all
the links in this specific format. Note the subtle difference in the link for the sponsor, Harry
Reid,

/cgi-bin/bdquery/?\&amp;Db=d111\&amp;querybd=@FIELD(FLD003+@4
((@1(Sen+Reid++Harry))+00952))

and the—alphabetically speaking—first cosponsor, Mark Begich,

/cgi-bin/bdquery/?\&amp;Db=d111\&amp;querybd=@FIELD(FLD004+@4
((@1(Sen+Begich++Mark))+01898))

The former URL specifies that Harry Reid is in field 3 (FLD003) and Mark Begich in
field 4 (FLD004). So, apparently, the Congress website internally differentiates between the
sponsors and the cosponsors of a bill.

We can make use of this knowledge by writing two simple regular expressions to extract
all the “field 3” links—there cannot be more than one in each site, as there is only one
sponsor for each bill—and all the “field 4”links. To do so, we replace the senators’ names in
the form of Sen+Reid++Harry with a sequence of alphabetic, plus, and period characters—
[[:alpha:]+.]+?.4 Then, we precede all the characters with special meanings in regular
expressions with two backslashes in order to have them interpreted literally.

R> sponsor_regex <- "FLD003\\+@4\\(\\(@1\\([[:alpha:]+.]+"
R> cosponsor_regex <- "FLD004\\+@4\\(\\(@1\\([[:alpha:]+.]+"

4Recall that we don’t need to precede the + and . characters with backslashes, as they loose their special meaning
inside a character class.

http://thomas.loc.gov/cgi-bin/bdquery/D?d111:
mailto:i@datacollection.com
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Now that we have our regular expressions set up, let us go for a test drive. We load the
source code of the first senate bill into R and extract the link for the sponsor, as well as the
links for the cosponsors.

R> html_source <- readLines("Bills_111/Bill_111_1.html")
R> sponsor <- str_extract(html_source, sponsor_regex)
R> (sponsor <- sponsor[!is.na(sponsor)])
[1] "FLD003+@4((@1(Sen+Reid++Harry"
R> cosponsors <- unlist(str_extract_all(html_source, cosponsor_regex))
R> cosponsors[1:3]
[1] "FLD004+@4((@1(Sen+Begich++Mark" "FLD004+@4((@1(Sen+Bingaman++Jeff"
[3] "FLD004+@4((@1(Sen+Boxer++Barbara"
R> length(cosponsors)
[1] 17

No problems here. Before moving on we write a small function that first extracts the Data cleansing

senators’ names in the parentheses, drops the parentheses, replaces the + signs with commas
and spaces, and, finally, takes out the leading Sen for convenience.

R> cleanUp <- function(x){
name <- str_extract(x, "[[:alpha:]+.]+$")
name <- str_replace_all(name, fixed("++"), ", ")
name <- str_replace_all(name, fixed("+"), " ")
name <- str_trim(str_replace(name, "Sen", ""))
return(name)

}

Applying the cleanUp() function to our previous results yields

R> cleanUp(sponsor)
[1] "Reid, Harry"
R> cleanUp(cosponsors)
[1] "Begich, Mark" "Bingaman, Jeff"
[3] "Boxer, Barbara" "Brown, Sherrod"
[5] "Casey, Robert P., Jr." "Clinton, Hillary Rodham"
[7] "Durbin, Richard" "Kennedy, Edward M."
[9] "Kerry, John F." "Klobuchar, Amy"

[11] "Lautenberg, Frank R." "Levin, Carl"
[13] "Lieberman, Joseph I." "McCaskill, Claire"
[15] "Menendez, Robert" "Schumer, Charles E."
[17] "Stabenow, Debbie"

Perfect. Now we want to run this code on our entire corpus. Before doing so, we would Exception and
error handlinglike to add a couple of fail safes in order to ensure that the code actually extracts what we

want. In order to do so, we apply some knowledge on what the results should look like. The
first thing we know is that there can only be one single sponsor for each bill. Accordingly,
we check whether our code returns either no sponsor or more than one sponsor.

The second fail safe is a little more tricky. A bill can have one, many, or no cosponsors
at all. Luckily, each site tells us the number of cosponsors it lists. We will read out this
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information and compare this number to the number of cosponsors we find. Specifically,
we look for the elements COSPONSOR(S) and COSPONSOR(some_number) in the source
code. If neither of these strings are present, we know something might be wrong. We also
know that if the number of cosponsors in these strings does not match our findings, we better
double-check our results. We store these errors in a list for later inspection. We cannot store
the results in the proposed format from the beginning of this section, as we do not have a list
of all senators that have at one point (co-)sponsored a bill. Hence, we input our results into a
list of its own for the time being. The procedure is plotted in Figure 12.1.

After assembling the list of sponsors and errors, we investigate the latter.

R> length(error_collection)
[1] 18

There are 18 errors in the error_collection list—all of them related to a discrepancy
between the number of cosponsors recorded in the source code and the actual number
collected by our code. A manual inspection of these cases reveals that all of them can be
traced back to withdrawals of cosponsorship. We go back to them, load the source code
again, count the number of withdrawals on a bill, and shorten the cosponsors list by the right
amount—withdrawals are always last on the list.

R> for(i in 1:length(error_collection)){
bill_number <- as.numeric(error_collection[[i]][1])
html_source <- readLines(str_c("Bills_111/Bill_111_S", bill_number, ".

html"))

count_withdrawn <- unlist(
str_extract_all(
html_source,
"\\(withdrawn - [[:digit:]]{1,2}/[[:digit:]]{1,2}/[[:digit:]]{4}\\)"
)

)
sponsor_list[[str_c("S.", bill_number)]]$cosponsors <-
sponsor_list[[str_c("S.", bill_number)]]$cosponsors[1:(length(

sponsor_list[[str_c("S.", bill_number)]]$cosponsors) - length(
count_withdrawn))]
}

Now we have a complete list of all the senators that have either sponsored or cosponsored
legislation in the 111th US Senate. We inspect the data by unlisting it, thus inputting it into
a named character vector. Next, we deselect duplicates and print out the—alphabetically
ordered—first five senators.

R> all_senators <- unlist(sponsor_list)
R> all_senators <- unique(all_senators)
R> all_senators <- sort(all_senators)
R> head(all_senators)
[1] "Akaka, Daniel K." "Alexander, Lamar" "Barrasso, John"
[4] "Baucus, Max" "Bayh, Evan" "Begich, Mark"



COLLABORATION NETWORKS IN THE US SENATE 349

1 error_collection <- list()
2 sponsor_list <- list()
3 # Iterate over all 4059 pieces of legislation
4 for(i in 1:4059){
5 # Read the ith result
6 html_source <- readLines(str_c("/Bills_111/Bill_111_S", i, ".html"))
7 # Extract and clean the sponsor
8 sponsor <- unlist(str_extract_all(html_source, sponsor_regex))
9 sponsor <- sponsor[!is.na(sponsor)]

10 sponsor <- cleanUp(sponsor)
11 # Extract and clean the cosponsors
12 cosponsors <- unlist(str_extract_all(html_source, cosponsor_regex))
13 cosponsors <- cleanUp(cosponsors)
14 # Input the results into the sponsor list
15 sponsor_list[[str_c("S.", i)]] <- list(sponsor = sponsor, cosponsors =

cosponsors)
16 # Collect potential points of error / number of cosponsors
17 fail_safe <- str_extract(html_source,
18 "COSPONSORS?\\(([[:digit:]]{1,3}|S)\\)")
19 fail_safe <- fail_safe[!is.na(fail_safe)]
20 # Error - no cosponsor string
21 if(length(fail_safe) == 0){
22 error_collection[[length(error_collection) + 1]] <- c(i, "String -

COSPONSOR - not found")
23 }
24 # Error - found more cosponsors than possible
25 if(fail_safe == "COSPONSOR(S)"){
26 if(length(cosponsors) > 0){
27 error_collection[[length(error_collection) + 1]] <- c(i, "Found

cosponsors where there should be none")
28 }
29 }else{
30 right_number <- str_extract(fail_safe, "[[:digit:]]+")
31 # Error - Found wrong number of cosponsors
32 if(length(cosponsors) != right_number){
33 error_collection[[length(error_collection) + 1]] <- c(i, "Did not

find the right number of cosponsors")
34 }
35 }
36 # Error - Found no sponsors
37 if(is.na(sponsor)){
38 error_collection[[length(error_collection) + 1]] <- c(i, "No sponsors

")
39 }
40 # Error - Found too many sponsors
41 if(length(sponsor) > 1){
42 error_collection[[length(error_collection) + 1]] <- c(i, "More than

one sponsor")
43 }
44 }

Figure 12.1 R procedure to collect list of bill sponsors
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In the following step, we set up the matrix for the data as proposed in the beginning ofCreating and
filling the

matrix
the section. First, we create an empty matrix.

R> sponsor_matrix <- matrix(NA, nrow = 4059, ncol = length(all_senators))
R> colnames(sponsor_matrix) <- all_senators
R> rownames(sponsor_matrix) <- paste("S.", seq(1, 4059), sep ="")

Finally, we iterate over our sponsor list to fill the correct cells.

R> for(i in 1:length(sponsor_list)){
sponsor_matrix[i, which(all_senators == sponsor_list[[i]]$sponsor)] <-

"Sponsor"
if(length(sponsor_list[[i]]$cosponsors) > 0){

for(j in 1:length(sponsor_list[[i]]$cosponsors)){
sponsor_matrix[i, which(all_senators == sponsor_list[[i]]

$cosponsors[j])] <- "Cosponsor"
}

}
}
R> sponsor_matrix[30:35,31:34]

Cornyn, John Crapo, Mike DeMint, Jim Dodd, Christopher J.
S.30 NA NA NA NA
S.31 NA NA NA NA
S.32 NA NA NA NA
S.33 NA NA NA NA
S.34 "Cosponsor" "Cosponsor" "Sponsor" NA
S.35 "Cosponsor" NA NA NA

12.2 Information on the senators

In this section, we want to collect some simple background information on the senators to use
in our analysis. Specifically, we are interested in the party affiliation and the home state of the
senators. We collect these data from the biographical archives of the Congress.5 Let us check
out the source code of the website http://bioguide.congress.gov/biosearch/biosearch.asp. It
mainly consists of an HTML form that can be accessed using the postForm() command.
To request an answer from the form, we have to specify values for the different options the
form has. There are several types of input an HTML form can take—two out of which are
used in this case (see Section 9.1.5). There are three free inputs and three selections we can
make that come with a list of prespecified options. Let us take a look at the options first by
collecting them from the source code of the website. Again, in line with our rules of good
practice, we start by storing the source code on our local hard drive before accessing it.

R> url <- "http://bioguide.congress.gov/biosearch/biosearch.asp"
R> form_page <- getURL(url)
R> write(form_page, "form_page.html")

5Writing a script for a little over 100 senators is in some senses a bit excessive, as it probably takes longer to
write a script to read out the website than to hand-code the data. However, doing so, we keep our analysis replicable
and make it easily extensible.

http://bioguide.congress.gov/biosearch/biosearch.asp
http://bioguide.congress.gov/biosearch/biosearch.asp
http://bioguide.congress.gov/biosearch/biosearch.asp
http://bioguide.congress.gov/biosearch/biosearch.asp
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Accessing the form with regular expressions yields

R> form_page <- str_c(readLines("form_page.html"), collapse = "")

R> destination <- str_extract(form_page, "<form.+?>")

R> cat(destination)

<form method="POST" action="http://bioguide.congress.gov/biosearch/

biosearch1.asp">

R> form <- str_extract(form_page, "<form.+?</form>")

R> cat(str_c(unlist(str_extract_all(form, "<INPUT.+?>")), collapse = "\n"))
<INPUT SIZE=30 NAME="lastname" VALUE="">

<INPUT SIZE=30 NAME="firstname" VALUE="">

<INPUT SIZE=4 NAME="congress" VALUE="">

<INPUT TYPE=submit VALUE="Search">

<INPUT TYPE=reset VALUE="Clear">

R> cat(str_c(unlist(str_extract_all(form, "<SELECT.+?>")), collapse = "\n"))
<SELECT NAME="position" SIZE=1>

<SELECT NAME="state" SIZE=1>

<SELECT NAME="party" SIZE=1>

We see the options firstname, lastname, and congress as the free fields and posi- Posting a form

tion, state, and party as the fields with given options. We are interested in a list of all the
senators in the 111th Senate, hence we specify these two values and leave the other fields open.
The URL destination is specified in the form tag. For this request, we use the RCurl package
which provides the useful postForm(). Note that the form expects application/x-www-
form-urlencoded encoded content, so we add the argument style = 'POST'.

R> senator_site <- postForm(uri =
R> "http://bioguide.congress.gov/biosearch/biosearch1.asp",
R> lastname = "",
R> firstname = "",
R> position = "Senator",
R> state = "",
R> party = "",
R> congress = "111",
R> style = 'POST'
R> )
R> write(senator_site, "senators.html")

The response to this call holds the information we are looking for. We collect the infor- Collecting
senator datamation using the readHTMLTable() function.

R> senator_site <- readLines("senators.html", encoding = "UTF-8")
R> senator_site <- str_c(senator_site, collapse = "")
R> senators <- readHTMLTable(senator_site, encoding="UTF-8")[[2]]
R> senators <- as.data.frame(sapply(senators, as.character),
stringsAsFactors = F)
R> names(senators)[names(senators)=="Birth-Death"] <- "BiDe"
R> head(senators, 3)

Member Name BiDe Position Party State Congress(Year)
1 AKAKA, Daniel Kahikina 1924- Senator Democrat HI 111(2009-2010)

http://bioguide.congress.gov/biosearch/biosearch1.asp
http://bioguide.congress.gov/biosearch/biosearch1.asp
http://bioguide.congress.gov/biosearch/biosearch1.asp
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2 ALEXANDER, Lamar 1940- Senator Republican TN 111(2009-2010)
3 BARRASSO, John A. 1952- Senator Republican WY 111(2009-2010)

Here is where things become a little messy. We would like to match the senators along
with their background information that we have collected in this section and stored in the
object senators to the data were collected in the previous section. Recall that we created an
object all_senators where we stored the names of all the senators that have at one point
either sponsored or cosponsored a piece of legislation.

R> senators$match_names <- senators[,1]
R> senators$match_names <- tolower(senators$match_names)
R> senators$match_names <- str_extract(senators$match_names, "[[:alpha:]]+")
R> all_senators_dat <- data.frame(all_senators)
R> all_senators_dat$match_names <- str_extract(all_senators_dat$all_senators,
"[[:alpha:]]+")
R> all_senators_dat$match_names <- tolower(all_senators_dat$match_names)
R> senators <- merge(all_senators_dat, senators, by = "match_names")
R> senators[,2] <- as.character(senators[,2])
R> senators[,3] <- as.character(senators[,3])
R> senators[,2] <- tolower(senators[,2])
R> senators[,3] <- tolower(senators[,3])

We match by last names but unfortunately, there are no less than eight senators in the
111th Senate of identical last names. We treat these duplicates by matching them by first
name.

R> allDup <- function(x){
duplicated(x) | duplicated(x, fromLast = TRUE)

}

R> dup_senators <- senators[allDup(senators[,1]),]
R> senators <- senators[rownames(senators) %in% rownames(dup_senators) == F,]
R> dup_senators[str_detect(dup_senators[,3], "\\("), 3] <- str_replace_all
(dup_senators[str_detect(dup_senators[,3], "\\("), 3], ", .+?\\(", ", ")
R> dup_senators[str_detect(dup_senators[,3], "\\("), 3] <- str_replace_all(
dup_senators[str_detect(dup_senators[,3], "$"), 3], "$", "")

R> for(i in nrow(dup_senators):1){
if(str_detect(dup_senators[i, 2], str_extract(dup_senators[i, 3],

"[ˆ,][[:alpha:] .]+?$")) == F){
dup_senators <- dup_senators[-i,]

}
}

R> senators <- rbind(senators, dup_senators)
R> senators$rownames <- as.numeric(rownames(senators))
R> senators <- senators[order(senators$rownames),]
R> dim(senators)
[1] 109 9
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Finally, we replace the column names in the sponsor matrix with these shortened
identifiers.

R> colnames(sponsor_matrix) <- senators$all_senators

Now that we have collected information on the bills and the Senators, we will briefly
introduce how the data could be applied in a network analysis. If you simply care about data
collection, but not about network analysis, you can skip the following section without much
loss.

12.3 Analyzing the network structure

In order to analyze our data using network analysis techniques, we need to rearrange it to
conform to a format that the network packages understand. Two common ways to arrange
the data are an edge list or an adjacency list. In the former variant, we generate a two-column
matrix where each edge between two nodes or vertices is represented by naming the two
vertices an edge connects. In an adjacency list, on the other hand, we store the network
data in a nodes-by-nodes matrix, setting a cell to the number of connections between two
nodes. While an adjacency list would be computationally more efficient since our data have
multiple edges, that is, any two Senators might have been cosponsors on numerous bills—we,
nevertheless, create an edge list for coding convenience.

In the network analysis, we assume that there is an undirected relationship between Identifying
dyadic
relationships

each of the signatories of a particular bill, regardless of whether a senator is a sponsor or a
cosponsor. For example, assume there is a bill with one sponsor and three cosponsors. What
we would like to have is each possible dyadic relationship between these four actors (see
Table 12.2).

There is a simple function available in R—combn()—which we will use to find all of
these dyadic relationships. We create an empty edge list matrix with two columns and iterate
over the matrix of sponsors and cosponsors from Section 12.1. In each iteration we take all

Table 12.2 Dyadic relationships between
four hypothetical actors

Node 1 Node 2

Senator A Senator B
Senator A Senator C
Senator A Senator D
Senator B Senator C
Senator B Senator D
Senator C Senator D

The table displays an example of the resulting
graph edge list. Specifically, it displays all six pos-
sible dyadic combinations with four input senators.
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the non-empty elements from a row, find all possible combinations, and attach the resulting
two-column matrix to our final matrix.

R> edgelist_sponsors <- matrix(NA, nrow = 0, ncol = 2)
R> for(i in 1:nrow(sponsor_matrix)){
R> if(length(which(!is.na(sponsor_matrix[i,]))) > 1){
R> edgelist_sponsors <- rbind(
R> edgelist_sponsors,
R> t(combn(colnames(sponsor_matrix)[which(!is.na
(sponsor_matrix[i,]))], 2))
R> )
R> }
R> }
R> dim(edgelist_sponsors)

Performing this operation yields a matrix with a little over 180,000 edges, that is, there are
approximately 180,000 unique binary connections between the 109 senators in our dataset.
Now we would like to convert these data into the format used in the igraph package which
offers a range of tools and some decent plotting facilities.6 Specifying that we are dealing
with an undirected network, the command is

R> sponsor_network <- graph.edgelist(edgelist_sponsors,directed = F)

12.3.1 Descriptive statistics

Before moving on to some real network analysis, let us inspect the data we have gathered.
Let us first look at who sponsors/cosponsors most/least. To do so, we simply create a two-row
matrix where we collect the individual counts of being a sponsor and cosponsor for each
senator.

R> result <- matrix(
NA,
ncol = ncol(sponsor_matrix),
nrow = 2,
dimnames = list(

c("Sponsor", "Cosponsor"),
colnames(sponsor_matrix)

)
)
R> for(i in 1:ncol(sponsor_matrix)){

result[1, i] <- sum(sponsor_matrix[, i] == "Cosponsor", na.rm = T)
result[2, i] <- sum(sponsor_matrix[, i] == "Sponsor", na.rm = T)

}
R> result <- t(result)

Table 12.3 displays a subset of the results of this analysis. We see that Democrats have
been the most active sponsors in the 111th Senate, although to be fair they have a slightlyHeavy sponsors

6There are several good packages in R to perform network analysis. If you are interested, check out the network,
statnet, and sna packages.
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Table 12.3 The five top and bottom sponsors

Senator Sponsor Cosponsor

Brown, Sherrod (D-OH) 377 107
Gillibrand, Kirsten E. (D-NY) 357 74
Casey, Robert P., Jr. (D-PA) 355 99
Schumer, Charles E. (D-NY) 333 133
Kerry, John F. (D-MA) 321 96

Coons, Christopher A. (D-DE) 11 0
Goodwin, Carte Patrick (D-WV) 5 1
Salazar, Ken (D-CO) 4 6
Kirk, Mark Steven (R-IL) 2 1
Manchin, Joe, III (D-WV) 1 0

The tables displays the five senators which have sponsored most and least legislation.

better chance of being at the top of the table as our table holds 65 Democratic Senators
compared to 43 Republicans and 2 independents.7

In the next descriptive statistic we care to find out which senators have the strongest
binary connection with each other. The simplest way to do this is to convert our data to an
adjacency matrix where the greatest dyadic relationships are summed in a vertex by vertex
table. We get this table by making use of the export utility in the igraph package.

R> adj_sponsor <- get.adjacency(sponsor_network)

Naturally, the resulting matrix is symmetric, as we have no directed relationships.
Therefore, we discard the lower triangle of the matrix before calculating the greatest binary
relationships.

R> adj_sponsor[lower.tri(adj_sponsor)] <- 0

Finally, we extract the dyads with the strongest binary relationships. The results are
displayed in Table 12.4.

R> s10 <- min(sort(as.matrix(adj_sponsor), decreasing = T)[1:10])
R> max_indices <- which(as.matrix(adj_sponsor) >= s10, arr.ind = T)
R> export_names <- matrix(NA, ncol = 2, nrow = 10)
R> for(i in 1:nrow(max_indices)){
R> export_names[i, 1] <- rownames(adj_sponsor)[max_indices[i,1]]
R> export_names[i, 2] <- colnames(adj_sponsor)[max_indices[i,2]]
R> }

It is fairly obvious that the most active sponsors and co-sponsors would rank high in this
table as they have a greater probability to have a strong connection to any given other senator.

7To complicate matters, these figures overstate the simple probabilities of the Democratic Senators to be at the
top of the table, as a number of Democrats have left the Senate during the 111th Congress. Notably, both Robert
Byrd and Ted Kennedy died in office and Joe Biden, Hillary Clinton, and Ken Salazar resigned to work in the
administration.
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Table 12.4 The senators with the strongest binary connection

Senator 1 Senator 2

1 Brown, Sherrod (D-OH) Casey, Robert P., Jr. (D-PA)
2 Brown, Sherrod (D-OH) Durbin, Richard (D-IL)
3 Lautenberg, Frank R. (D-NJ) Menendez, Robert (D-NJ)
4 Brown, Sherrod (D-OH) Schumer, Charles E. (D-NY)
5 Durbin, Richard (D-IL) Schumer, Charles E. (D-NY)
6 Kerry, John F. (D-MA) Schumer, Charles E. (D-NY)
7 Menendez, Robert (D-NJ) Schumer, Charles E. (D-NY)
8 Brown, Sherrod (D-OH) Stabenow, Debbie (D-MI)
9 Casey, Robert P., Jr. (D-PA) Specter, Arlen (D-PA)

10 Schumer, Charles E. (D-NY) Gillibrand, Kirsten E. (D-NY)

12.3.2 Network analysis

Let us begin the analysis by visually inspecting the resulting network. As a first step we
would like to simplify the network by turning multiple edges into unique edges and keeping
multiples as weights. This is accomplished using the simplify() function from the igraph
package.

R> E(sponsor_network)$weight <- 1
R> sponsor_network_weighted <- simplify(sponsor_network)
R> sponsor_network_weighted
R> head(E(sponsor_network_weighted)$weight)

After applying this simplification, our network still has more than 5000 unique edges—Plotting the
network much more than can be visually inspected. Hence, for the purpose of plotting we only display

those edges that conform to a cutoff point that we define as follows: Only display those edges
that have an edge weight greater than the mean edge weight plus one standard deviation. This
operation yields the graph in Figure 12.2.

R> plot_sponsor <- sponsor_network_weighted
R> plot_sponsor <- delete.edges(plot_sponsor, which(E(plot_sponsor)$weight <

(mean(E(plot_sponsor)$weight) + sd(E(plot_sponsor)$weight))))
R> plot(plot_sponsor, edge.color = "lightgray", vertex.size = 0, ver-
tex.frame.color = NA, vertex.color = "white", vertex.label.color = "black")

We can clearly distinguish the two major parties in this graph as dense blocks. Interestingly,
there a numerous senators which are completely disconnected to the graph after applying the
thinning operation. If we go into a little more detail, there are a number of remarkable
findings which confirm the intuition that cosponsorships are indeed a viable proxy for intra-
parliamentary collaboration. Consider Olympia Snowe from Maine at the center of the graph.
While still in office she was widely regarded as one of the most moderate Republicans in the
Senate, which is nicely reflected in her being one of the only bridging nodes in the graph.
In fact, this finding is even more remarkable if one considers that she has numerous strong
connections to the Democratic party while her only strong connection to the Republican party
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Figure 12.2 Cosponsorship network of senators

is Senator Richard Burr from North Carolina. Time and again, she was considered one of
the likely candidates for a party switch which finds a clear visual expression in our analysis.
By a similar token, consider Mary Landrieu from Louisiana. She is frequently labeled as one
of the most conservative Democrats in the Democratic party and indeed she also takes up a
central location in our graph.

Table 12.5 The five most central actors

Senator Betweenness

Goodwin, Carte Patrick (D-WV) 2217
Salazar, Ken (D-CO) 2058
Clinton, Hillary Rodham (D-NY) 1062
Kirk, Paul Grattan, Jr. (D-MA) 618
Coons, Christopher A. (D-DE) 245

The tables displays the five most central senators, based on their betweenness scores.
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Consider now a true network metric—the betweenness centrality. This measure describesBetweenness
centrality how central any given node is in the overall network, which is typically taken as an indicator

of influence in a network. It is defined as the shortest path from all nodes to all other passing
through a node. The higher the score, the more central the actor’s position in the network.
Table 12.5 provides an overview of the five most central actors, ranked by betweenness. We
find that among the five most central actors there are no less than two who went on to serve
as secretaries in the Obama Administration.

12.4 Conclusion

Scholars of parliamentary politics have recently begun employing large-scale data sources in
order to come to terms with long-standing research questions. Among the issues that have
come under scrutiny are patterns of intra-parliamentary collaboration. Using cosponsorships
as proxies for cooperation, a number of scholars have investigated these manifested networks.
This chapter has demonstrated how to assemble the necessary data to perform analyses of
the like that have been proposed in the literature. We have shown that the data informing
these analyses are vast. We were able to collect well over 100,000 unique dyadic relations in
a single senatorial term. In terms of substance, we have not delved deeply into the data but,
using very simple indicators, we were able to show that the data exhibit strong face validity.
First, moderate members of either party have been shown to take up plausible center points in
the network. Second, senators who are widely perceived as influential members of the body
could indeed be shown to take up more central locations in the network.

As in many of the examples throughout this volume there are clear advantages of auto-
matically collecting the data as proposed here. We have only assembled a single senatorial
term, but the resulting dataset is immense. Never before have datasets of such size been in
the reach of single researchers interested in a particular topic. What is more, not only is the
data vast, it is also freely available to anyone who brings the right techniques to the table.
It can quickly be updated so that results are informed by current events. And finally, using
automatic data assembly one avoids the risk of coding errors in the data which are to be
expected when hand-coding a dataset of this size. We encourage you to assemble the data
yourselves, toy around with it and investigate the ad hoc claims in this exploratory chapter to
present some new insights on patterns of parliamentary collaboration.
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Parsing information from
semistructured documents

We have learned how to handle and extract information from well-defined data structures
like XML or JSON. There are standardized methods for translating these formats into R
data structures. Content on the Web is highly heterogeneous, however. We are occasionally
confronted with data which are structured but in a format for which no parser exists.

In this chapter, we demonstrate how to construct a parser that is able to transform pure
character data into R data structures. As an example we identified climate data that are
offered by the Natural Resources Conservation Service at the United States Department of
Agriculture.1 We focus on a set of text files that can be downloaded from an FTP server.2

While the download procedure is simple, the files cannot be put into an R data structure
directly. An excerpt from one of these files is shown in Figure 13.1. The displayed data are
structured in a way which is human-readable but not (yet) understandable by a computer
program. The main goal is to describe the structure in a way that a computer can handle them.

Over the course of the case study we make use of RCurl to list files on and retrieve them
from FTP servers and draw on R’s text manipulation capabilities to build a parser for the data
files. Regular expressions are a crucial tool to solve this task.

1The example is inspired by a short code snippet in the RCurl manual which demonstrates how do download
data from FTP servers (see http://cran.at.r-project.org/web/packages/RCurl/RCurl.pdf). The question is how to
post-process semistructured data of this sort with R.

2The National Water and Climate Center also provides a SOAP-based web service (see http://www.wcc.nrcs.
usda.gov/web_service/awdb_web_service_landing.htm). We ignore this tool for a moment and concentrate on the
raw text files to demonstrate how to extract information from semistructured contexts.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

http://cran.at.r-project.org/web/packages/RCurl/RCurl.pdf
http://cran.at.r-project.org/web/packages/RCurl/RCurl.pdf
http://www.wcc.nrcs.usda.gov/web_service/awdb_web_service_landing.htm
http://www.wcc.nrcs.usda.gov/web_service/awdb_web_service_landing.htm
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13.1 Downloading data from the FTP server

First, we load RCurl and stringr. As we have learned, RCurl provides functionality to access
data from FTP servers (see Section 9.1.2) and stringr offers consistent functions for string
processing with R.

R> library(RCurl)
R> library(stringr)

A folder called Data is created to store the retrieved data files. The data we are looking
for are stored on an FTP server and accessible at a single url which we store in ftp. Note that
this is only a rather tiny subdirectory—the server provides tons of additional climate data.

R> dir.create("Data")
R> ftp <- "ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/
temperature/history/california/"

The RCurl function getURL()with option dirlistonly set to TRUE asks the FTP server
to return a list of files instead of downloading a file.

R> filelist <- getURL(ftp, dirlistonly = TRUE)

This is the returned list of files:

R> str_sub(filelist, 1, 119)
[1] "19l03s_tavg.txt\r\n19l03s_tmax.txt\r\n19l03s_tmin.txt\r\n19l05s_
tavg.txt\r\n19l05s_tmax.txt\r\n19l05s_tmin.txt\r\n19l06s_tavg.txt\r\n"

In order to identify the file names, we split the text by carriage returns (\r) and new line
characters (\n) and keep only those vector items that are not empty.

R> filelist <- unlist(str_split(filelist, "\r\n"))
R> filelist <- filelist[!filelist == ""]
R> filelist[1:3]
[1] "19l03s_tavg.txt" "19l03s_tmax.txt" "19l03s_tmin.txt"

A comparison with the files at the FTP interface reveals that we have succeeded in
identifying the file names. As we are not interested in minimum or maximum temperatures
for now, we use str_detect() to only keep files containing tavg in their file name.

R> filesavg <- str_detect(filelist, "tavg")
R> filesavg <- filelist[filesavg]
R> filesavg[1:3]
[1] "19l03s_tavg.txt" "19l05s_tavg.txt" "19l06s_tavg.txt"

To download the files we have to construct the full URLs that point to their location on
the server. We concatenate the base URL and the created vector of file names and retrieve a
vector of full URLs.

R> urlsavg <- str_c(ftp, filesavg)
R> length(urlsavg)
[1] 32
R> urlsavg[1]

ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/
ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/
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[1] "ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/
history/california/19l03s_tavg.txt"

Having built the URLs for the 32 files, we can now loop over each URL and save the
text files to our local folder. We introduce a check if the file has previously been downloaded
using the file.exists() function and stop for 1 second after each server request. The files
themselves are downloaded with download.file() and stored in the Data folder.

R> for (i in seq_along(urlsavg)) {
fname <- str_c("Data/", filesavg[i])
if (!file.exists(fname)) {

download.file(urlsavg[i], fname)
Sys.sleep(1)

}
}

A brief inspection of the local folder reveals that we succeeded in downloading all 32 files.

R> length(list.files("Data"))
[1] 32
R> list.files("Data")[1:3]
[1] "19l03s_tavg.txt" "19l05s_tavg.txt" "19l06s_tavg.txt"

13.2 Parsing semistructured text data

Now that we have downloaded all the files we want, we can have a look at their content. Let
us reconsider Figure 13.1 which provides an example of the content of the files. Because they
are quite long—more than 1,000 lines, we only present a small sample.

Each file provides daily temperature data for one station in California ranging from 1987 A look at the
raw dataup to 2013. We see from the sample that for each year there is a separate section ending with --

--------. The first line tells us something about the source of the data (/cdbs/ca/snot06),
followed by the year expressed as two digits (88) and the type of data that is presented (Aver-
age Air Temperature). Next is a line identifying the station at which the temperatures
were measured (Station : CA19L03S, HAGAN'S MEADOW), followed by a line express-
ing the unit in which the measurements are stored (Unit = degrees C).

After the header sections comes the actual data presented in a table, where columns Why base R
functions failindicate months and rows refer to days. If days do not exist within a month—like November

31—we find three dashes in the cell: ----. Beneath the daily temperature we also find a
section with monthly data that provides mean, maximum, and minimum temperatures for
each month. If the temperature data tables would be the only information provided and
the only information we were interested in, our task would be easy because R can handle
tables written in fixed-width format: read.fwf() reads such data and transforms them
automatically into data frames. The problem is that we do not want to loose the information
from the header section because it tells us to which year and which station the temperatures
belong to.

When we proceed, it is important to think about which information should be extracted
and what the data should look like at the end. In the end a long table with daily temperatures
and variables for the day, month, and year when the temperatures were measured as well as

ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/19l03s_tavg.txt
ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/19l03s_tavg.txt
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1 /cdbs/ca/snot06 88 Average Air Temperature

3 Station : CA19L03S, HAGAN'S MEADOW
4 ------- Unit = degrees C

6 day oct nov dec jan feb mar apr may [...]
7 --- --- --- --- --- --- --- --- --- [...]
8 1 10 3 -0 -14 -9 -0 -1 -4 [...]
9 2 9 2 0 -10 -10 -2 -1 -5 [...]

10 3 10 -1 3 -3 -10 -1 3 1 [...]

12 [...]

14 31 2 --- -12 -4 --- -3 --- -0 [...]

16 mean 6 -0 -5 -3 -2 -0 2 4 [...]
17 max 11 6 5 3 2 6 7 11 [...]
18 min -3 -6 -15 -14 -10 -12 -3 -5 [...]
19 ----------
20 /cdbs/ca/snot06 89 Average Air Temperature

22 Station : CA19L03S, HAGAN'S MEADOW
23 ------- Unit = degrees C

25 day oct nov dec jan feb mar apr may [...]

27 [...]

Figure 13.1 Excerpt from a text file on temperature data from Californian weather stations,
accessible at ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/

the station’s id and its name should do. The resulting data structure should look like the one
depicted in Table 13.1.

Because information is separated into sections, we should first split the text to turn themImport data

into separate vectors. To do this, we first read in all the text files via readLines() and input
the resulting lines into a vector.

R> txt <- character()
R> for (i in 1:length(filesavg)) {

txt <- c(txt, readLines(str_c("Data/", filesavg[i])))
}

In a next step, we collapse the whole vector into one single line, where the newline
character (\n) marks the end of the original lines. We split that single line at each occurrence
of ----------\n, marking the end of a section.

R> txt <- str_c(txt, collapse = "\n")
R> txtparts <- unlist(str_split(txt, "----------\n"))

ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/
ftp://ftp.wcc.nrcs.usda.gov/data/climate/table/temperature/history/california/
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Table 13.1 Desired data structure after parsing

day month year id name

1 1 1982 XYZ001784 Deepwood
2 1 1982 XYZ001784 Deepwood
... ... ... ... ...
31 12 1984 XYZ001786 Highwood
1 1 1985 XYZ001786 Highwood
… … … … …
3 3 2003 XYZ001800 Northwood
4 3 2003 XYZ001800 Northwood

The resulting vector contains one section per line.

R> str_sub(txtparts[28:30], 1, 134)
[1] "\n***This data is provisional and subject to change.\n/cdbs/ca/snot06
84 Average Air Temperature\n\nStation : CA19L05S, BLUE LAKES\n---–"
[2] "/cdbs/ca/snot06 85 Average Air Temperature\n\nStation : CA19L05S,
BLUE LAKES\n------- Unit = degrees C\n\nday oct nov dec jan "
[3] "/cdbs/ca/snot06 86 Average Air Temperature\n\nStation : CA19L05S,
BLUE LAKES\n------- Unit = degrees C\n\nday oct nov dec jan "

In a text editor, this would look as follows:

R> cat(str_sub(txtparts[28], 1, 604))

***This data is provisional and subject to change.
/cdbs/ca/snot06 84 Average Air Temperature

Station : CA19L05S, BLUE LAKES
------- Unit = degrees C

day oct nov dec jan feb mar apr may jun jul aug sep
--- --- --- --- --- --- --- --- --- --- --- --- ---

1 1 2 -3 -4 -1 -2 -8 -1 12 12 8
2 3 1 -2 -6 -4 0 -6 -2 7 14 12 9
3 3 2 -3 -3 -5 -2 -4 0 6 16 11 11
4 5 5 -6 -1 -4 -4 -1 3 6 17 11 12
5 8 5 -11 -0 -4 -5 -0 1 2 17 12 13

Now we need to do some cleansing to get rid of the statement saying that the data are
provisional and delete all lines of the vector that are empty.

R> txtparts <- str_replace(txtparts,"\n\\*\\*\\*This data is
provisional and subject to change.", "")
R> txtparts <- str_replace(txtparts,"ˆ\n", "")
R> txtparts <- txtparts[txtparts!=""]

Having inserted each section into a separate line, we can now build functions for extracting Extracting
informationinformation that can be applied to each line, as each line contains the same kind of information
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structured in the same way. We start by extracting the year in which the temperature was
measured. To do this, we build a regular expression that looks for a character sequence that
starts with two digits, followed by two white spaces, followed by Average Air Temperature:
"[[:digit:]]{2} Average Air Temperature". We then extract the digits from that
substring and append the two digits in a third step to a four digit year.

R> year <- str_extract(txtparts, "[[:digit:]]{2} Average Air Temperature")
R> year[1:4]
[1] "87 Average Air Temperature" "88 Average Air Temperature"
[3] "89 Average Air Temperature" "90 Average Air Temperature"
R> year <- str_extract(year, "[[:digit:]]{2}")
R> year <- ifelse(year < 20, str_c(20, year), str_c(19, year))
R> year <- as.numeric(year)
R> year[5:15]
[1] 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

We also gather the stations’ names as well as the identification. For this we first extract
the line where the station information is saved.

R> station <- str_extract(txtparts, "Station : .+?\n")
R> station[1:2]
[1] "Station : CA19L03S, HAGAN'S MEADOW\n"
[2] "Station : CA19L03S, HAGAN'S MEADOW\n"

We delete those parts that are of no interest to us—Station : and \n…

R> station <- str_replace_all(station, "(Station : )|(\n)", "")
R> station[1:2]
[1] "CA19L03S, HAGAN'S MEADOW" "CA19L03S, HAGAN'S MEADOW"

…and split the remaining text into one part that captures the id and one that contains the
name of the station.

R> station <- str_split(station, ", ")
R> station[1]
[[1]]
[1] "CA19L03S" "HAGAN'S MEADOW"

The splitting of the text results in a list where each list item contains two strings. The first
string of each list item is the id while the second captures the name. To extract the first and
second string from each list item, we apply the [ operator to each item.

R> id <- sapply(station, "[", 1)
R> name <- sapply(station, "[", 2)
R> id[1:3]
[1] "CA19L03S" "CA19L03S" "CA19L03S"

R> name[1:3]
[1] "HAGAN'S MEADOW" "HAGAN'S MEADOW" "HAGAN'S MEADOW"

Now we can turn our attention to extracting the daily temperatures. The temperatures formExtracting
temperatures a table in fixed-width format that can be read and transformed by read.fwf(). In the fixed

width format each entry of a column has the same width of characters and lines are separated
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by newline characters or carriage returns or a combination of both. What we have to do is to
extract that part of each section that forms the fixed width table and apply read.fwf() to it.

Our first task is to extract the part that contains the temperature table. To do so, we use a
regular expression that extracts day and everything after.

R> temperatures <- str_extract(txtparts, "day.*")

Further below, we will write the next steps into a function that we can apply to each of the
temperature tables, but for now we go through the necessary steps using only one temperature
table to develop all the intermediate steps.

As read.fwf() expects a filename as input, we first have to write our temperature table
into a temporary file using the tempfile() function.

R> tf <- tempfile()
R> writeLines(temperatures[5], tf)

We can then use read.fwf() to read the content back in. The width option tells the
function the column width in characters.

R> temptable <- read.fwf(tf, width=c(3, 7, rep(6, 11)), stringsAsFactors
= F)
R> temptable[c(1:5,32:38), 1:10]

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 day oct nov dec jan feb mar apr may jun
2 --- --- --- --- --- --- --- --- --- ---
3 1 10 1 -3 -6 -2 0 2 2 7
4 2 9 -4 -7 -6 1 -3 -0 -4 6
5 3 8 -5 -5 -5 1 -3 -1 -2 6
32 30 5 -2 -13 -4 --- -2 3 7 7
33 31 5 --- -9 -3 --- 0 --- 7 ---
34 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
35 mea n 6 -1 -7 -4 0 -5 -1 2 6
36 max 10 7 5 1 3 1 6 8 7
37 min -0 -10 -22 -9 -2 -10 -6 -4 6
38 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>

There are several lines in the data that do not contain the data we need. Therefore, we
only keep lines 3–33 and also discard the first column.

R> temptable <- temptable[3:33, -1]

In the next step, we transform the table into a vector. Usingas.numeric() and unlist()
all numbers will be transferred to type numeric, while all cells containing only white spaces
or --- are set to NA.

R> temptable <- as.numeric(unlist(temptable))

Having discarded the table structure and kept only the temperatures, we now have to Reconstructing
tablesreconstruct the days and months belonging to the temperatures. Fortunately, unlist()

always decomposes data frames in the same way. It starts with all rows of the first column and
appends the values of the following columns one by one. As we know that in the temperature
tables rows referred to days and columns to months, we can simply repeat the day sequence
1–31 twelve times to get the days right. Similarly, we have to repeat each month 31 times.
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Note that the order of the months differs from the usual 1–12 because the tables start with
October.

R> day <- rep(1:31, 12)
R> month <- rep(c(10:12, 1:9), each = 31)

Now we combine the information on the year of measurement and the weather station
with the temperatures and get the data for 1 year.

R> temptable <- data.frame(avgtemp = temptable, day = day, month =
month, year = year[5], name = name[5], id = id[5])

R> head(temptable, 3)
avgtemp day month year name id

1 10 1 10 1991 HAGAN'S MEADOW CA19L03S
2 9 2 10 1991 HAGAN'S MEADOW CA19L03S
3 8 3 10 1991 HAGAN'S MEADOW CA19L03S

To get all the data, we have to repeat the procedure for all files. For convenience we haveConstructing a
convenient

parser function
constructed a parsing function that takes a file name as argument and returns a ready-to-use
data frame. The code is shown in Figure 13.2. Applying the function yields:

R> tempData1 <- parseTemp(str_c("Data/", filesavg[1]))

R> dim(tempData1)
[1] 9551 6
R> tempData1[500:502, ]

avgtemp day month year id name
774 6 29 10 1989 CA19L03S HAGAN'S MEADOW
775 6 30 10 1989 CA19L03S HAGAN'S MEADOW
776 4 31 10 1989 CA19L03S HAGAN'S MEADOW

This looks like a successful parsing result. Furthermore, to conveniently parse all filesParsing all files

at once, we can create a wrapper function that takes a vector of file names as argument and
returns a combined data frame.

R> parseTemps <- function(filenames) {
tmp <- lapply(filenames, parseTemp)
tempData <- NULL
for (i in seq_along(tmp)) tempData <- rbind(tempData, tmp[[i]])
return(tempData)

}

Finally we apply the wrapper to all files in our folder.

R> tempData <- parseTemps(str_c("Data/", filesavg))

R> dim(tempData)
[1] 252463 6
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1 parseTemp <- function(filename)
2 # get text
3 txt <- paste( readLines(filename), collapse="\n")
4 # split text into year tables
5 txtparts <- unlist(str_split(txt, "----------\n"))
6 # cleansing
7 txtparts <- str_replace(txtparts,
8 "\n\\*\\*\\*This data is provisional and subject to change.", "")
9 txtparts <- str_replace(txtparts,"ˆ\n","")

10 txtparts <- txtparts[txtparts!=""]
11 # get the year
12 year <- str_extract(txtparts,"[[:digit:]]{2} Average Air Temperature")
13 year <- str_extract(year,"[[:digit:]]{2}")
14 year <- ifelse(year < 20, str_c(20,year), str_c(19,year))
15 year <- as.numeric(year)
16 # get station and name
17 station <- str_extract(txtparts, "Station : .+?\n")
18 station <- str_replace_all(station, "(Station : )|(\n)", "")
19 station <- str_split(station,", ")
20 id <- sapply(station, '[', 1)
21 name <- sapply(station, '[', 2)
22 # extract part of the sections that contains daily temperatures
23 temperatures <- str_extract(txtparts, "day.*")
24 # prepare object to store temperature data
25 tempData <- data.frame(avgtemp = NA, day = NA, month = NA,
26 year = NA, id = "", name = "")
27 # generate day and month patterns matching the order of temperatures
28 day <- rep(1:31, 12)
29 month <- rep( c(10:12,1:9), each=31 )
30 # helper function
31 doTemp <- function(temperatures, year, name, id){
32 # write fixed width table into temporary file
33 tf <- tempfile()
34 writeLines(temperatures, tf)
35 # read in data and transform to data frame
36 temptable <- read.fwf(tf, width = c(3,7,6,6,6,6,6,6,6,6,6,6,6),
37 stringsAsFactors = F)
38 # keep only those lines and rows entailing day-temperatures
39 temptable <- temptable[3:33, -1]
40 # transform data frame of strings to vector of type numeric
41 temptable <- suppressWarnings(as.numeric(unlist(temptable)))
42 # combine data
43 temptable <- data.frame(avgtemp = temptable, day = day,
44 month = month, year = year, name = name, id = id)
45 # add data to tempData
46 tempData <<- rbind(tempData, temptable)
47 }
48 mapply(doTemp, temperatures, year, name, id)
49 tempData <- tempData[!is.na(tempData$avgtemp),]
50 return(tempData)
51 }

Figure 13.2 R-based parsing function for temperature text files



368 AUTOMATED DATA COLLECTION WITH R

13.3 Visualizing station and temperature data

We conclude the study with some examples of what to do with the data. First it would be nice
to know the location of the weather stations. We already know that they are in California, but
want to be a little more specific. Browsing the FTP server we find a file that contains data
on the stations—station names, their position expressed as latitudes and longitudes as well as
their altitude. We download the file and read it in via read.csv() .

R> download.file("ftp://ftp.wcc.nrcs.usda.gov/states/ca/jchen/CA_
sites.dat", "Data_CA/CA_sites.dat")

R> stationData <- read.csv("Data_CA/CA_sites.dat", header = F, sep =
"|")[,-c(1,2,7:9)]
R> names(stationData) <- c("name","lat","lon","alt")

R> head(stationData,2)
name lat lon alt

1 ADIN MTN 4115 12046 6200
2 BLUE LAKES 3836 11955 8000

With regards to the map which we are going to use, we have to rescale the coordinates.
First, we multiply all longitudes by −1 to get general longitudes and divide all coordinates
by 100. Altitudes are measured in foot, so we transform them to meters.

R> stationData$lon <- stationData$lon * -1
R> stationData[, c("lat", "lon")] <- stationData[, c("lat", "lon")]/100
R> stationData$alt <- stationData$alt/3.2808399
R> stationData <- stationData[order(stationData$lat), ]
R> head(stationData, 2)

name lat lon alt
25 VIRGINIA LAKES RIDGE 38.05 -119.2 2804
14 LEAVITT LAKE 38.16 -119.4 2865

Now we plot the stations’ locations on a map. In R, there are several packages suitableDownloading
maps for plotting maps (see also Chapter 15). We choose RgoogleMaps which enables us to use

services provided by Google and OpenStreetMap to download maps that we can use for
plotting. We download map data from Open Street Maps using the GetMap.OSM() function.
With this function we define a bounding box of coordinates and a scale factor. The map data
are saved on disk in PNG format as map.png and in an R object called map for later use:

R> map <- GetMap.OSM(latR = c(37.5, 42), lonR = c(-125, -115), scale =
5000000, destfile = "map.png", GRAYSCALE = TRUE, NEWMAP = TRUE)

Now we can use PlotOnStaticMap() to print the weather stations’ locations on theMapping
stations map we previously downloaded. The result is presented in Figure 13.3.

R> png("stationmap.png", width = dim(readPNG("map.png"))[2], height =
dim(readPNG("map.png"))[1])

R> PlotOnStaticMap(map, lat = stationData$lat, lon = stationData$lon,
cex = 2, pch = 19, col = rgb(0, 0, 0, 0.5), add = FALSE)

ftp://ftp.wcc.nrcs.usda.gov/states/ca/jchen/CA_sites.dat
ftp://ftp.wcc.nrcs.usda.gov/states/ca/jchen/CA_sites.dat
ftp://ftp.wcc.nrcs.usda.gov/states/ca/jchen/CA_sites.dat
ftp://ftp.wcc.nrcs.usda.gov/states/ca/jchen/CA_sites.dat
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Figure 13.3 Weather station locations on an OpenStreetMaps map

Finally, we visualize the temperature data. Let us look at the average temperatures per Creating
temperature
curves

month for six out of 27 stations. First, we aggregate the temperatures per month and station
using the aggregate() function.

R> monthlyTemp <- aggregate(x = tempData$avgtemp, by = list(name =
tempData$name, month = tempData$month), FUN = mean)

The stations we choose are representative of all others—we select three stations which
are placed north of the the mean latitude and three south of it. Furthermore, within each group
stations should differ regarding their altitude and should roughly match one station of the
other group. Looking through the candidates we find the following stations to be fitting and
extract their coordinates and their altitude:

R> stationNames <- c("ADIN MTN", "INDEPENDENCE CAMP", "SQUAW VALLEY
G.C.", "SPRATT CREEK", "LEAVITT MEADOWS","POISON FLAT")

R> stationAlt <- stationData[match(stationNames, stationData$name), ]$alt
R> stationLat <- stationData[match(stationNames, stationData$name), ]$lat
R> stationLon <- stationData[match(stationNames, stationData$name), ]$lon

Then, we prepare a plotting function to use on all plots. The function first defines an
object called iffer that serves to select only those monthly temperatures that belong to the
station to be plotted. The overall average per station and month is plotted with adequate title
and axis labels. We add a horizontal line to mark 0◦C . To get an idea of the variation of
temperature measurements over time, we add the actual temperature measurements in a last
step as small gray dots.

R> plotTemps <- function(i){
R> iffer <- monthlyTemp$name == stationNames[i]
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Figure 13.4 Overall monthly temperature means for selected weather stations. Lines present
average monthly temperatures in degree Celsius for all years in the dataset. Small gray dots
are daily temperatures for all years within the dataset.

R> plot(monthlyTemp[iffer, c("month", "x")],
R> type = "b", main = str_c(stationNames[i],
R> "(",round(stationAlt[i]), "m)", "\n Lat.= ",
R> stationLat[i], " Lon.= ", stationLon[i]),
R> ylim = c(-15, 25), ylab = "average temperature")
R> abline(h = 0,lty = 2)
R> iffer2 <- tempData$name == stationNames[i]
R> points(tempData$month[iffer2] + tempData$day[iffer2] *0.032,
R> jitter(tempData$avgtemp[iffer2], 3),
R> col = rgb(0.2, 0.2, 0.2, 0.1), pch = ".")
R>}

Having defined the plot function, we loop through the selection of stations.

R> par(mfrow = c(2, 3))
R> for (i in seq_along(stationNames)) plotTemps(i)

Figure 13.4 presents the average monthly temperatures. Little surprisingly, the higher
the altitude of the station and the more north the station is located, the lower the average
temperatures.
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Predicting the 2014 Academy
Awards using Twitter

Social media and the social network Twitter, in particular, have attracted the curiosity of
scientists from various disciplines. The fact that millions of people regularly interact with the
world by tweeting provides invaluable insight into people’s feelings, attitudes, and behavior.
An increasingly popular approach to make use of this vast amount of public communication
is to generate forecasts of various types of events. Twitter data have been used as a prediction
tool for elections (Tumasjan et al. 2011), spread of influenza (Broniatowski et al. 2013;
Culotta 2010), movie sales (Asur and Huberman 2010), or the stock market (Bollen et al.
2011).

The idea behind these approaches is the “wisdom of the crowds” effect. The aggregated
judgment of many people has been shown to frequently be more precise than the judgment
of experts or even the smartest person in a group of forecasters (Hogarth 1978). In that sense,
if it is possible to infer forecasts from people’s tweets, one might expect a fairly accurate
forecast of the outcome of an event.

In this case study, we attempt to predict the winners of the 2014 Academy Awards using
the tweets in the days prior to the event. Specifically, we try to predict the results of three
awards—best picture, best actress, and best actor. A similar effort to ours is proposed by
Ghomi et al. (2013). In the next section, we elaborate the data collection by introducing the
Twitter APIs and the specific setup we used to gather the tweets. Section 14.2 goes on to
elaborate the data preparation and the forecasts.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Table 14.1 Overview of selected functions from the twitteR package

Function Description Example

searchTwitter() Search for tweets that match a
certain query; the query
should be URL-encoded
and special query operators
can be used1

searchTwitter("#superbowl")

getUser() Gather information about
Twitter users with public
profiles (or the API user )

getUser("RDataCollection")

getTrends() Pull trending topics from a
given location defined by a
WOEID

getTrends(2422673)

twListToDF() Convert list of twitteR class
objects into data frame

twListToDF(tweets)

14.1 Twitter APIs: Overview

Before turning to the Twitter-based forecasts, we provide an overview of the basic features
of Twitter’s APIs.2 The range of features is vast and we will only make use of a tiny part, so
it is useful to get an intuition about the possibilities of Twitter’s web services. Twitter offers
various APIs for developers. They are documented at https://dev.twitter.com/docs. Using the
APIs requires authentication via OAuth (see Section 9.1.11). In the following, we shortly
discuss the REST API and the Streaming APIs.

14.1.1 The REST API

The REST API comprises a rich set of resources.3 They offer access to the user’s account,
timeline, direct messages, friends, and followers. It is also possible to retrieve trending top-
ics for a specific location (WOEID; see Section 9.1.10) or to collect tweets that match
certain filter parameters, for example, keywords. Note, however, that there are restric-
tions regarding possibility to gather statuses retrospectively. There are also rate limits to
bear in mind. As both limits are subject to changes, we refer to the documentation at
https://dev.twitter.com/docs/rate-limiting/1.1 for details.

The twitteR package provides a wrapper for the REST API (Gentry 2013), thus we do not
have to specify GET and POST requests ourselves to connect to Twitter’s web service. The
package provides functionality to convert incoming JSON data into common R data structures.
We list a subset of the package’s functions which we find most useful in Table 14.1. For a

1See https://dev.twitter.com/docs/using-search.
2We assume that you have a basic knowledge about how Twitter works. If not, check out the amusing introduction

at http://www.momthisishowtwitterworks.com/
3For a detailed overview, see https://dev.twitter.com/docs/api/1.1

https://dev.twitter.com/docs
https://dev.twitter.com/docs
https://dev.twitter.com/docs/rate-limiting/1.1
https://dev.twitter.com/docs/rate-limiting/1.1
https://dev.twitter.com/docs/using-search
https://dev.twitter.com/docs/using-search
http://www.momthisishowtwitterworks.com/
http://www.momthisishowtwitterworks.com/
https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/api/1.1
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more detailed description of the package check out Jeff Gentry’s helpful introduction at
http://geoffjentry.hexdump.org/twitteR.pdf

14.1.2 The streaming APIs

Another set of Twitter APIs are subsumed under the label Streaming APIs. They allow low
latency access to Twitter’s global data stream, that is practically in real time.4 In contrast to
the REST APIs, the Streaming APIs require a persistent HTTP connection. As long as the
connection is maintained, the application that taps the API streams data from one of the data
flows.

Several of these streams exist. First, Public Streams provide samples of the public data Types of
Streaming APIsflow. Twitter offers about 1% of the full sample of Tweets to ordinary users of the API. The

sample can be filtered by certain predicates, for example, by user IDs, keywords, or locations.
For data mining purposes, this kind of stream might be one of the most interesting, as it
provides tools to scour Twitter by many criteria. In this case study, we will tap this API to
identify tweets that mention the 2014 Academy Awards by filtering a set of keywords. The
second type of Streaming API provides access to User Streams. This API returns tweets from
the user’s timeline. Again, we can filter tweets according to keywords or types of messages,
for example, only tweets from the user or tweets from her followings. Finally, the third type
of Streaming API is Site Streams which provides real-time updates from users for certain
services. This is basically not much different from User Streams but additionally indicates
the recipient of a tweet.5 At the time of writing, the Site Streams API is in a restricted beta
status, so we refrain from going into more details.

Fortunately, we do not have to become experts with the inner workings of the streaming
APIs, as the streamR provides a convenient wrapper to access them with R (Barberá 2013).
Table 14.2 provides an overview of the most important functions that we have used to assemble
the dataset that we draw on for the predictions in the second part of this chapter.

14.1.3 Collecting and preparing the data

To collect the sample of tweets that revolve around the 2014 Academy Awards, we set up
a connection to the Streaming API. The connection was opened on February 28, 2014 and
closed on March 2, 2014, the day the 86th Academy Awards ceremony took place at the
Dolby Theatre in Hollywood.

We began by registering an application with Twitter to retrieve the necessary OAuth
credentials which allow tapping the Twitter services. A connection to the Streaming API was
established using the streamR interface. The command to initiate the collection was

R> filterStream("tweets_oscars.json", track = c("Oscars", "Oscars2014"),
timeout = 10800, oauth = twitCred)

We filtered the sample of tweets using filterStream() with the track option with
the keywords “Oscars” and “Oscars2014”, which matched any tweet that contained these
terms in the form of hash tags or pure text. We split the process into streams of 3 hours
each (60 ∗ 60 ∗ 3 = 10, 800 for the timeout argument) to store the incoming tweets in

4See the Streaming APIs’ documentation at https://dev.twitter.com/docs/api/streaming
5See also https://dev.twitter.com/docs/streaming-apis/streams/site

http://geoffjentry.hexdump.org/twitteR.pdf
http://geoffjentry.hexdump.org/twitteR.pdf
https://dev.twitter.com/docs/api/streaming
https://dev.twitter.com/docs/api/streaming
https://dev.twitter.com/docs/streaming-apis/streams/site
https://dev.twitter.com/docs/streaming-apis/streams/site
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Table 14.2 Overview of selected functions from the streamR package

Function Description Example

filterStream() Connection to the Public
Streams API; allows to
filter by keywords (track
argument), users (follow),
locations (locations),
and language

filterStream(file.name =
"superbowl_tweets.json",
track = "superbowl",
oauth = twitter_sig)’

sampleStream() Connection to the Public
Streams API; returns a
small random sample of
public tweets

sampleStream(file.name =
"tweets.json", timeout =
60, oauth = twitter_sig)’

userStream() Connection to the User
Streams API; returns
tweets from the user’s
timeline; allows to filter by
message type, keywords,
and location

sampleStream(userStream =
"mytweets.json", with =
"user", oauth =
twitter_sig)’

parseTweets() Parses the downloaded
tweets, that is, returns the
data in a data frame

parseTweets("tweets.json")’

manageable JSON files. All in all we collected around 10 GB of raw data, or approximately
2,000,000 tweets.

After the collection was complete, we parsed the single files using the parseTweets()
function in order to turn the JSON files into an R data frame. We merge all files into a single
data frame. Storing the table in the Rdata format reduced the memory consumption of the
collected tweets to around 300 MB.

R> tweets <- parseTweets("tweets_oscars.json", simplify = TRUE)

14.2 Twitter-based forecast of the 2014 Academy Awards

14.2.1 Visualizing the data

Before turning to the analysis of the content of the tweets, let us visually inspect the volume
of the data for a moment. Specifically, we want to create a figure of the number of tweets per
hour in our search period from the end of February to the beginning of March, 2014.6 The
easiest thing to aggregate the frequency of tweets by hour is to convert the character vector in
the dataset created_at to a true time variable of type POSIXct. We make use of the lubridate
package which facilitates working with dates and times (Grolemund and Wickham 2011).
We also set our locale to US English to be able to parse the English names of the months and

6The data are available at http://www.r-datacollection.com. We invite you to download the data and play around
with it yourself. Maybe you are able to spot something that we failed to make out with our simple analysis.

http://www.r-datacollection.com
http://www.r-datacollection.com
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week days. Chances are that you have to adapt the value in the Sys.setlocale() function
to the needs of your machine.7

R> library(lubridate)
R> Sys.setlocale("LC_TIME", "en_US.UTF-8")

To parse the time stamp in the dataset, we use the function as.POSIXct() where we
specify the variable, the timezone, and the format of the time stamp. Let us have a look at the
first time stamp to get a sense of the format.

R> dat$created_at[1]
[1] "Fri Feb 28 10:11:14 +0000 2014"

We have to provide the information that is contained in the time stamp in abstract terms.
In this case the stamp contains the weekday (%a), the month (%b), the day (%d), the time
(%H:%M:%S), an offset for the timezone (%z), and the year (%Y). We abstract the various
pieces of information with the percentage placeholders and let R parse the values.

R> dat$time <- as.POSIXct(dat$created_at, tz = "UTC", format = "%a
%b %d %H:%M:%S %z %Y")

Now that we have created a veritable time stamp where R is able to make sense of
the information that is contained in the stamp, we can use the convenience functions from
the lubridate package to round the time to the nearest hour. This is accomplished with the
round_date() function where we specify the unit argument to be hour.

R> dat$round_hour <- round_date(dat$time, unit = "hour")

We aggregate the values in a table, convert it to a data frame and discard the last entry as
we discontinued the collection around the time so it only contains censored information.

R> plot_time <- as.data.frame(table(dat$round_hour))
R> plot_time <- plot_time[-nrow(plot_time),]

Finally, we create a simple graph that displays the hourly tweets in the collection period
from February 28 to March 2 (see Figure 14.1). We observe a sharp increase in the volume
of tweets in the hours right before the beginning of the Academy Awards.

R> plot(plot_time[,2], type = "l", xaxt = "n", xlab = "Hour", ylab =
"Frequency")
R> axis(1, at = c(1, 20, 40, 60), labels = plot_time[c(1, 20, 40, 60),
1])

14.2.2 Mining tweets for predictions

In this part of the chapter, we use the stringr and the plyr packages. We begin by loading them.

R> library(stringr)
R> library(plyr)

7If you are operating on a Windows machine, the function has to be specified as Sys.setlocale("LC_TIME",
"English").
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Figure 14.1 Tweets per hour on the 2014 Academy Awards

Let us inspect one line of the data frame to get a sense of what is available in the dataset:8

R> unlist(dat[1234,])

text
"RT @TheEllenShow: I'm very excited @Pharrell's performing his big
hit "Happy" at the #Oscars. Spolier alert: I'll be hiding in his hat."
retweet_count
"2383"
...
created_at
"Fri Feb 28 10:50:13 +0000 2014"
...
user_created_at
"Sun Jan 08 21:22:49 +0000 2012"
statuses_count
"475"
followers_count
"236"
favourites_count
"23"
...
friends_count
"132"
screen_name
"SophiaGracer007"
lotext
"rt @theellenshow: i'm very excited @pharrell's performing his big
hit "happy" at the #oscars. spolier alert: i'll be hiding in his hat."
time
"1393584613"
round_hour
"1393585200"

8We dropped some of the variables to save space.
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You find that beside the actual text of the tweet there is a lot of the supplementary
information, not least the time stamp that we relied upon in the previous section. The last
three variables in the dataset are not created by twitter but were created by us. They contain
the text of the tweet that was converted to lower case using the tolower() function, as well
as the time (time) and the rounded time (round_hour).

Now, to look for references to the nominees for best actor, best actress, and best picture,
we simply create three vectors of search terms. The search terms for the actors and actresses
are simply the full name of the actor, in case of the films we created two regular expressions
in the cases of “12 Years a Slave” and “The Wolf of Wall Street” as many users on Twitter
might have used either variation of the titles. Notice that we have specified all the vectors as
lower case as we intend to apply the search terms to the tweets in lower case.9

R> actor <- c(
"matthew mcconaughey",
"christian bale",
"bruce dern",
"leonardo dicaprio",
"chiwetel ejiofor"

)

R> actress <- c(
"cate blanchett",
"amy adams",
"sandra bullock",
"judi dench",
"meryl streep"

)

R> film <- c(
"(12|twelve) years a slave",
"american hustle",
"captain phillips",
"dallas buyers club",
"gravity",
"nebraska",
"philomena",
"(the )?wolf of wall street"

)

We go on to detect the search terms in the tweets by applying str_detect() to all tweets
in lower case (dat$lotext) via a call to lapply(). The results are converted to a common
data frame with ldply() and finally the column names are assigned meaningful names.

R> tmp_actor <- lapply(dat$lotext, str_detect, actor)
R> dat_actor <- ldply(tmp_actor)
R> colnames(dat_actor) <- c("mcconaughey", "bale", "dern", "dicaprio",
"ejiofor")

9We drop the movie “Her” as this creates a lot of noise and would require more elaborate methods than we use
in the subsequent discussion.
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R> tmp_actress <- lapply(dat$lotext, str_detect, actress)
R> dat_actress <- ldply(tmp_actress)
R> colnames(dat_actress) <- c("blanchett", "adams", "bullock", "dench",
"streep")

R> tmp_film <- lapply(dat$lotext, str_detect, film)
R> dat_film <- ldply(tmp_film)
R> colnames(dat_film) <- c("twelve_years", "american_hustle", "capt_
phillips", "dallas_buyers", "gravity", "nebraska", "philomena",
"wolf_wallstreet")

To inspect the results, we simply sum up the TRUE values. This is possible as the call to
sum() evaluates the TRUE values as 1, FALSE entries as 0.

R> apply(dat_actor, 2, sum)

mcconaughey bale dern dicaprio ejiofor
6190 1255 912 23479 1531

R> apply(dat_actress, 2, sum)

blanchett adams bullock dench streep
6790 5743 3272 765 3801

R> apply(dat_film, 2, sum)

twelve_years american_hustle capt_phillips dallas_buyers
11339 6122 2003 4560

gravity nebraska philomena wolf_wallstreet
22570 3602 2236 6741

We find that Leonardo DiCaprio was more heavily debated compared to the actual winner
of the Oscar for best actor—Matthew McConaughey. In fact, there is a fairly wide gap
between DiCaprio and McConaughey. Conversely, the frequencies with which the nominees
for best actress were mentioned on Twitter are a little more evenly distributed. What is more,
the eventual winner of the trophy—Cate Blanchett—was in fact the one who received most
mentions overall. Finally, turning to the best picture we observe that it is not “12 Years a
Slave” that was most frequently mentioned but rather “Gravity” which was mentioned roughly
twice as often.

In case of the best actor and best actress, we decided to apply a sanity check. As some of
the names are fairly difficult to spell, we might potentially bias our counts against those actors
where this is the case. Accordingly, we performed an additional search that uses the agrep()
function which performs approximate matching.10 The results are summed up and unlisted
to get numeric vectors of length five for both categories. Again, we assign meaningful names
to the resulting vectors.

R> tmp_actor2 <- lapply(actor, agrep, dat$lotext)
R> length_actor <- unlist(lapply(tmp_actor2, length))

10For details on approximate matching, see Chapter 8.
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R> names(length_actor) <- c("mcconaughey", "bale", "dern", "dicaprio",
"ejiofor")

R> tmp_actress2 <- lapply(actress, agrep, dat$lotext)
R> length_actress <- unlist(lapply(tmp_actress2, length))
R> names(length_actress) <- c("blanchett", "adams", "bullock", "dench",
"streep")

R> length_actor

mcconaughey bale dern dicaprio ejiofor
8034 1663 3672 29643 1912

R> length_actress

blanchett adams bullock dench streep
12556 6796 5464 1065 5250

The conclusions remain fairly stable, by and large. Leonardo DiCaprio was more heavily
debated than Matthew McConaughey prior to the Academy Awards and the winner of best
actress, Cate Blanchett, was most frequently mentioned after applying approximate matching.

14.3 Conclusion

Twitter is a rich playing ground for social scientists who are interested in the public debates
on countless subjects. In this chapter, we have provided a short introduction to the various
possibilities to collect data from Twitter and making it accessible for research. We have
discussed the streamR and twitteR packages to connect to the two main access points for
current and retrospective data collection.

In the specific application we have investigated whether the discussion on Twitter on the
nominees for best actor and actress as well as best picture for the 2014 Academy Awards in
the days prior to the awards reflects the eventual winners. As this book is more concerned
with the data collection rather than the data analysis, the technique that was applied is almost
banal. We invite you to download the data from the accompanying website to this book and
play around with it yourself. Specifically, we invite you to repeat our analysis and apply
a sentiment analysis (see Chapter 17) on the tweets to potentially improve the prediction
accuracy.
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Mapping the geographic
distribution of names

The goal of this exercise is to collect data on the geographic distribution of surnames in
Germany. Such maps are a popular visualization in genealogical and onomastic research, that
is, research on names and their origins (Barratt 2008; Christian 2012; Osborn 2012). It has
been shown that in spite of increased labor mobility in the last decades, surnames that were
bound to a certain regional context continue to retain their geographic strongholds (Barrai
et al. 2001; Fox and Lasker 1983; Yasuda et al. 1974). Apart from their scientific value, name
maps have a more general appeal for those who are interested in the roots of their namesakes.
Plus, they visualize the data in one of the most beautiful and insightful ways—geographic
maps.

In this chapter, we briefly introduce the visualization of geographic data in R. This can
be a difficult task, and if your data do not match the specifications of the data treated in this
chapter, we recommend a look at Kahle and Wickham (2013) and Bivand et al. (2013b) for
more advanced visualization tools of spatial data with R. In order to acquire the necessary data,
we rely on the online directory of a German phone book provider (www.dastelefonbuch.de).
As a showcase, we visualize the geographical distribution of a set of surnames in Germany.
The goal is to write a program that can easily be fed with any surname to produce a surname
map with a single function call. Further, the call should return a data frame that contains all
of the scraped observations for further analysis.

The case study serves another purpose: It is not a storybook example of web scraping but
shows some of the pitfalls that may occur in reality—and how to deal with them. The case
study thus illustrates that textbook theory does not always match up with reality. Among the
problems we have to tackle are (a) incomplete and unsystematic data, (b) data that belong

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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together but are dispersed in the HTML tree, (c) limited “hits per page” functionality, and (d)
undocumented URL parameters.

15.1 Developing a data collection strategy

Before diving into the online phone book, we begin with some thoughts on the kind of
information we want to collect and whether a phone book is an appropriate source for
such information. The goal is to gain insight into the current distribution of surnames. The
distribution is defined by the universe of surnames in the German population, that is, around
80 million people. We want to collect data for descriptive as well as for secondary analyses.
The ideal source would provide a complete and up-to-date list of surnames of all inhabitants,
linked with precise geographic identifiers. Such a list would raise severe privacy concerns.

By virtue of purpose, phone directories are open data sources. They provide information Benefits
of phone
book data

on names and residencies, so they are a candidate to approximate the true distributions of
surnames. In terms of data quality, however, we have to ask ourselves: Are phone directories
a reliable and valid source? There is good reason to believe they are: First, they are updated
at least annually. Second, geographic identifiers like streets and zip codes are usually precise
enough to assess people’s locations within a circle of less than 20 km. The fact that phone
books provide such accurate geographical identifiers is actually the crucial property of the
data source in this exercise. It is difficult to come up with a freely available alternative.

On the downside, we have to be aware of the phone book’s limitations. First, not everybody Limitations of
phone book
data

has a phone and not every phone is listed in the phone directory. This problem has aggravated
with the proliferation of mobile phones. Second, phone books occasionally contain duplicates.
Using zip codes as geographic identifiers adds some noise to the data, but this inaccuracy
is negligible. After all, we are interested in the big picture, not in pinpointing names at the
street level.

Regarding alternative data sources, there are several websites which provide ready-made
distribution maps, often based on phone book entries as well.1 However, these pages usually
only offer aggregate statistics or remain vague about the source of the reported maps. The
same is true for commercial software that is frequently offered on these sites. Therefore, we
rely on online phone directories and produce our own maps.

In order to achieve the goals, we pursue the following strategies: Data collection

1. Identify an online phone directory that provides the information we need.

2. Become familiar with the page structure and choose an extraction procedure.

3. Apply the procedure: retrieve data, extract information, cleanse data, and document
unforeseen problems that occur during the coding

4. Visualize and analyze the data.

5. Generalize the scraping task.

1A nice overview of existing pages which offer name map services can be found at https://familysearch.org/
learn/wiki/en/Surname_Distribution_Maps

https://familysearch.org/learn/wiki/en/Surname_Distribution_Maps
https://familysearch.org/learn/wiki/en/Surname_Distribution_Maps
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Regarding our example, we have done some research on available online phone direc-
tories. There are basically two major providers in Germany, www.dastelefonbuch.de and
www.dasoertliche.de. Comparing the number of hits for a sample set of names, the results are
almost equivalent, so both providers seem to work with similar databases. The display of hits
is different, however. www.dastelefonbuch.de allows accessing a maximum of 2000 hits per
query and the number of hits per request can be adapted. Conversely, www.dasoertliche.de
offers 10,000 hits at most that are are displayed in bundles of 20s. As we prefer to minimize
the number of requests for reasons of efficiency and scraping etiquette, we decide to use
www.dastelefonbuch.de as primary source of data for the exercise.

15.2 Website inspection

We start with a look at the robots.txt to check whether accessing the page’s content viaInspecting the
robots.txt automated methods is accepted at all (see Section 9.3.3). We find that some bots are indeed

robota non grata (e.g., the Googlebot-Image and the trovitBot bot; see Figure 15.1). For other
undefined bots, some directories are disallowed, for example, /scripts/ or /styles/.
The root path is not prohibited, so we can direct small automated requests to the site with a

1 # robots.txt for http://www.dastelefonbuch.de/
2 # sc 20130402_1.56, Vorgaengerversion: sc 20130128
3 (...)

5 User-agent: Googlebot-Image
6 Disallow: /

8 User-agent: trovitBot
9 Disallow: /

11 User-agent: *
12 Disallow: /scripts/
13 Disallow: /styles/
14 Disallow: /katalog/scripts/
15 Disallow: /katalog/styles/
16 Disallow: /telefonbuch/scripts/
17 Disallow: /telefonbuch/styles/
18 (...)

20 # Sitemap files
21 Sitemap: http://www.dastelefonbuch.de/xml-sitemaps/

telefonbuch_nachnamen_sitemap_index.xml
22 Sitemap: http://www.dastelefonbuch.de/xml-sitemaps/

telefonbuch_behoerden_sitemap_index.xml
23 Sitemap: http://www.dastelefonbuch.de/xml-sitemaps/

telefonbuch_branchen_sitemap_index.xml
24 (...)

Figure 15.1 Excerpt from the robots.txt file on www.dastelefonbuch.de

www.dastelefonbuch.de
www.dastelefonbuch.de
www.dasoertliche.de
www.dasoertliche.de
www.dastelefonbuch.de
www.dastelefonbuch.de
www.dasoertliche.de
www.dasoertliche.de
www.dastelefonbuch.de
www.dastelefonbuch.de
www.dastelefonbuch.de
www.dastelefonbuch.de
http://www.dastelefonbuch.de/
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clear conscience. The bottom of the file reveals some interesting XML files. Accessing these
links, we find large compressed XML files that apparently contain information on surnames
in all cities. This is potentially a powerful data source, as it might lead to the universe of
available surnames in the page’s database. We do not make use of the data, however, as it is
not immediately obvious how such a list could be used for our specific purpose.

We continue with a closer inspection of the page’s functionality and architecture. In the Examining
the page
architecture

simple search mode, we can specify two parameters—whom to search for (“Wer/Was”) and
where (“Wo”). Let us start with a sample request. We search for entries with the surname
“Feuerstein.”2 In the left column, the total number of hits are reported (837), 149 of which
are businesses and 688 of which are private entries. We are only interested in private entries
and have already selected this subsample of hits. The hits themselves are listed in the middle
column of the page. Surname and, if available, first name is reported in an entry’s first row,
the address in the second. Some entries do not provide any address. In the rightmost column
on the page, the hits are already displayed on a map. This is the information we are looking
for, but it seems more convenient to scrape the data from the list of hits rather than from the
JavaScript-based map.3 We also observe that the URL has changed after passing the request
to the server. In its complete form, it looks as follows:

http://www3.dastelefonbuch.de/?bi=76&kw=Feuerstein&cmd=search&seed=
1010762549&ort_ok=1&vert_ok=1&buab=622100&mergerid=A43F7DB343E7F461D
5506CA8A7DBB734&mdest=sec1.www1%2Csec2.www2%2Csec3.www3%2Csec4.www4
&recfrom=&ao1=1&ao2=0&sp=51&aktion=105

Evidently, passing the input form to the server has automatically added a set of parameters,
which can be observed in the URL’s query string, beginning after the ? sign.4 As we need to set
these parameters with our program later on, we have to identify their meaning. Unfortunately,
there is no documentation in the page’s source code. Therefore, we try to detect their meaning
manually by playing around with them and comparing the displayed outputs. We find that
the kw parameter contains the keyword we are searching for. Note that URL encoding is
required here, that is, we look for M%FCller instead of Müller and so on. cmd=search is
the trigger for the search action, ao1=1 means that only private entries are shown. Some of
the parameters can be dropped without any changes in the displayed content. By manually
specifying some of the search parameters, we identify another useful parameter: reccount
defines the number of hits that are shown on the page. We know from search engine requests
that this number is usually limited to around 10–50 hits for efficiency reasons. In this case, the
options displayed in the browser are 20, 50, and 100 hits per page. However, we can manually
specify the value in the URL and set it up to a maximum of 2000 hits. This is very useful,
as one single request suffices to scrape all available results. In general, inspecting the URL
before and after putting requests to the server often pays off in web scraping practice—and
not only for an ad-hoc URL manipulation strategy as proposed in Section 9.1.3. In this case,
we can circumvent the need to identify and scrape a large set of sites to download all hits.
Having said that, we can now start constructing the web scraper.

2‘Feuerstein’ means ‘Flint’ or ‘Firestone’ in German and is, as we will see, a rather uncommon name. The name
is quite well-known, as the German translation of the cartoon series ‘The Flintstones’ is ‘Die Feuersteins’.

3We will have a closer look at the data behind the map at the end of this chapter.
4An inspection of the source code reveals that this is done with hidden input elements.
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15.3 Data retrieval and information extraction

First, we load a couple of packages that are needed for the exercise. Beside the set of usual
suspects RCurl, XML, and stringr, we load three additional packages which provide helpful
functions for geographical work: maptools (Bivand and Lewin-Koh 2013), rgdal (Bivand et al.
2013a), maps (Brownrigg et al. 2013), and TeachingDemos (Snow 2013).

R> library(RCurl)
R> library(XML)
R> library(stringr)
R> library(maptools)
R> library(rgdal)
R> library(maps)
R> library(TeachingDemos)

We identified the parameters in the URL which tell the server to return a rendered HTMLThe GET
request page that meets our requirements. In order to retrieve the results of a search request for the

name “Feuerstein,” we use getForm() and specify the URL parameters in the .params
argument.

R> tb <- getForm("http://www.dastelefonbuch.de/",
R> .params = c(kw = "Feuerstein",
R> cmd = "search",
R> ao1 = "1",
R> reccount = "2000"))

Note that we set the reccount parameter to the maximum value of 2000 to ensure that
all hits that are retrievable with one request are actually captured. If the number of hits is
greater, we just get the first 2000. We will discuss this shortcoming of our method further
below. The returned content is stored in the object tb which we write to the file phonebook_
feuerstein.html on our local drive.

R> dir.create("phonebook_feuerstein")
R> write(tb, file = "phonebook_feuerstein/phonebook_feuerstein.html")

We can now work with the offline data and do not have to bother the server again—the
screen scraping part in the narrow sense of the word is finished. In order to be able to access
the information in the document by exploiting the DOM, we parse it with htmlParse() and
ensure that the original UTF-8 encoding is retained.

R> tb_parse <- htmlParse("phonebook_feuerstein/phonebook_feuerstein.html",
encoding = "UTF-8")

We can start extracting the entries. As a first benchmark, we want to extract the total
number of results in order to check whether we are able to scrape all entries or only a subset.
The number is stored in the left column as “Privat (687).” In order to retrieve this number
from the HTML file, we start with an XPath query. We locate the relevant line in the HTML

http://www.dastelefonbuch.de/
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code—it is stored in an unordered list of anchors. We retrieve the anchor within that list that
contains the text pattern “Privat.”

R> xpath <- "//ul/li/a[contains(text(), 'Privat')]"
R> num_results <- xpathSApply(tb_parse, xpath, xmlValue)
R> num_results
[1] "\r\n Privat (687)"

In the next step, we extract the sequence of digits within the string using a simple regular
expression.

R> num_results <- as.numeric(str_extract(num_results, "[[:digit:]]+"))
R> num_results
[1] 687

As so often in web scraping, there is more than one way of doing it. We could replace the
XPath/regex query with a pure regex approach, eventually leading to the same result.

We now come to the crucial part of the matter, the extraction of names and geographic Data extraction

information. In order to locate the information in the tree, we inspect some of the elements
in the list of results. By using the “inspect element” or a similar option in our browser to
identify the data in the HTML tree (see Section 6.3), we find that the name is contained in the
attribute title of an element <a> which is child of a <div> tag of class name. This position
in the tree can easily be generalized by means of an XPath expression.

R> xpath <- "//div[@class='name']/a[@title]"
R> surnames <- xpathSApply(tb_parse, xpath, xmlValue)
R> surnames[1:3]
[1] "\r\n\t\t \tBertsch-Feuerstein Lilli"
[2] "\r\n\t\t \tBierig-Feuerstein Brigitte u. Feuerstein Norbert"
[3] "\r\n\t\t \tBlatt Karl u. Feuerstein-Blatt Ursula"

Apart from redundant carriage return and line feed symbols which have to be removed
in the data-cleansing step, this seems to have worked well. Extracting the zip codes for
geographic localization is also simple. They are stored in the <span> elements with the
attribute itemprop="postal-code". Accordingly, we write

R> xpath <- "//span[@itemprop='postal-code']"
R> zipcodes <- xpathSApply(tb_parse, xpath, xmlValue)
R> zipcodes[1:3]
[1] " 64625" " 68549" " 68526"

When trying to match the names and the zip code vector, we realize that fetching both
pieces of information separately was not a good idea. The vectors have different lengths.

R> length(surnames)
[1] 687
R> length(zipcodes)
[1] 642

A total of 45 zip codes seem to be missing. A closer look at the entries in the HTML file
reveals that some entries lack an address and therefore a zip code. Unfortunately, the <span>
element with the attribute itemprop="postal-code" is also missing in these cases. If we
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were only interested in the location of hits, we could drop the names and just extract the zip
codes. To keep names and zip codes together for further analyses, however, we have to adapt
the extraction function.

In Section 4.2.2 we have encountered a tool that is of great help for this problem—XPathMaking use of
XPath axes axes. XPath axes help express the relations between nodes in a family tree analogy. This

means that they can be used to condition a selection on attributes of related nodes. This
is precisely what we need to extract names and zip codes that belong together. As names
without zip codes are meaningless for locating observations on a map, we want to extract
only those names for which a zip code is available. The necessary XPath expression is a bit
more complicated.

R> xpath <- "//span[@itemprop='postal-code']/ancestor::div[@class='
popupMenu']/preceding-sibling::div[@class='name']"
R> names_vec <- xpathSApply(tb_parse, xpath, xmlValue)

Let us consider this call step by step from back to front. What we are looking for is a <div>
object of class name. It is the preceding-sibling of a <div> object of class popupMenu.
This <div> element is the ancestor of a span element with attribute itemprop="postal-
code". Applying this XPath query to the parsed document with xpathSApply() returns a
vector of names which are linked to a zip code. By inverting the XPath expression, we extract
the zip codes as well.

R> xpath <- "//div[@class='name']/following-sibling::div[@class='
popupMenu']//span[@itemprop='postal-code']"
R> zipcodes_vec <- xpathSApply(tb_parse, xpath, xmlValue)

We compare the lengths of both vectors and find that they are now of equal length.

R> length(names_vec)
[1] 642
R> length(zipcodes_vec)
[1] 642

In a last step, we remove the carriage returns (\r), line feeds (\n), horizontal tabs (\t),
and empty spaces in the names vector, coerce the zip code vector to be numeric, and merge
both variables in a data frame.

R> names_vec <- str_replace_all(names_vec, "(\\n|\\t|\\r| {2,})", "")
R> zipcodes_vec <- as.numeric(zipcodes_vec)
R> entries_df <- data.frame(plz = zipcodes_vec, name = names_vec)
R> head(entries_df)

plz name
1 64625 Bertsch-Feuerstein Lilli
2 68549 Bierig-Feuerstein Brigitte u. Feuerstein Norbert
3 68526 Blatt Karl u. Feuerstein-Blatt Ursula
4 50733 Feuerstein
5 63165 Feuerstein
6 69207 Feuerstein
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15.4 Mapping names

Regarding the scraping strategy outlined in the first section, we have just completed step 3
after having retrieved the data, extracted the information, and cleansed the data. The next step
is to plot the scraped observations on a map. To do so, we have to (1) match geo-coordinates
to the scraped zip codes and (2) add them to a map.

After some research on the Web, we find a dataset that links zip codes (“Postleitzahlen,” Geo-coding
phone book
entries

PLZ) and geographic coordinates. It is part of the OpenGeoDB project (http://opengeodb
.org/wiki/OpenGeoDB) and freely available. We save the file to our local drive and load it
into R.

R> dir.create("geo_germany")
R> download.file("http://fa-technik.adfc.de/code/opengeodb/PLZ.tab",
destfile = "geo_germany/plz_de.txt")

R> plz_df <- read.delim("geo_germany/plz_de.txt", stringsAsFactors
= FALSE, encoding = "UTF-8")
R> plz_df[1:3, ]

X.loc_id plz lon lat Ort
1 5078 1067 13.72 51.06 Dresden
2 5079 1069 13.74 51.04 Dresden
3 5080 1097 13.74 51.07 Dresden

We can easily merge the information to the entries_df data frame using the joint
identifying variable plz.

R> places_geo <- merge(entries_df, plz_df, by = "plz", all.x = TRUE)
R> places_geo[1:3, ]

plz name X.loc_id lon lat Ort
1 1159 Feuerstein Falk 5087 13.70 51.04 Dresden
2 1623 Feuerstein Regina 5122 13.30 51.17 Lommatzsch
3 2827 Feuerstein Wolfgang 5199 14.96 51.13 Görlitz

In order to enrich the map with administrative boundaries, we rely on data from the Retrieving
shapefilesGlobal Administrative Areas database (GADM; www.gadm.org). It offers geographic data

for a multitude of countries in various file formats. The data’s coordinate reference system
is latitude/longitude and the WGS84 datum, which matches nicely with the coordinates from
the zip code data frame.5 We download the zip file containing shapefile data for Germany
and unzip it in a subdirectory:

R> download.file("http://biogeo.ucdavis.edu/data/gadm2/shp/DEU_adm.zip",
destfile = "geo_germany/ger_shape.zip")
R> unzip("geo_germany/ger_shape.zip", exdir = "geo_germany")
R> dir("geo_germany")
[1] "DEU_adm0.csv" "DEU_adm0.dbf" "DEU_adm0.prj" "DEU_adm0.shp"
[5] "DEU_adm0.shx" "DEU_adm1.csv" "DEU_adm1.dbf" "DEU_adm1.prj"
[9] "DEU_adm1.shp" "DEU_adm1.shx" "DEU_adm2.csv" "DEU_adm2.dbf"

[13] "DEU_adm2.prj" "DEU_adm2.shp" "DEU_adm2.shx" "DEU_adm3.csv"
[17] "DEU_adm3.dbf" "DEU_adm3.prj" "DEU_adm3.shp" "DEU_adm3.shx"
[21] "ger_shape.zip" "plz_de.txt" "read_me.pdf"

5If you want to learn more about geodetic systems that define different projections, you may want to check out
http://en.wikipedia.org/wiki/Geodetic_datum and http://en.wikipedia.org/wiki/Map_projection

http://opengeodb.org/wiki/OpenGeoDB
http://opengeodb.org/wiki/OpenGeoDB
www.gadm.org
www.gadm.org
http://biogeo.ucdavis.edu/data/gadm2/shp/DEU_adm.zip
http://biogeo.ucdavis.edu/data/gadm2/shp/DEU_adm.zip
http://en.wikipedia.org/wiki/Geodetic_datum
http://en.wikipedia.org/wiki/Geodetic_datum
http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Map_projection
http://fa-technik.adfc.de/code/opengeodb/PLZ.tab
http://biogeo.ucdavis.edu/data/gadm2/shp/DEU_adm.zip
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The downloaded archive provides a set of files. A shapefile actually consists of at leastWorking with
shapefiles in R three files: The .shp file contains geographic data, the .dbf file contains attribute data attached

to geographic objects, and the .shx file contains an index for the geographic data. The .prj
files in the folder are optional and contain information about the shapefile’s projection format.
Altogether, there are four shapefiles in the archive for different levels of administrative bound-
aries. Using the maptools package (Bivand and Lewin-Koh 2013), we import and process
shapefile data in R. The readShapePoly() function converts the shapefile into an object
of class SpatialPolygonsDataFrame. It contains both vector data for the administrative
units (i.e., polygons) and substantive data linked to these polygons (therefore “DataFrame”).
We import two shapefiles: the highest-level boundary, Germany’s national border, and the
second highest-level boundaries, the federal states. Additionally, we declare the data to be
projected according to the coordinate reference system WGS84 with the CRS() function and
the proj4string argument.

R> projection <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")
R> map_germany <- readShapePoly(str_c(getwd(), "/geo_germany/DEU_adm0.shp"),

proj4string = projection)
R> map_germany_laender <- readShapePoly(str_c(getwd(),

"/geo_germany/DEU_adm1.shp"),
proj4string=projection)

Finally, we transform the coordinates of our entries to a SpatialPoints object that
harmonizes with the map data.

R> coords <- SpatialPoints(cbind(places_geo$lon, places_geo$lat))
R> proj4string(coords) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")

In order to get a better intuition of where people are located, we add the location of
Germany’s biggest cities as well. The maps package (Brownrigg et al. 2013) is extraordi-
narily useful for this purpose, as it contains a list of all cities around the world, including
their coordinates. We extract the German cities with a population greater than 450,000—an
arbitrary value that results in a reasonable number of cities displayed—and add two more
cities that are located in interesting areas.

R> data("world.cities")
R> cities_ger <- subset(world.cities,

country.etc == "Germany" &
(world.cities$pop > 450000 |
world.cities$name %in%
c("Mannheim", "Jena")))

R> coords_cities <- SpatialPoints(cbind(cities_ger$long,cities_ger$lat))

We compose the map sequentially by adding layer after layer. First, we plot the nationalGenerating the
map border, then we add the federal states boundaries. The scraped locations of the “Feuersteins”

are added with the points() function, as well as the cities’ locations. Finally, we add the
cities’ labels.

R> plot(map_germany)
R> plot(map_germany_laender, add = T)
R> points(coords$coords.x1, coords$coords.x2, pch = 20)
R> points(coords_cities, col = "black", , bg = "grey", pch = 23)
R> text(cities_ger$long, cities_ger$lat, labels = cities_ger$name, pos = 4)
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Figure 15.2 Geographic distribution of “Feuersteins”

The result is provided in Figure 15.2. The distribution of hits reveals some interesting
facts. The largest cluster of Feuersteins lives in the southwestern part of Germany, in the area
near Mannheim.

15.5 Automating the process

Crafting maps from scraped surnames is an example of a task that is likely to be repeated over The benefit of
speical-purpose
scraping
functions

and over again, with only slight modifications. To round off the exercise, we develop a set
of functions which generalize the scraping, parsing, and mapping from above and offer some
useful options to adapt the process (see Section 11.3). In our case, the information for one
name rarely changes over time. It is thus of less interest to repeat the task for one surname.
Instead, we want to be able to quickly produce data and maps for any name.

We decide to split the procedure into three functions: a scraping function, a parsing and
data cleansing function, and a mapping function. While on the one side this means that we
have to call three functions to create a map, these functions are easier to debug and adapt.
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1 namesScrape <- function(phonename, update.file = FALSE) {

2 ## transform phonename

3 phonename <- tolower(phonename)
4 ## load libraries

5 x <- c("stringr", "RCurl", "XML")
6 lapply(x, require, character.only=T)

7 ## create folder

8 dir.create(str_c("phonebook_", phonename), showWarnings = FALSE)
9 filename <- str_c("phonebook_", phonename, "/phonebook_", phonename,

".html")

10 if (file.exists(filename) & update.file == FALSE) {
11 message("Data already scraped; using data from ", file.info(

filename)$mtime)
12 } else {

13 ## retrieve and save html

14 tb <- getForm("http://www.dastelefonbuch.de/",
15 .params = c(kw = phonename, cmd = "search", ao1 = "1", reccount

= "2000"))

16 write(tb, file = filename)
17 }

18 }

Figure 15.3 Generalized R code to scrape entries from www.dastelefonbuch.de

The code in Figures 15.3, 15.4, and 15.5 displays the result of our efforts. It is the condensed
version of the code snippets from above, enriched with some useful arguments for the function
sets namesScrape(), namesParse(), and namesPlot().

Usually, what distinguishes functions from ordinary code is that they (1) generalize a task
and (2) offer flexibility in the form of arguments. It is always the choice of a function author
which parameters to keep variable, that is, easily modifiable by the function user, and which
parameters to fix. For our functions, we have implemented a set of arguments which is listed
in Table 15.1.

The choice of arguments is mainly focused on plotting the results. One could easilyTechnical
considerations think of more options for the scraping process. We could allow more than one request at

once, explicitly obey the robots.txt,6 or define a User-agent header field. With regards to
processing, we could have allowed specifying a directory where data and maps should be
saved. For reasons of brevity, we refrain from such fine-tuning work. However, anybody
should feel free to adapt and expand the function.

Let us consider the details of the code. In the scraping function namesScrape() (Fig-The functions
explained ure 15.3), phonename is the crucial parameter. We use the tolower() function (see Section

8.1) to achieve a consistent naming of files. Data are stored as follows: Using a call to
dir.create(), a directory is created where the HTML file and, if so desired, a PDF ver-
sion of the graph are stored. Scraping is only performed if the file does not exist. This is
checked with the file.exists() function or if the user explicitly requests that the file be
updated (option update.file == TRUE). Otherwise, a message referring to the existing
file is shown and the function loads the old data.

6In our example, it does not seem necessary to mind the robots.txt. We stay on one site and have already
investigated the scraping policy.

http://www.dastelefonbuch.de/
http://www.dastelefonbuch.de
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1 namesParse <- function(phonename) {

2 filename <- str_c("phonebook_", phonename, "/phonebook_", phonename,

".html")

3 ## load libraries

4 x <- c("stringr", "XML")

5 lapply(x, require, character.only = TRUE)
6 ## parse html

7 tb_parse <- htmlParse(filename, encoding = "UTF-8")
8 ## check number of hits

9 xpath <- ’//ul/li/a[contains(text(), "Privat")]’

10 num_results <- xpathSApply(tb_parse, xpath, xmlValue)
11 num_results <- as.numeric(str_extract(num_results, ’[[:digit:]]+’))

12 if (num_results <= 2000) {
13 message(’Gross sample of ’, num_results, ’ entries retrieved.’)

14 }

15 if (num_results > 2000) {
16 message(num_results, ’ hits. Warning: No more than 2,000 entries

will be retrieved’)

17 }
18 ## retrieve zipcodes and names

19 xpath <- ’//div[@class="name"]/following-sibling::div[@class="

popupMenu"]//span[@itemprop="postal-code"]’

20 zipcodes_vec <- xpathSApply(tb_parse, xpath, xmlValue)

21 zipcodes_vec <- str_replace_all(zipcodes_vec, " ", "")
22 xpath <- ’//span[@itemprop="postal-code"]/ancestor::div[@class="

popupMenu"]/preceding-sibling::div[@class="name"]’

23 names_vec <- xpathSApply(tb_parse, xpath, xmlValue)
24 names_vec <- str_replace_all(names_vec, "(\\n|\\t|\\r| {2,})", "")

25 ## build data frame

26 entries_df <- data.frame(plz = as.numeric(zipcodes_vec), name =

names_vec)

27 ## match coordinates to zipcodes
28 plz_df <- read.delim("function_data/plz_de.txt", stringsAsFactors =

FALSE, encoding = "UTF-8")

29 geodf <- merge(entries_df, plz_df, by = "plz", all.x = TRUE)
30 geodf <- geodf[!is.na(geodf$lon),]

31 ## return data frame
32 geodf <- geodf[,!names(geodf) %in% "X.loc_id"]

33 return(geodf)

34 }

Figure 15.4 Generalized R code to parse entries from www.dastelefonbuch.de

In the parsing function namesParse() (Figure 15.4), the information extraction process
remains the same as above, except that the number of results is reported. The function prints a
warning if more than 2000 observations are found. This would mean that not the full sample
of observations is captured. Further, first names are extracted from the names vector in a
rather simplistic manner by removing the surname. The function returns the data frame which
contains geographical and name information for further analysis and/or plotting.

Finally, the plotting function namesPlot() (Figure 15.5) uses the data frame and gen-
erates the map as outlined above. The function allows storing the plot locally as a PDF file.
We also add the option print.names to print the first names of the observations.

http://www.dastelefonbuch.de
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1 namesPlot <- function(geodf, phonename, show.map = TRUE, save.pdf = TRUE,
2 minsize.cities = 450000, add.cities = "",
3 print.names = FALSE) {
4 ## load libraries
5 x <- c("stringr", "maptools", "rgdal", "maps")
6 lapply(x, require, character.only = TRUE)
7 ## prepare coordinates
8 coords <- SpatialPoints(cbind(geodf$lon, geodf$lat))
9 proj4string(coords) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")

10 ## prepare map
11 projection <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")
12 map_germany <- readShapePoly("function_data/DEU_adm0.shp",
13 proj4string = projection)
14 map_germany_laender <- readShapePoly("function_data/DEU_adm1.shp",
15 proj4string = projection)
16 ## add big cities (from maps package)
17 data("world.cities")
18 cities_ger <- subset(world.cities, country.etc == "Germany" &
19 (world.cities$pop > minsize.cities |
20 world.cities$name %in% add.cities))
21 coords_cities <- SpatialPoints(cbind(cities_ger$long, cities_ger$lat))
22 ## produce map
23 i <- 0
24 n <- 1
25 while (i <= n) {
26 if (save.pdf == TRUE & i < n) {
27 pdf(file = str_c("phonebook_", phonename, "/map-",
28 phonename, ".pdf"), height = 10, width = 7.5,
29 family = "URWTimes")
30 }
31 if (show.map == TRUE | save.pdf == TRUE) {
32 par(oma = c(0, 0, 0, 0))
33 par(mar = c(0, 0, 2, 0))
34 par(mfrow = c(1, 1))
35 plot(map_germany)
36 plot(map_germany_laender, add = TRUE)
37 title(main = str_c("People named ", toupper(phonename),
38 " in Germany"))
39 if (print.names == FALSE) {
40 points(coords$coords.x1, coords$coords.x2,
41 col = rgb(10, 10, 10, max = 255),
42 bg = rgb(10, 10, 10, max = 255),
43 pch = 20, cex = 1)
44 } else {
45 text(coords$coords.x1, coords$coords.x2,
46 labels = str_replace_all(geodf$name,
47 ignore.case(phonename), ""), cex = .7)
48 }
49 points(coords_cities, col = "black", , bg = "grey", pch = 23)
50 shadowtext(cities_ger$long,cities_ger$lat,
51 labels = cities_ger$name, pos = 4,
52 col = "black", bg = "white", cex = 1.2)
53 }
54 if (save.pdf == TRUE & i < n) {
55 dev.off()
56 }
57 if (show.map == FALSE) {
58 i <- i + 1
59 }
60 i <- i + 1
61 }
62 }

Figure 15.5 Generalized R code to map entries from www.dastelefonbuch.de

http://www.dastelefonbuch.de
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Table 15.1 Parameters of phone book scraping functions explained

Argument Description

phonename Main argument for namesScrape() and namesParse(); defines
the name for which entries should be retrieved

geodf Main argument for namesPlot; specifies data.frame object which
stores geographical information (object is usually returned by
namesParse())

update.file Logical value indicating whether the data should be scraped again or
if existing data should be used

show.map Logical value indicating whether R should automatically print a map
with the located observations

save.pdf Logical value indicating whether R should save the map as pdf
minsize.cities Numerical value setting the minimal size of cities to be included in

the plot
add.cities Character values defining names of further cities to be added to the

plot
print.names Logical value indicating whether people’s names should be plotted

We test the functions with a set of specifications. First, we look at the distribution of
people named “Gruber,” displaying cities with more than 300,000 inhabitants.

R> namesScrape("Gruber")
R> gruber_df <- namesParse("Gruber", minsize.cities = 300000)
R> namesPlot(gruber_df, "Gruber", save.pdf = FALSE, show.map = FALSE)

Next, we scrape information for people named “Petersen.” We have done this before and
force the scraping function to update the file.

R> namesScrape("Petersen", update.file = TRUE)
R> petersen_df <- namesParse("Petersen")
9605 hits. Warning: No more than 2,000 entries will be retrieved
R> namesPlot(petersen_df, "Petersen", save.pdf = FALSE, show.map = FALSE)

Finally, we look at the distribution of the surname “Dimpfl.” We ask the function to plot
the surnames.

R> namesScrape("Dimpfl")
Data already scraped; using data from 2014-01-16 00:22:03
R> dimpfl_df <- namesParse("Dimpfl")
Gross sample of 109 entries retrieved.
R> namesPlot(dimpfl_df, "Dimpfl", save.pdf = FALSE, show.map = FALSE,
print.names = TRUE)

The output of all three calls is shown in Figure 15.6. We observe that both Gruber and
Dimpfl are clustered in the southern part of Germany, whereas Petersens live predominantly
in the very north. Note that for the Dimpfls we see first names instead of dots.

Finally, we reconsider a technical concern of our scraping approach. Recall that in Section The JavaScript
parts15.2 we noted that the search on www.dastelefonbuch.de also returns a map where the findings

www.dastelefonbuch.de
www.dastelefonbuch.de
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People named GRUBER in Germany
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Figure 15.6 Results of three calls of the namesPlot() function
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are located, which is essentially what we wanted to replicate. We argued that it seems easier
to scrape the entries from the list instead of the JavaScript object. Indeed, the inspection of
the source code of the page does not reveal any of the hits. But this is what we should expect
knowing how dynamic webpages are constructed, that is, by means of AJAX methods (see
Chapter 6). Therefore, we use the Web Developer Tools of our browser to identify the source
of information which is plotted in the map (see Section 6.3). We find that the script initiates
the following GET request:

http://maps.dastelefonbuch.de/DasTelefonbuch/search.html?queryType=
whatOnly&x=1324400.3811369245&y=6699724.7656052755&width=3033021.
2837500004&height=1110477.1474374998&city=&searchTerm=Feuerstein&
shapeName=tb/CA912598AEB53A4D1862D89ACA54C42E_2&minZoomLevel=4&
maxZoomLevel=18&mapPixelWidth=1240&mapPixelHeight=454&order=distance
&maxHits=200

The interesting aspect about this is that this request returns an XML file that contains
essentially the same information that we scraped above along with coordinates that locate the
hits on the map. One could therefore directly target this file in order to scrape the relevant
information. Advantages would be that it is more likely that the XML file’s structure remains
more stable than the front-end page, making the scraper more robust to changes in the page
layout. Second, one could probably skip the step where zip codes and coordinates are matched.
However, some parameters in the related URL seem to further restrict the number of returned
hits, that is, the zoom level and margins of the plotted area. Further, the structure of the XML
document is largely identical with the relevant part of the HTML document we scraped above.
This means that the information extraction step should not be expected to be easier with the
XML document. Nevertheless, it is always worth looking behind the curtains of dynamically
rendered content on webpages, as there may be scenarios in which relevant data can only be
scraped this way.

Summary

The code presented in this chapter is only the first step toward a thorough analysis of the
distribution of family names. There are several issues of data quality that should be considered
when the data are used for scientific purposes. First, there is the limitation of 2000 hits. As
the hits are sorted alphabetically, the truncation of the scraped sample is at least not entirely
random. Further, the data may contain duplicates or “false positives.” Even if one is not
interested in detailed research on the data, there is plenty of room for improvement in the
functions. The point representation of hits could be replaced by density maps to better
visualize regions where names occur frequently.

More general take-away points of this study are the following. When dealing with dynamic
content, it usually pays off to start with a closer look at the source code. One should first get
a basic understanding of how parameters in a GET request work, what their limits are, and if
there are other ways to retrieve content than to posit requests via the input field. Concerning
the use of geo data, the lesson learned is that it is easy to enrich scraped data with geo
information once a geographical identifier is available. Mapping such information in R is
possible, although not always straightforward. Finally, splitting the necessary tasks into a set
of specific functions can be useful and keeps the code manageable.
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Gathering data on mobile phones

In this case study, we gather data on pricing, costumer rating, and sales ranks of a broad
range of mobile phones sold on amazon.com, wondering about the price segments covered
by leading producers of mobile phones. Amazon sells a broad range of products, allowing us
to get comprehensive summary of the products from each of the big mobile phone producers.

The case study makes use of the packages RCurl, XML, and stringr and it features search
page manipulation, link extraction, and page downloads using the RCurl curl handle. After
reading the case study, you should be able to search information in source code and to apply
XPath in real-life problems. Furthermore, within this case study a SQLite database is created
to store data in a consistent way and make it reusable for the next case study.

16.1 Page exploration

16.1.1 Searching mobile phones of a specific brand

Amazon sells all kinds of products. Our first task is therefore to restrict the product search
to certain categories and specific producers. Furthermore, we have to find a way to exclude
accessories or used phones.

Let us have a look at the Amazon website: www.amazon.com. Check out the search barSearching in
departments at the top of the page—see also Figure 16.1. In addition to typing in search keywords, we can

select the department in which we want to search. Do the following:

1. Type Apple into the search bar and press enter.

2. Select Cell Phones & Accessories from the search filter and click Go.

3. Now click on Unlocked Cell Phones in the departments filter section on the left hand
of the page.

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

http://www.amazon.com
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Figure 16.1 Amazon’s search form

4. Type in other producers of mobile phones and compare the resulting URLs—which
parts of the URL change?

5. Try to eliminate parts of the query string in the address of your browser and watch what
happens. Try to find those query strings which are necessary to replicate the search
result and which can be left out.

The URL produced by searching for a specific producer in Unlocked Cell Phones in the
browser looks like this:

http://www.amazon.com/s/ref=nb_sb_noss_1?url=node%3D2407749011&field-
keywords=Apple&rh=n%3A2335752011%2Cn%3A7072561011%2Cn%
3A2407749011%2Ck%3AApple

Trying to delete various parts of the URL we find that the following URL is sufficient to
replicate the search results:

http://www.amazon.com/s/?url=node%3D2407749011&field-keywords=Apple

The field-keywords part of the query string changes the keywords that are searched for,
while url restricts the search results to unlocked cell phones. We found a basic URL that
allows us to perform searches in the department of unlocked mobile phones and that we can
manipulate to get results for different keywords.

Browsing through the search results we find that often phones of other producers are found Brand
restrictionsas well. A brand filter on the left-hand side of the page helps get rid of this noise. There are

two strategies to get the brand-restricted search results: We can either find the rules according
to which the link is generated and generate the link ourselves or start with a non-restricted
search, extract the link for the restricted results, and later on use it to get filtered search results.
We go for the second solution because it is easier to implement. To learn more about how to
identify the link, we use the inspect element tool of our browser on the brand filter:

1 <a href="/s/ref=sr_nr_p_89_0?rh=n%3A2335752011%2Cn%3A7072561011%
2Cn%3A2407749011%2Ck%3AApple%2Cp_89%3AApple&amp;keywords=Apple
&amp;ie=UTF8&amp;qid=1389615535&amp;rnid=2528832011"class="">

2 <img style="margin-right:4px; " height="12" width="12" border="
0" align="top" alt="Apple" src="http://g-ecx.images-amazon.
com/images/G/01/nav2/buttons/checkbox_unselected_enabled._
V192545545_.jpg">

3 <span class="refinementLink">Apple</span>
4 </a>

http://www.amazon.com/s/?url=node%3D2407749011&field-keywords=Apple
http://g-ecx.images-amazon.com/images/G/01/nav2/buttons/checkbox_unselected_enabled._V192545545_.jpg
http://g-ecx.images-amazon.com/images/G/01/nav2/buttons/checkbox_unselected_enabled._V192545545_.jpg
http://g-ecx.images-amazon.com/images/G/01/nav2/buttons/checkbox_unselected_enabled._V192545545_.jpg
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The link we are looking for is part of an <a> node. Unfortunately, the node has no specific
class, but it has a <span> node as child with a very specific class called refinementLink.
The content of the class is equal to the brand we want to restrict the search to—that should
do. Translating this observation into XPath means that we are looking for a <span> node
with class refinementLink for which the content of that node is equal to the keyword we
are searching for. From this <span> node, we want to move one level up to the parent and
select the parent’s href attribute:

1 //span[@class="refinementLink" and text()="Apple"]/../@href

Now we have a way of restricting search results to specific producers, but the resultsSorting

are sorted in the default sorting order. Maybe sorting according to newness of the product
is a better idea. After searching for a product on the Amazon page, we are presented with a
drop-down list directly above the search results. It allows us to select one of several sorting
criteria. Let us choose Newest Arrivals to have new products listed first. After selecting our
preferred sorting, a new element is added to the URL—&sort=date-desc-rank. We can
use it later on to construct an URL that produces sorted results.

Last but not least, we want to download more than the 24 products listed on the firstNext page

results page. To do so, we need to select the next page. A link called Next Page at the bottom
of the page does the trick. Using the inspect element tool of our browser reveals that the link
is marked by a distinctive class attribute—pagnNext:

1 <a title="Next Page" id="pagnNextLink" class="pagnNext" href="/
gp/search/ref=sr_pg_2?rh=n%3A2335752011%2Cn%3A7072561011%2Cn%
3A2407749011%2Ck%3AApple&amp;page=2&amp;sort=salesrank&amp;
keywords=Apple&amp;ie=UTF8&amp;qid=1389618220">

2 <span id="pagnNextString">Next Page</span>
3 <span class="srSprite pagnNextArrow"></span>
4 </a>

We search for <a> nodes with a next page class and extract their href attribute. This is
done using the following XPath expression:

1 //a[@class='pagnNext']/@href

Later on we will use the links gathered in this way to download subsequent search
result pages.

Now we have all the elements set up to run product searches for unlocked mobile phonesThe scraping
strategy of specific brands with a specific sorting. The following steps now have to be translated into

R code:

1. Specify the basic search URL for unlocked mobile phones and download the file.

2. Search and extract the brand filtering link from the source code of the downloaded file.

mailto:Apple"]/../@hrefNowwehaveSortingawayofrestrictingsearchresultstospecificproducers
mailto:Apple"]/../@hrefNowwehaveSortingawayofrestrictingsearchresultstospecificproducers
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3. Append the sorting parameter to the query string of the beforehand extracted link and
download the page.

4. Search and extract the link to next page and download the next page. Repeat this step
as needed.

First, we load the necessary packages. The stringr package serves as the all-purpose tool Downloading
search pagesfor extracting and manipulating text snippets, whereas XML and RCurl are the workhorses for

the scraping tasks. RCurl enables us to download several files via one connection and XML is
indispensable for HTML parsing and information extraction via XPath:

R> library(stringr)
R> library(XML)
R> library(RCurl)

Next we save the base URL for our searches and the first producer we want to search for
in an object:

R> baseURL <- "http://www.amazon.com/s/ref=nb_sb_noss_2?url=node%3
D2407749011&field-keywords="
R> keyword <- "Apple"

Base URL and producer name are combined with a simple call to str_c() and the page
is downloaded and saved in an object:

R> url <- str_c(baseURL, keyword)
R> firstSearchPage <- getURL(url)

To issue XPath queries, we parse the page with htmlParse() and save it in an object:

R> parsedFirstSearchPage <- htmlParse(firstSearchPage)

We specify the XPath expression to extract the link for the brand restricted search results
by pasting the producer name into the XPath expression we outlined before:

R> xpath <- str_c('//span[@class="refinementLink" and text()="',
R> keyword,
R> '"]/../@href')

We use the XPath expression to extract the link and complete it with the base URL of the
server:

R> restSearchPageLink <- xpathApply(parsedFirstSearchPage, xpath)
R> restSearchPageLink <- unlist(as.character(restSearchPageLink))
R> restSearchPageLink <- str_c("http://www.amazon.com", restSearchPageLink)

Finally, we add the desired sorting to the query string of the URL:

R> restSearchPageLink <- str_c(restSearchPageLink, "&sort=date-desc-rank")

http://www.amazon.com
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… and download the page:

R> restrictedSearchPage <- getURL(restSearchPageLink)

This provides us with our first search results page for products restricted to a specific
producer and the Unlocked Cell Phones product department.

Now we want to download further search results pages and store them in a list object.
First, we create the list object and save the first search results page as its the first element.
Next, the XPath expression that extracts the link for the next page is stored as well to make
the code more readable. We create a loop for the first five search pages. In every iteration we
extract the link for the next page and download and store the page in our list object:

R> SearchPages <- list()
R> SearchPages[[1]] <- restrictedSearchPage
R> xpath <- "//a[@class='pagnNext']/@href"
R> for (i in 2:5) {

nextPageLink <- xpathApply(htmlParse(SearchPages[[i - 1]]), xpath)
nextPageLink <- unlist(nextPageLink)
nextPageLink <- str_c("http://www.amazon.com", nextPageLink)
SearchPages[[i]] <- getURL(nextPageLink)

}

16.1.2 Extracting product information

In the previous section, we ran searches to collect our results. In this section, we gather the
necessary data from the results.

The first information to be extracted are the product titles of the search results pages asTitle and
product page

links
well as the links to the product pages. Using the inspect element tool, we find that links and
titles are part of a heading of level three—an <h3> node. Searching the source code for other
headings of level three reveals that they are only used for product titles and links to product
pages:

1 <h3 class="newaps">
2 <a href="http://www.amazon.com/Apple-iPhone-8GB-White-Sprint/

dp/B0074SQUBY/ref=sr_1_1?s=wireless&amp;ie=UTF8&amp;qid=
1389697991&amp;sr=1-1&amp;keywords=Apple">

3 <span class="lrg bold">Apple iPhone 4 8GB (White) - Sprint
4 </span>
5 </a>
6 </h3>

We apply this information and construct two XPath expressions, //h3/a/span for titles
and //h3/a for the links. As we have a whole list of search pages from which we want to
extract data, we wrap the extraction procedure into a function and use lapply() to extract

http://www.amazon.com
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the information from all pages; first the titles:

R> extractTitle <- function(x) {
unlist(xpathApply(htmlParse(x), "//h3/a/span", xmlValue))

}
R> titles <- unlist(lapply(SearchPages, extractTitle))
R> titles[1:3]
[1] "Apple iPhone 4 16GB (Black) - CDMA Verizon"
[2] "Apple iPhone 5s, Gold 16GB (Unlocked)"
[3] "Apple iPhone 4 16GB (Black) - AT&T"

then the links:

R> extractLink <- function(x) {
unlist(xpathApply(htmlParse(x), "//h3/a", xmlAttrs))

}
R> links <- unlist(lapply(SearchPages, extractLink))
R> links[1:3]
[1] "http://www.amazon.com/Apple-iPhone-16GB-Black-Verizon/dp/
B004ZLV5UE/ref=sr_1_1/181-2441251-9365168?s=wireless&ie=UTF8&qid=
1391539292&sr=1-1&keywords=Apple"
[2] "http://www.amazon.com/Apple-iPhone-5s-Gold-Unlocked/dp/
B00F3J4E5U/ref=sr_1_2/181-2441251-9365168?s=wireless&ie=UTF8&qid=
1391539292&sr=1-2&keywords=Apple"
[3] "http://www.amazon.com/Apple-iPhone-16GB-Black-AT/dp/
B004ZLV5PE/ref=sr_1_3/181-2441251-9365168?s=wireless&ie=UTF8&qid=
1391539292&sr=1-3&keywords=Apple"

For the retrieval of price, costumer rating, and sales rank, the search pages’ structure is Retrieving
product pageshard to exploit or simply does not provide the information we seek. Therefore, we first have

to download the individual product pages and extract the information from there.
To avoid establishing new connections for all the downloads—which is time consuming—

we create a handle that is reused for every call to getURL(). Furthermore, we want to give
the server a break every 10 downloads, so we split our link vector into chunks of size 10 and
loop over the list of chunks.1 In every loop, we request 10 pages and append them to the list
object we created for storage and move to the next chunk. Last but not least we parse all the
pages and store them in another list object:

R> chunk <- function(x, n) split(x, ceiling(seq_along(x)/n))
R> Links <- chunk(links, 10)
R> curl <- getCurlHandle()
R> ProductPages <- list()
R> for (i in 1:length(Links)) {

ProductPages <- c(ProductPages, getURL(Links[[i]]))
Sys.sleep(2)

}
R> ParsedProductPages <- lapply(ProductPages, htmlParse)

1See the advice at http://stackoverflow.com/a/3321659/1144966 for several chunking solutions.

http://www.amazon.com/Apple-iPhone-16GB-Black-Verizon/dp/B004ZLV5UE/ref=sr_1_1/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-1&key
http://www.amazon.com/Apple-iPhone-16GB-Black-Verizon/dp/B004ZLV5UE/ref=sr_1_1/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-1&key
http://www.amazon.com/Apple-iPhone-16GB-Black-Verizon/dp/B004ZLV5UE/ref=sr_1_1/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-1&key
http://www.amazon.com/Apple-iPhone-5s-Gold-Unlocked/dp/B00F3J4E5U/ref=sr_1_2/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-2&keywo
http://www.amazon.com/Apple-iPhone-5s-Gold-Unlocked/dp/B00F3J4E5U/ref=sr_1_2/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-2&keywo
http://www.amazon.com/Apple-iPhone-5s-Gold-Unlocked/dp/B00F3J4E5U/ref=sr_1_2/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-2&keywo
http://www.amazon.com/Apple-iPhone-16GB-Black-AT/dp/B004ZLV5PE/ref=sr_1_3/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-3&keywords
http://www.amazon.com/Apple-iPhone-16GB-Black-AT/dp/B004ZLV5PE/ref=sr_1_3/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-3&keywords
http://www.amazon.com/Apple-iPhone-16GB-Black-AT/dp/B004ZLV5PE/ref=sr_1_3/181-2441251-9365168?s=wireless&ie=UTF8&qid=1391539292&sr=1-3&keywords
http://stackoverflow.com/a/3321659/1144966
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Having gathered all product pages, we move on to extracting the product price. Often,Extracting
prices several prices are displayed on a product page: list prices, prices for new items, prices for used

or refurbished items, and prices for products that are similar to the one selected. Using the
inspect elements tool on the price directly under the product title, we find that it is enclosed
by a <span> node with id actualPriceValue. Translated to an XPath expression, it reads:
//span[@id="actualPriceValue"]. One problem is that some items are not in stock
anymore and the call to xpathApply() would return NULL for those items. To ensure that
for these products we record a price of NA instead of NULL we check for the length of the
xpathApply() result. If the length of the result is zero we replace it with NA. Below you
find a source code snippet containing the price information we seek as well as the R code to
extract the information:

1 <span id="actualPriceValue"><b class="priceLarge">$210.00</b></span>

R> extractPrice <- function(x) {
x <- xpathApply(x, "//span[@id=\"actualPriceValue\"]", xmlValue)
x <- unlist(x)
x <- str_extract(x, "[[:digit:]]*\\.[[:digit:]]*")
if (length(x) == 0)

x <- NA
return(as.numeric(x))

}
R> prices <- unlist(lapply(ParsedProductPages, extractPrice))
R> names(prices) <- NULL
R> prices[1:10]
[1] 210.0 710.0 240.0 319.0 354.9 208.9 239.9 359.9 420.0 565.1

This seems to work. Extracting the average customer ratings—ranging from one star toExtracting
customer

ratings
five—works similar to the procedure we used for the prices. Directly under the product title
you find a series of five stars that are filled according to the average costumer rating. This
graphical representation is enclosed by a <span> node that contains the average rating in
its title attribute. We extract the information with an XPath expression: //span[contains
(@title,' out of 5 stars')]], and a call to xmlAttr() within xpathApply(). The
rating is then extracted from the title with a regular expression:

1 <span class="swSprite s_star_4_0 " title="3.6 out of 5 stars">
2 <span>3.8 out of 5 stars</span>
3 </span>

R> extractStar <- function(x) {
x <- xpathApply(x,"//span[contains(@title,' out of 5 stars')]",

xmlValue)
if (length(x) == 0) {

x <- NA
} else {
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x <- x[[1]]
x <- str_extract(x, "[[:digit:]]\\.?[[:digit:]]?")

}
return(as.numeric(x))

}
R> stars <- unlist(lapply(ParsedProductPages, extractStar))
R> names(stars) <- NULL
R> stars[1:10]
[1] 3.6 3.5 3.7 3.2 3.3 3.7 3.8 3.8 3.5 4.0

Further down on the page we find a section called Product Details. In this section, further Extracting
sales ranksinformation like the Amazon Standard Identification Number (ASIN), the product model, and

the sales rank on Amazon within the category of Cell Phones & Accessories are shown as
separate items. Let us start with extracting the sales rank which is enclosed in a <li> node of
id SalesRank. We extract the node with XPath and collect the rank with a regular expression
that looks for digits after a hash tag character and a second one that deletes everything which
is not a digit:

1 <li id="SalesRank">
2 <b>Amazon Best Sellers Rank:</b> #423 in Cell Phones &

Accessories (<a href="http://www.amazon.com/gp/bestsellers/
wireless/ref=pd_dp_ts_cps_1">See Top 100 in Cell Phones &
Accessories</a>)

3 </li>

R> extractRank <- function(x) {
x <- unlist(xpathApply(x, "//li[@id='SalesRank']", xmlValue))
x <- str_extract(x, "#.*?in")
x <- str_replace_all(x, "[, in#]", "")
if (length(x) == 0)

x <- NA
return(as.numeric(x))

}
R> ranks <- unlist(lapply(ParsedProductPages, extractRank))
R> names(ranks) <- NULL
R> ranks[1:10]
[1] 423 502 542 617 789 885 1277 1380 1268 1567

Next, we extract the ASIN from the product page. This information will help us later Extracting the
ASINon to get rid of duplicates and to identify products. The ASIN is found in a list item that is

unfortunately not identified with an id attribute or a specific class:

1 <li><b>ASIN:</b> B00FBSOXGI</li>

Nevertheless, we can specify its position as XPath expression by searching for a <b> node
that has a <li> node as parent and contains text of pattern ASIN. From this node, we move

http://www.amazon.com/gp/bestsellers/wireless/ref=pd_dp_ts_cps_1
http://www.amazon.com/gp/bestsellers/wireless/ref=pd_dp_ts_cps_1
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one level up the tree and select the text of the parent:

1 //li/b[contains(text(), 'ASIN')]/../text()

R> extractASIN <- function(x) {
x <- xpathApply(x, "//li/b[contains(text(), 'ASIN')]/../text()",

xmlValue)
x <- str_trim(unlist(x))
if (length(x) == 0)

x <- NA
return(x)

}
R> asins <- unlist(lapply(ParsedProductPages, extractASIN))
R> names(asins) <- NULL
R> asins[1:5]
[1] "B004ZLV5UE" "B00F3J4E5U" "B004ZLV5PE" "B00598BY6W" "B005SSB0YO"

Finally, we extract the product model following the same strategy as before:Extracting the
product model

1 <li><b>Item model number:</b> MC637LL/A</li>

R> extractModel <- function(x) {
xpath <- "//li/b[contains(text(), 'Item model number')]/../text()"
x <- xpathApply(x, xpath, xmlValue)
x <- str_trim(unlist(x))
if (length(x) == 0)

x <- NA
return(x)

}
R> models <- unlist(lapply(ParsedProductPages, extractModel))
R> models[1:5]
[1] " A1349" " 5s" " MC608LL/A" " iPhone 4" " MC924LL/A"

16.2 Scraping procedure

16.2.1 Retrieving data on several producers

Above we explored our data source step by step and developed solutions for various data
collection and extraction problems. So far, we only used one producer as an example and
have not gathered the data for others. To not have to repeat the whole code above for the
other producers as well, we have to put its solutions into functions for convenient reuse. The
functions can be loaded into our R-session via

R> source("amazonScraperFunctions.r")
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After sourcing the functions, we set three global options: forceDownload is part of every
download function and setting it to TRUE will cause the the functions to redownload all pages
while setting it to FALSE will cause them to check whether or not the files to be downloaded
exist already and should not be downloaded again. KeyWords is a vector of producer names
that is also reused throughout the functions and defines for which producers mobile phone
product details should be collected. The n parameter stores a single number that is used to
determine how many search result pages should be gathered. With each search results page,
we gain 24 further links to product pages:

R> forceDownload <- FALSE
R> KeyWords <- c("Apple", "BlackBerry", "HTC", "LG", "Motorola",
"Nokia", "Samsung")
R> n <- 5

After having set up our global options, we can use the sourced functions to collect search
and product pages and extract the information we seek. The steps we take match those carved
out in the exploration section before. We start with collecting search pages:

R> SearchPageList <- NULL
R> for (i in seq_along(KeyWords)) {

message(KeyWords[i])
SearchPageList <- c(SearchPageList, getSearchPages(KeyWords[i],

n, forceDownload))
}

… extract titles and product page links:

R> titles <- extractTitles(SearchPageList)
R> links <- extractLinks(SearchPageList)

… download product pages:

R> brands <- rep(KeyWords, each = n * 24)
R> productPages <- getProductPages(links, brands, forceDownload)

… and extract further data:

R> stars <- extractStars(productPages)
R> asins <- extractASINs(productPages)
R> models <- extractModels(productPages)
R> ranks <- extractRanks(productPages)
R> prices <- extractPrices(productPages)

16.2.2 Data cleansing

Although we have already done a lot of data cleansing along the way—trim leading and
trailing spaces from strings, extract digits, and transform them to type numeric, there are
still some tasks to do before we can begin to analyze our data. First of all, we recast the
information as a data frame and then try to get rid of duplicated products as best as possible.
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The first task is simple, as the information has already been saved in vectors of the same
length with NAs where no information was collected. In addition to combining the information
gathered so far, we add the names of the downloaded product pages and use their last change
attribute (file.info(fname)$ctime) to store the time when the data were retrieved:

R> fnames <- str_c(brands, " ProductPage ", seq_along(brands), ".html")
R> phones <- data.frame(brands, prices, stars, ranks,
R> asins, models, titles, links,
R> fnames,
R> timestamp = file.info(
R> str_c("dataFull/", fnames)
R> )$ctime,
R> stringsAsFactors = FALSE)

Next, we only keep complete observations and exclude all observations with duplicated
ASINs, as this is the easiest way to make sure that we have no redundant data:

R> phones <- phones[complete.cases(phones), ]
R> phones <- phones[!duplicated(phones$asins), ]

16.3 Graphical analysis

To get an overview of the distribution of prices, costumer ratings, and sales ranks, we build
a figure containing several plots that show all three variables. We have seven producers and
also want to include an All category. Therefore, we specify a plotting function once and reuse
it to assemble a plot representing information in all three categories. The main idea is to use
transparent markers that allow for different shades of gray, resulting in black regions, where
products bulk together, and light or white regions, where products are sparse or non-existent.
Because sales ranks are only of ordinal scale, we have a hard time visualizing them directly.
For every plot, we take those five products that rank highest in sales and visualize them
differently—white dots on dark background with horizontal and vertical lines extending to
the borders of each plot.

The plot function accepts a data frame as input and consequently starts with extracting
our three variables from it—allowing a data frame as input serves convenient reuse on subsets
of the data without repeating the subset three times. Next, we do a dummy plot that has
the right range for x and y but do not plot any data. After that we add a modified x-axis
and guiding lines. Thereafter comes the plotting of data so that the guiding lines stay in the
background. The reason for this procedure is that we want to add guidelines but do not want
to overplot the actual data—hence, we do a dummy plot, plot the guidelines, and thereafter
plot the actual data. As color of the points we choose black but with an alpha value of 0.2—
rgb(0,0,0,0.2). The rgb() function allows us to specify colors by combining red, green,
and blue in different intensities. The alpha value which is the fourth parameter defines how
opaque the resulting color is and therewith allows for transparent plotting of markers. Last
but not least, we construct an index for the five lowest numbers in Ranks—the highest sales
ranks—and plot vertical and horizontal lines at their coordinates as well as small white points
to distinguish them from the other products.
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R> plotResults <- function(X, title="") {
Prices <- X$prices
Stars <- X$stars
Ranks <- X$ranks
plot(Prices, Stars, pch = 20, cex=10, col = "white",

ylim = c(1,5), xlim = c(0, 1000), main = title,
cex.main = 2, cex.axis = 2, xaxt = "n")

axis(1, at=c(0, 500, 1000), labels = c(0, 500, 1000), cex.axis=2)
# add guides

abline(v=seq(0, 1000, 100), col = "grey")
abline(h=seq(0, 5, 1), col = "grey")

# adding data
points(Prices, Stars, col=rgb(0, 0, 0, 0.2), pch = 20, cex = 7)

# mark 5 highest values
index <- order(Ranks)[1:5]
abline(v = Prices[index], col="black")
abline(h = Stars[index], col="black")
points(Prices[index], Stars[index], col = rgb(1, 1,1,1), pch = 20)

}

The result of our efforts is displayed in Figure 16.2.
With regard to costumer satisfaction, it is most interesting that there are differences not in

the level but in the range of costumer ratings. For example, for Apple products, costumers seem
to be coherently satisfied, whereas for Motorola products the range is much higher, suggesting
that quality and/or feature appealing does vary greatly in Motorola’s product palette. Another
result is that best sellers are usually in the segments of high costumer satisfaction except for
Nokia, who manage to have one of their best selling models at medium costumer satisfaction
levels.
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Figure 16.2 Prices, costumer rating, and best seller positioning of mobile phones. Black
dots mark placement of individual products and white dots with horizontal and vertical lines
mark the five best selling items per plot
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16.4 Data storage

16.4.1 General considerations

At this stage, we might end the case study, having gathered all data needed and drawn our
conclusions. Or we might think about future applications and further extensions. Maybe we
want to track the development of prices and costumer ratings over time and repeat the data
gathering process. Maybe we want to add further product pages or simply gather data for other
producers as well. Our database grows larger and larger, gets more complex and someday we
realize that we do not have a clue how all the .Rdata and HTML files fit together. Maybe we
should have built for the future a database tailored to our needs?

In this section, we will build up an SQLite database that captures the data we have extracted
so far and leaves room to add further information. These further information will be product
reviews that are collected, stored, and analyzed in the next case study. At the end, we will
have three functions that can be called as needed: one for creating the database and defining
its structure, one for resetting everything and start anew, and one for storing gathered data
within the database. Let us start with loading the necessary packages

R> library(RSQLite)
R> library(stringr)

… and establishing a connection to the database. Note that establishing a connection to aConnecting to a
database not existing database with RSQLite means that the package creates a new one with the name

supplied in dbConnect()—here amazonProductInfo.db:

R> sqlite <- dbDriver("SQLite")
R> con <- dbConnect(sqlite, "amazonProductInfo.db")

Having established a connection to the database, thinking about the design of the database
before storing everything in one table probably is a good idea to prevent having problems
later on. We first have a look at our data again to recap what we have got:

R> names(phones)
[1] "brands" "prices" "stars" "ranks" "asins"
[6] "models" "titles" "links" "fnames" "timestamp"
R> phones[1:3, 1:7]

brands prices stars ranks asins models
1 Apple 210 3.6 423 B004ZLV5UE A1349
2 Apple 710 3.5 502 B00F3J4E5U 5s
3 Apple 240 3.7 542 B004ZLV5PE MC608LL/A

titles
1 Apple iPhone 4 16GB (Black) - CDMA Verizon
2 Apple iPhone 5s, Gold 16GB (Unlocked)
3 Apple iPhone 4 16GB (Black) - AT&T

So far our effort was on gathering data on phone models and all the data were stored inWhy databases
are useful one table. Having all the data in one table most of the time is convenient when analyzing and

plotting data within a statistics software, but needlessly complicates data management on the
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long run. Imagine that we download another set of product information. We could simply
append those information to the already existing data frame. But over time model names and
ASINs would pile up redundantly—already it takes more than 600 rows to store only seven
producer names. Another fact to consider is the planned extension of the data collection.
When we add reviews to our data, there are usually several reviews for one product inflating
the data even more. If extending the collection further with other still unknown data, further
problems in regard to redundancy and mapping may arise. To forestall these and similar
problems, it is best to split the data into several tables—see Section 7.2.2 for a discussion of
standard procedures to split data in databases.

16.4.2 Table definitions for storage

As our data are on phone models, we should start building a table that stores unique identifiers
of phone models. The ASIN already provides such an identifier, so we build a table that only
stores these strings and later on link all other data to that variable by using foreign keys.
Another feature we might want to add is the UNIQUE clause which ensures that no duplicates
enter the column, as it might happen that we gather new data on already existing phone
models—so we try to add already existing ASINs into the database which results in an
error—we use ON CONFLICT IGNORE to tell the database to do not issue an error but simply
ignore the query if it violates the unique constraint. The if(!dbExistsTable(...)) part
also is thought to prevent errors—if the table exists already, the function does not send the
query:

R> createPhones <- function(con){
if(!dbExistsTable(con,"phones")){
sql <- "CREATE TABLE phones (

id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
asin CHAR,
UNIQUE(asin) ON CONFLICT IGNORE);"

dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

We set up similar functions createProducers(), createModels(), and cre-
ateLinks() to define tables for producers, models, and links. They can be inspected in
the supplementary materials to this chapter.

Having set up functions for defining tables for ASINs, producers, models, and links that SQL query:
items tableensure no redundant information is added to them, we now proceed with the table that should

store product specific data. Within the table price, average costumer rating, rank in the selling
list, title of the product page, the name of the downloaded file, and a time stamp should be
saved. Adding a time stamp column to the table serves to allow for downloading information
on the same phone model multiple times while allowing to discriminate between the time the
information was received. To link the rows of this table to the other information, we further-
more add id columns for the phones, producers, models, and links tables. The ON UPDATE
CASCADE part of the foreign key definition ensures that changes to the primary keys are passed
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through to the foreign keys. Also, we use a unique clause again to make sure no duplicated
rows are included:

R> createItems <- function(con){
if(!dbExistsTable(con,"items")){

sql <- "CREATE TABLE items (
id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
price REAL,
stars REAL,
rank INTEGER,
title TEXT,
fname TEXT,
time TEXT,
phones_id INTEGER NOT NULL REFERENCES phones(id)

ON UPDATE CASCADE,
producers_id INTEGER NOT NULL REFERENCES producers(id)

ON UPDATE CASCADE,
models_id INTEGER NOT NULL REFERENCES models(id)

ON UPDATE CASCADE,
links_id INTEGER NOT NULL REFERENCES links(id)

ON UPDATE CASCADE,
UNIQUE(
price, stars, rank, time,
phones_id, producers_id, models_id, links_id

) ON CONFLICT IGNORE);"
dbGetQuery(con, sql)

}else{
message("table already exists")

}
}

… now we have built tables for all data gathered so far.

16.4.3 Table definitions for future storage

The next tables are thought to store review information that will be collected in the next
case study. We start with a table for storing review information with columns for ASIN, the
number of stars given by the reviewer, the number of people who found a review useful or
not useful and the sum of both, the date the review was written, the title of the review, and of
course the actual text:

R> createReviews <- function(con){
if(!dbExistsTable(con,"reviews")){

sql <- "CREATE TABLE reviews (
id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
asin TEXT,
stars INTEGER,
helpfulyes INTEGER,
helpfulno INTEGER,
helpfulsum INTEGER,
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date TEXT,
title TEXT,
text TEXT,
UNIQUE(asin, stars, date, title, text) ON CONFLICT IGNORE);"

dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

An additional table stores meta information of all reviews on one model with columns for
ASIN, the number of times one star was assigned to the product up to the number of times
five stars were assigned:

R> createReviewsMeta <- function(con){
if(!dbExistsTable(con,"reviewsMeta")){

sql <- "CREATE TABLE reviewsMeta (
id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
asin TEXT,
one INTEGER,
two INTEGER,
three INTEGER,
four INTEGER,
five INTEGER,
UNIQUE(asin) ON CONFLICT REPLACE);"

dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

16.4.4 View definitions for convenient data access

While the tables created are good for storing data on models and model reviews consistently
and efficient, for retrieving data we probably would like to have something more convenient
that automatically puts together the data needed for a specific purpose. Therefore, we create
another set of virtual tables called views in database speak. The first view is designed for
providing all information on items and therefore brings together information of the items,
producers, models, as well as the phones table by making use of JOIN:

R> createViewItemData <- function(con){
if(!dbExistsTable(con,"ItemData")){

sql <- "CREATE VIEW ItemData AS
SELECT items.id as itemid, price as itemprice,
stars as itemstars, rank as itemrank,
title as itemtitle, model, phones.asin as asin,
producer from items
JOIN producers on producers_id = producers.id
JOIN models on models_id = models.id
Join phones on phones_id = phones.id;"
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dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

The next view provides data on reviews:

R> createViewReviewData <- function(con){
if(!dbExistsTable(con,"ReviewData")){

sql <- "CREATE VIEW ReviewData AS
SELECT phones.asin, reviews.id as reviewid,
stars as reviewstars, one as allrev_onestar,
two as allrev_twostar, three as allrev_threestar,
four as allrev_fourstar, five as allrev_fivestar,
helpfulyes, helpfulno, helpfulsum, date as reviewdate,
title as reviewtitle, text as reviewtext
FROM phones
JOIN reviews on phones.asin=reviews.asin
JOIN reviewsMeta on phones.asin=reviewsMeta.asin;"

dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

Last but not least, we create a view that joins all data we have in one big table by joining
together ReviewData and ItemData:

R> createViewAllData <- function(con){
if(!dbExistsTable(con,"AllData")){

sql <- "CREATE VIEW AllData AS
SELECT * FROM ItemData
JOIN ReviewData on ItemData.asin = ReviewData.asin"

dbGetQuery(con, sql)
}else{

message("table already exists")
}

}

Having created functions for defining tables on product data and review data as well asWrapper
functions for

table definition
and deletion

for creating views for convenient data retrieval, we can wrap all these functions up in one
function called defineDatabase() and execute it:

R> defineDatabase <- function(con){
createPhones(con)
createProducers(con)
createModels(con)
createLinks(con)
createItems(con)
createReviews(con)
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createReviewsMeta(con)
createViewItemData(con)
createViewReviewData(con)
createViewAllData(con)

}

To be able to reverse the process, we also define a function called dropAll() that asks
the database which data tables and views exist and sends DROP TABLE and DROP VIEW
statements, respectively, to the database to delete them. Note however that this function
should be handled with care because calling it will result in loosing all data:

R> dropAll <- function(con){
sql <- "select 'drop table ' || name || ';' from sqlite_master
where type = 'table';"
tmp <- grep("sqlite_sequence",unlist(dbGetQuery(con,sql)),

value=T,invert=T)
for(i in seq_along(tmp)) dbGetQuery(con,tmp[i])
sql <- "select 'drop view ' || name || ';' from sqlite_master
where type = 'view';"
tmp <- grep("sqlite_sequence",unlist(dbGetQuery(con,sql)),

value=T,invert=T)
for(i in seq_along(tmp)) dbGetQuery(con,tmp[i])

}

16.4.5 Functions for storing data

So far we have build functions that define the structure of the database, but no data at all was
added to the database. In the following, we will define functions that take our phones data
(object phones) as argument and store bits of it in the right place. Later on we will put them
all in a wrapper function that takes care of creating the database if necessary, defining all
tables if necessary and adequately storing the data we pass to it.

Let us start with a function for storing ASINs. Although we could simply send all ASINs
to the database and let it handle the rest—remember that the phones table was designed to
ignore attempts to insert duplicated ASINs, it is faster to first ask which ASINs are stored
within the database already and than only to add those that are missing. For each ASIN still
missing in the database, we create a SQL statement for adding the new ASIN to the database
and then send it:

R> addASINs <- function(x, con){
message("adding phones ...")
asinsInDB <- unlist(dbReadTable(con,"phones")["asin"])
asinsToAdd <- unique(x$asins[!(x$asins %in% asinsInDB)])
for(i in seq_along(asinsToAdd)){

sql <- str_c("INSERT INTO phones (asin) VALUES ('",
asinsToAdd[i], "') ;")

dbGetQuery(con, sql)
}

}
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The functions for adding producers (addProducers()), models (addModels()), and
links (addLinks()) follow the very same logic and are documented in the supplementary
materials to this chapter.

The next function adds the remaining, product specific data to the database. First, we read
in data from the phones, producers, models, and links tables to get up to date ids. Thereafter,
we start cycling through all rows of phones extracting information from the price, stars, rank,
title, fname, and time stamp variables. The next four lines match the ASIN of the current data
row to those stored in the phones table; the current producer to those stored in producers; the
current model to those stored in models and the current link to those stored in links for each
retrieving the corresponding id. Then all these information are combined to an SQL statement
that asks to add the data to the items table in the database. Last but not least the query is sent
to the database:

R> addItems <- function(x, con){
message("adding items ... ")

# get fresh infos from db
Phones <- dbReadTable(con, "phones")
Producers <- dbReadTable(con, "producers")
Models <- dbReadTable(con, "models")
Links <- dbReadTable(con, "links")

for(i in seq_along(x[,1])){
priceDB <- x$price[i]
starsDB <- x$stars[i]
rankDB <- x$rank[i]
titleDB <- str_replace(x$titles[i], "'", "''")
fnameDB <- x$fname[i]
timeDB <- x$timestamp[i]
phonesDB <- Phones$id[Phones$asin %in% x$asin[i]]
producersDB <- Producers$id[Producers$producer %in% x$brand[i]]
modelsDB <- Models$id[Models$model %in% x$model[i]]
linksDB <- Links$id[Links$link %in% x$link[i]]
sql <- str_c(" INSERT INTO items

(price, stars, rank, title, fname, time,
phones_id, producers_id, models_id, links_id)
VALUES
('",
str_c( priceDB, starsDB, rankDB,

titleDB, fnameDB, timeDB,
phonesDB, producersDB, modelsDB, linksDB,
sep="', '"),

"'); ")
dbGetQuery(con, sql)

}
}

As announced, we finally define a wrapper function that establishes a connection to the
database, defines the table structure if not already done before and adds the data and when
finished closes the connection to the database again:

R> saveInDatabase <- function(x, DBname){
sqlite <- dbDriver("SQLite")
con <- dbConnect(sqlite, DBname)
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defineDatabase(con)
addASINs(x, con)
addProducers(x, con)
addModels(x, con)
addLinks(x, con)
addItems(x, con)
dbDisconnect(con)

}

16.4.6 Data storage and inspection

Now we can write our data into the database:

R> saveInDatabase(phones, "amazonProductInfo.db")

… establish a connection to it:

R> sqlite <- dbDriver("SQLite")
R> con <- dbConnect(sqlite, "amazonProductInfo.db")

… and test if the data indeed has been saved correctly:

R> res <- dbReadTable(con, "phones")
R> dim(res)
[1] 623 2
R> res[1:3, ]

id asin
1 365 B0009FCAJA
2 390 B000CQVMYK
3 410 B000E95OAI
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Analyzing sentiments
of product reviews

17.1 Introduction

In the previous chapter, we have assembled several pieces of structured information on
a collection of mobile phones from the Amazon website. We have studied how structural
features of the phones, most importantly the cost of the phones, are related to consumer
ratings. There is one important source of information on the phones we have disregarded so
far—the textual consumer ratings. In this chapter, we investigate whether we can make use
of the product reviews to estimate the consumer ratings. This might seem a fairly academic
exercise, as we have access to more structured information on consumer ratings in the form
of stars. Nevertheless, there are numerous circumstances where such structured information
on consumer reviews is not available. If we can successfully recover consumer ratings from
the mere texts, we have a powerful tool at our disposal to collect consumer sentiment in other
applications.

In fact, while structured consumer ratings provide extremely useful feedback for pro-
ducers, the information in textual reviews can be a lot more detailed. Consider the case of
a product review for a mobile phone like we investigate in the present application. Besides
reviewing the product itself, consumers make more detailed arguments on the specific product
parts that they like or dislike and where they find fault with them. Researchers have made
some effort to collect this more specific review (Meng 2012; Mukherjee and Bhattacharyya
2012). In this exercise, our goal is more humble. We investigate whether we are able to
estimate the star that a reviewer has given to a product based on the textual review. To do so,
we apply the text mining functionality that was introduced in Chapter 10.

We start out in the next section by collecting the reviews from the webpage. We download
the files and store them in the previously created database. In the analytical part of the chapter,
we first assess the possibility of using a dictionary-based approach to classify the reviews as

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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positive or negative. There are several English dictionaries where researchers have classified
terms as signaling either positive or negative sentiment. We check whether the appearance of
such signals in the reviews suffices to correctly classify the opinion of the review. In a final
step, we use the text mining techniques to label the reviews based on the stars that reviewers
have given. We train the algorithms based on half of the data, estimate the second half, and
compare our estimates with the star reviews.

17.2 Collecting the data

As a first step we collect the additional data—the textual product reviews—from the Amazon
website. We establish a connection to the database that we generated in the previous chapter.
The database contains information on the mobile phones, the price and structural features,
as well as the average number of stars that were assigned by the users. We download the
individual reviews from the website, extract the textual reviews and the associated stars from
the source code, and add the information to the database in a new table.

17.2.1 Downloading the files

Let us begin by loading the necessary packages for the operations in this section. For the
scraping and extraction tasks, we need stringr, XML, and RCurl. We also load the RSQLite
package to get the information in the database from the previous chapter and add the new
information to the existing database.

R> library(stringr)
R> library(XML)
R> library(RCurl)
R> library(RSQLite)

We establish a connection to the database using the dbDriver() and dbConnect() Establishing a
database
connection

functions:

R> sqlite <- dbDriver("SQLite")
R> con <- dbConnect(sqlite, "amazonProductInfo.db")

Now we can get data from the database using dbGetQuery(). What we need are the Tapping the
databasephones’ ASINs (Amazon Standard Identification Numbers) and the name of one of the phones’

product pages. As the information is stored in different tables of the database, we make use
of JOIN to merge them, where id from the phones table is matched with phones_id from
the items table.

R> sql <- "SELECT phones.asin, items.fname FROM phones
R> JOIN items
R> ON phones.id=phones_id;"
R> phonesData <- dbGetQuery(con,sql)
R> head(phonesData)

asin fname
1 B004ZLV5UE Apple ProductPage 1.html
2 B00F3J4E5U Apple ProductPage 2.html
3 B004ZLV5PE Apple ProductPage 3.html



418 AUTOMATED DATA COLLECTION WITH R

4 B00598BY6W Apple ProductPage 4.html
5 B005SSB0YO Apple ProductPage 5.html
6 B004ZLYBQ4 Apple ProductPage 6.html

We create the folder dataReviews via dir.create(), if it does not exist already, to store
the downloaded review pages and change the working directory to that folder.

R> if(!file.exists("dataReviews")) dir.create("dataReviews")
R> setwd("dataReviews")

The links to the review pages were part of the product pages we downloaded in the previousParsing
product pages case study and were saved in dataFull. Therefore, we read in those files via htmlParse()

to be able to extract the review page links.

R> productPageFiles <- str_c("../dataFull/", phonesData$fname)
R> productPages <- lapply(productPageFiles, htmlParse)

We write a function that collects links to reviews from the phones’ pages. This is done byExtracting
reviews looking for all <a> nodes that contain the text customer review. We generously discard

minor errors, as there are lots more reviews than we can possibly hope to analyze in this
application. Specifically, we discard results of length 0 and give them a value of NA and we do
the same for links that create new reviews. We also discard the names of the resulting vector
and return the results.

R> extractReviewLinks <- function(x){
R> x <- xpathApply(x, "//a[contains(text(), 'customer review')]/@href",
R> as.character)[[1]]
R> if(length(x) == 0) x <- NA
R> if(str_detect(x, "create-review") & !is.na(x)) x <- NA
R> names(x) <- NULL
R> x
R> }

We apply our extractReviewLinks() function to all of the parsed phones’ product
pages and unlist the result to create a vector of links to the reviews.

R> reviewLinks <- unlist(lapply(productPages, extractReviewLinks))

To be able to manually inspect the pages where the review link is missing, we print the
names of those product pages to our console. It turns out they are all products where no single
review has been written.

R> noLink <- NULL
R> for(i in seq_along(reviewLinks)){

if(is.na(reviewLinks[i])){
noLink <- rbind(noLink, productPageFiles[i])

}
}
R> noLink[1:3]
[1] "../dataFull/Apple ProductPage 81.html"
[2] "../dataFull/Apple ProductPage 99.html"
[3] "../dataFull/Apple ProductPage 102.html"
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Finally, we add the host—http://www.amazon.com—to the links that we collected.
We discard the host where it is already part of the link and add it to all the links, except in
those cases where we set the entry to NA.

R> reviewLinks <- str_replace(reviewLinks, "http://www.amazon.com", "")
R> reviewLinks <- ifelse(is.na(reviewLinks), NA,
R> str_c("http://www.amazon.com", reviewLinks))

Now we are ready to download the first batch of review pages. We collect the pages by Download

creating a file name that consists of the phones’ ASIN and an index of 0001. If the file does
not already exist on the hard drive and the entry is not missing in the link vector we download
the file, wrapping the function in a simple try() command. That way, if one download fails
it will not stop running the rest of the loop. We add a random waiting period to our downloads
to mimic human behavior and avoid being returned an error from amazon.com. We also add
two status messages to provide information on the progress of the download.

R> N <- length(reviewLinks)
R> for(i in seq_along(reviewLinks)){
R> # file name
R> fname <- str_c(phonesData[i, "asin"], "_0001.html")
R> # download
R> if(!file.exists(fname) & !is.na(reviewLinks[i])){
R> message("downloading")
R> try(download.file(reviewLinks[i], fname))
R> # sleep
R> sleep <- abs(rnorm(1)) + runif(1, 0, .25)
R> message("I have done ", i, " of ", N,
R> " - gonna sleep ", round(sleep, 2),
R> " seconds.")
R> Sys.sleep(sleep)
R> }
R> # size of file info
R> message(i, " size: ", file.info(fname)$size/1000, " KB")
R> }

Again, there is lots more information than we can possibly hope to analyze in this exercise,
which is why we generously discard errors. We generate a vector of all downloads that we
have collected so far—there should only be review sites that end in the pattern 001.html—
and remove pages with sizes of 0.

R> firstPages <- list.files(pattern = "001.html")
R> file.remove(firstPages[file.info(firstPages)$size == 0])
R> firstPages <- list.files(pattern = "001.html")

All remaining results are parsed and a list of all first review pages is created.

R> HTML <- lapply(firstPages, htmlParse)

In most cases, there is more than one review page for each mobile phone. For the sake of
exposition, we download another four review pages, if available. To do so, we loop through
the HTML object from the previous step. We extract the first link to the next review page

http://www.amazon.com
http://www.amazon.com
http://www.amazon.com
http://www.amazon.com
http://www.amazon.com
http://www.amazon.com
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by looking for an a node that contains the text Next and move one step down the tree to
the associated href. While such a link is available and we have not reached the maximum
number of review pages k—in our case five, we download another page. We generate a
file name, download the link, and store it on our hard drive if it does not already exist. We
also parse the downloaded file to look for another Next review page link. This operation is
wrapped in a tryCatch() function, in case we fail to find a link.

R> for(i in seq_along(HTML)){
R> # extract link
R> link <- xpathApply(
R> HTML[[i]],
R> "//a[contains(text(), 'Next')]/@href",
R> as.character
R> )[[1]]
R> # set k to 2
R> k <- 2
R> while(length(link) > 0 & k <= 5){
R> # gen filename
R> fname <- str_replace(
R> firstPages[i],
R> "[[:digit:]]{4}.html",
R> str_c(
R> str_pad(k, 4, side = "left", pad = "0"),
R> ".html"
R> )
R> )
R> message(i, ":", k, "... :", fname)
R> # download file
R> if(!file.exists(fname) & length(link) > 0){
R> download.file(link, fname, quiet = T)
R> message(" download to file name: ", fname)
R> Sys.sleep(abs(rnorm(1)) + runif(1, 0, .25))
R> }
R> htmlNext <- htmlParse(fname)
R> # extract link for next file
R> link <- tryCatch(
R> xpathApply(
R> htmlNext,
R> "//a[contains(text(), 'Next')]/@href",
R> as.character
R> )[[1]],
R> error = function(e){
R> message("xpath error")
R> NULL
R> }
R> )
R> # k + 1
R> k <- k + 1
R> }
R> }
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Finally, we generate a vector of all the files in our dataReviews directory that contain the
pattern .html. If all goes as planned, there should not be any file in the directory where this
condition is false. We remove files of sizes smaller than 50,000 bytes, as there are presumably
errors in these files.

R> tmp <- list.files(pattern = ".html")
R> file.remove(tmp[file.info(tmp)$size < 50000])

17.2.2 Information extraction

Having collected the review pages for the phones in our database, we now need to extract the
textual reviews and the associated ratings from the pages and add them to the database.

Before extracting the data on individual reviews, we first extract some review meta
information on all reviews made for a specific phone. The meta information contains the
frequency of reviews giving a phone one up to five stars. The strategy for extracting the meta
information is to use readHTMLTable() as the numbers are stored in a table node. To
extract only the information we need—the number of reviews per star—we compose a little
helper function—getNumbers()—that extracts one up to six digits. This function will be
applied to each cell of the table when readHTMLTable() is called.

First, we define getNumbers() that extracts the value of a node and extracts digits
from it.

R> getNumbers <- function(node){
R> val <- xmlValue(node)
R> x <- str_extract(val, "[[:digit:]]{1,6}")
R> x
R> }

We create a vector of all the ASINs of those phones where we have access to customer
reviews by listing all the HTML files in the review directory, discarding the indices and
duplicate values.

R> FPAsins <- list.files(pattern="html$")
R> FPAsins <- unique(str_replace(FPAsins, "_.+", ""))

We create an empty data frame to store the meta information.

R> reviewsMeta <- data.frame(asin = FPAsins, one = NA, two = NA,
three = NA, four = NA, five = NA, stringsAsFactors = F)

Then, we loop through all our first review pages stored in the list object HTML, extract
all tables via readHTMLTable(), and apply getNumbers() to all its elements. From the
resulting list of tables, we only keep the table called productSummary and from this only
the third variable. The extracted numbers are written into the ith line of reviewsMeta for
storage.

R> for(i in seq_along(HTML)){
R> tmp <- as.numeric(
R> readHTMLTable(
R> HTML[[i]],
R> elFun = getNumbers,
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R> stringsAsFactors = F
R> )$productSummary$V3
R> )
R> print(tmp)
R> reviewsMeta[i, c("one", "two", "three", "four", "five")] <- tmp[1:5]
R> }

We also compute the sum and the mean consumer rating per phone.

R> reviewsMeta$sum <- apply(reviewsMeta[, c("one", "two", "three",
R> "four", "five")], 1, sum)
R> reviewsMeta$mean <- (reviewsMeta$one +
R> reviewsMeta$two * 2 +
R> reviewsMeta$three * 3 +
R> reviewsMeta$four * 4 +
R> reviewsMeta$five * 5
R> ) / reviewsMeta$sum

Having extracted the meta information, we now turn to the review specific information.
What we would like to have in the resulting data frame are the ASIN, how many stars the
reviewer gave the product, how many users found the review helpful and not helpful, the date
the review was written, the title of the review, and the text of the review. To store the
information, we first create an empty data frame.

R> reviews <- data.frame(asin = NA, stars = 0, helpfulyes = 0,
helpfulno = 0, helpfulsum = 0, date = "", title = "", text = "",
stringsAsFactors = F)

The next block of code might seem a little complicated but it is really only a series ofA purpose-built
extraction

function
simple steps that is executed for all ASINs and all review pages belonging to the same ASIN.
First of all, we use two loops for extracting the data. The outer loop with index i refers to
the ASINs. The inner loop with index k refers to the one up to five review pages we collected
for that product. The outer loop retrieves the file names of the review pages belonging to that
product and stores them in files. It stores the ASIN for these review pages in asin and
posts a progress message to the console.

In the inner loop, we first parse one file and store its representation in html. Next, we
extract the value of all review nodes in a vector for later extraction of the consumer ratings
and supplementary variables. All reviews are enclosed by a div node with style='margin-
left:0.5em;. As this distinctive text pattern is easy to extract with a regular expression,
we directly extract the value of the whole node instead of specifying a more elaborate XPath
that would need further extraction via regular expressions anyways.

The information whether or not people found the review helpful is always given in the
following form. 1 of 1 people found the following review helpful. We make use of this pattern
by extracting a string—as short as possible—that starts with one up to five digits and ends
with people. We extract all sequences of digits from the substring and use these numbers to
fill up the helpful variables—helpfulyes, helpfulno, and helpfulsum.

The consumer rating given to the product also follows a distinct pattern, for example, 5.0
out of 5 stars. To collect this, we extract a substring starting with a digit dot digit and ending
with stars and extract the first digit from the substring to get the rating.
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The text of the reviews is extracted using XPath again as it has a distinct class—
reviewText. We look for a div node with this class and specify that xpathApply should
return the value of this node. Note, that both title and text of the reviews might contain
single quotation marks that might later on interfere with the SQL statements. Therefore, we
replace every single quotation mark by a sequence of two single quotation marks. Most SQL
databases will recognize this as a way to escape single quotation marks and store only one
single quotation mark.

The title and date are both located in a span node which is a child of a div node, which
is a child of another div that encloses all review information. The span’s class is distinct
in this subpath and while the title is set in bold—a b node—the date is enclosed by a nobr
node. With two calls to xpathApply() we extract the value for each path.

As there are up to 10 reviews per page, all information—helpful variables, consumer
rating, text, title, and date—result in vectors. These vectors are combined via cbind() into
the matrix tmp and appended via rbind() to the prepared data frame reviews.

R> for(i in seq_along(FPAsins)){
R> # gather file names for ASIN
R> files <- list.files(pattern = FPAsins[i])
R> asin <- FPAsins[i]
R> message(i, " / ", length(FPAsins), " ... doing: ", asin)
R> # loop through files with same asin
R> for(k in seq_along(files)){
R> # parsing one file
R> html <- htmlParse(files[k])
R> # base path for each review : "//div[@style='margin-left:0.5em;']"
R> reviewValue <- unlist( xpathApply(
R> html,
R> "//div[@style='margin-left:0.5em;']",
R> xmlValue))
R> # helpful
R> helpful <- str_extract(reviewValue,
R> "[[:digit:]]{1,5}.*?[[:digit:]]{1,5} people")
R> helpful <- str_extract_all(helpful,"[[:digit:]]{1,5}")
R> helpfulyes <- as.numeric(unlist(lapply(helpful,'[',1)))
R> helpfulno <- as.numeric(unlist(lapply(helpful,'[',2)))
R> - helpfulyes
R> helpfulsum <- helpfulyes + helpfulno
R> # stars
R> stars <- str_extract(reviewValue,
R> "[[:digit:]]\\.[[:digit:]] out of 5 stars")
R> stars <- as.numeric(str_extract(stars, "[[:digit:]]"))
R> # text
R> text <- unlist(xpathApply(
R> html, "//div[@style='margin-left:0.5em;']
R> /div[@class='reviewText']", xmlValue))
R> text <- str_replace_all(text, "'", "''")
R> # title
R> title <- unlist(xpathApply(
R> html, "//div[@style='margin-left:0.5em;']
R> /div/span[@style='vertical-align:middle;']/b",
R> xmlValue))
R> title <- str_replace_all(title, "'", "''")
R> # date
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R> date <- unlist(xpathApply(
R> html, "//div[@style='margin-left:0.5em;']
R> /div/span[@style='vertical-align:middle;']/nobr",
R> xmlValue))
R> # putting it together
R> tmp <- cbind(asin, stars, helpfulyes, helpfulno,
R> helpfulsum, date, title, text)
R> reviews <- rbind(reviews, tmp)
R> }
R> }

Finally, we keep only those lines of reviews where the first line is not NA to get rid of
the dummy data we introduced to create the data frame in the first place.

R> reviews <- reviews[!is.na(reviews$asin),]

17.2.3 Database storage

Now that we have gathered all the data we need, it is time to store it in the database. There
are two tables in the database that are set up to include the data: reviewsMeta for review
data at the level of products and reviews for data at the level of individual reviews. For both
tables, we construct SQL INSERT statements for each line of the data frame and loop through
them to input the information into the database. The SQL statements for inserting data into
the reviewsMeta table should have the following abstract form:

1 INSERT INTO reviewsMeta (col1, col2, col3)
2 VALUES ('val1', 'val2', 'val3');

To achieve this, we use two calls to str_c(). The inner call combines the values to be
stored in a string, where each value is separated by ', '. These strings are then enclosed by
the rest of the statement INSERT INTO ... (' and '); to complete the statement.

R> SQL <- str_c(" INSERT INTO reviewsMeta
(asin, one, two, three, four, five)
VALUES
('",
str_c(

reviewsMeta[, "asin"],
reviewsMeta[, "one"],
reviewsMeta[, "two"],
reviewsMeta[, "three"],
reviewsMeta[, "four"],
reviewsMeta[, "five"],
sep="', '")

,"'); ")
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The first two entries in the resulting vector of statements look as follows

R> cat(SQL[1])
INSERT INTO reviewsMeta

(asin, one, two, three, four, five)
VALUES
('B0009FCAJA', '79', '74', '41', '35', '136');

R> cat(SQL[2])
INSERT INTO reviewsMeta

(asin, one, two, three, four, five)
VALUES
('B000AA7KZI', '45', '24', '12', '9', '13');

Now we can loop through the vector and send each statement via dbGetQuery() to the
database.

R> for(i in seq_along(SQL)) dbGetQuery(con, SQL[i])

The process for storing the data of the individual reviews is similar to the one presented
for reviewsMeta. First, we combine values and SQL statement snippets to form a vector
of statements, and then we loop through them and use dbGetQuery() to send them to the
database.

R> SQL <- str_c(" INSERT INTO reviews
(asin, stars, helpfulyes, helpfulno,

helpfulsum, date, title, text)
VALUES
('",
str_c(

reviews[, "asin"],
reviews[, "stars"],
reviews[, "helpfulyes"],
reviews[, "helpfulno"],
reviews[, "helpfulsum"],
reviews[, "date"],
reviews[, "title"],
reviews[, "text"],
sep="', '")
,"'); ")

Again, consider the first entry in the resulting vector of statements.

R> cat(SQL[1])
INSERT INTO reviews

(asin, stars, helpfulyes, helpfulno,
helpfulsum, date, title, text)

VALUES
('B0009FCAJA', '5', '4', '1', '5', 'June 20, 2007',

'One of the best in the market...', 'Have owned two in the past two
years and my daughter has another one. Reliable, inexpensive,
practical, easy to use. Tons of accesories and add-ons. One of the
best, if not the best, Motorola has ever made.');
R> for(i in seq_along(SQL)) dbGetQuery(con,SQL[i])
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17.3 Analyzing the data

Now that we have the reviews in a common database, we can go on to perform the sentiment
scoring of the texts. After some data preparation in the next section, we make a first try by
scoring the texts based on a sentiment dictionary. We go on to estimate the sentiment of the
reviews using the structured information to assess whether we are able to train a classifier
that recovers the sentiment of the texts that are not in the training corpus.

Let us begin by setting up a connection to the database and listing all the available tablesConnecting to
the database in the database.

R> sqlite <- dbDriver("SQLite")
R> con <- dbConnect(sqlite, "amazonProductInfo.db")
R> dbListTables(con)
[1] "AllData" "ItemData" "ReviewData"
[4] "items" "links" "models"
[7] "phones" "producers" "reviews"
[10] "reviewsMeta" "sqlite_sequence"

We read the AllData table to a data.frame and output the column names and the
dimensions of the dataset. AllData is a view—a virtual table—combining information from
several tables into one.

R> allData <- dbReadTable(con, "AllData")
R> names(allData)
[1] "itemid" "itemprice" "itemstars"
[4] "itemrank" "itemtitle" "model"
[7] "asin" "producer" "asin.1"
[10] "reviewid" "reviewstars" "allrev_onestar"
[13] "allrev_twostar" "allrev_threestar" "allrev_fourstar"
[16] "allrev_fivestar" "helpfulyes" "helpfulno"
[19] "helpfulsum" "reviewdate" "reviewtitle"
[22] "reviewtext"
R> dim(allData)
[1] 4254 22

17.3.1 Data preparation

For data preparation, we rely on the tm package that was already introduced in Chapter 10. We
also apply the textcat package to classify the language of the text and the RTextTools package
to perform the text mining operations further below. vioplot provides a plotting function that
is used in the next section.

R> library(tm)
R> library(textcat)
R> library(RTextTools)
R> library(vioplot)

Before setting up the text corpus, we try to discard reviews that were not written in English.Dropping
non-english

texts
We do this by using the textcat package which categorizes the language of a text by considering
the sequence of letters. Each language has a particular pattern of letter sequences. We can
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make use of this information by counting the sequences—so-called n-grams—in a text and
comparing the empirical patterns to reference texts of known language.1 The classification
method is fairly accurate but some misclassifications are bound to happen. Due to the data
abundance, we discard all texts that are estimated to not be written in English. We also discard
reviews where the review text is missing.

R> allData$language <- textcat(allData$reviewtext)
R> dim(allData)
R> allData <- allData[allData$language == "english",]
R> allData <- allData[!is.na(allData$reviewtext),]
R> dim(allData)
[1] 3748 23

Next, we set up a corpus of all the textual reviews.

R> reviews <- Corpus(VectorSource(allData$reviewtext))

We also perform the preparation steps that were introduced in Chapter 10, that is, we
remove numbers, punctuation, and stop words; convert the texts to lower case; and stem the
terms.

R> reviews <- tm_map(reviews, removeNumbers)
R> reviews <- tm_map(reviews, str_replace_all, pattern =
"[[:punct:]]", replacement = " ")
R> reviews <- tm_map(reviews, removeWords, words = stopwords("en"))
R> reviews <- tm_map(reviews, tolower)
R> reviews <- tm_map(reviews, stemDocument, language = "english")
R> reviews
A corpus with 3748 text documents

17.3.2 Dictionary-based sentiment analysis

The simplest way to score the sentiment of a text is to count the positively and negatively
charged terms in a document. Researchers have proposed numerous collections of terms
expressing sentiment. In this application, we use the dictionary that is provided by Hu and Liu
(2004) and Liu et al. (2005).2 It consists of two lists of several thousand terms that reveal the
sentiment orientation of a text. We load the lists and discard the irrelevant introductory lines.

R> pos <- readLines("opinion-lexicon-English/positive-words.txt")
R> pos <- pos[!str_detect(pos, "ˆ;")]
R> pos <- pos[2:length(pos)]
R> neg <- readLines("opinion-lexicon-English/negative-words.txt")
R> neg <- neg[!str_detect(neg, "ˆ;")]
R> neg <- neg[2:length(neg)]

1For an introduction to the topic, see Ramisch (2008). Generally speaking, non-English reviews should not
deteriorate our estimates terribly, regardless of the specific technique that we apply. In case of the dictionary-based
approach, non-English reviews should be assigned neutral values as barely any of the emotionally charged terms
would appear in the texts. Conversely, statistical text mining techniques should fail to classify non-English texts but
this should not have a strong effect on the overall classification accuracy of the English texts.

2The dataset is available at http://www.cs.uic.edu/∼liub/FBS/opinion-lexicon-English.rar (last accessed February
15, 2014).

http://www.cs.uic.edu/%E2%88%BCliub/FBS/opinion-lexicon-English.rar
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We stem the lists using the stemDocument() function and discard duplicates.

R> pos <- stemDocument(pos, language = "english")
R> pos <- pos[!duplicated(pos)]
R> neg <- stemDocument(neg, language = "english")
R> neg <- neg[!duplicated(neg)]

Let us have a brief look at a sample of positive and negative terms to check whether the
dictionary contains plausible entries.

R> set.seed(123)
R> sample(pos, 10)
[1] "exalt" "sleek" "gratitud" "tidi" "valiant"
[6] "ardent" "light-heart" "top-notch" "lyric" "hottest"

R> sample(neg, 10)
[1] "unview" "impun" "plea" "martyrdom-seek"
[5] "calam" "tumultu" "dissolut" "avaric"
[9] "flag" "unsteadi"

The randomly drawn words seem to plausibly reflect positive and negative sentiment—
although we hope that no reviewed phone is reviewed as suitable for martyrdom seekers.
We go on to create a term-document matrix where the terms are listed in rows and the texts
are listed in columns. In an ordinary term-document matrix, the frequency of the terms in
the texts would be displayed in the cells. Instead, we count each term only once, regardless
of the frequency with which it appears in the text. We thus argue that the simple presence
or absence of the terms in the texts is a more robust summary indicator of the sentiment
orientation of the texts. This is done by adding the control option weighting of the
function TermDocumentMatrix() to weightBin. We also discard terms that appear in five
reviews or less.

R> tdm.reviews.bin <- TermDocumentMatrix(reviews, control = list
(weighting = weightBin))
R> tdm.reviews.bin <- removeSparseTerms(tdm.reviews.bin,
1-(5/length(reviews)))
R> tdm.reviews.bin
A term-document matrix (2212 terms, 3748 documents)

Non-/sparse entries: 121032/8169544
Sparsity : 99%
Maximal term length: 12
Weighting : binary (bin)

To calculate the sentiment of the text, we shorten the matrices to contain only those termsComputing
sentiments with a known orientation—separated by positive and negative terms. We sum up the entries

for each text to get a vector of frequencies of positive and negative terms in the texts. To
summarize the overall sentiment of the text, we calculate the difference between positive and
negative terms and discard differences of zero, that is, reviews that do not contain any charged
terms or where the positive and negative terms cancel each other out.

R> pos.mat <- tdm.reviews.bin[rownames(tdm.reviews.bin) %in% pos, ]
R> neg.mat <- tdm.reviews.bin[rownames(tdm.reviews.bin) %in% neg, ]
R> pos.out <- apply(pos.mat, 2, sum)
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R> neg.out <- apply(neg.mat, 2, sum)
R> senti.diff <- pos.out - neg.out
R> senti.diff[senti.diff == 0] <- NA

Let us inspect the results of the sentiment coding. First, we call some basic distributional
properties.

R> summary(senti.diff)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-6.00 2.00 3.00 4.36 6.00 51.00 260

The mean review is positive (4.36 positive words on average), but the extremes are
considerable, especially concerning the upper end of the distribution. The most positive text
contains a net of 51 positive terms.3 What this summary indicates is the obstacle of extreme
variation in the length of the reviews.

R> range(nchar(allData$reviewtext))
[1] 76 23995

While the shortest review contains no more than 76 characters, the largest stemmed (!)
review encompasses no fewer than 23,995. Students occasionally submit shorter term papers.
Since we consider the differences between positive and negative reviews this should not
be a dramatic problem. Nevertheless, we divide the sentiment difference by the number of
characters in the review to get the estimates on a common metric. First, we set up a data frame
with data that we want to plot and discard observations where the estimated sentiment is 0.

R> plot.dat <- data.frame(
sentiment = senti.diff/nchar(allData$reviewtext),
stars = allData$reviewstars)

R> plot.dat <- plot.dat[!is.na(plot.dat$sentiment),]

Using the vioplot() function from the vioplot package, we create a violin plot, a box Visualizing
sentimentsplot-kernel density plot hybrid (Adler 2005; Hintze and Nelson 1998).

R> vioplot(
R> plot.dat$sentiment[plot.dat$stars == 1],
R> plot.dat$sentiment[plot.dat$stars == 2],
R> plot.dat$sentiment[plot.dat$stars == 3],
R> plot.dat$sentiment[plot.dat$stars == 4],
R> plot.dat$sentiment[plot.dat$stars == 5],
R> horizontal = T,
R> col = "grey")
R> axis(2, at = 3, labels = "Stars in review", line = 1, tick = FALSE)
R> axis(1, at = 0.01, labels = "Estimated sentiment by number of
characters", line = 1, tick = FALSE)

The result is plotted in Figure 17.1. We find that the order of estimated sentiment is
in line with the structured reviews. The more stars a reviewer has given a product, the

3A closer inspection of the data reveals that the reviewer comments on a Google Nexus 4 phone—you be the
judge whether the phone justifies such enthusiasm.
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Figure 17.1 Violin plots of estimated sentiment versus product rating in Amazon reviews

better the sentiment that is expressed in the textual review and vice versa. However, there is
also a considerable overlap of the five categories and even for one-star ratings we have an
overall mean positive sentiment. Apparently, our estimates only roughly capture the expressed
sentiment.

One alternative to estimating the sentiment of the review text is to consider the sentiment
that is expressed in the headline. The advantage of this is that the headline often contains
a summary statement of the review and is thus more easily accessible to a sentiment
estimation. We create a corpus of the review titles and perform the same data preparation
as before.

R> # Set up the corpus of titles
R> titles <- Corpus(VectorSource(allData$reviewtitle))
R> titles
R> # Perform data preparation
R> titles <- tm_map(titles, removeNumbers)
R> titles <- tm_map(titles, str_replace_all, pattern =
"[[:punct:]]", replacement = " ")
R> titles <- tm_map(titles, removeWords, words = stopwords("en"))
R> titles <- tm_map(titles, tolower)
R> titles <- tm_map(titles, stemDocument, language = "english")
R> # Set up term-document matrix
R> tdm.titles <- TermDocumentMatrix(titles)
R> tdm.titles <- removeSparseTerms(tdm.titles, 1-(5/length(titles)))
R> tdm.titles



ANALYZING SENTIMENTS OF PRODUCT REVIEWS 431

R> # Calculate the sentiment
R> pos.mat.tit <- tdm.titles[rownames(tdm.titles) %in% pos, ]
R> neg.mat.tit <- tdm.titles[rownames(tdm.titles) %in% neg, ]
R> pos.out.tit <- apply(pos.mat.tit, 2, sum)
R> neg.out.tit <- apply(neg.mat.tit, 2, sum)
R> senti.diff.tit <- pos.out.tit - neg.out.tit
R> senti.diff.tit[senti.diff.tit == 0] <- NA

Since the sentiment difference has fewer than 10 distinct values in this case, we plot the
estimates as points rather than as density distributions. For the same reason, we do not divide
our results by the number of characters in the titles, as they are all of roughly the same length.
A random jitter is added to the points before plotting. As there are only five categories in
the structured reviews, we can better inspect our results visually if we add some noise to
the points.

R> plot(jitter(senti.diff.tit), jitter(allData$reviewstars),
R> col = rgb(0, 0, 0, 0.4),
R> ylab = "Stars in Review",
R> xlab = "Estimated sentiment"
R> )
R> abline(v = 0, lty = 3)

Again, we observe a rough overlap between the number of stars that were assigned by
the reviewers and the estimated sentiment in the title (see Figure 17.2). Nevertheless, our
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Figure 17.2 Estimated sentiment in Amazon review titles versus product rating. The data
are jittered on both axes.
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estimates are frequently somewhat off the mark. We therefore move on to an alternative text
mining technique in the next section.

17.3.3 Mining the content of reviews

Chapter 10 discussed the possibilities of applying text mining to estimate the topical categories
of text. This is done by assigning labels to a portion of a text corpus and estimating the labels
for the unlabeled texts based on similarities in the word usages. There is no technical constraint
on the type of label that we can try to estimate. This is to say that we do not necessarily have
to estimate the topical emphasis of a text. We might as well estimate the sentiment that is
expressed in a text as long as we have a labeled training set.

We set up a document-term matrix that is required by the RTextTools package. We removeDocument-term
matrix the sparse terms and set up the container for the estimation. The first 2000 reviews are assigned

to the training set and the remaining batch of roughly 2000 we use for testing the accuracy of
the models.

R> dtm.reviews <- DocumentTermMatrix(reviews)
R> dtm.reviews <- removeSparseTerms(dtm.reviews, 1-(5/length(reviews)))
R> N <- length(reviews)
R> container <- create_container(
R> dtm.reviews,
R> labels = allData$reviewstars,
R> trainSize = 1:2000,
R> testSize = 2001:N,
R> virgin = F
R> )
R> dtm.reviews
A document-term matrix (3748 documents, 2212 terms)

Non-/sparse entries: 121032/8169544
Sparsity : 99%
Maximal term length: 12
Weighting : term frequency (tf)

We train the maximum entropy and support vector models and classify the test set ofMaximum
entropy and

SVM
reviews.

R> maxent.model <- train_model(container, "MAXENT")
R> svm.model <- train_model(container, "SVM")
R> maxent.out <- classify_model(container, maxent.model)
R> svm.out <- classify_model(container, svm.model)

Finally, we create a data frame of the results, along with the correct labels.

R> labels.out <- data.frame(
R> correct.label = as.numeric(allData$reviewstars[2001:N]),
R> maxent = as.numeric(maxent.out[,1]),
R> svm = as.numeric(svm.out[,1])
R> )
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Figure 17.3 Maximum entropy classification results of Amazon reviews

As before, we plot the results as a point cloud and add a random jitter to the points for
visibility.

R> plot(jitter(labels.out[,2]), jitter(labels.out[,1]),
R> xlab = "Estimated stars",
R> ylab = "True stars"
R> )
R> plot(jitter(labels.out[,3]), jitter(labels.out[,1]),
R> xlab = "Estimated stars",
R> ylab = "True stars"
R> )

The results are displayed in Figures 17.3 and 17.4—the data are jittered on both axes.
Using either classifier we find that both procedures result in fairly accurate predictions of the
number of stars in the review based on the textual review.

There are more classifiers implemented in the RTextTools package. Go ahead and try to
estimate other models on the dataset. You simply have to adapt the algorithm parameter
in the train_model() function.4 You might also like to generate the modal estimate from
multiple classifiers in order to further improve the accuracy of the sentiment classification of
the textual reviews.

4On the available algorithms with RTextTools, see the documentation of the function using ?train_model.
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Figure 17.4 Support vector machine classification results of Amazon reviews

17.4 Conclusion

In this chapter, we have applied two techniques for scoring the sentiment that is expressed in
texts. On the one hand, we have estimated the sentiment of product reviews based on the terms
that are used in the reviews. On the other, we have shown that supervised text classification
is not necessarily restricted to the topical category of texts. We can classify various aspects
in texts, as long as there is a labeled training set.

The scoring of the texts is simplified in this instance, as product reviews refer to precisely
one object—the product. This is to say that negative terms anywhere in the texts will most
likely refer to the product that is being reviewed. Compare this to a journalistic text where
multiple objects might be discussed in a way that it is not straightforward to estimate the
object that a negative term refers to. Consequently, we cannot as easily make the implicit
assumption of the analyses in this chapter that a term anywhere in the text refers to one
particular object. Moreover, the sentiment in a product review is also simple to score as it is
written to explicitly express a sentiment. Again, compare this to a journalistic text. While the
text might in fact express a sentiment toward a topic or toward particular actors, the sentiment
is ordinarily expressed in more subtle ways.
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Barberá P. 2013. streamR: Access to Twitter Streaming API via R. R package version 0.1. http://CRAN.R-
project.org/package=streamR
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Witten IH and Frank E. 2005. Data Mining: Practical Machine Learning Tools and Techniques, 2nd
ed. Morgan Kaufmann, San Francisco, CA.

Wong C. 2000. HTTP Pocket Reference. O’Reilly, Sebastopol, CA.

Yasuda N, Cavalli-Sforza L, Skolnick M, and Moroni A. 1974. The evolution of surnames: An analysis
of their distribution and extinction. Theoretical Population Biology 5(1), 123–142.

Zagibalov T and Carroll J. 2008. Automatic Seed Word Selection for Unsupervised Sentimen Classifica-
tion of Chinese Text. Proceedings of the 22nd International Conference on Computational Linguistics,
August 2008, Manchester, UK, pp. 1073–1080.

Zakas NC. 2010. High Performance JavaScript. O’Reilly, Sebastopol, CA.

Zhang Y, Friend AJ, Traud AL, Porter MA, Fowler JH, and Mucha PJ. 2008. Community structure in
congressional cosponsorship networks. Physica A 387(7), 1705–1712.

Zhao Y. 2012. R and Data Mining. Examples and Case Studies. Elsevier Academic Press, Waltham,
MA.

Zumel N and Mount J. 2014. Practical Data Science with R. Manning, Greenwich, CT.

http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=RJSONIO
http://CRAN.R-project.org/package=RJSONIO
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=XML
http://www.omegahat.org/RHTMLForms
http://www.omegahat.org/RHTMLForms
http://pacer.mad.uscourts.gov/dc/cgi-bin/recentops.pl?filename=gorton/pdf/swartz%20protective%20order%20mo.pdf
http://pacer.mad.uscourts.gov/dc/cgi-bin/recentops.pl?filename=gorton/pdf/swartz%20protective%20order%20mo.pdf
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=devtools
http://petewarden.com/2010/04/05/how-i-got-sued-by-facebook/
http://petewarden.com/2010/04/05/how-i-got-sued-by-facebook/
http://petewarden.com/2010/04/05/how-i-got-sued-by-facebook/


General index

AJAX, 11, 149–163, 252
Amazon, 396, 416
AP v. Meltwater, 279
APIs, 68, 71, 150, 221, 259–266, 372

advantages and disadvantages, 277
REST, 260
SOAP, 260
when and how to use, 276
with R, 261

ASCII, 216
Asynchronous JavaScript and XML, see

AJAX
Authentication, 121–123, 266
Authorization, 266

Base64, 111, 121, 245
Berners-Lee, Tim, 17, 101
beta.congress.gov, 345
Binary format, 223
Bots, see Web robots
Boyce, Raymond F., 167

CA certificate, 246, 297
Carriage return, 106, 227, 360, 385, 386
Cascading Style Sheets, see CSS
Chamberlin, Donald D., 167
Character encoding, 44, 214–216, 270
Closing tag, see End tag
Closure function, 37
Codd, Edgar F., 166

Cookies, 112, 119–121, 247
CRAN, 226, 291, 330
Crawlers, see Web robots
Cron, 335
CSS, 26, 28, 39, 256
CSV, 223
curl, 127
Curl handle, 236
curl.haxx.se, 127

Data, 165
collection costs, xvi
cleansing, 3, 272, 347, 426
collection automation, xvi
quality, 7
science, xv, xvii
storage, 165, 408
types, 174

Data project management, 322–339
control structures, 326
error and exception handling, 333–334
file system management, 322–323
for-loops, 324
messages, 331–333
processing multiple documents, 323–

328
progress bars, 331–333
scheduling, 334
while-loops, 326
writing functions, 328–334

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



GENERAL INDEX 443

Databases, 13, 164, 166, 408
advanced features, 174–175
combined keys, 170
DBMS, 165, 166
foreign keys, 170, 180
in R, 188–192
keys, 168
normal forms, 171
normalization, 170
ODBC, 188
primary keys, 170, 180
query, 167
RDBMS, 166
redundancy and exclusiveness, 168
relations, 167
storage, 424
tables, 167
views, 175, 411

Deep link, 279
DNS, 102, 105
DOCTYPE, see DTD
Document Object Model, see DOM
Document Type Definition, see DTD
DOM, 33, 34, 66, 272

parsing, see Parsing
validation, 34

DTD, 23, 51, 59
Dynamic HTML, see AJAX

eBay v. Bidder’s Edge, 278
Eich, Brendan, 150
Election Markup Language (EML), 77
Encoding, see Character encoding
End tag, 20, 44, 45
Extensible Markup Language, see XML

Facebook, 268, 282
Facebook v. Pete Warden, 279
Fielding, Roy, 101
FTP, 126, 226, 359

commands, 227
extended passive mode, 227
FTP archives on the Web, 228

Geographical data, 3, 60, 368, 380
GET, 29, 235
GitHub, xx, 253, 291, 330

Google, xxi, 29, 105, 368
gzip, 110

Hostname, 101, 105
HTML, 2, 10, 17–39, 149

attributes, 20
buttons, 29
checkboxes, 29
comments, 22
entities, 22
fields, 29
forms, 128
HTML5, 17
hyperlinks, 24
line breaks, 23
links, 233
lists, 233
special characters, 22
syntax, 19, 24
tables, 32, 234
tags, 18, 20
<a>, 20, 24
<b>, 26
<br>, 20
<dd>, 27
<div>, 27
<dl>, 27
<fieldset>, 29
<form>, 29
<h1,h2,h3,...>, 27
<h1,h2,h3,...>, 400
<i>, 26
<input>, 29
<link>, 26
<meta>, 25
<ol>, 27
<option>, 29
<p>, 27
<script>, 30, 150, 151
<select>, 29
<span>, 27
<strong>, 26
<table>, 32
<td>, 32
<textarea>, 29
<th>, 32
<title>, 20



444 GENERAL INDEX

HTML (Continued )
<tr>, 32
<ul>, 27

tree structure, 21
HTTP, 11, 25, 29, 101–149

authentication, see Authentication
body, 106
client, 102
CONNECT, 108
DELETE, 108
GET, 108, 128–129
handlers, 132–133
HEAD, 108
header, 106, 107
header fields, 107, 109–115
Accept-Encoding, 110, 286
Accept, 110
Allow, 110
Authorization, 111, 121
Connection, 113
Content-Encoding, 111
Content-Length, 111
Content-Type, 111
Cookie, 111, 119
From, 112, 119, 225
Host, 112
If-Modified-Since, 112, 286
Last-Modified, 113, 286
Location, 113
Proxy-Authorization, 113
Proxy-Connection, 113
Referer, 114, 118
Server, 114
Set-Cookie, 114, 119
User-Agent, 114, 117, 225, 280
Vary, 115
Via, 115, 123
WWW-Authenticate, 115, 121
X-Forwarded-For, 123

identification, 116–121
messages, 106–107
methods, 260
OPTIONS, 108
options, 133–139
persistent connection, 113
port, 103, 105
POST, 108, 129–130

PUT, 108
request methods, 104, 108
response, 104
status codes, 108
TRACE, 108

httpbin.org, 116
HTTPS, 124–126, 246, 297
Hypertext Markup Language, see HTML

IANA, 107
ICPSR, 246
inkscape.org, 58
Inspect element, 19, 397, 398, 402
IP (Internet Protocol), 102
IP address, 105, 123

JavaScript, 30–32, 68, 71, 150–154, 395
DOM manipulation, 154, 151–154
event handlers, 150, 153, 155
functionality, 150
Same Origin Policy, 155
scraping, 153, 156
syntax, 152

JavaScript Object Notation, see JSON
jQuery, 150, 152
JSON, 10, 68–76, 259

array, 69
data types, 70
encoding, 71
import and export, 72
parser, 158
syntax, 69–71
validation, 71

json.org, 71

Levenshtein distance, 211
libcurl, 118, 127, 226, 246, 247
libxml2, 33
Line feed, 106, 227, 385, 386

Markup language, 17, 18, 41, 71, 80
MIME (Internet media) type, 26, 107, 110
mysql.com, 177

Name maps, 380
Network analysis, 343, 353–358
Node, 34
Node set, 34, 35, 37, 81



GENERAL INDEX 445

OAuth, 221, 266–270, 276, 372
Omega Project, 291
Opening tag, see Start tag
OpenStreetMap, 368

parlgov.org, 193
Parser, see Parsing
Parsing, 32–38, 60, 80, 270, 272, 274, 359,

361
event-driven parsing, 66–68

Password storage, 245, 263
Percent encoding, see URL encoding
Perl, xvii, 207
PHP, xvii, 129, 252
Plain text, 11, 22, 223
planetr.stderr.org, 58
POST, 29, 235
programmableweb.com, 276
Proxies, see Proxy servers
Proxy servers, 115, 123–124
Public key cryptography, 125
Python, xvii

Query language, see XPath
Query string, 30

R, xv, xvii
CRAN Task View, xx
introduction, xvi, xix–xx
packages, xvii
reasons to use, xvii–xix
workflow, xviii

r-bloggers.com, 58
r-datacollection.com, xx, 13, 19, 101
regex101.com, 271
regexplanet.com, 271
Regular expressions, 4, 12, 198–205, 225,

270, 346
advantages and disadvantages, 272
backreferencing, 205
case-insensitive matching, 199
character classes, 201
debugging, 272
exact character matching, 198–200
flavors, 207
generalized matching, 200
generalizing, 205

greedy quantification, 203
matching beginnings and ends, 199
metacharacters, 204
pipe operator, 200
quantifiers, 202
shortcuts, 204
when and how to use, 270
with R, 197

Relational database, see Databases
REST, 260
robotstxt.org, 283
rOpenSci, 291
RSS, 11, 55–58, 261, 279
rssboard.org, 57
Ruby, xvii

Scrapers, see Web scraping
scraping.pro, 271
SelectorGadget, 98, 274
Selenium, 12, 162, 221, 252, 253
SMTP, 105
SOAP, 260
Spiders, see Web robots
SQL, 13, 167, 175–195

clauses, 184
data control language (DCL), 175, 177
data definition language (DDL), 176
data manipulation language (DML), 176,

180
in R, 188–192
MySQL, 177, 181, 191, 253
SEQUEL, 167
SQLite, 177, 408
syntax, 176
transaction control language (TCL), 176,

187
Sring processing

number removal, 304
word removal, 304

SSL, 124, 246
Stack Overflow, xx
Start tag, 20, 45
Statistical text processing, 295–321, 416

corpus, 298
correlated topic models, 314
dictionary methods, 416
document-term matrix, 310, 432



446 GENERAL INDEX

Statistical text processing (Continued )
hierarchical clustering, 315
latent Dirichlet allocation, 314
maximum entropy, 309, 432
n-grams, 305
punctuation removal, 304
random forest, 309
sentiment analysis, 426–432
sparsity, 305
supervised methods, 295, 307–313
support vector machine, 432
support vector machine (SVM), 309
term-document matrix, 303
text operations, 298–307
unsupervised methods, 296, 313–320

String processing
approximate matching, 211
character matching, 198
counting, 209
detection, 209
duplicating, 210
joining, 210
padding, 210
replacement, 209
splitting, 209
stemming, 305
stop word removal, 305
string location, 208
substring extraction, 208
trimming, 210
with regular expressions, see Regular

expressions
Structured Query Language, see SQL
Super assignment operator, 37
SVG, 11, 58–60, 77

TCP, 102, 105
Text mining, 12, see Statistical text

processing
thomas.loc.gov, 344
TLS, 124
Transparency International, 228
Twitter, 7, 10, 71, 77, 266, 371

U.S. Senate, 343
UNESCO, 1
United States v. Aaron Swartz, 279

URI, 54
URL, 104–106, 228

encoding, 106, 263, 383
format, 105
query string, 105
scheme, 105
syntax, 104–106

User Agent, 114, 117, 280
useragentstring.com, 117
UTF-8, 215, 384

w3.org, 59, 60, 105
W3C, 17, 38, 58, 79, 80, 150
w3schools.com, 106
Weather data, 359
Web 2.0, 259
Web application, 149
Web client, 101
Web Developer Tools (WDT), 98, 158–161,

255, 395
Web robot, xxi
Web robots, 222, 280
Web scraping, xxi, 222

accessing FTP servers, 226–228
convenience functions, 232–235
copyright, xxi, 278
data retrieval, 221
Dealing with AJAX, 251–259
dos and don’ts, 284–290
downloading files, 223–226
etiquette, 222, 284–290, 382
extraction strategies, 270–278
form handling, 243–245
GET forms, 236–239
HTML forms, 235–245
HTTP authentication, 245
information extraction, 221
JavaScript-generated content, 251–259
legal issues, xxi, 278–280
POST forms, 239–243
Retrieval via HTTPS, 246–247
robots.txt, 222, 280–283, 382
URL manipulation, 228–232
Using cookies, 247–251
workflow, 221, 322–339

Web services, see APIs
Webdriver, see Selenium



GENERAL INDEX 447

whatismyipaddress.com, 105
WHATWG, 17
Wikipedia, 1, 7
Windows Task Scheduler, 337
Windows-1252, 215
WordNet, 236
World Heritage Sites in Danger, 1
Wrapper function, 259, 263, 264, 276, 366
WSDL, 260

XHR, 150, 154–158, 251
XML, 10, 41–68, 259

attributes, 45–46
CDATA, 49
commenting, 49
elements, 42, 44–45
encoding, 44
escape sequences, 48
extensions, 54–60
handler, 66
namespaces, 53–54, 96–97
naming rules, 48
nodes, 46
parsing, 60–62
predicates, 63
root element, 42
Schema (XSD), 52
schemas, 52, 54
syntax, 43–51

transformation into R objects, 65–66
tree structure, 46–47, 81, 84
valid vs. wellformed, 51
versions, 44

XMLHttpRequest, see XHR
xmlvalidation.com, 51
XPath, 11, 45, 63, 79–100, 398

advantages and disadvantages, 275
attribute extraction, 90
Boolean functions, 91
element extraction, 93–98
extractor functions, 93
namespaces, 96–97
node relations (axes), 84–86, 386
operators, 87
partial matching, 91, 92
pipe operator, 83
predicates

numerical, 87–91
regex, 91
textual, 91–92

selection expressions, 83
syntax, 81–92
versions, 80
when and how to use, 273
wildcard operator, 83

Yahoo Weather RSS Feed, 261
YouTube, 71



Package index

DBI, 188, 189
devtools, 254, 291

httr, 126, 268

igraph, 345, 354

jsonlite, 71, 74

lubridate, 374

maps, 2, 5, 384, 388
maptools, 384

network, 354

pingr, 333
plyr, 73, 224, 236, 272, 327

Rcpp, xviii
RCurl, 116, 117, 126, 160, 222, 225, 226,

236, 242, 245–247, 297, 345, 351,
360, 384, 396, 399, 417

Relenium, 259
Rfacebook, 269
rfishbase, 291
rgbif, 291
rgdal, 384
RgoogleMaps, 368
RHTMLForms, 243
rjson, 71
RJSONIO, 71

RMendeley, 291
RMySQL, 188
ROAuth, 268
RODBC, 177, 188, 191
ROracle, 188
RPostgreSQL, 188
RSQLite, 177, 188, 189, 408, 417
RTextTools, 296, 309, 310, 426, 432
Rwebdriver, 252, 253
RWeka, 306

sna, 354
SnowballC, 305
sp, 164
SSOAP, 260
statnet, 354
stringr, 2, 4, 72, 94, 197, 207–211, 222,

236, 247, 272, 297, 329, 335, 345,
360, 384, 396, 399, 417

tau, 216
TeachingDemos, 384
textcat, 426
tm, 295, 298, 426
topicmodels, 316

vioplot, 426, 429

XML, 2, 33, 61, 63, 65, 80, 93, 222, 223,
232, 236, 247, 261, 297, 345, 384,
396, 399, 417

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



Function index

aggregate(), 369
all(), 214
any(), 303
apply(), 214, 318
args(), 244
as.POSIXct(), 375

base64(), 122
base64Decode(), 122
basename(), 323, 331
basicTextGatherer(), 132

cat(), 117, 331
ceiling(), 401
character(), 297
classify_model(), 432
cleanUp(), 347
close(), 74
close_window(), 257
collectHref(), 329
combn(), 354
contains(), 385
Corpis(), 299, 430
createFunction(), 243
create_container(), 310,

432
CRS(), 388
CTM(), 318
curlOptions(), 131, 137
curlPerform(), 131

curlSetOpt(), 251
curlVersion(), 124

data(), 388
data.frame(), 316
dbConnect(), 408, 417
dbDataType(), 190
dbDriver(), 408, 417
dbExistsTable(), 190, 409
dbGetInfo(), 190
dbGetQuery(), 189, 409, 417, 425
dbListTables(), 190
dbReadTable(), 190, 415
dbRemoveTable(), 190
dbSendQuery(), 189
dbWriteTable(), 190
debugGatherer(), 132, 140, 236, 238,

248, 286
dim(), 4
dir(), 323
dir.create(), 323, 390, 418
dirname(), 323
DirSource(), 299
dist(), 315
do.call(), 73, 236
DocumentTermMatrix(), 310, 432
download.file(), 127, 224, 225, 335,

387, 420
dupCurlHandle(), 133, 137
duplicated(), 406, 428

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



450 FUNCTION INDEX

element_click(), 257
element_xpath_find(), 257
Encoding(), 215

fetch(), 189
file(), 74
file.access(), 323
file.append(), 323
file.copy(), 323
file.date(), 287
file.exists(), 224, 287, 323, 335, 390,

418
file.info(), 323, 421
file.path(), 323
file.remove(), 323, 421
file.rename(), 323
fileUpload(), 242
filterStream(), 374
findAssocs(), 307
fixed(), 204
for(), 324
formFunction(), 243
fromJSON(), 72, 74
ftpUpload(), 228
function(), 329, 401

get.adjacency(), 355
get.url(), 255
getBinaryURL(), 128, 225
getCurlErrorClassNames(), 143
getCurlHandle(), 133, 225, 228, 230,

236, 247, 248, 286, 401
getCurlInfo(), 141
getForm(), 129, 238, 247, 249, 384
getFriends(), 269
getHTMLExternalFiles(), 233
getHTMLFormDescription(), 243
getHTMLLinks(), 223, 232, 328
GetMap.OSM(), 368
getOption(), 245
getTrends(), 372
getURL(), 117, 128, 160, 226, 230, 237,

245, 246, 248, 297, 360, 399
getURLContent(), 128
getUser(), 372
getUsers(), 269
graph.edgelist(), 354

gregexpr(), 211
grep(), 198, 212
grepl(), 198, 211, 212, 214
gsub(), 211

handleInfo(), 142
hclust(), 315
head(), 4
hist(), 6
htmlParse(), 2, 33, 61, 80, 229, 232,

237, 248, 270, 297, 329, 384, 399, 418
htmlTreeParse(), 35
httpDate(), 287

iconv(), 215
iconvlist(), 215
install_github(), 254, 291
invisible(), 38
is.ascii(), 216
is.locale(), 216
is.utf8(), 216
isValidJSON(), 71

jitter(), 431

keys(), 257

lapply(), 74, 133, 236, 401, 418
LDA(), 316
ldply(), 327
length(), 297
library(), 2
list(), 138
list.files(), 298, 361
listCurlOptions(), 133
llply(), 231
l_ply(), 224, 228, 230

make.unique(), 212
map(), 5
matrix(), 350
merge(), 387
meta(), 300

names(), 127
nchar(), 211
NGramTokenizer(), 306



FUNCTION INDEX 451

oauth1.0_token(), 268
oauth2.0_token(), 269
oauth_2.0_token(), 268
oauth_app(), 268
oauth_endpoint(), 268
odbcDataSources(), 192
odbcGetInfo(), 191
options(), 137, 139, 245
order(), 318

page_title(), 255
parseTweets(), 374
paste(), 211
paste0(), 211
path.expand(), 323
PlotOnStaticMap(), 368
pmatch(), 212
png(), 368
post.url(), 255
posterior(), 316
postForm(), 130, 240, 351
prescindMeta(), 301, 310
print(), 33, 80

rbind.fill(), 73, 236
read.csv(), 225, 368
read.delim(), 387
read.fwf(), 361, 365
readHTMLList(), 232, 233
readHTMLTable(), 2, 232, 234, 240,

421
readHTMLTable(), 351
readLines(), 33, 232, 251, 270, 299,

362, 427
readShapePoly(), 388
regexprl(), 211
regmatches(), 211
removeNumbers(), 304, 427
removePunctuation(), 304
removeSparseTerms(), 306, 310, 428,

430, 432
removeWords(), 305, 427
robotsCheck(), 282

sample(), 428
sampleStream(), 374
sapply(), 73, 214, 351, 364

save(), 287
searchTwitter(), 372
seq_along(), 249, 401, 419
set.seed(), 428
setdiff(), 289
setTxtProgressBar(), 333
sFilter(), 302
sign_oauth1.0(), 268
sign_oauth2.0(), 268, 269
simplify(), 356
slotNames(), 311
source(), 330
SpatialPoints(), 388
split(), 401
sprintf(), 95
sqlFetch(), 192
sqlTables(), 191
start_session(), 255
stemDocument(), 305, 427, 428
stopwords(), 305
strsplit(), 211
str_c(), 208, 210, 211, 224, 229, 297,

361, 399, 418, 424
str_count(), 208, 209, 211
str_detect(), 3, 72, 208, 209, 211,

212, 223, 225, 231, 303, 329, 360, 418,
427

str_dup(), 208, 210, 211
str_extract(), 4, 94, 198, 208, 211,

230, 364, 385
str_extract_all(), 3, 198, 208, 211,

225, 227
str_length(), 208, 210, 211
str_locate(), 208, 211
str_locate_all(), 208, 211
str_pad(), 208, 210, 211
str_replace(), 208, 209, 211, 270,

419
str_replace_all(), 208, 209, 211, 249,

364, 386
str_split(), 136, 208, 209, 211, 227,

238, 249, 250,360, 362
str_split_fixed(), 208, 209, 211
str_sub(), 4, 132, 208, 211, 360
str_trim(), 208, 210, 211
sub(), 211
subset(), 388



452 FUNCTION INDEX

Sys.getlocale(), 215
Sys.setlocale(), 375
Sys.sleep(), 227, 230, 290, 361, 401,

419
system.file(), 247, 297

t(), 236, 316
tempfile(), 365
TermDocumentMatrix(), 303, 428,

430
terms(), 317
tm_filter(), 303
tm_m(), 304
tm_map(), 427, 430
toJSON(), 72, 74
tolower(), 94, 305, 390, 427
train_model(), 311, 432
try(), 227, 230, 333
tryCatch(), 143, 334, 420
twListToDF(), 372
txtProgressBar(), 332

unlist(), 198
unzip(), 323, 387
URLdecode(), 106
URLencode(), 106
userStream(), 374

VectorSource(), 299, 430
vioplot(), 429

Weka_control(), 306
while(), 297, 326
window_change(), 257
window_handles(), 257
write(), 227, 230, 298
writeBin(), 128, 225
writeLines(), 74

xmlAttrs(), 93
xmlAttrsToDF(), 236
xmlChildren(), 93
xmlEventParse(), 62, 67
xmlGetAttr(), 93, 94
xmlInternalTreeParse(), 62
xmlName(), 63, 93
xmlNamespaceDefinitions(), 97
xmlNativeTreeParse(), 62
xmlParse(), 61, 96, 270
xmlRoot(), 63
xmlSApply(), 65
xmlSize(), 63, 93
xmlToDataFrame(), 66, 72
xmlToList(), 66
xmlTreeParse(), 62
xmlValue(), 65, 93, 94, 234, 249, 402
xpathApply(), 236, 418
xpathSApply(), 82, 93, 229, 248, 297,

329, 385, 399, 402

zip(), 323



WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Automated Data Collection with R
	Contents
	Preface
	What you won’t learn from reading this book
	Why R?
	Recommended reading to get started with R
	Typographic conventions
	The book’s website
	Disclaimer
	Acknowledgments

	1 Introduction
	1.1 Case study: World Heritage Sites in Danger
	1.2 Some remarks on web data quality
	1.3 Technologies for disseminating, extracting, and storing web data
	1.3.1 Technologies for disseminating content on the Web
	1.3.2 Technologies for information extraction from web documents
	1.3.3 Technologies for data storage

	1.4 Structure of the book

	Part One A Primer on Web and Data Technologies
	2 HTML
	2.1 Browser presentation and source code
	2.2 Syntax rules
	2.2.1 Tags, elements, and attributes
	2.2.2 Tree structure
	2.2.3 Comments
	2.2.4 Reserved and special characters
	2.2.5 Document type definition
	2.2.6 Spaces and line breaks

	2.3 Tags and attributes
	2.3.1 The anchor tag <a>
	2.3.2 The metadata tag <meta>
	2.3.3 The external reference tag <link>
	2.3.4 Emphasizing tags <b>, <i>, <strong>
	2.3.5 The paragraphs tag <p>
	2.3.6 Heading tags <h1>, <h2>, <h3>,
	2.3.7 Listing content with <ul>, <ol>, and <dl>
	2.3.8 The organizational tags <div> and <span>
	2.3.9 The <form> tag and its companions
	2.3.10 The foreign script tag <script>
	2.3.11 Table tags <table>, <tr>, <td>, and <th>

	2.4 Parsing
	2.4.1 What is parsing?
	2.4.2 Discarding nodes
	2.4.3 Extracting information in the building process

	Summary
	Further reading
	Problems

	3 XML and JSON
	3.1 A short example XML document
	3.2 XML syntax rules
	3.2.1 Elements and attributes
	3.2.2 XML structure
	3.2.3 Naming and special characters
	3.2.4 Comments and character data
	3.2.5 XML syntax summary

	3.3 When is an XML document well formed or valid?
	3.4 XML extensions and technologies
	3.4.1 Namespaces
	3.4.2 Extensions of XML
	3.4.3 Example: Really Simple Syndication
	3.4.4 Example: scalable vector graphics

	3.5 XML and R in practice
	3.5.1 Parsing XML
	3.5.2 Basic operations on XML documents
	3.5.3 From XML to data frames or lists
	3.5.4 Event-driven parsing

	3.6 A short example JSON document
	3.7 JSON syntax rules
	3.8 JSON and R in practice
	Summary
	Further reading
	Problems

	4 XPath
	4.1 XPath—a query language for web documents
	4.2 Identifying node sets with XPath
	4.2.1 Basic structure of an XPath query
	4.2.2 Node relations
	4.2.3 XPath predicates

	4.3 Extracting node elements
	4.3.1 Extending the fun argument
	4.3.2 XML namespaces
	4.3.3 Little XPath helper tools

	Summary
	Further reading
	Problems

	5 HTTP
	5.1 HTTP fundamentals
	5.1.1 A short conversation with a web server
	5.1.2 URL syntax
	5.1.3 HTTP messages
	5.1.4 Request methods
	5.1.5 Status codes
	5.1.6 Header fields

	5.2 Advanced features of HTTP
	5.2.1 Identification
	5.2.2 Authentication
	5.2.3 Proxies

	5.3 Protocols beyond HTTP
	5.3.1 HTTP Secure
	5.3.2 FTP

	5.4 HTTP in action
	5.4.1 The libcurl library
	5.4.2 Basic request methods
	5.4.3 A low-level function of RCurl
	5.4.4 Maintaining connections across multiple requests
	5.4.5 Options
	5.4.6 Debugging
	5.4.7 Error handling
	5.4.8 RCurl or httr—what to use?

	Summary
	Further reading
	Problems

	6 AJAX
	6.1 JavaScript
	6.1.1 How JavaScript is used
	6.1.2 DOM manipulation

	6.2 XHR
	6.2.1 Loading external HTML/XML documents
	6.2.2 Loading JSON

	6.3 Exploring AJAX with Web Developer Tools 
	6.3.1 Getting started with Chrome’s Web Developer Tools
	6.3.2 The Elements panel
	6.3.3 The Network panel

	Summary
	Further reading
	Problems

	7 SQL and relational databases
	7.1 Overview and terminology
	7.2 Relational Databases
	7.2.1 Storing data in tables
	7.2.2 Normalization
	7.2.3 Advanced features of relational databases and DBMS

	7.3 SQL: a language to communicate with Databases
	7.3.1 General remarks on SQL, syntax, and our running example
	7.3.2 Data control language—DCL
	7.3.3 Data definition language—DDL
	7.3.4 Data manipulation language—DML
	7.3.5 Clauses
	7.3.6 Transaction control language—TCL

	7.4 Databases in action
	7.4.1 R packages to manage databases
	7.4.2 Speaking R-SQL via DBI-based packages
	7.4.3 Speaking R-SQL via RODBC

	Summary
	Further reading
	Problems

	8 Regular expressions and essential string functions
	8.1 Regular expressions
	8.1.1 Exact character matching
	8.1.2 Generalizing regular expressions
	8.1.3 The introductory example reconsidered

	8.2 String processing
	8.2.1 The stringr package
	8.2.2 A couple more handy functions

	8.3 A word on character encodings
	Summary
	Further reading
	Problems


	Part Two A Practical Toolbox for Web Scraping and Text Mining
	9 Scraping the Web
	9.1 Retrieval scenarios
	9.1.1 Downloading ready-made files
	9.1.2 Downloading multiple files from an FTP index
	9.1.3 Manipulating URLs to access multiple pages
	9.1.4 Convenient functions to gather links, lists, and tables from HTML documents
	9.1.5 Dealing with HTML forms
	9.1.6 HTTP authentication
	9.1.7 Connections via HTTPS
	9.1.8 Using cookies
	9.1.9 Scraping data from AJAX-enriched webpages with Selenium/Rwebdriver
	9.1.10 Retrieving data from APIs
	9.1.11 Authentication with OAuth

	9.2 Extraction strategies
	9.2.1 Regular expressions
	9.2.2 XPath
	9.2.3 Application Programming Interfaces

	9.3 Web scraping: Good practice
	9.3.1 Is web scraping legal?
	9.3.2 What is robots.txt?
	9.3.3 Be friendly!

	9.4 Valuable sources of inspiration
	Summary
	Further reading
	Problems

	10 Statistical text processing
	10.1 The running example: Classifying press releases of the British government
	10.2 Processing textual data
	10.2.1 Large-scale text operations—The tm package
	10.2.2 Building a term-document matrix
	10.2.3 Data cleansing
	10.2.4 Sparsity and n-grams

	10.3 Supervised learning techniques
	10.3.1 Support vector machines
	10.3.2 Random Forest
	10.3.3 Maximum entropy
	10.3.4 The RTextTools package
	10.3.5 Application: Government press releases

	10.4 Unsupervised learning techniques
	10.4.1 Latent Dirichlet allocation and correlated topic models
	10.4.2 Application: Government press releases

	Summary
	Further reading

	11 Managing data projects
	11.1 Interacting with the file system
	11.2 Processing multiple documents/links
	11.2.1 Using for-loops
	11.2.2 Using while-loops and control structures
	11.2.3 Using the plyr package

	11.3 Organizing scraping procedures
	11.3.1 Implementation of progress feedback: Messages and progressbars
	11.3.2 Error and exception handling

	11.4 Executing R scripts on a regular basis
	11.4.1 Scheduling tasks on Mac OS and Linux
	11.4.2 Scheduling tasks on Windows platforms



	Part Three A Bag of Case Studies
	12 Collaboration networks in the US Senate
	12.1 Information on the bills
	12.2 Information on the senators
	12.3 Analyzing the network structure
	12.3.1 Descriptive statistics
	12.3.2 Network analysis

	12.4 Conclusion

	13 Parsing information from semistructured documents
	13.1 Downloading data from the FTP server
	13.2 Parsing semistructured text data
	13.3 Visualizing station and temperature data

	14 Predicting the 2014 Academy Awards using Twitter
	14.1 Twitter APIs: Overview
	14.1.1 The REST API
	14.1.2 The streaming APIs
	14.1.3 Collecting and preparing the data

	14.2 Twitter-based forecast of the 2014 Academy Awards
	14.2.1 Visualizing the data
	14.2.2 Mining tweets for predictions

	14.3 Conclusion

	15 Mapping the geographic distribution of names
	15.1 Developing a data collection strategy
	15.2 Website inspection
	15.3 Data retrieval and information extraction
	15.4 Mapping names
	15.5 Automating the process
	Summary

	16 Gathering data on mobile phones
	16.1 Page exploration
	16.1.1 Searching mobile phones of a specific brand
	16.1.2 Extracting product information

	16.2 Scraping procedure
	16.2.1 Retrieving data on several producers
	16.2.2 Data cleansing

	16.3 Graphical analysis
	16.4 Data storage
	16.4.1 General considerations
	16.4.2 Table definitions for storage
	16.4.3 Table definitions for future storage
	16.4.4 View definitions for convenient data access
	16.4.5 Functions for storing data
	16.4.6 Data storage and inspection


	17 Analyzing sentiments of product reviews
	17.1 Introduction
	17.2 Collecting the data
	17.2.1 Downloading the files
	17.2.2 Information extraction
	17.2.3 Database storage

	17.3 Analyzing the data
	17.3.1 Data preparation
	17.3.2 Dictionary-based sentiment analysis
	17.3.3 Mining the content of reviews

	17.4 Conclusion


	References
	General index
	Package index
	Function index
	EULA

