
Agile Project
Management with
Azure DevOps

Concepts, Templates, and Metrics
—
Joachim Rossberg

Agile Project
Management with

Azure DevOps
Concepts, Templates,

and Metrics

Joachim Rossberg

Agile Project Management with Azure DevOps: Concepts, Templates, and

Metrics

ISBN-13 (pbk): 978-1-4842-4482-1 ISBN-13 (electronic): 978-1-4842-4483-8
https://doi.org/10.1007/978-1-4842-4483-8

Copyright © 2019 by Joachim Rossberg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484244821.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joachim Rossberg
Kungsbacka, Sweden

https://doi.org/10.1007/978-1-4842-4483-8

To my kids, Amelie and Eddie.
Love you forever.

v

Table of Contents

Chapter 1: Introduction to Application Life Cycle Management �����������1

Aspects of the ALM Process ��2

Four Ways of Looking at ALM ��7

The SDLC View���9

The Service Management or Operations View ���11

The APM View ��11

The Unified View ��12

Three Pillars of Traditional ALM ���13

Traceability ��14

Automation of High-Level Processes ���15

Visibility into the Progress of Development Efforts ���������������������������������������15

A Brief History of ALM Tools and Concepts ���16

ALM 1�0 ���18

ALM 2�0 ���22

ALM 2�0+ ���26

DevOps ��29

Azure DevOps Introduction ��31

Summary���35

About the Author ���xiii

About the Technical Reviewer ��xv

Introduction ��xvii

vi

Chapter 2: An Overview of Azure DevOps ���37

ALM Overview ���37

Azure DevOps Overview ��39

Team Foundation Server ��41

Process Template ��42

Visual Studio 2017 Editions ���44

Azure DevOps ��46

Microsoft Office ���46

IDE Integration ���47

Traceability ��47

The Azure DevOps Work Item Tracking System ���48

Visibility ���57

Collaboration ���58

Work Items for Collaboration ���60

The Gap between IT and Business ��61

Use of One Tool/Role Based ��63

Extensibility ���63

Difference between TFS and Azure DevOps ��64

Summary���66

Chapter 3: Introduction to Scrum and Agile Concepts �����������������������67

The Scrum Framework��67

Empirical Process Control ���69

Complexity in Projects ���71

What Scrum Is ���73

Deliverables in Scrum ���78

Events in Scrum ��80

Definition of Done ��84

Table of ConTenTsTable of ConTenTs

vii

Agile Requirements and Estimation ��88

During the Sprint ���95

Kanban ��97

Start with What You Do Now ��99

Agree to Pursue Incremental, Evolutionary Change ��������������������������������������99

Respect the Current Process, Roles, Responsibilities, and Titles ������������������99

The Five Core Properties ���100

Common Models Used to Understand Work in Kanban �������������������������������103

eXtreme Programming ��104

Scaling Agile ���106

Scrum of Scrums ���107

SAFe ��109

NEXUS–SPS ���117

Large-Scale Scrum ���120

How Agile Maps to ALM ��121

Agile Captures Task-Based Work ���122

There Is Increased Frequency of Inspection ��122

Many Tools Collect Much Information ��122

Test Artifacts Are Important ���123

Agile Teams Plan Frequently ���123

Summary���123

Chapter 4: Work Items and Process Templates ��������������������������������125

ALM Revisited ���125

Traceability ��126

The Azure DevOps Work Item Tracking System ���127

Work Items ��129

Table of ConTenTsTable of ConTenTs

viii

The Process in Azure DevOps ���141

Scrum, Agile, and CMMI ���142

Summary���157

Chapter 5: Customizing the Process Template in Azure DevOps ������159

Process Customization ��159

Modifying the Process Template in TFS 2018 On- Premise ��������������������������160

Common Adaptations of the Process Template ���163

Modifying the Process Template in Azure DevOps ���������������������������������������176

Summary���195

Chapter 6: Agile Practices in Azure DevOps and TFS �����������������������197

Agile Testing ��198

Acceptance Criteria ���199

Evolving Tests ��201

Clients for Managing Tests ��203

TDD and Automated Testing ��206

Test-Driven Development ��206

Working with Automated Tests ��207

Continuous Integration/Continuous Delivery ���209

Continuous Integration ��209

Why Continuous Integration? ��210

Continuous Delivery ���213

Azure Pipelines ��215

Coding Standards ��216

Refactoring��217

Table of ConTenTsTable of ConTenTs

ix

Pair Programming ���218

SAFe in Azure DevOps ���219

Nexus in Azure DevOps ��224

Why Not a Dedicated Team for the Nexus Integration Team? ����������������������227

Further Improvements ���227

Summary���228

Chapter 7: Metrics in Agile Projects ���229

Metrics for Project Management ��230

Agile Metrics ��230

Metrics for Architecture, Analysis, and Design ��235

Metrics for Developer Practices ��237

Code Coverage���238

Code Metrics ���238

Compiler Warnings ��238

Code Analysis Warnings ��238

Metrics for Software Testing ���239

Example Reports ���240

Bug Trend Report ���242

Metrics for Release Management ���243

Example Reports ���244

Using Charts to Monitor Metrics ���247

Summary���249

Table of ConTenTsTable of ConTenTs

x

Chapter 8: Agile Project Management in Azure DevOps and TFS �����251

Case Study ��252

Company Background ���252

The Pilot Project ��252

Project Startup Phase ���254

Starting Work ���254

Building the Initial Team ��255

Creating New Teams ���257

Creating the Backlog and Team Structure for the MyHealthClinic Pilot �������260

Building the Teams ��262

Adding Team Members ���263

Managing Azure DevOps Groups, Teams, and User’s Permission ���������������������266

Managing Notifications ���268

Requirements ��270

Building the Backlog ��272

Definition of Done ��274

Estimation ��277

Risk Assessment ���278

Refining the Backlog ���279

Initial Velocity ��280

Available Time ���280

Capacity Planning in Azure DevOps ���281

Initial Sprint Planning ��282

Updating Backlog and PBI ���285

Forecast in Azure DevOps ��287

Table of ConTenTsTable of ConTenTs

xi

Release Planning ��288

Epics ��288

Estimated Time Plan ��290

Estimated Project Cost ��290

Scrum Meetings during a Sprint ���291

Sprint Planning ��292

Daily Standup ��299

Retrieving Data from Azure DevOps ��301

Backlog Refinement ��304

Sprint Review ��304

Sprint Retrospective ��305

Summary���306

Index ���307

Table of ConTenTsTable of ConTenTs

xiii

About the Author
Joachim Rossberg is an expert in Agile project

management, SAFe, DevOps processes, and

Azure DevOps/TFS, working for Solidify in

Sweden. An IT consultant for more than two

decades, primarily in the role of product owner,

Agile coach and trainer, and project manager,

he has extensive experience as a system

developer and designer and holds certifications

in PSM I & II, SAFe SPC, PSPO I, PSD I, CSPO,

and PAL I. He is the author of seven books.

xv

About the Technical Reviewer

Gregor Suttie lives near Glasgow, Scotland, and

has been in the IT industry for 20-plus years.

He started with Visual Basic 6 and Com +, along

with Visual Interdev and the original Active

Server Pages. After that period in his career,

he moved on to .Net and has been developing

with it since its original release. More recently,

he has been concentrating on learning Azure,

which he had never used until the end of 2018.

During the last quarter of 2018, Gregor sat for eight Azure beta exams

and received most of his results by January 2019. He is a certified Azure

developer and is one transition exam away from being a certified Azure

architect. He is still waiting for the results of his Azure DevOps beta exam.

Gregor has a passion for learning, and you can access his blog at

http://gregorsuttie.com and on twitter at @gregor_suttie. He is

enthusiastic about Azure and DevOps, and he has been using them daily

at work and has learning more about Azure DevOps since its release.

Every week he discovers something new. When the opportunity arose to

be a technical reviewer for a book about Azure DevOps, he jumped at the

chance!

The book covers a few different areas, but its guts cover Azure Boards

and how to go about using this feature successfully. Gregor hopes you

enjoy reading the book as much as he did reviewing it.

https://urldefense.proofpoint.com/v2/url?u=http-3A__gregorsuttie.com&d=DwMFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=kOan6N_pkaiYWIifYC_jw5QCAUdt-MjwlAqpgB_ioUU&s=yAiVKkWk5Oxw9L6O4UPPQChU7aHxng4NuEyQ5h24cyU&e=

xvii

Introduction

Throughout the years, many things have happened with Team

Foundation Server (TFS) and the Visual Studio Team System. The

product has gone through several names and is now called Azure

DevOps and Azure DevOps Server. It’s kind of hard to keep track of

them all.

This book is written with Agile leaders in mind, such as product

owners, Scrum masters, Agile project/product managers, and the like.

Members of Agile teams can benefit a lot as well.

In this book, I write about how we can use the features and

functionality of Azure DevOps, and customize our work process. I cover

Kanban board customizations in both Azure DevOps and Azure DevOps

Server/TFS.

In Chapter 1, we start with a brief introduction to a concept called

application life cycle management, which, to this day, I still think

describes the areas of DevOps well. After that, we look at DevOps

(Chapter 2) and then at Agile concepts (Chapter 3) such as Scrum,

Kanban, SAFe, and more. In Chapters 4 and 5, I talk about the underlying

logic of Azure DevOps. You will see what work items are and how

we can customize them to fit our way of working. Chapter 6 covers

Agile practices in Azure DevOps. We examine things like test-driven

development, the Scaled Agile Framework, (SAFe) framework, and how

we can use Azure DevOps to implement SAFe and more. Before we look

at a fictional project implementation in Chapter 8, Chapter 7 takes you

through some Agile metrics that are good to monitor.

1© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_1

CHAPTER 1

Introduction
to Application Life
Cycle Management
What do you think about when you hear the term application life cycle

management (ALM)? During a seminar tour in 2005 in Sweden, presenting

on Microsoft’s Visual Studio Team System, we asked people what ALM was

and whether they cared about it. To our surprise, many people equated

ALM with Operations and Maintenance. This is still often the case when

we visit companies, although today more people are aware of the term.

Was that your answer as well? Does ALM include more than just

Operations? Yes, it does. ALM is the thread that ties together the

development life cycle. It involves all the steps necessary to coordinate

development life cycle activities. Operations are just one part of the ALM

process. Other elements range from requirements gathering to more

technical things such as the build-and-deploy process.

These days we do not talk as much about ALM as a concept as we used

to. These days we talk more about DevOps. But, let’s start by talking some

ALM in this chapter to lay a foundation for DevOps and Azure DevOps, as

Microsoft calls it.

2

Microsoft renamed Visual Studio Team Services (VSTS) to Azure

DevOps at the end of 2018. As of this writing, Microsoft’s Team Foundation

Server (TFS) is in version 2018. In the near future, the TFS name will be

changed to Azure DevOps Server.

 Aspects of the ALM Process
All software development includes various steps performed by people

playing specific roles. There are many different roles, or disciplines, in the

ALM process, and some of them are defined in this section. (The process

could include more roles, but we focus on the primary ones.)

Look at Figure 1-1, which illustrates ALM and some of its aspects.

You can see the flow from the birth of an application, when the business

need first arises, to when the business need no longer exists and the

application dies. Once the thought of a new application (or system) is

born, many organizations do some portfolio rationalization. This means

you discuss whether an existing system can handle the need or whether a

new system has to be developed. If a new system must be built, you enter

the software development life cycle (SDLC) and develop the system, test it,

and deploy it into operation. This is the point at which you do a handover

so that Operations personnel can maintain and refine the system. Once in

production, the system (hopefully) delivers the intended business value

until retirement. While in operation, the system usually is updated or

undergoes bug fixes; at such times, change requests (CRs) are written. For

each CR, you go through the same process again.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

3

It’s essential to understand that all business software development is a

team effort. The company personnel who play specific roles collaborate on

projects to deliver business value to the organization. If you don’t have this

collaboration, the value of the system will most likely be considerably less

than it could be. One step up from the project level, at the program level,

it’s also important to have collaboration between all roles involved in the

ALM process so that you perform this process in the most optimal way.

The roles in the ALM process include, but aren’t limited to, the following:

• Stakeholders: Stakeholders are usually the people who

either pay for the project or have decision-making rights

about what to build. We like to also include end users

in this group, so not only management has a stake in a

project.

• Business manager: Somebody has to decide that a

development activity is going to start. After initial analysis

of the business needs, a business manager decides to

initiate a project to develop an application

or system that delivers the expected business value.

A business manager, for instance, must be involved in the

approval process for a new suggested project, including

portfolio rationalization, before a decision to go ahead

Change Request or New Release

Retirement of System

Portfolio
Rationalisation

Software
Development

Life Cycle (SDLC)
Operations Business ValueBusiness Needs

Figure 1-1. The application life cycle management process

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

4

is made. Information technology (IT) managers are also

part of this process because IT staff will probably be

involved in the project’s development and deployment

into the infrastructure.

• Project manager, product owner, or Scrum master:

Suitable individuals are selected to fill these roles,

and they are prepared to work on the project after the

decision to go ahead is made. Ideally, these people

continue leading the project all the way through, so that

you have continuity in project management.

• Project management office (PMO) decision makers:

These individuals are also involved in planning because

a new project may change or expand the company’s

portfolio.

• Business analyst: After requirements collection starts,

the business analyst has much to do. Usually, initial

requirements are gathered when the business need

arises, but the real work often begins after portfolio

rationalization. A business analyst is responsible for

analyzing the business needs and requirements of the

stakeholders to help identify business problems and

propose solutions. Within the system’s development

life cycle, the business analyst typically performs a

collaborative function between the business side

of an enterprise and the providers of services to the

enterprise.

• Architect: The architect draws an initial picture of the

solution. In brief the architect draws the blueprint of

the system, and the system designers or engineers

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

http://en.wikipedia.org/wiki/Systems_development_life_cycle
http://en.wikipedia.org/wiki/Systems_development_life_cycle

5

use this blueprint. The blueprint includes the level of

freedom necessary in the system: scalability, hardware

replacement, new user interfaces, and so on. The

architect must consider all these issues.

• User experience (UX) design team: UX design should

be a core deliverable, not something you leave to the

developers to handle. Unfortunately, this design often

overlooked; it should be given more consideration.

It’s important to have close collaboration between

the UX team (which could be just one person) and

the development team. The best solution is to have a

UX expert on the development team throughout the

project, but sometimes that isn’t possible. The UX

design is important in making sure users can perceive

the value of the system. You can write the best business

logic in the world, but if the UX is designed poorly,

users probably won’t think the system is any good.

• Database administrators (DBAs): Almost every

business system or application uses a database in

some way. DBAs can make your databases run like

lightning, with good uptime, so it’s essential to use their

expertise in any project involving a database. Be nice to

them; they can give you lots of tips about how to make

a smarter system. Alas, for DBAs, developers handle

this work more and more frequently. This means

developers are expected to have vertical knowledge and

not just focus on coding.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

6

• Developers: “Developers, developers, developers!” as

Microsoft Chief Executive Officer (CEO) Steve Ballmer

shouted in a famous video. And who can blame him?

These are the people who work their magic to realize

the system by using the architecture blueprint drawn

from the requirements. Moreover, developers modify or

extend the code when CRs come in.

• Testers: I’d rather not see testing as a separate activity.

Don’t get me wrong: It’s a role, but testing is something

you should consider from the first time you write down

a requirement and should continue doing during

the whole process. Testers and test managers help to

secure quality, but modern development practices

include testing by developers as well. For instance, in

test-driven development (TDD), developers write tests

that can be automated and run at build time or as part

of checking in to version control.

• Operations and maintenance staff: When an application

or system is finished, it’s handed over to operations.

The Operations staff takes care of it until it retires, often

with the help of the original developers, who come

in to do bug fixes and new upgrades. Don’t forget to

involve these people early in the process, at the point

when the initial architecture is considered, and keep

them involved with the project until everything is

done. They can provide great input about what can and

can’t be done within the company infrastructure. So,

Operations is just one part—although an important

one—of ALM. In Chapter 3, this book talks about

DevOps, which is a practice that ties developers and

Operations personnel more closely.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

7

All project efforts are done collaboratively. No role can act separately

from the others if you’re to succeed with any project. It’s essential for

everybody involved to have a collaborative mind-set and to have the

business value as their primary focus at every phase of the project.

If you’re part of an Agile development process, such as a Scrum

project, you might have only three roles: product owner, Scrum master,

and team members. This doesn’t mean the roles just described don’t apply

though! They’re all essential in most projects; it’s just that, in an Agile

project, you may not be labeled a developer or an architect. Rather, you’re

a team member, and you and your comembers share responsibility for the

work you’re doing. We go deeper into the Agile world later in Chapter 4.

 Four Ways of Looking at ALM
ALM is the glue that ties together the roles just discussed and the activities they

perform. Let’s consider four ways of looking at ALM (Figure 1-2). We’ve chosen

these four because we’ve seen this separation in many of the organizations

with which we’ve worked or individuals to whom we’ve spoken:

 1. SDLC view: The SDLC view is perhaps the

most common way of looking at ALM, because

development has “owned” management of the

application life cycle for a long time. This could be

an effect of the gap between the business side and

the IT side in most organizations, and IT has taken

the lead.

 2. Service management or operations view: Operations

has also been (in our experience) unfortunately

separated from IT development. This has resulted

in Operations having its own view of ALM and the

problems that can occur in this area.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

8

 3. Application portfolio management (APM) view: Again,

perhaps because of the gap between business and IT,

we’ve seen many organizations with a portfolio ALM

strategy in which IT development is only one small part.

From a business viewpoint, the focus has been on how

to handle the portfolio, not on the entire ALM process.

 4. Unified view: Fortunately, some organizations focus

on the entire ALM process by including all three of the

preceding views. This is the only way to take control

of, and optimize, ALM. For a chief information officer

(CIO), it’s essential to have this view all the time;

otherwise, things can get out of hand easily.

SDLC

APMOperations

The Unified View

Figure 1-2. The four ways of looking at ALM

Let’s look at these four views in more detail, starting with the SDLC view.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

9

 The SDLC View
Let’s consider ALM from an SDLC perspective first. In Figure 1-3, you can

see the different phases of a typical development project and the roles

most frequently involved. Keep in mind that this is a simplified view for the

sake of this discussion. We’ve also tried to fit in the different roles from the

ALM process presented earlier.

Stakeholder

Analysis
Management

Decision

Project Manager
Business Analysis

Architect Developer
UI Design
DBA

Operations

Initial
Requirement

Initial
Architecture

Development Delivery

Figure 1-3. A simplified view of a typical development project

First, somebody comes up with an idea based on an analysis of

business needs: “Hey, wouldn’t it be great if we had a system that could

help us do [whatever the idea is]?” It can also be the other way around: The

idea comes first, and the business value is evaluated based on the idea.

An analysis or feasibility study is performed, costs are estimated, and

(hopefully) a decision is made by IT and business management to start

an IT project. A project manager (PM) is selected to be responsible for

the project and begins gathering requirements with the help of business

analysts, PMO decision makers, and users or others affected. The PM also

starts planning the project in as much detail as possible at this moment.

When that is done, the architect begins looking at how to realize

the new system, and the initial design is chosen. The initial design is

evaluated and updated based on what happens during the project and

how requirements change throughout the project. Development beings,

including work performed by developers, user interface (UI) designers, and

DBAs (and anyone else not mentioned here but important for the project).

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

10

Testing is, at least for us, something done all along the way—from

requirements specification to delivered code—so it doesn’t get a

separate box in Figure 1-3. We include acceptance testing by end users or

stakeholders in the Development box. After the system has gone through

acceptance testing, it’s delivered to Operations for use in the organization.

Of course, the process doesn’t end there. This cycle is generally

repeated over and over as new versions are rolled out and bug fixes are

implemented.

What ALM does in this development process is support the

coordination of all development life cycle activities by doing the following:

• Makes sure you have processes that span these

activities.

• Manages the relationships between development

project artifacts used or produced by these activities

(in other words, provides traceability). These artifacts

include UI mockups done during requirements

gathering, source code, executable code, build scripts,

test plans, and so on.

• Reports on progress of the development effort as a

whole so you have transparency for everyone regarding

project advancement.

As you can see, ALM doesn’t support a specific activity. Its purpose

is to keep all activities in sync. It does this so you can focus on delivering

systems that meet the needs and requirements of the business. By having

an ALM process that helps you synchronize your development activities,

you can determine more easily whether an activity is underperforming and

thus take corrective actions.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

11

 The Service Management or Operations View
From a Service Management or Operations view, you can look at ALM

as a process that focuses on the activities that are involved with the

development, operation, support, and optimization of an application so

that it meets the service level that has been defined for it.

When you see ALM from this perspective, it focuses on the life of an

application or system in a production environment. If, in the SDLC view,

the development life cycle starts with the decision to go ahead with a

project, here it starts with deployment into the production environment.

Once deployed, the application is controlled by the Operations crew. Bug

fixes and CRs are handled by them, and they also pat it on its back to make

it feel good and run smoothly.

This is a healthy way of looking at ALM in our opinion: Development

and Operations are two pieces of ALM, cooperating to manage the entire

ALM process. You should consider both pieces from the beginning when

planning a development project; you can’t have one without the other.

 The APM View
In the APM view of ALM, you see the application as a product managed

as part of a portfolio of products. APM is a subset of project portfolio

management (PPM).1 Figure 1-4 illustrates this process.

This view comes from the Project Management Institute (PMI).

Managing resources and the projects on which they work is very important

for any organization. In Figure 1-4, you can see that the product life cycle

starts with a business plan—the product is an application or system that

1 The Project Management Institute (PMI) is the world’s leading not-for-profit
professional membership association for the project, program, and portfolio
management profession. Read more at www.pmi.org.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

http://www.pmi.org

12

is one part of the business plan. An idea for an application is turned into a

project and is carried out through the project phases until it’s turned over

to Operations as a finished product.

When business requirements change or a new release (an upgrade,

in Figure 1-4) is required for some other reason, the project life cycle

starts again, and a new release is handed over to Operations. After a

while (maybe years), the system or application is discarded (this is called

divestment, which is the opposite of investment). This view doesn’t speak

specifically about the operations part or the development part of the

process but should instead be seen in the light of APM.

Upgrade

Business Plan

Initial Intermediate Final

Operations

Pr
od

uc
tIdea

The
Product
Life Cycle

The
Product
Life Cycle

Divestment

Figure 1-4. The APM view of ALM

 The Unified View
Finally, there is a unified view of ALM. In this case, an effort is made to

align the previous views with the business. Here you do as the CIO would

do: You focus on business needs, not on separate views. You do this

to improve the capacity and agility of a project from beginning to end.

Figure 1-5 shows an overview of the unified ALM view of a business.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

13

You probably recognize this figure from Figure 1-1. We want to stress

that with the unified view, you need to consider all aspects—from the birth

to the death of an application or a system—hence the curved arrow that

indicates continuous examination of an application or system and how it

benefits the business

 Three Pillars of Traditional ALM
Let’s now look at some important pillars of ALM that are independent of

the view you might have (Figure 1-6). These pillars were first introduced by

Forrester Research.2

2 Dave West, “The Time Is Right For ALM 2.0+,” Forrester Research,
www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-
RES56832?objectid=RES56832, October 19, 2010.

Change Request or New Release

Retirement of System

Portfolio
Rationalisation

Software
Development

Life Cycle (SDLC)
Operations Business ValueBusiness Needs

Change Request or New Release

Retirement of System

Portfolio
Rationalisation

Software
Development

Life Cycle (SDLC)
Operations Business ValueBusiness Needs

The Unified View

Figure 1-5. The unified view takes into consideration all three
previously mentioned views

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

http://www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-RES56832?objectid=RES56832
http://www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-RES56832?objectid=RES56832

14

In the following sections, we examine these pillars in greater detail,

starting with traceability.

 Traceability
Some customers we’ve seen have stopped doing upgrades on systems

running in production because their companies had poor or no

traceability in their systems. For these customers, it was far too expensive

to do upgrades because of the unexpected effects even a small change

could have. The companies had no way of knowing which original

requirements were implemented where in the applications. The effect was

that a small change in one part of the code might affect another part, which

would come as a surprise because poor traceability meant they had no way

of seeing the code connection in advance. One customer claimed (as we’ve

heard in discussions with many other customers) that traceability can be a

major cost driver in any enterprise if not done correctly.

There must be a way to trace requirements all the way to delivered

code—through architect models, design models, build scripts, unit tests,

test cases, and so on—not only to make it easier to go back into the system

Traceability Process
Automation

Visibility

Figure 1-6. The three pillars of ALM

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

15

when implementing bug fixes, but also to demonstrate that the system has

delivered the things the business wants.

You also need traceability to achieve internal as well as external

compliance with rules and regulations. If you develop applications for

the medical industry, for example, you must comply with Food and Drug

Administration (FDA) regulations. You also need traceability when CRs

come in so you know where you updated the system and in which version

you performed the update.

 Automation of High-Level Processes
The next pillar of ALM is automation of high-level processes. All

organizations have processes. For example, approval processes control

handoffs between the analysis and design or build steps, or between

deployment and testing. Much of this is done manually in many projects,

and ALM stresses the importance of automating these tasks for a more

effective and less time-consuming process. Having an automated process

also decreases the error rate compared to handling the process manually.

 Visibility into the Progress of Development Efforts
The third and last pillar of ALM is providing visibility into the progress

of development efforts. Many managers and stakeholders have limited

visibility into the progress of development projects. The visibility they have

often comes from steering group meetings, during which the PM reviews

the current situation. Some would argue that this limitation is good; but, if

you want an effective process, you must ensure visibility.

Other interest groups, such as project members, also have limited

visibility of the entire project despite being part of the project. This is often

a result of the fact that reporting is difficult and can involve a lot of manual

work. Daily status reports take too much time and effort to produce,

especially when you have information in many repositories.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

16

 A Brief History of ALM Tools and Concepts
You can resolve the three pillars of ALM manually if you want to, without

using tools or automation. (ALM isn’t a new process description, even

though Microsoft, IBM, Hewlett-Packard (HP), Atlassian, and the other big

software houses are pushing ALM to drive sales of their respective ALM

solutions.) You can, for instance, continue to use Excel spreadsheets or, like

one of our most dedicated Agile colleagues, use sticky notes and a pad of

paper to track requirements through use cases/scenarios, test cases, code,

build, and so on, to delivered code. It works, but this process takes a lot of

time and requires much manual effort. With constant pressure to keep costs

down, you need to make the tracking of requirements more effective.

Of course, project members can simplify the process by keeping

reporting to the bare minimum. With a good tool or set of tools, you can

cut time (and thus costs) and effort, and still get the required traceability

you want in your projects. The same goes for reporting and other activities.

Tools can, in our opinion, help you be more effective and also help you

automate much of the ALM process into the tools.

Having the process built directly into your tools helps prevent the

people involved from missing important steps by simplifying things. For

instance, the Agile friend we mentioned could definitely gain much from

this, and he is looking into Microsoft’s TFS to determine how that set of

tools can help him and his teams be more productive. Process automation

and the use of tools to support and simplify daily jobs are great, because

they can keep you from making unnecessary mistakes.

Serena Software Inc. is one supplier of ALM tools, and the company

has interesting insight into ALM and related concepts. According to Serena

Software, there are eight ALM concepts3:

3 Kelly A. Shaw, “Application Lifecycle Management for the Enterprise,” Serena
Software Inc., www.serena.com/docs/repository/company/serena_alm_2.0_
for_t.pdf, April 2007.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

http://www.serena.com/docs/repository/company/serena_alm_2.0_for_t.pdf
http://www.serena.com/docs/repository/company/serena_alm_2.0_for_t.pdf

17

 1. Modeling: Software modeling

 2. Issue management: Keeping track of incoming issues

during both development and operations activities

 3. Design: Designing the system or application

 4. Construction: Developing the system or application

 5. Production monitoring: The work of the operations

staff

 6. Build: Building the executable code

 7. Test: Testing the software

 8. Release management: Planning application releases

To synchronize these concepts, according to Serena Software, you

need tools that span them and that help you automate and simplify the

following activities. If you look closely, you can see that these activities

compare to ALM 2.0+, which we examine shortly:

• Reporting

• Traceability

• Policies

• Procedures

• Processes

• Collaboration

Imagine the Herculean task of keeping all these things in order

manually. It’s impossible, if you want to get things right and keep an eye

on the project’s status. Projects today seem to be going better because

the number of failed projects is decreasing. Much of this progress is,

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

18

according to Michael Azoff at the Butler Group,4 the result of “major

changes in software development: open source software projects; the Agile

development movement; and advances in tooling, notably Application

Lifecycle Management (ALM) tools.” Some of these results have also been

confirmed by later research, such as that by Scott W. Ambler at Ambysoft.5

Now you understand why finding tools and development processes to help

you with ALM is important.

There is increasing awareness of the ALM process among enterprises,

and we see this among our customers. ALM is much more important now

than it was only five years ago.

 ALM 1.0
Forrester Research has introduced some very useful concepts for ALM,6

including different versions of ALM and ALM tools. This section looks at

how Forrester defined ALM 1.0, then continues to the latest version:

ALM 2.0+.

As software has become more and more complex, role specialization

has increased in IT organizations. This has led to functional silos in

different areas (roles), such as project management, business analysis,

architecture, development, database administration, testing, and so on. As

you may recall from the beginning of this chapter, you can see this in the

ALM circle. Having these silos in a company isn’t a problem, but having

them without any positive interaction between them is an issue.

4 Michael Azoff, “Application Lifecycle Management Making a Difference,”
February 2007, Enterprise Networks and Services, OpinionWire.

5 Scott W. Ambler, “2011 IT Project Success Rates Survey Results,” www.ambysoft.
com/surveys/success2011.html.

6 West, “The Time Is Right For ALM 2.0+.”

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

http://www.ambysoft.com/surveys/success2011.html
http://www.ambysoft.com/surveys/success2011.html

19

There is always a problem when you build impenetrable walls around

you. ALM vendors have driven this wall construction, because most of

their tools have, historically, been developed for particular silos. For

example, if you look at build-management tools, they have supported

the build silo (naturally), but have little or no interaction with test and

validation tools (which is strange because the first thing that usually

happens in a test cycle is the build). This occurs despite the fact that

interaction among roles can generate obvious synergies with great

potential. You need to synchronize the ALM process to make the role-

centric processes part of the overall process. This might sound obvious, but

it hasn’t happened until recently.

Instead of having complete integration among the roles or disciplines

mentioned at the start of this chapter, and the tools they use, there has

been point-to-point integration. For example, a development tool is

integrated slightly with a testing tool (or, probably, the other way around).

Each tool uses its own data repository, so traceability and reporting are

hard to handle in such an environment (Figure 1-7).

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

20

This point-to-point integration makes the ALM process fragile and

expensive. However, this isn’t just a characteristic of ALM 1.0; it’s true

for all integrations. Imagine that one tool is updated or replaced. The

integration may break, and then new solutions have to be found to get it

working again. This scenario can be a reality if, for example, old functions

in the updated or replaced tool are obsolete and the new tool doesn’t

support backward compatibility. What would happen if Microsoft Word

(to take an easy example) suddenly stopped supporting older Word files?

There would be more or less a riot among users until the situation was

fixed. This can be hard to solve even with integration between two tools.

What if you have a more complex situation, including several tools? We’ve

seen projects that use six or seven tools during development, which creates

a fragile solution when new versions are released.

Figure 1-7. ALM 1.0

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

21

Tools have also been centered on one discipline. In real life, a project

member working as a developer, for instance, often also acts as an

architect or a tester. Because the people in each of these disciplines have

their own tool (or set of tools), the project member must use several tools

and switch among them. It could also be that the task system is separated

from the rest of the tools, so to start working on a task, a developer must

first retrieve the task from the task system—perhaps they must print it out

or copy and paste it—then open the requirements system to check the

requirement, then look at the architecture in that system, and finally open

the development tool to begin working. Hopefully, the testing tools are

integrated into the development tool; otherwise, yet another tool must be

used. All this switching costs valuable time that could be better put into

solving the task.

Having multiple tools for each project member is obviously costly as

well, because everyone needs licenses for the tools they use. Even with

open-source tools that may be free of charge, you have maintenance costs,

adaptions of the tools, developer costs, and so on. Maintenance can be very

expensive, so you shouldn’t forget this even when the tools are free. Such a

scenario can be very costly and very complex. It’s probably also fragile.

As an example, take two coworkers at a large medical company in

Gothenburg. They use a mix of tools in their everyday work. We asked

them to estimate how much time they needed to switch among tools and

transfer information from one tool to another. They estimated they spend

half an hour to an hour each day syncing their work. Usually, they’re on

the lower end of that scale, but in the long run, all the switching takes a lot

of time and money. Our friends also experience problems whenever they

need to upgrade any of the systems they use.

One other problem with traditional ALM tools that’s worth mentioning

is that vendors often add features—for example, adapting a test tool to

support issue and defect management. In the issue management system,

some features may have been added to support testing. Because neither

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

22

tool has enough features to support both disciplines, users are confused

and don’t know which tool to use. In the end, most purchase both, just to

be safe, and end up with the integration issues described earlier.

 ALM 2.0
Let’s look at what the emerging tools and practices (including processes

and methodologies) in ALM 2.0 try to do for you. ALM is a platform for the

coordination and management of development activities, not a collection

of life cycle tools with locked-in and limited ALM features. Figure 1-8 and

Table 1-1 summarize these efforts.

Figure 1-8. ALM 2.0

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

23

One of the first things you can see is a focus on plug-ins. This means,

from one tool, you can add the features you need to perform the tasks

you want, without using several tools! If you’ve used Visual Studio, you’ve

seen that it’s straightforward to add new plug-ins to the development

environment. Support for the Windows Communication Foundation (WCF)

and Windows Presentation Services, for example, was available as plug-ins

long before support for them was added as part of Visual Studio 2008.

Having the plug-in option and making it easy for third-party vendors to

write plug-ins for the tool greatly eases the integration problems discussed

earlier. You can almost compare this to a smorgasbord, where you choose

the things you want. So far, this has mostly been adopted by development

tool vendors such as IBM and Microsoft, but more plug-ins are coming.

IBM has its Rational suite of products, and Microsoft has TFS.

Table 1-1. Characteristics of ALM 2.0

Characteristic Benefit

practitioner tools assembled from

plug- ins

Customers pay only for the features

they need.

practitioners find the features they need

more quickly.

Common services available across

practitioner tools

easier for vendors to deploy enhancements

to shared features.

ensures correspondence of activities across

practitioner tools.

repository neutral no need to migrate old assets.

Better support for cross-platform development.

use of open integration standards easier for customers and partners to build

deeper integrations with third-party tools.

Microprocesses and macroprocesses

governed by an externalized workflow

processes are “versionable” assets.

processes can share common components.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

24

Another thing that eases development efforts is that vendors in ALM

2.0 focus more on identifying features common to multiple tools and

integrating them into the ALM platform, including the following:

• Collaboration

• Workflow

• Security

• Reporting and analysis

Another goal of ALM 2.0 is that the tools should be repository neutral.

There shouldn’t be a single repository, but many, so you aren’t required

to use the storage solution the vendor proposes. IBM, for example, has

declared that its forthcoming ALM solution will integrate with a wide

variety of repositories, such as Concurrent Versions System (CVS) and

Subversion, just to mention two. This approach removes the obstacle of

gathering and synchronizing data, giving you easier access to progress

reports and so on. Microsoft uses an extensive set of web services and

plug-ins to solve the same issue. It has one storage center (SQL Server);

but, by exposing functionality through the use of web services, Microsoft

has made it fairly easy to connect to other tools as well.

An open and extensible ALM solution lets companies integrate their

own choice of repository into the ALM tool. Both Microsoft and IBM have

solutions—data warehouse adapters—that enable existing repositories to

be tied into the ALM system. A large organization that has invested in tools

and repositories probably doesn’t want to change everything for a new

ALM system; hence, it’s essential to have this option. Any way you choose

to solve the problem will work, giving you the possibility of having a well-

connected and synchronized ALM platform.

Furthermore, ALM 2.0 focuses on being built on an open integration

standard. As you know, Microsoft exposes TFS functionality through web

services. This isn’t documented publicly and isn’t supported by Microsoft,

however, so you need to do some research and go through some trial and

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

25

error to get it working. This way, you can support new tools as long as they

also use an open standard, and third-party vendors have the option of

writing cool and productive tools.

Process support built in to the ALM platform is another important

feature. By this, we mean having automated support for the ALM process

built right into the tools. You can, for instance, have the development

process (RUP, Scrum, XP, and so on) automated in the tool, reminding you

of each step in the process so you don’t miss creating and maintaining any

deliverables or checkpoints.

In the case of TFS, this support includes having the document

structure, including templates for all documents, available on the project

web site as soon as a new TFS project is created. You can also imagine a

tool with built-in capabilities that help you with requirements gathering

and specification—for instance, letting you add requirements and specs

to the tool and have them transformed into tasks that are assigned to the

correct role without you having to do this manually.

An organization isn’t likely to scrap a way of working just because the

new ALM tool says it can’t import that specific process. A lot of money has

often been invested in developing a process, and an organization won’t

want to spend the same amount again learning a new one. With ALM 2.0,

it’s possible to store the ALM process in a readable format such as XML.

The benefits include the fact that the process can be easily modified,

version controlled, and reported on. The ALM platform can then import

the process and execute the application development process descriptions

in it. Microsoft, for example, uses XML to store the development process

in TFS. The process XML file describes the entire ALM process, and many

different process files can coexist. This means you can choose the process

template on which want to base your project when creating a new project.

It’s also important for an enterprise to have control over its project

portfolio to allocate and control resources more effectively. So far, none

of the ALM vendors have integrated this support into the ALM platform.

There may be good reasons for this, though. For instance, although

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

26

portfolio management may require data from ALM, the reverse probably

isn’t the case. The good thing is that having a standards-based platform

makes integration with PPM tools much easier.

 ALM 2.0+
So far, not all ALM 2.0 features have been implemented by most of the

major ALM tool vendors. There are various reasons for this. One is that it

isn’t easy for any company to move to a single integrated suite, no matter

how promising the benefits may appear. Making such a switch means

changing the way you work in your development processes and maybe

even throughout your company. Companies have invested in tools and

practices, and spending time and money on a new platform may require

considerably more investment.

For Microsoft-focused development organizations, the switch might

not be as difficult, however—at least not for the developers. They already

use Visual Studio, SharePoint, and many other applications in their daily

life, and the switch isn’t that great. But Microsoft isn’t the only platform out

there, and competitors like IBM, Serena, and HP still have some work to do

to convince the market.

In addition, repository-neutral standards and services haven’t evolved

over time. Microsoft, for instance, still relies on SQL Server as a repository

and hasn’t built in much support for other databases or services. The same

goes for most competition to TFS.

Note Virtually all vendors use alM tools to lock in customers to
as many of their products as possible—especially expensive, major
strategic products like relational database management systems
(rdBMSs). after all, these companies live mostly on license sales.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

27

The growth of Agile development and project management in recent

years has also changed the way ALM must support development teams

and organizations. There has been a clear change from requirements specs

to backlog-driven work, and the tools you use need to support this.

It becomes critical for ALM tools to support Agile practices such as

build-and-test automation. TDD is being used with increasing frequency,

and more and more developers require their tools to support this way

of working. If the tools don’t do this, they’re of little use to an Agile

organization. Microsoft has taken the Agile way of working to heart in the

development of TFS, and this book will show you all you need to know

about TFS’s support for Agile practices.

There has also been a move from traditional project management

toward an Agile view in which the product owner and Scrum master

require support from the tools. Backlog refinement (the art of refining

requirements in the Agile world), Agile estimation and planning, and

reporting—important to these roles—need to be integrated to the overall

ALM solution.

The connection between Operations and Maintenance also becomes

more and more important. ALM tools should integrate with the tools used

by these parts of the organization.

In the report “The Time Is Right for ALM 2.0+,” Forrester Research

presented the ALM 2.0+ concept, illustrated in Figure 1-9 7. This report

extended traditional ALM with what Forrester called ALM 2.0+. Traditional

ALM covers traceability, reporting, and process automation, as you’ve

seen. Forrester envisions the future of ALM also including collaboration

and work planning.

7 West, “The Time Is Right For ALM 2.0+.”

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

28

These concepts are essential and are discussed in detail in this book.

A chapter is dedicated to each one except for traceability; traceability and

visibility are combined into one chapter because they are closely related.

The book’s focus is on ALM 2.0+, but it includes some other older concepts

as well. We’ve already looked at the first three cornerstones, but let’s briefly

examine the two new ones introduced in ALM 2.0+:

 1. Work planning: For this concept, Forrester includes

planning functions, such as defining tasks and

allocating them to resources. These planning functions

shouldn’t replace the strategic planning functions that

enterprise architecture and portfolio management

tools provide. Instead, they help you execute and

provide feedback on those strategic plans. Integration

of planning into ALM 2.0+ helps you follow up on

projects so you can obtain estimates and effort

statistics, which are essential to all projects.

Figure 1-9. Future ALM, according to Forrester Research

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

29

 2. Collaboration: As mentioned, collaboration

is essential. ALM 2.0+ tools must support the

distributed development environment that exists in

organizations. The tools must help team members

work effectively—sharing, collaborating, and

interacting as if they were collocated. The tools

should also do this without adding complexity to the

work environment.

We take a closer look at these topics farther down the road. But before

we do that, we examine a new topic on the horizon: DevOps. DevOps is

important because it has the potential to solve many ALM problems.

 DevOps
In the past couple years, the concept of DevOps has emerged. In our

view, DevOps is close to, or even the same as, the unified view of ALM

presented earlier in the chapter. One big difference compared to a

more traditional approach is that DevOps brings development and

operations staff closer—not just in thought, but also physically. Because

they’re all part of the DevOps team, there is no handoff from one part

to the other. Team members work together to deliver business value

through continuous development and operations. Figure 1-10 shows

how Microsoft looks at DevOps (https://azure.microsoft.com/en-us/

overview/devops/).

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

https://azure.microsoft.com/en-us/overview/devops/
https://azure.microsoft.com/en-us/overview/devops/

30

DevOps isn’t a method on its own; instead, it uses known Agile

methods and processes like Kanban and Scrum, which are popular in

many IT organizations. Basically, these are project management methods

based on Agile concepts and are used for development (mostly Scrum)

and operations (mostly Kanban). The key concepts are continuous

development, continuous integration, and continuous deployment. What

is important is working with small changes instead of large releases (which

minimizes risk), getting rid of manual steps by automating processes, and

having development and test environments that are as close as possible to

the production environment.

The purpose of DevOps is to optimize the time from the development

of an application until it’s running stably in the production environment.

The quicker you can get from idea to production, the quicker you can

respond to changes in, and influences from, the market, which is crucial to

have a successful business.

Figure 1-10. DevOps according to Microsoft

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

31

 Azure DevOps Introduction
In 2018, Microsoft introduced the concept of Azure DevOps, which

includes a new suite of tools or services. This new concept was previously

known Visual Studio Team Services, or VSTS. Azure DevOps Services is

a cloud service for collaborating on application development (https://

docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-

devops-services?view=vsts). It provides an integrated set of features

that you access through your web browser or integrated development

environment (IDE) client, including the following:

• Git repositories for source control of code

• Build-and-release services to support continuous

integration and delivery of apps

• Agile tools to support planning and tracking work, code

defects, and issues using Kanban and Scrum processes

• A variety of tools to test your apps, including manual/

exploratory testing, load testing, and continuous testing

• Highly customizable dashboards for sharing progress

and trends

• Built-in wiki for sharing information with your team

The Azure DevOps ecosystem also provides support for adding

extensions, integrating with other popular services (such as Campfire, Slack,

Trello, UserVoice, and more), and developing your own custom extensions.

Azure DevOps is available as a set of services that we can chose to use

parts or all of it. This means we can tailor it to our specific needs. Each

Azure DevOps service is open and extensible. They work great for any type

of application regardless of the framework, platform, or cloud. You can use

them together for a full DevOps solution or with other services. Here is an

overview of the services available:

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops-services?view=vsts
https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops-services?view=vsts
https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops-services?view=vsts

32

• Azure Boards: Powerful work tracking with Kanban

boards, backlogs, team dashboards, and custom

reporting. This is where this book has its biggest focus.

• Azure Pipelines: Continuous integration/ continuous

delivery (CI/CD) that works with any language,

platform, and cloud. Connect to GitHub or any Git

repository and deploy continuously.

• Azure Artifacts: Maven, npm, and NuGet package feeds

from public and private sources

• Azure Repos: Unlimited cloud-hosted private Git repos

for your project; collaborative pull requests, advanced

file management, and more

• Azure Test Plans: All-in-one planned and exploratory

testing solution

With Azure DevOps comes a brand new graphic user interface (GUI)

that has been in preview since late 2018 (Figure 1-11). All settings and

navigation now take place in the navigation bar on the left. From there, you

can access every aspect of your Azure DevOps project.

Figure 1-11. The new GUI of Azure DevOps

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

33

Clicking Boards, for instance, expands the menu on the left and show

more options for viewing boards and backlogs (Figure 1-12).

Figure 1-12. The new GUI of Azure DevOps can be expanded to show
more options for the Azure DevOps services—in this case, for Azure
Boards

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

34

The project settings are now available in the lower left corner, as

shown in Figure 1-13. This is the place for configuring teams, security,

notifications, iterations, areas, and so on. We will see these features

throughout this book.

If you will not be using all Azure DevOps services, you can turn them

off (or on) from the overview panel of project settings (Figure 1-14).

Figure 1-13. Project settings are accessed at the bottom of the
navigation bar

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

35

As stated earlier in this chapter, TFS server will be renamed to Azure

DevOps Server. It will still be an on-prem installation and it will be exciting

to see the direction it takes.

 Summary
This chapter presented an overview of what ALM aims for and what it takes

for the ALM platform to support a healthy ALM process. You’ve seen that

ALM is the coordination and synchronization of all development life cycle

activities. There are four ways of looking at it:

 1. SDLC view

 2. Service management or operations view

 3. APM view

 4. Unified view

Figure 1-14. Turning on Azure DevOps services from project settings

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

36

Traceability, automation of high-level processes, and visibility into

development processes are three pillars of ALM. Other key components

are collaboration, work planning, workflow, security, reporting, analytics,

being open-standards based, being plug-in friendly, and much more.

A good ALM tool should help you implement and automate these pillars

and components to deliver better business value to your company or

organization.

We also examined the concept of Azure DevOps services and Azure

DevOps Server, Microsoft’s newest set of tools for developers and others

involved in the development of applications and systems. Throughout this

book we will mostly use the features of Azure Boards.

Chapter 1 IntroduCtIon to applICatIon lIfe CyCle ManageMent

37© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_2

CHAPTER 2

An Overview of Azure
DevOps
In this chapter, we examine a tool that makes it clear why DevOps is an

important process for organizations engaged in IT development. A good

implementation of ALM helps an organization deliver better business

value to fulfill its business needs. Automating tasks by using tools such

as Visual Studio 2017, Azure DevOps, and TFS 2018 (soon to be renamed

Azure DevOps Server) supports this process.

We will take a look at how Azure DevOps can be used to fulfill the three

main pillars of ALM and the issues addressed by ALM, which were covered

in Chapter 1. We start with an overview of ALM and of Azure DevOps, then

move on to the specifics of using Azure DevOps for ALM.

 ALM Overview
As you may recall from Chapter 1, there are three main pillars of an ALM

process:

 1. Traceability of relationships between artifacts:

The lack of traceability can be a major cost driver

in any enterprise. There must be a way to trace

requirements all the way to delivered code and

back again—through architect models, design

models, build scripts, unit tests, test cases, and

38

so on. Practices such as TDD and configuration

management can help, and they can be automated

and supported by Azure DevOps.

 2. Automation of high-level processes: There are approval

processes to control handoffs between analysis

and design. There are other handoffs among build,

deployment, testing, and so on. Much of this is done

manually in many projects, and ALM stresses the

importance of automating these tasks for a more

effective and less time-consuming process.

 3. Visibility into the progress of development efforts:

Many managers and stakeholders have limited

visibility into the progress of development projects.

Their visibility often comes from steering group

meetings during which the PM goes over the current

situation. Other interest groups such as project

members may also have limited visibility of the

whole project even though they are part of it. This

often occurs because reporting is hard to do and can

involve a lot of manual work. Daily status reports

may, quite simply, take too much time and effort

to produce—for example, especially when we have

information in many repositories.

Other important topics that ALM addresses are as follows:

• Improving collaboration: Collaboration is needed

among teams, team members, stakeholders, and users,

just to mention a few relationships. When development

is spread around the world in different locations,

collaboration can be hard to manage without the help

of a proper tool.

Chapter 2 an Overview Of azure DevOps

39

• Closing the gap between IT and business: The big gap

between IT and the business side of an organization

is a serious problem for organizations, preventing us

from delivering the greatest business value that can be

achieved from our projects.

• Using one tool: The complexity of using several tools

for solving project issues as a team member can be

tough, and costly as well. Switching between tools can

be a cost driver. Using one tool that enables us to add

plug-ins and use more features directly in our ordinary

GUI, instead of switching between applications, is

preferable. So, if you have several roles in a project, you

can still use one tool to get the job done.

• Enhancing role switching: ALM also addresses the

potential to use one tool when switching among

different roles in a project. In many cases, project

members play several roles in the same project. A

developer, for instance, might also work with tests or

databases. If that person can use the same GUI for all

tasks, there will be minimal overhead for switching

among these roles.

 Azure DevOps Overview
TFS and Azure DevOps have come a long way toward fulfilling the ALM

vision, but it does not cover everything. As mentioned, VSTS has now

been renamed Azure DevOps; TFS 2018 will be renamed Azure DevOps

Server in the near future. The features of the former VSTS are now separate

services in Azure DevOps (Table 2-1):

Chapter 2 an Overview Of azure DevOps

40

Azure DevOps is an open and extensible product that lets us adjust

its features to our needs and add the things it might lack at this point to

support our specific needs. It is also important to know that Microsoft is

spending a lot of time, energy, and money on developing this product

further. This is not a tool set that will go away quickly (although one

never knows); it is one of the most important tool sets in the Microsoft

ecosystem.

Azure DevOps is now available in two versions: TFS and the cloud-

based Azure DevOps. In this book, we mostly use Azure DevOps for

illustrations.

Table 2-1. Comparison between VSTS Features and Azure DevOps

Services

VSTS feature name Azure DevOps
service name

Description

Build & release azure pipelines Ci/CD that works with any language,

platform, and cloud

Code azure repos Cloud-hosted private Git and team

foundation version Control (tfvC)

repos for your project.

work azure Boards work tracking with Kanban boards,

backlogs, team dashboards, and

custom reporting

test azure test plans all-in-one planned and exploratory

testing solution

packages (extension) azure artifacts Maven, npm, and nuGet package feeds

from public and private sources

Chapter 2 an Overview Of azure DevOps

41

 Team Foundation Server
You can see that the heart of DevOps in the Azure DevOps/TFS world is

TFS or, if you use the cloud-based version, Azure DevOps (Figure 2-1).

Team Foundation Server

Source Control

Agile Planning

Test Case Management

Build Automation

Continuous Deployment

Release Management

Load Testing

Feedback Management

Team Collaboration

Application Telemetry

Lab Management

Azure DevOps

Figure 2-1. An overview of TFS and Azure DevOps

TFS and Azure DevOps expose different functions and services for

developers, PMs, and others such as version control, reporting, build,

and work item tracking. Not shown in Figure 2-1. is the fact that TFS uses

Microsoft SQL Server as its data repository.

Note work items (figure 2-2) are used to manage different types
of information in tfs and azure DevOps. there are work items for
requirements, bugs, general tasks, and so on. to put it simply, a work
item is a piece of work that must be completed for a project. the
work item tracking system is one of the core parts of azure DevOps
for DevOps process implementation.

Chapter 2 an Overview Of azure DevOps

42

 Process Template
What keeps all these services together is the process template (Figure 2- 3)

that sits on top of Azure DevOps/TFS. This is a very interesting part

of Azure DevOps. The template helps us visualize and automate tasks

and steps that the process includes. It helps us by providing document

templates for requirements specs, test cases, scenarios, handoffs, and

other artifacts we should produce.

Figure 2-2. The heart of Azure DevOps: a work item—in this case, a
product backlog work item

Process Templates

Azure DevOps

Figure 2-3. The process template customizes Azure DevOps behavior

Chapter 2 an Overview Of azure DevOps

43

Most companies use some kind of process for their development or

ALM. Although some companies don’t think they have a process, they

do. The process might not be written down, but the company still has

ways of doing things that, in reality, is the process—for instance, naming

conventions, where to store builds, how to handle CRs, and so on.

In many cases, we have seen companies with lots of money invested

in their processes. They have sent staff to training, provided large

process manuals, and so on. However, they have had problems getting

project members to use the processes in their daily work. The excuses

are many: The process is hard to understand, remembering all the

process steps is difficult, the process is not automated or included in

the tools, and many others.

The end result has been that PMs use their own variant of the process,

causing confusion during the project’s lifetime. This also causes severe

problems, because handoffs between the development team and the

operations team are often difficult. A typical bad scenario can occur when

a system has to wait for deployment because the infrastructure isn’t in

place for the new system. Operations was not involved (or perhaps not

even informed) during the project and suddenly they are expected to run

the system on hardware they don’t have.

With Azure DevOps, you can implement your development process as

a template that is mandatory for all new projects. When you create a new

project, you also create a new instance of the process template. You don’t

have to stop at the development project level either. You can implement

most parts of your DevOps cycle in the template as well, enabling you to

take advantage of Azure DevOps all along the way. The template helps you

visualize and automate tasks and steps that the process includes. It helps

you by providing document templates for requirements specs, test cases,

scenarios, handoffs, and other artifacts you produce.

Chapter 2 an Overview Of azure DevOps

44

The template also provides information about which reports you

have available for each new project—reports that you can use to retrieve

information about the status of your projects and many other things.

The template also contains information about one of the most important

core parts of Azure DevOps: the work items. These items can be adjusted

as needed so you can make sure they contain the information the

organization must have. This information could be status information for a

bug, for instance, such as Active, Resolved, or Closed.

This template is so flexible you can develop and implement your own

process, you can choose to use any of the three that Microsoft supplies,

you can use a third-party template, or you can choose to customize the

Microsoft templates to your own liking. You also have several process

templates in Azure DevOps, so you can use different templates for different

projects. Because Azure DevOps really is not used to its full potential

without the process templates, it cannot be stressed enough that you

should consider which templates you want to use and the information you

want them to include.

 Visual Studio 2017 Editions
Most developers use Visual Studio to access the features of Azure DevOps.

At the time of writing this book, Visual Studio 2017 is the current version,

but 2019 is just around the corner. There are several editions of 2017

available:

• Visual Studio Community: Full-featured IDE for

building Web, Windows Desktop, and cross-platform

iOS, Android, and Windows apps. This edition is free

for open-source projects, academic research, training,

education, and small professional teams.

Chapter 2 an Overview Of azure DevOps

45

• Visual Studio Professional: Professional developer tools

and services for individual developers or small teams.

This edition includes powerful features to improve a

team’s productivity, such as CodeLens. Improve team

collaboration with Agile project planning tools, team

rooms, charts, and more

• Visual Studio Enterprise: Enterprise-grade solution

with advanced capabilities for teams working on

projects of any size or complexity, including advanced

testing and DevOps. Build quality applications at

scale with advanced features such as load testing,

automated and manual testing, and new IntelliTest

capabilities. Manage complexity and resolve

issues quickly with features such as Code Map and

IntelliTrace.

• Visual Studio for Mac: Developer productivity of the

Windows version to a Mac. The experience has been

developed to optimize the workflow for the Mac

developer.

• Visual Studio Test Professional: a tool for testers. Tools

are also included in the Ultimate edition, but it lacks

the development tools included in the other editions.

• Team Explorer Everywhere (TEE): access to Azure

DevOps for developers on other platforms, such as

Eclipse on the Mac. This is the perfect add-on for teams

with development on multiple platforms such as .NET

and Java.

Chapter 2 an Overview Of azure DevOps

46

 Azure DevOps
All projects in Azure DevOps have their own web sites available. They

are created when the project itself is created. By using this portal, you

can access most of the functionality in Azure DevOps. The project portal

lets you access the parts of Azure DevOps available from inside Visual

Studio, from an easy-to-use interface, especially for nontechnical project

members. Figure 2-4 shows what Azure DevOps could look like.

Figure 2-4. The project start page on Azure DevOps

Many of our customers use a team project portal primarily to provide

access to reports and work items for nontechnical people not used to the

Visual Studio interface. When we want to give an external user (such as a

customer or remote stakeholder) access to work item creation and editing,

or another more advanced task, we usually use the web interface.

 Microsoft Office
Microsoft Office can be used by PMs, product owners, or Scrum masters,

for example, who want to use tools familiar to them, such as Microsoft

Chapter 2 an Overview Of azure DevOps

47

Project and Microsoft Office Excel, during a project. The integration is very

nice and valuable to these roles.

 IDE Integration
When it comes to add-ins, one thing we should mention in particular is

Team Explorer. This tool can be used as an add-in to Visual Studio, and

it gives access to Azure DevOps directly from within Visual Studio. From

there, you can open reports, add new work items, and run queries against

the Azure DevOps database.

Azure DevOps is a flexible tool, as we have mentioned. It is also very

extensible, because all functionality can be accessed via web services. This

is a very nice feature that enables you to build your own support for Azure

DevOps in other applications as well. Many third-party vendors have done

this, and a wide array of add-ins and tools are available. Our favorite came

from Teamprise, a company that has built add-ins to Eclipse so that you

can use Azure DevOps features in your Java development environment

as well. Teamprise was purchased by Microsoft, and its suite of client

applications has been available as TEE since Azure DevOps 2010. Briefly, it

offers the same IDE integration into both Eclipse and Visual Studio, which

allows you to work as one team, regardless of whether you use Eclipse or

Visual Studio.

 Traceability
Having traceability in your DevOps processes is key to the successful

delivery and maintenance of your applications and systems. I once visited

a company that stopped making changes to its systems just because no

one ever knew where a change (or bug fix) might have its impact. You don’t

have to deal with such a situation.

Chapter 2 an Overview Of azure DevOps

48

Azure DevOps features can help you with traceability so you can avoid

such problems:

• Work item tracking

• TDD/unit testing

• Azure Pipelines

• Check-in policies

• Version control system

Let’s look at some of the specifics involved with these features, starting

with how the work item tracking system implements traceability.

 The Azure DevOps Work Item Tracking System
Sometimes you might have tons of Post-its on your monitors and desk,

which each note containing at least one task you are supposed to address.

Most likely, you would want to track these tasks using a tool that can

help you, but often this just isn’t possible. It could be that some tasks are

connected with one project and others with another. You may have tried

recording them in an Excel spreadsheet and saving it to the computer. But,

you may soon realize that the spreadsheet is located on your laptop, your

customer’s computer, your desktop, another customer computer, and so

on. And, you have no idea which spreadsheet is the current version.

The same thing often occurs with projects. PMs have their to-do lists

for a project, and they all have their own way of keeping them updated.

Let’s say a PM uses Excel to keep track of the tasks—the status of tasks, to

whom they are assigned, and so on. How can PMs keep the team updated

with the latest to-do list? If PMs choose to e-mail it, chances are that

some team members won’t save the new version to disk or will miss it in

their endless stream of incoming e-mail. Soon there are various versions

floating around, and things are generally a mess.

Chapter 2 an Overview Of azure DevOps

49

 Work Items

With Azure DevOps, there is a task tracking system at your service. We take

a closer look at work items in Chapter 4, so we’ll keep our discussion brief

here. The core of this system is represented by the tasks themselves, which

as we said earlier are called work items. A work item can be pretty much

what we want it to be. It can be a bug, a requirement of some sort, a general

to-do item, and so on. Each work item has a unique ID that helps you keep

track of the places it is referenced (Figure 2-5). The ID lets you follow a

work item—say, a requirement—from its creation to its implementation as

a piece of executable software (component).

Work items provide a great way for you to simplify task management

in a project while at the same time enable traceability. No more is there

confusion regarding which version of the task list is current; no more is

manual labor required to gather status reports on work progress used

only at steering group meetings. Now you have a solution that lets you

collaborate more easily with your teams, and enables all members and

stakeholders to view status reports whenever they want. You can also

collaborate more easily with people outside the project group by adding

work items via the web client.

Chapter 2 an Overview Of azure DevOps

50

Azure DevOps is so flexible in this regard that it lets us tailor the work

items as we want them to be. The work item tracking system is one of the

core components of Azure DevOps. This system enables you to create work

items, or units of work, and can be used to enable traceability. You can

use the work items included with Azure DevOps from the beginning, you

can choose to adjust them to your needs, or you can even create your own

work item types. Each work item instance has a unique ID that you can

attach to the things you do in Azure DevOps. This enables you to follow one

work item—let’s say, a requirement, for example—from its creation to its

implementation as a piece of executable software (component). You can also

associate one work item with others and build a hierarchy of work items.

The work items can contain information in different fields that define

the data to be stored in the work item. This means that each field has a

name and a data type.

Figure 2-5. Each work item has a unique ID—in this case, 1301

Chapter 2 an Overview Of azure DevOps

51

All work items can have different information attached to them. You

can have information about to whom the work item is assigned and the

status of the work at the moment (for example, a bug could be open,

closed, under investigation, resolved, and so on). The State field can be

modified so that each work item type has its own state mechanism. This

is logical because a bug probably goes through states differently from

those that a general task goes through. You can also attach documents to

the work item and link one work item to other work items. You can even

create a hierarchy of work items if you want. Let’s say you implement a

requirement as a work item and that this requirement contains many

smaller tasks. Then, you can have the requirement itself at the top and nest

the other requirements below that so you know which work items belong

to which requirement.

When a bug is discovered, for instance, you can quickly follow the

original requirement by its work item ID, and see in which places in

the code you might have to make some fixes. You can also visualize the

associated work items so that you can evaluate whether other parts of the

code need to be changed as a result of the bug fix.

Azure DevOps saves information about the work item on the data tier,

which helps you follow the change history of the work item. You can see

who created it, who resolved it, who closed it, and so on. The information

in the databases can be used for display on reports, which allows you to

tailor them depending on your needs. One report could show the status of

all bugs, for instance. Stakeholders can see how many open bugs exist, how

many are resolved, and much, much more. It is completely up to you how

you choose to use the work items.

If you implement a requirement as a work item, you can use the work

item ID to track this requirement through source code to the final build

of the executable system. By requiring all developers to add one or more

work item IDs to the check-in using a check-in policy, you can enable this

traceability.

Chapter 2 an Overview Of azure DevOps

52

 Configuration Management Using Azure DevOps

In any (development) organization, there needs to be version control of the

systems in production. If you don’t have that, the overall DevOps process

suffers, because you suddenly lose traceability. This makes it harder to

implement changes and bug fixes, because you won’t know which versions

you need to update.

Without the help of a proper tool, you will soon get lost in the variety

of applications you have. Azure DevOps can help you with version

control in many ways. After a brief description of software configuration

management, I cover some of the most important concepts that have great

support in Azure DevOps and Visual Studio tools:

• Version control

• Azure Pipelines

In software engineering, software configuration management (SCM) is

the task of tracking and controlling changes in the software. Configuration

management practices include revision control and the establishment

of baselines, and are very important. There are several goals of SCM,

including the following:

• Configuration identification: Ensuring you know the

code with which you are working

• Configuration control: Controlling the release of a

product and its changes (version control)

• Build management: Managing the process and tools

used for builds

• Defect tracking: Making sure every defect has

traceability back to the source

Chapter 2 an Overview Of azure DevOps

53

If these issues are not covered by your DevOps process, you could very

soon find yourself in a troublesome situation. It is crucial for the development

teams to have full control over those versions of the applications that exist,

those that are in production, and where they are in production. This topic is

closely related to portfolio management teams. In general, a big company has

one or more persons devoted to keeping track of SCM.

Version Control and Release Management in Azure DevOps

Using the version control system in Azure DevOps, you can manage

and control multiple revisions of the same information in your projects.

This information can be source code, documents, work items, and other

important information that you want to submit to version control. When

you want to work on an item under source control, you check it out to your

local computer so you can start working on it. When work is done and

tested, you check in your changes so the version on the server is updated.

The version control features of Azure DevOps are powerful. Microsoft

supports Git and the native Visual Studio version control. They are fully

integrated into the GUI, which is something that ALM prescribes as well.

If you want, you can access some of the features from a project portal as

well. Many people want to use the command line for their work, and Azure

DevOps enables them to use the command line for working with version

control as well.

However, if you do want to use Visual Studio to access the Azure

DevOps version control system, you can do that. The extensibility of Azure

DevOps makes this possible. One example of this is the TEE suite of client

applications that can access Azure DevOps, including the version control

system. TEE lets you access Azure DevOps from Eclipse on Mac OS X

and also through command lines. In this way, you can integrate different

development platforms more easily in an Azure DevOps project. You will

still use the Azure DevOps repository and have the ability to get reports

and other information directly from Azure DevOps.

Chapter 2 an Overview Of azure DevOps

54

Build Management Using Azure Pipelines

A build is basically the process of taking the source code and all other

items necessary in an application and building it into executable

software. Azure Pipelines is a cloud service that you can use to build and

test your code automatically and make it available to other users. It works

with just about any language or project type. Pipelines combines both CI

and CD to test a build your code constantly and consistently, and ship it

to any target.

CI is all about automating tests and builds for your project. It helps

to catch bugs or problems early during the development cycle, which

makes them easier and faster to fix. Items known as artifacts are produced

from CI systems and used by the CD release pipelines to drive automatic

deployments.

CD is all about deploying and testing code automatically in multiple

stages to help drive quality. CI systems produce the deployable artifacts,

including infrastructure and apps, then automated release pipelines

consume these artifacts to release new versions and fixes to the target of

your choice.

There are plenty of reasons to use Azure Pipelines for your CI/CD

solution:

• It works with any language or platform.

• It deploys. to different types of targets at the same time.

• It is the best integration experience for deploying to

Azure.

• You can build on Windows, Linux, or Mac machines.

• It provides great integration for GitHub.

• It’s a great offer for open-source projects.

Chapter 2 an Overview Of azure DevOps

55

 Automation of High-Level Processes

Without one or more templates, Azure DevOps is not used to its full

potential, as mentioned earlier. You can still use its version control system

and some other tools, but the real value comes from using Azure DevOps

to automate your DevOps process. With the process template, your entire

DevOps process is defined.

The template defines the following:

• Work item types: These refer to those work item types

that are necessary and the information they should

have attached to them. You can also define the

workflow for a work item. For a bug, you might have

different states through which the item flows, such as

active, resolved, closed, and so on.

• Project phases: By using areas and iterations, you can

define the initial project phase setup of your projects.

If you use RUP, you can define the process phases

in that model or you can create the first sprints of a

Scrum project. Areas and iterations are flexible, and

you can create your own way of working through these

concepts.

• Document structure and templates: The number of

documents that should be produced during a project

differs depending on your process model. In the

process template, you define the document structure

you need and the templates you should use. For

instance, you can add templates for requirement

specifications or acceptance testing.

Chapter 2 an Overview Of azure DevOps

56

• Reports and queries: In the process template, you can

specify which reports and work item queries you need

to have as defaults in your projects. You probably want

reports and queries that show the progress of your

project, such as the status of bugs or work remaining.

You can create your own reports by using Power BI,

SQL Server Reporting Services (TFS 2018) or Excel, and

then add them to all projects by adjusting the process

template.

• Security: The template also adds information about

which users or user groups have access to which

information. You can connect Azure DevOps groups to

your Active Directory accounts, for instance.

The process template is the overall process for our ALM

implementation. Many of our customers create different templates for

different kinds of projects. They also create templates for Operations, so

that when a development project is finished and deployed, the operations

staff can use the template to run the system until the system dies. A few

customers have started creating a template for Information Technology

Infrastructure Library (ITIL), for instance, and we are looking forward to

seeing the result of that work.

It is important to remember that you can adjust the process to your

needs. You should consider changing the default templates or even

replacing them, rather than adjusting your own way of working to the

templates that come with Azure DevOps out of the box. Microsoft enables

this flexibility by letting you access the process templates easily to adjust

them or to add new templates.

Chapter 2 an Overview Of azure DevOps

57

 Visibility
Information about project status is important to all participants of a

project—and we don’t mean team members only, but stakeholders and

decision makers as well. As project managers, we have spent too much

time chasing down information to answer questions about the status of

projects, how much work remains, and what the latest bug status is.

Azure DevOps provides three primary ways of enabling visibility:

 1. Widgets and dashboards: Customizable, highly

configurable dashboards provide us and our teams

with the flexibility to share information, monitor

progress and trends, and improve our workflow.

 2. Queries: Queries are used to ask questions of the

work item tracking service. Some questions might

be: How many bug work items do we have? How

many and which are dedicated to me? How many

bugs are there? And so on. You can create new

queries when necessary.

 3. Power BI: The integration of the analytics service

with Power BI makes getting the data into Power BI

easy, so you can focus on creating Power BI reports.

By using these components, it is easier to gather the information

you need for your status reports for a steering group meeting or project

meeting. You won’t have to look around in several places and in several

applications for this information anymore; instead, you can use the

automated reports and queries from inside Azure DevOps.

Project owners, PMs, and Scrum masters certainly benefit from Azure

DevOps. Because Azure DevOps has all data in the same repository, you

can retrieve the correct information more easily when you want it. The

flexibility of the SQL Server database that stores all information is great.

Chapter 2 an Overview Of azure DevOps

58

You can work with the data warehouse information just as you would with

any other database.

By using the Azure DevOps web (Figure 2-6), you can publish

information (in the form of custom-built controls that users cannot change

at this time) so that everybody who has privileges can see it. This is an easy

way to make sure that information is available all the time. Just this little,

relatively nontechnical improvement offloads work from the PMs, freeing

some of the PM’s or product owner’s time for better things.

Figure 2-6. Viewing dashboards from Azure DevOps

 Collaboration
As you know, Azure DevOps comes with Team Explorer, which is an add-in

to Visual Studio. With this tool, developers can access every aspect of an

Azure DevOps project. They can view reports and queries, for instance,

as well as access the documents in the project. Developers can access the

version control system as well as build systems, tests, and so on.

Chapter 2 an Overview Of azure DevOps

59

Team Explorer is full featured, but it is still a tool for people used to

working in Visual Studio. For us, that is no problem; but, for most PMs and

stakeholders, the GUI is confusing. They want to have a tool that’s easy to

use to access relevant information.

Each project created with Azure DevOps has a project portal created

as well. This portal gives you access to reports, documents, project process

guidance, and other project-related information through a web interface,

which enables people who are not used to the Visual Studio interface to

retrieve the information they need easily.

There is also a wiki (Figure 2-7) that can be used for each Azure

DevOps project. It is a collaboration area where team members can share

information.

Figure 2-7. The Azure DevOps wiki

Collaboration does not only mean giving access to information,

although this is as important as any other means of collaboration.

Collaboration also means you should be able to work together to fulfill

one or more goals. One other way to enable this is that every work item

can have a discussion thread Figure 2-8). In the thread, you can add

comments, ask questions, and so on, in a discussion regarding this

particular work item with your coworkers and stakeholders.

Chapter 2 an Overview Of azure DevOps

60

 Work Items for Collaboration
You can use the work item features of Azure DevOps to enable your

process workflows. Let’s say a PM, or someone responsible for inputting

requirements as work items into Azure DevOps, creates a new work item

of the Scenario type. This scenario should probably be assigned to a

developer to implement. The PM can use the work item system to assign

(Figure 2-9) the scenario to a specific developer—in this case, Joachim.

Joachim continues to work on the scenario until it is ready for testing. He

then assigns the work item to a tester, who performs the testing. When the

testing is done, the work item is closed. If a bug is found, either the tester or

anyone finding the bug can use the work item tracking system to see who

developed the scenario implementation and reassign it to that developer—

in this case, Joachim again. Azure DevOps keeps track of who has worked

on a work item so you don’t have to keep track of this manually.

Figure 2-8. Sample discussion thread in a work item

Chapter 2 an Overview Of azure DevOps

61

 The Gap between IT and Business
Closing the gap between IT and business is obviously a very tough

problem to solve. Azure DevOps won’t get us all the way; that’s for sure.

We don’t think any tool ever will, because so much depends on the people

in the organization, which is an important consideration. But, tools can

help us bridge the gap, so you should consider carefully how you can use

them for this. Organizations need to improve on their ALM process and

way of working to start addressing this issue. Once a new way of working

is in place, Azure DevOps can support much of their efforts using, for

instance, the process template to implement this new way of working.

The gap between IT and business is often a question of work

process. It requires considering many things, and when we have a

solution—or start working toward a solution—we must evaluate which

parts of this work process we can automate and use tools for solving.

One thing worth mentioning here is that the use of the Azure DevOps

Figure 2-9. Assigning work items to a specific person

Chapter 2 an Overview Of azure DevOps

62

Project Server Connector with Azure DevOps lets you integrate Azure

DevOps with Microsoft Office Project Server. Having this integration

allows you to control your resources and automate this process

more effectively as well. In this way, you can align your portfolio

management process better so that you can choose which things to

work on more effectively.

 Office/Microsoft Project Integration

When we have run projects in the past, we mostly used Microsoft Office

Project to handle project planning, especially the Gantt diagram. We

suspect that this is the case for many of our fellow PMs, as well. In many

cases, we used this product not, primarily, because of the tool itself, but

because so many of our customers use Microsoft Office that it becomes

natural for them to use Project. Project has its strengths and weaknesses, as

all tools do, and we cannot say we don’t like it, but we have never become

friends with it. Sometimes it does things we don’t expect, and even though

we know this is because we are not very familiar with its features, we

still blame the product from time to time (which is unfair, but that’s life

sometimes).

Excel and Project are two tools that most companies use on both the

business and the IT sides of the company. By being able to use these tools,

business people can be a part of the ALM process more easily, because

they can use a tool with which they are already used to working. A nice

feature here is that the communication between Office and Azure DevOps

is two-way. This means an update in Azure DevOps is reflected in Office,

and the other way around. This allows for a dynamic way of working with

Azure DevOps information.

Chapter 2 an Overview Of azure DevOps

63

 Use of One Tool/Role Based
A good ALM tool should enable you to use add-ins that provide new

features inside one interface. If a developer needs testing features,

you should be able to integrate them into the development tool. The

developer should not have to switch tools to do testing tasks. This is also

what Visual Studio offers. There is no context switching because team

members can use the same GUI no matter what role they are performing

at the moment. Azure DevOps is also extensible and lets you create your

own add-ins as well as purchase third-party add-ins that are accessible

from inside Azure DevOps.

 Extensibility
When the built-in features of Azure DevOps are not enough, you can

use the extensibility features to expand and enhance it. Azure DevOps is

often seen as a closed black box that Microsoft ships, when it’s more like

an enterprise resource planning (ERP) system for DevOps. Any DevOps

environment must be customized for an organization’s processes, existing

applications, and services.

Many of our customers have been a bit reluctant to customize

TFS. They have instead tried to squeeze their way of working into the

templates Microsoft provides. We think this is the wrong way to do it. Our

suggestion is that you start the other way around. Start by asking yourself

how your organization wants to work. This process involves all parts of the

organization, from the business side to Operations. Try to find agreement

on how to work in the DevOps process. By doing so, you will see that this

also is a good start for collaboration within the company. With Azure

DevOps you can customize your process (more easily than with TFS), so

you should not avoid customizations.

Chapter 2 an Overview Of azure DevOps

64

For instance, consider the work items and the information in them. If

the fields and information in the templates are not enough, you can extend

or edit them. Azure DevOps lets you do this by changing the process

template. You can choose to add the information you need, and it is stored

in the Azure DevOps databases, so you can have access to it from within

your reports and queries. Don’t forget to change the reports or queries, as

well; otherwise, you will not see your information.

Some of our customers have changed the workflow of a work item by

adding more states to it when the ones supplied have not been enough.

Often, we have used TFS Power Tools to do this for TFS (and still do for TFS

2018), but Azure DevOps provides an easy way to do this through the web

interface.

When you have an initial idea of how you want to conduct the DevOps

process, start looking into what Azure DevOps gives you out of the box. Use

what can be used, change other things, and build your own solution when

needed.

One great strength of Azure DevOps is its extensibility and flexibility.

You can adjust the whole tool to fit most parts of your DevOps process.

If you want to, you can develop your own add-ins by giving support to

roles not included from the start. We strongly encourage you to use these

extensibility features; but, in the end, it is your choice.

Extensibility is a great way to integrate existing systems and potentially

migrate some of them into Azure DevOps to reduce the tool set in the

organization.

 Difference between TFS and Azure DevOps
Azure DevOps is cloud based. This is also the version of TFS for which

Microsoft deploys all new features first. Every three weeks, Microsoft

aims to update Azure DevOps. These updates are then packaged to a

Chapter 2 an Overview Of azure DevOps

65

TFS update that is released approximately every three months. Table 2-2

presents an overview of the difference in features between Azure DevOps

and TFS. Keep in mind that the information in the table changes as time

goes by. VSTS is updated every three weeks with new functionality, and the

difference between the two will probably be overbridged.

Table 2-2. Comparison between TFS and Azure DevOps

Feature TFS Azure DevOps

work items, version control, and build

agile product/project management

test case management

heterogeneous development (eclipse, Git)

ease of installation and setup Good Better

Collaborate with anyone, from anywhere Good Better

Data stay inside your network ˚

process template and work item

customization

 Good

Data warehouse and reporting ˚

CodeLens support

Cloud load testing ˚

application insights ˚

always running the latest version of

azure DevOps

˚

Chapter 2 an Overview Of azure DevOps

66

 Summary
In our opinion, Azure DevOps can help you implement a good,

automated, and robust DevOps process. There are features for all aspects

of ALM. When used correctly, these features help improve the DevOps

process, which result in better business value and more successful

projects.

The three pillars of ALM—traceability, process automation, and

visibility—are important to all organizations. Azure DevOps is a great

foundation on which to build DevOps solutions. Azure DevOps has work

item tracking for traceability, process template implementation in the

tool itself for process automation, and reports and queries for visibility.

Through a project portal, accessible via the Internet, you can improve

collaboration among all parties that have an interest in your projects.

Azure DevOps is role based in the sense that it supports different

development roles. It has support for architects, developers, DBAs, testers,

and more. They are not given separate tools; all are accessible from a

unified GUI. You can also add custom add-ins to the GUI and do not have

to use several tools to get the job done.

Product owners and PMs have the ability to use tools with which they

are already familiar. Many use Excel or Project for project planning, and

there is integration between these tools and Azure DevOps. You can sync

information easily between tools.

The extensibility of Azure DevOps makes it fairly easy to write your

own code that integrates Azure DevOps with other applications. This is an

incredible strength of the tool, and something for which we should give

Microsoft credit.

So, all in all, Azure DevOps is a great foundation on which to build your

ALM and DevOps process.

Chapter 2 an Overview Of azure DevOps

67© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_3

CHAPTER 3

Introduction to Scrum
and Agile Concepts
Our experience is that there has been a great deal of improvement in

projects during the past decade. To be more specific, we’ve seen the Agile

movement make an impact on how projects deliver business value.

The focus of this book, when it comes to processes and frameworks, is

on Agile methods such as Scrum and XP. The reason is simply that Agile

fits nicely with the concept of ALM.

This chapter looks at how you can use Scrum as an Agile project

management model to deliver software. We cover the Scrum process in

depth, including how you can use Scrum and Agile practices, such as Agile

estimation and planning, in combination with an ALM tool. This chapter

gives you insight into why Agile and ALM are a good match.

This chapter also shows you some other Agile processes that are popular.

Scrum is a great framework, but for some projects or some organizations,

you may need another process to help you run your projects.

 The Scrum Framework
Next we examine one of our favorite development models: Scrum. With all

the attention Scrum has been getting in recent years, you may be misled

into believing it’s a fairly new model. The truth is that the Scrum approach,

68

although not called Scrum at the time, was first presented as “the rugby

approach” in 1986. In the January-February 1986 issue of the Harvard

Business Review, Hirotaka Takeuchi and Ikujiro Nonaka described this

approach for the first time.1 In their article, they argued that small cross-

functional teams produced the best results from a historical viewpoint.

It wasn’t until 1990, however, that the rugby approach was referred to as

Scrum. In 1990, Peter DeGrace and Leslie Hulet Stahl2 highlighted this term

from Takeuchi and Nonaka’s original article. The term comes from rugby

originally (Figure 3-1), and means the quick, safe, and fair restart of a rugby

game after a minor infringement or stoppage.3 www.planetrugby.com is the

source of the following quotation:

1 Hirotaka Takeuchi and Ikujiro Nonaka, “The New New Product Development
Game,” Harvard Business Review, www.sao.corvallis.or.us/drupal/files/
The%20New%20New%20Product%20Development%20Game.pdf, January/February
1986.

2 Peter DeGrace and Leslie Hulet Stahl, “Wicked Problems, Righteous Solutions,”
http://www.gbv.de/dms/ilmenau/toc/608728446.PDF.

3 www.planetrugby.com, 1990.

Figure 3-1. A real scrum

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.planetrugby.com
http://www.sao.corvallis.or.us/drupal/files/The%20New%20New%20Product%20Development%20Game.pdf
http://www.sao.corvallis.or.us/drupal/files/The%20New%20New%20Product%20Development%20Game.pdf
http://www.gbv.de/dms/ilmenau/toc/608728446.PDF
http://www.planetrugby.com

69

A scrum is formed in the field when eight players from each
team, bound together in three rows for each team, close up
with their opponents so that the heads of the front rows are
interlocked. This creates a tunnel into which a scrum-half
throws in the ball so that front-row players can compete for
possession by hooking the ball with either of their feet.

Keep this definition in mind as we describe the development version

of Scrum.

Ken Schwaber started using Scrum at his company in the early 1990s,

but to be fair, Jeff Sutherland was the first to call it Scrum.4 Schwaber and

Sutherland teamed up and presented this approach publicly in 1996 at

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA) in Austin, Texas. They collaborated to use their experience and

industry best practices to refine the model until it achieved its current

look. Schwaber described the model in Agile Software Development with

Scrum in 2001.5

Let’s continue by looking at empirical process control and see what

that means in software development.

 Empirical Process Control
What is this model, or framework, all about? First, let’s define two ways to

solve problems. We touched on the issues with projects in Chapter 1.

When you have an issue that is similar time after time (like road

construction, for example, or implementing a standard system), you

pretty much know what to expect from the various tasks at hand. You can

4 Jeff Sutherland, “Agile Development: Lessons Learned from the First Scrum,”
www.scrumalliance.org/resources/35, 2004.

5 Ken Schwaber and Mike Beedle, Agile Software Development with Scrum
(Prentice Hall, 2001).

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.scrumalliance.org/resources/35

70

then easily use a process—the Waterfall model, perhaps—that produces

acceptable-quality output over and over again.6 This approach is called

defined process control.

When it comes to a more complex problem, however, such as building

a software system, as you saw earlier, traditional models don’t work.

You must use something called empirical process control, according to

Schwaber.7 Empirical process control has three legs to stand on:

 1. Transparency

 2. Inspection

 3. Adaptation

“Transparency means that the aspects of the process that affect the

outcome must be visible to those controlling the process.”8 This means,

to be able to approve the outcome, you must agree on the criteria for the

outcome. Two people can’t say they’re “done” with a task unless they both

agree on what the criteria are for “done.”

The next leg is inspection. The process must be inspected as frequently

as necessary to find unacceptable variances in it. Because any inspection

may lead to a need to make changes to the process itself, you also need to

revise the inspections to fit the new process. To accomplish this, you need

skilled inspectors who know what they’re inspecting.

The last leg is adaptation. An inspection may lead to a change in the

process; this is one example of an adaptation. Another is that you must adapt

the material being processed as a result of an inspection. All adaptations

must be made as quickly as possible to minimize deviation later.

6 Ken Schwaber, The Enterprise and Scrum (Microsoft Press, 2007).
7 Ibid.
8 Ibid.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

71

Schwaber uses the example of code review when he discusses

empirical process control:

The code is reviewed against coding standards and industry
best practices. Everyone involved in the review fully and mutu-
ally understands these standards and best practices. The code
review occurs whenever someone feels that a section of code is
complete. The most experienced developers review the code,
and their comments and suggestions lead to the developer
adjusting his or her code.9

Simple, isn’t it? We could not have said it better ourselves.

 Complexity in Projects
What makes a software development process so complex? We discussed

this a bit previously, but let’s dive deeper here. In theory, building a

software system may seem pretty straightforward. You write code that

instructs the CPU to control the computer. How hard can it be? Alas, it

isn’t that simple, we’re afraid. The people writing the code are complex

machines in themselves. They have different backgrounds, IQs, EQs, views,

attitudes, and so on. Their personal lives also add to their complexity.

The requirements may also be complex and tend to change over time.

According to Schwaber, a large percentage of the requirements gathered at

the beginning of a software project changes during the project—and 60%

of the features you build are rarely or never used in the end. Many times

in our projects, several people at the customer site are responsible for the

requirements. Often, they have diverging agendas as to why and what to

build. And just as often, the stakeholders have a hard time expressing what

they really want. Only when they see a first prototype of the system do they

fully begin to see the possibilities of the software, and only then can they

begin to understand what they want.

9 Ibid.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

72

Rarely is it the case that just one computer is involved in a system

either. In general, there is interaction among several machines. You may

have a web farm for your GUI, a cluster for your application tier, a back-

end SQL Server, some external web services, and often a legacy system, all

of which need to integrate to solve the needs of the new system.

When complex things interact—as people, requirements, and

technology do in a software project—the level of complexity increases

greatly. So, it’s safe to say we don’t have simple software problems

anymore. They’re all complex. Schwaber realizes this as well. Figure 3-2

shows his complexity assessment graph.

Far from
agreement

Far from
certainty

Requirements Complicated

Complicated

Technology

Simple

Complex

Close to
Agreement

Close to
certainty

Anarchy

Figure 3-2. Schwaber’s complexity graph

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

73

The projects in the anarchy area are chaotic and unworkable. To get

them to their finish lines, you probably need to resolve serious issues

before you even start the projects.

What Scrum tries to do is address this inherent complexity by

implementing inspection, adaptation, and visibility, as you saw in the

section “Empirical Process Control.” Scrum does so by having simple

practices and rules.

 What Scrum Is
Scrum is a powerful, iterative, and incremental process. Many are fooled

by its perceived simplicity, but it takes time to master. Figure 3-3 shows the

skeleton of the Scrum model, to which we attached the rules and practices.

In Scrum, you do development in time-boxed intervals called iterations.

An iteration is usually between two and four weeks. Each iteration consists

of daily inspections. Such an inspection—or daily Scrum, as it’s called—is

performed by the team once every day at a preset time.

Product Sprint
Backlog Backlog

Potentially
Shippable
Product

Increment

24
Hours

2 to 4
Weeks

Figure 3-3. The Scrum skeleton

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

74

During these inspections, team members evaluate each other’s

work and the activities performed since the last inspection. If necessary,

adjustments (adaptations) are found and implemented as quickly as

possible. The iterations also conclude with inspections, when more

adaptations can be made. This cycle repeats until it’s no longer funded.

All the requirements that are known at the beginning of the project

are gathered in the product backlog, which is one of the artifacts of Scrum.

We come back to this shortly. The project team reviews the backlog and

selects which requirements should be included in the first iteration—or

sprint, as it’s called in Scrum. These selected requirements are added to

the sprint backlog, where they’re broken down into more detailed items

(tasks). Many teams visualize their work in a sprint using a scrum board,

which can be electronic or it can be a whiteboard with sticky notes. The

board shows the tasks that have been determined for each backlog item

and where in the development process each task is currently located

(development, test, and so on).

The team then makes its best effort to turn the sprint backlog into

a shippable increment of the final product. The team is self-managing,

which means members decide collectively who does what and what the

best way is to solve problems.

The increment is presented to the stakeholders at the end of the

sprint so they can inspect it and, if necessary, the team makes adaptations

necessary to the project based on stakeholder feedback. The sprint most

often lasts 30 days, although, as mentioned earlier, we often see sprints

that last two to four weeks. The length of the sprint depends on the sprint

backlog items. When I took his Scrum master certification class, Ken

Schwaber related that he once had a one-week sprint in a project. The

reason was that the team malfunctioned, and this way he could identify the

reason for this more easily and adjust the process so the project ran more

smoothly.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

75

The stakeholders’ adaptations and feedback are put into the product

backlog and prioritized again. The team then starts the process over and

selects the backlog items they think they can finish during the next sprint.

These items are put into the sprint backlog for the next sprint and are

broken down into more manageable items. And so it continues, until the

stakeholders think they have received the business value they want, and

then funding stops.

If you look again at the three legs of empirical process control, you

can see that Scrum covers them nicely. Transparency is implemented by

letting the team and stakeholders agree on the expected outcome of the

project and of each iteration. Inspection occurs daily and also at the end of

each sprint. Adaptations are the direct result of these inspections and are a

necessary thing in Scrum.

 Roles and Responsibilities in Scrum

There are only three core roles in the Scrum framework—a fact that has

surprised many people over the years, especially those used to a more

traditional process. The roles are as follows:

 1. The product owner

 2. The Scrum master

 3. The development team

These people are, ideally, collocated to deliver potentially releasable

product increments every sprint, but this can be hard to accomplish in a

global organization (we’ll come back to this topic later). Together, these

three roles form the Scrum team.

Product owners represent the business side of the organization. This

role is very important to any team in an organization. Without clear and

strong product owners, teams will probably soon run into problems.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

76

Product owners are the voice of the customer, and they make sure the

team adds value to the organization throughout the project (or product

development). One of the most important responsibilities of product

owners is to manage the backlog and make sure the backlog reflects the

needs of the company. To do this, product owners need to work closely

with the project/product stakeholders. They also need to work closely with

the development team and the Scrum master.

Product owners have several responsibilities, which are presented in

Table 3-1.

Table 3-1. Product Owner Responsibilities

Responsibilities Meaning in practice

maximize the value of the

product and the work of the

development team.

express product backlog items clearly.

manage the product backlog. order the items in the product backlog to achieve

goals and missions effectively

Be the business interface for

high-level requirements.

optimize the value of the work performed by the

development team.

own and communicate the

product vision.

ensure the product backlog is visible, transparent,

and clear to all, and make sure it shows what the

Scrum team will work on next.

define the product road map. ensure the development team understands items

in the product backlog to the level needed.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

77

The Scrum master role is different from a traditional PM. Many people

think the Scrum master is some kind of technical lead for the team, but this

is not the case. The Scrum Guide (www.scrumguides.org) describes the

Scrum master as a servant leader to the development team, the product

owner, and the surrounding organization. This means the Scrum master

works as a coach for the whole Scrum team, encouraging team members

to perform better and better. The responsibilities for the Scrum master are

shown in Table 3-2.

Table 3-2. Scrum Master Responsibilities

Responsibilities Meaning in practice

ensure Scrum is understood and

enacted.

ensure the Scrum team adheres to Scrum

theory, practices, and rules.

lead and couch the organization in its

Scrum adoption.

plan Scrum implementations within the

organization.

help those outside the Scrum team

understand which of their interactions

with the Scrum team are helpful and

which aren’t.

help everyone change their interactions to

maximize the value created by the Scrum

team.

remove impediments. protect the team by finding the resources

to remove impediments so the team can

work at a sustainable pace.

The responsibilities of the development team are described in Table 3- 3.

Team members are on the development team because they have a certain

skill. If you are a member of this team, you are a developer. This simple

arrangement removes any team hierarchy.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.scrumguides.org

78

The team is jointly responsible for fulfilling the forecasted work of the

sprint. Although one name be written beside a task, all team members are

responsible for completing that task. The goal of this team structure is to

foster collaboration.

The development team is a self-organizing team, responsible for

planning and executing what is on the sprint backlog. But, being self-

organizing may be hard, so the Scrum master might help the team

achieve this.

Table 3-3. Development Team Responsibilities

Responsibilities Meaning in practice

do the work to complete the tasks by the

end of each sprint.

organize and manage the tasks

assigned.

Development team members may have specialized skills and areas of expertise,
but accountability for completing a product backlog task belongs to the entire
development team. No one, not even the Scrum master, tells the development team
how to turn the product backlog into increments of potentially releasable functionality.

 Deliverables in Scrum
Now let’s take a look at the deliverables described in the Scrum guide.

 The Product backlog

The product backlog is an ordered list of all requirements on the product. They

could be business requirements or technical requirements. Nonfunctional

requirements, such as response times, regulatory requirements, and so on, are

often part of the “definition of done” the team maintains for its work, but they

could also be included in the product backlog.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

79

The product owner is responsible for maintaining the backlog but

does so in close collaboration with other stakeholders and business

representatives as well as with the development team. The product owner

needs to prioritize the backlog so it reflects the needs of the organization.

You can think of the product backlog as a living document that follows

the product for as long as the product lives. Items, or product backlog

items (PBIs) are often estimated using story points or some other relative

estimation technique, which is discussed later.

 Sprint Backlog

The sprint backlog is the development team’s forecast of what it will deliver

during the sprint. It is also the plan for how the team will do the work to

accomplish the increment at the end of the sprint.

The sprint backlog consists of tasks broken down from PBIs during

sprint planning. In many cases, these tasks are estimated with remaining

work—a number that many teams update each day. In this way, they

can track progress with a burndown chart (Figure 3-4) that allows good

transparency on the progress of the work during the sprint, making it easy

to see whether the team will reach the forecast.

Team 01 Burndown
50

45

40

35

30

25

20

15

10

5

0
Day 1 Day 2 Day 3 Day 4 Day 5

Figure 3-4. A burndown chart

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

80

This backlog is also a living document, but it is the development team

that owns and updates the sprint backlog. Because it is a self-organizing

team, team members can add and remove tasks as they wish as long as

they follow the PBIs selected during sprint planning.

 Product Increment

The increment is the sum of all backlog items completed during a sprint

and includes what has been delivered so far in the project. At the end of

a sprint, the new increment must be done, which means it must be in

useable condition and meet the Scrum team’s definition of “done.”

 Sprint Goal

The sprint goal is created at sprint planning and is the target for the sprint.

It is a vision that guides the team to why they built the increment in the

sprint.

Although the team and the product owner collaborate on this goal, it is

important that product owners explain their vision for the coming three to

four sprints.

 Events in Scrum
There are also some meetings, or events, as the Scrum Guide calls them,

that helps you keep track of your status as you work:

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

81

 Sprint planning

The purpose of the sprint planning meeting is to decide the following:

• What can be delivered in the increment resulting from

the upcoming sprint?

• How will the work needed to deliver the increment be

achieved?

This is the first meeting that occurs in a sprint, and the entire Scrum

team is present. The meeting has a time box of eight hours for a calendar-

month sprint. For a shorter sprint, this time is usually shorter. The Scrum

Guide is not more specific than this, but a good rule is that the time box is

four hours for a two-week sprint, six hours for a three-week sprint, and so on.

During the sprint planning meeting, any changes to the product

backlog since last refinement meeting are discussed so that the team has a

good product backlog from which to work. The capacity (or the number of

hours available for the team to work during the sprint) of the team—for the

entire team and for the individual competences in the team—is reviewed.

After this is determined, the team starts to break down the PBIs, starting

from the top.

The team does this by figuring out which tasks are needed for each

PBI. The tasks could be designing, writing code, writing tests, performing

tests, and so on. Then, these tasks are estimated with the remaining hours

to build a good burndown chart during the sprint.

 Daily Scrum

The daily Scrum meeting is a meeting (see Figure 3-5) that, in the best of

worlds, takes place every 24 hours (working days), at the same place, and

at the same time. The reasoning behind this is that this approach reduces

complexity. We don’t have to think about where the meeting is or when it

is; it’s where and when it always is. When team members are spread out

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

82

in different locations and time zones, this is harder to accomplish, but you

can overcome these obstacles by using tools such as Azure DevOps and

Microsoft Teams.

During the meeting, individual members of the development team

answer three questions:

 1. What did you complete yesterday that contributed

to the team meeting its sprint goal? This is a status

report to the other team members.

 2. What do you plan to complete today to contribute to

the team meeting its sprint goal? This is the plan for

the next 24 hours.

 3. Do you see any impediments that could prevent you

or the team from meeting its sprint goal? This is a

way to identify any risks that could prevent the team

from meeting its goal.

24
Hours

2 to 4
Weeks

Daily
Scrum
Meeting

Figure 3-5. The daily Scrum event in Scrum

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

83

This is the suggested way of doing this meeting according to the Scrum

Guide, but it is not set in stone. It is an efficient way for the team to get

quick feedback and see if it needs to change anything in the short term.

 Sprint Review

When the sprint comes to an end, it is time for the development team to

show what it delivered and to get feedback on it from the product owner

and stakeholders. This is done during a sprint review, which is another

time boxed-meeting: three hours for a calendar-month sprint.

To this meeting, the Scrum team should invite persons that can give

valuable feedback on the work delivered so far. To get this feedback, the

team demonstrates real code (if software is the deliverable) to the audience

and then discusses any feedback received. The feedback is then input to

either the product backlog or to the retrospective following the review.

 Sprint retrospective

During the sprint retrospective, the team reflects on the past sprint, and

identifies and agrees on continuous process improvement actions.

Some guidelines valuable to sprint retrospectives include the following:

• Two main questions are asked during the sprint

retrospective: What went well during the sprint? What

could be improved during the next sprint?

• The recommended duration is one and a half hours for

a two-week sprint (and is proportional for other sprint

durations).

• This event is facilitated by the Scrum master.

There are many ways a retrospective can be performed. It is important

not to let this meeting become boring. It is an important meeting, and the

Scrum master needs to infuse inspiration into the meeting.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

https://en.wikipedia.org/wiki/Continual_improvement_process

84

 Backlog Refinement

The last event is the backlog refinement (previously known as backlog

grooming). Backlog refinement is an ongoing process of reviewing PBIs

and checking that they are prioritized appropriately and prepared in a way

that makes them clear and executable for teams after they enter sprints via

sprint planning.

Larger PBIs may be broken into multiple smaller ones; acceptance

criteria may be clarified; and dependencies, investigation, and preparatory

work may be identified and agreed as technical spikes (similar to a small

proof of concept). Count on spending up to 10% of the available capacity

on refinement.

 Definition of Done
The definition of done is very important, but it also tends to be forgotten.

In many projects, at the end of (or during) a sprint or the project, we’ve

seen arguments between the delivering development organization and

the person ordering the project about whether a task has been completed.

Perhaps testing was not done the way the client assumed it would be,

or the software doesn’t comply with certain regulations. The following

conversation is typical:

[Product owner, Sofia, stops by the office of

developer Mike to check on how things are going.]

S: Hi! How’s the cool new feature you’re working on

coming along?

M: It’s going great. I’m done with it right now and

will start the next feature soon.

S: Great! Then I can show it to our customer, who’s

coming here after lunch. He’ll be very excited!

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

https://en.wikipedia.org/wiki/Refinement_(computing)

85

M: No, no. Hold on. I am not “done” done with it. I

still need to fix some test cases, do some refactoring,

get it into the build process, and so on. I thought you

were wondering if I had gotten somewhere with it.

For the most part, such discussions can be avoided if people sit down

together at the beginning and write and sign a definition of done.

There are other reasons for having a definition of done as well. For

the team to estimate a user story, the team members need to know when

they’re done with it; otherwise, it’s very hard to complete the estimate.

For a specific user story (requirement), you know it’s done when you’ve

fulfilled its acceptance criteria. But where do all those general things

such as style guides, code analysis, build automation, test automation,

regulatory compliance, governance, nonfunctional requirements, and so

on, fit in? They affect the estimate of a user story as well.

Here is where the definition of done comes into play. The definition

of done tells you what requirements, in addition to the user story’s

acceptance criteria, you need to fulfill to be done with the story. You

include the general requirements in the definition of done because they

affect all user stories in the end.

The definition of done is your primary quality document. If you

don’t accomplish what is in it, you don’t deliver quality. It’s essential that

the product owner and the team agree on the definition of done. The

definition of done is part of the agreement between the team and the

product owner.

There shouldn’t be an argument over this concept during the project.

If the product owner thinks it’s too costly to use pair programming or

TDD, have the product owner sign the definition of done, which specifies

that these things have been removed. If, at the end of a sprint, the

product owner complains about the number of bugs, you can present

the document and say the product owner removed essential parts of the

testing process, so bugs will be present.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

86

A good starting point for a definition of done could be something like

the following:

• Environments are prepared for release: First check that

no unintegrated work in progress (WIP) has been left in

any development or staging environment. Next, check

that the continuous integration framework is verified

and working, including regression tests and automated

code reviews. The build engine ought to be configured

to schedule a build on check-in. It may also trigger

hourly or nightly builds. Also, check that all of the test

data used to validate the features in the release have

been validated.

• Handover to support is complete: All design models and

specifications, including user stories and tests, must be

accepted by support personnel who will maintain the

increment henceforth. They must also be satisfied that they

are in control of the supporting environment. (Note: This

may be elided in a DevOps context or when a development

team follows the product through to support.)

• Review is ready: Part of the work in a sprint includes

preparing for the review. Sprint metrics should be

available, including burndown or burnup charts. Any

user stories that have not been completed need to be

reestimated and returned to the product backlog.

• Code is complete: Any and all to-do annotations are

resolved, and the source code is commented to the

satisfaction of the development team. Source code is

refactored to make it understandable, maintainable, and

better able to support future changes. (Note that the red-

green-refactor pattern found in TDD is helpful here.)

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

87

Unit test cases are complete: Unit test cases are designed

for all features in development and allow requirements

to be traced to the code implementation, such as by

clear, feature-relevant naming conventions. The degree

of code coverage is established and meets or exceeds

the standard required. The unit test cases are executed

and the increment is proved to work as expected.

Peer reviews are complete: Source code is checked

into the configuration management system with

appropriate peer-reviewed comments added. The

source code is merged with the main branch, and

automatic deployment into elevated environments is

verified. (Note: If pair programming is used, a separate

peer review session might not be required.)

• Testing is complete: Functional testing is done,

including both automated testing and manual

exploratory testing. A test report is generated. All

outstanding defects (or incidents such as build issues)

are elicited and resolved or accepted by the team as not

being contraindicative to release. Regression testing is

completed and the functionality provided in previous

iterations is shown to work. Performance, security, and

user acceptance testing is done, and the product works

on all required platforms.

Sometimes it is also good to have a definition of “ready,” which states

the requirements a team has on the requirement itself before accepting it

into a sprint. One example could look like the following:

• Story is clearly defined so that all team members can

understand what needs to be done.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

88

• Story includes clear business value for product owner

to prioritize.

• Story includes acceptance criteria.

• Story includes any required enabling specs, wire

frames, storyboards, and so on.

• Story is estimated and sized to complete easily within

one sprint.

• Story is free from external dependencies so the team

can start working on it.

Let’s continue by looking at how you can manage requirements and

estimations with an Agile mind-set.

 Agile Requirements and Estimation
Agile requirements and estimation is a huge but important topic. This

section covers some of the most important topics, but there are a lot

of ways you can manage requirements and estimates. If you want to

master this subject, there are several training courses you can take and

books to read. A good starting point is to visit www.scrum.org or www.

scrumalliance.com and see what they currently suggest.

Most of the Agile planning and estimation tips and tricks in this

chapter come from the Agile community but aren’t specific to Scrum.

Scrum really doesn’t tell you how to do specific things such as planning,

estimation, and so on. Scrum is the process framework or process method

you use for running your Agile projects. However, Scrum works very well

with the concepts we look at next.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.scrum.org
http://www.scrumalliance.com
http://www.scrumalliance.com

89

 Requirements

In Agile projects, you usually represent requirements in something called

user stories. These can be looked at as fluffy requirements—a bit like use

cases. You write user stories like this:

As a <type of user>, I want <some functionality> so I

may have <some business value>.

An example is as follows:

As a manager, I want my consultants to be able to

submit expense reports through the Internet so

that I can be more efficient in processing expense

reports.

Figure 3-6 shows how Microsoft has implemented a user story into the

work item type PBI in Microsoft TFS. The terminology is a little different

from the previous description, but it works.

Figure 3-6. A user story implementation in the Scrum template
Microsoft provides with TFS

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

90

User stories capture requirements at a high level and aren’t tangled

up with detailed functions or implementation details. The details and

nonfunctional requirements are instead captured as acceptance criteria

for the user story. Based on these acceptance criteria, you can develop

acceptance tests at the same time you write the requirements. The

definition of done is also important here because it describes other

critical requirements that all user stories need to fulfill before they’re

considered done.

So, how can you begin gathering requirements before you start a

project? Product owners should use any method they think is suitable. We

often use story-writing workshops, during which key stakeholders, end

users, business analysts, experienced developers, and others participate

to brainstorm user stories. During such a workshop, you focus on the big

picture and don’t dive into details. These big-picture user stories are often

called epics because they’re large and not broken down yet.

But don’t you need to find all requirements at the beginning? No.

And that is what makes Agile so great. The Agile concept builds on the

fact that you acknowledge that you don’t know and can’t know all the

requirements early during a project. New requirements and changes to

early requirements pop up throughout the process, and that’s okay. The

Agile approach takes care of this for you. You start with what you have

initially and you continue handling requirements throughout the project.

The short version is that you get started right away and are aware that

changes and new requirements will come along.

When the initial requirements are finished, you have the embryo of the

product backlog. However, before you can prioritize and estimate these

user stories, you need to perform a risk assessment so you can get a grip

on the risks associated with each and every one of them. A user story with

a significant risk associated with it usually takes more effort to finish and

should probably be done early during development.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

91

 Estimation

To know how much effort is involved with a user story, you need to

estimate it. The sum of all initial estimates gives you a (very) rough

estimate of how much time the entire project may take. But, because you

know things usually change over time, you don’t consider this estimate

written in stone.

You have what you need to estimate: You know the requirements, you

have a definition of done, and you have acceptance criteria. In the Agile

world, it’s recommended that you estimate time using a measure called

story points. Story points aren’t an exact size—instead, they’re relative.

Here is an easy example we use when running Agile training. Take four

animals—let’s say a cat, a pig, a zebra, and an elephant. Without being a

zoologist, most people can say that the pig is three times the size of the cat,

the zebra is twice the size of a pig, and the elephant is maybe four times the

size of the zebra. If you have a couple of people sit down and discuss these

animal sizes, you can pretty soon come up with an agreement about their

relative sizes.

The same goes for user stories. Most developers can agree pretty

quickly about the relative size of user stories. User story A is twice as big

as user story B, and so on. You don’t need to be very experienced with

the details of each user story to reach this agreement. Novice developers

usually end up with the same estimates as experienced ones. Keep in mind

that you aren’t talking exact time yet, only relative size.

The most common scale for expressing story points is a modified

Fibonacci scale. This scale follows the sequence 1, 2, 3, 5, 8, 13, 20, 40, 100.

Often, teams use a technique called planning poker when doing

estimates. Each player has a deck of cards containing the numbers from

the modified Fibonacci scale. Here is how planning poker goes:

 1. The product owner/Scrum master reads the first

user story.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

92

 2. The team members briefly consider the user story

and select a card each, without showing it to the

others.

 3. The team members show their cards at the same

time.

 4. If the result varies much, the people with the highest

and lowest cards explain their reasoning.

 5. After a short discussion, the team plays again.

 6. When consensus is reached (or the team members

are only one step apart), you’re finished.

 7. If the team still disagrees, you pick the highest value.

But what about time? How do you get down to time? You need to know

several things to estimate time. The first is team capacity. Consider the

following when calculating team capacity:

• How long is the sprint?

• How many working days are available in the sprint?

• How many days does each team member work during

the sprint? Consider planned vacation or other days off,

planned meetings, and so on.

• Deduct the time for sprint planning, review, and

retrospective meetings.

The result is the capacity before drag (drag is waste time or unknown

activities). You should measure drag in each sprint, but during initial

planning it’s hard to know how much to include. The longer the project,

the more accurate the drag. If you don’t know from experience what the

drag is, 25 percent is a good landmark; included in this is the 10% backlog

refinement.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

93

Now you have the available number of hours in the sprint, and you

can connect points and time. You need to know the team velocity, which is

the number of story points the team can handle in a sprint. Initially, this is

impossible to know. The easiest way to figure it out is to conduct a sprint

planning meeting and create a theoretical team velocity. At this meeting,

the team breaks down a user story into manageable tasks—and this is

where time becomes interesting. During this meeting, the team estimates

tasks in hours so it can plan the sprint and decide how many user stories it

can take on. The team usually does this as follows:

 1. Estimate the first user story in detail.

 2. Break down what the team needs to do to deliver the

story.

 3. Estimate hours for each activity, then summarize.

 4. Deduct the summary from the available time the

team has in the sprint.

 5. Is there still time left? If so, take a new user story and

repeat the process until no time is left.

 6. Summarize the number of story points from the

stories included in the sprint.

Now you have a theoretical velocity.

At this point, you can make a rough time plan for the entire (at

this point) project. This is good input for the product owner to use in

discussions with stakeholders, and also for return on investment (ROI)

calculations. The sprint planning process continues throughout the

project, and the theoretical velocity can soon be replaced with one based

on experience.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

94

 Backlog

When the initial user stories are in place and estimated with story points,

the product owner can begin prioritizing the backlog. In Scrum, this is

called ordering the backlog. Based on business needs, the product owner

makes sure the order of the backlog reflects what the business wants. In

Figure 3-7, you can see a backlog in Azure DevOps. Usually, we do a rough

estimate for each backlog item and then velocity planning. After that, we

can see which backlog items should be completed during which sprint.

The product owner needs to keep the backlog in good shape

throughout the project. This means it needs to be ordered. It also needs

fine granularity at the top (perhaps three or four sprints down the list)

and rougher granularity farther down. Keeping the backlog in your ALM

tool set gives you the benefit of visibility and traceability. In the best of all

worlds, you can link backlog items to code, check-ins, builds, and so on,

giving you good traceability.

Figure 3-7. A sample backlog in Azure DevOps

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

95

The product owner can also start to look at release planning at this

point. It’s important to get an overview of coming releases, especially if

you have a larger project. Release planning can be done on the epics (the

larger user stories). A good approach is to look for themes among the

user stories. What could be useful to release at the same time? If you find

such features, you can make a theme from them and plan the theme for

a certain release. When this is done, you can also do a very rough time

estimate on the releases—and suddenly you also have a rough time plan

for the entire project.

Now you have as much information that you could possibly ask for this

early in a project. The next step is the sprint planning meeting, when the

team members (as you saw earlier) select the backlog items they feel they

can commit to during the sprint.

 During the Sprint
During the sprint, you use several important meetings to inspect and adapt

your process. We already covered the sprint planning meeting, which takes

place at the start of each sprint, but there are other meetings as well, and

all important to the Agile team.

 Daily Standup

The daily standup is a meeting that takes place every day during a sprint.

It is primarily a developer team meeting and is used to provide status

updates to the team members. As the name suggests, this is a standup

meeting, which comes from the practice of having attendees stand at a

meeting because the discomfort of standing for long periods helps keep

the meeting short.

The daily standups are kept short, at around 15 minutes, so

participants can infer this isn’t a working meeting.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

96

As mentioned earlier, all participants should answer these three

questions:

 1. What did you complete yesterday that contributed

to the team meeting its sprint goal?

 2. What do you plan to complete today to contribute to

the team meeting its sprint goal?

 3. Do you see any impediments that could prevent you

or the team from meeting its sprint goal?

Although it may not be practical to limit all discussion to these three

questions, the goal is to stick to them as closely as possible. If further

discussions are needed, they should be scheduled for after the meeting.

For instance, when team members ask for short clarifications and brief

statements, they should try to remember that they should talk about those

more after the meeting.

One of the important features of the daily standup is that it’s intended

to be a communication meeting for team members and not a status update

for management or other stakeholders. However, it can be valuable for

product owners to participate in the meeting so they can identify any

issues they need to address. This may remove the need for other status

meetings afterward.

The meeting is usually held at the same time and place every workday.

All team members are encouraged to attend, but meetings aren’t

postponed if some team members aren’t present.

This practice also promotes closer working relationships with its

frequency, need for follow-up conversations, and short duration, which in

turn results in a greater rate of knowledge transfer—a much more active

result than a typical status meeting.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

97

 Kanban
We’d like to present another method that is usually mentioned with Agile

frameworks. Kanban is very popular in many organizations and is used by

one of our customers today. Although our preferred project management

method is Scrum for development projects, we realize that Scrum isn’t

perfect in every situation. Scrum can be scary in the sense that it requires

major changes in the way people work in their organizations. It can be

hard to implement Scrum fully because humans seem to have an inherent

resistance to change. And if you don’t have management with you, it’s even

harder to implement. Wouldn’t it be great if you could find a process that

was agile, but made it possible for you to make changes gradually?

Operations can also be difficult to perform using Scrum. Think about

this situation for a moment. Let’s assume you have three-week sprints for

your operations team. One week into a sprint, you suddenly realize there is

a bug in the system that affects production. This bug needs to be fixed right

away, so you write a backlog item and present it to the product owner. You

need to bring it to the next sprint planning meeting, which will be held in

two weeks. Then, it will take three weeks for the bug to be fixed, because

you have three-week sprints. In the worst case, you’ll have to wait five

weeks before the fix is available for deployment.

Of course, this is a rare situation. There are obviously ways to handle

this better using Scrum. You could, for instance, always have a PBI of 10%

of your available time set aside for bug fixes, and put this PBI at the top of

your sprint backlog, allowing you to work on bugs as they’re discovered.

But, we still don’t think Scrum is optimal for operations work. This is why

we started to look at Kanban.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

98

The name Kanban comes from the Japanese word for sign board.

Kanban goes back to the early days of the Toyota production system.

Between 1940 and 1950, Taiichi Ohno developed kanbans to control

production between processes and to implement just-in-time

manufacturing at Toyota manufacturing plants in Japan. The Kanban

method was developed by David J. Anderson and is an approach to

an incremental, evolutionary process as well as systems change for

organizations.10 By using a work-in-progress limited pull system as the core

mechanism, it exposes system operation (or process) problems. In such a

pull system, tasks that are to be performed are pulled into the workflow,

similar to when you pull a PBI into the sprint backlog. But, you can only

pull a task into the workflow when there is free capacity to handle the task.

It also stimulates collaboration to improve the system continuously.

The Kanban method has three basic principles11:

 1. Start with what you do now.

 2. Agree to pursue incremental, evolutionary change.

 3. Respect the current process, roles, responsibilities,

and titles.

Let’s take a closer look at these.

10 David J. Anderson, Agile Management for Software Engineering: Applying the Theory
of Constraints for Business Results (Prentice Hall, 2003), and Kanban: Successful
Evolutionary Change for your Technology Business (Blue Hole Press, 2010).

11 Taiichi Ohno and Norman Bodek, Toyota Production System: Beyond Large-Scale
Production (Productivity Press, 1988).

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Taiichi%20Ohno&search-alias=digital-text&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Norman%20Bodek&search-alias=digital-text&sort=relevancerank

99

 Start with What You Do Now
The Kanban method doesn’t prescribe a specific set of roles or process

steps. There is no such thing as the Kanban software development

process or the Kanban project management method. The Kanban method

starts with the roles and processes you have and stimulates continuous,

incremental, and evolutionary changes to your system. This is the thing

we like the best about Kanban. It allows you to continue using what

you’ve invested in; the biggest difference is that you can implement big

improvements to the existing process without worrying employees.

 Agree to Pursue Incremental, Evolutionary Change
The organization (or team) must agree that continuous, incremental,

and evolutionary change is the way to make system improvements and

make them stick. Sweeping changes may seem more effective, but more

often than not they fail because of resistance and fear in the organization.

The Kanban method encourages continuous, small, incremental, and

evolutionary changes to your current system.

 Respect the Current Process, Roles,
Responsibilities, and Titles
It’s likely that the organization currently has some elements that work

acceptably and are worth preserving. You must seek to drive out fear to

facilitate future change. By agreeing to respect current roles, responsibilities,

and job titles, you eliminate initial fears. This enables you to gain broader

support for your Kanban initiative. Presenting Kanban—rather than an

alternative, more sweeping approach that could lead to changes in titles,

roles, and responsibilities, and perhaps the wholesale removal of certain

positions—may help individuals realize the benefits of this approach.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

100

 The Five Core Properties
David Anderson, in his book Kanban, identified five core properties that

are part of each successful implementation of the Kanban method:

 1. Visualize the workflow.

 2. Limit WIP.

 3. Manage flow.

 4. Make process policies explicit.

 5. Improve collaboratively (using models and the

scientific method).

Let’s look at these and see what they mean.

 Visualize the Workflow

The knowledge work of today hides its workflow in information systems.

to understand how work works, so to speak, it’s important to visualize

the flow of work. The right changes are harder to perform if you don’t

understand the workflow. One common way to visualize workflow is by

using a wall with cards and columns, called a Kanban board. The columns

on the card wall represent the different states or steps in the workflow, and

the cards are the feature, story, task, and/or result of the workflow, usually

referred to as work items.

What is great is that you use the steps of your existing workflow. You

don’t need to enforce a new way of working that changes the current

approach dramatically. You basically place the Kanban process on top of

what you have, then visualize this flow. This often feels more comfortable

to coworkers and makes them more positive about the small changes

you’re imposing on them.

Figure 3-8 shows a Kanban board used to visualize flow. But wait!

Some might of you might say: Isn’t this just like the Scrum board shown

in Figure 3-9? Yes, but there is one significant difference if you compare

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

101

 Limit WIP

The WIP limit is important and tells you how many work items you can

have in each step (column on the Kanban board). When the limit is

reached, you can’t pull any new items into this step until a work item

leaves the step. Limiting WIP implies that a pull system is implemented on

the figures closely. Above each Kanban board column is a number that

identifies the WIP limit. This takes us to the next core property: limit WIP.

Figure 3-8. A Kanban board in Azure DevOps

Figure 3-9. A Scrum board

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

102

parts or all of the workflow. The pull system acts as one of the main stimuli

for continuous, incremental, and evolutionary changes to your system. It’s

important, even critical, that WIP be limited at each stage in the workflow.

 Manage Flow

The flow of work through each stage in the workflow should be monitored,

measured, and reported. By managing the flow actively, continuous,

incremental, and evolutionary changes to the system can be evaluated to

determine whether they have positive or negative effects on the system.

If a step in your workflow is full, you can’t bring any new items into

this step. Looking at the board, you can see easily whether there is a

bottleneck in your flow. If you discover that all columns to the right of the

development step on your board are empty, but the development step is

full (Figure 3-10), this means something is stopping development, and

people working on development can’t finalize their work. You should use

idle resources to try to help the developers solve what is stopping them so

you can restart the flow and begin pulling new work items into the steps.

By having this visibility, you can manage your flow and make sure you

handle problems as they arise.

Backlog Analysis

3

Dev

5

Test Deploy

5

Figure 3-10. A bottleneck in the workflow is discovered

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

103

 Make Process Policies Explicit

It’s often hard to improve, or even start a discussion of improving, a

process until the mechanism of the process is made explicit. Without an

explicit understanding of how things work and how work is actually done,

any discussion of problems often seems subjective or emotional. To get

a more rational, empirical, and objective discussion of issues, explicit

understanding is important. This will most likely lead to consensus on

improvement suggestions.

 Improve Collaboratively

Kanban encourages small, continuous, incremental, and evolutionary

changes that stick. David Anderson also discovered this was very

effective. Resistance to change, as we’ve mentioned, is easier to

overcome if the steps are small and each step has a great payback.

Teams that have a shared understanding of theories about work,

workflow, process, and risk are more likely to be able to build a common

understanding of a problem and thereby suggest improvement actions

that can be agreed on by consensus. The Kanban method proposes a

scientific approach to be used to implement continuous, incremental,

and evolutionary changes, but the Kanban method doesn’t prescribe a

specific scientific method to use.

 Common Models Used to Understand Work
in Kanban
Some common models are often used with Kanban to understand how

work actually works. We don’t go into these in detail here, but we include

them for reference:

• The theory of constraints (the study of bottlenecks)

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

104

• The system of profound knowledge (a study of variation

and how it affects processes)

• The lean economic model [based on the concepts of

“waste” (or muda, muri, and mura)]

 eXtreme Programming
eXtreme Programming (XP) is a deliberate and disciplined approach to

software development. XP, like Scrum, was a direct outcome of the Agile

Manifesto and incorporates many of its values. Aspects of these models

were in the minds of their founders for a long time though and were

used in many projects. XP stresses customer satisfaction—an important

part of the Agile Manifesto. The methodology is designed to deliver the

software the customer needs, when it’s needed. XP focuses on responding

to changing customer requirements, even late in the life cycle, so that

customer satisfaction (business value) is ensured.

XP also emphasizes teamwork. Managers, customers, and developers

are all part of a team dedicated to delivering high-quality software. XP

implements a simple and effective way to handle teamwork.

There are four ways XP improves software teamwork:

 1. Communication: It’s essential that XP programmers

communicate with their customers and fellow

programmers.

 2. Simplicity: The design should be simple and clean.

 3. Feedback: Feedback is supplied by testing the

software from the first day of development. Testing is

done by writing the unit tests before writing the code.

This is called TDD, and it is becoming a frequently

used practice in many projects, not only Agile ones.

Later, we describe how TFS implements TDD.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

105

 4. Courage: The software should be delivered to

customers as early as possible, and a goal is to

implement changes as suggested. XP stresses that

developers should be able to respond courageously

to changing requirements and technology based on

this foundation.

RUP has use cases and XP has user stories. These serve the same

purpose as use cases, but they aren’t the same. They’re used to create

time estimates for the project and also replace bulky requirements

documentation. The stakeholders (managers, end users, project sponsors,

and so on) are responsible for writing the user stories, which should be

about things the system needs to do for them. Stakeholders write stories

because they’re the ones who know what functionality they need and

desire; developers rarely have this kind of information. Each user story

consists of about three sentences of text written by the stakeholder in the

stakeholder’s own terminology, without any of the technical software

jargon that a developer may use.

Another important issue is that XP stresses the importance of

delivering working software in increments so the customer can give

feedback as early as possible. By expecting that this will happen,

developers are ready to implement changes.

The last topic we want to highlight with XP is pair programming. All

code to be included in a production release is created by two people working

together at a single computer. This approach increases software quality

without impacting time to delivery. Although we’ve never had the benefit

of trying this ourselves, coworkers with whom we’ve spoken who have

used pair programming are confident that it adds as much functionality as

two developers working separately. The difference is that quality is much

greater. Laurie Williams of the University of Utah in Salt Lake City has shown

that pair programmers are 15% slower than two independent individual

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.extremeprogramming.org/rules/planninggame.html

106

programmers, but “error-free” code increases from 70% to 85%.12 In our

opinion, this more than makes up for the decrease in speed.

We can make a reference to my old job as an assistant air-traffic

controller here. Many are the times I sat in the tower when airplane traffic

was so heavy that I needed help to keep track of every airplane. We’re

aware that this isn’t the same thing, but the fact remains that two pairs of

eyes see more than one pair—and this is what makes pair programming so

attractive.

To learn more about XP, we encourage you to visit www.

extremeprogramming.org/.

 Scaling Agile
What happens if you have more team members than can fit on a Scrum

team (seven plus/minus two people)? What if 90 people are involved in

the project? Can Scrum scale to handle this? According to Mike Cohn, in

an article on the Scrum Alliance web site,13 you can use a process called

Scrum of Scrums.

The Scrum-of-Scrums meeting is an important technique in scaling

Scrum to large-team projects. These meetings allow clusters of teams to

discuss their work, focusing especially on areas of overlap and integration.

Imagine a perfectly balanced project comprising seven teams each

with seven team members. Each of the seven teams would conduct

(simultaneously or sequentially) its own daily Scrum meeting. Each team

12 Laurie Williams and Robert Kessler, Pair Programming Illuminated (Addison-
Wesley, 2003).

13 Mike Cohn, “Advice on Conducting the Scrum of Scrums Meeting,”
www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-
of-scrums-meeting, May 7, 2007.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-of-scrums-meeting
http://www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-of-scrums-meeting

107

would then designate one person to attend a Scrum-of-Scrums meeting.

The decision of who to send should belong to the team. Usually the person

chosen is a technical contributor on the team—a programmer, tester, DBA,

designer, and so on—rather than a product owner or Scrum master.

By using this technique, you can scale Scrum infinitely, at least in

theory.

But there are other ways to scale Scrum, and Agile as well. We take a

look at three of them here:

 1. Scrum of Scrums

 2. Scaled Agile Framework (SAFe)

 3. Scaled Professional Scrum (SPS)

 Scrum of Scrums
The simplest and easiest way of scaling Scrum is by holding a Scrum-of-

Scrums meeting. This way of syncing among teams is good when we have

five to eight teams that need to sync.

The Scrum teams (A, B, C, D, E, and F in Figure 3-11) each have their

ordinary Scrum meetings. Each day at the daily Scrum they select one or

two persons to attend the next-day Scrum-of-Scrums meeting together

with the other teams’ representatives. Some teams send their Scrum

master whereas others may send a developer. It is up to the team to decide

who attends.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

108

Scrum-of-Scrum-of-Scrums

Scrum-of-Scrum Scrum-of-Scrum

Team A

Team B

Team C Team D

Team E

Team F

Essity Internal

Figure 3-11. Scrum of Scrums

The Scrum-of-Scrums meeting is like any of the other daily Scrums

during which representatives talk about what their teams have done since

the last meeting, what they are going to do to before the next meeting, and

whether they have impediments that may affect their progress.

A recommended way of running the meeting is to focus on the

following questions (Mike Cohn, https://www.mountaingoatsoftware.

com/articles/advice-on-conducting-the-scrum-of-scrums-meeting):

• What has your team done since we last met?

• What will your team do before we meet again?

• Is anything slowing your team down or getting in its way?

• Are you about to put something in another team’s way?

The reason for asking the last question is that it can be very helpful

when we need to coordinate many teams.

Impediments are resolved with focus on the challenges of coordination

among the teams. Solutions may include agreeing to interfaces among

teams, negotiating responsibility boundaries, and so on.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

https://www.mountaingoatsoftware.com/articles/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.mountaingoatsoftware.com/articles/advice-on-conducting-the-scrum-of-scrums-meeting

109

The participants of the Scrum of Scrums tracks items via a backlog

of its own, and each item contributes to improving among-team

coordination. The Scrum of Scrums, however, very seldom manage that

backlog like the team’s backlog with sprint planning. The reasoning is that

the participants first and foremost are members of their own team and the

focus is on that team.

 SAFe
SAFe started out as a book by Dean Leffingwell in 2007. In 2011, it was

named the Scaled Agile Framework (SAFe) and the organization Scaled

Agile was founded. This is the organization that works on refining the

framework. Right now, SAFe is in version 4.6.

SAFe is freely available on the company’s web site, so anybody can

access the framework. There are numerous training sessions offered

by SAFe partners and consultants, and it is strongly recommended that

you attend such training before implementing SAFe. The Agile leaders

in the implementation are the first that should be trained so that the

implementation is as successful as possible.

When a team setup reaches more than 40 to 50 people, it might be

worthwhile to look into SAFe because a Scrum-of-Scrums might not be

effective any longer.

SAFe is available in four flavors at this point, and they all depend on

how an organization is set up and the needs it has. There is no way to cover

the entire framework here, so we look at these four versions as an overview

in this chapter.

 Essential SAFe

The starting point for all SAFe implementations is the Essential SAFe setup

(Figure 3-12). Agile teams work in what is called an Agile release train

(ART) that consists of 125 to 150 persons and delivers value with a certain

cadence.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://guide.agilealliance.org/guide/backlog.html

110

The ART leaves the station at certain intervals. A common setup is to

have an ART leave the station every five sprints. The length of the sprints is

two to three weeks, so a train leaves every 10 to 15 weeks (Figure 3-13).

Figure 3-12. Essential SAFe

A train starts with a two-day session called program iteration

planning, or PI planning for short. It takes place during the last iteration

of the previous ART. This is a big-room planning in which all members

Figure 3-13. Cadence

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

111

of all teams on the ART are present as well as business owners, product

managers, and system architects/engineers. This meeting is the heart of

SAFe and is necessary to run SAFe.

PI planning delivers many business benefits according to the SAFe

documentation:

• Establishes face-to-face communication across all team

members and stakeholders.

• Builds the social network on which the ART depends.

• Aligns development to business goals with the business

context, vision, and team and program PI objectives.

• Identifies dependencies and fosters cross-team and

cross-ART collaboration.

• Provides the opportunity for “just the right amount” of

architecture and Lean user experience guidance.

• Matches demand to capacity, thus eliminating

excess WIP.

• Enables fast decision making.

A successful PI planning event delivers two primary outputs:

 1. Committed PI objectives: A set of objectives created

by each team with the business value assigned by

the business owners

 2. Program board: A board that highlights new-feature

delivery dates, feature dependencies among teams

and with other ARTs, and relevant milestones

When the train leaves the station, the first iteration of the ART starts.

The teams work according to Scrum and have the same iteration length.

They can also use Kanban if they want.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

112

Every team has one product owner, one Scrum master, and three to

nine developers. This is the same setup found in the Scrum Guide.

The final iteration is called the innovation and planning iteration, which

acts as an estimating buffer for meeting PI objectives and provides dedicated

time for innovation, continuing education, PI planning, and inspect and

adapt events. The goal of this iteration is to have some time devoted to

innovation and not simply focus on deliver. During this iteration, the entire

ART demos the combined solution and gets feedback on that.

The release train engineer (RTE) is the person who runs the train. Look

on this role as an Agile PM. The RTE works in close collaboration with the

system engineer/architect and the product management team.

There is a backlog, called the program backlog, for the whole ART

managed by the product managers. The program backlog is the holding

area for upcoming features, which are intended to address user needs

and deliver business benefits for a single ART. It also contains the enabler

features necessary to build the architectural runway (the technical

infrastructure necessary for building features).

If we have bigger needs than Essential SAFe, we can scale up to the

Large-Solution SAFe.

 Large-Solution SAFe

The Large-Solution SAFe (Figure 3-14) contains the roles, artifacts, and

processes needed to build large and complex solutions. This version of

SAFe includes a stronger focus on capturing requirements in something

called the solution intent, which is the intent you have for your solution,

what you will accomplish in the longer term. With Large-Solution SAFe,

you also work on coordinating multiple ARTs and even suppliers. You

might also have needs that ensure compliance with regulations and

standards.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

113

So, a Large-Solution SAFe is an ART (called a solution train) that runs

more than one ART within itself. There is basically no upper limit on

how many trains you can run in this configuration. Each individual ART

is run as it is in Essential SAFe. What differs is that the setup is extended

with a solution train engineer, solution architect/engineer, and solution

management. Solution management works with a solution backlog the

same way product management does for a program.

 Portfolio SAFe

So far, we have assumed that we only work with one value stream in our

organization. The level above this includes several value streams and

is called Portfolio SAFe (Figure 3-15). Each of these value streams can

include one or more solution trains. Here you start working with strategy

and investment funding, which are defined for the value streams and

their solutions. At this level, you also provide Agile portfolio operations

and Lean governance for the people and resources needed to deliver the

solutions.

Figure 3-14. Large-Solution SAFe

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

114

At this level you try to align your organization’s strategy to your

portfolio execution by organizing the Lean–Agile enterprise around the

flow of value through the value streams. Delivering the basic budgeting

and necessary governance mechanisms, it ensures that investment in

solutions provides the ROI the organization needs to meet its strategic

objectives. With a large enterprise, there may be multiple SAFe portfolios,

and the need for running full SAFe might arise.

 Full SAFe

Full SAFe (Figure 3-16) is the largest SAFe implementation available. In

the largest enterprises, multiple instances of various SAFe configurations

may be required and Full SAFe might be necessary. Full SAFe supports

organizations that build and maintain large, integrated solutions that

require hundreds of people or more, and includes all levels of SAFe: team,

program, large solution, and portfolio.

Figure 3-15. Portfolio SAFe

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

115

Working with Portfolio SAFe and Full SAFe might require some major

changes to the enterprise. You will most likely need to change your way

of budgeting, for instance, because these two setups fund value streams

instead of projects. But even for the other two SAFe setups, you can benefit

from another way of funding programs and solutions. The goal here is that

personnel in each value stream can make the decisions necessary without

having a stricter and more time-consuming escalation process when a

change is needed. You want to achieve a more decentralized decision-

making process.

 SAFe Implementation Road Map

Scaled Agile has tried to make it easier to implement SAFe by providing an

implementation road map (Figure 3-17).

Figure 3-16. Full SAFe

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

116

It starts with a tipping point (Go SAFe in Figure 3-17) that usually

comes from one of two things:

 1. The need to make an obvious change: Making a

change can sometimes be obvious. It could be

that you have a burning platform, as SAFe calls

it—meaning, you somehow realize that your way

of working is not adequate any more. You have

problems with delivering business value, for

instance, and need to change.

 2. The need to make a change for future betterment:

If you do not have a burning platform, sometimes

proactive leaders will drive change so that you can

be in a better spot in the future. Lean-Agile leaders

Figure 3-17. SAFe Implementation Roadmap

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

https://www.scaledagileframework.com/lean-agile-leaders/

117

must exhibit what Toyota calls “a constant sense of

danger”—a never-ending sense of potential crisis

that fuels continuous improvement. This might not

be the most obvious reason to drive change, and

leaders in this case must promote that maintaining

the status quo is simply not a way forward.

With the implementation road map we get step-by-step guidance to

drive a change regardless of the reason that kicked it off.

SAFe is one way to scale Scrum. Now let’s take a look at another way to

do this. It originates from Ken Schwaber and Scrum.org.

 NEXUS–SPS
In SPS, a Nexus (nexusguide.org) is an exoskeleton that rests on top of

multiple Scrum teams when they are combined to create an integrated

increment. Nexus is consistent with Scrum, and its parts will be familiar

to those who have worked on Scrum projects. The difference is that more

attention is paid to dependencies and interoperation among Scrum teams

delivering one “done” integrated increment at least every sprint.

The result can be an effective development group of up to around 90

people. Scrum.org recommends three to nine Scrum teams with three

to nine developers. This includes the Nexus integration team. For larger

initiatives, the Nexus becomes a unit of scale. This is called Nexus+, a

unification of more than one Nexus.

As displayed in Figure 3-18, Nexus consists of the following:

• Roles: A new role, the Nexus integration team, exists

to coordinate, coach, and supervise the application of

Nexus and the operation of Scrum so the best outcomes

are derived. The Nexus integration Team consists of

the product owner, a Scrum master, and three to nine

developers.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://scrum.org
http://nexusguide.org
http://scrum.org

118

All work in a Nexus may be done by all members of the Scrum teams

as cross-functional members of the Nexus. Based on dependencies, the

teams may select the most appropriate members to do specific work.

• Artifacts: All Scrum teams use the same, single product

backlog. As the PBIs are refined and made ready,

indicators of which team will do the work inside a

sprint are made visual. A new artifact, the Nexus sprint

backlog, exists to raise this transparency during the

sprint. All Scrum teams maintain their individual sprint

backlogs.

• Events: Events are appended to, placed around, or

replace (in the case of the sprint review) regular Scrum

events to augment them. As modified, they serve both

the overall effort of all Scrum teams in the Nexus, and

each individual team. Backlog refinement has become

a proper event as well. This is an important practice for

single teams, but at scale it becomes mandatory.

Figure 3-18. The Nexus framework (nexusguide.org)

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://nexusguide.org

119

• Refine the product backlog: The product backlog needs

to be decomposed so that dependencies are identified

and removed or minimized. PBIs are refined into thinly

sliced pieces of functionality, and the team likely to do

the work is identified as early as possible.

• Nexus sprint planning: Appropriate representatives

from each Scrum team meet to discuss and review

the refined product backlog. They select PBIs for each

team. Each Scrum team then plans its own sprint,

interacting with other teams as appropriate. The

outcome is a set of sprint goals that align with the

overarching Nexus goal, each Scrum team’s sprint

backlog, and a single Nexus sprint backlog. The Nexus

sprint backlog makes the Scrum team's selected PBIs,

and any dependencies, transparent.

• Development work: All teams develop software,

frequently integrating their work into a common

environment that can be tested to ensure the

integration is done.

• Nexus daily Scrum: Appropriate representatives from

each Scrum development team meet daily to indicate

whether any integration issues exist. If identified,

this information is transferred back to each Scrum

development team’s daily Scrum. Scrum development

teams then use their daily Scrum to create a plan for

the day, being sure to address the integration issues

raised during the Nexus daily Scrum.

• Nexus sprint review: All teams meet with the

appropriate stakeholders to review the integrated

increment. Stakeholder feedback may result in

adjustments to the product backlog.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

120

• Nexus sprint retrospective: Appropriate representatives

from each Scrum team meet to identify shared

challenges. Then, each Scrum team holds individual

sprint retrospectives. Appropriate representatives from

each team meet again to discuss any actions needed

based on shared challenges to provide bottom-up

intelligence.

Let’s now take a look at Large-Scale Scrum (LeSS)

 Large-Scale Scrum
LeSS is a framework based on standard Scrum. There are two variants of

the LeSS framework:

 1. LeSS: Up to eight teams (of eight people each)

 2. LeSS Huge: Up to a few thousand people on one

product

LeSS (Figure 3-19) is a scaled-up version of standard Scrum and it

contains many of the practices and ideas of Scrum for one team. We can also

see similarities to how Nexus is designed. In LeSS, you’ll find the following:

• A single product backlog (because it’s for a product, not

a team)

• One definition of done for all teams

• One potentially shippable product increment at the

end of each sprint

• One product owner

• Many complete, cross-functional teams (with no

single-specialist teams)

• One sprint

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

121

In LeSS, all teams are in a common sprint to deliver a common

shippable product, every sprint.

We can see that SAFe, Nexus, and LeSS take different approaches to

scaling Agile. I would say that, so far, SAFe is the framework I see the most.

 How Agile Maps to ALM
According to Forrester Research, Agile adoption has brought about

significant support for ALM practices.14 The Agile way of working using

frequent inspection and adaption coupled with an increased delivery

cadence has made teams more disciplined in their way of working. When

Agile was introduced, many people thought the opposite would be true,

but reality has proved them wrong.

What parts of Agile map to the ALM process? Let’s look at what

Forrester says.

14 Dave West, “The Time Is Right For ALM 2.0+,” Forrester Research,
www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-
RES56832?objectid=RES56832, October 19, 2010.

Figure 3-19. The LeSS framework

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-RES56832?objectid=RES56832
http://www.forrester.com/The+Time+Is+Right+For+ALM+20/fulltext/-/E-RES56832?objectid=RES56832

122

 Agile Captures Task-Based Work
Daily standup meetings allow team members to report progress against

their tasks. As you’ve seen in this chapter, the PBIs are broken down into

tasks during sprint planning, and each task is reported on, aggregating the

results to the original PBI. Using digital tooling for this, such as Mylyn from

Tasktop and TFS from Microsoft, allows you to capture effort, time, and

other metadata, which can provide valuable insight into the real progress

of your software development.

 There Is Increased Frequency of Inspection
The iterative approach to development improves the frequency of

inspection. During each sprint, you have project inspection at each daily

standup. At the end of a sprint, during the sprint retrospective, you define

what you’ve done well and what needs to be improved. This facilitates

the feedback loop and, together with better visibility for reporting and

traceability, has far-reaching implications for ALM.

 Many Tools Collect Much Information
Many Agile teams use tools that help them collect, build, and integration

information in their continuous integration flow. This improves visibility into

the build process as well as traceability, because the tools often allow the team

to see which requirements, work items, and tests each build included.

Continuous integration is a software development practice
where members of a team integrate their work frequently, usu-
ally each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an auto-
mated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

123

to significantly reduced integration problems and allows a
team to develop cohesive software more rapidly.15

 Test Artifacts Are Important
Agile teams often use TDD and increase the importance of test artifacts.

Business analysts and quality assurance practices are converging, which

is something that Agile methods encourage. Agile’s emphasis on the

definition of done and frequent inspection increase the desire to link

work items with test plans and cases. The result is that Agile teams create

simpler requirements but see greater integration with test assets.

 Agile Teams Plan Frequently
Agile teams plan more frequently than traditional teams. Planning takes

place when creating work items, during sprint planning, during daily

standups, during backlog refinement, and so on.

As a result, Agile teams have more information about their projects,

such as estimates, actual results, and predictions. This enables ALM

to move center stage, because planning activities are an important

management component of an ALM application.

 Summary
This chapter gave you an introduction to Agile concepts. It focused on

Scrum and Kanban because they are so commonly used. You looked at the

details of Scrum so you can understand why the Agile approach maps so

well to the ALM process.

You also examined ways to scale Scrum and Agile to become more

effective in larger projects or larger organizations. In addition, you learned that

agile techniques can help you with visibility, traceability, and collaboration.

15 Martin Fowler, “Continuous Integration,” http://martinfowler.com/articles/
continuousIntegration.html, May 1, 2006.

Chapter 3 IntroduCtIon to SCrum and agIle ConCeptS

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

125© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_4

CHAPTER 4

Work Items and
Process Templates
 ALM Revisited
Having traceability in your ALM processes is key to the successful delivery

and maintenance of your applications and systems. In Chapter 1, you

saw that traceability is one of the three cornerstones of a successful ALM

solution:

 1. Traceability of relationships between artifacts:

Traceability can be a major cost driver in any

enterprise if not done correctly. There must be

a way of tracing the requirements all the way to

delivered code—through architect models, design

models, build scripts, unit tests, test cases, and

so on. Practices such as TDD and configuration

management can help, and these can be automated

and supported by Azure DevOps.

 2. Automation of high-level processes: There are approval

processes to control handoffs between analysis and

design. There are other handoffs between build,

deployment, testing, and so on. Much of this is done

manually in many projects, and ALM stresses the

126

importance of automating these tasks for a more

effective and less time-consuming process.

 3. Visibility into the progress of development efforts:

Many managers and stakeholders have limited

visibility into the progress of development projects.

Their visibility often comes from steering group

meetings during which the PM goes over the current

situation. Other interest groups such as project

members may also have limited visibility of the

whole project even though they are part of it. This

often occurs because reporting is hard to do and can

involve a lot of manual work. Daily status reports

can, quite simply, take too much time and effort to

produce, especially when there is information in

many repositories.

Let’s now look in more detail how work items in Azure DevOps will

help you accomplish traceability in your projects and organizations.

 Traceability
Unfortunately, we have seen companies that have stopped making

changes to their systems just because no one ever knew where a change

(or bug fix) might have its impact. This is not a situation any organization

wants to be in, yet it is quite common.

At the Swedish Road Administration some years ago, a new version of

our system suddenly made old bug fixes disappear. The operators at the

Traffic Management Center found themselves with no working phones

because of an upgrade. This had the potential to make an accident worse

than it already was, because the operators communicate with the rescue

team and the police using phones. Having communications suddenly stop

working can actually be a matter of life or death.

Chapter 4 Work Items and proCess templates

127

The vendor of that piece of software did not have control over its

different software versions and did not have a good testing strategy. If the

vendor had used automated tests, for instance, it would have discovered

broken tests for the bug fix when the fix itself was not included in the next

release. By checking which work items were associated with the failed

tests, the vendor would have been able to see which of them contained the

problem. This would have indicated why they created the test in the first

place, so they could have fixed the problem more easily. This traceability

would greatly improve their code.

And if they had used a good configuration management process, they

would also have had the capability to trace all versions where the bug

fix needed to be inserted, so they wouldn’t forget to include it in future

releases.

Work item tracking in Azure DevOps can help you with traceability so

you can avoid such problems. Let’s now see how the work item tracking

system implements traceability.

 The Azure DevOps Work Item Tracking System
Sometimes it seems like we can have tons of Post-its on our monitors

and desks—each one containing at least one task we are supposed to do.

Often, it just isn’t possible to track them with a tool. It could be that some

tasks are connected with one project, and others with another. You could

try writing them all down in an Excel spreadsheet and saving that to your

computer, but soon you might find that the spreadsheet is located on

your laptop, a customer’s computer, your desktop computer, on another

customer computer, and so on. And you have no idea which one is the

current version. This can be a real problem when you find you have no

clue as to which version you should trust.

Chapter 4 Work Items and proCess templates

128

The same thing is often visible in projects. PMs have their to-do lists for

a project, and they all have their own way of keeping them updated. Let’s

say a PM uses Excel to keep track of the tasks—the status of tasks, to whom

they are assigned, and so on. How can the PM keep the team updated with

the latest to-do list? If the PM chooses to e-mail it, chances are that some

won’t save the new version to disk or will just miss it in the endless stream

of e-mails coming into their mailbox. Soon there are various versions

floating around, and things are generally a mess.

One way to solve this could be to use a project web site running on

Microsoft Office SharePoint Server or some other tool like that. This could

help, although you could still be in trouble if people forget to save changes

or check in the document after they have updated it.

Another problem may occur if, for example, an Excel sheet is updated

by a tester who discovers a bug and changes the status of one entry in the

task list to indicate that a developer should look at the task again and solve

the bug. How can you alert the developer that the bug exists? You would

want this action to take place automatically, right? That would be hard

if you used only an Excel spreadsheet. The same thing occurs the other

way around. When a developer has fixed a bug, you want the tester to be

alerted that the problem has been resolved, so the tester can then check

whether the bug issue can be closed.

What about requirements traceability? If the only place you keep track

of the connection between requirements and the code is in a document,

how do you know that the document is really updated? Can you trust that

information?

Even if you purchase a separate tool to help you keep track of tasks, it is

still be a separate tool for all categories of team members. There are tools

for bug tracking, requirements management, test management, and so

on—the list can go on for a while. Chances are that someone will forget to

update the tool because it takes too long to open or is too difficult to work

in or any other excuse for not doing the update. This could cost the project

lots of money and time.

Chapter 4 Work Items and proCess templates

129

 Work Items
In Azure DevOps there is a task tracking system at your service. The core

of this system is represented by the tasks themselves, called work items. A

work item can be pretty much whatever you want it to be. It can be a bug,

a requirement of some sort, a general to-do item, and so on. Each work

item represents an object that is stored in the Azure DevOps database. All

work items have a unique ID that helps you keep track of the places it is

referenced (Figure 4-1).

Figure 4-1. Each work item has a unique ID

The ID lets you follow one work item, let’s say a requirement, from

its creation to its implementation as a piece of executable software

(component). Work item IDs are unique across all work item types in all

team projects in a project collection. The work item type determines the

work item fields available for tracking information, defaults defined for

each field, and rules and constraints positioned on these fields and other

objects that specify the work item workflow. Every change made to a work

item field is stored in the work item log, which maintains a historical

record of changes.

Chapter 4 Work Items and proCess templates

130

You can create and modify work items by using Team Explorer, Azure

DevOps, Office Excel, or Office Project. When creating or modifying

individual work items, you can work in the work item form by using Team

Explorer or the Web GUI (Figure 4-2). You can make bulk updates to many

work items at a time by using Azure DevOps, Office Excel, or Office Project.

Figure 4-2. Creating a work item using Azure DevOps

Work items provide a great way for you to simplify task management

during a project while at the same time enabling traceability. No more

confusion as to which version of the task list is the current one. No more

manual labor for gathering status reports on work progress that are used

only at steering group meetings. Now you have a solution that lets you

collaborate more easily with your teams and enables all members and

stakeholders to view status reports whenever they want. You can also

collaborate more easily with people outside the project group by adding

work items via the Web.

Chapter 4 Work Items and proCess templates

131

Azure DevOps is so flexible that it lets you tailor the work items. By

installing TFS Power Tools, you get an additional menu option called Process

Editor, under Tools in Visual Studio (Figure 4-3), that simplifies editing the

work items and the whole process as well (for TFS 2018 on-prem). In Process

Editor, you can modify your work items in the project so they contain new

information. Later in this chapter, you’ll see more on how you can change

your process template, including the work items. If you make a change to

the current project (by modifying a work item, for example), it may affect all

new work items you create, not the existing ones. You only get the change in

your current project as well. All new projects created with the same process

template do not have these changes unless you modify the process template

on the TFS server.

When it comes to the Azure DevOps cloud version, you modify the

process in a different way through the web interface. We come back to

this later in the chapter.

Figure 4-3. Modifying a work item using Process Editor

Chapter 4 Work Items and proCess templates

132

The work items can contain information in different fields that define

the data to be stored in the work item. This means that each field has a

name and a data type. Data types supported in fields are the primitive data

types such as string, integer, and double, as well some complex types such

as DateTime, PlainText, HTML, and others. System fields are one example

of a field (or more correct, a label for a group of fields) that must be present

in every work item type, and represent the minimal recommended subset

of fields that any custom work item template should contain. Having such

a common subset allows reusing basic Work Item Query Language (WIQL)

queries or reports from predefined templates for your custom templates.

All work items can have different information attached to them. You

can have information about to whom the work item is assigned and the

status of the work at the moment (for example, a bug could be open,

closed, under investigation, resolved, and so on). The State field can

be modified (Figure 4-3) so that each work item type has its own state

mechanism. This is logical because a bug probably goes through other

states than a general task, for instance. You can also attach documents

to the work item and link one work item to other work items. You can

create a hierarchy of work items if you want. Let’s say you implement a

requirement as a work item and this requirement contains many smaller

tasks. You can then have the requirement itself at the top, and nest the

other requirements below it so you know which work items belong to

which requirement.

When a bug is discovered, for instance, you can quickly follow the

original requirement by its work item ID and see in which places of the

code you might have to make some fixes. You can also see the associated

work items so that you can evaluate whether other parts of the code need

to be changed as a result of this bug fix.

Because Azure DevOps saves information about the work item on

the data tier, you can see the history of the work item. You can see who

created it, who resolved it, who closed it, and so on. The information in the

databases can be used for display on reports, allowing you to tailor them

Chapter 4 Work Items and proCess templates

133

depending on your needs. One report could show the status of all bugs,

for instance. Stakeholders can see how many open bugs exist, how many

are resolved, and much, much more. It is completely up to you how you

choose to use the work items.

For those of you familiar with and used to working with pivot tables,

you can use Excel as well to drill down into the information in the Azure

DevOps TFS server data warehouse. There are people who think it is better

to use Excel to connect directly to these tables and who use very detailed

information in their reports. If you want to do this from Azure DevOps in

the cloud, you need to use Power BI and create your queries there instead.

 The Work Item Form

The work items are defined in the project template in Azure DevOps. The

template and the work item types are defined in a set of XML files stored

on the Azure DevOps server. The XML files for your work items define the

information the work item includes on its form in Azure DevOps (Figure 4- 4).

Figure 4-4. The bug form in Microsoft Scrum

Chapter 4 Work Items and proCess templates

134

As you can see in Figure 4-4, the Bug work item type in Microsoft Scrum

includes fields for many aspects of the bug. You can assign the bug to a

specific person, set state (status), set severity, and much more. You can also

add a description of the problem and attach files such as screenshots of the

bug. There are other options as well, but they are not covered in this book.

The fields on the work item form can have properties set for them. You

can let a field be read-only, required, automatically populated, and so on.

Because you can also change the information included on this form by

editing the XML, you can make sure it contains the information you want.

We have heard some customers say they have had problems using

the process templates that Microsoft provides because the information

required to fill in the forms is not the information they want to track or

record. Instead of changing the work item types, they have tried to adapt

to the work items. Don’t make this mistake! If you need other information

besides what is included in the templates, or if you need the information

in another way, change the template. That’s the whole point of having

an open and flexible solution such as Azure DevOps. You can adjust the

tool to fit your needs. I have, for instance, seen the Bug work item that

Microsoft uses, and it looks nothing like what is included in any of the

templates you get with Azure DevOps. Instead, Microsoft encourages you

to adjust the tool to your needs. This includes adjusting the work items.

 Work Item Traceability

Let’s look at an example of how you can use work items to increase

traceability. You start with a requirement in the form of a user story:

As a manager, I want to search expense reports so I

can get an overview of expenses easily.

You enter this user story into Azure DevOps and Azure DevOps assigns

an ID to it (Figure 4-5). This ID follows the work item throughout its life.

Chapter 4 Work Items and proCess templates

135

In Figure 4-6, you can see that you can associate the work item

with test cases, tasks, and other work items. This means you get

traceability from a requirement to test cases, to storyboards, and to

other work items.

Figure 4-5. Traceability starts with a work item in Azure DevOps

Chapter 4 Work Items and proCess templates

136

You can also do this the other way around. When creating bug work

items, test cases, or work items, you can link them to a new work item

(Figure 4-7) or to another, existing, work item. This is a huge benefit over

keeping this information in our head or on an Excel spreadsheet.

Figure 4-6. Linking work items to features, test cases, and tasks
(other work items) enables you to achieve traceability

Chapter 4 Work Items and proCess templates

137

You can also define check-in rules for your developers, which forces

them to associate a check-in/“changeset” with a work item (Figure 4- 8).

There shouldn’t be a need for a check-in unless the code change is

associated with a work item. You should never do any code changes

unless they are required to solve an issue, and this issue should always be

documented as a work item.

Figure 4-7. Linking work items to new or existing work items

Chapter 4 Work Items and proCess templates

138

A changeset in Azure DevOps is a logical container into which Azure

DevOps bundles everything related to a single check-in operation. A

changeset consists of the following:

• Source file and folder revisions (adds, renames, edits,

deletes, moves)

• Related work items (bugs and so on)

• System metadata (owner, date/time, and so on)

• Check-in notes and comments

By associating a build with a changeset, you create traceability from

the original requirement (user story, in this case) to the built executable.

This traceability can help you avoid problems such as the ones described

at the beginning of this chapter.

Figure 4-8. Linking a work item to a check-in can be required by a
check-in policy

Chapter 4 Work Items and proCess templates

139

By using the reporting functionality of Azure DevOps, you can see

quickly what a work item is associated with and hence know that if you

change some part of the code (like with a bug fix), this change affects a

specific work item. Knowing this, you can see that some test cases will

be affected by the change and that you need to run those tests again to

determine whether the change broke anything. You can also get warnings

from Azure DevOps that a check-in affects certain test cases.

Figure 4-9 shows what traceability can look like. When you examine

this figure, you should be able to understand easily the importance of

traceability and the help you have from good traceability implementation.

You can also see that this way of working leaves you in a much better

spot if you, somewhere down the road of a production system, need to

implement changes. You can then follow the trace to determine which

parts of the code are affected by a change and which test cases might need

to be changed.

Features

Storyboards Backlog Items

Feedback

Epics

Tasks Changesets

Automated
Tests

Builds

Code Reviews

Test Suites Test Cases

Test Plans Bugs

Figure 4-9. Work item traceability

Chapter 4 Work Items and proCess templates

140

 Work Item Queries

Using Team Explorer, you can query work item databases (Figure 4-10) by

using WIQL, which has a SQL-like construct. From Team Explorer or Azure

DevOps, you can create new queries or modify existing ones.

Figure 4-10. Work item queries in Azure DevOps

Depending on the process template you use, the work item queries

supplied differ quite a bit. Microsoft Scrum has different work item queries

than the Agile template, for instance. When we used the Agile template

in some of my projects, we have found it necessary to add new work

item types because the organization needed them for their ALM process.

Queries to get information about these new work item types naturally don’t

exist, so we had to make these queries ourselves. Some of these queries

were built during the projects when the need arose, and many of them

were later included in the process template so they are now part of all new

projects.

 Conclusions on the Work Item Tracking System

The work item tracking system is one of the core components of Azure

DevOps. This system allows you to create work items and enable

traceability. You can use the work items included with Azure DevOps

from the beginning, you can adjust them to your needs, or you can even

Chapter 4 Work Items and proCess templates

141

create your own work item types. Each work item has a unique ID (as

you saw earlier in Figure 4-1) that you can attach to the things you do

in Azure DevOps. This enables you to follow one work item—let’s say a

requirement, for example—from its creation to its implementation as a

piece of executable software. You can also associate one work item with

others and build a hierarchy of work items.

When a bug is discovered, you can quickly follow the original

requirement by its work item ID and see in which places of the code you

might have to make some fixes. You can also see the associated work items,

so you can evaluate whether other parts of the code need to be changed as

a result of this bug fix.

If you implement a requirement as a work item, you can use the work

item ID to track the requirement through source code to the final build

of the executable system. By requiring all developers to add one or more

work item IDs to the check-in using a check-in policy, you enable this

traceability.

Our suggestion is that you look closely at the work item types supplied

by Microsoft. Then you can decide which of these you can use for yourself

and which you might adjust to suit your organization’s needs. If none of

the ones supplied can be used, you can create your own work item types.

Use this opportunity! Don’t adjust your way of working to the Microsoft

templates. Adjust Azure DevOps to your needs instead.

 The Process in Azure DevOps
When you create a new team project in Azure DevOps or TFS, you must

choose a process for the project. The process was formerly known as the

process template, but the name has changed. The process is a collection of

files that defines the features, rules, behaviors, and work items associated

with a specific process. Both Azure DevOps and VSTS have the same

processes available, but there are some differences between the two.

Chapter 4 Work Items and proCess templates

142

The process defines the work item tracking system as well as other

subsystems you can access from the web portal for an on-premises TFS or

through Azure DevOps.

There are three processes you can use:

 1. Scrum

 2. Agile

 3. Capability Maturity Model Integration (CMMI)

Let’s now take a look at their features and differences.

 Scrum, Agile, and CMMI
When you look at the processes, you can see they do not differ very much.

The main difference is in the work item types they provide. We look at

these processes in the following sections; but, simplified, we can say that

Scrum is the most lightweight and CMMI offers support for a more formal

process when formal change management is important.

I describe these now so that you can evaluate which model is right for

you and your organization. But, before I go into them, let me just say that

Microsoft is going to introduce another process we can use. It is called

the Basic process. Until all details are revealed, I can only say a few words

on this. A project that uses the Basic process has three work item types—

epics, issues, and tasks—to plan and track work. We recommend you start

by adding issues to track your user stories, bugs, or feature items. If you

need to group them into a hierarchy, you can define epics. If you want

to track additional details of work, you can add tasks to an issue. Within

each work item form, you can describe the work to be done, assign work to

project contributors, track status, and collaborate with others through the

Discussion section. So, this is a simpler model, very much like the standard

Jira setup. If you want more information, please check out https://docs.

microsoft.com/en-us/azure/devops/boards/get-started/track-

issues-tasks?view=azdevops&viewFallbackFrom=vsts.

Chapter 4 Work Items and proCess templates

https://docs.microsoft.com/en-us/azure/devops/boards/get-started/track-issues-tasks?view=azdevops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/boards/get-started/track-issues-tasks?view=azdevops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/boards/get-started/track-issues-tasks?view=azdevops&viewFallbackFrom=vsts

143

 Scrum

The Scrum process is built on the Scrum framework. Microsoft worked

with Scrum.org when it developed the Scrum process for Azure DevOps/

VSTS, and this is evident when you look at the terminology used in the

process.

In Figure 4-11, you can see that there are work items that work on

three different levels. The Scrum process lets you manage work items at

the portfolio level as well as the backlog level (work in sprints). There are

Epics and Feature work items that help you handle the portfolio backlog

level. You can use Azure DevOps/VSTS to implement a program team

that manages the overall high-level requirements using these two work

item types. For the daily work in sprints, one or more teams can have a

subset of the portfolio backlog dedicated to that specific team whereas

other teams have their own subsets independent of the other teams. In

Chapter 6, we see how we can use the features of Azure DevOps to set up

such a scenario.

Epic

Feature

Task Task
Configurable

Bug

Impediment

Product Backlog Item

Backlog

Issue Tracking

Portfolio Backlog

Figure 4-11. The Scrum process and some of its work items

Chapter 4 Work Items and proCess templates

http://scrum.org

144

Development teams usually work with work items on the backlog level.

There you find PBIs and their associated tasks. You can configure bugs

and their tasks to be part of this level (Figure 4-12). These work items are

followed up only on remaining work, similar to the Agile world.

Figure 4-12. Working with bugs at the backlog level

How you work with bugs is configurable (Figure 4-13). You can

allow bugs to be seen on the boards and backlogs on the same level as

requirements or tasks. Or, you can choose not to have bugs appear on the

boards and backlogs at all. You can change the desired behavior when you

want so you are not locked in to the first choice you make.

Chapter 4 Work Items and proCess templates

145

 Agile

The Agile process has been developed in collaboration with the Agile

alliance. Originally, it was called the Microsoft Solutions Framework

(MSF) for Agile, but now it is only referred to as the Agile process in Azure

DevOps/VSTS.

This process is aimed at supporting Agile teams, even those that use

Scrum as their process. It tracks development and test activities separately,

just like the Scrum process. It also has three levels of work items, as shown

in the previous section (Figure 4-14).

Figure 4-13. You can change the behavior of how bugs appear in the
settings for backlogs and boards

Chapter 4 Work Items and proCess templates

146

If you compare Figures 4-11 and 4-14, you see they are very similar.

Only the names are different. For instance, Impediment in Scrum tracking

is called Issue in the Agile process, requirements are called User Story

in the Agile process and Product Backlog Items in the Scrum process.

The difference between the two is more evident if you look at how the

requirements are documented (Figures 4-15 and 4-16).

Epic

Feature

Task Task
Configurable

Bug

Issue

User Story

Backlog

Issue and Bug
Tracking

Portfolio Backlog

Figure 4-14. The Agile process in Azure DevOps/VSTS

Figure 4-15. The requirements work item in the Scrum process (PBI)

Chapter 4 Work Items and proCess templates

147

Comparing these two figures, you can see similarities, such as the

description and acceptance criteria. But, if you look at the details, you find

things that differ. The field for estimating a requirement is called Effort in

the Scrum process and Story points in the Agile process.

Another difference is in how you track your progress. In the Agile

process, tasks support tracking Original Estimate, Remaining Work, and

Completed Work; in the Scrum process, only Remaining Work is tracked.

In my view, only the remaining work is important, but I do realize some

organizations have a demand for tracking more than this.

Take some time and study the different work item forms in your own

environment so that you choose which is best for your organization.

Keep in mind that you can always customize the process if you want (see

Chapter 5).

Figure 4-16. The requirements work item in the Agile process
(User Story)

Chapter 4 Work Items and proCess templates

148

 CMMI
The last process we discuss is called CMMI. CMMI is a more formal project

methodology we can use.

The work item types in CMMI are also on three levels, like Scrum

and Agile (Figure 4-17). In CMMI, process requirements are called

Requirements, not User Story or PBI.

Epic

Feature

Task Task
Configurable

Bug

Change Request

Review

Issue

Risk

Requirement

Backlog

Issue, Change, and
Risk Management

Portfolio Backlog

Figure 4-17. The CMMI process

Furthermore, you can see that you have more work item types for

tracking your projects: Change Request, Issue, Review, and Risk. Using this

process you can implement a formal change management process, such as

the one found find ITIL.

ITIL, formerly an acronym for Information Technology Infrastructure

Library, is a set of practices for IT Service Management (ITSM) that

focuses on aligning IT services with the needs of business. In its current

form (known as ITIL 2011 edition), ITIL is published as a series of five

core volumes, each of which covers a different ITSM life cycle stage.

International Organization for Standardization (ISO) develops and publish

Chapter 4 Work Items and proCess templates

149

many international standards. Although ITIL underpins ISO/IEC 20000

(previously BS15000), the International Service Management Standard for

IT service management, there are some differences between the ISO 20000

standard and the ITIL framework. ITIL will be updated to version 4 in early

2019.

ITIL describes processes, procedures, tasks, and checklists that are not

organization specific, but can be applied by an organization to establish

integration with the organization’s strategy, to deliver value, and to

maintain a minimum level of competency. ITIL allows an organization to

establish a baseline from which it can plan, implement, and measure. ITIL

is used to demonstrate compliance and to measure improvement.

Figure 4-18 shows differences between how requirements are

documented in CMMI compared to the two other requirements types

discussed. You can see quickly that more details can be filled out by

default. And like the Agile process, CMMI also supports tracking original

estimates, remaining work, and completed work at the task level.

Figure 4-18. The Requirement work item in the CMMI process

Chapter 4 Work Items and proCess templates

150

There are other work item types in these processes that are the same

for all processes. We take a look at them shortly, but first a few words on

workflow states.

 Workflow States

Workflow states support tracking the status of work as it moves from a

New state to a Closed or Done state. In Azure DevOps/VSTS, a workflow

consists of a set of states, the valid transitions between the states, and the

reasons for transitioning the work item to the selected state (Figure 4-19).

Removed from Backlog

Removed from the Backlog

Reconsidered PBI

Approved by Product Owner

Commited by the Team

Work Stopped

Work Finished

Additional Work Found

New PBI

New

Removed

Commited

Approved

Done

Figure 4-19. Workflow states and reasons

Chapter 4 Work Items and proCess templates

151

Table 4-1. Workflow States for the Three Processes

Categories Agile Scrum CMMI Test WITs

Proposed: assign to

states associated with

newly added work items

that should appear on

the backlog. the first

column on the kanban

or taskboard maps to a

proposed state.

new new

approved

to do (task)

proposed design

(test Case)

In Progress: assign to

states that represent active

work. Work items assigned

to states mapped to this

category will appear in

the backlog (unless you

choose to hide them)

and make up the middle

columns on the kanban

boards.

active

resolved

(epic,

Feature,

User story)

Committed

open

(Impediment)

active

resolved

(epic, Feature,

requirement,

task)

active (test

plan)

In planning

(test suite)

In progress

(test suite)

ready (test

Case)

(continued)

Figure 4-19 shows the states for the Scrum process PBI. Table 4-1

shows the differences in states for the three processes and also for Test

work items. Keep in mind that this is configurable, as seen in Chapter 5.

Chapter 4 Work Items and proCess templates

152

Table 4-1. (continued)

Categories Agile Scrum CMMI Test WITs

Resolved: assign to states

that represent a solution

has been implemented,

but are not yet verified.

Generally these states

apply to bug WIts. Work

items in a resolved state

appear on the backlog by

default. the agile tools

treat the resolved state

category exactly the same

as the In progress state

category.

resolved

(Bug)

n/a resolved (Bug,

Issue, review,

risk)

n/a

Completed: assigned to

states that represent work

has finished. Work items

whose state is in this

category don’t appear on

the backlog and do appear

in the last column of the

kanban board. note that

you can’t modify states in

this category nor can you

add states to this category.

Closed done Closed Closed

(test Case)

Completed

(test suite)

Inactive

(test plan)

(continued)

Chapter 4 Work Items and proCess templates

153

When you change the state of a work item to Removed, Closed, or

Done, the system behaves like this:

Closed or Done: Closed or Done work items do not

appear on the portfolio backlog and backlog pages.

However, they do appear on the sprint backlog

pages, Kanban board, and task board. Also, when

you change the portfolio backlog view to show

backlog items (for example, to view Features to

PBIs), items in the Closed and Done states appear.

Removed: Work items in this state do not appear on

any backlog or board.

Table 4-1. (continued)

Categories Agile Scrum CMMI Test WITs

Removed: assigned to

the removed state. Work

items in a state mapped to

the removed category are

hidden from the backlog

and board experiences.

note: You should avoid

using the removed state

and removed state

category as they are

in the process of being

deprecated. Instead, you

should delete work items

to remove them from the

backlog.

removed removed n/a n/a

Chapter 4 Work Items and proCess templates

154

Work items are maintained in a team project as long as the team

project is active. Even if you set them to Closed, Done, or Removed, a

record is kept in the data store, which means you can use this data to

create queries or reports.

If you need to delete a work item permanently, you can use the

witadmin destroywi command-line tool. This tool is not discussed in

this book.

Most work items that appear on backlogs and boards support any-to-

any transitions. This means you can update the status of a work item using

a Kanban board or a task board by dragging it to its corresponding state

column.

You can also change the workflow so that you can have the states,

transitions, and reasons you need in your team or organization. (More on

this in the Chapter 5).

 Work Item Types for All Processes

There are some work item types that are the same for all three processes.

They have three different purposes:

 1. Support Microsoft Test Manager (MTM)

 2. Support rFeedback Request

 3. Support My Work and Code Review

Let’s now take a brief look at them.

Work Items That Support MTM

Our testers and test managers often work with these work item types. The

goal of this book is not to discuss testing in general, but we will provide a

brief example here. Many test efforts are structured like this:

Chapter 4 Work Items and proCess templates

155

A test plan is created for a sprint using MTM or Azure DevOps. The test

plan contains the high-level view of the testing effort. There is a Test Plan

work item type included in all processes.

One or more Test Suites (another work item type) are created and

included in the test plan. The suites themselves includes one or more Test

Cases (work item type). The test cases are used to describe, step by step,

how a tester should test the application or functionality being developed.

Test cases are often associated with a requirement so that you can see

which tests cover a specific requirement.

So, using test plans, test suites, and test cases, you can structure your

testing efforts in a way that gives both traceability as well as visibility of

your tests (Figure 4-20). You can generate reports and graphs that show the

status of these work item types.

Test Plan

Test Suite

Requirement (CMMI)

User Story (Agile)

PBI (Scrum) Bug

Tested by/Tests

Related

Test Case

Test Cases/Shared Steps

Shared Steps Shared Parameters

Referenced by/References

Figure 4-20. Traceability of test work items

There are two more work item types for test, as shown in Figure 4-20:

 1. Shared Steps: This work item type includes test steps

that can be reused in many test cases. They help in

removing redundant test steps by allowing you to

reuse them.

Chapter 4 Work Items and proCess templates

156

 2. Shared Parameters: When you write a manual test,

you often want to specify that the test should be

repeated several times with different test data. For

example, if your users can add different quantities

of a product to a shopping cart, you might want to

check that a quantity of 200 works just as well as a

quantity of one. To do this, you insert parameters in

your test steps. Along with the test steps, you provide

a table of parameter values. These parameters can

be used to create shared parameters, which can be

reused in other test cases.

When you develop an application, you usually want stakeholders or

end users to provide feedback on what you have done. Using the feedback

functionality of Azure DevOps/VSTS, you can ask reviewers to provide

videos, screenshots, type-written comments, and ratings. Their feedback

is captured into work items that you can review and use to create a bug or

suggest a new backlog item. The two work item types are called Feedback

Request and Feedback Response.

The last two work item types we discuss are aimed at code reviews.

Code reviews are a critical part of software development. They help you

keep your defect count down, as well as give you the opportunity to learn

from other people’s code. A third benefit is that code reviews also allow

teams to communicate to their peers changes to the application.

In Azure DevOps, there are two work items types that help with code

reviews:

 1. Code Review Request: This type is a request a

developer creates and sends to a peer to ask for a

review of some part of the code.

 2. Code Review Response: A response gets created

when the code review request goes out. The reviewer

can choose to accept or reject the review.

Chapter 4 Work Items and proCess templates

https://msdn.microsoft.com/en-us/library/dd286729.aspx

157

 Summary
This chapter discussed many concepts regarding work items and

processes in Azure DevOps and VSTS. You saw how the work item

tracking system works and how work items can help you increase both

visibility and traceability. Simply put, work items are the core of Azure

DevOps/VSTS. Almost everything you do involves work items in one way

or the other.

The work items at your disposal are determined by the process you

choose for your project, such as Scrum, Agile, and CMMI. These processes

have similarities and differences.

If a process is not sufficient for your needs, you learned that you can

adjust it and add or remove things as you see fit.

Chapter 4 Work Items and proCess templates

159© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_5

CHAPTER 5

Customizing the
Process Template in
Azure DevOps
 Process Customization
As you have seen so far, it is essential to automate the ALM process to

realize the benefits of it fully. TFS 2018 can help quite a lot by letting you

have one or more process templates on the TFS server that define the way

you work with the ALM process.

In this chapter, we look at how you can modify the TFS process

templates in both TFS on-premise and in Azure DevOps.

The whole point of an extensible product such as TFS is that you have

the ability to customize it to your needs. One of the biggest advantages of

TFS is the capability to customize your process template so that you can

realize your ALM process in the tools you use for your projects. Let’s take a

closer look at how the process template is built and how it can be changed

by using the extensible features of TFS.

160

 Modifying the Process Template in TFS 2018
On- Premise
There are two ways to modify the XML files for the project templates. You

can use manual customization or you can use Process Editor, which is a

Power Tool from Microsoft.

If you are daring, we can edit the XML files manually. This can be done

by exporting the files from the TFS server using the witadmin command-

line tool (see https://docs.microsoft.com/sv-se/azure/devops/

reference/witadmin/witadmin-customize-and-manage-objects-for-

tracking-work?view=tfs-2018&viewFallbackFrom=vsts for more

information). Or, you can use the Process Template Manager that comes

with the TFS Power Tools.

You can update the work items (or the whole process) of an existing

template (Figure 5-1) or, if you are even more daring, you can start from

scratch. We suggest you use an already-existing process template and

modify that.

Later in the chapter we look at the possibilities of modifying the

process template using Azure DevOps.

Chapter 5 Customizing the proCess template in azure Devops

https://docs.microsoft.com/sv-se/azure/devops/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work?view=tfs-2018&viewFallbackFrom=vsts
https://docs.microsoft.com/sv-se/azure/devops/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work?view=tfs-2018&viewFallbackFrom=vsts
https://docs.microsoft.com/sv-se/azure/devops/reference/witadmin/witadmin-customize-and-manage-objects-for-tracking-work?view=tfs-2018&viewFallbackFrom=vsts

161

After you have the work item in Visual Studio, you can start modifying

all aspects of it. In Figure 5-2, you can see an excerpt of what one of

the XML files looks like when seen in Visual Studio. Note the nice user

interface you get with the Process Template Editor; you don’t have to see

the pure XML if you don’t want to.

Figure 5-1. Exporting (download) a work item type from TFS 2018
using the Process Template Manager

Chapter 5 Customizing the proCess template in azure Devops

162

The Process Template Editor is a useful tool that Microsoft provides

for TFS and Visual Studio. You can find the Power Tool at https://

marketplace.visualstudio.com/items?itemName=KarthikBalasubraman

ianMSFT.TFSProcessTemplateEditor.

The Process Template Editor also provides tools for updating global

lists and work item types, as well as for viewing the attributes of work item

fields. This tool was formerly provided via TFS 2015 Power Tools (and

earlier versions). It is a client extension that needs to be installed by users

locally for their own version of Visual Studio.

The Process Template Editor edits TFS process templates inside the

Visual Studio IDE (Figure 5-3).

Figure 5-2. Example of a process template XML file in Visual Studio

Chapter 5 Customizing the proCess template in azure Devops

https://marketplace.visualstudio.com/items?itemName=KarthikBalasubramanianMSFT.TFSProcessTemplateEditor
https://marketplace.visualstudio.com/items?itemName=KarthikBalasubramanianMSFT.TFSProcessTemplateEditor
https://marketplace.visualstudio.com/items?itemName=KarthikBalasubramanianMSFT.TFSProcessTemplateEditor

163

 Common Adaptations of the Process Template
What are the most common things people change in the process template?

I would say that this depends on your needs, and I strongly suggest you

consider your needs before starting to customize the templates. You

should gather information to help point out these needs by doing an

ALM assessment or other evaluation. Because the process template is a

representation of your ALM process, it makes good sense to understand

your way of working. What are your organization’s needs? Which

information is important in your bugs? How do you handle CRs? How do

you handle requirements?

Do an assessment, run some workshops about the results, and talk

about what your requirements are for the process templates. Then, select

one project to use to pilot the process template and see the results. You will

probably need to adjust your template after the pilot, but that is quite all

right; that’s the purpose of a pilot.

Figure 5-3. Editing the product backlog work item type from the
Scrum process using the Process Template Editor inside Visual Studio

Chapter 5 Customizing the proCess template in azure Devops

164

The following are the most common parts of the template we usually

update when working with customers:

• Add a new field to an existing work item types

• Modify the pick list of values for a field

• Change the workflow—states, reasons, transitions,

actions—of an existing work item type

• Edit the layout of a work item form

• Add or remove a work item type

• Change process configuration or defaults associated

with Agile tools

 Work Item Types
You can use the work item types that Microsoft ships with Azure DevOps in

the three templates. But, as mentioned earlier, we think you should really

consider your own needs in the organization and make adjustments to

the templates based on them. Your organization might need more work

items or might need to extend the information required for them. If your

PMs use Microsoft Office Project, you might want to change the mapping

between fields in TFS against fields in Project. Another thing to consider is

the workflow of the work items. How is the process in your organization?

Between which states can a bug transition? Microsoft supplies a set of

default work item instances when a project is created that represent tasks

that need to be done in all projects. Your organization might have different

needs for default work items.

 Work Item Queries
What information do you need to query about your work items? If you have

made many changes to the work items, you might also need to change the

queries so they reflect these changes. What queries does your DevOps process

need? In Figure 5-4, you can see the queries of the MSF for Agile template.

Chapter 5 Customizing the proCess template in azure Devops

165

 Reports

Most of our customers modify their reports. The reports in the processes

are very good. Figure 5-5 shows one of them that represents how much

work is left in a project. When choosing which reports and information you

need, we once again come back to the fact that this is something you need

to discuss with your project teams and with stakeholders and managers.

What information is important to the various roles in your ALM process?

What do the managers need to see? How can you provide great feedback

on project status to the team?

Figure 5-4. The work item queries in the Scrum process

Chapter 5 Customizing the proCess template in azure Devops

166

 Areas and Iterations

Areas and iterations are interesting concepts. Iterations are what the term

sounds like, basically. You use iterations to name the different versions of

your project. You can name them anything you want. We have most often

used the names Iteration 1, 2, 3, and so on, but how you name them is up

to you. You can nest them and build an iteration hierarchy if you want.

Areas are labels you can attach to just about anything. One customer

uses labels named after their Windows or web forms in their projects.

Another uses them for each component in their system. Then they can use

areas and iterations to describe which areas (forms) belong to a certain

iteration.

Hours
250

Hours Remaining Hours Completed

200

150

100

Ju
n

21

Ju
n

28

Ju
l 0

5

Ju
l 1

2

Ju
l 1

9

50 73

14

64.5

60

161.5

22

6.5

195

0

Figure 5-5. A report showing work remaining on a project

Chapter 5 Customizing the proCess template in azure Devops

167

What we want to say about this is that you can use areas and iterations

to label specific parts of your projects. These concepts are flexible, and you

have the freedom to use them as you want. All work items can be labeled

later with both an area and an iteration. Depending on your DevOps

process, you might use this for various reasons. If you run a project using

SAFe, you might want to use the iterations by naming them after the ARTs,

then you can nest iterations below each train depending on your need.

Figure 5-6 shows an example of what this could look like. And if, during the

project, you need more iterations in one phase, you can simply add them.

Figure 5-6. Areas and iterations in the team settings

You can decide what you want to use labels and areas for. In our

opinion, they are very useful. They give you enormous freedom in how you

set up your projects, so I suggest you make good use of them.

 Modifying Work Items

Microsoft encourages modification of process templates. We’ve found

that work items are worth modifying. Many organizations have needed

information in their work items that is not available in the three

Chapter 5 Customizing the proCess template in azure Devops

168

Microsoft templates. In these cases, we adjusted the work items to fit the

organization better. This strategy has turned out to be very successful in all

cases. One thing we changed was the workflow of the work items.

How to Open the Process Template

You can start creating an entire new process template if you want, but it is

far easier to start by modifying an existing one. First you need to download

the process template from the TFS server. In Team Explorer, go to Settings

(Figure 5-7) and choose Process Template Manager, which is below Team

Project Collection.

Figure 5-7. Starting the Process Template Manager from Team Explorer

Chapter 5 Customizing the proCess template in azure Devops

169

Select a process template for download and click Export from the

Process tab in the web user interface the Process Template Manager opens

(Figure 5-8). Select a location to download the process template. Close the

Process Template Manager when you are done.

Figure 5-8. Selecting a process to download

To modify the process template you just downloaded, go to the Tools

menu in Visual Studio and start the Process Editor (Figure 5-9). You are

provided with several options for what you can edit. As you can see in

Figure 5-9, you can chose to edit the downloaded process template files

or select an item from the server. With the latter option, you can edit the

current installed process template, changing all future projects created

using that template.

Chapter 5 Customizing the proCess template in azure Devops

170

After you finished editing the downloaded process template, you can

rename it and upload it to the server as a new process template available

for all new team projects.

Work Item Fields

The default work items in TFS include a lot of information in their fields.

Sometimes you may need to include more fields or remove fields so the

work items better ft your organization. You do this by using the Process

Template Editor. In Figure 5-10, you can see the fields from the PBI in the

Microsoft Scrum template; you can see their names, their data type, and

their ref name.

Figure 5-9. Starting the Process Editor from Visual Studio

Chapter 5 Customizing the proCess template in azure Devops

171

If you double-click a field, you are presented with the Field Definition,

as seen in Figure 5-11. In this dialog box you can change all aspects of the

field itself.

Figure 5-10. Fields in the PBI work item from the Microsoft Scrum
template

Figure 5-11. Field Definition dialog box

Chapter 5 Customizing the proCess template in azure Devops

172

There is the option for you to add different kinds of rules to the field,

as see in Figure 5-12. So, if you want, you can control which values can be

inserted into the field—and a lot more.

Figure 5-12. An example of a rule for a PBI work item

To change the layout of the work item, click the Layout tab

(Figure 5-13). This might look a bit complex at first, but after you start

experimenting, you’ll find that it’s pretty easy to do a complete makeover if

you want.

Chapter 5 Customizing the proCess template in azure Devops

173

Select Preview Form to see your changes (Figure 5-14).

Figure 5-13. The Layout editor for work items

Chapter 5 Customizing the proCess template in azure Devops

174

Work Item Workflow

There is a workflow you can add to the work items. A Bug work item has a

State field, for instance, where the state flows through different levels. In

this field, you can set the status of the bug, such as active, closed, resolved,

and so on. A typical workflow looks like the one shown in Figure 5-15.

Figure 5-14. Previewing the layout

Chapter 5 Customizing the proCess template in azure Devops

175

In this example, you can see the workflow for a PBI work item in

Microsoft Scrum. This particular work item can have one of five states:

New, Approved, Committed, Done, or Removed. The PBI can transition

through these states in the following ways:

• New to Approved

• New to Removed

• Approved to Committed

• Approved to Removed

• Committed to Done

• Removed to New

Figure 5-15. An example of a workflow for a PBI work item

Chapter 5 Customizing the proCess template in azure Devops

176

You can also let automatic transitions occur in the workflow. For

example, if a closed bug is reopened because of a new test that shows

there are still some errors in the code, you can have the bug reassigned

automatically to the person who closed it. In this way, you save some work

because you don’t have to hunt down that person yourself.

 Modifying the Process Template in Azure DevOps
Before now, it wasn’t possible to modify the process template very much in

Azure DevOps (formerly known as VSTS). However, in the latest versions

you can adjust quite a lot. There are also many ways you can configure the

look and feel of the web access without modifying a process template. Let’s

take a look at this because this might be an adequate solution for you in

many cases.

 Modifications to the Web Access

So what can you modify in the web access? Well, quite a lot associated with

what things look like when you work in the web-based GUI. By clicking the

Configure team settings icon in the backlog view, you reach the settings for

changing the Kanban board (Figure 5-16).

Figure 5-16. Configuring the Kanban board

Chapter 5 Customizing the proCess template in azure Devops

177

Doing this opens up a new window (Figure 5-17) in which you can

modify the following aspects of the GUI:

• Cards

• Board

• Charts

• General

• Cards

Figure 5-17. Modifying the GUI

Chapter 5 Customizing the proCess template in azure Devops

178

You can change the fields you presents on your cards. Although

Microsoft has limited which fields you can show, you still have a fair

collection at your disposal.

You can also create style rules that allow you to color-code a card based

on a work item query. In this way, you can, for instance, stipulate that all

bugs appear in red on the board (Figure 5-18).

Figure 5-18. Changing the color style for bugs

You can also color-code a specific tag. Figure 5-19 shows that the

tag Blocked is yellow and the tag Database is green. Both of these color

codings will be of great use when you want to enhance visibility into your

projects.

Chapter 5 Customizing the proCess template in azure Devops

179

When it comes to boards, you can add and arrange your columns on

the board (Figure 5-20). If you are configuring the Kanban board, you can

add a WIP limit, for instance. There is also an option to split a column into

Doing and Done. This creates two columns of one, so you can show more

easily that a specific PBI is ready for the next step in the process flow. In

Figure 5-18, the Develop columns is split using this method and makes

visible to testers that a PBI is ready for testing after developers are done

working on the functionality. This is a good way to avoid adding a new

column or state.

Figure 5-19. Changing the color code for tags

Chapter 5 Customizing the proCess template in azure Devops

180

Another thing you can do is add “swim lanes” to your board. For

instance, during a project when I worked as a service manager for a large

intranet, we used swim lanes to keep track of different issues that came

into the support group. Bugs had their own swim lane and CRs had their

own as well. In this way, we increased visibility for all in the maintenance

team as well as for stakeholders. Swim lanes are basically just rows in a

board that can be used for whatever purpose you want—a nice inclusion

by Microsoft.

Figure 5-20. Configuring columns on the board

Chapter 5 Customizing the proCess template in azure Devops

181

If you need to change the way work items are reordered on a board,

there are two choices for doing so:

 1. Work items reorder when changing columns, and

the backlog reflects the new order.

 2. Work items follow the backlog order when changing

columns.

The Charts feature does not provide many options. Basically, you can

choose the time interval for the cumulative flow diagram. The default is 30

weeks, you can shorten that time span. You can also choose to include the

first and last columns of your board.

There is one last section, which is the General section. From here you

can select whether you want to show Epics, Features, and Backlog items in

the backlog. For example, in Figure 5-16, you can see that Backlog does not

include Epics. By selecting the check box for Epics in Figure 5-21, you can

tell Azure DevOps to show Epics.

Chapter 5 Customizing the proCess template in azure Devops

182

You can also select the working days you will use during your project.

Most people will obviously use Monday through Friday, but you can

include weekends as well.

The last thing you can change is the way bugs are displayed in the

backlogs. There are three options:

 1. Bugs appear on the backlogs and boards with

requirements

 2. Bugs appear on the backlogs and boards with tasks

Figure 5-21. Showing Epics in Backlog

Chapter 5 Customizing the proCess template in azure Devops

183

 3. Bugs do not appear on backlogs and boards

The choice is yours to make. Evaluate which way works best for your

team; you can always change it later.

 Modifications to the Process Templates
in Azure DevOps

In earlier versions of Azure DevOps, it wasn’t possible to change many

aspects of a process; you had to use what Microsoft chose for you. These

days, however, you have many options to customize you process, which is

a great step forward for Azure DevOps.

There still are some differences between the ways you can modify

templates. Azure DevOps, for instance, uses a different model than TFS

for relating projects and processes. In TFS, process templates are used as

starting points for projects and, after a project is created, the project is the

scope you customize. In Azure DevOps, a process is shared across multiple

projects and this is the scope you customize.

Otherwise, the syntax and structure used in defining a process is

basically the same. There are only a few minor differences between

templates you customize for Azure DevOps and those you upload to

support an on-premises TFS.

Let’s take a look at how you access the process template in Azure

DevOps. In Figure 5-22, you can see that you should point to the

configuration wheel in the left corner of the interface for the Azure DevOps

instance. This brings us to the Organization settings for Azure DevOps,

where you can access the processes (Figure 5-23).

Chapter 5 Customizing the proCess template in azure Devops

184

The changes you make are made on all projects in the collection, not

on a single project. In Figure 5-23, you can see the three default processes

from Azure DevOps to work with and the two inherited processes.

Figure 5-22. Accessing the organization settings in Azure DevOps

Chapter 5 Customizing the proCess template in azure Devops

185

Figure 5-23. To see the processes in an Azure DevOps instance, make
sure you select Organization settings

Figure 5-24. You cannot modify any of the three system processes

To modify a process, you click the process name in the list, but there is

one thing you need to consider. You cannot modify any of the three default

processes in Azure DevOps. Azure DevOps displays a warning, like the one

in Figure 5-24. What you need to do is create a copy (an inherited process)

of the process you want to modify.

Chapter 5 Customizing the proCess template in azure Devops

186

To do this, click the link in the warning. This opens a new window

(Figure 5-25), where you can give the inherited process a name and a

description. When you are satisfied, click Create process.

Figure 5-25. Creating a shared process for editing

Now you can access the inherited process and start editing. By clicking

the three dots (the dots are hidden behind the pop-up in Figure 5-26), you

can access the Edit mode.

Chapter 5 Customizing the proCess template in azure Devops

187

Click Edit to bring up the edit menu. The first thing you see when you

enter Edit mode is the overview of your new process (called New Inherited

Agile in Figure 5-27). You can change the name of the process as well as the

description.

Figure 5-26. Accessing Edit mode

Figure 5-27. Starting to edit the inherited process

Chapter 5 Customizing the proCess template in azure Devops

188

What can you change while in Edit mode? When you click the inherited

process, you can access work item types (Figure 5-28), backlog levels, and

projects (showing which projects use the inherited process).

Figure 5-28. The work item types accessed in the inherited Agile process

All work item types defined for the chosen process are visible on the

left side of the screen. If you click User Story, you enter Edit mode for that

work item type (Figure 5-29). For each type, you can change the following:

• Layout

• States

• Rules

Chapter 5 Customizing the proCess template in azure Devops

189

You can add new fields, new groups, or new pages for the work item

type. Figure 5-30 shows what a sample layout of a user story in the Agile

process looks like when you create a new story.

Figure 5-29. Changing the User Story work item type

Figure 5-30. The User Story form in the Agile process

Chapter 5 Customizing the proCess template in azure Devops

190

Look closely at the fields in Figure 5-30 and compare them to the fields

shown in Edit mode in Figure 5-29. You can edit the bug to include more

groups (Status is one group and Planning is another, for example), and

add more fields below each group. The groups can be placed in all three

columns of groups, as shown in Figure 5-31.

Figure 5-31. Adding new groups to the User Story

Chapter 5 Customizing the proCess template in azure Devops

191

The result can be seen in Figure 5-32.

Figure 5-32. Adding a new group to the User Story

For each group, you can add, edit, or remove fields, so you can

configure the group and enter the information your organization thinks is

important for a work item type.

The Fields view lets you add or modify the attributes of a custom field

or the attributes of an inherited field (Figure 5-33). Keep in mind that you

cannot modify system fields. In the example shown in Figure 5-33, you

work only with the fields present in the work item type you are currently

editing.

Chapter 5 Customizing the proCess template in azure Devops

192

For each custom field, you also have options for each field (Figure 5- 34).

Figure 5-33. Adding a new field

Chapter 5 Customizing the proCess template in azure Devops

193

Figure 5-35 shows that you can also make some adjustments to where

a new fields should appear in the layout.

Figure 5-34. Editing options for a new field

Figure 5-35. Editing the layout for a new field

After you are done editing your process, you can access it and create a

new Azure DevOps project using your own customized process, as shown

in Figure 5-36.

Chapter 5 Customizing the proCess template in azure Devops

194

Figure 5-36. After you create a custom process, you can use it to
create new Azure DevOps projects

Chapter 5 Customizing the proCess template in azure Devops

195

 Summary
In this chapter you have looked at how you can customize your process

in TFS on-premise as well as in Azure DevOps. Most customizations can

be done on-premise, but Microsoft has added great support for editing a

cloud-based Azure DevOps project as well.

Chapter 5 Customizing the proCess template in azure Devops

197© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_6

CHAPTER 6

Agile Practices in
Azure DevOps and TFS
This chapter focuses on more technical aspects of Agile practices. They might

not be linked directly to project management or product management, but

they are great ways to enhance the quality of your coding efforts. In Chapter 3,

you were given a brief overview of eXtreme Programming, or XP, as it is called.

As you may remember, Scrum, for example, does not say how you should

work using the Scrum framework. XP is much more practice oriented; it gives

you hands-on advice on how you should work.

XP focuses on 12 practices, but some of them (regarding project

management) overlap what is covered by Scrum and, in my opinion,

Scrum handles them better than XP. If I have a choice, I generally use

Scrum as a project management framework and XP for development tasks.

Here I focus on the following practices in XP:

• Agile testing

• TDD and automated testing

• CI/CD

• Coding standards

• Refactoring

• Pair programming

198

You might be asking yourself: Why is he focusing on these practices

only? Well, the answer is: Because they are code-quality enhancing and

they are very common for developers to use in Agile projects. So, let’s start

with Agile testing and move on from there.

 Agile Testing
Agile projects can be challenging. If you have the mind-set that change will

come and you embrace the changes, working iteratively and delivering

incrementally, you have a better chance of delivering what the customer

wants “now,” not what they thought they wanted several months earlier.

Delivering software incrementally at short intervals means you

need to rethink the testing approach you use. Working with incremental

development typically means you need to do lots of regression testing to

make sure the features you developed and tested continue to work as the

product evolves. You need to have an efficient test process or else you will

spend lots of time in the life cycle of the project preparing for testing rather

than actually running the tests.

Consider Amazon.com. I have read many times that they deploy to

production every 11.6 seconds.1 Without knowing the actual process

Amazon.com uses to accomplish this, I can only guess that they have a

lot of automated testing in place to make sure that new code does not

interfere with old code.

To solve the problems and challenges this deployment implies, you

need to design your tests carefully. Maintain only those tests that give value

to your product. As the product evolves through increments, so should the

tests, and you can choose to add relevant tests only to your regression test

suite. To make testing more efficient, automate the tests and include them

in your CI/CD workflow to get the most value from the tests.

1 http://joshuaseiden.com/blog/2013/12/amazon-deploys-to-production-
every-11-6-seconds/.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

http://amazon.com
http://amazon.com
http://joshuaseiden.com/blog/2013/12/amazon-deploys-to-production-every-11-6-seconds/
http://joshuaseiden.com/blog/2013/12/amazon-deploys-to-production-every-11-6-seconds/

199

 Acceptance Criteria
A wise man (my boss and cowriter from time to time), Mathias Olausson,

once said:

Acceptance criteria are to testing what user stories are to product
owners. Acceptance criteria sharpen the definition of a user
story or requirement. We can use acceptance criteria to define
what needs to be fulfilled for a product owner to approve a
user story.

This is very true indeed.

One way to describe requirements is to use user stories. When writing

user stories, you usually write them like this:

• As a service repair person, I want to be able to view

ticket details from the dashboard so that the tickets are

easy to access when we’re with our customers.

This, of course, is not the entire requirement—just a description of it.

You can detail a user story in different ways:

• Breaking down the story into several new stories

• Adding acceptance criteria

When discussing the previous user story with the product owner, you

might come up with questions such as these:

• How should the service rep view the tickets? Search?

Filter?

• In what way will the service rep access the tickets? Via

the Web? Phone? Tablet?

• Is the ticket read-only or can the service rep edit it?

Assign to someone else?

Chapter 6 agile praCtiCes in azure DevOps anD tFs

200

You then use this information to formulate acceptance criteria.

Consider the question: How should the service rep view the tickets?

Based on this question, you can formulate acceptance criteria such as

the following:

• A service rep should

• Be able to click the service ticket number in the list

on the dashboard and see the details

• Be able to search by customer, geography, and time

• Be able to filter the result to get a better overview

Here are three ways we can write these acceptance criteria:

 1. Test That: Start relevant acceptance criteria with the

phrase “Test that” This gets people into a testing

mind-set right off the bat. For each PBI, what will be

tested to ensure the item is done?

 2. Demonstrate That: Start relevant acceptance criteria

with the words “Demonstrate that” This gets

people to think about the review and what they want

to show the product owner and stakeholders.

 3. Given, When, Then: Given <a precondition>,

when <a user action occurs>, then <the expected

result>. This Gherkin syntax serves two purposes:

documentation and automated tests. The text can

be read by anyone, yet it is can also be parsed by test

automation tools.

Hopefully, this discussion leads to more questions for the product

owner, which will help to understand better what should be tested. The

answers will help to define the product more clearly.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

201

In TFS or Azure DevOps, you can collect all this important information

in a PBI (or user story or requirement, depending on the process template

you use).

The PBI gives good traceability to follow the requirement to its

acceptance criteria. Figure 6-1 shows an example of how the Visual Studio

Scrum template in Azure DevOps displays this information.

Figure 6-1. Documenting acceptance criteria as part of a PBI

 Evolving Tests
In an Agile process, during which development is done in small increments,

you also need to make sure the tests follow an iterative way of working. The

tests need to sync with the flow of the application development; otherwise,

you might run in to a lot of problems down the line.

Early in a project life cycle, little is known about a new feature, and

you need to run tests against all acceptance criteria defined for the

requirement. When a feature is completed, you should be confident it has

been tested according to the test cases and that it works as expected. After

that, you only need to run tests to validate changes in the requirement.

This means you must have a process for knowing which tests to run.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

202

Running all tests manually is tedious and takes a lot of effort in

consideration. Instead, rethink how you design your test cases. You could,

for example, think of your test base as a pyramid (Figure 6-2). Figure 6-2

shows how different types of tests can be put in proportion in a specific case.

Manual Tests

User Interface Tests

Unit Tests and Component Tests

Regression Tests

Figure 6-2. Proportions of types of tests

At the bottom of the pyramid are the unit and component tests, which

are the main part of the testing effort. These tests are relatively cheap to

create and maintain; but, to test the system as a whole, you probably need

to add regression tests that run end-to-end tests as well.

Some of the regression tests should be implemented as user interface

tests to simulate how an end user uses the system. However, user interface

tests are more complex to design and maintain, and often it isn’t practical

to have more than a small set of them. Most of these tests can and should

be automated to provide an efficient way of maintaining changes in the

product.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

203

With this way of designing tests, you end up with a small number of

manual tests at the top of the pyramid. This means manual tests are always

necessary to some extent.

Now let’s talk a little about how TFS can help us manage our tests.

 Clients for Managing Tests
There are two options for managing tests in TFS 2015:

 1. Microsoft Test Manager, or MTM, which is a desktop

application

 2. Microsoft Web Test Case Manager, which is a web-

based application inside the Azure DevOps GUI

 Microsoft Test Manager

MTM is a stand-alone desktop application and was included in the Visual

Studio family when TFS 2010 was released. View it as the Visual Studio

for testers—the one-stop shop for the entire test process. A tester can do

almost all testing activities within a single application.

At a high level, MTM provides functionality for the following:

• Exploratory testing: Records actions while a test is

performed without preplanned steps.

• Planning of manual tests: Plans tests with the option of

creating steps from recorded actions.

• Running manual tests: Displays test cases on the side

of the screen while tests are running. Records actions,

screenshots, and other diagnostic data automatically

for inclusion in test results and bug reports.

• Specifying test platforms: Creates multiple versions of a

test to be performed on different hardware or software

configurations.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

204

• Collecting more diagnostic data in manual tests:

Collects event logs, IntelliTrace data, video, and other

diagnostic data while tests are performed.

• Testing Windows Store apps: Collects diagnostic data and

screenshots while tests are performed on a Windows 8

device or PC, with MTM running on a separate PC.

• Copying and cloning test suites and test cases: Copies

test suites or plans from one project to another.

• Recording and playing back manual tests: Records

keystrokes and gestures while tests are running, then

repeats the actions rapidly on a later occasion.

• Planning application tests from a Microsoft Excel or

Microsoft Word document: Uses Microsoft Excel to

edit test plans in bulk and synchronizes with plans

embedded in Microsoft Word documents.

• Testing in a lab environment: Gathers diagnostic data

from servers while tests are running. Manages the

assignment of server machines to testers. Sets up fresh

test configurations quickly by using virtual machines.

• Tracking software quality: Monitors the progress of a project

by tracking the tests that pass or fail; manages bugs.

• Automating system tests: Links test methods in code to

emulate manual tests so they can be repeated regularly.

Automates deployment of applications and tests to

a lab environment. Sets up a completely automatic

build–deploy–test workflow. Adds existing automated

tests from Visual Studio to a test suite.

MTM will soon be deprecated. Microsoft’s goal is to have everybody

switch to the web-based testing tools in Azure DevOps.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

205

 Azure Test Plans

The second option for working with test cases is Azure Test, which is found

in the Azure DevOps web GUI. Azure Test was introduced with the TFS

2012 Update 2 release. Azure Test Plans is a lightweight solution when you

want the integrated testing experience with TFS/Azure DevOps that offers

most of MTM functionality. But let’s be honest here, most testers I have

met just don’t think this is the best solution for their testing needs. Most

turn to tools like ReqTest and such instead.

As a core part of TFS, the Test Hub enables you to create and run

manual tests through an easy-to-use Web-based interface that can be

accessed via all major browsers on any platform.

The Test Hub isn’t just for manual testers. It’s a tool that product

owners and business analysts can use to evaluate how their features

measure up against acceptance criteria. It can be used to keep track of

acceptance criteria for requirements; later, it can be used for sign-off, if you

want that functionality. In summary, the Test Hub offers the following:

• Customization of workflows with test plan, test suite,

and test case work items

• End-to-end traceability from requirements to test cases

and bugs with requirement-based test suites

• Criteria-based test selection with query-based test

suites

• Excel-like interface with a grid for easy test case

creation

• Reusable test steps and test data, with shared steps and

shared parameters

• Sharable test plans, test suites, and test cases for

reviewing with stakeholders

Chapter 6 agile praCtiCes in azure DevOps anD tFs

206

• Browser-based test execution on any platform

• Real-time charts for tracking test activity

To use Azure Test, you must have a valid license for MTM.

 TDD and Automated Testing
 Test-Driven Development
TDD is a practice that originated with Kent Beck, who is credited with

having developed or “rediscovered” the technique. TDD is one of the core

practices in XP, but has created lots of general interest in its own right.

So, even if you do not use XP, you can still use this practice as a way to help

developers write better code.

TDD relies on the repetition of a very short development cycle. First,

the developer writes an (initially failing) automated test case that defines

a desired improvement or new function, then produces the minimum

amount of code to pass that test, and then refactors the new code to

acceptable standards. Kent Beck stated in 2003 that TDD encourages

simple designs and inspires confidence.

Instead of designing a module, then coding it and then testing it, you

turn the process around and do the testing first. To put it another way, you

don’t write a single line of production code until you have a test that fails.

In traditional software development, tests were thought to verify that

an existing bit of code was written correctly. When you do TDD, however,

your tests are used to define the behavior of a class before you write it.

With TDD, you want your tests to run frequently to get continuous

feedback about the written code. A change in code that breaks one or

more tests is something that demands immediate notification. You can

configure Visual Studio 2015 to run unit tests automatically after build so

that as soon as the code is compiled, all tests the tests are run and feedback

Chapter 6 agile praCtiCes in azure DevOps anD tFs

207

is generated regarding their results. This means the feedback loop is very

short. The loop is the time it takes for (in this case) a developer to make a

code change to when that developer gets feedback on whether the change

was successful.

 Working with Automated Tests
To achieve the goals of automated testing, you need to plan ahead and

think about what you really want to get out of your automation efforts.

Visual Studio 2015 helps you to set up your test environment and to select

which test types to use.

Visual Studio 2015 has support for a number of different test types,

ranging from basic unit tests, to automated user interface tests, up to

complete load-testing capabilities (Table 6-1). What is really nice with

working with tests in Visual Studio is its shared tooling for designing and

running tests. This is very convenient because now you can start by learning

the type of test with which you want to begin working, then you can leverage

the framework and how you design, and last, run and follow-up test runs.

As you add additional types of automated tests, you do not have to learn new

practices—just add the new ones to the existing platform. Table 6-1 presents

the purpose of some test types in Visual Studio.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

208

The following sections on CI/CD are inspired by my boss, Mathias

Olausson. He is an expert in this area, so make sure to check out his recent

book about CD with Visual Studio ALM 2015 at http://www.apress.

com/9781484212738?gtmf=s. It is a great reference for this topic.

Table 6-1. Test Types Supported in Visual Studio 2015

Test types Purpose

Basic unit test an empty unit test

unit test a basic unit test with a test context and additional

test attributes

Coded user interface test a coded user interface test

Coded user interface test map a user interface test map that can be used to split

into smaller pieces the user interface definitions in

a coded user interface test

generic test a test that wraps an existing function into an azure

DevOps test plans test

Ordered test a test used to control a set of tests.

Web performance test a test that records a web test using internet

explorer

load test a test that launches a wizard to generate a load

test configuration

Chapter 6 agile praCtiCes in azure DevOps anD tFs

http://www.apress.com/9781484212738?gtmf=s
http://www.apress.com/9781484212738?gtmf=s

209

 Continuous Integration/Continuous Delivery
 Continuous Integration

Continuous Integration is a software development practice
where members of a team integrate their work frequently; usu-
ally each person integrates at least daily – leading to multiple
integrations per day.2

CI is a practice in XP that has come to be the defacto standard in Agile

projects. Martin Fowler was the person who introduced it to the more

general public, but it was first named and proposed by Grady Booch

in 1991.3 CI is a practice that integrates the code base frequently. In

combination with running automated unit tests in the developer’s local

environment and verifying they all pass before committing to the mainline,

CI aims to make sure the developer is not checking in code that breaks

any other developers’ code. Over time, this practice has evolved, and

now builds run on build servers that run the unit tests automatically and

periodically—or even after every commit—and report the results to the

developers. CI has spread outside the Agile community and is now used

frequently in other types of projects as well.

In addition to running the unit and integration tests, you can also run

static and dynamic tests, measure and profile performance, extract and

format documentation from the source code, and facilitate manual quality

assurance processes. In this way, you get continuous quality control of

your software as well.

2 Martin Fowler. https://martinfowler.com/articles/continuous
Integration.html

3 https://en.wikipedia.org/wiki/Grady_Booch.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://en.wikipedia.org/wiki/Grady_Booch
https://en.wikipedia.org/wiki/Deployment_environment
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://en.wikipedia.org/wiki/Grady_Booch

210

An Agile project requires new ways of working and, just like Scrum,

aims to be all about common sense. So is CI. But, there are several

problems with Agile DevOps from a deployment perspective, including the

following:

• Testing: Because you develop your software

incrementally in short iterations, you need to rethink

how you test.

• Cross-functional teams: Ideally, the team should be

self-organized—meaning, more people should have the

ability to deploy software.

• Shippable product in every iteration: With short

iterations (perhaps a two-week sprint), it is no longer

possible to spend a week on installation. Hence, you

need to automate tasks that were manual previously.

CI can help resolve these issues. In fact, Scrum has a solution for this;

use the retrospective to find ways to improve.

 Why Continuous Integration?
How can CI help you? Well, CI does the following:

• Reduces risks

• Reduces manual routines

• Creates shippable software

• Improves confidence in the product

• Identifies deficiencies early

• Reduces time spent on testing

• Improving project visibility

Chapter 6 agile praCtiCes in azure DevOps anD tFs

211

Keep in mind that CI is not free of costs. You need to maintain your CI

solution, including the build environment, over time. It can also take quite

some effort to introduce it into your organization. And don’t forget that CI

has costs for setting up the new build and CI infrastructure as well.

To get CI working, teams need to agree on some rules for the process.

If the rules are not followed, there is a potential risk that the quality of the

result will degrade, and people will lose confidence in the process. Mathias

Olausson recommends using at least the following rules as a starting point

• Check in often: The CI process needs changes to work.

The smaller the changes and the more specific they are,

the faster we can react to things that go wrong.

• Do not check in broken code: Checking in often is great,

but don’t overdo it. Don’t check in code until it works,

and never check in broken code. If you need to switch

contexts, use the Suspend feature in TFS to put things

aside for a while.

• Fix broken build immediately: If you break something, it

is your responsibility to fix it.

• Write unit tests: The system needs to know what works

and not. Unit tests and other inspection tools should be

used to make sure the code does more than just compile.

• All tests and inspections must pass: With inspections

in place, you must pay attention to the results. Use

feedback mechanisms to make people aware when

something is broken.

• Run private builds: If you can do a test build before

check-in, you can avoid committing things that don’t

work. TFS can build from a shelve set using a feature

called Gated Checkin.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

212

• Avoid getting broken code: Last, if the build is broken,

don’t get the latest code. Why go through the hassle of

working on code that doesn’t work? Instead, use the

version control system and get the latest version that

worked.

Figure 6-3 shows a process that is a complete CI solution. It should be

what you strive to achieve.

Build
Automation

Database
Integration

Deployment

Testing

Inspection

Feedback

Figure 6-3. Components in the CI process

Chapter 6 agile praCtiCes in azure DevOps anD tFs

213

 Continuous Delivery
The problem with CI is that it can be a solution to a nonexistent problem.

Deployment as part of the CI flow is not just about automating the build,

test, and release process. You really need to think about delivery to add

value to the deployment process.

CI is great, and it supplies a framework for producing software

efficiently in a controlled fashion. But, to get the most out of it, you need

to look at how it fits into the overall process of delivering software. In an

Agile project, you want to deliver working software in every iteration.

Unfortunately, this is easier said than done. It often turns out that, even if

you implement CI and get the build process to produce a new installation

package in a few minutes, it takes several days to get a new piece of

software tested and released into production. So how can you make this

process work better?

Let’s start by asking the following simple question:

How long does it take to release one changed line of code into production?

Probably, the answer is: Much longer than you would want to. Why

is this? First, you must know more about how you release your product.

Mathias Olausson says that even in organizations that follow good

engineering practices, the release process is often neglected. A common

reason why this happens is simply because releasing software needs

collaboration across different disciplines in the process. To improve the

situation, you need to sit down as a team and document the steps required

to go from a code change to the software released into production.

Figure 6-4 shows a typical delivery process. In practice, work happens

sequentially, just like in the picture.

Check In

1 2 3 4 5 6 7 8

Build Deploy
To Test

Deploy
To Staging

Release
To Production

Conduct
System

Test

Conduct
Acceptance

Test

Conduct
Release

Test

Figure 6-4. A typical delivery process

Chapter 6 agile praCtiCes in azure DevOps anD tFs

214

When you have come this far, you now know a lot more about the

delivery process, which means you can start optimizing the process:

 1. Look at the steps in the process. Which steps take

the most time? What can be done to improve them?

 2. Look at the steps in the process? Which steps go

wrong most often? What is causing this?

 3. Look at the sequence of steps. How should they be

run in sequence?

Having looked at the process and answered the previous questions,

you should now have a better process, as shown in Figure 6-5.

1 2 3 4

76

5

8

Check In Build Deploy
To Test

Deploy
To Staging

Conduct Automated
Regression

Test

Conduct
Exploratory

Test

Conduct
Automated

Release
Test

Release
To Production

Figure 6-5. An optimized delivery process

With this model (Figure 6-5), the process is changed so that most steps

are automated by implementing automated tests as well as automated

build and deployment. Releasing to production automatically is not for the

faint-hearted, so this would be done manually, but the same automated

scripts as the automated deploy to test and staging environments should

be used. It is possible to automate release to production, especially if

you have had this step in place since the first iteration of the project.

By doing so, you build confidence in the process and, having seen it work

throughout the development cycle, you should trust the process at this

Chapter 6 agile praCtiCes in azure DevOps anD tFs

215

critical stage. Also, in the model, parallelization the acceptance test and

preparation of the production environment has occurred. By doing these

steps in parallel, you can push the release to production as soon as the

acceptance tests are green, instead of the traditional stage to production

first after the acceptance tests have passed.

CD is a great practice to produce updates in a controlled and effective

manner. But, without an intentional release management discipline, you

can lose much of its value. What you need to add to the picture is how

the release planning ties into the deployment process and then ensure

you know which features you want to deploy where and when. This is not

covered in the scope of this book, but please refer to Mathias Olausson’s

book mentioned earlier for more details and best practices.

 Azure Pipelines
With Azure DevOps, you can use the service Azure Pipelines to automate

your CI/CD flow. You can build, test, and deploy Node.js, Python, Java,

PHP, Ruby, C/C++, .NET, Android, and iOS apps. And, you can run in

parallel on Linux, macOS, and Windows.

You can also build and push images to various container registries

such as the Azure Container Registry or Docker Hub. Or, you can deploy

your containers to individual hosts or Kubernetes, which is an open-

source system for automating deployment, scaling, and management of

“containerized” applications.

You can further use Azure Pipelines to implement your CD of

software to any cloud, including Azure, Amazon Web Services (AWS),

and Google Cloud Platform (GCP). Using Azure DevOps, you can

visualize deployment to any number of interdependent stages as well.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

216

 Coding Standards
Coding standard is an agreed-on set of rules that the entire development

team agrees to adhere to throughout the project. The standard specifies

a consistent style and format for source code within the chosen

programming language, as well as various programming constructs and

patterns that should be avoided to reduce the probability of defects. The

coding standard may be a standard convention specified by the language

vendor (e.g., the code conventions for the Java Programming Language,

recommended by Sun) or a custom defined by the development team.

XP backers advocate code that is self-documenting to the furthest

degree possible, which reduces the need for code comments, which can

get out of sync with the code itself. This can be especially useful if you have

a new developer coming in to write code or if you use many consultants in

the development. It will be easier to make sure that all developers adhere

to the same coding standards so that the code is maintainable over time.

In Visual Studio, you can require that code analysis be run on all code

projects in a team project by using the code analysis check-in policy.

Requiring code analysis improves the quality of the code that is checked

into the code base. The feedback loop is very short before developers find

code that does not follow the standard.

Code analysis check-in policies are set in the team project settings

and apply to each code project in the team project. Code analysis runs

are configured for code projects in the project file for the code project.

Code analysis runs are performed on a local computer. When you enable a

code analysis check-in policy, files in a code project that are to be checked

in must be compiled after their last edit, and a code analysis run that

contains, at a minimum, the rules in the team project settings must be

performed on the computer where the changes were made.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://en.wikipedia.org/wiki/Self-documenting
https://en.wikipedia.org/wiki/Comment_(computer_programming)

217

For managed code, you set the check-in policy by specifying a rule set

that contains a subset of the code analysis rules. After you specify a check-

in policy for managed code, team members can synchronize their code

analysis settings for code projects to the team project policy settings.

For C/C++ code, the check-in policy requires that all code analysis

rules be run. You can add preprocessor directives to disable specific rules

for the individual code projects in your team project.

 Refactoring
Code refactoring is the process of restructuring existing computer

code—changing the factoring—without changing its external behavior.

Refactoring improves nonfunctional attributes of the software. Advantages

include improved code readability and reduced complexity, which can

improve source code maintainability and create a more expressive internal

architecture or object model to improve extensibility.

Typically, refactoring applies a series of standardized, basic smaller

refactorings, each of which is (usually) a tiny change in a computer

program’s source code that either preserves the behavior of the software or

at least does not modify its conformance to functional requirements. Many

development environments provide automated support for performing

the mechanical aspects of these basic refactorings. If done extremely

well, code refactoring may also resolve hidden, dormant, or undiscovered

computer bugs or vulnerabilities in the system by simplifying the

underlying logic and eliminating unnecessary levels of complexity.

If done poorly, it may fail the requirement that external functionality not

be changed and/or may introduce new bugs.

Why do we use refactoring? Well, we want the developers to think

constantly about they can keep the code simpler and more easily

maintained. Often, there is no need for gold plating on code. Product

owners are more interested in the value to the organization the code adds,

not how cool or complicated it is.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Source_code

218

 Pair Programming
Pair programming means that all code is produced by two people

programming on one task on one computer. One programmer has control

over the workstation (the driver) and thinks mostly about the coding

in detail. The other programmer is more focused on the big picture

and reviews the code continually that is being produced by the first

programmer. Programmers switch roles after a while so both are in the

driver’s seat at one time or another.

The pairs might not be fixed either. In many projects, programmers

switch partners frequently so that everyone knows what everyone is doing.

This practice also lets everybody remain familiar with the whole system,

even the parts outside their skill set. Doing this improves communication

and cross-functionality of the team.

Why is this a good practice? In my experience, pair programming

reduces bugs with somewhere 15% to 50%. Reducing bugs by these

numbers lowers the amount of time and effort spent chasing bugs in

production.

Another benefit is that there are two pairs of eyes that go over the

implementation of the requirement. The idea is that any misconceptions

of the requirement on which the pair is working can be found quickly

because two people are writing the code collaboratively. If there had been

only a single developer writing the code, it would be harder to find such

misconceptions. In addition, if using one developer, that developer might

also write the unit tests included in the CD model, and they would run

successfully because the tests were written by the same developer who

wrote the code. In this scenario, we also would not see the misconceptions

in the tests unless another set of eyes reviewed the code.

Are there any drawbacks to pair programming? Of course there are.

One of the most discussed is that two programmers working at the same

time cost twice as much as if only one developer did the job. This is true.

But here you need to consider the cost reduction of finding defects early

Chapter 6 agile praCtiCes in azure DevOps anD tFs

219

during the development process, not during production when the cost

associated with fixing the defect is great. Our general advice is to use pair

programming on complicated features, important features, or high-risk

features for which there are greater quality standards than for some other

code. Use pair programming wisely; don’t be afraid to use it.

Another way to enhance code quality is to have a peer review of

important code. In this instance one developer writes the code then sends

a code review request to a peer for a review. This is an effective way of

working and does not require two developers full time.

 SAFe in Azure DevOps
Because organizations are applying an Agile way of working more and

more, many are asking themselves how they can get agility to work at

scale. There are several frameworks available for scaling Agile such as LeSS

and Nexus, but many organizations turn to SAFe. There is no process that

supports SAFe out of the box in Azure DevOps, so you need to work with

the ones you have got unless you want to create a custom process.

Let’s take a look at SAFe in Figure 6-6. This is the largest SAFe

configuration, called the Full SAFe. There are four levels—Portfolio, Large

Solution, Program, and Essential SAFe—that cover most organizational

needs. Microsoft has four work item types that can be used to support

this setup: Epics, Features, User Stories, and Tasks. There is a hierarchy to

these work item types (Figure 6-7). The hierarchy originates from the Agile

process, but works the same for Scrum and CMMI. So, if you’re interested

in using SAFe, you can configure projects created with the Scrum, Agile, or

CMMI processes to track SAFe criteria.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/scrum-process?view=vsts
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/agile-process?view=vsts
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/cmmi-process?view=vsts

220

Figure 6-6. Full SAFe implementation

Portfolio Level
Epics

Features

User Stories

Tasks

Program Level

Team Level

Figure 6-7. The relationship between SAFe levels and work items in
Azure DevOps

Chapter 6 agile praCtiCes in azure DevOps anD tFs

221

Figure 6-7 shows at what SAFe level these workt item types would be

used. Epics support the Portfolio level; Features, the Program level; and User

Stories and Tasks support the Team level. To support SAFe in Azure DevOps

further, you need to work with your areas and iterations in Project Settings.

Figure 6-8 shows one way of implementing SAFe in the iterations view.

Figure 6-8. Configurating iterations for SAFe in Azure DevOps

You can see the overall Portfolio level (SAFe Demo Azure DevOps) with

one value stream present (Value Stream 01). The value stream includes

the ARTs (the Program Level)—in this case, ART 01 and ART 02—which

lead to three program increments (PI 01, PI 02, and PI03), followed by the

configured the sprints for each PI.

Because epics can span several release trains, the portfolio team

probably wouldn’t be associated with any specific iterations. Program

teams, on the other hand, track their features, which ship with a PI. The

feature teams work in sprints to complete the stories chosen for the PI.

Each team in turn chooses which iterations support them in tracking their

deliverables.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

222

Because you are free to configure iterations any way you want, this is

only one way you can use iteration configuration. You need to discuss what

your setup should look like before you implement it in Azure DevOps. One

way to simplify the iteration setup is to use tags for value streams. With tags

added to work items, you can do the following:

• Filter any backlog or Kanban board

• Create queries based on tags, then filter query results

by tags

• Create progress and trend charts or reports based on tags

When you are satisfied with the initial iteration setup, you can select

which areas the different teams should have (Figure 6-9). You can always

modify your iterations as time goes on, by, for instance, adding new PIs.

Using areas, on the other hand, you determine which items the teams see

on their backlogs and boards.

Figure 6-9. Configurating areas for SAFe in Azure DevOps

Chapter 6 agile praCtiCes in azure DevOps anD tFs

223

As you can see in Figure 6-9, the Portfolio team will track epics in each

value stream and thus will keep track of higher level efforts. The team can

also use a Kanban board (Figure 6-10).

Figure 6-10. Working with areas enables different teams to see their
individual Kanban boards

The ARTs are tracked by the ART management teams (ART 01 MGMT).

These teams can also follow everything that happens in each PI at the ART,

PI, and team levels. Figure 6-11 shows the ART team tracking features on

the Kanban board.

Figure 6-11. The ART 01 MGMT team follows progress on its backlog
(or Kanban board)

The individual teams (Team 01 and Team 02) will work with things on

their own backlogs (subsets of the program backlog), so they can focus on

their work. As seen in Figure 6-12, Team 01 can follow its PBIs on separate

backlogs or Kanban boards.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

224

This is one way of using Azure DevOps to support SAFe. Keep in mind

that the flexibility of Azure DevOps and Azure DevOps Server makes it

possible for to customize implementations. Before we leave this chapter,

I want to say a few words about Nexus and Scaled Professional Scrum from

Scrum.org.

 Nexus in Azure DevOps
This section is written in part by one of my excellent coworkers—Jesper

Fernström—who works for Solidify in Stockholm. Solidify is a certified

Scrum.org training organization that is has considerable expertise with

Azure DevOps. Let’s take another look at the Nexus framework (Figure 6- 13).

Figure 6-12. The Backlog for Team 01

Figure 6-13. The Nexus framework revisited

Chapter 6 agile praCtiCes in azure DevOps anD tFs

http://scrum.org
http://scrum.org

225

If you know Scrum, Figure 6-13 should look very familiar to you. Unlike

some other frameworks, when you scale Scrum using Nexus, Scrum is

still Scrum. What you get with the Nexus framework are a few additions to

Scrum to handle cross-team dependencies and issues, and improvement

opportunities to ensure teams can deliver an integrated increment at

the end of every sprint. Without going deeper into the Nexus framework,

Figure 6-14 shows what is added to the mix.

ROLES

Development Teams

Nexus Integration Team

Product Owner

Scrum Master

EVENTS

The Sprint

Nexus Sprint Planning

Sprint Planning

Nexus Daily Scrum

Daily Scrum

Nexus Sprint Review

Nexus Sprint Retrospective

Sprint Retrospective

Refinement

ARTIFACTS

Product Backlog

Nexus Sprint Backlog

Green: Nexus Specific

Sprint Backlog

Integrated Increment

Nexus Goal

Figure 6-14. Differences between Scrum and Nexus

The neat thing with Nexus is that it requires no change to your process

template in Azure DevOps because you are still doing Scrum! The new

role, events, and the Nexus goal do not need to be modeled into your

process template. The Nexus sprint backlog is just an aggregated view of all

the individual team sprint backlogs. So, the only thing you need to do is set

up your teams so they have one common aggregated “view of everything”

and their own filtered team views, which is basically what everyone

wants for any multiteam effort—and is supported out of the box by Azure

DevOps.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://www.scrum.org/resources/scrum-framework-poster
http://agileforeveryone.com/2015/06/19/scaled-scrum-is-still-scrum/
http://agileforeveryone.com/2015/06/19/scaled-scrum-is-still-scrum/

226

In a scenario in which there is one team working on ProductX in

Azure DevOps, you need to do the following to scale to multiple teams

working in Nexus:

 1. Go into Project settings and rename your existing

team “Nexus.”

 2. Select the Area Path root as Default area for this

team and set “sub-areas are included” (Figure 6-15).

Figure 6-15. Team settings for default area path

 3. Create a new team for each of the Scrum teams

working on ProductX. Let the wizard create a Team

area for each team (default choice).

 4. For each new team, go to Team configuration and

select the same iterations as for the Nexus team.

And you are done!

For “anything Nexus,” such as Nexus sprint planning and Nexus sprint

backlog, use the view of Nexus team. For team-specific stuff, use the

individual team views, just as you did when there was only one team.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

227

 Why Not a Dedicated Team for the
Nexus Integration Team?
This is what the Nexus Guide (https://www.scrum.org/resources/nexus-

guide) says about the Nexus integration team:

The Nexus Integration Team is accountable for ensuring that a
“Done” Integrated Increment (the combined work completed
by a Nexus) is produced at least once every Sprint. The Scrum
Teams are responsible for delivering “Done” Increments of
potentially releasable products, as prescribed in Scrum. . . .
Members of the Nexus Integration Team are often also mem-
bers of the individual Scrum Teams in that Nexus. . . . Common
activities the Nexus Integration Team might perform include
coaching, consulting, and highlighting awareness of depen-
dencies and cross-team issues. It might also perform work
from the Product Backlog.

So, when trying to scale Scrum using Nexus, the Nexus integration

team is a sort of semivirtual team with a “servant–leader” flavor. Although

the last sentence of the quote says the team might perform work from

the backlog, this should be rare and more of an emergency action than

anything else. All in all, you are much better served by an aggregated

“Nexus view” from which you can get an overview of the current situation.

 Further Improvements
There are a lot of things you can do to make your life just a little bit easier

on a day-to-day basis while trying to scale Scrum using Nexus. Here is

some advice:

• Use the predecessor/successor work item links to

indicate dependencies.

• Check out various Azure DevOps extensions that might

help you, such as the following:

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://www.scrum.org/resources/nexus-guide
https://www.scrum.org/resources/nexus-guide

228

• Work Item Visualization for visualizing

dependencies

• Feature timeline and Epic Roadmap for visualizing

dependencies

• Dependency Tracker for tracking cross-team

dependencies

• Definition of Done to ensure all teams adhere to a

common definition of done

And with these words, we end this chapter and thank Jesper for his

input.

 Summary
This chapter focused on some of the most common Agile practices. Many

of them stem from XP and are great quality enhancers for development

projects. Visual Studio and TFS has good support for implementing

these practices. Keep in mind that these practices can be used in more

“traditional” projects to increase quality.

In the next chapter, we discuss some key metrics that can be used to

monitor the status of Agile projects.

Chapter 6 agile praCtiCes in azure DevOps anD tFs

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.workitem-feature-timeline-extension
https://marketplace.visualstudio.com/items?itemName=ms-eswm.dependencytracker

229© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_7

CHAPTER 7

Metrics in Agile
Projects
A key performance indicator (KPI) is a performance measurement used in

most organizations to evaluate an organization’s success or the success of a

particular activity within the organization. Often, KPIs are used to measure

the effects of a change project—for instance, implementing a good DevOps

process—or to evaluate the progress of a development project.

You can use the score from a DevOps online assessment as a KPI and

compare the assessment scores before and after the implementation of

a DevOps process improvement. In this way, you get an indication of

whether you have improved as a result of implementing a new process.

During projects, you should also be able to use the reports from your

DevOps toolset to determine whether you’re constantly improving your

work. Continuous improvement, in my opinion, is something to strive for.

When it comes to project management, you can, for instance, look at

the team’s velocity (how fast the team is able to work) and determine

whether it’s increasing or decreasing. By using reports and metrics from

your DevOps tools, you can choose the KPIs you want and learn how to

evaluate them.

230

This chapter looks at metrics for five topics that cover most aspects of

software development. Keep in mind they are not only for Agile projects,

but can be used in many other projects as well:

• Project management

• Architecture, analysis, and design

• Developer practices

• Software testing

• Release management

Keep one thing in mind while you read about some of the reports.

Reports are not available in Azure DevOps—only in TFS 2018. For Azure

DevOps, I encourage you to use charts instead to get the information you

need. Charts are described later in this chapter.

Some reports require that the team project collection that contains

your team project was provisioned with SQL Server Reporting Services.

The report is not available if Reports does not appear when you open Team

Explorer and expand your team project node.

 Metrics for Project Management
To get good metrics about the status of your projects, it’s important to

measure your progress. You can do this in several ways. If you’re using

Agile as a methodology, many of these metrics and reports should be

familiar. To others, they may be new. Keep in mind that not all of these

reports are available in Azure DevOps, but only in TFS on-prem.

 Agile Metrics
Let’s look at some important reports that are commonly used in Agile practices:

• Backlog overview

Chapter 7 MetriCs in agile projeCts

231

• Sprint burndown

• Velocity report

• Release burndown

• Remaining work

• Unplanned work

The backlog overview report lists all user stories, filtered by tags and

iteration, and order of importance. Basically, this is a list of user stories

filtered by the criteria you need. Many people use Excel (or another

spreadsheet application) to create this report, but many DevOps tools have

built-in support for producing it. Figure 7-1 shows what it looks like in

Azure DevOps.

Figure 7-1. The backlog overview in Azure DevOps

I’ve mentioned the sprint burndown report before (Figure 7-2). This

report shows how much work there is left to do in a sprint. Using it, you can

predict when the team will finish the work assigned to this sprint, either

during the sprint or after the sprint is finished. Based on this information,

the team and the product owner can take actions to make sure they deliver

what they have committed to deliver.

Chapter 7 MetriCs in agile projeCts

232

The release burndown report (Figure 7-3) shows the same thing as the

sprint burndown, but for the work included in a release.

Figure 7-2. Sprint burndown report

Figure 7-3. Release burndown report

Chapter 7 MetriCs in agile projeCts

233

A burndown and burn rate report (Figure 7-4) is another way to show

a project’s burndown. No surprises here: This is the same information

shown in Figure 7-1. The burn rate provides summaries for the completed

and required rate of work for a specified time period. In some tools, you

can also see the information for team members. You can sometimes

choose to see the report based on hours worked or number of work items.

Figure 7-4. Burndown and burn rate report

Velocity (how much work a team can take on in a sprint) is important,

especially for a product owner planning how much work can be

accomplished in coming sprints. Velocity is usually a measure of the effect

per story point that the team can accomplish.

Before any work is started, the product owner calculates a theoretical

velocity to begin planning. As time goes by, it’s updated with the team’s real

velocity based on how much work it delivers in each sprint. This helps the

product owner estimate how much work the team can take on in coming

sprints. The velocity report (Figure 7-5) can help you retrieve this information

easily. Here you see how much effort the team has delivered for each sprint.

Chapter 7 MetriCs in agile projeCts

234

The remaining work report (Figure 7-6) is another useful metric. You

can use it to track the team’s progress and identify any problems in the flow

of work. With some tools, you can view this report in either an Hours-of-

Work view or a Number-of-Work-Items view.

Figure 7-5. Velocity report

Figure 7-6. Remaining work report

Chapter 7 MetriCs in agile projeCts

235

The unplanned work report (Figure 7-7) is useful when the team plans

an iteration by identifying all work items it intends to resolve or close

during the course of the iteration. Work items assigned to the iteration

by the plan completion date of the report are considered planned work.

All work items added to the iteration after that date are identified as

unplanned work.

Figure 7-7. Unplanned work report

 Metrics for Architecture, Analysis,
and Design
DevOps tools don’t include many metrics you can use for KPI assessment

for architecture, but you can use some taken from the development area.

Using code metrics, you can get information about how your architecture

and design are working, including the following:

Chapter 7 MetriCs in agile projeCts

236

• Lines of code: Presents an approximate number based

on Intermediate Language (IL) code. A high count may

indicate that a type or method is doing too much work

and should be split up. This may also be a warning that

code will be hard to maintain.

• Class coupling: Measures the coupling to unique

classes through parameters, local variables, return

types, method calls, generic or template instantiations,

base classes, interface implementations, fields defined

on external types, and attribute decoration. Strive for

low coupling. High coupling indicates a design that

is difficult to reuse and maintain because of its many

interdependencies on other types.

• Depth of inheritance: Indicates the number of class

definitions that extend to the root of the class hierarchy.

The deeper the hierarchy, the more difficult it may be

to understand where particular methods and fields are

defined and/or redefined.

• Cyclomatic complexity: Is determined by calculating

the number of different code paths in the flow of the

program. It indicates the code’s complexity. A high

complexity makes maintainability suffer, and it can also

be hard to get good code coverage.

• Maintainability index: Is an index value between 0 and

100 that represents the relative ease of maintaining the

code. The higher the better; a rating of more than 60 is

good. Less than that, maintainability suffers.

Some DevOps tools can generate dependency graphs. These graphs

are used to visualize code and its relationships. Running analyzers on

these graphs can give you useful information as well:

Chapter 7 MetriCs in agile projeCts

237

• Circular references are nodes that have circular

dependencies on one another.

• Hubs are nodes that are in the top 25% of highly

connected nodes.

• Unreferenced nodes have no references from any other

nodes.

Using these analyzers, you can determine whether you have loops or

circular dependencies so that you can simplify them or break the cycles.

You also can determine whether you have too many dependencies, which

could be a sign that they’re performing too many functions. To make

the code easier to maintain, test, change, and perhaps reuse, you need

to look into whether you should refactor these code areas to make them

more defined. You may also be able to find code that performs similar

functionality and merge with it. If the code has no dependencies, you

should reconsider keeping it.

 Metrics for Developer Practices
Metrics for developer practices are KPIs that can help you understand if

you’re working successfully to improve your code. These measures are

useful from both the architectural and design viewpoints as well as from a

developer viewpoint. Using them helps you improve how you design your

application or system.

Several important metrics are available automatically in many

tools and can help you get a good understanding of the quality of your

development work:

• Code coverage

• Code metrics

• Compiler warnings

• Code analysis warnings

Chapter 7 MetriCs in agile projeCts

238

 Code Coverage
Code coverage shows you how much of the code has been covered by

automated unit tests. You get the value as a percentage of the entire code

base. The difficulty often is deciding what percentage is enough. Should

you always strive for 100%? Or is 80% enough? This is something the team

has to discuss with the product owner when using Scrum or a similar

decision maker when using other processes. This value is input as the

definition of done.

 Code Metrics
You can look at several different code metrics. Lines of code, class

coupling, depth of inheritance, cyclomatic complexity, and the

maintainability index—as described in the earlier section “Metrics for

Architecture, Analysis, and Design”—also apply to code metrics.

 Compiler Warnings
Errors and warnings should be avoided in a project. Allowing more

than zero errors or warnings tends to result in the team accepting

lower quality in the code base, which over time causes the code to lose

maintainability.

Track this metric to make sure the number of errors is zero. Ideally, this

should be enforced by automatic build policies.

 Code Analysis Warnings
Code analysis in development tools performs static analysis on code,

which helps developers identify potential design, globalization,

Chapter 7 MetriCs in agile projeCts

239

interoperability, performance, and security problems, to name a few.

Much of this functionality is currently available only for .NET

development; if you’re using Java, things may be different.

Code analysis tools provide warnings that indicate rule violations in

managed code libraries. The warnings are organized into rule areas such

as design, localization, performance, and security. Each warning signifies a

violation of a code analysis rule.

Code analysis can be used to enforce company policies on the code

developers write. Many DevOps tools offer good support for code analysis,

and usually include a set of rules. Often, you can extend the functionality

by writing your own rule set or by suppressing the rules you don’t want.

Definitely discuss this analysis with your development team and the

product owner, because the warnings have an impact on the effort

required before the definition of done is fulfilled.

 Metrics for Software Testing
Software testing is an important area. Testing should be a constant part of

any development effort, not just a phase at the end of a project. There are

good metrics you can use during your projects to make sure you have high-

quality testing in place. The following are a number of metrics you can use

as KPIs for software testing:

• Number of bugs per state: This metric tells you how

many bugs are active, resolved, or closed; whether the

number of active bugs is increasing and whether the

number of resolved and closed bugs is constant. If the

numbers stay constant, you need to look into how you

perform your testing.

• Number of bugs sent back from testers for more

information (aka “reactivated bugs”): A large number

Chapter 7 MetriCs in agile projeCts

240

of reactivated bus may indicate that communication

between developers and testers must improve.

• Code coverage: This metric shows how much of the

code has been covered by automated unit tests. You get

the value as a percentage of the entire code base.

• Test run results: This metric indicates how your tests

performing, and whether you have many failed tests.

If you do, you need to look at what can be done to

improve the tests.

• Percentage of requirements covered by test cases: As the

title implies, this metric indicates the percentage of

requirements covered by test cases.

• Percentage of requirements covered by testing: Do you

actually verify the requirements with the test cases you

have? If this figure is low and the figure for percentage

of requirements covered by test cases is high, you may

have an issue you need to deal with.

 Example Reports
The metrics you get in your reports concerning testing can be very helpful

to your projects. The reports described here are found in many tools:

• Bug status reports

• Reactivations reports

• Bug trend reports

Chapter 7 MetriCs in agile projeCts

241

 Bug Status Report

The bug status report gives you information about the cumulative bug

count based on bug state, priority, to whom the but is assigned, and bug

severity. The document shows you the number of bugs and the number of

resolved bugs (see Figures 7-8 and 7-9).

Figure 7-8. Bug status report

Figure 7-8 shows the number of bugs over time. You can see how the

numbers of active, closed, and resolved bugs change. In this case, the number

of active bugs is decreasing and the number of closed and resolved bugs is

increasing, leading to a point where the number of active bugs is zero.

Figure 7-9. Bug status report

Chapter 7 MetriCs in agile projeCts

242

Figure 7-9 shows a report that displays how many bugs are assigned to

an individual user. You can also see the priority of each bug as well as how

many bugs have been resolved by the users.

 Reactivations Report

The reactivations report (Figure 7-10) is used to determine how many bugs

have been resolved or closed too early. If a bug needs to be opened again,

it’s called a reactivation. A high number indicates the developers need to

improve their bug-fixing process and not close or resolve the bugs unless

they really are ready to be closed. A high number may also be an indication

that you have bad communication between testers and developers.

For instance, incomplete test reports and poorly written test cases can lead

to a greater number of reactivations.

Figure 7-10. Reactivations report

 Bug Trend Report
Next is the bug trend report (Figure 7-11). This report helps you track the

rate at which your team is finding, resolving, and closing bugs.

Chapter 7 MetriCs in agile projeCts

243

 Metrics for Release Management
A quick look at the ITIL (www.itilnews.com/ITIL_v3_Suggested_

Release_and_Deployment_KPIs.html) will give you some other KPIs you

can use. If you want to use them, you may need to create your own reports

to automate the retrieval of this information. ITIL mentions these KPIs,

among others:

• Number of software defects in production [the number

of bugs or software defects of applications (versions)

that are in production]

• Percentage of successful software upgrades (excludes

full installations)

• Number of untested releases (not tested and signed off)

• Number of urgent releases

• Average costs of release, for which costs are most likely

based on man-hours spent

Figure 7-11. Bug trend report

Chapter 7 MetriCs in agile projeCts

http://www.itilnews.com/ITIL_v3_Suggested_Release_and_Deployment_KPIs.html
http://www.itilnews.com/ITIL_v3_Suggested_Release_and_Deployment_KPIs.html

244

Note itil is a set of practices for itsM that focuses on aligning
it services with the needs of business. itil describes procedures,
tasks, and checklists that aren’t organization specific but are used
by organizations to establish a minimum level of competency. itil
allows an organization to establish a baseline from which it can plan,
implement, and measure. itil is used to demonstrate compliance and
to measure improvement.

 Example Reports
Following the progress of your builds is essential to keep track of quality.

These build reports differ from DevOps platform to platform, but let’s look

at some examples. Use them as inspiration for what you can look for in

your platform:

• Build quality indicators

• Build success over time

• Build summary report

The build quality indicators report (Figure 7-12) shows a summary

of some important values for your builds. Using these data, you can

determine whether you’re close to releasing a build. Some of the other

information this report contains includes the following:

• Active bugs: The number of active bugs that exist at the

time of the build

• Code churn: The number of lines of code that have been

added, removed, and changed in the check-ins before

the build

• Code coverage: The percentage of code covered by tests

Chapter 7 MetriCs in agile projeCts

245

• Inconclusive tests: The number of tests that didn’t

succeed or were paused. If the build didn’t succeed, the

tests are either not counted or counted as inconclusive.

• Failed tests: The number of tests that failed during

the build

• Passed tests: The number of tests that passed during

the build

Figure 7-12. Build quality indicators report

The build success over time report (Figure 7-13) shows you the status

of the last build for each build category (a combination of build definition,

platform, and configuration) run each day. You can use this report to keep

track of the quality of the code you check in. Furthermore, for any day on

which a build ran, you can view the build summary for that specific day.

Chapter 7 MetriCs in agile projeCts

246

The build summary report (Figure 7-14) shows you information about

test results, test coverage, and code churn, as well as quality notes for each

build.

Figure 7-13. Build success over time report

Figure 7-14. Build summary report

Chapter 7 MetriCs in agile projeCts

247

These metrics are suggestions that you can use as a base for following

up on progress and quality in your projects. Different DevOps tools offer

different possibilities for reporting and collecting information. Thus, it’s

important that you think through what you want for your organization

when choosing an DevOps platform.

 Using Charts to Monitor Metrics
In TFS and Azure DevOps, you can also add charts as a way of displaying

information about your projects. Figure 7-15 shows how charts can be

created if you navigate to Queries and then select Charts.

Figure 7-15. Accessing Charts editing

Chapter 7 MetriCs in agile projeCts

248

You can create charts from many of the queries you create using the

query editor. We can choose to create many types of charts (Figure 7-16)

including pie, bar, column, stacked bar, and so on, so you can display your

results as you want. If you created a chart useful to the entire team, you can

add that chart to your dashboard so that it shows up when you open the

dashboard. For this functionality to work, you must create your original

query as a shared query.

Figure 7-16. Chart information can be displayed in various ways

With Azure DevOps, you can add charts for work item queries to the

dashboard from the widget catalog. These charts are configurable. You can

choose a query, a chart type, and visualization options while staying in

the dashboard context. Chart types include pie, bar, column, stacked bar,

line, area, and stacked area. You can also display data in a pivot table. And,

you can still add charts from the Charts tab in the work hub and configure

them just like you’ve always done.

Chapter 7 MetriCs in agile projeCts

249

 Summary
Metrics and KPIs are valuable for any organization if it wants to evaluate

progress and quality. This chapter showed some examples of metrics used

with Agile projects, but they are not limited to these projects. Metrics help

you run your projects more efficiently, with greater application quality as

an end result.

Keep in mind that different organizations find different metrics

valuable. This chapter gave examples of metrics that are commonly used,

but there may be others that are better suited for you.

The next chapter walks you through a scenario in which you implement

Agile processes on different levels in a software development project.

Chapter 7 MetriCs in agile projeCts

251© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8_8

CHAPTER 8

Agile Project
Management in Azure
DevOps and TFS
In this chapter, you follow the startup of an Agile project using

Azure DevOps. Many of the concepts covered earlier in the book are

exemplified in this chapter, so you can see how to move from planning to

implementation. We also look at how Azure DevOps can support the Agile

project management process during sprints. Keep in mind that although

Azure DevOps is used as an example, you can do most of the things I show

you (and then some) in an on-premise TFS.

For this purpose, I use a fictitious company in the examples. In this

way, there is a common denominator to things presented so you can

understand more easily the process and how Azure DevOps supports

development organizations.

The main part of this chapter is written from the perspective of the

product owner, whom is introduced shortly. There is a personal touch

to some parts of the text. The reason for this is because part of a project

focuses so much on collaboration and interaction among people.

252

 Case Study
Let’s start with the company used in the example. Any similarities to real

companies are totally unintentional.

 Company Background
MyHealthClinic provides health care and related services to the United

States. It is a rapidly growing company that has embraced Windows Azure

to scale the customer-facing web site directly to end users to allow them to

create self-service tickets and track technicians. The company also uses an

on-premises ASP.NET Model–View–Controller application for its customer

service representatives to administer customer orders.

MyHealthClinic development manager Anna Heinz has decided to

implement a pilot project using the DevOps features of Azure DevOps to

bridge the gap between what they have today and what they can benefit

from in Azure DevOps. If the pilot is successful, MyHealthClinic will

migrate all its development to the Azure DevOps platform.

Anna and Bob Peak (the IT manager) have decided to use Scrum as the

preferred project management method, and the developers agree on using

XP practices to enhance the quality of the software and therefore increase

business value to the company.

 The Pilot Project
The project MyHealthClinic has decided to use as a pilot for the DevOps

implementation is an expense-reporting application (MyHealthClinic

Expense Reporting). In the early days, expenses were handled easily by

the administrative staff, but because the company has grown quickly and

salespeople are located and traveling all over the United States, things

have become a bit more complicated. The admin staff members want an

application that will make their jobs easier and at the same time make sure

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

253

employees get reimbursed for expenses quickly. The requirements for this

application are covered in the section “Requirements” later in this chapter.

Because this project will be using Scrum as a project management

process, Anna and Bob have appointed Fiona Gallos as product owner for

the application. Fiona has only been working for MyHealthClinic for six

months. She is experienced as a product owner for this pilot study because

her previous employer used Scrum extensively. Fiona also has product

owner certification from both Scrum Alliance and Scrum.org.

Important stakeholders for the project are Bob Peak, Anna Heinz,

and Karen Jones. Karen is manager for the admin department and will

represent the end users as well as the admin organization. Because

the project aims to be a pilot program for a DevOps implementation,

Dave Applemust from the infrastructure side and Harry Bryan from the

development organization are also considered important stakeholders:

 The People

• Alice Miller, CEO

• Bob Peak, IT manager

• Anna Heinz, development manager

• Fiona Gallos, product owner

• Karen Jones, admin manager

• Dave Applemust, infrastructure specialist

• Eric Parrot, business analyst

• Guillio Peters, Scrum master

• Harry Bryan, senior developer

• Mikael Swansson, developer

• Petter Ivarsson, user experience

• Ingrid Svensson, senior tester

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

http://scrum.org

254

 Project Startup Phase
This section follows the product owner, Fiona Gallos, during the startup

phase of the project. We will see how Azure DevOps is used to insert the

information Fiona collects during this phase.

 Starting Work
The idea for this project started when MyHealthClinic noticed that bug

fixes in the epense reporting system created new bugs and that the new

bugs sometimes appeared in parts of the system considered not to be

affected by the original bug fix. MyHealthClinic soon realized it lacked

traceability and had no way of knowing where a bug fix might have its

impact in addition to the actual code change.

Fiona has just attended a conference and has added to her

already- considerable knowledge of DevOps, Agile concepts, and Azure

DevOps. She comes up with the idea of getting a better grip on the DevOps

process and, at the same time, start using Agile practices at MyHealthClinic.

Both of these efforts would greatly improve things at MyHealthClinic.

At the same time, Fiona sees that collaboration between two developer

teams could improve if they to use Azure DevOps. Fiona writes a business

case and presents it to the management team. After a few discussions, they

agree to a pilot project. Because the expense-reporting project is in the

pipeline, upper management decides to use it for the pilot. At this point,

it’s hard to calculate ROI, but anything to improve customer perception is

worth going for.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

255

 Building the Initial Team
Fiona knows that it is recommended that product owners start with a small

team during initial planning of the project. Therefore, she selects Anna

Heinz, Harry Bryan, and Eric Parrot as initial team members because they

are experienced within the company and they have experience as senior

team members when they worked for other companies as well. In addition,

they are available for the entire pilot project, which is an important aspect

for Fiona. She knows the importance of having consistency among the

team members during a project. She also selects Guillio Peters as Scrum

master for the entire project. She’ll pick the rest of the team a bit later in

the project.

Fiona creates the project in Azure DevOps (Figure 8-1) from the web

portal using the Scrum template. She names it MyHealthClinic Pilot, then

she chooses Scrum and Git Version Control. As the initial team, they had

discussed which version control to use, Git or TFVC, and they decided to

go for the former.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

256

Fiona then starts creating the teams necessary for the project.

Figure 8-1. Creating the MyHealthClinic pilot project in Azure
DevOps

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

257

 Creating New Teams
In Azure DevOps, a team is simply a way of recognizing the team or teams

you have, whether that is one team working on a project, or several teams.

One person can be a member of several teams. Using area paths, you can

indicate the development work that belongs to a specific team. You can

visualize quickly which work items belong to which team. If a work item is

assigned to an area path that is assigned to a team, that work item is placed

into the backlog for the team.

A team is a concept used by Microsoft, but it might not necessarily

match something in your organization. A team can be anything; it can

also represent your product. It can be easier for the user to think about

products instead of teams, and then just using the team concept to staff

the product development. One thing you should not do is mimic the

organizational structure of a company in these teams. Because a company

is organized by different criteria (department, broken down into subject

teams), a development team for a product may cross these borders. This

means that the teams to consider here are based on the products you are

building.

There are several ways you can use teams. Some let a specific team

work on a specific part of a solution while another team works on other

parts, all with separate backlogs. In large Scrum projects or when using

SAFe, you might also need several teams working in parallel on the same

backlog, but you need to distinguish between the teams and the work they

do. The best way is to try one team setup in a project and see what works

best for you.

The default team has an area path and an iteration path configured

for it automatically when you create a new team project. As soon as you

choose areas and iterations for a team, a backlog is also generated for it

automatically. If your project uses more than one team, you can add new

teams easily by selecting Project settings from the left menu (Figure 8-2).

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

258

Figure 8-2. Opening Project settings

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

259

In the Teams view (Figure 8-3), you create a new team by clicking the

New team option.

Fill in all information about the team (Figure 8-4). In this screen you

can also select permissions for the team by adding it to an existing security

group (more about this in a later section). You can also create a team area

at this time as well. If you don’t, you can associate it with an area later.

When you are done, click Create team and, in a few seconds, the new team

is created and you can start adding users to it.

Figure 8-3. Creating a new team from the Project profile page

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

260

 Creating the Backlog and Team Structure
for the MyHealthClinic Pilot
Fiona decides to have two development teams working on the

project. They will both work from a common backlog managed by the

MyHealthClinic program team. However, each team does not have to see

the others’ PBIs. Fiona wants a subset of the program backlog in the teams’

backlog. Figure 8-5 shows an overview of this structure.

Figure 8-4. Entering values for the new team

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

261

To build the structure, Fiona first creates three teams:

• MyHealthClinic Program Team

• MyHealthClinic Team1

• MyHealthClinic Team2

She then configures areas and iterations to accommodate this

structure of the backlog. Fiona then creates three areas that do not differ

from the team structure, and each team is associated with its respective

area in Azure DevOps:

• MyHealthClinic Program Team

• MyHealthClinic Team1

• MyHealthClinic Team2

She then continues to configure the initial sprint structure. She does

this within Project settings/Project configuration. So far, Fiona has no

estimates and cannot complete the entire release and sprint structure. But,

she knows there will be several releases and that each release will have its

own sprints. Fiona knows she can change this structure, so for now, she

creates the iteration structure shown in Figure 8-6.

Figure 8-5. The backlog structure

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

262

For each team, Fiona selects the appropriate iterations they will see

in their backlog. By using areas and iterations in this way, she is able to

implement the structure she wants.

 Building the Teams
Now the team is close to getting started. Fiona has Anna Heinz, Harry

Bryan, Eric Parrot, and Guillio Peters as team members thus far. She talks

with them about the project and they decide they need three more people

to enhance the development and testing competences. They also discuss

how they need a skilled user experience person onboard. With these

decisions made, Fiona selects the following people to join Team1:

• Mikael Swansson, developer

• Ingrid Svensson, senior tester

• Petter Ivarsson, user experience

She also selects four people to work on Team2. Fiona contacts their

managers and makes sure these people are available to work on the

Figure 8-6. Fiona’ starting iteration structure

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

263

project. Luckily, they all are, and when she approaches the potential team

members and explains the project, they are happy to come aboard.

Fiona decides to go for two-week sprints because this has always

been a good time box, based on her experience. She once had a team

that complained that it could not finish the PBIs during the three-week

sprints they used. That team always seemed to be late or failed to deliver

everything to which they had committed, complaining that the team

members needed more time in the sprints. Fiona then told them, “Okay,

then we’ll use two-week sprints instead of three.” The team was very

confused, because Fiona had decreased the number of days in the sprints,

not increased them. After they started working in two-week sprints,

however, they soon found they delivered more in two weeks than they had

in three weeks. The team was more focused and did not postpone anything

until the end of the sprint; hence, they were more effective.

One part of the responsibilities of the product owner is to staff the

project, at least initially. After an initial team is created, it is up to the team

members to inform the product owner about which competences they

need to fulfill the project vision.

 Adding Team Members
Now that Fiona has created the project, she navigates to the web access

front page. One team is created by default, so she can start adding team

members right away. Fiona clicks Team Members, as shown in Figure 8-7

(see the orange arrow).

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

264

A dialog box (Figure 8-8) opens and Fiona adds the team members.

Fiona then navigates to Project Settings, then Teams (Figure 8-9) to

manage the team members for all teams.

Figure 8-7. Adding team members

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

265

Figure 8-8. Adding team members

Figure 8-9. Managing all team members within Project Settings

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

266

 Managing Azure DevOps Groups, Teams,
and User’s Permission
From Project Settings, Fiona changes permissions for both teams by

selecting the Security tab (Figure 8-10) and then selecting the Groups tab.

Figure 8-10. Viewing permissions for DevOps groups and teams in
Project Settings

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

267

As you can see in Figure 8-10, there are eight different Azure DevOps

groups by default:

• Build administrators: Members of this group have build

permissions for the project. Members can manage test

environments, create test runs, and manage builds.

• Contributors: Members of this group can contribute

to the project. This means they can add, modify, and

delete code; and create and modify work items.

By default, the team group created when you create a

team project is added to this group. Therefore, any user

you add to the team will be a member of this group.

• Endpoint administrators

• Endpoint creators

• Project administrators: Members of this group can

administer the team project. However, they cannot

create projects.

• Project valid users. Members of this group have

access to Azure DevOps. This group automatically

contains all users and groups that have been added

anywhere within Azure DevOps. You cannot modify the

membership of this group

• Readers: Members of this group can view the project.

They may not modify it.

• Release administrators: Members of this group can

perform all operations on release management.

There are various permissions you can set for the groups and team

members.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

268

Note that, by default, most permissions are inherited. You can break

the inheritance and define custom permissions here. One common

scenario is when you bring in external people who are only allowed to see

parts of the work item structure. Very quickly, it can become hard to keep

track of these specialized permissions, so use this feature with care.

 Managing Notifications
Many activities that occur in Azure DevOps are exposed as Notifications.

For example, every time a build completes, or a changeset is checked in,

Azure DevOps notifies all interested parties that an event has occurred.

As a user, I might be interested in getting notifications when something

specific happens that pertains to me. I can get these notices by configuring

Notifications in Azure DevOps.

To configure the notifications, you use the Notifications tab in Project

Settings in the web portal.

First of all, the Notifications editor (Figure 8-11) lets you select quickly

from a list of predefined basic alerts that are common, such as “Build

completes.”

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

269

Select New subscription to create a notification (Figure 8-12). This tab

lets you select from a list of templates when creating a new notification.

Figure 8-11. Selecting a notification in Project settings

Figure 8-12. Selecting a custom notification in Project Settings

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

270

There are more settings that you can configure for your notification

(Figure 8-13), simply by clicking Next.

Let’s now return to following Fiona. She has done everything to build

an initial product backlog and create the team. At this point, she does not

have any input regarding how long the project will take or how much it will

cost. To get this information so she can show it to the stakeholders, there

are a few steps she needs to take. Let’s take a look at these, because they

also involve planning the first sprint.

 Requirements
Requirements gathering is the fun part of the project in Fiona’s eyes.

Discussions with traditional PMs managers and stakeholders about

requirements are coming up and she enjoys them. Traditionally, all

Figure 8-13. Selecting more settings for notifications

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

271

requirements had to be determined at the beginning of the project, and it

was hard for many to accept that it is okay to start a project even without

specifying everything. The fact that so many of these requirements were

wrong or unnecessary in the end didn’t seem to bother traditionalists.

They still went head-first into projects that often failed or were flawed.

Fiona has run so many successful Agile projects, she knows that

catching higher level requirements at the beginning is okay. They can

start without all the details because they will be clarified at upcoming

retrospectives and sprint planning meetings, and also during the sprints.

Fiona calls the initial team together for a requirements workshop.

She adds Karen Jones to the workshop because she is one of the main

stakeholders from the business side. Because Guillio (Scrum master) is

not present, Fiona explains what they are going to do. She stresses they

should look for higher level requirements in the sense that they do not

need to detail them yet. There are to be no discussions about solutions or

technicalities at this point. These topics will be the responsibility of the

development teams to decide when the sprints start.

To avoid any confusion, Fiona explains the concept of a user story for

the requirements team. She wants all requirements in the form

As a <type of user>, I want <some goal> so that

<some reason>.

Fiona believes the meeting will take three hours, so she books a room with

a large whiteboard. She also supplies participants with sticky notes and pens.

Fiona starts by brainstorming user stories. Participants are a bit slow

in catching on to the premise, but the meeting takes off when Harry Bryan

comes up with two user stories:

 1. As a sales person, I want to manage expense reports

over the Internet so I can be more efficient.

 2. As a manager, I want to search expense reports so I

can get an overview of expenses more easily.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

272

Suddenly all the team members start writing. After a little more than an

hour, the pace drops, so they move on and spend another hour going over

the user stories they created, clarifying them if needed. Fiona feels they’ve

done a great job so far and now have a good foundation for the work ahead

of them.

 Building the Backlog
After the meeting, Fiona goes to her desk and types the stories into Azure

DevOps. Fiona then starts to order the list by dragging and dropping the

PBIs in the backlog view. She creates an initial prioritization based on

some assumptions:

• Prioritization is based on weighted shorted job first

(WSJF).

• After initial sprint planning and estimation, the list will

be updated.

WSJF is a prioritization model used to sequence jobs (such as Features,

User Stories, and Epics) to produce maximum economic benefit. Don

Reinertsen1 describes a comprehensive model, called weighted shortest job

first for prioritizing jobs based on the economics of product development flow.

WSJF is estimated as the cost of delay divided by job size (or duration).

Jobs with a high WSJF are prioritized over jobs with a lower WSJF. This

tool is helpful for product owners working on their backlog prioritization

and takes economics into account when working with the order. Table 8-1

shows that feature A has the highest WSJF (10), hence the feature should

have the highest priority. WSJF has become very popular as SAFe has

emerged in many organizations.

1 Don Reinertsen, Principles of Product Development Flow: Second Generation Lean
Product Development (Celeritas Publishing, 2009).

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

273

It takes Fiona roughly an hour to complete the initial sorting. Now she

really had something to work with.

 Adding Backlog Items in Azure DevOps

Fiona opens the project in Azure DevOps and feels a little bit of excitement

when she sees the empty project that she will soon fill with activities. Fiona

has lots of input for the backlog. She takes a long look at the results of the

initial story-writing workshop and starts by going to the Backlogs tab on

the web page (Figure 8-14).

Figure 8-14. The Backlogs tab

Table 8-1. Working with WSJF

CoD, cost of delay; WSJF, weighted shorted job first.

In New Work Item, she quickly creates the first backlog item. She

then opens the form shown in Figure 8-15 by double-clicking the created

PBI. She then uses the PBI in her backlog to start filling in the fields. She

leaves a lot as it is for now and fills in only the PBI name and description.

Area is the MyHealthClinic Program Team and Iteration is the default.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

274

Fiona then continues recording the rest of the higher level use cases

until they are all logged in Azure DevOps. She often finds stories that are

Epic size and they have to be broken down into Features and then PBIs.

She makes sure that applicable PBIs are associated with their Epic or

Feature.

 Definition of Done
Before she leaves for the day, Fiona sets a date for a new meeting with

the team to establish the definition of done. She includes infrastructure

specialist Dave Applemust in this meeting because there are constraints

from the infrastructure team when building and deploying new projects

that must be considered.

She wants to discuss the definition of done with the team so that all

participants have a common view before starting the actual coding. Many

times she experienced problems when a definition of done was not in

place for a project, so she knows this meeting and its result is important.

Figure 8-15. The first PBI

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

275

Two days later, they meet to determine the definition of done. Fiona

explains the importance of this concept and talks about issues she

encountered when a project did not have a definition of done. She notices

of recognition among the participants as she speaks.

Fiona then asks all participants to write down the things they want

to see in the definition of done. After some discussion, they agree on the

following list for an approved user story:

• Environments are prepared for release: No unintegrated

WIP has been left in any development or staging

environment. The CI framework has been verified and

works, including regression tests and automated code

reviews. The build engine is configured to schedule a

build on check-in; it triggers hourly or nightly builds.

All test data used to validate the features in the release

have been validated.

• Handoff to support is complete (Note: This may be

elided in a DevOps context or when the development

team follows the product through to support.): All

design models and specifications, including user

stories and tests, have been accepted by the support

personnel who will maintain the increment moving

forward. The support personnel are satisfied they are in

control of the supporting environment.

• Preparation for review is complete. All sprint metrics are

available, including burndown or burnup charts. Any

user stories that have not been completed have been

reestimated and returned to the product backlog.

• Code is complete: Any and all to-do annotations have

been resolved. The source code has been commented

to the satisfaction of the development team. When

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

276

necessary, the source code has been refactored to

make it understandable, maintainable, and better able

to support future changes. (Note that the Red–Green–

Refactor pattern found in TDD is helpful here.)

Unit test cases have been designed for all features in

development and requirements can be traced to the

code implementation (such as by using clear feature-

relevant naming conventions). The degree of code

coverage is known and meets or exceeds the standard

required. Unit test cases have been executed and the

increment has been proved to work as expected.

Peer reviews are complete. (Note that if pair

programming is used, a separate peer review session

might not be required.) Source code has been checked

in to the configuration management system, with

appropriate peer-reviewed comments added (when

applicable). The source code has been merged with the

main branch and automatic deployment into elevated

environments has been verified.

• Testing is complete: Functional testing has been

completed, including automated testing and manual

exploratory testing, and a test report has been

generated. All outstanding defects (or incidents such

as build issues) have been elicited and resolved or

accepted by the team as not being contraindicative

to release. Regression testing has been completed,

and the functionality provided in previous iterations

has been shown to work. Performance, security, and

user acceptance testing have been completed, and

the product has been shown to work on all required

platforms.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

277

 Estimation
After establishing the definition of done, the team now has a basis to begin

an initial estimation of the work required for the project. Fiona needs

to come up with a rough budget to show the stakeholders and an initial

release plan. She decides to use “planning poker” to do this. She’s used it

before and was happy with the results.

 Poker Planning/Story Points

Fiona calls another meeting and all participants meet in the same

conference room where all the other meetings have been held. This time,

the entire team is present, not just the initial team. Fiona has purchased

planning poker decks for everybody and she starts the meeting by reading

the first user story, then she explains the rules. Fiona reads a story, the

team asks any questions for clarifications and then decides on their value.

After a short time, participants select a card from their poker deck but

don’t show it to the others. After everyone has selected a card, Fiona asks

them to turn their cards face up. Anna and Harry are the farthest apart,

so Fiona asks them to explain their thoughts on the user story. After that

discussion, the team plays again. This time, the participants are closer to

each other’s points (only one step apart) and the greater value is selected

for the story. The team continues to play for all user stories until all story

points are determined.

 Updating the PBI

After the meeting, Fiona goes back to her desk and starts to update the

PBIs. She can now insert the story points for each PBI into the work items

in the Effort field. During sprint planning, the PBIs will be broken down

into more manageable pieces, and each task will get a time estimate

instead of story points (Figure 8-16).

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

278

Now that the story points are entered, Fiona wants to do an initial risk

assessment before moving on to sprint planning and time estimates.

 Risk Assessment
Risk assessment is part of all estimations in Agile projects and should be

done throughout the whole project. If any PBI is considered very risky, it

might need to be prioritized higher in the backlog. It is always better to

address high-risk items as early as possible to avoid surprises later. Fiona

knows surprises can crop up at any time.

There are different ways of performing risk assessments. We suggest

you choose the one with which you are most familiar. Fiona chooses to do

a traditional risk assessment by using the following parameters:

• Severity (scale of 1–5 where 1 is the most severe and 5

the least severe)

• Probability (scale of 1–5 where 1 is most probable and 5

the least probable)

• Risk

• Risk assessment score (Severity × Probability)

• Mitigations

• Probability after mitigation

Figure 8-16. Story points (effort) in the backlog

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

279

• Risk assessment score after mitigation (Severity ×

Probability after mitigation)

Fiona calls another meeting and the team and Fiona conduct a risk

assessment for each user story in the backlog. Fiona creates an Excel

spreadsheet, which looks like the one in Figure 8-17, that show the results

of the risk analysis. Fiona then checks the risk mitigation document into

source control for versioning so everyone has access to it.

 Updating the Backlog Order

The team didn’t find any extreme risks during the initial risk assessment,

so Fiona leaves the backlog almost untouched. She moves two stories

a little higher in the list because the developers recommended these

particular features be developed a little earlier than previously thought.

 Refining the Backlog
Throughout sprints, product owners need to refine the backlog. They do not

do this work alone; the team participates as well as any relevant stakeholder

or expert. Refining the backlog is an excellent opportunity to get the team’s

views on upcoming features, and for members to provide feedback and

suggest new ideas. Fiona decides to estimate about 10% of the team’s time

for backlog refinement. This estimate has worked well for her in the past.

Refining the backlog also means product owners have to order

(prioritize) it. Using Azure DevOps, they can order the backlog easily by

dragging a PBI up and down in the backlog view, thus changing the order

of that PBI.

Figure 8-17. Risk mitigation

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

280

Note azure Devops has a feature that allows you to tag your pBis.
By doing this, you can get much finer granularity into how you’ve
organized your pBis. You can use the tags any way you want.
For example, work items that are going to be included in a specific
release can be tagged for the release.

 Initial Velocity
Fiona needs a few more pieces of knowledge before she can deduce the

time estimates for the project. She needs to know the initial velocity of the

team, which is the speed of the team—the number of user stories the team

can complete in a given sprint. She also needs to know how many hours

are slotted for work during a sprint.

 Available Time
To calculate the available time for the team, Fiona uses the following

method:

• How long is a sprint? Fiona assigns two weeks for

each sprint.

• How many working days are available in the sprint?

Fiona allows for ten working days per sprint.

• How many days does each team member work during a

sprint? Fiona needs to know team members’ planned

vacation (or other days off), planned meetings, and

so on. She looks at each team member’s schedule and

assigns the number of days in Azure DevOps.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

281

Fiona deducts the time for sprint planning, review, and retrospective

meetings, which are be eight hours per person for a sprint. Azure DevOps

calculates the result and Fiona sees the team’s capacity before drag. Drag

is wasted time or unknown activities. Because the team is new and she has

not worked a lot with any of the members, she assigns the standard 25%

drag because she knows this is a good benchmark. Included in this value

is the 10% percent for backlog refinement. Therefore, team capacity is six

hours per day. Now Fiona has the number of hours to allot to each 2 week

sprint.

 Capacity Planning in Azure DevOps
Azure DevOps is excellent to use for capacity planning. For a sprint, click

Backlog, then click the Capacity tab (Figure 8-18). You can set capacity,

activities, and days out of the office for vacations and holidays. As you set

capacity, activities, and days off, graphical information about hours and

capacity is generated automatically in the pane at the right of the screen.

Figure 8-18. Entering capacity into Azure DevOps

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

282

Figure 8-19 shows the current sprint (sprint 4). The capacity is also

shown in the Work details tab at the far right. Work details can be toggled

on or off.

The sprint planning features in Azure DevOps offer three ways for the

product owner to determine whether there is enough capacity to complete

the project: by person, by activity, or at whole-team level. These values are

displayed in the right panel of Figure 8-19. At the top is the collective work

hours for the team. Below that is Work By: Activity, which shows the work

that has been done so far for the Development and Testing activities. You

can also see Work By: Assigned To, which shows how much of each team

member’s capacity is assigned to tasks.

 Initial Sprint Planning
To calculate the initial velocity of the team, Fiona usually conducts an initial

sprint planning meeting. This is exactly the same as any sprint planning

except it is performed before the actual sprint starts. Fiona has used this

Figure 8-19. Viewing team capacity in sprint planning

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

283

approach with previous projects and found it to be extremely helpful in

acquiring the data she needs to come up with the team’s capacity.

During this meeting, Fiona and the team estimate the tasks in hours so

they can plan the sprint. This value is important in determining how many

user stories the team can take on during a sprint. Here is how Fiona and

the MyHealthClinic team calculate their velocity:

• Estimate the first user story in detail.

• Break down what the team needs to do to deliver the

story.

• Estimate the hours for each activity and summarize.

• Deduct the summary from the available time the team

has in the sprint.

• Is there still time left?

• Take a new user story and repeat the process until

no available time is left.

• Summarize the number of story points from the stories

that included in the sprint.

Now Fiona has a theoretical velocity.

The first (highest prioritized) user story on the backlog is:

As a sales person, I want to manage expense reports

so I can be more efficient.

The number of story points for this story is five (as determined during

the planning poker meeting). The story is broken down into smaller tasks:

• Create expense report.

• Delete expense report.

• Modify expense report.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

284

• Send expense report for approval.

• Log on to expense report system.

Together with the team, Fiona prioritizes these items so they have

a beginning for the sprint backlog. The sprint backlog looks like the

following after prioritization:

• Create expense report.

• Send expense report for approval.

• Modify expense report.

• Delete expense report.

• Log on to expense report system.

The team continues to break down each of these tasks into smaller

pieces and estimate them in hours. To create the expense report, they

come up with the following tasks:

• Create the GUI.

• Create business logic.

• Fulfill definition of done requirement.

• Write user manual.

The estimated number of hours for this user story is 137. With an

available time of 290 hours, they still have 153 hours left in the sprint.

This means they have room for more work, so they continue with the next

user story on the backlog:

As a controller, I want to be able to manage the users

in the system so I have full control over the users.

This user story was worth points. After breaking it down, they have 95.5

hours left, so they continue with another user story worth two story points.

When this planning was done there remained 23.5 hours of available time.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

285

Fiona and the team choose not to take on anything more in that sprint.

The team is new and if there are problems, the team might need space to

handle issues while it flexes its wings. It’s better to finish the tasks than to

reach the end of a sprint and not be able to finish some of the tasks. If the

team has time left in the sprint, it can take on more tasks.

The total amount of story points for the sprint is now ten, which is the

team’s initial velocity. The sprint backlog now looks like this:

• Create expense report.

• Send expense report for approval.

• Modify expense report.

• Delete expense report.

• Log on to expense report system.

• Create user.

• Modify user.

• Delete user.

• Create customer.

• Modify customer.

• Delete customer.

Each of these PBIs have tasks associated with them that are part of the

complete sprint backlog.

 Updating Backlog and PBI
Throughout sprint planning, Fiona has been updating the sprint backlog

and inserting new tasks into Azure DevOps. She associates them with

the first sprint for each team using the Planning field at the right of the

screen (Figure 8-20). She also adds the date of the first sprint under Project

settings so that Azure DevOps is updated with this information.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

286

One thing worth considering here is what to do with the Epic user

stories in the backlog after they have been broken down. Are they still valid

in the backlog at this point? In my opinion, you can remove these backlog

items safely (by setting the status to Removed) as long as you are certain

the content is covered in the broken-down tasks. But this choice is a matter

of how you want to work. Some people want to keep the Epics; some

don’t. Microsoft says the Removed state is used “when the team will not

implement the backlog item because product requirements or other work

conditions have changed.” But, as mentioned earlier, this is a matter of how

you want to work.

Fiona kept the Epics for reference and gets fine granularity of the

backlog items at the top of the backlog and larger epics the farther down

the list she moves. At this point, Fiona has a refined backlog as well as a

first sprint backlog.

Note an Epic is a large user story that is so big it is impossible to
estimate how much effort it would take to develop it. it can also be a
user story that is too large to fit into a single sprint, so it needs to be
broken down. You can compare an epic to this user story:

Figure 8-20. Associating tasks with the sprint

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

287

As a human, I would like to have world peace so that we humans do
not kill one another anymore.

although this example is farfetched, so are many epic user
stories—at least until they are broken down into smaller, more
manageable user stories.

 Forecast in Azure DevOps
There is a nice feature in Azure DevOps that lets you create a forecast

on how much work you can have in each sprint. It requires you to fill in

the effort estimate on each work item. In the example in Figure 8-21, you

see story points estimated in the Effort column. Forecasting is based on

the velocity of five story points (in this screen), and Azure DevOps draws

automatically the sprints and the work items that will fit into each sprint.

The forecast can be switched off if you do not want to see it. Simply toggle

on or off, as seen in Figure 8-21.

Figure 8-21. Forecast in Azure DevOps

You can use the Velocity report in the upper right corner of the product

backlog to look at the historical velocity numbers and, based on them,

figure out a good velocity forecast number (Figure 8-22).

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

288

You can also base a forecast on hours instead of story points—just

change the values as you want.

 Release Planning
Based on the information she now knows, Fiona can start planning the

releases of the project. She is aware that management wants to know how

many releases are planned, and she wants to give them this information

as soon as she can. The first thing she does is look for Epics (in the user

stories) so she can come up with a release plan.

 Epics
Fiona looks at the backlog and comes up with several Epics:

• Expense report management

• Search functionality

• User management

Figure 8-22. Velocity report in Azure DevOps

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

289

• Customer management

• Project management

• Smartphone availability

She sees quickly that three Epics are going to be part of the first sprint.

According to the initial sprint planning, expense report management,

user management, and customer management are all part of the first

sprint. Considering the fact that there are many chores in the first sprint,

Fiona knows it’s not possible to finish all three at the same time. She aims

from getting the expense report management Epic only done during the

first sprint. The other Epics will have to wait to be addressed during the

following sprints.

Fiona also knows the team’s initial theoretical velocity—ten story

points—which she uses as an input for how much work she can expect in

each sprint. With 44 story points total, the project will take 4.4 sprints to

complete. Fiona rounds this value up to five sprints.

Note a chore is just something a team needs to do. it could be
setting up a build server, fixing the team room, fixing whiteboards,
installing necessary software, and so on. Chores are never estimated.
in the beginning, the first sprints are probably filled with chores just
to get started. this means the velocity in the first sprints will be lower
than in upcoming sprints, when most chores are complete. there is
just not as much room left for estimated work in the first sprints.

The following is a rough overview of the release plan for the

functionality:

• Expense report management will be delivered in sprint 1.

• User management, customer management will be

delivered in sprint 2.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

290

• Project management, search management will be

delivered in sprint 3.

• Smartphone availability will be delivered in sprints 4

and 5, depending on smartphone type.

 Estimated Time Plan
Fiona then uses Excel to create a simple time plan for the project. She

knows this is temporary and will most likely change, depending on what

happens during the project, so she shows it to the stakeholders only and

does not let them keep a copy of it.

 Estimated Project Cost
After this is completed, Fiona can come up with an initial estimate

of the project cost. She knows how many weeks the project will take

based on the initial estimation, which is ten weeks. With the help of the

administrative department personnel, she calculates the weekly cost

of each of team member. Fiona then multiplies the weekly cost by the

number of weeks and comes up with a cost estimate. In addition, she adds

hardware, software, and other costs she knows will crop up. She arrives

at an estimated project cost, which she uses as input for the management

meeting, where she will present the time plan and project budget. Luckily,

the management team approves the project and she’s good to go.

Fiona is now ready to start the project. She begins by looking at the

startup dates, confirming them again with all managers on the team, and

then sends out the invitation for the sprint planning meeting to kick off

sprint 1. During the sprint planning meeting of sprint 1, the team uses

the initial sprint planning to determine whether anything has changed. If

there are changes, they will have to break down new user stories or change

other aspects of the sprint. Hopefully, the initial sprint planning remains

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

291

the same as the actual sprint 1 planning. The team finds no substantive

changes and is ready to jump in to the first sprint.

We now leave Fiona and the team, and talk more in general terms

about how you can use Azure DevOps during your sprints, based on the

Scrum process template.

Before we take a look at how Azure DevOps can help you run your

sprints, let’s take a brief look at the different meetings that take place

during a sprint, as a refresher of the material covered in Chapter 2. This

chapter uses the Microsoft Scrum template for all of the examples. If you

use any other process template, you will see some differences.

 Scrum Meetings during a Sprint
During the sprint several meetings are included in the Scrum process:

• Sprint planning meeting: At this meeting the

development team, together with the product owner,

selects user stories from the top of the backlog, breaks

them down into tasks, and then estimates the tasks in

hours.

• Daily standup: During the daily standup, which takes

place at the same time—and in the same place—every

working day, the team members report what they have

done since the last meeting, what they plan to do until

the next meeting, and whether they have encountered

or foresee any impediments.

• Sprint review: During the sprint review, the team

demonstrates the software built for the stakeholders

and product owner. The results of the feedback from

the meeting participants may lead to new user stories,

changes to user stories, or perhaps removal of user stories.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

292

• Sprint retrospective: During the sprint retrospective, the

team discusses what it did well during the sprint, what

was not so good, and what they can do to improve the

process.

• Backlog refinement: Although not an official Scrum

meeting, backlog refinement is important. During

this session, the product owner and the team look at

user stories for coming sprints (usually one or two

sprints ahead) and estimate the stories in story points.

The estimation occurs after the product owner has

explained what each story contains.

Azure DevOps helps support these meetings in various ways during

the sprint. Let’s start by looking at the sprint planning meeting.

 Sprint Planning
Most of the work at the sprint planning meeting is to break down user

stories into tasks and estimate the time for each task. The team starts with

the top story from the product backlog, breaks it down, and places it on the

sprint backlog. They continue doing this until the amount of available time

for the sprint is full.

In Azure DevOps, you can add tasks to a user story in a couple of

different ways. From inside a PBI, you can go to the Links tab and click the

Add link work item icon, as shown in Figure 8-23.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

293

This action opens the form shown in Figure 8-24. When the form

is open, you can add basic information, such as a title and comments.

When you are done, click OK to create the task.

Figure 8-23. Adding a new task from inside a user story

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

294

Note that you cannot add any other work item this way. To link a user

story (or other work item) to another work item type, you need to follow

another workflow, which we is explained in a bit. Clicking OK opens the

task for more detailed editing, as shown in Figure 8-25.

Figure 8-24. Form for adding a new task

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

295

During sprint planning, you can choose to assign the tasks right

away or you can wait until all tasks for the sprint have been estimated.

This depends entirely on how you want to work.

You can also fill in the description of what the task means, which is

something you should not forget to do. We have seen many tasks without

a good description, and they often cause confusion after work starts on

the task. A good suggestion is to let the team decide on the information

included in the task.

One thing that we would say is mandatory to complete is the field

Remaining Work, which you is found in the Details section. It is important

to register remaining work on a project, and our useful suggestion is to

update this field at the end of every working day. This field is the only

field you can use in the process template for following up and estimating

hours on a task. The burndown chart (Figure 8-26) uses this information

to display how much total work time there is left for all tasks in the sprint.

Figure 8-25. Filling in additional information about a task

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

296

You can also add information about to which activity the task is

connected. You can define these activities yourself from the Control Panel,

which can be tailored to your own needs. The same goes for the Field area.

Activity is often the field used for defining the part of the process to

which a task belongs, and the Area is the field often used for functional

or component breakdown, but you can use them as you see fit. This gives

flexibility in how you can search and find tasks and other work items when

you need to.

This provides you with an immediate visual of when you can expect to be

done with all tasks. You have to list all the team members’ capacity for the

sprint for the total remaining work time to be correct. There isn’t a rule that

states you should work this way, but it has become a good Agile practice.

Figure 8-26. A burndown chart uses the Remaining Work field to
calculate when the tasks in a sprint will be done

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

297

Now you can use tags on the product backlog to find only those items

related to integration. Click the little filter icon at the very right of the

product backlog to see the list of available tags for this backlog, as shown in

Figure 8-28.

Figure 8-27. Adding tags to a work item

A new feature added in Visual Studio 2012 update 1 is tagging, which

lets you tag a work item with one or more tags and then later filter the

backlog using these tags. A tag is just short text, and you can define as

many as you want.

Figure 8-27 shows that tag has been created on a backlog item that

indicates that the work being done is related to integration.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

298

Note that each tag also shows the number of work items on the current

backlog that have this tag. You can click a tag to filter the backlog to show

only the items with the corresponding tag.

As with any other work item, you can also add attachments and links to

a task. Attachments (Figure 8-29) can be of any kind: documents, figures,

and what have you.

Figure 8-29. Adding attachments to a work item

Figure 8-28. Tag filter

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

299

If you want to use the board to create a task, you can do so by clicking

the plus sign (Figure 8-30) at the top left corner of a user story column. You

are then directed to the same workflow described earlier.

All these possibilities to break down backlog items into tasks, link to

attachments, other work items in conjunction with the tags field, area,

activity, remaining work, and so on are essential to have during sprint

planning. During this meeting, you can find new user stories that need to

be added or impediments you need to create.

Because test cases are included in the things you can create and link

to tasks and user stories, testers can also benefit from the Azure DevOps

features during sprint planning. Depending on how testers want to work,

they can create test cases and link them directly to a PBI. In one recent

project, our tester used the acceptance criteria in the PBI to create test

cases, linking them directly to our PBI.

 Daily Standup
During the daily standup, the team reports what they have done since the

last standup and what they will do until the next. During this meeting, it

is common to use the sprint board and group it by team members or PBIs

(Figure 8-31).

Figure 8-30. Creating a new task from the Board view

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

300

Team members can the discuss the things on which they are working

and update the status of each task. You can update the remaining work by

clicking the number at the lower left of the task. The team can also choose

to display the board based on backlog items. This view allows the team to

see more easily any stories that have been selected for the sprint but still

do not have any tasks assigned to them.

Using drag and drop, the team can move a task between the different

columns and, for instance, move a task to Done when it is ready as defined

in the definition of done. This feature also allows you to move a task

between team members quickly; you do not have to open the task and

select a new assignee—really useful in our opinion!

Note the board is based on tasks only. You do not show user
stories in the columns. if you want a board for user stories, you can
use the Kanban board.

Figure 8-31. When using the board at a daily standup, you can sort
the board on backlog items or on team members, and then team
members can discuss their current work

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

301

At the daily standup the team also discusses any impediments

it might have. Using the linking features described earlier, you can create

and link an impediment (Figure 8-32) to a task or user story and assign the

impediment to the correct person. You can also select a priority (between

1 and 4) if you want.

 Retrieving Data from Azure DevOps
When you navigate to the Work items tab on the team web portal, you

have options of getting information from Azure DevOps that can be useful

during sprints.

The Query tab, by default, shows all work items that have been

assigned to an individual (Figure 8-33). If you take a look at the left menu,

you see queries that give more information about the status of your

projects. You can add queries to My favorites, which is useful if you want

to find a specific query quickly. You can also add queries to Team favorites

that are accessible by the entire team.

Figure 8-32. Impediments work item type form

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

302

My Queries is the placeholder for queries you have created but do not

want to share with others. There is no default query, but you can create

new queries as you go along. If you create a query that would be useful to

the whole team, you can add it to the Shared Queries list. Below Shared

Queries there are different default queries that are available automatically

(Figure 8-34).

Figure 8-33. Query view showing specific assignments

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

303

Running a query results in a list with the work items affected by the

query. Figure 8-35 shows the results from the Open Impediments query.

Figure 8-34. My Queries and Shared Queries

Figure 8-35. Query result from the Open Impediments query

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

304

If you want to go into a query and edit it, you can do so by clicking the

Editor link. In this way, you can modify the query or create a new one.

These shared queries are very useful to many team members.

The product owner can retrieve status information from Azure DevOps

regarding the project and the project health. The team members can find

work items quickly that are connected to them so they can keep track of

what work is at hand.

 Backlog Refinement
As we explained earlier during the sprint, the product owner needs to

refine the backlog so it is in good shape. This means the backlog should

be ordered and that the top backlog items should be broken down into

smaller, more manageable pieces. The team helps the product owner with

this, and you should estimate roughly 10% percent of available time for the

team to complete this task.

The product owner updates the Azure DevOps backlog so it reflects

reality. There might be new user stories that must be added, modifications

to others, and so on. You can drag and drop items easily on the backlog to

change the order, which is a nice feature.

 Sprint Review
The sprint review is the meeting during which the team shows the product

owner and any other stakeholders what it has built during the sprint. Any

working software should be demonstrated so that the product owner

can sign off on the user stories that have been delivered. Nothing of what

is shown should be a surprise to the product owner, who is a constant

element in a sprint. During the sprint review meeting, the team looks at

the sprint backlog to verify that all backlog items that were worked on and

marked as complete are covered during the review.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

305

 Sprint Retrospective
During the retrospective, you look at what was good and what was bad

during the sprint. This is by far the most important meeting in Scrum.

Why? Because this is where you can learn how to improve. Constant

retrospection and adaptation are essential for the team if it is to deliver

quality software and business value.

This meeting helps you discover what needs to change in the way you

run your meetings, for example. You can also determine whether there is

a problem with communication with the product owner or another part

of the organization. This input is valuable so that you can change the way

your teams work to achieve even better results for the next sprint.

We usually execute the sprint retrospective by using a white piece of

paper and dividing it with a marker. The left side is what was good (marked

by a +) and the right side is what was not good (marked by a –). The team

then calls out their opinions and the Scrum master records them on the

paper. Sometimes some very hands-on issues, such as writing better

comments during check, in are listed, but there can also be softer issues

such as “improve communications within the team.”

Another way to run this meeting is to answer three questions:

 1. What should we stop doing?

 2. What should we start doing?

 3. What should we continue doing?

The answers to these questions will give great input to your continuous

improvement process. Based on the answers and the results of the

retrospective, the Scrum master and the team select a few issues from the

bad side and commit to improving them. Issues that need to be taken care

of are documented as tasks or impediments in Azure DevOps so that you

can follow up on them and assign them to the correct person.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

306

 Summary
This chapter followed Fiona as she starts the MyHealthClinic project. We

saw how she initiated the project and started to use Azure DevOps to run it

after it a Go decision was made. Fiona used Azure DevOps, but she could

also have been using on-premise TFS as well.

You have now seen how you can use various aspect of the Azure

DevOps product to manage an Agile project. This concludes this book.

I hope you have enjoyed it.

Chapter 8 agile projeCt ManageMent in azure Devops anD tFs

307© Joachim Rossberg 2019
J. Rossberg, Agile Project Management with Azure DevOps,
https://doi.org/10.1007/978-1-4842-4483-8

Index

A, B
Agile project management, 251

company background
verification, 252

group, teams and users
permission, 266

pilot project, 252
project startup phase

add backlog items, 273
backlog building, 272
capacity planning, 281
DoD, 274
epics, 286
expense report project, 254
forecast, 287
grooming backlog, 279
initial sprint

planning, 282
notifications, 268–269
PBI, 277
poker planning/story

points, 277
project cost, 290
release planning, 288
requirements, 270
risk assessment, 278
team building, 255, 262
time calculation, 280

update backlog order, 285
velocity, 280

release planning
epics, 288
time planning, 290

Scrum process
backlog refinement, 304
daily standup, 299
retrieving data, 301
sprint planning, 291

sprint planning
adding task, 294
attachments adding, 298
board view creation, 299
burndown chart, 296
retrospective, 305
review, 304
Scrum process, 291
tag filter, 298
task information, 295
user story, 292–293
work item tags, 297

team creation
backlog structure, 261
concept of, 257
menu option, 257
profile page, 259
values, 260

https://doi.org/10.1007/978-1-4842-4483-8

308

team members, 263
testing process

acceptance criteria, 199
Azure test plans, 205
Microsoft test manager, 203
test proportion, 202

Application life cycle
management (ALM)

ALM 1.0, 18
ALM 2.0

benefits, 25
characteristics of, 23
development efforts, 24
development process, 25
document structure, 25
features, 22
repository neutral, 24
XML format, 25

ALM 2.0+, 26
collaboration, 29
planning functions, 28

analyzing business, 4
architect, 4
Azure DevOps, 31

artifacts, 32
boards and backlogs, 33
ecosystem, 31
graphic user interface, 32
navigation bar, 34
overview of, 31
pipelines, 32
Repos, 32
services, 35

test plans, 32
web browser/IDE client, 31

business manager, 3
concepts, 16–17
CRs, 2
DBAs, 5
developers, 6
DevOps, 29
history of, 16
life cycle activities, 35
operations and

maintenance staff, 6
PMO decision makers, 4
portfolio view, 8
process of, 2
role-based collaboration, 3
SDLC (see Software

development
lifecycle (SDLC))

service management/
operations view, 7

stakeholders, 3
testers and test managers, 6
tools/automation, 16
traditional process

automation of high-level
processes, 15

development efforts, 15
pillars of, 13–14
traceability, 14

unified view, 8
UX design, 5
work item and process

Agile project management (cont.)

INDEX

309

automation of high-level
processes, 125

traceability, 125
visibility, 126

Application portfolio
management (APM), 8

Automated tests, 207
Azure DevOps, 37

ALM
addresses, 38
collaboration, 38
IT and business, 39
process, 37
role switching, 39
tools, 39

collaboration
data thread, 60
IT and business (gap), 61
Office/Microsoft project

integration, 62
project portal creation, 59
Team Explorer, 58
wiki process, 59
work item, 60–61

extensibility, 63
IDE Integration, 47
Microsoft Office, 46
process template, 42

modifications, 183
web access, 176

team foundation server, 41
vs. TFS, 64
tool/role based, 63
traceability, 47

tracking system
(see Tracking system)

visibility
components, 57
dashboards view, 58
Power BI, 57
queries, 57
widgets and dashboards, 57

Visual Studio 2017, 44
VSTS features and services, 40
welcome page, 46

C
Capability Maturity Model

Integration (CMMI)
definition, 148
ITIL, 148
process, 148
requirements, 149–150

Change requests (CRs), 2
Concurrent Versions

System (CVS), 24
Continuous delivery (CD)

Azure pipelines, 215
delivery process, 213
deployment process, 213
optimized delivery process, 214

Continuous integration (CI)
components, 212
cross-functional teams, 210
definition, 209
deployment perspective, 210
key points, 210

Index

310

rule and requirements, 211
shippable product, 210
source code, 209

Coupling class, 236
Cyclomatic complexity, 236

D
Database administrators (DBAs), 5
Definition of done (DoD), 274–276
Depth of inheritance, 236

E, F
Enterprise resource

planning (ERP), 63
eXtreme programming (XP), 104, 197

Agile testing process
acceptance criteria, 199
Azure test plans, 205
managing tests, 203
Microsoft Test Manager, 203
regression testing, 198
test proportion, 202

automated tests, 207
coding standards, 216
continuous delivery

Azure pipelines, 215
delivery process, 213
deployment process, 213
optimized delivery

process, 214

continuous integration
components, 212
definition, 209
deployment perspective, 210
key points, 210
rules and requirements, 211
source code, 209

development tasks, 197
pair programming (see Pair

programming)
refactoring, 217
test-driven development, 206

G, H
Graphic user interface (GUI), 32

I, J
Index maintainability, 236
Information Technology

Infrastructure
Library (ITIL), 56

Integrated development
environment (IDE), 47

IT service management
(ITSM), 148, 244

K
Kanban method

Azure DevOps, 101
collaboration, 103

Continuous integration (CI) (cont.)

INDEX

311

continuous, incremental and
evolutionary, 99

current roles, responsibilities
and job titles, 99

eXtreme programming, 104
manage flow, 102
models, 103
operations, 97
principles, 98
process policies explicit, 103
properties, 100
visualize the workflow, 100
WIP limit, 101

Key performance indicator
(KPI), 229, 239

L
Large-Scale Scrum (LeSS), 120–121

M
Metrics

architecture, analysis
and design, 235

charts, 247
development work

analysis, 238
code coverage, 238
code metrics, 238
errors and warnings, 238
tools, 237

KPI, 229
project management, 230

release management, 243
chart, 248
ITIL, 243
quality indicators report, 244
success over time report, 245
summary report, 246

software testing
bugs activation, 239
bug status report, 241
bug trend report, 242
code coverage, 240
development, 230
KPIs, 239
percentage of

requirements, 240
reactivations report, 242
test results, 240

Microsoft Office, 46–47
Microsoft Test

Manager (MTM), 203

N, O
Nexus

artifacts, 118
daily Scrum, 119
development work, 119
events, 118
integrated increment, 117
framework details, 118
pair programming

default area path, 226
framework, 224
improvements, 227

Index

312

integration team, 227
vs. Scrum, 225

product backlog, 119
role, 117
sprint planning, 119
sprint review and

representatives, 120
vs. SPS, 117

P, Q
Pair programming

benefit, 218
code quality, 219
Nexus, 224
programmers, 218
SAFe, 219

Process templates, 141, 159
adaptations, 163

areas and iterations, 166
modification of

work item, 167
queries, 164
reports, 165
requirements, 163
work item types, 164

Agile process
Azure DevOps/VSTS, 146
MSF process, 145
requirements, 146–147
user story window, 147

Azure DevOps, 42

CMMI
definition, 148
ITIL, 148
process, 148
requirements, 149

modification of DevOps
accessing edit mode, 187
add groups, 190
agile process, 189
editing options, 193
edit menu, 187
field adding, 192
inherited Agile process, 188
inherited processes, 184
layout menu, 193
organization settings, 183
project creation, 194
shared process, 186
system processes, 185
user story work

item type, 189
modification of work item

default work items, 170
field definition

dialog box, 171
layout editor, 173
PBI work item, 171
preview, 174
process editor, 170
rule of, 172
selection, 169
team explorer, 168
workflow, 174

Nexus (cont.)

INDEX

313

processes, 142
Scrum process, 143
TFS 2018 on-premise

command-line, 160
editing option, 163
work item type, 161
XML file, 162

workflow states, 150–153
work item

code reviews, 156
MTM, 154
steps and parameters, 156
traceability, 155
types, 154, 156

Product backlog
items (PBIs), 79, 277

Program iteration (PI), 110
Project management

office (PMO), 4
Project portfolio management

(PPM), 11

R
Release train engineer (RTE), 112

S
Scaled Agile Framework (SAFe)

areas configuration, 222
backlog, 224
configurating iterations, 221
documentation, 111

essential setup, 109
framework, 109
full SAFe, 114–115
implementation

road map, 115, 220
initial iteration setup, 222
innovation and planning

iteration, 112
iterations, 221
Kanban board, 223
large-solution, 112
LeSS and Nexus, 219
levels and work items, 220
PI planning, 110
portfolio level, 113–114, 221
program backlog, 112
release train engineer, 112
tags, 222
team tracking features, 223

Scaling Agile concepts
vs. ALM

frequency of
inspection, 122

maps, 121
task-based work, 122
teams plan frequently, 123
test artifacts, 123
tools collection, 122

SAFe (see Scaled Agile
Framework (SAFe))

Scrum-of-Scrums, 106–107
Scaled Professional

Scrum (SPS), 117

Index

314

Scrum
adaptation, 70
Agile project (see also Scaling

Agile concepts)
backlog, 94
estimation, 91
process method, 88
requirements, 89

definition, 69
deliverables

increment, 80
product backlog, 78–79
sprint backlog, 79–80
sprint goal, 80

DoD, 84
conversation, 84
design models and

specifications, 86
environments, 86
peer-review, 87
product owner, 85
ready definition, 87
review, 86
source code, 86
testing, 87
unit test cases, 87

empirical process control, 69
events, 80

backlog refinement, 84
daily Scrum, 81

inspection, 70
iteration, 73
Kanban (see Kanban method)

vs. Nexus, 225
overview, 67
process control, 70
process template, 143–144
project complexity, 71
requirements, 74
roles and responsibilities, 75
rugby approach, 68
Schwaber, Ken, 69
skeleton, 73
sprint

daily standup, 95
planning, 81
retrospective, 83
review, 83

sprint backlog, 74
stakeholder feedback, 74
transparency, 70

Scrum of Scrums, 107
Software configuration

management (SCM), 52
Software development

lifecycle (SDLC), 2
APM view of ALM, 11
divestment, 12
life cycle activities, 10
SDLC view, 7
service management/

operations view, 11
simplified view, 9
UI designers, 9
unified view, 12

Stakeholder feedback, 74

INDEX

315

T, U
Team Explorer Everywhere (TEE), 45
Team Foundation Server (TFS), 41
Test-Driven Development

(TDD), 206
Traceability, 126

communications, 126
process template

(see Process template)
tracking system, 127
vendor of, 127
work items

bug form, 133
check-in operation, 138
creation, 130
existing link, 136
features, test cases,

and tasks, 136
output window, 139
overview, 129
process editor, 131
queries, 140
reports, 132
requirement, 132, 134
TFS power tools, 131
tracking system, 140
unique ID, 129
welcome window, 134
WIQL queries/reports, 132

Tracking system, 48
automation of high-level

processes, 55
build management, 54

configuration management, 52
document structure and

templates, 55
Excel spreadsheet, 48
project phases, 55
reports and queries, 56
security, 56
version control and release

management, 53
work items, 49

bug option, 51
data type, 50
overview, 49
requirement, 51
types, 55
unique ID, 50
web client, 49

V
Visual Studio 2017, 44
Visual Studio Team Services (VSTS), 2

W, X, Y, Z
Web access modification, 176

bugs, 178, 182
columns configuration, 180
epics, 182
GUI, 177
Kanban board configuration, 176
tag color code, 179

Work Item Query Language
(WIQL), 132

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Application Life Cycle Management
	Aspects of the ALM Process
	Four Ways of Looking at ALM
	The SDLC View
	The Service Management or Operations View
	The APM View
	The Unified View

	Three Pillars of Traditional ALM
	Traceability
	Automation of High-Level Processes
	Visibility into the Progress of Development Efforts

	A Brief History of ALM Tools and Concepts
	ALM 1.0
	ALM 2.0
	ALM 2.0+

	DevOps
	Azure DevOps Introduction
	Summary

	Chapter 2: An Overview of Azure DevOps
	ALM Overview
	Azure DevOps Overview
	Team Foundation Server
	Process Template
	Visual Studio 2017 Editions
	Azure DevOps
	Microsoft Office
	IDE Integration

	Traceability
	The Azure DevOps Work Item Tracking System
	Work Items
	Configuration Management Using Azure DevOps
	Version Control and Release Management in Azure DevOps
	Build Management Using Azure Pipelines

	Automation of High-Level Processes

	Visibility
	Collaboration
	Work Items for Collaboration
	The Gap between IT and Business
	Office/Microsoft Project Integration

	Use of One Tool/Role Based
	Extensibility
	Difference between TFS and Azure DevOps
	Summary

	Chapter 3: Introduction to Scrum and Agile Concepts
	The Scrum Framework
	Empirical Process Control
	Complexity in Projects
	What Scrum Is
	Roles and Responsibilities in Scrum

	Deliverables in Scrum
	The Product backlog
	Sprint Backlog
	Product Increment
	Sprint Goal

	Events in Scrum
	Sprint planning
	Daily Scrum
	Sprint Review
	Sprint retrospective
	Backlog Refinement

	Definition of Done
	Agile Requirements and Estimation
	Requirements
	Estimation
	Backlog

	During the Sprint
	Daily Standup

	Kanban
	Start with What You Do Now
	Agree to Pursue Incremental, Evolutionary Change
	Respect the Current Process, Roles, Responsibilities, and Titles
	The Five Core Properties
	Visualize the Workflow
	Limit WIP
	Manage Flow
	Make Process Policies Explicit
	Improve Collaboratively

	Common Models Used to Understand Work in Kanban
	eXtreme Programming

	Scaling Agile
	Scrum of Scrums
	SAFe
	Essential SAFe
	Large-Solution SAFe
	Portfolio SAFe
	Full SAFe
	SAFe Implementation Road Map

	NEXUS–SPS
	Large-Scale Scrum
	How Agile Maps to ALM
	Agile Captures Task-Based Work
	There Is Increased Frequency of Inspection
	Many Tools Collect Much Information
	Test Artifacts Are Important
	Agile Teams Plan Frequently

	Summary

	Chapter 4: Work Items and Process Templates
	ALM Revisited
	Traceability
	The Azure DevOps Work Item Tracking System
	Work Items
	The Work Item Form
	Work Item Traceability
	Work Item Queries
	Conclusions on the Work Item Tracking System

	The Process in Azure DevOps
	Scrum, Agile, and CMMI
	Scrum
	Agile
	CMMI
	Workflow States
	Work Item Types for All Processes
	Work Items That Support MTM

	Summary

	Chapter 5: Customizing the Process Template in Azure DevOps
	Process Customization
	Modifying the Process Template in TFS 2018 On-Premise
	Common Adaptations of the Process Template
	Work Item Types
	Work Item Queries
	Reports
	Areas and Iterations
	Modifying Work Items
	How to Open the Process Template
	Work Item Fields
	Work Item Workflow

	Modifying the Process Template in Azure DevOps
	Modifications to the Web Access
	Modifications to the Process Templates in Azure DevOps

	Summary

	Chapter 6: Agile Practices in Azure DevOps and TFS
	Agile Testing
	Acceptance Criteria
	Evolving Tests
	Clients for Managing Tests
	Microsoft Test Manager
	Azure Test Plans

	TDD and Automated Testing
	Test-Driven Development
	Working with Automated Tests

	Continuous Integration/Continuous Delivery
	Continuous Integration
	Why Continuous Integration?
	Continuous Delivery
	Azure Pipelines

	Coding Standards
	Refactoring
	Pair Programming
	SAFe in Azure DevOps
	Nexus in Azure DevOps
	Why Not a Dedicated Team for the Nexus Integration Team?
	Further Improvements

	Summary

	Chapter 7: Metrics in Agile Projects
	Metrics for Project Management
	Agile Metrics

	Metrics for Architecture, Analysis, and Design
	Metrics for Developer Practices
	Code Coverage
	Code Metrics
	Compiler Warnings
	Code Analysis Warnings

	Metrics for Software Testing
	Example Reports
	Bug Status Report
	Reactivations Report

	Bug Trend Report

	Metrics for Release Management
	Example Reports

	Using Charts to Monitor Metrics
	Summary

	Chapter 8: Agile Project Management in Azure DevOps and TFS
	Case Study
	Company Background
	The Pilot Project

	Project Startup Phase
	Starting Work
	Building the Initial Team

	Creating New Teams
	Creating the Backlog and Team Structure for the MyHealthClinic Pilot
	Building the Teams

	Adding Team Members
	Managing Azure DevOps Groups, Teams, and User’s Permission
	Managing Notifications
	Requirements
	Building the Backlog
	Adding Backlog Items in Azure DevOps

	Definition of Done
	Estimation
	Poker Planning/Story Points
	Updating the PBI

	Risk Assessment
	Updating the Backlog Order

	Refining the Backlog

	Initial Velocity
	Available Time
	Capacity Planning in Azure DevOps
	Initial Sprint Planning
	Updating Backlog and PBI
	Forecast in Azure DevOps

	Release Planning
	Epics
	Estimated Time Plan

	Estimated Project Cost
	Scrum Meetings during a Sprint
	Sprint Planning
	Daily Standup
	Retrieving Data from Azure DevOps
	Backlog Refinement
	Sprint Review
	Sprint Retrospective

	Summary

	Index

