


Agile	Project	Management	with	Kanban
ERIC	BRECHNER

WITH	A	CONTRIBUTION	FROM	JAMES	WALETZKY



PUBLISHED	BY
Microsoft	Press
A	Division	of	Microsoft	Corporation
One	Microsoft	Way
Redmond,	Washington	98052-6399

Copyright	©	2015	by	Eric	Brechner

All	rights	reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means	without	the	written	permission	of	the	publisher.

Library	of	Congress	Control	Number:	2014951864
ISBN:	978-0-7356-9895-6

Printed	and	bound	in	the	United	States	of	America.

First	Printing

Microsoft	Press	books	are	available	through	booksellers	and	distributors	worldwide.	If
you	need	support	related	to	this	book,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.	Please	tell	us	what	you	think	of	this	book	at
http://www.microsoft.com/learning/booksurvey.

Microsoft	and	the	trademarks	listed	at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
are	trademarks	of	the	Microsoft	group	of	companies.	All	other	marks	are	property	of	their
respective	owners.

The	example	companies,	organizations,	products,	domain	names,	email	addresses,	logos,
people,	places,	and	events	depicted	herein	are	fictitious.	No	association	with	any	real
company,	organization,	product,	domain	name,	email	address,	logo,	person,	place,	or	event
is	intended	or	should	be	inferred.

This	book	expresses	the	author’s	views	and	opinions.	The	information	contained	in	this
book	is	provided	without	any	express,	statutory,	or	implied	warranties.	Neither	the
authors,	Microsoft	Corporation,	nor	its	resellers,	or	distributors	will	be	held	liable	for	any
damages	caused	or	alleged	to	be	caused	either	directly	or	indirectly	by	this	book.

Acquisitions	Editor:	Devon	Musgrave
Developmental	Editor:	Devon	Musgrave
Project	Editor:	Devon	Musgrave
Editorial	Production:	Rob	Nance,	John	Pierce,	and	Carrie	Wicks
Copyeditor:	John	Pierce
Indexer:	Lucie	Haskins
Cover:	Twist	Creative	•	Seattle

mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx


Praise	for	Agile	Project	Management	with	Kanban

“I	have	been	fortunate	to	work	closely	with	Eric	for	many	years.	In	that	time	he
has	been	one	of	the	most	productive,	consistent,	and	efficient	engineering	leaders
at	Xbox.	His	philosophy	and	approach	to	software	engineering	are	truly
successful.”

—Kareem	Choudhry,	Partner	Director	of	Software	Engineering	for	Xbox

“Eric	easily	explains	why	Kanban	has	proven	itself	as	a	useful	method	for
managing	and	tracking	complicated	work.	Don’t	expect	this	book	to	be	an
overview,	however.	Eric	channels	his	deep	understanding	and	experiences	using
Kanban	at	Microsoft	to	help	you	identify	and	avoid	many	of	the	common
difficulties	and	risks	when	implementing	Kanban.”

—Richard	Hundhausen,	President,	Accentient	Inc.

“Learning	how	Xbox	uses	Kanban	on	large-scale	development	of	their	platform
lends	real	credibility	to	the	validity	of	the	method.	Eric	Brechner	is	a	hands-on
software	development	management	practitioner	who	tells	it	like	it	is—solid,
practical,	pragmatic	advice	from	someone	who	does	it	for	a	living.”

—David	J.	Anderson,	Chairman,	Lean	Kanban	Inc.

“As	a	software	development	coach,	I	continuously	search	for	the	perfect	reference
to	pragmatically	apply	Kanban	for	continuous	software	delivery.	Finally,	my
search	is	over.”

—James	Waletzky,	Partner,	Crosslake	Technologies

“Kanban	has	been	incredibly	effective	at	helping	our	team	in	Xbox	manage
shifting	priorities	and	requirements	in	a	very	demanding	environment.	The
concepts	covered	in	Agile	Project	Management	with	Kanban	give	us	the
framework	to	process	our	work	on	a	daily	basis	to	give	our	customers	the	high-
quality	results	they	deserve.”

—Doug	Thompson,	Principal	Program	Manager,	Xbox	Engineering

“An	exceptional	book	for	those	who	want	to	deliver	software	with	high	quality,
predictability,	and	flexibility.	Eric’s	in-depth	experience	in	the	software	industry
has	resulted	in	a	realistic	book	that	teaches	Kanban	in	a	simple	and	easy	way.	It	is
a	must-read	for	every	software	professional!”

—Vijay	Garg,	Senior	Program	Manager,	Xbox	Engineering



Table	of	Contents

Introduction

Chapter	1	Getting	management	consent

An	open	letter	to	your	manager

Problem

Solution

Risks

Plan

Moving	forward

Checklist

Chapter	2	Kanban	quick-start	guide

Step	1:	Capture	your	team’s	high-level	routine

Step	2:	Redecorate	your	wall

Step	3:	Set	limits	on	chaos

Step	4:	Define	done

Step	5:	Run	your	daily	standup

Troubleshooting

Checklist

Chapter	3	Hitting	deadlines

Populate	your	backlog

Establish	your	minimum	viable	product	(MVP)

Order	work,	including	technical	debt

Estimate	features	and	tasks

Track	expected	completion	date

Right-size	your	team

Basic	approach

Advanced	approach

Checklist

Chapter	4	Adapting	from	Waterfall

Introducing	Kanban	to	a	Waterfall	team

Working	in	feature	teams



Completing	features	before	starting	new	ones

Dealing	with	specs	and	bugs

Specs

Bugs

Engaging	with	customers

Celebrating	performance	improvements

Rude	Q	&	A

Checklist

Chapter	5	Evolving	from	Scrum

Introducing	Kanban	to	a	Scrum	Team

Mapping	the	roles	and	terms

Evolving	the	events

Celebrating	performance	improvements

Rude	Q	&	A

Checklist

Chapter	6	Deploying	components,	apps,	and	services

Continuous	integration

Continuous	push

Continuous	publishing

Continuous	deployment

Checklist

Chapter	7	Using	Kanban	within	large	organizations

Deriving	a	backlog	from	big	upfront	planning

Ordering	work	based	on	dependencies

Fitting	into	milestones

Communicating	status	up	and	out

Dealing	with	late	or	unstable	dependencies

Late	dependencies

Unstable	dependencies

Staying	productive	during	stabilization

Checklist

Chapter	8	Sustained	engineering



Define	terms,	goals,	and	roles

Consistent	vocabulary

Challenges	and	goals

Define	roles	and	responsibilities

Determine	SE	ownership

Lay	out	support	tiers

Tier	1

Tier	2

Tier	3

Collaborate	for	efficiency

Triage

Quick-solve	meeting

Implement	Kanban	SE	workflow

Escalations

Bugs/Other	Work

Kanban	tools

Troubleshooting

Checklist

Chapter	9	Further	resources	and	beyond

Expanding	Kanban	to	new	areas	of	business	and	life

Scaling	Kanban	up,	down,	and	out

Personal	Kanban

Mixing	Agile	and	Lean	with	Kanban

Why	Kanban	works

Single-piece	flow

Theory	of	constraints	(TOC)

Drum-buffer-rope

Improving	beyond	Kanban

Critical	chain

Lean	development

Global	optimization

Checklist



Index

About	the	author



Introduction

Dedicated	to	Corey	Ladas,	who	invited	me	to	see	through	new	eyes.

I’m	a	professional	software	developer.	I’ve	been	one	for	decades	(currently	with	Xbox).	I
don’t	get	paid	to	be	a	certified	process	geek.	I	don’t	get	paid	to	be	an	evangelical	process
zealot.	I	get	paid	to	deliver	software	that	customers	love,	with	high	quality,	on	time,	and	at
low	cost.

I	develop	software	in	a	highly	volatile	environment,	where	priorities,	requirements,	and
expectations	change	daily.	I	develop	software	in	a	highly	competitive	environment—for
market	share	among	products	and	for	compensation	among	peers.	My	software
development	peers	inhabit	this	same	world,	regardless	of	where	they	work	or	what
products	they	produce.

I’m	always	looking	for	advantages	over	my	competition—ways	that	make	my	life
easier	and	more	productive	while	also	resulting	in	better	products	for	my	customers.	When
I	was	at	Bank	Leumi,	Jet	Propulsion	Laboratory,	Graftek,	and	Silicon	Graphics	in	the
1980s,	I	focused	on	what	we	now	refer	to	as	design	patterns	and	unit	testing.	During	the
1990s,	while	I	was	at	Boeing	and	starting	out	at	Microsoft,	my	teams	and	I	tried	Waterfall
milestones	and	stabilization	periods	of	different	durations,	T-shirt	estimation,	asserts,	bug
jail,	continuous	integration,	and	design	and	code	reviews.	In	the	2000s,	the	Microsoft
teams	I	managed	experimented	with	Team	Software	Process,	Scrum,	code	inspection,
static	analysis,	planning	poker,	pair	programming,	and	test-driven	development.	Now	in
the	2010s,	I’ve	found	continuous	deployment,	Kanban,	and	a	little	nirvana.

Some	of	the	methods	I	just	listed	may	not	be	familiar	to	you.	Most	of	the	professional
software	developers	I’ve	known	don’t	like	experimenting	with	how	they	do	their	jobs.
They	find	an	approach	that	works	for	them,	usually	the	one	they	learn	from	their	first
professional	software	team,	and	tend	to	stay	with	that	approach.

Trying	different	methodologies	is	painful	and	has	an	initial	drain	on	productivity,	but	it
has	enabled	my	teams	to	outperform	those	of	my	peers.	My	teams	are	significantly	smaller
than	other	teams	doing	similar	work,	yet	they	produce	significantly	more	value	at
significantly	higher	quality	in	the	same	or	less	time.	That’s	not	because	I’ve	filled	my
teams	with	mythical	developers	who	work	twenty	times	faster	than	anyone	else.	(I’ve	got
good	people,	but	they	aren’t	mythical.)	My	teams	simply	get	more	value	out	of	every	hour.

You	could	experiment	with	all	the	methods	I’ve	tried,	but	that’s	time-consuming	and
tedious.	Though	my	teams	and	I	have	learned	from	every	experiment,	not	all	have	been	of
equal	value.	My	current	and	former	teams	still	use	design	patterns,	unit	testing,	continuous
integration,	design	and	code	reviews,	static	analysis,	planning	poker,	pair	programming,
test-driven	development,	and	continuous	deployment	to	varying	degrees.	However,	it	was
Scrum	that	had	the	biggest	impact	on	team	productivity	and	quality—that	is,	until	we
switched	to	Kanban	four	years	ago.	With	Kanban,	for	the	first	time	in	my	long	career,	I
can	honestly	say	that	every	minute	of	work	my	teams	do	adds	value	for	customers	to	our
products.	No	time	or	effort	is	wasted,	and	quality	is	assured.

This	book	is	about	how	you	can	duplicate	my	success	with	your	teams.	I’ve	done	all	the



experimenting.	I’ve	taken	all	the	missteps.	I’ve	culled	what’s	important,	and	I’ve	laid	it
out	for	you	in	plain	language	and	straightforward	steps	so	that	you	get	just	the	benefits.
Don’t	let	your	peers	read	this	book,	make	use	of	Kanban,	and	start	making	you	look
antiquated.	Take	the	easy	steps	I	describe	and	start	producing	better	software	that
customers	love—with	high	quality,	on	time,	and	at	low	cost.

Who	should	read	this	book
This	book	is	for	practicing	or	aspiring	software	development	professionals.	You	might
have	started	creating	software	in	the	1960s	or	are	just	now	graduating	from	college.	You
could	be	part	of	an	established	software	company	or	an	IT	organization	within	a	larger
company,	or	you	could	be	a	do-it-yourself	app	or	web	developer.	You	might	be	a	software
analyst,	project	manager,	program	manager,	developer,	tester,	project	lead,	or	development
manager.	So	long	as	you	are	a	serious	practitioner	of	software	development,	you	will	find
this	book	enlightening	and	invaluable.

This	book	provides	pragmatic	and	prescriptive	step-by-step	instructions	on	how	to
produce	the	most	value	for	your	customers,	with	the	highest	quality	at	the	lowest	cost	in
the	least	amount	of	time.	I’ve	included	diagrams,	tables,	charts,	worksheets,	rude	Q	&	A
sections,	and	troubleshooting	sections	to	clarify	concepts	and	guide	you	toward	success.
This	book	also	has	chapters	especially	for	people	who	want	to	adapt	from	traditional
Waterfall	methods	or	evolve	from	Scrum.

This	book	might	not	be	for	you	if	…
Although	the	last	chapter,	“Further	resources	and	beyond,”	covers	the	basic	theory	behind
Kanban	and	other	techniques,	this	book	might	not	be	for	you	if	you’re	looking	for	a	deep
reference.	Students,	academics,	and	consultants	might	prefer	a	different	text	for	in-depth
analysis	of	theory	and	practice.	I	suggest	several	such	texts	in	the	last	chapter.

Organization	of	this	book
The	book	follows	the	progression	that	a	feature	team	(3–10	people)	might	experience
when	learning	Kanban:

	Chapter	1,	“Getting	management	consent,”	covers	approaches	and	steps	for	gaining
consent	from	management	to	use	Kanban	(a	necessary	condition	before	you	start).
This	chapter	includes	an	open	letter	to	your	manager	with	a	sample	proposal.

	Chapter	2,	“Kanban	quick-start	guide,”	can	get	you	going	with	Kanban	within	a	few
days,	provided	you	have	an	existing	backlog	of	work.	The	chapter	also	includes	a
troubleshooting	section.

	Chapter	3,	“Hitting	deadlines,”	helps	team	members	fill	and	order	their	backlog	as
well	as	estimate	how	long	their	project	will	take	and	how	many	resources	they’ll
need.

	Chapter	4,	“Adapting	from	Waterfall,”	and	Chapter	5,	“Evolving	from	Scrum,”	are
for	teams	that	currently	use	traditional	Waterfall	or	Scrum.	These	chapters
summarize	the	argument	for	using	Kanban,	provide	the	steps	to	adapt	or	evolve	to



Kanban,	and	answer	the	questions	a	team	might	have.	These	chapters	and	their	rude
Q	&	A	sections	are	based	on	my	direct	experience	with	introducing	traditional
Waterfall	and	Scrum	teams	to	Kanban.

	Chapter	6,	“Deploying	components,	apps,	and	services,”	focuses	on	delivering	the
value	you	produce	with	Kanban	to	customers—everything	from	continuous
integration	to	continuous	deployment.

	Chapter	7,	“Using	Kanban	within	large	organizations,”	is	for	teams	that	use	Kanban
within	large	projects	of	hundreds	or	thousands	of	engineers,	including	how	to	fit	in
and	report	up.

	Chapter	8,	“Sustained	engineering,”	is	a	special	contribution	from	James	Waletzky
about	how	to	apply	Kanban	to	perform	postrelease	software	maintenance.

	Chapter	9,	“Further	resources	and	beyond,”	provides	an	overview	of	the	theoretical
underpinnings	of	Kanban	and	covers	how	you	can	improve	beyond	the	practices
described	in	the	previous	chapters.	This	chapter	provides	resources	for	those	who
want	to	continue	learning	and	evolving.

Acknowledgments
I’ll	start	by	congratulating	Microsoft	Press	on	its	thirtieth	anniversary.	It	was	at	the
anniversary	party	in	Redmond	that	Devon	Musgrave	approached	me	about	writing	this
book.	Many	thanks	to	Devon	for	his	suggestion	and	for	championing	the	book’s
publication.	I’m	also	deeply	indebted	to	my	editor,	John	Pierce,	who	did	wonders	to	the
readability	and	consistency	of	my	words.

This	book	had	six	reviewers:	David	Anderson,	Corey	Ladas,	Richard	Hundhausen,
James	Waletzky,	Doug	Thompson,	and	Vijay	Garg.	Doug	and	Vijay	currently	work	on	two
of	my	teams	and	use	Kanban	every	day.	Their	feedback	was	essential	to	the	clarity	and
accuracy	of	the	text	and	its	examples.	James	Waletzky	is	a	passionate	practitioner	of
Agile.	We’ve	worked	together	in	the	past,	and	his	candor	and	critique	have	guided	my
writing	for	years.	James,	in	his	awesomeness,	also	supplied	the	chapter	on	sustained
engineering	(Chapter	8).	Rich	joined	this	project	late	but	provided	tremendous	suggestions
and	a	tight	connection	back	to	the	Agile	Project	Management	series.	In	all,	I	believe	you
can’t	produce	worthwhile	designs,	code,	or	commentary	without	thoughtful	expert	review.
To	the	extent	that	this	book	is	worthwhile,	it	is	due	to	my	exceptional	reviewers.

I	want	to	especially	recognize	David	Anderson	and	Corey	Ladas.	David	has	been	an
industry	leader	in	project-management	techniques	throughout	his	career.	He	is	the
originator	of	the	Kanban	Method	for	evolutionary	improvement.	David	speaks	and	trains
professionals	around	the	world.	David	has	always	been	generous	with	his	time	and
insights	ever	since	we	first	collaborated	at	Microsoft	years	ago.	David’s	contributions	to
this	book’s	accuracy,	framing,	and	language	are	essential	and	extensive.	Even	with	all	his
traveling,	David	found	substantial	time	to	carefully	review	this	work,	for	which	I	am
immensely	grateful.

Corey	Ladas’s	influence	on	my	thinking	and	career	cannot	be	overstated.	Corey
introduced	me	to	Scrum,	Agile,	axiomatic	design,	TRIZ,	House	of	Quality,	and	numerous
other	techniques.	In	2007,	Corey	invited	me	to	Corbis	to	see	the	work	that	he	and	David



Anderson	were	doing	there	with	Kanban.	I	was	instantly	enthralled.	Although	it	would
take	me	a	few	years	to	try	it	myself,	I	immediately	shared	the	work	with	as	many	peers	as
would	listen.	Corey	is	a	deep	thinker,	who	consistently	challenges	the	status	quo.	He	is
fearless	and	unflinching.	Corey	can	be	tough	and	defiant,	but	he	is	always	honest	and
insightful.	I	am	delighted	to	call	him	my	friend.	Corey	was	the	inspiration	for	this	book.

Finally,	I’d	like	to	thank	my	past	managers	(Curt	Steeb,	Boyd	Multerer,	and	Kareem
Choudhry)	for	making	Xbox	such	a	great	place	to	work,	all	my	team	members	over	the
years	who	embraced	experimentation	and	shared	in	my	success,	and,	most	of	all,	my	wife,
Karen,	and	my	sons,	Alex	and	Peter,	for	making	me	so	very	happy.

Downloads:	Sample	files
I’ve	provided	a	couple	of	sample	files,	which	you	can	download	from	the	following	page:

http://aka.ms/pmwithkanban/files

The	first	file	is	a	sample	of	a	letter	and	proposal	you	can	provide	to	your	management	to
gain	consent	to	use	Kanban.	The	second	is	an	Excel	workbook	with	every	sample
spreadsheet	shown	in	the	book,	including	those	to	calculate	work-in-progress	(WIP)
limits,	estimate	completion	dates,	and	even	chart	productivity	and	quality	over	time.

Follow	the	instructions	on	the	page	to	download	the	files.

System	requirements
The	files	provided	online	are	in	the	Office	Open	XML	format.	The	basic	requirement	for
using	the	files	is	to	have	an	Excel	Viewer	and	Word	Viewer	installed	on	your	computer.

You	can	download	the	Excel	viewer	from	http://www.microsoft.com/en-
us/download/details.aspx?id=10.

You	can	download	the	Word	view	from	http://www.microsoft.com/en-
us/download/details.aspx?id=4.

Errata,	updates,	&	book	support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.
You	can	access	updates	to	this	book—in	the	form	of	a	list	of	submitted	errata	and	their
related	corrections—at:

http://aka.ms/pmwithkanban/errata

If	you	discover	an	error	that	is	not	already	listed,	please	submit	it	to	us	at	the	same	page.

If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.

Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not	offered
through	the	previous	addresses.	For	help	with	Microsoft	software	or	hardware,	go	to
http://support.microsoft.com.

http://aka.ms/pmwithkanban/files
http://www.microsoft.com/en-us/download/details.aspx?id=10
http://www.microsoft.com/en-us/download/details.aspx?id=4
http://aka.ms/pmwithkanban/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com


Free	ebooks	from	Microsoft	Press
From	technical	overviews	to	in-depth	information	on	special	topics,	the	free	ebooks	from
Microsoft	Press	cover	a	wide	range	of	topics.	These	ebooks	are	available	in	PDF,	EPUB,
and	Mobi	for	Kindle	formats,	ready	for	you	to	download	at:

http://aka.ms/mspressfree

Check	back	often	to	see	what	is	new!

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most
valuable	asset.	Please	tell	us	what	you	think	of	this	book	at:

http://aka.ms/tellpress

We	know	you’re	busy,	so	we’ve	kept	it	short	with	just	a	few	questions.	Your	answers	go
directly	to	the	editors	at	Microsoft	Press.	(No	personal	information	will	be	requested.)
Thanks	in	advance	for	your	input!

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:	http://twitter.com/MicrosoftPress

http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress


Chapter	1.	Getting	management	consent

This	book	describes	how	you	can	manage	software	projects	with	great	efficiency,
predictability,	and	simplicity	using	Kanban.	Kanban	helps	you	deliver	value	to	your
customers	faster	than	Waterfall,	Scrum,	or	just	about	any	other	project-management
method.	It	helps	you	deliver	that	value	with	high	quality,	on	time,	and	on	budget,	yet	it
will	still	fail	miserably	without	the	consent	of	management.

Before	you	engage	in	any	kind	of	change,	even	one	as	effective	as	Kanban,	you	must
gain	consent	from	your	management.	Why?	Because	employees	tend	to	do	what	they	are
told	to	do—until,	that	is,	those	employees	realize	that	they	are	actually	rewarded	for	doing
something	else.	The	people	who	tell	employees	what	to	do	are	managers.	The	people	who
determine	employee	rewards	are	managers.	Change	only	succeeds	if	managers	say,	“Yes,
you	should	do	this,”	and	later	reward	employees	who	do	it.

Thus,	for	you	and	your	team	to	successfully	adopt	Kanban,	you	must	first	convince
your	management	to	support	it,	or	at	least	to	not	obstruct	it	and	not	penalize	team
members	for	using	it.	Even	if	you	are	a	manager	yourself,	you	still	must	ensure	that	your
management	chain	won’t	oppose	Kanban.

Convincing	management	to	make	a	change,	even	a	good	change,	can	be	difficult.	A
proven	approach	is	to	present	a	proposal	that	briefly	outlines	the	problem,	the	solution,	the
risks	with	mitigations,	measures	of	success	or	failure,	and	a	plan	for	going	forward.

For	your	convenience,	I	provide	a	sample	proposal	in	this	chapter,	in	the	form	of	an
open	letter	to	your	manager.	(You	can	download	an	editable	electronic	copy.	See	the
book’s	introduction	for	details.)	If	your	manager	approves,	you	can	move	forward	with
confidence.	If	your	manager	does	not	approve,	even	after	you	address	his	or	her	concerns,
you	should	either	stop	reading	and	shelve	this	book	or	find	a	new	manager.	Good	luck!

The	topics	covered	are:

An	open	letter	to	your	manager

Moving	forward

Checklist

An	open	letter	to	your	manager
Dear	Sir	or	Madam,

Our	team	would	like	to	use	Kanban	to	manage	its	project	work.	This	proposal	lays	out	the
need	for	this	change,	why	Kanban	was	selected	as	a	solution,	the	risks	involved	and
suggested	mitigations,	and	a	plan	to	roll	out	the	change.	We	look	forward	to	your	feedback
to	this	proposal	and	to	enacting	the	plan	once	we’ve	addressed	any	concerns	you	may
have.



Problem
We	currently	spend	significant	time	doing	work	that’s	unrelated	to	delivering	value	to	our
customers.

	We	attend	an	excessive	number	of	meetings	about	planning	and	process.

	Problems	fester	for	weeks	or	months	before	they	are	noticed,	analyzed,	and
corrected.

	Careless	team	members	are	rewarded	for	pure	speed,	encouraging	them	to	create
costly	bugs	and	submit	incomplete	work.

	Quality	goes	unchecked	for	weeks	or	months,	which	builds	up	an	extensive	amount
of	rework.

	Schedules	slip	as	requirements	change	and	work	is	reprioritized,	which	forces	more
meetings	about	planning	and	process	and	wastes	the	effort	spent	on	abandoned
work.

In	the	end,	our	products	are	delivered	late	with	less	functionality	and	lower	quality	at
higher	cost.	We	used	to	just	accept	this	outcome	because	we’ve	always	worked	this	way.
However,	we	now	feel	we’ve	found	a	simple	and	effective	solution.

Solution
Kanban	is	a	simple	project-management	technique	that’s	based	on	Toyota’s	just-in-time
scheduling	mechanism.	Using	Kanban	to	manage	our	project	work	will	allow	us	to	focus
all	our	time	and	energy	on	delivering	value	to	our	customers.

	Kanban	has	planning	meetings	only	on	demand	and	no	special	meetings	about
process.

	Kanban	visualizes	project	workflow,	spotlights	bottlenecks	the	day	they	occur,	and
forces	team	members	to	immediately	resolve	the	issue	or	swarm	to	fix	it.

	Kanban	prevents	careless	team	members	from	prematurely	designating	work	as
complete.

	Kanban	enforces	clear	quality	bars	at	each	step,	driving	quality	upstream.

	Kanban	minimizes	work	in	progress,	freeing	teams	to	adjust	daily	to	new	priorities
and	requirements	with	little	sunk	cost	and	allowing	a	team	to	deliver	on	time.

Kanban	isn’t	a	magic	bullet.	It	won’t	fix	every	problem.	What	it	can	do	is	simplify	our
project	management;	reduce	time	lost	to	meetings,	bottlenecks,	and	rework;	better	govern
our	product	quality;	and	make	our	throughput	of	customer	value	smoother,	faster,	and
more	predictable.

As	with	any	work	change,	our	team	will	need	a	few	weeks	to	adjust	to	Kanban	and	a
few	months	to	master	it.	However,	we’ll	all	enjoy	the	benefits—delivering	on	time	with
greater	functionality	and	higher	quality	at	lower	cost.



Risks
Any	change	has	risks.	We	list	the	ones	for	Kanban	along	with	our	planned	mitigations.

Although	an	initial	drop	in	productivity	is	expected	during	the	first	few	weeks	(which
occurs	with	any	change),	the	subsequent	increases	in	productivity	should	quickly	recover
the	lost	output.

Plan
Here	is	an	outline	of	our	plan	of	action,	divided	into	four	phases:



Each	phase	is	contingent	upon	a	successful	prior	phase.	Success	is	measured	by
completion	of	each	phase’s	activities	and	the	continued	engagement	of	the	team.	Overall
success	is	measured	by	improvement	of	productivity	and	bug	metrics	over	the	baseline	set
in	the	first	phase.

We	look	forward	to	your	feedback	to	this	proposal	and	to	enacting	the	plan	after	we’ve
addressed	any	concerns	you	may	have.

Sincerely,

A	team	passionate	about	delivering	the	greatest	value	to	its	customers

Moving	forward
Some	managers	will	support	the	initiative	of	your	team	and	approve	your	proposal	with
few	reservations.	For	them,	tracking	productivity	and	bug	metrics	as	your	team	improves
will	provide	all	the	positive	feedback	they	need	to	stand	by	their	decision.

Some	managers	will	be	more	skeptical	and	ask	for	a	deeper	review.	These	managers
often	need	to	experience	Kanban	for	themselves	to	remove	the	mystery,	understand	the
source	of	productivity	and	quality	gains,	and	gain	confidence	in	the	approach	that	only
personal	experience	provides.	Fortunately,	Kanban	simulations	are	available	that	deliver
hands-on	practice	with	the	approach	and	demonstrate	how	and	why	it	works.	It’s	worth
bringing	in	an	experienced	Kanban	coach	to	run	the	simulation	and	answer	your
manager’s	questions.	Coaches	often	have	programs	that	specifically	target	management



concerns.

After	your	manager’s	concerns	are	addressed,	you	can	move	forward	with	the	plan
described	in	the	letter	and	detailed	in	the	chapters	that	follow.	For	Waterfall	and	Scrum
teams,	I	have	included	specific	chapters	that	illustrate	how	to	smooth	the	adoption	of
Kanban.

	Inside	Xbox

When	my	teams	switched	to	Kanban,	I	didn’t	need	management	permission.	As	an
Xbox	development	manager,	I	have	the	discretion	to	specify	the	methods	my	teams
use.	However,	my	teams	did	need	to	report	progress	on	features	and	bugs	using	the
Xbox-wide	tracking	system.	(We	first	used	a	Microsoft	internal	system,	Product
Studio,	then	switched	to	Visual	Studio	Team	Foundation	Server	(TFS),	and	now	use
Visual	Studio	Online.)	In	Chapter	7,	“Using	Kanban	within	large	organizations,”	I
talk	about	how	to	fit	Kanban	into	a	big	project	seamlessly.

I	first	used	Kanban	with	some	of	my	Scrum	teams	that	worked	on	web	services.	I
had	described	Kanban	to	all	my	teams	and	asked	whether	any	would	be	interested	in
trying	it.	Two	teams	were,	and	they	quickly	adapted	their	work	cadence	for
continuous	delivery.	Both	teams	liked	Kanban	and	said	they	wouldn’t	go	back	to
Scrum.	Both	also	quickly	landed	on	many	of	the	specific	recommendations	you’ll
read	about	in	the	coming	chapters.

Eight	months	after	I	introduced	my	teams	to	Kanban,	a	reorg	moved	me	to	a	new
Xbox	group.	I	had	to	build	much	of	the	new	group	from	scratch,	hiring	engineers
from	around	Microsoft	who	were	mostly	experienced	with	Waterfall.	Since	we	had
no	established	practices,	I	simply	stated	that	my	teams	used	Kanban.	The	Waterfall
engineers	took	to	it	quickly	and	were	free	to	adjust	Kanban	to	their	needs,	so	long	as
they	followed	the	key	principles	I	outline	in	this	book.	I	capture	many	of	their
adjustments	in	the	“Troubleshooting”	section	in	Chapter	2,	“Kanban	quick-start
guide.”

Checklist
Here’s	a	checklist	of	actions	to	take	when	gaining	management	consent	for	using	Kanban:

	Ask	management	for	consent	to	use	Kanban.

	Update	the	proposal	language,	risks,	and	plan	as	needed.

	Send	the	proposal	to	your	management.

	Provide	your	management	with	a	review	of	Kanban	and	with	hands-on	experience
with	Kanban	as	needed.

	Address	any	concerns	your	management	raises.

	Create	a	baseline	of	productivity	and	bug	metrics.

	Execute	your	plan	of	action,	tracking	your	improvements	in	productivity	and	bug
metrics.





Chapter	2.	Kanban	quick-start	guide

Kanban	provides	a	simple	approach	to	delivering	high-quality	value	to	your	customers,	on
time	and	on	budget.	If	you	already	have	a	set	of	work	items	to	do	and	a	team	ready	to	do
them	(as	most	teams	do),	use	this	chapter	to	get	started	right	away.	For	those	who	don’t
yet	have	a	set	of	work	items	or	who	need	to	put	a	team	in	place,	Chapter	3,	“Hitting
deadlines,”	describes	how	to	plan	your	project	and	staff	your	team.

The	quick-start	steps	for	using	Kanban	to	complete	your	work	backlog	are:

Step	1:	Capture	your	team’s	high-level	routine

Step	2:	Redecorate	your	wall

Step	3:	Set	limits	on	chaos

Step	4:	Define	done

Step	5:	Run	your	daily	standup

Troubleshooting

Checklist

Step	1:	Capture	your	team’s	high-level	routine
Team	members	do	many	kinds	of	work:

	Discuss	the	product	with	partners,	teammates,	and	customers.

	Write	and	answer	email,	and	engage	in	relevant	social	media.

	Find,	evaluate,	and	fix	bugs	and	operational	issues	(tickets).

	Track	feedback.

	Produce	improvements	to	products	and	infrastructure.

While	all	this	work	is	important,	Kanban	focuses	primarily	on	the	last	and	most	intrinsic
item:	producing	improvements	to	products	and	infrastructure.

There	are	exceptions	that	Kanban	can	also	manage,	such	as	the	following:

	Preparing	for	a	major	presentation.

	Writing	proposals	or	major	design	documents,	or	rolling	out	major	changes.

	Fixing	a	particularly	complex	bug	or	operational	issue.

	Designing	a	response	to	particularly	important	feedback.

I’ll	treat	these	exceptions	just	as	I	treat	producing	improvements	(more	details	in	this
chapter’s	“Troubleshooting”	section).	For	now,	let’s	focus	on	product	and	infrastructure
improvements.

You	probably	already	follow	a	high-level	routine	for	producing	improvements.	Here’s
the	one	my	feature	teams	(3–10	people)	use:



Teams	that	use	very	formal	methods	(perhaps	for	compliance)	or	that	do	in-depth	design
may	use	multiple	steps	to	specify	a	work	item.	Teams	that	have	complex	procedures	or
standards	may	use	multiple	steps	to	implement	or	validate	a	work	item.	Please	write	down
the	steps	familiar	to	your	team.

Here	are	a	few	guidelines	that	will	help	you	keep	your	routine	simple:

	Include	only	the	steps	that	your	team	does	Leave	out	the	steps	that	occur	before
items	reach	your	team	(such	as	high-level	planning	or	specification	done	by	other
teams)	and	the	steps	that	take	place	after	items	are	delivered	to	customers	and
partners.	You	could	combine	teams	and	include	those	steps,	but	we’re	keeping	things
simple	for	this	quick-start	guide.

	If	two	sequential	steps	are	usually	done	by	the	same	person,	combine	those
steps	Again,	you	want	to	keep	things	simple	at	first.	If	the	developer	for	an	item	also
usually	writes	unit	tests,	implements	the	code,	and	drives	the	code	review,	just	call
those	three	consecutive	steps	“Implement.”	Once	your	work	is	flowing	smoothly,
you	may	want	to	reexamine	each	small	step	to	further	improve	quality	and
throughput.	Chapter	9,	“Further	resources	and	beyond”	has	details.

	When	in	doubt,	use	the	steps	that	I	use	for	my	teams	These	steps	are	fairly
common:	specify,	implement,	validate,	and	deliver.

Step	2:	Redecorate	your	wall
Now	that	you’ve	captured	the	steps	in	your	team’s	high-level	routine,	you	need	to	post	the
steps	on	a	signboard	close	to	where	your	team	resides.	Your	team	members	will	use	this
signboard	to	visualize	progress	and	attach	note	cards	to	it	to	track	their	work.	(Kanban
means	“signboard”	in	Japanese,	but	that’s	not	a	perfect	translation.	At	Toyota,	it	means
“signal	card”—the	note	cards	that	track	and	control	work.	Another	translation	of	Kanban,
from	Chinese,	is	looking	at	the	board—thus	referring	to	the	daily	standup	meeting.	Since
these	three	elements	are	essential	to	Kanban,	it’s	a	fitting,	versatile	name.)

You	can	hold	the	note	cards	in	place	on	a	whiteboard	or	wall	by	using	sticky	notes,	tape,
or	magnets	or	attach	them	to	a	corkboard	by	using	pushpins.	One	of	my	Xbox	teams	used
magnets	taped	to	the	backs	of	cutouts	of	their	Xbox	Live	avatars.

Having	a	signboard	close	to	where	your	team	resides	brings	up	two	interesting
questions:

	Why	not	track	your	work	using	only	online	tools?	Visualizing	workflow	is	one	of
Kanban’s	core	principles.	Without	engaging	with	workflow	in	a	visceral	manner,
team	members	won’t	recognize	and	resolve	issues	as	quickly.	Manipulating	note
cards	on	a	signboard	is	more	engaging,	faster,	and	simpler	than	doing	so
electronically.	(For	large	organizations,	your	team’s	project	manager	can	quickly
transfer	daily	status	to	electronic	tracking	tools.)



	Should	your	team	sit	together	near	the	signboard?	Teams	typically	work	faster
when	team	members	sit	in	close	proximity,	which	enables	quicker,	easier,	and	more
spontaneous	communication.	Team	members	need	not	sit	in	a	“team	room”	or	in
cubicles—offices	in	a	shared	hallway	work	just	as	well	in	my	experience.	Having
the	signboard	nearby	is	convenient	and	promotes	a	sense	of	identity	(“our	board	in
our	area”).	Kanban	can	still	work	well	for	distributed	teams	through	a	virtual
signboard	online,	but	if	you’re	given	the	choice,	sitting	in	close	proximity	near	a
physical	signboard	is	better.

After	choosing	a	location	for	your	signboard,	it’s	time	to	construct	two	columns	for
each	step,	plus	a	double-width	column	on	the	left	for	the	work	backlog.	The	columns	for
each	step	should	be	the	width	of	a	note	card	(sticky	note	or	index	card).	You	can	use	tape
or	markers	to	delineate	the	columns.	Here’s	what	your	signboard	might	look	like.

Looking	back	at	the	steps	in	the	high-level	routine	that	my	teams	use,	notice	how	the
first	and	last	steps	are	treated	differently	from	the	middle	steps.

	The	first	step,	“Take	an	item	from	the	backlog,”	is	replaced	by	a	holding	area	for
pending	work.	Note	cards	in	the	backlog	are	positioned	in	the	order	in	which	you
want	to	work	on	the	items	(your	team	can	reorder	the	cards	at	any	time).	The	top
card	is	pulled	off	when	the	team	is	ready	to	work	on	the	next	item.	Chapter	3
describes	how	to	fill	and	sort	the	backlog.

	The	middle	steps—specifying,	implementing,	and	validating	work—are	divided	into
two	columns	each.	The	left	column	of	each	step	holds	active	note	cards	(items	being
specified,	implemented,	or	validated).	The	right	column	of	each	step	holds	note
cards	that	have	completed	that	step	(items	that	have	been	specified,	implemented,	or
validated).

	The	last	step,	“Deliver	it	to	customers	or	partners,”	isn’t	shown	because	that	action
is	typically	handled	in	bulk	by	a	separate	process,	like	integration	into	the	main
branch	of	a	big	project	or	a	deployment	to	production	of	a	web	service.	I	have	a
detailed	discussion	of	the	last	step	in	Chapter	6,	“Deploying	components,	apps,	and
services.”



	Inside	Xbox

Here’s	an	actual	early	signboard	from	one	of	my	teams.	We	became	more
sophisticated	with	the	work-in-progress	(WIP)	limits	and	added	a	Track	column	to
Implement	later	in	the	project.	I	describe	these	techniques	later	in	this	chapter.

I	know	this	image	is	blurry	and	hard	to	read,	but	that’s	to	protect	confidentiality.
At	the	top	left	are	the	foundations	of	Kanban:	“Visualize	your	work”	and	“Limit
WIP.”	Top	center	is	a	web	photo	of	the	maple	bar	cake	the	team	decided	would	be
its	celebratory	reward	for	completing	its	current	project.	The	leftmost	column	is	the
backlog.	The	next	pair	of	columns	is	Specify	(hidden	behind	a	sticky	note)	and
Done,	followed	by	the	pair	of	Implement	columns	and	the	pair	of	Validate	columns.
Note	the	WIP	limits	(described	in	the	next	section)	written	above	each	pair	of
columns.	The	completion	rules	for	each	step	are	written	across	the	bottom	of	the
board.

Step	3:	Set	limits	on	chaos
A	large	part	of	project	management	is	limiting	the	chaos	inherent	in	group	work.	This	step
is	so	important	that	you	can	often	identify	the	essence	of	a	project-management
methodology	by	how	it	limits	chaos.

	In	a	traditional	Waterfall	approach,	chaos	is	limited	by	specifying	all	the	work	up
front,	enforcing	a	formal	change-request	procedure,	and	synchronizing	work	across
teams	at	predetermined	milestones.

	In	Scrum,	chaos	is	limited	by	planning	time-boxed	sprints,	withholding	plan
changes	until	the	next	sprint,	and	synchronizing	with	the	customer	at	the	end	of	each



sprint.

	In	Kanban,	chaos	is	limited	by	directly	limiting	the	amount	of	work	in	progress
(WIP)—literally,	the	number	of	note	cards	allowed	at	each	step.	Simple,	yet
effective.

The	WIP	limits	in	Kanban	serve	two	essential	roles	in	controlling	chaos.	First,	they
limit	the	amount	of	work	affected	by	changing	priorities,	requirements,	or	designs.	This
frees	your	team	to	respond	quickly	and	abandon	little.	Second,	WIP	limits	restrict	the	flow
of	work	to	match	the	pace	of	the	slowest	step	(also	known	as	the	“constraint”).	Because
you	can’t	possibly	complete	work	faster	than	your	slowest	step,	pacing	the	other	steps	to
match	it	yields	the	greatest	efficiency	and	highest	productivity.	(See	Chapter	9	for	details.)

You	want	to	use	the	smallest	WIP	limits	that	still	keep	your	team	fully	engaged	in
delivering	value	to	customers.

	Start	with	setting	the	WIP	limit	for	your	slowest	step	to	the	number	of	team
members	doing	that	step,	plus	a	50	percent	buffer.	That	always	keeps	the	slowest
step	busy	yet	still	limits	the	number	of	note	cards	at	that	step.

	Then	use	ratios	to	set	the	WIP	limits	for	the	other	steps	so	that	their	throughput
matches	the	slowest	step.

	The	result	is	starting	values	that	you	can	continually	adjust	as	needed	to	maximize
throughput.

Here’s	a	worksheet	with	values	from	one	of	my	old	Xbox	teams.	(You	can	download	an
online	Excel	spreadsheet	with	the	formulas.)

For	the	team	in	this	example:

	A	On	average,	each	analyst	can	specify	roughly	six	items	per	month,	each	developer
can	implement	roughly	two	items	per	month,	and	each	tester	can	validate	roughly
three	items	per	month.	(Since	you’re	using	ratios	here,	you	could	use	per	week	or
per	day	if	that’s	easier.)

	B	Implementing	was	the	slowest	step	(two	items	per	month	per	person).

	C	The	team	had	three	developers	implementing	items	from	the	backlog.

	D	The	throughput	was	six	items	per	month	(2	*	3).

	E	Dividing	that	throughput	by	the	average	rates	for	each	step	gives	you	the	people



needed	for	each	step	to	match	six	items	per	month	(one	analyst,	three	developers,
and	two	testers).

	F	Adding	50	percent	to	those	people	totals	and	rounding	up	gives	you	each	step’s
WIP	limit	(2	for	Specify,	5	for	Implement,	and	3	for	Validate).

The	WIP	limits	from	the	worksheet	are	fine	starting	values.	The	limits	can	be	adjusted
at	any	time	to	maximize	team	output	and	agility.	This	chapter’s	“Troubleshooting”	section
describes	when	and	how	to	adjust	WIP	limits	for	the	best	outcomes.

It’s	handy	to	write	the	WIP	limits	on	your	signboard	next	to	each	step,	like	this:

Notice	how	the	WIP	limit	applies	to	the	total	number	of	active	and	done	cards	for	each
step,	except	for	the	last	step,	which	has	a	limited	number	of	active	cards	but	an	unlimited
number	of	done	cards.	(When	items	are	through	validation,	they	are	completely	done	and
basically	off	the	board.)

	Inside	Xbox

At	Microsoft,	a	team’s	project	manager	is	also	its	business	analyst.	We	call	this	role
program	manager	(PM).	While	using	one	person	for	both	roles	might	be	efficient,	it
can	cause	problems	if	the	PM	is	weak	in	one	area.	For	large	projects	(100+	people),
the	two	roles	are	broken	up,	with	a	specialized	PM,	called	a	release	manager,	taking
on	the	project-management	responsibilities,	and	feature-team	PMs	acting	mostly	as
analysts,	but	who	are	also	responsible	for	reporting	their	team’s	status	to	the	release
manager.	PM	is	a	tricky	role	at	Microsoft—good	PMs	are	highly	valued.

My	current	teams	don’t	have	testers.	Developers,	automation,	or	partners	validate
improvements	before	they	are	used	by	larger	customer	audiences,	basically	running
a	DevOps	model	(see	Chapter	9,	“Further	resources	and	beyond,”	for	details	on
DevOps).	We	still	have	a	Validate	step	because	that	is	real	work	that	must	be	tracked
for	each	item,	even	though	many	of	the	people	performing	that	step	might	not	be	on
our	team.	The	more	you	use	Kanban,	the	more	you	focus	on	the	smooth	flow	of
work	than	on	getting	caught	up	in	the	people	assigned.	That	turns	out	to	be	good	for
teamwork,	efficiency,	and	continuously	delivering	customer	value.



Step	4:	Define	done
Kanban	regulates	quality	through	a	deceptively	simple	mechanism.	Before	a	note	card	is
moved	from	the	left	to	the	right	column	of	a	step,	the	work	on	that	item	must	pass	certain
rules—your	definition	of	“done”	for	that	step	(also	known	as	the	pull	criteria).	The	use	of
two	columns	per	step	in	Kanban	may	seem	excessive,	but	it	makes	all	the	difference.

	Items	in	a	step’s	Done	column	count	toward	that	step’s	WIP	limit	(except	for	the	last
step).	Remember,	you	want	to	match	throughput	with	the	slowest	step.	Thus,	if
implementation	is	taking	a	long	time,	you	could	have	two	items	in	the	Specify	step’s
Done	column	and	not	be	allowed	to	specify	any	more	work.	That’s	good.	You
shouldn’t	overload	implementation,	and	you	should	probably	be	helping	to	unblock
implementation.	More	about	that	in	this	chapter’s	“Troubleshooting”	section.

	Kanban	distinguishes	between	finishing	one	step	and	starting	the	next.	Of	course,
those	are	always	two	different	things.	However,	signboards	used	for	Scrum	or	other
daily	standup	meetings	typically	move	an	item	to	the	next	step	on	the	board	as	soon
as	it’s	done,	thus	losing	the	important	distinction	between	items	ready	for	the	next
step	and	items	actively	in	the	next	step.

	Separating	the	completion	of	one	step	from	the	initiation	of	the	next	decouples	the
steps.	This	frees	you	to	have	rules	that	define	what	it	means	to	be	done	with	each
step,	regardless	of	what	the	next	step	happens	to	be.

With	the	steps	decoupled,	your	team	needs	to	define	“done”	for	each	step.	I	strongly
recommend	that	you	define	this	criteria	together	as	a	team,	with	everyone	committing	to
follow	the	definitions.	Here	are	examples	from	another	of	my	Xbox	teams	(you	might
have	noticed	the	rules	at	the	bottom	of	their	signboard	shown	earlier).

	Specify	done	rule	All	items	broken	down	into	tasks	that	can	be	finished	in	less	than
a	week	each,	and	quick	specs	completed	for	each	item.

	Implement	done	rule	Code	is	reviewed	and	unit	tested,	the	static	analysis	is	clean,
the	code	is	checked	in,	acceptance	tests	pass,	and	the	customer-facing
documentation	is	complete.

	Validate	done	rule	The	work	is	deployed	to	production	and	tried	by	a	significant
subset	of	real	customers.	All	issues	found	are	resolved.

These	rules	come	with	a	few	best	practices:

	The	first	step,	Specify	in	my	example,	often	includes	breaking	down	backlog	items
into	similarly	sized	short	tasks,	each	with	its	own	new	note	card.	(For	example,
visiting	Disneyland	could	be	broken	into	seeing	Adventureland,	Frontierland,
Fantasyland,	and	Tomorrowland.)	The	WIP	limit	for	the	Specify	step	refers	to	the
original	backlog	items.	You	can	think	of	the	smaller	items	as	being	grouped	within
that	step.	Upon	leaving	the	step,	the	smaller	items	are	considered	separate	(each
short	task	counts	toward	the	implementation	WIP	limit).	This	breakdown	does
impact	throughput,	so	you	may	need	to	adjust	your	WIP	limits	over	time	(details	in
this	chapter’s	“Troubleshooting”	section).

	Before	someone	moves	a	note	card	from	left	to	right	in	a	step,	a	team	member



should	check	that	the	done	rules	are	met.	It’s	these	agreed-upon	rules	that	drive
quality	upstream	at	every	step	and	prevent	lazy	or	careless	team	members	from
taking	credit	for	incomplete	work	that	responsible	team	members	must	finish	and	fix
later.	The	rules	work	only	when	team	members	hold	each	other	accountable	for
following	them.

	Posting	the	rules	at	the	bottom	of	your	signboard	reminds	team	members	to	apply
them	and	provides	a	central	place	to	discuss	the	rules	should	the	team	decide	to
change	them.

Step	5:	Run	your	daily	standup
Now	that	you’ve	defined	what	being	done	means,	your	team	is	ready	to	use	Kanban.	With
a	loaded	backlog,	no	planning	meetings	are	necessary.	There	are	no	milestones,	no	sprints,
and	no	retrospectives.	Kanban	flows	continuously,	so	long	as	there	is	work	to	do.

Naturally,	you	can	still	bring	the	team	together	at	any	time	for	design	reviews,	demos,
customer	reviews,	and	discussions	about	product	and	process	improvements.	However,	the
only	meetings	Kanban	typically	has	are	daily	standup	meetings	at	the	team	signboard.

Any	team	member	can	run	the	daily	standup.	My	teams’	project	managers	usually	do
this	because	it	helps	them	update	Xbox	online	tracking	tools.	The	one	required	agenda
item	is	asking	whether	any	team	members	are	blocked	or	otherwise	need	assistance,	then
assigning	people	(often	the	project	manager)	to	resolve	the	issues.	Experienced	teams	can
complete	the	standup	in	five	minutes.

My	teams	also	like	to	use	the	daily	standup	to	learn	what	other	members	are	doing	and
to	celebrate	the	progress	they	are	making	together.	This	makes	the	meetings	a	little	longer,
but	it	builds	a	shared	sense	of	pride	and	ownership.

For	an	example	of	a	standup,	I’ll	pretend	that	the	team	moves	note	cards	only	during	the
standup	(not	the	most	efficient	process,	but	easiest	to	explain).	In	reality,	any	team
member	moves	any	card	at	any	time,	so	long	as	the	move	doesn’t	exceed	WIP	limits	and
the	done	rule	is	met.	Also	in	reality,	my	teams	are	a	mix	of	men	and	women,	but	I’ll	stick
to	male	pronouns	by	default.

At	the	start,	let’s	say	the	signboard	looks	like	this:

There	are	seven	planned	items	in	the	backlog.	One	item	is	being	specified,	and	one	item
is	done	being	specified	(having	been	broken	down	into	four	smaller	items,	shown	together
on	the	same	row).	Three	items	are	actively	being	implemented,	and	two	items	are	done
and	ready	to	be	validated.	Finally,	three	items	are	actively	being	validated.	There	are	likely



a	pile	of	note	cards	that	are	done	with	validation	(the	last	step),	but	they	don’t	count
toward	the	last	step’s	WIP	limit.	(One	of	my	Xbox	teams	used	completed	cards	to
wallpaper	a	team	member’s	office	to	surprise	him	when	he	returned	from	vacation.)

At	the	beginning	of	the	daily	standup,	the	project	manager	starts	at	the	last	step,	opening
up	slots	when	items	are	done,	and	works	his	way	to	the	left.	(Because	of	WIP	limits,	items
can	move	to	the	right	only	if	there’s	room.	Pulling	cards	from	the	left	to	the	right	is	what
makes	Kanban	a	“pull”	system.)

The	project	manager	points	to	the	last	step,	Validate,	and	asks,	“Any	items	done	being
validated?”	Team	members	say	two	items	are	done.	Other	team	members	check	the
Validate	done	rule	with	questions	such	as,	“How	many	customers	were	involved?”	When
the	team	is	satisfied,	team	members	happily	move	the	two	items	to	the	final	Done	column
—more	value	delivered	to	customers!

Because	items	that	are	completely	done	don’t	count	toward	the	final	step’s	WIP	limit,
there’s	room	to	validate	two	more	items.	Team	members	pull	two	cards	from	the
Implement	step’s	Done	column,	decide	who	will	do	which	work	item,	and	then	write	their
names	on	the	cards	they’ve	selected.

	Key	point

Work	item	assignments	are	made	“just	in	time.”	This	avoids	blocking	an	item
because	a	previously	assigned	team	member	is	busy	at	the	time	the	task	is	ready.
(This	chapter’s	“Troubleshooting”	section	has	more	details.)

Next	the	project	manager	asks	whether	any	implementation	items	are	finished.	A	team
member	says	that	one	item	is	done,	and	another	team	members	says,	“That’s	right,	I	did
the	code	review,	checked	the	unit	tests	and	static	analysis,	and	the	customer-facing
documentation	looks	good.	It’s	all	submitted.”	A	team	member	moves	the	completed	item



to	the	right	side	of	the	Implement	step.

Two	slots	are	still	available	for	Implement	(because	two	items	moved	to	Validate),	so
team	members	pull	the	top	two	items	from	the	Specify	step’s	Done	column,	decide	who
will	do	which	work	item,	and	then	write	their	names	on	the	cards	they’ve	selected.

Now	the	project	manager	asks	the	analyst	whether	he’s	finished	specifying	the	one
active	item	he	has.	The	analyst	thanks	team	members	for	their	feedback	on	the	quick	spec
and	says	the	item	broke	down	into	three	smaller	tasks	that	will	each	take	just	a	few	days.
The	analyst	adds	three	new	cards	(for	the	broken-down	tasks,	shown	together	on	the	same
row).

The	analyst	doesn’t	pull	another	item	from	the	top	of	the	backlog	because	the	Specify
step	has	reached	its	WIP	limit	(two	items,	each	of	which	has	been	broken	down	into	tasks
awaiting	implementation).

The	project	manager	asks	whether	anyone	wants	to	change	the	order	of	the	backlog
based	on	new	requests	or	requirements.	A	short	discussion	ensues,	a	new	item	is	added,
and	two	items	swap	places.



Finally,	the	project	manager	asks	whether	anyone	needs	extra	help.	(Remember,	this	is
the	only	required	question	at	daily	standup.	Everything	else	I’ve	described	is	done	by	any
team	member	at	any	time.)	The	project	manager	focuses	particularly	on	implementation
because	the	analyst	is	blocked	until	a	couple	of	more	items	have	completed	the	Implement
step.	One	of	the	team	members	mentions	a	few	things	that	need	to	be	sorted	out,	and	the
analyst	offers	to	help.

The	daily	standup	is	over,	and	everyone	returns	to	work.	The	whole	process	takes	less
than	15	minutes.	The	project	manager	stays	behind	to	enter	the	status	changes	of	items
into	the	organization’s	tracking	tools	and	then	starts	sorting	out	the	issues	raised	during
standup.

Troubleshooting
The	daily	standup	example	went	smoothly,	with	only	one	hitch	(needing	to	help	the
implementation	effort	because	no	more	items	could	be	specified).	However,	all	kinds	of
things	can	happen,	raising	many	questions.	This	section	covers	a	wide	variety	of	common
issues.	I’ll	start	with	the	one	from	the	example,	“What	happens	when	an	intermediate	step
reaches	its	WIP	limit	and	all	items	are	done?”

Problem:	Blocked	because	all	items	in	an	intermediate	step	are	done
In	the	example,	the	analyst	was	blocked	because	his	step,	Specify,	had	a	WIP	limit	of	two,
he	had	completed	two	items,	but	the	Implement	step	wasn’t	ready	to	take	them	yet.	Here’s
the	signboard:

The	same	thing	can	happen	with	any	step	but	the	last	one	(which	has	an	unlimited	Done
column).	What	should	the	analyst	do?

	He	could	specify	the	next	item	from	the	backlog,	but	doing	that	isn’t	helpful;	it	just
creates	more	work	for	the	team	to	implement,	and	the	team	is	already	at	its
implementation	limit.	The	team	can’t	go	any	faster	without	help.	Yes,	the	next	item



in	the	backlog	may	eventually	need	to	be	specified,	but	that	only	hides	this	issue
until	later,	doesn’t	help	solve	the	problem,	and	may	even	result	in	work	being
thrown	away	if	priorities	change.

	The	best	thing	for	the	analyst	to	do	is	to	help	with	implementation	(the	next	step).
He	could	implement	some	items	himself.	He	could	help	with	design	or
implementation	issues.	He	could	do	some	research	or	work	with	partner	teams	that
might	make	implementation	faster.

	If	there’s	no	way	for	the	analyst	to	help	with	implementation,	he	can	still	be
productive	by	getting	a	head	start	on	customer	research,	advanced	planning,	or	new
tooling.	There’s	always	productive	work	available	that	doesn’t	hurt	the	team.

Problem:	Blocked	because	prior	step	has	no	items	done
Let’s	say	your	signboard	looks	like	this:

The	Validate	step	is	ready	for	a	new	item	(the	last	step’s	Done	column	doesn’t	count
toward	its	WIP	limit).	However,	the	Implement	step	has	no	items	that	are	done.	The	testers
doing	the	Validate	step	are	blocked.	What	should	they	do?

Just	as	when	the	analyst	was	blocked,	the	best	thing	for	the	testers	to	do	is	to	help	with
implementation	(the	prior	step).	They	could	implement	some	items,	help	with	design	or
implementation	issues,	or	work	with	partner	teams	to	make	implementation	faster.	They
could	even	grab	lunch	for	the	development	team—whatever	is	needed.

If	there’s	no	way	for	the	testers	to	help	with	implementation,	they	can	still	be	productive
by	analyzing	bugs	or	usage	patterns,	running	experiments,	or	improving	tooling.	There’s
always	productive	work	available	that	doesn’t	hurt	the	team.

Problem:	Step	taking	longer	than	usual	for	an	item
While	different	steps	require	different	amounts	of	time	and	effort,	each	step	should	ideally
take	about	the	same	amount	of	time	for	each	item.	That’s	why	the	first	step	often	breaks
down	large	items	to	smaller	items	of	similar	size.	However,	there’s	always	variation,	and
sometimes	one	step	might	take	unusually	long	for	a	particular	item.

If	a	step	for	an	item	seems	to	be	taking	a	long	time,	team	members	should	review
what’s	happening.

	Perhaps	the	person	assigned	to	the	item	is	blocked	or	needs	help.



	Perhaps	the	item	should	be	broken	down	further	into	smaller	items.

	Perhaps	more	design	work	is	needed.

	Perhaps	the	person	assigned	to	the	item	is	expanding	the	scope	of	the	item
inappropriately.

	Perhaps	there	are	some	substantial	unresolved	bugs.

Regardless	of	the	cause,	items	should	always	be	moving	along	at	a	fairly	regular	pace.
Whatever	the	problem	is,	the	team	should	address	it	quickly.	I	go	into	more	detail	about
some	specific	situations	later	in	this	section.

Problem:	Constantly	getting	blocked
If	team	members	or	work	items	often	seem	to	be	blocked,	your	team	may	need	to	adjust
the	Specify	step,	WIP	limits,	staff	assignments,	or	other	variables.	The	proper	action	to
take	depends	on	the	symptoms.

If	the	flow	through	your	steps	is	uneven	because	items	vary	substantially	in	size,	be	sure
that	your	first	step	(typically	Specify	or	Breakdown)	breaks	down	items	into	similarly
sized	tasks.	Team	members	can	review	the	item	breakdown	to	ensure	a	reasonably
consistent	result.

If	a	step	still	sways	from	having	plenty	of	work	to	no	work	and	back	again,	increase	the
step’s	WIP	limit	by	one	(extra	buffer	to	handle	the	variation).

If	a	step	is	slow,	and	the	steps	before	and	after	are	constantly	blocked,	you’ve	got	a	few
choices:

	Do	a	root-cause	analysis	of	why	the	step	is	so	slow,	and	then	speed	it	up.	That	could
mean	assigning	more	people	to	the	slow	step,	improving	the	tools	or	specs,	giving
folks	faster	computers,	or	whatever	helps	fix	the	problem.	(See	Chapter	9	for	more
details.)

	Reduce	the	WIP	limits	by	one	for	the	steps	before	and	after	the	slow	step.	Doing	this
also	frees	up	time	for	some	team	members,	who	should	be	assigned	to	the	slow	step
or	to	other	projects.	(The	minimum	WIP	limit	is	one.)

	If	team	members	assigned	to	the	slow	step	are	idle	much	of	the	time,	increase	the
WIP	limit	of	the	slow	step	by	one.	However,	be	certain	that’s	the	real	problem—
increasing	WIP	limits	should	be	a	last	resort.

If	a	step	is	fast	and	always	seems	to	have	a	full	Done	column,	reduce	the	step’s	WIP
limit	by	one.	(The	minimum	WIP	limit	is	one.)	The	team	members	assigned	to	the	fast
step	should	then	have	additional	time	to	do	productive	work	on	other	projects.

Problem:	Item	blocked	awaiting	external	input
Items	often	get	blocked	midstream	awaiting	external	review,	dependencies,	questions,
approvals,	or	other	input	from	outside	the	team.	For	my	Xbox	teams,	this	happens	most
often	at	the	Implement	step.

To	handle	the	issue,	we	add	a	Track	column	to	the	middle	of	the	Implement	step.



Items	are	moved	to	the	Track	column	whenever	they	are	blocked	awaiting	external
input.	Tracked	items	don’t	count	toward	the	Implement	WIP	limit.	We	talk	about	their
status	during	every	daily	standup	until	they	are	unblocked.	When	a	tracked	item	is
unblocked,	it	moves	back	to	the	Active	column	as	soon	as	a	slot	becomes	available.	The
logic	is	that	any	item	already	in	Implement	has	higher	priority	than	the	next	item	from
Specify.	(I	talk	about	other	ways	to	handle	late	or	unstable	dependencies	in	Chapter	7,
“Using	Kanban	within	large	organizations.”)

Occasionally,	it	becomes	apparent	that	an	item	will	be	blocked	indefinitely.	We	have	a
special	area	for	those	items	in	the	corner	of	the	signboard.	We	call	it	the	“parking	lot.”
Every	few	weeks,	we	check	on	the	status	of	parking	lot	items,	but	we	don’t	do	this	daily.

Problem:	Bugs	impacting	team
Software	development	is	prone	to	defects,	even	with	strong	done	rules	in	place.	Usually,
dealing	with	operational	issues	(tickets)	or	ordinary	bugs	is	a	regular	part	of	doing
business,	like	email	or	other	daily	overhead.	The	effort	required	is	already	factored	into
the	average	work	rates	used	to	determine	WIP	limits	and	doesn’t	need	to	be	tracked	on	the
signboard	(assuming	you	already	have	online	systems	for	tracking	bugs	and	tickets).

However,	sometimes	fixing	a	particular	bug	or	an	operational	issue	is	as	much	work	as
other	product	improvements.	These	tricky	issues	are	managed	like	any	other	work	item.
You	create	a	note	card,	order	it	against	the	rest	of	the	backlog,	and	slot	it	into	its	proper
place.	These	complex	issues	typically	need	to	be	specified,	implemented,	and	verified	like
any	other	product	work.

	Note

If	all	your	team	does	is	fix	bugs	or	handle	tickets,	Kanban	can	be	an	excellent	way
to	manage	your	bug	or	ticket	backlog	efficiently.	In	that	case,	every	note	card	is	a
bug	or	ticket,	and	the	steps	are	the	ones	used	to	resolve	those	items.	For	more
details,	see	Chapter	8,	“Sustained	engineering.”



Problem:	Item	needs	design	work
Sometimes	an	item	in	the	backlog	is	so	complex	that	an	analyst	needs	extra	time	to	specify
it	and	break	it	down.	Often	this	involves	some	user	experience	design,	architectural
design,	and	perhaps	experimental	design.	(My	favorite	approach	to	design	work	is	called
Scenario-Focused	Engineering,	which	I	describe	in	more	detail	in	Chapter	9.)	The	design
work	is	a	task	unto	itself,	so	you	make	the	design	work	a	separate	work	item	on	the
signboard.

The	Specify	step	for	design	work	is	breaking	down	the	work	into	smaller	tasks.	The
Implement	step	for	those	tasks	is	creating	the	design.	The	Validate	step	for	those	tasks	is
reviewing	the	design	and	getting	it	signed	off.	When	it’s	done,	you’ve	got	a	completed
design,	which	then	adds	several	new	items	to	the	backlog.

Yes,	approaching	design	work	as	though	it	were	product	work	is	a	bit	of	a	stretch.
Ideally,	you’d	use	a	separate	signboard	with	steps	specific	to	design	work.	You	should	do
this	if	a	separate	team	is	assigned	to	design	or	if	you	want	to	use	a	separate	swim	lane	for
design	work	(more	details	in	Chapter	9).	However,	using	the	same	signboard	for
occasional	design	work	does	function	quite	well	in	practice,	and	we	are	Kanban
pragmatists.	We’re	trying	to	deliver	value	to	our	customers	in	the	most	efficient	manner
and	with	the	highest	quality	possible.	If	that	means	altering	the	done	rules	occasionally	to
fit	design	work	instead	of	product	work,	so	be	it.

Problem:	Important	review,	demo,	or	conference	approaching
Sometimes,	major	work	has	to	get	done	that	isn’t	design	work	or	product	work—it’s
preparing	for	an	executive	review,	fashioning	a	demo	for	customers,	authoring	a
conference	presentation,	or	some	other	significant	task.	How	do	you	account	for	this	time
on	your	signboard?	The	same	way	you	account	for	design	work—add	a	note	card	to	the
backlog.	Be	flexible.	Define	special	done	rules	to	suit	the	current	work.	And	then	deliver
the	work	on	time	with	high	quality.	Don’t	worry;	the	imaginary	Kanban	police	won’t
mind.

Problem:	New	work,	plan	changes,	and	updated	requirements
New	work	can	arrive	at	any	time,	plans	can	change,	and	requirements	can	be	updated.
When	change	happens,	do	the	following:

	Write	note	cards	for	new	items.

	Reorder	the	backlog	to	account	for	changes	in	priorities	or	to	slot	in	new	items.

	Leave	items	already	in	work	alone,	except	to	edit	them	if	their	requirements	have
changed.

Even	though	priorities	may	have	changed,	there’s	usually	no	reason	to	abandon	work	in
progress.	Newly	prioritized	work	will	move	into	the	flow	in	less	than	a	week.	That’s
because	work	in	progress	is	limited,	so	waiting	time	is	short.

In	the	rare	event	that	new	work	must	commence	immediately,	you	can	move	active
cards	to	a	Track	column	and	free	up	space	for	the	new	items.



	Note

No	special	planning	meetings	are	necessary	to	account	for	new	work,	plan	changes,
or	updated	requirements.

Problem:	Item	needs	to	be	assigned	to	a	busy	team	member
Sometimes	work	items	are	uniquely	suited	to	a	particular	team	member	because	of	that
person’s	expertise	or	past	experience.	If	that	team	member	is	busy	with	another	item	or
otherwise	unavailable,	you’ve	got	a	few	choices:

	Assign	the	item	to	another	person	and	have	the	preferred	team	member	provide
review	and	oversight.	This	is	a	great	option	for	spreading	knowledge	across	your
team	and	backing	up	the	preferred	team	member.	(You	never	want	one	person	to	be	a
bottleneck.)

	Reassign	the	preferred	team	member’s	current	work	to	another	person.

	Move	the	card	to	the	Track	column	until	the	preferred	team	member	is	available.

	Lower	the	order	of	the	item	in	the	backlog.

Problem:	Some	team	members	like	doing	more	than	one	item	at	a	time
When	you	limit	work	in	progress	to	one	item	per	team	member,	plus	a	50	percent	buffer,
people	are	basically	assigned	only	one	work	item	at	a	time.	Working	on	one	item	at	a	time
avoids	costly	context	switches	and	truly	focuses	your	attention.	There’s	always	email	or
other	minor	work	to	do	if	you’re	ever	stuck.

However,	some	people	work	best	with	clumps	of	related	work.	It’s	not	ideal	from	the
perspective	of	minimizing	work	in	progress,	but	accommodating	different	work	styles	is
important	to	a	cohesive	team.	If	your	team	has	such	a	person,	increase	the	WIP	limit	for
this	person’s	step	by	one	or	two	(giving	him	2–3	items	at	once).	It’s	not	ideal,	and	should
be	used	only	when	the	person’s	productivity	is	clearly	negatively	impacted	by	the	lower
WIP	limit.

Problem:	Can’t	find	time	to	improve	tools	and	automation
Customers,	partners,	and	management	can	be	demanding.	With	these	demands,	it’s	hard	to
find	time	to	improve	your	own	team’s	tools	and	automation.	However,	it’s	those
infrastructure	improvements	that	enable	you	to	deliver	more	work	in	less	time	and	at
higher	quality	(just	like	with	Kanban).

The	solution	is	to	put	tool	and	automation	improvements	on	note	cards,	just	as	you	do
for	product	improvements,	and	order	them	in	your	backlog	accordingly.	One	or	2	items	in
10	should	be	infrastructure	improvements—after	all,	there’s	always	room	for
improvement.



Problem:	New	person	joins	the	team
When	a	new	person	joins	the	team,	WIP	limits	may	need	to	be	adjusted.	Ideally,	that
person	is	assigned	to	the	slowest	step	(increasing	its	throughput).	If	so,	simply	work
through	the	process	described	in	“Step	3:	Set	limits	on	chaos”	again.	If	the	new	person	is
assigned	to	a	different	step,	she	is	going	to	have	free	time	or	her	peers	will.	That	time	can
be	used	wisely	by	helping	with	other	projects.	Remember,	you	can’t	go	faster	than	your
slowest	step.

Problem:	Team	has	long	design	discussions	during	standup
Daily	standup	meetings	should	take	5–15	minutes.	Sometimes	teams	get	into	design
discussions	as	they	address	new	items	or	handle	blocking	issues.	A	brief	overview	is	fine,
but	long	discussions	should	take	place	at	a	different	time.	Some	of	my	teams	schedule	a
conference	room	for	an	hour	after	their	daily	standup	for	design	discussions.	They	don’t
use	it	every	day,	but	it’s	there	when	they	need	it.

Problem:	Some	team	members	can’t	attend	standup
Sometimes	team	members	can’t	attend	the	daily	standup	meeting.	Perhaps	they	are
working	from	home	that	day	or	are	on	a	trip.	Team	members	can	ask	other	team	members
to	move	note	cards	for	them	at	any	time.	They	can	also	send	their	status	to	the	project
manager,	attend	standup	via	telecommunications,	or	use	an	online	meeting.

If	you	have	team	members	spread	across	significant	distances,	you’ll	need	to	use	a
virtual	signboard	and	have	online	standup	meetings.

Problem:	Team	focusing	too	much	on	process	details
Some	team	members	may	be	quite	passionate	about	process.	In	their	effort	to	be	pure,	do
things	“the	right	way,”	or	simply	comply	with	what	they	see	as	“hard	rules,”	team
members	can	focus	too	much	on	process	details	in	place	of	delivering	high-quality	value
to	customers.	Those	team	members	may	think	that	following	rules	and	practices	precisely
is	necessary	to	deliver	high-quality	value	to	customers.

Following	the	rules	and	guidelines	in	this	book	is	important	to	a	team	just	starting	with
Kanban.	However,	over	time	your	team	will	internalize	visualizing	its	work	and	limiting
work	in	progress.	Team	members	will	naturally	swarm	to	blocked	steps	and	avoid	working
on	too	much	at	once.	At	that	point,	being	flexible	is	an	important	part	of	being	efficient.

You	don’t	want	to	compromise	on	quality,	but	you	should	trust	your	team	to	operate	in
the	manner	that	best	suits	its	makeup	and	current	needs.	If	you	find	that	quality	or
efficiency	has	dropped	significantly,	you	can	always	return	to	a	stricter	approach.

Checklist
Here’s	a	checklist	of	actions	to	quickly	start	using	Kanban:

	Capture	your	team’s	high-level	routine	as	a	series	of	steps.

•	If	you	are	unsure,	start	with	the	steps	Specify,	Implement,	and	Validate.



	Redecorate	your	wall	with	a	Kanban	board	that	has	a	Backlog	column	and	two
columns	for	each	of	your	steps.

	Set	limits	on	chaos	that	restrict	the	maximum	number	of	work	items	(cards)	for	each
step.	These	are	known	as	work-in-progress	(WIP)	limits.

	Define	done	rules	for	each	step	that	must	be	met	before	a	work	item	(card)	can	be
moved	from	the	Active	to	the	Done	column	for	that	step.

	Run	your	daily	standup	at	a	set	time	each	day,	focusing	on	issues	that	block	work
from	progressing	(cards	from	moving	between	columns).

	As	needed,	update	your	organization’s	tracking	system	with	your	team’s	current
status.

	As	needed,	adjust	your	WIP	limits	and	done	rules	to	ensure	quality	work	that	flows
smoothly	through	your	signboard.

	As	needed,	add	a	Track	column	between	the	Active	and	Done	columns	of	your
implementation	step	to	track	external	input	that	is	blocking	implementation	of	a
work	item	(such	as	a	late	or	an	unstable	dependency).

	As	needed,	add	new	items	(cards)	and	reorder	items	in	your	backlog.



Chapter	3.	Hitting	deadlines

Kanban’s	simple	approach	to	delivering	value	to	your	customers	efficiently	and	with	high
quality	also	provides	the	predictable	scheduling	and	staffing	data	you	need	to	deliver	that
value	on	time	and	on	budget.

Kanban	provides	predictability	through	constraining	work	in	progress	(WIP)—the	same
technique	it	uses	to	control	chaos.	As	I	describe	in	Chapter	2,	“Kanban	quick-start	guide,”
thoughtfully	limiting	WIP	allows	your	team	to	respond	quickly	to	changes	and	prevents
issues	from	festering,	all	while	making	your	delivery	of	value	to	customers	smooth,
continuous,	and	efficient.

Limiting	WIP	also	constrains	your	team’s	size	(your	costs)	and	reduces	your	cycle	time
(the	time	for	a	planned	work	item	to	go	from	specification	through	validation).	Shortening
cycle	time	benefits	quality,	agility,	and	customer	engagement.	It	also	allows	you	to
accurately	measure	throughput,	and	thus	accurately	estimate	completion	dates.

The	following	sections	will	help	you	plan	your	project	and	staff	your	team:

Populate	your	backlog

Establish	your	minimum	viable	product	(MVP)

Order	work,	including	technical	debt

Estimate	features	and	tasks

Track	expected	completion	date

Right-size	your	team

Checklist

Populate	your	backlog
Populating	your	work	backlog	is	trivial	if	your	feature	team	(3–10	people)	is	part	of	a
larger	effort	and	your	work	backlog	is	determined	by	your	internal	partners	or	customers
(including	bugs	and	tickets	if	you	run	an	operational	team).	In	that	case,	simply	write	a
descriptive	name	for	each	of	the	features,	improvements,	and	work	items	you	need	to
accomplish	on	its	own	note	card,	and	then	place	those	note	cards	in	the	Backlog	column	of
your	signboard.	(You’ll	prioritize	them	into	buckets	in	a	later	step.)	You’re	done.

If	your	team	gets	to	determine	your	own	backlog	of	work,	you	have	some	product
planning	to	do.	Product	improvements	(demands	on	your	team)	come	from	two	sources:

	Your	customers	Between	usage	patterns	you	can	learn	about	through
instrumentation,	experiments	you	can	run	online,	feedback	you	can	receive	through
forums,	and	issues	you	can	track	from	customer	support,	you’ve	likely	got	a	long	list
of	potential	product	improvements.	Write	a	descriptive	name	for	each	improvement
on	its	own	note	card,	and	then	place	the	cards	in	the	Backlog	column.	To	help	you
order	and	recognize	cards	later,	you	can	put	a	U,	X,	F,	or	S	in	a	card’s	corner	to
indicate	its	origin:	usage,	experiment,	feedback,	and	support,	respectively.



	Your	business	Your	leadership	likely	has	ideas	about	how	they	want	to	improve	the
business,	even	if	you	work	for	a	nonprofit.	Your	team,	and	your	internal	and	external
partners,	likely	have	ideas	about	great	new	features	and	technology	they	want	to	add
and	bugs	they	want	to	fix.	Write	a	descriptive	name	for	each	idea	on	its	own	note
card,	and	then	place	the	cards	in	the	Backlog	column.	To	help	you	order	and
recognize	cards	later,	you	can	put	an	L,	TF,	PF,	or	B	in	a	card’s	corner	to	indicate	its
origin:	leadership,	team	feature,	partner	feature,	and	bug,	respectively.

By	now,	you	should	have	far	too	many	cards	in	your	backlog.	The	next	couple	of	steps
will	help	you	sort	them.

	Inside	Xbox

Some	of	my	Xbox	teams	were	part	of	larger	efforts,	and	their	high-level	feature
backlogs	were	basically	determined	by	product-wide	planning.	However,	my	teams
would	add	design	details,	bugs,	infrastructure	improvements,	and	specific	support
issues	to	their	backlogs.

The	ordering	of	features	was	determined	in	concert	with	our	peer	teams	at	a
quarterly	planning	day.

	We	taped	every	team’s	pending	high-level	features	on	the	wall,	blocked	by
months.

	Then	teams	would	“walk	the	wall”	to	check	for	timing	issues	with	dependencies	or
question	how	much	really	fits	in	each	month	(considering	vacations,	events,	and
other	concerns).

	Next	was	“speed	dating.”	Each	team	could	sign	up	to	meet	with	any	other	team	for
15	minutes	to	discuss	conflicts	and	ordering.	We’d	typically	go	through	three	to
five	rounds	of	speed	dating	before	all	conflicts	were	resolved.

	Then	it	was	time	for	one	last	chance	to	walk	the	updated	wall,	before	the	combined
teams	agreed	to	the	plan	(if	no	one	objected).

With	a	plan	in	place,	the	features	were	transferred	in	order	onto	team	backlogs.
The	high-level	features	were	broken	down	into	tasks	as	they	completed	the	Specify
step,	and	work	became	production-ready	quickly.

Some	of	my	Xbox	teams	have	worked	as	isolated	service	teams.	We	built	their
backlogs	from	customer	and	partner	requests,	leadership	requests,	and	improvement
ideas	from	the	team.	Not	as	much	coordination	with	other	teams	was	required.

I	provide	more	detail	about	experiences	like	these	in	Chapter	7,	“Using	Kanban
within	large	organizations.”



Establish	your	minimum	viable	product	(MVP)
You	can	skip	this	section	if	you	run	a	continuously	deployed	service	or	an	operational
team	and	all	you	need	to	do	is	order	incoming	work.	Otherwise,	you	are	probably	involved
in	a	product	release	(first	release	or	an	update)	and	need	to	determine	your	minimum
viable	product	(MVP).

For	the	purposes	of	ordering	your	backlog,	your	MVP	is	the	set	of	work	items	(note
cards)	in	your	backlog	that	must	be	completed	before	release.	That	is,	regardless	of	the
monetary	or	market	impact,	you	would	delay	or	cancel	your	product	release	if	those	work
items	were	incomplete.	(Detailed	information	about	establishing	your	MVP	can	be	found
online	and	from	a	variety	of	sources.)

If	you	are	being	honest	with	yourself	and	your	leadership,	the	number	of	work	items
making	up	the	MVP	is	a	very	small	percentage	of	the	total	backlog.	There	are	items	you
really	should	have,	items	you’d	like	to	have,	and	items	you	don’t	care	as	much	about.
None	of	those	items	are	in	the	MVP.	The	only	items	in	the	MVP	are	items	you	really	must
have.	Typically,	MVP	items	are	basic	functionality	that	customers	expect	before	they’d
even	try	your	product,	plus	just	enough	differentiation	to	determine	whether	your	new
release	is	desirable.

	Tip

Defining	a	true	MVP	that	you	prioritize	above	all	else	is	an	excellent	way	to	hit
your	deadlines	and	avoid	unused	specifications,	incomplete	and	untested	features,
and	unused	tests.	You’ll	hit	your	deadlines	because	the	MVP	is	usually	a	small
percentage	of	your	backlog,	yet	once	the	MVP	is	done,	you’ll	have	a	product	you
can	release.	You’ll	avoid	unfinished	work	because	all	the	work	you	do	on	MVP
items	is	essential	and	won’t	be	abandoned.	(In	contrast,	one	of	the	best	ways	to
cause	a	product	to	slip	is	to	leave	critical	work	until	the	very	end.)

A	simple,	fast,	and	effective	means	of	determining	your	MVP	is	running	a	bucketing
and	affinity	exercise	with	your	team,	its	leadership,	and	some	representative	customers
and	partners.	You	gather	in	a	room	and	sort	through	the	cards	in	your	backlog.	The	sorting
can	be	done	on	a	large	whiteboard,	a	corkboard,	or	the	top	of	a	large	table,	which	is
divided	into	four	buckets.	Together	you	sort	all	your	items	into	the	following	buckets:

	Must	have	MVP,	sometimes	called	“pri	0”

	Should	have	Priority	1

	Like	to	have	Priority	2

	Nice	ideas	Priority	3

While	sorting,	you’ll	notice	that	the	cards	often	clump	together	into	related	work
(clusters).	It’s	useful	to	keep	clusters	together	(with	tape,	pins,	paper	clips,	or	otherwise),
and	perhaps	even	name	the	cluster	with	a	new	high-level	card.	Related	work	items	can
sometimes	fall	into	different	buckets.



Naturally,	people	will	disagree	about	bucket	assignments.	With	everyone	in	the	room,
you	can	discuss	controversial	items,	come	to	a	shared	understanding	of	the	work	and	its
importance,	and	then	place	it	with	confidence.	The	more	critical	an	item’s	priority,	the
more	scrutiny	you	should	give	it.	In	particular,	you	should	always	question	MVP	items:
“Would	we	really	hold	up	the	release	for	that?”

When	your	sorting	meeting	is	finished	(typically	in	two	to	four	hours),	you’ll	have	a
clear	definition	of	your	next	release.	It	will	have	all	the	MVP	items,	many	of	the	pri	1
items,	and	some	of	the	easy	pri	2	and	3	items	that	are	closely	aligned	with	higher-priority
items.	The	next	step	seeds	the	first	set	of	these	items	into	the	backlog	in	order.

Order	work,	including	technical	debt
At	this	point,	you’ve	got	your	backlog	of	work	items	sorted	into	large	prioritized	buckets.
(Operational	teams	typically	assign	prioritized	buckets	to	bugs	and	tickets	each	day	or
upon	creation	based	on	well-defined	rules.)	These	work	items	should	be	a	mix	of
improvements	garnered	from	customer	usage,	experiments,	feedback,	and	customer
support;	feature	and	technology	requests	from	business	leadership,	team	members,	and
partners;	and	a	variety	of	technical	debt.

	Note

Technical	debt	refers	to	unresolved	bugs,	legacy	code	in	need	of	refactoring,	tools
that	need	to	be	upgraded,	and	components	that	require	redesign.	Basically,	technical
debt	is	quality-improvement	work	that	you’ve	postponed.	It’s	referred	to	as	debt
because	the	longer	you	let	it	fester,	the	more	expensive	it	becomes	to	resolve	(much
like	financial	debt).

Ordering	these	cards	in	your	backlog	is	a	team	activity.	Leadership,	internal	and
external	partners,	and	customers	help	you	prioritize	the	cards	into	the	big	buckets,	but	day-
to-day	execution	belongs	to	the	team.

Once	your	team	is	practiced	at	ordering,	team	members	can	do	it	themselves	at	any
time,	as	needed,	based	on	the	prioritized	buckets.	To	gain	initial	experience,	gather	your
team	around	your	signboard	and	work	together	to	order	your	backlog,	based	on	the
following	rules:

	You	don’t	want	to	overwhelm	your	signboard	and	its	backlog	space,	so	place	your
cards	in	four	piles	next	to	your	signboard.

	Team	members	then	place	all	pri	0	bucket	items	(the	MVP)	in	the	backlog	area.

	Related	items	within	the	same	bucket	should	stay	together,	ordered	by	their	natural
sequence	of	execution.

	Items	that	can	be	started	immediately	(no	dependencies)	should	be	ordered	first,
followed	by	items	that	can	be	done	soon	afterward,	and	so	on.

	After	you	place	all	your	pri	0	items,	if	your	backlog	area	still	has	room,	begin
placing	the	pri	1	items	using	the	same	approach.



	Take	any	pri	0	or	lower	items	that	don’t	fit	in	the	backlog,	and	leave	them	in	piles
next	to	your	signboard.	You	can	use	those	piles,	in	order,	to	occasionally	refill	the
backlog.

Notice	that	only	a	relatively	small	number	of	cards	are	actually	put	in	order—after	all,
the	backlog	area	on	your	signboard	isn’t	that	big.	That’s	intentional:	the	order	of	work	can
be	quite	fluid	because	markets,	customer	and	partner	requirements,	and	leadership
direction	frequently	change.	You	strictly	order	only	enough	work	to	get	started.	The	rest	of
the	cards	remain	in	their	prioritized	buckets.

	Tip

After	you	order	the	cards,	it’s	possible	that	no	pri	0	items	can	begin	work
immediately	because	of	incomplete	dependencies.	If	that	happens,	those	items	will
naturally	move	to	the	Track	column	under	Implement,	and	pri	1	items	will	receive
attention	until	pri	0	items	are	unblocked.	Even	better,	your	team	can	pull	work
items	from	your	dependencies,	move	them	onto	your	signboard,	and	help	unblock
your	dependencies	yourselves.	For	more	on	the	Track	column,	including	a	diagram,
check	“Item	blocked	awaiting	external	input”	in	the	“Troubleshooting”	section	of
Chapter	2.

With	a	populated	backlog,	your	team	can	manage	its	work	as	described	in	the	Kanban
quick-start	guide	(Chapter	2).	Only	continue	on	to	the	next	sections	if	your	leadership	and
partners	want	to	know	when	you’ll	be	finished,	or	if	you	need	to	right-size	your	team	to
hit	a	specific	deadline.

Estimate	features	and	tasks
Prediction	of	future	events	that	don’t	neatly	fit	the	laws	of	physics	is	a	precarious
endeavor.	However,	your	leadership,	customers,	and	internal	and	external	partners	may
need	to	know	when	to	expect	certain	results.	In	particular:

	How	soon	will	a	work	item	be	addressed	and	done?	This	is	a	common
requirement	of	internal	and	external	partners	who	depend	on	your	team	and	must
schedule	around	it.

	When	will	a	significant	product	release	be	completed?	This	is	a	common
requirement	of	leadership,	product	planners,	and	marketers	who	need	to	set	proper
expectations	in	the	market	around	timing	and	your	feature	set.

	Tip

If	your	leadership,	customers,	or	partners	aren’t	asking	these	kinds	of	questions,
there’s	no	need	to	estimate	features	and	tasks	or	track	the	expected	completion	date
—you	can	skip	the	remaining	sections.	If	they	are	asking	these	questions,
estimation	is	a	necessary	exercise.



Work	items	come	in	all	different	sizes,	so	it’s	hard	to	predict	how	long	any	particular
item	will	take,	let	alone	a	whole	backlog	of	items.	However,	the	Specify	step	from	the
Kanban	quick-start	guide	(Chapter	2)	breaks	down	differently	sized	items	into	smaller,
similarly	sized	items	(typically	taking	one	to	five	days	each	to	complete).	For	clarity,	I’ll
refer	to	these	smaller	items	as	tasks.

The	time	needed	to	complete	tasks	is	more	predictable	than	for	the	larger	and	more
varied	original	work	items.	Thus,	your	estimation	job	involves	the	following	steps:

	Estimate	the	number	of	tasks	needed	to	complete	work	items	I	recommend	using
a	Wideband	Delphi	method,	which	utilizes	iteration	and	consensus	to	provide
accurate	estimates.	My	favorite	method	is	a	simplified	form	of	Wideband	Delphi
called	“planning	poker.”	To	estimate	task	breakdown	using	planning	poker,	team
members	sit	around	a	table	(or	an	online	messaging	room),	and	each	team	member
privately	estimates	the	number	of	tasks	needed	to	complete	the	work	item	in
question.	They	can	write	their	estimates	on	a	slip	of	paper	or	use	preprinted	cards.
(Planning	poker	cards	typically	follow	a	geometric	or	Fibonacci	sequence.)
Everyone	reveals	his	or	her	estimate	simultaneously	so	that	no	one	exerts	undue
influence.	If	the	estimates	match,	you’re	done	(write	the	estimate	on	the	work	item
note	card).	If	they	differ,	the	high	and	low	estimators	explain	themselves,	the	team
members	discuss	their	thinking,	and	then	the	process	repeats	until	the	estimates
agree.	The	process	also	identifies	assumptions	before	they	become	problems.

	Calculate	your	task	completion	rate	To	do	this,	count	the	number	of	tasks	that	are
done	with	their	final	step	within	any	two-week	to	four-week	period,	and	divide	by
the	number	of	days.	(For	teams	that	average	around	three	days	per	task,	like	mine,	a
sample	of	two	to	four	weeks	should	be	sufficient.)	Note	that	the	task	completion	rate
isn’t	the	reciprocal	of	the	average	time	required	to	complete	a	task	(the	task’s	cycle
time).	That’s	because	the	task	completion	rate	accounts	for	all	team	members	and	all
steps	(including	the	Specify	step,	which	breaks	down	items	of	variable	size	into
tasks	of	similar	size).

	Let	your	leadership,	customers,	and	internal	and	external	partners	know	when
to	expect	results	Use	the	appropriate	formula	from	the	following	table	(active	tasks
are	those	that	are	in	work	but	haven’t	finished	the	last	step,	which	includes	tasks	in
the	Track	column):

Please	note:

	The	product	release	estimate	is	for	completing	the	minimum	viable	product	(MVP),
not	any	pri	1	or	2	items.	That’s	because	after	the	MVP	is	complete,	you	should	by
definition	be	able	to	release	the	product.	Be	sure	to	emphasize	this	fact	to	interested
leadership,	customers,	and	partners,	reiterating	which	features	encompass	the	MVP.
They	may	want	to	add	more	items	and	have	you	update	your	estimate.



	It’s	helpful	for	team	members	to	compare	the	estimated	number	of	tasks	for	a	work
item	(written	on	the	note	card)	with	the	actual	number	of	tasks	after	that	work	item
is	specified.	Over	time,	the	team	should	get	better	at	estimation.

	The	steps	I’ve	listed	to	estimate	features	and	tasks	are	fast,	easy,	and	fairly	accurate.
Spending	more	time	on	estimation	doesn’t	lead	to	greater	accuracy,	but	it	does	take
time	away	from	delivering	value	to	customers.

	The	estimating	formula	used	(pending	tasks	divided	by	the	task	completion	rate)
calculates	what’s	often	referred	to	as	“lead	time.”	This	concept	is	derived	from
Little’s	Law,	which	states	that	the	work	in	progress	in	a	system	(pending	tasks)	is
equal	to	the	average	system	throughput	(task	completion	rate)	multiplied	by	the
system	response	time	(lead	time).	You	can	read	more	about	Little’s	Law	in	Chapter
9,	“Further	resources	and	beyond.”

	None	of	these	estimates	account	for	significant	delays	that	result	from	dependencies
or	changes	in	plans.	That’s	covered	in	the	next	section	of	this	chapter.

	Inside	Xbox

When	my	teams	first	switched	from	Scrum	to	Kanban,	we	estimated	by	using	“story
points.”	Story	points	are	a	team-specific	measure	of	size.	The	team	estimates	how
many	story	points	each	work	item	encompasses	(using	planning	poker)	and	then
tracks	how	many	story	points	can	be	completed	within	a	certain	time	interval	(often
a	Scrum	sprint	of	one	to	four	weeks).

After	a	month	or	two	of	using	Kanban,	it	became	clear	that	broken-down	tasks
were	roughly	the	same	size	and	took	roughly	the	same	amount	of	time	(the	same
number	of	story	points).	Thus,	estimating	tasks	achieves	the	same	goal	as	estimating
story	points,	but	tasks	seem	more	concrete	to	leadership	(and	some	team	members).

My	current	teams	rarely	do	estimation.	Estimates	were	needed	at	first	because	our
customers	and	partners	demanded	them.	After	several	months,	our	track	record	of
delivering	value	continuously	and	consistently	built	trust	with	our	customers	and
partners.	They	knew	we’d	deliver	reliably	and	sought	estimates	only	on	rare
occasions.	Naturally,	we	still	supply	estimates	when	asked	by	following	the
approach	described	in	this	chapter.

Track	expected	completion	date
Early	estimates	can’t	account	for	significant	delays	that	result	from	dependencies	and
changes	in	plans.	In	addition,	task	completion	rates	change	and	task	estimates	improve.	If
your	leadership,	customers,	or	partners	want	to	be	updated	regularly	on	when	to	expect
work	items	or	when	the	product	release	will	be	completed,	you	need	to	regularly	adjust
your	estimates	to	the	changing	conditions.

There	are	three	values	to	track	(two	mentioned	in	the	previous	section,	and	one	new
value):

	Task	completion	rate	(TCR)	You	can	track	TCR	as	a	moving	average	or	monthly



updated	value	(tasks	completed	per	day).	Doing	so	helps	account	for	delays	and
changing	team	dynamics.

	Current	task	estimate	(CTE)	This	is	the	total	number	of	active	tasks	and	estimated
pending	tasks	(including	tasks	in	a	Track	column).	The	CTE	is	essential	for	updated
estimates	because	it	represents	remaining	work.

	Task	add	rate	(TAR)	This	value	wasn’t	used	in	the	previous	section	because	it
measures	changes	in	plans,	not	initial	estimates.	You	subtract	the	total	number	of
tasks	(pending,	active,	and	done)	at	the	start	of	a	month	from	the	total	number	at	the
end	and	divide	by	the	number	of	days.	This	gives	you	the	tasks	added	per	day	(or
tasks	cut	if	the	value	is	negative)	and	accounts	for	plan	changes	and	feature	bloat.

These	three	values	are	readily	available	in	Kanban	(you	just	count	the	cards	and
estimates	on	the	signboard).	A	few	notes:

	My	teams	count	weekend	days	because	folks	sometimes	do	work	on	weekends,	but
you	can	count	just	weekdays	as	long	as	you’re	consistent	for	both	task	completion
rate	and	task	add	rate.

	I	choose	a	month	as	the	regular	interval,	but	you	can	use	fewer	or	more	days	so	long
as	you’re	consistent.

	The	pending	tasks	in	the	current	task	estimate	are	typically	the	count	of	pending
MVP	tasks,	but	they	could	be	any	set	of	tasks	of	interest	to	your	leadership,
customers,	or	partners.

With	values	for	task	completion	rate,	current	task	estimate,	and	task	add	rate	in	hand,
you	can	calculate	the	number	of	days	until	your	team	will	complete	the	current	task	set.
It’s	CTE	/	(TCR	–	TAR).	To	understand	why,	I’ve	included	an	example	of	a	Cumulative
Flow	Diagram	(Figure	3-1),	which	is	a	stacked	column	chart	showing	the	number	of
pending,	active,	and	done	tasks	over	time.



FIGURE	3-1	Cumulative	Flow	Diagram	showing	the	accumulation	of	pending,	active,	and
done	tasks	over	time.

The	current	task	estimate	is	the	combined	top	and	middle	height	(pending	and	active
tasks).	The	task	add	rate	is	the	slope	of	the	line	at	the	top.	The	task	completion	rate	is	the
slope	of	the	line	in	the	middle.	The	current	set	of	tasks	will	be	complete	where	the	lines
meet.	The	values	from	the	Cumulative	Flow	Diagram	are	shown	in	the	following
worksheet.	(You	can	download	an	Excel	spreadsheet	with	the	formulas.	See	the	book’s
introduction	for	details.)

The	calculation	shows	that	the	initial	30	tasks	will	be	completed	45	days	from	the	start
of	the	project	(a	little	more	than	two	weeks	after	the	last	day	on	the	chart).	You	can
estimate	the	number	of	days	remaining	from	any	point	by	replacing	30	with	the	number	of
pending	and	active	tasks	from	any	day.	The	actual	completion	date	will	be	roughly	the
same,	given	that	the	task	add	rate	and	task	completion	rate	haven’t	changed	significantly.



	Tip

If	your	task	add	rate	(TAR)	is	larger	than	your	task	completion	rate	(TCR),	you’ll
never	finish.	For	projects	of	somewhat	fixed	scope	that	are	under	intense	scrutiny,	it
serves	you	well	to	regularly	track	current	task	estimate,	task	add	rate,	and	task
completion	rate,	as	well	as	your	expected	completion	date.	They	form	a	compelling
argument	to	keep	the	scope	of	your	project	under	control.

Right-size	your	team
Once	you	calculate	the	expected	completion	date	of	your	project,	your	leadership,
customers,	or	partners	may	have	concerns.

	Perhaps	you	run	a	continuously	deployed	service	or	an	operational	team	and	release
dates	aren’t	significant—you	release	continuously.	However,	leadership	wants	to
size	your	team	to	fit	the	flow	of	incoming	requests.	How	many	people	should	you
keep	on	staff?

	Perhaps	the	date	is	sooner	than	required.	Leadership	could	simply	ask	the	team	to
complete	as	many	pri	1	and	pri	2	items	as	possible	in	the	time	allotted.	However,
leadership	may	decide	to	reassign	some	team	members	to	other	needy	projects.	How
many	people	should	you	keep	to	complete	the	project	on	time?

	Here’s	the	big	concern:	perhaps	the	expected	completion	date	is	later	than	required.
Leadership	could	ask	your	team	to	work	weekends,	but	that’s	not	sustainable	and
can	lead	to	poor	design	and	poor	quality	from	a	weary	team	with	little	time	to	think.
Leadership	could	cut	more	from	the	minimum	viable	product	(in	which	case	it	really
wasn’t	the	minimum).	However,	leadership	often	considers	putting	more	resources
on	the	project.	How	many	people	do	you	need	to	complete	the	project	on	time?

Before	I	show	some	calculations	for	right-sizing	your	team,	there	are	a	couple	of
important	considerations:

	The	following	calculations	assume	that	team	capacity	grows	linearly	with	team	size.
However,	as	Frederick	P.	Brooks	Jr.	pointed	out	in	The	Mythical	Man-Month	(1995),
cross-team	communication	grows	geometrically	with	team	size.	Thus,	you	can’t
double	team	size	and	expect	double	the	throughput.	Kanban’s	focus	on	smooth	flow,
visualizing	work,	and	minimal	meetings	significantly	reduces	the	impact	of	cross-
team	communication,	but	you	still	need	to	account	for	big	team	changes.	Should	the
following	calculations	dictate	that	your	team	double	or	triple	in	size,	consider
refactoring	your	project	into	several	teams	that	work	together	through	a	shared
architecture	and	established	interfaces.

	Adding	new	people	to	a	team	always	slows	it	down	before	it	speeds	it	up.	New	team
members	take	a	while	to	learn	what	they	need	to	be	productive,	and	veteran	team
members	spend	time	answering	questions	and	helping	new	team	members	acclimate.
As	a	result,	the	time	to	add	people	is	at	the	beginning	or	in	the	midst	of	the	project—
never	at	the	end.	(At	the	end	of	a	project,	you’re	better	off	slipping	the	release	date



or	reducing	the	functionality.)

You	can	calculate	the	required	size	of	your	feature	team	in	two	ways:

	Use	a	basic	approach	before	your	team	has	measured	its	current	task	estimate
(CTE),	task	add	rate	(TAR),	and	task	completion	rate	(TCR).	The	basic	approach
requires	only	the	same	basic	data	that’s	used	to	determine	your	initial	WIP	limits	in
the	Kanban	quick-start	guide	(Chapter	2).

	Use	an	advanced	approach	after	your	team	has	detailed	data	about	the	current	task
estimate	(CTE),	task	add	rate	(TAR),	and	task	completion	rate	(TCR),	as	described
earlier	in	the	section	“Track	expected	completion	date.”

Basic	approach
Let’s	start	with	the	basic	approach.	Say,	you’re	putting	together	a	team	that	has	four
months	to	release	25	new	feature	improvements	to	your	product.	(All	the	formulas	and
tables	that	follow	are	available	in	an	Excel	spreadsheet	that	you	can	download.)

Note	that	the	months	are	normalized	to	30	days	each,	thus	the	count	of	4.07	months.	If
you	run	a	continuously	deployed	service	or	an	operational	team	and	just	want	to	size	your
team	to	fit	the	flow	of	incoming	requests,	enter	the	number	of	requests	per	month	as	the
count	of	pending	work	items,	and	use	the	start	and	end	dates	of	a	typical	month.

Next,	let’s	say	you’ve	got	the	same	kind	of	team	I	used	as	an	example	in	the	Kanban
quick-start	guide	(Chapter	2).	Here’s	a	worksheet	showing	the	team-size	calculation.

For	the	example:

	A	On	average,	each	analyst	can	specify	roughly	six	items	per	month,	each	developer
can	implement	roughly	two	items	a	month,	and	each	tester	can	validate	roughly
three	items	per	month.	(You	can	use	a	shorter	time	frame	by	changing	the	number	of
days	per	month.)

	B	Implementing	is	the	slowest	step	(two	items	per	month	per	person).

	C	We	want	to	estimate	the	number	of	developers	required	to	implement	25	work
items	in	4.07	months.	Since	the	developers	can	implement	two	items	per	month,	you
need	25	/	4.07	/	2	=	3.07	developers.

	D	The	throughput	is	2	*	3.07	=	6.15	items	per	month	(the	extra	hundredth	is	the



result	of	Excel	storing	all	these	data	values	with	higher	precision).

	E	Dividing	that	throughput	by	the	average	rates	for	each	step	gives	you	the	people
needed	for	each	step	(1.02	analysts,	3.07	developers,	and	2.05	testers).

	F	You	calculate	the	WIP	limits	as	in	the	Kanban	quick-start	guide	(Chapter	2)	by
adding	a	50	percent	buffer	to	the	people	totals	and	rounding	up	(2	for	Specify,	5	for
Implement,	and	4	for	Validate).

As	in	the	Kanban	quick-start	guide,	the	WIP	limits	from	the	worksheet	are	starting
values.	The	limits	should	be	adjusted	to	maximize	team	output	and	agility.	Check	the
Kanban	quick-start	guide’s	“Troubleshooting”	section	for	when	and	how	to	adjust	WIP
limits	for	the	best	outcomes.

The	people	counts	are	also	approximate	starting	values,	which	is	why	I	left	them	as
decimals.	Once	you	form	your	team	and	start	work,	you	can	track	your	expected
completion	date	over	time	and	fine-tune	the	team	as	needed.

Advanced	approach
The	basic	approach	uses	average	work	item	rates	per	person	per	step	to	calculate	the
necessary	team	size.	As	I	discussed	in	the	estimation	portions	of	this	chapter,	work	item
size	has	a	great	deal	of	variability.	You	get	better	estimates	by	breaking	down	work	items
into	tasks	and	measuring	actual	task	completion	rates.

If	you	have	the	current	task	estimate	(CTE),	task	add	rate	(TAR),	and	task	completion
rate	(TCR),	as	described	in	the	“Track	expected	completion	date”	section,	you	can
estimate	the	proper	team	size	with	a	bit	more	confidence.

For	a	comparison	with	the	basic	approach,	I	set	the	current	task	estimate	to	100	(four
tasks	per	basic-example	work	item),	used	the	task	add	rate	and	task	completion	rate	from
the	previous	section,	and	the	same	4.07	month	period	as	for	the	basic	example	(122	days).
I	use	days	instead	of	months	because	task	add	rate	and	task	completion	rate	are	measured
in	days.

The	estimated	number	of	days	needed	to	complete	100	tasks	is	152,	but	the	number	of
days	available	is	122.	The	ratio	between	the	estimated	and	expected	number	of	days	is	152
/	122	=	1.24—that’s	the	multiple	of	team	members	we	need.

In	this	example:

	A	Rather	than	relying	on	the	number	of	current	team	members	assigned,	who	may
not	be	fully	dedicated	to	the	team	with	the	0.76	task	completion	rate,	we	use	the	WIP
limits	that	control	flow.



	B	We	divide	the	limits	by	1.5	and	round	down	to	determine	the	number	of	people
completing	0.76	tasks	a	day.	(That’s	the	inverse	of	our	algorithm	to	get	the	WIP
limits.)

	C	We	then	multiply	by	1.24,	the	ratio	between	the	estimated	and	expected	number
of	days.	This	results	in	estimates	for	the	number	of	people	needed	to	complete	the
100	tasks	in	122	days.

	D	Adding	50	percent	to	those	people	totals	and	rounding	up	gives	you	each	step’s
WIP	limit	(2	for	Specify,	6	for	Implement,	and	4	for	Validate).

Note	that	the	WIP	limits	and	people	estimates	differ	between	the	advanced	approach
and	the	basic	approach.	Two	reasons	account	for	this:

	If	you	assume	four	tasks	per	work	item,	the	throughput	for	the	basic-approach
example	would	be	6.15	*	4	=	24.6	tasks	per	month,	for	a	task	completion	rate	of
24.6	/	30	days	=	0.82	tasks	per	day.	That’s	slightly	higher	than	0.76	tasks	per	day	we
used	in	the	advanced	approach	example.

	The	basic	approach	doesn’t	account	for	the	task	add	rate	(0.1	tasks	per	day).	Over
122	days,	that’s	12.2	additional	tasks	to	complete.

As	with	the	basic	approach,	WIP	limits	and	people	counts	derived	through	the	advanced
approach	are	just	starting	values.	You	should	adjust	them	as	your	team	does	the	real	work
and	gets	real	feedback	data.

Because	Kanban	continuously	provides	you	with	updated	data	on	your	project,	it’s	easy
to	adjust	your	estimates,	WIP	limits,	and	team	sizes	to	hit	your	deadlines.	In	time,	your
delivery	of	customer	value	becomes	so	predictable	that	estimation	is	easy	and	scheduling
accuracy	is	less	of	a	concern.

Checklist
Here’s	a	checklist	of	actions	to	ensure	that	you	hit	your	deadlines:

	Collect	product-improvement	ideas	from	your	customers	and	your	business,	putting
descriptive	names	for	each	idea	on	its	own	card.

•	Include	an	indicator	on	each	card	for	the	source	of	the	idea	(helps	with	ordering
and	recognition	of	the	cards).

	Place	the	cards	into	one	of	four	buckets:	must-have	and	wouldn’t	release	without
(pri	0:	the	minimum	viable	product),	should	have	(pri	1),	like	to	have	(pri	2)	and
nice	ideas	(pri	3).

	Order	a	subset	of	the	cards	in	the	Backlog	column	of	your	signboard,	selecting	first
from	the	minimum	viable	product	and	then	augmenting	with	related	or	additional
lower-priority	cards	as	needed.

	As	needed,	let	your	leadership,	customers,	and	internal	and	external	partners	know
when	to	expect	results.

•	Estimate	the	number	of	tasks	needed	to	complete	work	items,	preferably	using	a
Wideband	Delphi	method	such	as	planning	poker.



•	Calculate	your	task	completion	rate	(divide	the	number	of	tasks	that	are	done	with
their	final	steps	within	any	two-week	to	four-week	period	by	the	number	of	days
in	that	period).

•	Report	the	estimated	date	by	dividing	the	total	estimated	number	of	tasks	in
consideration	by	the	task	completion	rate,	and	adding	that	number	of	days	to	the
current	date.

	As	needed,	track	and	report	your	expected	completion	date	for	your	leadership,
customers,	or	partners.

•	Compute	your	task	completion	rate	(TCR),	current	task	estimate	(CTE),	and	task
add	rate	(TAR).

•	Calculate	your	expected	completion	date	by	adding	the	result	of	CTE	/	(TCR	–
TAR)	to	the	current	date.

	As	needed,	right-size	your	team	to	complete	your	project	on	time,	using	one	of	two
methods.

•	Use	a	basic	approach	to	calculate	the	number	of	people	needed	for	each	step,
based	on	average	rates	per	month	per	person	for	each	step.

•	Use	an	advanced	approach	to	calculate	the	number	of	people	needed	for	each
step,	based	on	task	completion	rate	(TCR),	current	task	estimate	(CTE),	and	task
add	rate	(TAR).



Chapter	4.	Adapting	from	Waterfall

This	chapter	is	for	people	currently	using	a	traditional	Waterfall	method	for	product
development.	If	your	team	uses	Scrum,	please	feel	free	to	skip	to	the	next	chapter,
“Evolving	from	Scrum.”

Kanban	is	simple	in	structure	and	uses	common	terminology.	As	a	result,	a	wide	range
of	people	can	begin	using	it	without	significant	trouble	or	prolonged	explanation.	As	with
any	new	method,	it	takes	a	few	weeks	to	adjust	to	Kanban	and	a	few	months	to	master	it.
Nonetheless,	even	if	you	learned	product	development	decades	ago,	you	can	quickly	get
started	and	feel	productive	with	Kanban.	After	a	couple	of	months,	the	increases	in
productivity,	quality,	predictability,	and	agility	should	be	evident	and	measurable	to	your
leadership	and	your	team.

When	I	talk	about	“traditional	Waterfall,”	I	mean	the	practice	of	writing	specs,
implementing	features,	and	performing	validation	in	bulk	(many	features	at	once)	over	the
course	of	milestones	that	often	span	months.	I’ve	experienced	many	variations	of
Waterfall	at	Microsoft,	Boeing,	and	other	places	where	I’ve	worked.

This	chapter	will	help	you	adapt	your	variation	of	traditional	Waterfall	to	Kanban
without	much	fuss	or	hassle.	I’ve	even	included	a	rude	Q	&	A	listing	questions	that	a	blunt
team	member	might	ask,	followed	by	pragmatic	answers	meant	to	reassure,	build	trust	in
the	new	approach,	and	clearly	explain	how	to	achieve	great	results	with	Kanban.

The	topics	covered	are:

Introducing	Kanban	to	a	Waterfall	team

Working	in	feature	teams

Completing	features	before	starting	new	ones

Dealing	with	specs	and	bugs

Engaging	with	customers

Celebrating	performance	improvements

Rude	Q	&	A

Checklist

Introducing	Kanban	to	a	Waterfall	team
A	traditional	Waterfall	team	is	one	that	likely	has	members	who’ve	been	doing	product
development	for	decades.	Their	habits	were	formed	long	ago	and	have	served	them	well
over	the	years.	Although	the	products	they	build	might	be	buggy	initially,	the	members	of
the	traditional	Waterfall	team	know	how	to	stabilize	the	product	at	the	end,	drive	out	the
bugs,	and	release	reasonably	close	to	the	scheduled	date	with	acceptable	quality.

However,	as	product	development	has	moved	to	shorter	timelines,	and	long	stabilization
periods	are	no	longer	viable,	traditional	Waterfall	teams	may	be	pressured	to	become
“agile.”	This	can	make	team	members	feel	both	uncomfortable	with	the	notion	of	change



and	disrespected	given	their	past	accomplishments.

For	a	traditional	Waterfall	team	to	embrace	Kanban,	you	need	to	explain	why	a	change
is	necessary,	utilize	people’s	valuable	Waterfall	experience,	and	lightly	adjust	their
familiar	methods	to	facilitate	a	smooth	workflow	and	quick	cadence.	Once	the	team
masters	Kanban,	it	can	choose	to	improve	further	by	making	more	significant	adjustments
to	its	approach.	However,	the	starting	point	can	feel	familiar	and	straightforward.

To	understand	why	making	some	adjustments	to	Waterfall	is	necessary,	it’s	helpful	to
recognize	where	a	traditional	Waterfall	approach	breaks	down:

	When	traditional	Waterfall	is	done	well,	you	start	with	a	solid	plan	everyone
believes	in	(based	on	market	research,	prototyping,	architectural	design,	and	other
planning),	with	clearly	documented	requirements	and	specifications	and	a	thoughtful
schedule	based	on	known	dependencies	and	staff	allocations.	Such	plans	typically
prescribe	a	year	or	more	of	product	development,	broken	into	a	series	of	milestones
followed	by	a	prolonged	stabilization	period.

	Unfortunately,	within	a	few	months	of	implementing	the	plan,	uncertainties	creep	in,
requirements	change,	dependencies	shift,	and	people	move	around.	As	a	result,	the
team	has	to	update	plans,	specifications,	and	schedules	and	throw	out	or	rework	the
portions	of	the	product	(and	associated	tests,	if	any)	that	are	affected.

	The	cycle	of	updates,	discarded	work,	and	rework	repeats	as	the	market	shifts	during
product	development	and	customers	provide	feedback	at	each	milestone.

	All	the	plan	and	product	churn	results	in	numerous	quality	issues	that	often	extend
the	already	long	stabilization	period,	frequently	delaying	the	product	release.

Ideally,	every	product	change	should	receive	immediate	customer	feedback,	adjusting	to
market	shifts	daily,	with	no	buildup	of	churn	or	other	quality	issues.	Doing	so	would
require	a	smooth	flow	of	work	through	each	development	step	and	a	continuous
development	approach	that	delivers	completed,	high-quality	product	improvements	every
day.

	Tip

Even	secret	products	and	new	breakthrough	products	have	customers	and	benefit
from	frequent	customer	feedback.	You	might	need	to	be	selective	in	choosing	the
customers	you	use,	but	their	feedback	is	essential	for	delivering	a	high-quality,
delightful	product.

Scrum	tries	to	address	the	breakdowns	in	traditional	Waterfall	by	converting	the
milestones	to	short	sprints	(typically	one	to	four	weeks	in	length),	producing	customer-
ready	product	improvements	each	sprint,	and	adjusting	to	customer	feedback	at	the	end	of
each	sprint.	It’s	a	substantial	improvement,	but	churn	still	builds	up	during	sprints,	plans
still	need	to	be	updated	each	sprint,	and	the	flow	of	customer-ready	product
enhancements,	with	its	immediate	customer	feedback,	is	more	frequent	but	still	not
smooth	or	continuous.



Kanban	is	built	for	smooth	and	continuous	delivery	of	customer	value.	It	carefully
controls	the	flow	and	quality	of	work	to	discover	and	resolve	issues	immediately.	It	limits
the	work	in	progress	(what’s	called	inventory	in	manufacturing)	so	that	churn	doesn’t
build	up	and	the	team	and	product	can	adjust	to	market	shifts	daily.	Kanban	does	all	this
while	working	within	the	current	roles	and	specialties	of	traditional	Waterfall	teams,
making	it	seem	familiar	and	straightforward.

When	introducing	Kanban	to	a	Waterfall	team,	start	by	reassuring	team	members.	Tell
them,	“Nearly	everything	you	did	before	to	develop	products,	you	still	get	to	do.	You
don’t	have	to	learn	new	roles	or	unfamiliar	terminology.	We	will	put	a	big	focus	on
quality,	and	we	will	do	our	best	to	frontload	the	most	critical	work.	But	you	will	still	do
day-to-day	product	development	the	way	you	always	have.	The	biggest	change	will	be	the
way	you	select	what	to	do	next.	Luckily,	that	selection	process	is	easy	and	displayed	on	a
big	board	where	everyone	can	see	it.”

At	this	point,	you	can	proceed	to	the	Kanban	quick-start	guide	(Chapter	2)	using	your
current	backlog	of	work	as	a	starting	point.	But	before	you	move	on,	here	are	a	few	points
about	the	rest	of	this	chapter.

	A	couple	of	areas	that	might	take	traditional	Waterfall	team	members	by	surprise	are
worth	discussing	in	advance.	I	cover	these	in	the	next	two	sections:	“Working	in
feature	teams”	and	“Completing	features	before	starting	new	ones.”

	After	your	feature	team	has	gotten	used	to	Kanban,	you	might	choose	to	change	how
you	deal	with	specs	and	bugs	and	how	you	engage	with	customers.	I	describe	those
changes	in	the	sections	“Dealing	with	specs	and	bugs”	and	“Engaging	with
customers.”

	To	show	your	management	and	your	team	how	Kanban	is	improving	productivity
and	quality,	you’ll	want	to	measure	and	celebrate	your	progress.	This	can	be	critical
to	gain	commitment	to	Kanban,	it’s	easy,	and	it	provides	a	nice	morale	boost.	See
the	“Celebrating	performance	improvements”	section.

	Finally,	I	have	answers	to	common	questions	in	the	last	section,	“Rude	Q	&	A.”



	Inside	Xbox

I’ve	moved	three	traditional	Waterfall	teams	to	Kanban:	two	software	development
teams	and	one	operations	team.	A	few	people	on	the	teams	were	familiar	with	Scrum
and	agile	techniques,	and	some	had	worked	with	virtual	feature	teams,	but	most	had
only	used	traditional	Waterfall.

Complaints	were	rare	during	adoption.	Team	members	found	Kanban
straightforward	and	the	signboard	quite	helpful.	Most	of	the	confusion	and	questions
were	about	the	WIP	limits	and	dealing	with	occasional	work	items	that	didn’t	match
typical	work.

I	observed	the	first	few	standup	meetings	with	each	team	and	answered	any
questions	that	arose.	Each	team	used	the	Specify,	Implement,	and	Validate	steps	I
describe	in	the	Kanban	quick-start	guide.	Those	steps	are	familiar	to	traditional
Waterfall	teams.	(Some	of	my	teams	called	the	Specify	step	“Breakdown”	but	still
used	it	for	specification.)

After	the	first	few	standup	meetings,	I	attended	only	occasionally.	When
questions	came	up	about	WIP	limits	or	unusual	work	items,	team	members	would
stop	by	my	office	and	ask,	“What	are	we	supposed	to	do?”	I	captured	those
questions,	and	the	answers,	in	the	troubleshooting	section	of	the	Kanban	quick-start
guide	in	Chapter	2.

Working	in	feature	teams
Kanban	brings	feature	teams	together	each	day	to	view	the	signboard	and	handle	blocking
issues.	A	feature	team	is	a	group	of	individuals,	often	from	multiple	disciplines,	who	work
on	the	same	set	of	product	features	together.

A	typical	feature	team	might	have	1–3	analysts,	1–6	developers,	and	1–6	testers	(a	total
of	3–15	people),	but	some	can	be	larger.	Feature	teams	may	also	have	marketers,	product
planners,	designers,	user	researchers,	architects,	technical	researchers,	data	scientists,
quality	assurance	personnel,	service	engineers,	service	operations	staff,	and	project
managers.	Often,	feature	team	members	are	part	of	multiple	feature	teams,	although
developers	and	testers	tend	to	be	dedicated	to	a	single	team.

Many	people	who	use	traditional	Waterfall	work	on	feature	teams,	all	for	the	same
manager	or	as	a	virtual	team.	However,	some	groups	completely	separate	different
disciplines,	using	formal	handoff	procedures	between	disciplines,	including	associated
documentation.

With	Kanban,	you	can	maintain	separate	disciplines	and	formal	handoff	procedures	if
you	prefer.	The	handoff	procedures	map	directly	to	the	done	rules	for	each	step.	However,
Kanban	does	require	each	discipline	working	on	the	same	workflow	to	share	the	same
signboard	and	attend	standup	together.	While	this	is	certainly	a	change,	it’s	a	relatively
minor	logistical	one	that	is	easily	incorporated	into	people’s	workday.

The	key	is	to	pick	a	time	for	the	standup	when	all	feature	team	members	can	attend.	My
teams	schedule	theirs	at	10:30	a.m.	It’s	late	enough	in	the	morning	that	even	folks	who



sleep	in	arrive	on	time,	and	it’s	early	enough	that	no	one	is	away	at	lunch	or	at	an
afternoon	obligation.	Since	standup	takes	only	5–15	minutes,	even	with	large	teams,	it’s
over	before	10:45	a.m.	For	teams	with	remote	members,	pick	the	best	time	you	can	and
use	online	meeting	tools.

While	the	focus	of	the	standup	meeting	is	to	look	over	the	signboard	and	handle
blocking	issues,	getting	everyone	together	also	opens	opportunities	for	cross-discipline
team	members	to	connect.	Keep	the	standup	focused	properly,	but	after	the	standup,
people	can	meet	and	sync	up	on	a	variety	of	scheduling,	process,	and	design	issues,	while
folks	not	involved	in	these	issues	return	to	their	work.	It’s	invaluable	to	have	this	regular
time	when	everyone	working	on	the	same	features	can	align	themselves.

To	help	everyone	adjust	to	the	daily	standups,	tell	your	team,	“We	all	work	together	to
create	great	features	for	our	customers.	When	we	work	together,	it’s	helpful	to	get	together
daily,	see	our	work	progress,	and	handle	any	issues	that	might	keep	our	high-quality	work
from	reaching	our	customers	quickly.”

Completing	features	before	starting	new	ones
Some	traditional	Waterfall	teams	specify	(and	review)	every	feature	in	a	release	before
any	features	are	implemented,	and	some	implement	every	feature	before	any	are	validated.
Some	Waterfall	teams	arrange	release	work	into	a	series	of	Specify/Implement/Validate
milestones.	Within	each	milestone,	all	features	for	that	milestone	are	specified	before	they
are	implemented	and	implemented	before	they	are	validated.	This	traditional	Waterfall
approach	is	reminiscent	of	batch	processing	jobs	with	mainframe	computers.

The	batch	approach	in	traditional	Waterfall	is	simple	and	keeps	team	members	focused.
However,	it	can	be	inefficient	and	inflexible	if	the	batches	are	large	and	can’t	be	easily
changed	or	reordered.	Arguably,	the	biggest	change	for	traditional	Waterfall	folks	adapting
to	Kanban	is	to	work	on	very	small	batches	of	items,	constrained	by	WIP	limits.	The
active	cards	in	a	step	form	the	current	batch.	Instead	of	milestones	or	releases	lasting
months	or	even	years,	the	batches	last	only	days	at	a	time.	(I	talk	about	coordinating
Kanban	work	within	much	larger	projects	in	Chapter	7,	“Using	Kanban	within	large
organizations.”)

Although	the	small	batches	in	Kanban	are	a	new	concept,	traditional	Waterfall	folks
adapt	quickly	because	the	steps	they	follow	to	process	each	batch	are	the	same	as	they
were	in	traditional	Waterfall.	They	just	process	only	a	few	items	at	a	time.	Typically,	two
areas	of	confusion	or	surprise	come	with	the	shift	to	small	batches:

	There’s	initial	confusion	about	what	to	do	when	the	WIP	limits	restrict	the	flow	of
batches.	I	cover	those	cases	in	the	troubleshooting	section	of	the	Kanban	quick-start
guide	(Chapter	2).

	There’s	confusion	or	surprise	about	the	increased	frequency	of	cross-discipline
interaction.	Because	Kanban	uses	very	small	batches,	people	responsible	for
different	steps	engage	with	one	another	more	often.	At	first,	this	can	seem	like	a
distraction.	Personal	expectations	of	quiet	time,	appropriate	engagement,	and	other
professional	courtesies	develop	quickly.	In	time,	team	members	view	the	increased
interaction	as	a	significant	improvement	because	it	catches	design	and



implementation	flaws	early,	before	they	permeate	the	entire	release	and	become
more	expensive	to	repair.

To	smooth	the	adaptation	to	small	batches,	tell	your	team,	“We’re	all	familiar	with
specifying	features,	implementing	them,	and	validating	that	they	work	well	for	customers.
We	used	to	specify,	implement,	and	validate	a	whole	bunch	of	features	at	once.	It	was	easy
to	organize	around	large	batches,	but	the	world	changes	quickly,	and	turning	big	boats
takes	time.	We’re	now	adopting	small	batches,	moving	a	card	on	our	signboard	as	each
feature,	each	bit	of	customer	value,	gets	specified,	implemented,	and	validated.	The	cards
make	tracking	these	small	batches	easy,	and	the	small	batches	make	it	easier	to	keep	pace
with	the	world	and	the	needs	of	our	customers.”

Once	your	feature	team	is	used	to	meeting	together	for	the	daily	standup,	and	the	team
has	become	familiar	with	the	dynamics	and	extra	interaction	of	working	on	small	batches,
you	might	want	to	introduce	and	make	a	couple	of	more	adjustments	to	further	improve
your	smooth	and	continuous	delivery	of	customer	value.	You	might	want	to	change	how
you	deal	with	specs	and	bugs	and	how	you	engage	with	customers.	I	describe	those
changes	in	the	next	two	sections.

Dealing	with	specs	and	bugs
When	you	complete	features	before	you	start	new	ones,	you	significantly	shorten	the	time
between	writing	specs	and	implementing	them	and	between	creating	bugs	and	fixing	them.
In	practice,	that	reduced	time	leads	to	the	simplified	handling	of	specs	and	bugs	in
Kanban.

Specs
Many	traditional	Waterfall	teams	write	detailed	design	specification	documents	(“specs”)
for	every	feature,	all	of	which	are	reviewed	and	approved	before	implementation	starts.
Detailed	specs	are	important	because	in	traditional	Waterfall	a	feature	may	not	be
implemented	until	months	after	specification,	and	not	be	validated	until	months	after
implementation.	If	you	don’t	clearly	document	the	feature	in	detail,	developers	won’t
remember	what	to	implement	and	testers	won’t	remember	what	to	validate.

Because	Kanban	uses	small	batches,	the	time	between	specification,	implementation,
and	validation	is	measured	in	days	instead	of	months.	At	first,	traditional	Waterfall	teams
might	choose	to	continue	writing	detailed	specs	for	every	feature.	However,	teams	may
find	that	level	of	formality	to	be	unnecessary	because	the	design	is	still	fresh	in	everyone’s
minds.

It’s	still	important	to	document,	review,	and	approve	designs.	However,	it’s	often	not
necessary	to	transcribe	a	design	and	a	list	of	considerations	drawn	on	a	whiteboard	into	a
formal	document,	with	detailed	explanations	of	every	point	so	that	people	remember	them
months	later.	Instead,	teams	often	use	electronic	notebooks,	wikis,	or	other	quick
authoring	tools	to	capture	photos	of	whiteboards	and	key	points	of	design	discussions.
(My	teams	love	OneNote	for	this	purpose.)	Those	informal	documents	capture	enough	of
the	design	for	everyone	to	remember	the	main	attributes,	issues,	and	agreements.	Then,	as
the	feature	is	implemented,	details	of	the	design	emerge	and	can	be	discussed	in	real	time



instead	of	being	speculated	upon	months	in	advance.

As	I	point	out	in	the	“Troubleshooting”	section	of	the	Kanban	quick-start	guide
(Chapter	2),	some	feature	areas	or	individual	features	are	still	so	complex	that	a	detailed
design	document	is	necessary.	Choosing	to	write	a	detailed	spec	should	not	be	a	matter	of
dogma	or	habit.	It	should	be	a	decision	based	on	the	needs	of	the	team	(and	the	customer,
should	the	customer	require	it).	If	a	feature	or	feature	area	is	unclear,	or	the	tradeoffs	and
architecture	are	in	question,	you	should	write	a	detailed	spec	and	flesh	out	the	design.
Otherwise,	a	quick,	informal	electronic	notebook	or	wiki	should	be	sufficient.	(My	teams
use	Word	for	detailed	specs	and	OneNote	for	other	documentation.)

Bugs
In	traditional	Waterfall,	features	might	not	be	validated	until	months	after	implementation.
On	a	large	project	with	hundreds	of	engineers,	validation	may	find	thousands	of	bugs.
Often,	validation	takes	as	long	as	or	longer	than	implementation.

Over	the	years,	traditional	Waterfall	teams	have	devised	a	variety	of	ways	to	handle
large	bug	counts:

	With	limited	time	to	fix	so	many	bugs,	each	bug	must	be	prioritized	and	duplicate
bug	reports	removed.	At	Microsoft,	we	call	this	process	“bug	triage.”	Team	leaders
representing	each	job	role	meet	for	roughly	an	hour	each	day	and	review	every	new
or	updated	active	bug.	They	discuss	the	impact	of	the	bug	(severity,	frequency,	and
percentage	of	customers	affected)	and	set	an	appropriate	priority	(fix	now,	fix	before
release,	fix	if	time,	or	fix	in	subsequent	release).	They	can	also	decide	that	the	bug	is
a	duplicate	of	a	prior	reported	issue	or	that	the	bug	isn’t	worth	fixing	(usually
because	a	trivial	workaround	is	available,	most	customers	won’t	encounter	the	bug,
or	the	fix	would	cause	more	havoc	than	the	bug).

	Some	teams	have	“bug	jail,”	in	which	individual	engineers	must	stop	further
development	and	only	resolve	bugs	until	their	individual	bug	counts	drop	below	a
reasonable	level	(such	as	below	five	bugs	each).

	Some	teams	have	something	like	“workaholic	Wednesdays”—one	day	a	week	when
the	team	doesn’t	go	home	until	all	bugs	are	resolved,	or	at	least	brought	below	a
reasonable	level	(such	as	below	five	bugs	per	engineer).

	Every	traditional	Waterfall	team	I’ve	encountered	has	substantial	stabilization
periods	at	the	end	of	each	milestone	or	at	the	end	of	each	release.	During
stabilization,	the	team	(and	often	the	entire	organization)	focuses	on	nothing	but
fixing	bugs,	doing	various	forms	of	system	validation,	and	logging	any	new	or
reoccurring	bugs	they	find.	Stabilization	for	a	large	project	can	sometimes	last
longer	than	all	the	specification,	implementation,	and	prestabilization	validation
times	put	together.

	Some	progressive	development	teams	might	employ	extensive	code	reviews,
inspections,	unit	testing,	static	analysis,	pair	programming,	and	even	test-driven
development	(TDD)	during	implementation	to	reduce	the	number	of	bugs	found
during	validation.	These	methods	make	a	big	difference,	but	you	are	usually	still	left
with	a	substantial	number	of	bugs	at	the	end,	partially	because	system	validation



happens	well	after	implementation,	and	partially	because	adherence	to	these
practices	varies	widely	among	developers.

In	Kanban,	a	bug’s	life	is	a	bit	different:

	Kanban’s	small	batches	ensure	that	validation	happens	only	days	after
implementation,	so	bug	backlogs	are	small	and	fixes	are	readily	apparent.

	Kanban	ensures	that	every	task	implemented	has	been	through	code	review,
inspected,	unit	tested,	statically	analyzed,	pair	programmed,	or	designed	and	verified
using	TDD,	based	on	the	implementation	done	rule	that	the	team	imposed	on	itself.
Even	reckless	developers	are	kept	in	line	by	their	own	teams.	(No	one	likes	cleaning
up	after	a	lazy	slob.)	This	further	reduces	bug	counts.

	Likewise,	the	validation	done	rule	ensures	that	every	task	has	gone	through
integration	testing	and	all	its	issues	are	resolved.	Thus,	by	the	time	a	task	is	done
with	validation,	it’s	ready	for	production	use.	I	talk	about	taking	advantage	of	this
fact	in	Chapter	6,	“Deploying	components,	apps,	and	services.”

Even	though	every	work	item	completing	validation	each	day	has	gone	through
integration	testing	and	all	its	issues	are	resolved,	bugs	can	still	be	discovered	in	production
use,	stress	testing,	security	testing,	usability	and	beta	testing,	and	a	variety	of	other
product-wide	system	testing.	However,	the	stabilization	period	required	to	fix	those	issues
is	far	shorter,	and	in	my	experience,	the	number	of	stabilization	bugs	opened	per	feature
team	drops	from	hundreds	to	10	to	20	(a	couple	of	weeks	of	effort	to	resolve).

After	adapting	to	Kanban,	traditional	Waterfall	teams	might	choose	to	continue	bug
triage,	bug	jail,	workaholic	Wednesdays,	and	long	stabilization	periods.	However,	teams
may	soon	find	some	or	all	of	those	practices	unnecessary.	In	a	large	organization,	a	cross-
team,	product-wide	triage	stabilization	period	might	still	be	needed	(see	Chapter	7),	but
individual	teams	using	Kanban	won’t	have	enough	bugs	to	make	team	triage,	bug	jail,	or
workaholic	Wednesdays	useful.

Engaging	with	customers
Traditional	Waterfall	teams	typically	engage	with	customers	during	planning	(before	work
on	the	release	begins),	every	one	to	six	months	at	the	end	of	stabilization	for	each
milestone	(perhaps	as	part	of	a	preview	program),	and	during	final	release	stabilization
(often	as	part	of	a	beta	program).

As	experienced	engineers	know,	customer	feedback	is	invaluable	for	specifying,
implementing,	and	validating	product	improvements.	Customer	engagement	with
traditional	Waterfall	teams	is	limited	because	the	product	is	usually	too	buggy	or
incomplete	to	use.	Customers	can’t	provide	actionable	feedback	when	they	can’t	use	the
product.	Instead,	customers	must	wait	until	the	end	of	stabilization	periods,	when	the
product	has	the	fewest-known	bugs.

In	contrast,	Kanban	provides	an	opportunity	to	engage	with	customers	at	whatever
cadence	the	team	or	its	customers	finds	most	convenient,	including	continuously	with
customers	who	are	onsite.	Kanban	enables	this	because	when	a	task	is	through	validation,
it’s	ready	for	production	use.



Naturally,	you	want	to	try	out	product	improvements	with	a	limited	number	of
customers	first,	and	gauge	their	reactions,	before	publishing	those	improvements	to	your
entire	customer	base.	One	common	approach	is	to	first	have	the	entire	product
development	team	try	the	latest	version,	then	share	it	through	an	early	adopter	program,
then	publish	it	to	a	broader	preview	audience,	and	then	finally	release	it	to	all	your
customers.	(I	describe	an	example	in	the	following	“Inside	Xbox”	section.)

The	customer	feedback	you	get	along	the	way	can	be	used	to	hold	back	changes	that
don’t	work,	adjust	designs,	reorder	pending	work,	find	subtle	or	rare	bugs,	fill	gaps	in
usability	scenarios,	and	expand	features	in	areas	that	customers	love.	Since	Kanban	limits
work	in	progress	(small	batches),	it’s	easy	to	adjust	to	customer	input	within	days.

To	take	advantage	of	the	customer	feedback	opportunity,	you	need	to	establish	a
preview	program,	an	early	adopter	program,	and	a	way	for	the	entire	product	development
team	to	try	the	latest	version.	Here	are	some	possibilities:

	Many	traditional	Waterfall	teams	have	beta	programs	already.	You	can	repurpose
your	beta	program	as	a	preview	program.

	To	establish	an	early	adopter	program,	you	can	engage	the	most	active	members	of
your	beta	audience	or	hand-select	key	customers	and	offer	them	early	adopter	status
as	a	perk.

	To	expose	the	entire	product	team	to	the	latest	builds,	follow	the	steps	I	outline	in
Chapter	6.

Soon,	you’ll	be	enjoying	greater	confidence,	higher	quality	and	usability,	and	more
delighted	customers.	There’s	nothing	quite	like	engaged	customers	providing	actionable
feedback	on	working	products.

The	last,	and	arguably	most	critical,	step	to	ensure	that	your	team	and	your	management
commit	to	Kanban	is	to	measure	the	great	results	you’re	getting,	and	then	celebrate	your
success.	That’s	the	topic	of	the	next	section.



	Inside	Xbox

Xbox	One	launched	in	the	fall	of	2013,	and	at	the	time	of	this	writing	has	shipped
new	releases	of	the	platform	every	month	since.	The	Xbox	One	product	team	uses	a
variety	of	methodologies:	Scrum,	Scrummerfall	(traditional	Waterfall	with	short,
fixed-length	milestones	called	“sprints”),	variants	of	Extreme	Programming	(XP),
and	Kanban.	All	of	these	techniques	enable	frequent	customer	feedback.

The	move	to	monthly	releases	had	its	challenges,	but	was	surprisingly	smooth	and
natural.	In	hindsight,	I	feel	that	two	key	changes	made	this	smooth	transition
possible:

	Roughly	18	months	in	advance,	we	synchronized	all	enterprise	Scrum	and
Scrummerfall	sprints	and	XP	iterations	to	match	a	shared	4-week	cadence.	Kanban
releases	continuously	and	can	match	any	cadence,	so	the	Kanban	teams	didn’t	need
to	adjust.

	In	the	months	leading	up	to	the	launch,	we	released	new	platform	builds	to	the
Xbox	product	team	weekly,	then	to	the	early	adopter	program	the	week	after,	and
then	to	a	preview	audience	monthly.	We	released	fixes	immediately	for	issues
found	by	each	audience.	Once	Xbox	One	launched,	we	simply	continued	that
release	cadence	and	approach,	adding	a	broad	release	to	all	customers	a	few	weeks
after	the	preview	audience	received	it.

	Establishing	the	various	release	audiences	was	pretty	easy,	relatively	speaking.

	We	already	had	a	release	mechanism	for	the	weekly	Xbox	product	team	builds.	It’s
called	“dog	food”	(as	in	“eating	our	own	dog	food”),	and	has	been	around	since	the
first	version	of	the	Xbox.	Naturally,	we	needed	to	update	the	program	for	Xbox
One,	but	that	was	anticipated.

	We	already	had	a	passionate	early	adopter	program.	Basically,	we	ask	all	full-time
Microsoft	employees	if	they’re	interested	in	early	releases	of	Xbox—first	come,
first	served.	The	list	fills	within	hours.	Again,	we	needed	to	update	our	deployment
process	for	Xbox	One,	but	that	was	expected.

	And	we	already	had	a	passionate	Xbox	beta	audience	that	we	could	convert	over	to
Xbox	One	preview.	This	was	the	most	work—not	to	get	the	audience,	but	to
reconfigure	the	beta	feedback	site,	logistics,	and	tooling	to	a	monthly	release
cadence.

	Now	that	Xbox	is	releasing	once	a	month,	we	never	want	to	go	back.	Our
customers	love	the	new	features	and	responsiveness	to	requests.	Our	engineers
love	the	predictability,	the	decreased	churn	between	releases,	and	the	reduced
pressure	(if	your	feature	misses	one	month,	it	can	always	go	out	the	next).	And	our
management	loves	the	positive	press	we’ve	received	and	how	that’s	translated	to
the	bottom	line.



Celebrating	performance	improvements
Even	if	your	traditional	Waterfall	team	takes	easily	to	Kanban	and	likes	the	change,
members	may	still	question	whether	the	change	was	worth	it.	After	all,	traditional
Waterfall	does	work,	and	has	likely	worked	for	years.	Your	management	probably	has	a
similar	concern:	Was	the	effort	to	adopt	Kanban	worth	the	cost?

While	each	team	has	its	own	reasons,	you	likely	adopted	Kanban	to	increase	agility	and
deliver	more	high-quality	value	to	your	customers	in	less	time.	The	good	news	is	that	it’s
straightforward	to	measure	those	outcomes.	By	measuring	them	from	the	start,	and
showing	your	team	and	management	how	your	results	improve	over	time,	you’ll	enhance
everyone’s	commitment	to	the	change	and	boost	morale	and	team	pride	in	the	process.

I’ll	focus	on	two	daily	measurements	and	their	moving	averages	to	capture	agility,
productivity,	and	quality.	I	selected	these	particular	measures—completed	tasks	and
unresolved	bugs—because	they	are	easy	to	calculate	for	both	Waterfall	and	Kanban,	they
have	clear	definitions,	and	they	relate	directly	to	agility,	productivity,	and	quality.	Here’s	a
breakdown	of	each	measure:

Notes	on	these	measures:

	If	the	size	of	your	team	varies	dramatically,	you	should	divide	by	the	number	of
team	members,	resulting	in	completed	tasks	per	team	member	and	unresolved	bugs
per	team	member.	Doing	so	makes	the	measures	easier	to	compare	across	teams	but
less	intuitive	to	management,	in	my	experience.

	The	completed	tasks	calculation	for	Waterfall	bulks	all	the	tasks	at	the	end	of	each
milestone	or	release	because	that’s	the	earliest	date	when	the	tasks	are	known	to	be
validated	with	all	issues	resolved.	However,	if	your	Waterfall	team	associates	all
bugs	directly	with	tasks,	you	can	count	tasks	toward	the	day	when	their	last	bug	was
resolved.	Getting	this	extra	accuracy	is	nice,	but	it	isn’t	essential.	In	particular,	the
extra	accuracy	doesn’t	matter	for	the	moving	average	(the	productivity	measure),	so
long	as	you	average	over	the	length	of	your	milestones.

	The	moving	average	can	be	a	7-day	average	for	measuring	weekly	productivity,	a



30-day	average	for	monthly	productivity,	or	whatever	length	you	want.	To	compare
the	productivity	of	Waterfall	to	Kanban,	you	should	average	over	the	length	of	your
Waterfall	milestones.

Figure	4-1	and	Figure	4-2	are	examples	of	plots	of	completed	tasks	and	unresolved	bugs
over	four	nine-week	periods	(included	in	a	downloadable	worksheet;	see	the	book’s
introduction	for	more	details).	The	first	two	periods	are	Waterfall	milestones,	split	into	six
weeks	of	implementation	and	three	weeks	of	validation.	The	second	two	periods	are
Kanban	running	continuously.	The	data	is	based	on	the	team	configuration	I	used	as	an
example	in	Chapter	3,	“Hitting	deadlines.”	I	have	the	team	working	seven	days	a	week
(for	simplicity,	not	punishment).	Their	pace	of	task	work	remains	the	same	throughout	all
four	periods,	which	is	artificial	but	unbiased.	(I	do	add	a	little	random	noise	throughout	to
make	the	results	a	bit	more	realistic.)

FIGURE	4-1	Plot	of	completed	tasks	over	four	nine-week	periods,	with	a	superimposed
running	average.

FIGURE	4-2	Plot	of	unresolved	bugs	over	four	nine-week	periods,	with	a	superimposed
running	average.



Looking	at	the	chart	of	completed	tasks,	all	tasks	are	considered	completed	on	the	final
day	of	validation	during	the	first	two	Waterfall	periods.	The	two	columns	of	completed
tasks	from	those	periods	go	about	10	times	the	height	of	the	chart.	I’ve	zoomed	in	to	better
view	the	nine-week	moving	average	line	measuring	productivity.	It	starts	at	around	0.52
tasks	per	day	(33	tasks	/	63	days),	increases	to	around	1.2	tasks	per	day	as	the	results	from
the	second	Waterfall	milestone	combine	with	the	Kanban	results,	and	then	settles	to
around	0.76	tasks	per	day	as	the	steady	stream	of	Kanban	work	establishes	itself.

The	improvement	from	0.52	to	0.76	represents	a	46	percent	increase	in	productivity.
That’s	the	equivalent	to	working	five	days	and	getting	seven	and	a	half	days	of	tasks
completed—it’s	like	you	worked	hard	through	the	weekend	and	still	got	the	weekend	off.
The	day-to-day	agility	of	Kanban	is	also	immediately	apparent,	as	work	is	completed	daily
instead	of	being	delivered	in	bulk.

The	unresolved	bugs	chart	in	Figure	4-2	displays	a	fairly	typical	Waterfall	pattern	of
building	up	a	bug	backlog	during	the	six-week	implementation	phase	of	the	milestone	and
then	resolving	those	bugs	during	the	three-week	validation	phase.	This	shows	as	the	two
inverted	V	shapes,	one	for	each	Waterfall	milestone.	This	simple	example	has	a	fairly
uniform	bug	resolution	rate	during	validation.	In	practice,	bug	resolution	rates	often
fluctuate	significantly	as	complicated	issues	are	uncovered	and	some	fixes	regress	old
problems.

Once	the	Kanban	period	starts,	there	is	a	fairly	steady	stream	of	unresolved	bugs,	but	it
never	builds	up.	Bugs	are	kept	in	check	by	the	WIP	limits	and	done	rules.	As	a	result,	the
nine-week	moving	average	line	measuring	quality	improves	dramatically	with	Kanban.
The	product	is	always	ready	for	production	use	and	customer	feedback.

Seeing	these	dramatic	improvements	in	productivity	and	quality	should	be	enough	to
warm	the	hearts	of	hardened	cynics	and	skeptical	managers.	Sharing	them	weekly	with
your	team	and	your	management	gives	you	all	something	to	celebrate	(in	addition	to	the
increased	customer	value	you	deliver).

What’s	more,	with	Kanban,	the	quality	level	is	steady	throughout	the	product	cycle,	so
the	prolonged	stabilization	periods	associated	with	traditional	Waterfall	are	gone	or,	in
large	organizations,	reduced	to	only	two	or	three	weeks	of	system-wide	testing.	Replacing
months	of	stabilization	with	a	few	weeks	at	most	yields	more	time	for	continuous	product
enhancements,	making	the	measurable	improvements	in	productivity	and	quality	even
more	remarkable.

However,	a	month	or	two	will	pass	before	you	begin	to	see	great	results.	The	cynics	and
skeptics	on	your	team	are	bound	to	have	questions.	It’s	time	for	the	rude	Q	&	A.

Rude	Q	&	A
What	follows	is	a	rude	Q	&	A	session	that	is	based	on	questions	I’ve	received	from
traditional	Waterfall	team	members	when	they	were	introduced	to	Kanban.	I	hope	it	covers
many	of	the	questions	you	receive.

Q	Why	are	we	adopting	Kanban?

A	The	software	industry	continues	to	evolve.	Customers	now	expect	their	apps	and



services	to	update	automatically	and	be	improved	continuously.	Our	current	practices
impede	us	from	keeping	pace.

Q	Instead,	how	about	we	stop	changing	practices,	plans,	and	requirements
constantly?

A	Plans	and	requirements	always	change,	no	matter	how	well	prepared	or	well
considered	they	are.	Even	when	you	are	your	own	customer,	you	constantly	change	your
mind.	Nevertheless,	stable	plans,	requirements,	and	practices	aren’t	sufficient	for	us	to
react	quickly	to	the	current	market.

Q	So	you’re	saying	it’s	hopeless?

A	It’s	not	hopeless	at	all.	The	rest	of	the	industry	is	moving	forward.	We	can	join	in
with	some	relatively	small	changes	that	have	a	big	impact.

Q	Will	we	need	training	for	Kanban?

A	We’ll	learn	Kanban	mostly	from	doing	it	every	day.	Books	about	Kanban	and
Kanban	coaches	are	available	to	help	us	with	adoption.

Q	Are	you	going	to	make	me	sit	in	a	cubical	farm	or	share	a	desk?

A	No,	you	don’t	have	to	change	offices	or	share	desks.	You	don’t	even	have	to	change
how	you	write	specs,	software,	or	tests.	We’re	just	adding	a	daily	standup	meeting	at
which	we	track	our	workflow	on	a	large	board.

Q	How	is	adding	another	meeting	going	to	make	me	faster?

A	The	daily	standup	lasts	less	than	15	minutes	and	replaces	our	old	planning	and	status
meetings.	We’ll	schedule	it	at	a	convenient	time	for	the	whole	team.	Regardless,	it’s
smooth	and	continuous	workflow	that	makes	the	team	faster.

Q	How	do	we	get	smooth	and	continuous	workflow?

A	Today,	we	specify,	implement,	and	validate	features	in	bulk.	It’s	fast,	but	when	a
plan	or	requirement	changes,	we	lose	work	and	momentum,	and	when	bugs	are	found	late,
we	have	lots	of	costly	rework.	Going	forward,	we’ll	pace	specification,	implementation,
and	validation	to	run	at	similar	rates	so	that	we	can	smoothly	complete	small	batches
continuously.

Q	How	do	small	batches	make	us	faster?

A	Small	batches	speed	us	up	in	a	variety	of	ways:

	When	a	plan	or	requirement	changes,	it	affects	only	a	small	batch,	so	less	work	is
wasted	and	the	team	can	adjust	quickly.

	Small	batches	mean	smaller	bug	backlogs,	so	we	don’t	need	dedicated	team
stabilization	periods.

	We	have	to	specify,	implement,	and	validate	only	a	small	batch	at	a	time,	so	we
don’t	write	specs	that	aren’t	implemented,	implement	code	that	isn’t	validated,	or
write	tests	that	are	never	run.

	We	can	get	customer	feedback	after	every	small	batch,	which	avoids	being



blindsided	later	and	reworking	major	portions	of	the	design	(or	releasing	a	product
that	customers	dislike).

In	all,	small	batches	significantly	reduce	wasted	effort	and	rework,	while	improving	the
quality	of	our	product.

Q	So	why	haven’t	we	been	using	small	batches	all	along?

A	Small	batches	require	a	coordinated	flow	of	work.	If	analysts	specify	more	features
in	a	week	than	developers	can	implement,	specifications	start	piling	up,	and	you’re	back	to
doing	work	in	bulk.	Likewise	for	developers	implementing	more	features	than	testers	can
validate.	If	you	can’t	pace	specification,	implementation,	and	validation	to	run	at	similar
rates,	you’re	stuck	working	in	bulk	and	dealing	with	wasted	effort,	large	bug	backlogs,
and	substantial	rework.

Q	We	have	a	wide	variety	of	analysts,	developers,	and	testers.	How	do	you	pace
work	properly?

A	You	limit	the	pace	of	specification,	implementation,	and	validation	to	match	one
another.	You	base	those	work	limits	on	the	current	pace	of	each	step,	plus	some	buffer	to
account	for	the	variety	of	people	and	work	involved.	These	work	limits	are	often	called
“work-in-progress	(WIP)	limits.”	Naturally,	your	initial	guesses	about	the	limits	will	need
fine-tuning,	but	even	initial	guesses	are	typically	good	enough	to	produce	a	smoother,
more	continuous	flow	of	small	batches.

Q	Wouldn’t	limiting	work	make	us	slower?

A	We’re	not	limiting	people,	we’re	limiting	the	kinds	of	work	they	do.	If	developers
are	stuck	on	a	feature,	an	analyst	specifying	more	features	doesn’t	help.	Instead,	the
analyst	should	work	to	unblock	the	developers	(for	example,	clarify	the	spec,	escalate	an
issue,	research	a	customer	preference,	or	bring	in	partner	expertise).	By	focusing	on
keeping	the	work	flowing	smoothly,	and	limiting	work	so	that	it	maintains	a	smooth	pace,
we	actually	get	more	work	done	in	less	time.

Q	Why	not	keep	the	analyst	working	and	have	the	developer	move	on	to	the	next
task?

A	The	key	is	the	status	of	the	blocked	implementation	task:

	If	the	task	is	blocked	by	an	external	dependency,	the	developer	should	move	on	to
the	next	task	until	the	old	task	is	unblocked.	We’ll	keep	an	eye	on	the	blocked	task	in
a	special	column	on	the	signboard.

	If	the	task	is	blocked	by	a	design	question	or	issue,	it’s	the	analyst’s	responsibility	to
unblock	the	task,	ideally	while	the	issue	is	still	fresh	in	the	developer’s	mind.	The
limits	on	work	and	the	visibility	of	blocked	tasks	prevent	analysts	from	ignoring
design	issues	and	letting	them	fester.

The	same	applies	for	blocked	specification	and	validation	tasks.	Instead	of	letting
problems	pile	up,	we’re	going	to	work	together	to	fix	them	quickly.	That	keeps	work
flowing	smoothly,	fixes	issues	before	they	permeate	the	product	and	become	harder	to
repair,	and	delivers	value	faster	and	more	continuously	to	our	customers.



Q	Won’t	I	be	constantly	hassled	about	fixing	problems?

A	Actually,	you’ll	be	hassled	less	than	you	are	today.	That’s	because	we	always	have
problems,	but	today	we	find	and	fix	them	late.	By	fixing	problems	early,	they	are	fresh	in
your	mind,	easier	to	fix,	and	don’t	have	time	to	multiply	and	cause	further	trouble.	You
will	be	hassled	earlier	than	before,	but	most	folks	appreciate	the	dividends	of	not	having
problems	fester.

Q	Will	everyone	be	coming	to	me	with	problems?

A	No,	you’ll	work	on	individual	tasks	like	you	always	have.	We’re	adding	a	daily
standup	meeting	where	we	track	our	workflow	on	a	large	board.	That	signboard	will	show
your	work,	and	everyone	else’s	work,	on	cards	that	flow	across	the	three	steps:	Specify,
Implement,	and	Validate.	The	WIP	limits	that	set	the	right	pacing	will	be	written	above
each	step	on	the	signboard.	Everyone	will	see	when	work	is	getting	blocked	and	bunched
up—they	won’t	all	just	come	to	you.	Instead,	the	team	will	work	out	issues	together.

Q	What	if	one	person	keeps	causing	all	the	blockage?

A	There’s	a	classic	remedy	if	someone	really	can’t	do	his	or	her	job.	However,	if
someone	is	careless	or	lazy	and	tends	to	pass	on	half-done	work,	he	won’t	get	away	with
it.	We’re	going	to	have	done	rules	for	Specify,	Implement,	and	Validate.	Before	someone
can	move	a	card,	claiming	it’s	done	with	the	current	step,	the	work	has	to	pass	the	done
rules	for	that	step.	No	half-done	work	is	allowed.

Q	Who	determines	the	done	rules?

A	You	and	the	rest	of	the	team	decide	on	the	done	rules	you’ll	follow.	You	know	what
causes	issues.	You	know	how	to	do	your	job	well.	You	get	to	decide	when	a	task	should	be
considered	done.	Once	the	team	decides	on	the	rules,	we’ll	write	them	at	the	bottom	of	the
signboard	so	that	there’s	no	confusion.	Anytime	the	rules	need	adjustment,	we	can	change
them	together.

Q	What	else	changes	with	Kanban?

A	Nothing—that’s	it	until	we	want	to	improve	even	further.	For	now,	we’ll	have	a	daily
standup	in	front	of	a	big	board	with	our	work	steps	written	on	it,	cards	showing	our	work,
limits	on	the	number	of	cards	at	each	step,	and	rules	at	the	bottom	of	the	signboard	that
determine	when	a	card	is	done	with	its	current	step.	Whenever	you’re	done	with	a	step,
based	on	the	done	rules,	you’ll	move	your	card	on	the	signboard	and	grab	the	next
available	card.	If	no	cards	are	available,	that	indicates	that	workflow	is	blocked,	and	you
should	work	with	your	teammates	to	unblock	the	flow.

Q	Where	will	the	cards	come	from?

A	We’ll	take	our	current	feature	list	and	work	backlog,	write	the	items	on	cards,	bucket
them	in	priority	order,	and	place	them	on	the	left	side	of	the	signboard,	in	front	of	the
specification	step.	When	new	work	arrives	or	plans	change,	we’ll	add	and	rearrange	cards
as	needed.	(Details	in	Chapter	3,	“Hitting	deadlines,”	and	Chapter	7,	“Using	Kanban
within	large	organizations.”)

Q	When	a	card	moves	from	one	step	to	the	next,	who	works	on	it?



A	We’ll	assign	work	to	whomever	is	free	and	capable	of	doing	that	work	at	the	time.
Pretty	much	like	we	do	today,	but	as	needed,	not	planned	far	in	advance.

Q	We	have	daily	standups	in	front	of	a	board	that	tracks	progress.	Are	we	already
doing	Kanban?

A	Many	traditional	Waterfall	teams	meet	daily	in	front	of	a	board	that’s	used	to	track
progress.	However,	it’s	not	Kanban	unless	you	list	your	steps	on	the	board	(like
specification,	implementation,	and	verification),	and	each	step	has	a	work-in-progress
(WIP)	limit,	a	Done	column,	and	a	done	rule	clearly	marked	on	the	board.

Q	Why	does	each	step	need	its	own	Done	column?

A	Say	you	just	completed	implementing	an	item	(it	passes	the	implementation	done
rule).	Without	an	implementation-specific	check	mark	or	implementation	Done	column,
how	would	you	indicate	that	the	item	is	ready	for	validation?	On	an	ordinary	board,	you
just	move	the	item	to	validation.	However,	that	means	the	item	is	actively	being	validated
and	counts	toward	the	validation	WIP	limit—neither	of	which	is	true.	What’s	worse	is	that
the	item	no	longer	counts	toward	the	implementation	WIP	limit,	so	you’re	free	to
implement	another	item,	even	if	validation	is	overwhelmed	and	needs	help.	The	Done
column	for	each	step	clearly	indicates	the	status	of	each	item	and	controls	the	flow	of
items	in	conjunction	with	their	WIP	limits.

Q	What	happens	to	milestones	with	Kanban?

A	The	larger	project	might	have	release	milestones	to	sync	across	teams,	but	we	no
longer	need	them	as	an	individual	team.	Our	small	batches	are	always	complete	and	ready
for	production	use,	based	on	our	validation	done	rules.	Learn	more	in	Chapter	7,	“Using
Kanban	within	large	organizations.”

Q	What	about	stabilization?

A	The	larger	project	might	have	release	stabilization	to	resolve	system-wide	issues,	but
we	no	longer	need	it	as	an	individual	team.	Our	done	rules	ensure	that	work	is	done	at	the
end	of	each	step,	with	no	remaining	issues	to	stabilize.

Q	If	other	project	teams	are	using	Waterfall,	won’t	they	still	need	stabilization?

A	Yes,	they	will.	While	other	teams	stabilize,	we	can	do	a	few	different	things:

	We	can	keep	working	on	new	tasks	for	the	current	project	milestone.	This	might
upset	Waterfall	folks	or	break	project	rules,	so	it	may	not	be	an	option.

	We	can	work	on	new	tasks	for	the	next	project	milestone	and	check	them	in	to	a
different	source	control	branch.

	We	can	improve	infrastructure	and	tooling	and	address	other	technical	debt	that	has
been	neglected.

	We	can	train	ourselves	on	new	techniques	and	methods.

	We	can	determine	the	root	cause	of	various	issues	we’ve	encountered	and	seek	to	fix
them.

	We	can	help	other	teams	stabilize	their	code,	particularly	teams	we	depend	on.	This



option	may	not	be	the	most	alluring,	but	it’s	the	most	helpful.

	We	can	run	innovative	experiments	and	acquire	customer	feedback.

Q	What	happens	to	planning?

A	We’ll	still	participate	in	overall	release	and	project	planning,	but	our	team	planning
is	simply	a	matter	of	ordering	cards	on	our	big	board.	We’ll	save	a	great	deal	of	time	and
produce	more	value	at	higher	quality,	while	easily	and	quickly	adjusting	to	plan	and
requirement	changes.

Q	It	sounds	pretty	simple.	Aren’t	there	sprints	and	burndowns	or	something?

A	No,	there’s	no	unfamiliar	terminology	or	new	ways	of	doing	the	work.	Kanban	is
pretty	simple	and	direct.	Kanban	roughly	means	“signal	card,”	“sign,”	“board,”	or
“looking	at	the	board.”	It	refers	to	the	cards	that	represent	our	work,	the	signboard
displaying	our	workflow	steps	(and	their	assigned	WIP	limits	and	done	rules),	and	our
daily	standup	when	we	look	at	the	signboard.	There’s	nothing	more	to	it.	We	keep	working
on	new	cards	within	the	WIP	limits	we’ve	set,	ensure	that	the	cards	are	done	with	each
step,	and	then	work	on	the	next	cards.	If	cards	start	piling	up,	we	figure	out	what’s	wrong
and	fix	it	so	that	work	continues	to	flow	smoothly	and	value	is	delivered	continuously	to
our	customers.	It’s	a	fast,	simple,	and	easy	way	to	work.

Checklist
Here’s	a	checklist	of	actions	for	your	team	members	to	adapt	from	Waterfall:

	Explain	why	a	change	is	necessary.

	Reassure	team	members	that	they	can	do	their	work	as	they	did	before,	without
learning	new	roles	or	unfamiliar	terminology.

	Introduce	daily	standups	that	are	attended	by	the	entire	feature	team.

	Describe	why	it’s	important	to	work	on	features	in	small	batches.

	Decide	which	features	will	require	formal	specification	documents	and	which	can	be
specified	informally	with	whiteboard	photos	and	notes.

	Determine	how	lower	bug	backlogs	should	affect	bug-management	and	stabilization
periods.

	Arrange	opportunities	for	frequent	customer	feedback	on	the	continuous	value
added	to	your	products.

	Perform	the	actions	listed	in	the	checklist	in	Chapter	2,	“Kanban	quick-start	guide.”

	Measure	completed	tasks	and	unresolved	bugs,	or	whatever	productivity	and	quality
metrics	you	choose,	on	a	regular	basis.

	Celebrate	productivity	and	quality	improvement	(as	well	as	continuous	delivery	of
value	to	customers).

	Answer	any	questions	team	members	have	with	respect	and	appreciation	for	their
past	accomplishments.



Chapter	5.	Evolving	from	Scrum

This	chapter	is	for	people	currently	using	Scrum	for	product	development.	If	you	don’t	use
Scrum,	feel	free	to	skip	this	chapter.

Kanban	will	seem	quite	familiar	to	people	with	Scrum	experience—using	Kanban	is	a
straightforward	evolution.	Daily	standup	meetings,	working	together	in	feature	teams,
completing	features	before	starting	new	ones,	and	engaging	frequently	with	customers	are
all	common	practices	in	both	approaches.	Roles	like	Scrum	Master	and	Product	Owner	are
welcome	in	Kanban	but	aren’t	as	prescribed	as	in	Scrum.

After	more	than	20	years	of	using	traditional	Waterfall,	I	spent	8	years	using	Scrum,	and
I	loved	every	minute.	Scrum	was	a	revelation	to	me—the	iteration,	the	focus	on
empowering	teams,	the	intimate	customer	connection,	and	the	agility	were	all
breakthrough	benefits.	If	you’d	like	to	learn	more	about	Scrum,	I	recommend	Ken
Schwaber’s	classic	book,	Agile	Project	Management	with	Scrum	(Microsoft	Press,	2004).

Scrum	is	an	enormous	improvement	over	the	traditional	Waterfall	approach.	I’d	still	be
using	Scrum	today	if	Corey	Ladas,	the	guy	who	introduced	me	to	Scrum	in	2003,	hadn’t
shown	me	how	he	used	Kanban	at	Corbis	in	2007.	(Corey	and	David	Anderson	were	kind
enough	to	give	me	a	full	introduction	to	the	methods	they	used	at	Corbis.)	It	took	me	three
and	a	half	years	to	find	the	right	opportunity	and	courage	to	use	Kanban	to	evolve	my
Scrum	Teams,	and	then	I	was	hooked.	Scrum	is	fantastic,	but	Kanban	is	as	close	to
project-management	nirvana	as	I’ve	ever	experienced.	With	Kanban,	every	minute	of
work	is	spent	directly	adding	customer	value—nothing	seems	wasted.

	Note

For	those	who	seek	to	understand	the	hows	and	whys	of	Kanban	in	more	detail,	or
want	to	consider	a	bridge	between	Scrum	and	Kanban,	I	recommend	Corey	Ladas’s
book,	Scrumban:	Essays	on	Kanban	Systems	for	Lean	Software	Development
(Modus	Cooperandi,	2009).

This	chapter	is	devoted	to	helping	Scrum	Team	members	evolve	to	using	Kanban
without	much	fuss	or	hassle.	I’ve	included	a	rude	Q	&	A	listing	questions	that	a	blunt	team
member	might	ask,	followed	by	pragmatic	answers	meant	to	reassure,	build	trust	in	the
new	approach,	and	clearly	explain	how	to	achieve	great	results	with	Kanban.

The	topics	covered	are:

Introducing	Kanban	to	a	Scrum	Team

Mapping	the	roles	and	terms

Evolving	the	events

Celebrating	performance	improvements

Rude	Q	&	A

Checklist



Introducing	Kanban	to	a	Scrum	Team
A	Scrum	Team	is	already	familiar	with	agile	project	management.	If	team	members
previously	used	traditional	Waterfall,	they	may	have	great	reverence	for	Scrum	and	its
benefits	(although	some	may	miss	the	structure	and	the	separation	of	disciplines	in
Waterfall).	Scrum	is	an	effective	incremental	technique	for	quickly	delivering	high-quality
products	to	customers.

However,	the	time-boxing	of	Scrum	sprints	enforces	artificial	boundaries	on	plan
changes,	customer	feedback,	release	dates,	and	process	improvements.	Ideally,	teams
could	handle	those	events	at	any	time,	but	Scrum	ties	them	to	the	planning	at	the
beginning	of	sprints,	or	review	and	retrospective	events	at	the	end	of	sprints.	This	timing
avoids	the	interruption	of	work	during	a	sprint,	but	it	leads	to	delays	in	plan	adjustments,
feedback,	releases,	and	improvements	and	adds	extra	events.	Kanban	removes	the
artificial	sprint	boundaries	and	the	additional	events	while	keeping	the	workflow	smooth
and	uninterrupted.

In	addition,	Scrum	introduces	a	number	of	special	terms	that	may	be	unfamiliar	and
confusing	to	new	team	members,	including	sprint,	increment,	Daily	Scrum,	Product
Backlog,	Sprint	Backlog,	Scrum	Master,	and	Product	Owner.	These	terms	can	increase	the
difficulty	new	team	members	might	have	acclimating	and	becoming	productive	quickly.
With	Kanban,	you	can	use	whatever	terms	and	roles	are	familiar	to	your	team,	which	eases
the	effort	of	bringing	new	people	onboard	and	getting	them	to	work	effectively.

Regardless	of	the	advantages,	people	may	resist	evolving	from	Scrum	by	using	Kanban.
Instead	of	treating	Kanban	as	an	overhaul	or	as	a	radical	shift	from	Scrum,	I	recommend
that	you	acknowledge	how	beneficial	and	effective	Scrum	is	and	introduce	Kanban	as	the
next	iteration	on	Scrum’s	agility.	With	all	the	qualities	that	Scrum	and	Kanban	have	in
common,	many	adjustments	will	seem	like	refinements.	Your	team	should	adapt	quickly
using	the	initial	Kanban	enhancements	and	may	find	the	reduced	overhead	and	improved
productivity	to	be	surprising.	Once	the	team	masters	the	use	of	Kanban,	it	can	choose	to
improve	further	by	making	more	significant	modifications	to	its	approach.

When	a	Scrum	Team	evolves	by	using	Kanban,	reassure	team	members	by	saying
something	like,	“Scrum	has	proven	itself	to	be	an	effective,	incremental	approach	to
rapidly	deliver	high-quality	products	to	our	customers.	We	want	to	take	the	next	iteration
forward,	while	keeping	our	existing	roles	and	workflow	steps.	We’ll	reduce	our	planning
events,	detect	and	correct	flow	issues	immediately,	and	be	more	explicit	about	how	we
define	what	it	means	for	each	step	of	our	work	to	be	done.	The	changes	will	be	visible	on
the	big	board	we	use	to	track	our	work.	In	addition	to	displaying	our	backlog,	the	board
will	now	separate	in-progress	and	completed	work	items	for	each	step,	display	our	done
rules	for	each	step,	and	have	limits	for	how	much	work	should	be	in	progress	for	each
step.	While	these	changes	might	seem	cosmetic,	the	work-in-progress	(WIP)	limits	and
done	rules	will	catch	issues	early	and	enable	a	continuous	flow	of	work—one	continuous
sprint.	We’ll	reduce	time	spent	in	Sprint	Planning	and	always	have	production-ready	code
to	share	with	customers.”

At	this	point,	you	can	proceed	to	the	Kanban	quick-start	guide	(Chapter	2),	using	your
current	backlog	of	work	as	a	starting	point.	But	before	you	move	on,	here	are	a	few	points



about	the	rest	of	this	chapter:

	Experienced	Scrum	Team	members	will	likely	wonder	what	happens	to	the	various
Scrum	roles	and	events	in	the	evolution	to	Kanban.	I	cover	these	topics	in	the	next
two	sections:	“Mapping	the	roles	and	terms”	and	“Evolving	the	events.”

	To	show	your	management	and	your	team	how	Kanban	is	improving	productivity
and	quality,	you’ll	want	to	measure	and	celebrate	your	progress.	This	can	be	critical
to	gain	commitment	to	Kanban,	it’s	easy,	and	it	provides	a	nice	morale	boost.	See
the	“Celebrating	performance	improvements”	section.

	Your	Scrum	Team	members	are	sure	to	have	questions	about	Kanban,	so	I’ve
included	answers	to	common	questions	in	the	“Rude	Q	&	A”	section.

	Inside	Xbox

A	few	years	ago,	I	moved	two	experienced	Scrum	Teams	to	Kanban	after	we	had
resolved	larger	issues	around	stable	builds,	stable	environments,	and	frequent,
reliable	deployments	to	production.	I	introduced	Kanban	to	my	Scrum	Teams	as
another	kind	of	improvement.	Two	of	my	teams	agreed	to	try	it,	starting	with	a	two-
month	trial	period.

The	only	complaint	during	adoption	came	from	one	of	the	longtime	Microsoft
team	members.	He	preferred	the	formality	of	monthly	planning	events,	but	the	rest
of	the	Scrum	Team	didn’t.	They	compromised	by	being	a	bit	more	formal	in	their
specifications.

Overall,	team	members	found	Kanban	straightforward	and	simple.	The	teams
were	already	using	a	whiteboard	to	track	their	sprint	tasks,	so	Kanban	amounted	to
adding	Done	columns,	done	rules,	and	WIP	limits	to	the	existing	board.	They
welcomed	the	reduction	in	the	number	of	events	and	had	little	trouble	adjusting	to
the	WIP	limits.

I	attended	some	of	the	first	standup	meetings	with	each	team	and	answered	any
questions	that	arose.	Each	team	saw	a	need	for	a	breakdown	step	before
implementation	and	validation.	(I’ve	since	recommended	that	all	my	teams	include
breakdown	as	part	of	their	Specify	step.)	After	the	first	few	weeks,	the	teams	were
accustomed	to	Kanban	and	rarely	had	questions.

Once	the	two-month	trial	period	was	over,	both	Scrum	Teams	reported	that	they
loved	Kanban	and	wanted	to	keep	using	it.	Kanban	has	since	spread	to	other	nearby
teams,	long	after	I	moved	to	a	new	group.

Mapping	the	roles	and	terms
In	addition	to	the	Development	Team,	Scrum	codifies	two	crucial	roles:	Scrum	Master	and
Product	Owner.	You	can	keep	these	roles	when	you	use	Kanban	or	spread	some	of	their
responsibilities	across	the	team.	In	this	section,	I’ll	map	Scrum	roles	and	Scrum	terms	to
the	roles	and	terms	mentioned	in	Chapter	2,	“Kanban	quick-start	guide.”

In	Scrum,	the	Scrum	Master	enables	the	team	to	deliver	value	to	customers.	The	Scrum



Master	facilitates	events,	ensures	the	customer	representative	(the	Product	Owner)	works
effectively	with	the	team	and	the	Product	Backlog,	coaches	and	empowers	the	team,
removes	impediments	to	progress,	engages	in	Scrum	efforts	across	the	larger	organization,
and	otherwise	does	everything	possible	to	ensure	that	the	team	incrementally	delivers	a
high-quality,	usable	product	to	customers	while	keeping	progress	up	to	date	and	visible	to
everyone	involved.

When	using	Kanban	(and	modern	versions	of	Scrum),	the	entire	team	is	actively
involved	in	removing	barriers	and	doing	everything	possible	to	incrementally	deliver	a
high-quality,	usable	product	to	customers	while	keeping	progress	up	to	date	and	visible	to
everyone	directly	involved.	In	Kanban,	the	team’s	project	manager	is	responsible	for
sharing	that	progress	with	those	indirectly	involved,	such	as	leadership	and	the	larger
organization.	Every	team	member	is	encouraged	to	frequently	engage	with	customers,
although	analysts	are	primarily	responsible	for	keeping	the	customer	close	to	heart,
whether	or	not	there	is	a	single	customer	representative	(a	single	Product	Owner).

	Tip

Personally,	I	love	my	customers	like	family.	Sometimes	they	are	frustrating	and
difficult,	like	family,	but	I	love	them	anyway.	Without	customers,	our	teams
wouldn’t	exist.	If	we	keep	our	customers	in	our	hearts	and	have	real	empathy	for
who	they	are,	we’ll	create	better	products	and	see	our	love	returned.	Mushy,	but
true.

Kanban	involves	every	team	member	through	the	use	of	the	signboard,	note	cards,	WIP
limits,	and	done	rules.	Since	there	is	one	continuous	sprint,	there	is	only	one	backlog	to
manage	and	every	note	card	is	an	increment	on	delivered	customer	value.	The	note	cards
in	the	signboard’s	backlog	represent	user	stories,	features,	scenarios,	use	cases,	or	other
kinds	of	work	items.	In	the	first	step	(Specify,	in	my	examples),	large	work	items	can	be
broken	down	(decomposed)	into	smaller	tasks,	each	with	its	own	note	card.

Team	members	move	the	note	cards	themselves,	keeping	progress	up	to	date	and	visible
to	the	team	and	to	customers	when	they	drop	by.	The	WIP	limits	expose	problems
immediately,	so	team	members	can	respond	anytime	during	the	day	or	at	the	daily
standup.	In	addition	to	Scrum’s	definition	of	done	for	completed	work	items,	Kanban	uses
done	rules	at	each	step	along	the	way	to	ensure	a	high-quality,	usable	product	at	all	times
for	customers.

When	you	evolve	from	Scrum	by	using	Kanban,	you	can	keep	your	current	Scrum
Masters	and	Product	Owners.	Over	time,	you	can	divide	the	duties	of	those	roles	among
different	team	members	the	way	you	want.

	You	can	engage	leadership	and	partners	separately	from	customers	(in	the	same	way
that	project	managers	are	described	separately	from	analysts	in	Chapter	2).

	You	can	involve	more	customers	than	a	single	Product	Owner.

	You	can	focus	individuals	on	service	delivery	or	other	specific	needs	of	your	team.



	You	can	leave	your	roles	exactly	as	they	are	today.

In	Kanban,	you	can	choose	how	to	manage	the	roles	on	your	team.	The	key	is	to	keep
value	flowing	smoothly	to	your	customers	so	that	they	can	provide	you	with	the	timely
feedback	you	need	to	keep	your	products	desirable	and	competitive.

Evolving	the	events
Scrum	establishes	several	regular	events.	In	the	following	table,	I	describe	each	event	and
how	that	event	is	replaced	in	Kanban.

Notice	that	both	Scrum	and	Kanban	have	high-level	planning	and	a	daily	standup
meeting,	but	Kanban	forgoes	Scrum’s	other	events	in	favor	of	smooth	workflow	and
continuous	product	delivery.

A	few	details	are	worth	noting:

	Sometimes	work	items	are	broken	down	into	smaller	tasks	during	the	Sprint
Planning	event.	In	Kanban,	my	teams	do	this	breakdown	during	the	Specify	step.

	Some	Scrum	Teams	also	use	the	Sprint	Planning	event	to	assign	work	items.	Work-
item	assignment	in	Kanban	is	deferred	until	a	note	card	is	ready	to	move	from	one
step	to	the	next	on	the	signboard.

	It’s	not	necessary	to	ask	“What	have	you	done?”	and	“What	will	you	do?”	at	the
daily	standup	meetings	in	Kanban	because	that	status	is	displayed	on	the	signboard
at	all	times.

	Because	Kanban	continuously	delivers	a	production-ready	product,	customers	can
see	the	latest	improvements	quickly	and	provide	their	feedback	(either	directly	or
through	usage	patterns).	There’s	no	requirement	for	a	regular	Sprint	Review	event.
However,	a	Kanban	team	might	still	choose	to	hold	regular	or	special	presentations



to	highlight	compelling	features	or	to	get	feedback	on	design	decisions.

	No	regular	Sprint	Retrospective	event	is	required	because	Kanban’s	WIP	limits	and
done	rules	will	block	tasks	immediately	if	breakdowns	in	workflow	or	quality	occur.
However,	other	subtle	or	surprising	issues	may	arise	that	disrupt	quality	or
workflow.	When	that	happens,	Kanban	teams	should	discuss	the	issues	in	depth	and
drive	improvements	to	their	product,	tools,	and	approach,	just	as	they	did	as	Scrum
Teams.

Celebrating	performance	improvements
Even	if	your	Scrum	Team	takes	easily	to	Kanban	and	likes	the	change,	members	might
still	question	whether	the	change	was	worth	it.	After	all,	Scrum	is	terrific	and	has	many
similarities	to	Kanban.	Your	management	probably	has	a	similar	concern:	Was	the	effort	to
evolve	by	using	Kanban	worth	the	cost?	(Note	that	this	section	is	quite	similar	to	the
same-titled	section	in	Chapter	4,	“Adapting	from	Waterfall.”	I’ve	adapted	the	data	and
measurements	to	Scrum.)

While	each	team	has	its	own	reasons,	you	likely	evolved	by	using	Kanban	to	increase
agility	and	deliver	more	high-quality	value	to	your	customers	in	less	time.	The	good	news
is	that	measuring	those	outcomes	is	straightforward.	By	measuring	them	from	the	start,
and	showing	your	team	and	management	how	your	results	improve	over	time,	you’ll
enhance	everyone’s	commitment	to	the	change	and	boost	morale	and	team	pride	in	the
process.

I’ll	focus	on	two	daily	measurements	and	their	moving	averages	to	capture	agility,
productivity,	and	quality.	I	selected	these	particular	measures—completed	tasks	and
unresolved	bugs—because	they	are	easy	to	calculate	for	Scrum	and	Kanban,	they	have
clear	definitions,	and	they	relate	directly	to	agility,	productivity,	and	quality.	Here’s	a
breakdown	of	each	measure:

Notes	on	these	measures:

	If	the	size	of	your	team	varies	dramatically,	you	should	divide	by	the	number	of



team	members,	resulting	in	completed	tasks	per	team	member	and	unresolved	bugs
per	team	member.	Doing	so	makes	the	measures	easier	to	compare	across	teams	but
less	intuitive	to	management,	in	my	experience.

	The	completed	tasks	calculation	for	Scrum	bulks	all	the	tasks	at	the	end	of	each
sprint	because	that’s	the	earliest	date	when	the	tasks	are	known	to	be	validated	with
all	issues	resolved.	However,	if	your	Scrum	Team	associates	all	bugs	directly	with
tasks,	you	can	count	tasks	toward	the	day	when	their	last	bug	was	resolved.	Getting
this	extra	accuracy	is	nice,	but	it	isn’t	essential.	In	particular,	the	extra	accuracy
doesn’t	matter	for	the	moving	average	(the	productivity	measure),	so	long	as	you
average	over	the	length	of	your	sprints.

	The	moving	average	can	be	a	7-day	average	for	measuring	weekly	productivity,	a
30-day	average	for	monthly	productivity,	or	whatever	length	you	want.	To	compare
the	productivity	of	Scrum	to	Kanban,	you	should	average	over	the	length	of	your
sprints.

Figure	5-1	and	Figure	5-2	are	examples	of	plots	of	completed	tasks	and	unresolved	bugs
over	four	four-week	periods	(included	in	a	downloadable	worksheet;	see	the	book’s
introduction	for	details).	The	first	two	periods	are	28-day	Scrum	sprints.	The	second	two
periods	reflect	Kanban	running	continuously.	The	data	is	based	on	the	team	configuration
I	used	as	an	example	in	Chapter	3,	“Hitting	deadlines.”	I	have	the	team	working	seven
days	a	week	(for	simplicity,	not	punishment).	Their	pace	of	task	work	remains	the	same
throughout	all	four	periods,	which	is	artificial	but	unbiased.	(I	do	add	a	little	random	noise
throughout	to	make	the	results	a	bit	more	realistic.)

FIGURE	5-1	Plot	of	completed	tasks	over	four	four-week	periods,	with	a	superimposed
running	average.



FIGURE	5-2	Plot	of	unresolved	bugs	over	four	four-week	periods,	with	a	superimposed
running	average.

Looking	at	the	chart	of	completed	tasks,	all	tasks	are	considered	complete	on	the	final
day	of	the	sprint	during	the	first	Scrum	sprints.	The	two	columns	of	completed	tasks	from
those	periods	go	about	six	times	the	height	of	the	chart.	I’ve	zoomed	in	to	better	view	the
four-week	moving	average	line	measuring	productivity.	It	starts	at	around	0.61	tasks	per
day	(17	tasks	/	28	days),	increases	to	around	1.2	tasks	per	day	as	the	results	from	the
second	sprint	combine	with	the	Kanban	results,	and	then	settles	to	around	0.76	tasks	per
day	as	the	steady	stream	of	Kanban	work	establishes	itself.

	Note

Scrum	enthusiasts	may	notice	that	the	Waterfall	productivity	number	from	Chapter
4	was	0.52,	and	the	Scrum	productivity	number	is	only	17	percent	higher	at	0.61.	In
practice,	the	productivity	of	Scrum	can	be	far	higher	than	Waterfall	(although	17
percent	is	still	a	nice	improvement).	However,	my	Waterfall	example	is	idealized	in
a	few	ways:	the	milestones	are	short	(nine	weeks),	the	bug	debt	is	nearly	completely
paid	off	at	the	end	of	each	milestone	(often	not	the	case),	and	I	didn’t	count	the
prolonged	stabilization	period	that	Waterfall	typically	has	after	the	last	milestone.

The	improvement	from	0.61	to	0.76	represents	a	25	percent	increase	in	productivity.
That’s	the	equivalent	of	working	five	days	and	completing	six	and	a	quarter	days	of	tasks
—more	than	an	extra	day	a	week	without	working	weekends.	The	day-to-day	agility	of
Kanban	is	also	immediately	apparent,	as	work	is	completed	daily	instead	of	being
delivered	in	bulk	each	sprint.

The	unresolved	bugs	chart	in	Figure	5-2	displays	a	fairly	typical	sprint	pattern	of
building	up	a	bug	backlog	somewhat	during	a	sprint	and	then	resolving	those	bugs	at	the
end.	This	shows	as	the	two	inverted	V	shapes,	one	for	each	sprint.	Note	that	far	fewer	bugs
build	up	during	Scrum	sprints	versus	the	Waterfall	implementation	periods	shown	in
Chapter	4.	Part	of	that	is	due	to	the	shorter	sprints,	and	part	is	the	result	of	the	Scrum
Team’s	effort	to	catch	bugs	early.



Seeing	these	improvements	in	productivity	and	quality	should	be	enough	to	warm	the
hearts	of	hardened	cynics	and	skeptical	managers.	Sharing	them	weekly	with	your	team
and	your	management	gives	you	all	something	to	celebrate	(in	addition	to	the	increased
customer	value	you	deliver).

However,	a	month	or	two	will	pass	before	you	begin	to	see	great	results.	The	cynics	and
skeptics	on	your	team	are	bound	to	have	questions.	It’s	time	for	the	rude	Q	&	A.

Rude	Q	&	A
What	follows	is	a	rude	Q	&	A	session	that	is	based	on	questions	I’ve	received	from	Scrum
Team	members	when	they	were	introduced	to	Kanban.	I	hope	it	covers	many	of	the
questions	you	receive.

Q	Why	are	we	evolving	from	Scrum	by	using	Kanban?

A	The	software	industry	continues	to	evolve.	Kanban	takes	the	benefits	from	Scrum	a
step	further,	enabling	us	to	deliver	improvements	to	our	products	and	services	and	help	us
work	continuously	instead	of	depending	on	the	artificial	time	boundaries	of	sprints.

Q	But	time-boxing	our	sprints	helps	us	stay	focused	and	agile.	Won’t	we	lose	that
with	Kanban?

A	Our	focus	comes	from	working	on	a	limited	number	of	items	at	once	by	time-boxing
a	sprint.	Our	agility	comes	from	completing	work	and	making	it	production-ready	by	the
end	of	each	sprint.	Kanban	directly	limits	the	number	of	items	we	work	on	at	once	by
limiting	the	number	of	work	items	in	progress.	Kanban	ensures	that	every	work	item	is
production-ready	the	day	it	is	completed,	with	clear	done	rules	for	each	step	of
development.	We	keep	our	focus	and	agility	but	lose	the	artificial	time	boundaries.	Now,
every	day	is	a	day	we	can	receive	customer	feedback.	Every	day	is	a	day	we	can	add	value
to	our	product.	Every	day	is	a	day	we	can	improve.

Q	But	our	sprint	events	forced	us	to	get	customer	feedback.	Won’t	we	lose	that
with	Kanban?

A	We	need	to	engage	customers	constantly,	and	certainly	not	by	imposing	our
timelines.	It’s	true	that	Kanban	alleviates	the	need	for	Sprint	Planning,	Sprint	Review,	and
Sprint	Retrospective	events.	But	we	still	should	be	centering	our	decisions	and	designs	on
our	customers’	needs,	preferences,	and	ambitions.	Kanban	enables	us	to	do	that	anytime
and	all	the	time.

Q	But	our	Sprint	Retrospectives	encouraged	us	to	improve.	Won’t	we	lose	that
with	Kanban?

A	The	Kanban	board,	work-in-progress	(WIP)	limits,	and	done	rules	make	issues
immediately	apparent.	There’s	no	need	to	wait	for	the	end	of	a	sprint	to	fix	the	problems
we’re	having	with	workflow	or	quality.	We	shouldn’t	wait.	We	should	fix	problems	with
our	product	and	our	approach	right	away,	and	Kanban	enables	us	to	see	the	problems	and
resolve	them	as	they	happen.	We	also	should	be	seeking	improvements	beyond	the
confines	of	our	team	and	how	we	currently	function.	Continuous	improvement	is	the
hallmark	of	a	great	team,	and	we	aspire	to	be	great.



Q	Without	the	protection	of	a	sprint,	won’t	we	get	distracted	by	stakeholders
outside	the	team?

A	Leadership,	partners,	customers,	and	others	outside	the	team	can	provide	feedback
and	influence	the	ordering	of	the	backlog,	but	they	can’t	interrupt	work	in	progress	any
more	than	they	can	during	sprints.	The	difference	with	Kanban	is	that	new	work	from	the
backlog	is	taken	up	by	the	team	continuously,	which	makes	the	team	more	responsive	to
stakeholders	and	their	changing	requirements.

Q	Without	Sprint	Planning,	when	do	we	break	down	features	into	tasks?

A	We’ll	break	down	features	into	releasable	tasks	during	the	specification	step	of	our
workflow.	Our	analysts	will	engage	with	customers	and	other	team	members	to	perform
that	step	well,	and	they	will	also	specify	what	the	tasks	should	produce	and	achieve.

Q	Do	those	tasks	need	to	be	artificially	tiny	and	uniform	in	size?

A	No,	they	only	need	to	be	similarly	sized	pieces	of	deliverable	value	(with	each
typically	requiring	one	to	five	days	to	complete).	We	just	want	to	avoid	having	large,
poorly	understood,	and	potentially	unbounded	work	items	clogging	our	workflow.

Q	Can	we	use	photos	of	a	whiteboard	as	specifications?

A	Absolutely.	Specifications	can	range	from	detailed	documents	to	whiteboard
sketches—whatever	best	captures	concisely	and	clearly	what	the	tasks	are	that	deliver	the
customer	value	that’s	desired.

Q	Aren’t	we	all	analysts?	Doesn’t	everyone	do	everything	in	Kanban,	like	we	do
in	Scrum?

A	All	team	members	can	do	everything	in	Kanban,	just	like	on	Scrum	Development
Teams.	In	fact,	Kanban	has	fewer	specified	roles	than	Scrum	(no	specific	Product	Owner
or	Scrum	Master	role).	The	analyst	you	assign	to	specify	a	feature	can	also	implement	or
validate	it,	do	both,	or	work	on	other	features.	With	Kanban,	you	also	can	have	specific
people	assigned	to	steps	they	excel	at.	The	team	decides	how	best	to	organize	itself	and
can	adapt	as	needed	at	any	time.

Q	Then	who	is	the	Product	Owner?

A	You	can	keep	a	single	customer	representative	(Product	Owner)	if	you	want	with
Kanban,	but	you	can	also	invite	as	many	customers	as	you	want	to	participate	in	product
feedback	and	decision	making.	In	particular,	Chapter	3	describes	how	customers	and	other
stakeholders	can	be	involved	in	planning	and	ordering	the	backlog.

Q	If	there’s	no	Scrum	Master,	who	unblocks	tasks	and	engages	the	customer?

A	The	signboard	shows	our	work	as	cards	that	flow	across	the	three	product-
development	steps:	Specify,	Implement,	and	Validate.	The	WIP	limits	that	set	the	right
pacing	are	written	above	each	step	on	the	signboard,	and	the	done	rules	are	written	below
each	step.	Everyone	will	see	when	work	is	being	blocked	and	bunched	up.	Because
Kanban	makes	issues	visible	to	everyone,	everyone	plays	a	part	in	unblocking	tasks.
Because	the	done	rules	ensure	that	the	product	is	always	production-ready,	everyone	can
engage	the	customer.



Q	What	about	my	Scrum	Master	training?

A	The	techniques	you	learned	as	you	trained	to	become	a	Scrum	Master	are	as	useful
as	ever.	They’ll	help	you	work	effectively	across	teams	and	with	customers.	You’ll	be
better	equipped	to	keep	your	team	focused	and	productive.	The	difference	with	Kanban	is
that	those	responsibilities	won’t	be	yours	alone—they	are	shared	by	your	team.

Q	Without	Sprint	Planning,	how	do	we	avoid	taking	on	too	much	work?

A	We	set	a	pace	that	matches	our	team’s	sustainable	throughput	(delivery	rate).	That
pace	is	synchronized	across	the	three	product-development	steps	by	setting	work-in-
progress	(WIP)	limits	for	specification,	implementation,	and	validation	that	make	their
throughput	match	our	sustainable	pace	(details	in	the	Kanban	quick-start	guide	in	Chapter
2).	Naturally,	our	pace	can	change	over	time	as	work	and	staffing	change.	We	can	adjust
our	WIP	limits	at	any	time	to	maintain	smooth	workflow	and	the	continuous	delivery	of
customer	value.

Q	Won’t	limiting	work	make	us	slower?

A	We’re	not	limiting	people,	we’re	limiting	the	kinds	of	work	they	do.	If
implementation	is	stuck	on	a	feature,	specifying	more	features	doesn’t	help.	Instead,	the
team	should	work	to	unblock	implementation	(for	example,	clarify	the	spec,	escalate	an
issue,	research	a	customer	preference,	or	bring	in	partner	expertise).	By	focusing	on
keeping	the	work	flowing	smoothly	and	limiting	work	so	that	it	maintains	a	smooth	pace,
we	actually	get	more	work	done	in	less	time.

Q	Why	not	just	move	on	to	the	next	task?

A	The	key	is	the	status	of	the	blocked	implementation	task:

	If	the	task	is	blocked	by	an	external	dependency,	we	should	move	on	to	the	next	task
until	the	old	task	is	unblocked.	We’ll	keep	an	eye	on	that	blocked	task	in	a	special
column	on	the	signboard.

	If	the	task	is	blocked	by	a	design	question	or	issue,	we	need	to	unblock	the	task,
ideally	while	the	issue	is	still	fresh	in	people’s	minds.	The	limits	on	work	and	the
visibility	of	blocked	tasks	prevent	us	from	ignoring	design	issues	and	letting	them
fester.

The	same	applies	for	blocked	specification	and	validation	tasks.	Instead	of	letting
problems	pile	up,	we’re	going	to	work	together	to	fix	them	quickly.	That	keeps	work
flowing	smoothly,	fixes	issues	before	they	permeate	the	product	and	become	harder	to
repair,	and	delivers	value	faster	and	more	continuously	to	our	customers.

Q	Where	will	the	cards	come	from?

A	We’ll	take	our	current	Product	Backlog,	write	the	items	on	cards	(if	we	haven’t
already),	and	place	them	in	order	on	the	left	side	of	the	signboard,	in	front	of	the
specification	step.	When	new	work	arrives	or	plans	change,	we’ll	add	and	rearrange	the
cards	as	needed.

Q	Can	we	still	do	spikes?

A	Absolutely.	We	control	the	backlog	and	the	work.	If	we	need	a	spike,	we’ll	write	it



out	on	one	or	more	cards,	order	them	appropriately	against	the	current	backlog	(usually	at
the	top),	and	work	on	the	spike	together.	We	can	time-box	the	spike	by	limiting	the
number	of	task	cards.	When	the	spike	is	complete,	regular	work	will	continue	as	usual
from	the	top	of	the	backlog.

Q	When	a	card	moves	from	one	step	to	the	next,	who	works	on	it?

A	We’ll	assign	work	to	whichever	team	member	is	free	and	capable	of	doing	that	work
at	the	time	(a	practice	followed	by	many	Scrum	Teams).

Q	We	already	have	a	board	that	tracks	progress.	Have	we	been	doing	Kanban?

A	Many	Scrum	Teams	meet	daily	in	front	of	a	board	that	tracks	their	work	progress.
However,	it’s	not	Kanban	unless	you	list	your	steps	on	the	board	(like	Specify,	Implement,
and	Validate),	and	each	step	has	a	work-in-progress	(WIP)	limit,	a	Done	column,	and	a
done	rule	clearly	marked	on	the	board.

Q	Why	does	each	step	need	its	own	Done	column?

A	Say	you	just	completed	implementing	an	item	(it	passes	the	implementation	done
rule).	Without	an	implementation-specific	check	mark	or	implementation	Done	column,
how	would	you	indicate	that	the	item	is	ready	for	validation?	On	an	ordinary	board,	you
just	move	the	item	to	the	validation	step.	However,	that	means	the	item	is	actively	being
validated	and	counts	toward	the	validation	WIP	limit—neither	of	which	is	true.	What’s
worse	is	that	the	item	no	longer	counts	toward	the	implementation	WIP	limit,	so	you’re
free	to	implement	another	item,	even	if	validation	is	overwhelmed	and	needs	help.	The
Done	column	for	each	step	clearly	indicates	the	status	of	each	item	and	controls	the	flow
of	items	in	conjunction	with	their	WIP	limits.

Q	Who	determines	the	done	rules?

A	Our	team	decides	on	the	done	rules	we’ll	follow.	We	know	what	causes	issues.	We
know	how	to	do	our	job	well.	We	get	to	decide	when	a	task	should	be	considered	done.
Once	we	decide	on	the	rules,	we’ll	write	them	at	the	bottom	of	the	signboard	so	that
there’s	no	confusion.	Any	time	the	rules	need	adjustment,	we	can	change	them	together.

Q	Can	we	use	test-driven	development	and	pair	programming	with	Kanban?

A	Certainly.	We	can	leave	the	particular	approach	up	to	individual	members	or	codify
that	all	team	members	work	a	certain	way	by	specifying	the	approach	in	our	done	rules.
The	important	thing	is	for	us	to	agree	on	our	practices	and	rules.	I	discuss	more	about
using	various	methods	beyond	Kanban	and	Scrum	in	Chapter	9,	“Further	resources	and
beyond.”

Q	Does	anything	else	change	using	Kanban?

A	Nope—that’s	it	until	we	want	to	improve	even	further.	For	now,	we’ll	have	our	daily
standup	in	front	of	a	signboard	with	our	work	steps	written	on	it,	cards	showing	our	work,
limits	on	the	number	of	cards	at	each	step,	and	rules	at	the	bottom	of	the	signboard	that
determine	when	a	card	is	done	with	its	current	step.	Whenever	you’re	done	with	a	step,
based	on	the	done	rules,	you’ll	move	your	card	on	the	signboard	and	grab	the	next
available	card.	If	no	cards	are	available,	that	indicates	that	workflow	is	blocked,	and	you
should	work	with	your	teammates	to	unblock	the	flow.



Q	This	actually	sounds	less	complicated	than	Scrum.	Why	does	Kanban	work
better?

A	With	Scrum,	we	control	the	amount	of	unfinished	work	(work	in	progress)	by	time-
boxing	our	work	periods	(our	sprints).	This	helps	us	be	agile	and	quickly	deliver	value	and
adjust	our	plans	as	requirements	change.	However,	careful	time-boxing	requires	extra
planning	and	doesn’t	always	account	well	for	the	variability	of	our	work.	Kanban	directly
limits	the	work	in	progress	of	broken-down	tasks.	This	eliminates	the	need	for	extra
planning	and	makes	the	workflow	smooth.	Issues	are	immediately	apparent,	so	they	don’t
fester	and	add	excessive	costs.	Basically,	Kanban	does	at	a	more	direct	level	what	Scrum
was	trying	to	do,	which	makes	it	simpler	and	more	effective.

Checklist
Here’s	a	checklist	of	actions	for	your	team	members	to	evolve	from	Scrum:

	Explain	why	evolving	from	Scrum	is	beneficial.

	Reassure	team	members	that	the	adjustments	should	seem	like	refinements.

	As	needed,	decide	as	a	team	whether	you’d	like	to	divide	the	duties	of	Scrum	Master
and	Product	Owner	among	more	people.

	Describe	how	Sprint	Planning,	Daily	Scrum,	Sprint	Review,	and	Sprint
Retrospective	events	evolve	using	Kanban.

	Perform	the	actions	listed	in	the	checklist	in	Chapter	2,	“Kanban	quick-start	guide.”

	Measure	completed	tasks	and	unresolved	bugs,	or	whatever	productivity	and	quality
metrics	you	choose,	on	a	regular	basis.

	Celebrate	productivity	and	quality	improvement	(as	well	as	continuous	delivery	of
value	to	customers).

	Answer	any	questions	Scrum	Team	members	have	with	respect	and	appreciation	for
all	the	progress	they’ve	made	with	Scrum	and	their	continued	improvement	using
Kanban.



Chapter	6.	Deploying	components,	apps,	and	services

Chapter	3,	“Hitting	deadlines,”	describes	how	to	fill	the	backlog	on	the	left	side	of	the
Kanban	board.	This	chapter	covers	how	to	deploy	finished	work	from	the	right	side	of	the
signboard.	Just	as	a	well-organized	and	ordered	backlog	generates	a	smooth	workflow
through	the	steps	on	your	signboard,	your	approach	to	deployment	affects	the	continuous
delivery	of	value	to	your	customers.

Four	common	models	are	used	to	deploy	a	feature	team’s	completed	work:

	Integrate	code	from	a	development	branch	into	the	main	line.	This	model	is
commonly	used	for	large	projects	with	centralized	version	control	(and	for	many
other	kinds	of	projects).

	Submit	a	pull	request	or	push	code	into	a	repository	(often	stored	on	a	host	such	as
GitHub).	This	model	is	commonly	used	for	open	source	software	(OSS)	and
distributed	projects.

	Publish	code,	apps,	or	content	to	an	online	catalog	or	store	(such	as	Google	Play).
This	model	is	typically	used	for	apps,	software	updates,	and	digital	media.

	Propagate	code	and	components	to	web	servers	or	virtual	machines.	This	model	is
typically	used	for	websites,	web	services,	and	software	as	a	service	(SaaS).

For	each	of	these	models,	I	cover	how	to	assign	completed	items	to	deployments,	how
to	track	when	those	items	are	deployed,	and	how	the	Kanban	approach	affects	your
deployment	cadence	and	customer	feedback	mechanisms.

The	topics	covered	are:

Continuous	integration

Continuous	push

Continuous	publishing

Continuous	deployment

Checklist

Continuous	integration
Continuous	integration	is	a	software	engineering	practice	that	dates	back	to	the	early
1990s.	This	approach	involves	automating	your	build	and	testing	it	to	the	extent	that	you
can	integrate	high-quality	code	changes	with	confidence	into	the	main	branch	every	day,
perhaps	even	several	times	a	day.

Kanban	is	a	natural	fit	for	continuous	integration	because	the	tasks	you	complete	daily
are	production-ready;	they	certainly	pass	the	criteria	for	integration.	If	you’re	working	on
a	relatively	small	project	that	allows	you	to	integrate	into	the	main	branch	at	will,	your
team	can	simply	add	this	integration	step	as	the	last	done	rule	for	validation—no	special
tracking	is	necessary.

If	you’re	on	a	large	project	with	multiple	branches	and	teams,	integration	into	the	main



branch	may	be	controlled,	and	for	good	reason.	Integrations	by	different	teams	might	have
merge	conflicts	or	interface	conflicts	(including	call-signature,	schema,	and	protocol
conflicts).	You	need	to	control	integrations	into	the	main	branch	to	manage	the	scope	and
breadth	of	the	conflicts.

A	mitigation	strategy	for	managing	integration	conflicts	is	illustrated	here:

	Forward	integrate	from	the	main	branch	into	your	branch.

	Resolve	any	merge	conflicts.

	Build	the	merged	code.

	Validate	the	new	build	in	case	any	interface	(call-signature,	schema,	or	protocol)
conflicts	occurred.

	Reverse	integrate	your	merged	changes	back	into	the	main	branch.

This	strategy	fails	if	another	team	reverse	integrates	its	changes	while	you	are	still
validating	yours.	Timing	issues	such	as	this	are	common	for	projects	with	hundreds	of
engineers.

Large	projects	mitigate	against	timing	issues	by	scheduling	reverse	integrations	from
different	branches	so	that	they	do	not	overlap.	A	common	approach	is	to	do	the	following
regularly	(at	least	daily):

	Forward	integrate	from	the	main	branch	into	all	the	child	branches.

	Resolve	any	merge	conflicts,	build	the	child	branches,	and	validate	the	builds.



	Reverse	integrate	the	child	branches	on	the	basis	of	the	times	they	are	scheduled	and
their	validation	results.

	Resolve	any	merge	conflicts,	build	the	main	branch,	and	validate	the	build.

	Note

An	alternative	mitigation	for	integration	conflicts	is	to	divide	your	product	into
components	with	clear	code	boundaries	and	insist	that	changes	to	particular
components	happen	only	in	assigned	branches.	This	approach	avoids	merge
conflicts	between	branches	and	allows	multiple	branches	to	be	reverse	integrated
simultaneously.	(You	may	still	encounter	interface	conflicts	at	component
boundaries,	which	can	be	mitigated	by	versioning	interfaces.)	Unfortunately,	folks
often	ignore	the	branch	rules,	so	this	mitigation	breaks	down	with	centralized
version	control.	However,	it	is	a	successful	approach	with	distributed	version
control,	as	discussed	in	the	“Continuous	push”	section	later	in	this	chapter.

If	your	project	is	following	an	integration	schedule,	the	items	in	the	rightmost	column
of	your	Kanban	board	may	be	done,	but	they	aren’t	deployed	to	partner	teams	and
customers	until	a	reverse	integration	into	the	main	branch.	My	teams	divide	the	rightmost
Done	column	into	sections	to	track	reverse	integrations.

	We	use	a	section	for	every	branch	we	work	in.	When	a	work	item	is	completed,	we
move	its	note	card	to	the	section	associated	with	the	branch	where	the	work	was
done.	The	note	card	stays	there	until	that	branch	is	successfully	reverse	integrated.

	We	also	have	a	special	section	for	FastTrack	items.	These	are	work	items	that	are
needed	immediately	in	the	main	branch.	They	are	reverse	integrated	individually
into	the	main	line	as	soon	as	they	are	ready.	FastTrack	items	are	approved	in
advance	by	the	folks	who	control	the	reverse	integration	schedule.

	Finally,	we	have	a	large	section	where	all	the	note	cards	go	after	those	items	are
successfully	reserve	integrated	into	the	main	branch.

You	need	to	do	a	little	extra	work	to	track	reverse	integrations	as	you	continuously
integrate,	but	using	simple	sections	on	the	right	end	of	your	signboard	enables	you	to
answer	the	question	that	all	your	partners	and	customers	have:	“Where	are	our	requests?”

	Inside	Xbox



During	the	initial	development	phases	of	Xbox	One,	we	had	a	fairly	flat	branch
structure	for	the	Xbox	One	platform.	(Xbox	Live	services,	SmartGlass,	and	apps
such	as	TV	and	Party	were	coordinated	separately.)

The	Xbox	One	platform	had	a	main	branch	and	several	child	branches.	Each	child
branch	had	a	different	focus:	one	for	disruptive	changes	to	the	kernel	and	app
platform,	two	for	disruptive	changes	to	the	build	system	(tooling	and	compilers),
one	for	day-to-day	development,	one	for	releases	to	partner	teams,	and	one	for
Windows	updates	(the	Xbox	One	platform	is	based	on	Windows).	We’d	run	a
reverse	integration	on	the	day-to-day	branch	a	few	times	a	week,	when	it	was	in
good	health,	and	the	other	branches	as	needed.

Once	we	started	shipping	platform	releases	to	preview	audiences	and	game
developers	once	a	month,	we	changed	the	platform	branch	structure	to	the	one	we
use	currently.	In	the	following	example,	the	current	month	is	September.

We	moved	nearly	all	development	to	monthly	release	branches,	which	we	created
under	a	Releases	branch	off	Main.	Fixes	for	the	current	month’s	release	are	made	in
the	September	branch.	Day-to-day	work	scheduled	to	be	released	the	next	month
occurs	in	the	October	branch.	Work	that	won’t	make	the	October	release	happens	in
the	November	branch.	Disruptive	changes	to	tools	and	compilers	still	happen	in
branches	under	Main	to	isolate	them	from	the	more	stable	release	branches.	This
allows	stable	code	to	be	moved	between	monthly	release	branches,	although	that
movement	only	goes	forward,	leaving	past	releases	pristine	in	case	we	need	to	patch
them	later.	We	create	the	December	branch	when	feature	work	is	done	on	the



October	branch.	This	creates	a	continuous	cycle	of	monthly	releases	with	simple
code	movement.

Continuous	push
Continuous	push	is	continuous	integration	applied	to	distributed	version	control.
Distributed	version	control	systems,	such	as	Git,	allow	teams	and	individuals	to	work
independently	in	their	own	local,	downstream	clones	of	the	upstream	version	control
repository	(a	repo).	When	individuals	or	teams	want	to	share	their	progress	with	one
another,	they	push	their	changes	from	one	repo	to	another—or,	more	politely,	they	request
that	the	receiving	person	or	team	pull	changes	from	one	repo	to	another.

The	upstream	repo	is	often	stored	on	a	hosting	service,	such	as	GitHub.	The	owners	of
the	upstream	repo	accept	pull	requests	from	the	downstream	repos	used	by	contributing
individuals	and	teams,	validate	the	changes,	and	accept	none,	some,	or	all	of	the	changes,
depending	on	the	validation	results.	For	large	projects,	multiple	repos	may	be	stored	on	the
hosting	service,	with	one	or	more	related	components	in	each	repo.

As	with	continuous	integration,	Kanban	is	a	natural	fit	for	continuous	push	because	the
tasks	you	complete	daily	are	production-ready—they	certainly	pass	the	criteria	that	makes
them	prime	for	pushing	to	the	upstream	repo	(or	for	submitting	through	a	pull	request).
And	as	in	continuous	integration,	large	projects	need	to	mitigate	against	merge	and
interface	conflicts	when	new	code	is	pushed	to	the	upstream	repo.	The	mitigation	follows
a	familiar	pattern:

	Pull	from	the	upstream	repo	into	your	repo.

	Resolve	any	merge	conflicts.

	Build	the	merged	code.

	Validate	the	new	build	against	interface	conflicts.

	Push	your	merged	changes	back	into	the	upstream	repo	(or	submit	a	pull	request).

A	timing	issue	is	involved,	just	like	with	centralized	version	control.	Conflict	mitigation
fails	if	another	repo	pushes	its	changes	while	you	are	still	validating	yours.	Fortunately,
distributed	version	control	allows	the	owners	of	the	upstream	repo	to	control	the	flow	of
changes.	Owners	can	choose	the	order	of	the	pull	requests	they	take	and	can	validate	each
one	in	separate	branches	within	personal	repositories	or	the	upstream	repo.	Thus,	the	team
submitting	the	pull	request	may	want	to	track	when	its	request	is	accepted	and	complete.

You	can	track	your	pull	requests	by	dividing	the	rightmost	Done	column	of	your
signboard	into	sections	for	each	repo.



	Include	a	section	for	each	repo	you	work	in.	When	a	work	item	is	completed,	move
its	note	card	to	the	section	associated	with	the	repo	where	the	work	was	done.	The
note	card	stays	there	until	the	pull	request	is	accepted	and	complete.

	Add	a	special	section	for	FastTrack	items.	These	are	work	items	that	are	needed
immediately	in	the	upstream	repo.	They	get	pulled	individually	into	the	upstream
repo	as	soon	as	they	are	ready.	FastTrack	items	are	requested	in	advance	by	the
owners	of	the	upstream	repo.

	Finally,	include	a	large	section	where	all	the	note	cards	go	after	they	have
successfully	been	pulled	into	the	upstream	repo.

A	little	extra	work	is	needed	to	track	pull	requests,	but	using	simple	sections	on	the	right
end	of	your	signboard	enables	you	to	answer	the	question	that	all	your	partners	and
customers	have:	“When	will	our	requests	be	available?”



	Inside	Xbox

Xbox	Live	services	and	most	inbox	Xbox	One	apps	(such	as	TV	and	Party)	are
developed	separately	from	the	Xbox	One	platform	code.	Their	source	is	stored	in
Visual	Studio	Team	Foundation	Server	(TFS).	Each	service	and	app	team	stores	and
builds	its	source	separately	and	works	fairly	independently.	Some	teams	prefer	to
use	Git	for	version	control	and	some	prefer	TFS	Version	Control	(a	centralized
version	control	system	in	TFS).	The	teams	using	Git	store	their	upstream	repo	in	the
TFS	Git	system.

The	inbox	apps	such	as	TV	and	Party,	which	come	preinstalled	on	Xbox	One
systems,	must	be	packaged	with	the	operating	system	when	we	do	system	updates.
Because	we	publish	updates	every	day,	the	packaging	of	inbox	apps	happens	with
the	nightly	build.	However,	the	apps	and	platform	are	independently	changed	and
built.	This	creates	a	synchronization	problem.

We	solve	the	synchronization	problem	by	referencing	daily	builds	of	the	platform
SDK	on	the	app	build	machines	each	morning.	Apps	are	built	and	then	tested
against	the	new	SDK	throughout	the	day.	Before	the	next	night’s	packaging
commences,	we	sync	the	most	recently	built	apps	to	the	platform	packaging
machines.	This	could	still	make	the	apps	off	by	a	single	day	if	someone	changed	the
platform	SDK	app	interfaces	that	day.

To	resolve	the	off-by-a-day	issue,	we	check	for	app	interface	changes	during
rolling	platform	builds	throughout	the	day.	When	one	is	detected,	the	results	from
the	rolling	platform	build	are	used	to	patch	the	SDK	referenced	by	the	app	build
machines.	This	step	is	admittedly	convoluted.	Ideally,	apps	would	install
independently	of	the	platform,	and	the	SDK	would	have	versioned	interfaces,	even
for	inbox	apps.	But	at	Xbox,	we	like	to	move	fast	and	make	changes	every	day,	so
we	needed	a	compromise	to	achieve	continuous	delivery	while	still	giving	app	teams
the	freedom	to	develop	independently.

Continuous	publishing
Continuous	publishing	started	in	the	early	2000s	as	content	providers	moved	online	and
realized	that	many	publications	(user	guides,	record	albums,	newspapers,	journals,
magazines,	and	reference	books)	were	no	longer	immutable	formats.	The	concepts	of	story
deadlines	and	final	copies	of	manuals	were	replaced	by	publishing	content	as	soon	as	it
was	ready,	and	updating	it	based	on	changing	circumstances	and	customer	feedback.	Other
forms	of	content,	such	as	videos,	apps,	and	software	updates,	also	moved	to	a	continuous
publishing	model	as	they	became	available	for	digital	download	or	streaming.

Kanban	is	a	natural	fit	for	continuous	publishing	because	the	tasks	you	complete	daily
are	production-quality,	and	thus	ready	for	publication.	If	you	are	publishing	to	your	own
online	catalog	or	store,	your	team	can	simply	add	publishing	as	the	last	done	rule	for
validation—no	special	tracking	is	necessary.

When	publishing	software	changes	(apps	and	updates),	many	content	providers	restrict



the	initial	audience	to	a	preview	or	beta	group.	That	way,	if	unusual	or	uncaught	issues
arise,	the	impact	is	minimized.	Once	the	preview	or	beta	group	has	consumed	the	new
content	without	issues,	the	audience	can	be	expanded.	This	approach	to	restricting
audiences	can	also	be	used	to	reward	preferred	customers	with	premier	content.

If	you	are	publishing	your	app	or	update	to	a	third-party	catalog	or	store—like	Google
Play,	the	Microsoft	Store,	or	iTunes—the	publishing	process	may	be	long	and	arduous,
requiring	you	to	batch	up	completed	work	and	publish	only	weekly	or	monthly.	As	a
result,	the	items	in	the	rightmost	column	of	your	Kanban	board	may	be	done,	but	they
aren’t	deployed	to	customers	until	the	latest	app	or	update	submission	is	successfully
published.	You	can	track	your	pending	submissions	by	dividing	the	rightmost	Done
column	of	your	signboard	into	sections.

	When	a	work	item	is	completed,	move	its	note	card	to	the	Pending	section.	The	note
card	stays	there	until	the	next	app	or	update	is	submitted.	There’s	no	WIP	limit
because	the	Pending	section	is	part	of	the	last	Done	column,	though	having	an
unusually	large	number	of	items	there	might	indicate	a	submission	problem.

	When	an	app	or	update	is	submitted,	move	all	the	pending	note	cards	to	the
Submitted	section.

	Finally,	when	the	app	or	update	submission	is	published,	move	the	note	cards	to	the
large	Deployed	section.

Tracking	submissions	requires	you	to	do	a	little	extra	work,	but	using	simple	sections
on	the	right	end	of	your	signboard	enables	you	to	answer	the	question	that	all	your
stakeholders	and	customers	have:	“When	will	our	requests	be	published	and	available?”



	Inside	Xbox

Xbox	does	a	great	deal	of	continuous	publishing.	As	I	mentioned	in	previous
sections	(and	detailed	in	Chapter	4,	“Adapting	from	Waterfall”),	we	publish
platform	and	inbox	app	updates	daily	to	a	variety	of	preview	audiences:	internal
“dog	food”	users,	internal	early	adopters,	and	public	preview	groups.	We	publish
those	updates	worldwide	each	month.	Each	day	we	also	publish	editorial	content
worldwide	to	the	Xbox	One	home	screen,	the	Xbox.com	website,	and	Xbox	Music
and	Video.	Naturally,	we	also	continuously	publish	other	game	and	app	updates,	as
well	as	additional	downloadable	content	for	those	games	and	apps.

The	systems	we	use	for	continuous	publishing	vary	by	content	type.	App,	game,
and	platform	updates	go	through	the	game-ingestion	pipeline.	Music	and	videos	go
through	encoding	pipelines	before	having	their	metadata	indexed	by	Bing.	Editorial
content	for	the	Xbox	One	home	screen,	the	Xbox.com	website,	and	Xbox	Music	and
Video	features	is	published	by	our	content-management	system.

Our	individual	publishing	systems	share	certain	attributes:

	They	can	publish	content	on	demand	or	on	a	special	schedule	(such	as	being	timed
to	a	particular	release	date).

	They	can	control	the	audience	for	any	piece	of	content.	This	is	particularly
important	for	handling	differing	licensing	and	standards	of	appropriate	content	in
different	locales	for	different	age	groups.	It	also	helps	manage	preview	and
premier	content.

	They	can	manage	content	in	multiple	languages	targeting	multiple	devices.	We
often	publish	portions	of	the	same	editorial	content	for	the	Xbox	One	home	screen,
Xbox.com,	and	SmartGlass	on	Windows	PCs,	Surface,	Windows	Phone,	Android
devices,	and	the	iPad	and	iPhone.

	With	so	much	continuous	publishing,	it’s	handy	to	have	a	simple	system	such	as
Kanban	to	track	what	work	is	being	published	to	what	targets	and	when.	We	also
use	tools	like	Visual	Studio	Team	Foundation	Server	(TFS)	and	the	publishing
systems	directly	to	track	our	work,	depending	on	each	team’s	preference.

Continuous	deployment
Continuous	deployment	started	in	the	mid-2000s	as	web	companies	realized	significant
gains	in	productivity	and	customer	feedback	by	automatically	deploying	main-line	builds
directly	to	production.	Deploying	a	build	directly	to	production	after	automated	testing
may	strike	longtime	software	engineers	and	managers	as	a	risky	proposition.	However,	in
practice,	continuous	deployment	has	few	risks	and	many	advantages	over	extensively
testing	builds	in	preproduction	environments	before	deploying	to	production.

	Like	continuous	publishing,	continuous	deployment	makes	use	of	audience	control.
A	new	build	in	production	is	initially	exposed	to	a	very	limited	audience	(perhaps	as
small	as	just	the	feature	team).	Assuming	the	build	functions	properly,	the	audience
is	expanded	in	stages	from	a	larger	internal	group,	to	a	limited	external	group,	to	the



broader	public,	and	finally	to	the	full	public.

	Continuous	deployment	relies	on	monitoring	and	instrumentation	to	recognize	when
new	builds	are	faulty,	consume	too	many	resources,	or	both.	Without	monitoring,
you	wouldn’t	notice	problems	until	they	were	serious	enough	to	affect	customers.
Without	instrumentation,	you	couldn’t	pinpoint	the	issues	with	a	build	and	resolve
them.	There	are	frameworks,	such	as	Microsoft	Azure’s	Application	Insights,	that
can	help	you	achieve	the	monitoring	and	instrumentation	you	need.

	Naturally,	continuous	deployment	depends	on	an	automated	system	to	deploy	builds.
In	case	an	issue	comes	up,	the	deployment	system	must	also	be	capable	of	an
automated	rollback	(switching	back	to	a	previous	good	build).	Fortunately,	modern
cloud	computing	providers	such	as	Amazon	Web	Services	(AWS)	and	Microsoft
Azure	provide	these	automated	systems.

	With	audience	control,	monitoring,	instrumentation,	and	automated	deployment	and
rollbacks	in	place,	you	no	longer	need	preproduction	environments.	Those
environments	are	costly	to	build	and	maintain,	and	they	rarely	function	quite	like
production	environments	because	of	differences	in	scale,	load,	networking,
hardware,	customer	data,	business	data,	and	configuration	settings.	Instead,	you	test
in	production.

	By	testing	in	production,	you	gain	greater	assurance	that	your	builds	will	function
properly	in	the	real	production	environment,	you	save	the	time	spent	in
preproduction	(since	you	have	to	test	in	production	anyway),	and	you	gain	valuable
early	customer	feedback	(including	A/B	testing	and	other	experimentation).

Areas	of	your	service	that	are	too	risky	to	deploy	to	production	without	extensive
testing,	such	as	the	handling	of	personally	identifiable	information	(PII)	and	monetary
transactions,	still	need	to	go	through	preproduction	environments.	However,	those	areas
are	a	small	subset	of	overall	service	functionality,	even	for	a	site	like	Amazon.com.
(Amazon	was	an	early	adopter	of	continuous	deployment.)

	Note

What	I	refer	to	as	continuous	deployment	is	sometimes	called	“continuous
delivery.”	Those	who	call	it	continuous	delivery	differentiate	between	deploying	to
production	only	the	builds	that	the	team	chooses	(“continuous	delivery”)	and
automatically	deploying	every	build	to	production	(“continuous	deployment”).	It	is
important	to	be	clear	about	which	approach	your	team	decides	to	take.

Kanban	is	a	natural	fit	for	continuous	deployment	because	the	tasks	you	complete	daily
are	production-quality,	and	thus	ready	for	deployment.	If	you	are	deploying	to	your	own
independently	versioned	web	service	or	site,	your	team	can	simply	add	deployment	as	the
last	done	rule	for	validation—no	special	tracking	is	necessary.

If	your	team’s	efforts	are	part	of	a	large	collection	of	tightly	integrated	services,	you
might	need	to	batch	up	completed	work	and	deploy	only	weekly	or	monthly	(except	for
quick	fixes	that	get	deployed	daily).	As	a	result,	the	items	in	the	rightmost	column	of	your
Kanban	board	may	be	done,	but	they	aren’t	available	to	customers	until	the	next	integrated

http://Amazon.com


service	deployment.	You	can	track	your	pending	deployments	by	dividing	the	rightmost
Done	column	of	your	signboard	into	sections.

	When	a	work	item	is	completed,	move	its	note	card	to	the	Pending	section.	The	note
card	stays	there	until	the	next	integrated	service	deployment.	There’s	no	WIP	limit
because	the	Pending	section	is	part	of	the	last	Done	column,	though	having	an
unusually	large	number	of	items	there	might	indicate	a	deployment	problem.

	There’s	a	special	section	for	quick-fix	items.	These	work	items	are	usually	fixes	to
issues	that	are	serious	enough	to	fix	within	a	day	or	two	but	not	serious	enough	to
require	a	rollback	of	an	entire	deployment.

	Once	items	are	deployed	to	production,	move	their	note	cards	to	the	large	Deployed
section.

You	need	to	do	a	little	extra	work	to	track	deployments,	but	using	simple	sections	on	the
right	end	of	your	signboard	enables	you	to	answer	the	question	that	all	your	stakeholders
and	customers	have:	“When	will	our	requests	be	live	in	production?”

	Inside	Xbox

When	I	first	joined	the	Xbox	division	in	2010,	Xbox	had	eight	service
environments:	development,	check-in	testing,	scenario	testing,	stress	testing,	cross-
division	integration,	partner	integration,	certification,	and	production.	Using	all
those	environments,	we	deployed	to	production	every	few	months,	with	a	goal	to
deploy	every	six	weeks.

My	teams	at	the	time	were	responsible	for	all	the	Microsoft	gaming	websites,
including	Xbox.com.	We	worked	closely	with	the	Xbox	Live	social	services	group.
Our	two	groups	of	teams	had	many	deployment	issues	and	started	tackling	them	one
at	a	time.	First,	we	got	continuous	integration	working,	then	automated	deployment
and	rollback,	then	monitoring	and	instrumentation,	then	audience	control,	and
finally	continuous	deployment.	The	changes	were	difficult,	but	in	less	than	two
years	we	were	deploying	every	two	weeks	with	quick	fixes	as	needed	daily.

We	weren’t	the	only	groups	at	Microsoft	that	adopted	continuous	deployment.
Bing	and	Ads	adopted	the	approach	before	Xbox,	and	all	of	Xbox	Live	adopted	it
after	that	group’s	teams	saw	that	continuous	deployment	clearly	worked	and	its
automation,	customer	feedback,	monitoring,	and	testing	in	production	were	essential
to	running	modern	services	at	scale.	Xbox	now	has	only	two	service	environments



(integration	and	production),	and	deploys	to	production	at	will	(several	times	a	day).

New	Xbox	services	today	are	built	separately	as	independently	versioned	projects
in	Visual	Studio	Team	Foundation	Server	(TFS).	Our	TFS	build	system
automatically	runs	unit	tests	against	each	build,	performs	localization	and	signing	as
needed,	and	then	deploys	each	build	directly	to	its	target	environment	based	on	the
branch	(there	are	development	branches	and	production	branches).

Because	each	modern	service	is	a	separate	project,	we	never	need	to	worry	about
merge	conflicts	across	teams.	However,	interface	conflicts	are	still	possible.	That’s
why	we	independently	version	each	modern	service	and	have	multiple	versions	of
each	service	deployed	to	production.



With	instrumentation,	each	service	team	can	tell	which	of	its	versions	are	being	used	by
other	service	teams.	They	can	then	contact	the	other	teams,	let	them	know	when	old



versions	of	the	service	are	being	deprecated,	and	smoothly	transition	the	other	services	to
a	more	recent	stable	version.	Meanwhile,	they	can	carry	on	the	continuous	deployment	of
the	latest	version	without	worrying	about	interface	conflicts.

Continuous	deployment	of	our	services	is	a	beautiful	system	that	supports	our
continuous	publishing	of	the	platform	and	apps	and	our	continuous	integration	of	value	for
customers.

Checklist
Here’s	a	checklist	of	actions	for	deploying	components,	apps,	and	services	by	using
Kanban:

	For	continuous	integration	of	changes:

•	Follow	an	integration	strategy	for	your	team	branch	that	avoids	merge	and
interface	conflicts.

•	Divide	the	rightmost	Done	column	of	your	signboard	into	sections	for	each
branch	you	use	and	special	sections	for	FastTrack	changes	and	deployed	changes.

•	Use	the	Done	sections	to	track	integrations	of	completed	work.

	For	continuous	push	of	changes:

•	Follow	a	pull-and-push	(or	pull	request)	strategy	for	your	team	repo	that	avoids
merge	and	interface	conflicts.

•	Divide	the	rightmost	Done	column	of	your	signboard	into	sections	for	each	repo
you	use	and	special	sections	for	FastTrack	changes	and	deployed	changes.

•	Use	the	Done	sections	to	track	pushes	or	pull	requests	of	completed	work.

	For	continuous	publishing	of	apps	and	content:

•	Divide	the	rightmost	Done	column	of	your	signboard	into	Pending,	Submitted,
and	Deployed	sections.

•	Use	the	Done	sections	to	track	the	publishing	state	of	completed	work.

	For	continuous	deployment	of	services:

•	Use	a	service	deployment	tool	that	provides	audience	control,	automated
deployment,	and	automated	rollback.

•	Ensure	that	your	service	monitoring	and	instrumentation	notices	and	pinpoints
service	issues	before	your	customers	are	affected.

•	Test	your	services	in	production.	If	your	services	handle	highly	sensitive
information,	such	as	personally	identifiable	information	(PII)	and	monetary
transactions,	you	may	want	to	test	changes	in	a	preproduction	environment	first.

•	Divide	the	rightmost	Done	column	of	your	signboard	into	Pending,	Quick	Fix,
and	Deployed	sections.

•	Use	the	Done	sections	to	track	the	deployment	state	of	completed	work.



Chapter	7.	Using	Kanban	within	large	organizations

If	you	work	for	a	small	IT	group	or	on	an	independent	app,	game,	service,	or	some	other
small	independent	project,	this	chapter	is	not	for	you.	Your	job	is	somewhat	free	from
large-scale	coordination,	planning,	alignment,	tracking,	and	other	mechanisms	necessary
to	steer	large	projects	with	hundreds	or	thousands	of	participants.	You	still	need	to	deal
with	budgets,	fickle	customers	and	management,	and	changing	requirements	from	a
variety	of	sources,	but	you	can	otherwise	enjoy	your	independence	and	deliver	continuous
value	with	Kanban.

If	you	work	on	large	projects	within	large	organizations,	you	need	mechanisms	to	guide,
coordinate,	and	track	the	work	of	the	vast	number	of	people	involved.	However,	this	is	not
a	book	about	high-level	strategic	planning,	crowdsourcing,	or	classic	project	management
—there	are	good	books	and	materials	available	on	those	subjects.	This	book	is	about	using
Kanban	effectively	in	a	variety	of	situations,	including	within	large	organizations.

In	a	large	organization,	different	teams	often	use	different	project-management
methods.	Your	feature	team	(3–10	people)	might	use	Kanban,	carry	little	technical	debt
(bugs,	shortcuts,	and	regrettable	decisions),	and	always	have	production-ready	code.	Other
feature	teams	might	use	traditional	Waterfall,	Scrummerfall	(traditional	Waterfall	with
short,	fixed-length	milestones	called	“Sprints”),	Scrum,	Extreme	Programming	(XP),	or
some	other	development	approach.	Those	other	teams	may	have	different	expectations
about	quality	and	whether	their	shared	components	are	production-ready,	depending	on
the	stage	of	the	project.	This	can	make	coordination	across	teams	quite	tricky.	To	be
successful,	your	team	needs	to	align	its	backlog	of	work	to	the	larger	project	plan,	order	its
work	to	meet	the	needs	of	dependent	partner	teams,	fit	its	work	within	project	milestones,
communicate	status	to	the	larger	project,	handle	when	the	components	your	team	depends
on	are	of	poor	quality	or	late,	and	stay	busy	when	all	your	work	is	complete	but	your
partner	teams	are	stabilizing	theirs.	I	provide	recommendations	for	managing	each	of	these
areas	in	the	following	sections.

The	topics	covered	are:

Deriving	a	backlog	from	big	upfront	planning

Ordering	work	based	on	dependencies

Fitting	into	milestones

Communicating	status	up	and	out

Dealing	with	late	or	unstable	dependencies

Staying	productive	during	stabilization

Checklist



Deriving	a	backlog	from	big	upfront	planning
When	you	are	running	a	large	project	that	involves	hundreds	or	thousands	of	people,	it’s
important	to	have	a	vision	and	a	plan	for	achieving	your	project	goals.	Even
crowdsourcing	projects	need	an	organizing	principle	and	structure	to	allow	everyone	to
contribute	toward	the	shared	outcome.	The	high-level	plan	and	structure	of	large	projects
usually	take	a	few	forms:

	A	high-level	vision	for	what	the	end	product	will	be.	This	may	include	a
visualization,	a	list	of	capabilities	and	any	constraints,	a	set	of	targeted	customer
segments	and	supported	scenarios,	and	even	an	anticipated	press	release	for	when
the	project	is	complete.

	A	high-level	architecture	that	lays	out	how	components	and	contributions	to	the
product	fit	and	work	together	to	achieve	the	product	vision.

	A	high-level	schedule	for	product	development	with	milestones	for	the	key	events
(like	conferences,	press	announcements,	or	launch),	key	dates	when	major	product
capabilities	come	together,	and	expected	dates	when	target	metrics	(such	as
performance,	scale,	or	participation)	are	reached.	(Here,	“milestone”	means	a	key
date,	not	necessarily	a	traditional	Waterfall	milestone.)

Creating	a	high-level	vision,	architecture,	and	schedule	prior	to	starting	a	large	project
is	essential	to	success,	but	it	can	be	overdone.	Too	much	big	upfront	planning	tends	to	be
wasteful,	since	there	are	many	unknowns	and	requirements	often	change.	Unfortunately,
too	little	planning	can	lead	to	chaos	and	failure,	even	if	some	feature	teams	succeed	in
building	their	individual	parts.	In	my	experience,	you	want	just	enough	planning	to
organize	the	project	and	coordinate	all	the	people	involved,	knowing	that	the	high-level
vision,	architecture,	and	schedule	will	change	as	the	project	progresses.	However,	this
chapter	isn’t	about	creating	large	project	plans	(there	are	many	other	books	on	that	topic);
it’s	about	using	Kanban	within	that	edifice.

After	the	initial	high-level	plan	is	in	place,	individual	teams	need	to	know	how	they
contribute	to	the	vision,	how	their	contribution	fits	into	the	architecture,	and	how	their
work	aligns	to	the	schedule.	That	knowledge	is	used	to	derive	and	order	each	team’s
backlog.	Let’s	start	with	the	vision	and	architecture.

Two	common	approaches,	shown	in	Figure	7-1,	are	used	for	how	individual	teams
contribute	to	a	vision	and	fit	into	an	architecture:

	By	scenario	Each	individual	team	owns	a	different	scenario	described	in	the	vision
(such	as,	“Taking	a	photo	and	sharing	it	with	friends”).	The	team	creates	the
components	laid	out	in	the	architecture	as	needed	for	its	scenario.	Those	components
are	refactored	and	augmented	as	needed	by	other	teams	for	their	scenarios.	The
scenario	approach	ensures	complete	end-to-end	experiences,	but	it	may	result	in
poorly	engineered	components	constructed	by	too	many	hands.	A	team’s	backlog	is
derived	by	breaking	down	the	team’s	assigned	scenario	into	individual	features	or
stories.

	By	component	Each	individual	team	owns	a	component	laid	out	in	the	architecture
(such	as	the	photo-manipulation	library).	The	component	teams	that	own	the	UI



typically	stitch	together	scenarios	described	in	the	vision	using	lower-level
components.	This	component	approach	provides	clear	boundaries	for	teams,	and
well-structured	components,	but	it	may	result	in	unwieldy	or	incomplete	end-to-end
experiences.	A	team’s	backlog	is	derived	by	breaking	down	the	team’s	assigned
component	into	individual	features	or	requirements.

FIGURE	7-1	Components	with	scenarios	that	cut	across	them.

	Tip

Personally,	I’ve	had	the	most	success	with	a	hybrid	approach	(shown	in	dark	gray	in
Figure	7-1).	You	assign	each	feature	team	of	3–10	members	a	set	of	related
components	as	well	as	ownership	of	smaller	scenarios	that	work	primarily	within
those	components.	Each	team	creates	its	components	as	it	constructs	its	scenarios
and	also	collaborates	on	the	larger	end-to-end	scenarios.	The	end-to-end	scenarios
tend	to	fit	together	better	as	a	result	of	the	work	on	the	smaller	scenarios.	Each
team’s	backlog	is	derived	by	breaking	down	its	components	and	scenarios	into
features,	stories,	and	requirements.

Ordering	work	based	on	dependencies
In	Chapter	3,	“Hitting	deadlines,”	I	describe	how	to	populate	your	backlog,	establish	your
minimum	viable	product	(MVP),	order	work	(including	technical	debt),	estimate	features
and	tasks,	track	the	expected	completion	date,	and	right-size	your	team.	The	only
differences	within	a	large	project	are	the	following:

	Your	team’s	MVP	is	constrained	by	the	boundaries	of	the	overall	MVP	and	the
scenarios	and	components	that	your	team	owns.	Your	team	should	step	outside	those
boundaries	only	with	the	agreement	of	leadership	and	your	partner	teams.
Otherwise,	be	prepared	to	face	the	wrath	of	your	leadership	and	partners	when	they
discover	that	you	perverted	their	planning.

	Your	ordering	of	work	is	heavily	influenced	by	the	partner	teams	that	depend	on	you



and	the	partner	teams	you	depend	on.	That’s	the	focus	of	this	section.

There	are	many	ways	to	coordinate	the	order	of	your	team’s	work	with	the	work	of
other	teams.	Here	are	a	few	common	approaches:

	Automatic	Put	all	the	teams’	work	items	into	a	project-management	system	(such	as
Microsoft	Project	or	LiquidPlanner),	indicate	dependencies,	and	let	the	system	order
work	items	for	you.	This	approach	seems	fast,	easy,	and	reliable,	but	in	practice	the
preparation	is	time-consuming	and	difficult,	the	schedule	is	only	as	good	as	your
manual	list	of	dependencies,	you	can	miss	subtle	interactions	between	teams,	and
small	changes	in	work	items	and	dependencies	often	lead	to	large	changes	in
scheduling.	I’ve	had	success	using	this	approach	for	scheduling	major	work	at	the
group	level,	but	the	schedules	derived	through	this	approach	have	been	too	unstable
for	me	to	use	for	work	items	at	the	team	level.

	Manual,	tool	intensive	Put	all	your	work	items	into	a	work-item	tracking	system
(such	as	Visual	Studio	Team	Foundation	Server	or	JIRA),	create	queries	to
interrogate	different	product	areas,	and	have	review	meetings	to	work	out	potential
timing	issues.	This	approach	is	effective	but	quite	time-consuming.	For	large
projects,	you	typically	put	all	your	work	items	into	a	work-item	tracking	system	for
tracking,	so	that’s	not	extra	work.	It’s	the	combinatorics	of	cross-team	dependencies
that	lead	to	weeks	of	cross-team	review	meetings.	You	often	need	to	meet	with
teams	two	or	three	times,	for	an	hour	or	more	each	time.	Once	the	ordering	is	set,
most	teams	keep	meeting	weekly,	like	a	Scrum	of	Scrums,	to	make	regular
adjustments	based	on	progress.

	Manual,	socially	intensive	Have	all	your	teams	meet	as	a	large	group,	place	all
your	work	items	for	the	next	six	months	in	order	on	a	long	wall	(each	row
representing	a	different	team,	each	wide	column	a	different	month),	walk	along	the
wall	noting	timing	issues	(dependencies	out	of	order	and	too	much	work	in	a
month),	have	15-minute	meetings	in	pairs	of	teams	to	discuss	the	issues	(teams	sign
up	to	meet),	reorder	items	on	the	wall,	walk	along	the	wall	again,	and	repeat	these
steps	until	every	team	feels	good	about	the	order.	This	is	my	favorite	approach
because	it	creates	a	visualization	of	upcoming	work	and	has	a	short	duration	(a
single	day	or	an	afternoon).	However,	it	works	only	for	10	or	fewer	teams	at	a	time,
and	you	must	repeat	these	big	meetings	every	three	to	four	months.

These	methods	can	be	used	in	combination	at	different	levels	of	scale.	If	you’ve	got	a
project	with	teams	of	8	members,	who	work	for	groups	of	8	teams,	who	are	part	of
divisions	of	8	groups,	who	work	within	an	organization	with	16	divisions,	that’s	more	than
8,000	people	on	the	project.	For	this	example,	shown	in	Figure	7-2,	each	level	of	scale
might	use	a	different	method:

	To	coordinate	divisions	within	an	organization,	you	could	use	the	automatic	or	tool-
intensive	approach	with	group	managers,	division	heads,	and	the	organization	leader.
The	work	items	would	be	at	the	highest	level	(end-to-end	scenarios	and	major
components),	but	they	would	provide	to	leadership	the	guidance	needed	to	set
expectations	for	their	divisions,	customers,	and	partners	and	lay	out	a	milestone	road
map	for	the	project.



	To	coordinate	groups	within	a	division,	you	could	use	the	automatic,	tool-intensive,
or	socially	intensive	approach	with	team	leads,	group	managers,	and	the	division
head.	The	work	items	would	be	at	a	high	level	(scenarios	and	key	component	areas),
but	they	would	serve	to	organize	the	groups	and	clarify	priorities	and	ordering	for
the	teams.

	To	coordinate	teams	within	a	group,	I’d	recommend	using	the	socially	intensive
approach	with	all	the	people	on	the	eight	teams,	their	leads,	and	the	group	manager.
That	achieves	the	ordering	of	work	items	in	a	single	day	and	allows	for	replanning
every	few	months.	(I’ve	seen	many	groups	use	the	tool-intensive	approach
effectively	to	coordinate	teams,	including	my	own,	but	it	takes	much	longer	and	still
misses	issues.)

FIGURE	7-2	Coordination	approaches	at	different	levels	of	organization	hierarchy.

I’ve	been	on	projects	with	more	than	8,000	people.	Different	scheduling	approaches	are
commonly	used	at	different	levels.	While	some	purists	yearn	for	one	system	that	can
schedule	work	across	every	level	of	scale,	in	practice	that	doesn’t	appear	to	be	necessary
or	even	appropriate	(different	scales	really	are	different).	However,	having	one	system	for
tracking	does	prove	useful.	I	talk	about	that	in	the	“Communicating	status	up	and	out”
section.	I	touch	on	related	questions	in	the	section	“Dealing	with	late	or	unstable
dependencies”	later	in	this	chapter.

	Inside	Xbox

Large	project	planning	at	Microsoft	typically	starts	bottom	up	and	finishes	top
down.	Each	small	team	lists	the	work	they’d	like	to	do.	Those	lists	get	collected	at
the	group	level	and	then	reviewed	at	the	division	and	organization	levels.	At	the
same	time,	market	research,	product	planning,	business	planning,	and	design	collect
the	high-level	work	they’d	like	feature	teams	to	do.	All	this	input	is	fashioned	into	a
product	vision,	architecture,	and	schedule.	The	schedule	is	then	adjusted	for



dependencies	and	other	considerations	as	it	is	pushed	back	down	through	the
divisions,	groups,	and	teams.	In	the	end,	each	team	has	an	ordered	list	of	work.

Large	project	planning	often	takes	a	few	months	to	complete,	and	thus	it	is	used
only	for	long-term	planning	and	massive	projects,	like	Windows	10	or	the	initial
launch	of	Xbox	One.	When	Microsoft	shipped	packaged	products	once	every	few
years,	the	few	months	of	planning	were	also	used	to	give	people	needed	vacations
and	to	work	on	prototypes,	analyze	product	issues,	improve	infrastructure,	and
reduce	various	forms	of	technical	debt.	These	days	in	Xbox,	long-term	planning
happens	in	parallel	with	our	continuous	publishing	and	deployment.

My	Xbox.com	teams	used	the	socially	intensive	approach	and	got	quite	good	at	it.
We	could	replan	in	just	a	few	hours	each	quarter.	My	current	teams	use	a
combination	of	McGrath	and	MacMillan’s	Options	Portfolio	for	strategic	planning
(see	Figure	7-3)	and	dynamic	ordering	of	our	Kanban	backlog	based	on	customer
requests	and	usage	data.

FIGURE	7-3	The	basic	grid	used	for	planning	with	the	McGrath	and	MacMillan	Options
Portfolio.

McGrath	and	MacMillan’s	Options	Portfolio	has	you	place	your	current	and
future	work	focus	on	a	two-dimensional	grid.	The	higher	you	are	on	the	vertical
axis,	the	more	execution	risk	is	involved	(technical	or	operational).	The	farther	right
you	are	on	the	horizontal	axis,	the	more	market	risk	is	involved	(customer	or



competitive).	The	lower-left	corner	tends	to	hold	your	current	core	capabilities.	The
upper	right	holds	game-changing	ideas.	For	strategic	planning,	you	want	a	balanced
portfolio,	with	work	spread	across	all	portions	of	the	grid—not	enough	in	the	core
and	your	current	business	suffers;	not	enough	on	the	edges	and	you’ve	got	no	future
business.	Each	year,	my	teams	spend	5–10	hours,	spread	over	a	couple	of	weeks,	to
bring	together	all	the	customer	feedback	and	technical	ideas	they’ve	had,	fill	out
their	portfolios,	and	review	them	with	me.	We’ve	found	it	to	be	a	fast,	simple,	and
flexible	framework	that	provides	insight,	motivation,	and	results.

Fitting	into	milestones
After	your	team’s	backlog	is	populated	and	ordered,	you	can	start	continuously	delivering
value	to	your	customers	and	partner	teams	using	Kanban.	However,	your	leadership	and
partner	teams	may	want	to	know	what	work	items	will	be	available	at	each	project
milestone.	If	you	don’t	need	to	provide	this	information,	you	can	skip	this	section	and	the
estimation	work	involved	because	what	really	matters	is	prioritization	(covered	in
“Ordering	work	based	on	dependencies”)	and	knowing	when	work	is	actually	delivered
(covered	in	“Communicating	status	up	and	out”).

If	you	are	required	to	fit	delivery	of	work	items	into	project	milestones,	follow	the
procedure	I	outline	in	the	section	“Track	expected	completion	date”	in	Chapter	3	for	each
work	item.	It	looks	like	this:

	Compute	your	team’s	task	add	rate	(TAR)	and	task	completion	rate	(TCR).

	Estimate	the	number	of	tasks	comprising	each	work	item.

	For	each	work	item,	sum	the	current	task	estimates	(CTE)	for	the	item	and	all	its
predecessors.

	Divide	that	CTE	sum	by	TCR	minus	TAR	to	get	the	estimated	number	of	days	until
each	work	item	is	complete.

	Fit	your	work	items	into	project	milestones	based	on	their	completion	dates.

	If	you	want	to	be	conservative,	include	only	work	items	that	are	estimated	to	be
completed	a	couple	of	weeks	prior	to	their	milestone	target.

Figure	7-4	shows	a	worksheet	that	computes	the	estimated	completion	dates	for	you.
(You	can	download	an	Excel	file	with	the	formulas.)



FIGURE	7-4	Calculation	of	expected	completion	date	for	an	ordered	set	of	work	items.

In	this	example,	10	work	items	vary	in	estimated	size	from	1	to	6	tasks.	They	represent
the	deliverables	expected	of	your	team	in	the	order	you’ve	established	with	the
organization.	Their	task	estimates	are	summed	to	compute	the	current	task	estimate	(CTE),
which	is	then	divided	by	TCR	minus	TAR	to	find	the	days	until	that	work	item	and	all	its
predecessors	will	be	complete.	That	count	of	days	is	then	added	to	the	start	date	to
determine	the	expected	completion	date.	Please	note	that	this	simple	date	computation
assumes	weekends	are	included	in	the	TAR	and	TCR	calculations.

	Tip

These	date	estimates	can	also	be	used	for	scheduling	discussions.	For	example,	the
socially	intensive	approach	to	ordering	your	backlog	calls	for	placing	work	items	in
month	columns.	You	can	place	work	items	based	on	your	gut	experience	or	use
these	date	estimates	as	an	initial	cut.	For	estimated	start	dates,	simply	use	the
completion	date	of	the	previous	item	(rough,	but	close	enough	for	scheduling
purposes).	Please	keep	in	mind	that	all	estimates	are	subject	to	the	replanning
inherent	in	any	complex	project	with	changing	requirements.

Communicating	status	up	and	out
To	customers,	your	management,	and	your	partner	teams,	when	you	complete	a	work	item
is	more	important	than	your	estimate	of	that	date.	They	are	interested	in	the	status	of	your
work	items	to	see	overall	progress,	to	take	note	of	any	unexpected	delays,	to	help	where
they	can,	and	to	update	plans	if	any	items	come	in	particularly	early	or	late.

Large	organizations	typically	track	project	status	using	an	online	work-item	tracking
system,	such	as	Visual	Studio	Team	Foundation	Server	or	JIRA,	or	an	online	project-
management	system,	such	as	Microsoft	Project	Server	or	LiquidPlanner.	Because	your



team	tracks	work	items	continuously	on	your	Kanban	board,	no	extra	effort	is	needed	to
collect	status	information.	Once	a	day,	one	of	your	team	members	just	synchronizes	the
items	on	your	signboard	with	the	items	in	your	project’s	online	tracking	system	(perhaps
at	the	beginning	or	end	of	each	day	or	before	or	after	the	daily	standup).	Doing	this	is
straightforward	and	takes	only	a	few	minutes.

Some	online	tracking	systems	can	also	display	work	items	in	a	virtual	signboard	view.
While	online	tracking	systems	are	often	essential	for	large	projects,	virtual	signboards
aren’t	as	necessary	and	might	introduce	problems.	Before	you	switch	to	a	virtual
signboard,	consider	the	following:

	Does	the	virtual	signboard	display	your	backlog,	plus	an	Active	and	Done
column	for	each	of	your	software	development	steps?	Some	virtual	signboards
have	only	one	Done	column	at	the	end,	which	causes	items	to	move	between	steps
prematurely	and	count	against	the	wrong	work-in-progress	(WIP)	limit,	leading	to
persistent	workflow	issues.	(Details	in	the	rude	Q	&	A	sections	in	Chapters	4	and	5.)

	Does	the	virtual	signboard	display	your	chosen	WIP	limits	and	done	rules	for
each	step?	The	system	doesn’t	need	to	enforce	WIP	limits	or	rules	because	your
team	should	be	the	one	in	control,	but	it	is	nice	if	the	system	automatically
highlights	flow	issues.

	Is	it	fast	and	easy	to	create	new	items,	reorder	them	in	the	backlog,	and	move
them	on	the	signboard?	These	operations	are	common	and	should	take	only	a	few
seconds	(including	time	to	engage	the	signboard).	If	they	are	cumbersome,	team
members	will	abandon	their	use	of	the	signboard,	defeating	its	purpose	and
sabotaging	effective	Kanban.

Other	nice	features	include	having	separate	swim	lanes	for	different	types	of	work
items,	tags	to	track	the	origin	of	work	items	and	special	status,	and	various	date,	priority,
and	estimation	fields	that	assist	in	planning.	I’d	especially	appreciate	a	simple	supported
workflow	for	breaking	down	work	items	into	tasks,	where	the	tasks	are	associated	with
each	other	and	the	original	work	item.

Perhaps	we’ll	soon	have	wall-sized	touch	displays	that	are	as	easy	to	use	and	versatile
as	a	physical	signboard.	Until	that	day,	I	don’t	recommend	using	a	virtual	signboard	unless
you	have	a	physically	distributed	team.

For	major	deliverables	and	breaking	changes	to	APIs,	it’s	not	enough	to	passively
provide	detailed	status	through	your	online	tracking	system.	You	need	to	actively
announce	major	deliverables	and	breaking	changes	to	customers,	management,	and
partner	teams.

Major	deliverables	are	worth	announcing	proactively,	not	for	vanity’s	sake	(though
you’ve	earned	a	little	celebration),	but	for	notifying	your	customers,	management,	and
partner	teams	that	important	new	work	can	be	utilized	and	validated	broadly.	If	it	really
was	a	major	deliverable,	those	people	will	be	eagerly	awaiting	it	and	will	assume	it’s	late
if	you	only	passively	mark	its	last	work	item	complete.

Breaking	changes	are	critical	to	announce,	especially	to	customers	and	partner	teams.
These	are	changes	to	APIs,	file	formats,	protocols,	and	other	interfaces	that	break	old



usage	patterns.	Ideally,	your	team	minimizes	the	impact	of	interface	changes	by	updating
client	code	and	libraries,	providing	shims,	or	versioning	interfaces	so	that	only	new	use	is
affected.	However,	it’s	sometimes	necessary	to	make	breaking	changes	on	interfaces	under
development.	A	formal	announcement	that	is	easily	recognized	and	understood	is	essential
to	keep	your	customers	and	partners	in	your	good	graces.

While	announcements	of	major	deliverables	and	breaking	changes	are	not	special	to
Kanban,	they	are	important	to	call	out	because	Kanban	changes	your	cadence.	With
traditional	Waterfall	or	Scrum,	teams	often	reach	major	deliverables	and	integrate
breaking	changes	at	milestone	or	sprint	boundaries.	With	Kanban,	those	events	happen
continuously,	so	it’s	important	to	have	good	communication	habits	in	place.

	Inside	Xbox

Xbox	uses	Visual	Studio	Team	Foundation	Server	(TFS)	as	its	online	work-item
tracking	system	for	large	projects.	We	use	it	for	tracking	customer	promises,
scenarios,	features,	stories,	tasks,	and	bugs.	It	serves	its	purpose	well	and	has	a	great
interface	with	Excel,	which	is	a	boon	to	Excel	geeks	like	me.	TFS	supports	work-
item	hierarchies,	which	allows	us	to	tie	tasks	to	features	and	stories,	which	in	turn
are	tied	to	scenarios	and	customer	promises.	Aside	from	the	usual	fields	that	cover
assignment,	priority,	rank,	area,	status,	title,	description,	history,	and	so	on,	we	also
track	target	release.	Whereas	other	fields	might	capture	when	an	item	is	done,	a
target	release	field	captures	when	an	item	will	reach	customers.

We	announce	major	deliverables	via	email	to	Xbox-wide	distribution	lists.	It’s
always	exciting	to	hear	about	major	new	functionality	becoming	available.	Often,
these	announcements	will	come	with	detailed	descriptions	and	even	have	a	rude	Q	&
A	like	the	ones	I	provided	at	the	end	of	Chapters	4	and	5	of	this	book.	It’s	important
for	the	organization	to	understand	what	is	and	is	not	included	in	each	deliverable.

We	use	even	broader	distribution	lists	to	communicate	Xbox	breaking	changes.
The	messages	about	breaking	changes	follow	a	structured	template	that	lists	the
name	of	the	change,	impact	rating	(low,	medium,	and	high),	summary,	reason	for
change,	and	contacts.	During	the	year	leading	up	to	the	Xbox	One	launch,	multiple
breaking-change	messages	were	sent	each	week.	A	year	after	the	launch,	the	count	is
down	to	less	than	one	a	month.

Dealing	with	late	or	unstable	dependencies
Even	if	you	carefully	coordinate	the	ordering	of	work	with	partner	teams	and	regularly
give	and	receive	status,	your	workflow	can	still	be	dramatically	affected	by	late	or
unstable	dependencies.	Late	dependencies	have	a	cascading	effect	on	schedules,	regardless
of	what	product-development	approach	you	use.	I’ll	discuss	strategies	to	deal	with	them
effectively	within	Kanban.

Unstable	dependencies	are	particularly	troubling	to	Scrum	and	Kanban	teams.	In
addition	to	delaying	the	completion	of	tasks	(just	as	late	dependencies	do),	unstable
dependencies	expose	a	cultural	difference	between	teams	that	often	leads	to	frustration,



tension,	and	breakdowns	in	communication.	I’ll	provide	strategies	to	handle	unstable
dependencies	constructively.

Late	dependencies
When	a	scenario	or	component	that	your	team	depends	on	is	late,	that	delays	your	scenario
and	component	work,	making	your	work	late	for	teams	further	down	the	chain.	If	that
dependency	chain	is	part	of	the	critical	chain	of	the	project	(the	chain	of	work	items	that
constrains	the	length	of	the	whole	project),	day-to-day	slips	by	one	team	result	in	day-to-
day	slips	for	the	entire	project.

You	can	handle	late	dependencies	effectively	with	Kanban	in	several	ways:

	Place	blocked	items	in	a	Track	column	in	the	Implement	step	as	described	in	the
“Troubleshooting”	section	of	the	Kanban	quick-start	guide	(Chapter	2).	Each	day,
team	members	assigned	to	blocked	items	report	on	progress	in	unblocking	the	items.
Once	items	are	unblocked,	the	items	resume	implementation.

	Create	a	simple	fake	implementation	of	your	dependency,	similar	to	a	mock	object,
but	instead	of	using	the	object	for	unit	testing,	use	it	to	unblock	downstream
implementation.	The	fake	is	intentionally	incomplete	and	unsophisticated—it
contains	just	enough	functionality	for	you	to	validate	your	key	scenarios	and
components	and	unblock	the	teams	that	depend	on	you.

When	you	create	the	fake,	also	create	a	new	task	for	removing	the	fake,	and	put	that
task’s	note	card	in	the	Track	column	of	the	Implement	step.	As	soon	as	your
upstream	partner	team	completes	the	real	work,	you	can	remove	the	fake	and
validate	that	everything	still	functions	properly.	Doing	the	extra	work	to	create	and
later	throw	away	a	fake	may	be	worth	it	only	for	items	in	the	project’s	critical	chain.

	Write	a	shim	between	a	prior	stable	version	of	your	dependency	and	the	anticipated
future	version	that’s	late.	The	shim	is	like	a	fake	but	is	more	functional	because	it’s
built	on	top	of	a	working	prior	version.	As	with	the	fake,	you	need	to	create	a	new
task	for	removing	the	shim	and	validate	the	full	new	version	when	your	upstream
partner	team	completes	the	real	work.

	Assist	your	upstream	partner	team,	perhaps	even	to	the	point	of	taking	over	the	work
on	your	dependency.	Because	you	share	the	success	and	failure	of	the	entire	project
with	all	your	partner	teams,	helping	them	out	on	the	highest-priority	work	should
always	be	an	option.	However,	taking	on	another	team’s	work	can	be	challenging
politically	and	technically.	It	may	also	jeopardize	the	portion	of	your	backlog	that
isn’t	affected	by	the	late	dependency.	If	the	particular	situation	warrants	getting
involved,	have	a	discussion	with	your	partner	team	and	help	out	where	it	makes
sense.

Dealing	with	late	dependencies	can	be	frustrating	and	cause	extra	work,	but	that	work	is
unavoidable.	Being	constructive	and	acting	to	avoid	downstream	impact	helps	everyone.
Remember,	one	day	the	person	causing	the	delay	may	be	you.



Unstable	dependencies
When	an	upstream	dependency	is	unstable	(incomplete,	with	many	quality	issues),	that’s
the	same	for	your	team’s	purposes	as	the	dependency	being	late.	You	can’t	specify,
implement,	and	validate	that	your	work	is	production-ready	if	the	scenarios	or	components
it	depends	on	aren’t	production-ready	themselves.	However,	even	if	your	upstream	partner
team	acknowledges	that	their	work	is	unstable,	they	may	still	believe	it	is	complete.	This
fundamental	difference	in	viewpoint	can	cause	frustration,	tension,	and
misunderstandings.

Your	upstream	partner	team	might	consider	its	unstable	deliverables	complete	for
several	reasons:

	The	partner	team	could	simply	be	a	poor-quality	team	as	the	result	of	inappropriate
staffing,	faulty	practices,	negligent	leadership,	or	a	mix	of	these	factors.	The	team’s
members	might	be	wonderful	people,	but	their	deliverables	are	unreliable.

	The	team	might	be	following	a	traditional	Waterfall	model,	where	specification,
implementation,	and	validation	happen	in	bulk.	The	team	might	consider	an
individual	scenario,	feature,	story,	or	component	complete	as	soon	as	it’s
implemented,	but	well	before	it	is	validated.	Team	members	might	use	terms	such	as
“code	complete”	or	“feature	complete”	to	describe	their	current	work	status.	(“Test
complete”	and	“release	candidate”	milestones	may	be	months	away.)

	The	team	may	have	completed	the	validation	of	its	work	as	best	it	can,	but	its
upstream	dependencies	are	unstable,	resulting	in	unstable	deliverables	to	your	team.

	The	team	might	be	under	intense	time	pressure	from	customers,	partners,	or
leadership.	Perhaps	team	members	are	preparing	for	an	important	demo	or	another
significant	event.	The	team	is	rushing	its	deliverables	and	lowering	its	quality	to
meet	the	date.

	The	team	might	have	lowered	its	quality	standards	to	meet	what	team	members
believe	are	the	norms	for	the	project.	They	looked	at	their	peer	teams	and	noticed
that	the	overwhelming	majority	of	those	teams	considers	lightly	validated	code	to	be
good	enough	to	pass	along.

Your	team	may	not	agree	with	other	teams’	practices	or	definitions,	but	in	the	midst	of	a
large	project,	you’re	not	likely	to	change	how	other	teams	work.



	Note

Other	teams	may	not	like	your	practice	of	delivering	production-ready	scenarios
and	components.	They	may	want	your	code	earlier,	before	it’s	been	validated,	or	in
bulk	rather	than	in	small	batches.	They	may	not	appreciate	being	expected	to
deliver	quality	upfront	rather	than	validating	work	later,	during	a	project-wide
stabilization	period.	You	may	think	other	teams	are	being	slow	and	inefficient	(and
you’re	right	from	a	customer-delivery	perspective),	but	given	initial	low-quality
expectations,	those	same	teams	may	see	you	as	slow	and	inefficient.	These
differences	can	be	upsetting	to	both	sides,	but	remember,	you	are	all	in	the	project
together.	Collaborating	with	other	teams	is	a	give-and-take.

Even	if	you	can’t	agree	on	quality	and	approach,	you	can	come	to	a	common
understanding	with	your	partner	teams.	Ask	each	team	what	you	should	expect	from	their
deliverables	upon	handoff.	Ask	them	how	they	define	common	terms,	like	“complete,”
“done,”	and	“ready.”	Tell	them	about	what	to	expect	from	you	and	how	you	define
common	terms.	Post	the	definitions	in	an	online	or	physical	location	where	your	team
members	and	other	teams	can	see	them.	Setting	clear	expectations	up	front	avoids	much	of
the	frustration	and	misunderstandings	later	in	the	project.

	Tip

Describe	your	definitions	of	“complete,”	“done,”	and	“ready”	to	your	partner	teams
factually,	without	pride	or	perceived	condescension.	It’s	simply	the	way	you	work
—not	a	value	judgment.	Pride	and	condescension	are	often	received	poorly,
whereas	a	factual	description	followed	by	delivery	of	quality	work	makes	a	far
better	impression.	You’ll	win	more	fans	with	modesty	and	customer	value	than	you
will	with	hubris.

If	your	upstream	dependencies	define	“complete,”	“done,”	and	“ready”	as	code	that	is
implemented	but	far	from	production-ready,	you’ll	need	to	mitigate	the	problem.	Here	are
a	few	approaches:

	Treat	unstable	dependencies	as	you	would	late	dependencies	(described	earlier	in
this	section).	This	includes	the	options	of	using	a	Track	column	on	your	signboard,
creating	fakes	or	shims,	or	assisting	your	upstream	partner	team	with
implementation.	This	approach	works	best	during	the	early	portion	of	a	project,
when	you’ve	got	time	to	do	other	work	or	extra	work.

	Implement	your	work	items	on	top	of	unstable	dependencies,	using	a	combination	of
fakes	and	shims	to	fill	in	gaps	as	necessary.	You’ll	need	to	create	a	new	task	for
removing	the	fakes	and	shims	and	validate	again	when	your	upstream	partner	teams
stabilize	the	dependencies.	This	approach	is	often	required	late	in	a	project	when
you	can’t	delay	implementation	any	longer.

	Align	your	Validate	done	rule	with	a	lower	quality	bar.	For	example,	you	might
replace	the	rule	“The	work	is	deployed	to	production,	tried	by	a	significant	subset	of



real	customers,	and	all	issues	found	are	resolved”	with	“The	work	is	successfully
integrated	into	the	main	branch,	basic	test	cases	function,	and	all	issues	found	are
logged	in	the	bug-tracking	system.”	This	passive	“When	in	Rome,	do	as	the	Romans
do”	approach	is	far	from	ideal,	but	in	certain	situations,	it	may	be	the	most	pragmatic
solution.

	Push	your	upstream	partner	teams	to	make	their	deliverables	production-ready.	Log
bugs	for	every	malfunctioning	scenario,	feature,	story,	and	component;	engage	your
partner	teams	on	every	bug;	and	drive	for	resolution	on	those	bugs	in	time	to	meet
your	committed	delivery	dates.	This	aggressive	approach	can	be	effective,	but	you’ll
need	executive	sponsorship	to	use	it	successfully,	should	your	partner	teams
complain	and	escalate.

My	teams	have	used	all	of	these	approaches	at	one	time	or	another.	My	preference	is	to
treat	unstable	dependencies	like	late	dependencies	(the	first	approach).

Unfortunately,	time	pressure	sometimes	forces	you	to	implement	on	top	of	unstable
dependencies,	lower	your	quality	bar,	or	become	a	disciplinarian	to	your	upstream	partner
teams.	Those	secondary	approaches	tend	to	introduce	more	work	and	risk	to	the	project.	If
every	team	defined	“complete”	to	be	production-ready,	the	same	customer	value	could	be
delivered	without	the	extra	work	and	risk	to	your	team.	However,	taking	that	extra	work
and	risk	is	worth	it	to	ensure	the	success	of	the	overall	project.	Collaborating	with	other
teams	on	a	big	project	requires	flexibility	and	cooperation.



	Inside	Xbox

When	my	teams	were	responsible	for	the	Microsoft	gaming	websites,	including
Xbox.com,	we	were	at	the	top	of	the	service	stack,	and	thus	had	many	dependencies.
The	web	service	teams	we	depended	on	used	a	variety	of	project-management
methods.	Sometimes	dependencies	were	delivered	to	us	late	or	were	unreliable.

To	account	for	late	or	unstable	services,	we	used	three	approaches:

	Postponed	work	until	our	dependencies	were	functional.	In	addition	to	logging	the
bugs	we	found	against	the	service	teams,	we	assigned	project	managers	to	work
closely	with	service	teams,	ensuring	that	they	understood	our	time	and	quality
requirements.

	Created	fakes	for	missing	or	unstable	services.	We	continued	to	use	these	fakes	for
testing	even	after	the	real	services	came	online.	Again,	we	logged	bugs	and
engaged	our	project	managers	with	the	service	teams	as	needed.

	Completed	the	necessary	service	work	ourselves.	We	had	to	do	this	only	in	a	few
cases,	when	the	service	teams	were	lacking	resources	and	our	requirements	were
lower	priority	than	their	other	work.	It	was	difficult	and	put	stress	on	the	trust
between	the	teams	involved.	Fortunately,	we	worked	hard	to	have	good
relationships	with	other	teams,	which	served	us	well.

Toward	the	end	of	my	time	with	the	gaming	websites,	we	were	asked	to	create
online	authentication	and	purchase	flows	that	could	be	embedded	within	apps
(online	webpages	hosted	within	the	apps).	It	was	exciting	new	work	and	required
tight	integration	with	the	app	teams.	Those	teams	used	Scrummerfall	and	were	under
an	extremely	tight	schedule.	Their	definition	of	complete	was	that	the	code	worked
for	basic	cases	(but	was	far	from	production-ready).	We	worked	so	closely	together
that	having	different	definitions	of	complete	wasn’t	viable.	With	the	tight	deadlines,
and	the	app	teams	driving	the	schedule,	we	had	to	change	our	Validate	done	rule	to
“The	basic	test	cases	function,	and	all	issues	found	are	logged	in	the	bug-tracking
system.”	It	was	uncomfortable,	but	we	shipped	on	time.

My	current	teams	are	near	the	bottom	of	the	platform	and	service	stacks,	so	most
of	our	partner	teams	depend	on	us.	We	generally	finish	our	work	on	time	or	early,
resulting	in	few	problems.	In	the	cases	when	we	do	depend	on	other	teams,	we	treat
their	late	or	unstable	work	as	late	and	track	it,	or	we	lean	on	our	strong	inter-team
relationships	and	complete	the	work	with	them.



Staying	productive	during	stabilization
Toward	the	end	of	a	large	project,	there	is	often	a	prolonged	stabilization	period,
particularly	if	many	of	the	teams	in	the	large	organization	use	Scrummerfall	or	traditional
Waterfall.	During	stabilization,	the	entire	organization	focuses	exclusively	on	fixing	bugs,
doing	various	forms	of	system	validation,	and	logging	any	new	or	reoccurring	bugs	that
are	found.	Stabilization	for	a	large	project	can	sometimes	take	longer	than	the	rest	of	the
project	combined,	as	the	result	of	scenarios	and	components	being	finished	late	with
minimal	integration	testing.	Often,	entire	scenarios,	features,	and	components	are	removed
from	the	product—which	means	an	enormous	amount	of	effort	was	wasted,	but	this	step	is
necessary	if	the	work	isn’t	ready.

On	a	team	using	Kanban,	you	complete	features	before	starting	new	ones—and	the
done	rules	ensure	that	completed	work	is	always	production-ready—even	if	your	peer
teams	don’t.	Thus,	during	a	prolonged,	organization-wide	stabilization	period,	there	are
few	bugs	for	your	Kanban	team	to	resolve	and	nothing	needs	to	be	cut.	However,	it’s
important	for	your	team	to	stay	productive,	even	when	your	team	has	already	met	the
primary	objective	of	stabilization.

Should	a	bug	in	your	team’s	area	be	found	during	stabilization,	it	is	immediately	the	top
priority.	However,	during	the	rest	of	the	time,	there	are	several	productive	activities	for	an
otherwise	idle	Kanban	team:

	Keep	working	on	new	tasks	for	the	current	release.	This	might	break	project	rules,
so	it	may	not	be	an	option.	You	should	negotiate	with	project	management	and
leadership	in	advance	to	agree	on	what	work	you	can	continue	doing	and	under	what
conditions.

	Work	on	tasks	for	the	next	release	(or	a	different	project)	that	are	checked	in	to	a
different	source	control	branch.	This	also	might	break	project	rules	or	generate
animosity	among	your	peer	teams.	Often,	a	few	team	members	can	do	this	without
drawing	much	attention	to	themselves,	while	other	team	members	contribute	to	the
current	project	in	other	ways.

	Run	innovative	experiments,	create	prototypes,	and	acquire	customer	feedback.	This
might	generate	animosity	among	your	peer	teams.	Often,	a	few	team	members	can
do	this	work	constructively	while	they	remain	sensitive	to	the	hard	work	others	are
doing	on	the	current	project.

	Improve	infrastructure	and	tooling,	and	address	other	technical	debt	that	has	been
neglected.	This	kind	of	work	is	always	welcome	and	can	be	easily	interrupted	should
a	high-priority	bug	be	found	in	the	current	project.

	Train	yourself	or	your	team	on	new	techniques	and	methods.	Like	improving
infrastructure	and	tooling,	self-improvement	is	an	investment	that	pays	dividends.

	Determine	the	root	cause	of	various	issues	you’ve	encountered	and	seek	to	fix	them.
This	work	fits	right	into	stabilization.

	Help	other	teams	stabilize	their	code,	particularly	teams	you	depend	on.	This	option
may	not	be	the	most	alluring,	but	it’s	the	most	helpful	and	will	generate	goodwill
among	your	partner	teams.



Checklist
Here’s	a	checklist	of	actions	to	take	when	your	team	uses	Kanban	within	a	large
organization:

	Understand	your	organization’s	high-level	vision,	architecture,	and	schedule	for	its
upcoming	major	product	release.

	Choose	how	your	team	will	contribute	to	the	high-level	vision	and	fit	into	the	high-
level	architecture:

•	By	scenario

•	By	component

•	By	component	with	ownership	of	small	related	scenarios	(hybrid)

	Establish	your	team’s	minimum	viable	product	(MVP)	within	the	organization-wide
MVP.

	Order	your	team’s	work	in	coordination	with	your	peer	teams,	using	automated
project-management	tools,	review	meetings	relying	on	work-item	system	queries,	or
a	socially	intensive	group	meeting.

	Fit	your	ordered	deliverables	(work	items)	into	the	high-level	schedule’s	milestones,
using	current	task	estimates	(CTE),	task	add	rate	(TAR),	and	task	completion	rate
(TCR).

	Determine	when	and	how	you	will	synchronize	your	Kanban	board	with	your
organization’s	online	work-item	tracking	system.

	Select	a	means	to	inform	the	larger	organization	of	when	your	team	completes	major
deliverables	or	makes	a	breaking	change	to	an	interface.

	Create	a	Track	column	under	your	Implement	step	for	items	blocked	by	late	or
unstable	dependencies.

	Add	note	cards	for	creating	fakes	and	shims	as	needed	for	late	or	unstable
dependencies,	and	add	matching	note	cards	to	later	remove	those	fakes	and	shims.

	Meet	with	your	peer	teams	to	discuss	how	each	of	your	teams	define	“complete,”
“done,”	and	“ready,”	and	post	those	definitions	in	an	online	or	physical	location
where	your	team	members	and	other	teams	can	see	them.

	Discuss	what	your	team	would	do	if	particularly	important	dependencies	are	late	or
unstable.

	Plan	appropriate	and	constructive	activities	for	your	team	during	your	organization’s
prolonged	stabilization	periods.



Chapter	8.	Sustained	engineering

By	James	Waletzky

Most	teams	that	release	a	product	or	service	to	customers	perform	software	maintenance
after	release.	An	effective	team	minimizes	defects	during	development,	but	some	level	of
post-ship	fixes	are	inevitable.	This	situation	poses	problems	even	for	a	mature	team	in	its
need	to	prioritize	and	schedule	unplanned	maintenance	work	in	conjunction	with
developing	product	road	map	features	(new	development).	What	is	an	effective	model	for
dealing	with	this	distraction	from	new	feature	development,	hereafter	known	as	“sustained
engineering”	(SE)?	I’m	sure	you	already	guessed—Kanban.

The	model	I	recommend	for	using	Kanban	to	address	post-release	defects	has	several
aspects.	The	teams	involved	need	to	define	roles	and	responsibilities	(support,	product
management,	and	engineering),	determine	ownership	of	SE	work,	and	also	lay	out	the
support	tiers	they	will	use.	To	address	the	need	for	efficient	collaboration,	teams	can	use
an	approach	such	as	triage	as	well	as	“quick-solve”	meetings	to	help	manage	maintenance
work	that	requires	escalation.	You	can	put	a	specific	Kanban	workflow	in	place	to	track
escalations	and	bugs	by	making	use	of	a	signboard	and	complement	this	with	other
appropriate	tracking	tools,	both	physical	and	software.	I’ll	explore	each	aspect	of	this
model	throughout	this	chapter.

The	topics	covered	are:

Define	terms,	goals,	and	roles

Determine	SE	ownership

Lay	out	support	tiers

Collaborate	for	efficiency

Implement	Kanban	SE	workflow

Kanban	tools

Troubleshooting

Checklist

Define	terms,	goals,	and	roles
Before	I	address	how	Kanban	helps	with	sustained	engineering,	in	this	section	I	provide
some	context	about	several	topics	that	teams	need	to	consider.	First,	I	list	several	terms
that	need	a	common	understanding	in	SE	to	help	ensure	that	they	are	used	consistently
across	support,	development,	and	SE	teams.	Next,	I	list	some	of	the	challenges	and	goals
that	organizations	face	when	doing	SE	so	that	you	can	see	how	Kanban	helps.	Finally,	I
describe	the	roles	and	responsibilities	that	need	to	be	clarified	so	that	different	teams	have
a	shared	view	of	who	is	involved.



Consistent	vocabulary
The	following	terms	and	definitions	provide	a	common	vocabulary	to	use	across	teams:

Challenges	and	goals
Engineering	teams	typically	have	the	following	challenges	when	dealing	with	post-ship

bugs:

	Customer	issues	take	too	long	to	resolve	because	of	many	competing	(and
sometimes	changing)	priorities.

	Work	is	difficult	to	prioritize.	How	does	a	team	choose	between	working	on
customer	issues	and	moving	the	product	road	map	forward?

	Unplanned	maintenance	work	is	challenging	to	predict	and	schedule.	If	release-date
predictability	is	a	goal	of	your	organization,	it	is	important	to	predict	how	much	time
the	team	will	spend	on	fixing	bugs	versus	adding	new	functionality.

	The	customer-support	team	lacks	visibility	into	the	work	of	the	core	engineering
team.	After	an	issue	moves	to	the	core	engineering	team,	the	customer-support	team
wants	to	be	kept	informed	of	the	state	of	the	issue.

	Engineering	teams	work	in	a	silo.	Collaboration	with	companion	teams	(such	as
customer	support)	doesn’t	happen	on	a	regular	basis.

	The	core	engineering	team	is	not	motivated	to	fix	bugs.	Developers	are	typically
attracted	to	creating	new	functionality	and	solving	new	problems.	Bug	fixes	are	not
viewed	as	a	“fun”	task.

By	putting	Kanban	in	place,	you	can	address	challenges	such	as	those	I	outline.	The
goals	for	the	SE	practice,	and	how	Kanban	helps	in	each	case,	include	the	following:

	Minimize	team	distractions	By	having	the	sustained-engineering	role	clarified,
with	the	right	responsibilities	in	place,	the	team	efficiently	deals	with	escalations	and



minimizes	distractions.

	Make	quick	decisions	As	you	have	seen	in	previous	chapters,	Kanban	does	not
include	a	planning	meeting.	Escalations	are	placed	in	an	ordered	list	as	they	come	in,
so	customer-support	personnel,	and	potentially	users,	can	see	how	their	issues	are
prioritized.

	Fix	the	right	issues	the	right	way	A	forced	stack-ranked	board	of	work	items
ensures	that	the	team	is	always	working	on	what	is	most	important.	The	done	rules
inherent	to	the	Kanban	workflow	influence	quality.

	Visualize	work	in	progress	Anyone	with	access	to	the	signboard	can	quickly	see
which	issues	are	at	the	top	of	the	priority	list,	in	progress,	or	done.

	Minimize	work	in	progress	As	described	earlier,	the	work-in-progress	(WIP)	limits
Kanban	imposes	ensure	that	the	core	engineering	team	is	working	on	a	focused	set
of	issues	instead	of	continually	working	on	issues	randomly	and	never	finishing.

	Deliver	frequently	Customer	issues	require	quick	turnaround.	Within	a	software	as
a	service	(SaaS)	model,	fixes	can	be	deployed	rapidly,	solving	issues	for	multiple
customers	at	a	time.	The	overall	flow	of	a	Kanban	system	facilitates	frequent
releases.

	Measure	sustained-engineering	effectiveness	Kanban	surfaces	a	set	of	metrics	that
you	can	use	to	measure	how	well	your	team	is	doing	in	dealing	with	escalations.
These	metrics	are	visible	to	all	stakeholders.

	Improve	collaboration	with	customer	support	Through	a	process	that	sits
alongside	the	Kanban	workflow,	the	core	engineering	team	works	more	directly	with
support,	accounting	for	user	issues	and	collaboratively	prioritizing	work.

	Improve	team	motivation	Because	the	overall	process	is	visible	and	outputs	are
measured,	the	motivation	to	drive	issues	to	completion	as	efficiently	as	possible
increases.

How	are	these	goals	met?	It	starts	with	having	the	right	team	and	the	right	people	in	the
right	place.

Define	roles	and	responsibilities
Here	are	the	key	stakeholders	and	their	responsibilities	in	the	sustained-engineering
process:

	Customer	support	This	team	has	a	direct	interface	with	customers	and	is	ultimately
responsible	for	any	issues	that	are	reported.	The	support	team	works	with	a
representative	from	the	core	engineering	team	on	any	escalations	that	need	to	be
addressed.

	Product	management	The	product	management	(PM)	team	owns	the	product	road
map	and	the	prioritization	of	any	incoming	requests	to	the	engineering	team.	The
person	who	filters	requests	to	the	engineering	team	may	be	a	member	of	the	team
itself	(such	as	a	business	analyst	or	program	manager).



	Core	engineering	team	The	cross-functional	team	consisting	of	business
analysts/program	managers,	software	developers,	QA	engineers,	user	experience
engineers,	and	anyone	else	who	contributes	to	shipping	the	product	or	service.	The
core	engineering	team	is	responsible	for	detailed	analysis	of	issues.

Determine	SE	ownership
The	first	area	to	consider	is	whether	to	have	a	dedicated	SE	team	in	place,	appoint	a
dedicated	SE	person	on	the	core	engineering	team,	or	leave	the	responsibility	for	SE	with
the	core	engineering	team.	Each	decision	has	advantages	and	disadvantages.

	Dedicated	SE	team	Having	a	team	of	people	whose	sole	responsibility	is	to	deal
with	support	escalations	and	post-ship	issues	allows	the	core	engineering	team	to
focus	exclusively	on	marching	forward.	In	this	model,	the	core	engineering	team’s
Kanban	board	contains	minimal	distractions.	However,	being	a	full-time	member	of
an	SE	team	might	be	viewed	as	less	glorious	than	being	a	member	of	the	core
engineering	team,	and	SE	team	members	may	have	lower	motivation	to	succeed.	As
a	result,	the	right	personal	and	systemic	incentives	must	be	in	place	and	the	team
must	be	an	important	part	of	an	organization’s	culture.	Helpful	staffing	strategies
include	initiating	new	hires	through	their	inclusion	on	the	SE	team	for	a	set	number
of	weeks	or	months,	rotating	members	of	the	core	engineering	team	to	the	SE	team,
or	hiring	full-time	members.

	Tip

I	recommend	starting	new	hires	on	the	SE	team	to	familiarize	them	with	the	product
and	having	an	intermediate	to	senior	member	of	the	core	engineering	team	rotate
through	as	the	technical	leader	of	the	SE	team	to	provide	mentoring	and	coaching.
Some	engineers	find	that	they	love	the	challenge	of	continuous	problem	solving	and
want	to	remain	on	the	SE	team.

	Dedicated	SE	person	This	person	is	part	of	the	core	engineering	team	but	has	the
sole	responsibility	of	handling	escalations	and	does	not	work	on	product
enhancements.	An	advantage	of	this	model	is	that	the	same	team	works	on	cleaning
up	post-ship	issues	that	they	likely	created.	Additionally,	the	dedicated	SE	person	is
ingrained	in	the	team	and	can	quickly	get	help.	However,	this	role	may	not	be
coveted.	A	rotation	program	with	incentives	can	help.

	Core	engineering	team	ownership	In	this	model,	incoming	escalations	are	ranked
on	the	signboard	along	with	the	team’s	other	tasks.	One	advantage	of	this	model	is
that	issues	are	addressed	by	the	most	knowledgeable	people.	Also,	the	team	feels	the
pain	of	post-ship	issues	and	is	motivated	to	prevent	them.	A	disadvantage	is	that	the
team	can	be	frequently	distracted	by	escalations,	preventing	it	from	making	forward
progress	on	the	feature	road	map.

I’ve	used	two	models	depending	on	the	circumstances:

	With	a	core	engineering	team	that	is	just	getting	started	with	Kanban	and	is



maintaining	a	large	load	of	technical	debt	(including	bugs	and	refactoring	tasks),
start	with	a	dedicated	SE	team	until	quality	is	under	control.	This	model	allows	the
core	engineering	team	to	reduce	the	debt	while	the	team	improves	its	development
practices	to	minimize	future	issues.	It	also	ingrains	good	habits	into	engineers	who
later	move	to	the	core	engineering	team.	Meanwhile,	the	rest	of	the	engineering	staff
can	continue	to	deliver	new	value	for	customers.

	For	a	team	that	has	manageable	technical	debt,	I	prefer	the	model	in	which	the	core
engineering	team	retains	ownership.	This	model	encourages	personal	accountability
for	quality	along	with	broad	improvements	instead	of	spot	fixes.

Now	that	the	right	team	structure	and	roles	are	in	place,	how	does	Kanban	work	for
sustained	engineering?	Let’s	look	at	how	all	the	moving	parts	work	together.

Lay	out	support	tiers
Medium-to-large	organizations	typically	have	up	to	three	levels	of	support	to	provide	the
best	customer	experience	and	minimize	distractions	to	the	core	engineering	team.	Figure
8-1	shows	this	model	and	a	typical	workflow.	I’ll	focus	on	the	operations	that	occur	in	tier
3,	when	incidents	are	escalated	to	the	core	engineering	team.

FIGURE	8-1	A	model	of	a	three-tier	customer-support	operation.



Tier	1
A	customer	calls,	emails,	or	chats	with	a	customer-support	representative	and	reports	an
issue	with	the	product.	A	support	incident	is	created.	If	the	incident	is	addressed	in	real
time,	the	incident	is	closed	and	does	not	move	on	to	the	next	tiers.

Tier	2
Incidents	that	require	follow-up	after	the	initial	request	are	handled	with	a	longer-term
engagement,	perhaps	by	a	support	engineer,	with	the	history	of	the	request	reflected	in	the
incident.	This	engagement	might	include	follow-up	phone	calls	or	emails,	analysis	of	log
files,	and	the	retrieval	of	other	troubleshooting	data.	If	more	in-depth	technical
investigation	is	required,	the	incident	is	escalated	to	tier	3,	which	typically	involves	the
core	engineering	team.

Tier	3
If	an	incident	finds	its	way	to	the	core	engineering	team	through	an	escalation,	it	is	time	to
track	the	work	in	the	engineering	work-tracking	system.	For	a	Kanban	team	using	a	paper-
based	signboard,	the	incident	makes	its	way	onto	the	physical	signboard.	For	a	Kanban
team	using	a	project	tracking	tool,	a	new	work	item	is	created	and	tied	back	to	the	incident
in	the	customer-support	system.	At	this	point,	however,	the	new	work	is	not	yet	ranked
(see	the	next	section,	“Collaborate	for	efficiency,”	for	details).

Note

Smaller	organizations	might	have	only	two	tiers	of	support—an	external-facing
support	tier	that	works	directly	with	customers,	and	the	core	engineering	team	for
help	with	more	technical	issues.	As	the	business	grows	and	the	core	engineering
team	has	to	handle	a	higher	volume	of	support	requests,	a	third	tier	may	be	created
between	the	first	two.	Before	taking	this	step,	however,	it	is	important	to	look	at	the
reasons	why	the	core	engineering	team	is	so	distracted.	For	example,	is	there	a
general	quality	issue	that	could	be	addressed	to	help	minimize	support	requests?

Collaborate	for	efficiency
SE	requires	collaboration	across	roles	for	maximum	efficiency.	Two	structured	techniques
that	help	facilitate	collaboration	include	triage	meetings	and	quick-solve	meetings.

Triage
The	term	triage	comes	from	the	medical	industry.	It	refers	to	the	steps	that	personnel	in	an
emergency	room	take	to	assess	the	criticality	of	patient	injuries	to	determine	which
patients	take	precedence	for	treatment.	The	triage	of	incoming	incidents	is	a	best	practice
for	software	teams	to	determine	which	issues	require	the	core	engineering	team’s	attention
and	in	what	priority.	I	recommend	that	a	triage	team	review	all	escalations	before	the	core
engineering	team	begins	work	on	any	of	those	issues	to	ensure	that	the	most	important
issues	receive	attention	first.



	Note

Triage	is	derived	from	the	French	trier,	which	means	“to	sort.”	The	term	can	be
traced	back	to	the	late	1700s,	when	a	French	military	surgeon,	Baron	Dominique-
Jean	Larrey,	developed	a	system	for	prioritizing	casualties	on	the	battlefield	during
the	Crimean	War.	(See	https://en.wikipedia.org/wiki/Dominique_Jean_Larrey.)	The
concept	involved	treating	the	most	urgent	cases	first,	where	survival	was	feasible,
regardless	of	whether	the	wounded	were	still	on	the	battlefield.	As	the	concept
evolved,	cases	were	pushed	through	a	workflow	in	which	doctors	more	equipped	to
handle	the	care	took	over.	With	software,	the	analogy	fits	well.	An	individual	or
team	is	initially	in	charge	of	prioritizing	cases,	and	then	other	teams,	such	as	the
development	team,	take	over	in	applicable	cases	and	resolve	the	issues.

The	triage	team	typically	consists	of	a	representative	of	the	customer-support	team,	a
product	manager	(or	business	analyst	or	program	manager),	a	development	leader,	and	a
QA	leader.	The	primary	goal	of	the	triage	team	is	to	prevent	distractions	for	the	core
engineering	team.	Specifically,	the	triage	team	does	the	following:

	Answers	workaround	and	resolution	feasibility	questions	without	involving	the	rest
of	the	core	engineering	team.

	Removes	any	duplicate	escalations.

	Validates	that	enough	data	is	supplied	with	the	escalation.

	Stack-ranks	any	incoming	escalations	on	the	Kanban	board.

	Recommends	the	release	vehicle	for	any	escalations	that	are	immediately	deemed
bugs,	such	as	a	customer	hotfix	or	general	service	pack.

	Ensures	cross-team	synchronization	on	new	escalations	as	well	as	any	escalations
currently	in	progress.

Triage	meetings	typically	take	place	twice	per	week,	but	they	may	be	held	more	or	less
frequently	depending	on	the	number	or	severity	of	incoming	escalations.	Immediately
after	a	product	is	shipped,	the	number	of	escalations	may	be	larger	as	the	support	team
learns	the	details	of	the	product	or	quality	issues	are	discovered.

Following	the	triage	meeting,	the	new	work	item	is	stack	ranked	in	the	appropriate
position	on	the	signboard.

In	the	same	way	that	your	team	might	have	a	“requirement”	or	“user	story”	work-item
type	on	either	its	physical	signboard	or	in	the	project-management	software	you	use,	I
recommend	that	you	also	have	an	“escalation”	work-item	type.	This	practice	allows	for
tracking	metrics	related	to	product	confusion	versus	actual	quality	issues.

https://en.wikipedia.org/wiki/Dominique_Jean_Larrey


	Note

At	Microsoft,	triage	is	engrained	into	the	culture.	Every	team	I	worked	on	did	triage
at	varying	frequencies,	with	as	many	as	two	triage	meetings	per	day	for	internally
discovered	issues	as	the	release	date	approached.	The	odds	are	that	you	won’t	find	a
single	person	on	a	Microsoft	engineering	team	who	does	not	have	a	clear	definition
of	what	triage	means.	I	recommend	that	you	build	the	practice	into	your	culture.

Quick-solve	meeting
The	goal	of	a	quick-solve	meeting	is	to	augment	triage	by	rapidly	reducing	the	queue	of
escalations	before	the	core	engineering	team	starts	to	work	on	them.	You	can	think	of	this
meeting	as	a	kind	of	“tier	2.5”	level	of	support.	Whereas	the	goal	of	the	triage	meeting	is
to	ensure	that	sufficient	information	is	available	for	ranking	and	addressing	an	escalation,
the	goal	of	the	quick-solve	meeting	is	to	quickly	resolve	any	escalations	that	do	not	require
code	changes.

Quick-solve	discussions	should	not	last	longer	than	five	minutes	per	item.	This
meeting’s	participants	are	similar	to	those	who	attend	the	triage	meeting,	although	it	is
recommended	that	an	additional	subject	matter	expert	(a	developer	or	QA	engineer	who	is
very	familiar	with	the	technical	and	functional	aspects	of	the	product)	be	included.	A
cadence	of	one	quick-solve	meeting	per	week	is	reasonable	to	help	prevent	distractions
later	in	the	workflow.

Implement	Kanban	SE	workflow
A	core	engineering	team	might	choose	to	track	escalations	and	bugs	on	its	overall	Kanban
board.	However,	a	Kanban	board	used	to	track	a	dedicated	sustained-engineering	team
looks	a	little	different.	The	focus	of	the	signboard	is	on	escalations	and	bugs	instead	of	on
specifying	new	product	behavior.	In	the	high-level	view	of	the	signboard	shown	in	the
following	illustration,	escalations	are	separated	from	bugs	(by	using	a	second	row)	to
reflect	that	they	are	different	work-item	types	with	a	slightly	different	workflow.	An
escalation	might	not	become	a	bug,	and	a	bug	does	not	necessarily	have	an	escalation.

Work	usually	starts	as	an	escalation	and	runs	through	the	pull	system	until	the	issue	is
determined	to	be	a	product	bug	or	has	been	answered	appropriately	and	closed.	A	product
bug	is	created	if	necessary,	in	which	case	the	item	starts	over	in	the	bugs	row.

The	workflow	described	in	the	following	sections	is	based	on	having	a	dedicated



sustained-engineering	team	in	place,	but	the	concepts	apply	regardless	of	which	model	of
ownership	you	use.

Escalations
A	typical	signboard	for	SE	escalations	looks	something	like	this:

This	signboard	also	looks	a	little	different	from	those	shown	in	previous	chapters—with
new	names	and	only	one	step—but	it	acts	just	the	same.	As	noted	in	previous	chapters,	it
is	extremely	important	to	define	when	an	item	is	ready	to	be	moved	from	one	column	to
another	(the	done	rule).

The	Escalations	backlog	is	the	stack-ranked	list	of	escalations	that	have	been	triaged,
which	is	a	prerequisite	for	inserting	an	item	in	this	list.	The	team	pulls	items	off	this	list	as
team	members	are	ready	to	begin	investigating	the	next	item	(assuming	that	the	WIP	limit
allows	for	additional	work).

The	Investigate	column	tracks	which	issues	are	actively	being	investigated.	Typical
activities	include	clarifying	the	escalation,	attempting	to	reproduce	a	problem,	and
identifying	a	suitable	workaround.	The	Investigate	done	rule,	which	completes	an
escalation,	is	“Incident-tracking	system	updated	with	investigation	results;	customer
notified;	tasks	to	avoid	future	incidents	created	(such	as	writing	a	knowledge	base	article);
and	any	resulting	product	bugs	added	to	the	second	row	of	the	signboard.”	Modify	your
own	done	rule	as	you	need	to.

Bugs/Other	Work
A	typical	signboard	for	SE	bugs	looks	something	like	this:

The	Bugs/Other	backlog	is	the	stack-ranked	list	of	bugs	to	address.	The	source	of	a	bug
is	a	previous	escalation	or	a	bug	that	was	added	directly	to	this	backlog	after	triage.	Note
the	“Other”	classification.	An	example	of	a	work	item	in	the	Other	category	is	a	small



product	improvement	(such	as	improved	logging	in	the	software)	that	would	make
sustained	engineering	more	effective.	A	second	example	is	an	operational	improvement,
such	as	a	diagnostics	tool,	that	makes	the	team	more	efficient.

The	Develop	column	reflects	the	work	a	developer	or	QA	engineer	needs	to	do	to
address	the	issue.	For	post-ship	bugs,	it	is	strongly	recommended	that	an	automated	test	be
in	place	that	validates	the	fix	before	work	is	pulled	into	the	Validate	column.	It	is	probable
that	a	test	for	the	issue	did	not	exist	before,	and	increasing	test	coverage	over	time	is	a	best
practice.

I	recommend	using	a	test-driven	development	approach	to	address	bugs.	First,	write	a
unit	test	(or	an	integration	test)	that	exercises	intended	behavior.	This	test	should	fail
because	of	the	presence	of	the	bug.	Next,	fix	the	bug,	and	then	run	the	test	again.	It	should
pass	this	time.	Finally,	refactor	as	necessary	to	clean	up	the	code	around	the	fix.	This
approach	is	not	always	feasible	with	legacy	code	that	is	not	designed	to	be	easily	tested,
but	you	should	make	a	low-risk	best	effort.	The	Develop	done	rule	is,	“All	relevant	unit
tests	pass,	including	new	unit	test(s)	that	validate	the	fix;	fixes	are	‘buddy	tested’	on	a
separate	machine	(typically	by	QA);	and	integration	tests	are	enhanced	as	appropriate	to
exercise	the	exposed	area.”

The	Validate	column	indicates	that	a	member	of	the	team—likely	a	QA	engineer—
needs	to	validate	the	acceptance	criteria	for	the	bug	by	running	a	set	of	acceptance	tests	on
an	automated	build.	(You	do	have	an	automated	build,	right?)	The	Validate	done	rule	is,
“All	acceptance	criteria	met	and	any	issues	found	are	resolved.”

A	root-cause	analysis	exercise	is	undertaken	to	determine	why	a	bug	escaped	the
defenses	of	the	core	engineering	team.	This	exercise	identifies	operational	improvements
that	could	prevent	similar	bugs	from	being	released	to	customers	in	the	future.	This
exercise	could	be	part	of	your	Develop	or	Validate	done	rule,	but	I	prefer	to	have	a
specific	step	in	the	workflow	to	make	the	practice	explicit.	Examples	of	improvements
include	a	more	rigorous	acceptance	criteria	definition,	modification	of	development
practices	such	as	code	review	or	unit	testing	procedures,	testing	in	a	staging	area	that
mirrors	production,	or	including	a	user	acceptance	test	stage	before	releasing	to	a	wider
audience.	The	act	of	practicing	continuous	improvement	is	often	called	kaizen	in	Lean	and
Agile	development	circles.

	Note

Kaizen	is	a	Japanese	term	meaning	“good	change,”	but	it	is	often	translated	as
“continuous	improvement,”	particularly	in	the	business	world.	Kaizen	involves
observing	a	problem,	ideally	with	metrics	such	as	cycle	time,	determining	the	root
cause	of	the	problem,	making	a	change	to	address	it,	monitoring	and	measuring	the
results,	and	infinitely	repeating.	Building	a	kaizen	mentality	into	your	team	culture
is	recommended	and	is	often	done	with	small	changes	on	a	daily	basis	at	both	a
personal	and	team	level.

Improvements	might	be	identified	with	a	simple	root-cause	analysis	process	such	as	the
“5	Whys”	(http://en.wikipedia.org/wiki/5_Whys)	or,	my	personal	favorite,	the	Six	Boxes

http://en.wikipedia.org/wiki/5_Whys


(http://www.sixboxes.com).	The	Six	Boxes	provide	a	root-cause	analysis	and	solution
framework	that	helps	you	look	above	and	beyond	the	obvious	symptoms	by	focusing	on
expectations	and	feedback,	tools	and	processes,	incentives,	motivation,	selection	and
assignment	(or	capacity),	and	skills	and	knowledge.	The	root-cause	analysis	done	rule	is,
“Analysis	complete	and	recommended	actions	are	inserted	back	into	the	SE	team’s
backlog	or	fed	back	to	the	core	engineering	team	for	inclusion	in	their	backlog.”

The	Waiting	section	indicates	that	completed	bugs	and	other	code-based	work	items	are
done	and	part	of	an	official	build	but	are	waiting	for	a	release	vehicle.	A	bug	may	be
released	on	its	own	or	may	be	deployed	with	a	combination	of	other	work.	When	work
items	are	live,	they	are	moved	to	the	Deployed	section.	You	might	consider	triggering	a
release	based	on	the	number	of	items	in	the	Waiting	section.

As	with	any	Kanban	implementation,	there	is	no	one	right	way	to	define	the	workflow.
The	one	presented	in	this	section	is	a	recommended	starting	point,	but	feel	free	to
customize	it	to	meet	your	process.	The	signboard	might	be	set	up	differently,	for	example,
depending	on	your	SE	ownership	model.	With	ownership	in	the	core	engineering	team,
you	might	want	to	track	all	of	the	team’s	work	in	one	place.	Additionally,	a	separate
signboard	might	be	too	much	overhead	and	you	might	choose	to	have	escalations	and
work	items	distinguished	by	the	color	of	your	note	cards	or	a	symbol	on	the	cards.

Kanban	tools
As	described	in	Chapter	2,	“Kanban	quick-start	guide,”	a	physical	signboard	is	the	best
tool	for	visualizing	workflow.	However,	a	software	tool	can	complement	the	physical
signboard	in	certain	circumstances—for	example,	when	a	team	has	a	desire	to	use	a	bug-
tracking	system,	to	facilitate	communication	across	teams,	to	meet	a	company-wide
mandate,	or	when	a	distributed	team	does	not	interact	in	person	every	day.

An	example	of	a	tool	you	can	use	for	these	purposes	is	Microsoft	Team	Foundation
Server	(TFS).	TFS	provides	a	reasonable	method	of	visualizing	a	signboard,	but	you	may
be	restricted	in	producing	an	exact	representation	of	your	physical	signboard.	Some
customizations	are	possible,	such	as	the	creation	of	an	Escalation	work	item.	Tools	such	as
JIRA	provide	similar	capabilities.

Any	tool	must	make	your	life	easier	and	more	efficient,	or	why	bother	using	it.	I
recommend	that	you	implement	Kanban	in	the	same	work-item	tracking	system	as	you	use
for	other	development	work.	For	example,	recording	bugs	in	a	defect-tracking	system
that’s	separate	from	your	other	work	would	create	inefficiencies	and	duplication.	Most
redundancy	is	evil	per	the	DRY	principle—“Don’t	Repeat	Yourself.”

Ideally,	the	customer-support	system	and	engineering	work-item	tracking	system	are
integrated	such	that	the	original	incident	and	the	escalated	work	item	can	be	tied	together.
This	lets	customer	support	see	the	state	of	the	work	item	as	the	core	engineering	team
works	on	it,	and	the	core	engineering	team	can	see	updates	made	by	the	support	team.
Why	not	use	the	same	system	for	both	customer	support	and	development?	The	needs	of
the	two	teams	are	different.

The	customer-support	system	is	more	external	facing	and	tracks	a	different	data	set	than
the	internal	system.	For	example,	an	external	system	notes	customer	contact	information,

http://www.sixboxes.com


whereas	an	internal	system	focuses	on	when	the	fix	is	deployed	and	how	it	is	tested.
Depending	on	your	various	systems,	an	integrator/plug-in	may	be	available	to	integrate	the
two.	In	the	worst	case,	most	of	these	types	of	systems	have	a	documented	API,	and	the	SE
team	could	develop	a	bridge	to	tie	them	together.	This	integration	could	be	a	fun	project
for	the	SE	team	to	take	on.

If	your	team	wants	to	use	a	physical	signboard	(recommended),	but	the	organization
mandates	tracking	work	items	in	a	software	tool,	try	to	prevent	redundancy:

1.	Print	the	contents	of	your	software-tracked	work	items	onto	physical	cards	and
attach	those	to	your	wall,	window,	or	whiteboard	for	tracking.

2.	Appoint	one	person	to	ensure	that	the	work	items	in	the	software	system	are	updated
after	the	team	does	its	daily	standup.

Troubleshooting
This	section	covers	some	common	issues	that	can	cause	trouble	using	Kanban	for
sustained	engineering.

Problem:	The	core	engineering	team	is	inundated	with	escalations	from
customer	support,	creating	an	unsustainable	backlog
Kanban	provides	an	easy	visualization	of	the	number	of	escalations	and	bugs	that	a	team
must	deal	with.	An	excessive	number	of	escalations	may	indicate	one	or	more	problems:

	The	support	team	relies	too	much	on	the	core	engineering	team.	Use	the	triage	team
to	help	shield	the	core	engineering	team	from	distractions	and	to	ensure	that	only	the
appropriate	escalations	get	through.

	Difficult	escalations	result	in	long	lead	times.	Aim	to	improve	diagnostic	tools	(such
as	tracing	and	logging)	to	help	resolve	more	technical	problems.

	Insufficient	help	or	documentation	for	customers	and	the	support	organization.	The
core	engineering	team	should	spend	a	reasonable	amount	of	time	prior	to	release
educating	stakeholders	on	new	functionality.

	Post-ship	product-quality	issues.	In	the	spirit	of	continuous	improvement,	work	with
the	core	engineering	team	to	refine	their	processes	and	improve	early	cycle	quality.

Problem:	We	are	a	new	SE	team	and	have	no	idea	what	to	set	the	WIP
limits	to
Just	start	with	something.	Discuss	as	a	team	and	agree	on	the	first	cut	at	WIP	limits.	Over
time,	adjust	the	WIP	limits	on	the	basis	of	your	experience	until	team	members	agree	that
they	have	found	reasonable	values.	Consider	holding	periodic	retrospectives	to
continuously	improve	your	team’s	practices,	and	refine	the	WIP	limits	as	part	of	those
retrospectives.	(You	can	find	more	information	about	troubleshooting	WIP	limits	in	the
“Troubleshooting”	section	in	Chapter	2.)



Problem:	The	Waiting	section	on	the	signboard	has	a	large	number	of
items
Fortunately,	you	are	using	Kanban,	so	unreleased	fixes	become	visible	quickly.	Perhaps
the	team	needs	to	consider	more	frequent	releases	in	the	form	of	higher	cadence
deployments	or	additional	downloadable	updates.	If	more	frequent	releases	involve	issues
such	as	the	absence	of	automated	deployment	steps,	prioritize	operational	improvements
to	remove	those	bottlenecks.	If	the	SE	team’s	finished	work	items	are	not	getting	to
customers	quickly,	the	great	work	that	the	SE	team	is	doing	to	keep	customers	happy	is
not	fully	realized.

Problem:	The	customer-support	team	is	continuously	querying	the	core
engineering	team	for	predicted	completion	dates	for	open	issues
The	engineering	team	should	be	as	transparent	as	possible	with	its	progress	on	open
escalations.	The	team’s	work	is	visualized	through	the	signboard,	and	all	stakeholders	are
encouraged	to	provide	input	about	the	ranking	of	work	items.	The	customer-support	team
can	pull	updates	from	the	SE	team	whenever	they	like.	Also,	by	having	a	customer-
support	representative	on	the	triage	team,	collaboration	between	support	and	development
is	frequent	and	more	effective,	giving	support	input	into	the	stack	ranking.	Knowing	that
the	SE	team	is	using	Kanban,	the	support	team	is	confident	that	issues	will	be	addressed	as
quickly	as	possible.

To	further	improve	the	predictability	of	escalation	completion	dates,	simply	measure	the
average	lead	time	of	the	work	items.	Lead	time	can	be	measured	in	various	ways,	such	as
the	duration	between	the	opening	and	closing	of	customer	support	tickets,	or	the	duration
between	the	addition	of	the	escalation	to	the	core	engineering	team’s	backlog	and	the
deployment	of	the	fix.	To	keep	things	simple,	take	a	sample	of	work	items	from	the	past
few	weeks,	compute	the	average	lead	time,	and	use	that	number	as	the	basis	for	predicting
completion	dates.	You	can	use	more	advanced	statistical	methods	by	plotting	a	histogram
of	lead-time	ranges	that	account	for	different	types	of	work	items	and	then	analyzing	the
distribution	of	those	lead	times	to	determine	more	accurate	delivery	rates.	This	type	of
analysis	is	good	input	for	a	service	level	agreement	(SLA)	to	create	a	high-confidence
contract	for	expected	escalation	and	issue-resolution	times.

Problem:	The	team	is	having	problems	planning	for	maintenance	because
it	doesn’t	know	how	many	escalations	will	come	its	way
Many	teams	struggle	with	unplanned	work.	This	is	the	primary	reason	why	Kanban	is
such	a	great	model—there	is	less	need	to	plan	for	an	iteration;	instead,	accept
unpredictability	and	stack-rank	accordingly.	Large	backlogs	of	items	might	require	you
and	others	to	set	expectations,	but	a	transparent	backlog	and	signboard	help	shed	light	on
the	capacity	and	throughput	of	the	core	engineering	team.



Problem:	A	dedicated	SE	team	is	fixing	issues	but	creating	more	bugs
with	every	fix
Legacy	code	can	be	brittle	and	lack	automated	regression	tests.	When	one	item	is	fixed,
the	risk	of	breaking	other	pieces	of	code	is	high.	To	mitigate	this	risk,	do	the	following:

	Rotate	a	developer	from	the	core	engineering	team	to	the	SE	team	to	help	transfer
technical	knowledge	to	other	team	members.

	Ask	the	core	engineering	team	to	hold	brown-bag	learning	sessions	to	help	transfer
knowledge.

	Practice	the	test-driven	development	style	for	fixing	bugs	(described	earlier),
building	up	unit	tests	over	time,	which	helps	minimize	the	risk	as	more	tests	are
added.

	Allocate	the	time	of	a	more	senior	member	of	the	core	engineering	team	to
participate	in	code	reviews	for	the	more	risky	fixes	done	by	the	SE	team.

Problem:	Developers	are	not	motivated	to	fix	bugs	in	an	SE	role	and
morale	on	the	team	is	low
Working	in	a	sustained-engineering	role	might	not	be	viewed	as	glamorous	work,	even
though	the	role	is	extremely	important	to	the	customer	satisfaction	for	any	organization.
Some	ways	to	help	include	the	following:

	Communicate	the	importance	of	the	SE	team	from	the	highest	levels	of	leadership,
along	with	the	benefits	of	having	the	greatest	impact	on	customer	satisfaction	and
customer	retention.

	Start	new	hires	on	the	SE	team,	which	helps	keep	motivation	and	morale	high.

	Document	the	overall	contribution	of	the	team	to	the	business.	The	Kanban	board
makes	visibility	easier.	The	SE	team	gets	to	know	customers	better	than	the	core
engineering	team	because	of	its	relationship	with	customer	support.

	Market	the	team	as	a	fantastic	way	to	get	to	know	both	the	product	and	the
customers.	Learning	the	breadth	of	a	product	or	product	portfolio	is	very	beneficial
(and	challenging)	for	any	developer.

	Give	the	team	a	fun	name	and	pose	challenges	to	decrease	lead	time	and	cycle	time
for	SE	issues.	For	example,	a	team	I	worked	with	named	itself	after	noble	gases
(Argon,	for	example)	because	of	the	team’s	ability	to	keep	calm	under	pressure	from
customers.

	Create	a	vision	and	mission	that	the	team	can	rally	behind.

	Include	fun	projects	on	the	backlog,	particularly	when	the	volume	of	escalations	and
bugs	is	low.	This	allows	for	operational	improvements	that	do	not	affect	just	the	SE
team’s	work	but	also	help	improve	the	core	engineering	team.	The	core	engineering
team	will	love	the	SE	team	for	this	work,	and	the	relationship	will	flourish.

	Add	small	feature	requests	to	the	SE	backlog	if	they	add	functionality	to	the	product



in	a	somewhat	isolated	way,	such	as	through	a	plug-in	model.

	Note

At	Microsoft,	the	Windows	customer	experience	team	(also	known	as	“Windows
sustained	engineering”)	has	started	to	task	developers	not	only	with	fixing	critical
issues,	but	with	adding	small	features	that,	in	particular,	enhance	the	usability	of	the
operating	system—for	example,	making	it	easier	to	turn	on	and	off	specific
functionality	that	was	otherwise	very	difficult	to	find	buried	in	the	system	settings.

Problem:	Some	of	the	team	members	tune	out	in	the	daily	standup
because	they	are	not	all	working	on	the	same	product
An	organization	with	a	portfolio	of	products	has	to	support	them	all.	It	may	be	less
effective	to	have	an	SE	team	consisting	of	developers	working	on	different	products,
unless	each	developer	works	on	them	all.	Instead,	consider	segmenting	the	larger	SE	team
into	smaller	ones,	each	with	its	own	Kanban	board.

Checklist
Here’s	a	checklist	of	actions	to	take	when	your	team	uses	Kanban	for	sustained
engineering	(SE):

	Establish	a	common	vocabulary	so	that	terms	such	as	“escalation”	and	“incident”
are	used	consistently.

	Define	and	document	the	roles	and	responsibilities	of	customer	support,	product
management,	and	the	core	engineering	team	for	effective	collaboration.

	Determine	SE	ownership,	using	either	a	dedicated	SE	team,	a	dedicated	SE	person
on	the	core	engineering	team,	or	by	having	the	core	engineering	team	stack-rank
escalations	with	its	other	work	(work	unrelated	to	sustained	engineering).

	Define	support	tiers	to	clarify	the	escalation	workflow	and	collaboration	between	the
support	team,	the	SE	team,	and	the	core	engineering	team.

	Triage	incoming	escalations	to	minimize	distractions	for	the	SE	engineers	so	that
they	work	on	only	the	issues	that	matter.

	Use	quick-solve	meetings	to	rapidly	reduce	the	queue	of	escalations	that	do	not
require	code	changes.

	Implement	a	SE	workflow	using	Kanban.	Track	escalations	in	the	top	half	of	the
signboard	and	bugs	and	other	code	work	in	the	lower	half	of	the	signboard.

	Clearly	define	your	done	rules	for	the	Kanban	workflow.

	Practice	kaizen	(continuous	improvement)	by	doing	root-cause	analysis	when	bugs
are	fixed	to	prevent	similar	errors	in	the	future.

	Use	work-item	management	tools	where	necessary,	but	give	preference	to	a	physical
signboard.	Tools	that	integrate	the	customer-support	system	and	engineering	work-



item	tracking	systems	can	help.



Chapter	9.	Further	resources	and	beyond

Previous	chapters	have	introduced	you	to	Kanban.	You	can	plan	and	hit	deadlines	with
Kanban.	You	can	use	Kanban	to	adapt	from	traditional	Waterfall	or	evolve	from	Scrum.
You	can	continuously	integrate	and	push	components,	continuously	publish	apps	and
content,	and	continuously	deploy	services.	You	can	even	use	Kanban	within	large	projects
and	organizations	and	for	sustained	engineering.

Once	you’ve	gotten	a	real	sense	of	Kanban,	a	few	questions	may	occur	to	you:

	Can	I	use	Kanban	for	everything	I	do?

	What	practices	are	and	aren’t	compatible	with	Kanban?

	Why	does	Kanban	work	so	well?

	How	can	I	improve	beyond	Kanban?

This	chapter	provides	an	overview	of	further	resources	to	expand	your	use	and
understanding	of	Kanban	and	to	help	you	go	beyond	Kanban	to	improve	your	business
and	life.

The	topics	covered	are:

Expanding	Kanban	to	new	areas	of	business	and	life

Mixing	Agile	and	Lean	with	Kanban

Why	Kanban	works

Improving	beyond	Kanban

Checklist

Expanding	Kanban	to	new	areas	of	business	and	life
Can	you	use	Kanban	for	everything	you	do?	Kanban	can	be	useful	for	a	broad	range	of
activities	in	your	business	and	personal	life.	The	primary	requirement	is	that	the	work
have	a	start	and	an	end.	You	can	use	Kanban	for	teams	as	large	as	the	room	having	your
signboard	will	hold	or	just	by	yourself.

I’ll	start	with	business	applications	and	end	with	personal	Kanban.

Scaling	Kanban	up,	down,	and	out
You	can	scale	Kanban	up	to	work	with	as	many	people	as	can	fit	in	a	room	to	view	the
signboard	during	daily	standup.	At	a	practical	level,	that’s	less	than	100	people.	Kanban
scales	up	well	because	individuals	can	move	their	own	cards	at	any	time,	not	everyone
needs	to	speak	at	the	daily	standup	meetings	(only	those	with	blocking	issues),	and
Kanban’s	flow	fits	nicely	with	today’s	service-oriented	architectures.	If	you	use	a	virtual
signboard	online,	you	can	include	even	more	people	in	the	daily	standup,	but	the	number
and	variety	of	note	cards	on	the	signboard	will	eventually	become	unmanageable.	When
your	signboard	becomes	unwieldy,	or	your	architecture	dictates	a	significant	refactoring,
it’s	time	to	split	up	the	team.



See	also

Anderson,	David	J.	Kanban.	Sequim,	WA:	Blue	Hole	Press,	2010.

As	you	apply	Kanban	to	manage	larger	teams,	you’ll	likely	encounter	a	wider	variety	of
work	and	types	of	work	items.	Each	type	of	work	item	might	have	a	different	set	of	steps
to	complete	it.	You	can	see	a	small	example	of	this	in	Chapter	8,	“Sustained	engineering,”
where	the	signboard	has	two	swim	lanes	(also	sometimes	called	“pipelines”):	one	for
escalations	and	one	for	bugs.	Each	swim	lane	has	its	own	steps	with	their	own	WIP	limits
and	done	rules.	The	swim	lanes	appear	on	the	same	board,	stacked	on	top	of	each	other,	as
shown	in	Chapter	8.	Some	boards	might	display	five	or	six	different	swim	lanes.	In	the
Kanban	quick-start	guide	(Chapter	2),	I	keep	things	simple	by	having	different	work-item
types	share	the	same	steps	within	a	single	swim	lane.	However,	with	larger	teams	and	a
wide	variety	of	work,	separate	swim	lanes	may	be	necessary	to	properly	track	work
variation.

See	also

Ladas,	Corey.	Scrumban:	Essays	on	Kanban	Systems	for	Lean	Software
Development.	Modus	Cooperandi,	2009.

Adding	swim	lanes	to	your	signboard	expands	it	down,	but	you	can	also	expand	Kanban
out—upstream	and	downstream	in	your	workflow.	Most	of	the	signboard	examples	shown
in	this	book	have	three	steps:	Specify,	Implement,	and	Validate.	However,	your	signboard
can	reflect	the	unique	steps	in	your	product	development,	including	the	steps	prior	to
specification	and	the	steps	following	validation.	In	other	words,	you	can	have	a	single
Kanban	board	for	your	product	from	end	to	end.

I	cover	many	of	the	steps	following	validation	in	Chapter	6,	“Deploying	components,
apps,	and	services,”	but	I	assume	that	those	steps	are	happening	outside	your	small	team,
so	your	signboard	only	needs	to	track	them.	If	your	team	is	responsible	for	its	own
deployments,	you	can	add	the	deployment	steps	to	your	signboard	with	appropriate	WIP
limits	and	done	rules.

My	favorite	steps	that	start	prior	to	specification	are	from	Scenario-Focused
Engineering	(SFE).	Here’s	what	an	SFE	signboard	might	look	like:

	The	Backlog	column	contains	high-level	initiatives,	each	of	which	is	a	desired
outcome	for	a	target	customer	segment,	such	as	“Immersive	holographic
environment	for	gamers”	(a	fictitious	example).



	The	Observe	step	takes	a	high-level	initiative	and	observes	the	target	customers,
capturing	everything	about	who	they	are,	what	they	do,	how	they	act,	and	why	they
care.	The	Observe	done	rule	might	be,	“Captured	mix	of	quantitative,	qualitative,
seeing,	and	doing	customer	data,	and	documented	insights	from	that	data.”

	The	Frame	step	takes	customer	data	and	insights	and	uses	them	to	frame	a	series	of
success	metrics	and	SPICIER	scenarios.	(SPICIER	stands	for	“tells	a	customer
Story,”	“includes	Personal	details,”	“is	Implementation-free,”	“told	in	the
Customer’s	voice,”	“reveals	deep	Insight	about	customer	needs,”	“includes	Emotion
and	Environment,”	and	“is	based	on	Research.”)	The	Frame	done	rule	might	be,
“Produced	a	prioritized	collection	of	SPICIER	scenarios	with	associated	success
metrics.”

	The	Brainstorm	step	takes	a	scenario	and	brainstorms	all	the	different	ways	it	could
be	brought	to	life.	The	choices	that	best	fulfill	the	scenario	and	meet	the
requirements	are	considered	for	prototyping.	The	Brainstorm	done	rule	might	be,
“Generated	a	dozen	or	more	alternatives,	and	settled	on	three	to	five	promising
designs.”

	The	Prototype	step	takes	a	design	and	rapidly	conjures	a	prototype	sufficient	for
customer	feedback.	That	prototype	could	be	a	paper	model,	a	PowerPoint	animation,
or	a	simple	code	change	that	can	be	the	subject	of	A/B	testing.	The	expectation	is
that	your	first	guess	won’t	be	quite	right,	so	you	want	to	spend	just	a	few	days	on
two	or	three	variations	and	then	get	customer	feedback.	The	Prototype	done	rule
might	be,	“Captured	customer	feedback	on	one	or	more	related	prototypes.”
Conceptually,	note	cards	from	prototyping	might	move	back	to	the	Brainstorm
column	or	earlier	if	customer	feedback	indicates	that	more	design	work	is	needed.
(In	practice,	you	typically	create	new	cards	with	a	slightly	different	focus.)

	The	Breakdown	step	is	basically	the	Specify	step	from	the	Kanban	quick-start	guide
(Chapter	2),	but	here	much	of	the	specification	is	already	provided	by	the	previously
created	scenarios,	designs,	prototypes,	and	customer	feedback.	The	Breakdown	done
rule	might	be,	“All	items	broken	down	to	less	than	a	week	of	work	each,	with
specification	materials	available.”

	The	remaining	Implement	and	Validate	steps	are	as	described	in	the	Kanban	quick-
start	guide.	You	could	also	add	on	sections	at	the	end	to	track	deployments	as
described	in	Chapter	6.	Once	your	product	or	service	is	deployed,	you	can	get	more
customer	feedback	on	working	code,	which	is	then	fed	back	in	for	observation,
framing,	and	brainstorming	new	ideas.

Scenario-Focused	Engineering	relies	heavily	on	iteration	and	customer	feedback	to
adjust	designs,	prototype	new	ideas,	and	hone	in	on	the	optimal	design.	Kanban’s
continuous	delivery	and	continuous	customer	feedback	is	ideally	suited	for	SFE.

See	also

De	Bonte,	Austina,	and	Drew	Fletcher.	Scenario-Focused	Engineering:	A	Toolbox
for	Innovation	and	Customer-Centricity.	Redmond,	WA:	Microsoft	Press,	2014.



Personal	Kanban
Many	personal	projects	have	a	start	and	an	end,	including	home	maintenance,	school
assignments,	and	blog	entries.	If	you	find	yourself	needing	a	little	more	structure	to	stay
focused	and	complete	these	personal	tasks,	consider	Personal	Kanban.

In	its	simplest	form,	Personal	Kanban	consists	of	a	small	corkboard	or	whiteboard	at
home,	placed	where	you’ll	see	it	(like	in	your	kitchen).	The	signboard	lists	your	backlog
and	has	a	single	step	called	“Doing,”	as	shown	here:

You	write	items	you	need	to	do	on	sticky	notes	or	note	cards	and	place	them	in	your
backlog.	You	set	a	limit	for	how	many	items	should	be	in	progress	at	once,	which	becomes
your	WIP	limit	for	the	Doing	step.	In	the	example,	I	set	the	limit	to	three,	which	is	enough
to	keep	me	busy,	but	not	so	many	that	I	lose	focus.	When	you	finish	an	item,	you	move	it
from	the	left	column	of	Doing	to	the	right	column,	Done.	This	frees	up	a	spot	under
Doing,	as	shown	in	the	example.	You	can	then	pull	the	next	item	from	your	backlog	and
begin	doing	it.

With	Personal	Kanban,	your	daily	standup	meeting	is	just	you—there’s	no	project
manager	or	analyst	to	help	you	order	your	backlog	or	manage	your	workflow.	Large
backlogs	of	items	can	seem	overwhelming	and	unwieldy.	To	reduce	the	“existential
overhead,”	it’s	helpful	to	add	a	Next	column	to	your	backlog.	That	way,	you	always	know
what’s	next	and	can	replenish	the	Next	column	from	the	backlog	as	needed.

Personal	Kanban	keeps	your	to-do	list	organized	and	tracked	in	a	simple	way.	It	limits
how	much	you’re	doing	at	once,	which	keeps	you	focused.	It	also	makes	your	work
clearly	visible	to	others	and	offers	that	satisfying	feeling	of	moving	items	to	the	Done
column.	There	are	even	Personal	Kanban	apps	for	many	devices.

If	you	want	to	be	more	sophisticated,	you	can	introduce	more	steps,	separate	swim	lanes
and	steps	for	different	types	of	tasks,	and	done	rules	for	steps.	You	can	also	keep	it	simple
with	just	the	Doing	step.	It’s	your	personal	signboard	to	help	you	remain	efficient	and
productive.

See	also

Benson,	Jim,	and	Tonianne	DeMaria	Barry.	Personal	Kanban:	Mapping	Work	|
Navigating	Life.	Seattle:	CreateSpace	Independent	Publishing	Platform,	2011.



Mixing	Agile	and	Lean	with	Kanban
What	practices	are	and	aren’t	compatible	with	Kanban?	Since	Kanban	is	a	method	to
manage	workflow,	any	of	the	practices	that	can	be	thought	of	as	steps	in	your	workflow	or
as	conditions	of	completing	steps	in	your	workflow	fit	nicely	with	Kanban.	Practices	that
exist	outside	a	workflow,	such	as	the	ad	hoc	answering	of	email	or	freeform	meetings,	can
be	adapted	to	Kanban	by	creating	an	email	or	meeting	workflow,	but	it’s	excessive	to
force	workflows	on	everything.

Kanban	is	one	of	a	collection	of	Agile	and	Lean	practices.	Many	of	these	practices	can
be	used	in	combination	with	one	another	and	with	Kanban.	I’ve	mentioned	a	few	already,
like	cross-functional	teams,	continuous	integration,	iterative	development,	backlogs,	and
planning	poker.

Here	are	several	other	well-known	practices,	with	a	brief	discussion	of	how	your	team
can	incorporate	them	into	Kanban:

	Test-driven	development	(TDD)	TDD	is	the	practice	of	writing	unit	tests	for	code
changes	before	changing	the	actual	code	(as	mentioned	in	Chapter	8).	The	tests	fail
initially	until	the	code	is	written	to	make	them	pass.	Making	tests	pass	provides
positive	reinforcement	for	unit	testing.	(In	contrast,	writing	code	and	then	writing
unit	tests	that	fail	negatively	reinforces	unit	testing.)	In	addition,	code	written	using
TDD	is	testable	by	design	and	implements	only	what’s	tested,	so	it	tends	to	have
high	coherence	and	loose	coupling	and	does	the	minimum	necessary	to	meet
requirements—all	attributes	of	well-designed	code.

You	can	leave	the	use	of	TDD	up	to	team	members	if	you	want	to	(relying	on
healthy	peer	pressure).	If	you	prefer	to	ingrain	TDD	into	your	Kanban	workflow,
you	could	call	the	Implement	step	“TDD”	or	make	the	Implement	done	rule
something	like,	“Code	is	developed	using	TDD	and	reviewed,	the	static	analysis	is
clean,	the	code	is	checked	in,	and	the	customer-facing	documentation	is	complete.”
(You	could	also	have	steps	named	“Write	a	unit	test”	and	“Make	it	pass”	on	your
Kanban	board,	but	that’s	probably	too	fine	grained	because	each	note	card	would	be
a	single	unit	test	or	small	set	of	tests.)

See	also

Beck,	Kent.	Test-Driven	Development	by	Example.	Boston:	Addison-Wesley,	2003.

	Refactoring	Refactoring	is	the	practice	of	restructuring	code	without	changing	its
external	behavior	(unit	tests	still	pass).	When	a	function	or	class	needs	to	enhance	or
alter	its	responsibilities,	you	can	make	the	class	or	function	bigger	and	more
complex,	or	you	can	refactor	it	(break	it	up	in	one	of	a	variety	of	ways)	and	then	add
the	new	responsibilities	while	maintaining	the	coherence	of	each	piece.	Refactoring
leaves	code	easier	to	test,	enhance,	and	maintain.	It	does	require	excellent	unit
testing	in	advance	to	ensure	that	the	external	behavior	after	the	refactoring	is
unchanged	(no	bugs	were	introduced).	Refactoring	is	an	intrinsic	part	of	TDD
because	you	often	need	to	refactor	the	code	after	writing	a	new	test.

You	could	add	a	Refactor	step	prior	to	Implement,	but	since	refactoring	often



happens	multiple	times	during	implementation,	a	better	choice	might	be	to	alter	the
Implement	done	rule	to	be,	“Code	is	written	[using	TDD],	unit	tested,	refactored	as
needed,	and	reviewed;	the	static	analysis	is	clean;	the	code	is	checked	in;	and	the
customer-facing	documentation	is	complete.”

See	also

Fowler,	Martin,	et	al.	Refactoring:	Improving	the	Design	of	Existing	Code.
Reading,	MA:	Addison-Wesley,	1999.

	Acceptance	test-driven	development	(ATDD)	ATDD	is	the	practice	of	writing
acceptance	tests	for	new	functionality	before	writing	the	actual	functionality.	It’s
similar	to	TDD,	except	it’s	done	at	a	higher	abstraction	level.	In	addition	to	ensuring
that	you	have	a	broad	set	of	acceptance	tests,	ATDD	drives	clarity	in	your	scenario,
story,	and	feature	specifications.	After	all,	it’s	hard	to	write	acceptance	tests	without
clear	acceptance	criteria.

ATDD	fits	well	as	an	additional	step	on	your	Kanban	board.	You	might	name	the
steps	after	Backlog	as	“Write	Acceptance	Test,”	“Breakdown,”	“Implement,”	and
“Validate.”	The	“Write	Acceptance	Test”	done	rule	might	be,	“Acceptance	test(s)
written,	with	all	success	criteria	clearly	specified.”	The	Breakdown	step	is	basically
the	Specify	step	from	the	Kanban	quick-start	guide	(Chapter	2),	but	with	much	of
the	specification	already	provided	by	the	acceptance	test	or	tests.	The	Breakdown
done	rule	might	be,	“All	items	broken	down	to	less	than	a	week	of	work	each.”

See	also

Pugh,	Ken.	Lean-Agile	Acceptance	Test-Driven	Development:	Better	Software
Through	Collaboration.	Upper	Saddle	River,	NJ:	Addison-Wesley,	2011.

	Behavior-driven	development	(BDD)	BDD	is	an	approach	to	TDD	and	ATDD	that
focuses	the	tests	you	write	on	expected	behavior	of	the	unit	and	system.	BDD
specifies	product	behavior	in	a	way	that	can	be	easily	and	clearly	verified,	often
employing	specific	language	to	describe	tests	and	the	validation	of	those	tests.

BDD	would	alter	the	Kanban	done	rules	you	use.	If	you	use	ATDD,	the	“Write
Acceptance	Test”	done	rule	might	be,	“Acceptance	test(s)	written	using	BDD	and
obeying	BDD	syntax.”	If	you	use	TDD,	the	Implement	done	rule	might	be,	“Code	is
developed	using	TDD	with	BDD	naming	and	validation,	it’s	reviewed,	the	static
analysis	is	clean,	the	code	is	checked	in,	and	the	customer-facing	documentation	is
complete.”

See	also

Chelimsky,	David,	et	al.	The	RSpec	Book:	Behaviour-Driven	Development	with
RSpec,	Cucumber,	and	Friends.	Lewisville,	TX:	Pragmatic	Bookshelf,	2010.

	Pair	programming	Pair	programming	is	the	practice	of	two	people	writing	code
together.	One	person,	the	observer,	reviews	the	code	and	design	as	the	other	person,



the	driver,	types	at	the	keyboard.	The	driver	and	observer	switch	roles	several	times
a	day	to	keep	each	person	fresh,	relieve	monotony,	and	maintain	a	peer	relationship.
Pair	programming	keeps	individuals	engaged,	ensures	that	every	line	is	reviewed,
and	drives	thoughtful	conversations	about	design	and	implementation	choices.	In
addition	to	driving	focus	and	code	quality,	pair	programming	is	also	great	for
information	sharing	across	a	team,	across	disciplines,	and	with	new	or	inexperienced
team	members.

You	can	leave	the	use	of	pair	programming	up	to	team	members	if	you	want	to
(relying	on	healthy	peer	pressure).	If	you	prefer	to	ingrain	pair	programming	into
your	Kanban	workflow,	you	could	call	your	Implement	step	“Pair	program”	on	your
signboard.	In	addition	or	instead,	you	might	make	your	Implement	done	rule,	“Code
is	pair	programmed,	the	static	analysis	is	clean,	the	code	is	checked	in,	and	the
customer-facing	documentation	is	complete.”

See	also

Williams,	Laurie,	and	Robert	Kessler.	Pair	Programming	Illuminated.	Reading,	MA:
Addison-Wesley,	2002.

	DevOps	DevOps	is	the	practice	of	developers	collaborating	closely	with	service
operators	to	create	and	maintain	software	services	together.	When	a	service	is	being
designed,	service	operators	directly	contribute.	When	there	is	a	serious	production
issue,	the	developer	(or	developers)	who	wrote	the	service	that’s	affected	are	directly
engaged.	DevOps	is	often	tied	to	testing	in	production	(TIP)	and	continuous
deployment.

DevOps	can	be	incorporated	into	Kanban	as	described	earlier	in	the	“Continuous
deployment”	section	in	Chapter	6.	In	addition,	the	Validate	step	may	be	performed
by	developers	instead	of	by	testers.	For	a	DevOps	team,	the	example	of	the	Validate
done	rule	from	the	Kanban	quick-start	guide	(Chapter	2)	is	particularly	pertinent:
“The	work	is	deployed	to	production	and	tried	by	a	significant	subset	of	real
customers.	All	issues	found	are	resolved.”

See	also

Humble,	Jez,	and	David	Farley.	Continuous	Delivery:	Reliable	Software	Releases
Through	Build,	Test,	and	Deployment	Automation.	Upper	Saddle	River,	NJ:
Addison-Wesley,	2010.

All	of	my	current	and	past	Xbox	teams	use	DevOps.	Many	of	my	teams	use	TDD	and
refactoring,	and	some	have	used	pair	programming.	All	of	the	methods	listed	here	are
valuable	and	can	fit	well	on	your	Kanban	board.

Why	Kanban	works
Why	does	Kanban	work	so	well?	It’s	a	combination	of	visualization,	minimalism,	Little’s
Law,	single-piece	flow,	the	theory	of	constraints,	and	drum-buffer-rope.	That’s	a	fair
number	of	concepts,	so	let’s	take	them	up	one	at	a	time.



	Visualization	is	central	to	Kanban.	Everyone	can	see	the	signboard,	the	steps,	the
done	rules,	and	the	work	(in	the	form	of	note	cards)	at	all	times.	Visualization
provides	transparency	and	easy	assessment	of	status,	but	more	importantly,	it
provides	real-time	feedback	on	the	health	of	your	workflow.	Other	project-
management	approaches	might	hide	workflow	issues	until	they	are	bad	enough	to
become	self-evident.	Kanban	visualization	brings	workflow	issues	front	and	center,
making	them	immediately	apparent	to	everyone	on	the	team.

	Minimalism	was	key	to	the	design	of	Kanban.	Kanban	allows	teams	to	keep	their
existing	workflow	processes,	roles,	responsibilities,	and	titles.	Only	minimal
adjustments	are	necessary	to	adapt	Kanban	to	whatever	approach	your	team	prefers
yet	still	enjoy	Kanban’s	substantial	productivity	and	quality	improvements.	This
makes	Kanban	easy	to	use	and	quick	to	appreciate.

	Little’s	Law,	a	rigorously	proven	statement	from	queuing	theory,	says	that	the	work
in	progress	(WIP)	in	a	system	is	equal	to	the	average	system	throughput	multiplied
by	the	system	response	time.	Intuitively,	the	number	of	items	you	finish	in	a	day
times	the	number	of	days	it	takes	to	respond	to	a	new	item	should	be	the	number	of
items	started	but	not	finished.

For	software	development,	the	system	is	the	team,	its	tools,	and	its	processes.	That
team	wants	to	minimize	its	response	time	in	order	to	be	competitive	in	today’s
technology	marketplace	(that’s	being	agile).	Little’s	Law	says	response	time	equals
WIP	divided	by	throughput.	Therefore,	to	minimize	response	time,	you’ve	got	to
reduce	WIP	and	increase	throughput.	Kanban	reduces	WIP	with	its	WIP	limits	and
increases	throughput	by	visualizing	work	(exposing	workflow	issues),	enforcing
done	rules	(which	increases	quality	and	reduces	rework),	and	tuning	WIP	limits	to
maximize	flow.

See	also

Reinertsen,	Donald.	Managing	the	Design	Factory:	A	Product	Developer’s	Toolkit.
New	York:	Free	Press,	1997.

Visualization,	minimalism,	and	Little’s	Law	explain	why	Kanban	works	so	well	at	a
high	level,	but	tuning	WIP	limits	to	maximize	flow	is	worth	explaining	in	more	detail.
That’s	where	single-piece	flow,	the	theory	of	constraints,	and	drum-buffer-rope	help
determine	the	right	limits.

Single-piece	flow
I’ll	start	with	an	important	theoretical	statement:	the	ideal	WIP	limit	is	one	item,	also
known	as	single-piece	flow	or	one-piece	flow.	That’s	the	smallest	WIP	you	can	have,	and
thus	it	leads	to	the	fastest-possible	response	time	for	a	given	system	throughput.	(Zero
WIP	would	mean	no	work	was	being	done,	and	fractional	WIP	would	mean	no	item	was
entirely	completed.)

While	single-piece	flow	is	the	theoretical	ideal,	it’s	rarely	achieved	in	practice.	Work
varies	in	size.	Work	also	varies	in	complexity	by	step—some	work	is	hardest	to	specify,



some	hardest	to	implement,	and	some	hardest	to	validate.	That	variation	causes	flow
issues	and	can	leave	people	idle.	Sometimes	having	people	be	idle	is	good—they	can	help
out	folks	who	are	struggling	instead	of	piling	on	more	work.	However,	switching	jobs	all
the	time	is	taxing	and	not	always	helpful.	In	addition,	with	a	little	buffer,	the	variation	can
balance	out,	keeping	everyone	productive	a	larger	portion	of	the	time	(higher	throughput).
The	trick	is	to	make	your	WIP	limits	as	small	as	you	can,	but	not	so	small	that	there’s	no
buffer.	To	find	the	right	balance,	it’s	helpful	to	understand	the	theory	of	constraints.

See	also

Crenshaw,	Dave.	The	Myth	of	Multitasking:	How	“Doing	It	All”	Gets	Nothing
Done.	San	Francisco:	Jossey-Bass,	2008.

Theory	of	constraints	(TOC)
How	do	you	set	your	WIP	limits	to	be	as	small	as	possible	yet	keep	everyone	productive
most	of	the	time?	Consider	a	workflow	in	which	all	the	steps	take	a	day,	except	for	one
step,	which	always	takes	a	week	(one	person	assigned	to	each	step).	The	fastest
throughput	you	can	achieve	in	this	workflow	is	one	item	per	week.	The	longest	step	is	a
constraint	on	your	throughput.

	Note

In	practice,	the	longest	step	can	vary	by	work	item,	but	it	helps	to	think	through	this
simple	example	first.

Even	though	the	quick	steps	can	produce	five	items	per	week	(assuming	a	five-day
workweek),	the	overall	throughput	remains	one	item	per	week	(see	the	following	note).	If
allowed	to,	the	quick	steps	would	just	build	up	an	inventory	of	incomplete	work,	raising
your	WIP	and	thus	slowing	your	response	time.	(The	weeklong	step	would	have	to
complete	the	large	inventory	of	pending	work	before	getting	to	a	new	item,	unless	you
threw	away	all	the	inventory—bad	choices.)

	Note

The	quick	steps	might	keep	your	cycle	time	short,	but	they	don’t	impact	your
throughput.	Cycle	time	is	how	long	it	takes	for	one	item	to	pass	through	all	its
steps.	However,	your	team	handles	more	than	one	item	at	a	time.	What	matters	here
is	your	throughput:	that	is,	how	many	items	your	team	delivers	each	day.	If	your
longest	step	always	takes	a	week,	your	throughput	is	always	one	item	per	week.

The	idea	that	the	longest	step	acts	as	a	constraint	on	your	throughput	is	from	the	theory
of	constraints	(TOC).	This	theory	states	that	the	way	to	improve	throughput	is	to	speed	up
the	longest	step,	also	known	as	“elevating	the	constraint.”	There	are	several	ways	to
elevate	a	constraint:

	Perform	the	longest	step	in	parallel	In	my	example,	say	you	assigned	five	people



to	the	weeklong	step	to	match	the	throughput	of	the	other	steps.	Now	you	can	finish
five	items	per	week	(five	times	the	throughput).	However,	the	number	of	items	in
progress	for	the	long	step	would	go	from	one	to	five	(five	times	the	WIP).	If	you	had
two	other	steps,	each	with	WIP	limits	of	one,	you’d	go	from	a	response	time	of	3
weeks	(3	items	/	1	item	per	week)	to	a	response	time	of	1.4	weeks	(7	items	/	5	items
per	week).	It’s	better,	but	not	five	times	better.

Adding	more	than	five	people	to	the	weeklong	step	would	force	you	to	add	more
folks	to	the	other	steps	to	keep	pace,	increasing	your	WIP	and	prolonging	your
response	time	(see	Figure	9-1).	The	1.4-week	response	time	is	the	best	you	can
theoretically	achieve,	regardless	of	the	number	of	people	you	add.	It	gets	the	best
response	time	because	the	throughput	of	all	the	steps	match	(ideal	utilization).

FIGURE	9-1	Response	time	chart	showing	time	in	weeks	versus	people	assigned	to	the
weeklong	step.

	Break	down	your	longest	step	into	smaller	steps	Say	you	break	down	the
weeklong	step	into	five	one-day	steps	(assuming	a	five-day	workweek).	Your
throughput	goes	from	one	item	per	week	to	one	item	per	day,	but	your	WIP	for	the
long	step	goes	from	one	to	five.	As	before,	if	you	assume	two	other	steps,	the
response	time	of	3	weeks	would	drop	to	1.4	weeks	(7	items	/	1	item	per	day	/	5	days
per	week).	It’s	definitely	better,	but	this	approach	involves	more	people	and
coordination	(though	Kanban	makes	that	coordination	easier).

	Change	how	you	do	the	longest	step	to	make	it	faster	This	approach	is	the	most
effective	and	has	the	greatest	impact	so	long	as	you	still	achieve	the	quality	bar	set
by	the	step’s	done	rule.	You	can	speed	up	a	step	through	automation,	simplification,
and	thoughtful	redesign.	Perhaps	you’re	overengineering	in	places.	Perhaps	folks
spend	extra	time	searching	for	information,	waiting	for	builds,	or	being	blocked	by
partners.	Anything	you	can	do	to	make	the	longest	step	faster	per	person	will
increase	your	throughput	without	increasing	your	WIP,	and	thus	directly	improve



your	response	time.	In	other	words,	investing	in	productivity	improvements	(such	as
fast	build,	testing,	and	deployment)	can	make	a	big	difference.

TOC	provides	insight	into	how	you	can	improve	throughput,	but	it’s	a	particular
application	of	TOC,	called	“drum-buffer-rope,”	that	solidifies	how	to	balance	WIP	limits.

See	also

Goldratt,	Eliyahu	M.	and	Jeff	Cox.	The	Goal:	A	Process	of	Ongoing	Improvement.
3rd	revised	edition.	Great	Barrington,	MA:	North	River	Press,	2004.

Drum-buffer-rope
Regardless	of	the	way	you	choose	to	elevate	your	constraint	(your	longest	step),	you	never
want	your	longest	step	to	take	even	longer.	Some	variation	in	your	longest	step	is	out	of
your	control,	but	you	can	control	some	of	it.	In	particular,	there	are	two	mistakes	people
make	that	you	can	avoid:

	Don’t	deprive	the	longest	step	of	work	Since	your	throughput	depends	entirely	on
your	longest	step,	depriving	it	of	work	slows	everything	down.	The	longest	step
should	never	have	to	wait.

	Don’t	pressure	the	longest	step	to	be	faster	Actually	making	the	longest	step
faster	is	great	(you’re	elevating	the	constraint),	but	pressuring	people	to	work	faster
generally	leads	to	shortcuts,	quality	issues,	and	rework.	All	that	rework	reduces
throughput	and	increases	WIP—the	opposite	of	your	goal.	(The	moral	is:	respect
your	done	rules.)

Drum-buffer-rope	is	an	application	of	TOC	that	avoids	both	of	these	mistakes	and
ensures	that	the	pace	of	all	the	steps	match	to	achieve	the	best	response	time.	As	its	name
signifies,	it	has	three	key	concepts:

	Drum	The	drum	is	the	step	that	takes	the	longest	(the	constraint).	You	need	every
other	step	to	match	the	pace	of	the	drum	to	ensure	that	the	drum	is	always	beating,
never	overwhelmed,	and	all	steps	are	fully	utilized.

	Buffer	The	buffer	holds	extra	work	items	for	when	the	drum	varies	its	pace.	You
can’t	avoid	variation,	particularly	in	product	development.	Having	a	buffer	ensures
that	your	drum	is	always	beating.

	Rope	The	rope	limits	the	shorter	steps	to	produce	at	the	average	pace	of	the	drum
(the	longest	step).	Having	a	rope	ensures	that	your	drum	is	never	overwhelmed	and
that	all	steps	are	fully	utilized.



An	adorable	drum

David	Anderson	provided	a	memorable	example	of	a	simple	drum-buffer-rope
system	in	his	blog.	When	David	would	walk	his	dog,	his	young	daughter	liked	to
join	him.	David’s	dog	was	bigger	than	his	daughter	and	the	fastest	of	the	three	of
them.	No	matter	what	David	or	the	dog	did,	the	length	of	the	walk	was	determined
by	David’s	daughter—she	was	the	constraint.

David	used	a	tether	to	keep	track	of	his	daughter	when	he	needed	to	collect	his
dog’s	output.	The	tether	had	enough	slack	so	that	his	daughter	wasn’t	slowed	down.
David	used	a	leash	to	keep	the	dog	in	check	so	that	he	and	the	dog	kept	close	to	his
daughter	(letting	the	dog	loose	would	invite	chaos).	David’s	daughter	was	the	drum,
the	tether	was	the	buffer,	and	the	leash	was	the	rope.	As	long	as	David	and	his	dog
kept	to	his	daughter’s	pace,	with	a	little	buffer	to	handle	variation,	the	walk	would
be	delightful.

Applying	drum-buffer-rope	to	Kanban	is	a	bit	imperfect	because	work	varies	in
complexity	by	step	(the	same	step	isn’t	always	the	longest).	However,	one	step	is	typically
longest	on	average,	so	drum-buffer-rope	can	provide	some	insight	into	balancing	WIP
limits.	Here’s	another	look	at	the	example	from	the	Kanban	quick-start	guide	(Chapter	2),
in	which	the	Implement	step	was	the	longest	on	average.

	Because	the	Implement	step	is	the	constraint	(the	slowest	step),	it’s	the	drum.	We
want	Implement	to	always	be	beating	as	fast	as	it	can,	so	we	set	its	WIP	limit	to	be
the	number	of	available	developers.	As	I	described	when	discussing	TOC,	assigning
more	people	to	a	step	can	improve	response	time,	particularly	if	you	match	the
throughput	of	all	the	steps	(the	rope’s	purpose).

	You	need	some	buffer	to	hold	extra	work	items	for	when	the	pace	of	the	Implement



step	varies.	After	all,	work	items	vary	in	complexity,	and	developers	vary	in
capability	on	any	given	day.	I	added	50	percent	to	the	Implement	WIP	limit	for	use
as	a	buffer.	There’s	no	magic	to	using	50	percent;	it’s	just	a	starting	point	that’s	a	big
enough	proportion	to	handle	variation,	yet	small	enough	to	not	unduly	lengthen
response	time.

	You	need	some	rope	to	make	the	Specify	and	Validate	steps	match	the	pace	of
Implement	(its	throughput).	The	pace	of	each	step	is	its	average	pace	per	person
times	the	number	of	people	assigned.	The	average	pace	per	person	for	Specify	and
Validate	is	fixed,	but	you	can	vary	the	number	of	people.	Set	the	pace	of	each	step
equal	to	each	other,	and	solve	for	the	number	of	people.	For	example,	the	people
assigned	to	Specify	would	be	the	average	pace	per	person	for	Implement	times	the
number	of	people	assigned	to	Implement,	divided	by	the	average	pace	per	person	for
Specify.	To	codify	the	rope,	you	set	the	WIP	limit	for	Specify	to	be	this	calculated
number	of	people	and	do	the	same	for	Validate.

	Now	you	have	your	drum,	buffer,	and	rope,	but	you	haven’t	accounted	for	variation
in	the	pace	of	Specify	and	Validate.	Remember,	work	can	vary	in	complexity	by
step,	and	the	people	specifying	and	validating	can	vary	in	capability	day	by	day.
Fortunately,	Kanban	has	WIP	limits	for	each	step,	so	you	can	add	buffers	to	the
Specify	and	Validate	WIP	limits,	as	you	did	for	Implement	(add	50	percent	to	each
as	a	starting	point).	This	results	in	a	chain	of	drum-buffer-rope,	with	each	step
limited	to	match	the	pace	of	all	the	others,	and	each	step	has	some	buffer	to	manage
variation.

	Note

There	may	be	a	fractional	number	of	people	needed	for	the	Specify	or	Validate	step
(or	for	both)	to	match	the	pace	of	Implement.	That	corresponds	to	folks	who	need
to	work	on	that	step	only	part-time.	Instead	of	leaving	you	to	worry	about	allocating
people,	Kanban	lets	you	focus	on	work.	You	add	50	percent	to	the	fractional	WIP
limits	for	Specify	and	Validate	and	round	up.	This	gives	you	a	starting	point	for
WIP	limits.	The	people	assigned	to	Specify	and	Validate	can	regulate	their	time
based	on	available	work	on	the	signboard.	With	WIP	limits	controlling	the	flow,	no
other	management	is	needed.

Kanban’s	WIP	limits	control	the	proper	pacing	that	maintains	high	utilization	and	fast
response	time,	including	buffers	to	account	for	variation	across	items	and	steps.	You	can
increase	staffing	(and	corresponding	WIP	limits)	proportionally	across	all	steps	to	increase
throughput	while	keeping	the	fast	response	times.	Kanban	adds	nothing	extraneous	and
achieves	the	best	theoretical	and	practical	results	for	the	steps	you	already	use.	That’s	why
Kanban	works	so	well.

See	also

Cox,	James	F.,	and	John	G.	Schleier,	eds.	Theory	of	Constraints	Handbook.	New
York:	McGraw-Hill,	2010.



Improving	beyond	Kanban
How	can	you	improve	beyond	Kanban?	By	reimagining	your	steps	and	expanding	your
worldview.

The	evolution	from	traditional	Waterfall	to	Scrum	and	to	Kanban	might	give	you	hope
that	there’s	yet	another,	even	better,	approach	on	the	horizon.	However,	Little’s	Law
removes	all	the	magic	from	differing	project-management	approaches.	It’s	about	WIP	and
throughput.	Kanban	takes	a	direct	and	minimalist	approach	to	reducing	WIP	and
optimizing	throughput.	You	can	find	better	ways	to	drive	quality	up	front,	incorporate
customer	feedback,	and	implement	and	deploy	quality	products	faster.	Those	represent
important	improvements	to	your	steps	and	done	rules.	As	for	controlling	WIP	and
maximizing	throughput	for	those	step	and	done	rules,	Kanban	remains	an	ideal	choice.

How	do	you	improve	your	steps	and	done	rules?

	Critical	chain	Break	down	individual	steps	and	reconfigure	them	to	shorten	cycle
time	and	improve	throughput.

	Lean	development	Trim	waste,	enhance	quality,	and	speed	throughput	of	all	your
product	development	steps.

	Global	optimization	Examine	your	entire	company	and	industry,	viewing	the	steps
you	take	at	a	global	scale,	and	consider	how	those	steps	could	be	reengineered	for
higher	quality,	lower	WIP,	and	greater	throughput.

These	improvements	represent	significant	changes	to	how	your	business	functions.
Let’s	start	with	the	area	most	under	your	control:	the	steps	on	your	Kanban	board.

Critical	chain
In	the	theory	of	constraints	(TOC)	example	earlier	in	this	chapter,	all	steps	took	one	day
on	average	to	complete,	except	for	one	step	that	took	five	days	(the	constraint).	One
approach	to	elevate	that	constraint	was	to	break	down	the	step	into	five	one-day	steps,
which	increased	WIP	but	improved	throughput.	Another	approach	was	to	reengineer	the
long	step	to	make	it	faster.	These	two	approaches	can	be	used	effectively	in	combination
by	using	the	concept	of	a	critical	chain.

The	critical	chain	in	your	workflow	is	the	set	of	steps	that	constrain	your	actual	cycle
time	(given	current	tooling	and	staffing).	You	want	to	make	that	chain	as	short	as	possible
and	ensure	that	it’s	always	active	(like	the	drum	in	drum-buffer-rope).	I	talked	about	how
to	do	that	by	controlling	WIP	and	matching	throughput.	You	can	also	do	it	by
reengineering	workflow.

Consider	a	workflow	with	steps	of	differing	average	throughput	per	person.	The	steps	in
dark	gray	are	part	of	the	critical	chain	that	constrain	cycle	time.	I’ll	break	down	the	steps
and	reconfigure	them.



	I	start	with	three	serialized	steps	with	the	full	width	(first	row)	representing	the	cycle
time	(the	longest	step	constrains	the	throughput	per	person).	All	three	steps	are	part
of	the	critical	chain.

	After	breaking	down	the	steps	(middle	rows),	it’s	evident	that	some	short	steps	can
be	done	in	parallel.	The	longest	of	each	set	of	parallel	steps	are	in	dark	gray	because
they	are	the	critical	chain	that	governs	the	cycle	time.	Note	that	many	of	these	steps
were	already	being	done	in	parallel	(like	various	kinds	of	customer	engagement	and
market	research).	That’s	why,	if	you	put	the	short	steps	end	to	end,	they’d	appear
longer	than	the	original	steps.

	When	I	put	the	broken	down	steps	together	(last	rows),	I	come	up	with	a	compressed
cycle	time	and	faster	throughput.	On	a	Kanban	board,	the	parallel	steps	might
become	separate	cards	or	a	change	in	how	the	steps	are	automated	or	executed	(like
running	buddy	builds	at	the	same	time	as	code	reviews).	The	critical	chain	steps
become	the	steps	on	the	signboard.

Can	you	improve	your	new	workflow	even	further?	You	can	by	reexamining	your
workflow	steps	from	a	Lean	perspective,	which	I	cover	in	the	next	section.

See	also

Goldratt,	Eliyahu	M.	Critical	Chain.	Great	Barrington,	MA:	North	River	Press,
1997.

Lean	development
Even	after	you’ve	reduced	your	cycle	time	by	applying	a	critical	chain,	there	is	likely	a
great	deal	of	wasted	time	and	effort	in	your	steps	(which	is	also	true	if	you	haven’t	applied
a	critical	chain).	You	might	sense	that	waste	but	have	difficulty	pinpointing	it.

Fortunately,	people	have	been	studying	wasteful	practices	in	manufacturing	for	more
than	a	century.	Lean	manufacturing	lists	seven	different	kinds	of	waste	you	should	avoid.
You	can	adapt	these	categories	to	the	wide	variation	in	software	development	and	form	the
basis	of	Lean	development.	The	categories	are:



	Overproduction	Are	you	producing	more	output	than	necessary?	Kanban	will
prevent	you	from	specifying	more	than	you	can	implement	and	from	implementing
more	than	you	can	validate.	However,	you	may	still	be	writing	more	code	than	you
need,	delivering	features	customers	don’t	use,	or	producing	more	artifacts	than	are
required.	Are	you	creating	10-page	formal	design	specs	when	a	photo	of	a
whiteboard	would	suffice?	Are	you	spending	hours	creating	schedules	and	estimates
when	using	planning	poker	and	a	simple	spreadsheet	would	provide	what	you
require	(if	anything	at	all)?	Sometimes	you	need	these	kinds	of	additional	artifacts
that	the	customer	never	sees,	but	often	you	don’t.	It’s	worth	reviewing	all	the	work
you	produce	that	never	reaches	the	customer,	and	cutting	or	simplifying	what’s
unnecessary.

As	for	writing	only	the	code	that	you	need,	there	are	three	philosophies	that	can
help:	reuse	of	existing	solutions,	“You	aren’t	gonna	need	it”	(YAGNI),	and	depth-
first	development.	Using	existing	open	source	software	(OSS)	or	commercial	off-
the-shelf	(COTS)	software	and	services	in	areas	of	undifferentiated	value	(features
everyone	has)	can	save	you	tremendous	effort.	(Be	sure	to	carefully	follow	the	OSS
licenses.)	YAGNI	tells	you	not	to	create	features,	interfaces,	or	extensibility	that
aren’t	required	right	now,	because	you’ll	likely	not	need	them	or	you’ll	need
something	different.	(TDD	fits	well	with	YAGNI.)	Do	only	what’s	required,	and
design	to	accommodate	change,	not	to	anticipate	change.	Depth-first	development
directs	you	to	complete	end-to-end	scenarios	and	stories	before	starting	new	ones
(like	Kanban	does	for	features	and	tasks,	but	with	wider	scope).	It’s	like	developing
a	video	game	one	room	or	level	at	a	time	instead	of	writing	the	architectural
components	separately.	With	depth-first	development,	you	avoid	creating	more	than
you	need	and	also	benefit	from	frequent	customer	feedback.

	Transportation	Are	you	spending	excess	time	moving	information	from	one	place
to	another?	Examples	include	steps	that	rely	on	email	messages,	file	copies,	builds,
deployments,	or	branch	integrations.	Look	for	ways	to	speed	up	this	information
transfer,	like	team	instant	messaging,	automation,	faster	build	and	deployment
systems,	and	shallower	branching	to	reduce	integrations.

	Motion	Do	you	spend	too	much	time	searching	for	existing	information?	Reducing
that	wasted	motion	will	speed	up	your	work.	A	little	information	organization	can	go
a	long	way.	(My	teams	are	particularly	fond	of	OneNote.)	Another	common	example
of	wasted	searching	is	debugging.	Typically,	the	earlier	you	find	bugs,	the	faster	you
can	fix	them	because	all	the	information	is	still	fresh	in	your	mind	and	you’ve	made
fewer	changes	that	might	have	caused	the	issue.	Code	reviews	and	TDD	can	help.

	Waiting	Are	tasks	often	waiting	for	dependencies?	Kanban	helps	a	great	deal	with
ordering	work	and	providing	it	just	in	time.	However,	stable	or	late	dependencies
can	often	make	you	late.	That	subject	is	covered	in	Chapter	7,	“Using	Kanban	within
large	organizations.”

	Overprocessing	Are	you	required	to	do	more	work	than	necessary?	Some	teams	can
be	sticklers	for	style,	variable	and	function	naming,	commenting,	long	and	detailed
specifications,	mocks,	fakes,	and	unit	testing.	These	are	all	good	practices	that	have
value,	but	they	can	all	be	overdone.	Be	pragmatic	and	do	as	much	as	needed	for



customer	quality,	but	no	more.	When	in	doubt,	try	using	static	analysis	to	catch
issues,	be	a	little	more	flexible,	and	then	clamp	down	should	customer	quality	suffer.

	Inventory	Do	you	have	more	work	in	progress	than	necessary?	Kanban	nicely
limits	WIP,	but	you	can	often	do	more.	Breaking	down	steps	is	a	good	exercise	to
find	problems	and	opportunities,	but	doing	this	need	not	be	permanent.	Splitting
steps	can	add	to	WIP,	transportation,	motion,	and	waiting,	so	only	leave	steps	split	if
it’s	helping	you	significantly	with	throughput	or	removing	other	waste.

	Defects	Does	your	approach	and	environment	lead	to	bugs?	Kanban	does	a	great
deal	to	drive	quality	at	every	step	with	its	done	rules	and	continuous	customer
feedback.	However,	defects	can	happen	anywhere	and	everywhere.	Your	email
communication	can	be	defective,	leading	to	miscommunication	and	rework.	Your
tools	and	processes	can	have	defects	that	force	rework,	rebuilds,	and	redeployments.
You	should	have	an	eye	toward	quality	for	everything	you	do.	Every	pattern	of
defects	should	receive	a	root-cause	analysis	and	have	its	root	cause	corrected.
Continuous	improvement	(kaizen)	is	the	goal	in	all	things	because	its	return	on
investment	is	so	high.

These	seven	forms	of	waste	for	Lean	development	require	constant	vigilance.	Learn	to
spot	them	and	fix	them	as	part	of	your	continuous	improvement	efforts.

See	also

Poppendieck,	Mary,	and	Tom	Poppendieck.	Lean	Software	Development:	An	Agile
Toolkit.	Upper	Saddle	River,	NJ:	Addison-Wesley,	2003.

Global	optimization
Some	people	associate	Lean	thinking	with	cutting	back	on	excesses	and	achieving
efficiency	for	specific	tasks.	However,	real	Lean	thinking	is	about	delivering	the	greatest
value	to	customers	with	the	least	amount	of	time,	effort,	and	cost.	Value	to	customers	is
primary.	For	example,	Scenario-Focused	Engineering	(SFE)	relies	heavily	on	prototypes
and	design	iterations	that	you	throw	away.	Is	that	wasted	effort?	Not	if	it	brings	you
greater	customer	value	faster.

SFE	is	an	example	of	striving	to	build	the	right	product,	not	just	to	build	the	product
right.	When	you	locally	optimize	your	team’s	efforts,	you	might	do	some	parts	well,	but
you’ll	achieve	limited	success.	When	you	globally	optimize	your	entire	company’s	efforts,
you’ll	achieve	tremendous	customer	value	as	well	as	high	profits	and	low	costs.	Global
optimization	brings	broad	benefits,	but	it	requires	extensive	(sometimes	industrywide)
collaboration	and	change.	It’s	difficult,	but	it’s	game	changing	when	possible.

To	globally	optimize	your	company’s	delivery	of	customer	value,	you	need	to	deeply
understand	your	customers	and	the	value	they	want	to	receive.	You	must	rely	on	more	than
what	they	say.	You	must	also	rely	on	what	they	do.	(SFE	addresses	this	in	detail.)	With
online	services,	many	companies	learn	about	what	their	customers	do	from
instrumentation	and	online	experimentation	(like	A/B	testing).	But	what	do	you
instrument	and	what	do	you	test?



The	secret	to	global	optimization	is	following	the	value	your	customers	seek	from	the
time	it	is	demanded	to	the	time	it	is	delivered.	As	an	example,	consider	a	doctor’s	office.
The	value	customers	seek	when	visiting	a	doctor’s	office	is	to	be	well	again.	To	globally
optimize	a	doctor’s	office,	you	seek	to	deliver	the	greatest	customer	value	(wellness)	with
the	least	amount	of	time,	effort,	and	cost.	Thus,	the	things	to	instrument	and	test	include
the	following:

	How	long	does	it	take	from	the	time	a	person	contacts	a	doctor’s	office	with	an
illness	or	injury	until	the	time	they	are	well	again?	(The	cycle	time.)

	How	many	patient	and	staff	hours	are	spent	getting	the	person	well	again?	(The
effort	required.)

	How	much	money	is	spent	in	equipment	usage	and	external	services	getting	the
person	well	again?	(The	cost	incurred.)

	Note

The	cycle	time	isn’t	the	time	spent	during	the	office	visit.	That	would	be	a	local
optimization.	We	are	interested	in	global	optimization,	so	we	count	the	time,	effort,
and	cost	from	the	initial	demand	for	value	(the	first	contact	with	the	doctor’s	office)
to	the	value	delivery	(the	patient	is	well	again).

Since	you	want	to	minimize	time,	effort,	and	cost,	you	need	to	understand	what
generates	each	and	how	they	may	be	wasted.	I	covered	waste	earlier	in	the	discussion	of
Lean	development.	There	are	two	major	generators	of	time,	effort,	and	cost:	value	demand
(the	patient’s	first	contact)	and	failure	demand	(subsequent	contacts	as	the	result	of
continued	illness).	You	desire	value	demand—it’s	the	source	of	your	business.	You
disparage	failure	demand	and	all	forms	of	waste.

To	achieve	the	goal	of	minimizing	failure	demand	and	all	forms	of	waste,	you	need	to
consider	the	value	stream:	the	workflow	that	takes	you	from	value	demand	(initial	patient
contact)	to	value	delivery	(patient	wellness).	A	typical	patient	workflow	in	the	United
States	might	look	like	Figure	9-2.



FIGURE	9-2	Twenty-two	steps	a	patient	in	the	United	States	might	commonly	take	to
regain	health.

	The	patient	calls	a	doctor’s	office,	complains	of	an	ailment,	and	arranges	a	future
office	visit.

	On	the	appointment	day,	the	patient	drives	to	the	office,	presents	identification	and
proof	of	insurance	at	the	front	desk,	updates	contact	and	health	information,	and
waits	to	be	seen.

	A	nurse	gathers	the	patient,	collects	vitals	(height,	weight,	blood	pressure,	pulse,	and
temperature),	and	notes	what’s	troubling	the	patient.

	The	patient	waits	in	an	exam	room	for	the	doctor.

	The	doctor	arrives,	reviews	the	notes,	examines	the	patient,	and	discusses	the
ailment.	At	this	point,	the	doctor	may	refer	the	patient	to	a	specialist,	in	which	case
all	these	steps	repeat.

	Once	the	doctor	or	specialist	arrives	at	a	diagnosis,	the	physician	describes	treatment
options	and	prescribes	follow-on	medicines,	tests,	and	treatment.

	The	patient	acquires	medicines	from	a	pharmacy	(another	significant	process).

	If	there	are	tests	or	treatment,	the	patient	repeats	most	(and	often	all)	of	these	steps
associated	with	the	doctor	visit	until	fully	recovered.	(I	don’t	show	those	steps	in	the
diagram.)

	The	patient	is	healthy	again.

An	initial	review	of	the	value	stream	highlights	several	sources	of	failure	demand	and
waste.	These	deficiencies	are	addressed	in	the	workflow	shown	in	Figure	9-3,	which
illustrates	what	a	globally	optimized	workflow	might	look	like.



FIGURE	9-3	Six	globally	optimized	steps	a	patient	might	take	to	regain	health.

	There’s	waiting	between	the	initial	call	and	the	office	visit.	The	office	should	be
staffed	sufficiently	to	handle	value	demand	so	that	patients	can	visit	without	an
appointment.	The	potential	underutilization	of	staff	can	be	covered	in	other	ways,
but	even	if	it	wasn’t,	you’d	still	have	lower	costs	per	patient	as	a	result	of	higher
throughput	and	shorter	cycle	time.

	Arrival	at	the	office	is	full	of	overprocessing,	excess	motion,	inventory,	and	waiting,
all	of	which	is	repeated	when	a	patient	sees	a	specialist.	There	are	political	and
privacy	issues	with	tying	online	medical	information	to	identification	cards
nationally,	but	there’s	nothing	that	prevents	an	individual	doctor’s	office	or
collective	from	providing	this	convenience	online	and	having	the	information
available	when	you	arrive.

	Collecting	vitals	and	other	basic	information	as	well	as	the	ensuing	wait	for	a	doctor
have	issues	with	excess	motion,	waiting,	and	inventory.	Many	pharmacies	have
automated	chairs	that	can	take	your	vitals	while	you	wait	for	a	prescription.	Imagine
having	one	or	two	slightly	more	sophisticated	versions	of	these	chairs	at	a	doctor’s
office.	When	you	arrive	at	the	office,	a	nurse	guides	you	into	one	of	the	chairs.	You
present	your	identification	to	the	chair	(the	nurse	can	help	patients	who	are	confused
or	incapacitated).	The	chair	notifies	an	available	doctor	of	your	presence.	As	the
chair	measures	your	height,	weight,	blood	pressure,	pulse,	and	temperature,	the
nurse	collects	information	about	your	ailment.	By	the	time	the	chair	finishes	taking
your	vital	signs,	the	doctor	has	come	to	escort	you	to	an	exam	room.

	The	diagnosis,	pharmacy,	and	follow-on	tests	and	treatments	contain	substantial
issues	with	failure	demand	and	overproduction,	transportation,	motion,	waiting,
overprocessing,	inventory,	and	defects	(all	seven	kinds	of	waste).	Having	a	separate
interaction	at	the	pharmacy	is	a	problem,	but	the	primary	driver	of	cycle	time	(time
to	wellness)	is	proper	diagnosis	and	timely	treatment,	which	in	turn	is	tied	to
bringing	the	right	expertise	to	the	patient	in	a	timely	fashion.

Imagine	that	the	doctor	had	the	option	of	engaging	an	expert	system	and	a	broad
collection	of	specialists	via	online	consultation.	For	straightforward	cases,	the	doctor
could	provide	you	the	diagnosis	and	treatment	plan	immediately	(optionally,	with
assistance	from	the	expert	system).	For	cases	referred	to	a	specialist,	two	specialists
would	instantly	connect	with	you	and	your	doctor	online.	The	specialists	would	ask
you	and	your	doctor	questions	and	discuss	the	case.	Two	specialist	opinions,	in	the
presence	of	you	and	your	doctor,	would	significantly	improve	the	accuracy	of	your
diagnosis	(fewer	defects),	the	focus	of	testing	(less	overproduction),	and	the
effectiveness	of	the	treatment	plan	(less	failure	demand)—as	second	opinions	do



today,	but	without	the	waste	created	by	waiting,	motion,	transportation,	or	inventory.
Any	necessary	follow-on	visits	for	testing	or	specialist	care	would	be	scheduled
before	you	leave,	with	your	health	data	transmitted	in	advance	by	your	consent.

	The	doctor’s	office	could	locate	itself	near	a	pharmacy	with	which	it	has	an
agreement.	In	return	for	preferred	business,	the	pharmacy	would	deliver
prescriptions	directly	to	the	doctor’s	office	within	10	minutes	of	electronic	ordering.
As	soon	as	the	doctor	(or	specialists)	decide	on	a	treatment	plan,	the	system	orders
any	prescriptions.	By	the	time	your	doctor	has	described	the	treatment	plan	and
you’ve	gotten	dressed,	your	medicines	arrive	and	you	can	begin	treatment.	(Many
hospital	pharmacies	function	this	way	today.)

The	globally	optimized	value	stream	for	treating	ailments	assumes	that	a	doctor’s	office
has	enough	staff	to	handle	demand	and	that	two	specialists	are	immediately	available
online	to	help	diagnose	any	kind	of	ailment.	(There	are	also	assumptions	about	chairs,
online	systems,	pharmacies,	and	expert	systems,	but	those	aren’t	as	much	of	a	stretch.)
The	staffing	assumptions	may	seem	extravagant	(not	lean	at	all).	However,	failure	demand
and	waste	are	dramatically	reduced	in	the	optimized	value	stream.	This	frees	up	time	to
focus	on	value	demand.

In	the	optimized	value	stream,	doctors	are	kept	busy	with	patients	in	their	office	or	are
helping	other	doctors	online.	Even	if	doctors	are	occasionally	idle	because	of	variation	in
value	demand	(as	they	are	today),	the	substantial	savings	(not	to	mention	delighted
patients)	would	more	than	pay	for	the	difference.	Customers	get	better	faster,	with	less
effort,	at	lower	cost.	That	permits	the	doctor’s	office	to	treat	more	customers	with	fewer
staff	in	less	time.

Global	optimization	leads	to	unusual-sounding	results.	The	idea	that	you	could	feel	ill,
drive	to	your	doctor’s	office,	walk	through	the	door	right	to	a	chair,	sit	for	a	minute	while
a	nurse	notes	your	ailment,	have	your	doctor	arrive	as	you	get	up,	receive	an	accurate
diagnosis	and	effective	treatment	plan	at	the	same	visit	(possibly	from	two	specialists),
and	be	handed	your	medicine	by	the	time	you’re	dressed	is	astonishing.	That	such	a	value
stream	would	be	more	profitable	is	even	more	astonishing.

Why	doesn’t	global	optimization,	like	the	one	described	in	the	doctor’s	office	example,
happen	more	frequently?	Because	our	society’s	systems	develop	over	time.	As	they
develop,	people	naturally	optimize	their	systems	locally	(the	ones	around	them),	not
globally.	This	book	is	no	different—the	first	eight	chapters	are	about	local	optimization.
Optimizing	systems	globally	often	requires	broad	and	dramatic	change,	which	usually
isn’t	practical.	However,	if	you’re	willing	and	able,	global	optimization	is	well	worth	the
effort.

See	also

Seddon,	John.	Freedom	from	Command	and	Control:	A	Better	Way	to	Make	the
Work	Work.	Vanguard	Education,	2005.



See	also

Womack,	James	P.,	and	Daniel	T.	Jones.	Lean	Thinking:	Banish	Waste	and	Create
Wealth	in	Your	Corporation.	New	York:	Free	Press,	2003.

See	also

Modig,	Niklas,	and	Pär	Åhlström.	This	Is	Lean:	Resolving	the	Efficiency	Paradox.
Rheologica,	2012.

Checklist
Here’s	a	checklist	of	actions	to	learn	more	and	go	beyond	Kanban:

	Add	separate	swim	lanes	for	different	types	of	work	items	that	go	through	different
workflows.

	As	needed,	expand	your	Kanban	board	to	include	steps	prior	to	specification	(such
as	customer	research)	and	after	validation	(such	as	feature	delivery).

	Use	Personal	Kanban	to	organize	your	to-do	list	and	focus	your	efforts.

	Enhance	your	agility	with	test-driven	development	(TDD),	refactoring,	acceptance
test-driven	development	(ATDD),	behavior-driven	development	(BDD),	pair
programming,	or	DevOps.

	Learn	about	how	Kanban	works	by	studying	Little’s	Law,	single-piece	flow,	the
theory	of	constraints	(TOC),	and	drum-buffer-rope.

	Apply	a	critical	chain	to	break	down	individual	steps	and	reconfigure	them	in	ways
that	shorten	cycle	time	and	improve	throughput.

	Trim	waste,	enhance	quality,	and	speed	throughput	of	all	your	product	development
steps	with	Lean	thinking.

	Globally	optimize	your	entire	company’s	value	stream	to	improve	quality,	lower
costs,	and	increase	productivity.

	Read	further	about	your	favorite	advanced	project-management	topics	in	the	books	I
listed	in	this	chapter.



Index

A
acceptance	test-driven	development	(ATDD),	121–122

Agile	practice

Kaizen	and,	110

mixing	with	Kanban,	120–123

Agile	Project	Management	with	Scrum	(Schwaber),	57

Åhlström,	Pär,	135

Amazon	Web	Services	(AWS),	80

Anderson,	David,	57,	118

Astels,	Dave,	122

ATDD	(acceptance	test-driven	development),	121–122

AWS	(Amazon	Web	Services),	80

B
backlog

adapting	from	Waterfall,	41,	45,	50,	52,	54

checklist	of	actions	to	take,	24

evolving	from	Scrum,	58–61,	65–68

large	organizations,	85–87

ordering	work,	28–29

populating,	25–27

SE	workflow,	109

troubleshooting	problems,	17–23

Barry,	Tanianne	DeMaria,	120

BDD	(behavior-driven	development),	122

Beck,	Kent,	121

behavior-driven	development	(BDD),	122

Benson,	Jim,	120

Brooks,	Frederick	P.,	Jr.,	34

buffer	(drum-buffer-rope),	126–128

bugs,	software



adapting	from	Waterfall,	45–46,	48–51

defined,	102

evolving	from	Scrum,	62–65

ordering	work,	28–29

sustained	engineering,	109–111

troubleshooting	problems,	20

business	applications,	scaling	Kanban,	118–119

C
chaos,	setting	limits	on,	10–12

checklist	of	actions	to	take

adapting	from	Waterfall,	56

deadline	management,	37

deploying	finished	work,	83–84

evolving	from	Scrum,	70

Kanban,	24,	136

large	organizations,	100

for	management	consent,	5

sustained	engineering,	115–116

Chelimsky,	David,	122

completed	tasks	measurement

adapting	from	Waterfall,	48–51

evolving	from	Scrum,	62–65

conference	presentations,	21

constraints

defined,	11

elevating,	125

theory	of	constraints,	124–128

continuous	delivery,	80

Continuous	Delivery	(Humble	and	Farley),	123

continuous	deployment,	79–83

continuous	integration,	72–75

continuous	publishing,	77–79



continuous	push,	75–77

core	engineering	team

about,	102–103

ownership,	104–105

roles	and	responsibilities,	104

troubleshooting	problems,	112–113

Cox,	Jeff,	126

Crenshaw,	Dave,	124

critical	chain,	129–130

CTE	(current	task	estimate),	32–35

Cumulative	Flow	Diagram,	32–33

current	task	estimate	(CTE),	32–35

customers	and	customer	interaction

adapting	from	Waterfall,	46–48

communicating	status	to,	92–93

demos	for	customers,	21

evolving	from	Scrum,	67

sustained	engineering,	105–106,	111,	113

D
daily	standup	meetings

about,	14–17

adapting	from	Waterfall,	42–43,	52

evolving	from	Scrum,	61,	68

Personal	Kanban	and,	120

sustained	engineering,	115

troubleshooting	problems,	23,	115

De	Bonte,	Austina,	119

deadline	management

about,	25

checklist	of	actions	to	take,	37

establishing	MVP,	27–28

estimating	features	and	tasks,	29–31



ordering	technical	debt,	28–29

ordering	work,	28–29

populating	backlog,	25–27

right-sizing	teams,	33–37

tracking	expected	completion	date,	31–33

Xbox	example,	31

defects	(Lean	waste	category),	131

deliver	work	step

guidelines,	8–9

troubleshooting	problems,	21–23

demos	for	customers,	21

Dennis,	Zach,	122

dependencies

dealing	with	late	or	unstable,	94–98

ordering	work	based	on,	87–90

deploying	finished	work

about,	71

checklist	of	actions	to	take,	83–84

continuous	deployment,	79–83

continuous	integration,	72–75

continuous	publishing,	77–79

continuous	push,	75–77

Xbox	examples,	74–75,	77–79,	81–82

design	work

adapting	from	Waterfall,	44–45

ordering,	28–29

troubleshooting	problems,	21,	23

DevOps	practice,	122–123

distributed	version	control,	73,	75–77

distribution	lists,	communicating	via,	93

done	rule	(pull	criteria)

about,	12–13,	15



adapting	from	Waterfall,	54

best	practices,	13–14

evolving	from	Scrum,	69

implementing,	13

specifying,	13

validating,	13

drum-buffer-rope	(TOC	application),	126–128

E
escalations

defined,	102

in	SE	workflow,	109

troubleshooting	problems,	113

estimating	features	and	tasks,	29–31

executive	reviews,	21

expected	completion	date,	tracking,	31–33

F
Farley,	David,	123

features

adapting	from	Waterfall,	42–44

estimating,	29–31

Fletcher,	Drew,	119

Fowler,	Martin,	121

Freedom	from	Command	and	Control	(Seddon),	135

G
global	optimization,	132–135

Goal,	The	(Goldratt,	et	al.),	126

Goldratt,	Eliyahu	M.,	126

H
Hellesoy,	Aslak,	122

Helmkamp,	Bryan,	122

high-level	routine



capturing,	7–8

posting	steps	for,	8–10

hotfix,	defined,	102

Humble,	Jez,	123

I
implement	work	step

in	daily	standup	meetings,	15–16

done	rule,	13

guidelines,	8–9

troubleshooting	problems,	17–20

improvement,	product.	See	product	improvement

incidents,	defined,	102

introduction	to	proposal	letter,	1–2

inventory	(Lean	waste	category),	131

J
Jones,	Daniel	T.,	135

K
kaizen,	110

Kanban

capturing	high-level	routine,	7–8

checklist	of	actions	to	take,	24,	136

defining	done,	12–14

expanding	to	new	areas	of	business	and	life,	117–120

improving	beyond,	128–135

mixing	Agile	and	Lean	with,	120–123

redecorating	wall,	8–10

running	daily	standup,	14–17

setting	limit	on	chaos,	10–12

troubleshooting	problems,	17–23

why	it	works,	123–128

Xbox	switch	to,	4–5



Kanban	(Anderson),	118

Kessler,	Robert,	122

L
Ladas,	Corey,	57,	118

large	organizations

checklist	of	actions	to	take,	100

communicating	status	up	and	out,	91–93

dealing	with	late	or	unstable	dependencies,	93–97

deriving	backlog	from	upfront	planning,	86–87

fitting	into	milestones,	90–91

introducing	Kanban	within,	85

ordering	work	based	on	dependencies,	87–90

staying	productive	during	stabilization,	98

Xbox	examples,	89–90,	93,	97

Larrey,	Dominique-Jean,	107

late	dependencies,	94–95

lead	time,	31

Lean-Agile	Acceptance	Test-Driven	Development	(Pugh),	122

Lean	practice

global	optimization	and,	132–133

improving	beyond	Kanban,	129–132

Kaizen	and,	110

mixing	with	Kanban,	120–123

Lean	Software	Development	(Poppendieck	and	Poppendieck),	132

Lean	Thinking	(Womack	and	Jones),	135

LiquidPlanner,	87

Little’s	Law,	31,	123–124

M
management	consent

checklist	of	actions	to	take,	5

importance	of,	1



moving	forward,	4–5

proposal	letter	to	obtain,	1–4

Managing	the	Design	Factory	(Reinertsen),	124

McGrath	and	MacMillan	Options	Portfolio,	89–90

Microsoft	Azure,	80

Microsoft	Project,	87

milestones

adapting	from	Waterfall,	10,	39–40,	43,	49,	55

large	organizations	and,	85–86,	91,	95

minimalism,	123–124

minimum	viable	product	(MVP),	27–28,	87

Modig,	Niklas,	135

motion	(Lean	waste	category),	131

MVP	(minimum	viable	product),	27–28,	87

Myth	of	Multitasking,	The	(Crenshaw),	124

Mythical	Man-Month,	The	(Brooks),	34

N
new	work,	troubleshooting	problems,	21–22

North,	Dan,	122

O
one-piece	flow,	124

Options	Portfolio	(McGrath	and	MacMillan),	89–90

ordering	work

about,	28–29

based	on	dependencies,	87–90

organizations,	large.	See	large	organizations

overprocessing	(Lean	waste	category),	131

overproduction	(Lean	waste	category),	130–131

P
pair	programming,	122

Pair	Programming	Illuminated	(Williams	and	Kessler),	122



performance	improvements

adapting	from	Waterfall,	48–51

evolving	from	Scrum,	62–65

Personal	Kanban,	120

Personal	Kanban	(Benson	and	Barry),	120

plan	outline	in	proposal	letter,	3

planning,	deriving	backlog	from,	86–88

planning	poker	method,	30

PMs	(program	managers),	12

Poppendieck,	Mary	and	Tom,	132

postrelease	software	maintenance.	See	sustained	engineering

prioritization

about,	28–29

based	on	dependencies,	87–90

MVP,	27

SE	triage	teams,	107

work	items,	28

problem	statement	in	proposal	letter,	2

process	details,	troubleshooting	problems,	23

product	improvement

estimating	features	and	tasks,	29–31

high-level	routine	for,	7–8

sources	of,	25–26

Product	Owner	(Scrum),	60–61,	67

program	managers	(PMs),	12

proposal	letter

introduction,	1–2

plan	outline	in,	3

problem	statement	in,	2

risks	and	mitigation	table	in,	3

solution	statement	in,	2

Pugh,	Ken,	122



pull	criteria	(done	rule)

about,	12–13,	15

adapting	from	Waterfall,	54

best	practices,	13–14

evolving	from	Scrum,	69

implementing,	13

specifying,	13

validating,	13

Q
Q	&	A	session

adapting	from	Waterfall,	51–56

evolving	from	Scrum,	65–69

quick-solve	meetings,	108

quick-start	guide	(Kanban)

capturing	high-level	routine,	7–8

checklist	of	actions	to	take,	24

defining	done,	12–14

redecorating	wall,	8–10

running	daily	standup,	14–17

setting	limit	on	chaos,	10–12

troubleshooting	problems,	17–23

R
Refactoring	(Fowler),	121

refactoring	practice,	121

Reinertsen,	Donald,	124

release	managers,	12

requirement	updates,	troubleshooting	problems,	21–22

reverse	integrations,	72–74

risks	and	mitigation	table	in	proposal	letter,	3

root-cause	analysis,	19,	110

rope	(drum-buffer-rope),	126–128



RSpec	Book,	The	(Chelimsky	et	al.),	122

rude	Q	&	A	session

adapting	from	Waterfall,	51–56

evolving	from	Scrum,	65–69

S
Scenario-Focused	Engineering	(De	Bonte	and	Fletcher),	119

Scenario-Focused	Engineering	(SFE)

design	work	and,	21

global	optimization	and,	132

scaling	Kanban	and,	118–119

Schwaber,	Ken,	57

Scrum	Master,	60,	67

Scrum	method,	evolving	from

celebrating	performance	improvements,	62–65

checklist	of	actions	to	take,	70

introducing	Kanban,	57–59

limiting	chaos	in,	10

mapping	roles	and	terms,	60–61

replacing	events,	61–62

rude	Q	&	A	session,	65–69

Waterfall	method	comparison,	40–41

Xbox	examples,	59

Scrumban	(Ladas),	57,	118

SE	(sustained	engineering).	See	sustained	engineering

Sedden,	John,	135

service	packs,	102

SFE	(Scenario-Focused	Engineering)

design	work	and,	21

global	optimization	and,	132

scaling	Kanban	and,	118–119

signboards

about,	8–9



adapting	from	Waterfall,	42,	53–55

communicating	status	up	and	out,	92–93

continuous	deployment,	81

continuous	integration,	73–74

continuous	publishing,	78

continuous	push,	76

in	daily	standup	meetings,	14–17

evolving	from	Scrum,	60–62,	67–69

ordering	work,	28–29

positioning	teams	by,	9

Scenario-Focused	Engineering,	118–119

sustained	engineering,	109

troubleshooting	problems,	113

Xbox	example,	10

single-piece	flow,	124

Six	Boxes,	110

small	batches.	See	WIP	(work	in	progress)

software	bugs.	See	bugs,	software

software	maintenance,	postrelease.	See	sustained	engineering

solution	statement	in	proposal	letter,	2

specify	work	step

in	daily	standup	meetings,	16

done	rule,	13

guidelines,	8–9

troubleshooting	problems,	19,	21

Sprint	Planning	event	(Scrum),	61–62,	66–67

Sprint	Retrospective	event	(Scrum),	61–62,	66

stabilization	periods

adapting	from	Waterfall,	40,	45–46,	51–52,	55

staying	productive	during,	98

standup	meetings.	See	daily	standup	meetings

story	points,	31



support	tiers	(SE)

defined,	102

laying	out,	105–106

sustained	engineering

about,	101–102

challenges	and	goals,	102–103

checklist	of	actions	to	take,	115–116

collaborating	for	efficiency,	106–108

consistent	vocabulary,	102

determining	ownership,	104–105

implementing	Kanban	workflow,	108–111

Kanban	tools,	111–112

key	stakeholders,	103–104

laying	out	support	tiers,	105–106

roles	and	responsibilities,	103–104

troubleshooting	problems,	112–115

T
TAR	(task	add	rate),	32–35

task	add	rate	(TAR),	32–35

task	completion	rate	(TCR),	30–35

TCR	(task	completion	rate),	30–35

TDD	(test-driven	development)

about,	121

evolving	from	Scrum,	69

sustained	engineering,	110

Team	Foundation	Server	(TFS).	See	Visual	Studio	Team	Foundation	Server

teams	and	team	members

adapting	from	Waterfall,	54

capturing	high-level	routine,	7–8

communicating	status	to,	91–93

daily	standup	meetings,	14–17

evolving	from	Scrum,	58–61



ordering	work,	28–29

posting	high-level	routine	on	signboards,	8–10

right-sizing	teams,	33–37

sustained	engineering,	102–105,	112–115

troubleshooting	problems,	22–23,	112–115

technical	debt

defined,	28

ordering,	28–29

Test-Driven	Development	by	Example	(Beck),	121

test-driven	development	(TDD)

about,	121

evolving	from	Scrum,	69

sustained	engineering,	110

TFS	(Team	Foundation	Server).	See	Visual	Studio	Team	Foundation	Server

theory	of	constraints	(TOC)

about,	124–126

drum-buffer-rope,	126–128

This	Is	Lean	(Modig	and	Åhlström),	135

TOC	(theory	of	constraints)

about,	124–126

drum-buffer-rope,	126–128

tracking

expected	completion	date,	31–33

work	items,	77,	79,	82,	88,	91–93,	111

transportation	(Lean	waste	category),	131

triage	team	(SE),	106–108

troubleshooting	problems

blocked	because	all	items	in	intermediate	step	are	done,	17–18

blocked	because	prior	step	has	no	items	done,	18

bugs	impacting	team,	20

can’t	find	time	to	improve	tools	and	automation,	22

constantly	getting	blocked,	19



important	event	approaching,	21

item	blocked	awaiting	external	input,	20

item	needs	design	work,	21

item	needs	to	be	assigned	to	busy	team	member,	22

new	person	joins	team,	23

new	work,	plan	changes,	updated	requirements,	21–22

some	team	members	can’t	attend	standup,	23

some	team	members	like	doing	more	than	one	item	at	a	time,	22

step	taking	longer	than	usual	for	an	item,	18–19

sustained	engineering,	112–115

team	focusing	too	much	on	process	details,	23

team	has	long	design	discussions	during	standup,	23

U
unresolved	bugs	measurement

adapting	from	Waterfall,	48–51

evolving	from	Scrum,	62–65

unstable	dependencies,	93,	95–97

updated	requirements,	troubleshooting	problems,	21–22

upgrading	tools

ordering	work,	28–29

troubleshooting	problems,	22

V
validate	work	step

in	daily	standup	meetings,	15

done	rule,	13

guidelines,	8–9

troubleshooting	problems,	18,	21

value	stream,	133–135

Visual	Studio	Team	Foundation	Server

continuous	deployment	and,	82

continuous	publishing	and,	79



continuous	push	and,	77

ordering	work	based	on	dependences,	88

sustained	engineering	and,	111

tracking	project	status,	91,	93

visualization

Kanban	and,	123–124

large	organizations,	86–88

W
waiting	(Lean	waste	category),	131

Waletzy,	James,	101–116

Waterfall,	adapting	from

celebrating	performance	improvements,	48–51

checklist	of	actions	to	take,	56

completing	features	before	starting	new	ones,	43–44

dealing	with	specs	and	bugs,	44–46

engaging	with	customers,	46–48

introducing	Kanban,	39–42

limiting	chaos	in,	10

rude	Q	&	A	session,	51–56

working	in	feature	teams,	42–43

Xbox	examples,	41–42,	47–48

Wideband	Delphi	method,	30

Williams,	Laurie,	122

WIP	(work	in	progress)

adapting	from	Waterfall,	43–45,	47,	52–53,	55

daily	standup	meetings,	14–15

evolving	from	Scrum,	60–62,	66–68

limiting	chaos,	10–11

Little’s	Law	on,	31

populating	backlog,	25–27

single-piece	flow,	124

troubleshooting	problems,	17–20



Xbox	example,	11

Womack,	James	P.,	135

work	backlog.	See	backlog

work	in	progress.	See	WIP	(work	in	progress)

work-item	tracking	systems

continuous	deployment	and,	82

continuous	publishing	and,	79

continuous	push	and,	77

ordering	work	based	on	dependences,	88

sustained	engineering	and,	111

tracking	project	status,	92–93

workflow

bugs	and	other	work,	109–111

critical	chain,	129–130

escalations	in,	109

implementing,	108



About	the	author

Eric	Brechner	is	the	development	manager	for	the	Xbox	Engineering	Services	team.	He
is	widely	known	within	the	engineering	community	as	his	alter	ego,	I.	M.	Wright.	Prior	to
his	current	assignment,	Eric	managed	development	for	the	Xbox.com	websites,	was
director	of	engineering	learning	and	development	for	Microsoft	Corporation,	and	managed
development	for	a	shared	feature	team	in	Microsoft	Office.	Before	joining	Microsoft	in
1995,	he	was	a	senior	principal	scientist	at	Boeing	and	a	developer	for	Silicon	Graphics,
Graftek,	and	JPL.	Eric	has	published	a	book	on	software	best	practices	and	holds	eight
patents,	a	BS	and	MS	in	mathematics,	and	a	PhD	in	applied	mathematics.	He	is	an	affiliate
professor	evenings	at	the	University	of	Washington’s	Bothell	campus.






	Title Page
	Copyright Page
	Praise for Agile Project Management with Kanban
	Table of Contents
	Introduction
	Who should read this book
	This book might not be for you if . . .

	Organization of this book
	Acknowledgments
	Downloads: Sample files
	System requirements
	Errata, updates, & book support
	Free ebooks from Microsoft Press
	We want to hear from you
	Stay in touch

	Chapter 1. Getting management consent
	An open letter to your manager
	Problem
	Solution
	Risks
	Plan

	Moving forward
	Checklist

	Chapter 2. Kanban quick-start guide
	Step 1: Capture your team’s high-level routine
	Step 2: Redecorate your wall
	Step 3: Set limits on chaos
	Step 4: Define done
	Step 5: Run your daily standup
	Troubleshooting
	Problem: Blocked because all items in an intermediate step are done
	Problem: Blocked because prior step has no items done
	Problem: Step taking longer than usual for an item
	Problem: Constantly getting blocked
	Problem: Item blocked awaiting external input
	Problem: Bugs impacting team
	Problem: Item needs design work
	Problem: Important review, demo, or conference approaching
	Problem: New work, plan changes, and updated requirements
	Problem: Item needs to be assigned to a busy team member
	Problem: Some team members like doing more than one item at a time
	Problem: Can’t find time to improve tools and automation
	Problem: New person joins the team
	Problem: Team has long design discussions during standup
	Problem: Some team members can’t attend standup
	Problem: Team focusing too much on process details

	Checklist

	Chapter 3. Hitting deadlines
	Populate your backlog
	Establish your minimum viable product (MVP)
	Order work, including technical debt
	Estimate features and tasks
	Track expected completion date
	Right-size your team
	Basic approach
	Advanced approach

	Checklist

	Chapter 4. Adapting from Waterfall
	Introducing Kanban to a Waterfall team
	Working in feature teams
	Completing features before starting new ones
	Dealing with specs and bugs
	Specs
	Bugs

	Engaging with customers
	Celebrating performance improvements
	Rude Q & A
	Checklist

	Chapter 5. Evolving from Scrum
	Introducing Kanban to a Scrum Team
	Mapping the roles and terms
	Evolving the events
	Celebrating performance improvements
	Rude Q & A
	Checklist

	Chapter 6. Deploying components, apps, and services
	Continuous integration
	Continuous push
	Continuous publishing
	Continuous deployment
	Checklist

	Chapter 7. Using Kanban within large organizations
	Deriving a backlog from big upfront planning
	Ordering work based on dependencies
	Fitting into milestones
	Communicating status up and out
	Dealing with late or unstable dependencies
	Late dependencies
	Unstable dependencies

	Staying productive during stabilization
	Checklist

	Chapter 8. Sustained engineering
	Define terms, goals, and roles
	Consistent vocabulary
	Challenges and goals
	Define roles and responsibilities

	Determine SE ownership
	Lay out support tiers
	Tier 1
	Tier 2
	Tier 3

	Collaborate for efficiency
	Triage
	Quick-solve meeting

	Implement Kanban SE workflow
	Escalations
	Bugs/Other Work

	Kanban tools
	Troubleshooting
	Problem: The core engineering team is inundated with escalations from customer support, creating an unsustainable backlog
	Problem: We are a new SE team and have no idea what to set the WIP limits to
	Problem: The Waiting section on the signboard has a large number of items
	Problem: The customer-support team is continuously querying the core engineering team for predicted completion dates for open issues
	Problem: The team is having problems planning for maintenance because it doesn’t know how many escalations will come its way
	Problem: A dedicated SE team is fixing issues but creating more bugs with every fix
	Problem: Developers are not motivated to fix bugs in an SE role and morale on the team is low
	Problem: Some of the team members tune out in the daily standup because they are not all working on the same product

	Checklist

	Chapter 9. Further resources and beyond
	Expanding Kanban to new areas of business and life
	Scaling Kanban up, down, and out
	Personal Kanban

	Mixing Agile and Lean with Kanban
	Why Kanban works
	Single-piece flow
	Theory of constraints (TOC)
	Drum-buffer-rope

	Improving beyond Kanban
	Critical chain
	Lean development
	Global optimization

	Checklist

	Index

