
Undergraduate Topics in Computer Science

Mauricio Ayala-Rincón
Flávio L.C. de Moura

Applied Logic
for Computer
Scientists
Computational Deduction and Formal
Proofs

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Mauricio Ayala-Rincón • Flávio L.C. de Moura

Applied Logic for Computer
Scientists
Computational Deduction and Formal Proofs

123

Authors
Mauricio Ayala-Rincón
Departments of Mathematics and Computer
Science

Universidade de Brasília
Brasília
Brazil

Flávio L.C. de Moura
Department of Computer Science
Universidade de Brasília
Brasília
Brazil

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-51651-6 ISBN 978-3-319-51653-0 (eBook)
DOI 10.1007/978-3-319-51653-0

Library of Congress Control Number: 2016963310

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Foreword

Despite the enormous progress in theorem proving technology in the last decade,
formal verification is still a time consuming and human-intensive activity. This is
particularly true in the case of formal verification of safety-critical and
mission-critical algorithms. While elementary mathematical properties are usually
elegantly formulated as simple statements about mathematical objects, correctness
properties of algorithms are generally complex statements involving conditional
statements, local definitions, and non-trivial data structures. The complexity
involved in proving these correctness properties supports the myth that the appli-
cation of formal methods in general, and formal verification in particular, requires
highly trained mathematicians.

In reality, all proofs, proofs of elementary mathematical properties as well as
correctness proofs of sophisticated algorithms, can be built on a relatively small set
of basic deductive rules. These rules are the building blocks of modern interactive
theorem provers and proof assistants. A common understanding of these rules and
their deductive mechanisms is fundamental to a wider adoption of formal verifi-
cation tools by software practitioners.

This book focuses on two styles of deductive rules: Natural deduction and
Gentzen’s calculus. The former is usually considered closer to the mathematical
reasoning practice and yields a declarative style of proofs where conclusions follow
from assumptions. The latter is closer to the goal-oriented proof construction
mechanism used in many interactive theorem provers and yields a more procedural
style of proofs. Despite their differences, both styles have the same deductive
power. The book introduces classical propositional and predicate logics in both
styles along with their completeness and correctness properties. It also briefly
discusses constructive variants of these logics and their relations to simply typed
lambda calculus. Finally, the last part of the book illustrates how these
proof-theoretical concepts are used in the verification of algorithms specified in the
Prototype Verification System (PVS).

The great Greek mathematician Euclid is said to have replied “there is no Royal
Road to geometry” to King Ptolemy’s request for an easier road to learning geometry.

v

Of course, the same answer applies to many other subjects in mathematics. In
this book, the authors provide a gentle on-ramp to the study of logic and proof theory,
with plenty of examples and exercises to help engineers and computer scientists on
their journey towards the application of formal methods to real problems.

César A. Muñoz
Research Computer Scientist

NASA Langley Research Center
Hampton, VA

USA

vi Foreword

Preface

This book compiles the course notes on logic we have been taught to computer
science students at the Universidade de Brasília during almost ten years. We
decided to provide students the essential fundaments on mathematical logic in an
instrumental manner, restricting the discussion to only one relevant application of
logic in computer science: logical deduction. Thus, the course notes provide the
foundations of two different technologies to deal with logical deduction: natural
deduction and Gentzen’s sequent calculus. Natural deduction is studied for the
propositional and predicate calculi highlighting elements from this deductive sys-
tem that discriminate between constructive and classical deduction and culminating
with a presentation of Gödel’s completeness theorem. Gentzen’s sequent calculus is
presented as an alternative technology that is proved to be equivalent to natural
deduction. As for natural deduction, in this alternative deductive technology we
highlight the elements that discriminate between constructive and classical
deduction.

The instrumental part of these notes consists of the operationalization of the
deductive rules of Gentzen’s sequent calculus in the context of proof assistants,
using as computational framework the well-known Prototype Verification System
(PVS). Connections between proof rules in this proof assistant and deductive rules
in the sequent calculus are given and applications related with formal verification of
properties of computational systems are illustrated through simple algebraic and
algorithmic examples.

The principal motivation for the development of the notes is to offer under-
graduate students of courses in engineering, computer science, and mathematics,
the minimal theoretical background and most important, the minimal instrumental
knowledge for the application of mathematical logic in the development of modern
computer science. We found that this approach is adequate, since we detected that
several students attending graduate courses on topics such as mathematical logic,
type theory, proof theory and, in general on semantics of computation, despite
being highly motivated, have a lack of the necessary basic knowledge and therefore
are unable to apply elements of deductive logic that are used in nowadays com-
putational artifacts. The essence of the problem is that they did not take logic

vii

seriously since they did not realize that logic actually works as the cornerstone of
several applications in computer science!

We are grateful to all the students, who have attended our courses and who have
given us support as teaching assistants, and who have provided us valuable feed-
back, suggestions and corrections. In particular, we would like to thank Ariane
Alves Almeida and Thiago Mendonça Ferreira Ramos for helping us in the PVS
development of the sorting theory, which we have used to provide short course
projects always related to the verification of simple algorithmic properties. This
development is available in the web page that accompanies our notes: logic4CS.cic.
unb.br. The authors are also grateful to Cesar Muñoz and other members of the
Formal Methods group at NASA LaRC, as well as to Natarajan Shankar and Sam
Owre from SRI International, the developers of PVS, for their kind support in issues
related with the application and semantics of this proof assistant. This support was
of great importance for the successful development of elaborated PVS theories by
our research group at the Universidade de Brasília in which our students, now
colleagues, André Luiz Galdino, Andréia Borges Avelar, Yuri Santos Rêgo and
Ana Cristina Rocha-Oliveira played a paramount role. Despite all the received
support, we would like to emphasize that all mistakes found in these course notes
are our entire responsibility and, that we would be happy to receive all constructive
feedbacks from the reader.

Last but not least, we would like to thank our families for understanding that
academic work not only is done during working hours, but also requires hard work
at home, and in particular to our wives, Mercedes and Tânia, to whom we dedicate
this work.

Brasília D. F., Brazil Mauricio Ayala-Rincón
September 2016 Flávio L.C. de Moura

viii Preface

Contents

1 Derivation and Proofs in the Propositional Logic 1
1.1 Motivation . 1
1.2 Syntax of the Propositional Logic . 1
1.3 Structural Induction . 4
1.4 Natural Deductions and Proofs in the Propositional Logic 10
1.5 Semantics of the Propositional Logic . 25
1.6 Soundness and Completeness of the Propositional Logic 28

1.6.1 Soundness of the Propositional Logic 29
1.6.2 Completeness of the Propositional Logic 33

2 Derivations and Proofs in the Predicate Logic 43
2.1 Motivation . 43
2.2 Syntax of the Predicate Logic . 43
2.3 Natural Deduction in the Predicate Logic. 47
2.4 Semantics of the Predicate Logic . 54
2.5 Soundness and Completeness of the Predicate Logic 57

2.5.1 Soundness of the Predicate Logic . 57
2.5.2 Completeness of the Predicate Logic 59
2.5.3 Compactness Theorem and Löwenheim-Skolem

Theorem . 66
2.6 Undecidability of the Predicate Logic . 68

3 Deductions in the Style of Gentzen’s Sequent Calculus 73
3.1 Motivation . 73
3.2 A Gentzen’s Sequent Calculus for the Predicate Logic 74
3.3 The Intuitionistic Gentzen’s Sequent Calculus 80
3.4 Natural Deduction Versus Deduction à la Gentzen 82

3.4.1 Equivalence Between ND and Gentzen’s SC—The
Intuitionistic Case . 83

3.4.2 Equivalence of ND and Gentzen’s SC—The Classical
Case . 89

ix

4 Derivations and Formalizations . 95
4.1 Formalizations in PVS Versus Derivations. 95

4.1.1 The Syntax of the PVS Specification Language 96
4.1.2 The PVS Proof Commands Versus Gentzen Sequent

Rules . 100
4.2 PVS Proof Commands for Equational Manipulation 108
4.3 Proof Commands for Induction . 112
4.4 The Semantics of the PVS Specification Instructions 118

5 Algebraic and Computational Examples . 121
5.1 Proving Simple Algebraic Properties . 121
5.2 Soundness of Recursive Algorithms Through Induction. 126

6 Suggested Readings. 139
6.1 Proof Theory . 139
6.2 Formal Logic . 140
6.3 Automated Theorem Proving and Type Theory 142

References . 145

Index . 147

x Contents

Introduction

Motivation

For decades, classical introductory textbooks presenting logic for undergraduate
computer science students have been focused on the syntax and semantics of
propositional and predicate calculi and related computational properties such as
decidability and undecidability of logical questions. This kind of presentations,
when given with the necessary formal details, are of great interest from the
mathematical and computational points of view and conform a sin equa non basis
for computer students interested in theory of computing as well as in the devel-
opment of formal methods for dealing with robust software and hardware.

In addition to the unquestionable theoretical importance of these classical lines
of presentation of the fundaments of logic for computer science, nowadays, it is of
essential relevance to computer engineers and scientists for the precise under-
standing and mastering of the mathematical aspects involved in several deductive
methods that are implemented and available in well-known modern proof assistants
and deductive frameworks such as Isabelle, Coq, HOL, ACL2, PVS, among others.
Only through the careful and precise use of this kind of computational tools, it is
possible to assure the mathematical correctness of software and hardware that is
necessary in order to guarantee the desired robustness of computer products.

Today, it is accepted that the software and hardware applied in critical systems,
such as (sea, earth, air and space) human-guided or autonomous navigation sys-
tems, automotive hardware, medical systems and others, should have mathematical
certificates of quality. But also it is clear for the computer science community that
in all other areas in which computer science is being applied, this kind of formal
verification is of fundamental importance (to try) to eliminate any possibility of
harming or even offering a disservice to any user. These areas include financial,
scheduling, administrative systems, games, among others; areas of application of
computational systems in which users might be negatively affected by computa-
tional bugs. It is unnecessary to stress here that, nowadays, the society that is
formed by the users of all these so-called noncritical systems is ready to complain

xi

in a very organized manner against any detected bug; and, the computer engineers
and scientists, who are involved in these developments, will be identified as those
directly responsible. Indeed, nowadays, nobody accepts the old standard excuse
given some years ago: “sorry, the issue was caused by an error of the computer.”

The current presentation of logic for computer science and engineering focuses
on the mathematical aspects subjacent to the deductive techniques applied to build
proofs in both propositional and predicate logic. Derivations or proofs will be
initially presented in the style of natural deduction and subsequently in the style of
Gentzen’s sequent calculus. Both these styles of deduction are implemented in
several proof assistants and knowing how deductions are mathematically justified
will be of great importance for the application of these tools in a very professional
and effective manner. The correspondence between both styles of deduction will be
discussed and simple computational applications in the PVS proof assistant will be
given.

Examples

In order to explain the necessity of knowledge on formal deductive analysis and
technologies for the adequate development of robust computer tools, we consider a
classical piece of mathematics and computation that is implemented in the arith-
metic libraries of the majority of modern computer languages. The problem is to
compute the greatest common divisor, gcd for brevity, of pairs of integers that are
not simultaneously zero.

In first place, the mathematical object that one wants to capture by an imple-
mentation is defined as below.

Definition 1 (Greatest Common Divisor). The greatest common divisor of two
integer numbers i and j, that are not simultaneously equal to zero, is the greatest
number k that divides both i and j.

Several observations are necessary before proceeding with the implementation
of a simple program that effectively might correspond to the Definition 1. For
instance, it is necessary to observe that the domain of the defined function gcd is
Z� Znfð0; 0Þg, while its range is N. Why?

The first naive approach to implement gcd could be an imperative and recursive
algorithm that checks, in a decreasing order, whether natural numbers divide both
the integers i and j. The starting point of this algorithm is the natural number given
by the smallest of the absolute values of the inputs: minfjij; jjjg. But more
sophisticated mathematical knowledge can be used in order to obtain more efficient
solutions. For instance, one could apply a classical result that is attributed to Euclid
and was developed more than two millennia ago.

xii Introduction

Theorem 1 (Euclid 320-275 BC). 8m[0; n� 0; gcdðm; nÞ equals to
gcdðm; nMODmÞ, if n[0, m otherwise; where n MODm denotes the remaining
of the integer division of n by m.

Observe that this result only will provide us a partial solution because, in this
theorem, the domain is restricted to ðNnf0gÞ � N, that is N

þ � N, instead
Z� Znfð0; 0Þg, that is the domain of the mathematical object that we want to
capture. Despite this drawback, we will proceed treating to capture a restricted
version of the mathematical object gcd restricting its domain. In the end,
gcdði; jÞ ¼ gcdðjij; jjjÞ. Why?

A first easy observation is that Euclid’s theorem does not provide any progress
when m[n, because in this case nMOD m ¼ n. Thus, the theorem is of com-
putational interest when m� n. The key point, in order to apply Euclid’s theorem, is
to observe that the remainder of the integer division between naturals n and m,
nMOD m can be computed decreasing n by m, as many times as possible, when-
ever the result of the subtraction remains greater than or equal to m. This is done
until a natural number smaller than m is reached. For instance, 27MOD 5 equals to
ðððð27� 5Þ � 5Þ � 5Þ � 5Þ � 5 ¼ 2. This procedure is possible in general, since
for any integer k, gcdðm; nÞ ¼ gcdðm; nþ kmÞ. Why?

Once the previously suggested procedure stops, one will have as first argument
m, and as second argument a natural number, say n� km, that is less than m. The
procedure can be repeated if one interchanges these arguments, since in general
gcdði; jÞ ¼ gcdðj; iÞ. Why?

Following the previous observations, a first attempt to compute gcd restricted to
the domain Nþ � N may be given by the procedure gcd1 presented in Algorithm 1.

The careful reader will notice that this first attempt fails because the restriction
of the domain is not preserved by this specification; i.e., the first argument of this
function may become equal to zero. For instance, for inputs 6 and 4 infinite
recursive calls are generated by gcd1:

gcd1ð4; 6Þ ! gcd1ð4; 2Þ ! gcd1ð2; 4Þ ! gcd1ð2; 2Þ
! gcd1ð2; 0Þ ! gcd1ð0; 2Þ ! � � �

procedure gcd1(m : N+, n : N) : N ;
if m > n then

gcd1(n,m)
else

gcd1(m,n−m)
end

Algorithm 1: First attempt to specify gcd: procedure gcd1

Introduction xiii

In the end gcd1 fails because it is specified in such a manner that it never returns
a natural number as answer, but instead recursive calls to gcd1.

Formally, the problem can be detected when trying to prove that the “function”
specified as gcd1 is well-defined; i.e., to prove that the function is defined for all
possible inputs of its domain. The attempt to prove well-definedness of gcd1 might
be by nested induction on the first and second parameters of gcd1 as sketched
below.

Induction Basis: Case m ¼ 1. Notice that we start the induction from m ¼ 1
since the type of m is Nþ . Trying to conclude by induction on n, two cases are
to be considered: either 1[n or 1� n. The case 1[n gives rise to the
recursive call gcd1ð0; 1Þ that has ill-typed arguments, since the first argument
does not belong to the set Nþ of positive naturals. The case 1� n gives rise to
the recursive call gcd1ð1; n� 1Þ, that is correctly typed since n� 1� 0. But the
attempt to conclude by induction on n fails.

Induction Step: Case m[1.

Induction Basis: Case n ¼ 0. gcd1ðm; 0Þ ¼ gcd1ð0;mÞ which is undefined,
according to the analysis in the induction basis for m. To correct this
problem, one needs to specify gcdðm; 0Þ ¼ m.
Induction Step: Case n[0. This is done by analysis of cases:
Case m[n, gcd1ðm; nÞ ¼ gcd1ðn;mÞ, that is well-defined by induction
hypothesis, since n\m; that is, the first argument of gcd1 decreases.
Case m� n, gcd1ðm; nÞ ¼ gcd1ðm; n� mÞ, that is well-defined by induction
hypothesis, since the first argument remains the same and the second one
decreases. Notice that in fact n� m\n, since in this step of the inductive
proof m is assumed to be greater than zero. In addition, notice that n� m has
the correct type (N), since n� m� 0.

Despite gcd1 is undefined for m ¼ 0, one has that an eventual recursive call
of the form gcd1ð0; nÞ produces a recursive call of the form gcd1ð0; n� 0Þ, that as
observed before might generate an infinite loop! Thus, a correct procedure should
be specified in such a way that it takes care of this abuse on the restricted domain
of the function gcd (restricted to the domain N

þ � N) avoiding any possible
recursive call with ill-typed arguments.

In the end this attempt to prove well-definedness of the procedure gcd1 fails, but
it provides valuable pieces of information that are useful to correct the procedure.
Several elements of logical deduction were applied in the analysis, among them:

• Application of the principle of mathematical induction;
• Contradictory argumentation (undefined arguments are defined by the specified

function);
• Analysis of cases: gcd1 is well-defined for positive values of m and n because it

is proved well-defined for a complete set of cases for m and n; namely, the case
in which m[n and the contrary case, that is the case in which m[n does not
hold, or equivalently, the case in which m� n.

xiv Introduction

Some of the mathematical aspects of this kind of logical analysis will be made
precise through the next chapters of this book.

From the corrections made when attempting to prove well-definedness of gcd1
a new specification of the function gcd, called gcd2, is proposed in Algorithm 2.

A thoughtful revision of the attempt to proof well-definedness of the procedure
gcd1 will provide a verification that this property is owned by the new specification
gcd2. As before, the proof follows a nested induction on the first and second
parameters of gcd2.

Induction Basis: Case m ¼ 1. gcd2ð1; nÞ gives to cases according to whether
1[n or 1� n, which are treated by nested induction on n.

Induction Basis: Case n ¼ 0. Since 1[n, the answer is 1.
Induction Step: Case n[0. This is the case in which 1� n, that gives rise
to the recursive call gcd2ð1; n� 1Þ, that is well-defined by induction
hypothesis for n.

Induction Step: Case m[1.

Induction Basis: Case n ¼ 0. gcd2ðm; 0Þ ¼ m, which is correct.
Induction Step: Case n[0. This is done by analysis of cases:
Case m[n, gcd2ðm; nÞ ¼ gcd2ðn;mÞ, that is well-defined by induction
hypothesis, since n\m; that is, the first argument of gcd2 decreases. Also,
observe that since it is supposed that n[0, this interchange of the argu-
ments respects the type restriction on the parameters of gcd2.
Case m� n, gcd2ðm; nÞ ¼ gcd2ðm; n� mÞ, that is well-defined by induction
hypothesis, since the first argument remains the same and the second one
decreases. Notice that in fact n� m\n, since in this step of the inductive
proof m is supposed to be greater than zero. Also, since m� n, n� m� 0,
thus n� m has the correct type N.

The moral of this example is that the correction of the specification, from the
point of view of well-definedness of the specified function, relies on the proof that it

procedure gcd2(m : N+, n : N) : N ;
if n = 0 then

m
else

if m > n then
gcd2(n,m)

else
gcd2(m,n−m)

end
end

Algorithm 2: Second attempt to specify gcd: procedure gcd2

Introduction xv

is defined for all possible inputs. Therefore, in order to obtain correct implemen-
tations, it is essential to know how to develop proofs formally. Of course, it is much
more complex to prove that in fact, gcd2 for inputs ðm; nÞ 2 N

þ � N, correctly
computes gcdðm; nÞ.

Once well-definedness of gcd2 is guaranteed, becomes interesting proving that
indeed this specification computes correctly the function gcd as given in the defi-
nition. For doing this one will require the application of Euclid’s theorem as well as
previously properties of gcd (that were highlighted with questions “Why?’s”):

1. For all integers i; j that are not simultaneously equal to zero, that is for all
ði; jÞ 2 Z� Znfð0; 0Þg, gcdði; jÞ 2 N;

2. For all ði; jÞ 2 Z� Znfð0; 0Þg, gcdði; jÞ ¼ gcdðjij; jjjÞ;
3. For all ðm; nÞ 2 N

þ � N, and k 2 Z, gcdðm; nÞ ¼ gcdðm; nþ kmÞ;
4. For all ði; jÞ 2 Z� Znfð0; 0Þg, gcdði; jÞ ¼ gcdðj; iÞ.

Exercise 1
Prove these four properties.

Notice that the third property is the one that justifies the second nested else case
in the specification gcd2, since for the case in which k ¼ �1, one has

gcdðm; nÞ ¼ gcdðm; n� mÞ

Also, this justifies as well Euclid’s theorem.

Exercise 2 (*)
Design an algorithm for computing the function gcd in its whole domain:
Z� Znfð0; 0Þg. Prove that your algorithm is well-defined and that is correct.

Hint: assuming the four properties and Euclid’s theorem prove that gcd2 is
algebraically correct in the following sense:

For all ði; jÞ 2 Z
� � Z, where Z

� denotes the non zero integers, gcd2ðjij; jjjÞ
computes a number k 2 N, such that

• k divides i,
• k divides j and
• For all p 2 Z such that p divides both i and j, it holds that p� k.

The “(*)” in this exercise means that it is of a reasonably high level of com-
plexity or that will require additional knowledge. But the readers do not need to
worry if they cannot answer this exercise at this point, since the objective of the
course notes is to bring the required theoretical background and minimum practice
to be able to formally build mathematical certificates of computational objects, such
as the inquired in this exercise.

xvi Introduction

Structure of the Book

The technology of computational formalization and verification is a mature area in
both computer science and mathematical logic. This technology involves a great
deal of precise mathematical knowledge about logical deduction and proof theory.
These areas are originally placed in the setting of formalisms of mathematics and
have been studied in detail since the earlier years of the last century by well-known
mathematicians, from whom perhaps the most famous were David Hilbert, Luitzen
Brouwer, Kurt Gödel, Alan Turing and Alonso Church, but since then, other
researchers have provided well-known related results in computer science that are
very useful and have been inspiring the development of proof assistants and formal
methods tools (e.g., Gerhard Gentzen, Haskell Curry, Robert Floyd, Corrado Böhm,
Robin Milner, Nicolaas de Bruijn, among others).

In this book we will focus on the mathematical technology of logical deduction
for the most elementary logics that are the propositional logic and the logic of
predicates. The focus will be on the calculi of deduction for these two logical
systems according to two styles of deduction; namely, natural deduction and
sequent calculus, and both deductive systems are contributions of the German
mathematician Gerhard Gentzen. The motivation for restricting our attention to
these two deduction styles and these two logical systems is that they are in the basis
of all modern proof assistants.

In Chap. 1, we will present the propositional logic and its calculus in the style of
natural deduction. We will present the syntax and semantics of this logical system
and then we will prove that the deductive calculus in this natural style is correct and
complete. Correctness is inherent to well-specified computer systems, in general,
and in this setting it means that the deductive calculus deduces correct mathematical
conclusions. Completeness means that all correct mathematical conclusions in the
setting of this logical system can be deduced by the deductive calculus.

In Chap. 2, the propositional calculus is enriched with first-order variables which
can be existentially and universally quantified by giving rise to the logic of pred-
icates or first-order logic. This logical system provides a much more elaborated and
expressive language, which corresponds to the basic logical language applied in
most computational environments. To this end, the natural deductive calculus of the
propositional logic will be enriched with rules for dealing with quantifiers and
variables and, as for the propositional calculus, correctness, and completeness will
be considered too.

In Chap. 3, the style of deduction known as Gentzen’s sequent calculus will be
considered and compared with the style of natural deduction, showing that both
styles have the same deductive power. The presentation of this alternative calculus
is of great computational interest because several proof assistants are based on this
style of deduction.

In the first three chapters we will highlight several aspects about the constructive
and classical logical systems making emphasis on the aspects related with the
calculi associated with minimal, intuitionistic, and classical logic.

Introduction xvii

In Chap. 4, we will discuss in detail how proof commands of the well-known
proof assistant prototype verification system PVS are related to deductive rules
of the formal calculi as well as how inductive proofs and equational reasoning are
conducted in the practice. In Chap. 5 applications of the deductive mechanisms will
be studied through simple case studies formalized in PVS.

xviii Introduction

Chapter 1
Derivation and Proofs
in the Propositional Logic

1.1 Motivation

The most elementary logical system of some practical interest is the propositional
logic. In this system is it possible to express logical consequences, conjunction,
disjunction, and negation of propositions. A proposition is a statement about some-
thing. For instance, one can state that “it is hot weather,” that “it is raining” or
that “driving is dangerous.” Constructions with the language of propositional logic
allow to express several combinations of statements. For instance using conjunction,
disjunction, negation and implication, one obtains sentences such as:

“it is raining” and “driving is dangerous”;
“it is raining” and “it is hot weather”;
“it is raining” implies “driving is dangerous”;
“it is hot weather” implies “driving isn’t dangerous”;
“it isn’t raining” or “it isn’t hot weather”.

A great deal of knowledge can be expressed through the language of propositional
logic and reasoning in this system is of great interest in several areas of computation
such as programming and specification languages, relational data processing, design
of digital circuits, etc.

1.2 Syntax of the Propositional Logic

The language of propositional logic, that is the language of propositional formulas,
consists basically of propositional variables and logical connectives.

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_1

1

2 1 Derivation and Proofs in the Propositional Logic

Table 1.1 Inference rules for the construction of well-formed propositional formulas: the
calculus Cpf

p
(axiom var), if p ∈ V � (axiom �) ⊥ (axiom ⊥)

φ

(¬φ)
(negation)

φ ψ

(φ ∧ ψ)
(conjunction)

φ ψ

(φ ∨ ψ)
(disjunction)

φ ψ

(φ → ψ)
(implication)

Definition 2 (Language of propositional logic) The language of propositional logic
is given by the set of words, denoted as Greek lower case letters, built from an
enumerable set of propositional variables V , usually denoted by the later lower case
letters of the Roman alphabet p, q, r, s, according to the following syntax:

φ ::= V || ⊥ || � || (¬φ) || (φ ∧ φ) || (φ ∨ φ) || (φ → φ)

Aword built following these syntactical rules is called awell-formed propositional
formula.

In the previous syntactical notation, φ represents an arbitrary well-formed propo-
sitional formula; φ ::= V means that variables in V are well-formed propositional
formulas; φ ::= (φ → φ) means that well-formed propositional formulas can be
built from other two well-formed formulas of the language connecting them with the
implication symbol → inside parenthesis. Finally, || denotes choice.

This definition implies an inductive style of construction of well-formed propo-
sitional formulas: from well-formed formulas of the language others can be built
using the connectives and parenthesis adequately according to the given syntax.
This can be also formulated as a deductive calculus of construction of finite words
over the alphabet of symbols in the set V ∪ {⊥,�, (,),¬,∨,∧,→}; that will be
denoted by Cpf .

The application of the inference rules of the calculus Cpf in Table1.1 in a top-down
manner allows construction or derivation of well-defined formulas. In a bottom-up
manner, application of the rules allows checking whether a word is in fact a well-
defined formula. Both these manners of applying the deductive rules are illustrated
in the following example.

Example 1 We can build the word (((¬p) ∨ q) → (¬r)) following the sequence of
applications of the rules of this calculus below.

1.2 Syntax of the Propositional Logic 3

1. p is well-formed by (axiom var);
2. (¬p) is well-formed by (negation)using 1;
3. q is well-formed by (axiom var);
4. ((¬p) ∨ q) is well-formed by (disjunction)using 2 and 3;
5. r is well-formed by (axiom var);
6. (¬r) is well-formed by (negation)using 5;
7. (((¬p) ∨ q) → (¬r)) is well-formed by (implication)using 4 and 6

Instead the previous sequential presentation of the application of the rules, this
derivation can also be represented as a derivation tree:

(disjunction)

(negation)

p
(axiom var)

(¬p) q
(axiom var)

((¬p) ∨ q)

r
(axiom var)

(¬r)
(negation)

(((¬p) ∨ q) → (¬r))
(implication)

In a bottom-up manner, the calculus Cpf can be used to prove whether a finite
word φ ∈ (V ∪ {⊥,�, (,),¬,∨,∧,→})∗ is a well-formed propositional formula.
For instance, consider the word ((¬p) ∧ (q → (¬p))). The unique applicable rule
is (conjunction) , whenever one is able to prove that both the formulas (¬p) and
(q → (¬p)) are well-formed. The former is proved by bottom-up application of
(negation) followed by (axiom var), and the latter can be only be proved to be
well-formed by application of (implication) , whenever q and (¬p) are provable
to be well-formed formulas, that is possible by respective application of (axiom
var) and reusing the proof for (¬p). This can also be presented as the following tree
that should be read from bottom to top:

(negation)

(axiom var)

p

(¬p)

q

p
(axiom var)

(¬p)
(negation)

(q → (¬p))
(implication)

((¬p) ∧ (q → (¬p)))
(conjunction)

Finally, consider the word (q → ¬p))) ∈ (V ∪ {⊥,�, (,),¬,∨,∧,→})∗. One
can prove that this word is not a well-formed propositional formula in the following
way: firstly, the unique rule that applies is (implication) , whenever one is able to
prove that q and ¬p)) are well-formed. The former is possible through application

4 1 Derivation and Proofs in the Propositional Logic

of (axiom var), but no rule applies to prove that the latter word is a well-formed
formula. In fact, except for (axiom var), that does not apply, all other rules expect
as first symbol a left parenthesis. This failing attempt can also be represented as a
tree.

(axiom var)

q ¬p))
(?)

(q → ¬p)))
(implication)

Definition 3 (Derivation of well-formed propositional formulas through Cpf)When-
ever a sequence of applications of rules in Cpf allows the construction of a formula
φ, it is said that φ is deduced or derivable from Cpf , that is denoted as
Cpf φ. Also,
one says that φ is provable to be well-defined, or for brevity, only provable, by Cpf .
The set of well-formed propositional formulas, i.e., the set of all formula φ such that

Cpf φ, will be denoted by Prop.

The problem of verification of well-formedness of formulas is the question
whether
Cpf φ holds, given φ ∈ (V ∪ {⊥,�, (,),¬,∨,∧,→})∗.
Example 2 (Continuing Example 1) According to the derivations given in Example
1, one can say that
Cpf (((¬p) ∨ q) → (¬r)) and
Cpf ((¬p) ∧ (q → (¬p))), but
not
Cpf (q → ¬p))), also denoted as �Cpf (q → ¬p))).

Alternatively, the set Prop can be defined as follows:

Definition 4 The set Prop is the smallest set such that:

1. If p is a propositional variable then p ∈ Prop, and ⊥,� ∈ Prop;
2. If ϕ,ψ ∈ Prop then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) ∈ Prop.

Question: Why such smallest set exists?

We finish this subsection with the definition of sub-formula:

Definition 5 (Sub-formula) The sub-formulas of the propositional formula φ are
recursively defined as follows:

• φ is a sub-formula of itself;
• If φ = (¬ψ) then all sub-formulas of ψ are sub-formulas of φ;
• If φ = (ψ�γ), where � ∈ {∧,∨,→}, then all sub-formulas of ψ and γ are
sub-formulas of φ.

• In addition, if ψ is a sub-formula of ϕ and ψ �= ϕ then ψ is said to be a proper
sub-formula.

1.3 Structural Induction

Before presenting the principle of structural induction, a few examples of natural
induction are given.

1.3 Structural Induction 5

Natural induction can be stated summarily as the following principle about prop-
erties of natural numbers:

Whenever one can prove that a specific property P of natural numbers

• holds for zero (Inductive Basis—IB), that is P(0), and
• that from P(n) one can prove that P(n + 1) (Inductive Step—IS),

one can deduce that P is a property of all naturals.
This principle has been applied in the introduction in order to prove well-

definedness of the specification of the greatest common divisor, for instance.
Following this principle one can prove typical properties of natural numbers

such as:

n∑

i=1

i = n(n + 1)

2
, and

n∑

i=0

ki = kn+1 − 1

k − 1
.

The former is proved as follows:

IB
∑0

i=1 i = 0(0+1)
2 = 0, that is correct.

IS Supposing that
∑n

i=1 i = n(n+1)
2 , one has the following sequence of equalities,

where =IH denotes the step in which the induction hypothesis is applied.

n+1∑

i=1

i =

n∑

i=1

i + (n + 1) =IH

n(n + 1)

2
+ (n + 1) =

(n + 1)(
n

2
+ 1) =

(n + 1)
n + 2

2
= (n + 1)(n + 2)

2
.

6 1 Derivation and Proofs in the Propositional Logic

The latter is proved as follows:

IB
∑0

i=0 ki = k0+1−1
k−1 = 1.

IS Supposing
∑n

i=0 ki = kn+1−1
k−1 , one has the following sequence of equalities.

n+1∑

i=0

ki =

n∑

i=0

ki + kn+1 =IH

kn+1 − 1

k − 1
+ kn+1 =

kn+1 − 1 + kn+1(k − 1)

k − 1
=

kn+2 − 1

k − 1
.

In computation and mathematics elaborated inductive principles are needed. In
particular, in computer science one needs to reason inductively about abstract struc-
tures such as symbols, terms, formulas, sets, sequences, graphs, trees, lists, among
others, as well as about their computational representations as specific data structures
or abstract data types. For instance, when proving a specific property about trees one
uses the “size” of the structure that can be measured by the number of nodes, the
height of the tree, or by other specific measurable structural characteristic of trees.
Thus, the principle of structural induction can be stated as follows: letP be a property
of a class of computational objects; whenever it is possible to prove that

• for each object a of this class, which has “the simplest” structure, P(a) holds (IB)
and,

• if supposing that for each object b with “simpler” structure than an object c the
property holds, then P(c) holds too,

one can conclude that P holds for all objects of this class.
To illustrate how this principle can be applied for the specific case of well-formed

propositional formulas, we can compare formulas by the sub-formula relation. Thus,
a proper sub-formula of a formula is considered structurally “simpler” than the for-
mula. For instance, the formulas ((¬p) ∨ q), (¬p), (¬r), p and q are simpler than
(((¬p) ∨ q) → (¬r)) and, variables and constants are the simplest well-formed
propositional formulas.

Example 3 Now,weare able to proveproperties ofwell-formedpropositional formu-
las such as the fact that they have the same number of opening and closing parentheses
(balanced parentheses).

1.3 Structural Induction 7

IB The simplest formulas have no parentheses. Thus the number of opening and
closing parentheses are equal.
IS Let φ be a well-formed propositional formula different from a variable, and from
the constants. Then supposing that all sub-formulas of φ have balanced parentheses,
different cases should be considered:

Case φ = (¬ψ): since ψ is a sub-formula of φ, it has balanced parentheses. Thus
the total number of opening and closing parentheses in φ are equal.

Case φ = (ψ ∨ γ): since ψ and γ are sub-formulas of φ, they have balanced
parentheses. Thus, since φ adds exactly one opening and one closing parenthesis, φ
has balanced parentheses.

Case φ = (ψ ∧ γ): similar to the previous one.
Case φ = (ψ → γ): similar to the previous one.
No other case is possible.
In this manner it is proved that well-formed propositional formulas have balanced

parentheses.

Several demonstrations by structural induction will be presented in this book in
order to prove that some properties hold for structures such as terms, formulas, and
even derivations and proofs.

Formally, the (structural) induction principle for propositional formulas can be
stated as follows:

Definition 6 (Induction Principle for Prop) Let P be a property over the set Prop. If

1. P(⊥) and P(�) hold, and P(p) holds, for any propositional variable p, and
2. P((¬ϕ)) holds, whenever P(ϕ) holds, and
3. P((ϕ ∧ ψ)), P((ϕ ∨ ψ)), P((ϕ → ψ)) hold, whenever P(ϕ) and P(ψ) hold,

then one can conclude that P holds for any propositional formula.

This principle can be adapted for several inductively defined structures, such as
other classes of well-formed terms, lists, trees, formulas, proofs, etc., and will be
done in this text in a straightforward manner without making explicit a new variation
of the principle. In particular, we will use the principle in structures such as predicate
formulas and proofs.

We can prove by structural induction that the structure of derivation trees corre-
sponds to the structure of well-formed formulas. As derivations in Cpf , well-formed
formulas have a tree structure, as presented in the next definition.

Definition 7 (Tree structure of formulas) Inductively, a well-formed propositional
formula φ is associated with a tree, denoted as Tφ, as follows:

• case φ equals a variable p ∈ V or a constant in {⊥,�}, the associated tree structure
consists of a unique root node labeled with the variable p or the corresponding
constant;

• case φ = (¬ψ), for a well-formed formulaψ, the associated tree structure consists
of a root node labeled with the connective ¬ and with unique sibling node the root
of the tree associated with ψ;

8 1 Derivation and Proofs in the Propositional Logic

• case φ = (ψ�γ), for � ∈ {∧,∨,→} and ψ and γ well-formed propositional for-
mulas, the associated structure consists of a root node labeled with the connective
� and with left sibling and right sibling nodes the root of the trees associated with
ψ and γ, respectively.

Example 4 Consider the well-formed propositional formula (((¬p) ∨ q) →
(¬(¬r))). Its associated tree structure is given as

→

����
��

��
��

���
��

��
��

�

∨

����
��

��
��

���
��

��
��

��
¬

��
¬

��

q ¬

��
p r

Theorem 2 (Structure of proofs versus structure of propositional formulas) The tree
structure of any propositional formula is the same of its well-formedness proof.

Proof The proof is by induction on the structure of propositional formulas.
IB The simplest formulas are propositional variables, and the constants ⊥ and �.
Suppose � ∈ V ∪ {⊥,�}, then the tree structure of �, T�, consists of a unique root
labeled with symbol �, and the deduction tree of its well-formedness consists of a
unique node for the application of (axiom) for variables, ⊥ or �, according to �:

� � (axiom)

Tree Proof

IS The proof is by case analysis.
Case the formula is a negation, (¬φ), of a well-formed formula φ. By induction

hypothesis, the tree structure of φ, Tφ, and its well-formedness proof coincide. The
tree structure of (¬φ) consists of a root labeled with the symbol ¬ and with sibling
node the root of Tφ. The proof of well-formedness of (¬φ) is the same as the proof
of φ adding a derivation rule (negation) . Thus, the correspondence is completed
associating the root of T(¬φ) with the root of the proof.

1.3 Structural Induction 9

¬ (¬φ)

φ
(negation)

Tφ

���������

���������

Tree Proof

Case φ = (ψ�γ), where � ∈ {∧,∨,→} and both ψ and γ are well-formed
propositional formulas. By induction hypothesis, the tree structure of the formulas
ψ and γ, Tψ and Tγ , respectively, coincide with the structure of their proofs of well-
formedness. On the one side, the tree structure of φ consists of a root node labeled
with symbol � and with sibling nodes the roots of Tψ and Tγ . On the other side the
proof ofwell-formedness ofφ consists of both the proofs forψ andγ and an additional
rule application, (conjunction) , (disjunction)or (implication) , according to the
symbol �.

In this manner it is proved that the tree structure of well-formedness proofs and terms
coincide. �

Exercise 3 Proof by structural induction that:

1. For any prefix s of a well-formed propositional formula φ, the number of open
parentheses is greater than or equal to the number of closed parentheses in s.

2. Any proper prefix s of a well-formed propositional formula φ might not be a
well-formed propositional formula. By “proper” we understand that s can not be
equal to φ.

10 1 Derivation and Proofs in the Propositional Logic

1.4 Natural Deductions and Proofs in the Propositional
Logic

In this section, we will show that the goal of natural deduction is to deduce new
information from facts that we already know, that we call hypotheses or premises.
From now on, we will ignore external parentheses of formulas, whenever they do not
introduce ambiguities. Suppose a set of formulas S = {ϕ1,ϕ2, . . . ,ϕn} (for some
n > 0) is given, and we want to know if the formula ψ can be obtained from S. We
start with a simple reasoning, with n = 2: Suppose that the formulas ϕ1 and ϕ2 hold.
In this case, we can conclude that the formula ϕ1 ∧ ϕ2 also holds (according to the
usual meaning of the conjunction). This kind of reasoning is “natural” and can be
represented by a nice mathematical notation as follows:

φ1 φ2

φ1 ∧ φ2

The formulas above the line are the premises, while the one below the line corre-
sponds to the conclusion, i.e., the new information inferred from the premises.

Similarly, if we know that ϕ1 ∧ ϕ2 is true then so is ϕ1, and also ϕ2. This piece
of reasoning can be represented by the following rules:

φ1 ∧ φ2

φ1

φ1 ∧ φ2

φ2

With these three simple rules we can already prove a basic property of the con-
junction: the commutativity, i.e., ifϕ∧ψ thenψ∧ϕ. A proof is a tree whose leafs are
premises and whose root is the conclusion. The internal nodes of the tree correspond
to applications of the rules: any internal node is labeled by a formula that is the
conclusion of the formulas labeling its ancestral nodes.

φ ∧ ψ

ψ

φ ∧ ψ

φ

ψ ∧ φ

In the above tree, the hypothesis ϕ∧ψ is used twice, and the conclusion is ψ ∧ϕ.
In other words, we have proved that ϕ∧ψ
 ψ∧ϕ. In general, we call an expression
of the form ϕ1,ϕ2, . . . ,ϕn
 ψ a sequent. The formulas before the symbol
 are the
premises, and the one after is the conclusion.

The system of natural deduction is composed by a set of inference rules. The idea
is that each connective has an introduction and an elimination rule. Let us see how

1.4 Natural Deductions and Proofs in the Propositional Logic 11

it works for each connective. As we have seen, for the conjunction, the introduction
rule is given by:

φ1 φ2

φ1 ∧ φ2
(∧i)

and two elimination rules:

φ1 ∧ φ2

φ1
(∧e1)

φ1 ∧ φ2

φ2
(∧e2)

The last two rules of elimination for the conjunction might be abbreviated as the
unique rule:

φ1 ∧ φ2

φi (i=1,2)
(∧e)

The rules for implication are very intuitive: consider the following sentence

if it is raining then driving is dangerous

So, what one might conclude if it is raining? That driving is dangerous, of course.
This kind of reasoning can be represented by an inference rule known as modus
ponens (or elimination of the implication):

φ φ → ψ

ψ
(→e)

In order to introduce the implication φ → ψ one needs to assume the premise
of the implication, φ, and prove its conclusion, ψ. The (temporary) assumption φ is
discharged once one introduces the implication, as depicted below:

[φ]a

...

ψ

φ → ψ
(→i) a

In this rule [φ]a denotes the set of all leaves in the deduction ofψwhere the formula
φ was assumed. Thus, the label “a” is related with the set of all these assumptions
in the derivation tree of ψ. And the application of the rule (→i) uses this label “a”

12 1 Derivation and Proofs in the Propositional Logic

to denote that all these assumptions are closed or discharged after the conclusion
φ → ψ is derived.

The (→i) rule can also be applied without discharging any assumption: if one
knows ψ then φ → ψ holds for any φ. In this case application of the rule is labeled
with (→i) ∅. The use of the empty set symbol as label is justified since a label “a”,
as explained before, is related with the set of all assumptions of φ in the derivation
tree labeled with a. The intuition behind this reasoning can be explained by the
following example: suppose that we known that “I cannot fall asleep,” then both
“I drink coffee implies that I cannot fall asleep” and “I don’t drink coffee implies
that I cannot fall asleep” hold. That is, using the previous notation, one obtains the
following derivations, where r and p mean respectively, “I cannot fall asleep” and “I
drink coffee”:

r

p → r
(→i) ∅ r

¬p → r
(→i) ∅

Introduction of the implication without discharging premises can be also be
derived from an application of the rule with discharge of assumption as below:

ψ [φ]a

ψ ∧ φ

ψ

φ → ψ
(→i) a

(∧e)

(∧i)

Application of rules with temporary assumptions can discharge either none or
several occurrences of the assumed formula. For instance, consider the following
derivation:

[φ]z

[φ → φ → ψ]x [φ]y

φ → ψ
(→e)

ψ
(→e)

φ → ψ
(→i) z

φ → φ → ψ
(→i) y

(φ → φ → ψ) → φ → φ → ψ
(→i) x

In the above example, the temporary assumption φwas partially discharged in the
first application of the rule (→i) since only the assumption of the formulaφwith label
z was discharged, but not the assumption with label y. A logical system that allows
this kind of derivation is said to obey the partial discharge convention. The above

1.4 Natural Deductions and Proofs in the Propositional Logic 13

derivation can be solved with a complete discharge of the temporary assumption φ
as follows:

[φ]y

[φ → φ → ψ]x [φ]y

φ → ψ
(→e)

ψ
(→e)

φ → ψ
(→i) ∅

φ → φ → ψ
(→i) y

(φ → φ → ψ) → φ → φ → ψ
(→i) x

A logical system that forbids a partial discharge of temporary assumptions is
said to obey the complete discharge convention. A comparison between the last two
proofs suggests that partial discharges can be replaced by one complete discharge
followed by vacuous ones. This is correct and so these discharge conventions play
“little role in standard accounts of natural deduction,” but it is relevant in type theory
for the correspondence between proofs and λ-terms because “different discharge
labels will correspond to different terms.” For more details, see suggested readings
and references on type theory (Chap. 6).

For the disjunction, the introduction rules are given by:

φ1

φ1 ∨ φ2
(∨i1)

φ2

φ1 ∨ φ2
(∨i2)

The first introduction rule means that, if φ1 holds, or in other words, if one has a
proof of φ1, then φ1 ∨ φ2 also holds, where φ2 is any formula. The meaning of the
rule (∨i2) is similar. As for the elimination of conjunction rule (∧e), these two rules
might be abbreviated as a unique one:

φi (i=1,2)

φ1 ∨ φ2
(∨i)

As another example of simultaneous discharging of occurrences of an assumption,
observe the derivation for
 (φ → ((φ ∨ ψ) ∧ (φ ∨ ϕ))) in which, by application of
the rule of introduction of implication (→i), two occurrences of the assumption of
φ are discharged.

http://dx.doi.org/10.1007/978-3-319-51653-0_6

14 1 Derivation and Proofs in the Propositional Logic

(∨i)
[φ]u

(φ ∨ ψ)

[φ]u

(φ ∨ ϕ)
(∨i)

((φ ∨ ψ) ∧ (φ ∨ ϕ))
(∧i)

(φ → ((φ ∨ ψ) ∧ (φ ∨ ϕ)))
(→i) u

The elimination rule for the disjunction is more subtle because from the fact that
φ1 ∨ φ2 holds, one does not know if φ1, φ2, or both φ1 and φ2 hold. Nevertheless,
if a formula χ can be proved from φ1 and also from φ2, then it can be derived from
φ1 ∨ φ2. This is the idea of the elimination rule for the disjunction that is presented
below. In this rule, the notation [φ1]a means that φ1 is a temporary assumption, or a
hypothesis. Note that the rule scheme (∨e) is labeled with a, b which means that the
temporary assumptions are discharged, i.e., the assumptions are closed after the rule
is applied.

φ1 ∨ φ2

[φ1]a

...

χ

[φ2]b

...

χ

χ
(∨e) a, b

As an example consider the following reasoning: You know that both coffee and
tea have caffeine, so if you drink one or the other you will not be able to fall asleep.
This reasoning can be seen as an instance of the disjunction elimination as follows:
Let p be a proposition whose meaning is “I drink coffee”, q means “I drink tea” and
r means “I cannot fall asleep.” One can prove r as follows:

p ∨ q
(→e)

[p]a p → r

r

[q]b q → r

r
(→e)

r
(∨e) a, b

The above tree has 5 leafs:

1. the hypothesis p ∨ q
2. the temporary assumption p
3. the fact p → r whose meaning is “if I drink coffee then I will not sleep.”
4. the temporary assumption q
5. The temporary assumption q → r whose meaning is “if I drink tea then I would

not fall asleep.”

1.4 Natural Deductions and Proofs in the Propositional Logic 15

We need to assume p and q as “temporary” assumptions because we want to show
that r is true independently of which one holds. We know that at least one of these
propositions holds since we have that p ∨ q holds. Once the rule of elimination of
disjunction is applied these temporary assumptions are discharged.

Exercise 4 Prove that φ ∨ ψ
 ψ ∨ φ, i.e., the disjunction is commutative.

For the negation, the rules are as follows:

[φ]a

...

⊥
¬φ

(¬i) a
φ ¬φ

⊥ (¬e)

The introduction rule says that if one is able to prove ⊥ (the absurd) from the
assumption φ, then ¬φ holds. This rule discharges the assumption φ concluding
¬φ. The elimination rule states that if one is able to prove both a formula φ and its
negation ¬φ then one can conclude the absurd ⊥.

Remark 1 Neither the symbol of negation ¬ nor the symbol � are necessary. � can
be encoded as ⊥ → ⊥ and negation of a formula φ as φ → ⊥. From this encoding,
one can notice that rule (¬e) is not essential; namely, it corresponds to an application
of rule (→e):

φ φ → ⊥
⊥ (→e)

Similarly, one can notice that rule (¬i) is neither essential because it corresponds
to an application of rule (→i):

[φ]a

...

⊥
φ → ⊥ (→i) a

The absurd has no introduction rule, but it has an elimination rule, which corre-
sponds to the application of rule (¬i) discharging an empty set of assumptions.

⊥
φ

(⊥e)

The set of rules presented so far (summarized inTable1.2) represents a fragment of
the propositional calculus known as the intuitionistic propositional calculus, which

16 1 Derivation and Proofs in the Propositional Logic

is considered as the logical basis of the constructive mathematics. The set of for-
mulas derived from these rules are known as the intuitionistic propositional logic.
Only the essential rules are presented, omitting for instance rules for introduction
of disjunction to the right and elimination of conjunction to the right, since both
the logical operators ∧ and ∨ were proved to be commutative. Also derived rules
are omitted. In particular, the rule (⊥e) is also known as the intuitionistic absurdity
rule. Eliminating (⊥e) one obtains the minimal propositional calculus. The formulas
derived from these rules are known as the minimal propositional logic.

Shortly, one can say that the constructive mathematics is the mathematics without
the law of the excluded middle (ϕ ∨ ¬ϕ), denoted by (LEM) for short. In this theory
one replaces the phrase “there exists” by “we can construct,” which is particularly
interesting for Computer Science. The law of the excluded middle is also known as
the law of the excluded third which means that no third option is allowed (tertium
non datur).

Remark 2 There exists a fragment of the intuitionistic propositional logic that is of
great interest inComputer Science. This is known as the implicational fragment of the
propositional logic, and it contains only the rules (→i) and (→e). The computational
interest in this fragment is that it is directly related to type inference in the functional
paradigm of programming. In this paradigm (untyped) programs can be seen as terms
of the following language:

t ::= x | (t t) | (λx.t)

where x ranges over a set of term variables, (t u) represents the application of the
function t to the argument u, and (λx.t) represents a function with parameter x and
body t. The construction (λx.t) is called an abstraction. Types are either atomic or
functional and their syntax is given as:

τ ::= τ | τ → τ

The type of a variable is annotated as x : τ and a context � is a finite set of type
annotations for variables in which each variable has a unique type.

The simple typing rules for the above language are as follows:

�
 t : A → B �
 u : A

�
 (t u) : B
(App)

� ∪ {x : A}
 t : B

�
 (λx.t) : A → B
(Abs)

�
 x : A
(Var), x : A ∈ �

Notice that, if one erases the term information on the rule (App), one gets exactly
the rule (→e). Similarly, the type information of the rule (Abs)corresponds to the
rule (→i). The rule (Var) does not correspond to any rule in natural deduction, but
to a single assumption [A]x, that is a derivation ofA
 A. As an example, suppose one
wants to build a function that computes the sum of two natural numbers x and y. That

1.4 Natural Deductions and Proofs in the Propositional Logic 17

x and y are naturals is expressed through the type annotations x : N and y : N. Thus,
supposing one has proved that the function add has functional type N → N → N

under context � = {x : N, y : N}, one can derive that (add x y) has type N under
the same context as follows:

(App)

�
 add : N → N → N �
 x : N (Var)

�
 (add x) : N → N (Var) �
 y : N

�
 ((add x) y) : N
(App)

The abstraction of the function projection of the first argument of a pair of naturals
is built in this language as (λx.(λy.x)) and its type is derived as follows:

(Abs)

(Var) �
 x : N

{x : N}
 (λy.x) : N → N

 ((λx.(λy.x)) : N → N → N
(Abs)

For a detailed presentation on this subject, see the suggested readings and refer-
ences on type theory.

The exclusion of (LEM) in the intuitionistic logic means that (ϕ∨¬ϕ) holds only
if one can prove either ϕ or ¬ϕ, while in classical logic, it is taken as an axiom.
The classical logic can be seen as an extension of the intuitionistic logic, and hence
there are sequents that are provable in the former, but not in the latter. The standard
example of propositional formula that is provable in classical logic, but cannot be
proved in intuitionistic logic is Peirce’s law: ((ϕ → ψ) → ϕ) → ϕ.

It is relevant to stress here that in the classical propositional calculus the rule
(⊥e) can discharge a non empty set of negative assumptions. This is not the case in
the propositional intuitionistic calculus in which this rule can only be applied with-
out discharging assumptions. Thus, the rules for the propositional classical calculus
include a new rule for proving by contradiction, for short (PBC), in which after deriv-
ing the absurd one can discharge negative assumptions. Essentially, replacing (⊥e)

by (PBC) one obtains the calculus of natural deduction for the classical propositional
logic (see Table1.3).
In general, in order to get classical logic, one can add to the set of rules of Table1.2

one of the following rules, where the rules (¬¬e) and (LEM) are called respectively
the rule of elimination of the double negation and rule for the law ofmiddle excluded.

¬¬φ

φ
(¬¬e)

φ ∨ ¬φ
(LEM)

[¬φ]a

...

⊥
φ

(PBC) a

18 1 Derivation and Proofs in the Propositional Logic

Table 1.2 Rules of natural deduction for intuitionistic propositional logic

Introduction rules Elimination rules

ϕ ψ

ϕ ∧ ψ
(∧i)

ϕ ∧ ψ
ϕ (∧e)

ϕ

ϕ ∨ ψ
(∨i)

ϕ ∨ ψ

[ϕ]u

.

.

.
χ

[ψ]v
.
.
.
χ

χ (∨e) u, v

[ϕ]u

.

.

.
ψ

ϕ → ψ
(→i) u

ϕ ϕ → ψ

ψ
(→e)

[ϕ]u

.

.

.⊥
¬ϕ

(¬i) u
ϕ ¬ϕ

⊥ (¬e)

⊥
ϕ (⊥e)

In fact, any two of these rules can be proved from the third one. Assuming (¬¬e)

one can prove (LEM) and (PBC):

[¬(φ ∨ ¬φ)]x

[¬(φ ∨ ¬φ)]x

[φ]u

φ ∨ ¬φ
(∨i)

⊥ (¬e)

¬φ
(¬i) u

φ ∨ ¬φ
(∨i)

⊥ (¬e)

¬¬(φ ∨ ¬φ)
(¬i) x

φ ∨ ¬φ
(¬¬e)

1.4 Natural Deductions and Proofs in the Propositional Logic 19

[¬φ]a

...

⊥
¬¬φ

(¬i) a

φ
(¬¬e)

One can also prove (LEM) and (¬¬e) from (PBC):

[¬(φ ∨ ¬φ)]a

[¬(φ ∨ ¬φ)]a

[¬φ]b

(φ ∨ ¬φ)
(∨i)

⊥ (¬e)

φ
(PBC) b

φ ∨ ¬φ
(∨i)

⊥ (¬e)

φ ∨ ¬φ
(PBC) a

¬¬φ [¬φ]a

⊥ (¬e)

φ
(PBC) a

Finally, from (LEM) one can prove (¬¬e) and (PBC):

(LEM)
φ ∨ ¬φ

[¬φ]a ¬¬φ

⊥ (¬e)

φ
(⊥e) [φ]b

φ
(∨e) a, b

(LEM)
φ ∨ ¬φ [φ]a

[¬φ]b

...

⊥
φ

(⊥e)

φ
(∨e) a, b

Table1.3 includes the set of natural deduction rules for the classical propositional
logic where our preference was to add the rule (PBC). Note that the rule (⊥e) can be
removed from Table1.3 because it can be deduced directly from (PBC) by an empty
discharge.

20 1 Derivation and Proofs in the Propositional Logic

Table 1.3 Rules of natural deduction for classical propositional logic

Introduction rules Elimination rules

ϕ ψ

ϕ ∧ ψ
(∧i)

ϕ ∧ ψ
ϕ (∧e)

ϕ

ϕ ∨ ψ
(∨i)

ϕ ∨ ψ

[ϕ]u

.

.

.
χ

[ψ]v
.
.
.
χ

χ (∨e) u, v

[ϕ]u

.

.

.
ψ

ϕ → ψ
(→i) u

ϕ ϕ → ψ

ψ
(→e)

[ϕ]u

.

.

.⊥
¬ϕ

(¬i) u
ϕ ¬ϕ

⊥ (¬e)

[¬ϕ]u

.

.

.

⊥
ϕ

(PBC) u

Exercise 5 Prove that the rule (⊥e) is not essential, i.e., prove that this rule can be
derived from the rules presented in Table 1.3.

There are several proofs that are useful in many situations. These proofs are
pieced together to build more elaborated pieces of reasoning. For this reason, these
proofs will be added as derived rules in our natural deduction system. The first one
is for the introduction of the double negation: ϕ
 ¬¬ϕ.

ϕ [¬ϕ]a

⊥ (¬e)

¬¬ϕ
(¬i) a

1.4 Natural Deductions and Proofs in the Propositional Logic 21

The corresponding derived rule is as follows:

φ

¬¬φ
(¬¬i)

Once, a derivation is done, new rules can be included to the set of applicable ones.
Another rule of practical interest is modus tollens, that states that whenever one

knows that φ → ψ and¬ψ,¬φ holds. For instance if we know both that “if Aristotle
was Indian thenhewasAsian” and that “hewasn’tAsian,” thenwehave that “Aristotle
wasn’t Indian.” Modus tollens, that is (¬ψ), (φ → ψ)
 (¬φ), can be derived as
follows.

(→e)
[φ]x (φ → ψ)

ψ (¬ψ)

⊥ (¬e)

(¬φ)
(¬i) x

Thus, a new derived rule for modus tollens can be added:

(¬ψ) (φ → ψ)

(¬φ)
(MT)

Another useful derived rules are the contrapositive ones. In particular, proving
an implication (φ → ψ) by contraposition consists of proving (¬ψ → ¬φ) or
vice versa. Thus, in order to use this reasoning mechanism, it is necessary to build
derivations for (φ → ψ)
 (¬ψ → ¬φ) as well as for (¬ψ → ¬φ)
 (φ → ψ). A
derivation for the former sequent is presented below.

φ → ψ [φ]y

ψ
(→e) [¬ψ]x

⊥ (¬e)

¬φ
(¬i) y

¬ψ → ¬φ
(→i) x

A derivation of the latter sequent is presented below.

¬ψ → ¬φ [¬ψ]y

¬φ
(→e) [φ]x

⊥ (¬e)

ψ
(PBC) y

φ → ψ
(→i) x

22 1 Derivation and Proofs in the Propositional Logic

Table 1.4 Derived rules of natural deduction for propositional logic

ϕ ∨ ¬ϕ
(LEM)

¬¬ϕ
ϕ (¬¬e)

ϕ

¬¬ϕ
(¬¬i)

ψ → ϕ ¬ϕ

¬ψ
(MT) ⊥

ϕ (⊥e)

ϕ → ψ

¬ψ → ¬ϕ
(CP1)

¬ϕ → ¬ψ

ψ → ϕ
(CP2)

Thus, new derived rules for contraposition, for short (CP), can be given as:

φ → ψ

¬ψ → ¬φ
(CP1)

¬ψ → ¬φ

φ → ψ
(CP2)

A few interesting rules that can be derived from the natural deduction calculus
(as given in Table1.3) are presented in Table1.4.

Definition 8 (Formulas provable equivalent) Let φ and ψ be well-formed proposi-
tional formulas. Whenever, one has that φ
 ψ and also that ψ
 φ, it is said that φ
and ψ are provable equivalent. This is denoted as φ �
 ψ.

Notice that φ → ψ �
 ¬ψ → ¬φ.

Exercise 6 Build derivations for both versions of contraposition below.

a. ¬ψ → φ �
 ¬φ → ψ and
b. ψ → ¬φ �
 φ → ¬ψ.

In the sequel, several examples are presented.

Example 5 (Associativity of conjunction and disjunction) Derivations of the asso-
ciativity of conjunction and disjunction are presented.

• First, the associativity of conjunction is proved; that is, (φ ∧ (ψ ∧ ϕ))
 ((φ ∧
ψ) ∧ ϕ):

1.4 Natural Deductions and Proofs in the Propositional Logic 23

(∧i)

(∧e)
(φ ∧ (ψ ∧ ϕ))

φ

(φ ∧ (ψ ∧ ϕ))

(ψ ∧ ϕ)
(∧e)

ψ
(∧e)

(φ ∧ ψ)

(φ ∧ (ψ ∧ ϕ))

(ψ ∧ ϕ)
(∧e)

ϕ
(∧e)

((φ ∧ ψ) ∧ ϕ)
(∧i)

Exercise 7 As an exercise, prove that ((φ ∧ ψ) ∧ ϕ)
 (φ ∧ (ψ ∧ ϕ)).

• Second, the associativity of disjunction is proved; that is, (φ ∨ (ψ ∨ ϕ))
 ((φ ∨
ψ) ∨ ϕ):

(φ ∨ (ψ ∨ ϕ))
(∨i)

(∨i)
[φ]x

(φ ∨ ψ)

((φ ∨ ψ) ∨ ϕ)
∇

((φ ∨ ψ) ∨ ϕ)

((φ ∨ ψ) ∨ ϕ)
(∨e) x, y

where ∇ is the derivation below:

[(ψ ∨ ϕ)]y (∨i)

(∨i)
[ψ]u

(φ ∨ ψ)

((φ ∨ ψ) ∨ ϕ)

[ϕ]u

((φ ∨ ψ) ∨ ϕ)
(∨i)

((φ ∨ ψ) ∨ ϕ)
(∨e) u, v

Exercise 8 As an exercise, prove that ((φ ∨ ψ) ∨ ϕ)
 (φ ∨ (ψ ∨ ϕ)).

Exercise 9 Classify the derived rules of Table1.4 discriminating those that belong
to the intuitionistic fragment of propositional logic, and those that are classical. For
instance, (CP1) was proved above using only intuitionistic rules, which means that
it belongs to the intuitionistic fragment.
Hint: to prove that a derived rule is not intuitionistic, one can show that using only
intuitionistic rules, a strictly classical rule such as (PBC) , (LEM) or (¬¬e) can be
derived.

Exercise 10 Check whether each variant of contraposition below is either an intu-
itionistic or a classical rule.

¬ϕ → ψ

¬ψ → ϕ
(CP3)

ϕ → ¬ψ

ψ → ¬ϕ
(CP4)

Exercise 11 Similarly, check whether each variant of (MT) below is either an intu-
itionistic or a classical rule.

ϕ → ¬ψ ψ

¬ϕ
(MT2)

¬ϕ → ψ ¬ψ

ϕ
(MT3)

¬ϕ → ψ ¬ψ

ϕ
(MT4)

24 1 Derivation and Proofs in the Propositional Logic

Exercise 12 Using only the rules for the minimal propositional calculus, i.e. the
rules in Table1.2 without (⊥e), give derivations for the following sequents.

a. ¬¬¬φ �
 ¬φ.
b. ¬¬(φ → ψ)
 (¬¬φ) → (¬¬ψ).
c. ¬¬(φ ∧ ψ) �
 (¬¬φ) ∧ (¬¬ψ).
d. ¬(φ ∨ ψ) �
 (¬φ ∧ ¬ψ).
e. φ ∨ ψ
 ¬(¬φ ∧ ¬ψ).
f.
 ¬¬(φ ∨ ¬φ).

Exercise 13 Using the rules for the intuitionistic propositional calculus, that is the
rules in Table1.2, give derivations for the following sequents.

a. (¬¬φ) → (¬¬ψ)
 ¬¬(φ → ψ). Compare with item b of Exercise 12.
b.
 ¬¬(¬¬φ → φ).

Exercise 14 (*)Apropositional formulaφ belongs to the negative fragment if it does
not contain disjunctions and all propositional variables occurring in φ are preceded
by negation. Formulas in this fragment have the following syntax.

φ ::= (¬v) || ⊥ || (¬φ) || (φ ∧ φ) || (φ → φ), for v ∈ V

Prove by induction on φ, that for any formula in the negative fragment there are
derivations in the minimal propositional calculus for

 φ ↔ ¬¬φ

i.e., prove
 φ → ¬¬φ and
 ¬¬φ → φ.

Exercise 15 Give deductions for the following sequents:

a. ¬(¬φ ∧ ¬ψ)
 φ ∨ ψ.
b. Peirce’s law:
 ((φ → ψ) → φ) → φ.

Exercise 16 (*) Let � be a set, and ϕ be a formula of propositional logic. Prove that
if ϕ has a classical proof from the assumptions in � then ¬¬ϕ has an intuitionistic
proof from the same assumptions. This fact is known as Glivenko’s theorem (1929).

Exercise 17 (*) Consider the negative Gödel translation from classical proposi-
tional logic to intuitionistic propositional logic given by:

• ⊥n = ⊥
• pn = ¬¬p, if p is a propositional variable.
• (ϕ ∧ ψ)n = ϕn ∧ ψn

• (ϕ ∨ ψ)n = ¬¬(ϕn ∨ ψn)

• (ϕ → ψ)n = ϕn → ψn

Prove that if �
 ϕ in classical propositional logic then �n
 ϕn in intuitionistic
propositional logic.

Exercise 18 Prove the following sequent, the double negation of Peirce’s law, in the
intuitionistic propositional logic:
 ¬¬(((φ → ψ) → φ) → φ)

1.5 Semantics of the Propositional Logic 25

1.5 Semantics of the Propositional Logic

Deduction and derivation correspond to mechanical inference of truth. All syntactic
deductive mechanisms that we have seen in the previous section can be blindly
followed in order to prove that a formula of the propositional logic “holds”, but in
fact there was not presented a semantical counterpart of the notion of being provable.
In this section we present the simple semantics of propositional logic.

In propositional logic the two only possible truth-values are True and False,
denoted by brevity as T and F. No other truth-values are admissible, as it is the case
in several other logical systems (e.g., truth-values as may be true, probably, don’t
know, almost true, not yet, but in the future, etc.).

Definition 9 (Truth-values of atomic formula and assignments) In propositional
logic the truth-values of the basic syntactic formula, that are ⊥, � and variables in
V , are given in the following manner:

• the truth-value of ⊥ is F;
• the truth-value of � is T ;
• the truth-value of a variable v in the set of variables V , is given through a proposi-
tional assignment function from V to {T , F}. Thus, given an assignment function
d : V → {T , F}, the truth-value of v ∈ V is given by d(v).

The truth-value assignment to propositional variables deserve special attention. First,
an assignment is necessary because variables neither can be interpreted as true or
false without having fixed an assignment. Second, only after one has an assignment,
it is possible to decide whether (the truth-value of) a variable is either true or false.
Finally, the truth-value of propositional variables exclusively depends of a unique
given assignment function.

Once an assignment function is given, one can determine the truth-value or seman-
tical interpretation of nonatomic propositional formulas according to the following
inductive definition.

Definition 10 (Interpretation of propositional formula) Given an assignment d over
the set of variables V , the truth-value or interpretation of a propositional formula ϕ
is determined inductively as below:

i. If ϕ = ⊥ or ϕ = �, one says that ϕ is F or T , respectively;
ii. if ϕ = v ∈ V , one says that ϕ is d(v);
iii. if ϕ = (¬ψ), then its interpretation is given from the interpretation of ψ by the

truth-table below:
ψ ϕ = (¬ψ)

T F
F T

26 1 Derivation and Proofs in the Propositional Logic

iv. if ϕ = (ψ ∨ φ), then its interpretation is given from the interpretations of ψ and
φ according to the truth-table below:

ψ φ ϕ = (ψ ∨ φ)

T T T
T F T
F T T
F F F

v. if ϕ = (ψ ∧ φ), then its interpretation is given from the interpretations of ψ and
φ according to the truth-table below:

ψ φ ϕ = (ψ ∧ φ)

T T T
T F F
F T F
F F F

vi. if ϕ = (ψ → φ), then its interpretation is given from the interpretations of ψ
and φ according to the truth-table below:

ψ φ ϕ = (ψ → φ)

T T T
T F F
F T T
F F T

According to this definition, it is possible to determine the truth-value of any
propositional formula under a specific assignment. For instance, to determine that
the formula (v → (¬v)) is false for a given assignment d for which d(v) = T , one
can build the following truth-table according to the assignment of v under d and the
inductive steps for the connectives ¬ and → of the definition:

v (¬v) (v → (¬v))

T F F

Similarly, if d′ is an assignment for which, d′(v) = F, one obtains the following
truth-table:

v (¬v) (v → (¬v))

F T T

Notice, that the interpretation of a formula depends on the given assignment.
Also, although we are talking about the interpretation of a formula under a given

1.5 Semantics of the Propositional Logic 27

assignment it was not proved that, given an assignment, formulas have a unique
interpretation. That is done in the following lemma.

Lemma 1 (Uniqueness of interpretations) The interpretation of a propositional for-
mula ϕ under a given assignment d is unique and it is either true or false.

Proof The proof is by induction on the structure of propositional formulas.
IB In the three possible cases the truth-value is unique: for ⊥ false, for � true and
for v ∈ V , d(v) that is unique since d is functional.
IS This is done by cases.

Case ϕ = (¬ψ). By the hypothesis of induction ψ is either true or false and
consequently, following the item iii. of the definition of interpretation of proposi-
tional formulas, the interpretation of ϕ is univocally given by either false or true,
respectively.

Case ϕ = (ψ ∨φ). By the hypothesis of induction the truth-values of ψ and φ are
unique and consequently, according to the item iv. of the definition of interpretation
of propositional formulas, the truth-value of ϕ is unique.

Case ϕ = (ψ ∧φ). By the hypothesis of induction the truth-values of ψ and φ are
unique and consequently, according to the item v. of the definition of interpretation
of propositional formulas, the truth-value of ϕ is unique.

Caseϕ = (ψ → φ). By the hypothesis of induction the truth-values ofψ andφ are
unique and consequently, according to the item vi. of the definition of interpretation
of propositional formulas, the truth-value of ϕ is unique. �

It should be noticed that a formula may be interpreted both as true and false for
different assignments. Uniqueness of the interpretation of a formula holds only once
an assignment is fixed. Notice, for instance that the formula (v → (¬v)) can be true
or false, according to the selected assignment. If it maps v to T , the formula is false
and in the case that it maps v to F, the formula is true.

Whenever a formula can be interpreted as true for some assignment, it is said that
the formula is satisfiable. In the other case it is said that the formula is unsatisfiable
or invalid.

Definition 11 (Satisfiability and unsatisfiability) Letϕ be a propositional formula. If
there exists an assignment d, such thatϕ is true under d, then it is said to be satisfiable.
If there does not exist such an assignment, it is said that ϕ is unsatisfiable.

The semantical counterpart of derivability is the notion of being a logical conse-
quence.

Definition 12 (Logical consequence and validity) Let � = {φ1, . . . ,φn} be a finite
set of propositional formulas that can be empty, and ϕ be a propositional formula.
Whenever for all assignments under which all formulas of � are true, also ϕ is true,
one says that ϕ is a logical consequence of �, which is denoted as

� |= ϕ

28 1 Derivation and Proofs in the Propositional Logic

When � is the empty set one says that ϕ is valid, which is denoted as

|= ϕ

Notice that the notion of validity of a propositional formula ϕ, corresponds to the
nonexistence of assignments for which ϕ is false. Then by simple observations of
the definitions, we have the following lemma.

Lemma 2 (Satisfiability versus validity)

i. Any valid formula is satisfiable.
ii. The negation of a valid formula is unsatisfiable

Proof i. Let ϕ be a propositional formula such that |= ϕ. Then given any assign-
ment d, ϕ is true under d. Thus, ϕ is satisfiable.

ii. Let ϕ be a formula such that |= ϕ. Then for all assignments ϕ is true, which
implies that for all assignments (¬ϕ) is false. Then there is no possible assign-
ment for which (¬ϕ) is true. Thus, (¬ϕ) is unsatisfiable.

�

1.6 Soundness and Completeness of the Propositional Logic

The notions of soundness (or correctness) and completeness are not restricted to
deductive systems being also applied in several areas of computer science. For
instance, we can say that a sorting algorithm is sound or correct, whenever for any
possible input, that is a list of keys, this algorithm computes as result a sorted list,
according to some ordering which allows comparison of these keys. Unsoundness or
incorrectness of the algorithm could happen, when for a specific input the algorithm
cannot give as output a sorted version of the input; for instance, the algorithm can
compute as output a unordered list containing all keys in the input, or it can omit some
keys that appear in the input list, or it can include some keys that do not appear in
the input list, etc. In the context of logical deduction, correctness means intuitively
that all derived formulas are in fact semantically correct. Following our example,
the sorting algorithm will be said to be complete, whenever it is capable to sort all
possible input lists. An incomplete sorting algorithm may be unable to sort simple
cases such as the cases of the empty or unitary lists, or may be unable to sort lists
with repetitions. From the point of view of logical deduction, completeness can be
intuitively interpreted as the capability of a deductive method of building proofs for
all possible logical consequences.

1.6 Soundness and Completeness of the Propositional Logic 29

1.6.1 Soundness of the Propositional Logic

The propositional calculus, as given by the rules of natural deduction presented
in Table1.3, allows derivation of semantically sound (or correct) conclusions. For
instance, rule (∧i), allows a derivation for the sequent ϕ,ψ
 ϕ ∧ ψ, which is
semantically correct because whenever ϕ and ψ are true, ϕ ∧ ψ is true; that is
denoted as ϕ,ψ |= ϕ ∧ ψ. The correctness of the propositional logic is formalized
in the following theorem.

Theorem 3 (Soundness of the propositional logic) If �
 ϕ, for a finite set of
propositional formulas � = {γ1, . . . , γn}, then � |= ϕ. This can be summarized as

�
 ϕ implies � |= ϕ

And for the case of � equal to the empty set, we have that provable theorems are
valid formulas:

 ϕ implies |= ϕ

Proof The proof is by induction on the structure of derivations. We will consider the
last step of a derivation having as consequence the formula ϕ and as assumptions
only formulas of �.
IB The most simple derivations are those that correspond to a simple selection of
the set of assumptions that are derivations for sequents in which the conclusion is an
assumption belonging to the set �; that is, γ1, . . . , γi(= ϕ), . . . , γn
 ϕ. Notice that
these derivations are correct since γ1, . . . , γi(= ϕ), . . . , γn |= ϕ.
IS For the inductive step, we will consider the last rule (from the Table1.3) applied
in the derivation, supposing correctness of all previous fragments (or subtrees) of the
proof.

Case (∧i). For a derivation finishing in an application of this rule, the last step
of the proof gives as conclusion ϕ that should be of the form (ψ ∧ φ), for formulas
ψ and φ, that are the premises of the last step of the proof. This is depicted in the
following figure.

γ1 . . . γn γ1 . . . γn

�������
�������

�������
�������

ψ φ

(∧i)

(ψ ∧ φ)

The left premise is the root of a derivation tree for the sequent �
 ψ and the right
one, for the sequent �
 φ. In fact, not all assumptions in � need to be open leaves
of these subtrees. By induction hypothesis, one has both � |= ψ and � |= φ. Thus,

30 1 Derivation and Proofs in the Propositional Logic

for all assignments that made the formulas in � true, the formulas ψ and φ are also
true, which implies that (ψ ∧ φ) is true too. Consequently, � |= ϕ.

Case (∧e). For a derivation finishing in an application of this rule, one obtains as
conclusion the formula ϕ from a premise of the form (ϕ ∧ ψ). This is depicted in
the figure below.

γ1 . . . γn

						

(ϕ ∧ ψ)

(∧e)

ϕ

The subtree rooted by the formula (ϕ ∧ ψ) has open leaves labeled with assump-
tions of the set �; not necessarily all these formulas. This subtree is a derivation for
the sequent �
 (ϕ∧ψ). By induction hypothesis, one has that � |= (ϕ∧ψ), which
means that all assignments which make true all formulas in �, make also true the for-
mula (ϕ∧ψ) and consequently both formulas ϕ and ψ. Thus, one can conclude that
all assignments that make true all formulas in �, make also true ϕ; that is, � |= ϕ.

Case (∨i). For a derivation finishing in an application of this rule, the conclusion,
that is the formula ϕ, should be of the form ϕ = (ψ ∨ φ), and the premise of the last
rule is ψ as depicted in the following figure.

γ1 . . . γn

									

ψ

(∨i)

(ψ ∨ φ)

The subtree rooted by the formula ψ and with open leaves labeled by formulas of
�, corresponds to a derivation for the sequent �
 ψ, that by induction hypothesis
implies � |= ψ. This implies that all assignments that make the formulas in � true,
make also ψ true and consequently, the formula (ψ ∨ φ) is true too, under these
assignments. Thus, � |= ϕ.

Case (∨e). For a derivation of the sequent �
 ϕ that finishes in an application
of this rule, one has as premises formulas (ψ ∨ φ), and two repetitions of ϕ. The
former premise labels a root of a subtree with open leaves labeled by assumptions in
�, that corresponds to a derivation for the sequent �
 (ψ ∨ φ), for some formulas
ψ and φ. The latter two repetitions of ϕ, are labeling subtrees with open leaves in �

and [ψ]x, the first one, and [φ]y, the second one, as depicted in the figure below.

1.6 Soundness and Completeness of the Propositional Logic 31

The left subtree whose root is labeled with formula ϕ, corresponds to a derivation
for the sequent �,ψ
 ϕ, and the right subtree with ϕ as root, to a derivation for
the sequent �,φ
 ϕ. By induction hypothesis, one has � |= (ψ ∨ φ), �,ψ |= ϕ
and �,φ |= ϕ. The first means, that for all assignments that make the formulas in �

true, (ψ ∨ φ) is also true. And by the semantics of the logical connective ∨, (ψ ∨ φ)

is true if at least one of the formulas ψ or φ is true. In the case that ψ is true, since
�,ψ |= ϕ, ϕ should be true too; in the case in which φ is true, since �,φ |= ϕ, ϕ
should be true as well. Then whenever all formulas in � are true, ϕ is true as well,
which implies that � |= ϕ.

Case (→i). For a derivation that finishes in an application of this rule, ϕ should
be of the form (ψ → φ), for some formulas ψ and φ. The premise of the last step in
this derivation should be the formula φ. This formula labels the root of subtree that
is a derivation for the sequent �,ψ
 φ. See the next figure.

[ψ]x, γ1 . . . γn

������������

φ

(→i) x

(ψ → φ)

By induction hypothesis, one has that �,ψ |= φ, which means that for all assign-
ments that make all formulas in � and ψ true, φ is also true. Suppose, one has an
assignment d, that makes all formulas in � true. If ψ is true under this assignment, φ
is also true. Ifψ is false under this assignment, by the semantical interpretation of the
connective →, ψ → φ is also true under this assignment. Thus, one can conclude
that for any assignment that makes all formulas in � true, the formula ϕ, that is
ψ → φ is true too. Consequently, � |= ϕ.

Case (→e). If the last step of the derivation is (→e), then its premises are formulas
of the form ψ and (ψ → ϕ), for some formula ψ, as illustrated in the figure below.

γ1 . . . γn γ1 . . . γn

�������
������� 						

ψ (ψ → ϕ)

(→e)

ϕ

32 1 Derivation and Proofs in the Propositional Logic

The left subtree corresponds to a derivation for the sequent �
 ψ and the right
one to a derivation for the sequent �
 (ψ → ϕ). By induction hypothesis, one has
both � |= ψ and � |= (ψ → ϕ). This means that any assignment that makes all
formulas in � true also makes ψ and (ψ → ϕ) true. By the semantical interpretation
of implication, whenever both ψ and ψ → ϕ are true, ϕ should be also true, which
implies that � |= ϕ.

Case (¬i). When this is the last applied rule in the derivation, ϕ is of the form
(¬ψ), and the premise of the last step is ⊥ as depicted in the next figure.

[ψ]x, γ1 . . . γn

����������

⊥
(¬i) x

(¬ψ)

The subtree rooted by ⊥ has open leaves labeled by formulas in � and ψ and
corresponds to a proof of the sequent �,ψ
 ⊥. By induction hypothesis, one has
that �,ψ |= ⊥, which means that for all assignments that make all formulas in �

and ψ true, ⊥ should also be true. But, by the semantical interpretation of ⊥, this is
always false. Then, there is no possible assignment, that makes all formulas in � and
ψ true. Consequently, any assignment that makes all formulas in � true should make
ψ false and, by the interpretation of the connective ¬, it makes (¬ψ) true. Thus, one
can conclude that � |= ϕ.

Case (¬e). For a derivation with last applied rule (¬e), the conclusion, that isϕ, is
equal to the atomic formula ⊥ and the premises of the last applied rule are formulas
ψ and (¬ψ), for some formula ψ as illustrated in the next figure.

γ1 . . . γn γ1 . . . γn

�������
�������

������

ψ (¬ψ)

(¬e)

⊥
The derivation has open leaves labeled by formulas in �. The left and right sub-

trees, respectively, rooted by ψ and ¬ψ correspond to derivations for the sequents
�
 ψ and �
 ¬ψ. By induction hypothesis, one has both � |= ψ and � |= ¬ψ,
which means that any assignment that makes all formulas in � true makes also both
ψ and ¬ψ true. Consequently, there is no assignment that makes all formulas in �

true. Thus, one concludes that � |= ⊥.
Case (PBC). For a derivation with last applied rule (PBC), the situation is illus-

trated in the next figure.

1.6 Soundness and Completeness of the Propositional Logic 33

[¬ϕ]x, γ1 . . . γn

����������
�������

⊥
(PBC) x

ϕ

One has¬ϕ, �
 ⊥ and by induction hypothesis,¬ϕ, � |= ⊥. The latter implies
that no assignment makes ¬ϕ and all formulas in � true. Consequently, for any
assignment that makes all formulas in � true, ¬ϕ should be false and consequently
ϕ true. Thus, one concludes � |= ϕ. �

1.6.2 Completeness of the Propositional Logic

Now, we will prove that the propositional calculus, as given by the rules of natural
deduction presented in Table 1.3, is also complete; that is, each logical consequence
can be effectively proved through application of rules of the propositional logic.
As a preliminary result, we will prove that each valid formula is in fact a formally
provable theorem: |= ϕ implies
 ϕ. Then, we will prove that this holds in general:
whenever � |= ϕ, there exists a deduction for the sequent �
 ϕ, being � a finite
set of propositional formulas.

To prove that validity implies provability, an auxiliary lemma is necessary.

Lemma 3 (Truth-values, assignments, and deductions) Let V be a set of propo-
sitional variables, ϕ be a propositional formula containing only the propositional
variables v1, . . . , vn in V and let d be an assignment. Additionally, let v̂d denote the
formula v whenever d(v) = T and the formula ¬v, whenever d(v) = F, for v ∈ V .
Then, one has

• If ϕ is true under assignment d, then

v̂1
d, . . . , v̂n

d
 ϕ

• Otherwise,
v̂1

d, . . . , v̂n
d
 ¬ϕ

Proof The proof is by induction on the structure of ϕ.
IB. The three possible cases are easily verified:

Case ⊥ for ϕ = ⊥,
 ¬⊥;
Case � for ϕ = �,
 �;
Case variable for ϕ = v ∈ V , since ϕ contains only variables in v1, . . . , vn, then

ϕ = vi, for some 1 ≤ i ≤ n. Two possibilities should be considered: if d(vi) = T ,
one has v̂i

d
 vi, that is, vi
 vi; if d(vi) = F, one has v̂i
d
 ¬vi, that is, ¬vi
 ¬vi.

IS. The analysis proceeds by cases according to the structure of ϕ.

34 1 Derivation and Proofs in the Propositional Logic

Case ϕ = (¬ψ). Observe that the set of variables occurring in ϕ and ψ is the
same. In addition, by the semantics of negation, when ϕ is true under assignment
d, ψ should be false and ψ is true under assignment d only if ϕ is false under this
assignment.

By induction hypothesis, whenever ψ is false under assignment d it holds that

v̂1
d, . . . , v̂n

d
 (¬ψ) = ϕ

that is what we need to prove in this case in which ϕ is true. Also, by induction
hypothesis, whenever ψ is true under assignment d one has

v̂1
d, . . . , v̂n

d
 ψ

which means that there is a deduction of ψ from the formulas v̂1
d, . . . , v̂n

d . Thus,
also a proof from this set of formulas of ¬ϕ is obtained as below.

v̂1
d . . . v̂n

d

									

ψ

(¬¬i)

(¬¬ψ)

For the cases inwhichϕ is a conjunction, disjunction or implication, of formulasψ
andφ, wewill use the following notational convention: {u1, . . . , uk} and {w1, . . . , wl}
are the sets of variables occurring in the formulasψ and φ. Observe that these sets are
not necessarily disjoint and that their union will give the set of variables {v1, . . . , vn}
occurring in ϕ.

Case ϕ = (ψ ∨ φ). On the one side, suppose, ϕ is false under assignment d.
Then, by the semantics of disjunction, both ψ and φ are false too, and by induction
hypothesis, there are proofs for the sequents

û1
d, . . . , ûk

d
 ¬ψ and ŵ1
d, . . . , ŵl

d
 ¬φ

Thus, a proof of ¬ϕ, that is ¬(ψ ∨ φ), is obtained combining proofs for these
sequents as follows.

1.6 Soundness and Completeness of the Propositional Logic 35

On the other side, suppose that ϕ is true. Then, by the semantics of disjunction,
either ψ or φ should be true under assignment d (both formulas can be true too).
Suppose ψ is true, then by induction hypothesis, we have a derivation for the sequent

û1
d, . . . , ûk

d
 ψ

Using this proof we can obtain a proof of the sequent û1d, . . . , ûk
d
 ϕ, which

implies that the desired sequent also holds: v̂1d, . . . , v̂n
d
 ϕ. The proof is depicted

below.

û1d . . . ûk
d

									

ψ

(∨i)

(ψ ∨ φ)

The case in which ψ is false and φ is true is done in the same manner, adding an
application of rule (∨i) at the root of the derivation for the sequent

ŵ1
d, . . . , ŵl

d
 φ

Case ϕ = (ψ ∧ φ). On the one side, suppose, ϕ is true under assignment d.
Then, by the semantics of disjunction, both ψ and φ are true too, and by induction
hypothesis, there are proofs for the sequents

û1
d, . . . , ûk

d
 ψ and ŵ1
d, . . . , ŵl

d
 φ

Thus, a proof of ϕ, that is (ψ ∧ φ), is obtained combining proofs for these sequents
as follows.

36 1 Derivation and Proofs in the Propositional Logic

û1d . . . ûk
d ŵ1

d . . . ŵl
d

�������
�������

��������
��������

ψ φ

(∧i)

ψ ∧ φ

On the other side, suppose that ϕ is false under assignment d. Then, some of the
formulas ψ or φ should be false, by the semantical interpretation of conjunction.
Suppose that ψ is false. The case in which φ is false is analogous. Then, by induction
hypothesis, one has a derivation for the sequent

û1
d, . . . , ûk

d
 ¬ψ

and the derivation for ¬(ψ ∧ φ), that is for ϕ, is obtained as depicted below.

û1d . . . ûk
d [ψ ∧ φ]x

�������
������� (∧e)

¬ψ ψ

(¬e)

⊥
(¬i) x

¬(ψ ∧ φ)

Case ϕ = (ψ → φ). On the one side, suppose, ϕ is false under assignment
d. Then, by the semantics of implication, ψ is true and φ false, and by induction
hypothesis, there are proofs for the sequents

û1
d, . . . , ûk

d
 ψ and ŵ1
d, . . . , ŵl

d
 ¬φ

Thus, a proof of ¬ϕ, that is ¬(ψ → φ), is obtained combining proofs for these
sequents as follows.

1.6 Soundness and Completeness of the Propositional Logic 37

û1
d . . . ûk

d

�������

[ψ → φ]x ψ ŵ1
d . . . ŵl

d

(→e)

��������
��������

φ ¬φ

(¬e)

⊥
(¬i) x

¬(ψ → φ)

On the other side, if ϕ is true under assignment d, two cases should be considered
according to the semantics of implication. First, if φ is true, a proof can be obtained
from the one for the sequent ŵ1

d, . . . , ŵl
d
 φ, adding an application of rule (→i)

discharging an empty set of assumptions for ψ and concluding ψ → φ. Second, if ψ
is false, a derivation can be built from the proof for the sequent û1d, . . . , ûk

d
 ¬ψ
as depicted below.

û1d . . . ûk
d

����������
����������

¬ψ

(→i) ∅
¬φ → ¬ψ

(CP2)

ψ → φ

�

Corollary 1 (Validity and provability for propositional formulas without variables)
Suppose |= ϕ, for a formula ϕ without occurrences of variables. Then,
 ϕ.

Exercise 19 Prove the previous corollary.

Theorem 4 (Completeness: validity implies provability) For all formula of the
propositional logic

|= ϕ implies
 ϕ

Proof (Sketch) The proof is by an inductive argument on the variables occurring
in ϕ: in each step of the inductive analysis we will get rid of the assumptions in
the derivations of ϕ (built accordingly to Lemma 3) related with one variable of the
initial set. Thus, the induction is specifically in the number of variables inϕminus the

38 1 Derivation and Proofs in the Propositional Logic

number of variables that are been eliminated from the assumptions until the current
step of the process. In the end, a derivation for
 ϕ without any assumption will be
reached.

Suppose one has n variables occurring in ϕ, say {v1, . . . , vn}. By the construc-
tion of the previous lemma, since |= ϕ, one has proofs for all of the 2n possible
designations for the n variables. Selecting a variable vn one will have 2n−1 different
proofs of ϕwith assumption vn and other 2n−1 different proofs with assumption¬vn.
Assembling these proofs with applications of (LEM) (for all formulas vi ∨ ¬vi, for
i �= n) and rule (∨e), as illustrated below, one obtains a derivation for vn
 ϕ and
¬vn
 ϕ, from which a proof for
 ϕ is also obtained using (LEM) (for vn ∨ ¬vn)
and (∨e). The inductive sketch of the proof is as follows.
IB. The case in which ϕ has no occurrences of variables holds by the Corollary
1. Consider ϕ has only one variable v1, Then by a simple application of rule (∨e),
proofs for v1
 ϕ and ¬v1
 ϕ, are assembled as below obtaining a derivation for

 ϕ. The existence of proofs for v1
 ϕ and ¬v1
 ϕ is guaranteed by Lemma 3.

IS. Suppose ϕ has n > 1 variables. Since |= ϕ, by Lemma 3 one has 2n−1 different
derivations for vn, v̂1

d, . . . , v̂n−1
d
 ϕ as well for ¬vn, v̂1

d, . . . , v̂n
d
 ϕ, for all

possible designations d. To get rid of the variable vn one can use these derivations
and (LEM) as below.

In this manner, one builds, for each variable assignment d, a derivation for
v̂1

d, . . . , v̂n−1
d
 ϕ. Proceeding in this way, that is using (LEM) for other vari-

ables and assembling the proofs using the rule (∨e) one will be able to get rid of all
other variables until a derivation for
 ϕ is obtained.

To let things clearer to the reader, notice that the first step analyzed above implies
that there are derivations ∇ and ∇′, respectively, for the sequents v̂1

d, . . . , v̂n−2
d
,

vn−1
 ϕ and v̂1
d, . . . , v̂n−2

d
,¬vn−1
 ϕ. This is possible since in the previous

analysis the assignment d is arbitrary; then, derivations as the one depicted above
exist for assignments that map vn either to true or false. Thus, a derivation for

1.6 Soundness and Completeness of the Propositional Logic 39

v̂1
d, . . . , v̂n−2

d
 ϕ is obtained using (LEM) for the formula vn−1 ∨ ¬vn−1, the
derivations ∇ and ∇′, and the rule (∨e), that will discharge the assumptions [vn−1]
and [¬vn−1] in the derivations ∇ and ∇′, respectively. �

Remark 3 To clarify the way in which derivations are assembled in the previous
inductive proof, let us consider the case of a valid formula ϕwith three propositional
variables p, q, and r and for brevity let∇000,∇001, . . . ,∇111, denote derivations for
p, q, r
 ϕ; p, q,¬r
 ϕ; . . . , ¬p,¬q,¬r
 ϕ, respectively. Notice that the
existence of derivations ∇ ijk , for i, j, k = {0, 1} is guaranteed by Lemma 3.

Derivations, ∇00 for p, q
 ϕ and ∇01 for p,¬q
 ϕ are obtained as illustrated
below.

∇00 : r ∨ ¬r

[p]x[q]y[r]z

∇000
ϕ

[p]x[q]y[¬r]z′

∇001
ϕ

ϕ
(∨e) z, z′

∇01 : r ∨ ¬r

[p]x[¬q]y′ [r]z

∇010
ϕ

[p]x[¬q]y′ [¬r]z′

∇011
ϕ

ϕ
(∨e) z, z′

Combining the two previous derivations, a proof ∇0 is obtained for p
 ϕ as
follows.

∇0 : q ∨ ¬q

[p]x[q]y

∇00
ϕ

[p]x[¬q]y′

∇01
ϕ

ϕ
(∨e) y, y′

Analogously, combining proofs ∇100 and ∇101 one obtains derivations ∇10 and∇11 respectively for ¬p, q
 ϕ and ¬p,¬q
 ϕ. From These two derivations it’s
possible to build a derivation ∇1 for ¬p
 ϕ. Finally, from ∇0 and ∇1, proofs for
p
 ϕ and ¬p
 ϕ, one obtains the desired derivation for
 ϕ.

The whole assemble, that is a derivation ∇ for
 ϕ, is depicted below. Notice
the drawback of being exponential in the number of variables occurring in the valid
formula ϕ.

40 1 Derivation and Proofs in the Propositional Logic

∇
∇0

∇00

∇000
ϕ

∇001
ϕ

ϕ
∇01

∇010
ϕ

∇011
ϕ

ϕ

ϕ
∇1

∇10

∇100
ϕ

∇101
ϕ

ϕ
∇11

∇110
ϕ

∇111
ϕ

ϕ

ϕ

ϕ

Exercise 20 Build a derivation for the instance of Peirce’s law in propositional vari-
ables p and q according to the inductive construction of the proof of the completeness
(Theorem 4). That is, first build derivations for p, q
 ((p → q) → p) → p,
p,¬q
 ((p → q) → p) → p, ¬p, q
 ((p → q) → p) → p and
¬p,¬q
 ((p → q) → p) → p, and then assemble these proofs to obtain a
derivation for
 ((p → q) → p) → p.

Finally, we proceed to prove the general version of the completeness of proposi-
tional logic, that is

� |= ϕ implies �
 ϕ

Theorem 5 (Completeness of Propositional Logic) Let � be a finite set of proposi-
tional formulas, and ϕ be a propositional formula. If � |= ϕ then �
 ϕ.

Proof Let � = {γ1, . . . , γn}. Initially, notice that

γ1, . . . , γn |= ϕ implies |= γ1 → (γ2 → (· · · (γn → ϕ) · · ·))

Indeed, by contraposition, γ1 → (γ2 → (· · · (γn → ϕ) · · ·)) can only be false if
all formulas γi, for i = 1, . . . , n are true and ϕ is false, which gives a contradiction
to the assumption that ϕ is a logical consequence of �.

By, Theorem 4, the valid formula γ1 → (γ2 → (· · · (γn → ϕ) · · ·)) should be
provable, that is, there exists a derivation, say ∇ , for

 γ1 → (γ2 → (· · · (γn → ϕ) · · ·))

To conclude, a derivation ∇′ for γ1, . . . , γn
 ϕ can be built from the derivation
∇ by assuming [γ1], [γ2], etc. and eliminating the premises of the implication γ1,
γ2, etc. by repeatedly applications the rule (→e), as depicted below.

[γ2]u2
[γ1]u1

∇
γ1 → (γ2 → (· · · (γn → ϕ) · · ·))

γ2 → (· · · (γn → ϕ) · · ·) (→e)

.

.

.

.
[γn]un γn → ϕ

ϕ
(→e)

(→e)

�

1.6 Soundness and Completeness of the Propositional Logic 41

Additional Exercise 21 As explained before, the classical propositional logic can
be characterized by any of the equivalent rules (PBC), (¬¬e) or (LEM). Show that
Peirce’s law is also equivalent to any of these rules. In other words, build intuitionistic
proofs for the rules (PBC), (¬¬e) and (LEM) assuming the rule:

((φ → ψ) → φ) → φ
(LP)

Next, prove (LP) in three different ways: each proof should be done in the intu-
itionistic logic assuming just one of (PBC), (¬¬e) and (LEM) at a time.

Additional Exercise 22 Prove the following sequents:

a. φ → (ψ → γ),φ → ψ
 φ → γ
b. (φ ∨ (ψ → φ)) ∧ ψ
 φ
c. φ → ψ
 ((φ ∧ ψ) → φ) ∧ (φ → (φ ∧ ψ))

d.
 ψ → (φ → (φ → (ψ → φ)))

Chapter 2
Derivations and Proofs in the Predicate Logic

2.1 Motivation

The propositional logic has several limitations for expressing ideas; mainly, it is not
possible to quantify over sets of individuals and reason about them. These limitations
can be better explained through examples

“Every prime number bigger than 2 is odd”
“There exists a prime number greater than any given natural number”

In the language of the propositional logic, this kind of properties can only be rep-
resented by a propositional variable because there is no way to split this information
into simpler propositions joined by connectives and able to express the quantifica-
tion over the natural numbers. In fact, the information in these sentences includes
observations about sets of prime numbers, odd numbers, natural numbers, and quan-
tification over them, and these relations cannot be straightforwardly captured in the
language of propositional logic.

In order to overcome these limitations of the expressive power of the proposi-
tional logic, we extend its language with variables which range over individuals, and
quantification over these variables. Thus, in this chapter we present the predicate
logic, also known as first-order logic. In order to obtain a language with abilities
to identify the required additional information, we need to extend the propositional
language and provide a more expressive deductive calculus.

2.2 Syntax of the Predicate Logic

The language of the first-order predicate logic has twokinds of expressions: terms and
formulas.While in the language of propositional logic formulas that are built up from
propositional variables, in the predicate logic they are built fromatomic formulas, that
are relational formulas expressingproperties of terms such as “prime(2)”, “prime(x)”,

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_2

43

44 2 Derivations and Proofs in the Predicate Logic

“x is bigger than 2”, etc. Formulas are built from relational formulas using the logical
connectives as in the case of propositional logic, but in predicate logic also quantifiers
over variables will be possible. Terms and basic relational formulas are built out of
variables and two sets of symbols F and P. Each function symbol in F and each
predicate symbol in P come with its fixed arity (that is, the number of its arguments).
Constants can be seen as function symbols of arity zero. No predicate symbols with
arity zero are allowed. This is the part of the language that is flexible since the sets
F and P can be chosen arbitrarily.

Intuitively, predicates are functions that represent properties of terms. In order
to define predicate formulas, we first define terms, and to do so, we assume an
enumerable set V of term variables.

Definition 13 (Terms) A term t is defined inductively as follows:

1. Any variable x ∈ V is a term;
2. If t1, t2, . . . , tn are terms, and f ∈ F is a function symbol with arity n ≥ 0 then

f (t1, t2, . . . , tn) is a term. A function of arity zero is a constant.

Notation 1 We follow the usual notational convention for terms. Constant symbols,
function symbols, arbitrary terms, and variables are denoted by Roman lower case
letters, respectively, of the first, second, third, and fourth quarters of the alphabet:
a, b, . . ., for constant symbols; f, g, . . ., for function symbols; s, t, . . . for arbitrary
terms and; x, y, z, for variables.

Terms, as given in the previous definition, could be equivalently presented by the
following syntax:

t :: = x || f (t, . . . , t)

Definition 14 (Variable occurrence) The set of variables occurring in a term t , de-
noted by var(t), is inductively defined as follows:

• If t = x then var(t) = {x}
• If t = f (t1, . . . , tn) then var(t) = var(t1) ∪ · · · ∪ var(tn)

We define the substitution of the term u for x in the term t , written t[x/u], as
the replacement of all occurrences of x in t by u. Formally, we have the following
definition.

Definition 15 (Term Substitution) Let t, u be terms, and x , a variable. We define
t[x/u] inductively as follows:

• x[x/u] = u;
• y[x/u] = y, for y �= x ;
• f (t1, . . . , tn)[x/u] = f (t1[x/u], . . . , tn[x/u]) (n ≥ 0).

2.2 Syntax of the Predicate Logic 45

Now we are a ready to define the formulas of the predicate logic:

Definition 16 (Formulas) The set of formulas of the first-order predicate logic over
a variable set V and a symbol set S = (F,P) is inductively defined as follows:

1. ⊥ and � are formulas;
2. If p ∈ P with arity n > 0, and t1, t2, . . . , tn are terms then p(t1, t2, . . . , tn) is a

formula;
3. If ϕ is a formula then so is (¬ϕ);
4. If ϕ1 and ϕ2 are formulas then so are (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2) and (ϕ1 → ϕ2);
5. If x ∈ V and ϕ is a formula then (∀xϕ) and (∃xϕ) are formulas.

The symbol ∀x (resp. ∃x) means “for all x” (resp. “there exists a x”), and the
formula ϕ is the body of the formula (∀xϕ) (resp. (∃xϕ)). Since quantification is
restricted to variable terms, the defined language corresponds to a so-called first-
order language.

The set of formulas of the predicate logic have the following syntax:

ϕ:: = p(t, . . . , t) || ⊥ || � || (¬ϕ) || (ϕ ∧ ϕ) || (ϕ ∨ ϕ) || (ϕ→ϕ) || (∀xϕ) || (∃xϕ)

Formulas of the form p(t1,. . ., tn) are called atomic formulas because they can-
not be decomposed into simpler formulas. As usual, parenthesis are used to avoid
ambiguities and the external ones will be omitted. The quantifiers ∀x and ∃x bind the
variable x in the body of the formula. This idea is formalized by the notion of scope
of a quantifier:

Definition 17 (Scope of quantifiers, free and bound variables) The scope of ∀x

(resp. ∃x) in the formula ∀xϕ (resp. ∃xϕ) is the body of the quantified formula: ϕ. An
occurrence of a variable x in the scope of ∀x or ∃x is called bound. An occurrence
of a variable that is not bound is called free.

Since the body of a quantified formula can have occurrences of other quantified
formulas that abstract the same variable symbol, it is necessary to provide more
precise mechanisms to build the sets of free and bound variables of a predicate
formula. This can be done inductively according to the following definitions:

Definition 18 (Construction of the set of free variable) Let ϕ be a formula of the
predicate logic. The set of free variables of ϕ, denoted by fv(ϕ), is inductively
defined as follows:

1. fv(⊥) = fv(�) = ∅;
2. fv(p(t1, . . . , tn)) = var(t1) ∪ . . . ∪ var(tn);
3. fv(¬ϕ) = fv(ϕ);
4. fv(ϕ�ψ) = fv(ϕ) ∪ fv(ψ), where � ∈ {∧,∨,→};
5. fv(Qxϕ) = fv(ϕ) \ {x}, where Q ∈ {∀, ∃}.

A formula without occurrences of free variables is called a sentence.

46 2 Derivations and Proofs in the Predicate Logic

Definition 19 (Construction of the set of bound variables) Let ϕ be a formula of the
predicate logic. The set of bound variables of ϕ, denoted by bv(ϕ), is inductively
defined as follows:

1. bv(⊥) = bv(�) = ∅;
2. bv(p(t1, . . . , tn)) = ∅;
3. bv(¬ϕ) = bv(ϕ);
4. bv(ϕ�ψ) = bv(ϕ) ∪ bv(ψ), where � ∈ {∧,∨,→};
5. bv(Qxϕ) = bv(ϕ) ∪ {x}, where Q ∈ {∀, ∃}.

Informally, the name of a bound variable is not important in the sense that it can be
renamed to any fresh name without changing the semantics of the term. For instance,
the formulas ∀x (x ≤ x), ∀y(y ≤ y) and ∀z(z ≤ z) represent the very same object.
The sole restriction that needs to be considered is that variable capture is forbidden,
i.e., no free variable can become bound after a renaming of a variable. For instance,
if p denotes a binary predicate then ∀x p(x, y) is a renaming of ∀z p(z, y), while
∀y p(y, y) is not. The next definition will formalize the notion of substitution. The
capture of free variables by a substitution is also forbidden, and we assume that a
renaming of bound variables is always performed when necessary to avoid capture.

Definition 20 (Substitution) Let ϕ be a formula of the predicate logic. The substi-
tution of x by t in ϕ, written ϕ[x/t], is inductively defined as follows:

1. ⊥[x/t] = ⊥ and �[x/t] = �;
2. p(t1, . . . , tn)[x/t] = p(t1[x/t], . . . , tn[x/t]);
3. (¬ψ)[x/t] = ¬(ψ[x/t]);
4. (ψ�γ)[x/t] = (ψ[x/t])�(γ [x/t]), where � ∈ {∧,∨,→};
5. (Qyψ)[x/t] = Qy(ψ[x/t]), where Q ∈ {∃,∀}, and renaming of bound variables

is assumed to avoid capture of variables.

Example 6 Consider the following applications of substitution:

• (∀x p(y))[y/x] = ∀z p(y)[y/x] = ∀z p(y[y/x]) = ∀z p(x) and
• (∀x p(x))[x/t] = ∀y p(y)[x/t] = ∀y p(y[x/t]) = ∀y p(y).

Notice that in the second application, renaming x as y was necessary to avoid capture.

The necessary renamings to avoid capture of variables in substitutions can be
implemented in several ways. For instance, it can be done by modifying item 5 in
the definition of substitution in such a way that before propagating the substitution
inside the scope of a quantified formula of the form (Qxϕ)[x/t], where Q ∈ {∀, ∃},
it is checked whether x = y or x ∈ fv(t): whenever x = y or x ∈ fv(t) renaming
the quantified variable name x as a fresh variable name z is applied, in other case no
renaming is needed

(Qxϕ)[y/t] =
{

(Qzϕ[x/z][y/t]), if x = y or x ∈ fv(t),
(Qxϕ[y/t]), otherwise.

The size of predicate expressions (terms and formulas) is defined in the usual
manner.

2.2 Syntax of the Predicate Logic 47

Definition 21 (Size of predicate expressions) Let t be a predicate term and ϕ a
predicate formula. The size of t , denoted as |t |, is recursively defined as follows:

• |x | = 1, for x ∈ V;
• | f (t1, . . . , tn)| = 1 + |t1| + · · · + |tn|, for n ≥ 0.

The size of ϕ, denoted as |ϕ|, is recursively defined as follows:

• |⊥| = |�| = 1;
• |p(t1, . . . , tn)| = 1 + |t1| + · · · + |tn|, for n ≥ 1;
• |(¬ψ)| = 1 + |ψ |;
• |(ψ�γ)| = 1 + |ψ | + |γ |, where � ∈ {∧,∨,→};
• |(Qyψ)| = 1 + |ψ |, where Q ∈ {∃,∀}.
Exercise 23

a. Consider a predicate formula ϕ and a term t . Prove that there are no bound
variables in the new occurrences of t in the formula ϕ[x/t]. For doing this use
induction on the structure of ϕ. Of course, occurrences of the term t in the original
formula ϕ might be under the scope of quantifiers and consequently variables
occurring in these subterms would be bound.

b. Let k be the number of free occurrences of the variable x in the predicate formula
ϕ. Prove, also by induction on ϕ, that the size of the term ϕ[x/t] is given by
k|t | + |ϕ| − k.

c. For x �= y, prove also that:

i. ϕ[x/s][x/t] = ϕ[x/s[x/t]];
ii. ϕ[x/s][y/t] = ϕ[x/s[y/t]][y/t], if y /∈ var(t);
iii. ϕ[x/s][y/t] = ϕ[y/t][x/s], if x /∈ var(t) and y /∈ var(s).

2.3 Natural Deduction in the Predicate Logic

The set of rules of natural deduction for the predicate logic is an extension of the
set presented for the propositional logic. The rules for conjunction, disjunction,
implication, and negation have the same shape, but note that now the formulas are
the ones of predicate logic. In this section, we also discuss theminimal, intuitionistic,
and classical predicate logic. Thus the rules are those in Table1.2, without the rule
(⊥e) for the minimal predicate logic and with this rule for the intuitionistic predicate
logic, and in Table1.3 for the classical predicate logic, plus four additional rules for
dealing with quantified formulas.

We start by expanding the set of natural deduction rules with the ones for quan-
tification. The first one is the elimination rule for the universal quantifier:

∀xϕ

ϕ[x/t] (∀e)

http://dx.doi.org/10.1007/978-3-319-51653-0_1
http://dx.doi.org/10.1007/978-3-319-51653-0_1

48 2 Derivations and Proofs in the Predicate Logic

The intuition behind this rule is that from a proof of ∀xϕ, we can conclude ϕ[x/t],
where t is any term. This transformation is done by the substitution operator pre-
viously defined that replaces every free occurrence of x by an arbitrary term t in
ϕ. According to the substitution operator, “every” occurrence of x in ϕ is replaced
with the “same” term t . The following example shows an application of (∀e) in a
derivation:

Example 7 ∀x p(a, x),∀x∀y(p(x, y) → p(f (x), y)) � p(f (a), f (a)).

∀x p(a, x)

p(a, f (a))
(∀e)

∀x∀y(p(x, y) → p(f (x), y))

∀y p(a, y) → p(f (a), y)
(∀e)

p(a, f (a)) → p(f (a), f (a))
(∀e)

p(f (a), f (a))
(→e)

Note that the application of (→e) is identical to what is done in the propositional
calculus, except for the fact that now it is applied to predicate formulas.

The introduction rule for the universal quantifier is more subtle. In order to prove
∀xϕ one needs first to prove ϕ[x/x0] in such a way that no open assumption in the
derivation of ϕ[x/x0] can contain occurrences of x0. This restriction is necessary
to guarantee that x0 is general enough and can be understood as “any” term, i.e.,
nothing has been assumed concerning x0. The (∀i) rule is given by

ϕ[x/x0]
∀xϕ

(∀i)

where x0 is a fresh variable not occurring in any open assumption in the derivation
of ϕ[x/x0].
Example 8 ∀x (p(x) ∧ q(x)) � ∀x (p(x) → q(x)).

∀x (p(x) ∧ q(x))

p(x0) ∧ q(x0)
(∀e)

q(x0)
(∧e)

p(x0) → q(x0)
(→i)∅

∀x (p(x) → q(x))
(∀i)

Note that the formula p(x0) → q(x0) depends only on the hypothesis ∀x (p(x) ∧
q(x)), which does not contain x0. Thus x0 might be considered arbitrary, which
allows the generalization through application of rule (∀i). In fact, note that the above
proof of p(x0) → q(x0) could be done for any other term, say t instead x0, which
explains the generality of x0 in the above example.

2.3 Natural Deduction in the Predicate Logic 49

The introduction rule for the existential quantifier is as follows:

ϕ[x/t]
∃x ϕ

(∃i)

where t is any term.

Example 9 ∀x q(x) � ∃x q(x).

∀x q(x)

q(x0)
(∀e)

∃x q(x)
(∃i)

Similarly to (∀i), the elimination rule for the existential quantifier is more subtle:

∃x ϕ

[ϕ[x/x0]]u
...

χ

χ
(∃e) u

This rule requires the variable x0 be a fresh variable neither occurring in any other
open assumption than in [ϕ[x/x0]]u itself nor in the conclusion fv(χ). The intuition
of this rule might be explained as follows: knowing that ∃x ϕ holds, if assuming
that an arbitrary x0 witnesses the property ϕ, i.e., assuming [ϕ[x/x0]]u , one can
infer χ , then χ holds in general. This kind of analysis is done, for instance, when
properties about numbers are inferred from the knowledge of the existence of prime
numbers of arbitrary size, or (good/bad) properties about institutions are inferred
from the knowledge of the existence of the (good/bad) qualities of some individuals
in their staffs. These general properties are inferred without knowing specific prime
numbers or without knowing who are specifically the (good/bad) individuals in the
institutions.

Example 10 This example attempts to bring a little bit intuition about the use of
these rules. Let p, q, and r be predicate symbols with the intended meanings: p(z)
means “z is a planet different from the earth with similar characteristics”; q(y)
means “country y adopts action to mitigate global warming” and r(x, y) means “x
is a leader, who works in the ministry of agriculture or environment of country y
and who is worried about climate change”. Thus, from the hypotheses ∀y∃xr(x, y),∀y∀x (r(x, y) → q(y)) and ∀z(∀yq(y) → ¬p(z)), we can infer that we do not need
a “Planet B” as follows:

50 2 Derivations and Proofs in the Predicate Logic

∀y∃xr(x, y)
∃xr(x, c0)

(∀e) [r(l0, c0)]u

∀y∀x (r(x, y) → q(y))

∀x (r(x, c0) → q(c0))
(∀e)

r(l0, c0) → q(c0)
(∀e)

q(c0)
(→e)

q(c0)
(∃e) u

∀yq(y)
(∀e) ∀z(∀yq(y) → ¬p(z))

∀yq(y) → ¬p(B)
(∀e)

¬p(B)
(→e)

Example 11 The use of substitution in natural deduction rules for quantifiers is
illustrated in this example. Initially, consider a unary predicate p. Below, it is depicted
a derivation for ∃x p(x) � ¬∀x ¬p(x).

∃x p(x)

[p(x0)]u
[∀x¬p(x)]v

¬p(x0)
(∀e)

⊥ (¬e)

¬∀x¬p(x)
(¬i) v

¬∀x¬p(x)
(∃e) u

Now, consider a predicate formula ϕ and a variable x that might or might not
occur free in ϕ. The next derivation, denoted as ∇3, proofs that � ∃xϕ → ¬∀x¬ϕ.
Despite the proof for ϕ appears to be the same than the one above for the unary
predicate p, several subtle points should be highlighted. In the application of rule
(∃e) in the derivation ∇3, it is forbidden the selection of a witness variable “y”, to
be used in the witness assumption [ϕ[x/y]]w, such that y belongs to the set of free
variables occurring in ϕ. Indeed, y should be a fresh variable. To understand this
restriction, consider ϕ = q(y, x) and suppose the intended meaning of q is “x is the
double of y”. If the existential formula is ∃x p(y, x) the witness assumption cannot
be p(y, x)[x/y] = p(y, y), since this selection of “y” is not arbitrary.

[∃xϕ]u
[ϕ[x/y]]w

[∀x¬ϕ]v
¬ϕ[x/y] (∀e)

⊥ (¬e)

⊥ (∃e) w

¬∀x¬ϕ
(¬i) v

∃xϕ → ¬∀x¬ϕ
(→i) u

The rules for quantification discussed so far are summarized in Table2.1. These
rules together with the deduction rules for introduction and elimination of the con-

2.3 Natural Deduction in the Predicate Logic 51

Table 2.1 Natural deduction rules for quantification

Introduction rules Elimination rules

ϕ[x/x0]
∀xϕ

(∀i) ∀xϕ

ϕ[x/t] (∀e)
where x0 cannot occur free

in any open assumption.

ϕ[x/t]
∃xϕ (∃i) ∃xϕ

[ϕ[x/x0]]u
.
.
.
χ

χ (∃e) u

where x0 cannot occur free in any open

assumption on the right and in χ.

nectives:∧,∨,¬, and→, conform the set of natural deduction rules for the minimal
predicate logic (that is, rules in Tables2.1 and 1.2 except rule (⊥e)). If in addition, we
include the intuitionistic absurdity rule, we obtain the natural deduction calculus for
the intuitionistic predicate logic (that is all rules in Tables2.1 and 1.2). The classical
predicate calculus is obtained from the intuitionistic one, changing the intuitionistic
absurdity rule by the rule PBC (that is, rules in Tables2.1 and 1.3).

Example 12 The sequent � ∃x¬ϕ → ¬∀xϕ has the following intuitionistic proof
∇1:

[∃x¬ϕ]u

[∀xϕ]v
ϕ[x/y] (∀e) [¬ϕ[x/y]]w

⊥ (¬e)

⊥ (∃e) w

¬∀xϕ
(¬i) v

∃x¬ϕ → ¬∀x ϕ
(→i) u

http://dx.doi.org/10.1007/978-3-319-51653-0_1
http://dx.doi.org/10.1007/978-3-319-51653-0_1
http://dx.doi.org/10.1007/978-3-319-51653-0_1

52 2 Derivations and Proofs in the Predicate Logic

The proof ∇1 can be used to prove the sequent � ∀xϕ → ¬∃x¬ϕ as follows:

∇1∃x¬ϕ → ¬∀xϕ [∃x¬ϕ]v
¬∀xϕ

(→e) [∀xϕ]w
⊥ (¬e)

¬∃x¬ϕ
(¬i) v

∀xϕ → ¬∃x¬ϕ
(→i) w

Exercise 24 Prove intuitionistically that ¬∃xϕ �� ∀x¬ϕ.

Exercise 25 Prove that:

a. if x does not occur free in ψ then prove that (∃xφ) → ψ � ∀x (φ → ψ); and
b. if x does not occur free in ψ then prove that (∀xφ) → ψ � ∃x(φ → ψ).

Exercise 26 Prove that

a. (∀xφ) ∧ (∀xψ) �� ∀x (φ ∧ ψ); and
b. (∃xφ) ∨ (∃xψ) �� ∃x (φ ∨ ψ).

Exercise 27 Prove that ∀x (p(x) → ¬q(x)) � ¬(∃x(p(x) ∧ q(x))).

The interpretation of formulas in the classical logic is different from the one in the
intuitionistic logic. While in the intuitionistic logic the goal is to “have a constructive
proof” of a formula ϕ, in the classical logic the goal is to “establish a proof of the
truth” of ϕ. For instance, a classical proof admits the truth of a formula of the form
∃xϕ without having an explicit witness for x . Such kind of proof (without an explicit
witness for the existential) is not accepted in the intuitionistic logic. As an example,
suppose that one wants to prove that there exists two irrational numbers x and y
such that x y is rational. If r(x) means that “x is a rational number” then one aims
to prove the sequent � ∃x∃y(¬r(x) ∧ ¬r(y) ∧ r(x y)). In order to do so, we assume

some obvious facts in algebra, such as ¬r(√2) and r((
√
2

√
2
)
√
2).

(LEM)

r(
√
2

√
2
) ∨ ¬r(√2

√
2
) ∇1 ∇2

∃x∃y(¬r(x) ∧ ¬r(y) ∧ r(x y))
(∨e) a, b

where ∇1 is given by

¬r(√2)

¬r(√2) [r((√2)
√
2)]a

¬r(√2) ∧ r((
√
2)

√
2)

(∧i)

¬r(√2) ∧ ¬r(√2) ∧ r((
√
2)

√
2)

(∧i)

∃y(¬r(
√
2) ∧ ¬r(y) ∧ r((

√
2)y))

(∃i)

∃x∃y(¬r(x) ∧ ¬r(y) ∧ r(x y))
(∃i)

2.3 Natural Deduction in the Predicate Logic 53

and ∇2 is given by

[¬r(√2
√
2
)]b

¬r(√2) r((
√
2

√
2
)
√
2)

¬r(√2) ∧ r((
√
2

√
2
)
√
2)

(∧i)

¬r(√2
√
2
) ∧ ¬r(√2) ∧ r((

√
2

√
2
)
√
2)

(∧i)

∃y(¬r(
√
2

√
2
) ∧ ¬r(y) ∧ r((

√
2

√
2
)y))

(∃i)

∃x∃y(¬r(x) ∧ ¬r(y) ∧ r(x y))
(∃i)

In the proof above, the witnesses depend on whether
√
2

√
2
is rational or not. In

the positive case, taking x = y = √
2 allows us to conclude that x y is rational, and in

the negative case, this conclusion is achieved by taking x = √
2

√
2
and y = √

2. So
we proved the “existence” of an object without knowing explicitly the witnesses for
x and y. This is acceptable as a proof in the classical logic, but not in the intuitionistic
one.

Analogously to the intuitionistic case, the rules of the classical predicate logic
are given by the rule schemes for the connectives (∧,∨,¬ and →), the classical
absurdity rule (PBC) (see Table1.3) and the rules for the quantifiers (Table2.1).

Example 13 While the sequents � ∃xϕ → ¬∀x¬ϕ and � ∀xϕ → ¬∃x¬ϕ have in-
tuitionistic (indeed minimal) proofs as shown in Examples 11 and 12, the sequents
� ¬∃x¬ϕ → ∀xϕ and � ¬∀x¬ϕ → ∃xϕ have only classical proofs. A proof for the
former is given below.

[¬∃x¬ϕ]u
[¬ϕ[x/y]]v

∃x¬ϕ
(∃i)

⊥ (¬e)

ϕ[x/y] (PBC) v

∀xϕ
(∀i)

¬∃x¬ϕ → ∀xϕ
(→i) u

Moreover, note that the above proof jointly with the one given in Example 11
shows that ∀xϕ �� ¬∃x¬ϕ.

A proof of the sequent � ¬∀x¬ϕ → ∃xϕ is given below.

http://dx.doi.org/10.1007/978-3-319-51653-0_1

54 2 Derivations and Proofs in the Predicate Logic

[ϕ[x/y]]v
∃xϕ

(∃i) [¬∃xϕ]u
⊥ (¬e)

¬ϕ[x/y] (¬i) v

∀x¬ϕ
(∀i) [¬∀x¬ϕ]w

⊥ (¬e)

∃xϕ
(PBC) u

¬∀x¬ϕ → ∃xϕ
(→i) w

Finally, this proof jointly with the one given in Example 12 shows that ∃xϕ ��
¬∀x¬ϕ.

To verify that there are no possible intuitionistic derivations, notice that¬∃x¬ϕ →
∀xϕ and ¬∀x¬ϕ → ∃xϕ together with the intuitionistic (indeed minimal) deduction
rules allows derivation of non-intuitionistic theorems such as ¬¬ϕ � ϕ (see next
Exercise 28).

Exercise 28 Prove that there exist derivations for ¬¬ϕ � ϕ using only the minimal
natural deduction rules and each of the assumptions

a. ¬∃x¬ϕ → ∀xϕ and
b. ¬∀x¬ϕ → ∃xϕ.

Hint: you can choose the variable x as any variable that does not occurs inϕ. Thus, the
application of rule (∃e) over the existential formula ∃xϕ has as witness assumption
[ϕ[x/x0]]w that has no occurrences of x0.

In Exercise 24 we prove that there are intuitionistic derivations for ¬∃xϕ ��
∀x¬ϕ. Also, in Example 12 we give an intuitionistic derivation for ∃x¬ϕ � ¬∀xϕ.
Indeed, one can obtain minimal derivations for these three sequents.

Exercise 29 To complete ¬∀xϕ �� ∃x¬ϕ (see Example 12), prove that ¬∀xϕ �
∃x¬ϕ.

2.4 Semantics of the Predicate Logic

As done for the propositional logic in Chap.1, here we present the standard seman-
tics of first-order classical logic. The semantics of the predicate logic is not a direct
extension of the one of propositional logic. Although this is not surprising, since the
predicate logic has a richer language, there are some interesting points concerning
the differences between propositional and predicate semantics that will be exam-
ined in this section. In fact, while a propositional formula has only finitely many
interpretations, a predicate formula can have infinitely many ones.

http://dx.doi.org/10.1007/978-3-319-51653-0_1

2.4 Semantics of the Predicate Logic 55

We start with an example: let p be a unary predicate symbol, and consider the
formula ∀x p(x). The variable x ranges over a domain, say the set of natural numbers
N. Is this formula true or false? Certainly, it depends on how the predicate symbol p
is interpreted. If one interprets p(x) as “x is a prime number”, then it is false, but if
p(x)means that “x is a natural number” then it is true. Observe that the interpretation
depends on the chosen domain, and hence the latter interpretation of p will be false
over the domain of integers Z.

This situation is similar in the propositional logic: according to the interpretation,
some formulas can be either true or false. So what do we need to determine the truth
value of a predicate formula? First of all, we need a domain of concrete individuals,
i.e., a nonempty set D that represents known individuals (e.g., numbers, people,
organisms, etc.). Function symbols (and constants) are associated to functions in the
so called structures:

Definition 22 (Structure) A structure of a first-order language L over the set S =
(F,P), also called an S-structure, is a pair 〈D,m〉, where D is a nonempty set and m
is a map defined as follows:

1. if f is a function symbol of arity n ≥ 0, then m(f) is a function from Dn to D. A
function from D0 to D is simply an element of D.

2. if p is a predicate symbol of arity n > 0, then m(p) is a subset of Dn .

Intuitively, the set m(p) contains the tuples of elements that satisfy the predicate
p. As an example, consider the formula q(a), where a is a constant, and the structure
〈{0, 1},m〉, wherem(a) = 0 andm(q) = {0}. The formula q(a) is true in this structure
because the setm(q) contains the element 0, the imageof the constanta by the function
m. But q(a) would be false in other structures; for instance, it is false in the structure
〈{0, 1},m′〉, where m′(a) = 0 and m′(q) = ∅.

If a formula contains (free) variables, such as the formula q(x), then a special
mechanism is needed to interpret variables. Variables are associated to elements of
the domain D through assignments that are functions from the set of variables V to
the domain D. So, if d is an assignment such that d(x) = 0 then q(x) is true in the
structure 〈{0, 1},m〉 above, and if d ′(x) = 1 then q(x) is false.

Definition 23 (Interpretation of terms) An interpretation I is a pair 〈〈D,m〉, d〉 con-
taining a structure and an assignment. Given an interpretation I and a term t , the
interpretation of t by I , written t I , is inductively defined as follows:

1. For each variable x , x I = d(x);
2. For each function symbol f with arity n ≥ 0, f (t1, . . . , tn)

I = m(f)(t I1 , . . . , t In).

Thus, based on the interpretations of terms, the semantics of predicate formulas
concerns the truth value of a formula that can be either T (true) or F (false). This
notion is formalized in the following definition.

Definition 24 (Interpretation of Formulas) The truth value of a predicate formula
ϕ according to a given interpretation of terms I = 〈〈D,m〉, d〉, denoted as ϕ I , is
inductively defined as:

56 2 Derivations and Proofs in the Predicate Logic

1. ⊥I = F and �I = T ;

2. p(t1, . . . , tn)
I =

{
T, if (t I1 , . . . , t In) ∈ m(p),
F, if (t I1 , . . . , t In) /∈ m(p);

3. (¬ψ)I =
{
T, if ψ I = F,

F, if ψ I = T ;

4. (ψ ∧ γ)I =
{
T, if ψ I = T and γ I = T,

F, otherwise;

5. (ψ ∨ γ)I =
{
T, if ψ I = T or γ I = T,

F, otherwise;

6. (ψ → γ)I =
{
F, if ψ I = T and γ I = F,

T, otherwise;

7. (∀xψ)I =
{
T, if ψ I x

a = T for every a ∈ D,

F, otherwise;

8. (∃xψ)I =
{
T, if ψ I x

a = T for at least one a ∈ D,

F, otherwise.

where I x
a denotes the interpretation I modifying its assignment d, in such a way that

it maps x to a, and any other variable y to d(y).

Definition 25 (Models) An interpretation I is said to be amodel of ϕ if ϕ I = T . We
write I |= ϕ to denote that I is a model of ϕ.

The notion of Model is extended to sets of formulas in a straightforward manner:
If� is a set of predicate formulas then I is amodel of�, denoted by I |= �, whenever
I is a model of each formula in �.

Example 14 Let I be an interpretation with domain N and m(p) = {(m, n) ∈ N ×
N | m < n}. Then I is a model of ∀x∃y p(x, y), denoted as I |= ∀x∃y p(x, y), be-
cause for every natural x one can find another natural y bigger than x . With similar
arguments, one can conclude that I is not a model of ∃x∀y p(x, y).

Definition 26 (Satisfiability) Let ϕ be a predicate formula. If ϕ has a model then it
is said to be satisfiable; otherwise, it is unsatisfiable. This notion is also extended
to sets of formulas: � is satisfiable if and only if there exist an interpretation I such
that for all ϕ ∈ �, I |= ϕ.

Definition 27 (Logical consequence and Validity) Let � = {φ1, . . . , φn} be a finite
set of predicate formulas, and ϕ a predicate formula. We say that ϕ is a logical
consequence of �, denoted as � |= ϕ, if every model of � is also a model of ϕ, i.e.
I |= � implies I |= ϕ, for every interpretation I . When � is empty then ϕ is said to
be valid, which is denoted as |= ϕ.

2.4 Semantics of the Predicate Logic 57

Example 15 We claim that ∀x (p(x) → q(x)) |= (∀x p(x)) → (∀xq(x)). In fact, let
I = 〈〈D,m〉, d〉 be amodel of∀x (p(x) → q(x)), i.e., I |= ∀x (p(x) → q(x)). If there
exists an element in the domain of I that does not satisfy the predicate p then
∀x p(x) is false in I and hence, (∀x (p(x)) → (∀xq(x))would be true in I . Otherwise,
I |= ∀x p(x), and hence I x

a |= p(x), for all a ∈ D. Since I |= ∀x (p(x) → q(x)), we
conclude that I x

a |= q(x), for all a ∈ D. Therefore, I |= ∀xq(x).

The study of models can be justified by the fact that validity in a model is an
invariant of provability in the sense that a sequent is provable exactly when all its
interpretations are also models. This suggests a way to prove when a sequent is not
provable: it is enough to find an interpretation that is not a model of the sequent. In
the next section, we formalize this for the predicate logic.

2.5 Soundness and Completeness of the Predicate Logic

2.5.1 Soundness of the Predicate Logic

The soundness of predicate logic can be proved following the same idea used for the
propositional logic. Therefore, we need to prove the following theorem:

Theorem 6 (Soundness of the predicate logic) Let � be a set of predicate formulas,
if � � ϕ then � |= ϕ. In other words, if ϕ is provable from � then ϕ is a logical
consequence of �.

Proof The proof is by induction on the derivation of � � ϕ similarly to the propo-
sitional case, and hence we focus just on the new rules: (∀e), (∀i), (∃e), (∃i).

If the last rule applied in the proof� � ϕ is (∀e), then ϕ = ψ[x/t] and the premise
of the last rule is ∀xψ as depicted in the following figure, where {γ1, . . . , γn} is the
subset of formulas in � used in the derivation.

γ1 . . . γn

��������
��������

∀xψ

(∀e)

ψ[x/t]

The subtree rooted by the formula∀xψ andwith open leaves labeled by formulas in
�, corresponds to a derivation for the sequent � � ∀xψ that by induction hypothesis
implies � |= ∀xψ . Therefore, for all interpretations that make the formulas in � true,
also ∀xψ would be true: I |= � implies I |= ∀xψ . The last implies that for all a ∈ D,
where D is the domain of I , I x

a |= ψ , and in particular, I x
t I |= ψ . Consequently,

58 2 Derivations and Proofs in the Predicate Logic

I |= ψ[x/t]. Therefore, one has that for any interpretation I , such that I |= �, I |=
ψ[x/t], which implies � |= ψ[x/t].

If the last rule applied in the proof of� � ϕ is (∀i), then ϕ = ∀xψ and the premise
of the last rule is ψ[x/x0] as depicted in the following figure:

γ1 . . . γn

������
������

ψ[x/x0]
(∀i)

∀xψ

The subtree rooted by the formula ψ[x/x0] and with open leaves labeled by for-
mulas in {γ1, . . . , γn} ⊂ �, corresponds to a derivation for the sequent� � ψ[x/x0],
in which no open assumption contains the variable x0. This variable can be selected
in such a manner that it does not appear free in any formula of �. By induction hy-
pothesis, we have that � |= ψ[x/x0]. This implies that all interpretations that make
the formulas in � true, also make ψ[x/x0] true: I |= � implies I |= ψ[x/x0]. Since
x0 does not occurs in �, for all a ∈ D, where D is the domain of I , I x

a |= � and also
I x0

a |= ψ[x/x0] or, equivalently, I x
a |= ψ . Hence � |= ∀xψ .

If the last rule applied in the proof of� � ϕ is (∃i), then ϕ = ∃xψ and the premise
of the last rule isψ[x/t] as depicted in the following figure, where again {γ1, . . . , γn}
is the subset of formulas of � used in the derivation:

γ1 . . . γn

������
�������

ψ[x/t]
(∃i)

∃xψ

The subtree rooted by the formula ψ[x/t] and with open leaves labeled by for-
mulas of �, corresponds to a derivation of the sequent � � ψ[x/t] that by induction
hypothesis implies � |= ψ[x/t]. Therefore, any interpretation I that makes the for-
mulas in � true, also makes ψ[x/t] true. Thus, since I |= ψ[x/t] implies I x

t I |= ψ ,
one has that I |= ∃xψ . Therefore, � |= ∃xψ .

Finally, for a derivation of the sequent � � ϕ that finishes with an application
of the rule (∃e), one has as premises the formulas ∃xψ and ϕ. The former labels
a root of a subtree with open leaves labeled by assumptions in {γ1, . . . , γn} ⊂ �

that corresponds to a derivation for the sequent � � ∃xψ ; the later labels a subtree
with open leaves in {γ1, . . . , γn} ∪ {ψ[x/x0]} and corresponds to a derivation for the
sequent �,ψ[x/x0] � ϕ, where x0 is a variable that does not occur free in � ∪ {ϕ},
as depicted in the figure below:

2.5 Soundness and Completeness of the Predicate Logic 59

γ1 . . . γn [ψ[x/x0]]u γ1 . . . γn

�������
�������

������������
���������

∃xψ ϕ

(∃e) u
ϕ

By induction hypothesis, one has � |= ∃xψ and �,ψ[x/x0] |= ϕ. The first means
that for any interpretation I such that I |= �, I |= ∃xψ . Thus, there exists some
a ∈ D, the domain of I , such that I x

a |= ψ . Notice also that since x0 does not occur
in �, one has that I x0

a |= �. From the second, since I x0
a |= �,ψ[x/x0], one has that

I x0
a |= ϕ. But, since x0 does not occurs in ϕ, one concludes that I |= ϕ. �

Exercise 30 Complete all other cases of the proof of the Theorem 6 of soundness
of predicate logic.

2.5.2 Completeness of the Predicate Logic

The completeness proof for the predicate logic is not a direct extension of the com-
pleteness proof for the propositional logic. The completeness theorem was first
proved byKurt Gödel, and here we present the general idea of a proof due to LeonAl-
bert Henkin (for nice complete presentations see references mentioned in the chapter
on suggested readings).

The kernel of the proof is based on the fact that every consistent set of formulas
is satisfiable, where consistency of the set � means that the absurd is not derivable
from �:

Definition 28 A set � of predicate formulas is consistent if not � � ⊥.

Note that if we assume that every consistent set is satisfiable then the complete-
ness can be easily obtained as follows:

Theorem 7 (Completeness) Let � be a set of predicate formulas. If � |= ϕ then
� � ϕ.

Proof We prove that not � � ϕ implies not � |= ϕ. From not � � ϕ one has that
� ∪ {¬ϕ} is consistent because if � ∪ {¬ϕ} were inconsistent then � ∪ {¬ϕ} � ⊥
by definition, and one could prove ϕ as follows:

�, [¬ϕ]a
...

⊥
ϕ

(PBC) a

60 2 Derivations and Proofs in the Predicate Logic

Therefore, � � ϕ, which contradicts the supposition that not � � ϕ. Now, since
� ∪ {¬ϕ} is consistent, by the assumption that consistent sets are satisfiable, we
have that � ∪ {¬ϕ} is satisfiable. Therefore, we conclude that not � |= ϕ. �

Our goal from now on is to prove that every consistent set of formulas is satis-
fiable. The idea is, given a consistent set of predicate formulas �, to build a model I
for �, and since the sole available information is its consistency, this must be done
by purely syntactical means that is using the language to build the desired model.

The key concepts in Henkin’s proof are the notion of witnesses of existential
formulas and extension of consistent sets of formulas to maximally consistent sets.

Definition 29 (Witnesses and maximally consistency) Let � be a set of formulas

� contains witnesses if and only if for every formula of the form ∃xϕ in �, there
exists a term t such that � � ∃xϕ → ϕ[x/t].

� is maximally consistent if and only if for each formula ϕ, � � ϕ or � � ¬ϕ.

Notice that from the definition, for any possible extension of a maximally consis-
tent set �, say �′ such that � ⊆ �′, �′ = �. Maximally consistent sets are also said
to be closed for negation.

The proof is done in two steps, and uses the fact that every subset of a satisfiable
set is also satisfiable:

1. every consistent set can be extended to a maximally consistent set containing
witnesses;

2. every maximally consistent set containing witnesses has a model.

If� does not containwitnesses, these formulas cannot be built in a straightforward
manner, since one cannot choose any arbitrary term t to be witness of the existential
formula without changing the semantics. Nevertheless, any consistent set can be
extended to another consistent set containing witnesses. The simplest case is when
the language is countable and the set � uses only a finite set of free variables that is
fv(�) is finite. Since the set of existential formulas is also countable and there are
infinite unused variable (those that do not appear free in �). Then these variables can
be used as witnesses without any conflict. The other cases are more elaborated and
are left as research exercises to the reader (Exercises 32 and 33): the case in which
the language is countable, but � uses infinitely many free variables and the case in
which the language is not countable.

In the sequel we will treat the simplest case in which the set of constant, function,
and predicate symbols occurring in � is at most countable and there are only finitely
many variables occurring in �. The next two lemmas complete the first part of the
proof: a consistent setmight be extended to amaximally consistent setwithwitnesses.
This is done proving first how variables might be used to include witnesses and then
how a consistent set with witnesses can be extended to a maximally consistent set.

2.5 Soundness and Completeness of the Predicate Logic 61

Lemma 4 (Construction of witnesses) Let � be a consistent set over a countable
language such that fv(�) is finite. There exists an extension �′ ⊇ � over the same
language, such that �′ is consistent and contains witnesses.

Proof Let ∃x1ϕ1, ∃x2ϕ2, . . . be an enumeration of all the existential formulas built
over the language. Let y1, y2, . . . be an enumeration of the variables not occurring
free in �, and consider the formulas below, for i > 0:

(∃xi ϕi) → ϕi [xi/yi]

Let �0 be defined as �, and �n , for n > 0 be defined as shown below:

�n = �n−1 ∪ {(∃xnϕn) → ϕn[xn/yn]}

We will prove the consistence of �′ defined as �′ =
⋃

n∈N
�n by induction on n.

The base case is trivial since � is consistent by hypothesis. For k > 0, suppose �k−1

is consistent, but �k is not, i.e.

�k = �k−1 ∪ {(∃xkϕk) → ϕk[xk/yk]} � ⊥ (2.1)

Now consider the following derivation:

(LEM) (∃xkϕk) ∨ ¬(∃xkϕk)

�k−1 [∃xkϕk]a
∇1⊥

�k−1 [¬∃xkϕk]b
∇2⊥

⊥ (∨e) a b

where

∇1:
[∃xkϕk]a

�k−1

[ϕk[xk/yk]]u
∃xkϕk → ϕk[xk/yk] (→ i)∅

⊥ (2.1)

⊥ (∃e)u

and

∇2:
�k−1

[¬∃xkϕk]b
¬ϕk[xk/yk] → ¬∃xkϕk

∃xkϕk → ϕk[xk/yk] (CP)

(→ i)∅

⊥ (2.1)

62 2 Derivations and Proofs in the Predicate Logic

But this is a proof of �k−1 � ⊥ which contradicts the assumption that �k−1 is
consistent. Therefore, �k is consistent. �

In the previous proof, note that if �i−1 � ∃xi ϕi then it must be the case that
�i � ϕi [xi/yi] in order to preserve the consistency. Therefore, ϕi [xi/yi] might be
added to the set of formulas, but not its negation, as will be seen in the further
construction of maximally consistent sets.

Now we prove that every maximally consistent set containing witnesses has a
model.

Lemma 5 (Lindenbaum) Each consistent set of formulas � over a countable lan-
guage is contained in a maximally consistent set �∗ over the same language.

Proof Let δ1, δ2, . . . be an enumeration of the formulas built over the language. In
order to build a consistent expansion of� we recursively define the family of indexed
sets of formulas �i as follows:

• �0 = �

• �i =
{

�i−1 ∪ {δi }, if �i−1 ∪ {δi } is consistent;
�i−1, otherwise.

Now let �∗ =
⋃

i∈N
�i . We claim that �∗ is maximally consistent. In fact, if �∗ is

not maximally consistent then there exists a formula γ /∈ �∗ such that �∗ ∪ {γ } is
consistent. But by the above enumeration, there exists k ≥ 1 such that γ = δk , and
since �k−1 ∪ {γ } should be consistent, δk ∈ �k+1. Hence δk = γ ∈ �∗. �

From the previous Lemmas 4 and 5, one has that every consistent set of formulas
built over a countable set of symbols and with finitely many free variables can be
extended to a maximally consistent set which contains witnesses. In this manner we
complete the first step of the prove.

Now, wewill complete the second step of the proof that is that anymaximally con-
sistent set that containwitnesses is satisfiable.We start with two auxiliary definitional
observations.

Lemma 6 Let � be a maximally consistent set of formulas. Then for any formula ϕ

either ϕ ∈ � or ¬ϕ ∈ �.

Lemma 7 Let � be a maximally consistent set. For any formula ϕ, � � ϕ if, and
only if ϕ ∈ �.

Proof Suppose � � ϕ. From Lemma 6, either ϕ ∈ � or ¬ϕ ∈ �. If ¬ϕ ∈ � then �

would be inconsistent:

�∇
ϕ

�∇¬ϕ

⊥ (¬e)

Therefore, ϕ ∈ �. �

2.5 Soundness and Completeness of the Predicate Logic 63

We now define a model that is called the algebra or structure of terms for the set�
which is assumed to be maximally consistent and containing witnesses. The model,
denoted as I� , is built from� by taking as domain, the set D of all terms built over the
countable language of� as given in the definition of termsDefinition 13. The designa-
tiond for each variable is the samevariable and the interpretation of each non-variable
term is itself too: t I� = t . Notice that since our predicate language does not deal with
equality symbol, different terms are interpreted as different elements of D. The map
m of I� maps each n-ary function symbol in the language, f , in the function f I� such
that for all terms t1, . . . , tn , (f (t1, . . . , tn))I� = f I� (t I�1 , . . . , t I�n) = f (t1, . . . , tn),
and for each n-ary predicate symbol p, pI� is the relation defined as

(p(t1, . . . , tn))
I� = pI� (t I�1 , . . . , t I�n) if and only if p(t1, . . . , tn) ∈ �

With these definitions we have that for any atomic formula ϕ, ϕ ∈ � if and only
if I� |= ϕ. In addition, according to the interpretation of quantifiers, for any atomic
formula ∀x1 . . . ∀xnϕ ∈ � if and only if I� |= ∀x1 . . . ∀xnϕ and ∃x1 . . . ∃xnϕ ∈ � if and
only if I� |= ∃x1 . . . ∃xnϕ.

Using the assumptions that� has witnesses and is maximally consistent, formulas
can be correctly interpreted in I� as below.

1. ⊥I� = F and �I� = T
2. ϕ I� = T, iff ϕ ∈ �, for any atomic formula ϕ

3. (¬ϕ)I� = T, iff ϕ I� = F
4. (ϕ ∧ ψ)I� = T, iff ϕ I� = T and ψ I� = T
5. (ϕ ∨ ψ)I� = T, iff ϕ I� = T or ψ I� = T
6. (ϕ → ψ)I� = T, iff ϕ I� = F or ψ I� = T
7. (∃xϕ)I� = T, iff (ϕ[x/t])I� = T , for some term t ∈ D
8. (∀xϕ)I� = T, iff (ϕ[x/t])I� = T , for all t ∈ D.

Indeed, this interpretation is well-defined only under the assumption that � has
witnesses and is maximally consistent. For instance, the item 3 is well-defined since
¬ϕ ∈ � if and only if not ϕ ∈ �. For the item 5, if (ϕ ∨ ψ) ∈ � and not ϕ ∈ �, by
maximally consistency one has that¬ϕ ∈ �; thus, from (ϕ ∨ ψ) and¬ϕ, it is possible
to derive ψ (by simple application of rules (∨e) and (¬e) and (⊥e)). Similarly, if
we assume (ϕ ∨ ψ) ∈ � and not ψ ∈ �, we can derive ϕ. For the item 6, suppose
(ϕ → ψ) ∈ � and ϕ ∈ �, then one can deriveψ (by application of (→e)); otherwise,
if (ϕ → ψ) ∈ � and not ψ ∈ �, by maximally consistency, ¬ψ ∈ �, from which
one can infer ¬ϕ (by application of contraposition). For the item 7, if we assume
∃xϕ ∈ �, by the existence ofwitnesses, there is a term t such that ∃xϕ → ϕ[x/t] ∈ �,
and from these two formulas we can derive ϕ[x/t] (by a simple application of rule
(→e)).

Exercise 31 Complete the analysis well-definedness for all the items in the interpre-
tation of formulas I� , for a set � that contains witnesses and is maximally complete.

64 2 Derivations and Proofs in the Predicate Logic

Theorem 8 (Henkin) Let � be a maximally consistent set containing witnesses.
Then for all ϕ,

I� |= ϕ, if, and only if � � ϕ.

Proof The proof is done by induction on the structure of ϕ. If ϕ is an atomic formula
then ϕ ∈ � iff (ϕ)I� = T , by definition.
If ϕ = ¬ϕ1 then

¬ϕ1 ∈ � ⇐⇒ (because � is maximally consistent)
ϕ1 /∈ � ⇐⇒ (by induction hypothesis)
not I� |= ϕ1 ⇐⇒ (by definition)
I� |= ¬ϕ1.

If ϕ = ϕ1 ∧ ϕ2 then:

ϕ1 ∧ ϕ2 ∈ � ⇐⇒ (by definition)
ϕ1 ∈ � and ϕ2 ∈ � ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)

I� |= ϕ1 and I� |= ϕ2 ⇐⇒ (by definition)
I� |= ϕ1 ∧ ϕ2.

If ϕ = ϕ1 ∨ ϕ2 then:

ϕ1 ∨ ϕ2 ∈ � ⇐⇒ (by definition)
ϕ1 ∈ � or ϕ2 ∈ � ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)
I� |= ϕ1 or I� |= ϕ2 ⇐⇒ (by definition, no matter the condition holds for ϕ1 or ϕ2)
I� |= ϕ1 ∨ ϕ2.

If ϕ = ϕ1 → ϕ2 then we split the proof into two parts. First, we show that ϕ1 →
ϕ2 ∈ � implies I� |= ϕ1 → ϕ2. We have two subcases

1. ϕ1 ∈ �: In this case, ϕ2 ∈ �. In fact, if ϕ2 /∈ � then ¬ϕ2 ∈ � by the maximality
of �, and � becomes contradictorily inconsistent:

ϕ1 → ϕ2 ϕ1

ϕ2
(→e) ¬ϕ2

⊥ (¬e)

Thus, by induction hypothesis one has

ϕ1 ∈ � and ϕ2 ∈ � ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)
I� |= ϕ1 and I� |= ϕ2 =⇒ (by definition)
I� |= ϕ1 → ϕ2.

2.5 Soundness and Completeness of the Predicate Logic 65

2. ϕ1 /∈ �: In this case, ¬ϕ1 ∈ � by the maximality of �. Therefore,

¬ϕ1 ∈ � ⇐⇒ (by induction hypothesis)
I� |= ¬ϕ1 ⇐⇒ (by definition)
not I� |= ϕ1 =⇒ (by definition)
I� |= ϕ1 → ϕ2.

Now we prove that I� |= ϕ1 → ϕ2 implies ϕ1 → ϕ2 ∈ �. By definition of the
semantics of implication, there are two cases

1. ϕ
I�
1 = F : In this case, we have that (¬ϕ1)

I� = T , and hence ¬ϕ1 ∈ �, by in-
duction hypothesis. We can now derive ϕ1 → ϕ2 as follows, and conclude by
Lemma 7:

¬ϕ1 [ϕ1]a
⊥ (¬e)

ϕ2
(⊥e)

ϕ1 → ϕ2
(→i) a

2. ϕ
I�
2 = T : By induction hypothesis ϕ2 ∈ �, and we derive ϕ1 → ϕ2 as follows,

and conclude by Lemma 7

ϕ2

ϕ1 → ϕ2
(→i) ∅

If ϕ = ∃xϕ1 then

∃xϕ1 ∈ � ⇐⇒ (for some t ∈ D, since � contains witnesses)
ϕ1[x/t] ∈ � ⇐⇒ (by induction hypothesis)
I� |= ϕ1[x/t] ⇐⇒ (by definition)
I� |= ∃xϕ1.

If ϕ = ∀xϕ1 then

∀xϕ1 ∈ � ⇐⇒ (otherwise � becomes inconsistent as shown below)
ϕ1[x/t] ∈ �, for all t ∈ D ⇐⇒ (by induction hypothesis)
I� |= ϕ1[x/t], for all t ∈ D ⇐⇒ (by definition)
I� |= ∀xϕ1.

For the first equivalence, note that if ∀xϕ1 ∈ � then ϕ1[x/t] ∈ �, for all term
t ∈ D, otherwise � becomes contradictorily inconsistent

66 2 Derivations and Proofs in the Predicate Logic

¬ϕ1[x/t]
∀xϕ1

ϕ1[x/t] (∀e)

⊥ (⊥e) �
Using as a model I� , it is possible to conclude, in this case, that consistent sets

are satisfiable.

Corollary 2 (Consistency implies satisfiability) If � is a consistent set of formulas
over a countable language with a finite set of free variables then � is satisfiable.

Proof Initially, � is consistently enlarged obtaining the set �′ including witnesses
according to the construction in Lemma 4; afterwards, �′ is closed maximally ob-
taining the set (�′)∗according to the construction in Lindenbaum’s Lemma 5. This
set contains witnesses and is maximally consistent; then, by Henkin’s Theorem 8,
I� is a model of (�′)∗, hence a model of � too. �
Exercise 32 (*) Research in the suggested related references how a consistent set
built over a countable set of symbols, but that uses infinite free variables can be
extended to a maximal consistent set with witnesses. The problem is that in this case
there are no new variables that can be used as witnesses. Thus, one needs to extend
the language with new constant symbols that will act as witnesses, but each time a
new constant symbol is added to the language the set of existential formulas change.

Exercise 33 (*) Research the general case in which the language is not restricted,
that is the case in which � is built over a non-countable set of symbols.

2.5.3 Compactness Theorem and Löwenheim-Skolem
Theorem

The connections between |= and � as well as between consistence and satisfiability
provided in this section, give rise to other additional important consequences that
relate semantic and syntactic elements of the predicate logic. Here we present two
important theorems that are related with the scope and limits of the expressiveness
of predicate logic.

Theorem 9 (Compactness) Given a set � of predicate formulas and a formula ϕ,
the following holds:

i. � |= ϕ if and only if there is a finite set �0 ⊆ � such that �0 |= ϕ

ii. � is satisfiable if and only if for all finite set �0 ⊆ �, �0 is satisfiable.

Proof i. For necessity, if � |= ϕ, by completeness there exists a derivation ∇ for
� � ϕ. The derivation ∇ uses only a finite subset of assumptions, say �0 ⊆ �.
Thus, �0 � ϕ and, by correctness, one concludes that �0 |= ϕ. For sufficiency,
suppose that �0 |= ϕ, for a finite set �0 ⊆ �. By completeness there exists a
derivation ∇ for �0 � ϕ. But ∇ is also a derivation for � � ϕ; hence, by correct-
ness one concludes that � |= ϕ.

2.5 Soundness and Completeness of the Predicate Logic 67

ii. Necessity is proved by contraposition: if�0 were unsatisfiable for some finite set
�0 ⊆ �, then �0 would be inconsistent, since consistency implies satisfiability
(Corollary 2); thus, �0 � ⊥, which implies also that � � ⊥ and by correctness
that � |= ⊥. Hence, � would be unsatisfiable. Sufficiency is proved also by
contraposition: if we assume that � is unsatisfiable, then since there exists no
model for�,� |= ⊥ holds. By completeness also,� � ⊥ and hence, there exists
a finite set�0 ⊆ �, such that�0 � ⊥, which by correctness implies that�0 |= ⊥.
Thus, we conclude that �0 is unsatisfiable.

�
The compactness theorem has several applications that are useful for restricting

the analysis of consistency and satisfiability of arbitrary sets of predicate formulas to
only finite subsets. This also has important implications in the possible cardinality of
models of sets of predicate formulas such as the one given in the following theorem.

Theorem 10 (Löwenheim–Skolem) Let � be a set of formulas such that for any
natural n ∈ N, there exists a model of � with a domain of cardinality at least n. Then
� has also infinite models.

Proof Consider an additional binary predicate symbol E and the formulas ϕn for
n > 0, defined as

∀x E(x, x) ∧ ∃x1,...,xn

n∧

i �= j;i, j=1

¬E(xi , x j)

For instance, the formulas ϕ1 and ϕ3 are given respectively as ∀x E(x, x) and
∀x E(x, x) ∧ ∃x1∃x2∃x3 (¬E(x1, x2) ∧ ¬E(x1, x3) ∧ ¬E(x2, x3)).

Notice that ϕn has models of cardinality at least n. It is enough to interpret E just
as a the reflexive relation among the elements of the domain of the interpretation.
Thus, pairs of different elements of the domain do not belong to the interpretation
of E .

Let 	 be the set of formulas {ϕn | n ∈ N}. We will prove that all finite subsets
of the set of formulas � ∪ 	 are satisfiable and then by the compactness theorem
conclude that � ∪ 	 is satisfiable too. An interpretation I |= � ∪ 	 should have an
infinite model, since also I |= 	 and all formulas in 	 are true in I only if there are
infinitely many elements in the domain of I .

To prove that any finite set �0 ⊂ � ∪ 	 is satisfiable, let k be the maximum k
such that ϕk ∈ �0. Since � has models of arbitrary finite cardinality, let I ′ be a model
of � with at least k elements in its domain D. I ′ can be extended in such a manner
that the binary predicate symbol E is interpreted just as the reflexive relation over D.
Let I be the extended interpretation. It is clear that I |= � since E is a new symbol
and also I |= �0 ∩ 	 since the domain has at least k different elements. Also, since
I |= �, we have that I |= � ∩ �0. Hence, I |= �0 and so we conclude that �0 is
satisfiable. �
Exercise 34 Prove that there is no predicate formula ϕ that holds exclusively for all
finite interpretations.

68 2 Derivations and Proofs in the Predicate Logic

Exercise 35 Let E be a binary predicate symbol, e a constant and · and −1 be
binary and unary function symbols, respectively. The theory of groups is given by
the models of the set of formulas �G

∀x E(x, x)
∀x,y (E(x, y) → E(y, x))

∀x,y,z (E(x, y) ∧ E(y, z) → E(x, z))
∀x E(x · e, x)

∀x E(x · x−1, e)
∀x,y,z E((x · y) · z, x · (y · z))

Notice that according to the three first axioms the symbol E should be interpreted
as an equivalence relation such as the equality. Indeed, the three other axioms are
those relatedwith group theory itself: the fourth one states the existence of an identity
element, the fifth one the inverse function and the sixth one the associativity of the
binary operation.

Prove the existence of infinite models by proving that for any n ∈ N, the structure
of arithmetic modulo n is a group of cardinality n. The elements of this structure
are all integers modulo n (i.e., the set {0, 1, . . . , n − 1}), with addition and identity
element 0.

Exercise 36 A graph is a structure of the form G = 〈V, E〉, where V is a finite
set of vertices and E ⊂ V × V a set of edges between the vertices. The problem of
reachability in graphs is the question whether there exists a finite path of consecutive
edges, say (u, u1), (u1, u2), . . . , (un−1, v), between two given nodes u, v ∈ V .

Prove that there is no predicate formula that expresses reachability in graphs.
Hint: the key observation to conclude is that the problem of reachability between two
nodes might be answered positively whenever there exists a path of arbitrary length.

2.6 Undecidability of the Predicate Logic

The gain of expressiveness obtained in predicate logic w.r.t. to the propositional logic
comes at a price. Initially, remember that for a given propositional formula ϕ, one
can always answer whether ϕ is valid or not by analyzing its truth table. This means
that there is an algorithm that receives an arbitrary propositional formula as input
and always answers after a finite amount of time yes, if the given formula is valid;
or no, otherwise. The algorithm works as follows: build the truth table for ϕ and
check whether it is true for all interpretations. Note that this algorithm is not efficient
because the (finite) number of possible interpretations grows exponentially w.r.t. the
number of propositional variables occurring in ϕ.

In general, a computational question with a yes or no answer depending on the
parameters is known as a decision problem. A decision problem is said to be decidable
whenever there exists an algorithm that correctly answersyes orno for each instance

2.6 Undecidability of the Predicate Logic 69

of the problem, andwhen such algorithmdoes not exist the decision problem is said to
be undecidable. Therefore,we conclude that that validity is decidable in propositional
logic.

The natural question that arises at this point is whether validity is decidable or not
in predicate logic. Note that the truth table approach is no longer possible because the
number of different interpretations for a given predicate formulaϕ is not finite. In fact,
as stated in the previous paragraph the gain of expressiveness of the predicate logic
comes at a price: validity is undecidable in predicate logic. This fact is usually known
as the undecidability of predicate logic, and has several important consequences. In
fact, it is straightforward from the completeness of predicate logic that provability
is also undecidable, i.e., there is no algorithm that receives a predicate formula ϕ as
input and returns yes if � ϕ, or no if not � ϕ.

The standard technique for proving the undecidability of the predicate logic con-
sists in reducing a known undecidable problem to the validity of the predicate logic in
such a way that decidability of validity of the predicate logic entails the decidability
of the other problem leading to a contradiction. Inwhat follows, we consider theword
problem for a specific monoid introduced by G.S. Tseitin, and that is well-known to
be undecidable.

A semigroup is an algebraic structure with a binary associative operator · over
a given set A. When in addition the structure has an identity element id which is
called a monoid. By associativity, one understands that for all x, y, z in A, x · (y ·
z) = (x · y) · z, and for all x ∈ A the identity satisfies the properties id · x = x and
x · id = x . In general, the word problem in a given semigroup with a given set of
equations E (between pairs of elements of A), is the problem of answering whether
two words are equal applying these equations.

By an application of an equation, say u = v in E , one can understand an equational
transformation of the form below, where x y are any elements of A.

x · (u · y) = x · (v · y)

Hence, the word problem consists in answering for any pair of elements x, y ∈ A
if there exists a finite chain, possibly of length zero, of applications of equations that
transform x in y:

x ≡ x0
u1=v1= x1

u2=v2= x2
u3=v3= . . .

un=vn= xn ≡ y (2.2)

In the chain above, the notation ≡ is used for syntactic equality and
ui=vi= for

highlighting that the equation applied in the application step is ui = vi .
Tseitin’s monoid is given by the set
∗ of words freely generated by the quinary

alphabet
 = {a, b, c, d, e}. In this structure, the binary associative operator is the
concatenation of words and the empty word plays the role of the identity. The set of
equations is given below. For simplicity, we will omit parentheses and the concate-
nation operator.

70 2 Derivations and Proofs in the Predicate Logic

ac = ca

ad = da

bc = cb

bd = db

ce = eca (2.3)

de = edb

cdca = cdcae

As previously mentioned, Tseitin introduced this specific monoid with the con-
gruence generated by this set of equations and proved that the word problem in this
structure is undecidable.

In order to reduce the above problem to the validity of the predicate logic, we
choose a logical language with a constant symbol �, five unary function symbols
fa, fb, fc, fd , and fe, and a binary predicate P . The constant � will be interpreted
as the empty word, and each function symbol, say f� for � ∈
, as the concatenation
of the symbol � to the left of the term given as argument of f�. For example, the
word baaecdewill be encoded as fb(fa(fa(fe(fc(fd(fe(�))))))), which for brevity
will be written simply as fbaaecde(�). The binary predicate P will play the role of
equality, i.e., P(x, y) is interpreted as x is equal to y (modulo the congruence induced
by the set of equations above, which would be assumed as axioms).

Our goal is, given an instance of the word problem x, y ∈
∗ specified above, to
build a formula ϕx,y such that x equals y in this structure if and only if |= ϕx,y . The
formula ϕx,y is of the form

ϕ′ → P(fx (�), fy(�)) (2.4)

where ϕ′ is the following formula:

∀x (P(x, x)) ∧
∀x ∀y(P(x, y) → P(y, x))∧

∀x ∀y, ∀z(P(x, y) ∧ P(y, z) → P(x, z))∧
∀x ∀y(P(x, y) → P(fac(x), fca(y)))∧
∀x ∀y(P(x, y) → P(fad(x), fda(y)))∧
∀x ∀y(P(x, y) → P(fbc(x), fcb(y)))∧
∀x ∀y(P(x, y) → P(fbd(x), fdb(y)))∧ (2.5)

∀x ∀y(P(x, y) → P(fce(x), feca(y)))∧
∀x ∀y(P(x, y) → P(fde(x), fedb(y)))∧

∀x ∀y(P(x, y) → P(fcdca(x), fcdcae(y)))∧
∀x ∀y(P(x, y) → P(fa(x), fa(y)))∧
∀x ∀y(P(x, y) → P(fb(x), fb(y)))∧

2.6 Undecidability of the Predicate Logic 71

∀x ∀y(P(x, y) → P(fc(x), fc(y)))∧
∀x ∀y(P(x, y) → P(fd(x), fd(y)))∧
∀x ∀y(P(x, y) → P(fe(x), fe(y)))

Suppose |= ϕx,y . Our goal is to find a model for ϕx,y which tells us if there is
a solution to the instance x, y ∈
∗. Consider the interpretation I with domain
∗
and such that

• the constant � is interpreted as the empty word;
• each unary function symbol f�, for � ∈
, is interpreted as the function f I� :

∗ →
∗ that appends the symbol � to the word x ∈
∗ given as argument, i.e.,
f I� (x) = �x ;

• and the binary predicate P is interpreted as follows:
P(x, y)I if and only if there exists a chain, possibly of length zero, of applications
of the Eqs. (2.3) that transform x into the word y.

We claim that I |= ϕ′. Let us consider each case

• I |= ∀x(P(x, x)): take the empty chain.
• I |= ∀x ∀y(P(x, y) → P(y, x)): for any x, y such that I |= P(x, y), take the
chain given for P(x, y) in reverse order.

• I |= ∀x ∀y ∀z(P(x, y) ∧ P(y, z) → P(x, z)): for any x, y, z such that I |=
P(x, y) and I |= P(y, z), append the chains given for P(x, y) and P(y, z).

• I |= ∀x ∀y(P(x, y) → P(fac(x), fca(y))): for any x, y such that I |= P(x, y),
take the chain given for P(x, y) and use this for the chain of equations for acx =
acy; then add an application of the equation ac = ca to obtain cay. A similar
justification is given for all other cases related with Eqs. (2.3), but the last.

• I |= ∀x ∀y(P(x, y) → P(f�(x), f�(y))) where � ∈
: for any x, y such that I |=
P(x, y), take the chain given for P(x, y) and use it for the chain for the equation
�x = �y.

Since I |= ϕx,y and I |= ϕ′, we conclude that I |= P(fx (�), fy(�)). Therefore,
the instance x, y of the word problem has a solution.

Conversely, suppose the instance x, y of the word problem has a solution in
Tseitin’smonoid; i.e., there is a chain of applications of the Eqs. (2.3) from x resulting
in the word y as given in the chain (2.2). We will suppose that this chain is of length
n.

We need to show that ϕx,y is valid; i.e., that |= ϕx,y . Let us consider an arbitrary
interpretation I ′ over a domain D with an element �I ′

, five unary functions f I
′

a , f I
′

b ,
f I

′
c , f I

′
d , f I

′
e and a binary relation P I ′

. Since ϕx,y is equal to ϕ′ → P(fu(�), fv(�)),
we have to show that if I ′ |= ϕ′ then I ′ |= P(fu(�), fv(�)).

We proceed by induction in n, the length of the chain of applications of Eqs. (2.3)
for transforming x in y.

IB: case n = 0, we have that x ≡ y and if I ′ |= ϕ′, I ′ |= ∀x P(x, x) which also
implies that I ′ |= P(x, x).

72 2 Derivations and Proofs in the Predicate Logic

IS: case n > 0, the chain of applications of equations to transform x in y is of the
form

x ≡ x0
u1=v1= x1

u2=v2= x2
u3=v3= . . . xn−1

un=vn= xn ≡ y

By induction hypothesis we have that I ′ |= P(x, xn−1). If we prove that I ′ |=
P(xn−1, y), we can conclude that I ′ |= P(x, y), since I ′ |= ∀x∀y∀z

P(x, y) ∧ P(y, z) → P(x, z) because we are assuming that I ′ |= ϕ′.
Thus, the proof resumes to prove that equalities obtained by one step of application

of equations in (2.3) hold in I ′: in particular if we suppose that un = vn is the
equation u = v in (2.3), xn−1 ≡ wuz and y = wvz, we need to prove that I ′ |=
P(fwuz(�), fwvz(�)), which is done by the following three steps:

1. First, one has that I ′ |= P(fz(�), fz(�)), since I ′ |= ∀x P(x, x).
2. Second, since u = v in (2.3), I ′ |= ∀x∀y(P(x, y) → P(fu(x), fv(y))). Thus,

by the previous item one has that I ′ |= P(fuz(�), fvz(�));
3. Third, I ′ |= P(fwuz(�), fwvz(�)) is obtained from the last item, inductively on

the length of w, since I ′ |= ∀x∀y(P(x, y) → P(f�(x), f�(y))), for all � ∈
.

To conclude the undecidability of validity of the predicate logic, if we suppose
the contrary, we will be able to answer for any x, y ∈
∗ if |= P(fx (�), fy(�))

answering consequently if x equals y in Tseitin’s monoid, which is impossible since
the word problem in this structure is undecidable.

Theorem 11 (Undecidability of the Predicate Logic) Validity in the predicate logic
that is answering whether for a given formula ϕ, |= ϕ is undecidable.

Notice that by Gödel completeness theorem undecidability of validity immediately
implies undecidability of derivability in the predicate logic. Indeed, in the above
reasoning one can use the completeness theorem to alternate between validity and
derivability.

Exercise 37 Accordingly to the three steps above to prove I ′ |= P(fwuz(�), fwvz

(�)), build a derivation for the sequent � P(fwuz(�), fwvz(�)). Concretely, prove
that

a. ϕ′ � P(fz(�), fz(�)), for z ∈
∗;
b. ϕ′, P(fz(�), fz(�)) � P(fuz(�), fvz(�)), for u = v in the set of equations

(2.3);
c. ϕ′, P(fuz(�), fvz(�)) � P(fwuz(�), fwvz(�)), for w ∈
∗;
d. ϕ′ � P(fwuz(�), fwvz(�)).

Chapter 3
Deductions in the Style of Gentzen’s Sequent
Calculus

In this chapter, we present a style of deduction known as Gentzen’s sequent calculus
that is different from the one of natural deduction (both invented byGerhardGentzen)
and has relevant computational interest and applications. The goal of this section is
to present the alternative for deduction à la Gentzen sequent calculus, proving its
equivalence with Gentzen’s natural deduction. This sequent style is the one used by
the proof assistant PVS that will be used in the next chapter.

3.1 Motivation

Both deduction technologies, natural deduction andGentzen’s sequent calculus,were
invented by the German mathematician Gerhard Gentzen in the 1930s, although it is
known that the Polish logician Stanisław Jaśkowski was the first to present a system
of natural deduction. In sequent calculi à la Gentzen (for short, we will use “calculus
à la Gentzen” or “sequent calculus”), deductions are trees as in natural deduction,
but instead formulas, nodes are labeled by sequents of the form:

� ⇒ �

The sequent expresses that � is deducible from �, where � and � are sequences
of formulas, or more precisely as we will see multisets indeed. The multiset � is
called the antecedent, while � is the succedent of the sequent, or respectively, the
premises and conclusions of the sequent.

From this point of view, Gentzen’s sequent calculus can be interpreted as a meta
calculus for systems of natural deduction. As a very simple example consider the
sequent

ϕ ⇒ ϕ

According to the above interpretation, this means that ϕ can be deduced from ϕ.
Indeed, in natural deduction one has a derivation for ϕ � ϕ, which consists of a tree

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_3

73

74 3 Deductions in the Style of Gentzen’s Sequent Calculus

of the form
[ϕ]u

This derivation means that assuming ϕ, one concludes ϕ. In the sequent calculus the
simplest rule is the axiom (Ax), that is a sequent with a formula, say ϕ, that occurs
both in the antecedent and in the succedent:

�, ϕ ⇒ ϕ,� (Ax)

As a second simple example, consider the sequent

ϕ, ϕ → ψ ⇒ ψ

This sequent means thatψ is deducible from ϕ and ϕ → ψ . And in natural deduction
one has the corresponding derivation depicted as the tree:

[ϕ]u [ϕ → ψ]v
ψ

(→e)

Notice that in the informal interpretation of the sequent ϕ, ϕ → ψ ⇒ ψ , it is
expressed that the formula ψ in the succedent is derivable from the formulas in the
antecedent. Correspondingly, in the natural derivation tree this is expressed by the
two undischarged assumptions [ϕ]u and [ϕ → ψ]v and the conclusion ψ .

As we will formally see, the corresponding proof-tree à laGentzen sequent calcu-
lus is given by the following tree in which the rule (L→), read as “left implication”,
is applied:

ϕ ⇒ ϕ (Ax) ψ ⇒ ψ (Ax)
ϕ, ϕ → ψ ⇒ ψ

(L→)

The intuition with rule (L→) in this deduction is that whenever both ϕ is
deducible from ϕ and ψ from ψ , ψ is deducible from ϕ and ϕ → ψ .

From the computational point of view, proofs in a sequent calculus are trees
that use more memory in their node labels than proofs in natural deduction. But
one has the advantage that in each step of the deductive process all assumptions
and conclusions are available directly in the current sequent under consideration,
which makes unnecessary searching from assumptions (to be discharged or copied)
in previous leaves of the proof-tree.

3.2 A Gentzen’s Sequent Calculus for the Predicate Logic

As previously mentioned, sequents are expressions of the form� ⇒ �, where� and
� are finite multisets of formulas. A multiset is a set in which elements can appear
repeatedly. Thus, formulas can appear repeatedly in � and �. The inference rules

3.2 A Gentzen’s Sequent Calculus for the Predicate Logic 75

Table 3.1 Axioms and structural rules of Gentzen’s SC for predicate logic

Axioms:

⊥, � ⇒ � (L⊥) �, ϕ ⇒ ϕ,� (Ax)

left rules right rules

Structural rules:

� ⇒ �

ϕ,� ⇒ �
(LWeakening)

� ⇒ �

� ⇒ �,ϕ
(RWeakening)

ϕ, ϕ, � ⇒ �

ϕ,� ⇒ �
(LContraction)

� ⇒ �,ϕ, ϕ

� ⇒ �,ϕ
(RContraction)

of the Gentzen sequent calculus for predicate logic are given in the Tables3.1 and
3.2. The sequent deduction rules are divided into left (“L”) and right (“R”), axioms,
structural rules, and logical rules.

In these rules, � and � are called the context of the rule, the formula in the
conclusion of the rule, not in the context, is called the principal formula, and the
formulas in the premises of the rules, from which the principal formula derives, are
called the active formulas. In rule (Ax) both occurrences of ϕ are principal and in
(L⊥) ⊥ is principal.

An important observation is that in sequent calculus, the syntax does not include
negation (¬). Thus, there are no logical rules for negation in Gentzen’s sequent
calculus. Negation of a formula ϕ, that is ¬ϕ, would be used here as a shortcut for
the formula ϕ → ⊥.

The weakening structural rules, for short denoted as (RW) and (LW), mean that
whenever � holds from �, � holds from � and any other formula ϕ ((LW)) and,
from� also� or any other formula ϕ hold ((RW)). In natural deduction, the intuitive
interpretation of weakening rules is that if one has a derivation for � � δ, also a
derivation for �, ϕ � δ would be possible ((LW)); on the other side, from � � δ

one can infer a derivation for � � δ ∨ ϕ ((RW)). As we will see, some technicalities
would be necessary to establish a formal correspondence since in sequent calculuswe
are working with sequents that are object different to formulas. Indeed, if � consists
of more than one formula it makes no sense to search for a natural derivation with
conclusion �.

The contraction structural rules, for short denoted as (RC) and (LC), mean that
whenever� holds from the setϕ, ϕ, �, then� still holds if one copy of the duplicated
formula ϕ is deleted from it (case (LC)). On the right side, the analysis of the sequent

76 3 Deductions in the Style of Gentzen’s Sequent Calculus

Table 3.2 Logical rules of Gentzen’s sequent calculus for predicate logic

left rules right rules

Logical rules:

ϕi∈{1,2}, � ⇒ �

ϕ1 ∧ ϕ2, � ⇒ �
(L∧)

� ⇒ �,ϕ � ⇒ �,ψ

� ⇒ �,ϕ ∧ ψ
(R∧)

ϕ, � ⇒ � ψ,� ⇒ �

ϕ ∨ ψ,� ⇒ �
(L∨)

� ⇒ �,ϕi∈{1,2}
� ⇒ �,ϕ1 ∨ ϕ2

(R∨)

� ⇒ �,ϕ ψ,� ⇒ �

ϕ → ψ,� ⇒ �
(L→)

ϕ, � ⇒ �,ψ

� ⇒ �,ϕ → ψ
(R→)

ϕ[x/t], � ⇒ �

∀xϕ, � ⇒ �
(L∀)

� ⇒ �,ϕ[x/y]
� ⇒ �,∀xϕ

(R∀), y /∈ fv(�,�)

ϕ[x/y], � ⇒ �

∃xϕ, � ⇒ �
(L∃), y /∈ fv(�,�)

� ⇒ �,ϕ[x/t]
� ⇒ �, ∃xϕ

(R∃)

structural rule (RC) is similar: if the set �,ϕ, ϕ holds from � then �,ϕ, obtained
by removing one copy of ϕ in the succedent, also holds from �.

Example 16 To illustrate the application of the inference rules of Gentzen’s sequent
calculus observe a derivation of Peirce’s law below.

(R→)

(RW)
ϕ ⇒ ϕ (Ax)

ϕ ⇒ ϕ,ψ

⇒ ϕ, ϕ → ψ ϕ ⇒ ϕ (Ax)

(ϕ → ψ) → ϕ ⇒ ϕ
(L→)

⇒ ((ϕ → ψ) → ϕ) → ϕ
(R→)

Observe that the first application of rule (RW) can be dropped since the sequent
ϕ ⇒ ϕ,ψ is an axiom.

Example 17 As a second example, consider the following derivation of the sequent
ϕ ⇒ ¬¬ϕ, where ¬ϕ is a shortcut for ϕ → ⊥, as previously mentioned. Notice that
this sequent expresses the natural deduction derived rule (¬¬i).

3.2 A Gentzen’s Sequent Calculus for the Predicate Logic 77

(RW)
ϕ ⇒ ϕ (Ax)

ϕ ⇒ ϕ,⊥
⊥ ⇒ ⊥ (Ax)

ϕ,⊥ ⇒ ⊥ (LW)

ϕ → ⊥, ϕ ⇒ ⊥ (L→)

ϕ ⇒ (ϕ → ⊥) → ⊥ (R→)

As in the previous example, notice that rules (RW) and (LW) are not necessary.

Example 18 As a third example, consider the following derivation of the sequent
¬¬ϕ ⇒ ϕ. Notice that this sequent expresses the natural deduction rule (¬¬e).

(R→)
ϕ ⇒ ϕ,⊥ (Ax)

⇒ ϕ, ϕ → ⊥ ⊥ ⇒ ϕ (L⊥)

(ϕ → ⊥) → ⊥ ⇒ ϕ
(L→)

Exercise 38 a. Build a derivation for Modus Tollens; that is, derive the sequent
ϕ → ψ,¬ψ ⇒ ¬ϕ.

b. Build derivations for the contraposition rules, (CP1) and (CP2); that is, for the
sequents ϕ → ψ ⇒ ¬ψ → ¬ϕ and ¬ψ → ¬ϕ ⇒ ϕ → ψ .

c. Build derivations for the contraposition rules, (CP3) and (CP4).

An important observation is that weakening rules are unnecessary. Informally,
the possibility of eliminating weakening rules in a derivation is justified by the fact
that it would be enough to include the necessary formulas in the context just when
weakened axioms are allowed, as in our case. When weakening rules are allowed, we
only just need non-weakened axioms of the form “ϕ ⇒ ϕ(Ax)” and “⊥ ⇒ (L⊥)”,
which is not the case of our calculus. For instance, observe below a derivation for
the sequent ϕ ⇒ ¬¬ϕ without applications of weakening rules.

ϕ ⇒ ϕ,⊥ (Ax) ϕ,⊥ ⇒ ⊥; (Ax)

ϕ → ⊥, ϕ ⇒ ⊥ (L→)

ϕ ⇒ (ϕ → ⊥) → ⊥ (R→)

Exercise 39 (∗) Prove that weakening rules are unnecessary. It should be proved that
all derivations in the sequent calculus can be transformed into a derivation without
applications of weakening rules.

Hint: For doing this, you will need to apply induction on the derivations analyzing
the case of application of each of the rules just before a last step of weakening. For
instance, consider the case of a derivation that finishes in an application of the rule
(LW) after an application of the rule (L→):

∇1
� ⇒ �,ϕ

∇2
ψ,� ⇒ �

ϕ → ψ,� ⇒ �
(L→)

δ, ϕ → ψ,� ⇒ �
(LW)

78 3 Deductions in the Style of Gentzen’s Sequent Calculus

Thus, a new derivation in which rules (LW) and (L→) are interchanged can be
built as shown below:

∇1
� ⇒ �,ϕ

δ, � ⇒ �,ϕ
(LW)

∇2
ψ,� ⇒ �

ψ, δ, � ⇒ �
(LW)

δ, ϕ → ψ,� ⇒ �
(L→)

Then, by induction hypothesis one can assume the existence of derivationswithout
applications of weakening rules, say ∇′

1 and ∇′
2, for the sequents δ, � ⇒ �,ϕ and

ψ, δ, � ⇒ �, respectively. Therefore a derivation without application of weakening
rules of the form below would be possible.

∇′
1

δ, � ⇒ �,ϕ

∇′
2

ψ, δ, � ⇒ �

δ, ϕ → ψ,� ⇒ �
(L→)

An additional detail should be taken in consideration in the application of the
induction hypothesis: since other possible applications of weakening rules might
appear in the derivations ∇1 and ∇2, the correct procedure is starting the elimination
of weakening rules from nodes in the proof-tree in which a first application of a
weakening rule is done.

Although the previous rules are sufficient (even dropping the weakening ones)
for deduction in the predicate calculus, a useful rule called cut rule can be added.
Among the applications of the cut rule, its inclusion in the sequent calculus is useful
for proving that natural deduction anddeduction in the sequent calculus are equivalent
(Table3.3).

In the given rule (Cut), ϕ is the principal formula, and �,�′,�,�′ is the context.
This is a so called non-sharing context version of (Cut). Also, a so called sharing
context version of (Cut) is possible in which � = �′, � = �′ and the conclusion is
the sequent � ⇒ �.

Intuitively, the cut rule allows for inclusion of lemmas in proofs: whenever one
knows that ϕ is deducible in a context �,� and, additionally, one knows that the
sequent ϕ, �′ ⇒ �′ is provable, then one can deduce the conclusion of the cut rule
(see the next examples).

Table 3.3 Cut rule

� ⇒ �,ϕ ϕ, �′ ⇒ �′

��′ ⇒ ��′ (Cut)

3.2 A Gentzen’s Sequent Calculus for the Predicate Logic 79

Example 19 To be more illustrative, once a proof for the sequent⇒ ¬¬(ψ ∨¬ψ) is
obtained, the previous proof for the sequent¬¬ϕ ⇒ ϕ (see Example18) can be used,
replacing ϕ by ψ ∨ ¬ψ , to conclude by application of the cut rule that ⇒ ψ ∨ ¬ψ

holds:

⇒ ¬¬(ψ ∨ ¬ψ) ¬¬(ψ ∨ ¬ψ) ⇒ ψ ∨ ¬ψ

⇒ ψ ∨ ¬ψ
(Cut)

Example 20 Also, a derivation for the sequent ⇒ ¬¬(ψ ∨ ¬ψ) can be obtained
applying the (Cut) rule using the previously proved sequent ϕ ⇒ ¬¬ϕ (see Exam-
ple17), replacing ϕ by ψ ∨ ¬ψ , and the sequent ⇒ ϕ ∨ ¬ϕ:

⇒ ψ ∨ ¬ψ ψ ∨ ¬ψ ⇒ ¬¬(ψ ∨ ¬ψ)

⇒ ¬¬(ψ ∨ ¬ψ)
(Cut)

Derivations that do not use the cut rule own an important property called the
subformula property. Essentially, this property states that the logical rules applied
in the derivation can be restricted exclusively to rules for the logical connectives
that appear in the sequent in the conclusion of the derivation and, that all formulas
that appear in the whole derivation are contained in the conclusion. Indeed, this
property is trivially broken when the cut rule is allowed since the principal formula
of an application of the cut rule does not need to belong to the conclusion of the
derivation. Intuitively, the cut rule enables the use of arbitrary lemmas in the proof
of a theorem.

The theorem of cut elimination establishes that any proof in the sequent calculus
for predicate logic can be transformed in a proof without the use of the cut rule. The
proof is elaborated and will not be presented here.

Theorem 12 (Cut Elimination). Any sequent � ⇒ � that is provable with the
sequent calculus together with the cut rule is also provable without the latter rule.

Among the myriad applications of the subterm property and cut elimination theo-
rem, important implications in the structure of proofs can be highlighted that would
be crucial for discriminating between minimal, intuitionistic, and classical theorems
as we will see in the next section. For instance, they imply the existence of a deriva-
tion of the sequent for the law of excluded middle ⇒ ϕ ∨ ¬ϕ that should use only
(axioms and) logical rules for disjunction ((R∨) and (L∨)) and for implication ((R→)

and (L→)). Thus, if one applies initially the logical rule (R∨) as shown below, only
two nonderivable sequents will be obtained: ⇒ ϕ and ⇒ ¬ϕ:

⇒ ϕ

⇒ ϕ ∨ ¬ϕ
(R∨)

⇒ ¬ϕ

⇒ ϕ ∨ ¬ϕ
(R∨)

This implies the necessity of the application of a structural rule before any appli-
cation of (R∨), being the unique option rule (RC):

80 3 Deductions in the Style of Gentzen’s Sequent Calculus

⇒ ϕ ∨ ¬ϕ, ϕ ∨ ¬ϕ

⇒ ϕ ∨ ¬ϕ
(RC)

Exercise 40

a. Complete the derivation of the sequent for LEM: ⇒ ϕ ∨ ¬ϕ.
b. Build a derivation for the sequent ⇒ ¬¬(ϕ ∨ ¬ϕ) using neither rule (Cut) nor

rule (RC).

As in natural deduction, we will use notation � � ⇒ � meaning that the sequent
� ⇒ � is derivable with Gentzen’s sequent calculus. To discriminate we will use
subscripts:�N ,�G and�G+cut to denote respectively derivation by natural deduction,
deduction à la Gentzen, and deduction à la Gentzen using also the cut rule. Using
this notation, the cut elimination theorem can be shortly written as below:

�G+cut � ⇒ � iff �G � ⇒ �

In the remaining of this chapter for the Gentzen’s sequent calculus, we will under-
stand the calculus with the cut rule.

3.3 The Intuitionistic Gentzen’s Sequent Calculus

As for natural deduction, it is also possible to obtain a restricted set of rules for the
intuitionistic logic. It is only necessary to restrict all Gentzen’s rules in Tables3.1
and 3.2 to deal only with sequents with at most one formula in their succedents. For
the minimal logic, all sequents in a derivation should have exactly one formula in
their succedents. Thus, the rule (RC) should be dropped from the intuitionistic set
of Gentzen’s rules and, in the intuitionistic case, but not in the minimal one, the rule
(RW) might be applied only to sequents with empty succedent:

� ⇒
� ⇒ ϕ

(RW)

Essentially, all occurrences of � in Tables3.1 and 3.2 should be adequately
replaced by either none or a unique formula, say δ, except for rule (RC) that should be
dropped and rule (L→) that should be changed into the specialized rule in Table3.4.

Also, a special version of the cut rule is required as given in Table3.5.

Example 21 Observe the derivation below for the sequent ⇒ ¬¬ϕ → ϕ that is
related with the nonintuitionistic property of elimination of the double negation:

3.3 The Intuitionistic Gentzen’s Sequent Calculus 81

Table 3.4 Left implication rule (L→) for the intuitionistic SC

� ⇒ ϕ ψ,� ⇒ δ

ϕ → ψ,� ⇒ δ
(L→)

Table 3.5 Rule (Cut) for the intuitionistic SC

� ⇒ ϕ ϕ, �′ ⇒ δ

��′ ⇒ δ
(Cut)

(R→)
ϕ ⇒ ϕ,⊥ (Ax)

⇒ ϕ,¬ϕ ⊥ ⇒ ϕ, ϕ (L⊥)

¬¬ϕ ⇒ ϕ, ϕ
(L→)

¬¬ϕ ⇒ ϕ
(RC)

⇒ ¬¬ϕ → ϕ
(R→)

Since we know that this property is not intuitionistic, there would not be possible
derivation of this sequent with the intuitionistic Gentzen’s rules; that means any
possible derivation of this sequent will include a sequent with a succedent with more
than one formula (Cf. Example18).

Observe that the same happens for the sequent ⇒ ϕ ∨ ¬ϕ (Cf. Exercise40).

Exercise 41 (Cf. Exercise40). Build a minimal derivation in the sequent calculus
for the sequent ⇒ ¬¬(ϕ ∨ ¬ϕ).

Observe that derivations for the sequents for Modus Tollens in Exercise38 can be
built in the intuitionistic Gentzen’s calculus as well as for the sequent for (CP1), but
not for (CP2).

Exercise 42 (Cf. Exercise38). Give either intuitionistic or classical proofs à la
Gentzen for all Gentzen’s versions of (CP) according to your answers to Exercises9
and 10.

a. ϕ → ψ ⇒ ¬ψ → ¬ϕ (CP1);
b. ¬ϕ → ¬ψ ⇒ ψ → ϕ (CP2);
c. ¬ϕ → ψ ⇒ ¬ψ → ϕ (CP3); and
d. ϕ → ¬ψ ⇒ ψ → ¬ϕ (CP4).

http://dx.doi.org/10.1007/978-3-319-51653-0_1
http://dx.doi.org/10.1007/978-3-319-51653-0_1

82 3 Deductions in the Style of Gentzen’s Sequent Calculus

Exercise 43 (Cf. Exercise38). Also, provide intuitionistic or classical derivations
for the versions below of Modus Tollens, according to your classification in Exer-
cise11.

a. ϕ → ψ,¬ψ ⇒ ¬ϕ (MT1);
b. ϕ → ¬ψ,ψ ⇒ ¬ϕ (MT2);
c. ¬ϕ → ψ,¬ψ ⇒ ϕ (MT3); and
d. ¬ϕ → ¬ψ,ψ ⇒ ¬ϕ (MT4).

Example 22 (Cf. Example18). Consider the following classical derivation of the
sequent ⇒ ∀x (¬¬ϕ → ϕ).

(R→)
ϕ ⇒ ϕ,⊥ (Ax)

⇒ ϕ,¬ϕ ⊥ ⇒ ϕ (L⊥)

¬¬ϕ ⇒ ϕ
(L→)

⇒ ¬¬ϕ → ϕ
(R→)

⇒ ∀x (¬¬ϕ → ϕ)
(R∀)

Sequents of the form ⇒ ∀(¬¬ϕ → ϕ) are called stability axioms and are deriv-
able in the strict classical calculus. There is no possible intuitionistic derivation for
this kind of sequent. In fact, the reader can notice that this is related with the strictly
classical rule (¬¬e) in deduction natural. Also, the reader can check that the use
of the classical rule (L→) as well as the inclusion of sequents with more than one
formula in the succedent are obligatory to build a derivation for this kind of sequents.

Exercise 44

1. Build an intuitionistic derivation for the sequent ⇒ ¬¬(¬¬ϕ → ϕ).
2. Build a nonclassical derivation for the double negation of Peirce’s law: ⇒

¬¬(((ϕ → ψ) → ϕ) → ϕ).

Exercise 45 (Cf. Exercise 12). Using the intuitionistic Gentzen’s calculus build
derivations for the following sequents.

a. ¬¬¬φ ⇒ ¬φ and ¬φ ⇒ ¬¬¬φ

b. ¬¬(φ → ψ) ⇒ (¬¬φ → ¬¬ψ).
c. ¬¬(φ ∧ ψ) ⇒ (¬¬φ ∧ ¬¬ψ).
d. ¬(φ ∨ ψ) ⇒ (¬φ ∧ ¬ψ) and (¬φ ∧ ¬ψ) ⇒ ¬(φ ∨ ψ).

3.4 Natural Deduction Versus Deduction à la Gentzen

In this section, we prove that both natural deduction and deduction à la Gentzen have
the same expressive power that means we can prove exactly the same set of theorems
using natural deduction or using deduction à la Gentzen. Initially, we prove that the

http://dx.doi.org/10.1007/978-3-319-51653-0_1

3.4 Natural Deduction Versus Deduction à la Gentzen 83

property holds restricted to the intuitionistic logic. Then, we prove that it holds for
the logic of predicates.

The main result is stated as

�G � ⇒ ϕ if and only if � �N ϕ

For proving this result, we will use an informal style of discussion which requires a
deal of additional effort of the reader in order to interpret a few points that would not
be presented in detail. Among others points, notice for instance that the antecedent
“�” of the sequent � ⇒ ϕ is in fact a multiset of formulas, while “�” as premise of
� �N ϕ should be interpreted as a finite subset of assumptions built from � that can
be used in a natural derivation of ϕ.

Notice also, that in the classical sequent calculus one can build derivations for
sequents of the form � ⇒ �, and in natural deduction only derivations of a formula,
say δ, are allowed, that is derivations of the form �′ �N δ. Then for the classical
logic it would be necessary to establish a correspondence between derivability of
arbitrary sequents of the form � ⇒ � and derivability of “equivalent” sequents with
exactly one formula in the succedent of the form �′ ⇒ δ.

3.4.1 Equivalence Between ND and Gentzen’s SC—The
Intuitionistic Case

The equivalence for the case of the intuitionistic logic is established in the next
theorem.

Theorem 13 (ND versus SC for the intuitionistic logic). The equivalence below
holds for the intuitionistic sequent calculus and the intuitionistic natural deduction:

�G � ⇒ ϕ if and only if � �N ϕ

Proof According to previous observations, it is possible to consider the calculus à
la Gentzen without weakening rules. We will prove that the intuitionistic Gentzen’s
sequent calculus, including the cut rule, is equivalent to intuitionistic natural deduc-
tion. The proof is by induction on the structure of derivations.

Initially, we prove necessity that is �G � ⇒ ϕ implies � �N ϕ. This is done by
induction on derivations in the intuitionistic Gentzen’s sequent calculus, analyzing
different cases according to the last rule applied in a derivation.

IB. The simplest derivations à la Gentzen are given by applications of rules (Ax)
and (L⊥):

�, ϕ ⇒ ϕ(Ax) �,⊥ ⇒ ϕ(L⊥)

84 3 Deductions in the Style of Gentzen’s Sequent Calculus

In natural deduction, these proofs correspond respectively to derivations:

[ϕ]u(Ax)
[⊥]u

ϕ (⊥e)

Notice that this means �, ϕ �N ϕ and �,⊥ �N ϕ, since the assumption of the
former derivation ϕ belongs to � ∪ {ϕ} and the assumption of the latter derivation ⊥
belongs to � ∪ {⊥}.

IS.Wewill consider derivations in theGentzen calculus analyzing cases according
to the last rule applied in the derivation. Right rules correspond to introduction
rules, and left rules will need a more elaborated analysis. First, observe that in the
intuitionistic case the sole contraction rule to be considered is (LC):

∇
ψ,ψ,� ⇒ ϕ

ψ,� ⇒ ϕ
(LC)

And, whenever we have a derivation finishing in an application of this rule, by
induction hypothesis, there is a natural derivation of its premise {ψ}∪{ψ}∪� �N ϕ,
which corresponds to {ψ} ∪ � �N ϕ because the premises in natural deduction are
sets.

Case (L∧). Suppose one has a derivation of the form

∇
ψ,� ⇒ ϕ

ψ ∧ δ, � ⇒ ϕ
(L∧)

By induction hypothesis, one has a derivation for�,ψ �N ϕ, say∇′, whose assump-
tions areψ and a finite subset �′ of �. Thus a natural derivation is obtained as shown
below, by replacing each occurrence of the assumption [ψ] in ∇′ by an application
of rule (∧e).

[ψ ∧ δ]u

ψ
(∧e)

∇′
ϕ

By brevity, in the previous derivation assumptions in �′ were dropped, as will be
done in all other derivations in this proof.

Case (R∧). Suppose ϕ = δ ∧ ψ and one has a derivation of the form

∇1
� ⇒ δ

∇2
� ⇒ ψ

� ⇒ δ ∧ ψ
(R∧)

3.4 Natural Deduction Versus Deduction à la Gentzen 85

By induction hypothesis, one has derivations for � �N δ and � �N ψ , say ∇′
1

and ∇′
2. Thus, a natural derivation is built from these derivations applying the rule

(∧i) as shown below.

∇′
1

δ

∇′
2

ψ

δ ∧ ψ
(∧i)

Case (L∨). Suppose one has a derivation of the form

∇1
δ, � ⇒ ϕ

∇2
ψ,� ⇒ ϕ

δ ∨ ψ,� ⇒ ϕ
(L∨)

By induction hypothesis, one has derivations ∇′
1 and ∇′

2 for δ, � �N ϕ and
ψ,� �N ϕ. Thus, a natural derivation, that assumes δ ∨ ψ , is obtained from these
derivations applying the rule (∨e)as shown below.

[δ ∨ ψ]u

[δ]v
∇′
1

ϕ

[ψ]w
∇′
2

ϕ

ϕ
(∨e) v,w

Case (R∨). Suppose ϕ = δ ∨ ψ and one has a derivation of the form

∇
� ⇒ δ

� ⇒ δ ∨ ψ
(R∨)

By induction hypotheses there exists a natural derivation ∇′ for � �N δ. Applying at
the end of this derivation rule (∨i), one obtains a natural derivation for � �N δ ∨ ψ .

Case (L→). Suppose one has a derivation of the form

∇1
� ⇒ δ

∇2
ψ,� ⇒ ϕ

δ → ψ,� ⇒ ϕ
(L→)

By induction hypothesis there exist natural derivations ∇′
1 and ∇′

2 for � �N δ and
ψ,� �N ϕ. A natural derivation for � �N ϕ is obtained from these derivations, by
replacing each assumption [ψ]u in∇′

2 by a derivation ofψ finishing in an application
of rule (→e) with premises [δ → ψ]v and δ. The former as a new assumption and
the latter is derived as in ∇′

1.

86 3 Deductions in the Style of Gentzen’s Sequent Calculus

[δ → ψ]v
∇′
1

δ

ψ
(→e)

∇′
2

ϕ

Case (R→). Suppose ϕ = δ → ψ and one has a derivation of the form

∇
δ, � ⇒ ψ

� ⇒ δ → ψ
(R→)

By induction hypothesis, there exists a natural derivation ∇′ for δ, � �N ψ . The
natural derivation for � �N δ → ψ is obtained by applying at the end of this proof
rule (→i) discharging assumptions [δ]u as depicted below.

[δ]u

∇′
ψ

δ → ψ
(→i) u

Case (L∀). Suppose one has a derivation of the form

∇
ψ[x/y], � ⇒ ϕ

∀xψ,� ⇒ ϕ
(L∀)

Then by induction hypothesis there exists a natural derivation for ψ[x/y], � �N

ϕ, say∇′. A natural derivation for ∀xψ,� �N ϕ is obtained by replacing all assump-
tions of [ψ[x/y]]u in∇′ by a deduction ofψ[x/y]with assumption [∀xψ]v applying
rule (∀e).

Case (R∀). Suppose ϕ = ∀xψ and one has a derivation of the form

∇
� ⇒ ψ[x/y]
� ⇒ ∀xψ

(R∀)

where y /∈ fv(�). Then by induction hypothesis there exists a natural derivation ∇′
for � �N ψ[x/y]. Thus a simple application at the end of ∇′ of rule (∀i), that is
possible since y does not appear in the open assumptions, will complete the desired
natural derivation.

3.4 Natural Deduction Versus Deduction à la Gentzen 87

Case (L∃). Suppose one has a derivation of the form

∇
ψ[x/y], � ⇒ ϕ

∃xψ,� ⇒ ϕ
(L∃)

where y /∈ fv(�, ϕ). By induction hypothesis there exists a natural derivation∇′ for
ψ[x/y], � �N ϕ. The desired derivation is built by an application of rule (∃e) using
as premises the assumption [∃xψ]v and the conclusion of ∇′. In this application
assumptions of [ψ[x/y]]u in ∇′ are discharged as depicted below. Notice that the
application of rule (∃e) is possible since y /∈ fv(�, ϕ), which implies it does not
will appear in open assumptions in ∇′.

[∃xψ]v
[ψ[x/y]]u

∇′
ϕ

ϕ
(∃e) u

Case (R∃). Suppose ϕ = ∃xψ and one has a derivation of the form

∇
� ⇒ ψ[x/t]
� ⇒ ∃xψ

(R∃)

A natural derivation for � �N ∃xψ is built by induction hypothesis which gives a
natural derivation ∇′ for � �N ψ[x/t] and application of rule (∃i) to the conclusion
of ∇′.

Case (cut). Suppose one has a derivation finishing in an application of rule (Cut)
as shown below ∇1

� ⇒ ψ
∇2

ψ,� ⇒ ϕ

� ⇒ ϕ
(Cut)

By induction hypothesis there are natural derivations ∇′
1 and ∇′

2 for � �N ψ and
ψ,� �N ϕ. To obtain the desired natural derivation, all assumptions [ψ]u in ∇′

2 are
replaced by derivations of ψ using ∇′

1:

∇′
1

ψ

∇′
2

ϕ

Now we prove sufficiency that is �G � ⇒ ϕ whenever � �N ϕ. The proof is by
induction on the structure of natural derivations analyzing the last applied rule.

IB. Proofs consisting of a sole node [ϕ]u correspond to applications of (Ax):
� ⇒ ϕ, where ϕ ∈ �.

88 3 Deductions in the Style of Gentzen’s Sequent Calculus

IS. All derivations finishing in introduction rules are straightforwardly related
with derivations à la Gentzen finishing in the corresponding right rule as in the proof
of necessity. Only one example is given: (→i). The other cases are left as an exercise
for the reader.

Suppose ϕ = δ → ψ and one has a derivation finishing in an application of (→i)

discharging assumptions of δ and using assumptions in �:

[δ]u

∇
ψ

δ → ψ
(→i) u

By induction hypothesis there exists a derivation à la Gentzen ∇′ for the sequent
δ, � ⇒ ψ . Thus, the desired derivation is built by a simple application of rule (R→):

∇′
δ, � ⇒ ψ

� ⇒ δ → ψ
(R→)

Derivations finishing in elimination ruleswill require application of the rule (Cut).
A few interesting cases are given. All the other cases remain as an exercise for the
reader.

Case (∨e). Suppose one has a natural derivation for � �N ϕ finishing in an
application of rule (∨e) as shown below.

∇
δ ∨ ψ

[δ]v
∇1
ϕ

[ψ]w
∇2
ϕ

ϕ
(∨e) v,w

By induction hypothesis, there are derivations à la Gentzen∇′,∇′
1 and∇′

2 respec-
tively, for the sequents � ⇒ δ ∨ ψ , δ, � ⇒ ϕ and ψ,� ⇒ ϕ. Thus, using these
derivations, a derivation for � ⇒ ϕ is built as shown below.

∇′
� ⇒ δ ∨ ψ

∇′
1

δ, � ⇒ ϕ

∇′
2

ψ,� ⇒ ϕ

δ ∨ ψ,� ⇒ ϕ
(L∨)

� ⇒ ϕ
(Cut)

Case (→e). Suppose one has a natural derivation for � �N ϕ that finishes in an
application of (→e) as shown below.

∇1
δ

∇2
δ → ϕ

ϕ
(→e)

3.4 Natural Deduction Versus Deduction à la Gentzen 89

By induction hypothesis, there are derivations à la Gentzen ∇′
1 and ∇′

2 for the
sequents � ⇒ δ and � ⇒ δ → ϕ, respectively. The desired derivation is built, using
these derivations, as depicted below.

∇′
2

� ⇒ δ → ϕ

∇′
1

� ⇒ δ ϕ, � ⇒ ϕ (Ax)
δ → ϕ, � ⇒ ϕ

(L→)

� ⇒ ϕ
(Cut)

Case (∃e). Suppose one has a natural derivation for � �N ϕ finishing in an
application of the rule (∃e) as shown below.

∇1[∃xψ]v
[ψ[x/y]]u

∇2
ϕ

ϕ
(∃e) u

By induction hypothesis, there are derivations à la Gentzen ∇′
1 and ∇′

2 for the
sequents � ⇒ ∃xψ and ψ[x/y], � ⇒ ϕ, respectively. The derivation is built as
shown below. Notice that y /∈ fv(�, ϕ), which allows the application of the rule
(L∃).

∇′
1

� ⇒ ∃xψ

∇′
2

ψ[x/y], � ⇒ ϕ

∃xψ,� ⇒ ϕ
(L∃)

� ⇒ ϕ
(Cut)

�

Exercise 46 Prove all remaining cases in the proof of sufficiency of Theorem13.

3.4.2 Equivalence of ND and Gentzen’s SC—The Classical
Case

Before proving equivalence of natural deduction and deduction à la Gentzen for
predicate logic, a few additional definitions and properties are necessary. First of all,
we define a notion that makes it possible to transform any sequent in an equivalent
one but with only one formula in its succedent.

By � we generically denote any sequence of formulas built from the formulas
in the sequence �, replacing each formula in � by either its negation or, when
the head symbol of the formula is the negation symbol, eliminating it from the
formula. For instance, let � = δ1,¬δ2,¬δ3, δ4, then � might represent sequences
as ¬δ1,¬¬δ2, δ3,¬δ4; ¬δ1, δ2, δ3,¬δ4, etc. This transformation is not only relevant

90 3 Deductions in the Style of Gentzen’s Sequent Calculus

for our purposes in this chapter, but also in computational frameworks, as we will see
in the next chapter, in order to get rid automatically of negative formulas in sequents
that appear in a derivation.

Definition 30 (c-equivalent sequents). We will say that sequents ϕ, � ⇒ � and
� ⇒ �,¬ϕ as well as � ⇒ �,ϕ and ¬ϕ, � ⇒ � are c-equivalent in one step. The
equivalence closure of this relation is called the c-equivalence relation on sequents
and is denoted as ≡ce.

According to the previous notational convention, �,�′ ⇒ �,�′ and �,�′ ⇒
�,�′ are c-equivalent; that is,

�,�′ ⇒ �,�′ ≡ce �,�′ ⇒ �,�′

Lemma 8 (One-step c-equivalence) The following properties hold in the sequent
calculus à la Gentzen for the classical logic:

(i) There exists a derivation for�G ϕ, � ⇒ �, if and only if there exists a derivation
for �G � ⇒ �,¬ϕ.

(ii) There is a derivation for �G ¬ϕ, � ⇒ �, if and only if there is a derivation for
�G � ⇒ �,ϕ.

Proof We consider the derivations below.

(i) Necessity: Let∇ be a derivation for�G ϕ, � ⇒ �. Then the desired derivation
is built as follows:

∇
ϕ, � ⇒ �

ϕ,� ⇒ �,⊥ (RW)

� ⇒ �,¬ϕ
(R→)

Sufficiency: Let ∇ be a derivation for �G � ⇒ �,¬ϕ. Then the desired
derivation is built as follows:

(LW)

∇
� ⇒ �,¬ϕ

ϕ, � ⇒ �,¬ϕ

(Ax) ϕ, � ⇒ �,ϕ ⊥, ϕ, � ⇒ � (L⊥)

¬ϕ, ϕ, � ⇒ �
(L→)

ϕ, � ⇒ �
(Cut)

Observe that in both cases, when � is the empty sequence we have an intu-
itionistic proof.

(ii) Necessity: Let ∇ be a derivation for �G ¬ϕ, � ⇒ �. Then the desired deriva-
tion is built as follows:

3.4 Natural Deduction Versus Deduction à la Gentzen 91

∇′
� ⇒ �,ϕ, ¬¬ϕ → ϕ

∇
¬ϕ, � ⇒ �

¬ϕ, � ⇒ �,ϕ, ⊥ (RW)

� ⇒ �,ϕ, ¬¬ϕ
(R→)

ϕ, � ⇒ �,ϕ (Ax)

¬¬ϕ → ϕ, � ⇒ �,ϕ
(L→)

� ⇒ �, ϕ
(Cut)

where ∇′ is the derivation below:

ϕ, � ⇒ �,ϕ, ϕ,⊥ (Ax)

� ⇒ �,ϕ, ϕ,¬ϕ
(R→) ⊥, � ⇒ �,ϕ, ϕ (L⊥)

¬¬ϕ, � ⇒ �,ϕ, ϕ
(L→)

� ⇒ �,ϕ,¬¬ϕ → ϕ
(R→)

Observe that this case is strictly classic because the left premise of (Cut), that
is the derivation ∇′, is essentially a proof of the sequent ⇒ ¬¬ϕ → ϕ (Also,
see Examples18 and 22).
Sufficiency: Let∇ be a derivation for �G � ⇒ �,ϕ. Then the desired deriva-
tion is built as follows:

∇
� ⇒ �,ϕ ⊥, � ⇒ � (L⊥)

¬ϕ, � ⇒ �
(L→)

Observe that in this case,when� is the empty sequencewehave an intuitionistic
proof.

�

Corollary 3 (One-step c-equivalence in the intuitionistic calculus) The following
properties hold in the intuitionistic calculus à la Gentzen:

(i) There is a derivation for �G ϕ, � ⇒, if and only if there is a derivation for
�G � ⇒ ¬ϕ.

(ii) Assuming that ⇒ ¬¬ϕ → ϕ, the existence of a derivation for �G ¬ϕ, � ⇒,
implies the existence of a derivation for �G � ⇒ ϕ.

(iii) There exists a derivation for �G ¬ϕ, � ⇒, whenever there is a derivation for
�G � ⇒ ϕ.

Proof The proof is obtained from the proof of Lemma8, according to the observa-
tions given in that proof. In particular for the item ii), the proof of sufficiency of the
lemma is easily modified as shown below.

92 3 Deductions in the Style of Gentzen’s Sequent Calculus

(RW)
(Assumption) ⇒ ¬¬ϕ → ϕ

� ⇒ ¬¬ϕ → ϕ

¬ϕ, � ⇒
¬ϕ, � ⇒ ⊥ (RW)

� ⇒ ¬¬ϕ
(R→)

ϕ, � ⇒ ϕ (Ax)

¬¬ϕ → ϕ, � ⇒ ϕ
(L→)

� ⇒ ϕ
(Cut)

�

Exercise 47 Complete the proof of the Corollary3.

Lemma 9 (c-equivalence) Let � ⇒ � and �′ ⇒ �′ be c-equivalent sequents that
is � ⇒ � ≡ce �′ ⇒ �′. Then the following holds in the classical Gentzen’s sequent
calculus:

�G � ⇒ � if and only if �G �′ ⇒ �′

Proof (Sketch) Suppose, � ⇒ � equals �1, �2 ⇒ �1,�2 and �′ ⇒ �′ equals
�1,�2 ⇒ �1, �2. The proof is by induction on n = |�2,�2|, that is the number
of switched formulas (from the succedent to the antecedent and vice versa), that are
necessary to obtain �′ ⇒ �′ from � ⇒ � by a number n of one-step c-equivalence
transformations. Suppose �1, �2

k ,�
2
k ⇒ �1,�2

k, �
2
k , for 0 ≤ k ≤ n, is the sequent

after k one-step c-equivalence transformations, being �2
0 = �2, �2

0 = �2 (thus,

being �2
0 and �2

0 empty sequences) and �2
n and �2

n empty sequences (thus, being
�2

n = �2 and �2
n = �2).

In the inductive step, for k < n, one assumes that there is a proof of the sequent:
�G �1, �2

k ,�
2
k ⇒ �1,�2

k, �
2
k . Thus, applying an one-step c-equivalence transfor-

mation, by Lemma8, one obtains a proof for�G �1, �2
k+1,�

2
k+1 ⇒ �1,�2

k+1, �
2
k+1.

�

Exercise 48 Complete all details of the proof of Lemma9.

In order to extend the c-equivalence Lemma from classical to intuitionistic logic,
it is necessary to assume all necessary stability axioms (Cf. item 2 of Corollary3).

Definition 31 (Intuitionistic derivability modulo stability axioms) A stability axiom
is a sequent of the form ⇒ ∀x (¬¬ϕ → ϕ). Intuitionistic derivability modulo sta-
bility axioms is defined as intuitionistic derivability assuming all possible stability
axioms. Intuitionistic derivability à la Gentzen with stability axioms will be denoted
as �Gi+St .

Lemma 10 (Equivalence between classical and intuitionistic SC modulo stability
axioms) For all sequents � ⇒ δ the following property holds:

�G � ⇒ δ iff �Gi+St � ⇒ δ

Therefore, for any sequent �′ ⇒ �′ c-equivalent to � ⇒ δ, �G �′ ⇒
�′ iff �Gi+St � ⇒ δ.

3.4 Natural Deduction Versus Deduction à la Gentzen 93

Proof (Sketch) To prove that �Gi+St � ⇒ δ implies �G � ⇒ δ, suppose that ∇
is a derivation for �Gi+St � ⇒ δ. The derivation ∇ is transformed into a classical
derivation in the following manner: for any stability axiom assumption, that is a
sequent of the form ⇒ ∀x (¬¬ϕ → ϕ) that appears as a leaf in the derivation ∇,
replace the assumption by a classical proof for �G ⇒ ∀x (¬¬ϕ → ϕ). In this
way, after all stability axiom assumptions are replaced by classical derivations, one
obtains a classical derivation, say ∇′, for �G � ⇒ δ. Additionally, by Lemma9,
�G � ⇒ δ if and only if there exists a classical derivation for �G �′ ⇒ �′.

To prove that �Gi+St � ⇒ δ whenever �G � ⇒ δ, one applies induction on the
structure of the classical derivation. Most rules require a direct analysis, for instance
the inductive step for rule (R→) is given below.

Case (R→). The derivation is of the form given below.

∇
�, ϕ ⇒ ψ

� ⇒′ ϕ → ψ
(R→)

By induction hypothesis there exists a derivation ∇′ for �Gi+St �, ϕ ⇒ ψ , Thus,
the desired derivation is obtained simply by an additional application of rule (R→)to
the conclusion of the intuitionistic derivation ∇′.

The interesting case happens for rule (L→) since this rule requires two formulas
in the succedent of one of the premises. The analysis of the inductive step for rule
(L→) is given below.

Case (L→). The last step of the proof is of the formbelow,where� = �′′, ϕ → ψ .

∇1
�′′ ⇒ δ, ϕ

∇2
ψ,�′′ ⇒ δ

�′′, ϕ → ψ ⇒ δ
(L→)

By induction hypothesis there exist derivations, say ∇′
1 and ∇′

2, for �Gi+St

�′′,¬δ ⇒ ϕ and �Gi+St ψ,�,¬δ ⇒. Notice that the argumentation is not as
straightforwardly as it appears, since it is necessary to build first classical derivations
for �G �′′,¬δ ⇒ ϕ and �G ψ,�′′,¬δ ⇒ using (Lemma8 and Corollary3).

Thus, a derivation for �Gi+St �′′, ϕ → ψ,¬δ ⇒ is obtained as shown below.

∇′
1

�′′,¬δ ⇒ ϕ

∇′
2

ψ,�′′,¬δ ⇒
�′′, ϕ → ψ,¬δ ⇒ (L→)

By a final application of Corollary3 there exists a derivation for �Gi+St �, ϕ →
ψ ⇒ δ. �
Exercise 49 Prove the remaining cases of the proof of Lemma10.

Theorem 14 (Natural versus deduction à la Gentzen for the classical logic) One
has that for the classical Gentzen and natural calculus

94 3 Deductions in the Style of Gentzen’s Sequent Calculus

�G � ⇒ ϕ if and only if � �N ϕ

Proof (Sketch) By previous Lemma, �G � ⇒ ϕ if and only if�Gi+St � ⇒ ϕ. Thus,
we only require to prove that �Gi+St � ⇒ ϕ if and only if � �N ϕ.

On the one side, an intuitionistic sequent calculus derivation modulo stability
axioms for � ⇒ ϕ will include some assumptions of the form ⇒ ∀x (¬¬ϕi → ϕi),
for formulas ϕi , with i ≤ k for some k inN. Thus, by Theorem13 there exists an intu-
itionistic proof in natural deduction using these stability axioms as assumptions. This
intuitionistic natural derivation is converted into a classical derivation by including
classical natural derivations for these assumptions.

On the other side, suppose that � �N ϕ and let us assume that ∇ is a natural
derivation for � �N ϕ that uses only the classical rule (¬¬e); that is ∇ has no appli-
cation of other exclusively classical rules such as (PBC) or (LEM). The derivation ∇
is transformed into an intuitionistic derivation with assumptions of stability axioms
by applying to any application of the rule (¬¬e) in ∇, the following transformation:

∇′
¬¬ϕ

ϕ
(¬¬e) �

∇′
¬¬ϕ

[∀x (¬¬ϕ → ϕ)]u

¬¬ϕ → ϕ
(∀e)

ϕ
(→e)

In this manner, after replacing all applications of the rule (¬¬e), one obtains
an intuitionistic natural derivation that has the original assumptions in � plus other
assumptions that are stability axioms, say�′ = ∀x1(¬¬ϕ1 → ϕ1), . . . ,∀xk (¬¬ϕk →
ϕk), for some k in N. By Theorem13 there exists an intuitionistic derivation a la
Gentzen, say ∇′′, for �Gi �,�′ ⇒ ϕ. To conclude, note that one can get rid of
all formulas in �′ by using stability axioms of the form ⇒ ∀xi (¬¬ϕi → ϕi), for
i = 1, .., k, and applications of the (Cut) rule as depicted below.

⇒ ∀xk (¬¬ϕk → ϕk)

⇒ ∀x1(¬¬ϕ1 → ϕ1)

∇′′
�,�′ ⇒ ϕ

�, ∀x2 (¬¬ϕ2 → ϕ2), . . . , ∀xk (¬¬ϕk → ϕk) ⇒ ϕ
(Cut)

.... k applications of (Cut)

�,∀xk (¬¬ϕk → ϕk) ⇒ ϕ

� ⇒ ϕ
(Cut)

This gives the desired derivation for �Gi+St � ⇒ ϕ. �

Exercise 50 Prove all details of Theorem14.

Chapter 4
Derivations and Formalizations

Thedeductive rules studied in the previous chapters have been implemented in several
computational environments such as theorem provers and proof assistants. Nowa-
days, one of the challenges in computer science is related with the development of
tools which assist computer engineers and scientists to mathematically verify soft-
ware and hardware. And this can be done in several computational tools from which
here we have selected the Prototype Verification System (PVS).

Although we will explain how deductive rules can be used in this specific proof
assistant, the emphasis will be on providing a general view to the reader about
the mechanics of the use of the logical rules inside any deductive environment.
Our selection of the proof assistant PVS is circumstantial: we have a substantial
experience with this (and others) proof assistant(s) that has shown us that it is indeed
an excellent tool that provides good automationmechanisms and an adequate learning
curve so that after a few sections students are able to specify and formalize their own
ideas. PVS provides a simple and flexible functional specification language as well
as a simple interactive proof interface in which the relation between deduction rules
(theory) and proof commands (practice) is apparent.

4.1 Formalizations in PVS Versus Derivations

The proof assistant PVS consists of a specification language and a proof language.
The former one is used to specify functions, procedures, predicates, and logical
expressions and the second one to apply deductive rules in order to prove properties
of the specified predicates, functions, and procedures. Although the prover engine
of PVS is more powerful than the first-order deductive systems presented in this
book, our examples will be restricted to the first-order case. Namely, PVS uses a
higher order specification language and a higher order proof system enriched with

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_4

95

96 4 Derivations and Formalizations

a sophisticated-type theory whose deductive rules are also embedded as part of the
deductive system.

The intention in this chapter is not to provide an exhaustive view of all syntactic
and semantic feasibilities of PVS, but only to introduce minimal syntactic and
semantic elements in order to be able to show how the proof language is re-
lated with the logical deductive mechanisms studied in the previous chapters. Full
syntactical and semantic descriptions of PVS can be found in the documentation
available for this proof assistant at NASA Langley PVS library
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library and at SRI International PVS
site http://pvs.csl.sri.com. Among the interesting documentation, which includes
up to date system guide, language reference, prover guide, etc., a good description
of the type theory, deductive rules, and in general of the semantics of PVS can be
found in [24], and an overview of the system in [25]. PVS formalizations related
with sorting examples discussed in this and next Chap. 5 are available as the theory
sorting in the NASA PVS library and also in the web page of the book http://
logic4CS.cic.unb.br.

The style of the deductive rules of PVS is à la Gentzen. Thus we will relate proof
commands of this system with inference rules of the Gentzen Sequent Calculus as
given in the previous chapter.

4.1.1 The Syntax of the PVS Specification Language

We will restrict our attention to a subset of the specification language of PVS. The
language we will use is essentially a functional language admitting recursive def-
initions and conditional or branching instructions such as if then else and binding
instructions such as let in.

The syntax of command expressions is the following:

cmd ::= if form then cmd else cmd endif | let s = s in cmd | g(s, . . . , s),

where form is a conditional expression written according to the syntax of logical
expressions below, s is a term, and g(s, . . . , s) is a function call.

The syntax of functional definitions is the following:

f (s : τ, . . . , s : τ) : recursive τ = cmd measure m(s, . . . , s),

where recursive is obligatory when the body cmd of the definition includes calls
to the function f that is being defined, and measure receives a function m on the
parameters of the definition. The function m is used to compare the “size” of the
arguments given to the function f . In the definition of functions, one distinguishes
between function calls of pre-defined functions that are considered to bewell-defined,
and recursive calls of the same function being defined. A function p of boolean type
(bool) is a predicate. Other basic types include nat and posnat and with these

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library
http://pvs.csl.sri.com
http://dx.doi.org/10.1007/978-3-319-51653-0_5
http://logic4CS.cic.unb.br
http://logic4CS.cic.unb.br

4.1 Formalizations in PVS Versus Derivations 97

types it is possible to build another functional types and abstract data types as for
instance listslist[T], finite sequencesfinseq[T], etc. Functional types are built
with the constructor [_->_], so for instance

x : [[list[nat]− > nat]− >bool]

specifies that x is a predicate of functional type from lists of naturals to naturals.
Logical formulas are built from atomic formulas, which predicates applied to

terms according to the syntax below, where x : T denotes that the term variable x
has type T :

form ::= p(s, . . . , s) | not form | form and form | form or form |
form implies form | form iff form |
if form then form else form endif | let s = t in form
forall (x : T) : form | exists (x : T) : form .

The PVS syntax for the connectives implies and iff also admits the use of =>
and <=>, respectively. In the sequel, instead of using this syntax we will use the
standard notation for logical connectives and quantifiers.

As an initial example, we consider a PVS specification of the gcd function dis-
cussed in the introduction. The parametersm and n are of typeN andN+, respectively,
which in PVS are given by the basic types posnat and nat.

gcd(m : nat, n : posnat) : recursive nat =
if m = n then

m
else

if m = 0 then
n

else
if m > n then

gcd(m − n, n)
else

gcd(n − m, m)
end

end
end
measure m + n

Algorithm 3: Specification of gcd in PVS

Twodistinguishing elements should be explained here: first, the use of the keyword
recursive indicates that the specification of gcd admits recursive calls and, second,
the keyword measure is obligatory for recursive definitions, and should be succeeded
by a measure function specified by the user, and built using the parameters of the
function being defined, which are equal to m and n in the case of gcd. Below we will
explain the choice of the measure function (m, n) �→ m + n.

98 4 Derivations and Formalizations

Automatically, during type checking a specification, PVS will generate Type Cor-
rectness Conditions, for brevitywewillwriteTCCs, relatedwith thewell-definedness
of the functions being specified.

In the case of the function gcd, TCCs that guarantee the preservation of types for
the arguments of the recursive calls are generated. For the first and second recursive
calls of gcd, that are “gcd(m − n, n)” and “gcd(n − m, m),” respectively, these TCCs
express that, under the conditions in which each one of these calls is executed, the
first and second arguments are, respectively, a natural and a positive natural, as listed
below:

∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m > n) → (m − n ≥ 0 ∧ n > 0)

∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m ≤ n) → (n − m ≥ 0 ∧ m > 0).

TCCs are built by a so-called static analysis of the specification. Indeed, the
premises and conclusions of the above TCCs are built by analyzing the traces given
by the conditions and commands in the then and else branches of the if then else
instructions:

• On the one side, the conditions in the implications of the TCCs above are built
conjugating accordingly either the condition or its negation in the nested if then
else commands. The first recursive call, gcd(m − n, n), is executed whenever not
m = n and not m = 0 and m > n; the second one, whenever not m = n and not
m = 0 and not m > n. Confer this with the premises of the previous TCCs.

• On the other side, the conclusions in the implications of the TCCs above are built
from the types of the parameters and the arguments used in the recursive calls. The
first recursive call uses as first and second arguments, respectively, m − n and n;
thus, it should be guaranteed that the former one is a natural and the second one
a positive natural. Similarly, for the second recursive call, it should be guaranteed
that n − m and m are, respectively, a natural and a positive natural number.

A second class of TCCs is related with the termination or totality of the function
being specified. For doing this, PVS uses the measure function provided by the user.
For the case of gcd, this is the function (m, n) �→ m + n, as previously mentioned.
And the related TCCs should express that this measure strictly decreases for the
parameters of the specified function and arguments given in each recursive call:

∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m > n) → m + n > (m − n) + n

∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m ≤ n) → m + n > m + (n − m).

We illustrate how the latter termination TCC can be proved using the Gentzen
Sequent Calculus.

4.1 Formalizations in PVS Versus Derivations 99

One starts with the sequent

⇒ ∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m ≤ n) → m + n > m + (n − m).

Applying twice the rule (R∀), one obtains the sequent

⇒ (m ′ �= n′ ∧ m ′ �= 0 ∧ m ′ ≤ n′) → m ′ + n′ > m ′ + (n′ − m ′),

where m ′ and n′ are Skolem constants, which are new arbitrary variable names ob-
tained after eliminating the universal quantifiers from the succedent. Then, applying
the rules (R→), (LC), and (L∧) twice, one obtains the sequent

m ′ �= n′, m ′ �= 0, m ′ ≤ n′ ⇒ m ′ + n′ > m ′ + (n′ − m ′).

The conclusion in the last sequent simplifies to m ′ + n′ > n′, which holds since
m ′ is a natural different from zero.

Exercise 51 Consider the PVS specification for gcd below (cf. algorithm 2, gcd2, in
the introduction). This specification of gcd maintains the greatest non-null parameter
as second argument in the recursive calls by switching the parameters.

gcdsw(m : posnat, n : nat) : recursive nat =
if n = 0 then

m
else

if m > n then
gcdsw(n, m)

else
gcdsw(m, n − m)

end
end
measure lex2(m, n)

Algorithm 4: Specification of gcd with parameter switching in PVS

In first place, specify and prove the TCCs related with type preservation for this
specification.

In second place, specify and prove termination TCCs, related with the well-
definedness of the specified function gcdsw. Notice that the measure used now is
(m, n) �→ lex2(m, n) instead (m, n) �→ m + n, which was adequate for the previ-
ous specification of gcd; indeed the latter one does not work for the first (parameter
switching) recursive call (¬(m + n > n + m)). For the selected measure function
lex2, the ordering is given as the lexicographic ordering on the parameters:

lex2(x, y) > lex2(u, v) iff x > u ∨ (x = u ∧ y > v)

Now, specify and prove termination TCCs.

100 4 Derivations and Formalizations

Formulas are used to specify or enunciate conjectures, lemmas, corollaries, and
theorems. For instance, belowwe enunciate the conjecture that the specified function
gcdsw commutes for positive naturals, named gcd_sw_commutes:

gcd_sw_commutes CONJECTURE :∀(m, n : posnat) : gcdsw(m, n) = gcdsw(n, m).

Once this conjecture is proved, it can be labeled as LEMMA, COROLLARY, or
THEOREM. This is the suggested discipline, but not an obligation. The name of each
conjecture is selected by the user.

4.1.2 The PVS Proof Commands Versus Gentzen Sequent
Rules

A minimal subset of logical proof commands of PVS are presented in this sec-
tion and their relation with the Gentzen Sequent Calculus of the classical predi-
cate logic is explained. Sequents are written with notation �|---�, and premises,
� = {γ1, . . . , γm}, and conclusions, � = {δ1, . . . , δn}, now separated by the sym-
bol |---, are labeled with different negative and positive naturals between square
brackets as below:

[−1] γ1
...

[−m] γm

|---
[1] δ1

...

[n] δn.

Initially, we illustrate how the first termination TCC of the specification of gcd
in Algorithm 3 is proved in PVS, relating Gentzen sequent deductive rules and PVS
proof commands.

The PVS prover starts with the sequent

|---[1] ∀(m : N, n : N+) : (m �= n ∧ m �= 0 ∧ m ≤ n) → m + n > m + (n − m).

Applying the command (skolem! 1), which corresponds to applications of
the rule (R∀), one obtains the sequent

|---[1] (m ′ �= n′ ∧ m ′ �= 0 ∧ m ′ ≤ n′) → m ′ + n′ > m ′ + (n′ − m ′).

4.1 Formalizations in PVS Versus Derivations 101

Then, applying the command (flatten), which in this situation executes the
rules (R→) and (LC) once, and (L∧) twice, one obtains the sequent

[−1] m ′ �= n′
[−2] m ′ �= 0
[−3] m ′ ≤ n′
|---
[1] m ′ + n′ > m ′ + (n′ − m ′).

The conclusion in the last sequent simplifies to m ′ + n′ > n′, which holds since
m ′ is a natural different from zero. To finish it is enough to apply the command
(assert). The last command applies the algebraic engine of PVS, which consists
of an exhaustive collection of properties specified and proved correct in the prelude
library of this proof assistant.

Although it appeared in the previous example, it is necessary to stress to the reader
that formal proofs start from the target formula. Thus, rules of the Gentzen Sequent
Calculus are applied in bottom-up manner. This should be considered in the sequel
when proof commands and Gentzen sequent rules are related.

Another important aspect to be considered in the organization of formulas in
the PVS sequents is that the rules of c-equivalence are automatically applied in
such a manner that formulas with the symbol of negation ¬ as their heading logical
connective, neither will appear in the premises nor in the conclusions, but instead
without their heading negation symbols, respectively, in the conclusions or premises
of the sequent. In other words, any negated formula either in the premises or in the
conclusions is, respectively, moved to the conclusions or to the premises eliminating
its heading negation connective.

For illustrating this, consider what will happen when one applies the command
(prop) to a sequent as below. This command repeatedly applies the logical propo-
sitional rules, i.e., (L∧), (L∨), (L→), (R∧), (R∨), and (R→), and axioms, i.e., (Ax)
and (L⊥), until no longer possible.

...

[−i] A ∧ ¬B
...

|---
...

[j] (¬C) → D
...

(prop)

�

[−1] A
...

|---
[1] B
[2] C
[3] D

...

Axioms

Axioms (Ax) and (L⊥) are applied automatically always when possible to the cur-
rent (active) sequent. Usually it is necessary to apply PVS proof commands such

102 4 Derivations and Formalizations

as (assert) or (prop) in order to detect that the sequent under consideration
gives an instance of an axiom and after that, the proof successfully concludes. For
instance when one applies the command of propositional simplification (prop) to
the sequent below, PVS concludes automatically applying the propositional rules
and (Ax):

|---
[1]A ∧ ¬B ∧ ¬C → A

(prop)

� Q.E.D.

In the previous proof, the intermediate sequent, in the middle below, is gener-
ated but immediately it is discharged concluding “Q.E.D.” (from Latin quod erat
demonstrandum, i.e., “what was to be demonstrated”), since it is an instance of the
Gentzen sequent rule (Ax).

|---
[1]A ∧ ¬B ∧ ¬C → A

(prop) · · ·
�

[−1] A
.
.
.

|---
[1] B
[2] C
[3] A

.

.

.

· · · (prop)

� Q.E.D.

In general, after applying proof commands, axioms are applied whenever possible
to the active sequent.

Structural Commands

The application of structural rules (LW) and (RW) (for weakening), and (LC) and
(RC) (for contraction) is done, respectively, by PVS proof commands (copy) and
(hide).

The proof command (copy) duplicates a formula selected either from the an-
tecedent or the succedent of the current sequent. For instance,

...

[−i] A ∧ ¬B
...

|---
...

[j] ¬C → D
...

(copy − i)

�

[−1] A ∧ ¬B
...

[−(i + 1)] A ∧ ¬B
...

|---
...

[j] ¬C → D
...

The proof command (hide) hides a formula selected either from the antecedent
or the succedent of the current sequent. For instance,

4.1 Formalizations in PVS Versus Derivations 103

[−1] A ∧ ¬B
...

[−(i + 1)] A ∧ ¬B
...

|---
...

[j] ¬C → D
...

(hide − (i + 1))

�

[−1] A ∧ ¬B
...

|---
...

[j] ¬C → D
...

It is important to stress that PVS does not get rid of hidden formulas. Indeed, the
command (hide) is more general than the weakening rules because one can hide
any formula, even it does not appear duplicated in the context. For this reason, hidden
formulas remain invisible but always available, and can be recovered by application
of the meta-command show-hidden-formulas, which is used to visualize all
hidden formulas (and their indices) and the proof command (reveal), which is
applied using as parameter the index of the selected hidden formula. For instance,
applying the meta-command show-hidden-formulas after the last example,
one checks that the sole hidden formula is the formula in the antecedent indexed now
as [−1] A ∧ ¬B. Then this formula can be recovered as illustrated below. Notice
how indexation changes.

[−1] A ∧ ¬B
...

|---
...

[j] ¬C → D
...

(reveal − 1)

�

[−1] A ∧ ¬B
[−2] A ∧ ¬B

...

|---
...

[j] ¬C → D
...

Logical Commands

The proof command (flatten) repeatedly applies rules (L∧), (R∨) in order to
separate formulas in a conjunction in the antecedent as well as in a disjunction in
the succedent of a sequent. Also, (flatten) repeatedly applies the rule (R→) in
order to move premises and conclusions of an implicational formula in the succedent
to the antecedent and succedent, respectively. This is done exhaustively and always
trying to apply axioms automatically. Check the example below in which the PVS
proof command (flatten) applies twice the rule (R→) and once each of the rules
(L∧) and (R∨).

104 4 Derivations and Formalizations

|---
[1] A ∧ B → (C ∨ D → C ∨ (A ∧ C))

(flatten)

�

[−1] A
[−2] B
[−3] C ∨ D
|---
[1] C
[2] A ∧ C

Since PVS works modulo c-equivalence and exhaustively applies (Ax), applying
(flatten) to the objective formula A ∧ B → (C ∨ D → C ∨ ¬(A ∧ C)) will
conclude with Q.E.D. automatically.

Exercise 52 What is the result of applying the PVS proof command (flatten)
to the objective formulas below?

1. (A ∧ B → C ∨ D) → C ∨ ¬(A ∧ C)).
2. (A ∧ B → C ∨ D) → C ∨ (A ∧ C)).

In contrast with the command (flatten), the PVS proof command (split)
is used to repeatedly apply branching proof rules as (R∧), (L∨) and (L→), which are
Gentzen sequent rules that require two premises. This command splits the selected
formula of the sequent into two or more sequents accordingly to these branching
rules. As before, (split) applies axioms when possible. Below, the action of this
command is exemplified.

[−1] (A → B) → A
|---
[1] A

(split −1)

�

[−1] A
|---
[1] A

|---
[1] A → B
[2] A

Above, the first derivated sequent A|---A is included for a matter of clarity.
Indeed, (split) applies automatically (Ax) closing this branch of the derivation.

Exercise 53 Using only the PVS proof commands (flatten) and (split)
prove Peirce’s law. That is, prove the sequent |---((A → B) → A) → A.

Indeed, only one application of the command (prop)will close the proof of this
sequent since it applies repeatedly logical propositional rules and axioms.

The PVS proof commands (inst) and (skolem) are related with Gentzen
right and left sequent rules for quantifiers. The proof command (skolem) applies
Gentzen sequent rules (R∀) and (L∃) replacing variables under universal quantifi-
cation of formulas in the succedent and existential quantification in the antecedent
of the current sequent, respectively, by Skolem constants or fresh variables, i.e., by
new arbitrary variables that do not appear in the derivation in progress. For instance,
consider a unary predicate P over a type domain T . After applying (flatten)

4.1 Formalizations in PVS Versus Derivations 105

to the sequent |---∀x :T : P(x) → ¬∃x :T : ¬P(x) one obtains the sequent to the
left below, which can be proved by adequate applications of the PVS commands
(skolem) and (inst) as shown below:

[−1] ∀x :T : P(x)

[−2] ∃x :T : ¬P(x)

|---

(skolem −2 "z")
�

[−1] ∀x :T : P(x)

|---
[1] P(z)

(inst −1 "z")
� Q.E.D.

Exercise 54 Which PVS commands are necessary to prove the following sequents:

1. |---∀x :T : P(x) ↔ ¬∃x :T : ¬P(x);
2. |---∃x :T : P(x) ↔ ¬∀x :T : ¬P(x).

In the previous proofs, the order in which instantiation and skolemization are
applied is crucial. In principle skolemization should be applied first, so that the
Skolem constants can be used as parameters of the instantiation; otherwise a specific
term should be available to be provided as parameter of the instantiation. To illustrate
better this, consider the sequent |---∀x :T : P(x) → ∃x :T : P(x). After application
of the PVS command (flatten) one obtains the sequent below, for which only
instantiation (correspondingly, rules (L∀) and (R∃)) is possible:

[−1] ∀x :T : P(x)

|---
[1] ∃x :T : P(x).

Observe that the type T requires to be a nonempty type in order to validate this
sequent. In the case T is an empty type the antecedent will be true, but the succedent
false. This is a particular issue in computer science that is avoided in the theory
because one assumes that the domain of interpretation should be a nonempty set.
Supposing T is a nonempty type and one has a declared constant of type T , say
c : T , the proof proceeds as below:

[−1] ∀x :T : P(x)

|---
[1] ∃x :T : P(x)

(inst −1 "c")
�

[−1] P(c)
|---
[1] ∃x :T : P(x)

(inst1 "c")
� Q.E.D.

Skolemization and instantiation could be performed in a more automatic manner
by applications of the commands (skeep) and (inst?). The former essentially
is the same as (skolem), but maintaining the name of the quantified variables,
whenever these names are fresh variable names in the current sequent, and the latter
is essentially (inst), but trying to instantiate quantified variables with terms that
appear in the context of the current sequent. The former command also applies
propositional transformations such as those involved in the commands (flatten)
and (split).

106 4 Derivations and Formalizations

The (Cut) Rule and Associated PVS Proof Commands

The (Cut) rule is applied in several situations through commands such as (case),
(lemma), and (rewrite).

The proof command (case) introduces a new premise in the current sequent,
but always splitting the current proof into two branches: the first one assuming the
condition given as argument of the command (case), and the second one being its
negation. To illustrate its use, suppose one wants to prove that the operator gcdsw
specified in Algorithm 4 is commutative for positive naturals as enunciated in the
conjecture at the end of the previous section.

gcd_sw_commutes : CONJECTURE ∀(m, n : posnat) : gcdsw(m, n) = gcdsw(n, m).

The proof can be divided into two cases according to whether the first argument
is greater than or equal to the second one or not. Thus, after application of the
command (skolem) one obtains the sequent below that branches into two sequents
by application of (case):

|---
[1] gcdsw(m, n) = gcdsw(n, m)

(case "m ≥ n")
�

[−1] m ≥ n
|---
[1] gcdsw(m, n) = gcdsw(n, m)

|---
[1] m ≥ n
[2] gcdsw(m, n) = gcdsw(n, m).

From the perspective of (Cut) in the Gentzen Sequent Calculus, notice that what
one has is exactly the following application of this rule:

⇒ gcdsw(m, n) = gcdsw(n, m), m ≥ n m ≥ n ⇒ gcdsw(m, n) = gcdsw(n, m).

⇒ gcdsw(m, n) = gcdsw(n, m)
(Cut)

The PVS proof commands (lemma) and (rewrite), respectively, invoke and
try to apply a lemma previously stated. For instance suppose one has the following
formalized result, lemma l1:

l1 : LEMMA ∀(i, j : posnat) : i ≥ j → gcdsw(i, j) = gcdsw(j, i).

Then, to use this lemma in order to prove the previous sequent one applies
the command (lemma) as below, where ϕ(i, j) denotes i ≥ j → gcdsw(i, j) =
gcdsw(j, i):

|---
[1] gcdsw(m, n) = gcdsw(n, m)

(lemma"l1")
�

[−1] ∀(i, j : posnat) : ϕ(i, j)
|---
[1] gcdsw(m, n) = gcdsw(n, m).

4.1 Formalizations in PVS Versus Derivations 107

From this point, an adequate application of the command (inst) followed of
(split) to the formula in the antecedent (indeed, (inst -1 "m" "n")) will
give rise to two objectives: one of them is trivial, which is automatically proved by
simple application of (Ax), and the other, related with the case of the proof in which
¬(m ≥ n) holds.

(inst −1"m""n")
� . . .

(split)

�

[−1] gcdsw(m, n) = gcdsw(n, m)

|---
[1] gcdsw(m, n) = gcdsw(n, m)

|---
[1] m ≥ n
[2] gcdsw(m, n) = gcdsw(n, m).

From the theoretical point of view, what one does when a lemma is invoked is
applying the rule (Cut) using the proof of the invoked lemma. Suppose ∇l1 is the
proof of lemma l1, then one has the proof sketch below. Since the proof ∇l1 is ready
(or assumed), to prove the target sequent, that is ⇒ gcdsw(m, n) = gcdsw(n, m),
what is necessary is only to prove the premise sequent to the right, that is ∀(i, j) :
ϕ(i, j) ⇒ gcdsw(m, n) = gcdsw(n, m).

∇l1⇒ ∀(i, j) : ϕ(i, j) ∀(i, j) : ϕ(i, j) ⇒ gcdsw(m, n) = gcdsw(n, m).

⇒ gcdsw(m, n) = gcdsw(n, m)
(Cut)

The PVS proof rule (rewrite) similar to (lemma) invokes a lemma, but
it additionally tries to instantiate it adequately in an automatic manner. Actually,
applications of (rewrite) do not necessarily would instantiate as expected by the
user. Thus, it would require special attention.

Table4.1 summarizes the relations between Gentzen sequent rules and PVS proof
commands. The table also includes the correspondences between Gentzen Sequent
and Natural Deduction rules as given in the previous chapter. Indeed, it is important
to remember here that according to the proof of equivalence between deduction à la
Gentzen Sequent Calculus and Deduction Natural, elimination (natural deduction)
rules relate with the corresponding left Gentzen sequent rules using (Cut) (revise
Theorem 13). Marks in the second column indicate that rules (Ax) and (L⊥) as well
as c-equivalence derivations are automatically applied whenever possible when the
proof commands are applied.

108 4 Derivations and Formalizations

Table 4.1 SC and ND rules versus PVS proof commands

(Ax)(L⊥)

c-equiv

(LW)

(RW)

(LC)

(RC)

(L∧)

(∧e)

(L∨)

(∨e)

(L→)

(→e)

(L∀)

(∀e)

(L∃)

(∃e)

(R∧)

(∧i)

(R∨)

(∨i)

(R→)

(→i)

(R∀) (R∃)

(∀i)

(Cut)

(∃i)

(hide) ×
(copy) ×
(flatten) � × × ×
(split) � × × ×
(skolem) � × ×
(inst) � × ×
(lemma) ×
(case) � ×

4.2 PVS Proof Commands for Equational Manipulation

Formalization of properties of specified operators and functions requires equational
manipulation. Here, we will explain how defined operators are expanded and their
definitions lifted inside logical formulas. A few PVS proof commands will be
commented: (expand), (lift-if), (replace), (replaces), (grind),
(decompose-equality), and (apply-extensionality).

As an elementary example, consider the definition of the absolute value of real
numbers, specified in PVS as

abs(x : real) : nonneg_real = if x < 0 then − x else x endif.

And suppose we have the target of proving the triangle inequality:

|--- [1] forall(x, y : real) : abs(x) + abs(y) ≥ abs(x + y).

To prove this, it is required to use the definition of the operator abs, which is done
through expansions of the definition of this operator according to its specification.
Notice that we are applying an equational conversion that is neither included in the
Natural Deduction nor in the Gentzen Sequent Calculus.

After two applications of (skolem), one can apply the command (expand
"abs" 1 1) which substitutes the name abs in the formula 1, and specifically
the first occurrence from left to right in that formula, by its definition:

(skolem"x""y")
� . . .

(expand"abs"1 1)

�
|---
[1] if x < 0 then − x else x endif +

abs(y) ≥ abs(x + y).

More generally, one can expand several occurrences, say i1, . . . , im , of an operator,
say f, in the formula n, applying the command (expand "f" n (i1 . . . im)).

4.2 PVS Proof Commands for Equational Manipulation 109

This kind of equational transformation is related with natural deduction inference
rules such as (=i) and (=e) and Gentzen inference rules such as (R=) and (L=)

given below:

s = t ϕ[x/s]
ϕ[x/t] (=e) t = t (=i)

� ⇒ �,ϕ[x/s]
s = t, � ⇒ �,ϕ[x/t] (L=)

� ⇒ �, t = t
(R=)

.

From these rules it is possible to prove that = is symmetric and transitive. For
instance, symmetry of = can be derived as below, for the Gentzen sequent rules:

⇒ (x = s)[x/s] (R=).

s = t ⇒ t = s (L=)

Thus, we will not distinguish from left- and right-hand side of equations.

Exercise 55

a. Prove that the relation = is transitive for the Gentzen sequent rules.
b. Prove that the relation = is symmetric and transitive for the rules in deduction

natural.

Notice that in this case, the rule (R=) is applied with the equation given by the
definition of abs: abs(x) = if x < 0 then −x else x endif, and to get
rid of this equation in the conclusion, a (Cut) is applied using also as premise the
sequent associated with this definition, that is |--- abs(x) = if x < 0 then
−x else x endif.

The next step to proceed with the proof of the triangle inequality is lifting in the
definition of abs(x) in the succedent formula, which is done through application of
the PVS command (lift-if) obtaining the sequent below:

. . .
(lift − if)

�

|---
[1] if x < 0 then − x + abs(y) ≥ abs(x + y)

else x + abs(y) ≥ abs(x + y)

endif.

Finally, by application of the command (split) one obtains to subobjective
sequents:

. . .
(split)

�

|---
[1] x < 0 implies − x + abs(y) ≥ abs(x + y)

|---
[1] not x < 0 implies x + abs(y) ≥ abs(x + y).

110 4 Derivations and Formalizations

From the rule (L=) and by applying twice c-equivalences, one has a derived rule
that replaces the terms in an equality occurring in any formula in the antecedent:

�, ϕ[x/s] ⇒ �

� ⇒ �,¬ϕ[x/s] (c-equivalence)

s
.= t, � ⇒ �,¬ϕ[x/t] (L=)

s
.= t, �, ϕ[x/t] ⇒ �

(c-equivalence)

Equational replacement is performed in PVS by applying the command
(replace i j), where i is the label of the equality and j is the label of the
formula (either in the antecedent or in the succedent) of the sequent in which the
replacement is applied. As default, the replacement of the left-hand side by the right-
hand side of the equality is applied, but this can be modified including the parameter
“rl”: (replace i j rl).

The command (replaces) is a variant of (replace) that iterates the re-
placement given by the selected equality and afterward hides the equality.

The last command to be discussed in this section is (grind). This command
will apply all possible equational definitional expansions and lift in all definitions
over the logical formulas. In addition, (grind) applies all logical rules associated
with (prop) and (assert). Indeed the triangle inequality might be proved by a
simple application of (grind).

Exercise 56 Verify in PVS that the triangle inequality is concluded by a simple
application of (grind). Also, complete the formalization of the triangle inequality
by application of the PVS command (expand) to the three occurrences of abs in
the target objective and repeatedly application of the command (lift-if) to lift
in these definitions inside the target formula. To conclude you also would need to
apply either the command (split) or (prop) in order to split the target objective
into simpler subobjectives. Applications of (assert) will also be required to deal
with the algebra of inequalities over reals.

The last two PVS commands to be treated here, related with equational ma-
nipulation, are (decompose-equality) and (apply-extensionality).
These commands deal with equality between expressions according to the structure
of their types. The former command decomposes equality according to the abstract
data structure of the terms involved in an equality. As a first example, consider the
data structure of finite sequences given in the PVS prelude as below, where T is a
non-interpreted type:

finite_sequence : TYPE = [# length: nat, seq: [below[length] ->

T] #].

Thus, a finite sequence consists of two parts; the former is the length of the
sequence and the latter seq, that is, the sequence itself, is a function from indices
below the length of the sequence (i.e., from 0 to the length minus one), to objects of
type T.

Consider now terms s and t of type finite_sequence[bool] and the se-
quent |---[1] s = t . Applying the command (decompose-equality 1) this

4.2 PVS Proof Commands for Equational Manipulation 111

equation will be decomposed into two equations for the length and the sequences
itself:

|---
[1] s = t

(decompose − equality 1)

�

|---
[1] s`length = t`length]

|---
[1] s`seq = t`seq

The last sequent can be further decomposed as below:

|---
[1] s` seq = t` seq

(decompose-equality 1)
�

|---
[1] s` seq(i) = t` seq(i),

where the variable i is a natural below the length of s: i ≤ s`length. This in-
formation about the type of any term can be recovered in PVS with the command
(typepred i).

For another example on decomposition of equalities, consider a datatype for
lambda terms with variables, applications, and abstractions (respectively, vars,
appl, and abs) specified as below:

term[variable : TYPE+]: DATATYPE

BEGIN

vars (v: variable) : var?

abs (v: variable, body: term): abs?

app (tf: term, ta: term): app?

END term.

Abstractions have two elements: v the variable of the abstraction and the body
of the abstraction that is also a term. Applications have two elements: tf that is the
functional part of the application and ta that is the argument of the application; both
tf and ta are terms.

Now consider one has an equality between lambda terms u and v that are appli-
cations:

app?(u) , app?(v)|---u = v.

In this case by application of extensionality with the command
(apply-extensionality) the proof is split into two subobjectives on the
equality of the functional and argument components of the applications u and v:

112 4 Derivations and Formalizations

[−1] app?(u)
[−2] app?(v)
|---
[1] u = v

(apply-extensionality 1)
�

[−1] app?(u)
[−2] app?(v)
|---
[1] tf(u) = tf(v)

[−1] app?(u)
[−2] app?(v)
|---
[1] ta(u) = ta(v).

Exercise 57 Explore the application of the last two studied commands
(decompose-equality) and(apply-extensionality) to equalities be-
tween objects of type list. As usual, in PVS, a list l over the non-interpreted type
T, that is, list[T], might be either empty or a cons, checked as null?(l) and
cons?(l), respectively. Thus, data structures of lists own objects that are empty
lists null or built recursively using any element of type T, say a, and a list, say l,
as cons(a, l). The head of a nonempty list is computed as car(l) and the tail as
cdr(l). How will you deal with an equation of the form l1 = l2 between nonempty
lists?

4.3 Proof Commands for Induction

Several commands are available for induction from which we will explain two:
(induct) and (measure-induct+). These commands build an induction
scheme according to the data structure associated to the variable given as argument.
The former builds an induction scheme based on the type of the variable given as
parameter and provides the base and induction cases. The latter builds an induction
scheme using the strong or complete induction principle instantiated with a measure
provided by the user. The induction scheme follows the data structure of the variables
on which the measure is defined.

To illustrate the use of (induct), consider the following specification of the
sum of the f -images of the first n naturals:

∑n
i=0 f (n).

sum(f : [nat -> nat], n : nat) : recursive nat =
if n = 0 then

f (0)
else

f (n) + sum(f, n − 1)
end
measure n

Algorithm 5: Specification of sum of the n first f -images in PVS

Using sum it is possible to compute the sums in Sect. 1.3:
∑n

i=1 i as sum(x �→
x, n) and

∑n
i=0 ki as sum(x �→ kx , n). Indeed, the functions x �→ x and x �→ kx are

specified as lambda functions of the respective forms:

http://dx.doi.org/10.1007/978-3-319-51653-0_1

4.3 Proof Commands for Induction 113

(lambda(x : nat) : x) and (lambda(x : nat) : kx).

To illustrate the use of the command (induct), let us consider the proof of the
following equality:

n∑

i=1

i2 = n(n + 1)(2n + 1)

6
.

Using sum, the sequent associated with this equality is given as below:

|--- forall (n : nat) : sum((lambda(x : nat) : x ˆ 2), n) = n(n + 1)(2n + 1)

6
.

After applying the command (induct"n"), PVS builds the induction scheme
for the natural variable n. Thus, two subgoals are obtained, the first one associated
with the induction basis and the second one with the inductive step:

|--- [1] sum((lambda(m : nat) : m ˆ 2), 0) = 0(0 + 1)(2 0 + 1)

6

and

|--- [1] forall j :
sum((lambda(m : nat) : m ˆ 2), j) = j (j + 1)(2 j + 1)

6
implies

sum((lambda(m : nat) : m ˆ 2), j + 1) = (j + 1)(j + 1 + 1)(2(j + 1) + 1)

6
.

The subobjective associated with the induction basis is proved by applying the
command (assert) and the command (expand) to expand the definitions of
sum, power (ˆ), and expt . The last operator is used in the prelude of PVS to define
power. Indeed, application of the command (grind) will be enough to solve this
equality.

The subobjective related with the inductive step derives the objective below ap-
plying the commands (skolem) and (flatten):

[−1] sum((lambda(m : nat) : m ˆ 2), j) = j (j + 1)(2 j + 1)

6
|---

[1] sum((lambda(m : nat) : m ˆ 2), j + 1) = (j + 1)(j + 1 + 1)(2(j + 1) + 1)

6
.

After expanding the definition of sum in the succedent by application of the
command (expand "sum" 1) one obtains the following:

114 4 Derivations and Formalizations

[−1] sum((lambda(m : nat) : m ˆ 2), j) = j (j + 1)(2 j + 1)

6
|---

[1] sum((lambda(m : nat) : m ˆ 2), j) + (j + 1) ˆ 2 = (j + 1)(j + 1 + 1)(2(j + 1) + 1)

6
.

Then, by replacing the left-hand side of the equation in the antecedent by the
right-hand side in the succedent, applying the PVS command (replace -1 1)
one obtains the sequent

[−1] sum((lambda(m : nat) : m ˆ 2), j) = j (j + 1)(2 j + 1)

6
|---

[1] j (j + 1)(2 j + 1)

6
+ (j + 1) ˆ 2 = (j + 1)(j + 1 + 1)(2(j + 1) + 1)

6
.

As for thebasis, this subobjective is provedbyapplying the commands(assert)
and (expand). The latter used to expand the definitions of sum, power (ˆ), and
expt . Similarly, the application of the command (grind) will be enough to solve
this query.

For illustrating a more elaborated inductive scheme built by the command
(induct) consider the sequent below, where term is the data structure given
in the previous section for lambda terms, and suppose we have a predicate p? on
lambda terms:

|---[1] forall (t : term) : p?(t).

The application of the command (induct "t")will build an inductive scheme
based on the structure of lambda terms, considering variables, abstractions, and
applications, according to the datatype. Thus, three subobjectives are built:

(induct "t")
�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|---
[1] forall (x : variable) : p?(vars(x))

|---
[1] forall (x : variable, t1 : term[variable]) :

p?(t1) implies p?(abs(x, t1))

|---
[1] forall (t1, t2 : term[variable]) :

p?(t1) and p?(t2) implies p?(app(t1, t2))

Exercise 58 Specify the sums of the examples given in Sect. 1.3 and prove the
equations using the command (induct):

a.
n∑

i=1

i = n(n + 1)

2
,

http://dx.doi.org/10.1007/978-3-319-51653-0_1

4.3 Proof Commands for Induction 115

b.
n∑

i=0

ki = kn+1 − 1

k − 1
, for k �= 1.

Now, wewill study the second command for induction: (measure-induct+).
Consider the following specification of the Fibonacci function.

fibonacci(n : nat) : recursive nat =
if n ≤ 0 then

n
else

fibonacci(n − 1) + fibonacci(n − 2)
end
measure n

Algorithm 6: Specification of the Fibonacci function in PVS

Now, we will prove the conjecture below:

|---[1] forall (n : nat) : n ≥ 8 implies fibonacci(n) ≥ 2n.

The induction scheme built by (induct) cannot be used in a straightforward
manner since the induction hypothesis should be applied not only for n − 1, but
also for n − 2. The command (measure-induct+ "n" ("n"))will build the
required complete induction scheme. The first parameter of this command, “n,” is
a measure function to be used in the induction scheme and, the second parameter,
("n"), is the list of variables used to build this measure. Applying this command to
the sequent one has the following derivation:

(measure-induct+ "n" ("n"))
�

[−1] forall (m : nat) : m < n implies
fibonacci(m) ≥ 2m

[−2] n ≥ 8
|---
[1] fibonacci(n) ≥ 2n.

Copying the formula [−2] and instantiating the hypotheses with n − 1 and n − 2,
one obtains the premises required to complete the proof:

(copy -1) (inst -1 “n − 1") (inst -2 "n − 2")
� � �

[−1] n − 1 < n implies
fibonacci(n − 1) ≥ 2(n − 1)
[−2] n − 2 < n implies
fibonacci(n − 2) ≥ 2(n − 2)
[−3] n ≥ 8
|---
[1] fibonacci(n) ≥ 2n.

Notice that in the last sequent it is implicitly required that both n − 1 and n − 2
be less than or equal to 8. Thus, the case in which n ≥ 10 allows application of the
required hypotheses, while the cases n = 8 and n = 9 should be treated apart by
expansion of the definition of the function fibonacci.

116 4 Derivations and Formalizations

Exercise 59 Complete the proof of this conjecture.

Now we will illustrate the use of the PVS command (measure-induct+)
proving that the function gcdsw specified in Exercise 51, Algorithm 4 satisfies the
sequent

|---[1] forall (m : posnat, n : nat) : divides (gcd sw(m, n), m).

The measure function required is lex2, that is, the samemeasure function used
in the specification of the function gcdsw, with parameters “m” and “n.” Thus,
the induction should be applied with these parameters: (measure-induct+
“lex2(m, n)" ("m” "n")). (measure-induct+) builds a complete
induction scheme using this measure giving rise to the sequent below:

(measure-induct+"lex2(m, n)"
(“m" "n"))

�

[−1] forall(i : posnat, j : nat) :
lex2(i, j) < lex2(m, n)implies

divides (gcdsw(i, j), i)
|---
[1] divides (gcdsw(m, n), m)

After expanding the definition of gcdsw and lifting the branching instruction if
then else using the PVS command (lift-if) one obtains the sequent below:

[−1] forall(i : posnat, j : nat) : lex2(i, j) < lex2(m, n) implies divides (gcdsw(i, j), i)
|---
[1] if n = 0 then divides (m, m)

else if m > n then divides (gcdsw(n, m), m)

else divides (gcdsw(m, n − m), m)

endif
endif

After propositional derivations two interesting cases arise:

[−1] m > n
[−2] forall(i : posnat, j : nat) : lex2(i, j) < lex2(m, n) implies divides (gcdsw(i, j), i)
|---
[1] divides (gcdsw(n, m), m)

[2] n = 0

and

4.3 Proof Commands for Induction 117

[−1] forall(i : posnat, j : nat) : lex2(i, j) < lex2(m, n) implies divides (gcdsw(i, j), i)
|---
[1] [−1] m > n
[2] divides (gcdsw(n, m), m)

[3] n = 0.

For the former subobjective expanding gcdsw in [1] one obtains the sequent below:

[−1] m > n
[−2] forall(i : posnat, j : nat) : lex2(i, j) < lex2(m, n) implies divides (gcdsw(i, j), i)
|---
[1] divides (gcdsw(n, m − n), m)

[2] n = 0.

Then copying the induction hypothesis and instantiating it first as (inst -1
"n" "m") and second as (inst -3 “m − n" "n") one obtains, after propo-
sitional derivations, the objective below:

[−1] divides (gcdsw(m − n, n), m − n)

[−2] divides (gcdsw(n, m), n)

[−3] m > n
|---
[1] divides (gcdsw(n, m − n), m)

[2] n = 0.

Since gcdsw commutes (see lemma gcd_sw_commutes in Sect. 4.1.2) for pos-
itive naturals, the formula [−1] can be rewritten into the formula [−1] divides (gcdsw
(n, m − n), m − n). Also, by expanding gcdsw in the formula [−2] one obtains the
formula [−2] divides (gcdsw(n, m − n), n). Then, by expanding divides in thewhole
sequent one obtains the sequent below:

[−1] exists i : m − n = gcdsw(n, m − n) ∗ i
[−2] exists j : n = gcdsw(n, m − n) ∗ j
[−3] m > n
|---
[1] exists k : m = gcdsw(n, m − n) ∗ k
[2] n = 0.

Finally, by skolemization (rule (L∃)) of formulas [−1] and [−2] and adequate
instantiation of formula [1] (rule (R∃), through application of the PVS command
(inst 1 “i + j")), one concludes the proof of the former subobjective.

The latter subobjective is simpler. Indeed, instantiating the induction hypothesis as
(inst -1 "m" "n − m") one obtains the required formula to easily conclude
the proof.

118 4 Derivations and Formalizations

Exercise 60 a. Complete the proof and formalize the commutativity of gcdsw:

|---[1] forall (m : posnat, n : nat) : n > 0 implies gcdsw(m, n) = gcdsw(n, m)

As explained in Sect. 4.1.2, this proof does not require induction.
b. Complete the proof of the conjecture

|---[1] forall (m : posnat, n : nat) : divides (gcdsw(m, n), m).

4.4 The Semantics of the PVS Specification Instructions

As previously mentioned the PVS specification language uses branching instructions
such as if then else and cases of and the binding instruction let in. Thus, it is necessary
to establish the concrete semantics of these instructions. In particular, the semantics
of the PVS conditional instruction if then else can be made explicit by illustrating
its behavior in proofs where it appears in the succedent and in the antecedent:

a, �|---�, b
�|---�, a → b

(flatten)
�|---�, a, c

�|---�,¬a → c
(flatten)

�|---�, if a then b else c endif
(split)

a, b, �|---�

a ∧ b, �|---�
(flatten)

c, �|---�, a
¬a ∧ c, �|---�

(flatten)

if a then b else c endif, �|---�
(split)

By applying the proof command(prop) to if then else formulas in the succedent
or antecedent of a target sequent one will obtain automatically two corresponding
sequents as above.

The cases of instruction is treated in a similar manner, considering different cases
as nested if then else commands. We consider again the datatype of lambda terms.

The derivations below illustrate the PVS semantics of cases of instructions oc-
curring in the antecedent and succedent of a target sequent. Notice the use of
(lift-if) proof command.

app?(s), �|---�, a abs?(s), �|---�,app?(s), b �|---�,abs?(s),app?(s), c

�|---�, if app?(s) then a elsif abs?(s) then b else c endif
(prop)

�|---�, cases s of app(x, t) : a,abs(t, u) : b,vars(t) : c endcases
(lift-if)

4.4 The Semantics of the PVS Specification Instructions 119

app?(s), a, �|---� abs?(s), b, �|---�,app?(s) c, �|---�,abs?(s),app?(s)

if app?(s) then a elsif abs?(s) then b else c endif, �|---�
(prop)

cases s of app(x, t) : a,abs(t, u) : b,vars(t) : c endcases, �|---�
(lift-if)

The operational semantics of the binding instruction let in is related with the beta-
contraction of the lambda calculus; thus, an expression of the form let x = b in a
has the interpretation a[x/b], meaning that all instances of x in a will be simultane-
ously substituted by b, which in lambda calculus corresponds to the beta-contraction:
(λx .a) b →β a[x/b]. let in instructions are interpreted in PVS by application of the
(beta) command, but also automatically when commands such as (assert) are
applied. For instance, consider the derivation below:

(a or not b) or not (a or not b) and a
�|---�, let d = (a or not b) in d or not d and a

(assert)

Chapter 5
Algebraic and Computational Examples

In this chapter, we present simple cases of study in order to illustrate the application
of PVS for formalizing algebraic and algorithmic properties. The first example uses
proof commands associated with Gentzen sequent and natural deduction rules to
prove that an irrational to an irrational power might be rational and the second exam-
ple uses also induction in order to prove correctness of sorting algorithms specified
recursively. Formalizations related with examples in this section are available at the
web page http://logic4CS.cic.unb.br.

5.1 Proving Simple Algebraic Properties

Initially, we will revisit the example that an irrational number to an irrational power
maybe rational studied in Chap.2 in the context of natural deduction.

We assume that the (
√
2

√
2
)
√
2 and

√
2 are respectively a rational and a irrational

number, in order to provide deductions that there exist irrationals x and y such that
x y is a rational number. Derivations à la Gentzen Sequent Calculus and in Natural
Deduction are given below. In these proofs, R denotes the unary predicate “rational”
over numbers.

First, we present a derivation à la Gentzen Sequent Calculus. In this setting,
our objective is to prove the sequent ⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y)) and our

assumptions are the sequents ⇒ R((
√
2

√
2
)
√
2) and ⇒ ¬R(

√
2).

The main rule of the proof is (Cut) using the sequent ⇒ ¬R(
√
2

√
2
) ∨ R(

√
2

√
2
)

which is easily obtained (namely, this is an instance of (LEM)).

Initially, proofs∇1 and∇2 of the sequents¬R(
√
2

√
2
) ⇒ ∃x∃y(¬R(x) ∧ ¬R(y)

∧ R(x y)) and R(
√
2

√
2
) ⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y)) are given.

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_5

121

http://logic4CS.cic.unb.br
http://dx.doi.org/10.1007/978-3-319-51653-0_2

122 5 Algebraic and Computational Examples

∇1 : ¬R(
√
2
√
2
) ⇒ ¬R(

√
2
√
2
)

(Ax)

⇒ ¬R(
√
2)

¬R(
√
2
√
2
) ⇒ ¬R(

√
2)

(LW)
⇒ R((

√
2
√
2
)
√
2)

¬R(
√
2
√
2
) ⇒ R((

√
2
√
2
)
√
2)

(LW)

¬R(
√
2
√
2
) ⇒ ¬R(

√
2) ∧ R((

√
2
√
2
)
√
2)

(R∧)

¬R(
√
2
√
2
) ⇒ ¬R(

√
2
√
2
) ∧ ¬R(

√
2) ∧ R((

√
2
√
2
)
√
2)

(R∧)

¬R(
√
2
√
2
) ⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))

(R∃)2

∇2 :

⇒ ¬R(
√
2)

R(
√
2
√
2
) ⇒ ¬R(

√
2)

(LW)
⇒ ¬R(

√
2)

R(
√
2
√
2
) ⇒ ¬R(

√
2)

(LW)

R(
√
2
√
2
) ⇒ ¬R(

√
2) ∧ ¬R(

√
2)

(R∧)

R(
√
2
√
2
) ⇒ R(

√
2
√
2
)

(Ax)

R(
√
2
√
2
) ⇒ ¬R(

√
2) ∧ ¬R(

√
2) ∧ R(

√
2
√
2
)

(R∧)

R(
√
2
√
2
) ⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))

(R∃)2

And finally, we conclude by applying rule (L∨) and (Cut).

(LEM) ⇒ ¬R(
√
2
√
2
) ∨ R(

√
2
√
2
)

∇1 ∇2

¬R(
√
2
√
2
) ∨ R(

√
2
√
2
) ⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))

(L∨)

⇒ ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))
(Cut)

The proof in natural deduction uses the assumptions R((
√
2

√
2
)
√
2) and ¬R(

√
2)

and has as objective the formula ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y)). The derivation

uses (LEM) for ¬R(
√
2

√
2
) ∨ R(

√
2

√
2
) and has as main rule (∨e).

Initially, using the assumptions, we have natural derivations ∇′
1 and ∇′

2 for

¬R(
√
2

√
2
) 	 ∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y)) and R(

√
2

√
2
) 	 ∃x∃y(¬R(x)

∧ ¬R(y) ∧ R(x y)).

∇′
1 : [¬R(

√
2

√
2
)]a1

¬R(
√
2) R((

√
2

√
2
)
√
2)

¬R(
√
2) ∧ R((

√
2

√
2
)
√
2)

(∧i)

¬R(
√
2

√
2
) ∧ ¬R(

√
2) ∧ R((

√
2

√
2
)
√
2)

(∧i)

∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))
(∃i)2

∇′
2 :

¬R(
√
2) ¬R(

√
2)

¬R(
√
2) ∧ ¬R(

√
2)

(∧i) [R(
√
2

√
2
)]a2

¬R(
√
2) ∧ ¬R(

√
2) ∧ R(

√
2

√
2
)

(∧i)

∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))
(∃i)2

5.1 Proving Simple Algebraic Properties 123

The proof is concluded as below:

(LEM) ¬R(
√
2

√
2
) ∨ R(

√
2

√
2
) ∇′

1 ∇′
2

∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(x y))
(∨e) a1, a2

Now, we examine a PVS deduction tree for proving this fact, specified as the con-
jecture below, where R? abbreviates the predicate “rational” and when convenient,
for a better visualization, the power operator, “ ˆ ,” is written in prefix notation (that
is, x ˆ y is written as ˆ (x, y)):

exists (x, y): not R?(x)and not R?(y)and R?(ˆ (x, y)).

The derivation tree is illustrated in Fig. 5.1. The root node is labelled by the
objective sequent below, but for simplicity, all sequents were dropped from this tree:

|--- exists (x, y): not R?(x)and not R?(y)and R?(x ˆ y).

As first derivation step, that is related with rule (cut), one must proceed by case
analysis. For this, the command (case) is applied, and two branches are derived,
as can be seen in Fig. 5.1. The left one labelled with a sequent which adds to the
objective sequent the formula referent to the (case) as an antecedent and the right
one with that formula as a succedent that are the sequents:

Fig. 5.1 Deduction PVS tree for an irrational to an irrational power maybe rational

124 5 Algebraic and Computational Examples

R?(ˆ (√2,
√
2))or not R?(ˆ (√2,

√
2))

|---
exists (x, y): not R?(x)and not R?(y)and R?(x ˆ y),

and

|---
R?(ˆ (√2,

√
2))or not R?(ˆ (√2,

√
2))

exists (x, y): not R?(x)and not R?(y)and R?(x ˆ y).

The easy branch is the right one that is an instance of (LEM). This is almost
automatically proved after using rule (R∨) that is applied through the PVS proof
command (flatten). Applying this command generates two succedent formu-
las, R?(ˆ(√

2,
√
2)) and NOT R?(ˆ(√

2,
√
2)), and since c-equivalence moves

the second formula to the antecedent without negation, the proof is concluded by
automatic application of (Ax).

The left branch is the interesting one. The proof assistant provides the formula
referent to the (case) as an antecedent. Thus, rule (L∨) should be applied to split
the proof into two branches, which is done by application of the PVS proof command
(split). The proof tree is then split into two branches whose roots are labelled
with the sequents (notice the use of c-equivalence in the second one):

R?(ˆ (√2,
√
2))

|---
exists (x, y): not R?(x)and not R?(y)and R?(x ˆ y),

and

|---
R?(ˆ (√2,

√
2))

exists (x, y): not R?(x)and not R?(y)and R?(x ˆ y).

The left sub-branch relates to both derivations ∇2 and ∇′
2 and the right sub-

branch to ∇1 and ∇′
1. In both cases, one must deal adequately with the existential

quantifiers in the target conjecture exists (x, y) : not R?(x) and not R?(y)
and R?(ˆ (x, y)). The Gentzen sequent rule to be applied is (R∃) that is applied
through the PVS command (inst). For the left sub-branch it should be applied the
instantiation (inst “

√
2” “

√
2”) that gives as result the sequent (labeling the

node marked with (α) in Fig. 5.1).

R?(ˆ (√2,
√
2))

|---
not R?(

√
2)and not R?(

√
2)and R?(ˆ (√2,

√
2)).

5.1 Proving Simple Algebraic Properties 125

The formula in the succedent splits into three objectives by Gentzen sequent rule
(R∧) through application of the PVS proof command (split). The third of these
objectives is trivially discharged by automatic application of (Ax), and the other two
require the knowledge that not R?(

√
2), which is stated by a specific lemma called

sq2_is_irr. These two branches are concluded by application of the PVS proof
command (lemma “sq2_is_irr”).

For the right sub-branch, one applies the instantiation (inst “ ˆ (√2,
√
2)”

“
√
2”) obtaining the sequent (labeling the node (β) in Fig. 5.1).

|---
R?(ˆ (√2,

√
2))

not R?(ˆ (√2,
√
2))and not R?(

√
2)and R?(ˆ (ˆ (√2,

√
2),

√
2)).

After this, similarly to the previous branch, the PVS command (split) is
applied obtaining three subobjectives. The first objective is automatically proved by
applications of e-equivalence and (Ax). The other objectives are the sequents:

R?(
√
2)

|---
R?(ˆ (√2,

√
2)),

and

|---
R?(ˆ (ˆ (√2,

√
2),

√
2))

R?(ˆ (√2,
√
2)).

The former is proved by application of command (lemma “sq2_is_irr”),
as done in the left sub-branch. The latter requires the knowledge that R?(ˆ (ˆ (√2,√
2),

√
2) which is stated by a lemma called two_is_rat and applied with the

command (lemma “two_is_rat”).
Previous two explained branches require the ability to provide adequate and con-

crete witnesses through instantiations as well as application of pertinent lemmas
to cut proofs. In general, when dealing with quantifiers, the PVS proof command
related with Gentzen sequent rules (R∃) and (L∀) is (inst), while for both rules
(R∀) and (L∃) what is required is application of Skolemization through the PVS
proof command (skolem). In the last case, the system will substitute quantified
variables by fresh variables.

Exercise 61 Specify and prove that there exist irrationals such that one of them to
the power of the other is rational. In PVS, you might assume that

√
2 is irrational

through an axiom as given below:

ax1 :axiom notR?(sqrt(2)).

126 5 Algebraic and Computational Examples

On the other side, (
√
2

√
2
)
√
2 can be proved equal to 2 expanding the operators ˆ

and expt, that are the operators related with the power operator.

5.2 Soundness of Recursive Algorithms Through Induction

To formalize correctness properties of algorithm, the focus on recursion and induc-
tion is necessary. As example of formalization, we propose very simple sorting
algorithms. The NASA PVS library includes a complete theory developed by the
authors called sorting, for a variety of sorting algorithms over non interpreted
metric spaces with a well-founded measure [2]. Among others, the sorting theory
includes soundness proofs of algorithms such as Mergesort, Quicksort, Heapsort,
and Maxsort. Here, for simplicity, we use the type of naturals. As a simple instance,
we use Hoare’s Quicksort algorithm over naturals in this section.

Quicksort works as follows: empty lists are sorted and for a nonempty list l the
problem is decomposed into sorting recursively the sublists l1 and l2 of elements that
are, respectively, less than or equal to and greater than an element x of l, called the
pivot. The sorted list is then obtained by appending the sorted list of the elements in
l1 with the pivot and the sorted list of the elements in l2.

In general, quicksort is specified over lists of a noninterpreted type T in which a
total measure is available. Lists are specified as usual as an inductive data structure
where null is the constructor for empty lists, and cons constructs a new list from a
given element of T and a list (see Exercise 57). As usual, the operators cdr and car
give the tail and head of a list: cdr(cons(x,l)) := l and car(cons(x,l))
:= x.

quicksort(l : list[T]) : recursive list[T] =
cases l

null : null,
cons(x, r) : append(quicksort(leq_elements(r, x)),

cons(x,quicksort(g_elements(r, x))))
endcases
measure length(l)

Algorithm 7: Specification of quicksort in PVS

In the above specification, the head of the list, x, is chosen as the pivot, and
leq_elements(r,x) and g_elements(r,x) build the lists of elements of
the tail r that are respectively less than or equal to and greater than x. See their
specifications in the next two algorithms.

5.2 Soundness of Recursive Algorithms Through Induction 127

leq_elements(l : list[T], p : T): recursive list[T] =
case l

null : null,
cons (x, r):
if x <= p then

cons (x, leq_elements (r, p))
else

leq_elements (r, p)
end

endcases
measure length(l)

Algorithm 8: Specification of the function leq_elements in PVS - list of
elements less than or equal to a pivot

g_elements(l: list[T], p : T): recursive list[T] =
case l

null : null,
cons (x, r):
if x > p then

cons (x, g_elements (r, p))
else

g_elements (r, p)
end

endcases
measure length(l)

Algorithm 9: Specification of the function g_elements in PVS - list of ele-
ments greater than a pivot

The termination measure for the function quicksort is given in the last line
of its definition as the length of the list to be sorted. This measure is used to prove
that quicksort is a well-defined function (and thus, that it is terminating). This
is done proving that each recursive call of quicksort has, as argument, an actual
parameter listwhose length is strictly smaller than the inputparameter list. In the easy
cases, PVS can conclude well definedness of specified functions automatically, but in
general, as happens in the case ofquicksort above, the user needs to prove that the
measure indeed decreases. The same happens for both functions leq_elements
and g_elements.

For quicksort, well definedness is proved using the following lemmas:

leq_elements_size : LEMMA
FORALL (l : list[T], x:T) : length(leq_elements(l,x)) <= length(l)

g_elements_size : LEMMA
FORALL (l : list[T], x:T) : length(g_elements(l,x)) <= length(l)

128 5 Algebraic and Computational Examples

Fig. 5.2 Structural induction scheme for proving property P? on lists

The proofs of these lemmas require structural induction on lists. The structural
induction principle of PVS is automatically generated by the command (induct)
followed by the variable to be induced. In general, as discussed in Sect. 4.3, if P?
is the predicate that represents the property on lists to be proved, starting from a
sequent of the form �|--- ∀(l) : P?(l),�, then we have the induction scheme
depicted in Fig. 5.2.

Exercise 62 Prove by structural induction the previous two lemmas.

Also, a complete or strong induction principle can be applied, as discussed in
Sect. 4.3, where a different measure, say μ, on the inductive data structure (lists in
our case), might be used. For doing this, the command (measure-induct+) is
applied using as parameters the measure and the list of parameters required by the
measure. Starting from a sequent of the form �|--- ∀(l) : P?(l),�, we have the
induction scheme depicted in Fig. 5.3.

From the sequent�|--- ∀(l) : (∀(x,l′) : (μ(l′) < μ(l) → P(l′))) → P(l),

�, in Fig. 5.3, after applying proof commands (skolem) and (flatten) (asso-
ciated respectively with SC rules (R∀) and (R→) as shown in Table4.1) one has the
sequent

�, (∀(x,l′) : (μ(l′) < μ(l) → P(l′)))|--- P(l),�,

which can also be obtained directly by the PVS command (measure-induct+)
applied with the same arguments as above.

Using complete induction with measure length(l) on l to prove lemma
leq_elements_size above, i.e., applying the proof command (measure-
induct+ “l”), one obtains two subobjectives given below, where leq_
elements is abbreviated as leq_l:

Fig. 5.3 Complete induction
scheme for proving property
P? on lists with measure μ

on lists

http://dx.doi.org/10.1007/978-3-319-51653-0_4
http://dx.doi.org/10.1007/978-3-319-51653-0_4
http://dx.doi.org/10.1007/978-3-319-51653-0_4

5.2 Soundness of Recursive Algorithms Through Induction 129

|--- forall(x : T) : length(leq_l(null,x)),<= length(null)

and

|--- forall(x′ : T,l′ : list[T]) :
forall(x : T) : length(leq_l(l′,x)) <= length(l′)

implies
forall(x : T) : length(leq_l(cons(x′,l′),x)) <= length(cons(x′,l′))

For proving the former, it is enough to apply the command (skolem) and then
expand the definition of leq_elements obtaining the trivial sequent:

|--- length(null) <= length(null)

For proving the latter, after applying the commands (skolem) twice and then
(flatten), one obtains the subobjective:

forall(x : T) : length(leq_l(l′,x)) <= length(l′)
|---
forall(x : T) : length(leq_l(cons(x′,l′),x)) <= length(cons(x′,l′))

At this point application of proof commands related with rules (R∀) and (L∀)
are required; indeed, first command (skolem) and then (inst) are applied. The
latter with the adequate instantiation, obtaining the subobjective below:

length(leq_l(l′,x)) <= length(l′)
|---
length(leq_l(cons(x′,l′),x)) <= length(cons(x′,l′))

Expanding the definitions of length and leq_elements (i.e., leq_l), one
obtains the following objective:

length(leq_l(l′,x)) <= length(l′)
|---
if x′ <= x then 1 + length(leq_l(l′,x))

else length(leq_l(l′,x))endif <= 1 + length(l′)

Then, the instruction if then else in the succedent formula can be lifted by appli-
cation of the proof command (lift-if), obtaining the sequent below:

length(leq_l(l′,x)) <= length(l′)
|---
if x′ <= x then 1 + length(leq_l(l′,x)) <= 1 + length(l′)
else length(leq_l(l′,x)) <= 1 + length(l′)endif

130 5 Algebraic and Computational Examples

From this point, it is possible to apply the proof commands (split) and
(flatten) obtaining two subobjectives, included below, that can be proved
directly applying the command (assert) that, as previously discussed, will auto-
matically apply the necessary simplifications from notions specified in the PVS
prelude library using decision procedures.

x′ <= x
length(leq_l(l′,x)) <= length(l′)
|---
1 + length(leq_l(l′,x)) <= 1 + length(l′)

length(leq_l(l′,x)) <= length(l′)
|---
x′ <= x
length(leq_l(l′,x)) <= 1 + length(l′)

Translating complete PVS proofs to Sequent Calculus derivations is worth to con-
solidate the understanding of the relations between theory and practice. For illustrat-
ing this, consider the simple (auxiliary) property that after adding the same element
to lists that are permutations one obtains lists that are also permutation, presented as
the sequent below:

⇒ ∀l1, l2, x (Permutations?(l1, l2) → Permutations?(x · l1, x · l2))

Notice, Permutations? is a predicate that appears in the main correctness
theorem of the Quicksort PVS theory given below:

quicksort_works: THEOREM FORALL (l : list[T]):
is_sorted?(quicksort(l)) AND Permutations?(quicksort(l), l)

For brevity, instead Permutations?, Perm? is used. This predicate is specified
over pairs of lists based on the coincidence of occurrences of elements in both lists.

Perm?(l1, l2) : Bool = forall x : Occurrences(l1, x) = Occurrences(l2, x),

where Occurrences(l, x) is specified as the number of occurrences of x in l,
abbreviated as O(l, x).

In order to provide a deduction á la Gentzen Sequent Calculus that prove that
adding the same element x to permutations l1 and l2 one obtains lists x · l1 and x · l2
that are also permutations, assume the knowledge of the sequents:

SqA(l) ≡ ⇒ ∀y O(y · l, y) = 1 + O(l, y),

5.2 Soundness of Recursive Algorithms Through Induction 131

and

SqB(l) ≡ ⇒ ∀x, y ¬x = y → O(x · l, y) = O(l, y),

where x · l abbreviates cons(x, l).
Below, a derivation à la Gentzen Sequent Calculus, ∇ , is given that uses the

extended transformation rules and follows the steps of the PVS proof (upside down).

(LEM) ⇒ x = y ∨ ¬x = y

∇1 ∇2

x = y ∨ ¬x = y,O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y) (L∨)

O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y) (Cut)

∀y O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y) (L∀)

∀y O(l1, y) = O(l2, y) ⇒ ∀y O(x · l1, y) = O(x · l2, y) (R∀)

Perm?(l1, l2) ⇒ Perm?(x · l1, x · l2) (L=)by omitted def. of Perm?

⇒ Perm?(l1, l2) → Perm?(x · l1, x · l2) (R→)

⇒ ∀x Perm?(l1, l2) → Perm?(x · l1, x · l2) (R∀)

⇒ ∀l2, x Perm?(l1, l2) → Perm?(x · l1, x · l2) (R∀)

⇒ ∀l1, l2, x Perm?(l1, l2) → Perm?(x · l1, x · l2) (R∀)

Where ∇1 is given as

SqA(l1) ∇′
1

O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y) (Cut)

x = y,O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y) (L=)

with ∇′
1

SqA(l2)

⇒ 1 + O(l1, y) = 1 + O(l1, y)
(R=)

O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = 1 + O(l2, y)
(L=)

O(y · l2, y) = 1 + O(l2, y),O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y) (L=)

∀y O(y · l2, y) = 1 + O(l2, y),O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y) (L∀)

O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y) (Cut)

O(y · l1, y) = 1 + O(l1, y),O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y) (L=)

∀y O(y · l1, y) = 1 + O(l1, y),O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y) (L∀)

132 5 Algebraic and Computational Examples

And, where ∇2 is given as

SqB(l1)....¬x = y ⇒ O(x · l1, y) = O(l1, y) ∇′
2

¬x = y,O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y) (Cut)

with ∇′
2

SqB (l2).
.
.
.

¬x = y ⇒ O(x · l2, y) = O(l2, y)

O(l1, y) = O(l2, y) ⇒ O(l1, y) = O(l2, y) (Ax)

O(x · l2, y) = O(l2, y),O(l1, y) = O(l2, y) ⇒ O(l1, y) = O(x · l2, y)
(L=)

¬x = y,O(l1, y) = O(l2, y) ⇒ O(l1, y) = O(x · l2, y)
O(x · l1, y) = O(l1, y), ¬x = y,O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)

(L=)

(cut)

Exercise 63 a. In the main derivation above, that is,∇ complete the step labelled
as “(L=) by omitted definition of Permutation?.” Notice that rule (L=) is
being used with equation Perm?(l1, l2) = ∀y O(l1, y) = O(l2, y).

b. Complete the steps in the derivation below used in ∇2 and ∇′
2.

SqB(l) ≡ ⇒ ∀x, y ¬x = y → O(x · l, y) = O(l, y)....¬x = y ⇒ O(x · l, y) = O(l, y)

Now we will give a PVS proof for the sequent:

|--- forall(l1, l2 : list[T], x : T) : Permutations?(l1, l2) → Permutations?(x · l1, x · l2).

Instead the sequents SqA and SqB , used in the derivation à la Gentzen Sequent
Calculus, we use the lemmas below that are easy to be proved from the definition of
Occurrences.

L_SqA : LEMMA
FORALL (l : list[T], y : T) : O(y.l,y)) = 1 + O(l,y)

L_SqB : LEMMA
FORALL (l : list[T], x, y :T) : NOT x = y -> O(x.l,y)) = O(l,y)

The proof is formalized as explained below. From the objective, after a few com-
mand applications we split the proof in two cases.

5.2 Soundness of Recursive Algorithms Through Induction 133

|--- ∀(l1, l2, x) : Perm?(l1, l2) → Perm?(x · l1, x · l2)

(skeep)

Perm?(l1, l2)|--- Perm?(x · l1, x · l2)

(expand “Perm?” 1)

Perm?(l1, l2)|--- ∀y : O(x · l1, y) = O(x · l2, y)

(skeep)

Perm?(l1, l2)|--- O(x · l1, y) = O(x · l2, y)

(case “x = y”)

�������������
�������������

x = y,Perm?(l1, l2)|--- O(x · l1, y) = O(x · l2, y) Perm?(l1, l2)|--- x = y,O(x · l1, y) = O(x · l2, y)

The left branch is formalized as below:

x = y,Perm?(l1, l2)|--- O(x · l1, y) = O(x · l2, y)
|

(replaces -1)
|

Perm?(l1, l2)|--- O(y · l1, y) = O(y · l2, y)
|

(lemma “L_SqA”)
|

∀(l, y) : O(y · l, y) = 1 + O(l, y),Perm?(l1, l2)|--- O(y · l1, y) = O(y · l2, y)
|

(inst -1 “l1” “y”)
|

O(y · l1, y) = 1 + O(l1, y),Perm?(l1, l2)|--- O(y · l1, y) = O(y · l2, y)
|

(replaces -1)
|

Perm?(l1, l2)|--- 1 + O(l1, y) = O(y · l2, y)
|

(lemma “L_SqA”);(inst -1 “l2” “y”);
|

(replaces -1)
|

Perm?(l1, l2)|--- 1 + O(l1, y) = 1 + O(l2, y)
|

(expand “Perm?”)
|

∀(y) : O(l1, y) = O(l2, y)|--- 1 + O(l1, y) = 1 + O(l2, y)
|

inst?

134 5 Algebraic and Computational Examples

The right branch is formalized in a similar manner as depicted below:

Perm?(l1, l2)|--- x = y,O(x · l1, y) = O(x · l2, y)
|

(lemma “L_SqB”)
|

∀(l, x, y) : ¬x = y → O(x · l, y) = O(l, y),Perm?(l1, l2)|--- x = y,O(x · l1, y) = O(x · l2, y)
|

(inst -1 “l1” “x” “y”)
|

¬x = y → O(x · l1, y) = O(l1, y),Perm?(l1, l2)|--- x = y, O(x · l1, y) = O(x · l2, y)
|

(assert);(replaces -1)
|

Perm?(l1, l2)|--- x = y, O(l1, y) = O(x · l2, y)
|

(lemma “L_SqB”);(inst -1 “l2” “x” “y”);(assert);(replaces -1)
|

Perm?(l1, l2)|--- x = y, O(l1, y) = O(l2, y)
|

(expand “Perm?”)
|

∀(y) : O(l1, y) = O(l2, y)|--- 1 + O(l1, y) = 1 + O(l2, y)
|

inst?

The main correctness Theorem for Quicksort requires proving that the computed
output is indeed a permutation of the input list of naturals, l. This proof starts with
the sequent below:

|--- FORALL (l : list[T]): Perm?(quicksort(l),l)

In Fig. 5.4, we present a sketch of the PVS formalization in which a few nodes
that are labelled with sequents are abbreviated with labels of the form 	 and 	(n).
The root node of the derivation tree with label (0) is for the target sequent above.

The proof proceeds by strong induction applying the command (measure-
induct+) using asmeasure function the length of lists (see proof sketch in Fig. 5.4).
Examining proofs such as this one, important proof strategies such as multiple use
of the induction hypothesis can be highlighted. This happens in the formalization of
soundness of Quicksort, both for proving that the output is in fact a sorted list and
a permutation of the input list. More specifically, the induction hypothesis has to be
applied to two sublists that are shorter than the input list: the list of elements less than
or equal to the pivot and the list of those greater than the pivot. After application of
the induction command one obtains the sequent below (depicted by short as 	(1) in
Fig. 5.4), where the induction hypothesis is the antecedent formula (type annotations
are omitted by short).

5.2 Soundness of Recursive Algorithms Through Induction 135

Fig. 5.4 Deduction PVS tree to permutation of Quicksort

FORALL(y): length(l’) < length(l) IMPLIES Perm?(quicksort(l’),l’)
|--- Perm?(quicksort(l),l)

After that, proper applications of (expand) are done (that are related to the
derivation rule (L=)) for expanding the definitions of quicksort, Perm?, O, etc.
Additionally, the proof command (copy) (that is related to (LW)) is applied in
order to duplicate the induction hypothesis, and the command (inst) is applied
with adequate parameters in order to apply the induction hypothesis twice: one for the
list of elements that are less than or equal to the pivot and other for the list of elements
that are greater than the pivot. These instantiations are related with the application of
the derivation rule (L∀). After all that, one obtains the following sequent (depicted
as 	(2) in Fig. 5.4), where for brevity in addition to the abbreviation leq_l, we use
alsoq_s,g_l andapp for abbreviating, respectively,quicksort,g_elements
and append:

length(g_l(cdr(l), car(l))) < length(l) IMPLIES
FORALL (x):O(q_s(g_l(cdr(l), car(l))), x) = O(g_l(cdr(l), car(l)), x),

length(leq_l(cdr(l), car(l))) < length(l) IMPLIES
FORALL (x):O(q_s(leq_l(cdr(l), car(l))), x) = O(leq_l(cdr(l), car(l)), x)

|---
null?(l),
O(app(q_s(leq_l(cdr(l), car(l))),

cons(car(l), q_s(g_l(cdr(l), car(l))))), x) = O(l, x)

136 5 Algebraic and Computational Examples

At this point of the formalization, after splitting the antecedent formulas of
this sequent, and applying (inst “x”) twice (see applications of (split) in
Fig. 5.4), several simple lemmas should be applied.

• For the right branches generated by these two application of the proof com-
mand (split), that are the branches rooted by 	(3) and 	(4), the proof com-
mand (lemma) is used to apply both lemmas leq_elements_size and
g_elements_size mentioned at the begin of this section. This is done to
prove correct instantiation of the inductive hypotheses with lists that are in fact
shorter than the input list l, that are the lists g_l(cdr(l), car(l)) and
leq_l(cdr(l), car(l)) of elements greater than and less than or equal to
the pivot, respectively.

• For the left branch generated by these two applications of (split), lemmas
occ_of_app,same_occ_leq andsame_occ_g are applied,whosemeaning
will be explained below.

The lemma occ_of_app states the simple fact that the occurrences of some
element in the append of two lists is the sum of the occurrences of the element in the
lists being appended.

occ_of_app : LEMMA
FORALL (l1, l2 : list[T], x : T) : O(app(l1,l2),x) = O(l1,x) + O(l2,x)

Applying this lemma, by using commands(lemma) and(inst), the latter with
the proper instantiations, one adds the following antecedent formula to the previous
sequent (the new sequent corresponds to node 	(5) in Fig. 5.4).

O(app(q_s(leq_l(cdr(l), car(l))),
cons(car(l), q_s(g_l(cdr(l), car(l))))), x)

= O(q_s(leq_l(cdr(l), car(l))), x) +
O(cons(car(l), q_s(g_l(cdr(l), car(l)))), x)

Then, the left-hand side of this equation is replaced by the right-hand side in the
succedent of the sequent (applying command (replaces)) obtaining a sequent
with the modified formula of interest in the succedent.

...
|---

...
O(q_s(leq_l(cdr(l), car(l))), x) +
O(cons(car(l), q_s(g_l(cdr(l), car(l)))), x) = O(l, x)

Then, Occurrences (i.e., O) is expanded at the second occurrence of O
in the second formula in the succedent. Since the expanded definition considers
whether car(l) = x or not, after application of the commands (lift-if) and
(split), two cases are to be considered according to whether car(l) = x or
NOT car(l) = x. These cases correspond to branches rooted by ((6)) and ((7))
in Fig. 5.4.

5.2 Soundness of Recursive Algorithms Through Induction 137

In order to conclude, one proceeds by application of lemmas same_occ_leq
and same_occ_g that are used to relate occurrences of elements in both lists
leq_l(cdr(l), car(l)) and g_l(cdr(l), car(l)). These lemmas are
specified as below:

same_occ_leq: LEMMA
FORALL (l:list[nat], x, p : nat):

x <= p IMPLIES O(l,x) = O(leq_l(l,p), x) AND O(g_l(l,p))(x) = 0

same_occ_g: LEMMA
FORALL (l:list[nat], x, p : nat):

x > p IMPLIES O(l,x) = O(g_l(l,p),x) AND O(leq_l(l,p), x) = 0

The former lemma states that for an element x that is less than or equal to the
pivot p, its occurrences in the lists l and leq_l(l, p) are equal, while it does not
occur in the list g_l(l, p). Similarly, the latter lemma states that for an element x
that is greater than p, its occurrences in the lists l and g_l(l, p) are equal, while
it occurs zero times in the list leq_l(l, p). These lemmas should be applied
with the adequate instantiation, that is, using as list the tail cdr(l) and as pivot the
head car(l), of the input list l.

Exercise 64

a. Complete all details of this formalization. For doing this you could also check
directly the formalization of correctness of quicksort in the theory for sorting
algorithms.

b. Build a derivation à la Gentzen Sequent Calculus for this formalization and
compare with the proof steps in item a., correspondingly with the proof steps
sketched in Fig. 5.4.

Chapter 6
Suggested Readings

6.1 Proof Theory

Proof theory is a subarea of mathematical logic that deals with proofs as mathemat-
ical objects. In principle, our focus is on the so called structural proof theory, that is
a subbranch of proof theory devoted to the study of properties of deductive calculi
such as natural deduction and sequent calculus. The German mathematician Ger-
hard Gentzen submitted his famous manuscript in 1933, in which he introduced the
calculus of natural deduction and the sequent calculus for both the intuitionistic and
classical logics. But also, it is known that the Polish logician Stanisław Jaśkowski,
who was a descendant from Jan Łukasiewicz, independently developed in 1929 his
own calculus of natural deduction. In Gentzen’s pioneering work, entitled Unter-
suchungen über das logische Schließen and published in two parts only in 1935 [10,
11], he formalized his Kalkül des natürlichen Schließens for the intuitionistic (NJ)
and the classical (NK) predicate logic as well as sequent calculi for the intuitionistic
(LJ) and the classical (LK) logic. These calculi correspond to the calculi examined
in this work. Gentzen used the sequent calculi to provide as main result the theorem
of cut elimination and then the equivalence between natural and sequent calculi.

The mathematical aspects of deductive systems can be studied in excellent text-
books on proof theory as for instance Troelstra and Schwichtenber’s one [34], Negri
and von Plato [23], or Prawitz’ 1960s classical one [30] on systems of natural deduc-
tion. Also, complete presentations of proof theory are available as the one by Aczel,
Simmons andWainer [1], and more modern presentations as those by Schwichtenber
andWainer [32] and Pohlers [28]. An encyclopedic version is edited by Buss [4] and
philosophical aspects are discussed by Hendricks, Pedersen, and Jorgensen in [14].
The first two chapters of [9] bring an excellent mathematical introduction in proof
theory. Also, accessible English translations of Gentzen seminal papers [10,11] are
available.

Structural proof theory appeared as an adequate formal treatment to answer the
Germanmathematician David Hilbert’s famous program: to prove the consistency of
mathematics by consistent and reliable but simpler foundational methods. Although

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0_6

139

140 6 Suggested Readings

Hilbert’s program was answered negatively by the Austrian logician Kurt Gödel in
1931 [13]—and subsequently other negative answers to the so called Entscheidung-
sproblem,were given, such asAlanTurin’swell-known theoremon theundecidability
of the halting problem (straightforward consequence of results originally given in
[36]) as well as Alonzo Church’s unsolvability presentation in the context of lambda
calculus [5]—proof theory remains of great importance and influence in computer
science providing formal frameworks for the development of automated reasoning
tools.

6.2 Formal Logic

Despite in the current work only the very basics of logic for computer science is
covered, and with a specialized focus on one relevant application of logic in formal
deduction, the reader should be advised of essential nice and crucial results in formal
logic that deserve his/her attention. From the formal foundational results the most
elaborated ones presented here are related with the soundness and completeness of
the deductive calculi. Thus, the importance of having included a sketch of Gödel’s
completeness theorem that relates semantic truth and formal deduction.Gödel’s com-
pleteness theorem was originally given in his Thesis presented at the University of
Vienna and entitled Über die Vollständigkeit des Logikkalküls and further published
in 1930 as [12]. The proof sketch given here follows the simplified model theory
style introduced by the U.S. American logician Leon Albert Henkin in 1949 in [15],
which is the standard one presented in modern textbooks on mathematical logic.

Post [29] proved the undecidability of the word problem for Thue systems that
essentially are monoids. Post’s proof consists in the reduction of the halting problem
in a Turing machine to an instance of the word problem in a related monoid. This
work is known as the first unsolvability result for a decision problem of classical
mathematics. The equality for this instance of the word problem holds if and only
if the Turing machine halts. Hence, by the undecidability of the halting problem
for Turing machines the word problem for these structures should be undecidable in
general. Grigorii Samuilovich Tseitin’s concretemonoid for which theword problem
is known undecidable and that was used to prove the undecidability of validity of the
predicate logic in Chap.2 was published almost ten years after Post’s paper on the
undecidability of the word problem for monoids [35].

Logic is related with computability, decidability, and undecidability of problems
that were not thoroughly revised in this book and usually are only studied in all
details in advanced courses onmathematical or formal logic. Among the fundamental
results omitted (or just referenced) in this book we would mention a few cornerstone
theorems related with the computational expressiveness and limits of the first-order
logic.

The Löwenheim-Skolem’s theorem states that if a countably first-order theory has
an infinite model, then it has models of any infinite cardinality. This implies that it
is not possible to achieve first-order specifications of mathematical structures such

http://dx.doi.org/10.1007/978-3-319-51653-0_2

6.2 Formal Logic 141

as naturals, rationals, reals, etc., since every attempt to specify such structures will
allow models with arbitrary (higher or lower) infinite cardinality that consequently
would not be isomorphic to the target structure. The compactness theorem states
that a set of first-order sentences is satisfiable if and only if every finite subset of
it is satisfiable. This property allows the constructions of models of any set of sen-
tences that is finitely consistent. The countable case was proved by Gödel, while the
Russian mathematician Anatoly Maltsev proved the uncountable case in 1936. Both
the Löwenheim-Skolem and the compactness theorems are crucial for the minimal
characterization of first-order logic expressed as the Lindström’s theorem, published
in 1969 [20] and named after the Swedish logician Per Lindström. This theorem
states that first-order logic is the strongest logic holding the compactness property
and the (downward) Löwenheim-Skolem’s property. As a consequence one has that
any possible extension of first-order logic, built for instance to specify algebraic
structures such as naturals, reals, etc., will loss at least one of these properties.

Of course, the study of Gödel’s incompleteness theorems is also relevant. Gödel
paramount incompleteness theorems show that there are limitations in what can be
achieved with formal mathematical proofs. The first incompleteness theorem infor-
mally states that “every sufficient rich and consistent axiom system contains mean-
ingful statements that are undecidable within the system itself,” it was announced
by Gödel during the Second Conference for Epistemology of the Exact Sciences on
September the seventh, 1930. The significance of this result to Hilbert’s program
was immediately understood by some of the attendants. In particular, the Hungarian
mathematician John von Neumann, who was working on Hilbert’s program at that
time, was attending this meeting. According to von Neumann’s letters to the German
philosopher Rudolf Carnap and to Gödel himself, it appears to be that von Neu-
mann inferred the second incompleteness theorem [31]. The second incompleteness
theorem states that “the consistency of a sufficiently rich axiomatic theory, such as
Peano Arithmetic, cannot be proved within the system itself, i.e., that the statement
expressing the consistency of the system is undecidable in the system.” Von Neu-
mann wrote a letter to Gödel with a sketch of his ideas in November the 20th, and a
second one the 29th that month, in which he thanks Gödel’s reprint (answer to the
first letter) and also wrote “Since you have established the theorem on the unprov-
ability of consistency as a natural continuation and deepening of your earlier results,
I clearly won’t publish on this subject.” In a letter to Rudolf Carnap dated June 7th,
1931, von Neumann wrote “Gödel has shown the unrealizability of Hilbert’s pro-
gram,” but also that “there is nomore reason to reject intuitionism,” point in which he
disagreed with Gödel, who thought his results do not contradict Hilbert’s formalistic
viewpoint. Gödel incompleteness theorems were originally published in 1931 [13].

Formal and mathematical aspects of logic can be consulted in excellent textbooks
from which we give only a small list. Ebbinghaus, Flum, and Thomas’ textbook
brings a complete and nice presentation of all results previously mentioned [8]. This
book includes a nice chapter on the resolution principle used for the implementation
of logical programming languages. Also Enderton’s classical book (originally pub-
lished in 1972) brings a nice precise mathematical presentation of the basic results to
understand the incompleteness theorems [9], and Huth and Ryan’s book [17] offers

142 6 Suggested Readings

a presentation directed to computer science in which interesting applications such as
SAT solvers, program verification, and model checking are covered.

6.3 Automated Theorem Proving and Type Theory

Two of the main branches of structural proof theory are automated theorem proving
and type theory. Automated theorem proving gave rise to amyriad of type-theoretical
deductive tools, automated theorem provers, and proof assistants, perhaps all of them
pioneered by the Dutch mathematician Nicolaas Govert de Bruijn’s group work on
the systemAutomath [21]. This systemwas developed at Eindhoven in the 1960s and
1970s with the aim of formalizing mathematics and particularly the corpus of mathe-
matical knowledge in Edmund Landau’s textbookGrundlagen der Analysis, which is
a nice and rigorous piece of formalwork by itself,written in the late 1920s and that has
been influenced modern presentations on the fundamentals of mathematical analy-
sis until today. Among the available modern deductive computational frameworks,
we can highlight PVS, Coq, Isabelle, HOL, Matita, Lean (L∃∀n), Agda, and ACL2.
Type theory not only provides the fundamental framework for the development of
the deductive engine of proof assistants, but in general for the development of robust
computational languages in which errors could be detected before computation.

Types were introduced in 1910 by Alfred North Whitehead and Bertrand Rus-
sell in their Principia Mathematica to avoid inconsistencies in the foundations of
mathematics. Computational frameworks such as Alonzo Church’s lambda calculus
were enriched with types [6] as a mechanism to provide robust formalisms in which
paradoxes are avoided. Basic simple types in the lambda calculus provided the tech-
nological basis of programming languages with types in the 1970s. The American
and Belgian logicians Haskell Curry and Robert Feys devised in the late 1950s [7]
the type inference algorithm embedded in the ML family of programming languages
developed by Robin Milner’s group at Edinburgh University in the early 1980s. The
formal aspects of simply typed lambda calculus are nicely presented in textbooks
such as Hindley’s one [16] and Kamareddine, Laan, and Nederpelt’s one [18]. The
authors of the latter book, also exposed in detail the early history of the development
of the theory in [19]. Applications of type theory in computation are exhaustively
exposed in Pierce’s books on types and programming languages [26, 27], and an
encyclopedic presentation of the mathematical formalisms of modern type systems
in the lambda calculus is given by Barendregt, Dekkers, and Statsman in [3]. The
latter book covers simple, recursive, and intersection types. Nederpelt and Gouvers’
book [22] covers on its side, higher-order, inductive, and dependent types, including
also the well-known calculus of constructions, with focus on the application of type
systems for the representation and verification of mathematical knowledge.

Recently, the Russian mathematician Vladimir Voevodsky’s program “Univa-
lent” Foundations of Mathematics arose with a lot of momentum in the community
of mathematicians with the objective of having a comprehensive, computational
foundation for mathematics based on the homotopical interpretation of type theory

6.3 Automated Theorem Proving and Type Theory 143

[33]. This program aroused great interest in the research community in part by the
influence of Voevodsky, who won the Fields Medal in 2002 for his work on homo-
topy theory for algebraic varieties. The program is being developed in the calculus
of inductive constructions, the formalism behind the proof assistant Coq. Homo-
topy type theory develops intentional type theory using type theory as a language to
formulate mathematics within a type-theoretical foundation.

Most mentioned deductive computational tools are implemented in the basis of
some type system. PVS uses an extension of Church’s theory of types with dependent
types. Lean, as PVS, is based on dependent type theory. Agda, is a dependently typed
functional programming language in which proofs are written in a functional style
as well. Coq uses the famous calculus of constructions that is a higher-order typed
lambda calculus created by Thierry Coquand. Matita is based on a dependent type
system known as the calculus of coinductive constructions, which is a derivative of
Coquand’s calculus of constructions. Isabelle is implemented in Standard ML, thus
inheriting the ML treatment of types, through a weak theory of types used as a meta-
logic, which encodes object logics such as first-order logic (FOL), higher-order logic
(HOL), etc. Theorems are objects of a specific abstract data type and the type system
ensures that only adequate inference rules are applied in the derivation of a theorem.
HOL is an acronym forHigher-Order Logic that as Isabelle, is a successor of thewell-
known theorem prover LCF which incorporates ML and uses the same principles.
Indeed, HOL is a family of higher-order proof assistants (HOL4, HOL Light, HOL
Zero, etc.). HOL uses a higher-order predicate logic with terms from the Church’s
simply typed lambda calculus. The system of types includes as usual type variables,
atomic types, and function types, but also compound types which are type operators
for constructing sets from sets such as the type of lists of elements of some set, the
Cartesian product of sets, etc. ACL2 is an acronym for A Computational Logic for
Applicative Common Lisp, which is a functional programming language in which
not only Lisp’s style implementations can be specified, but also properties about
them can be proved. ACL2 uses five datatypes of the Common Lisp programming
language: numbers, characters, strings, symbols, and conses, which are lists or trees.
In fact, ACL2 is not based on any type system and essentially what is allowed is that
objects of these kinds can be passed as values to functions, return them as outputs of
functions, and store them in lists and trees. ACL2 provides operators for each type
and no operator can modify the objects passed in as arguments.

Except for PVS no references related with these proof assistants are included
here (see Chap.4), since the readers will easily find in the web a great variety of
updated tutorials, manuals, scientific and technical articles, and even books, and the
most important, will be able to download and install the tools and perform their own
experiments.

http://dx.doi.org/10.1007/978-3-319-51653-0_4

References

1. Aczel, P., Simmons, H., Wainer, S. (eds.): Proof Theory. Cambridge University Press (1992)
2. Ayala-Rincón, M., Almeida, A.A., Ramos, T.M.F., de Moura, F.L.C., Rocha-Oliveira, A.C.:

PVS sorting theory. Available at http://logic4CS.cic.unb.br and as part of the LaRC Formal
Methods NASA PVS libraries at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library, Sept
(2016)

3. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in
Logic, Cambridge University Press (2013)

4. Buss, S.R. (ed.): Handbook of Proof Theory. Studies in Logic, vol. 137. Elsevier, North Holland
(1998)

5. Church, A.: An unsolvable problem of elementary number theory. Am. J.Math. 58(2), 345–363
(1936)

6. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68 (1940)
7. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North Holland (1958)
8. Ebbinghaus, H-D., Flum, J., Thomas, W.: Mathematical logic. Undergraduate texts in mathe-

matics, 2nd edn. Springer (1996)
9. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press Inc. (2001)
10. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39,

176–210 (1935)
11. Gentzen, G.: Untersuchungen über das logische Schließen II. Mathematische Zeitschrift 39,

405–431 (1935)
12. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalkülus. Monatshefte für

Mathematik und Physik 37(1), 349–360 (1930)
13. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme. I. Monatshefte für Mathematik und Physik 38, 159–166 (1931)
14. Hendricks, V.F., Pedersen, S.A., Jorgensen, K.F. (eds.): Proof Theory—History and Philosoph-

ical Significance, volume 292 of Synthese Library. Kluwer Academic Publishers (2010)
15. Henkin, L.: The completeness of the first-order functional calculus. J. Symb. Log. 14(3), 159–

166 (1949)
16. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press (1997)
17. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems,

2nd edn. Cambridge University Press (2004)
18. Kamareddine, F.D., Laan, T., Nederpelt, R.: AModern Perspective on Type Theory. Number 29

in Applied Logic Series. Kluewer (2004)
19. Kamareddine, F.D., Laan, T., Nederpelt, R.: A History of types∗. In: Logic: A History of its

Central Concepts, volume 11 of Handbook of the History of Logic, pp. 451–511. Elsevier
(2012)

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0

145

http://logic4CS.cic.unb.br
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

146 References

20. Lindström, P.: On Extensions of Elementary Logic. Theoria, pp. 1–11 (1969)
21. Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected papers on Automath. North-Holland

(1994)
22. Nederpelt, R., Geuvers, H.: Type Theory and Formal Proof—An Introduction. Cambridge

University Press (2014)
23. Negri, S., von Plato, J.: Structural Proof Theory, 1st edn. Cambridge University Press (2001)
24. Owre, S., Shankar, N.: The formal semantics of PVS. In: Technical Report SRI-CSL-97-2,

Computer Science Laboratory, SRI International, Menlo Park, CA, August 1999. Revised
version of NASA LaRC Contract Report NASA/CR-1999-209321 (1997)

25. Owre, S., Shankar, N.: A brief overview of PVS. In Theorem Proving in Higher Order Logics,
TPHOLs 2008, volume 5170 of LectureNotes inComputer Science, pp. 22–27. Springer (2008)

26. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
27. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. Foundations of

Computing. MIT Press (2004)
28. Pohlers, W.: Proof Theory-The First Step into Impredicativity. Universitext, Spriger (2009)
29. Post, E.L.: Recursive unsolvability of a problem of thue. J. Symbolic Logic 12, 1–11 (1947)
30. Prawitz, D.: Natural Deduction—A Proof-Theoretical Study. Dover (2006). Unabridged

Republication. Original publication in Stockholm Studies in Philosophy series (1965)
31. Rédei, M. (ed.): John von Neumann: selected letters, volume 27 of History of Mathematics.

American Mathematical Society/London Mathematical Society (2005)
32. Schwichtenberg, H., Wainer, S.S.: Proofs and Computations. ASL Perspectives in Logic, Cam-

bridge University Press (2012)
33. TheUnivalent Foundations Program. Homotopy Type Theory: Univalent Foundations ofMath-

ematics. Institute for Advanced Study (2013). https://www.homotopytypetheory.org/book
34. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Number 43 in Cambridge Tracts in

Theoretical Computer Science, 2nd edn. Cambridge University Press (2000)
35. Tseiten, G.S.: Associative calculus with unsolvable equivalence problem. Dokl. Akad. Nauk

SSSR 107(3), 370–371 (1956). In Russian
36. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc.

London Math. Soc. (2) 42, 230–265 (1936-7)

https://www.homotopytypetheory.org/book

Index

A
Assignment (of truth-values), 25
Automated theorem proving, 142

B
Bound variable, 45
Bound variable set construction, 45

C
Calculus à la Gentzen or sequent calculus,

73
Carnap, Rudolf, 141
c-equivalence ≡ce, 90
c-equivalence lemma, 92
Church, Alonzo, 140, 142
Classical logic, 17
Classical predicate logic, 51
Classical propositional calculus, 17
Classical propositional logic, 17

natural deduction rules, 20
Compactness theorem, 66, 141
Completeness theorem for propositional

logic, 40
Consistency, 59
Curry, Haskell, 142
Cut rule

cut elimination theorem, 79
subformula property, 79

D
de Bruijn, Nicolaas Govert, 142
Decision problem, 68

decidable, 68
undecidable, 69

Derivation in Gentzen’s SC with
(Cut)�G+cut , 80

Derivation in Gentzen’s Sequent Calculus
�G , 80

Derivation in intuitionistic SC with stability
axioms �Gi+St , 92

Derivation in natural deduction �N , 80
Derived rules, 22

E
Entscheidungsproblem, 140
Equivalence, 22
Euclid’s theorem, xiii
Existential quantification, 45

F
Feys, Robert, 142
First-order language, 55
First-order logic, 43
Formulas provable equivalent, 22
Free variable, 45
Free variable set construction, 45

G
Gentzen’s sequent calculus, 73
Gentzen, Gerhard, 139
Glivenko’s theorem, 24
Gödel, Kurt, 140
Gödel’s completeness theorem, 140
Gödel’s incompleteness theorems, 141
Graphs, 68
Greatest common divisor gcd, xii
Group theory, 67

© Springer International Publishing AG 2017
M. Ayala-Rincón and F.L.C. de Moura, Applied Logic for Computer Scientists,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-51653-0

147

148 Index

H
Halting problem, 140
Henkin, Leon Albert, 140
Hilbert’s Program, 140
Hilbert, David, 140

I
Induction, 4
Integer numbers

non zero integers Z∗, xvi
Integer numbers Z, xii
Interpretation, 55
Interpretation of propositional formulas, 25
Intuitionistic predicate logic, 51
Intuitionistic propositional calculus, 16
Intuitionistic propositional logic, 16

natural deduction rules, 17

J
Jaśkowski, Stanisław, 139

L
Lambda calculus, 140
Law of the excluded middle, 16
Lindström theorem, 141
Lindström, Per, 141
Logical consequence, 28, 56
Löwenheim-Skolem’s theorem, 67, 141
Łukasiewicz, Jan, 139

M
Maltsev, Anatoly, 141
Maximally consistency, 60
Minimal predicate logic, 51
Minimal propositional calculus, 16
Minimal propositional logic, 16
Model, 56
Modus ponens, 11
Monoid, 69
Multiset, 75

N
Natural deduction, 10, 47
Natural deduction rules

absurd elimination (⊥e), 15
intuitionistic absurdity rule (⊥e), 16
conjunction elimination (∧e), 11
conjunction introduction (∧i), 11
contraposition (CP), 21

disjunction elimination (∨e), 14
disjunction introduction (∨i), 13
elimination of double negation (¬¬e), 17
existential quantifier elimination (∃e), 49
existential quantifier introduction (∃i),
49

implication elimination (→e), 11
modus ponens (→e), 11
implication introduction (→i), 11
introduction of double negation (¬¬i),
21

modus tollens (MT), 21
negation elimination (¬e), 15
negation introduction (¬i), 15
proof by contradiction (PBC), 17
rule for (LEM), 17
universal quantifier elimination (∀e), 47
universal quantifier introduction (∀i), 48

Natural numbers
positive naturals N+, xiii

Natural numbers N, xiii

P
Peirce’s law, 17

derivation in the SC, 76
Post, Emil Leon, 140
Predicate logic, 43

algebra of terms, 63
atomic formula, 45
completeness, 59
consistency, 59
constant, 44
formula, 45
interpretation, 52
interpretation of

formulas, 55
terms, 55

language, 43
logical consequence, 56
model, 56
natural deduction

quantification rules, 51
satisfiability, 56
semantics, 54

structure, 55
terms, 44

variable occurrence, 44
theorem

completeness, 59
Henkin, 63
Lindenbaum, 62
soundness, 57

Index 149

undecidability, 68
unsatisfiability, 56
validity, 56

Proof theory
structural, 139

Propositional logic
completeness for valid formulas, 37
completeness theorem, 40
derived rules, 22
formulas, 4
interpretation of formulas, 25
language of, 2
logical consequence, 28
natural deduction, 10
natural deduction rules, 17, 20
semantics, 25
soundness, 29
sub-formula, 4
syntax, 1
validity, 28

PVS
gcd

gcd algorithm, 97
gcdsw switching, 99

instructions
let in, 96
if then else, 96

logical commands, 103
proof commands, 100
proof commands for equational manipu-
lation, 108

proof commands for induction, 112
proof commands vs deduction rules, 100
quicksort, 126
quicksort algorithm, 126
sorting theory, 126
specification instructions, 118
structural commands, 102
type correctness conditions, 98

termination, 98
totality, 98

PVS abstract data types
car head list operator, 112, 126
cdr tail list operator, 112, 126
cons list, 112, 126
cons? predicate, 112
finseq[T], 97
list[T], 97, 112, 126
null list, 112, 126
null? predicate, 112, 136

PVS function
functional definitions, 96
recursive functions, 96

measure , 96
recursive , 96
well-defined, 98

PVS proof commands
(apply-extensionality), 108
(assert), 101
(beta), 119
(case), 106
(copy), 102
(decompose-equality), 108
(expand), 108
(flatten), 101, 103
(grind), 108
(hide), 102
(induct), 112
(inst), 105
(inst?), 105
(lemma), 106
(lift-if), 108
(measure-induct+), 112
(prop), 101, 104
(replace), 108
(replaces), 108
(reveal, 103
(rewrite), 106
(skeep), 105
(skolem), 100
(split), 104
(typepred), 111

PVS syntax, 97
PVS types

abstract data, 97
basic, 96

bool, 97
nat, 97
posnat, 97

functional, 97

R
Russell, Bertrand, 142

S
Satisfiability, 27, 56
Scope of a quantifier, 45
Semigroup, 69
Sentence, 45
Sequent

antecedent, 73
conclusions, 73
premises, 73
succedent, 73

150 Index

Sequent calculus
axioms, 75
logical rules, 75
rules, 75
structural rules, 75

sequent calculus or calculus à la Gentzen, 73
Sequent calculus rules

active formulas, 75
axiom (Ax), 74, 75
context, 75
cut rule (Cut), 78
intuitionistic (Cut), 80
left absurdity (L⊥), 75
left conjunction (L∧), 75
left contraction (LC), 75
left disjunction (L∨), 75
left existential (L∃), 75
intuitionistic (L→), 80
left implication(L→), 74, 75
left universal (L∀), 75
left weakening (LW), 75
principal formula, 75
right conjunction (R∧), 75
right contraction (RC), 75
right disjunction (R∨), 75
right existential (R∃), 75
right implication(R→), 75
right universal (R∀), 75
right weakening (RW), 75

Sequents, 73
Simple types in the lambda calculus, 142
Size of predicate expression, 46
Size of predicate formula, 46
Size of predicate term, 46
Stability axioms

classical SC derivation, 82
Structure, 55
Sub-formula, 4
Substitution, 46

T
Term substitution, 44
Truth-table, 26
Truth-values, 25
Tseitin’s monoid with undecidable word

problem, 69
Tseitin, Grigorii Samuilovich, 140
Turing, Alan, 140
Type theory, 142

U
Uniqueness of interpretations, 27
Universal quantification, 45
Unsatisfiability, 27, 56

V
Validity, 28, 56
Variable assignment, 25
Variable capture, 46
von Newmann, John, 141

W
Whitehead, Alfred North, 142
Witnesses, 60

construction of, 60
Word problem, 69

	Foreword
	Preface
	Contents
	Introduction
	Motivation
	Examples
	Structure of the Book

	1 Derivation and Proofs in the Propositional Logic
	1.1 Motivation
	1.2 Syntax of the Propositional Logic
	1.3 Structural Induction
	1.4 Natural Deductions and Proofs in the Propositional Logic
	1.5 Semantics of the Propositional Logic
	1.6 Soundness and Completeness of the Propositional Logic
	1.6.1 Soundness of the Propositional Logic
	1.6.2 Completeness of the Propositional Logic

	2 Derivations and Proofs in the Predicate Logic
	2.1 Motivation
	2.2 Syntax of the Predicate Logic
	2.3 Natural Deduction in the Predicate Logic
	2.4 Semantics of the Predicate Logic
	2.5 Soundness and Completeness of the Predicate Logic
	2.5.1 Soundness of the Predicate Logic
	2.5.2 Completeness of the Predicate Logic
	2.5.3 Compactness Theorem and Löwenheim-Skolem Theorem

	2.6 Undecidability of the Predicate Logic

	3 Deductions in the Style of Gentzen's Sequent Calculus
	3.1 Motivation
	3.2 A Gentzen's Sequent Calculus for the Predicate Logic
	3.3 The Intuitionistic Gentzen's Sequent Calculus
	3.4 Natural Deduction Versus Deduction à la Gentzen
	3.4.1 Equivalence Between ND and Gentzen's SC---The Intuitionistic Case
	3.4.2 Equivalence of ND and Gentzen's SC---The Classical Case

	4 Derivations and Formalizations
	4.1 Formalizations in PVS Versus Derivations
	4.1.1 The Syntax of the PVS Specification Language
	4.1.2 The PVS Proof Commands Versus Gentzen Sequent Rules

	4.2 PVS Proof Commands for Equational Manipulation
	4.3 Proof Commands for Induction
	4.4 The Semantics of the PVS Specification Instructions

	5 Algebraic and Computational Examples
	5.1 Proving Simple Algebraic Properties
	5.2 Soundness of Recursive Algorithms Through Induction

	6 Suggested Readings
	6.1 Proof Theory
	6.2 Formal Logic
	6.3 Automated Theorem Proving and Type Theory

	References
	Index

