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Foreword

Gordon Linoff and I have written three and a half books together. (Four, if we 
get to count the second edition of Data Mining Techniques as a whole new book; 
it didn't feel like any less work.) Neither of us has written a book without the 
other before, so I must admit to a tiny twinge of regret upon first seeing the 
cover of this one without my name on it next to Gordon's. The feeling passed 
very quickly as recollections of the authorial life came flooding back—vaca-
tions spent at the keyboard instead of in or on the lake, opportunities missed, 
relationships strained. More importantly, this is a book that only Gordon Linoff 
could have written. His unique combination of talents and experiences informs 
every chapter.

I first met Gordon at Thinking Machines Corporation, a now long‐defunct 
manufacturer of parallel supercomputers where we both worked in the late 
eighties and early nineties. Among other roles, Gordon managed the implemen-
tation of a parallel relational database designed to support complex analytical 
queries on very large databases. The design point for this database was radically 
different from other relational database systems available at the time in that no 
trade‐offs were made to support transaction processing. The requirements for a 
system designed to quickly retrieve or update a single record are quite different 
from the requirements for a system to scan and join huge tables. Jettisoning the 
requirement to support transaction processing made for a cleaner, more efficient 
database for analytical processing. This part of Gordon's background means he 
understands SQL for data analysis literally from the inside out.

Just as a database designed to answer big important questions has a different 
structure from one designed to process many individual transactions, a book 
about using databases to answer big important questions requires a different 
approach to SQL. Many books on SQL are written for database administrators. 
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Others are written for users wishing to prepare simple reports. Still others 
attempt to introduce some particular dialect of SQL in every detail. This one 
is written for data analysts, data miners, and anyone who wants to extract 
maximum information value from large corporate databases. Jettisoning the 
requirement to address all the disparate types of database users makes this a 
better, more focused book for the intended audience. In short, this is a book 
about how to use databases the way we ourselves use them.

Even more important than Gordon's database technology background are his 
many years experience as a data mining consultant. This has given him a deep 
understanding of the kinds of questions businesses need to ask and of the data 
they are likely to have available to answer them. Years spent exploring corporate 
databases have given Gordon an intuitive feel for how to approach the kinds of 
problems that crop up time and again across many different business domains:

 ■ How to take advantage of geographic data. A zip code field looks much 
richer when you realize that from zip code you can get to latitude and 
longitude, and from latitude and longitude you can get to distance. It 
looks richer still when your realize that you can use it to join in Census 
Bureau data to get at important attributes, such as population density, 
median income, percentage of people on public assistance, and the like.

 ■ How to take advantage of dates. Order dates, ship dates, enrollment 
dates, birth dates. Corporate data is full of dates. These fields look richer 
when you understand how to turn dates into tenures, analyze purchases 
by day of week, and track trends in fulfillment time. They look richer still 
when you know how to use this data to analyze time‐to‐event problems 
such as time to next purchase or expected remaining lifetime of a customer 
relationship.

 ■ How to build data mining models directly in SQL. This book shows 
you how to do things in SQL that you probably never imagined pos-
sible, including generating association rules for market basket analysis, 
building regression models, and implementing naïve Bayesian models 
and scorecards.

 ■ How to prepare data for use with data mining tools. Although more 
than most people realize can be done using just SQL and Excel, eventu-
ally you will want to use more specialized data mining tools. These tools 
need data in a specific format known as a customer signature. This book 
shows you how to create these data mining extracts.

The book is rich in examples and they all use real data. This point is worth 
saying more about. Unrealistic datasets lead to unrealistic results. This is frus-
trating to the student. In real life, the more you know about the business context, 
the better your data mining results will be. Subject matter expertise gives you a 
head start. You know what variables ought to be predictive and have good ideas 
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about new ones to derive. Fake data does not reward these good ideas because 
patterns that should be in the data are missing and patterns that shouldn't be 
there have been introduced inadvertently. Real data is hard to come by, not least 
because real data may reveal more than its owners are willing to share about 
their business operations. As a result, many books and courses make do with 
artificially constructed datasets. Best of all, the datasets used in the book are all 
available for download at www.wiley.com/go/dataanalysisusingsqlandexcel2e.

I reviewed the chapters of this book as they were written. This process was 
very beneficial to my own use of SQL and Excel. The exercise of thinking about 
the fairly complex queries used in the examples greatly increased my under-
standing of how SQL actually works. As a result, I have lost my fear of nested 
queries, multi‐way joins, giant case statements, and other formerly daunting 
aspects of the language. In well over a decade of collaboration, I have always 
turned to Gordon for help using SQL and Excel to best advantage. Now, I can 
turn to this book. And you can, too.

—Michael J. A. Berry

http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
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 Introduction

The first edition of this book set out to explain data analysis from an eminently 
practical perspective, using the familiar tools of SQL and Excel. The guiding 
principle of the book was to start with questions and guide the reader through 
the solutions, both from a business perspective and a technical perspective. 
This approach proved to be quite successful.

Much has changed in the ten years since I started writing the first edition. 
The tools themselves have changed. In those days, Excel did not have a Ribbon, 
for instance. And, window functions were rare in databases. The world that 
analysts inhabit has also changed, with tools such as Python and R and NoSQL 
databases becoming more common. However, relational databases are still in 
widespread use, and SQL is, if anything, even more relevant today as technology 
spreads through businesses big and small. Excel still seems to be the reporting 
and presentation tool of choice for many business users. Big data is no longer 
a future frontier; it is a problem, a challenge, and an opportunity that we face 
on a daily basis.

The second edition has been revised and updated to reflect the changes in 
the underlying software, with more examples and more techniques, and an 
additional chapter on database performance. In doing so, I have strived to keep 
the strengths from the first edition. The book is still organized around the 
principles of data, analysis, and presentation—three capabilities that are rarely 
treated together. Examples are organized around questions, with a discussion 
of both the business relevance and the technical approaches to the problems. 
The examples carry through to actual code. The data, the code, and the Excel 
examples are all available on the companion website.
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The motivation for this approach originally came from a colleague, Nick 
Drake, who is a statistician by training. Once upon a time, he was looking for 
a book that would explain how to use SQL for the complex queries needed for 
data analysis. Books on SQL tend to cover either basic query constructs or the 
details of how databases work. None come strictly from a perspective of analyz-
ing data, and none are structured around answering questions about data. Of 
the many books on statistics, none address the simple fact that most of the data 
being used resides in relational databases. This book fills that gap.

My other books on data mining, written with Michael Berry, focus on advanced 
algorithms and case studies. By contrast, this book focuses on the “how‐to.” It 
starts by describing data stored in databases and continues through prepar-
ing and producing results. Interspersed are stories based on my experience in 
the field, explaining how results might be applied and why some things work  
and other things do not. The examples are so practical that the data used  
for them is available on the book’s companion website (www.wiley.com/go/

dataanalysisusingsqlandexcel2e).
One of the truisms about data warehouses and analysis databases in gen-

eral is that they don’t actually do anything. Yes, they store data. Yes, they bring 
together data from different sources, cleansing and clarifying along the way. 
Yes, they define business dimensions, store transactions about customers, and, 
perhaps, summarize important data. (And, yes, all these are very important!) 
However, data in a database resides on many spinning disks and in complex 
data structures in a computer’s memory. So much data, so little information.

How can we exploit this data, particularly data that describes customers? 
The many fancy algorithms for statistical modeling and data mining all have 
a simple rule: “garbage‐in, garbage‐out.” The results of even the most sophisti-
cated techniques are only as good as the data being used (and the assumptions 
being fed into the model). Data is central to the task of understanding customers, 
understanding products, and understanding markets.

The chapters in this book cover different aspects of data and several important 
analytic techniques that are readily supported by SQL and Excel. The analytic 
techniques range from exploratory data analysis to survival analysis, from 
market basket analysis to naïve Bayesian models, and from simple animations 
to regression. Of course, the potential range of possible techniques is much 
larger than can be presented in one book. These methods have proven useful 
over time and are applicable in many different areas.

And finally, data and analysis are not enough. Data must be analyzed, and 
the results must be presented to the right audience. To fully exploit its value, 
we must transform data into stories and scenarios, charts and metrics and 
insights.

http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
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Overview of the Book and Technology

This book focuses on three key technological areas used for transforming data 
into actionable information:

 ■ Relational databases store data. The basic language for retrieving data 
is SQL. (Note that variants of SQL are also used for NoSQL databases.)

 ■ Excel spreadsheets are the most popular tool for presenting data. Perhaps 
the most powerful feature of Excel is its charting capability, which turns 
columns of numbers into pictures.

 ■ Statistics is the foundation of data analysis.

These three technologies are presented together because they are all interre-
lated. SQL answers the question “How do we access data?” Statistics answers 
the question “How is it relevant?” And Excel makes it possible to convince 
other people of the veracity of our findings and to provide them results that 
they can play with.

The description of data processing is organized around the SQL language. 
Databases such as Oracle, Postgres, MySQL, IBM DB2, and Microsoft SQL 
Server are common in the business world, storing the vast majority of busi-
ness data transactions. The good news is that all relational databases support 
SQL as a query language. However, just as England and the United States 
have been described as “two countries separated by a common language,” 
each database supports a slightly different dialect of SQL. The Appendix 
contains a list of how commonly used functionality is represented in vari-
ous different dialects.

Similarly, beautiful presentation tools and professional graphics packages are 
available. However, rare and exceptional is the workplace computer that does 
not have Excel or an equivalent spreadsheet.

Statistics and data mining techniques do not always require advanced tools. 
Some very important techniques are readily available using the combination of 
SQL and Excel, including survival analysis, look-alike models, naïve Bayesian 
models, and association rules. In fact, the methods in this book are often more 
powerful than the methods available in such tools, precisely because they are close 
to the data and readily customizable. The explanation of the techniques covers 
both the basic ideas and the extensions that may not be available in other tools.

The chapters describing the various techniques provide a solid introduction 
to modeling and data exploration, in the context of familiar tools and data. 
They also highlight when more advanced tools are useful because the problem 
exceeds the capabilities of the simpler tools.
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How This Book Is Organized

The 14 chapters in this book fall into four parts. The first three introduce key 
concepts of SQL, Excel, and statistics. The seven middle chapters discuss various 
methods of exploring data and analytic techniques specifically suited to SQL 
and Excel. More formal ideas about modeling, in the sense of statistics and data 
mining, are in the next three chapters. And, finally, a new chapter discusses 
performance issues when writing SQL queries.

Each chapter explains some aspect of data analysis using SQL and Excel from 
several different perspectives, including:

 ■ Business examples for using the analysis

 ■ Questions the analysis answers

 ■ Explanations about how the analytic techniques work

 ■ SQL syntax for implementing the techniques

 ■ Results as tables or charts and how to create them in Excel

Examples in the chapters are generally available in Excel at www.wiley.com/go/

dataanalysisusingsqlandexcel2e.
SQL is a concise language that is sometimes difficult to follow. Dataflows, 

graphical representations of data processing, are used to illustrate how SQL 
works. These dataflow diagrams are a reasonable approximation of how SQL 
engines actually process the data, although the details necessarily differ based 
on the underlying engine.

Results are presented in charts and tables, sprinkled throughout the book. 
In addition, important features of Excel are highlighted, and interesting uses 
of Excel graphics are explained. Each chapter has technical asides, typically 
explaining some aspect of a technique or an interesting bit of history associated 
with the methods described in the chapter.

Introductory Chapters
Chapter 1, “A Data Miner Looks at SQL,” introduces SQL from the perspective 
of data analysis. This is the querying part of the SQL language, used to extract 
data from databases using SELECT queries.

This chapter introduces entity‐relationship diagrams to describe the structure 
of the data—the tables and columns and how they relate to each other. It also 
introduces dataflow diagrams to describe the processing of queries; dataflow 
diagrams give a visual explanation of how data is processed. This chapter 
introduces the important functionality used throughout the book—such as 
joins, aggregations, and window functions.

Furthermore, the first chapter describes the datasets used for examples through-
out the book (and which are also available for downloading). This data includes 

http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
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tables describing retail purchases, tables describing mobile telephone customers, 
and reference tables that describe zip codes and the calendar.

Chapter 2, “What’s in a Table? Getting Started with Data Exploration,” intro-
duces Excel for exploratory data analysis and presentation. Of many useful 
capabilities in Excel, perhaps the most useful are charts. As the ancient Chinese 
saying goes, “A picture paints a thousand words,” and Excel charting paints 
pictures using data. Such charts are not only useful aesthetically, but also more 
practically for Word documents, PowerPoint presentations, email, the Web, and 
so on.

Charts are not a means unto themselves. They are one aspect of exploratory 
data analysis. In addition, this chapter discusses summarizing columns in a 
table, as well as the interesting idea of using SQL to generate SQL queries.

Chapter 3, “How Different Is Different?” explains some key concepts of descrip-
tive statistics, such as averages, p‐values, and the chi‐square test. The purpose 
of this chapter is to show how to use such statistics on data residing in tables. 
The particular statistics and statistical tests are chosen for their practicality, and 
the chapter focuses on applying the methods, not explaining the underlying 
theory. Conveniently, most of the statistical tests that we want to do are feasible 
in Excel and even in SQL.

SQL Techniques
Several techniques are very well suited for the combination of SQL and Excel.

Chapter 4, “Where Is It All Happening? Location, Location, Location,” explains 
geography and how to incorporate geographic information into data analysis. 
Geography starts with locations, described by latitude and longitude. Locations 
are also described by various levels of geography, such as census blocks, zip 
code tabulation areas, and the more familiar counties and states, all of which 
have information available from the Census Bureau (or an equivalent organi-
zation in other countries). This chapter also discusses methods for comparing 
results at different levels of geography. And, finally, no discussion of geography 
would be complete without maps. Using basic Excel, it is possible to build very 
rudimentary maps.

Chapter 5, “It’s a Matter of Time,” discusses another key attribute of customer 
behavior: when things occur. This chapter describes how to access features of 
dates and times in databases, and then how to use this information to under-
stand customers.

The chapter includes examples for accurately making year‐over‐year com-
parisons, for summarizing by day of the week, for measuring durations in days, 
weeks, and months, and for calculating the number of active customers by day, 
historically. The chapter ends with a simple animation in Excel—the only use 
of Visual Basic in the book.
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Chapters 6 and Chapter 7 explain one of the most important analytic tech-
niques for understanding customers over time. Survival analysis has its roots in 
traditional statistics, and it is very well suited to problems related to customers.

Chapter 6, “How Long Will Customers Last? Survival Analysis to Understand 
Customers and Their Value,” introduces the basic ideas of hazard probabilities 
and survival, explaining how to calculate them easily using the combination 
of SQL and Excel. Perhaps surprisingly, sophisticated statistical tools are not 
needed to get started using survival analysis. Chapter 6 then explains how 
important ideas in survival analysis, such as average customer lifetime, can be 
used in a business context. It continues by explaining how to put these pieces 
together into a forecast and for customer value calculations.

Chapter 7, “Factors Affecting Survival: The What and Why of Customer 
Tenure,” extends the discussion in three different areas. First, it addresses a 
key problem in many customer‐oriented databases: left truncation. Second, it 
explains a very interesting idea in survival analysis called competing risks. This 
idea incorporates the fact that customers leave for different reasons. The third 
idea is to use survival analysis for before‐and‐after analysis. That is, how can 
we quantify what happens to customers when something happens during their 
lifetime—such as quantifying the effect of enrollment in a loyalty program or 
of a major billing fiasco.

Chapters 8, 9 and 10 explain how to understand what customers are purchas-
ing using SQL and Excel.

Chapter 8, “Customer Purchases and Other Repeated Events,” covers every-
thing about the purchase—when it occurs, where it occurs, how often—except 
for the particular items being purchased. This chapter covers RFM, a traditional 
technique for understanding customer purchase behavior, and various issues 
with recognizing customers over time. Purchases contain a lot of information, 
even before we dive into the details of the items.

The products become the focus in Chapter 9, “What’s in a Shopping Cart? 
Market Basket Analysis,” which covers exploratory analysis of purchase behav-
iors over time. This chapter includes identifying products that may be impor-
tant drivers of customer behavior. It also covers some interesting visualization 
methods available in Excel.

Chapter 10, “Association Rules and Beyond,” then moves to the formal dis-
cussion of association rules, which are combinations of products purchased 
at the same time or in sequence. Building association rules in SQL is rather 
sophisticated. The methods in this chapter extend traditional association rule 
analysis, introducing alternative measures that make them more useful, and 
show how to produce combinations of different things, such as clicks that result 
in a purchase (to use an example from the Web). The association rule techniques 
explained in this chapter are more powerful than techniques available in data 
mining tools because the techniques are extensible and use additional measures 
beyond support, confidence, and lift.
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Modeling Techniques

The next three chapters discuss statistical and data mining modeling techniques 
and methods.

Chapter 11, “Data Mining Models in SQL,” introduces the idea of data min-
ing modeling and the terminology associated with building such models. It 
also discusses some important types of models that are well suited to business 
problems and the SQL environment. Look‐alike models find things similar to 
a given example. Lookup models use a lookup table to find model scores.

This chapter also discusses a more sophisticated modeling technique called 
naïve Bayesian models. This technique combines information along various busi-
ness dimensions to estimate an unknown quantity.

Chapter 12, “The Best‐Fit Line: Linear Regression Models,” covers a more 
traditional statistical technique: linear regression. Several variants of linear 
regression are introduced, including polynomial regression, weighted regres-
sion, multiple regression, and exponential regression. These are explained 
graphically, using Excel charts, along with the R2 value that measures how well 
the model fits the data.

Regression is explained using both Excel and SQL. Although Excel has several 
built‐in functions for regression, an additional method using Solver is more 
powerful than the built‐in functions. This chapter introduces Solver (which is 
free and bundled with Excel) in the context of linear regression.

Chapter 13, “Building Customer Signatures for Further Analysis,” intro-
duces the customer signature. This is a data structure that summarizes what a 
customer looks like at a particular point in time. Customer signatures are very 
powerful for modeling.

This chapter recognizes that although SQL and Excel are quite powerful, 
more sophisticated tools are sometimes necessary. The customer signature is 
the right way to summarize customer information under many circumstances. 
And, SQL is a very powerful tool for this summarization.

Performance
One reason for writing SQL queries is performance—by doing at least some of 
the analytic work close to the data and in an environment that can exploit the 
resources available to a relational database. The downside to writing a book that 
is more generally about SQL and not specifically about a particular database is 
that some tricks and tips are only relevant to a single database.

Happily, many good practices for writing SQL queries improve performance 
across many different databases. Chapter 14, “Performance Is the Issue: Using 
SQL Effectively,” is devoted to this topic. In particular, it discusses indexes and 
how to best take advantage of them. It also covers different ways of writing 
queries—and why some of them are better from a performance perspective.
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Who Should Read This Book

This book is designed for several audiences, with varying degrees of technical 
skills.

On the less technical side are managers, particularly those with a quantita-
tive bent who are responsible for understanding customers or a business unit. 
Such people are often quite proficient in Excel, but, alas, much of the data they 
need resides in relational databases. To help them, this book provides examples 
of business scenarios where analysis provides useful results. These scenarios 
are detailed, showing not only the business problem but also the technical 
approach and the results.

Another part of the audience consists of people whose job is to understand 
data and customers, often having a job title including the word “analyst.” These 
individuals typically use Excel and other tools, sometimes having direct access 
to the data warehouse or to some customer‐centric database. This book can 
help by improving SQL querying skills, showing good examples of charts, and 
introducing survival analysis and association rules for understanding custom-
ers and the business.

An important audience is data scientists who are proficient in tools such as 
R or Python but who discover that they need to learn about other tools. In the 
business world, more programming‐oriented tools may not be sufficient, and 
analysts may find themselves having to deal with data residing in relational 
databases and users who want to see results in Excel.

At the more technical end are statisticians, who typically use special‐purpose 
tools such as SAS, SPSS, R, and S‐plus. However, the data resides in databases. 
This book can help the very technical with their SQL skills and also provides 
examples of using analysis to solve particular business problems.

In addition, database administrators, database designers, and information 
architects should find this book interesting. The queries shown in the various 
chapters illustrate what people really want to do with the data and should 
encourage database administrators and designers to create efficient databases 
that support these needs.

I encourage all readers, even the technically proficient, to read (or at least 
skim) the first three chapters. These chapters introduce SQL, Excel, and statistics 
all from the perspective of analyzing large quantities of data. This perspective 
is different from how these subjects are usually introduced. Certain ideas in 
these chapters, such as the example data, dataflows, SQL syntax and formatting 
conventions, and good chart design, are used throughout the book.

Tools You Will Need

This book is designed to be stand‐alone—that is, readers should be able to learn 
the ideas and gain understanding directly from the text.
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All the SQL in the book has been tested (in Microsoft SQL Server and, with 
slight variations, Postgres). The datasets and results are available at www.wiley

.com/go/dataanalysisusingsqlandexcel2e. Readers who want hands‐on 
experience are encouraged to download the data and run the examples in the 
book.

Most examples in the book are vendor‐neutral, so they should run with 
only minor modification on almost any fully functional relational database. I  
do not recommend Microsoft Access or MySQL, because they lack window 
functions—key functionality for analytic queries.

If you do not have a database, several packages are available for downloading; 
database vendors often have stand‐alone versions of their software available 
at no cost. Some examples: SQL Server Express, a free version of SQL Server 
is available from Microsoft. A free version of Oracle is available from Oracle. 
Postgres is available at www.postgres.org. And other database products are 
available at no charge.

What’s on the Website

The companion website (at www.wiley.com/go/

dataanalysisusingsqlandexcel2e) contains datasets used in the book. These 
datasets contain the following information:

 ■ Reference tables. There are three reference tables, two containing census 
information (from the 2000 Census) and one containing calendar infor-
mation about dates.

 ■ Subscribers dataset. This is data describing a subset of customers in a 
mobile telephone company.

 ■ Purchases dataset. This is data describing customer purchase patterns.

This data is available for download, along with instructions for loading it into 
SQL Server and other databases.

In addition, the companion website has pages with additional information, 
such as scripts for loading the data into common databases, spreadsheets con-
taining the SQL queries, and all the tables and charts in the book that were 
generated using Excel.

Summary

The idea for this book originated with a colleague’s question about a reference 
book for SQL for data analysis queries. However, another reference book on SQL 
is not needed, even one focused on the practical aspects of using the language 
for querying purposes.

http://www.postgres.org
http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
http://www.wiley.com/go/dataanalysisusingsqlandexcel2e
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For analyzing data, SQL cannot be learned in a vacuum. A SQL query, no 
matter how deftly crafted, is usually not the entire solution to a business prob-
lem. The business problem needs to be transformed into a question, which can 
be answered via a query. The results then need to be presented, often as tables 
or Excel charts.

I would extend this further. In the real world, statistics also cannot be learned 
in a vacuum. Once upon a time, collecting data was a time‐consuming and dif-
ficult process. Now, data is plentiful. The companion website for this book, for 
example, puts dozens of megabytes of data just a few clicks away. The problem 
of analyzing data now extends beyond the realm of a few statistical methods 
to the processes for managing and extracting data as well.

This book combines three key ideas into a single thread of solving problems. 
Throughout my work as a data miner, I have found SQL, Excel, and statistics 
to be critical tools for analyzing data. More important than the specific techni-
cal skills, though, I hope this book helps readers improve their analytic skills 
and gives them ideas so they can better understand their customers and their 
businesses.
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a Data Miner Looks at SQL

Data is being collected everywhere. Every transaction, every web page visit, 
every payment—and much more—is filling databases, relational and otherwise, 
with raw data. Computing power and storage have grown to be cost effective, a 
trend where today’s smart phones are more powerful than supercomputers of 
yesteryear. Databases are no longer merely platforms for storing data; they are 
powerful engines for transforming data into useful information about custom-
ers and products and business practices.

The focus on data mining has historically been on complex algorithms 
developed by statisticians and machine-learning specialists. Once upon a 
time, data mining required downloading source code from a research lab or 
university, compiling the code to get it to run, and sometimes even debug-
ging it. By the time the data and software were ready, the business problem 
had lost urgency.

This book takes a different approach because it starts with the data. The 
billions of transactions that occur every day—credit cards swipes, web page 
visits, telephone calls, and so on—are now often stored in relational databases. 
Relational database engines count among the most powerful and sophisticated 
software products in the business world, so they are well suited for the task of 
extracting useful information. And the lingua franca of relational databases 
is SQL.

The focus of this book is more on data and what to do with data and less 
on theory. Instead of trying to squeeze every last iota of information from a 
small sample—the goal of much statistical analysis—the goal is instead to 
find something useful in the gigabytes and terabytes of data stored by the 
business. Instead of asking programmers to learn data analysis, the goal 
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is to give data analysts—and others—a solid foundation for using SQL to 
learn from data.

This book strives to assist anyone facing the problem of analyzing data stored 
in large databases, by describing the power of data analysis using SQL and Excel. 
SQL, which stands for Structured Query Language, is a language for extracting 
information from data. Excel is a popular and useful spreadsheet for analyzing 
smaller amounts of data and presenting results.

The various chapters of this book build skill in and enthusiasm for SQL 
queries and the graphical presentation of results. Throughout the book, the 
SQL queries are used for more and more sophisticated types of analyses, 
starting with basic summaries of tables, and moving to data exploration. The 
chapters continue with methods for understanding time-to-event problems, 
such as when customers stop, and market basket analysis for understanding 
what customers are purchasing. Data analysis is often about building models, 
and—perhaps surprisingly to most readers—some models can be built directly 
in SQL, as described in Chapter 11, “Data Mining in SQL.” An important 
part of any analysis, though, is constructing the data in a format suitable for 
modeling—customer signatures.

The final chapter takes a step back from analysis to discuss performance. This 
chapter is an overview of a topic, concentrating on good performance practices 
that work across different databases.

This chapter introduces SQL for data analysis and data mining. Admittedly, 
this introduction is heavily biased because the purpose is for querying data-
bases rather than building and managing them. SQL is presented from three 
different perspectives, some of which may resonate more strongly with dif-
ferent groups of readers. The first perspective is the structure of the data, 
with a particular emphasis on entity-relationship diagrams. The second is the 
processing of data using dataflows, which happen to be what is “under the 
hood” of most relational database engines. The third, and strongest thread 
through subsequent chapters, is the syntax of SQL itself. Although data is 
well described by entities and relationships, and processing by dataflows, the 
ultimate goal is to express the transformations in SQL and present the results 
often through Excel.

Databases, SQL, and Big Data

Collecting and analyzing data is a major activity, so many tools are available 
for this purpose. Some of these focus on “big data” (whatever that might mean). 
Some focus on consistently storing the data quickly. Some on deep analysis. 
Some have pretty visual interfaces; others are programming languages.

SQL and relational databases are a powerful combination that is useful in 
any arsenal of tools for analysis, particularly ad hoc analyses:
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 ■ A mature and standardized language for accessing data

 ■ Multiple vendors, including open source

 ■ Scalability over a very broad range of hardware

 ■ A non-programming interface for data manipulations

Before continuing with SQL, it is worth looking at SQL in the context of other 
tools.

What Is Big Data?
Big data is one of those concepts whose definition changes over time. In the 
1800s, when statistics was first being invented, researchers worked with dozens 
or hundreds of rows of data. That might not seem like a lot, but if you have to 
add everything up with a pencil and paper, and do long division by hand or 
using a slide rule, then it certainly seems like a lot of data.

The concept of big data has always been relative, at least since data process-
ing was invented. The difference is that now data is measured in gigabytes 
and terabytes—enough bytes to fit the text in all the books in the Library of 
Congress—and we can readily carry it around with us. The good news is that 
analyzing “big data” no longer requires trying to get data to fit into very limited 
amounts of memory. The bad news is that simply scrolling through “big data” 
is not sufficient to really understand it.

This book does not attempt to define “big data.” Relational databases definitely 
scale well into the tens of terabytes of data—big by anyone’s definition. They also 
work efficiently on smaller datasets, such as the ones accompanying this book.

Relational Databases
Relational databases, which were invented in the 1970s, are now the store-
house of mountains of data available to businesses. To a large extent, the 
popularity of relational databases rests on what are called ACID properties 
of transactions:

 ■ Atomicity

 ■ Consistency

 ■ Isolation

 ■ Durability

These properties basically mean that when data is stored or updated in a database, 
it really is changed. The databases have transaction logs and other capabilities 
to ensure that changes really do happen and that modified data is visible when 
the data modification step completes. (The data should even survive major 
failures such as the operating system crashing.) In practice, databases support 
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transactions, logs, replication, concurrent access, stored procedures, security, 
and a host of features suitable for designing real-world applications.

From our perspective, a more important attribute of relational databases is 
their ability to take advantage of the hardware they are running on—multiple 
processors, memory, and disk. When you run a query, the optimization engine first 
translates the SQL query into the appropriate lower-level algorithms that exploit 
the available resources. The optimization engine is one of the reasons why SQL is 
so powerful: the same query running on a slightly different machine or slightly 
different data might have very different execution plans. The SQL remains the 
same; it is the optimization engine that chooses the best way to execute the code.

Hadoop and Hive
One of the technologies highly associated with big data is Hadoop in conjunction 
with MapReduce. Hadoop is an open-source project, meaning that the code is 
available for free online, with the goal of developing a framework for “reliable, 
scalable, distributed computing.” (The SQL world has free open-source databases 
such as MySQL, Postgres, and SQLite; in addition, several commercial databases 
have free versions.) In practice, Hadoop is a platform for processing humongous 
amounts of data, particularly data from sources such as web logs, high-energy 
physics, high volumes of streaming images, and other voluminous data sources.

The roots of MapReduce go back to the 1960s and a language called Lisp. 
In the late 1990s, Google developed a parallel framework around MapReduce, 
and now it is a framework for programming data-intensive tasks on large grid 
computers. It became popular because both Google and Yahoo developed 
MapReduce engines; and, what big successful internet companies do must 
be interesting.

Hadoop actually has a family of technologies and MapReduce is only one 
application. Built on Hadoop are other tools, all with colorful names such as 
Hive, Mahout, Cassandra, and Pig. Although the underlying technology is 
different from relational databases, there are similarities in the problems these 
technologies are trying to solve. Within the Hadoop world are languages, such 
CQL, which is based on SQL syntax. Hive, in particular, is being developed into 
a fully functional SQL engine and can run many of the queries in this book.

NoSQL and Other Types of Databases
NoSQL refers to a type of database that, at first sight, might seem to be the 
antithesis of SQL. Actually, the “No” stands for “Not Only.” This terminology 
can be used to refer to a variety of different database technologies:

 ■ Key-value pairs, where the columns of data can vary between rows—and, 
quite importantly—the columns themselves can contain lists of things
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 ■ Graph-based databases, which specialize in representing and handling 
problems from graph theory

 ■ Document databases, which are used for analyzing documents and other texts

 ■ Geographic information systems (GIS), which are used for geographic 
analysis

These types of databases are often specialized for particular functions. For 
instance, key-value pair databases provide excellent performance in a web 
environment for managing data about online sessions.

These technologies are really complementary technologies to traditional rela-
tional databases rather than replacement technologies. For instance, key-value 
databases are often used on a website in conjunction with relational databases 
that store history. Graph and document databases are often used in conjunction 
with data warehouses that support more structured information.

Further, good ideas are not limited to a single technology. One of the moti-
vations for writing a second edition of this book is that database technology is 
improving. SQL and the underlying relational database technology increasingly 
support functionality similar to NoSQL databases. For example, recursive common 
table expressions provide functionality for traversing graphs. Full text indexes 
provide functionality for working with text. Most databases offer extensions for 
geographic data. And, increasingly databases are providing better functionality 
for nested tables and portable data formats, such as XML and JSON.

SQL
SQL was designed to work on structured data—think tables with well-
defined columns and rows, much like an Excel spreadsheet. Much of the 
power of SQL comes from the power of the underlying database engine and 
the optimizer. Many people use databases running on powerful computers, 
without ever thinking about the underlying hardware. That is the power of 
SQL: The same query that runs on a mobile device can run on the largest 
grid computer, taking advantage of all available hardware with no changes 
to the query.

The part of the SQL language used for analysis is the SELECT statement. Much 
of the rest of the language is about getting data in to databases. Our concern is 
getting information out of them to solve business problems. The SELECT state-
ment describes what the results look like, freeing the analyst to think about 
what to do, instead of how to do it.

t Ip SQL (when used for querying) is a descriptive language rather than a  procedural 
language. It describes what needs to be done, letting the SQL engine optimize the 
code for the particular data, hardware, and database layout where the query is run-
ning, and freeing the analyst to think more about the business problem.
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Picturing the Structure of the Data

In the beginning, there is data. Although data may seem to be without form 
and chaotic, there is an organization to it, an organization based on tables and 
columns and relationships between and among them. Relational databases store 
structured data—that is, tables with well-defined rows and columns.

This section describes databases by the data they contain. It introduces entity-
relationship diagrams, in the context of the datasets (and associated data models) 
used with this book. These datasets are not intended to represent all the myriad 
different ways that data might be stored in databases; instead, they are intended 
as practice data for the ideas in the book. They are available on the companion 
website, along with all the examples in the book.

What Is a Data Model?
The definition of the tables, the columns, and the relationships among them 
constitute the data model for the database. A well-designed database actually 
has two data models. The logical data model explains the database in terms that 
business users understand. The logical data model communicates the contents 
of the database because it defines many business terms and how they are stored 
in the database.

The physical data model explains how the database is actually implemented. In 
many cases, the physical data model is identical to or very similar to the logi-
cal data model. That is, every entity in the logical data model corresponds to a 
table in the database; every attribute corresponds to a column. This is true for 
the datasets used in this book.

On the other hand, the logical and physical data models can differ. For 
instance, in more complicated databases, certain performance issues might 
drive physical database design. A single entity might have rows split into 
several tables to improve performance, enhance security, enable backup-
restore functionality, or facilitate database replication. Multiple similar 
entities might be combined into a single table, especially when they have 
many attributes in common. Or, a single entity could have different columns 
in different tables, with the most commonly used columns in one table and 
less commonly used ones in another table (this is called vertical partitioning, 
which some databases support directly without having to resort to multiple 
tables). Often these differences are masked through the use of views and 
other database constructs.

The logical model is quite important for analytic purposes because it pro-
vides an understanding of the data from the business perspective. However, 
queries actually run on the database represented by the physical model, so it 
is convenient that the logical and physical structures are often quite similar.
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What Is a Table?
A table is a set of rows and columns that describe multiple instances of some-
thing. Each row represents one instance—such as a single purchase made by a 
customer, or a single visit to a web page, or a single zip code with its demographic 
details. Each column contains one attribute for one instance. SQL tables represent 
unordered sets, so the table does not have a first row or a last row—unless a 
specific column such as an id or creation date provides that information.

Any given column contains the same genre of information for all rows. So a 
zip code column should not be the “sent-to” zip code in one row and the “billed-
to” zip code in another. Although these are both zip codes, they represent two 
different uses, so they belong in two different columns.

Columns, unless declared otherwise, are permitted to take on the value 
NULL, meaning that the value is not available or is unknown. For instance, a 
row describing customers might contain a column for birthdate. This column 
would take on the value of NULL for all rows where the birthdate is not known.

A table can have as many columns as needed to describe an instance, although 
for practical purposes tables with more than a few hundred columns are rare 
(and most relational databases do have an upper limit on the number of columns 
in a single table, typically in the low thousands). A table can have as many rows 
as needed; here the numbers easily rise to the millions and even billions.

As an example, Table 1-1 shows a few rows and columns from ZipCensus 
(which is available on the companion website). This table shows that each zip 
code is assigned to a particular state, which is the abbreviation in the stab col-
umn (“STate ABbreviation”) . The pctstate column is an indicator that zip codes 
sometimes span state boundaries. For instance, 10004 is a zip code in New York 
City that covers Ellis Island. In 1998, the Supreme Court split jurisdiction of the 
island between New York and New Jersey, but the Post Office did not change 
the zip code. So, 10004 has a portion in New York and a smaller, unpopulated 
portion in New Jersey.

Each zip code also has an area, measured in square miles and recorded in the 
landsqmi column. This column contains a number, and the database does not 

table 1-1: Some Rows and Columns from ZipCensus

ZCta5 Stab pCtState totpop LanDSQMI

10004 NY 100% 2,780 0.56

33156 FL 100% 31,537 13.57

48706 MI 100% 40,144 66.99

55403 MN 100% 14,489 1.37

73501 OK 100% 19,794 117.34

92264 CA 100% 20,397 52.28
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know what this number means. It could be area in acres, or square kilometers, 
or square inches, or pyongs (a Korean unit for area). What the number really 
means depends on information not stored in the tables. The term metadata is 
used to describe such information about what the values in columns mean. 
Similarly, fipco is a numeric value that encodes the state and county, with the 
smallest value being 1001, for Alabaster County in Alabama.

Databases typically have some metadata information about each column. 
Conveniently, there is often a label or description (and it is a good idea to fill 
this in when creating a table). More importantly, each column has a data type 
and a flag specifying whether NULL values are allowed. The next two sections 
discuss these two topics because they are quite important for analyzing data.

Allowing NULL Values

Nullability is whether or not a column may contain the NULL value. By default in 
SQL, a column in any row can contain a special value that says that the value 
is empty or unknown. Although this is quite useful, NULLs have unexpected 
side effects. Almost every comparison returns “unknown” if any argument is 
NULL, and “unknown” is treated as false.

The following very simple query looks like it is counting all the rows in the 
ZipCensus table where the FIPCo column is not NULL. (<> is the SQL operator 
for “not equals.”)

SELECT COUNT(*)
FROM ZipCensus zc
WHERE zc.fipco <> NULL

Alas, this query always returns zero. When a NULL value is involved in a 
comparison—even “not equals”—the result is almost always NULL, which is 
treated as false.

Of course, determining which rows have NULL values is quite useful, so SQL 
provides the special operators IS NULL and IS NOT NULL. These behave as 
expected, with the preceding query returning 32,845 instead of 0.

The problem is more insidious when comparing column values, either within 
a single table or between tables. For instance, the column fipco contains the 
primary county of a zip code and fipco2 contains the second county, if any. The 
following query counts the number of zip codes in total and the number where 
these two county columns have different values. This query uses conditional 
aggregation, which is when a conditional statement (CASE) is the argument to 
an aggregation function such as SUM():

SELECT COUNT(*),
       SUM(CASE WHEN fipco <> fipco2 THEN 1 ELSE 0 END) as numsame
FROM ZipCensus zc
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Or does it? The columns fipco and fipco2 should always have different values, 
so the two counts should be the same. In reality, the query returns the values 
32,989 and 8,904. And changing the not-equals to equals shows that there are 0 
rows where the values are equal. What is happening on the other 32,989 − 8,904 
rows? Once again, the “problem” is NULL values. When fipco2 is NULL, the test 
always fails.

When a table is created, there is the option to allow NULL values on each 
column in the table. This is a relatively minor decision when creating the table. 
However, making mistakes on columns with NULL values is easy.

Warn Ing Designing databases is different from analyzing the data inside them. 
For example, NULL columns can cause unexpected—and inaccurate—results when 
analyzing data and make reading queries difficult. Be very careful when using col-
umns that allow them.

NULL values may seem troublesome, but they solve an important problem: 
how to represent values that are not present. One alternative method is to use 
a special value, such as -99 or 0. However, the database would just treat this 
as a regular value, so calculations (such as MIN(), MAX(), and SUM()) would be 
incorrect.

Another alternative would be to have separate flags indicating whether or not 
a value is NULL. That would make even simple calculations cumbersome. “A + 
B”, for instance, would have to be written as something like “(CASE WHEN A_flag 
= 1 AND B_flag = 1 THEN A + B END)”. Given the alternatives, having NULLs 
in the database is a practical approach to handling missing values.

Column Types

The second important attribute of a column is its type, which tells the database 
exactly how to store values. A well-designed database usually has parsimonious 
columns, so if two characters suffice for a code, there is no reason to store eight. 
There are a few important aspects of column types and the roles that columns play.

Primary key columns uniquely identify each row in the table. That is, no two 
rows have the same value for the primary key and the primary key is never NULL. 
Databases guarantee that primary keys are unique by refusing to insert rows 
with duplicate primary keys. Chapter 2, “What’s in a Table? Getting Started with 
Data Exploration,” shows techniques to determine whether this condition holds 
for any given column. Typically the primary key is a single column, although 
SQL does allow composite primary keys, which consist of multiple columns.

Numeric values are values that support arithmetic and other mathematical 
operations. In SQL, these can be stored in different ways, such as floating-point 
numbers, integers, and decimals. The details of how these formats differ are 
much less important than what can be done with numeric data types.
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Within the category of numeric types, one big difference is between integers, 
which have no fractional part, and real numbers, which do. When doing arith-
metic on integers, the result might be an integer or it might be a real number, 
depending on the database. So 5/2 might evaluate to 2 rather than 2.5, and 
the average of 1 and 2 might turn out to be 1 instead of 1.5, depending on the 
database. To avoid this problem, examples in this book multiply integer values 
by 1.0 to convert them to decimal values when necessary.

Of course, just because it walks like a duck and talks like a duck does not 
mean that it is a duck. Some values look like numbers, but really are not. Zip 
codes (in the United States) are an example, as are primary key columns stored 
as numbers. What is the sum of two zip codes? What does it mean to multiply 
a primary key value by 2? These questions yield nonsense results (although 
the values can be calculated). Zip codes and primary keys happen to look like 
numbers, but they do not behave like numbers.

The datasets used in this book use character strings for zip codes and numbers 
for primary keys. To distinguish such false numeric values from real numbers, 
the values are often left padded with zeros to get a fixed length. After all, the 
zip code for Harvard Square in Cambridge, MA, is 02138, not 2,138.

Dates and date-times are exactly what their names imply. SQL provides several 
functions for common operations, such as determining the number of days 
between two dates, extracting the year and month, and comparing two times. 
Unfortunately, these functions often differ between databases. The Appendix 
provides a list of equivalent functions in different databases for functions used 
in this book, including date and time functions.

Another type of data is character string data. These are commonly codes, such 
as the state abbreviation in the zip code table, or a description of something, 
such as a product name or the full state name. SQL has some very rudimentary 
functions for handling character strings, which in turn support rudimentary text 
processing. Spaces at the end of a character string are ignored, so the condition 
'NY' = 'NY ' evaluates to TRUE. However, spaces at the beginning of a char-
acter string are counted, so 'NY' = ' NY' evaluates to FALSE. When working 
with data in character columns, it might be worth checking out whether there 
are spaces at the beginning, a topic discussed in Chapter 2.

What Is an Entity-Relationship Diagram?
The “relational” in the name “relational databases” refers to the fact that 
different tables relate to each other via keys, and to the fact that columns in 
a given row relate to the values for that column via the column name. For 
instance, a zip code column in any table can link (that is “relate”) to the zip 
code table. The key makes it possible to look up information available in 
the zip code table. Figure 1-1 shows the relationships between tables in the 
purchases dataset.
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These relationships have a characteristic called cardinality, which is the num-
ber of items related on each side. For instance, the relationship between Orders 
and ZipCensus is a zero/one-to-many relationship. This specifies every row in 
Orders has at most one zip code. And, every zip code has zero, one, or more 
orders. Typically, this relationship is implemented by having a column in the 
first table contain the zip code, which is called a foreign key. A foreign key is 
just a column whose contents are the primary key of another table (ZipCode in 
Orders is a foreign key; zcta5 in ZipCensus is a primary key). To indicate no 
match, the foreign key column would typically be NULL.

The zero/one-to-one relationship says that there is at most one match between 
two tables. This is often a subsetting relationship. For instance, a database might 
contain sessions of web visits, some of which result in a purchase. Any given ses-
sion would have zero or one purchases. Any given purchase would have exactly 
one session.

Another relationship is a many-to-many relationship. A customer might 
purchase many different products and any given product might be purchased 
by many different customers. In fact, the purchase dataset does have a many-
to-many relationship between Orders and Products; this relationship is rep-
resented by the OrderLines entity, which has a zero/one-to-many relationship 
with each of those.

An example of the one-at-a-time relationship is a customer who resides in 
a particular zip code. The customer might move over time. Or, at any given 
time, a customer might have a particular handset or billing plan, but these can 
change over time.

Figure 1-1: This entity-relationship diagram shows the relationship among entities in the 
purchase dataset. Each entity corresponds to one table.
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With this brief introduction to entity-relationship diagrams, the following 
sections describe the datasets used in this book.

The Zip Code Tables
The ZipCensus table consists of more than one hundred columns describing 
each zip code, or, strictly speaking, each zip code tabulation area (ZCTA) defined 
by the Census Bureau. The column zcta5 is the zip code. This information was 
gathered from the Missouri Census Data Center, based on US Census data, 
specifically the American Community Survey.

The first few columns consist of overview information about each zip code, 
such as the state, the county, population (totpop), latitude, and longitude. There 
is a column for additional zip codes because the zip-code tabulation area does 
not necessarily match 100% with actual zip codes. In addition to population, 
there are four more counts: the number of households (tothhs), the number 
of families (famhhs), the number of housing units (tothus), and the number of 
occupied housing units (occhus).

The following information is available for the general population:

 ■ Proportion and counts in various age groups

 ■ Proportion and counts by gender

 ■ Proportion and counts in various racial categories

 ■ Proportion and counts of households and families by income

 ■ Information about occupation categories and income sources

 ■ Information about marital status

 ■ Information about educational attainment

 ■ And more

Information on the columns and exact definitions of terms such as ZCTA are 
available at http://mcdc.missouri.edu/data/georef/zcta_master.Metadata.html.

The second zip code table is ZipCounty, a companion table that maps zip 
codes to counties. It contains information such as the following:

 ■ County name

 ■ Post office name

 ■ Population of county

 ■ Number of households in county

 ■ County land area

This table has one row for each zip code, so it can be joined to ZipCensus and 
to other tables using the ZipCode column. The two tables are from different 

http://mcdc.missouri.edu/data/georef/zcta_master.Metadata.html
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time frames and sources so not all zip codes match between the two tables—a 
common problem when working with data.

Subscription Dataset
The subscription data has only two entities, shown in Figure 1-2. This dataset 
paints a picture of a subscriber at a given point in time (the date when the 
snapshot was created).

The Subscribers table describes customers in a telephone company. It is a 
snapshot that shows what customers (and former customers) look like as of 
a particular date. The columns in this table describe customers as they start 
and as they stop. This particular snapshot table has no intermediate behavior 
information.

The Calendar table is a general-purpose table that has information about 
dates, including:

 ■ Year

 ■ Month number

 ■ Month name

 ■ Day of month

 ■ Day of week

 ■ Day of year

 ■ Holiday information

This table has the date as a primary key, and covers dates from 1950 through 2050.

Figure 1-2: An entity-relationship diagram with only two entities describes the data in the 
customer snapshot dataset.

Subscribers

SubscriberIdPK

StartDate
StopDate
StopType
Channel
Market
MonthlyFee
Tenure
. . .

Calendar

DatePK

Month
Year
Day of Week
. . .



14 Chapter  1 ■ a Data Miner Looks at SQL

Purchases Dataset
The purchases dataset contains entities typical of retail purchases; the entities 
in this dataset and their relationships are shown in Figure 1-1 (page 11) :

 ■ Customers

 ■ Orders

 ■ OrderLines

 ■ Products

 ■ Campaigns

 ■ ZipCensus

 ■ ZipCounty

 ■ Calendar

This data captures the important entities associated with retail purchases. The 
most detailed information is in OrderLines, which describes each of the items 
in an order. To understand the name of the table, think of a receipt. Each line on 
the receipt represents a different item in the purchase. In addition, the line has 
other information such as the product id, the price, and the number of items, 
which are all in this table.

The Products table provides information such as the product group name and 
the full price of a product. The table does not contain detailed product names. 
These were removed as part of the effort to anonymize the data.

To tie all the items in a single purchase together, each row of OrderLines 
has an OrderId. Each OrderId, in turn, represents one row in the Orders table, 
which has information such as the date and time of the purchase, where the 
order was shipped to, and the type of payment. It also contains the total dollar 
amount of the purchase, summed up from the individual items. Each order 
line is in exactly one order and each order has one or more order lines. This 
relationship is described as a one-to-many relationship between these tables.

Just as the OrderId ties multiple order lines into an order, the CustomerId assigns 
orders made at different points in time to the same customer. The existence of 
the CustomerId prompts the question of how it is created. In one sense, it makes 
no difference how it is created; the CustomerId is simply a given, defining the 
customer in the database. Is it is doing a good job? That is, are a single customer’s 
purchases being tied together most of the time? The aside “The Customer ID: 
Identifying Customers Over Time,” discusses the creation of customer IDs.

Tips on Naming Things
The datasets provided with this book have various original sources, so they 
have different naming conventions. In general, there are some things that should 
always be avoided and some things that are good practice:
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 ■ Always use only alphanumeric characters and underscores for table and 
column names. Other characters, such as spaces, require that the name be 
escaped when referenced. The escape characters, typically double quotes 
or square braces, make it hard to write and read queries.

 ■ Never use SQL reserved words. Databases have their own special words, 
but words like Order, Group, and Values are keywords in the language 
and should be avoided.

Additional good practices include the following:

 ■ Table names are usually in plural (this helps avoid the problem with 
reserved words) and reinforces the idea that tables contain multiple 
instances of the entity.

 ■ The primary key is the singular of the table name followed by “Id.” Hence, 
OrderId and SubscriberId. When a column references another table 
such as the OrderId column in OrderLines (a foreign key relationship) use 
the exact same name, making it easy to see relationships between tables.

the CuStoMer ID: IDentIFyIng CuStoMerS over tIMe

The CustomerId column combines transactions over time into a single grouping, the 
customer (or household or similar entity). How is this accomplished? It all depends on 
the business and the business processes:

 ■ The purchases might contain name and address information. So, purchases with 
matching names and addresses would have the same customer ID.

 ■ The purchases might all have telephone numbers or email address, so these 
could provide the customer ID.

 ■ Customers may have loyalty cards or account numbers which provide the 
customer ID.

 ■ The purchases might be on the web, so browser cookies and logins could 
identify customers over time.

 ■ The purchases might all be by credit card, so purchases with the same credit 
card number would have the same customer ID.

Of course, any combination of these or other methods might be used to generate an 
internal customer id. And, because any one of these ids could change over time, the 
problem has a time component as well.

And all these approaches have their challenges. What happens when a customer 
browses on a tablet as well as a laptop (and different cookies are stored on differ-
ent machines) or deletes her web cookies? Or when customers forget their loyalty 
cards (so the loyalty numbers are not attached to the purchases)? Or move? Or 
change phone numbers or email addresses? Or change their names? Keeping track of 
customers over time can be challenging.
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 ■ “CamelBack” case is used (upper case for each new word, lowercase for 
the rest). Hence, OrderId instead of Order_Id. In general, table names and 
column names are not case sensitive. The CamelBack method is to make it 
easier to read the name, while at the same time keeping the name shorter 
(than if using underscores).

 ■ The underscore is used for grouping common columns together. For 
instance, in the Calendar table, the indicators for holidays for specific 
religions start with hol_.

Of course, the most important practice is to make the column and table 
names understandable and consistent, so you (and others) recognize what 
they mean.

Picturing Data Analysis Using Dataflows

Tables store data, but tables do not actually do anything. Tables are nouns; queries 
are verbs. This book mates SQL and Excel for data manipulation, transformation, 
and presentation. The differences between these tools are exacerbated because 
they often support the same operations, although in very different ways. For 
instance, SQL uses the GROUP BY clause to summarize data in groups. An Excel 
user, on the other hand, might use pivot tables, use the subtotal wizard, or 
manually do calculations using functions such as SUMIF(); however, nothing 
in Excel is called “group by.”

Because this book intends to combine the two technologies, it is useful to 
have a common way of expressing data manipulations and data transforma-
tions, a common language independent of the tools being used. Dataflows 
provide this common language by showing the transformation operations 
fitting together like an architecture blueprint for data processing, a blueprint 
that describes what needs to be done, without saying which tool is going to 
do the work. This makes dataflows a powerful mechanism for thinking about 
data transformations.

What Is a Dataflow?
A dataflow is a graphical way of visualizing data transformations. Dataflows 
have two important elements. The nodes in a dataflow diagram transform data, 
taking zero or more inputs and producing output. The edges in a dataflow dia-
gram are pipes connecting the nodes. Think of the data flowing through the 
pipes and getting banged and pushed and pulled and flattened into shape by 
the nodes. In the end, the data has been transformed into information.

Figure 1-3 shows a simple dataflow that adds a new column, called SCF for 
Sectional Center Facility (something the U.S. Post Office uses to route mail). 
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Figure 1-3: A simple dataflow reads the ZIPCODE, calculates and appends a new field called SCF, 
and outputs the SCF and ZIPCODE.

READ
ZipCensus

APPEND
SCF = substring(zcta5, 1, 3)

SELECT
zcta5, SCF

OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128

33126

33127

33128

33126

33127

331287,652FL

. . .

SCF. . .totpopstabzcta5
. . .

33146,880FL

33129,801FL

3317,652FL

. . .

SCFzcta5
. . .

331

331

331

. . .

This column is the first three digits of a zip code. The output is each zip code 
with its SCF. The dataflow has four nodes, connected by three edges. The first, 
shaped like a cylinder, represents a database table or file and is the source of 
the data. The edge leaving this node shows some of the records being passed 
from it, records from the ZipCensus table.

The second node appends the new column to the table, which is also visible 
along the edge leading out from the node. The third selects two columns for 
output—in this case, zcta5 and SCF. And the final node simply represents the 
output. On the dataflow diagram, imagine a magnifying glass that makes it 
possible to see the data moving through the flow. Seeing the data move from 
node to node shows what is happening in the flow.

The actual processing could be implemented in either SQL or Excel. The SQL 
code corresponding to this dataflow is:

SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
FROM ZipCensus zc

Alternatively, if the data were in an Excel worksheet with the zip codes in col-
umn A, the following formula would extract the SCF:

=MID(A1, 1, 3)

Of course, the formula would have to be copied down the column.
Excel, SQL, and dataflows are three different ways of expressing similar 

transformations. The advantage of dataflows is that they provide an intuitive 
way of visualizing and thinking about data manipulations, independent of the 
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tool used for the processing. Dataflows facilitate understanding, but in the end, 
the work described in this book is in SQL or Excel.

t Ip When column A has a column of data and we want to copy a formula down col-
umn B, the following is a handy method based on keyboard shortcuts:

 1. Type the formula in the first cell in column B where there is data in column A.

 2. Move the cursor to column A.

 3. Hit Ctrl+down arrow to go to the end of the data in column A (Command+down 
arrow on a Mac)

 4. Hit the right arrow to move to column B.

 5. Hit Ctrl+Shift+up arrow to highlight all of column B (Command+up arrow on a 
Mac).

 6. Hit Ctrl+D to copy the formula down the column.

Voila! The formula gets copied without a lot of fiddling with the mouse and with menus.

READ: Reading a Database Table

The READ operator reads all the columns of data from a database table or file. 
In SQL, this operation is implicit when tables are included in the FROM clause 
of a query. The READ operator does not accept any input dataflows, but has 
an output. Generally, if a table is needed more than once in a dataflow, each 
occurrence has a separate READ.

OUTPUT: Outputting a Table (or Chart)

The OUTPUT operator creates desired output, such as a table in a row-column 
format or some sort of chart based on the data. The OUTPUT operator does not 
have any outputs, but accepts inputs. It also accepts parameters describing the 
type of output.

SELECT: Selecting Various Columns in the Table

The SELECT operator chooses one or more columns from the input and passes 
them to the output. It might reorder columns and/or choose a subset of them. 
The SELECT operator has one input and one output. It accepts parameters 
describing the columns to keep and their order.

FILTER: Filtering Rows Based on a Condition

The FILTER operator chooses rows based on a TRUE or FALSE condition. Only 
rows that satisfy the condition are passed through, so it is possible that no rows 
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ever make it through the node. The FILTER operator has one input and one 
output. It accepts parameters describing the condition used for filtering.

APPEND: Appending New Calculated Columns

The APPEND operator appends new columns, which are calculated from existing 
columns and functions. The APPEND operator has one input and one output. 
It accepts parameters describing the new columns.

UNION: Combining Multiple Datasets into One

The UNION operator takes two or more datasets as inputs and creates a single 
output that combines all rows from both of them. The input datasets need to 
have exactly the same columns. The UNION operator has two or more inputs 
and one output.

AGGREGATE: Aggregating Values

The AGGREGATE operator groups its input based on zero or more key col-
umns. All the rows with the same key values are summarized into a single 
row, and the output contains the aggregate key columns and the summaries. 
The AGGREGATE operator takes one input and produces one output. It also 
takes parameters describing the aggregate keys and the summaries to produce.

LOOKUP: Looking Up Values in One Table in Another

The LOOKUP operator takes two inputs, a base table and a reference table, 
which have a key in common. The reference table should have at most one row 
for each key value. The LOOKUP operator appends one or more columns in the 
reference table to the base table, based on matching key values. When there is 
no match, LOOKUP just outputs NULL for the corresponding output columns.

It takes two parameters. The first describes the key and the second describes 
which columns to append. Although this can also be accomplished with a JOIN, 
the LOOKUP is intended to be simpler and more readable for this common 
operation where no new rows are generated and no rows are filtered.

CROSSJOIN: Generating the Cartesian Product of Two Tables

The CROSSJOIN operator takes two inputs and combines them in a very specific 
way. It produces a wider table that contains all the columns in the two inputs, 
the Cartesian product of the two tables. Every row in the output corresponds 
to a pair of rows, one from each input. For instance, if the first table has four 
rows, A, B, C, and D, and the second has three rows, X, Y, and Z, then the output 
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consists of all twelve combinations of these: AX, AY, AZ, BX, BY, BZ, CX, CY, 
CZ, DX, DY, and DZ. The CROSSJOIN is the most general join operation.

JOIN: Combining Two Tables Using a Key Column

The JOIN operator takes two inputs and a join condition as a parameter, and 
produces an output that has all the columns in the two tables. The join condi-
tion typically specifies that at least one column in one table is related to one 
column in the other, usually by having the same value. This type of join, called 
an equijoin, is the most common type of join.

With an equijoin, it is possible to “lose” rows in one or both of the inputs. 
This occurs when there is no matching row in the other table. A variation of 
the join ensures that all rows in one or the other table are represented in the 
output. Specifically, the LEFT OUTER JOIN keeps all rows in the first input table 
and the RIGHT OUTER JOIN keeps all rows in the second. FULL OUTER JOIN 
keeps all rows in both tables.

SORT: Ordering the Results of a Dataset

The SORT operator orders its input dataset based on one or more sort keys. 
It takes a parameter describing the sort keys and the sort order (ascending or 
descending).

Dataflows, SQL, and Relational Algebra
Beneath the skin of most relational databases is an engine that is essentially a 
dataflow engine. Dataflows focus on data and SQL focuses on data, so they are 
natural allies.

Historically, though, SQL has a somewhat different theoretical foundation based 
on mathematical set theory. This foundation is called relational algebra, an area in 
mathematics that defines operations on unordered sets of tuples. A tuple is a lot 
like a row, consisting of attribute-value pairs. The “attribute” is the column and 
the “value” is the value of the column in the row. Relational algebra then includes 
a bunch of operations on sets of tuples, operations such as union and intersection, 
joins and projections, which are similar to the dataflow constructs just described.

The notion of using relational algebra to access data is credited to E. F. Codd 
who, while a researcher at IBM in 1970, wrote a paper called A Relational Model of 
Data for Large Shared Data Banks. This paper became the basis of using relational 
algebra for accessing data, eventually leading to the development of SQL and 
modern relational databases.

A set of tuples is a lot like a table, but not quite. One difference between the two 
is that a table can contain duplicate rows but a set of tuples cannot have duplicates. 
A very important property of sets is that they have no ordering. Sets have no 
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concept of the first, second, and third elements—unless another attribute defines 
the ordering. To most people (or at least most people who are not immersed in set 
theory), tables have a natural order, defined perhaps by a primary key or perhaps 
by the sequence that rows were originally loaded into the table.

As a legacy of the history of relational algebra, SQL tables have no natural 
ordering. The order of the results of a query are defined only when there is an 
ORDER BY clause.

SQL Queries

This section provides the third perspective on SQL, an introduction to the SQL 
querying language. The querying part of SQL is the visible portion of an iceberg 
whose bulky mass is hidden from view. The hidden portion is the data manage-
ment side of the language—the definitions of tables and views, inserting rows, 
updating rows, defining triggers, stored procedures, and so on. As data miners 
and analysts, our goal is to exploit the visible part of the iceberg, by extracting 
useful information from the database.

SQL queries answer specific questions. Whether the question being asked 
is actually the question being answered is a big issue for database users. The 
examples throughout this book include both the question and the SQL that 
answers it. Sometimes, small changes in the question or the SQL produce very 
different results.

What to Do, Not How to Do It
A SQL query describes the result set, but does not specify how this is accom-
plished. This approach has several advantages. A query is isolated from the 
hardware and operating system where it is running. The same query should 
return equivalent results on the same data in two very different environments.

Being non-procedural means that SQL needs to be compiled into computer code 
on any given computer. This compilation step provides an opportunity to optimize 
the query to run as fast as possible in the environment. Database engines contain 
many different algorithms, ready to be used under just the right circumstances. The 
specific optimizations, though, might be quite different in different environments.

Another advantage of being non-procedural is that SQL can take advantage of 
parallel processing. The language itself was devised in a world where comput-
ers were very expensive, had a single processor, limited memory, and one disk. 
The fact that SQL has adapted to modern system architectures where CPUs, 
memory, and disks are plentiful is a testament to the power and scalability of 
the ideas underlying the relational database paradigm. When Codd wrote his 
paper suggesting relational algebra for “large data banks,” he was probably 
thinking of a few megabytes of data, an amount of data that now easily fits in 



22 Chapter  1 ■ a Data Miner Looks at SQL

an Excel spreadsheet and pales in comparison to gigabytes of information on a 
mobile device or the terabytes of data found in corporate repositories.

The SELECT Statement
This chapter has already included several examples of simple SQL queries. More 
formally, the SELECT statement consists of clauses, the most important of which are:

 ■ WITH

 ■ SELECT

 ■ FROM

 ■ WHERE

 ■ GROUP BY

 ■ HAVING

 ■ ORDER BY

These clauses are always in this order. There is a close relationship between 
the dataflow operations discussed in the previous section and these clauses.

Note that a SELECT statement can contain subqueries within it. Supporting 
subqueries provide much of the power of SQL.

A Basic SQL Query
A good place to start with SQL is with the simplest type of query, one that 
selects a column from a table. Consider, once again, the query that returns zip 
codes along with the SCF:

SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
FROM ZipCensus zc

This query returns a table with two columns, the zip code and the SCF. The 
rows might be returned in any order. If you want the rows in a particular order, 
include an explicit ORDER BY clause:

SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
FROM ZipCensus zc
ORDER BY zc.zcta5

Without an ORDER BY, never assume that the result of a query will be in a par-
ticular order.

Warn Ing The results of a query are unordered, unless you use an ORDER BY clause 
at the outermost level. Never depend on a “default ordering,” because there isn’t one.
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This simple query already shows some of the structure of the SQL language. 
All queries begin with the SELECT clause that lists the columns being returned. 
The tables being accessed are in the FROM clause, which follows the SELECT state-
ment. And, the ORDER BY is the last clause in the query.

This example uses only one table, ZipCensus. In the query, this table has a 
table alias, or abbreviation, called zc. The first part of the SELECT statement is 
taking the zcta5 column from zc. Although table aliases are optional in SQL, 
as a rule this book uses them extensively because aliases clarify where columns 
come from and make queries easier to write and to read.

t Ip Use table aliases in your queries that are abbreviations for the table names. 
These make the queries easier to write and to read.

The second column returned by the query is calculated from the zip code itself, 
using the LEFT() function. LEFT() is just one of dozens of functions provided by 
SQL, and specific databases generally support user-defined functions as well. 
The second column has a column alias. That is, the column is named SCF, which 
is the header of the column in the output.

A simple modification that returns the zip codes and SCFs only in Minnesota:

SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
FROM ZipCensus zc
WHERE stab = 'MN'
ORDER BY 1

The query has an additional clause, the WHERE clause, which, if present, 
always follows the FROM clause. The WHERE clause specifies a condition; in 
this case, that only rows where stab is equal to “MN” are included in the 
result set. The ORDER BY clause then sorts the rows by the first column; the 
“1” is a reference to the first column being selected, in this case, zc.zcta5. 
The preferred method, however, is to use the column name (or alias) in the 
ORDER BY clause.

The dataflow corresponding to this modified query is in Figure 1-4. In this 
dataflow, the WHERE clause has turned into a filter after the data source, and the 
ORDER BY clause has turned into a SORT operator just before the output. Also 
notice that the dataflow contains several operators, even for a simple SQL query. 
SQL is a parsimonious language; complex operations can often be specified 
quite simply.

Warn Ing When a column value is NULL, any comparison in a WHERE clause—
with the important exception of IS NULL— always returns unknown, which is treated 
as FALSE. So, the clause WHERE stab <> 'MN' really means WHERE stab IS NOT 
NULL AND stab <> 'MN'.
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A Basic Summary SQL Query
A very powerful component of SQL is the ability to summarize data in a table. 
The following SQL counts the number of zip codes in ZipCensus:

SELECT COUNT(*) as numzip
FROM ZipCensus zc

The form of this query is very similar to the basic select query. The func-
tion COUNT(*), not surprisingly, counts the number of rows. The “*” means 
that all rows are being counted. It is also possible to count a column, such as 
COUNT(zcta5). This counts the number of rows that have a valid (i.e., non-
NULL) value in zcta5.

The preceding query is an aggregation query that treats the entire table as a 
single group. Within this group, the query counts the number of rows, which 
calculates the number of rows in the table. A very similar query returns the 
number of zip codes in each state:

SELECT stab, COUNT(*) as numzip
FROM ZipCensus zc
GROUP BY stab
ORDER BY numzip DESC

The GROUP BY clause says to treat the table as consisting of several groups 
defined by the different values in the column stab. The result is then sorted 
in reverse order of the count (DESC stands for “descending”), so the state with 

Figure 1-4: A WHERE clause in a query adds a filter node to the dataflow.

READ
ZipCensus

APPEND
SCF = substring(zcta5, 1, 3)

SELECT
zcta5, SCF OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

SCFzcta5
. . .

55401 554

55402 554

55403 554

. . .

SORT
zcta5

FILTER
Stab = 'MN'

. . .totpopstabzcta5
. . .

55401 7,157MN

55402 381MN

55403 14,489MN

. . .

SCFzcta5
. . .

55401 554

55402 554

55403 554

. . .

SCF. . .totpopstabzcta5
. . .

55401 5547,157MN

55402 554381MN

55403 55414,489MN

. . .
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Figure 1-5: This dataflow diagram describes a basic aggregation query.

READ
ZipCensus

OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

SORT
numzips desc

AGGREGATE
group by stab

numzips = count(*)

numzipsstab
1,798PA

983FL
405AZ
361MT

. . .

numzipsstab
1,935TX
1,798PA
1,794NY
1,763CA

. . .

the most zip codes (Texas) is first. Figure 1-5 shows the corresponding data-
flow diagram.

In addition to COUNT(), standard SQL offers other useful aggregation 
functions. The SUM(), AVG(), MIN(), and MAX() functions compute, respec-
tively, the sum, average, minimum, and maximum values. In general, the 
first two operate only on numeric values and the MIN() and MAX() can work 
on any data type. Note that all these functions ignore NULL values in their 
calculations.

COUNT(DISTINCT) returns the number of distinct values. An example of using 
it is to answer the following question: How many SCFs are in each state? The 
following query answers this question:

SELECT zc.stab, COUNT(DISTINCT LEFT(zc.zcta5, 3)) as numscf
FROM ZipCensus zc
GROUP BY zc.stab
ORDER BY zc.stab

This query also shows that functions, such as LEFT(), can be nested in the 
aggregation functions. SQL allows arbitrarily complicated expressions. Chapter 2 
shows another way to answer this question using subqueries.

What It Means to Join Tables
Because they bring together information from two tables, joins are perhaps the 
most powerful feature of SQL. Database engines can have dozens of algorithms 
just for this one key word. A lot of programming and algorithms are hidden 
beneath this simple construct.
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As with anything powerful, joins need to be used carefully—not sparingly, 
but carefully. It is very easy to make mistakes using joins, especially the fol-
lowing two:

 ■ “Mistakenly” losing rows in the result set, and

 ■ “Mistakenly” adding unexpected additional rows.

Whenever joining tables, it is worth asking whether either of these could be 
happening. These are subtle questions because the answer depends on the data 
being processed, not on the syntax of the expression itself. There are examples 
of both problems throughout the book.

This discussion is about what joins do rather than about the multitude of 
algorithms for implementing them (although the algorithms are quite interest-
ing—to some people—they don’t help us understand customers and data). The 
most general type of join is the cross-join. The discussion then explains the 
more common variants: look up joins, equijoins, nonequijoins, and outer joins.

Warn Ing Whenever joining two tables, ask yourself the following two questions:

 1. Could one of the tables accidentally be losing rows because there are no 
matches in the other table?

 2. Could the result set unexpectedly have duplicate rows due to multiple matches 
between the tables?

The answers require understanding the underlying data.

Cross-Joins: The Most General Joins

The most general form of joining two tables is called the cross-join or, for the more 
mathematically inclined, the Cartesian product of the two tables. As discussed 
earlier in the section on dataflows, a cross-join results in an output consisting 
of all columns from both tables and every combination of rows from one table 
with rows from the other. The number of rows in the output grows quickly as 
the two tables become bigger. If the first table has four rows and two columns, 
and the second has three rows and two columns, then the resulting output has 
twelve rows and four columns. This is easy enough to visualize in Figure 1-6.

Because the number of rows in the output is the number of rows in each table 
multiplied together, the output size grows quickly. If one table has 3,000 rows 
and the other 4,000 rows, the result has 12,000,000 rows—which is a bit big for 
an illustration. The number of potential columns is the sum of the number of 
columns in each input table.

In the business world, tables often have thousands, or millions, or even more 
rows, so a cross-join quickly gets out of hand, with even the fastest computers. 
If this is the case, why are joins so useful, important, and practical?



 Chapter  1 ■ a Data Miner Looks at SQL 27

The reason is that the general form of the join is not the form that gets used 
very often, unless one of the tables is known to have only one row or a hand-
ful of rows. By imposing some restrictions—say by imposing a relationship 
between columns in the two tables—the result becomes more tractable. Even 
though more specialized joins are more commonly used, the cross-join is still 
the foundation that explains what they are doing.

Lookup: A Useful Join

ZipCensus is an example of a reference table summarized at the zip code level. 
Each row describes a zip code and any given zip code appears exactly once 
in the table. As a consequence, the zcta5 column makes it possible to look up 
census information for zip codes stored in another table. Intuitively, this is one 
of the most natural join operations, using a foreign key in one table to look up 
values in a reference table.

A lookup join makes the following two assumptions about the base and 
reference tables:

 ■ All values of the key in the base table are in the reference table (missing 
join keys lose rows unexpectedly).

 ■ The lookup key is the primary key in the reference table (duplicate join 
keys cause unexpected rows).

Unfortunately, SQL does not provide direct support for lookups because there is 
no simple check in the query ensuring these two conditions are true. However, 
the join mechanism makes it possible to do lookups, and this works smoothly 
when the two preceding conditions are true.

Figure 1-6: A cross-join on two tables, one with four rows and one with three rows, results in a 
new table that has twelve rows and all columns from both tables.

ZipCodeField
10011A
55401B
33132C

ZipCodeFieldValueID
10011A1,7981001
55401B1,7981001
33132C1,7981001
10011A9831002
55401B9831002
33132C9831002
10011A4051003
55401B4051003
33132C4051003
10011A3611004
55401B3611004
33132C3611004

CROSS 
JOIN 

ValueID
1001 1,798

1002 983

1003 405

1004 361
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Consider the SQL query that appends the zip code population to each row 
of Orders:

SELECT o.OrderId, o.ZipCode, zc.totpop
FROM Orders o JOIN
     ZipCensus zc
     ON o.ZipCode = zc.zcta5

This example uses the ON clause to establish the condition between the tables. 
There is no requirement that the condition be equality in general, but for a 
lookup it is.

From the dataflow perspective, the lookup could be implemented with 
CROSSJOIN. The output from the CROSSJOIN is first filtered to the correct 
rows (those where the two zip codes are equal) and the desired columns (all 
columns from Orders plus totpop) are selected. Figure 1-7 shows a dataflow 
that appends a population column to Orders using this approach.

Unlike the dataflow diagram, the SQL query describes that a join needs to 
take place, but does not explain how this is done. The cross-join is one method, 
although it would be quite inefficient in practice. Databases are practical, so 
database writers have invented many different ways to speed this up. The 
details of such performance enhancements are touched upon in Chapter 14, 
“Performance Is the Issue: Using SQL Effectively.” It is worth remembering 
that databases are practical, not theoretical, and the database engine is usually 
trying to optimize the run-time performance of queries.

Although the preceding query does implement the lookup, it does not guar-
antee the two conditions mentioned earlier. If there were multiple rows in 
ZipCensus for a given zip code, there would be extra rows in the output (because 
any matching row would appear more than once). You can define a constraint or 
unique index on the table to ensure that it has no duplicates, but in the query 
itself there is no evidence of whether or not such a constraint is present. On the 
other hand, if zip code values in Orders were missing in ZipCensus, rows would 
unexpectedly disappear. In fact, this happens and the output has fewer rows 
than the original Orders table. The condition that all the zip codes in Orders 
match a row in ZipCensus could be enforced (if it were true) with another type 
of constraint, a foreign key constraint.

Having multiple rows in ZipCensus for a given zip code is not an outland-
ish idea. For instance, it could include information for both the 2000 and 2010 
censuses, which would make it possible to see changes over time. One way to 
implement this would be to have another column, say, CensusYear to specify the 
year of the census. Now the primary key would be a compound key composed 
of zcta5 and CensusYear together. A join on the table using just zip code would 
result in multiple rows, one for each census year.
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Figure 1-7: In SQL, looking up a value in one table is theoretically equivalent to creating the 
cross-join of the two tables and then restricting the values.
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Equijoins

An equijoin is a join that has at least one condition asserting that two columns 
in the tables have equal values, and all the conditions are connected by AND 
(which is normally the case). In SQL, the conditions are the ON clause following 
the JOIN statement.

An equijoin can return extra rows the same way that a cross-join can. If a 
column value in the first table is repeated three times, and the same value occurs 
in the second table four times, the equijoin between the two tables produces 
twelve rows of output for that column. This is similar to the situation depicted 
in Figure 1-6 (page 27) that illustrates the cross-join. Using an equijoin, it is 
possible to add many rows to output that are not intended, especially when the 
equijoin is on non-key columns.

Equijoins can also filter out rows, when there are no matching key values in 
the second table. This filtering can be a useful feature. For instance, one table 
might have a small list of ids that are special in some way. The join would then 
apply this filter to the bigger table.

Although joins on primary keys are more common, there are cases where 
such a many-to-many equijoin is desired. Consider this question: For each zip 
code, how many zip codes in the same state have a larger population?
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The following query uses a self-join (followed by an aggregation) to answer 
this question. A self-join simply means that two copies of the ZipCensus table 
are joined together. The equijoin uses the state column as a key, rather than the 
zip code column.

SELECT zc1.zcta5,
       SUM(CASE WHEN zc1.totpop < zc2.totpop THEN 1
                ELSE 0 END) as numzip
FROM ZipCensus zc1 JOIN
     ZipCensus zc2
     ON zc1.stab = zc2.stab
GROUP BY zc1.zcta5

Notice that ZipCensus is mentioned twice in the FROM clause. Each occurrence 
is given a different table alias to distinguish them in the query.

The dataflow for this query, in Figure 1-8, reads the ZipCensus table twice, 
feeding both into the JOIN operator. The JOIN in the dataflow is an equijoin 
because the condition is on the stab column. The results from the join are then 
aggregated.

Figure 1-8: This dataflow illustrates a self-join and an equijoin on a non-key column.

totpopstabzcta5 . . .totpopstabzcta5

. . .

46,880FL3312646,880FL33126

29,801FL3312746,880FL33126

7,652FL3312846,880FL33126

. . .
46,880FL3312629,801FL33127

29,801FL3312729,801FL33127

7,652FL3312829,801FL33127

. . .
46,880FL331267,652FL33128

29,801FL331277,652FL33128

7,652FL331287,652FL33128

. . .

JOIN
on stab

READ
ZipCensus

(zc2)

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

OUTPUT

numzipszcta5

. . .

5133126

. . .

71833128

. . .

22433127

. . .

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. ..

AGGREGATE
group by zc1.stab

= sum(case when zc1.totpop < cz2.totpop numzips
then 1 else 0 end)

READ
ZipCensus

(zc1)



 Chapter  1 ■ a Data Miner Looks at SQL 31

Nonequijoins

A nonequijoin is a join where none of the conditions is equality between two 
columns. Nonequijoins are unusual. This is fortunate because there are many 
fewer performance tricks available to make them run quickly. Often, a nonequi-
join is actually a mistake and indicates an error.

Note that when any of the conditions are equality, and the conditions are 
connected by AND, the join is an equijoin. Consider the following question about 
Orders: How many orders are greater than the median rent where the customer resides? 
The following query answers this question:

SELECT zc.stab, COUNT(*) as numrows
FROM Orders o JOIN
     ZipCensus zc
     ON o.zipcode = zc.zcta5 AND
        o.totalprice > zc.mediangrossrent
GROUP BY zc.stab

The JOIN in this query has two conditions, one specifies that the zip codes are 
equal and the other specifies that the total amount of the order is greater than 
the median rent in the zip code. This is still an example of an equijoin because 
of the condition on zip code.

Outer Joins

The final type of join is the outer join, which guarantees that all rows from one 
or both of the tables remain in the result set, even when there are no matching 
rows in the other table. All the previous joins have been inner joins, meaning 
that only rows that match are included. For a cross-join, this does not make a 
difference because there are many copies of rows from both tables in the result. 
However, for other types of joins, losing rows in one or the other table may not 
be desirable; hence the need for the outer join.

Lookups are a good example of an outer (equijoin), because the join asserts 
that a foreign key in one table equals a primary key in a reference table. 
Lookups return all the rows in the first table, even when there is no matching 
row.

Outer joins comes in three flavors:

 ■ The LEFT OUTER JOIN ensures that all rows from the first table remain in 
the result set.

 ■ The RIGHT OUTER JOIN ensures that all rows from the second table remain.

 ■ The FULL OUTER JOIN ensures that all rows from both tables are kept. 
When there is no match, then the columns from the “missing” table are 
all set to NULL in the result set.
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What does this mean? Consider the Orders table, which has some zip codes 
that are not in ZipCensus. This could occur for several reasons. ZipCensus 
contains a snapshot of zip codes as of the census, and new zip codes might 
have appeared since then. Also, the Census Bureau is not interested in all 
zip codes, so they exclude some zip codes where no one lives. Or, perhaps 
the problem might lie in Orders. There could be mistakes in the ZipCode 
column. Or, as is the case, the Orders table might include orders from outside 
the United States.

Whatever the reason, any query using the inner join eliminates all rows 
where the zip code in Orders does not appear in ZipCensus. Losing such rows 
could be a problem, which the outer join fixes. The only change to the query 
is replacing the word JOIN with the phrase LEFT OUTER JOIN (or equivalently 
LEFT JOIN):

SELECT zc.stab, COUNT(*) as numrows
FROM Orders o LEFT OUTER JOIN
     ZipCensus zc
     ON o.ZipCode = zc.zcta5 AND
        o.TotalPrice > zc.mediangrossrent
GROUP BY zc.stab

The results from this query are not particularly interesting. The results are the 
same as the previous query with one additional large group for NULL. When 
there is no matching row in ZipCensus, zc.stab is NULL.

t Ip In general, you can write queries using just LEFT OUTER JOIN and INNER 
JOIN. There is usually no reason to mix LEFT OUTER JOIN and RIGHT OUTER 
JOIN in the same query.

Left outer joins are very practical. When they are chained together, they 
essentially say “keep all rows in the first table.” As a general rule, don’t mix 
outer join types if you can avoid it, because just having LEFT OUTER JOINs and 
INNER JOINs is sufficient for most purposes. As an example, if one table con-
tains information about customers, then subsequent joins could bring in other 
columns from other tables, and the LEFT OUTER JOIN ensures that no custom-
ers are accidently lost. Chapter 13, “Building Custom Signatures for Further 
Analysis,” uses outer joins extensively.

Other Important Capabilities in SQL
SQL has other features that are used throughout the book. The goal here is 
not to explain every nuance of the language, because reference manuals and 
database documentation do a good job there. The goal here is to give a feel for 
the important capabilities of SQL needed for data analysis.
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UNION ALL

UNION ALL is a set operation that combines all rows in two tables, by just cre-
ating a result set with all the rows from each input table. The columns must 
be the same in each of the input tables. In practice, this means that UNION ALL 
almost always operates on subqueries, because it is unusual for two tables to 
have exactly the same columns.

SQL has other set operations, such as UNION, INTERSECTION, and MINUS (also 
called EXCEPT). The UNION operation combines the rows in two tables together, 
and then removes duplicates. This means that UNION is much less efficient 
than UNION ALL, so it is worth avoiding. INTERSECTION takes the overlap of 
two tables—rows that are in both. However, it is often more interesting to 
understand the relationship between two tables—how many items are in 
both and how many are in each one but not the other. Solving this problem 
is discussed in Chapter 2.

CASE

The CASE expression adds conditional logic into the SQL language. Its most 
general form is:

CASE WHEN <condition-1> THEN <value-1>
     . . .
     WHEN <condition-n THEN <value-n>
     ELSE <default-value> END

The <condition> clauses look like conditions in a WHERE clause; they can be arbi-
trarily complicated. The <value> clauses are values returned by the statement, 
and these should all be the same type. The <condition> clauses are evaluated 
in the order they are written. When no <else> condition is present, the CASE 
statement returns NULL if none of the previous clauses match.

One common use of CASE is to create indicator variables. Consider the follow-
ing question: How many zip codes in each state have a population of more than 10,000 
and what is the total population of these? The following SQL query is, perhaps, the 
most natural way of answering this question:

SELECT zc.stab, COUNT(*) as numbigzip, SUM(totpop) as popbigzip
FROM ZipCensus zc
WHERE totpop > 10000
GROUP BY zc.stab

This query uses a WHERE clause to choose the appropriate set of zip codes.
Now consider the related question: How many zip codes in each state have a 

population of more than 10,000, how many have more than 1,000, and what is the total 
population of each of these sets?
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Unfortunately, the WHERE clause solution no longer works, because two over-
lapping sets of zip codes are needed. One solution is to run two queries, which 
is messy. Combining the results into a single query is easy using conditional 
aggregation:

SELECT zc.stab,
       SUM(CASE WHEN totpop > 10000 THEN 1 ELSE 0 END) as num_10000,
       SUM(CASE WHEN totpop > 1000  THEN 1 ELSE 0 END) as num_1000,
       SUM(CASE WHEN totpop > 10000 THEN totpop ELSE 0 END
          ) as pop_10000,
       SUM(CASE WHEN totpop > 1000  THEN totpop ELSE 0 END
          ) as pop_1000
FROM ZipCensus zc
GROUP BY zc.stab

Notice that in this version, the SUM() function is used to count zip codes that 
meet the appropriate condition; it does so by adding 1 for each matching row. 
COUNT() is not the right function, because it would count the number of non-
NULL values.

t Ip When a CASE statement is nested in an aggregation function, the appropriate 
function is usually SUM(), or MAX() sometimes AVG(), and on rare occasions 
COUNT(DISTINCT).  Check to be sure that you are using SUM() even when “count-
ing” things up.

The following two statements are very close to being the same, but the second 
lacks the ELSE clause:

       SUM(CASE WHEN totpop > 10000 THEN 1 ELSE 0 END) as num_10000,
       SUM(CASE WHEN totpop > 10000 THEN 1 END) as num_10000,

Each counts the number of zip codes where population is greater than 10,000. 
The difference is what happens when no zip codes have such a large popula-
tion. The first returns the number 0. The second returns NULL. Usually when 
counting things, it is preferable to have the value be a number rather than NULL, 
so the first form is generally preferred.

The CASE statement can be much more readable than the WHERE clause because 
the CASE statement has the condition in the SELECT, rather than much further 
down in the query. On the other hand, the WHERE clause provides more oppor-
tunities for optimization.

IN

The IN statement is used in a WHERE clause to choose items from a set. The fol-
lowing WHERE clause chooses zip codes in New England states:
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WHERE stab IN ('VT', 'NH', 'ME', 'MA', 'CT', 'RI')

This use is equivalent to the following:

WHERE (stab = 'VT' OR
       stab = 'NH' OR
       stab = 'ME' OR
       stab = 'MA' OR
       stab = 'CT' OR
       stab = 'RI')

The IN statement is easier to read and easier to modify.
Similarly, the following NOT IN statement would choose zip codes that are 

not in New England:

WHERE stab NOT IN ('VT', 'NH', 'ME', 'MA', 'CT', 'RI')

This use of the IN statement is simply a convenient shorthand for what would 
otherwise be complicated WHERE clauses. The section on subqueries explores 
another use of IN.

Window Functions

Window functions are a class of functions that use the OVER clause. These func-
tions return a value on a single row, but the value is based on a group of rows. 
A simple example is SUM(). Say we wanted to return each zip code with the sum 
of the population in the state. With window functions, this is easy:

SELECT zc.zcta5,
       SUM(totpop) OVER (PARTITION BY zc.stab) as stpop
FROM ZipCensus zc;

The PARTITION BY clause says “do the sum for all rows with the same value of 
stab.” The result is that all zip codes in a given state have the same value for stpop.

A particularly interesting window function is ROW_NUMBER(). This assigns a 
sequential value, starting with 1, to rows within each group.

SELECT zc.zcta5,
       SUM(totpop) OVER (PARTITION BY zc.stab) as stpop,
       ROW_NUMBER() OVER (PARTITION BY zc.stab
                          ORDER BY totpop DESC
                         ) as ZipPopRank
FROM ZipCensus zc

This query adds an additional ranking column to each row in the result set. 
The value is 1 for the zip code with the highest population in each state, 2 for 
the second highest, and so on.
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SQL offers two other similar functions for ranking: RANK() and DENSE_RANK(). 
They differ in their handling of ties, as shown by the example in Table 1-2.

All three functions assign the first row a number of “1”.  ROW_NUMBER() ignores 
duplicates, just giving each row a different number. RANK() assigns duplicate 
numbers when rows have the same value, but then skips the next numbers, so 
the results have gaps. DENSE_RANK() is like rank except the resulting numbers 
have no gaps.

Subqueries and Common Table Expressions  
Are Our Friends

Subqueries are exactly what their name implies, queries within queries. 
They make it possible to do complex data manipulation within a single SQL 
statement, exactly the types of manipulation needed for data analysis and 
data mining.

In one sense, subqueries are not needed. All the manipulations could be 
accomplished by creating intermediate tables and combining them. The resulting 
SQL would be a series of CREATE TABLE statements and INSERT statements (or 
possibly CREATE VIEW or SELECT INTO), with simpler queries. Although such 
an approach is sometimes useful, especially when the intermediate tables are 
used multiple times, it suffers from several problems.

First, instead of thinking about solving a particular problem, you end up 
thinking about the data processing, the naming of intermediate tables, deter-
mining the types of columns, remembering to remove tables when they are no 
longer needed, deciding whether to build indexes, and so on. All the additional 
bookkeeping activity distracts from focusing on the data and the business 
problems.

Second, SQL optimizers can often find better approaches to running a compli-
cated query than people can. So, writing multiple SQL statements can interfere 
with the optimizer.

table 1-2: Example of ROW_NUMBER(), RANK(), and DENSE_RANK()

vaLue ROW_NUMBER() RANK() DENSE_RANK()

10 1 1 1

20 2 2 2

20 3 2 2

30 4 4 3

50 5 5 4

50 6 5 4
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Third, maintaining a complicated chain of queries connected by tables can 
be quite cumbersome. For instance, adding a new column might require add-
ing new columns in all sorts of places. Or, you may run part of the script and 
not realize that one of the intermediate tables has values from a previous run.

Fourth, the read-only SQL queries that predominate in this book can be run 
with a minimum of permissions for the user—simply the permissions to run 
queries. Running complicated scripts requires create and modify permissions 
on at least part of the database. These permissions are dangerous, because an 
analyst might inadvertently damage the database. Without these permissions, 
it is impossible to cause such damage.

Subqueries can appear in many different parts of the query, in the SELECT 
clause, in the FROM clause, and in the WHERE and HAVING clauses. However, this 
section approaches subqueries by why they are used rather than where they 
appear syntactically.

Common table expressions (often referred to as CTEs) are another way of 
writing queries that appear in the FROM clause. They are more powerful than 
subqueries for two reasons. First, they can be used multiple times throughout 
the query. And, they can refer to themselves—something called recursive CTEs. 
The following sections have examples of both CTEs and subqueries.

Subqueries for Naming Variables
When it comes to naming variables, SQL has a shortcoming. The following is 
not syntactically correct in most SQL dialects:

SELECT totpop as pop, pop + 1

The SELECT statement names columns, but these names cannot be used again in 
the same clause. Because queries should be at least somewhat understandable 
to humans, as well as database engines, this is a real shortcoming. Complicated 
expressions should have names.

Fortunately, subqueries provide a solution. The earlier query that summarized 
zip codes by population greater than 10,000 and greater than 1,000 could instead 
use a subquery that is clearer about what is happening:

SELECT zc.stab,
       SUM(is_pop_10000) as num_10000,
       SUM(is_pop_1000) as num_1000,
       SUM(is_pop_10000 * totpop) as pop_10000,
       SUM(is_pop_1000 * totpop) as pop_1000
FROM (SELECT zc.*,
             (CASE WHEN totpop > 10000 THEN 1 ELSE 0
              END) as is_pop_10000,
             (CASE WHEN totpop > 1000 THEN 1 ELSE 0
              END) as is_pop_1000
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      FROM ZipCensus zc
     ) zc
GROUP BY zc.stab

This version of the query uses two indicator variables, IS_POP_10000 and IS_
POP_1000. These take on the value of 0 or 1, depending on whether or not the 
population is greater than 10,000 or 1,000. The query then sums the indicators 
to get the counts, and sums the product of the indicator and the population to 
get the population count. Figure 1-9 illustrates this process as a dataflow. Notice 
that the dataflow does not include a “subquery.”

t Ip Subqueries with indicator variables, such as IS_POP_1000, are a powerful and 
flexible way to build queries.

Indicator variables are only one example of using subqueries to name variables. 
Throughout the book, there are many other examples. The purpose is to make 
the queries understandable to humans, relatively easy to modify, and might, 
with luck, help us remember what a query written six months ago is really doing.

Figure 1-9: This dataflow illustrates the process of using indicator variables to obtain information 
about zip codes.
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ForMattIng SQL QuerIeS

There is no agreed-upon standard for formatting SQL queries. There are a few good 
practices, such as:

 ■ Use table aliases that are abbreviations for the table name.

 ■ Use as to define column aliases.

 ■ Be consistent in capitalization, in usage of underscores, and in indentation.

 ■ Write the code to be understandable, so you and someone else can read it.

Writing readable code is always a good idea.
Any guidelines for writing code necessarily have a subjective element. The goal 

should be to communicate what the query is doing. Formatting is important: Just 
imagine how difficult it would be to read text without punctuation, capitalization, and 
paragraphs.

The code in this book (and on the companion website) follows additional rules to 
make the queries easier to follow.

 ■ Most keywords are capitalized and most table and column names use 
CamelBack casing (except for ZipCensus).

 ■ The high-level clauses defined by the SQL language are all aligned on the 
left. These are WITH, SELECT, FROM, WHERE, GROUP BY, HAVING, and 
ORDER BY.

 ■ Within a clause, subsequent lines are aligned after the keyword, so the scope of 
each clause is visually obvious.

 ■ Subqueries follow similar rules, so all the main clauses of a subquery are 
indented, but still aligned on the left.

 ■ Within the FROM clause, table names and subqueries start on a new line (the 
tables are then aligned and easier to see). The ON predicate starts on its own 
line, and the join keywords are at the end of the line.

 ■ Columns are generally qualified, meaning that they use table aliases.

 ■ Operators generally have spaces around them.

 ■ Commas are at the end of a line, just as a human would place them.

 ■ Closing parenthesis—when on a subsequent line—is aligned under the 
opening parenthesis.

 ■ CASE statements are always surrounded by parentheses.

The goal should be to write queries so other people can readily understand them. 
After all, you may be returning to your queries one day and you would like to be able 
to quickly figure out what they are doing.
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The above subquery can also be written as a CTE:

WITH zc as (
      SELECT zc.*,
             (CASE WHEN totpop > 10000 THEN 1 ELSE 0
              END) as is_pop_10000,
             (CASE WHEN totpop > 1000 THEN 1 ELSE 0
              END) as is_pop_1000
      FROM ZipCensus zc
     )
SELECT zc.stab,
       SUM(is_pop_10000) as num_10000,
       SUM(is_pop_1000) as num_1000,
       SUM(is_pop_10000 * totpop) as pop_10000,
       SUM(is_pop_1000 * totpop) as pop_1000
FROM zc
GROUP BY zc.stab

Here, the subquery is introduced using the WITH clause; otherwise, it is very 
similar to the version with a subquery in the FROM clause. A query can have 
only one WITH clause, although it can define multiple CTEs. These can refer to 
CTEs defined earlier in the same clause.

Subqueries for Handling Summaries
The most typical place for a subquery is as a replacement for a table in the FROM 
clause. After all, the source is a table and a query essentially returns a table, 
so it makes a lot of sense to combine queries in this way. From the dataflow 
perspective, this use of subqueries is simply to replace one of the sources with 
a series of dataflow nodes.

Consider the question: How many zip codes in each state have a population density 
greater than the average zip code population density in the state? The population density 
is the population divided by the land area, which is in the column landsqmi.

Let’s think about the different data elements needed to answer the question. 
The comparison is to the average zip code population density within a state, 
which is easily calculated:

SELECT zc.stab, AVG(totpop / landsqmi) as avgpopdensity
FROM ZipCensus zc
WHERE zc.landsqmi > 0
GROUP BY zc.stab

Next, the idea is to combine this information with the original zip code infor-
mation in the FROM clause:

SELECT zc.stab, COUNT(*) as numzips,
       SUM(CASE WHEN zc.popdensity > zcsum.avgpopdensity
                THEN 1 ELSE 0 END) as numdenser
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FROM (SELECT zc.*, totpop / landsqmi as popdensity
      FROM ZipCensus zc
      WHERE zc.landsqmi > 0
     ) zc JOIN
     (SELECT zc.stab, AVG(totpop / landsqmi) as avgpopdensity
      FROM ZipCensus zc
      WHERE zc.landsqmi > 0
      GROUP BY zc.stab) zcsum
    ON zc.stab = zcsum.stab
GROUP BY zc.stab

The dataflow diagram for this query follows the same logic and is shown in 
Figure 1-10. Later in this chapter we will see another way to answer this  question 
using window functions.

An interesting observation is that the population density of each state is not 
the same as the average of the population densities for all the zip codes in the 
state. That is, the preceding question is different from: How many zip codes in 
each state have a population density greater than the state’s population density? The 
state’s population density would be calculated in zcsum as:

SUM(totpop) / SUM(landsqmi) as statepopdensity

There is a relationship between these two densities. The zip code average 
gives each zip code a weight of 1, no matter how big in area or population. 
The state average is the weighted average of the zip codes by the land area of 
the zip codes.

The proportion of zip codes that are denser than the average zip code varies 
from about 4% of the zip codes in North Dakota to about 35% in Florida. Never 
are half the zip codes denser than the average, although this is theoretically 
possible. The density where half the zip codes are denser and half less dense 
is the median density rather than the average or average of averages. Averages, 
average of averages, and medians are different from each other and discussed 
in Chapter 2.

Figure 1-10: This dataflow diagram compares the zip code population density to the average zip 
code population density in a state.
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Subqueries and IN
IN and NOT IN were introduced earlier as convenient shorthand for complicated 
WHERE clauses. There is another version where the “in” set is specified by a sub-
query, rather than by a fixed list. For example, the following query gets the list 
of all zip codes in states with fewer than 100 zip codes:

SELECT zc.zcta5, zc.stab
FROM ZipCensus zc
WHERE zc.stab IN (SELECT stab
                  FROM ZipCensus
                  GROUP BY stab
                  HAVING COUNT(*) < 100
                 )

The subquery creates a set of all states in ZipCensus where the number of zip 
codes in the state is less than 100 (that is, DC, DE, HI, and RI). The HAVING 
clause sets this limit. HAVING is very similar to WHERE, except it filters rows after 
aggregating, rather than before. The outer SELECT then chooses zip codes whose 
state matches one of the states in the IN set. This process takes place as a join 
operation, as shown in Figure 1-11.

Rewriting the “IN” as a JOIN

Strictly speaking, the IN operator is not necessary, because queries with INs 
and subqueries can be rewritten as joins. For example, this is equivalent to the 
previous query:

SELECT zc.*
FROM ZipCensus zc JOIN
     (SELECT stab, COUNT(*) as numstates
      FROM ZipCensus
      GROUP BY stab
     ) zipstates
     ON zc.stab = zipstates.stab AND
        zipstates.numstates < 100

Figure 1-11: The processing for an IN with a subquery really uses a join operation.

OUTPUT

READ
ZipCensus

READ
ZipCensus

JOIN
on stab

AGGREGATE
group by stab

numzips = count(*)

SELECT
stab

FILTER
numzips < 100
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Note that in the rewritten query, the zipstates subquery has two columns 
instead of one. The second column contains the count of zip codes in each 
state. Using the IN statement with a subquery makes it impossible to get this 
information.

On the other hand, the IN does have a small advantage, because it guarantees 
that there are no duplicate rows in the output, even when the “in” set has dupli-
cates. To guarantee this using the JOIN, aggregate the subquery by the key used 
to join the tables. In this case, the subquery is doing aggregation anyway to find 
the states that have fewer than one hundred zip codes. This aggregation has the 
additional effect of guaranteeing that the subquery has no duplicates.

The general way of rewriting an IN subquery using join requires eliminating 
the duplicates. So, the query:

SELECT x.*
FROM x
WHERE x.col_a IN (SELECT y.col_b FROM y)

would be rewritten as:

SELECT DISTINCT x.*
FROM x JOIN
     y
     ON x.col_a = y.col_b;

or:

SELECT x.*
FROM x JOIN
     (SELECT DISTINCT y.col_b FROM y) y
     ON x.col_a = y.col_b;

The DISTINCT keyword removes duplicates from the output. However, this requires 
additional processing so it is best to avoid DISTINCT unless it is really necessary.

Correlated Subqueries

A correlated subquery occurs when the subquery includes a reference to the 
outer query. An example shows this best. Consider the following question: Which 
zip code in each state has the maximum population and what is the population? One 
way to approach this problem uses a correlated subquery:

SELECT zc.stab, zc.zcta5, zc.totpop
FROM ZipCensus zc
WHERE zc.totpop = (SELECT MAX(zcinner.totpop)
                   FROM ZipCensus zcinner
                   WHERE zcinner.stab = zc.stab
                  )
ORDER BY zc.stab
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The “correlated” part of the subquery is the inner WHERE clause, which specifies that 
the state in a record processed by the subquery must match the state in the outer table.

Conceptually, the database engine reads one row from zc (the table referenced 
in the outer query). Then, the engine finds all rows in zcinner that match this 
state. From these rows, it calculates the maximum population. If the original 
row matches this maximum, it is selected. The engine then moves on to the 
next row in the outer query.

Correlated subqueries are sometimes cumbersome to understand. Although 
complicated, correlated subqueries are not a new way of processing the data; 
they are another example of joins. The following query produces the same 
results:

SELECT zc.stab, zc.zcta5, zc.totpop
FROM ZipCensus zc JOIN
     (SELECT zc.stab, MAX(zc.totpop) as maxpop
      FROM ZipCensus zc
      GROUP BY zc.stab) zcsum
     ON zc.stab = zcsum.stab AND
        zc.totpop = zcsum.maxpop
ORDER BY zc.stab

This query makes it clear that ZipCensus is summarized by stab to calculate the 
maximum population. The JOIN then finds the zip code (or possibly zip codes) 
that matches the maximum population, returning information about them. In 
addition, this method makes it possible to include other information, such as 
the number of zip codes where the maximum population is achieved. This can 
be calculated using COUNT(*)in zcsum.

The examples throughout this book tend not to use correlated subqueries for SELECT 
queries, preferring explicit JOINs instead. Joins provide more flexibility for processing 
and analyzing data and, in general, SQL engines do a good job of optimizing JOINs. 
There are some situations where the correlated subquery may offer better performance 
than the corresponding JOIN query or may even be simpler to understand.

NOT IN Operator

The NOT IN operator can also use subqueries and correlated subqueries. Consider 
the following question: Which zip codes in the Orders table are not in the ZipCensus 
table? Once again, there are different ways to answer this question. The first 
uses the NOT IN operator:

SELECT o.ZipCode, COUNT(*) as NumOrders
FROM Orders o
WHERE ZipCode NOT IN (SELECT zcta5
                      FROM ZipCensus zc
                     )
GROUP BY o.ZipCode
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This query is straightforward as written, choosing the zip codes in Orders with 
no matching zip code in ZipCensus, then grouping them and returning the 
number of purchases in each.

An alternative uses the LEFT OUTER JOIN operator. Because the LEFT OUTER JOIN 
keeps all zip codes in the Orders table—even those that don’t match—a filter after-
wards can choose the non-matching set:

SELECT o.ZipCode, COUNT(*) as NumOrders
FROM Orders o LEFT OUTER JOIN
     ZipCensus zc
     ON o.ZipCode = zc.zcta5
WHERE zc.zcta5 IS NULL
GROUP BY o.ZipCode
ORDER BY NumOrders DESC

This query joins the two tables using a LEFT OUTER JOIN and only keeps the results 
rows do not match (because of the WHERE clause). This is essentially equivalent to 
using NOT IN; whether one works better than the other depends on the underlying 
optimization engine. Figure 1-12 shows the dataflow associated with this query.

EXISTS and NOT EXISTS Operators

EXISTS and NOT EXISTS are similar to IN and NOT IN with subqueries. The opera-
tors return true when any row exists (or no row exists) in a subquery. They are 
often used with correlated subqueries.

The query to return all the orders whose zip code is not in ZipCensus could 
be written as:

SELECT o.ZipCode, COUNT(*)
FROM Orders o
WHERE NOT EXISTS (SELECT 1
                  FROM ZipCensus zc
                  WHERE zc.zcta5 = o.ZipCode)
GROUP BY o.ZipCode

Figure 1-12: This dataflow shows the LEFT OUTER JOIN version of a query using NOT IN.

OUTPUT

READ
ZipCensus

(zc)

READ
Orders

(o)

LEFT JOIN
On o.ZipCode

= zc.zcta5

SELECT
o.*

FILTER
zc.zcta5 is null
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The “1” in the subquery has no importance, because NOT EXISTS is really deter-
mining if any rows are returned. It doesn’t care about the particular value in 
any of the columns. In fact, some databases accept a nonsensical value, such as 
1 / 0 (although this is not recommended).

EXISTS has several advantages over IN. First, EXISTS is more expressive—
the comparison could be made on more than one column. IN only works 
for comparing one column to a list (although some databases extend this 
functionality to multiple columns). If, for instance, the query were comparing 
both state name and country name, then it would be easier to write using 
NOT EXISTS.

A second advantage is more subtle and applies only to NOT EXISTS. If the 
list of values returned by NOT IN contains a NULL value, then all rows fail the 
test. Why? SQL treats a comparison to NULL as unknown. So if the comparison 
were 'X' NOT IN ('A', 'B', 'X', NULL) then the result is false, because 'X' 
is, in fact, in the list. If the comparison were 'X' NOT IN ('A', 'B', NULL), 
then the result is unknown, because it is unknown whether or not X matches 
the NULL. The important point: neither version returns true. The equivalent 
NOT EXISTS query behaves more intuitively. The second example—using NOT 
EXISTS—would return true.

The final advantage is practical. In many databases, EXISTS and NOT EXISTS 
are optimized to be more efficient than the equivalent IN and NOT IN. One 
reason is that IN essentially creates the entire underlying list and then does 
the comparison, whereas EXISTS can simply stop at the first matching value.

Subqueries for UNION ALL
The UNION ALL operator almost always demands subqueries, because it requires 
that the columns be the same for all tables involved in the union. Consider 
extracting the location names from ZipCensus into a single column along with 
the type:

SELECT u.location, u.locationtype
FROM ((SELECT DISTINCT stab as location, 'state' as locationtype
       FROM ZipCensus zc
      ) UNION ALL
      (SELECT DISTINCT county, 'county' FROM ZipCensus zc
      ) UNION ALL
      (SELECT DISTINCT zipname, 'zipname' FROM ZipCensus zc
      )
     ) u

This example uses subqueries to ensure that each part of the UNION ALL has 
the same columns. Also, note that the column names are taken from the first 
subquery, so they are not needed in the subsequent subqueries.
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Lessons Learned

This chapter introduces SQL and relational databases from several different 
perspectives that are important for data mining and data analysis. The focus is 
exclusively on using databases to extract information from data, rather than on 
the mechanics of building databases, the myriad options available in designing 
them, or the sophisticated algorithms implemented by database engines.

One very important perspective is the data perspective—the tables themselves 
and the relationships between them. Entity-relationship diagrams are a good 
way of visualizing the structure of data in the database and the relationships 
among tables. Along with introducing entity-relationship diagrams, the chapter 
also explains the various datasets used throughout this book.

Of course, tables and databases store data, but they don’t actually do anything. 
Queries extract information, transforming data into information. For some 
people, thinking in terms of data flow diagrams is simpler than understanding 
complex SQL statements. These diagrams show how various operators transform 
data. About one dozen operators suffice for the rich set of processing available 
in SQL. Dataflows are not only useful for explaining how SQL processes data; 
database engines generally use a form of dataflows for running SQL queries.

In the end, though, transforming data into information requires SQL queries, 
whether simple or complex. The focus in this chapter, and throughout the book, 
is on SQL for querying. This chapter introduces the important functionality of 
SQL and how it is expressed, with particular emphasis on JOINs, GROUP BYs, 
and subqueries, because these play an important role in data analysis.

The next chapter starts the path toward using SQL for data analysis by explor-
ing data in a single table.
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The previous chapter introduced the SQL language from the perspective of data 
analysis. This chapter uses SQL for exploring data, the first step in any analysis 
project. The emphasis shifts away from databases in general. Understanding 
what the data represents—and the underlying customers—is a theme common 
to this chapter and the rest of the book.

The most common data analysis tool, by far, is the spreadsheet, particularly 
Microsoft Excel. Spreadsheets show data in a tabular format. They give users 
power over the data, with the ability to add columns and rows, to apply func-
tions, to summarize, create charts, make pivot tables, and color and highlight 
and change fonts to get just the right look. This functionality and the what-you-
see-is-what-you-get interface make spreadsheets a natural choice for analysis 
and presentation.

Spreadsheets, however, are less powerful than databases because they are 
designed for interactive use. The historical limits in Excel on the number 
of rows (once upon a time, a maximum of 65,535 rows) and the number of 
columns (once upon a time, a maximum of 255 columns) clearly limited the 
spreadsheets to smaller applications. Even without those limits, spreadsheet 
applications often run on a local machine and are best applied to single tables 
(workbooks). They are not designed for combining data stored in disparate 
formats. The power of users’ local machines can limit the performance of 
spreadsheet applications.

This book assumes a basic understanding of Excel, particularly familiarity 
with the row-column-worksheet format used for laying out data. There are many 
examples using Excel for basic calculations and charting. Because charts are so 
important for communicating results, the chapter starts by reviewing some of 
the charting tools in Excel, providing tips for creating good charts.

C h a p t e r 

2
What’s in a table? Getting Started 

with Data exploration
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The chapter continues with exploring data in a single table, column by 
column. Such exploration depends on the types of data in the column, with 
separate sections devoted to numeric columns and categorical columns. 
Although dates and times are touched upon here, they are so important 
that Chapter 4 is devoted to them. The chapter ends with a method for 
automating some descriptive statistics for columns in general. Most of the 
examples in this chapter use the purchases dataset, which describes retail 
purchases.

What Is Data Exploration?

Data is stored in databases as bits and bytes, spread through tables and col-
umns, in memory and on disk. Data lands there through various business 
processes. Operational databases capture the data as it is collected from 
customers—as they make airplane reservations, or complete telephone calls, 
or click on the web, or as their bills are generated. The databases used for 
data analysis are usually decision support databases and data warehouses 
where the data has been restructured and cleansed to conform to some view 
of the business.

Data exploration is the process of characterizing the data actually present 
in a database and understanding the relationships between various columns 
and entities. Data exploration is a hands-on effort. Metadata, documentation 
that explains what should be there, provides one description. Data exploration 
is about understanding what actually is there, and, if possible, understand-
ing how and why it got there. Data exploration is about answering questions 
about the data:

 ■ What are the values in each column?

 ■ What unexpected values are in each column?

 ■ Are there any data format irregularities, such as time stamps missing 
hours and minutes, or names being both upper- and lowercase?

 ■ What relationships are there between columns?

 ■ What are frequencies of values in columns and do these frequencies 
make sense?

t Ip Documentation tells us what should be in the data; data exploration finds what 
is actually there.

Almost anyone who has worked with data has stories about data quality 
or about discovering something very unexpected inside a database. At one 
telecommunications company, the billing system maintained customers’ 
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telephone numbers as an important field inside the data. Not only was this 
column stored as character strings rather than numbers, but several thou-
sand telephone numbers actually contained letters intermixed with numbers. 
Clearly, the column called “telephone number” was not always a telephone 
number. And, in fact, after much investigation, it turned out that under some 
circumstances (involving calls billed to third parties), the column could contain 
values other than numbers.

Even when you are familiar with the data, exploration is still worthwhile. The 
simplest approach is just to look at rows and sample values in tables. Summary 
tables provide a different type of information. Statistical measures are useful 
for characterizing data. Charts are very important because a good chart can 
convey much more information than a table of numbers. The next section starts 
with this topic: charting in Excel.

Excel for Charting

Excel’s charting capabilities give users much control over the visual presenta-
tion of data. A good presentation of results, however, is more than just clicking 
an icon and inserting a chart. Charts need to be accurate and informative, as 
well as visually elegant and convincing. Edward Tufte’s books, starting with 
The Visual Display of Quantitative Information, are classics in how to display and 
convey information.

This section discusses various common chart types and good practices when 
using them. The discussion is necessarily specific, so some parts explain explic-
itly, click-by-click, what to do. The section starts with a basic example and then 
progresses to recommended formatting options. The intention is to motivate 
good practices by explaining the reasons, not to be a comprehensive resource 
explaining, click-by-click, what to do in Excel.

A Basic Chart: Column Charts
The first example, in Figure 2-1, uses a simple aggregation query, the number of 
orders for each payment type. The chart format used is a column chart, which 
shows a value for each column. In common language, these are also called bar 
charts, but in Excel, bar charts have horizontal bars whereas column charts 
have vertical columns.

The query that pulls the data is:

SELECT PaymentType, COUNT(*) as cnt
FROM Orders o
GROUP BY PaymentType
ORDER BY PaymentType
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This chart shows some good practices:

 ■ The chart has a title.

 ■ Appropriate axes have labels (none is needed for the horizontal axis 
because its meaning is clear from the title).

 ■ Numbers larger than one thousand have commas because people are 
going to read the values.

 ■ Horizontal gridlines are useful, but they are light so they do not over-
power the data.

 ■ Extraneous elements are kept to a minimum. For instance, there is no need 
for a legend (because there is only one series) and no need for vertical grid 
lines (because the columns serve the same purpose).

For the most part, charts throughout the book adhere to these conventions, with the 
exception of the title. Figures in the book have captions, making titles unnecessary. 
The rest of this section explains how to create the chart with these elements.

Inserting the Data

Creating the chart starts with running the query and getting the data into an 
Excel spreadsheet. The data is assumed to be generated by a database access 
tool, which can copy data into Excel using cut-and-paste (Ctrl+C and Ctrl+V, if 
the tool conforms to Windows standards, or Command+C and Command+V 
on a Mac) or other methods. The previous query produces two columns of data. 
It is also possible to run SQL directly from Excel by setting up a data source. 
Although useful for automated reports, such data connections are less useful 
for data exploration efforts using many ad hoc queries.

A good practice is to include the query in the spreadsheet along with the data 
itself. Including the query above the data ensures that you know how the data was 
generated, even when you return to it hours, days, or months after running the query.

Figure 2-1:  A basic column chart shows the number of orders for each payment type code.
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t Ip Keeping the query with the results is always a good idea. So, copy the query into 
the Excel spreadsheets along with the data.

The technical aside “Common Issues When Copying Data into Excel” dis-
cusses some issues that occur when copying data. In the end, the spreadsheet 
looks something like Figure 2-2. Notice that this data includes the query used 
to generate the data.

Creating the Column Chart

Creating a column chart—or any other type of chart—has just two considerations. 
The first is inserting the chart; the second is customizing it to be clean and 
informative.

The simplest way to create the chart is with the following steps:

 1. Highlight the data that goes into the chart. In this case, the query results have 
two columns and both columns, the payment type code and the count (along 
with their headers), go into the chart. If there is a non-data line between the 
header and the data, delete it (or copy the headers into the cells just above 
the data). To use keystrokes instead of the mouse, go to the first cell and type 
Shift+Ctrl+<down arrow> (or Shift+Command+<down arrow> on a Mac).

 2. Bring up the Chart wizard. Use the Charts ribbon to select the Column 
chart, which is the first option.

Figure 2-2:  This spreadsheet contains the column data for payment types and orders.
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Common ISSueS When CopyInG Data Into exCel

Each database access tool has its own peculiarities when copying data into Excel. One 
method is to export the data as a file and import the file into Excel. One issue when 
copying the data directly from the clipboard is the data landing in a single column. 
The second is a lack of headers in the data. A third issue is the formatting of the col-
umns themselves.

Under some circumstances, Excel places copied data in a single column rather than 
in multiple columns. This problem occurs because Excel recognizes the values as text 
rather than as columns.

This problem is easily solved by converting the text to columns:

 1. Highlight the inserted data that you want converted to columns. Use 
either the mouse or keystrokes. For keystrokes, go to the first cell and type 
Shift+Ctrl+<down arrow> (Command+Shift+<down arrow> on a Mac).

 2. Bring up the “Text to Columns” wizard by going to the Data ribbon and 
choosing the Text to Columns tool. (This tool can also be accessed from the 
Data menu).

 3. Choose appropriate options. The data may be delimited by tabs or commas, or 
each column may have a fixed width. Buttons at the top of the wizard let you 
choose the appropriate format.

 4. Finish the wizard. Usually the remaining choices are unimportant. The one 
exception is when you want to import columns that look like numbers but 
are not. To keep leading zeros or minus signs, set the column data format to 
text.

 5. When finished, the data is transformed into columns, filling the columns to the 
right of the original data.

The second problem is a lack of headers. Older versions of SQL Server Management 
Studio, for instance, did not offer an easy way to copy headers. In these versions, you can 
set up SQL Server Management Studio to copy the headers along with the data by going 
to Tools  Options  Query Results  SQL Server  Results to Grid and checking “Include 
column headers when copying or saving the results.”

The third issue is the formatting of columns. Column formats are important; people 
read the data and formats help convey the meaning: $10,011 is very different from the 
zip code 10011.

By default, large numbers do not have commas. One way to insert commas is to 
highlight the column, right click, and choose “Format.” Go to the “Number” tab, 
choose “Number,” set “0” decimal places, and click the “Use 1000 Separator” box. Date 
fields usually need to have their format changed. For them, go to the “Custom” option 
and type in the string yyyy-mm-dd. This sets the date format to a standard format. To 
set dollar amounts, choose the “Currency” option, with “2” as the decimal places and 
“$” (or the appropriate character) as the symbol.
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 3. Choose the first option, “Clustered Column” and the chart appears.

 4. To add a title, go to the Chart Format ribbon and select Chart Title  Title 
Above Chart. Triple-click on the text box that appears to select all the text 
and type Number of Orders by Payment Type.

 5. To set the Y-axis, choose Axis Titles  Vertical Axis Title  Rotated Title, 
triple-click in the box (to highlight the current value) and type Num Orders.

 6. Resize the chart to an appropriate size, if you like.

A chart, formatted with the default options, now appears in the spreadsheet. This 
chart can be copied and pasted into other applications, such as PowerPoint, Word, 
and email applications. When pasting the chart into other applications, it can 
be convenient to paste the chart as a picture rather than as a live Excel chart. To 
do this, use the File  Paste Special menu option and choose the picture option.

Formatting the Column Chart

The following are the formatting conventions to apply to the column chart:

 ■ Resize the chart in the chart window
 ■ Format the legend
 ■ Change the fonts
 ■ Change border
 ■ Adjust the horizontal scale

For reference, Figure 2-3 shows the names of various components of a chart, 
such as the chart area, plot area, horizontal gridlines, chart title, X-axis label, Y-axis 
label, X-axis title, and Y-axis title.

Figure 2-3:  An Excel chart consists of many different parts.
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resizing the Chart in the Chart Window

By default, the chart does not take up quite all the space in the chart window. 
Why waste space? Click the gray area to select the plot area. Then make it big-
ger, keeping in mind that you usually don’t want to cover the chart title and 
axis labels.

Formatting the legend

By default, Excel adds a legend, containing the name of each series in the chart. 
Having a legend is a good thing. By default, though, the legend is placed next 
to the chart, taking up a lot of real estate and shrinking the plot area. In most 
cases, it is better to have the legend overlap the plot area. To do this, click the 
plot area (the actual graphic in the chart window) and expand to fill the chart 
area. Then, click the legend and move it to the appropriate place, somewhere 
where it does not cover data values.

When there is only one series, a legend is unnecessary. To remove it, just click 
the legend box and hit the Delete key.

Changing the Fonts

To change all the fonts in the chart at once, double-click the white area to select 
options for the entire chart window. On the “Font” tab, deselect “Auto scale” 
on the lower left. Sizes and choices of fonts are definitely a matter of preference, 
but 8-point Arial is a reasonable choice.

This change affects all fonts in the window. The chart title should be larger 
and darker (such as Arial 12-point Bold), and the axis titles a bit larger and darker 
(such as Arial 10-point Bold). You can just click on the chart title and change 
the font on the Home ribbon.

Changing the Border

To remove the outer border on the entire plot area, double-click the white space 
to bring up the “Format Chart Area” dialog box. Choose the “Line” option and 
set the Color to “None.”

adjusting the Grid lines

Grid lines should be visible to make chart values more readable. However, the 
grid lines are merely sideshows on the chart; they should be faint, so they do not 
interfere with or dominate the data points. On column charts, only horizontal 
grid lines are needed; these make it possible to easily match the vertical scale 
to the data points. On other charts, both horizontal and vertical grid lines are 
recommended.

By default, Excel includes the horizontal grid lines but not the vertical ones. 
To choose zero, one, or both sets of grid lines, go to the Chart Layout ribbon and 
use the “Gridlines” option. The “Major Gridlines” boxes for both the X and Y 
axes are useful. The “Minor Gridlines” are rarely needed. You can also adjust the 
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colors by using the “Gridlines Options …” on the same menu. A good choice of 
colors is the lightest shade of gray, just above the white. Note that you can also 
right-click on the gridlines in the chart to bring up similar menus.

adjust the horizontal Scale

For a column chart, every category should be visible. By default, Excel might only 
show some of the category names. To change this, double-click the horizontal 
axis to bring up the “Format Axis” dialog box, and go to the “Scale” tab. Set the 
second and third numbers, “Number of categories between tick-mark labels” 
and “Number of categories between tick-marks” both to 1. This controls the 
spacing of the marks on the axis and of the labels. Note that you can also get to 
this menu using the “Axes” option on the Chart Layout ribbon.

t Ip To include text in a chart that is connected to a cell (and whose value changes 
when the cell value changes), insert a text box into the chart. Then select the text box, 
type the equals character (=), and click the cell with the value you want. A text box 
appears with the text; this can be formatted and moved however you choose. The 
same technique works for other text boxes, such as titles. On a Mac, you can do some-
thing similar, but you need to insert a smart shape (using Insert  Picture  Shape) and 
then assign it to a cell the same method.

Bar Charts in Cells
Excel charts are powerful, but sometimes they are overkill for conveying simple 
information. Excel also offers methods for putting charts directly in cells. The 
simplest is a bar chart, where a single bar is located inside a cell, instead of a 
value. There are two approaches to creating such “in-cell” charts. The first is 
more brute-force, based on character strings, and the second uses conditional 
formatting.

Character-Based Bar Charts

Repeating single characters makes a passable bar chart, as shown in Figure 2-4. 
The power of such a chart is that it shows the data and the relative values of 
the data at the same time. The bars clearly show that MC and AE are basically 
equal in popularity and VI is the most popular.

The “chart” is really just a string created with the Excel function REPT(). This 
function takes a character and repeats it:

 ■ REPT("|", 3)  |||

 ■ REPT("-", 5)  -----

The repetition of the character looks like a bar chart. Vertical bars and dashes 
are useful characters for this purpose.
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A trick produces the nicer middle chart in Figure 2-4. The trick is to use the 
lowercase “g” and convert the font to Webdings. In this font, the lowercase “g” 
is a filled-in square that forms a nice bar.

The lower part of Figure 2-4 shows the formulas that are used for this chart. 
There is nothing special about “20” in the formulas; that is simply the maximum 
length of the bars.

Conditional Formatting-Based Bar Charts

Bar charts within a cell is so useful that Excel actually builds in this functional-
ity. On the Home ribbon, the conditional formatting option is under “Format” 
(you can also access it from the Menu option Format  Conditional Formatting). 
Under this menu is an option for “Data Bars.”

Figure 2-5 shows what happens when you choose this option. The length 
of the bars is automatically determined, so no additional calculations are 
needed. There is a problem: The values in the cells overlap the bars. The solu-
tion is to make the values disappear by using the format specification. The 
ideal format specification would be an empty string for any value, but this 
is not allowed. Instead, go to the Number Format menu, choose “Custom,” 
and then type in one, two, or three semicolons.

Figure 2-4:  Bar charts can be created within a cell using variable strings of characters.

Figure 2-5:  Data bars can be produced using conditional formatting.
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Why does this work? The format specification for a cell can have different 
formats for positive, negative, zero values, and text values. Semicolons sepa-
rate the different formats for each of these possible values. By having nothing 
between the semicolons, the value is not displayed at all. The bars from condi-
tional formatting are still displayed.

t Ip Format specifications are quite powerful. They are even powerful enough to 
prevent values from being displayed in a cell (which is convenient when using condi-
tional formatting to color the cell or create a bar within the cell).

Useful Variations on the Column Chart
This simple column chart illustrates many of the basic principles of using charts in 
Excel. To illustrate some useful variations, a somewhat richer set of data is needed.

A New Query

A richer set of data provides more information about the payment types, infor-
mation such as:

 ■ Number of orders with each code

 ■ Number of orders whose price is in the range $0–$10, $10–$100, $100–$1,000, 
and over $1,000

 ■ Total revenue for each code

The following query uses conditional aggregation to calculate these results:

SELECT PaymentType,
       SUM(CASE WHEN 0 <= TotalPrice AND TotalPrice < 10
                THEN 1 ELSE 0 END) as cnt_0_10,
       SUM(CASE WHEN 10 <= TotalPrice AND TotalPrice < 100
                THEN 1 ELSE 0 END) as cnt_10_100,
       SUM(CASE WHEN 100 <= TotalPrice AND TotalPrice < 1000
                THEN 1 ELSE 0 END) as cnt_100_1000,
       SUM(CASE WHEN TotalPrice >= 1000 THEN 1 ELSE 0 END) as cnt_1000,
       COUNT(*) as cnt, SUM(TotalPrice) as revenue
FROM Orders
GROUP BY PaymentType
ORDER BY PaymentType

The data divides the orders into four groups, based on the size of the orders. This is a 
good set of data for showing different ways to compare values using column charts.

Side-by-Side Columns

Side-by-side columns, as shown in the top chart in Figure 2-6, are the first 
method for the comparison. This chart shows the actual value of the number 
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of orders for different groups. Some combinations are so small that the column 
is not even visible.

This chart clearly illustrates two points. First, three payment methods pre-
dominate: AE (American Express), MC (MasterCard), and VI (Visa). Second, 
orders in the range of $10 to $100 predominate.

To create such a side-by-side chart, choose the “Clustered Column” chart 
with multiple columns selected.

Stacked Columns

The middle chart in Figure 2-6 shows stacked columns. This communicates the 
total number of orders for each payment type, making it possible to find out, for 
instance, where the most popular payment mechanisms are. Stacked columns 
maintain the actual values; however, they do a poor job of communicating 
proportions, particularly for smaller groups.

To create stacked columns, choose the “Stacked Columns” chart option.

Stacked and Normalized Columns

Stacked and normalized columns provide the ability to see proportions across 
different groups, as shown in the bottom chart in Figure 2-6. Their drawback 
is that small numbers—in this case, very rare payment types—have as much 
weight visually as the more common ones. These outliers can dominate the 
chart.

One solution is to include payment type codes that have only some minimum 
number of orders. Filtering the data, by going to the Data ribbon and choosing 
filter (or using the Data  Filter  Autofilter menu option), is one way to do this. 
Another is by sorting the data in descending order by the total count, and then 
choosing the top rows to include in the chart.

To create the chart, choose the “100% Stacked Columns” chart.

Number of Orders and Revenue

Figure 2-7 shows another variation, where one column has the number of orders, 
and the other has the total revenue. The number of orders varies up to several 
tens of thousands. The revenue varies up to several millions of dollars. On 
a chart with both series, the number of orders would disappear because the 
numbers are so much smaller.

The trick is to plot the two series using different scales, which in Excel lingo 
means plotting them on different axes. This chart has the number of orders on 
the left and the total revenue on the right. Set the colors of the axes and axis 
labels to match the colors of the columns.
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Using a second axis for column charts creates overlapping columns. To get 
around this, the columns for the number of orders are wide and those for the 
revenue are narrow. Also, either chart can be modified to be of a different type, 
making it possible to create many different effects.

To make such a chart, first include revenue and number of orders data in the 
chart, by selecting all the data and then removing (or unselecting) the series 

Figure 2-6:  Three different charts using the same data emphasize different types of information, 
even though they contain the same raw data.
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Figure 2-7:  Showing the number of orders and revenue requires using two axes.

one by one. After inserting the chart, right-click and choose “Select Data” to 
bring up a dialog box with the series on the left. One by one, remove the series 
that should not be part of the chart (that is, all but the two series we want). An 
alternative method is to add each series separately into the chart.

Second, the revenue series needs to move to the secondary axis. Select the 
series either by right-clicking on it or by going to the Chart Layout ribbon and 
choosing the series in the Current Selection box on the far left. Choose “Format 
Data Series…” (if right-clicking) or “Format Selection” (if on the ribbon). Go to 
the “Axis” tab and click “Secondary axis.”

Third, add a title to the secondary axis by going to the Chart Format ribbon 
and choosing “Axis Titles.” The bottom choice is “Secondary Vertical Axis 
Title.” After adding the title, change the colors of the two axes to match the 
series. By matching the colors, you can eliminate the legend, reducing clutter 
on the chart.

When creating charts with two Y-axes, the gridlines should align to the 
tick-marks on both axes. This typically requires manual adjustment. In this 
case, set the scale on the right-hand axis so the maximum is $8,000,000, 
instead of the default $6,000,000. To do this, double-click the axis, go to the 
“Scale” tab, and change the “Maximum” value. The gridlines match the 
scales on both sides.

t Ip When creating charts with series on both axes, try to make the gridlines match 
up on both sides by adjusting the scales on the axes so they align.

The final step is to get the effect of the fat and skinny columns. To create the 
fat column, double-click the number of orders data columns. On the “Options” 
tab, set the “Overlap” to 0 and the “Gap Width” to 50. To get the skinny col-
umns, double-click the revenue data series. Set the “Overlap” to 100 and the 
“Gap Width” to 400.
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Other Types of Charts
Other types of charts are used throughout the book. This section is intended as 
an introduction to these charts. Many of the options are similar to the options 
for the column charts, so the specific details do not need to be repeated.

Line Charts

The data in the column charts can also be represented as line charts, such as in 
Figure 2-8. Line charts are particularly useful when the horizontal axis represents 
a time dimension because they naturally show changes over time. Line charts can 
also be stacked the same way as column charts, including normalized and stacked.

Line charts have some interesting variations that are used in later chapters. 
The simplest is deciding whether the line should have icons showing each point, 
or simply the line that connects them. Choosing the chart subtype controls this.

Line charts also have the ability to add trend lines and error bars, features 
that get used in later chapters.

Area Charts

Area charts show data as a shaded region. They are similar to column charts, 
but instead of columns, there is only the colored region with no spaces between 
data points. They should be used sparingly because they fill the plot area with 
color that does not convey much information. They are primary used for series 
on the secondary axis using lighter, background colors.

Figure 2-9 shows the total orders as columns (with no fill on the columns) 
and the total revenue presented as an area chart on the secondary Y-axis. This 
chart emphasizes that the three main payment types are responsible for most 
orders and most revenue. Notice, that AE and MC have about the same number 

Figure 2-8:  The line chart is an alternative to a column chart. Line charts can make it easier to 
spot certain types of trends.
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Figure 2-9:  This example shows the revenue on the secondary axis as an area chart.

Figure 2-10:  This scatter plot shows the relationship between the number of orders and revenue 
for various payment types.

of orders, but AE has much more revenue. This means that the average revenue 
for customers who pay by American Express is larger than the average revenue 
for customers who pay by MasterCard.

To create this chart, follow the same steps as used for Figure 2-7. Click once on the 
number of orders series to choose it. Then right-click and choose “Change Series Chart 
Type….” Then choose “Area” on the Charts ribbon. To change the colors, double-click 
the colored area and choose appropriate borders and colors for the region.

To change the column fill to transparent, double-click the number of orders 
series, to bring up the “Format Data Series” dialog. Click on “Fill,” and for 
“Color” choose “No Fill.”

X-Y Charts (Scatter Plots)

Scatter plots are very powerful and are used for many examples. Figure 2-10 
has a simple scatter plot that shows the number of orders and revenue for each 
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payment type. This example has both horizontal and vertical gridlines, which 
is recommended for scatter plots.

Unfortunately, Excel does not allow labeling of the points on the scatter plot with 
codes or other information. You have to go back to the original data to see what 
the points refer to. The point above the trend line is for American Express—orders 
paid using American Express have more revenue than the trend line suggests.

This example shows an obvious relationship between the two variables—pay-
ment types with more orders have more revenue. According to the equation for 
the trend line, each additional order brings in about $75 additional revenue. To see 
the relationship, add a trend line (which is discussed in more detail in Chapter 12). 
Click the series to choose it, then right-click and choose “Add Trendline….” On the 
“Options” tab, you can choose to see the equation by clicking the button next to the 
“Display equation on Chart.” Click “OK” and the trend line appears. It is a good idea 
to make the trend line a similar color to the original data, but lighter, perhaps using 
a dashed line. Double-clicking the line brings up a dialog box with these options.

This section has discussed credit card types without any discussion of how 
to determine the type. The aside “Credit Card Numbers” discusses the relation-
ship between credit card numbers and credit card types.

Sparklines

A sparkline is a special type of chart that fits within a single cell. Typically, these are 
column charts or line charts that are particularly useful for showing changes over 
time. Excel offers many fewer options for formatting sparklines, but like in-cell bar 
charts, they have the tremendous advantage of being shown with the data itself.

t Ip Sparklines are particularly useful for showing trends.

How do the number of purchases vary by month for different payment types? To 
answer this question, let’s focus on a single year, 2015. The idea is to summarize 
the orders data by month and then create sparklines that show the changes 
through the year.

The query to extract the data uses conditional aggregation:

SELECT PaymentType,
       SUM(CASE WHEN MONTH(OrderDate) = 1 THEN 1 ELSE 0 END) as Jan,
        . . .
       SUM(CASE WHEN MONTH(OrderDate) = 12 THEN 1 ELSE 0 END) as Dec
FROM Orders o
WHERE YEAR(OrderDate) = 2015
GROUP BY PaymentType
ORDER BY PaymentType

The “…” is not part of SQL; it is shorthand for the missing ten months.
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CreDIt CarD numBerS

This section used payment types as the example without explaining how credit card 
types are extracted from credit card numbers. Credit card numbers are not random; 
they have some structure:

 ■ The first six digits are the Bank Identification Number (BIN). These are a special 
case of Issuer Identification Numbers defined by an international standard 
called ISO 7812.

 ■ An account number follows, controlled by whoever issues the credit card.

 ■ A checksum is at the end to verify the card number is valid.

Credit card numbers themselves are interesting, but don’t use them! Storing credit card 
numbers, unencrypted in a database, poses privacy and security risks. However, there 
are two items of interest in the numbers: the credit card type and whether the same 
credit card is used on different transactions.

Extracting the credit card type, such as Visa, MasterCard, or American Express, is 
only challenging because the folks who issue the BINs are quite secretive about who 
issues which number. However, over the years, the most common credit card types 
have become known (Wikipedia is a good source of information). The BINs for the 
most common credit card types are in the following table:

preFIx CC type

34, 37 AMEX

560, 561 DEBIT

300–305, 309, 36, 38, 39, 54, 55 DINERS CLUB

6011, 622126–622925, 644-649, 65 DISCOVER

2014, 2149 enRoute

3528–3589 JCB

50–55 MASTERCARD

4 VISA

The length of the prefix typically varies from one number to four numbers, which 
makes it a bit difficult to do a lookup in Excel. The following CASE statement assigns 
credit card types in SQL:

SELECT (CASE WHEN ccn LIKE '34%' OR ccn LIKE '37%'

             THEN 'AMEX'

             WHEN ccn LIKE '560%' OR ccn LIKE '561%'

             THEN 'DEBIT'

             WHEN LEFT(ccn, 3) IN ('300', '301', '302', '303', '304',

                                   '305', '309' OR

                  LEFT(cnn, 2) IN ('36', '38', '54, '44')
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Figure 2-11 shows sparklines associated with this data. Three of them are totally 
flat. This is because the sparklines all use the same vertical scale and these do 
not have large enough values to show up on the lines. For the other three, we see 
that all increase in December, but American Express increases more than the rest.

To insert the sparklines, choose “Sparklines” from the Insert ribbon, and then 
select the input cells and destination. Unlike the bar charts discussed earlier, each 
sparkline is in its own cell. The Sparklines ribbon has a choice of various formats; 
this example uses the linear sparkline. By default, the vertical axis varies for each 
sparkline, which is inconvenient for seeing patterns across rows. To make the 
vertical axes consistent, select a group and choose the “Axis” option on the far 

             THEN 'DINERS CLUB'

             WHEN ccn LIKE '6011%' OR ccn LIKE 65%' OR

                  LEFT(ccn, 3) BETWEEN '644' and '649' OR

                  LEFT(ccn, 6) BETWEEN '622126' and '622925'

             THEN 'DISCOVER'

             WHEN LEFT(ccn, 4) IN ('2014',  '2149')

             THEN 'ENROUTE'

             WHEN LEFT(ccn, 4) BETWEEN '3528' AND '3589'

             THEN 'JCB'

             WHEN LEFT(ccn, 2) BETWEEN '50' and '55'

             THEN 'MASTERCARD'

             WHEN ccn LIKE '4%'

             THEN 'VISA'

             ELSE 'OTHER'

        END) as cctypedesc

Note that the conditions use a combination of operators, including LIKE, LEFT(), 
BETWEEN, and IN.

Recognizing when the same credit card number in different transactions can be 
easy and dangerous or a bit harder. The simple solution is to store the credit card 
number in the database. This is a bad idea, for security reasons.

A better approach is to transform the number into something that doesn’t look 
like a credit card number. One possibility is to encrypt the number (if your database 
supports this). In SQL Server, CHECKSUM() is usually good enough, although more 
advanced encryption functions are supported.

Figure 2-11:  Sparklines showing the number of purchases by month.
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right of the Sparkline ribbon. Under the two sets of options for the vertical axis 
(for both the minimum and the maximum), choose “Same for All Sparklines.”

The lower part of Figure 2-11 shows similar information, using the average 
purchase amount per month. The query is similar:

SELECT PaymentType,
       AVG(CASE WHEN MONTH(OrderDate) = 1 THEN TotalPrice END) as Jan,
        . . .
       AVG(CASE WHEN MONTH(OrderDate) = 12 THEN TotalPrice END) as Dec
FROM Orders o
WHERE YEAR(OrderDate) = 2015
GROUP BY PaymentType
ORDER BY PaymentType

Note that the CASE statement has no ELSE clause. The default for CASE is NULL 
when there is no match. This works perfectly with the average function, which 
ignores NULL values.

These sparklines use the column chart. This tells a somewhat different story. 
First, there is much less seasonality to the larger orders. Also, AE payers have 
larger average order amounts than other orders. Perhaps American Express cus-
tomers are wealthier than average. Alternatively, more small businesses may use 
American Express and their orders might, on average, be larger than other orders.

What Values Are in the Columns?

The basic charting mechanisms are a good way to see the data, but what do we 
want to see? The rest of this chapter discusses things of interest when exploring 
a single table. Although this discussion is in terms of a single table, remember 
that SQL makes it quite easy to join tables together to make them look like a 
single table—so the methods apply equally well to multiple tables.

The section starts by investigating frequencies of values, using histograms, 
for both categorical and numeric values. It then continues to discuss interest-
ing measures (statistics) on columns. Finally, it shows how to gather all these 
statistics in one rather complex query.

Histograms
A histogram is a chart—usually a column chart—that shows the distribution of 
values in a column. For instance, the following query calculates the number of 
orders and population in each state, answering the question: What is the distribu-
tion of orders by state and how is this related to the state’s population?

SELECT State, SUM(numorders) as numorders, SUM(pop) as pop
FROM ((SELECT o.State, COUNT(*) as numorders, 0 as pop
       FROM Orders o
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       GROUP BY o.state
      ) UNION ALL
      (SELECT zc.stab, 0 as numorders, SUM(totpop) as pop
       FROM ZipCensus zc
       GROUP BY zc.stab
      )
     ) summary
GROUP BY State
ORDER BY numorders DESC

This query combines information from the ZipCensus and Orders tables. The 
first subquery counts the number of orders and the second calculates the popu-
lation. These are combined using UNION ALL, to ensure that all states that occur 
in either table are included in the final result. Alternatively, two queries could 
produce two result sets that are then combined in Excel.

Figure 2-12 shows the results. Notice that the population is shown as a lighter 
shaded area on the secondary axis and the number of orders as a column chart. 
The states are ordered by the number of orders.

The chart shows several things. California, which has the largest population, is 
third in number of orders. Perhaps this is an opportunity for more marketing in 
California. At the very least, it suggests that marketing and sales efforts are focused 
on the northeast because New York and New Jersey have larger numbers of orders. 
This chart also suggests a measure of penetration in the state, the number of orders 
divided by the population (although a better measure might be the number of 
unique customers/households divided by the number of households in the state).

The resulting chart is a bit difficult to read because there are too many state 
abbreviations to show on the horizontal axis. It is possible to expand the horizon-
tal axis and make the font small enough so all the abbreviations fit, just barely. 
This works for state abbreviations; for other variables it might be impractical, 
particularly if there are more than a few dozen values.

Figure 2-12:  This example shows the states with the number of orders in columns and the 
population as an area.
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One way to make the results more intelligible is to place the data into groups. 
That is, take the states with few orders and collect them together into one “OTHER” 
category; states with many orders are kept individually. Let’s say that states 
with fewer than 100 orders are placed in the “OTHER” category. What is the 
distribution of orders among states that have 100 or more orders?

SELECT (CASE WHEN cnt >= 100 THEN State ELSE 'OTHER' END) as state,
       SUM(cnt) as cnt
FROM (SELECT o.State, COUNT(*) as cnt
      FROM Orders o
      GROUP BY o.State
     ) os
GROUP BY (CASE WHEN cnt >= 100 THEN state ELSE 'OTHER' END)
ORDER BY cnt DESC

This query puts the data in the same two-column format used previously for 
making a histogram. Note the use of the conditional in the GROUP BY column.

This approach has a drawback because it requires a fixed value in the query— 
the “100” in the comparison. One possible modification is to ask a slightly dif-
ferent question: What is the distribution of orders by state, for states that have more 
than 2% of the orders?

SELECT (CASE WHEN bystate.cnt >= 0.02 * total.cnt
             THEN state ELSE 'OTHER' END) as state,
       SUM(bystate.cnt) as cnt
FROM (SELECT o.State, COUNT(*) as cnt
      FROM Orders o
      GROUP BY o.State
     ) bystate CROSS JOIN
     (SELECT COUNT(*) as cnt FROM Orders) total
GROUP BY (CASE WHEN bystate.cnt >= 0.02 * total.cnt
               THEN state ELSE 'OTHER' END)
ORDER BY cnt desc

The first subquery calculates the total orders in each state. The second calculates 
the total orders. Because this subquery produces only one row, the query uses 
a CROSS JOIN. The aggregation then uses a CASE statement that chooses states 
that have at least 2% of all orders.

Actually, this query answers the question and goes one step beyond. It does 
not filter out the states with fewer than 2% of the orders. Instead, it groups 
them together into the “OTHER” group, ensuring that no orders are filtered 
out. Keeping all the data helps prevent mistakes in understanding the data.

Note that the “OTHER” category has changed dramatically using these two 
methods. In the first version, the states in the “OTHER” group are not very 
important. Their 422 orders put them—combined—in 41st place between Kansas 
and Oklahoma. The second query puts “OTHER” in second place between New 
York and New Jersey with 42,640 orders.
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t Ip When writing exploration queries that analyze data, keeping all the data is usu-
ally a better approach than filtering rows. Use a special group to keep track of what 
would have been filtered.

Another alternative is to have some number of states, such as the top 20 states, 
with everything else placed in the other category. What is the distribution of the 
number of orders in the 20 states that have the largest number of orders? Unfortunately, 
such a query is complex. The simplest approach uses a row number calculation:

SELECT (CASE WHEN seqnum <= 20 THEN state ELSE 'OTHER' END) as state,
       SUM(numorders) as numorders
FROM (SELECT o.State, COUNT(*) as numorders,
             ROW_NUMBER() OVER (ORDER BY COUNT(*) DESC) as seqnum
      FROM Orders o
      GROUP BY o.State
     ) bystate
GROUP BY (CASE WHEN seqnum <= 20 THEN state ELSE 'OTHER' END)
ORDER BY numorders DESC

This is an example of using ROW_NUMBER() in an aggregation query.
This query could also be accomplished in SQL Server using the TOP option 

(other databases typically use LIMIT or the ANSI standard FETCH FIRST <X> 
ROWS ONLY):

SELECT TOP 20 o.State, COUNT(*) as numorders
FROM Orders o
GROUP BY o.State
ORDER BY COUNT(*) DESC

In this version, the subquery sorts the data by the number of orders in descend-
ing order. The TOP option then chooses the first 20 rows and returns only these. 
This method does not generate the “OTHER” category, so the results do not 
include data for all states.

An interesting variation on the histogram is the cumulative histogram, which 
makes it possible to calculate, for instance, how many states account for half 
the orders. You can add the cumulative sum to one of the above queries—for 
instance:

SELECT TOP 20 o.State, COUNT(*) as numorders,
       SUM(COUNT(*)) OVER (ORDER BY COUNT(*) DESC) as cumesum
FROM Orders o
GROUP BY o.State
ORDER BY COUNT(*) DESC

Note that some databases that support window functions do not support cumu-
lative sums. Notably, versions of SQL Server prior to 2012 do not have this 
functionality.
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The cumulative sum can also be calculated in Excel. This process starts by 
ordering the results by the number of orders in descending order (so the biggest 
states are at the top). To add the cumulative sum, let’s assume that the number 
of orders is in column B and the data starts in cell B2. An easy way is to type 
the formula =C1+B2 in cell C2 and then copy this formula down the column. An 
alternative formula that does not reference the previous cell is =SUM($B$2:$B2). 
If desired, the cumulative number can be divided by the total orders to get a 
percentage, as shown in Figure 2-13.

Histograms of Counts
The number of states is well known. Americans learn early that 50 states com-
prise the union. The Post Office recognizes 62—because places such as Puerto 
Rico (PR), the District of Columbia (DC), Guam (GM), and the Virgin Islands 
(VI) are treated as states—along with three more abbreviations for “states” used 
for military post offices. Corporate databases might have even more, sometimes 
giving equal treatment to Canadian provinces and American states, and even 
intermingling foreign country or province codes with state abbreviations.

Still, there are a relatively small number of states in contrast to the thousands of 
zip codes—more than fit in a single histogram. Where to start with such columns? 
A good question to ask is the histogram of counts question: What is the number 
of zip codes that have a given number of orders? The following query answers this:

SELECT numorders, COUNT(*) as nmzips, MIN(ZipCode), MAX(ZipCode)
FROM (SELECT o.ZipCode, COUNT(*) as numorders
      FROM Orders o
      GROUP BY o.ZipCode
     ) bystate
GROUP BY numorders
ORDER BY numorders

Figure 2-13:  The cumulative histogram shows that four states account for more than half of all 
orders.
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The subquery calculates the counts for each zip code. The outer SELECT counts 
how often each count occurs in the histogram.

The result set says how many zip codes have exactly one order, exactly two orders, 
and so on. For instance, in this data, 5,954 zip codes have exactly one order. The query 
also returns the minimum and maximum zip code values. These provide examples 
of zip codes with each count. The two examples in the first row are not valid zip 
codes, suggesting that some or all of the one-time zip codes are errors in the data.

t Ip The histogram of counts for the primary key column always has exactly one row, 
where CNT is 1 because primary keys are never duplicated.

Another example uses OrderLines. What is the number of order lines where the 
product occurs once (overall), twice, and so on? The query that answers is also a 
histogram of counts:

SELECT numol, COUNT(*) as numprods, MIN(ProductId), MAX(ProductId)
FROM (SELECT ProductId, COUNT(*) as numol
      FROM OrderLines
      GROUP BY ProductId
     ) op
GROUP BY numol
ORDER BY numol

The subquery counts the number of order lines where each product appears. 
The outer query then creates a histogram of this number.

This query returns 385 rows; the first few rows and last row are in Table 2-1. 
The last row of the table has the most common product, whose ID is 12820 and 

table 2-1: Histogram of Counts of Products in OrderLines Table

numBer oF 
orDerS

numBer oF 
proDuCtS

mInImum 
proDuCtID

maxImum 
proDuCtID

1 933 10017 14040

2 679 10028 14036

3 401 10020 14013

4 279 10025 14021

5 201 10045 13998

6 132 10014 13994

7 111 10019 13982

8 84 10011 13952

. . .

18,648 1 12820 12820
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appears in 18,648 order lines. The least common products are in the first row; 
there are 933 that occur only once—about 23.1% of all products. However, these 
rare products occur in only 933/286,017 orders, about 0.02% of orders.

How many different values of ProductId are there? This is the sum of the 
second column in the table, which is 4,040. How many order lines? This is the 
sum of the product of the first two columns, which is 286,017. The ratio of these 
two numbers is the average number of order lines per product, 70.8; that is, a 
given product occurs in 70.8 order lines, on average. The calculation in Excel 
uses the function SUMPRODUCT(), which takes two columns, multiplies them 
together cell by cell, and then adds the results together. The specific formula is 
“=SUMPRODUCT(C13:C397, D13:D397).”

Cumulative Histograms of Counts
What proportion of products account for half of all order lines? Answering this ques-
tion requires two cumulative columns, the cumulative number of order lines 
and the cumulative number of products, as shown in Table 2-2.

This table shows that products with six or fewer order lines account for 65.0% of 
all products. However, they appear in only 2.2% of order lines. We have to go to row 
332 (out of 385) to find the middle value. In this row, the product appears in 1,190 
order lines and the cumulative proportion of order lines crosses the halfway point. 
This middle value—called the median—shows that 98.7% of all products account for 
half the order lines, so 1.3% account for the other half. In other words, the common 
products are much more common than the rare ones. This is an example of the long 
tail that occurs when working with thousands or millions of products.

table 2-2: Histogram of Counts of Products in the OrderLines Table with Cumulative OrderLines 
and Products

numBer CumulatIve CumulatIve %

orDer lIneS proDuCtS orDer lIneS proDuCtS orDer lIneS proDuCtS

1 933 933 933 0.3% 23.1%

2 679 2,291 1,612 0.8% 39.9%

3 401 3,494 2,013 1.2% 49.8%

4 279 4,610 2,292 1.6% 56.7%

5 201 5,615 2,493 2.0% 61.7%

6 132 6,407 2,625 2.2% 65.0%

. . .

1,190 1 143,664 3,987 50.2% 98.7%

. . .

18,648 1 286,017 4,040 100.0% 100.0%
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The cumulative number of products is the sum of all values in the number 
of products column up to a given row. A simple formula for this calculation is 
=SUM($D$284:$D284). When this formula is copied down the column, the first 
half of the range stays constant (that is, remains $D$284) and the second half 
increments (becoming $D284 then $D285 and so on). This form of the cumulative 
sum is preferable to the =H283+D284 form because cell H283 contains a column 
title, which is not a number, causing problems in the first sum. One way around 
this is to add IF() to the formula: =IF(ISNUMBER(H283), H283, 0) + D284.

The cumulative number of order lines is the sum of the product of the number 
of order lines and number of products numol and numprods values (columns C 
and D) up to that point. The formula is:

SUMPRODUCT($C$284:$C284, $D$284:$D284)

The ratios are the value in each cell divided by the last value in the column.

Histograms (Frequencies) for Numeric Values
Histograms work for numeric values as well as categorical ones. For instance, 
NumUnits contains the number of different units of a product included in an order 
and it takes on just a handful of values. How do we know this? The following 
query answers the question: How many different values does NumUnits take on?

SELECT COUNT(*) as numol, COUNT(DISTINCT NumUnits) as numvalues
FROM OrderLines

There are only 158 different values in the column. On the other hand, the column 
TotalPrice has over 4,000 values, which is a bit cumbersome for a histogram, 
although the cumulative histogram is still quite useful.

A natural way to look at numeric values is by grouping them into ranges. 
The next section explains several methods for doing this.

Ranges Based on the Number of Digits, Using Numeric Techniques

Counting the number of important digits—those to the left of the decimal 
point—is a good way to group numeric values into ranges. For instance, a value 
such as “123.45” has three digits to the left of the decimal point. For numbers 
greater than one, the number of digits is one plus the log in base 10 of the num-
ber, rounded down to the nearest integer:

SELECT FLOOR(1+ LOG(val) / LOG(10)) as numdigits

However, not all values are known to be greater than 1. For values between 
–1 and 1, the number of digits is zero, and for negative values, we might as 
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well identify them with a negative sign. The following expression handles 
these cases:

SELECT (CASE WHEN val >= 1 THEN FLOOR(1 + LOG(val) / LOG(10))
             WHEN -1 < val AND val < 1 THEN 0
             ELSE - FLOOR(1 + LOG(-val) / LOG(10)) END) as numdigits

Used in a query for TotalPrice in Orders, this turns into:

SELECT  numdigits, COUNT(*) as numorders, MIN(TotalPrice),   
MAX(TotalPrice)

FROM (SELECT (CASE WHEN TotalPrice >= 1
                   THEN FLOOR(1 + LOG(TotalPrice) / LOG(10))
                   WHEN -1 < TotalPrice AND TotalPrice < 1 THEN 0
                   ELSE - FLOOR(1 + LOG(-TotalPrice) / LOG(10)) END
             ) as numdigits, TotalPrice
      FROM Orders o
     ) a
GROUP BY numdigits
ORDER BY numdigits

In this case, the number of digits is a small number between 0 and 4 because 
TotalPrice is never negative and always under $10,000. Note that the query 
also returns the smallest and largest values in the range—a helpful check on 
the values.

The following expression turns the number of digits into a lower and upper 
bounds, assuming that the underlying value is never negative:

SELECT SIGN(numdigits) * POWER(10, numdigits - 1) as lowerbound,
       POWER(10, numdigits) as upperbound

This expression uses the SIGN() function, which returns –1, 0, or 1 depending 
on whether the argument is less than zero, equal to zero, or greater than zero. A 
similar expression can be used in Excel. Table 2-3 shows the results from the query.

table 2-3:  Ranges of Values for TotalPrice in Orders Table

# DIGItS
loWer 
BounD

upper 
BounD # orDerS mInImum maxImum

0 $0 $1 9,130 $0.00 $0.64

1 $1 $10 6,718 $1.75 $9.99

2 $10 $100 148,121 $10.00 $99.99

3 $100 $1,000 28,055 $100.00 $1,000.00

4 $1,000 $10,000 959 $1,001.25 $9,848.96
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Ranges Based on the Number of Digits, Using String Techniques

There is a small error in the table. The number “1000” is calculated to have 
three digits rather than four. The discrepancy is due to a rounding error in the 
calculation. An alternative, more exact method is to use string functions.

String functions can calculate the length of the string representing the number, 
using only digits to the left of the decimal place. The SQL expression for this is:

SELECT LEN(CAST(FLOOR(ABS(val)) as INT)) * SIGN(FLOOR(val)) as numdigits

This expression uses the nonstandard LEN() function and assumes that the 
integer is converted to a character value (although all databases have such 
a function, it is sometimes called LENGTH()). See Appendix A for equivalent 
functions in other databases.

More Refined Ranges: First Digit Plus Number of Digits

Table 2-4 shows the breakdown of values of TotalPrice in Orders by more 
refined ranges based on the first digit and the number of digits. Assuming that 
values are always non-negative (and most numeric values in databases are non-
negative), the expression for the upper and lower bound is:

SELECT lowerbound, upperbound, COUNT(*) as numorders, MIN(val), MAX(val)
FROM (SELECT (FLOOR(val / POWER(10.0, SIGN(numdigits)*(numdigits - 1))) *

              POWER(10.0, SIGN(numdigits)*(numdigits - 1))

             ) as lowerbound,

             (FLOOR(1 + (val / POWER(10.0, SIGN(numdigits)*(numdigits - 1)))) *

              POWER(10.0, SIGN(numdigits)*(numdigits - 1))

             ) as upperbound, o.*

      FROM (SELECT (LEN(CAST(FLOOR(ABS(TotalPrice)) as INT)) *

                    SIGN(FLOOR(TotalPrice))) as numdigits,

                   TotalPrice as val

            FROM Orders o

           ) o

     ) o

GROUP BY lowerbound, upperbound

ORDER BY lowerbound

This query uses two subqueries. The innermost calculates numdigits and the middle 
calculates lowerbound and upperbound. In the complicated expressions for the bounds, 
the SIGN() function is used to handle the case when the number of digits is zero.

Breaking Numeric Values into Equal-Sized Groups

Equal-sized ranges are perhaps the most useful type of ranges. For instance, the 
middle value in a list (the median) splits the list into two equal-sized groups. 
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table 2-4: Ranges of Values for TotalPrice in Orders Table by First Digit and Number of Digits

loWer 
BounD

upper  
BounD

numBer oF 
orDerS

mInImum 
totalprICe

maxImum 
totalprICe

$0 $1 9,130 $0.00 $0.64

$1 $2 4 $1.75 $1.95

$2 $3 344 $2.00 $2.95

$3 $4 2 $3.50 $3.75

$4 $5 13 $4.00 $4.95

$5 $6 152 $5.00 $5.97

$6 $7 1,591 $6.00 $6.99

$7 $8 2,015 $7.00 $7.99

$8 $9 1,002 $8.00 $8.99

$9 $10 1,595 $9.00 $9.99

$10 $20 54,382 $10.00 $19.99

$20 $30 46,434 $20.00 $29.99

$30 $40 20,997 $30.00 $39.99

$40 $50 9,378 $40.00 $49.98

$50 $60 6,366 $50.00 $59.99

$60 $70 3,629 $60.00 $69.99

$70 $80 2,017 $70.00 $79.99

$80 $90 3,257 $80.00 $89.99

$90 $100 1,661 $90.00 $99.99

$100 $200 16,590 $100.00 $199.98

$200 $300 1,272 $200.00 $299.97

$300 $400 6,083 $300.00 $399.95

$400 $500 1,327 $400.00 $499.50

$500 $600 1,012 $500.00 $599.95

$600 $700 670 $600.00 $697.66

$700 $800 393 $700.00 $799.90

$800 $900 320 $800.00 $895.00

$900 $1,000 361 $900.00 $999.00

$1,000 $2,000 731 $1,000.00 $1,994.00

$2,000 $3,000 155 $2,000.00 $2,995.00

$3,000 $4,000 54 $3,000.00 $3,960.00

$4,000 $5,000 20 $4,009.50 $4,950.00

$5,000 $6,000 10 $5,044.44 $5,960.00

$6,000 $7,000 12 $6,060.00 $6,920.32

$8,000 $9,000 1 $8,830.00 $8,830.00

$9,000 $10,000 3 $9,137.09 $9,848.96
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Which value is in the middle? Unfortunately, there is no aggregation function 
for calculating the median, as there is for the average.

One approach is to use ROW_NUMBER(). If there are nine rows of data and with 
ranks one through nine, the median value is the value on the fifth row.

Finding quintiles and deciles is the same process as finding the median. 
Quintiles break numeric ranges into five equal-sized groups; four breakpoints 
are needed to do this—the first for the first 20% of the rows; the second for the 
next 20%, and so on. Creating deciles is the same process but with nine break-
points instead.

The following query provides the framework for finding quintiles, using the 
ranking window function ROW_NUMBER():

SELECT MAX(CASE WHEN seqnum <= cnt * 0.2 THEN <val> END) as break1,
       MAX(CASE WHEN seqnum <= cnt * 0.4 THEN <val> END) as break2,
       MAX(CASE WHEN seqnum <= cnt * 0.6 THEN <val> END) as break3,
       MAX(CASE WHEN seqnum <= cnt * 0.8 THEN <val> END) as break4
FROM (SELECT ROW_NUMBER() OVER (ORDER BY <val>) as seqnum,
             COUNT(*) OVER () as cnt,
             <val>
      FROM <table>) t

It works by enumerating the rows in order by the desired column, and comparing 
the resulting row number with the total number of rows. This technique works 
for any type of column. For instance, it can find the values used for breaking 
up date ranges and character strings into equal-sized groups.

More Values to Explore—Min, Max, and Mode

Columns have other interesting characteristics. This section discusses extreme 
values and the most common value.

Minimum and Maximum Values
SQL makes it quite easy to find the minimum and maximum values in a table 
for any data type. The minimum and maximum values for strings are based 
on the alphabetic ordering of the values. The query is simply:

SELECT MIN(<col>), MAX(<col>)
FROM <tab>

A related question is the frequency of maximum and minimum values in 
a particular column. Answering this question uses a subquery in the SELECT 
clause of the query:
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SELECT SUM(CASE WHEN <col> = minv THEN 1 ELSE 0 END) as freqminval,
       SUM(CASE WHEN <col> = maxv THEN 1 ELSE 0 END) as freqmaxval
FROM <tab> t CROSS JOIN
     (SELECT MIN(<col>) as minv, MAX(<col>) as maxv
      FROM <tab>) vals

This query uses the previous query as a subquery to calculate the minimum 
and maximum values. Because there is only one row, the CROSS JOIN opera-
tor is used for the join. This technique can be extended. For instance, it might 
be interesting to count the number of values within 10% of the maximum or 
minimum value for a numeric value. This calculation is as simple as multiply-
ing MAX(<col>) by 0.9 and MIN(<col>) by 1.1 and replacing the “=” with “>=” 
and “<=” respectively.

Sometimes, the entire row containing the maximum or minimum value is of 
interest. For this purpose, use ORDER BY. For instance, the following query gets 
a row that has the maximum value for a given column:

SELECT TOP 1 t.*
FROM <tab> t
ORDER BY col DESC

For the minimum value, change the last line to ORDER BY col.

The Most Common Value (Mode)
The most common value is called the mode. The mode differs from other mea-
sures that we’ve looked at so far. There is only one maximum, minimum, and 
average and generally only one median. However, there can be many modes. 
A common, but not particularly interesting, example is the primary key of a 
table, which is never repeated. All values have a frequency of one, so all values 
are modes.

Calculating the mode in standard SQL is a bit cumbersome. The next sections 
show two different approaches to the calculation.

Calculating Mode Using Basic SQL

Calculating the mode starts with calculating the frequency of values in a column:

SELECT <col>, COUNT(*) as freq
FROM <tab>
GROUP BY <col>
ORDER BY freq

The mode is the last row (or the first row if the list is sorted in descending order). 
To get this row, you can use SELECT TOP 1 instead of just SELECT.
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What column values have the same frequency as the maximum column frequency? 
A subquery can help answer this question:

SELECT <col>, COUNT(*) as freq
FROM <tab>
GROUP BY <col>
HAVING COUNT(*) = (SELECT TOP 1 COUNT(*) as freq
                   FROM <tab>
                   GROUP BY <col>
                   ORDER BY COUNT(*) DESC)

In this query, the HAVING clause does almost all the work. It selects the groups 
(column values) whose frequency is the same as the largest frequency. What is 
the largest frequency? That is calculated by the subquery. The result is a list of 
the values whose frequencies match the maximum frequency, a list of the modes.

If, instead, we were interested in the values with the smallest frequency, the 
MAX(freq) expression would be changed to MIN(freq). Such values could be 
considered the antimode values.

This query accomplishes the task at hand. However, it is rather complex, with 
multiple levels of subqueries and two references to the table. It is easy to make 
mistakes when writing such queries, and complex queries are harder to optimize 
for performance. The next section offers a simpler alternative.

Calculating Mode Using Window Functions

The following query uses MAX() as a window function to find the mode:

SELECT t.*
FROM (SELECT <col>, COUNT(*) as freq, MAX(COUNT(*)) OVER () as maxfreq
      FROM <tab>
      GROUP BY <col>
     ) t
WHERE freq = maxfreq

Note that the COUNT(*) is the argument to the window function MAX() OVER 
(). This expression calculates the maximum of the count, which is the maximum 
frequency. The outermost WHERE selects the rows where the frequency matches 
the maximum.

Exploring String Values

String values pose particular challenges for data exploration because they can 
take on almost any value. This is particularly true for free-form strings, such as 
addresses and names, which may not be cleaned. This section looks at exploring 
the length and characters in strings.
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Histogram of Length
A simple way to get familiar with string values is to do a histogram of the length 
of the values. What is the length of values in the City column in the Orders table?

SELECT LEN(City) as length, COUNT(*) as numorders, MIN(City), MAX(City)
FROM Orders o
GROUP BY LEN(City)
ORDER BY length

This query provides not only a histogram of the lengths, but also examples 
of two values—the minimum and maximum values for each length. For the 
City column, there are lengths from 0 to 20, which is the maximum length the 
column stores.

Strings Starting or Ending with Spaces
Spaces at the beginning of string values can cause unexpected problems. The value 
“ NY” is not the same as “NY,” so a comparison operation or join might fail—even 
though the values look the same to humans. Spaces at the end of strings pose 
less of a problem because they are typically ignored for equality comparisons.

The following query answers the question: How many times do the values in 
the column have spaces at the beginning or end of the value?

SELECT COUNT(*) as numorders
FROM Orders o
WHERE City IS NOT NULL AND LEN(City) <> LEN(LTRIM(RTRIM(City)))

This query works by stripping spaces from the beginning and end of the col-
umn, and then comparing the lengths of the stripped and unstripped values.

Handling Upper- and Lowercase
Databases can be either case sensitive or case insensitive. Case sensitive means 
that upper- and lowercase characters are considered different; case insensitive 
means they are the same. Don’t be confused by case sensitivity in strings versus 
case sensitivity in syntax. SQL keywords can be in any case (“SELECT,” “select,” 
“Select”). This discussion only refers to how values in columns are treated.

For instance, in a case-insensitive database, the following values would all 
be equal to each other:

 ■ FRED

 ■ Fred

 ■ fRed
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By default, most databases are case insensitive. However, this can be changed by 
setting a global option or by passing hints to a particular query (such as using 
the COLLATE keyword in SQL Server).

In a case-sensitive database, the following query answers the question: How 
often are the values all uppercase, all lowercase, or mixed case?

SELECT SUM(CASE WHEN City = UPPER(City) THEN 1 ELSE 0 END) as uppers,
       SUM(CASE WHEN City = LOWER(City) THEN 1 ELSE 0 END) as lowers,
       SUM(CASE WHEN City NOT IN (LOWER(City), UPPER(City))
                THEN 1 ELSE 0 END) as mixed
FROM Orders o

In a case-insensitive database, the first two values are the same and the third is 
zero. In a case-sensitive database, the three add up to the total number of rows.

What Characters Are in a String?
Sometimes, it is interesting to know exactly what characters are in strings. For 
instance, do email addresses provided by customers contain characters that they 
should not? Such a question naturally leads to which characters are actually 
in the values.

SQL is not designed to answer this question, at least in a simple way. Fortunately, 
it is possible to make an attempt. The answer starts with a simpler question: 
What characters are in the first position of the string?

SELECT LEFT(City, 1) as onechar, ASCII(LEFT(City, 1)) as asciival,
       COUNT(*) as numorders
FROM Orders o
GROUP BY LEFT(City, 1)
ORDER BY onechar

The returned data has three columns: the character, the number that represents 
the character (called the ASCII value), and the number of times that the character 
occurs as the first character in the City column. The ASCII value is useful for dis-
tinguishing among characters that might look the same, such as a space and a tab.

Warn InG When looking at individual characters, unprintable characters and 
space characters (space and tabs) look the same. To see what character is really there, 
use the ASCII() function.

The following query extends this example to look at the first two characters 
in the City column:

SELECT onechar, ASCII(onechar) as asciival, COUNT(*) as cnt
FROM ((SELECT SUBSTRING(City, 1, 1) as onechar
       FROM Orders WHERE LEN(City) >= 1)
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CharaCterS anD CollatIonS

Character strings in SQL are more complex than they appear. This is because 
SQL strives to support all sorts of writing systems. The Latin characters used in 
English are a simple example. Most European languages use a similar system, 
although augmented by various accented characters and the occasional special 
character. And then there are hundreds of alphabets around the world that are also 
supported. Some read from right to left, some from left to right. And a language 
such as Chinese doesn’t technically have an alphabet; instead it has tens of thou-
sands of characters.

Characters themselves are represented as combinations of zeros and ones 
inside the computer. Three interrelated concepts are useful for understanding this 
representation. The first is the character set or character map which refers to what the 
bits mean. A very common system for English letters is ASCII, where, for instance, the 
bits that represent the number 65 represent the letter “A.”

The collation refers to how the characters are ordered and whether or not two par-
ticular characters are equal. For instance, capital “A” and lowercase “a” may be equal, 
when the collation is case insensitive. The third concept is the font, which refers to 
how the character set is rendered on the screen or printed. SQL doesn’t know about 
fonts although Excel does.

SQL has four types for storing character strings of a given length:

 ■ CHAR()

 ■ VARCHAR()

 ■ NCHAR()

 ■ NVARCHAR()

The first of these is a fixed length string. Shorter values stored in a CHAR() field are pad-
ded at the end with spaces. So, “NY” would be “NY___” if stored in a CHAR(5) field. 
Normally, fixed-length characters are used for short codes, especially when all codes are 
the same length. VARCHAR() can store variable length strings. These are not padded on 
the right with spaces. Characters in these fields are stored using a single byte per character.

The last two are types for national characters; these types require more space to 
store a given value than CHAR() or VARCHAR(). However, they are much more flex-
ible and can store characters from a mix of alphabets or from complicated writing sys-
tems such as Chinese and Japanese.

Within the database, the “collation” of the column determines both the collation 
(rules for comparison) and the character set (rules for presentation). Characters sets 
are typically customized for languages (so accented characters are represented) and 
for the natural ordering within the language.

Collations and character sets affect queries, from comparisons to ordering and 
aggregation. Fortunately, the default collations are usually quite sufficient. They 
become particularly useful (and annoying) when using databases for multilingual 
applications. Happily the database supports them. For most purposes, the 
only interest in collations is determining which is needed for case-sensitive or 
case-insensitive comparisons.



 Chapter 2 ■ What’s in a table? Getting Started with Data exploration 85

      UNION ALL
      (SELECT SUBSTRING(City, 2, 1) as onechar
       FROM Orders WHERE LEN(City) >= 2)
     ) cl
GROUP BY onechar
ORDER BY onechar

This query combines all the first characters and all the second characters together, 
using UNION ALL in the subquery. It then groups this collection of characters 
together, returning the final result. Extending this query to all 20 characters in 
the city is a simple matter of adding more subqueries to the UNION ALL.

A variation of this query might be more efficient under some circumstances. 
This variation pre-aggregates each of the subqueries. Rather than just putting 
all the characters together and then aggregating, it calculates the frequencies for 
the first position and then the second position, and then combines the results:

SELECT onechar, ASCII(onechar) as asciival, SUM(cnt) as cnt
FROM ((SELECT SUBSTRING(City, 1, 1) as onechar, COUNT(*) as cnt
       FROM Orders WHERE LEN(City) >= 1
       GROUP BY SUBSTRING(City, 1, 1) )
      UNION ALL
      (SELECT SUBSTRING(City, 2, 1) as onechar, COUNT(*) as cnt
       FROM Orders WHERE LEN(City) >= 2
       GROUP BY SUBSTRING(City, 2, 1) )
     ) cl
GROUP BY onechar
ORDER BY onechar

The choice between the two forms is a matter of convenience and efficiency, 
both in writing the query and in running it.

What if the original question were: How often does a character occur in the first 
position versus the second position of a string? This is quite similar to the original 
question, and the answer is to use conditional aggregation based on the posi-
tion of the character:

SELECT onechar, ASCII(onechar) as asciival, COUNT(*) as cnt,
       SUM(CASE WHEN pos = 1 THEN 1 ELSE 0 END) as pos_1,
       SUM(CASE WHEN pos = 2 THEN 1 ELSE 0 END) as pos_2
FROM ((SELECT SUBSTRING(City, 1, 1) as onechar, 1 as pos
       FROM Orders o WHERE LEN(City) >= 1 )
      UNION ALL
      (SELECT SUBSTRING(City, 2, 1) as onechar, 2 as pos
       FROM Orders o WHERE LEN(City) >= 2)
     ) a
GROUP BY onechar
ORDER BY onechar

This variation also works using the pre-aggregated subqueries.
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Exploring Values in Two Columns

Comparing values in more than one column is an important part of data explora-
tion and data analysis. This section focuses on description. Do two states differ 
by sales? Do customers who purchase more often have larger average purchases? 
Whether the comparison is statistically significant is covered in the next chapter.

What Are Average Sales by State?
The following two questions are good examples of comparing a numeric value 
within a categorical value:

 ■ What is the average order total price by state?

 ■ What is the average zip code population in a state?

SQL is particularly adept at answering such questions using aggregations.
The following query provides the average sales by state:

SELECT State, AVG(TotalPrice) as avgtotalprice
FROM Orders
GROUP BY State
ORDER BY avgtotalprice DESC

This example uses the aggregation function AVG() to calculate the average.
The following expression could also have been used:

SELECT state, SUM(TotalPrice)/COUNT(*) as avgtotalprice

Although the two methods seem to do the same thing, there is a subtle differ-
ence between them, because they handle NULL values differently. In the first 
example, NULL values are ignored. In the second, NULL values contribute to the 
COUNT(*), but not to the SUM(). Replacing COUNT(*) with COUNT(TotalPrice) 
fixes this, by counting the number of values that are not NULL.

Even with the fix, there is still a subtle difference when all the values are NULL. 
The AVG() returns a NULL value in this case. The explicit division returns a divide-
by-zero error. To fix this, replace the 0 with NULL:  NULLIF(COUNT(TotalPrice), 0).

t Ip Two ways of calculating an average look similar and often return the same result. 
However, AVG(<col>) and SUM(<col>)/COUNT(*) treat NULL values differently.

How Often Are Products Repeated within a Single Order?
A reasonable assumption is that each product has only one order line in an order, 
regardless of the number of units ordered; the multiple instances are represented 
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by the column NumUnits rather than by separate rows in OrderLines. There are 
several different methods to validate this assumption.

Direct Counting Approach

The first approach directly answers the question: How many different order lines 
within an order contain the same product? This is a simple counting query, using 
two different columns instead of one:

SELECT cnt, COUNT(*) as numorders, MIN(OrderId), MAX(OrderId)
FROM (SELECT OrderId, ProductId, COUNT(*) as cnt
      FROM OrderLines ol
      GROUP BY OrderId, ProductId
     ) op
GROUP BY cnt
ORDER BY cnt

Here, cnt is the number of times that a given OrderId and ProductId appear 
together in a row in OrderLines.

The results show that some products are repeated within the same order, 
up to a maximum of 40 times. This leads to more questions. What are some 
examples of orders where duplicate products occur? For this, the minimum and 
maximum OrderId provide examples.

 Which products are more likely to occur multiple times within an order? A 
result table with the following information would help in answering this 
question:

 ■ ProductId, to identify the product

 ■ Number of orders containing the product any number of times

 ■ Number of orders containing the product more than once

These second and third columns compare the occurrence of the given product 
overall with the multiple occurrence of the product within an order.

The following query does the calculation:

SELECT ProductId, COUNT(*) as numorders,
       SUM(CASE WHEN cnt > 1 THEN 1 ELSE 0 END) as nummultiorders
FROM (SELECT OrderId, ProductId, COUNT(*) as cnt
      FROM OrderLines ol
      GROUP BY OrderId, ProductId
     ) op
GROUP BY ProductId
ORDER BY numorders DESC

The results (which have thousands of rows) indicate that some products are, 
indeed, more likely to occur multiple times within an order than other products. 
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However, many products occur multiple times in a single order, so the duplica-
tion is not caused by just a handful of errant products.

Comparison of Distinct Counts to Overall Counts

Another approach to answering the question “How often are products repeated in 
an order?” is to consider the number of order lines in an order compared to the 
number of different products in the same order. That is, calculate the number of 
order lines and the number of distinct product IDs in each order; these numbers 
are the same when an order has no duplicate products.

One way of doing the calculation is using COUNT(DISTINCT):

SELECT OrderId, COUNT(*) as numlines,
       COUNT(DISTINCT ProductId) as numproducts
FROM OrderLines ol
GROUP BY OrderId
HAVING COUNT(*) > COUNT(DISTINCT ProductId)

The HAVING clause chooses only orders that have at least one product on mul-
tiple order lines.

Another approach uses a subquery:

SELECT OrderId, SUM(numproductlines) as numlines,
       COUNT(*) as numproducts
FROM (SELECT OrderId, ProductId, COUNT(*) as numproductlines
      FROM OrderLines ol
      GROUP BY OrderId, ProductId) op
GROUP BY OrderId
HAVING SUM(numproductlines) > COUNT(*)

The subquery aggregates the order lines by OrderId and ProductId. This inter-
mediate result can be used to count both the number of products and the number 
of order lines. In general, a query using COUNT(DISTINCT)can also be rewritten 
to use a subquery, but COUNT(DISTINCT) is more convenient.

There are 4,878 orders that have more order lines than products, indicating 
that at least one product occurs on multiple lines in the order. However, the 
results from the query do not give an idea of what might be causing this.

Perhaps orders with a lot of products are the culprit. The following query 
calculates the number of orders that have more than one product broken out 
by the number of lines in the order:

SELECT numlines, COUNT(*) as numorders,
       SUM(CASE WHEN numproducts < numlines THEN 1 ELSE 0
           END) as nummultiorders,
       AVG(CASE WHEN numproducts < numlines THEN 1.0 ELSE 0
           END) as ratiomultiorders,
       MIN(OrderId), MAX(OrderId)
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FROM (SELECT OrderId, COUNT(DISTINCT ProductId) as numproducts,
             COUNT(*) as numlines
      FROM OrderLines ol
      GROUP BY OrderId
     ) op
GROUP BY numlines
ORDER BY numorders;

This query uses COUNT(DISTINCT) along with COUNT() to calculate the number 
of products and order lines within a query.

Table 2-5 shows the first few rows of the results. The proportion of multiorders 
increases as the size of the order increases. However, for all order sizes, many 
orders still have nonrepeating products. Based on this information, it seems that 
having multiple lines for a single product is a function of having larger orders, 
rather than being related to the particular products in the order.

Which State Has the Most American Express Users?
Overall, about 24.6% of the orders are paid by American Express (payment type AE). 
Does this proportion vary much by state? The following query answers this question:

SELECT State, COUNT(*) as numorders,
       SUM(CASE WHEN PaymentType = 'AE' THEN 1 ELSE 0 END) as numae,
       AVG(CASE WHEN PaymentType = 'AE' THEN 1.0 ELSE 0 END) as avgae
FROM Orders o
GROUP BY State
HAVING COUNT(*) >= 100
ORDER BY avgae DESC

table 2-5: Number of Products Per Order by Number of Lines in Order (First Ten Rows)

orDerS WIth more lIneS 
than proDuCtS

lIneS In orDer numBer oF orDerS numBer %

1 139,561 0 0.0%

2 32,758 977 3.0%

3 12,794 1,407 11.0%

4 3,888 894 23.0%

5 1,735 532 30.7%

6 963 395 41.0%

7 477 223 46.8%

8 266 124 46.6%

9 175 93 53.1%

10 110 65 59.1%
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This query calculates the number and percentage of orders paid by American 
Express by customers in each state, and then returns the states ordered with 
the highest proportion at the top. The query only chooses states that have at 
least 100 orders, in order to eliminate specious state codes. Notice the use of 1.0 
instead of 1 for the average. Some databases (notably SQL Server) do integer 
arithmetic on integers. So, the average of 1 and 2 is 1 rather than 1.5. Table 2-6 
shows the top ten states by this proportion.

From Summarizing One Column to Summarizing All 
Columns

So far, the exploratory data analysis has focused on summarizing values in 
a single column. This section first combines the various results into a single 
summary for a column. It then extends this summary from a single column 
to all columns in a table. In the process, we use SQL (or alternatively Excel) to 
generate a SQL query, which generates the summaries.

Good Summary for One Column
For exploring data, the following information is a good summary for a single column:

 ■ The number of distinct values in the column

 ■ Minimum and maximum values

 ■ An example of the most common value (the mode)

 ■ An example of the least common value (the antimode)

table 2-6: Percent of American Express Payment for Top Ten States with Greater Than 100 Orders

State # orDerS # ae % ae

GA 2,865 1,141 39.8%

PR 168 61 36.3%

LA 733 233 31.8%

FL 10,185 3,178 31.2%

NY 53,537 16,331 30.5%

DC 1,969 586 29.8%

NJ 21,274 6,321 29.7%

MS 215 63 29.3%

MT 111 29 26.1%

UT 361 94 26.0%
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 ■ Frequency of the minimum and maximum values

 ■ Frequency of the mode and antimode

 ■ Number of values that occur only one time

 ■ Number of modes (because the most common value is not necessarily 
unique)

 ■ Number of antimodes

These summary statistics are defined for all data types. Additional information 
might be of interest for other data types, such as the minimum and maximum 
length of strings, the average value of a numeric, and the number of times when 
a date has no time component.

The following query calculates these values for State in Orders:

WITH osum as (
      SELECT 'state' as col, State as val, COUNT(*) as freq
      FROM Orders o
      GROUP BY State
     )
SELECT osum.col, COUNT(*) as numvalues,
       MAX(freqnull) as freqnull,
       MIN(minval) as minval,
       SUM(CASE WHEN val = minval THEN freq ELSE 0 END) as numminvals,
       MAX(maxval) as maxval,
       SUM(CASE WHEN val = maxval THEN freq ELSE 0 END) as nummaxvals,
       MIN(CASE WHEN freq = maxfreq THEN val END) as mode,
       SUM(CASE WHEN freq = maxfreq THEN 1 ELSE 0 END) as nummodes,
       MAX(maxfreq) as modefreq,
       MIN(CASE WHEN freq = minfreq THEN val END) as antimode,
       SUM(CASE WHEN freq = minfreq THEN 1 ELSE 0 END) as numantimodes,
       MAX(minfreq) as antimodefreq,
       SUM(CASE WHEN freq = 1 THEN freq ELSE 0 END) as numuniques
FROM osum CROSS JOIN
     (SELECT MIN(freq) as minfreq, MAX(freq) as maxfreq,
             MIN(val) as minval, MAX(val) as maxval,
             SUM(CASE WHEN val IS NULL THEN freq ELSE 0 END) as freqnull
      FROM osum
     ) summary
GROUP BY osum.col

This query follows a simple logic. The CTE osum summarizes the data by State. 
The second subquery summarizes the summary, producing values for:

 ■ Minimum and maximum frequency

 ■ Minimum and maximum values

 ■ Number of NULL values
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The outer query combines these two, making judicious use of the CASE statement.
The results for State are as follows:

 ■ Number of values: 92

 ■ Minimum value: ““

 ■ Maximum value: YU

 ■ Mode:  NY

 ■ Antimode:  BD

 ■ Frequency of Nulls:  0

 ■ Frequency of Min:  1,119

 ■ Frequency of Max:  2

 ■ Frequency of Mode:  53,537

 ■ Frequency of Antimode:  1

 ■ Number of Unique Values:  14

 ■ Number of Modes:  1

 ■ Number of Antimodes:  14

As mentioned earlier, this summary works for all data types.
The query is set up so only the first row in the CTE needs to change for another 

column. So, it is easy to get results for, say, TotalPrice:

 ■ Number of values:  7,653

 ■ Minimum value:  $0.00

 ■ Maximum value:  $9,848.96

 ■ Mode:  $0.00

 ■ Antimode:  $0.20

 ■ Frequency of Nulls:  0

 ■ Frequency of Min:  9,128

 ■ Frequency of Max:  1

 ■ Frequency of Mode:  9,128

 ■ Frequency of Antimode:  1

 ■ Number of Unique Values:  4,115

 ■ Number of Modes:  1

 ■ Number of Antimodes:  4,115

The most common value of TotalPrice is $0. One reason for this is that all other 
values have both dollars and cents in their values. The proportion of orders with 



 Chapter 2 ■ What’s in a table? Getting Started with Data exploration 93

$0 value is small. This suggests doing the same analysis but using only the dol-
lar amount of TotalPrice. This is accomplished by replacing the TotalPrice 
as val with FLOOR(TotalPrice) as val.

The next two sections approach the question of how to generate this infor-
mation for all columns in a table. The strategy is to query the database for all 
columns in a table and then use SQL or Excel to write the query.

Query to Get All Columns in a Table
Most databases store information about their columns and tables in special sys-
tem tables and views. The following query returns the table name and column 
names of all the columns in the Orders table, using a common syntax:

SELECT (table_schema + '.' + table_name) as table_name, column_name,
       ordinal_position
FROM INFORMATION_SCHEMA.COLUMNS c
WHERE LOWER(table_name) = 'orders'

See the Appendix for mechanisms in other databases.
The results are in Table 2-7, which is simply the table name and list of columns 

in the table. The view INFORMATION_SCHEMA.COLUMNS also contains information 
that the query does not use, such as whether the column allows NULL values 
and the type of the column.

table 2-7: Column Names in Orders

taBle_name Column_name orDInal_poSItIon

Orders ORDERID 1

Orders CUSTOMERID 2

Orders CAMPAIGNID 3

Orders ORDERDATE 4

Orders CITY 5

Orders STATE 6

Orders ZIPCODE 7

Orders PAYMENTTYPE 8

Orders TOTALPRICE 9

Orders NUMORDERLINES 10

Orders NUMUNITS 11
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Using SQL to Generate Summary Code
The goal is to summarize all the columns in a table, using an information summary 
subquery for each column. Such a query has the following pattern for Orders:

(INFORMATION SUBQUERY for orderid)
UNION ALL (INFORMATION SUBQUERY for customerid)
UNION ALL (INFORMATION SUBQUERY for campaignid)
UNION ALL (INFORMATION SUBQUERY for orderdate)
UNION ALL (INFORMATION SUBQUERY for city)
UNION ALL (INFORMATION SUBQUERY for state)
UNION ALL (INFORMATION SUBQUERY for zipcode)
UNION ALL (INFORMATION SUBQUERY for paymenttype)
UNION ALL (INFORMATION SUBQUERY for totalprice)
UNION ALL (INFORMATION SUBQUERY for numorderlines)
UNION ALL (INFORMATION SUBQUERY for numunits)

The information subquery is similar to the earlier version, with the mode and 
antimode values removed (just to simplify the query for explanation).

There are four other modifications to the query. The first is to remove the 
CTE. A UNION ALL query can have only one WITH clause, instead of one for each 
subquery. The second is to include a placeholder called <start> at the beginning. 
The third is to convert the minimum and maximum values to strings because 
all values in a given column need to be of the same type for the UNION ALL. The 
resulting query has the general form:

<start> SELECT '<col>' as colname, COUNT(*) as numvalues,
       MAX(freqnull) as freqnull,
       CAST(MIN(minval) as VARCHAR(255)) as minval,
       SUM(CASE WHEN <col> = minval THEN freq ELSE 0 END) as numminvals,
       CAST(MAX(maxval) as VARCHAR(255)) as maxval,
       SUM(CASE WHEN <col> = maxval THEN freq ELSE 0 END) as nummaxvals,
       SUM(CASE WHEN freq = 1 THEN freq ELSE 0 END) as numuniques
FROM (SELECT <col>, COUNT(*) as freq
      FROM <tab>
      GROUP BY <col>) osum CROSS JOIN
     (SELECT MIN(<col>) as minval, MAX(<col>) as maxval,
             SUM(CASE WHEN <col> IS NULL THEN 1 ELSE 0 END) as freqnull
      FROM <tab>
     ) summary

The next step is to put this query, as long as it is, into a single line.
To construct the final query, we’ll use the string function REPLACE() to put 

in the column and table names:

SELECT REPLACE(REPLACE(REPLACE('<start> SELECT ''<col>'' as colname,
COUNT(*) as numvalues, MAX(freqnull) as freqnull, CAST(MIN(minval) as
VARCHAR(255)) as minval, SUM(CASE WHEN <col> = minval THEN freq ELSE 0
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END) as numminvals, CAST(MAX(maxval) as VARCHAR(255)) as maxval, SUM
(CASE WHEN <col> = maxval THEN freq ELSE 0 END) as nummaxvals, SUM(CASE
WHEN freq = 1 THEN 1 ELSE 0 END) as numuniques FROM (SELECT <col>,
COUNT(*) as freq FROM <tab> GROUP BY <col>) osum CROSS JOIN (SELECT
MIN(<col>) as minval, MAX(<col>) as maxval, SUM(CASE WHEN <col> IS NULL
THEN 1 ELSE 0 END) as freqnull FROM <tab>) summary',
                               '<col>', column_name),
                       '<tab>', table_name),
               '<start>',
                 (CASE WHEN ordinal_position = 1 THEN ''
                       ELSE 'UNION ALL' END))
FROM (SELECT table_name, column_name, ordinal_position
      FROM INFORMATION_SCHEMA.COLUMNS
      WHERE lower(table_name) = 'orders') tc

This query replaces three placeholders in the query string with appropriate 
values. The “<col>” string gets replaced with the column name, which comes 
from INFORMATION_SCHEMA.COLUMNS. The “<tab>” string gets replaced with the 
table name. And, the “<starting>” string gets “UNION ALL” for all but the first 
row. That is how the different subqueries are combined.

This query can be pasted into the query tool. Table 2-8 shows the results from 
running the resulting query.

Note that we could also construct this query in Excel. This starts by querying 
the metadata table for the names of the columns in the table. SUBSTITUTE() can 
then be used to do the replacements and get the final query.

table 2-8: Information about the Columns in Orders Table

Colname # valueS # null
# mInImum 

value
# maxImum 

value # unIque

OrderId 192,983 0 1 1 192,983

CustomerId 189,560 0 3,424 1 189,559

CampaignId 239 0 5 4 24

OrderDate 2,541 0 181 2 0

City 12,825 0 17 5 6,318

State 92 0 1,119 2 14

ZipCode 15,579 0 144 1 5,954

PaymentType 6 0 313 77,017 0

TotalPrice 7,653 0 9,128 1 4,115

NumOrderLines 41 0 139,561 1 14

NumUnits 142 0 127,914 1 55
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Lessons Learned

Databases are well suited to data exploration because databases are close to 
the data. Most relational databases are inherently parallel—meaning they can 
take advantage of multiple processors and multiple disks—so a database is 
often the best choice in terms of performance as well. Excel charting is a useful 
companion because it is familiar to business people and charts are a powerful 
way to communicate results. This chapter introduces several types of charts 
including column charts, line charts, scatter plots, and sparklines.

Data exploration starts by investigating the values stored in various col-
umns in tables. Histograms are a good way to see distributions of values in 
particular columns, although numeric values often need to be grouped to 
see their distributions. There are various ways of grouping numeric values 
into ranges, including tiling—creating equal-sized groups such as quintiles 
and deciles.

Various other metrics are of interest in describing data in columns. The most 
common value is called the mode, which can be calculated in SQL.

Ultimately, it is more efficient to investigate all columns at once rather than 
each column one at a time. The chapter ends with a mechanism for creating 
a single query to summarize all columns at the same time. This method uses 
SQL or Excel to create a complex query, which is then run to get summaries for 
all the columns in a table.

The next chapter moves from just exploring and looking at the data to deter-
mining whether patterns in the data are, in fact, statistically significant.



97

The previous two chapters show how to do various calculations and visualizations 
using SQL and Excel. This chapter moves from calculating results to understanding 
the significance of the resulting measurements. When are two values so close 
that they are essentially the same? When are two values far enough apart that 
we are confident in their being different?

The study of measurements and how to interpret them falls under the applied 
science of statistics. Although theoretical aspects of statistics can be daunting, 
the focus here is on applying the results, using tools borrowed from statistics to 
learn about customers through data. As long as we follow common sense and a 
few rules, the results can be applied without diving into theoretical mathematics 
or arcane jargon.

The word “statistics” itself is often misunderstood. It is the plural of “statistic,” 
and a statistic is just a measurement, such as the averages, medians, and modes 
calculated in the previous chapter. A big challenge in statistics is generalizing 
from results on a small group to a larger group. For instance, when a poll reports 
that 50% of likely voters support a particular political candidate, the pollsters 
typically also report a margin of error, such as 2.5%. This margin of error, 
called the sampling margin of error, means that the poll asked a certain number 
of people (the sample) a question and the goal is to generalize the results from 
the sample to the entire population. If another candidate has 48% support, then 
the two candidates are within the margin of error, and the poll does not show 
definitive support for either one.

In business, the preferences or behaviors of one group of customers might 
be similar to or different from another group; the measures are calculated 
from databases rather than from samples. Of course, any calculation on any 
two groups of customers is going to be different, if only in the fifth or sixth 

C h a p t e r 
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how Different Is Different?
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decimal place. But does the difference matter? Do the measurements suggest 
that the groups are equivalent? Or do the measurements provide evidence that 
the groups differ? Statistics can help answer these types of questions.

This chapter introduces the statistics used for addressing the question “how 
different is different,” with an emphasis on the application of the ideas rather 
than their theoretical derivation. Throughout, examples use Excel and SQL to 
illustrate the concepts. Key statistical concepts, such as confidence and the normal 
distribution, are applied to the most common statistic of all, the average value.

Two other statistical techniques are also introduced. One is the difference of 
proportions, which is often used for comparing the response rates between groups 
of customers. The other is the chi-square test, which is also used to compare 
results among different groups of customers and determine whether the groups 
are essentially the same or fundamentally different. The chapter has simple 
examples with small amounts of data to illustrate the ideas. Larger examples 
using the purchase and subscriptions databases illustrate the application of the 
ideas to real datasets stored in databases.

Basic Statistical Concepts

Over the past two centuries, statistics has delved into the mathematics of under-
standing measurements and their interpretation. Although the theoretical aspects 
of the subject are beyond the scope of this book, some basic concepts are very 
useful. In fact, not using the foundation of statistics would be negligent because 
so many brilliant minds have already answered questions quite similar to the 
ones being asked. Of course, the great minds of statistics who were developing 
these techniques a century ago had access neither to modern computers nor to 
the vast volumes of data available today. Many of the methods have nonetheless 
withstood the test of time.

This section discusses some important concepts in statistics, in the spirit of 
introducing useful ideas and terminology:

 ■ The Null Hypothesis

 ■ Confidence (versus probability)

 ■ Normal distribution

The later sections in this chapter build on these ideas, applying the results to 
real-world data.

The Null Hypothesis
Statisticians are naturally skeptical, and that is a good thing. When looking at 
data, their default assumption is that nothing out-of-the-ordinary is going on. 
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This, in turn, implies that observed differences among groups are just due to 
chance. So, if one candidate is polling 50% and the other 45%, statisticians start 
with the assumption that there is no difference in support for the candidates. 
Others may be astounded by such an assumption because 50% seems quite dif-
ferent from 45%. The statistician starts by assuming that the different polling 
numbers are just a matter of chance, probably due to the particular people who 
were included in the poll.

t Ip Perhaps the most important lesson from statistics is skepticism and the willing-
ness to ask questions. The default assumption should be that differences are due to 
chance; data analysis has to demonstrate that this assumption is highly unlikely.

The assumption that nothing extraordinary is occurring has a name, the 
Null Hypothesis. A vocabulary note: “Null” here is a statistical term and has 
nothing to do with the database use of the term. To avoid ambiguity, “Null 
Hypothesis” is a statistical phrase and any other use of “NULL” refers to the 
SQL keyword.

The Null Hypothesis is the hallmark of skepticism, and also the beginning 
of a conversation. The skepticism leads to the question: How confident are we that 
the Null Hypothesis is true? Or, phrased slightly differently: How confident are we 
that the observed difference is due just to chance? These questions have an answer. 
The p-value estimates how often the Null Hypothesis is true. When the p-value 
is very small, such as 0.1%, the statement “I have very little confidence that the 
observed difference is due just to chance” is quite reasonable. This, in turn, 
implies that the observed difference is due to something other than chance. In 
the polling example, a low p-value suggests the following: “The poll shows a 
significant difference in support for the two candidates.”

Statistical significance is equivalent to saying that the p-value is less than some 
low number, often 5% or 10%. When the p-value is larger, the Null Hypothesis 
has pretty good standing. The right way to think about this is “There is no strong 
evidence that something occurred, so I’ll assume that the difference was due to 
chance” or “The polling shows no definitive difference in support for the two 
candidates.” One candidate might have slightly higher polling numbers than 
the other in the small number of people polled. Alas, the difference is not large 
enough for us to have confidence that one candidate has larger support than 
the other in the much larger general (or voting) population.

Imagine running a bunch of different polls at the same time, with the same 
questions and the same methodology. The only variation among these polls is 
the people who are contacted; each is a random sample from the overall popula-
tion. Each poll produces slightly different estimates for the support of the two 
candidates. If we assume that the two candidates have the same support, then 
the p-value is the proportion of all these polls where the difference between the 
two candidates is at least as great as what the first poll finds.
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Sometimes, just formulating the Null Hypothesis is valuable because it 
articulates a business problem in a measurable and testable way. This chapter 
includes various Null Hypotheses, such as:

 ■ The average order amount in New York is the same as the average in 
California.

 ■ A committee with five members was chosen without taking gender into 
account.

 ■ The stop rate for customers who started on 2005-12-28 is the same, regardless 
of the market where they started.

 ■ There is no affinity between the products that customers buy and the states 
where customers live. That is, all customers are as likely to purchase a 
particular product, regardless of where they live.

These hypotheses are stated in clear business terms. They can be validated, 
using available data. The answers, however, are not simply “true” or “false.” 
The answers are a confidence that the statement is true. Very low p-values 
(confidence values) imply a very low confidence that the statement is true, 
implying that the observed difference is significant.

Confidence and Probability
The idea of confidence is central to the notion of understanding whether two things 
are the same or different. Statisticians do not ask “are these different?” Instead, 
they ask the question “what is the confidence that they are the same?” When this 
confidence is very low, it is reasonable to assume that the two measurements 
are indeed different.

Confidence and probability often look the same because both are measured 
in the same units, a value between zero and one that is often written as a per-
centage. Unlike probabilities, confidence includes the subjective opinion of the 
observer. Probability is inherent in whatever is happening. There is a certain 
probability of rain today. There is a certain probability that heads will appear 
on a coin toss, or that a contestant will win the jackpot on a game show, or 
that a particular atom of uranium will decay radioactively in the next minute. 
These are examples where there is a process, and the opinions of the observer 
do not matter.

On the other hand, after an election has occurred and before the votes are 
counted, one might be confident in the outcome of the election. The votes have 
already been cast, so there is a result. Both candidates in the election might be 
confident, believing they are going to win. However, each candidate being 90% 
confident in his or her odds of winning does not imply an overall confidence 
of 180%! Although it looks like a probability, this is confidence because it has a 
subjective component.
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There is a tendency to think of confidence as a probability. This is not 
quite correct because a probability is exact, with the uncertainty in the 
measurement. A confidence may look exact, but the uncertainty is, at least 
partially, in the opinion of the observer. The Monty Hall Paradox, explained 
in the aside, is a simple “probability” paradox that illustrates the difference 
between the two.

The inverse notion of “how different is different” is “when are two things 
the same.” That is, how confident are we that the difference is or is not zero? In the 
polling example, where one candidate has 50% support and the other 45%, 
the Null Hypothesis on the difference is: “The difference in support between 
the two candidates is zero,” meaning the two candidates actually have the 
same support in the overall population. A p-value of 1% means that if mul-
tiple polls were conducted at the same time, with the same methodology and 
with the only difference being the people randomly chosen to participate 
in the polls and the assumption that there is no difference in support for 
the candidates, then we would expect 99% of the polls to have less than the 
observed difference. That is, the observed difference is big, so it suggests a 
real difference in support for the candidates in the overall population. If the 
p-value were 50%, then even though the difference is noticeable, it says very 
little about which candidate has greater support.

Normal Distribution
The normal distribution, also called the bell curve and the Gaussian distribu-
tion, plays a special role in statistics. In many situations, the normal distri-
bution can answer the following question: Given an observed measure on a 
sample (such as a poll), what confidence do we have that the actual measure 
for the whole population falls within a particular range? For instance, if 50% 
of poll respondents say they support Candidate A, what does this mean about 
Candidate A’s support in the whole population? Pollsters are really report-
ing something like “There is a 95% confidence that the candidate’s support is 
between 47.5% and 52.5%.”

In this particular case, the confidence interval is 47.5% to 52.5% and the confidence 
is 95%. A different level of confidence would produce a different interval. So 
the interval for 99.9% confidence would be wider. The interval for 90% would 
be narrower.

Measuring the confidence interval uses the normal distribution, shown in 
Figure 3-1 for the data corresponding to the polling example. In this example, 
the average is 50%, and the range from 47.5% and 52.5% has 95% confidence. 
The two points define the ends of the confidence interval, and the area under 
the curve, between the two points, measures the confidence. The units on the 
vertical axis are shown, but they are not important. They just guarantee that 
the area under the entire curve equals 100%.
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Monty hall paraDox

Monty Hall was the famous host of the television show Let’s Make a Deal from 1963 
through 1986. This popular show offered prizes, which were hidden behind three 
doors. One of the doors contained a grand prize, such as a car or vacation. The other 
two had lesser prizes, such as a goat or rubber chicken. In this simplification of the 
game show, a contestant is asked to choose one of the three doors and can keep the 
prize behind it. One of the remaining two doors is then opened, revealing perhaps 
a rubber chicken, and the contestant is asked whether he or she wants to keep the 
unseen prize behind the chosen door or switch to the other unopened one.

Assuming that the contestant is asked randomly regardless of whether the chosen 
door has the prize, should he or she keep the original choice or switch? Or, does it not 
make a difference? The rest of this aside gives the answer, so stop here if you want to 
think about it.

A simple analysis of the problem might go as follows. When the contestant first 
makes a choice, there are three doors, so the odds of getting the prize are initially 
one in three (or 33.3% probability). After the other door is opened, though, there are 
only two doors remaining, so the probability of either door having the prize is 50%. 
Because the probabilities are the same, switching does not make a difference. It is 
equally likely that the prize is behind either door.

Although an appealing and popular analysis, this is not correct for a subtle 
reason that involves a distinction similar to the distinction between confidence 
and probability: Just because there are two doors does not mean that the prob-
abilities are equal.

Monty knows where the prize is, so he can always open one of the remaining two 
and show a booby prize. Opening one door and showing that there is no grand prize 
behind it adds no new information. This is always possible, regardless of where the 
grand prize is. Because opening some door with no grand prize offers no new informa-
tion, showing a booby prize does not change the original probabilities.

What are those probabilities? The probabilities are 33.3% that the prize is behind 
the original door and 66.7% that the prize is behind one of the other two. These do 
not change, so switching doubles the chances of winning.

Confidence levels can help us understand this problem. At the beginning, the 
contestant should be 33.3% confident that the prize is behind the chosen door and 
66.7% confident that the prize is behind one of the other two. This confidence does 
not change when another door without the prize is opened, because the contestant 
should realize that it is always possible to show a door with no prize. Nothing has 
changed. Given the opportunity to switch, the contestant should do so, and double 
his or her chances of winning.

The normal distribution is a family of curves, defined by two numbers, the 
average and standard deviation. The average determines where the center of the 
distribution is, so smaller averages result in curves shifted to the left, and larger 
averages have curves shifted to the right. The standard deviation determines 
how narrow and high or how wide and flat the hump is in the middle. Small 
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standard deviations make the curve spikier; larger standard deviations spread 
it out. Otherwise, the shape of the curve remains the same, and the area under 
all these curves is always one.

Properties of the normal distribution are well understood. So, about 68% of 
the averages from samples fall within one standard deviation of the overall 
average. About 95.5% fall within two standard deviations, and 99.73% fall within 
three standard deviations. By tradition, statistical significance is often taken 
at the 95% level, and this occurs at the not-so-intuitive level of 1.96 standard 
deviations from the average.

Table 3-1 shows the confidence for various confidence intervals measured in 
terms of standard deviations. The distance from a value to the average, measured 
in standard deviations, is called the z-score. This is actually a simple transformation 
on any set of data, where the difference between the value and average is divided by 
the standard deviation. Z-scores are particularly useful when comparing variables 
that have different ranges, such as the average age and average income of a group 
of people. Z-scores are also useful for transforming variables for data mining.

The values in Table 3-1 were calculated using the Excel formula:

<confidence> = NORMSDIST(<z-score>) – NORMSDIST(- <z-score>)

In Excel, the function NORMSDIST() calculates the area under the normal distri-
bution up to a particular z-score. That is, it defines the confidence interval from 
minus infinity to the z-score. To get a finite confidence interval on either side of 
the average, calculate the one from minus infinity to <value> and then subtract 
out the one from minus infinity to minus z-score, as shown in Figure 3-2.

The preceding formula works for z-scores that are positive. A slight variation 
works for all z-scores:

<confidence> = ABS(NORMSDIST(<z-score>) – NORMSDIST(- <z-score>))

Figure 3-1:  The area under the normal distribution, between two points, is the confidence that 
the measurement on the entire population falls in that range.
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Figure 3-2:  The Excel function NORMSDIST() can be used to calculate the confidence for an 
interval around the average.

table 3-1:  Confidence Levels Associated with Various Z-Scores (which is half the width of the 
confidence interval measured in standard deviations)

Z-SCore ConFIDenCe

1.00 68.269%

1.64 89.899%

1.96 95.000%

2.00 95.450%

2.50 98.758%

3.00 99.730%

3.29 99.900%

3.89 99.990%

4.00 99.994%

4.42 99.999%

5.00 100.000%

From the preceding polling example, the standard deviation can be reverse 
engineered. The confidence is 95%, implying that the confidence interval ranges 
1.96 times the standard deviation on either side of the average. Because the 
confidence interval is 2.5% on either side of the average, the standard devia-
tion is 2.5%/1.96 or 1.276%. This information can be used to calculate the 99.9% 
confidence interval. It is 3.29 times the standard deviation. So, the confidence 
interval for the poll with 99.9% confidence ranges from 50% – 3.29*1.276% to 
50% + 3.29*1.276%, or 45.8% to 54.2%.

As a final note, the normal distribution depends on knowing the average and 
standard deviation. All we have is data, which does not include this informa-
tion directly. Fortunately, statistics provides some methods for estimating these 
values from data, as explained in examples throughout this chapter.



 Chapter 3 ■ how Different Is Different? 105

How Different Are the Averages?

The retail purchase data has purchases from all 50 states, and then some. This 
section addresses the question of whether the average purchase amount (in the 
column TotalPrice) differs by state. Statistics answers this question, and most 
of the calculations can be done using SQL queries.

Let’s start with the observation that the average purchase amount for the 
17,839 purchases from California is $85.48 and the average purchase amount 
for the 53,537 purchases from New York is $70.14. Is this difference significant?

The Approach
Let’s start by putting all the orders from New York and California into one big 
bucket whose overall average total price is $73.98. The question is: What is the 
likelihood that a random subset of 17,839 purchases from this bucket has an average
TotalPrice of $85.48? If this probability is largish, then orders from California 
look like a random sample, and there is nothing special about them. On the 
other hand, a small p-value suggests that orders from California are different 
from a random sample of orders from the two states, leading to the conclusion 
that California orders are different.

Looking at extreme cases can help shed light on this approach. Assume that all 
orders from California are exactly $85.48 and all orders from New York are exactly 
$70.14. In this case, there is only one group of orders from the bucket whose average 
amount is $85.48—the group that consists of exactly the California orders. If the 
orders took on only these two values, it would be safe to say that distinction between 
New York and California is not due just to chance. It is due to some other factor.

A cursory look at the data shows that this is not the case. Given that TotalPrice 
runs the gamut of values from $0 to $10,000, can we say anything about whether the 
difference in average order size in New York and California is due to randomness, 
or due to a difference in the markets?

Standard Deviation for Subset Averages
The preceding question is about averages of samples. Something called the Central 
Limit Theorem in statistics sheds light on precisely the subject of the average 
of a subset of values randomly selected from a larger group. This theorem says 
that if we repeatedly take samples of a given size, then the distribution of the 
averages of these samples approximates a normal distribution, whose average 
and standard deviation are based on exactly three factors:

 ■ The average of the original data

 ■ The standard deviation of the original data

 ■ The size of the sample
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Notice that the Central Limit Theorem says nothing about the distribution of 
the original values. The wonder of this theorem is that it works for basically 
any distribution of the original values. The Central Limit Theorem tells us 
about the distribution of the averages of the samples, not the distribution of the 
original values.

Consider the average TotalPrice of ten orders taken randomly. If this process 
is repeated, the averages approximate a normal distribution. If instead the 
samples contained one hundred orders rather than ten, the averages also follow 
a normal distribution, but one whose standard deviation is a bit smaller. As the 
size of the samples increases, the distribution of the average forms a narrower 
band around the actual average in the original data. Figure 3-3 shows some 
distributions for the average value of TotalPrice for different sized groups 
coming from the California–New York orders.

According to the Central Limit Theorem, the average of the distribution is the 
average of the original data and the standard deviation is the standard deviation 
of the original data divided by the square root of the sample size. As the sample 
size gets larger, the standard deviation gets smaller, and the distribution becomes 
taller and narrower and more centered on the average. This means that the aver-
age of a larger sample is much more likely to be very close to the overall average, 
than the average of a smaller sample. In statistics-speak, the standard deviation 
of the average of a sample is called the standard error (of the sample). So, the previ-
ous formulation says that the standard error of a sample is equal to the standard 
deviation of the population divided by the square root of the sample size.

Now, the question about the average values of California and New York 
gets a little tricky. It is trivial to calculate the average and standard deviation 
of the New York and California orders, using the SQL aggregation functions 
AVG() and STDDEV(). However, the question that we want to answer is slightly 

Figure 3-3: The theoretical distributions of TotalPrice for different sample sizes follow the 
normal distribution.
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different. The question is: What is the likelihood that taking the average of 17,839 
values randomly chosen from the population results in an average of $85.48 and taking 
a sample of 53,537 values results in $70.14?

Looking at the distribution of values from each state helps to understand what 
is happening. The following SQL query returns the counts of the TotalPrice 
column in five-dollar increments:

SELECT 5 * FLOOR(TotalPrice / 5),
       SUM(CASE WHEN State = 'CA' THEN 1 ELSE 0 END) as CA,
       SUM(CASE WHEN State = 'NY' THEN 1 ELSE 0 END) as NY
FROM Orders o
WHERE o.State IN ('CA', 'NY')

A histogram of the results is shown in Figure 3-4, which has the averages for 
each state in the legend. Visually, the two histograms look quite similar, sug-
gesting that the average sizes for each state might well be within the margin of 
error. However, the analysis is not yet complete.

Three Approaches
There are at least three statistical approaches to determining whether the average 
purchase sizes in New York and California are the same or different.

The first approach is to treat the orders as two samples from the same popu-
lation and ask a perhaps now-familiar question: What is the likelihood that the 
differences are due just to random variation? The second approach is to take the 
difference between the two averages and ask: How likely is it that the difference 
could be zero? If the difference could reasonably be zero, then the two observed 
values are too close and should be treated as equivalent to each other.

Figure 3-4:  This chart shows the distribution of the TotalPrice of orders from New York 
and California.
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The third approach is to list out all the different possible combinations of 
purchases and to calculate the averages for all of them. The information from 
all possible combinations makes it possible to determine how often the average 
in two groups exceeds the observed averages. This direct counting approach is 
too computationally intensive in this case, so this section does not go into detail 
into this approach. An example later in this chapter uses the counting approach.

Estimation Based on Two Samples

New York and California have 71,376 orders, with an average size of $73.98 and 
a standard deviation of $197.23. The orders from California are a subgroup of 
this population, comprising 17,839 orders with an average size of $85.48. What is 
the confidence that this subgroup is just a random sample pulled from the data (meaning 
that the observed difference is due only to chance)?

As mentioned earlier, the standard deviation of the sample average is the 
standard deviation of the overall data divided by the square root of the sample 
size. For instance, the 17,839 orders from California constitute a sample from 
the original population. Based on the overall data the average expected value 
should be $73.98 and the standard deviation $197.23 divided by the square root 
of 71,376, which is about $0.74.

An average of $85.48 seems quite far from $73.98, so it seems unlikely that 
the results for California are just “random” error. There is probably some cause 
for the difference. Perhaps Californians are different from New Yorkers in their 
affinity for various products. Perhaps marketing campaigns are different in the 
two states. Perhaps brand awareness differs in the two states.

The NORMDIST() function in Excel makes it possible to quantify the confidence. 
The first argument to NORMDIST() is the observed average, the second is the expected 
average, and then the standard deviation. The last argument tells NORMDIST() to 
return the cumulative area from minus infinity to the observed value.

Quantifying the confidence requires explaining what to look for. Getting any 
particular value for the average—whether $85.48 or $73.98 or $123.45 or what-
ever—is highly unlikely. Instead, the question is: What is the probability that a 
random sample’s average value is at least as far from the overall average as the observed 
sample average? Notice that this statement does not say whether the value is bigger 
or smaller than the average, just the distance away. The expression to do this is:

=2*MIN(1-NORMDIST(85.14, 73.98, 0.74, 1), NORMDIST(85.14, 73.98, 0.74, 1))

This expression calculates the probability of a random sample’s average being 
in the tail of the distribution of averages—that is, as far away as or farther away 
from the overall average than the observed sample average.

The multiplication by two is because the tail can be on either side of the overall 
average. The MIN() is needed because there are two possibilities, depending 
on whether the sample average is less than or greater than the overall average. 
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When the observed sample average is less than the overall average, the tail is 
from minus infinity to the observed value; NORMDIST() calculates this value. 
When the observed sample average is greater than the overall average, then the 
tail is on the other side and goes from the observed value to positive infinity; 
1-NORMDIST() calculates this value.

For the case at hand, the calculated result gives a p-value that is indistinguishable 
from zero, meaning that the high value for California relative to New York is 
not due to chance.

Another way of looking at this is using the z-score, which measures the distance 
from the average to the observed value, in multiples of standard deviations. The 
expression to calculate the z-score is ($84.48 – $73.98)/$0.74, which comes to 14.2 
standard deviations away. That is a long way away, and it is very, very, very unlikely 
that the average order size for California is due to nothing more than chance.

t Ip The z-score measures how far away an observed value is from the, in units of 
standard deviations. It is the difference divided by the standard deviation. The z-score 
can be turned into a probability using the Excel formula 2*MIN(1-NORMSDIST(z-
score), NORMSDIST(z-score)).

Estimation Based on Difference

The previous calculation compared the results of one state to the combined 
orders from both states. The following series of questions is a chain of reasoning 
that shows another way to think about this problem:

 ■ Does the average TotalPrice differ between New York and California?

 ■ Could the difference between the average TotalPrice for the two states 
be zero?

 ■ What is the confidence of the Null Hypothesis that the difference between 
the TotalPrice of New York and the TotalPrice of California is zero?

That is, New York and California can be compared by calculating the difference 
between the two values rather than looking at the values themselves. The 
difference is $15.34 = $85.48 – $70.14. Given the information about the two groups, 
is this statistically significant?

Once again, the differences between the averages follow a distribution, whose 
average is zero (because samples from the same distribution have the same 
expected average). Calculating the standard deviation uses another formula 
from statistics. The standard deviation of the difference is the square root of the 
sum of the squares of the standard deviations of each sample. This formula is 
similar to the Pythagorean formula from high school geometry. Instead of sides 
of a right triangle, though, the formula is about standard deviations.

In the example, the standard error for California is $1.70 and for New York it 
is $0.81. The square root of the sum of the squares yields $1.88.
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The observed difference of $15.34 corresponds to about eight standard 
deviations from zero. The corresponding p-value is essentially zero, meaning 
that the observed difference is likely to be significant. This produces the same 
result as before; orders from California and New York have differences that are 
not due merely to chance.

Investigating the distributions of the orders highlights some differences. 
New York has twice the proportion of orders whose TotalPrice is zero, which 
suggests that there is a difference between the states. For orders less than $100, 
the two states look identical. On the other hand, California has relatively more 
orders greater than $100.

Sampling from a Table

Sampling, however, is much more useful than just comparing average values. 
Here are some examples of how various samples might be used.

A sample of orders might be used for visualizing data. A scatter plot with 
tens or hundreds of thousands of points simply is not feasible; it will look like 
a big blob of color. However, getting a random sample of data might convey 
important information.

Sometimes, we might want to repeat the random sample, so it can be re-created 
at will. This is often true when—due to permissions—we are unable to store 
the sample in a table of our own.

A random sample is just what its name suggests—random. So, a given sta-
tistic on the sample, such as the average order size varies around the average 
in the entire population. Sometimes, we want to be sure that the data is as 
representative as possible for certain columns. For instance, we might want 
the average order size to be as similar to the overall population as possible. 
Or, the gender and channel mix to match the overall population. Stratified 
sampling handles this.

A balanced sample is also quite useful for comparing measures on differ-
ent subsets of the population, such as responders and non-responders to a 
campaign. Often, one category dominates, so any attempt to visualize the data 
is really just about the dominant category. The solution is a balanced sample, 
where the sizes of each group are the same. A balanced sample can also be 
very useful as the training set for data mining algorithms.

Random Sample
A random sample is different from an arbitrary collection of rows, such as the 
first 10% that appear in the table. Statistically, “random” means that each row has 
the same probability of being selected. Many databases have a random number 
generator of some sort that can be used for this purpose. A typical function is 
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RAND(). It can be called without any arguments. Sometimes, the function takes 
an argument, which sets a seed so the same sequence of numbers can be gener-
ated at different times.

The following code (or similar code using the appropriate function) would 
work in many databases for obtaining a 10% random sample:

SELECT t.*
FROM <t> t
WHERE RAND() < 0.1

Note that this does not return exactly 10% of the rows. It is an approximation. 
Because the random numbers generators are usually pretty good, on a larger 
data set, it will return very close to 10% of the data.

This query does not work in SQL Server because the RAND() function in SQL 
Server function only returns one value for the entire query. The query returns all 
the rows in the table 10% of the time and no rows 90% of the time. The solution 
is to use a function such as NEWID(), which is guaranteed to return a different 
value each time it is called:

SELECT TOP 10 PERCENT t.*
FROM <t> t
ORDER BY NEWID()

This query does return exactly 10% of the data (well, within one record).
This version has to sort all the records in the table, which is rather expensive, in 

comparison to the WHERE clause. Another way of writing the above query is to seed 
the random number generator used by RAND() with value that changes each time 
the function is called. Unfortunately, the seed is an integer and the value returned 
by NEWID() is not an integer. Fortunately, the function CHECKSUM() bridges this gap:

SELECT t.*
FROM <t> t
WHERE RAND(CHECKSUM(NEWID())) < 0.1

This query seeds the random number generator with a different value each time 
it is called, satisfying the need for a different value with each call.

Repeatable Random Sample
Sometimes, a random sample needs to be reproducible at a different time. That 
is, you can reconstruct the same sample whenever you need to. One way to 
approach this is by using an id as a seed for the random number generator:

SELECT t.*
FROM <t> t
WHERE RAND(id) < 0.1
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This generates the same random number each time an id is encountered. To get 
different samples, the seed can be modified as

WHERE RAND(id + 1) < 0.1

The number added to the seed changes the sample. Unfortunately, because of the 
nature of its random number generator, this does not work well in SQL Server.

Another approach is to use modulo arithmetic along with ROW_NUMBER(). This 
is technically called a pseudo-random number generator. It works by doing an 
arithmetic calculation on the row number and returning those rows:

WITH t as (
      SELECT t.*, ROW_NUMBER() OVER (ORDER BY col) as seqnum
      FROM <t> t
     )
SELECT t.*
FROM t
WHERE (t * 17 + 57) % 101 <= 10;

The expression % is the modulus operator. It calculates the remainder when 
the first number is divided by the second. So, 5 % 2 is 1 because that is the 
remainder after the division. Similarly, 120 % 101 is 19 because that is the 
remainder.

 By adjusting the values in the WHERE expression, you can change the particular 
sample that you get. In general, it is best to use prime numbers for the constants.

Proportional Stratified Sample
A proportional stratified sample is a sample that guarantees that the distribution 
of values in one or more columns match the overall population as closely as 
possible. Consider the Subscribers table. In it, 47.18% of the subscribers are 
active, as returned by the following query:

SELECT AVG(1.0 * IsActive)
FROM Subscribers s;

The average for a random sample will be close to this value, but a bit different. 
For instance, the following does the same calculation on a pseudo-random 
sample of about 1% of the data:

WITH s as (
       SELECT s.*, ROW_NUMBER() OVER (ORDER BY SubscriberId) as seqnum
       FROM Subscribers s
      )
SELECT AVG(1.0 * IsActive)
FROM s
WHERE (seqnum * 17 + 59) % 101 < 1;
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It returns 47.28%. This slight difference is expected. The average from random 
sample is going to vary. However, a sample that exactly matches the original 
distribution might be better for analytic or visualization purposes.

One way to do this in SQL is to order the data by the original values, and 
then take every nth record:

WITH s as (
    SELECT s.*, ROW_NUMBER() OVER (ORDER BY IsActive) as seqnum
    FROM Subscribers s
   )
SELECT AVG(1.0 * IsActive)
FROM s
WHERE seqnum % 100 = 1;

The CTE assigns a sequential number with all the non-actives assigned lower 
numbers followed by all the actives. By then pulling every hundredth record, 
the process takes—to a very close approximation—exactly one out of a hundred 
inactives and one out of a hundred actives. This version returns 47.18%, the 
same as the original data.

The beauty of stratified sampling is that it works with more than one variable. 
For instance, the following query does a stratified sample that has the same 
proportion of subscribers in each market as the original data and each market 
has the same rate of active users as in the original data:

WITH s as (
    SELECT s.*, ROW_NUMBER() OVER (ORDER BY Market, IsActive) as  seqnum
    FROM Subscribers s
   )
SELECT AVG(IsActive)
FROM s
WHERE seqnum % 100 = 1;

Notice that the ORDER BY clause contains all the variables used for stratification.
Stratification can also work on numeric and date variables as well. By 

ordering by the variable and taking an nth sample, the distribution of the 
variable in the sample should be almost exactly the same as in the original 
data.

Balanced Sample
A proportional stratified sample is a type of stratified sample. This is a sample 
where each value in a column (or combination of values from multiple columns) 
is sampled at a pre-defined rate. A balanced sample is another type of stratified 
sample. In the balanced sample, each value appears an equal number of times. 
This is particularly useful for a binary variable, and you want to use the sample 
for visualization or modeling purposes.
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For instance, the upper chart in Figure 3-5 shows a scatter plot of 200 orders 
where the value is less than $200. Some of the points are for American Express 
payers. Some are for other payers. This table does not say much about American 
Express payers, except, perhaps, that AE is used in a minority of orders.

This table was generated using the following query:

SELECT TOP 200 OrderDate,
       (CASE WHEN PaymentType = 'AE' THEN TotalPrice END) as AE,
       (CASE WHEN PaymentType = 'AE' THEN NULL
             ELSE TotalPrice END) as NotAE
FROM Orders
WHERE TotalPrice <= 200
ORDER BY NEWID()

Note that this query uses exactly the same CASE logic for defining AE and NotAE, 
with the THEN and ELSE clauses swapped. This guarantees that each record will 
be counted on one side or the other. In particular, it takes care of NULL values 
without having to check for them explicitly.

The result is a table with three columns. This format is particularly suit-
able for creating a scatter plot for two series: one for AE and one for NotAE. The 

Figure 3-5:  Comparison of 200 customers based on payment method. The upper chart shows 
the results on a random sample, the bottom on a balanced sample.
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lower chart in Figure 3-5 shows a similar plot, but this time using a balanced 
sample. The balanced sample much more clearly shows that AE is associated 
with larger orders. Although true in the first picture as well, it is not obvious. 
The first picture has an equal number of high-valued orders for AE and NotAE. 
Because AE accounts for fewer than 30% of the orders, you would not expect 
the two groups to be equally represented.

t Ip A balanced sample can help visualize differences among a handful of groups. 
This is useful for spotting differences qualitatively.

The query to produce the data assigns a random sequence number to each 
group, using ROW_NUMBER():

WITH o as (
      SELECT o.*,
             ROW_NUMBER() OVER (PARTITION BY isae
                                ORDER BY NEWID()) as seqnum
      FROM (SELECT o.*,
                   (CASE WHEN PaymentType = 'AE' THEN 1 ELSE 0
                    END) as IsAE
            FROM Orders o
            WHERE TotalPrice <= 200
           ) o
     )
SELECT OrderDate,
       (CASE WHEN isae = 1 THEN TotalPrice END) as AE,
       (CASE WHEN isae = 0 THEN TotalPrice END) as NotAE
FROM o
WHERE seqnum <= 100

The only other subtlety is putting the WHERE clause in the subquery rather than 
in the outer query. The query filters the orders before doing the ROW_NUMBER() 
calculation to ensure that one hundred rows for each group are selected.

Counting Possibilities

Averages are interesting, but many of the comparisons between customers 
involve counts, such as the number of customers who have responded to an 
offer, or who have stopped, or who prefer particular products. Counting is a 
simple process, and one that computers excel at.

Counting is not just about individuals, it is also about counting combinations. 
For instance, if there are ten teams in a baseball league, how many different 
possible games are there? Figure 3-6 illustrates the 45 different possible games 
between two teams in the league; each possible game is a line segment con-
necting two boxes. This type of chart is called a link chart, and it can be created 
in Excel as explained in the aside “Creating a Link Chart Using Excel Charts.”
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Figure 3-6:  There are 45 different possible games in a Little League club with ten teams. In this 
chart, each line connecting two boxes represents one possible game.

The study of such combinations is called combinatorics, a field that straddles prob-
ability and statistics. The rest of the chapter looks at statistical approximations to 
questions about combinations, approximations that are good enough for everyday use.

This section starts with a small example that can easily be illustrated and 
counted by hand. The ideas are then extended to the larger numbers found in 
customer databases, along with the SQL and Excel code needed for doing the 
calculations.

How Many Men?
This first counting example asks the following two questions about a committee 
that has five members:

 ■ What is the probability that the committee has exactly two men?

 ■ What is the probability that the committee has at most two men?

For the purposes of this example, men and women are equally likely to be on 
the committee.

Table 3-3 lists the 32 possible combinations of people that could be on the com-
mittee, in terms of gender. One combination has all males. One has all females. Five 
each have exactly one male or exactly one female. In all, there are 32 combinations, 
which is two raised to the fifth power: “Two,” because there are two possibilities, 
male or female; “fifth power,” because there are five people on the committee.
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CreatIng a lInk Chart USIng exCel ChartS

The chart in Figure 3-6 is a link chart that shows connections between pairs of things 
(in this case, teams). Perhaps surprisingly, this is an Excel scatter plot. There are two 
advantages to doing this in Excel rather than manually in PowerPoint or another tool. 
First, the boxes and lines can be placed precisely where they need to be, which gives 
the chart a cleaner and more professional look. Second, making small changes, such 
as moving a box or changing a label, should be easier because everything in the chart 
is created from data used to generate the chart.

When thinking about making a complicated, nontraditional chart, divide the 
problem into manageable pieces. This chart has three such pieces:

 ■ The ten teams, which are represented as squares, arrayed around a circle

 ■ The letter representing each team, inside the squares

 ■ The lines connecting the teams together

The first step is to place the squares representing the teams. For this, we dip into trigo-
nometry, and set the X-coordinates using the sine of an angle and the Y-coordinate 
using the cosine. The basic formula for the nth team is:

<x-coordinate> = SIN(2*PI()/<n>)

<y-coordinate> = COS(2*PI()/<n>)

In the actual chart, these are rotated by a fraction, by adding an offset inside the 
SIN() and COS() functions. These formulas give the positions of the teams, as X- and 
Y-coordinates.

Labeling the points with the team names is a bit more challenging. There are three 
options for labeling points. Two of them use the X- and Y-coordinates, but these are 
always numbers. The third option, the “Series name” option, is the only way to get a 
name. This unfortunately requires creating a separate series for each point, so each 
has a unique name. The following steps accomplish this:

 1. Put the X-coordinate in one column.

 2. Label the columns to the right sequentially with the desired names (A, B, C, and 
so on). These columns contain the Y-coordinate for the points.

 3. In the column for team “A,” all the values are NA(), except for the one corre-
sponding to the A value, and so on for the other columns.

A useful formula to set the values in this table is something like:

=IF($G3=J$2, $E3, NA())

This formula assumes that the Y-coordinates are in column E, and the team labels are 
in both row 2 as column headers and in column G as row labels. By careful use of abso-
lute and relative references (the use of “$” in the cell reference), this formula can be 
copied through the whole range of cells.

The result is an array of cells with values shown in Table 3-2. The first column is the 
X-coordinate, the second is the Y-coordinate, and the rest are the Y-coordinates for a 
single team, with other values in the columns being #N/A.

continues
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Select the whole table starting from the X-value and insert a scatter plot with no 
lines. The first series represents all ten teams. For these, set the marker to squares with 
a white background and shadow; this chart uses a size of 15 for the marker. The rest of 
the series are for the labels, which have to be inserted individually. To do this, select 
the series on the chart and set the line and marker patterns to “None.” Then click the 
“Data Labels” tab and choose “Series name” and click “OK.” When the label appears, 
right-click it and choose “Format Data Labels.” On the “Alignment” tab, set the “Label 
Position” to be “Center.” With this process, the boxes and their labels are on the chart.

The final step is to include the lines that connect the squares. The idea is to have 
a table of X- and Y-coordinates and to add a new series into the scatter plot that has 
lines between the points, but no markers. Unfortunately, the scatter plot connects all 
points, one after the other, which is like trying to draw the lines without lifting a pencil 
from the paper. This is hard. Fortunately, when a point has an #N/A value, the scatter 
plot does not draw the lines going to or from the point; this is like lifting the pencil off 
the paper. So, each pair of points that defines a connection needs to be interspersed 
with #N/A values.

There are 45 unique line segments in the chart because each team only needs to be 
connected to the teams after it alphabetically. “A” gets connected to “B” and “C” and so 
on. However, “I” only gets connected to “J.” These segments are placed in a table, where 
three rows define the segment. Two rows define the beginning and ending of the line, 
and the third contains the function NA(). A point from the table makes the line disap-
pear from the chart.

The resulting chart uses 12 different series. One series defines the points, which are 
placed as boxes. Ten define the labels inside the boxes. And the twelfth series defines 
the line segments that connect them together.

table 3-2: Pivoting the Y-Values for a Circular Link Chart

y-ValUe

y x-ValUe all a B C D . . . J

A 0.00 1.00 1.00 #N/A #N/A #N/A #N/A

B 0.59 0.81 #N/A 0.81 #N/A #N/A #N/A

C 0.95 0.31 #N/A #N/A 0.31 #N/A #N/A

D 0.95 −0.31 #N/A #N/A #N/A −0.31 #N/A

E 0.59 −0.81 #N/A #N/A #N/A #N/A #N/A

F 0.00 −1.00 #N/A #N/A #N/A #N/A #N/A

G −0.59 −0.81 #N/A #N/A #N/A #N/A #N/A

H −0.95 −0.31 #N/A #N/A #N/A #N/A #N/A

I −0.95 0.31 #N/A #N/A #N/A #N/A #N/A

J −0.59 0.81 #N/A #N/A #N/A #N/A 0.81

continued
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table 3-3: Thirty-two Possibilities of Gender on a Committee of Five

perSon #1 perSon #2 perSon #3 perSon #4 perSon #5 # M # F

1 M M M M M 5 0

2 M M M M F 4 1

3 M M M F M 4 1

4 M M M F F 3 2

5 M M F M M 4 1

6 M M F M F 3 2

7 M M F F M 3 2

8 M M F F F 2 3

9 M F M M M 4 1

10 M F M M F 3 2

11 M F M F M 3 2

12 M F M F F 2 3

13 M F F M M 3 2

14 M F F M F 2 3

15 M F F F M 2 3

16 M F F F F 1 4

17 F M M M M 4 1

18 F M M M F 3 2

19 F M M F M 3 2

20 F M M F F 2 3

21 F M F M M 3 2

22 F M F M F 2 3

23 F M F F M 2 3

24 F M F F F 1 4

25 F F M M M 3 2

26 F F M M F 2 3

27 F F M F M 2 3

28 F F M F F 1 4

29 F F F M M 2 3

30 F F F M F 1 4

31 F F F F M 1 4

32 F F F F F 0 5
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All these combinations are equally likely, and they can be used to answer 
the original questions. Ten rows in the table have exactly two males: rows 8, 12, 
14, 15, 20, 22, 23, 26, 27, and 29. That is, 10/32 or about 31% of the combinations 
have exactly two males. An additional six rows have zero or one males, for a 
total of 16 combinations with two or fewer males. So, exactly half of all possible 
committees have two or fewer men.

Listing the combinations provides insight, but is cumbersome for all but the 
simplest problems. Fortunately, Excel has two functions that do the work for us. 
The function COMBIN(n, m) calculates the number of combinations of m things 
taken from n things. The question “How many committees of five people have 
two males” is really asking “How many ways are there to choose two things 
(male) from five (the committee size).” The Excel formula is =COMBIN(5, 2).

This function returns the number of combinations, but the original questions asked 
for the proportion of possible committees having exactly two, or two or fewer, males. 
This proportion is answered using something called the binomial formula, which is 
provided in Excel as the function BINOM.DIST(). This function takes four arguments:

 ■ The size of the group (the bigger number)
 ■ The number being chosen (the smaller number)
 ■ The probability (50%, in this case) of being chosen
 ■ A flag that is 0 for the exact probability and 1 for the probability of less 
than or equal to the number chosen

So, the following two formulas provide the answers to the original questions:

=BINOM.DIST(5, 2, 50%, 0)
=BINOM.DIST(5, 2, 50%, 1)

These formulas simplify the calculations needed to answer each question to a single 
function call. The purpose here is not to show the actual steps that BINOM.DIST() 
uses to make the calculation (which involves a lot of messy arithmetic). Instead, 
the purpose is to describe intuitively what’s happening in terms of combinations 
of people. The binomial distribution function merely simplifies the calculation.

How Many Californians?
The second example asks a very similar question about a group of five people. 
In this case, the question is about where people are from. Let’s assume that one 
in ten people who could be on the committee are from California (very roughly 
about one in ten Americans live in California).

 ■ What is the probability that the committee has exactly two Californians?
 ■ What is the probability that the committee has at most two Californians?

Table 3-4 lists all the possibilities. This table is similar to the example for gender, but 
with two differences. First, each possibility consists of five probabilities, one for each 
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table 3-4: Thirty-two Possibilities of State of Origin on a Committee of Five

#1 #2 #3 #4 #5 proB # Ca # not Ca

1 10% 10% 10% 10% 10% 0.001% 5 0

2 10% 10% 10% 10% 90% 0.009% 4 1

3 10% 10% 10% 90% 10% 0.009% 4 1

4 10% 10% 10% 90% 90% 0.081% 3 2

5 10% 10% 90% 10% 10% 0.009% 4 1

6 10% 10% 90% 10% 90% 0.081% 3 2

7 10% 10% 90% 90% 10% 0.081% 3 2

8 10% 10% 90% 90% 90% 0.729% 2 3

9 10% 90% 10% 10% 10% 0.009% 4 1

10 10% 90% 10% 10% 90% 0.081% 3 2

11 10% 90% 10% 90% 10% 0.081% 3 2

12 10% 90% 10% 90% 90% 0.729% 2 3

13 10% 90% 90% 10% 10% 0.081% 3 2

14 10% 90% 90% 10% 90% 0.729% 2 3

15 10% 90% 90% 90% 10% 0.729% 2 3

16 10% 90% 90% 90% 90% 6.561% 1 4

17 90% 10% 10% 10% 10% 0.009% 4 1

18 90% 10% 10% 10% 90% 0.081% 3 2

19 90% 10% 10% 90% 10% 0.081% 3 2

20 90% 10% 10% 90% 90% 0.729% 2 3

21 90% 10% 90% 10% 10% 0.081% 3 2

22 90% 10% 90% 10% 90% 0.729% 2 3

23 90% 10% 90% 90% 10% 0.729% 2 3

24 90% 10% 90% 90% 90% 6.561% 1 4

25 90% 90% 10% 10% 10% 0.081% 3 2

26 90% 90% 10% 10% 90% 0.729% 2 3

27 90% 90% 10% 90% 10% 0.729% 2 3

28 90% 90% 10% 90% 90% 6.561% 1 4

29 90% 90% 90% 10% 10% 0.729% 2 3

30 90% 90% 90% 10% 90% 6.561% 1 4

31 90% 90% 90% 90% 10% 6.561% 1 4

32 90% 90% 90% 90% 90% 59.049% 0 5
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person in the group. The probability is either 10% for the possibility that someone is 
from California or 90% for the possibility that the person is from somewhere else.

In addition, the overall probability for that occurrence is included as an addi-
tional column. In the gender example, each gender is equally likely, so all rows 
have equal weights. In this case, being from California is less likely than not being 
from California, so the rows have different weights. The overall probability for 
any given row is the product of that row’s probabilities. The probability that all 
five people are from California is 10%*10%*10%*10%*10%, which is 0.001%. The 
probability that none of the five are from California is 90%*90%*90%*90%*90%, 
or about 59%. The possibilities are no longer equally likely.

Once again, the detail is interesting. In such a small example, counting all the 
different possibilities is feasible. For example, Table 3-5 shows the probabilities 
for having zero to five Californians in the group. These numbers can be readily 
calculated in Excel using the BINOM.DIST() function, using an expression such 
as BINOM.DIST(5, 2, 10%, 0) to calculate the probability that the committee 
has exactly two Californians.

Null Hypothesis and Confidence
Let’s return to the gender breakdown of five people on a committee. This exam-
ple shows that even when the members are equally split between males and 
females there is still a chance of finding a unisex committee (either all male or 
all female). In fact, 6.2% of the time the committee is unisex, assuming that the 
participants are chosen randomly. If there were enough committees, about 6.2% 
of them would be unisex, assuming the members are chosen randomly from a 
pool that is half women and half men.

Does one committee that is unisex support that idea that gender was involved 
in selecting the members? Or, is it reasonable that the committee was selected 
randomly? Intuitively we might say that it is obvious that gender was used as a 
selection criterion. If people of only one gender were included, it seems obvious 
that people of the other gender were excluded. This intuition would be wrong 

table 3-5: Probability of Having n Californians on a Committee of Five

# Ca # non-Ca proBaBIlIty

0 5 59.049%

1 4 32.805%

2 3 7.290%

3 2 0.810%

4 1 0.045%

5 0 0.001%
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over 6% of the time. And without any other information, whether or not we think 
the committee shows bias depends on our own personal confidence thresholds.

The Null Hypothesis is that the committee members are chosen randomly, without 
regard to gender. What is the confidence that the Null Hypothesis is true, assuming that there 
is one committee and that committee is unisex? Out of 32 possible gender combinations, 
two are unisex. Randomly, unisex committees would be chosen 2/32 or 6% of the 
time. A common statistical test is 5%, so this exceeds the statistical threshold. Using 
this level of statistical significance, even a unisex committee is not evidence of bias.

On the other hand, a unisex committee is either all female or all male. Looking 
at the particular gender reduces the possibilities to one out of 32 (that is, one 
out of 32 possible committees are all female; and one out of 32 are all male). 
Including the gender changes the confidence to about 3%, in which case an all-
male or all-female committee suggests that the Null Hypothesis is false, using 
the standard statistic level of significance. The fact that looking at the problem 
in two slightly different ways produces different results is a good lesson to 
remember when facing problems in the real world.

Warn Ing Slightly changing the problem (such as looking at unisex committees 
versus all-male or all-female committees) can change the answer to a question. Be 
clear about stating the problem to be solved.

Let’s now look at the second example of Californians. What if all members 
were from California? The Null Hypothesis is that people in the committee are 
chosen irrespective of their state of origin. There is only a 0.001% chance that 
a randomly selected committee of five would consist only of Californians. In 
this case, we would be quite confident that the Null Hypothesis is false. And 
that in turn suggests some sort of bias in the process of choosing the members. 
In this case, we would be right in assuming a bias 99.999% of the time.

How Many Customers Are Still Active?
Analyzing committees of five members gives insight into the process of count-
ing possibilities to arrive at probabilities and confidence levels. More interesting 
examples use customer data. Let’s consider the customers in the subscription 
database who started exactly one year before the cutoff date, and of them, the 
proportion that stopped in the first year. In this table, active customers are identi-
fied by having the STOP_TYPE column set to NULL. The following SQL calculates 
this summary information:

SELECT COUNT(*) as numstarts,

       SUM(CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END) as numstops,

       AVG(CASE WHEN StopType IS NOT NULL THEN 1.0 ELSE 0 END

          ) as stoprate

FROM Subscribers

WHERE StartDate = '2005-12-28'
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Notice that the query uses the floating-point constant 1.0 for the average rather 
than the integer 1. This ensures that the average is a floating-point average.

This query returns the following results:

 ■ Exactly 2,409 customers started one year before the cutoff date.

 ■ Of these, 484 were stopped on the cutoff date.

 ■ The stop rate is 20.1%.

Both the number stopped and the stop rate are accurate measurements about 
what happened to the 2,409 customers who started on 2005-12-28. What are the 
confidence intervals for these numbers (assuming we want to generalize the 
result to the whole population)?

This question supposes that there is a process causing customers to stop. This 
process is random and behaves like a lottery. Customers who have the right 
lottery ticket stop (or perhaps customers that have the wrong ticket?); everyone 
else remains active. Our goal is to understand this process better.

The first approach assumes that the number of stops is fixed. Given the number 
of stops, what range of stop rates is likely to cause exactly that number of stops?

The second approach assumes that the stop rate is really fixed at 20.1%. If this 
is the case, how many customers would we expect to stop? Remember the committee 
example. Even though the members have an equal probability of being male or 
female, the committee can still take on any combination of genders. The same is 
true here. The next two subsections examine these approaches in more detail. 
The methods are similar to the methods used for understanding the committee; 
however, the details are a bit different because the sizes are larger.

Given the Count, What Is the Probability?

The observed stop rate is 20.1% for the one-year subscribers. Let’s propose a 
hypothesis that the stop process actually has a stop rate of 15% rather than the 
observed rate. The observed 484 stops are just an outlier, in the same way that 
five people chosen for a committee, at random, all turn out to be women.

Figure 3-7 shows the distribution of values for the number of stops, given 
that the stop rate is 15%, both as a discrete histogram and as a cumulative dis-
tribution. The discrete histogram shows the probability of getting exactly that 
number of stops; this is called the distribution. The cumulative distribution shows 
the probability of getting up to that many stops.

A 15% stop rate should produce, on average, 361 stops (15% of 2,409); this overall 
average is called the expected value. The 484 stops are actually 123 more stops 
than the expected value, leading to the question: What is the probability (p-value) 
of being 123 or more stops away from the expected value? And this question has an 
answer. To a very close approximation, the probability is 0%. The actual num-
ber is more like 0.0000000015%; calculated using the formula 2*MIN(1-BINOM.
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DIST(484, 2409, 15%, 1), BINOM.DIST(484, 2409, 15%, 1)). The p-value 
is twice the size of the tail of the distribution.

So, it is very, very, very unlikely that the original stop rate was 15%. In fact, 
it is so unlikely that we can simply ignore the possibility and assume that the 
stop rate was higher. Okay, so the stop rate is not 15%. What about 16%? Or 
17%? Table 3-6 shows the probability of being in the tail of the distribution for 
a range of different stop rates. Based on this table, it is reasonable to say that 
the stop rate for the underlying stop process could really be anywhere from 
about 18.5% to about 21.5%.

This is a very important idea, so it is worth reconstructing the thought process. 
First, there was a hypothesis. This hypothesis stated that the actual stop process 
stop rate is 15% rather than the observed value of 20.1%. Assuming this hypothesis 
to be true, we then looked at all the different possible combinations of stops that a 
15% stop rate would result in. Of course, listing out all the combinations would be 
too cumbersome; fortunately, the binomial formula simplifies the calculation. Based 
on these counts, we saw that the observed number of stops—484—was quite far 
from the expected number of stops, 361. In fact, there is essentially a 0% probability 
that an observation 123 or more stops away from the average would be observed.

There is nothing magic or general about the fact that 15% does not work and 
values roughly in the range 19%–21% do work. The confidence depends on the 
number of starts in the data. If there were only 100 starts, the difference between 
15% and 20% would not be statistically significant.

Given the Probability, What Is the Number of Stops?

The second question is the inverse of the first one: Given that the underlying stop process 
has a stop rate of 20.1%, what is the likely number of stops? This is a direct application of 
the binomial formula. The calculation BINOM.DIST(484, 2409, 20.1%, 0) returns 

Figure 3-7:  The proportion of combinations with a given number of stops, assuming a 15% stop 
rate and 2,409 starts, follows a binomial distribution.
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table  3-6: Probability of Having 484 Stops on 2,409 Starts Given Various Hypothetical 
Stop Rates

Stop rate expeCteD StopS DIFFerenCe proBaBIlIty oF that Far oFF

17.00% 409.5 −74.5 0.01%

18.00% 433.6 −50.4 0.77%

18.50% 445.7 −38.3 4.33%

18.75% 451.7 −32.3 8.86%

19.00% 457.7 −26.3 16.56%

19.25% 463.7 −20.3 28.35%

19.50% 469.8 −14.2 44.70%

19.75% 475.8 −8.2 65.23%

19.90% 479.4 −4.6 79.06%

20.00% 481.8 −2.2 88.67%

20.10% 484.2 0.2 98.42%

20.25% 487.8 3.8 87.01%

20.50% 493.8 9.8 64.00%

20.75% 499.9 15.9 44.12%

21.00% 505.9 21.9 28.43%

21.25% 511.9 27.9 17.08%

21.50% 517.9 33.9 9.56%

21.75% 524.0 40.0 4.97%

22.00% 530.0 46.0 2.41%

22.50% 542.0 58.0 0.45%

23.00% 554.1 70.1 0.06%

2.03%, saying that only about one time in 50 do exactly 484 stops result. Even with 
a stop rate of exactly 20.1%, the expected value of 484 stops is achieved only 2% of 
the time by a random process. With so many starts, getting a few more or a few 
less is reasonable, assuming that the underlying process is random.

The expected range accounting for 95% of the number of stops can be calculated 
using the binomial formula. This range goes from 445 stops to 523 stops, which in 
turn corresponds to a measured stop rate between 18.5% and 21.7%. Table 3-7 shows 
the probability of the number of stops being in particular ranges around 484 stops.

The Rate or the Number?
Time for a philosophy break. This analysis started with very hard numbers: 
exactly 484 out of 2,409 customers stopped in the first year. After applying some 
ideas from statistics and probability, the hard numbers have become softer. An 
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table 3-7: Probability of a 20% Stop Rate Resulting in Various Ranges Around the Expected Value 
of 484 Stops

WIDth loWer BoUnD hIgher BoUnD proBaBIlIty

3 483.0 485.0 4.42%

15 477.0 491.0 27.95%

25 472.0 496.0 45.80%

51 459.0 509.0 79.46%

75 447.0 521.0 93.91%

79 445.0 523.0 95.18%

101 434.0 534.0 98.88%

126 421.0 546.0 99.86%

151 409.0 559.0 99.99%

exact count has become a confidence of a value within a certain interval. Are 
we better off with or without the statistical analysis?

The situation is more reasonable than it appears. The first observation is that 
the range of 445 stops to 523 stops might seem wide. In fact, it is rather wide. 
However, if there were a million customers who started, with a stop rate of 
20.1%, then the corresponding range would be much tighter. The equivalent 
confidence range would be from about 200,127 to 201,699 stops—or from 20.01% 
to 20.17%. More data implies narrower confidence intervals.

Why is there a confidence interval at all? This is an important question. The 
answer is because of the assumption that customers stop because of some unseen 
process that affects all customers equally. This process causes some percent-
age of customers to stop in the first year. However, the decision of whether one 
particular customer stops is like rolling dice or tossing a coin, which means that 
there might be unusually lucky streaks (lower stop rates) or unusually unlucky 
streaks (higher stop rates), in the same way that a randomly chosen committee 
could have five men or five women.

A random process differs from a deterministic process that says that 
every fifth customer is going to stop in the first year, or that we’ll cancel the 
accounts of everyone named “Pat” at day 241. The results from a determin-
istic process are exact, ignoring the small deviations that might arise due 
to operational error. For instance, for customers who have already started, 
the start process is deterministic; exactly 2,409 customers started. There 
is no confidence interval on this. The number really is 2,409. The statistics 
measure the “decision-to-stop” process, something that is only observed by 
its actual effects on stops.

This section started with an example of a committee with five members 
and moved to a larger example on thousands of starts. As the size of the 
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population increases, confidence in the results increases as well, and the 
corresponding confidence intervals become narrower. As the population 
gets larger, whether we look at the ratio or the absolute number becomes 
less important, simply because both appear to be quite accurate. Fortunately, 
databases store a lot of data, so corresponding confidence intervals are often 
small enough to ignore.

t Ip On large datasets, charts that show visible differences between groups of cus-
tomers are usually showing differences that are statistically significant.

Ratios and Their Statistics

The binomial distribution just counts up all the different combinations and 
determines which proportion of them meets particular conditions. This is very 
powerful for finding confidence intervals for a random process, as described 
in the previous section. This section introduces an alternative method that 
estimates a standard deviation for a ratio, and uses the normal distribution to 
approximate confidence ratios.

Using the normal distribution has two advantages over the binomial dis-
tribution. First, it is applicable in more areas than the binomial distribution; 
for instance, the methods here are more suited for comparing two ratios and 
asking whether they are the same. Second, SQL does not support the calcula-
tions needed for the binomial distribution, but it does support almost all the 
calculations needed for this method.

This section introduces the method for estimating the standard deviation of 
a ratio (which is actually derived from the standard error of a proportion). This 
is then applied to comparing two different ratios. Finally, the section shows 
how to use these ideas to produce lower bounds for ratios that might be more 
appropriate for conservative comparisons of different groups.

Standard Error of a Proportion
Remember that a standard error is just the standard deviation of some statistic 
that has been measured on samples of the overall data. In this case, the statistic 
is a ratio of two variables, such as the number of stops divided by the number of 
starts. The formula for the standard error is simple and can easily be expressed 
in SQL or Excel:

STDERR = SQRT(<ratio> * (1 - <ratio>) / <number of data points>)

That is, the standard error is the square root of the product of the observed prob-
ability times one minus the observed probability divided by the sample size.
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The following SQL query calculates both the standard error and the lower 
and upper bounds of the 95% confidence interval:

SELECT stoprate - 1.96 * stderr as conflower,
       stoprate + 1.96 * stderr as confupper,
       stoprate, stderr, numstarts, numstops
FROM (SELECT SQRT(stoprate * (1 - stoprate) / numstarts) as stderr,
             stoprate, numstarts, numstops
      FROM (SELECT COUNT(*) as numstarts,
                   SUM(CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
                       END) as numstops,
                   AVG(CASE WHEN StopType IS NOT NULL THEN 1.0 ELSE 0
                       END) as stoprate
            FROM Subscribers
            WHERE StartDate = '2005-12-28') s
     ) s

This SQL query uses two nested subqueries to define the columns numstops, 
stoprate, and stderr. The overall expression could be written without sub-
queries, but that would result in a messier query.

This query uses the constant 1.96 to define the 95% confidence bounds for 
the interval. The result is the interval from 18.5% to 21.7%. Recall that using 
the binomial distribution, the exact confidence interval was 18.5% to 21.7%. The 
results are, fortunately and not surprisingly, remarkably close. The standard 
error of proportions is an approximation that uses the normal distribution, it 
is a very good approximation.

The standard error can be used in reverse as well. In the earlier polling 
example, the standard error was 1.27% and the expected probability was 50%. 
What does this say about the number of people who were polled? For this, the 
calculation simply goes in reverse. The formula is:

<number> = <ratio> * (1 - <ratio>) / (<stderr>^2)

For the polling example, it gives the value of 1,552, which is a reasonable size for a poll.
One important observation about the standard error and the population size is 

that halving the standard error corresponds to increasing the population size by a 
factor of four. In plainer language, there is a trade-off between cost and accuracy. 
Reducing the standard error on the poll to 0.635%, half of 1.27%, would require polling 
four times as many people, over 6,000 people instead of 1,500. This would presum-
ably increase costs by a factor of four. Reducing the standard error increases costs.

Confidence Interval on Proportions
Confidence intervals can be derived from the standard error. The three markets in 
the subscription data have the following stop rates for customers who started on 
2005-12-26 (this example uses a slightly different stop rate from the previous example):
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 ■ Gotham, 35.2%

 ■ Metropolis, 34.0%

 ■ Smallville, 20.9%

Are we confident that these stop rates are different? Or, might they all be the 
same? Although it seems unlikely that they are the same because Smallville is 
much smaller than the others, remember that a group of five people drawn at 
random all have the same genders over 5% of the time. Even though Smallville 
has a lower stop rate, it might still be just another reasonable sample.

The place to start is with the confidence intervals for each market. The fol-
lowing query does this calculation:

SELECT Market, stoprate - 1.96 * stderr as conflower,
       stoprate + 1.96 * stderr as confupper,
       stoprate, stderr, numstarts, numstops
FROM (SELECT Market,
             SQRT(stoprate * (1 - stoprate) / numstarts) as stderr,
             stoprate, numstarts, numstops
      FROM (SELECT market, COUNT(*) as numstarts,
                   SUM(CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
                       END) as numstops,
                   AVG(CASE WHEN StopType IS NOT NULL THEN 1.0 ELSE 0
                       END) as stoprate
            FROM Subscribers
            WHERE StartDate IN ('2005-12-26')
            GROUP BY Market) s
     ) s

This query is very similar to the query for the overall calculation, with the addi-
tion of the aggregation by market.

The results in Table 3-8 make it clear that the stop rate for Smallville is differ-
ent from the stop rates for Gotham and Metropolis. The 95% confidence interval 
for Smallville does not overlap with the confidence intervals of the other two 
markets, as shown in Figure 3-8. This is a strong condition. When the confidence 
intervals do not overlap, there is a high confidence that the ratios are different.

table 3-8: Confidence Intervals by Markets for Starts on 26 Dec 2005

95% ConFIDenCe

StopS loWer 
BoUnD

Upper 
BoUnD

StanDarD 
errorMarket StartS # rate

Gotham 2,256 794 35.2% 33.2% 37.2% 1.0%

Metropolis 1,134 385 34.0% 31.2% 36.7% 1.4%

Smallville 666 139 20.9% 17.8% 24.0% 1.6%
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Figure 3-8, by the way, is an Excel scatter plot. The X-axis has the stop rate 
for each market. The Y-values are simply 1, 2, and 3 (because Excel does not 
allow names to be values for a scatter plot); the Y-axis itself has been removed 
because it adds no useful information to the chart. The intervals use the X-Error 
Bar feature, and the labels on the points were added manually, by typing in text 
and placing the labels where desired.

Difference of Proportions
For Metropolis and Gotham, the situation is different because their confidence 
intervals do overlap. The difference between their observed stop rates is 1.2%. 
How likely is it that this difference is due just to chance, if we assume the Null Hypothesis 
that the two values are really equal?

The standard error for the difference between two proportions is quite rea-
sonably called the standard error of the difference of proportions. The formula is 
easily calculated in Excel or SQL:

STDERR = SQRT((<ratio1>*(1-<ratio1>)/<size1>) + (<ratio2>*(1-<ratio2>)/<size2>))

That is, the standard error of the difference of two proportions is the square 
root of the sum of the squares of the standard errors of each proportion (this 
is basically the same as the standard error of a difference of two values). The 
calculation yields a standard error of 1.7% for the difference. The observed 
difference is 1.2%, resulting in a z-score of 0.72 (the z-score is 1.2%/1.7%). 
Such a small z-score is well within a reasonable range, so the difference is 
not significant.

Another way of looking at this is using the 95% confidence interval. The lower 
bound is at the observed difference minus 1.96*1.7% and the upper bound is 
the observed difference plus 1.96*1.7%, which comes to a range from –2.2% to 
4.6%. Because the confidence interval is both positive and negative, it includes 
zero. That is, Gotham and Metropolis could actually have the same stop rate, or 
Metropolis’s stop rate could even be bigger than Gotham’s (the opposite of the 
observed ordering). The observed difference could easily be due to randomness 
of the underlying stop process.

This example shows the different ways that the standard error can be used. 
When confidence intervals do not overlap, the observed values are statistically 

Figure 3-8: When confidence intervals do not overlap, there is a high level of confidence that the 
observed values really are different. So Smallville is clearly different from Gotham and Metropolis.
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different. It is also possible to measure the confidence of the difference between 
two values, using the standard error of the difference of proportions. When the 
resulting confidence interval contains zero, the difference is not significant.

The techniques are only measuring a certain type of significance, related to 
the randomness of underlying processes. The observed values can still provide 
guidance. There is some evidence that Gotham has a higher stop rate than 
Metropolis, some evidence but not enough to be confident. If we had to choose 
one market or the other for a retention program to save customers, Gotham 
would be the likelier candidate because its stop rate is larger. The choice of 
Gotham over Metropolis is based on weak evidence because the difference is 
not statistically significant.

Conservative Lower Bounds
Notice that the confidence intervals for the three markets all have different 
standard errors. This is mostly because the size of each market is different (and 
to a much lesser extent to the fact that the measured stop rates are different). 
To be conservative, it is sometimes useful to use the observed value minus one 
standard error, rather than the observed value. This can change the relative 
values of different groups, particularly because the standard error on a small 
group is larger than the standard error on a larger group. In some cases, using 
a conservative estimate changes the ordering of the different groups, although 
that is not true in this case.

t Ip When comparing ratios on groups that have different sizes, a conservative esti-
mate for the comparison is the observed ratio minus one standard deviation.

Chi-Square

The chi-square test (pronounced to rhyme with “guy” and starting with a hard 
“c” sound) provides another method for addressing the question “how differ-
ent is different?” The chi-square test is appropriate when comparing multiple 
dimensions to each other. Instead of just looking at the “stop rate” for custom-
ers, for instance, the customers are divided into two distinct groups, those who 
stopped and those who are active. These groups can then be compared across 
different dimensions, such as channel, market, or the period when they started.

The chi-square test does not create confidence intervals because confidence 
intervals do not make as much sense across multiple dimensions. Instead, it 
calculates the confidence that the observed counts are due to chance by compar-
ing the observed counts to expected counts. Because the chi-square test does not 
use confidence intervals, it avoids some of the logical conundrums that occur 
at the edges, such as when the confidence interval for a ratio crosses the 0% or 
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100% thresholds. Proportions are in the range of 0% to 100%, and so too should 
be their confidence intervals.

Expected Values
Consider customers who started on 2005-12-06. What is the number of stops 
expected for each of the three markets? A simple way to calculate these expected 
values is to observe that the overall stop rate is 32.5% for starts from that day. 
So, given that Gotham had 2,256 starts, there should be about 733.1 stops (32.5% 
* 2,256). In other words, assuming that all the markets behave the same way, 
the stops should be equally distributed.

In actual fact, Gotham has 794 stops, not 733.1. It exceeds the expected num-
ber by 60.9 stops. The difference between the observed value and the expected 
value is the deviation; Table 3-9 shows the observed values, expected values, and 
deviations for stops in all three markets.

The expected values have some useful properties. For instance, the sum of 
the expected values is the same as the sum of the observed values. In addition, 
the total number of expected stops is the same as the number of observed stops; 
and the totals in each market are the same. The expected values have the same 
numbers of actives and stops; they are just arranged differently.

The deviations for each row have the same absolute values, but one is positive 
and the other negative. For Gotham, the “active customer” deviation is –60.9 and 
the “stopped customer” deviation is +60.9, so the row deviations sum to zero. This 
property is not a coincidence. The sum of the deviations along each row and each 
column always adds up to zero, regardless of the number of rows and columns.

Calculating the expected values from the raw tabular data is simple.  
Figure 3-9 shows the Excel formulas. First, the sums of the counts in each row 
and each column are calculated, as well as the sum of all cells in the table. The 
expected value for each cell is the row sum total times the column sum divided 
by the overall sum. With good use of relative and absolute cell range references, 
it is easy to write this formula once, and then copy it to the other five cells.

With this background, the chi-square question is: What is the likelihood that 
the deviations are due strictly to chance? If this likelihood is very low, then we are 
confident that there is a difference among the markets. If the likelihood is high 

table 3-9: Observed and Expected Values of Active and Stopped Customers, by Market

oBSerVeD expeCteD DeVIatIon

aCtIVe Stop aCtIVe Stop aCtIVe Stop

Gotham 1,462 794 1,522.9 733.1 −60.9 60.9

Metropolis 749 385 765.5 368.5 −16.5 16.5

Smallville 527 139 449.6 216.4 77.4 −77.4
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(say over 5%), then there may be a difference among the markets, but the observed 
measurements do not provide enough evidence to draw a firm conclusion.

Chi-Square Calculation
The chi-square measure of a single cell is the deviation squared divided by the 
expected value. The chi-square measure for the entire table is the sum of the 
chi-square measures for all the cells in the table.

Table 3-10 extends Table 3-9 with the chi-square values of the cells. The sum 
of the chi-square values for all cells is 49.62. Notice that the chi-square values 
no longer have the property that the sum of each row is zero and the sum of 
each column is zero. This is obvious because the chi-square value is never nega-
tive. The two divisors are always positive: variance squared is positive, and the 
expected value of a count is always positive.

The chi-square value is interesting, but it does not tell us if the value is expected 
or unexpected. For this, we need to compare the value to a distribution, to turn 
the total chi-square of 49.62 into a p-value. Unfortunately, chi-square values 
do not follow a normal distribution. They do, however, follow another well-
understood distribution.

Chi-Square Distribution
The final step in the calculation is to translate the chi-square value into a p-value. Like 
the standard error, this is best understood by referring to an underlying distribu-
tion. In this case, the distribution is the appropriately named chi-square distribution.

Figure 3-9: Expected values are easy to calculate in Excel.

table 3-10: Chi-Square Values by Market

oBSerVeD expeCteD DeVIatIon ChI-SqUare

aCt Stop aCt Stop aCt Stop aCt Stop

Gotham 1,462 794 1,522.9 733.1 −60.9 60.9 2.4 5.1

Metropolis 749 385 765.5 368.5 −16.5 16.5 0.4 0.7

Smallville 527 139 449.6 216.4 77.4 −77.4 13.3 27.7

TOTAL 2,738 1,318 2,738.0 1,318.0 0.0 0.0 16.1 33.5
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Actually, the chi-square distribution is a family of distributions, based on 
one parameter, called the degrees of freedom. The calculation of the degrees of 
freedom of a table is simple. It is one less than the number of rows in the table 
times one less than the number of columns in the table. This example has three 
rows (one for each market) and two columns (one for actives and one for stops), 
so the degrees of freedom is (3 – 1)*(2 – 1) which equals 2. The aside “Degrees 
of Freedom for Chi-Square” discusses what the concept means in more detail.

Figure 3-10 shows the chi-square distributions for various degrees of freedom. 
As the number of degrees of freedom gets larger, the bump in the distribution 
moves to the left. In fact, the bump is at the value degrees of freedom minus 
two. The 95% confidence level for each of the curves is in parentheses. If the 
chi-square value exceeds this confidence level, it is reasonable to say that the 
distribution of values is not due to chance.

The Excel function CHIDIST() calculates the confidence value associated with a 
chi-square value for a particular number of degrees of freedom. CHIDIST(49.62, 
2) returns the miniscule value of 0.0000000017%. This number is exceedingly 
small, which means that we have very little confidence that the actives and 
stops are randomly distributed by market. Something else seems to be going on.

As shown earlier in Figure 3-9, the sequence of calculations from the expected 
value to the variance to the chi-square calculation can all be done in Excel. 
The formula for the degrees of freedom uses functions in Excel that return the 
number of rows and columns in the table, so the degrees of freedom of a range 
of cells is (ROWS(<table>)-1)*(COLUMNS(<table>)-1). The CHIDIST() function 
with the appropriate arguments then calculates the associated probability.

Chi-Square in SQL
The chi-square calculation uses basic arithmetic readily handled by SQL. The 
challenge is keeping track of intermediate values, such as the expected values 
and the variances. For two dimensions, four types of summaries are needed:

Figure 3-10: The chi-square distribution becomes flatter as the number of degrees of freedom 
increases; the 95% confidence bound is in parentheses.
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DegreeS oF FreeDoM For ChI-SqUare

The degrees of freedom for the chi-square calculation is not a difficult idea, although 
understanding it requires some algebra. Historically, the first person to investigate 
degrees of freedom was the British statistician Sir Ronald Fisher, perhaps the greatest 
statistician of the twentieth century. He was knighted for his contributions to statistics 
and science.

Degrees of freedom addresses the question of how many independent variables 
are needed to characterize observed data, given the expected values and the con-
straints on the rows and columns. This may sound like an arcane question, but it is 
important for understanding many types of statistical problems (basically, by assum-
ing that these other variables follow a normal distribution). This section shows how 
the particular formula in the text is calculated.

The first guess is that each observed value is an independent variable. That is, the 
degrees of freedom is r*c, where r is the number of rows and c is the number of col-
umns. However, the constraints impose some relationships among the variables. For 
instance, the sum of each row has to be equal to the sum of each corresponding row in 
the expected values. So, the number of variables needed to describe the observed val-
ues is reduced by the number of rows. Taking into account the row constraints reduces 
the degrees of freedom to r*c − r. Because similar constraints apply to the columns, the 
degrees of freedom becomes r*c − r − c.

However, the constraints on the rows and columns are themselves redundant 
because the sum of all the rows is the same as the sum of the columns—in both 
cases, the sum is equal to total sum of all the cells. One of the constraints is unnec-
essary; the preceding formula has overcounted by 1. The formula for the degrees 
of freedom is r*c − r − c + 1. This is equivalent to (r − 1) * (c − 1), the formula given in 
the text.

An example should help clarify this. Consider the general 2x2 table, where a, b, c, 
and d are the expected values in the cells, and R1, R2, C1, C2, and T are the constraints. 
So R1 refers to the fact that the sum of the observed values in the first row equals the 
sum of the expected values, a+b.

The degrees of freedom for this example is one. That means that knowing one of 
the observed values along with the expected values defines all the other observed 
values. Let’s call the observed values A, B, C, and D and assume the value of A is 
known. What are the other values? The following formulas give the answer:

 ■ B = R1 − A

 ■ C = C1 − A

 ■ D = C2 − B = C2 − R1 + A

The degrees of freedom are the number of variables we need to know in order to 
derive the original data from the expected values.

For the mathematically inclined, the degrees of freedom is the dimension of the space 
of observed values, subject to the row and column constraints. The precise definition 
is not needed to understand how to apply the ideas to the chi-square calculation. But 
degrees of freedom do characterize the problem in a fundamental way.
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 ■ An aggregation along both the row and column dimensions. This calcu-
lates the values observed in each cell.

 ■ An aggregation along the row dimension. This calculates the sum for each 
row and is used for the expected value calculation.

 ■ An aggregation along the column dimension. This calculates the sum for 
each column and is used for the expected value calculation.

 ■ The sum of everything.

The chi-square calculation then follows from using these values.
One way to approach the SQL is by using explicit summaries. The following 

SQL liberally uses subqueries for each of the aggregations:

SELECT Market, isstopped, val, x, SQUARE(val - x) / x as chisquare
FROM (SELECT cells.Market, cells.isstopped,
             (1.0 * r.cnt * c.cnt /
              (SELECT COUNT(*) FROM Subscribers 

WHERE StartDate IN ('2005-12-26'))
             ) as x,
             cells.cnt as val
      FROM (SELECT Market,
                   (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
                    END) as isstopped, COUNT(*) as cnt
            FROM Subscribers
            WHERE StartDate IN ('2005-12-26')
            GROUP BY Market,
                     (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END)
           ) cells LEFT OUTER JOIN
           (SELECT Market, COUNT(*) as cnt
            FROM Subscribers
            WHERE StartDate IN ('2005-12-26')
            GROUP BY Market
           ) r
           ON cells.Market = r.Market LEFT OUTER JOIN
           (SELECT (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
                    END) as isstopped, COUNT(*) as cnt
            FROM Subscribers
            WHERE StartDate IN ('2005-12-26')
            GROUP BY (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END)
           ) c
           ON cells.isstopped = c.isstopped
      ) a
ORDER BY Market, isstopped

This SQL follows the same logic as the Excel method for calculating the chi-
square value. The row totals are in the subquery whose alias is r. The column 
totals have the alias of c. The expected value is then r.cnt times c.cnt divided 
by the sum for the entire table.
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What States Have Unusual Affinities for Which  
Types of Products?
The overall chi-square value tells us how unlikely or likely the values in each 
cell are. The values for each cell can be used as a measure of likelihood for that 
particular combination. The purchases data contains eight product groups and 
over 50 states. Which states (if any) have an unusual affinity (positive or negative) for 
product groups? That is, do product preferences at the product group level vary 
by geography?

Imagine the orders data summarized into a table, with product groups going 
across and states going down, and each cell containing the number of customers 
ordering that product group in that state. This looks like a contingency table, 
the type of table used for chi-square calculations. Which cells have the largest 
chi-square values?

Data Investigation

The first step is to investigate features of the data. Chapter 2 shows the distribu-
tion of orders by state. Figure 3-11 shows the distribution of orders by product 
group. A typical query to produce this distribution is:

SELECT p.GroupName, COUNT(*) as numorderlines,
       COUNT(DISTINCT o.OrderId) as numorders,
       COUNT(DISTINCT o.CustomerId) as numcustomers
FROM Orders o LEFT OUTER JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId LEFT OUTER JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY p.GroupName

Figure 3-11: Some product groups attract more customers than other groups.
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The results show that books are the most popular product group. Is this true 
on a state-by-state basis? It is indeed true. With very few exceptions, the most 
popular items in each state are books.

The following SQL answers this question, by calculating the number of cus-
tomers in each state that have ordered books, and then choosing the one that is 
largest for each state. This uses ROW_NUMBER(), as described in Chapter 2.

SELECT State, GroupName, numcustomers
FROM (SELECT o.State, p.GroupName,
             COUNT(DISTINCT o.CustomerId) as numcustomers,
             ROW_NUMBER() OVER (PARTITION BY state
                                 ORDER BY COUNT(DISTINCT o.CustomerId) DESC
                               ) as seqnum
      FROM Orders o LEFT OUTER JOIN
           OrderLines ol
           ON o.OrderId = ol.OrderId LEFT OUTER JOIN
           Products p
           ON ol.ProductId = p. ProductId
      GROUP BY o.State, p.GroupName) a
WHERE seqnum = 1
ORDER BY numcustomers DESC

The result confirms the hypothesis that books are, by far, the most popular 
product in most states. The first exception is the state “AE,” which has nine 
customers buying ARTWORK. By the way, the state “AE” is not a mistake. It 
refers to military post offices in Europe.

SQL to Calculate Chi-Square Values

Calculating the chi-square calculations for the state-group combinations requires 
a long SQL query. This query follows the same form as the earlier chi-square 
calculation, with three subqueries for the three aggregations of interest: by state 
and product group, by state alone, and by product group alone. The query itself 
joins these three tables and then does the appropriate aggregations.

SELECT State, GroupName, val, exp,
       SQUARE(val - expx) / expx as chisquare
FROM (SELECT cells.State, cells.ProductGroupName,
             1.0 * r.cnt * c.cnt /
                 (SELECT COUNT(DISTINCT CustomerId) FROM Orders) as expx,
             cells.cnt as val
      FROM (SELECT o.State, p.GroupName,
                   COUNT(DISTINCT o.CustomerId) as cnt
            FROM Orders o LEFT OUTER JOIN
                 OrderLines ol
                 ON o.OrderId = ol.OrderId LEFT OUTER JOIN
                 Products p
                 ON ol.ProductId = p.ProductId
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            GROUP BY o.State, p.GroupName
           ) cells LEFT OUTER JOIN
           (SELECT o.State, COUNT(DISTINCT o.CustomerId) as cnt
            FROM Orders o
            GROUP BY o.State
           ) r
           ON cells.State = r.State LEFT OUTER JOIN
           (SELECT p.GroupName,
                   COUNT(DISTINCT o.CustomerId) as cnt
            FROM Orders o LEFT OUTER JOIN
                 OrderLines ol
                 ON o.OrderId = ol.OrderId LEFT OUTER JOIN
                 Products p
                 ON ol.ProductId = p.ProductId
            GROUP BY p.GroupName
           ) c
           ON cells. GroupName = c.GroupName) a
ORDER BY chisquare DESC

The subquery for Cells calculates the observed value in each cell. The sub-
query called r calculates the row summaries, and the one called c calculates 
the column summaries. With this information, the chi-square calculation is just 
a matter of arithmetic.

Affinity Results

Table 3-11 shows the top ten most unexpected combinations of state and product 
group based on the chi-square calculation. The first row in the table says that the 
most unexpected combination is GAMES in New York. Based on the information in 
the database, we would expect to have 3,306.1 customers purchasing games in that 
state. Instead, there are only 2,598, a difference of 708 customers. On the other hand, 
customers in Massachusetts are more likely to purchase games than we would expect.

The table does suggest asking about the differences between New York and 
Massachusetts that would explain why games are more popular in one state 
than the other. Or why ARTWORK is less popular is Florida than in New Jersey. 
Perhaps by changing marketing practices, there is opportunity to sell more 
products in the games category in New York, and more ARTWORK in Florida.

What Months and Payment Types Have Unusual 
Affinities for Which Types of Products?

This question is similar to the question in the previous section, except that it uses 
three columns instead of two columns. Answering this question introduces the 
multidimensional chi-square calculation. This is very similar to the two-dimensional 
version, the only differences being some adjustments to the formulas.
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table 3-11: Unexpected Product-Group/State Combinations

State groUp oBSerVeD expeCteD ChI-SqUare

NY GAME 2,599 3,306.4 151.4

FL ARTWORK 1,848 2,391.6 123.5

NY FREEBIE 5,289 6,121.4 113.2

NY ARTWORK 13,592 12,535.2 89.1

NJ ARTWORK 5,636 4,992.6 82.9

NY OCCASION 9,710 10,452.0 52.7

NJ GAME 1,074 1,316.9 44.8

AP OTHER 5 0.5 44.2

FL APPAREL 725 571.9 41.0

MA GAME 560 428.9 40.1

NJ CALENDAR 785 983.2 40.0

Multidimensional Chi-Square
Adding additional dimensions does not change how the chi-square value is 
calculated. It is still the sum of the squares of the differences between a count 
and the expected count divided by the expected count.

What changes is the formula for the expected value. For two-dimensions, 
this is the product of the counts along each of two dimensions divided by the 
total count. This formula generalizes to more dimensions. For three, it is the 
product of the counts along each of the three dimensions divided by the total 
count squared. Notice the “squared” in the denominator.

The calculation for the degrees of freedom for a multidimensional chi-square 
is also similar. It is the product of one less than the size of each dimension. So, 
a 2x2x2 example still has only one degree of freedom.

Using a SQL Query
The changes to the formula are relatively small and easily accommodated in 
SQL. This version of the query calculates the counts along each dimension using 
window functions:

WITH pmg as (
      SELECT o.PaymentType, Month(o.OrderDate) as mon, p.GroupName,
             COUNT(*) as cnt
      FROM Orders o JOIN
           OrderLines ol
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           ON o.OrderId = ol.OrderId JOIN
           Products p
           ON ol.ProductId = p.ProductId
      GROUP BY o.PaymentType, Month(o.OrderDate), p.GroupName
     ),
     pmgmarg as (
      SELECT pmg.*,
             SUM(cnt) OVER (PARTITION BY PaymentType) as cnt_pt,
             SUM(cnt) OVER (PARTITION BY mon) as cnt_mon,
             SUM(cnt) OVER (PARTITION BY GroupName) as cnt_gn,
             SUM(cnt) OVER () as cnt_all
      FROM pmg
     ),
     pmgexp as (
      SELECT pmgmarg.*,
             (cnt_pt*cnt_mon*cnt_gn)/POWER(cnt_all, 2) as ExpectedValue
      FROM pmgmarg
     )
SELECT pmgexp.*,
       SQUARE(cnt - ExpectedValue) / ExpectedValue as chi2
FROM pmgexp
ORDER BY chi2 DESC;

The first CTE calculates the count for each cell by aggregating the data along 
the three dimensions of interest – PaymentType, month, and GroupName.

The next CTE, pmgmarg, calculates the counts along each of the dimensions. 
This calculation uses window functions, avoiding an additional join . The third 
CTE, pmgexp, calculates the expected value. And, the final query calculates the 
chi-square value.

This structure easily generalizes to more dimensions. The only change is to 
add the additional dimensions in each of the subqueries and then increment 
the second argument to POWER().

The Results
Table 3-12 shows the first ten results from this query. These all have highly 
unexpected counts. For instance, the first one is for:

 ■ Payment Type = OC

 ■ Month = 8

 ■ GroupName = Apparel

It has a count of 2,120. The expected value is only 29. That is significantly dif-
ferent. OC stands for “other card,” so this is using a nonstandard credit card.

Further investigation reveals that all the excess (and a bit more!) is accounted 
for by one product in one year: ProductId 12510 sold 2,106 units in August 
2014. All of these went to different customers. This was probably some sort of 
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promotion specifically on the item, or perhaps a marketing deal with a particular 
credit card company for a specific item.

The query to get the information about the items is:

SELECT YEAR(o.OrderDate), ol.ProductId, COUNT(*) as cnt
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId
WHERE o.PaymentType = 'OC' AND MONTH(o.OrderDate) = 8 AND
      p.GroupName = 'APPAREL'
GROUP BY YEAR(o.OrderDate), ol.ProductId
ORDER BY cnt DESC

This query simply substitutes in the values in the WHERE clause and then aggre-
gates by year and product.

Lessons Learned

This chapter strives to answer questions of the genre “how different is differ-
ent.” Such questions necessarily bring up the subject of statistics, which has been 
studying ways to answer such questions for almost two centuries.

The normal distribution, which is defined by an average and a standard 
deviation, is very important in statistics. Measuring how far a value is from the 
average, in terms of standard deviations, is the z-score. Large z-scores (regardless 
of sign) have a very low confidence. That is, the value is probably not produced 
by a random process, so something is happening.

table 3-12: Unexpected Payment Type/Month/Product Group Combinations

payMent type Month proDUCt aCtUal expeCteD ChI-SqUare

OC 8 APPAREL 2,120 29.5 148,287.4

?? 3 APPAREL 110 1.0 11,704.3

OC 10 APPAREL 612 32.9 10,197.3

DB 7 #N/A 8 0.0 2,044.2

OC 4 APPAREL 204 23.2 1,406.8

MC 6 OCCASION 1,755 790.7 1,176.0

VI 6 OCCASION 2,456 1,258.8 1,138.6

VI 12 GAME 2,712 1,455.6 1,084.6

OC 9 APPAREL 186 26.6 956.6



144 Chapter 3 ■ how Different Is Different?

Counts are very important in customer databases. There are three approaches 
to determining whether counts for different groups are the same or different. 
The binomial distribution counts every possible combination, so it is quite 
precise. The standard error of proportions is useful for getting z-scores. And, 
the chi-square test directly compares counts across multiple dimensions. All 
of these are useful for assessing confidence in the results.

The chi-square value and the z-score can both be informative. Although 
they use different methods, they both find groups in the data where particular 
measures are unexpected. This can in turn lead to understanding things such 
as where certain products are more or less likely to be selling.

The next chapter moves from statistical measures of difference to geogra-
phy because geography is one of the most important factors in differentiating 
between customer groups.
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From foreign policy to politics to real estate and retailing, many would agree 
with Napoleon’s sentiment that “geography is destiny.” Where customers reside 
and the attributes of that area are among customers’ most informative charac-
teristics: east coast, west coast, or in-between? Red state or blue state? Urban, 
rural, or suburban? Sunbelt or snowbelt? Good school district or retirement 
community? Geography is important.

Incorporating this rich source of information into data analysis poses some 
challenges. One is geocoding, the process of identifying the names of physically 
locations. This includes latitude and longitude, as well as the identification of 
multiple geographic areas, such as zip code, county, state, and country. This 
information makes it possible to determine who are neighbors and who are not.

Another challenge is incorporating the wealth of information about geographic 
areas. In the United States, the Census Bureau provides demographic and eco-
nomic information about various levels of geography. The Bureau divides the 
country into very specific geographic pieces, such as census tracts and block 
groups and zip code tabulation areas (ZCTAs), which correspond closely but not 
exactly to zip codes. The Bureau then summarizes information for these areas, 
information such as the number of households, the median household income, 
and the percent of housing units that use solar heat. The best thing about census 
data is that it is free and readily accessible on the web.

The ZipCensus table contains just a small fraction of the available census 
variables. These are interesting by themselves. More importantly, such demo-
graphic data complements customer data. Combining the two provides new 
insight into customers.

This chapter describes the information provided by geocoding and its use 
for analysis. The chapter continues by adding customer data into the mix. The 
examples in the chapter use the purchase dataset because it has zip codes. 

C h a p t e r 

4
Where Is It all happening? 

Location, Location, Location
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Matching zip codes to ZCTAs (census zip codes) serves as a rudimentary form 
of geocoding.

No discussion of geography would be complete without discussing maps, 
which are a very powerful way of communicating information. Excel’s Power 
View capabilities include maps, although this chapter does not depend on this 
functionality. Even without this capability, there are some clever things to do in 
Excel to visualize data, and it is even possible to connect Excel to maps on the 
web. This chapter starts with a discussion of geographic data and ends with an 
overview of the role that mapping can play in data analysis.

Latitude and Longitude

The location of each point on the earth’s surface is described by two coordinates: 
the latitude and the longitude. Because the earth is basically a sphere and not 
a flat plane, latitudes and longitudes behave a bit differently from high school 
geometry. This section uses ZipCensus to investigate them.

Definition of Latitude and Longitude
The “lines” of latitude and longitude are actually circles on the earth’s globe. 
All “lines” of longitude go through the north and south poles. All “lines” of 
latitude are circles parallel to the equator. The actual measurements are angles, 
measured from the center of the earth to the prime meridian (for longitude) or 
to the equator (for latitude). The prime meridian, also called the Greenwich 
meridian, passes through central London and its use as the starting point for 
measuring east-west distances dates back to an international agreement in 1884. 
Figure 4-1 shows examples of latitudes and longitudes.

Although the two seem quite similar, latitudes and longitudes have some 
important differences. One difference is historical. Longitude (how far east and 
west) is difficult to measure without accurate time-keeping devices, which are 
a relatively modern invention.

Latitude (how far north or south) has been understood for thousands of years 
and can be measured by the angle of stars in the sky or the position of the sun 
when it is directly overhead. By observing the position of the sun at noon on 
the summer solstice several thousand years ago, the ancient Greek astronomer 
Eratosthenes estimated the circumference of the earth. He noted three facts. At 
noon on the summer solstice, the sun was directly overhead in the town of Syene 
(modern-day Aswan in Egypt). At the same time, the sun was at an angle of 7.2 
degrees from the vertical in his town of Alexandria. And, Syene was located 
a certain distance south of Alexandria. According to modern measurements, 
his estimate of the circumference was accurate within 2%—pretty remarkable 
accuracy for an estimate made 25 centuries ago.
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Unlike lines of longitude, lines of latitude do not intersect. The distance between 
two lines of latitude separated by one degree is always about 68.7 miles (the 
earth’s circumference divided by 360 degrees). On the other hand, the distance 
between two lines of longitude separated by one degree varies by latitude, being 
about 68.7 miles at the equator and diminishing to zero at the poles.

Recall from high school geometry that one definition of a line is the shortest 
distance between two points. On a sphere, lines of longitude have this property. 
So for two locations, one directly north or south of the other, following the line 
of longitude is the shortest path between the two points.

Lines of latitude do not have this property (so they are not strictly lines in 
the sense of spherical geometry). For two locations at the same latitude, such 
as Chicago, IL and Providence, RI or Miami, FL and Brownsville, TX, the lati-
tude line connecting them is not the shortest distance. This is one reason why 
airplanes flying between the East and West Coasts of the United States often 
go into Canadian airspace, and why flights from the United States to Asia and 
Europe often go far north near the North Pole. The airplanes follow shorter 
paths by going farther north.

Degrees, Minutes, Seconds, and All That
Latitude and longitude are measured in degrees, usually ranging from minus 
180 degrees to positive 180 degrees. For latitude, the extremes are the South 

Figure 4-1:  Lines of latitude and longitude make it possible to locate any point on the earth’s 
surface.

Lines of longitude pass through
the North and South Poles.

Lines of latitude are parallel 
to the equator.
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and North Poles, respectively. Negative degrees are traditionally south of the 
equator, and positive degrees are north of the equator, probably because people 
living in the northern hemisphere invented the whole system in the first place.

Longitudes also range from minus 180 degrees to positive 180 degrees. 
Traditionally, locations west of Greenwich, England have negative longitudes 
and those east of Greenwich have positive longitudes, so all of North and South 
America, with the exception of very small parts of far western Alaska, have 
negative longitudes.

Angles are traditionally measured in degrees, minutes, and seconds. One 
degree consists of sixty minutes. One minute consists of sixty seconds, regardless 
of whether the minute is a fraction of a degree or a fraction of an hour. This is 
not a coincidence. Thousands of years ago, the ancient Babylonians based their 
number system on multiples of sixty (which they in turn may have borrowed 
from the more ancient Sumerians), rather than the multiples of ten that we are 
familiar with. They divided time and angles into sixty equal parts, which is 
why there are sixty minutes in both one hour and one degree. Such a system 
is called a sexagesimal number system, a piece of trivia otherwise irrelevant 
to data analysis.

When working with degrees, both databases and Excel prefer to work with 
decimal degrees. How can we convert degrees/minutes/seconds to decimal degrees 
and vice versa? The first part of this question is easy to answer. The author was 
born at approximately 25° 43’ 32” degrees north and 80° 16’ 22” degrees west. 
To convert this to decimal degrees, simply divide the minutes by 60 and the 
seconds by 3600 to arrive at 25.726° N and 80.273° W. This is easily done in 
either Excel or SQL.

Although decimal degrees are quite sufficient for our purposes, it is worth 
considering the reverse computation. The following expressions calculate the 
degrees, minutes, and seconds from a decimal degree using Excel functions 
(assuming the decimal degrees are in cell A1):

<degrees> = TRUNC(A1)
<minutes> = MOD(TRUNC(ABS(A1)*60), 60)
<seconds> = MOD(TRUNC(ABS(A1)*3600), 60)

The MOD() function returns the remainder when the second argument is divided 
by the first. For instance, when the second argument is two, MOD() returns zero 
for even numbers and one for odd numbers. The TRUNC() function removes the 
fractional part of a number for both positive and negative values. The FLOOR() 
function does something similar, but it rounds negative numbers down rather 
than up. So, TRUNC(-18.2) is -18, whereas FLOOR(-18.2, 1) is -19.

Unfortunately, Excel does not have a number format that supports degrees, 
minutes, and seconds. The following expression can be used instead:

<degrees>&CHAR(176)&" "&<minutes>&"' "&<seconds>&""""
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The function CHAR(176) returns the degree symbol. The symbol for minutes 
is a single quote. The symbol for seconds is a double quote. Putting a double 
quotation mark in a string requires using four double quotes in a row.

t Ip Any character can be included in an Excel text value. One way to add a 
character is with the CHAR() function. Another way is to use the Insert  Symbol 
menu option.

Distance between Two Locations
This section introduces two methods for calculating the distance between two 
locations using latitude and longitude: a less accurate but easier way and a 
more accurate method. The distances are then used to answer questions about 
zip codes; the latitude and longitude of the center of each zip code is available 
in ZipCensus.

This section uses trigonometric functions, which expect their arguments to be 
in units called radians rather than the more familiar degrees. There is a simple 
conversion from degrees to radians and back again:

<radians> = <degrees>*PI()/180
<degrees> = <radians>*180/PI()

The conversion is simple because pi radians equal exactly 180 degrees. Both SQL 
and Excel support the function PI(), which is used for the conversion. Excel 
also has the function RADIANS() that also does the conversion.

Warn Ing When working with angles, be careful about whether the measure-
ments should be in degrees or radians. Usually, functions that operate on angles 
expect the angles in radians.

Euclidian Method

The Pythagorean formula calculates the length of the long side of a right triangle 
as the square root of the sum of the squares of the lengths of the two shorter 
sides. An equivalent formulation is that the distance between two points is the 
square root of the sum of the squares of the X-coordinate difference and the 
Y-coordinate difference. These are handy formulas when two points lie on a 
flat plane.

The same formula can be applied directly to latitudes and longitudes, but the 
result does not make sense—latitudes and longitudes are measured in degrees, 
and distance in degrees is not practical. More typical measurement units are 
miles or kilometers, so some method is needed to convert between degrees and 
miles (or kilometers). The north-south distance between two lines of latitude 
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Figure 4-2:  The distance between two points on the earth’s surface can be approximated by 
converting the latitude and longitudes to miles and then using the Pythagorean theorem.

is the difference in degrees times 68.7 miles, regardless of the longitude. The 
east-west distance between two lines of longitude depends on the latitude; the 
distance is approximately the difference in degrees of longitude times 68.7 times 
the cosine of the average latitude.

For two points on the surface of the earth, the north-south distance and 
east-west distance are the sides of a right triangle, as shown in Figure 4-2. 
Note that a right triangle on the earth’s surface does not necessarily look like 
one in a plane.

What are the ten zip codes closest to the geographic center of the continental United 
States? The geographic center is in the middle of Kansas and has a longitude 
of –98.6° and a latitude of 39.8°. By converting the differences in coordinates 
to miles, the following query finds the ten closest zip codes to the geographic 
center:

WITH zc as (
      SELECT zc.*, (latitude - 39.8) as difflat,
             (latitude + 39.8) * PI() / (2 * 180) as avglatrad,
             longitude - (-98.6) as difflong,
             latitude * PI() / 180 as latrad
      FROM ZipCensus zc
     )



 Chapter 4 ■ Where Is It all happening? Location, Location, Location 151

SELECT TOP 10 zcta5, stab, totpop, latitude, longitude,
       SQRT(SQUARE(difflat*68.9)+SQUARE(difflong*COS(avglatrad)*68.9)
           ) as disteuc
FROM zc
ORDER BY disteuc

The common table expression defines useful variables, such as the latitude and 
longitude in radians (perhaps the trickiest part of the calculation). The outer 
query calculates the distance.

The ten zip codes closest to the geographic center of the continental United 
States are in Table 4-1.

Accurate Method

The above formula for distance between two locations is not accurate because 
the calculation uses formulas from flat geometry. The distance does not take 
the curvature of the earth into account.

The formula for the distance between two points on a sphere is based on a 
simple idea. Connect the two points to the center of the earth. This forms an 
angle. The distance is the angle measured in radians times the radius of the 
earth. A simple idea, but it leads to a messy formula. The following SQL query 
uses this formula to find the ten zip codes closest to the center of the continental 
United States using the more accurate method:

table 4-1: The Closest Zip Codes by Euclidean Distance to the Geometric Center of the United 
States

ZIp Code State LongItude LatItude
euCLIdIan 
dIStanCe

CIrCuLar 
dIStanCe

66952 KS 39.82 -98.59  1.56  1.56

66941 KS 39.84 -98.44  8.87  8.88

66967 KS 39.79 -98.79  9.87  9.87

66936 KS 39.91 -98.31 16.83 16.84

66932 KS 39.77 -98.92 17.04 17.05

67638 KS 39.64 -98.85  17.17 17.18

67474 KS 39.57 -98.72  17.21 17.22

68952 NE 40.09 -98.67 20.18 20.19

66956 KS 39.79 -98.22 20.24 20.25

67437 KS 39.50 -98.55 20.53 20.54
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WITH zc as (
      SELECT zc.*, (latitude - 39.8) as difflat,
             (latitude + 39.8) * PI() / (2 * 180) as avglatrad,
             longitude - (-98.6) as difflong,
             latitude * PI()/180 as latrad,
             longitude * PI() / 180 as longrad,
             39.8 * PI() / 180 as centerlatrad,
             (-98.6) * PI() / 180 as centerlongrad,
             3949.9 as radius
      FROM ZipCensus zc
     )
SELECT TOP 10 zcta5, stab as state, totpop as population, latitude,
              longitude,
       SQRT(SQUARE(difflat*68.9) + SQUARE(difflong*COS(avglatrad)*68.9)
           ) as disteuc,
       ACOS(COS(centerlatrad)*COS(latrad)*COS(centerlongrad - longrad) +
            SIN(centerlatrad)*SIN(latrad))*radius as distcirc
FROM zc
ORDER BY distcirc

This formula uses several trigonometric functions, so the innermost query 
converts all the latitudes and longitudes to radians. In addition, this method 
uses the radius of the earth, which is taken to be 3,949.9 miles.

Table 4-1 shows the circular distance as well as the Euclidean distance. The 
results are almost exactly the same for the two methods because the distances 
are so small. After all, 20 miles might seem big, but it is only about 0.5% of the 
earth’s radius.

The discrepancies grow as the distances get larger. The furthest zip code 
from the center is 96766 in Hawaii. The approximate method gives a distance 
of 3,798 miles versus 3,725 for the more accurate method.

The spherical method is a better approximation, but it is not perfect; the 
earth is not a perfect sphere. A better approximation could take into account 
the bulges around the equator and altitude. Travel distance along roads rather 
than the theoretical distance between two locations may be better for many 
applications. Such calculations require special-purpose tools and databases of 
roads and are generally not feasible in Excel and SQL.

Finding All Zip Codes within a Given Distance

Calculating the distance between two locations is useful. You can find the near-
est Wal-Mart to where a customer lives or the closest repair center to where a 
car broke down or the distance from home to where a customer paid for dinner 
in a restaurant. These types of applications often work in real time, often with 
positioning information from mobile devices and are specific to a given user at 
a given time. Distance can be measured “as the crow flies” or along available 
routes.
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Finding the zip codes within a certain distance of a location is a typical ana-
lytic application. Once upon a time, a newspaper was interested in areas where 
it could provide home delivery copies. One part of the newspaper delivered 
copies to university campuses. Another part arranged for home delivery. Some 
universities received newspapers, even though the surrounding areas were not 
routable for home delivery. Why not also offer home delivery in the surround-
ing area because trucks filled with newspapers were already delivering to the 
town? A brilliant idea that led to the question: Which zip codes are within eight 
miles of a specific set of university zip codes?

One way to answer the question is with a big map, or with a mapping website 
(such as Google Maps, MapQuest, Yahoo! Maps, or Microsoft Live). This would 
be a manual process of looking up each zip code to find the neighboring ones 
or require coding an application in Java, Python or a similar language. Manual 
solutions are prone to error. Because the Census Bureau provides the latitude and 
longitude of the center of each zip code, why not use this information instead?

The actual solution was an Excel worksheet that used the census information 
to find the distance from each zip code to the chosen zip code. The spreadsheet 
then created a table with the zip codes within eight miles.

Such a spreadsheet is useful for manual processing, but the processing can 
also be done in SQL. The following query calculates all zip codes within eight 
miles of Dartmouth University in Hanover, NH:

WITH zc as (
      SELECT zc.*, latitude * PI() / 180 as latrad,
             Longitude * PI() / 180 as longrad, 3949.9 as radius
      FROM ZipCensus zc
     )
SELECT z.zcta5 as zipcode, z.stab as state, z.zipname, distcirc,
       z.totpop, z.tothhs, z.medianhhinc
FROM (SELECT zips.*,
             ACOS(COS(comp.latrad) * COS(zips.latrad) *
                  COS(comp.longrad - zips.longrad) +
                  SIN(comp.latrad) * SIN(zips.latrad)
                 ) * zips.radius as distcirc
      FROM zc zips CROSS JOIN
           (SELECT zc.* FROM zc WHERE zcta5 IN ('03755')) comp
     ) z
WHERE distcirc < 8
ORDER BY distcirc

The common table expression converts the latitude and longitude to radians. This 
table is joined to itself, once for all the zip codes and once for Dartmouth (03755). 
More zip codes can be included by expanding the list in the comp subquery.

The closest zip codes are shown in Table 4-2. Some are in New Hampshire 
and some are in Vermont, because Hanover is near the border between these 
states.
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table 4-2: Zip Codes within Eight Miles of Hanover, NH

houSehoLdS

ZIp 
Code

po name  
and State dIStanCe popuLatIon #

medIan 
InCome

03755 Hanover, NH 0.00 10,268 2,524 $90,100

05055 Norwich, VT 2.30 3,423 1,468 $94,342

03750 Etna, NH 2.49 1,048 313 $138,036

03766 Lebanon, NH 5.35 9,379 4,175 $55,750

03784 Lebanon, NH 5.69 3,859 1,759 $54,101

05001 White River Junction, VT 6.51 9,301 4,329 $51,611

05043 East Thetford, VT 7.29 888 373 $74,345

05075 Thetford Center, VT 7.40 1,072 458 $74,926

It is tempting to extend the find-the-nearest-zip-code query to find the nearest 
zip code to every zip code in the table. As a query, this is a slight modification of 
the Dartmouth query (comp would choose all zip codes). However, such a query 
would take a long time to complete. The problem is that the distance between 
every possible pair of all 32,038 zip codes needs to be calculated—more than 
one billion distance calculations. The distances between zip codes in Florida 
and zip codes in Washington (state) have to be calculated, even though no zip 
code in Washington is close to any zip code in Florida.

SQL does not, in general, have the ability to make these queries run faster. 
Using indexes does not help, because the distance calculation requires two 
columns, both latitude and longitude. Traditional indexes speed up access to 
one column at a time, not both at once. Most databases do support extensions 
for geographic features, called GIS or spatial indexes. However, this book does 
not cover this topic in detail.

Finding Nearest Zip Code in Excel

This section does a very similar calculation in Excel, finding the nearest zip 
code to a given zip code. The Excel spreadsheet consists of the following areas:

 ■ The input area for typing in a zip code

 ■ The output area for the nearest zip code and distance

 ■ The table containing all the zip codes, each with its latitude and longitude

The user types a zip code in the spreadsheet in the input area. The spreadsheet 
looks up the latitude and longitude using the VLOOKUP() function. The distance from 
every zip code to the chosen zip code is then calculated as an additional column.
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Figure 4-3 shows the functions in the worksheet. The nearest zip code is 
chosen using the MIN() function, with a small caveat. The minimum distance 
is clearly going to be zero, which is the distance from any given zip code to 
itself. The minimum uses a nested IF() to exclude the input zip code. This is an 
example of an array function, discussed in the aside “Array Functions in Excel.” 
With the minimum distance, the actual zip code is found using a combination 
of MATCH() to find the row with the zip code and then OFFSET() to return the 
value in the correct column.

Pictures with Zip Codes
Latitudes and longitudes are coordinates, and these can be plotted using scatter 
plots. Such plots are a poor man’s geographic information system (GIS). This 
section introduces the idea, along with some caveats about the process.

The Scatter Plot Map

There are enough zip codes in the United States that just the center points form 
a recognizable outline of the country, as shown in Figure 4-4. Each zip code in 
this figure is represented as a small hollow circle; hollow circles makes it easier 
to see where zip codes are very close to each other.

This map is based on the same latitude and longitude data used for the dis-
tance calculations. The latitude is assigned as the Y-axis in a scatter plot and the 
longitude is assigned as the X-axis. To focus on the continental United States, 
the horizontal scale goes from –65 to –125 and the vertical scale from 20 to 50. 
Lines are drawn every five degrees on both scales. Although far from perfect, 
the zip code centers form a recognizable blob in the shape of the continental 
United States.

Figure 4-3:  This Excel spreadsheet calculates the closest zip code to any other zip code. The curly 
braces in the formula line indicate that this particular formula is an array function.
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array FunCtIonS In exCeL

Excel offers two functions that that do the equivalent of conditional aggregation: 
SUMIF() and COUNTIF(). This functionality is powerful, but it still is not sufficient 
for many purposes. The conditions are limited to simple comparisons, and the func-
tions are limited to summation and counting.

To extend this functionality, Excel has the concept of array functions. These func-
tions operate on arrays of spreadsheet values, typically columns. Array functions 
can be nested, so they have the full power of Excel functions. Some of them can even 
return values in multiple cells, although this type is not discussed until Chapter 12.

An example perhaps explains this best. The following are two ways of taking the 
sum of the product of the values in two columns of cells:

=SUMPRODUCT($A$2$A$10, $B$2$B$10)

{=SUM($A$2$A$10 * $B$2$B$10)}

These two methods produce the same results. The first uses the built-in function 
SUMPRODUCT() that does exactly what we want. The second combines the SUM() 
function and the multiplication operator as an array function. It says to multiply the 
values in the two columns row-by-row and then to take the sum. Think of the expres-
sion as reading each row, multiplying together the corresponding values in columns 
A and B and saving all these products somewhere. This somewhere is then an array of 
values passed to SUM().

Entering an array function takes a sleight of hand. The expression is typed in just 
like any other expression. Instead of hitting the Return key after entering the formula, 
hit Ctrl+Shift+Return at the same time. Excel encloses the formula in curly braces on 
the formula bar to indicate that it is an array function. The curly braces are not entered 
as part of the function; they appear when you type Ctrl+Shift+Return.

One particularly useful application of array functions is combining functions such 
as SUM() and MIN() with IF(). This is equivalent to conditional aggregation in SQL. 
In the text, the problem is to find the minimum distance, where the zip code is not the 
given zip code. The formula for this is:

{=MIN(IF($A$7:$A$32044<>B2, $E$7:$E$32044))}

This says to take the minimum of the values in column E, but only where the corre-
sponding value in column A is not equal to the value in cell B2.

Although array functions are easy to express, a column filled with thousands of 
rows containing array functions can take a while to calculate. And they come with one 
small warning. When nested, the functions AND() and OR() do not always work as 
expected. Instead, use nested IF() statements to achieve the same logic.

Cartographers—the people who study maps and how to convey information 
on them—have many standards for what makes a good map. This simple zip 
code scatter plot fails almost all of them. It distorts distances and areas. For 
instance, small land areas in the north appear bigger, and larger land areas 
near the equator appear smaller. It does not have boundaries or features, such 
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as mountains, cities, and roads. And, if the dimensions of the chart are not right, 
the map is stretched in unusual ways.

Nonetheless, the result is recognizable and actually useful for conveying 
information. It is also easy to create. Even the simple zip code map shows areas 
where there are many zip codes (along the coasts) and where there are few (in 
the mountainous states of the west, in the Everglades in South Florida).

Who Uses Solar Power for Heating?

The Census Bureau provides many attributes about people, households, 
families, and housing units. One of them, for instance, happens to be the 
source of heat. The column hhfsolar contains the number of housing 
units using solar power in a zip code. The percentage is in the related field 
pcthhfsolar.

A simple zip code map does a good job of showing where solar power is 
present. Which zip codes have any household with solar power? Figure 4-5 shows a 
map with this information. The faint gray areas are zip codes that do not have 
solar power; the larger darker triangles show zip codes that do.

Arranging the data in the spreadsheet makes it easier to create the map. The 
first column is the X-value for the chart and the second two columns are the 
Y-values for two series in the chart. The data should be laid out as:

 ■ Longitude, which is along the X-axis

 ■ Latitude for non-solar zip codes

 ■ Latitude for solar zip codes

Each row has exactly one value for latitude in the appropriate column.

Figure 4-4:  The center of zip codes form a recognizable map of the United States.
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The following query returns the data in this format:

SELECT zcta5, longitude,
       (CASE WHEN hhfsolar = 0 THEN latitude END) as nosolarlat,
       (CASE WHEN hhfsolar > 0 THEN latitude END) as solarlat
FROM ZipCensus
WHERE latitude BETWEEN 20 and 50 AND
      longitude BETWEEN -135 AND -65

The WHERE clause is just a simple way to limit the results to the continental 
United States.

An alternative approach is to have the query provide a “solar” indicator along 
with the longitude and latitude. The data would be put into the right format 
using Excel formulas, making use of the IF() function. Both methods work, 
but there is no reason to do extra work in Excel when it can be done in SQL.

t Ip Pulling the data in the right format using SQL can often save time and effort in Excel.

The little triangles in the chart are the zip codes that have solar power. 
Not surprisingly, Florida and California have a high concentration of these 
because these are two states that are both sunny and highly populated. The 
cloudy northeast has many solar zip codes, but this is probably because such 
a densely populated area has so many zip codes. Some states in the west, 
such as New Mexico, Arizona, and Colorado have a relatively high number 
of solar zip codes, but because these states are less dense, there are fewer 
triangles.

Figure 4-5:  This map shows the zip codes that have housing units with solar power, based on 
the census data.
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A map is useful for seeing what is happening. The data itself can be verified by 
asking: What proportion of zip codes in each state has at least one solar powered residence? The 
following query answers this question, using the Census Bureau definition of a state:

SELECT TOP 10 stab,
       SUM(CASE WHEN zc.HHFSolar > 0 THEN 1.0 END)/COUNT(*) as propzips,
       SUM(zc.HHFSolar * 1.0) / SUM(zc.TotHUs) as prophhu
FROM ZipCensus zc
GROUP BY stab
ORDER BY prophhu DESC

This query calculates two numbers: the proportion of zip codes with solar 
power and the proportion of households. For most states, these are strongly 
correlated, as shown in Table 4-3. However, for some states such as Wyoming, 
solar power is concentrated in a few zip codes (fewer than 14%), but a relatively 
high proportion of housing units have it (0.10%).

Where Are the Customers?

Questions about zip codes are not limited to the census information. The Orders 
table contains information about where customers place orders. The following 
query summarizes the number of orders in each zip code and then joins this 
information to the latitude and longitude in ZipCensus:

SELECT zc.zcta5, longitude, latitude, numords,
       (CASE WHEN tothhs = 0 THEN 0.0 ELSE numords * 1.0 / tothhs
        END) as penetration
FROM ZipCensus zc JOIN

table 4-3: The Top Ten States by Penetration of Solar Power in Housing Units

State
proportIon oF ZIp 

CodeS SoLar
proportIon oF 

houSIng unItS SoLar

HI 72.3% 1.36%

NM 22.0% 0.30%

CO 26.7% 0.14%

WY 7.3% 0.09%

CA 28.5% 0.08%

AZ 26.7% 0.08%

ME 7.9% 0.07%

VT 7.1% 0.06%

NV 12.0% 0.05%

NH 12.1% 0.05%
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     (SELECT ZipCode, COUNT(*) as numords
      FROM Orders
      GROUP BY ZipCode) o
     ON zc.zcta5 = o.zipcode
WHERE latitude BETWEEN 20 and 50 AND
      longitude BETWEEN -135 AND -65

Figure 4-6 plots the results as a bubble chart. The size of the bubbles is the number 
of orders placed in the zip code; the X-axis is the longitude, and the Y-axis is the 
latitude. Like the scatter plot, this bubble chart is a rudimentary map; however, 
bubble charts have fewer formatting options available than scatter plots (for instance, 
the shape of the bubbles cannot be changed). The bubbles in this chart are disks, 
colored on the outside and transparent inside. This is important because bubbles 
may overlap each other; the overlapping bubbles let you see where they are densest.

This map has fewer zip codes than the previous ones because only about 
11,000 zip codes have orders. Many of these zip codes are in the northeast, so 
that region of the country is overrepresented.

Such a map conveys interesting information about customers. By using mul-
tiple series, for instance, orders could be classified by the products they contain, 
or customers by the number of purchases they make.

Census Demographics

Solar power is interesting, but not as interesting as economic information for 
understanding customers. This section looks at some other types of informa-
tion available, and at ways of combining this information with the purchase 

Figure 4-6:  This bubble chart shows the order penetration in each zip code.
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data. Of course, ZipCensus contains only a subset of all the possible information 
available from the Census Bureau.

The Extremes: Richest and Poorest
Several columns relate to wealth, which is very valuable information for under-
standing customers. You may not know how wealthy the customers are, but 
you can know how wealthy their neighbors are.

Median Income

The median household income in a zip code is the income in the middle, where 
half the households earn more than the median and half earn less. It is a very 
useful measure for understanding whether a given area is relatively wealthy 
or relatively poor. Households are a reasonable unit because they tend to corre-
spond to an economic marketing unit—groups of individuals (such as families) 
that are bound together economically.

Median household income is not the only measure available. The Census 
Bureau also provides the average household income, as well as various income 
ranges (how many households earned $45,000 to $50,000 dollars, for instance). 
This information is provided at the household level, at the family level, and 
for individuals. There is even information about sources of income, separating 
out earned income, social security income, and government benefits. A wealth 
of variables describes wealth, but we’ll generally stick with median household 
income.

One query for finding the zip code with the highest median household 
income is:

SELECT TOP 1 zcta5, medianhhinc
FROM ZipCensus
ORDER BY medianhhinc DESC

To find the poorest, the sort order is changed to ASC rather than DESC.
This query is simple, but it has a flaw: More than one zip code could be 

tied for the richest or the poorest. A better approach finds all zip codes that 
match the extreme values. The following query counts the number of match-
ing zip codes:

SELECT medianhhinc, COUNT(*) as numzips,
       SUM(CASE WHEN totpop = 0 THEN 1 ELSE 0 END) as pop0,
       SUM(CASE WHEN tothhs = 0 THEN 1 ELSE 0 END) as hh0,
       AVG(totpop * 1.0) as avgpop, AVG(tothhs * 1.0) as avghh
FROM ZipCensus zc JOIN
     (SELECT MAX(medianhhinc) as hhmax, MIN(medianhhinc) as hhmin
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      FROM ZipCensus) minmax
     ON zc.medianhhinc IN (minmax.hhmax, minmax.hhmin)
GROUP BY medianhhinc

This query returns some additional information, such as the number of zip 
codes where the population is zero, where the number of households is zero, 
and the average population of the zip code.

Table 4-4 shows that 866 zip codes have zero median income. Although some 
people live in these zip codes, most have no households. These zip codes might 
contain institutions of some sort, where everyone is in group housing (such as 
prisons and college dorms) rather than private residences, or the zip code might 
be for an area predominated by businesses, such as Rockefeller Center in New 
York City. In the zip codes with no households, the household income is zero, 
which appears to be a placeholder for NULL.

The twelve zip codes with the maximum median income are shown in Table 4-5. 
These all have small populations. Usually, the median family income is also 
very high, but not always, because the definitions of household and family are 
not the same.

Proportion of Wealthy and Poor

Median household income is interesting, but, like all medians, it provides infor-
mation about only one household, the one whose income is in the middle. An 
alternative approach is to consider the distribution of incomes, by looking at the 
proportion of the very rich or very poor. The column famhhinc0 identifies the 
poorest group, those whose family income is less than ten thousand dollars per 
year. At the other extreme are the wealthiest whose income exceeds two hundred 
thousand dollars per year, counted by famhhinc200. The resulting query looks like:

SELECT zcta5, stab, medianhhinc, medianfaminc, totpop, tothhs
FROM ZipCensus zc CROSS JOIN
     (SELECT MAX(famhhinc200) as richest, MAX(famhhinc0) as poorest
      FROM zipcensus
      WHERE tothhs >= 1000) minmax
WHERE (zc.famhhinc200 = richest OR zc.famhhinc0 = poorest) AND
      zc.tothhs >= 1000

table 4-4: Information About the Wealthiest and Poorest Zip Codes

houSehoLd 
medIan 
InCome

number 
oF ZIp 
CodeS

no 
popuLatIon

no 
houSehoLdS

average 
popuLatIon

average 
houSehoLdS

$0.00 866 336 586 434.0 5.3

$250,001.00 12 0 0 341.2 60.4
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table 4-5: The Wealthiest Zip Codes by Household Income in the 2000 Census

ZIp 
Code

ZIp Code name 
and State popuLatIon

houSe
hoLdS FamILIeS

medIan InCome

houSe
hoLdS FamILy

02457 Wellesley, MA 1,343 10 10 $250,001 $250,001

20686 Saint Marys City, MD 754 22 22 $250,001 $250,001

21056 Gibson Island, MD 141 57 57 $250,001 $250,001

21405 Annapolis, MD 435 139 122 $250,001 $250,001

32461 Rosemary Beach, FL 28 13 13 $250,001 $250,001

33109 Miami Beach, FL 482 179 130 $250,001 $52,378

69335 Bingham, NE 18 11 7 $250,001 $250,001

70550 Lawtell, LA 377 99 99 $250,001 $250,001

79033 Farnsworth, TX 30 16 11 $250,001 $250,001

82833 Big Horn, WY 179 67 20 $250,001 $0

Notable about this query are the parentheses in the outer WHERE clause. Without 
the parentheses, the clause would be evaluated as:

WHERE (zc.faminc200 = richest) OR (zc.faminc000_010 = poorest AND
      zc.hh >= 1000)

That is, the condition on the number of households would apply only to the 
poorest condition and not the richest—not the intended behavior. Misplaced or 
missing parentheses can alter the meaning and performance of a query.

t Ip In WHERE clauses that mix ANDs and ORs, use parentheses to ensure that the 
clauses are interpreted correctly.

The results are similar to the previous results. The poorest zip code has 
now switched to an inner city neighborhood, the East New York neighbor-
hood of Brooklyn. Interestingly, the median family income is actually much 
higher than the median household income, indicating that although the zip 
code has many poor residents it also has many wealthier (or at least middle 
class) residents; the richer residents live in “family” households but the poorer 
residents do not.

Income Similarity and Dissimilarity Using Chi-Square

The distribution of income goes beyond median or average income. The Census 
Bureau breaks income into ten buckets, the poorest being family income less 
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than $10,000 and the wealthiest being family income in excess of $200,000. The 
proportion of families in each of these buckets is available at the zip code level, 
and this is a good description of the income distribution.

In which zip codes does the income distribution match the country as a whole? These 
zip codes are all over the entire United States. Such representative areas can be 
useful. What works well in these areas may work well across the whole country. 
At the other extreme are zip codes that differ from the national distribution, 
the most unrepresentative areas.

The chi-square calculation is one way to measure both these extremes. To use 
the chi-square, an expected value is needed, and this is the income distribution 
at the national level. The key to calculating the national numbers is to multiply 
the proportions by the total number of families to obtain counts of families in 
each bucket. This total number can be aggregated across all zip codes, and then 
divided by the number of families to get the distribution at the national level, 
as shown in the following query:

SELECT SUM(famhhinc0 * 1.0) / SUM(famhhs) as faminc000,
       . . .
       SUM(famhhinc150 * 1.0) / SUM(famhhs) as faminc150,
       SUM(famhhinc200 * 1.0) / SUM(famhhs) as faminc200
FROM ZipCensus
WHERE totpop >= 1000

Which zip codes are most similar (or most dissimilar) can be expressed as a 
question: What is the likelihood that the income distribution seen in a given zip code 
is due to chance, relative to the national average? Or, to slightly simplify the calcula-
tion: What is the chi-square value of the income distribution of the zip code compared 
to the national income distribution? The closer the chi-square value is to zero, the 
more representative the zip code. Higher chi-square values suggest that the 
observed distribution is not due to chance.

The calculation requires a lot of arithmetic. The chi-square value for a given income 
column, such as famhhinc0, is the square of the difference between the variable 
and the expected value divided by the expected value. For each of the ten buckets, 
the following expression calculates its contribution to the total chi-square value:

POWER(zc.famhhinc0 – usa.famhhinc000, 2) / usa.faminc000

The total chi-square is the sum of the chi-square values for all the buckets.
As an example, the following query finds the top ten zip codes most similar to 

the national distribution of incomes and having a population greater than 1,000:

SELECT TOP 10 zcta5, stab as state,
       SQUARE(zc.famhhinc0*1.0/zc.famhhs-usa.faminc000)/usa.faminc000+
       . . .
       SQUARE(zc.famhhinc150*1.0/zc.famhhs-usa.faminc150)/usa.faminc150+
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       SQUARE(zc.famhhinc200*1.0/zc.famhhs-usa.faminc200)/usa.faminc200
      ) as chisquare,
      totpop, medianfaminc
FROM ZipCensus zc CROSS JOIN
    (SELECT SUM(famhhinc0 * 1.0) / SUM(famhhs) as faminc000,
            . . .
            SUM(famhhinc150 * 1.0) / SUM(famhhs) as faminc150,
            SUM(famhhinc200 * 1.0) / SUM(famhhs) as faminc200
     FROM ZipCensus
     WHERE totpop >= 1000) usa
WHERE totpop >= 1000 AND famhhs > 0
ORDER BY chisquare ASC

This uses a subquery to calculate the distribution at the national level, which is 
joined in using the CROSS JOIN. The actual chi-square value is calculated as an 
expression in the outermost query. Note that this chi-square calculation uses 
ratios rather than counts. The results are the same.

The zip codes most similar to the national income distribution are dispersed 
across the United States, as shown in Table 4-6.

Table 4-7 shows the ten zip codes with the highest deviation from the national 
income distribution. These zip codes are all smaller than the zip codes most 
similar to the national average.

Visualizing the income variables for these ten zip codes helps explain why 
they are different. Figure 4-7 is an example of a parallel dimension plot, where 
each zip code is a line on the chart, and each point on a line is the value of one 
of the income variables. The thickest line is the average for the United States. 

table 4-6: Top Ten Zip Codes by Chi-Square Income Similarity

ZIp Code State
InCome  

ChISquare pop
Fam medIan 

InCome

07002 NJ 0.0068 63,164 $68,532

85022 AZ 0.0069 46,427 $61,219

32217 FL 0.0075 20,200 $62,865

11420 NY 0.0076 48,226 $63,787

93933 CA 0.0078 22,723 $63,999

91748 CA 0.0084 46,946 $63,374

77396 TX 0.0085 43,861 $64,118

83706 ID 0.0090 31,289 $65,265

33155 FL 0.0092 46,603 $61,797

29501 SC 0.0095 43,004 $61,417
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table 4-7: Top Ten Zip Codes by Chi-Square Income Disparity

ZIp Code State
InCome  

ChISquare popuLatIon
FamILy medIan 

InCome

37315 TN 30.3  1,242 $0

90089 CA 30.3  3,402 $0

97331 OR 30.3  2,405 $0

06269 CT 30.3  9,009 $0

19717 DE 20.7  4,091 $2,499

30602 GA 20.7  2,670 $2,499

02457 MA 15.4  1,343 $250,001

01003 MA 15.1 11,286 $0

02912 RI 15.1  1,898 $0

38738 MS 14.6  2,881 $14,342

The zip codes that differ from the United States do so because a few of the 
income brackets have most of the families—and conversely, many buckets are 
empty or close to empty. All of these zip codes are either quite rich or quite poor. 
However, some middle-income zip codes also have high chi-square values—zip 
codes such as 15450, 18503, and 32831 have median incomes much closer to the 
national median, but still have large chi-square values.

The query that returns the data for Figure 4-7 is a modification of the chi-
square query. It replaces the CROSS JOIN with UNION ALL, does not have the 
chi-square calculation, and lists the zip codes explicitly:

Figure 4-7:  This parallel dimension plot compares the top ten zip codes least similar to the 
United States by income distribution.



 Chapter 4 ■ Where Is It all happening? Location, Location, Location 167

SELECT zcta5, famhhinc0 * 1.0 / famhhs as famhhinc0,
       . . .
       famhhinc200 * 1.0 / famhhs as famhhinc200
FROM ZipCensus
WHERE zcta5 IN ('41650', '25107', '97345', '87049', '10006', '44702',
                '64147', '10282', '98921','40982')
UNION ALL
SELECT 'USA', SUM(famhhinc0 * 1.0) / SUM(famhhs) as famhhinc0,
       . . .
       SUM(famhhinc200 * 1.0) / SUM(famhhs) as famhhinc200
FROM ZipCensus

The difference between the UNION ALL and the CROSS JOIN is that the UNION ALL 
adds a new row into the data with the same columns, so the result here has 11 
rows, ten for the zip codes and one for the entire United States. The CROSS JOIN, 
by contrast, does not add new rows (assuming the second table has exactly one 
row). Instead, it adds additional columns to the result.

Comparison of Zip Codes with and without Orders
The orders in the purchases database have zip codes assigned to them, most of 
which have demographic data. The ones that do not match are mistakes or are 
for non-U.S. addresses. This section investigates the intersection of zip codes 
in the orders data and the demographic data.

Zip Codes Not in Census File

Two tables have zip codes, the Orders table and the ZipCensus table. How many 
zip codes are in each table and how many are in both? This is a question about the 
relationship between two sets.

A good way to answer it is by comparing the zip codes in the two tables 
using the UNION ALL:

SELECT inorders, incensus, COUNT(*) as numzips,
       SUM(numorders) as numorders, MIN(zipcode) as minzip,
       MAX(zipcode) as maxzip
FROM (SELECT zipcode, MAX(inorders) as inorders,
             MAX(incensus) as incensus, MAX(numorders) as numorders
      FROM ((SELECT ZipCode, 1 as inorders, 0 as incensus,
                    COUNT(*) as numorders
             FROM Orders o
             GROUP BY ZipCode)
            UNION ALL
            (SELECT zcta5, 0 as inorders, 1 as incensus, 0 as numorders
             FROM ZipCensus zc)
           ) ozc
      GROUP BY ZipCode
     ) b
GROUP BY inorders, incensus
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The first subquery in the UNION ALL sets a flag for all zip codes in Orders and 
counts the number of orders in the zip code. The second subquery sets a flag 
for all zip codes in the ZipCensus table. These are aggregated by zip code to 
produce two flags for each zip code, one indicating whether it is in Orders and 
the other indicating whether it is in ZipCensus. Each zip code also has a count 
of the number of orders. These flags are summarized again in the outer query 
to obtain information about the overlap of zip codes in the two tables.

The results in Table 4-8 show that most zip codes in ZipCensus have no orders. 
On the other hand, most order zip codes are in ZipCensus. And, by far most 
orders are in recognized zip codes. It is quite likely that many of the unrecog-
nized zip codes are for foreign orders.

Profiles of Zip Codes with and without Orders

Are the zip codes with orders different from the zip codes without orders? Information 
such as the following can distinguish between these two groups:

 ■ Estimated number of households

 ■ Estimated median income

 ■ Percent of households on public assistance

 ■ Percent of population with a college degree

 ■ Percent of housing units owned

Table 4-9 shows summary statistics for the two groups. Zip codes without orders 
are smaller, poorer, and have more homeowners. Zip codes with orders are more 
populous, richer, and better educated. Given that the numbers of zip codes in 
the two groups are so large, these differences are statistically significant.

The following query was used to calculate the information in the table:

SELECT (CASE WHEN o.ZipCode IS NULL THEN 'NO' ELSE 'YES'
        END) as hasorder,
       COUNT(*) as cnt, AVG(tothhs * 1.0) as avg_hh,
       AVG(medianhhinc) as avg_medincome,
       SUM(numhhpubassist * 1.0) / SUM(tothhs) as hhpubassist,
       SUM(bachelorsormore * 1.0) / SUM(over25) as popcollege,

table 4-8: Overlaps of Zip Codes between Census Zips and Purchase Zips

In orderS In CenSuS Count
number 
orderS

mInImum 
ZIp

maxImum 
ZIp

0 1 21,182 0 01005 99929

1 0 3,772 6,513 Z5B2T

1 1 11,807 186,470 01001 99901
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table 4-9: Some Demographic Information about Zip Codes with and without Purchases

haS order?

meaSure no yeS

Number of Zip Codes 21,182 11,807

Average Number of Households 1,273.2 7,475.0

Average Median Income $44,790 $60,835

Households on Public Assistance 2.9% 2.7%

Population with College Degree 16.8% 32.1%

Owner Occupied Households 72.5% 63.4%

       SUM(ownerocc * 1.0) / SUM(tothhs) as hhowner
FROM ZipCensus zc LEFT OUTER JOIN
     (SELECT DISTINCT ZipCode FROM Orders) o
     ON zc.zcta5 = o.ZipCode
GROUP BY (CASE WHEN o.ZipCode IS NULL THEN 'NO' ELSE 'YES' END)

This query uses a LEFT OUTER JOIN in order to retain all the rows in ZipCensus. 
From Orders, only the distinct zip codes are needed; use of the DISTINCT key-
word eliminates the need for an explicit GROUP BY and ensures that no duplicate 
rows are inadvertently created.

Note that the census values being used are counts. Although the table con-
tains both counts and percentages, for aggregation purposes, counts are more 
appropriate. The counts are then divided by the total—after the aggregation—to 
create a new percentage over all the zip codes in each group. The denominator 
varies, depending on the particular variable. Education levels are based on 
the population over 25, whereas home ownership and public assistance are 
based on the number of households. Taking the average of a ratio would result 
in a different value, one that is more biased toward zip codes with smaller 
populations.

So, zip codes that place orders are indeed more likely to be richer and larger. 
However, this analysis has a subtle bias. Orders are more likely to come from 
larger zip codes, simply because there are more people in larger zip codes who 
could place the order. Smaller zip codes are more likely to be rural and poor 
than larger ones. This is an example of sampling bias. Zip codes vary by size, 
and characteristics of zip codes are sometimes related to their sizes.

Restricting the query to largish zip codes helps eliminate this bias. For instance, 
any area with one thousand households has a reasonable opportunity to have some-
one who would place an order because the national order rate is about 0.23%. Table 
4-10 shows the zip code characteristics with this restriction. Even among these zip 
codes, the same pattern holds of richer, larger, better-educated areas placing orders.



170 Chapter 4 ■ Where Is It all happening? Location, Location, Location

Classifying and Comparing Zip Codes

Wealthier zip codes place orders and less wealthy zip codes do not place orders. 
Extending this observation leads to the question: Among zip codes that place orders, 
do wealthier ones place more orders than less wealthy ones?

One approach is to classify the zip codes by the penetration of orders 
within them. Penetration is the number of orders in the zip code divided 
by the number of households. Based on the previous analysis, we would 
expect the average median household income to increase as penetration 
increases. Similarly, we would expect the proportion of college-educated 
people to increase, and the proportion of households on public assistance to 
decrease. These expectations are all extensions of trends seen for zip codes 
with and without orders.

First, let’s look at the median household income. Figure 4-8 shows a scatter 
plot of zip code penetration by household median income, along with the best-fit 
line and its equation. Each point on this chart is a zip code. Although the data 
looks like a big blob, it does show that higher penetration zip codes tend to be 
on the higher income side.

The best-fit line shows both the equation and the R2 value, which is a measure 
of how good the line is (Chapter 12 discusses both the best-fit line and the R2 
value in more detail). The value of 0.26 indicates some relationship between the 
median income and the penetration, but the relationship is not overpowering. 
Notice that horizontal scale uses a clever Excel charting trick to remove the last 
three zeros of the median income and replace them with the letter “K.” This is 
accomplished using the number format “$#,K.”

t Ip The number format “$#,K” drops the last three zeros from a number and 
replaces them with the letter “K.”

table 4-10: Some Demographic Information about Zip Codes with and without Purchases with 
More Than 1000 Households

haS order?

meaSure no yeS

Number of Zip Codes 6,628 10,175

Average Number of Households 3,351.8 8,603.5

Average Median Income $46,888 $61,823

Households on Public Assistance 3.0% 2.7%

Population with College Degree 17.2% 32.2%

Owner-Occupied Households 71.2% 63.2%
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The query that produces the data for this chart is:

SELECT zc.zcta5, medianhhinc,
       (CASE WHEN o.numorders IS NULL THEN 0
             ELSE o.numorders * 1.0 / zc.tothhs END) as pen
FROM ZipCensus zc LEFT OUTER JOIN
     (SELECT ZipCode, COUNT(*) as numorders
      FROM Orders o
      GROUP BY ZipCode) o
     ON zc.zcta5 = o.ZipCode
WHERE zc.tothhs >= 1000

An alternative approach is to classify zip codes by penetration, and to compare 
demographic variables within these groups. Overall, 0.23% of households have 
an order at the national level. All zip codes fall into one of these five groups:

 ■ Zip codes with no orders (already seen in the previous section)

 ■ Zip codes with fewer than 1,000 households

 ■ Zip codes with penetration less than 0.1% (low penetration)

 ■ Zip codes with penetration between 0.1% and 0.3% (medium penetration)

 ■ Zip codes with penetration greater than 0.3% (high penetration)

The following query summarizes information about these groups:

SELECT (CASE WHEN o.ZipCode IS NULL THEN 'ZIP MISSING'
             WHEN zc.tothhs < 1000 THEN 'ZIP SMALL'
             WHEN 1.0 * o.numorders / zc.tothhs < 0.001
             THEN 'SMALL PENETRATION'
             WHEN 1.0 * o.numorders / zc.tothhs < 0.003
             THEN 'MED PENETRATION'

Figure 4-8:  This plot shows household median income and penetration by zip code, for zip 
codes with more than 1,000 households. This pattern is noticeable but not overwhelming.
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             ELSE 'HIGH PENETRATION' END) as ziptype,
       SUM(numorders) as numorders,
       COUNT(*) as cnt, AVG(tothhs * 1.0) as avg_hh,
       AVG(medianhhinc) as avg_medincome,
       SUM(numhhpubassist * 1.0) / SUM(tothhs) as hhpubassist,
       SUM(bachelorsormore * 1.0) / SUM(over25) as popcollege,
       SUM(ownerocc * 1.0) / SUM(tothhs) as hhowner
FROM Zipcensus zc LEFT OUTER JOIN
     (SELECT ZipCode, COUNT(*) as numorders
      FROM Orders o
      GROUP BY ZipCode) o
     ON zc.zcta5 = o.ZipCode
GROUP BY (CASE WHEN o.ZipCode IS NULL THEN 'ZIP MISSING'
               WHEN zc.tothhs < 1000 THEN 'ZIP SMALL'
               WHEN 1.0 * o.numorders / zc.tothhs < 0.001
               THEN 'SMALL PENETRATION'
               WHEN 1.0 * o.numorders / zc.tothhs < 0.003
               THEN 'MED PENETRATION'
               ELSE 'HIGH PENETRATION' END)
ORDER BY ziptype DESC

This query is similar to the previous query with two differences. First, the 
inner subquery on Orders uses an aggregation, because the number of orders 
is needed as well as the presence of any order. And, the outer aggregation is a 
bit more complicated, defining the five groups just listed.

The results in Table 4-11 confirm what we expected to see. As penetration 
increases, the zip codes become wealthier, better educated, and have fewer 
households on public assistance.

Geographic Hierarchies

Zip code information has a natural hierarchy: zip codes are in counties, and 
counties are in states, for instance. Such hierarchies are important for under-
standing and effectively using geographic information. This section discusses 
comparisons at different levels of geographic hierarchies.

Wealthiest Zip Code in a State?
Wealth is spread unevenly across the United States. Relative wealth is often 
more important than absolute wealth, although actual income levels may 
differ considerably. This inspires a question: What is the wealthiest zip code 
in each state?

This question is about geographic hierarchies. Locations are simultaneously in 
multiple geographic areas, so zip codes are in counties and counties are in states. 
Someone residing in zip code 10011 in Manhattan is also living in New York 
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table 4-11: As Penetration Increases, Zip Codes Become Wealthier and Better Educated

ZIp Code group

ZIp 
SmaLL

ZIp 
mISSIng

SmaLL  
penetratIon

mIddLe  
penetratIon

hIgh  
penetratIonmeaSure

Number of Orders 4,704 0 21,204 33,431 127,131

Number of Zip Codes 1,632 21,182 6,107 2,263 1,805

Average Number of 
Households

438.8 1,273.2 8,941.5 8,462.3 7,637.0

Average Median 
Income

$54,676 $44,790 $53,811 $64,078 $86,101

Households on 
Public Assistance

2.0% 2.9% 3.0% 2.4% 1.7%

Population with 
College Degree

29.0% 16.8% 25.1% 38.4% 52.1%

Owner-Occupied 
Households

76.8% 72.5% 64.6% 61.5% 60.5%

County, and in New York City, and in New York State, and in the United States. 
Of course, a handful of zip codes straddle state and county borders, as explained 
in Chapter 1. Each of these has a predominant state and county assigned to it.

The following query finds the wealthiest zip code in each state:

SELECT zc.*
FROM (SELECT zc.*,
             ROW_NUMBER() OVER (PARTITION BY stab
                                ORDER BY medianhhinc DESC) as seqnum
      FROM ZipCensus zc
     ) zc
WHERE seqnum = 1;

It uses the function ROW_NUMBER() to enumerate the zip codes in each state by 
median household income, and then chooses the first one. If there are ties, one 
is arbitrarily chosen.

Figure 4-9 shows a scatter plot of zip codes that have the maximum median 
household income in each state. Some states, such as Florida, have more than one 
zip code that matches the maximum. In this case, only one is chosen. This chart 
includes state boundaries, the mechanism for which is explained later in this chapter.

The chart places the zip codes into four buckets based on the maximum 
median household income:

 ■ Greater than $200,000

 ■ $150,000 to $200,000
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 ■ $100,000 to $150,000

 ■ $50,000 to $100,000

The chart has four different series, one for each of these groups. The first series—
the very wealthiest zip codes—are labeled with the name of the state and the 
zip code. Unfortunately, Excel does not make it possible to label scatter plots. 
Fortunately, there is a simple add-in that enables this functionality, as explained 
in the aside “Labeling Points on Scatter Plots.”

The spreadsheet shown in Figure 4-10 pivots the data for the chart. The data 
starts out as a table describing zip codes with columns for zip code, state, lon-
gitude, latitude, and median household income. The data for the chart is in 
the adjacent five columns, with longitude in the first. The next four contain 
the latitude for the bucket the zip code belongs in or NA(). Column titles are 
constructed from the ranges defining the buckets. The scatter plot can then be 
created from these five columns.

Figure 4-9:  The wealthiest zip codes in each state are scattered across the map. Here they are 
shown placed into four income buckets.

Figure 4-10:  This Excel spreadsheet pivots the data and assigns the names of the series for the 
chart in the previous figure. (Formulas for first bin are shown.)
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The spreadsheet creates reasonable names for each of the series. The bucket 
is defined by two values, the minimum and maximum of the income range. 
The label is created using string functions in Excel:

=TEXT(L7, "$#,K")&IF(L8>L7+1, " to "&TEXT(L8, "$#,K"), "")

This formula uses the TEXT() function to format a number as a string. The second 
argument is a number format that drops the last three digits and replaces them with 
a “K” ("$#,K"). The IF() takes care of the bucket that does not have an upper bound.

Zip Code with the Most Orders in Each State
Of course, there is no reason to limit examples to demographic features of the 
zip codes. The same ideas can be used to identify the zip code in each state that 
has the most orders and the most orders per household.

Figure 4-11 shows a map showing the zip codes with the most orders in each 
state. Zip codes with the most orders are typically large, urban zip codes. If the 
measure were penetration, the zip codes with the most orders per household 
would be small zip codes that have very few households.

The query that generates the information is an aggregation query that uses 
ROW_NUMBER(). The ORDER BY clause is based on the count:

SELECT zc.zcta5, zc.stab as state, longitude, latitude, numorders
FROM (SELECT Zipcode, State, COUNT(*) as numorders,
             ROW_NUMBER() OVER (PARTITION BY state
                                ORDER BY COUNT(*) DESC) as seqnum
      FROM Orders

Figure 4-11:  This map shows the zip code with the largest number of orders. The size of the 
circles represents the number of orders.
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LabeLIng poIntS In SCatter pLotS

The ability to label points in scatter plots and bubble plots (as in Figure 4-9) is very 
useful, but not part of Excel. Fortunately, Rob Bovey has written a small application 
to do this. Better yet, this application is free for download from www.appspro.com/
Utilities/ChartLabeler.htm.

The XY-Labeler installs new functionality in Excel by adding a new menu item 
called “XY Chart Labels” to the “Tools” menu, which makes it possible to:

 ■ Add labels to a chart, where the labels are defined by a column in the 
spreadsheet

 ■ Modify existing labels

 ■ Add labels to individual points in any series

In the chart, the labels behave like labels on any other series. Just like other text, they 
can be formatted as desired, with fonts, colors, backgrounds, and orientations. You 
can delete them by clicking them and hitting the Delete key.

When inserting the labels, the chart labeler asks for several items of information. 
First, it needs the series to label. Second, it needs the labels, which are typically in 
a column in the same table. And third, it needs to know where to place the labels: 
above, below, to the right, to the left, or on the data points.

The labels themselves are values in a column, so they can be arbitrary text and as 
informative as needed. In this case, the label for each point consists of the state abbre-
viation with the zip code in parentheses, created using the following formula:

=D10&" ("&TEXT(C10, "00000")&")"

where D10 contains the state and C10 contains the zip code. The TEXT() function 
adds zeros to the beginning of the zip codes to ensure that zip codes starting with “0” 
look correct.

      GROUP BY ZipCode, State
     ) ozip JOIN
     ZipCensus zc
     ON zc.zcta5 = ozip.ZipCode
WHERE seqnum = 1 AND
      latitude BETWEEN 20 and 50 AND longitude BETWEEN -135 AND -65
ORDER BY zc.stab

The window functions make this calculation almost as easy as the calculation 
without the aggregation. Without these functions, the query would still be 
feasible in SQL, but a bit more complicated.

Interesting Hierarchies in Geographic Data
Zip codes within states are only one example of geographic levels nestling inside 
each other. This section discusses some other geographic levels, even though 
most of these are not in the datasets.

http://www.appspro.com/Utilities/ChartLabeler.htm
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Counties

Every state is divided into counties. Some states such as Texas have hundreds 
of counties (254). By contrast, Delaware has only three and Hawaii and Rhode 
Island have five. Counties are useful precisely because every address has some 
county associated with it, even though the location may not be in a village, 
town, or city. The table ZipCounty has the predominant county for each zip 
code. ZipCensus also contains the county for each of its zip codes.

Counties in different states can have the same name. Once upon a time, 
the author was surprised to see a map highlighting two counties in northern 
Minnesota as having very large marketing potential. Between them, these 
counties have a population of less than 20,000 people, which is not very big 
at all. Although Lake County and Cook County are small and out of the way 
(and very pretty) in Minnesota, their namesakes in Illinois are two of the most 
populous counties in the country.

To prevent such confusion, the Census Bureau has a numbering system 
for geographic areas called FIPS (Federal Information Processing Standard). 
The FIPS county codes consist of five digits. The first two digits are for the 
state and the last three are for the counties. In general, the state number is 
obtained by alphabetizing the states and assigning sequential numbers, start-
ing with 01 for Alabama. The counties in each state are similarly numbered, 
so Alabaster County in Alabama has the FIPS code of 01001. The columns 
ZipCensus.fipco and ZipCounty.fipco contain the FIPS county codes for 
each zip code.

Counties are useful for other purposes as well. For instance, sales taxes are 
often set at the county level.

Designated Marketing Areas

Designated marketing areas (DMAs) are the invention of Nielsen Market Research 
and were originally designed for television advertising. These are groups of coun-
ties that form marketing regions, and are good approximations to metropolitan 
areas. There are 210 DMAs in the United States. The largest by population is 
the one containing New York City with about 7.4 million households (in 2012), 
with 29 counties spread over four states.

DMAs being composed of counties is a good idea because all areas in the United 
States are in some county. Hence, every location is in some DMA. Unfortunately, 
the definition is privately owned, so the mapping from county to DMA or zip 
code to DMA needs to be purchased for a nominal amount of money (although 
the definitions are readily available on the web).

Each company may have its own definition of its marketing area. Newspapers 
and radio stations also have designated marketing areas. This is the area where 
they compete for readers and advertising in the “local” market.
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Census Hierarchies

The Census Bureau in the United States has quite a challenge. As mandated 
by the Constitution, the Bureau is responsible for “enumerating” (counting) 
the population of every state in the United States every ten years. The purpose 
is to determine the number of seats assigned to each state in the House of 
Representatives. In addition to counting residents, the census also estimates 
various demographic and economic statistics both during the decennial census 
and in the years in-between.

The Census Bureau divides the United States into a mosaic of small geographic 
entities, such as:

 ■ Census block

 ■ Census block group

 ■ Census tract

The census block is the smallest unit and typically has a population of a few dozen 
people in a small area (such as along one side of a street or one floor of a large resi-
dential building). The United States is divided into over 11 million census blocks. 
The Bureau publishes very few statistics at the block level because such statistics 
could compromise the privacy of the individuals living in such a small area.

Block groups are collections of census blocks that typically have up to about 
four thousand people. Both census blocks and block groups change at the whims 
and needs of the Census Bureau, as populations grow and shrink and shift.

Census tracts are intended to be more permanent statistical subdivisions, with 
about two to eight thousand people each (although the largest can be much 
larger). Unlike zip codes, census tracts are designed to be statistically homo-
geneous and relevant to local governments. This is in contrast to post offices 
that are intended to serve diverse areas. Further information about the census 
divisions is available at www.census.gov.

The low-level census hierarchies are then aggregated into a cornucopia of other 
groupings, such as Metropolitan Statistical Areas, Micropolitan Statistical Areas, 
New England City and Town Areas, Combined Statistical Areas, and more. The 
problem with these hierarchies boils down to one word, politics. The funding 
for various federal programs is tied to populations. Perhaps for this reason, the 
Office of Management and Budget (OMB) defines these rather than the Census 
Bureau. For instance, in the 2000 Census, Worcester, MA was included in the 
Boston metropolitan statistical area. By 2003, it had been split out into its own area.

Other Geographic Subdivisions

There are a host of other geographic subdivisions, which might be useful for 
special purposes. The following discusses some of these.

http://www.census.gov
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Zip+2 and Zip+4

The five-digit zip code in the United States has been augmented with four 
additional digits, commonly known as zip+4. The first two are the carrier route 
code and the second two are the stop along the route. Because zip+4s change 
at the whim of the post office, they are not particularly useful for comparisons 
over time.

electoral districts

People vote. And the wards and precincts where they vote are located in 
Congressional districts and state and local election districts. Such information 
is particularly useful for political campaigns. However, the districts change at 
least every ten years, so these are not so useful for other purposes or for com-
parisons over longer periods of time.

School districts

School districts are yet another geographic grouping. Each district has its own 
schedule. When do you want to send customers “back-to-school” messages? 
When do you want to offer discounted vacations to Disney World? Some districts 
start the school year in early August. Others start a month later after Labor Day. 
Similarly, some end in early May and some continue well into June. In addition, 
the quality of the school district (typically measured by test scores) can say a 
lot about the geographic area.

Catchment areas

A catchment area is the area from where a retail establishment draws its cus-
tomers. The definition of a catchment area can be quite complicated, taking into 
account store locations, road patterns, commuting distances, and competitors. 
Retailing companies often know about their catchment areas and the competi-
tion inside them.

Geography on the Web

Once upon a time, when the web was invented, people thought that it would 
herald the end of geography. Users can view web pages from anywhere, regard-
less of where a company is physically located.

In one sense, this is true: the web itself has no inherent geography, at least 
nothing more detailed than countries (which are important for legal reasons). On 
the other hand, geography is still important. Geography provides information 
about culture, language, product preferences, currencies, and time zones. There 
is evidence that even trends in the online world spread first through particular 
physical geographies—as friends, neighbors, and colleagues communicate with 
each other, even if that communication is via social media.
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How can we extract geographic information from web interactions? There 
are essentially four different methods:

 ■ Self-reported addresses

 ■ IP address lookups

 ■ Geolocation on mobile devices

 ■ Ancillary information through other means

None of these are perfect and none provide a solution all the time. However, 
useful geographic information can often be inferred.

Self-reported addresses

Some websites require registration of some form or other. And, such registration 
often includes physical addresses as part of the profile information. Websites 
that require payment—when the payments are through credit cards—typically 
require addresses for credit card processing and/or shipment. Such addresses 
should be remembered so they can be geo-coded to provide latitude, longitude, 
and other information.

Ip address Lookups

All interactions over the web have an Internet Protocol (IP) address used to 
identify the network location of the computer or device at the other end. The 
addresses themselves look promising from the perspective of analysis. In the 
original standard (called IPv4), the address consists of four numbers between 
0 and 255 separated by periods (the more recent standard IPv6 has even more 
numbers). A typical address might look like:

 ■ 164.233.160.0

And you might expect this to be very close to 164.233.160.1. You would probably 
be right because both belong to Google.

However, there are no guarantees, because IP addresses are not assigned 
geographically. Organizations licensed by ICANN, the Internet Corporation for 
Assigned Names and Numbers, assign the numbers with little or no thought to 
physical geography. When numbers are assigned, a physical location and orga-
nization names are collected, so this information is available on a per-address 
basis. It is possible to get reference tables of this information or to look up the 
point-of-presence information using a cloud service.

IP address location information can be useful—but only when paired with 
a healthy dose of skepticism. The most important issue is that the address is 
for the point-of-presence on the web, rather than where the device actually is. 
For instance, Delta Airlines uses a service on-board their aircraft to provide 
Internet services to passengers. These passengers are geolocated to the Atlanta 
airport, regardless of where they really are—and given that the service only 
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works above 10,000 feet, they are most definitely not in Hartsfield International. 
The same can be true of certain ISPs and corporate networks.

Virtual private networks (VPNs) are another issue. Many corporations use these, 
routing all Internet traffic through a single network interface. A user can easily 
switch between networks, sometimes just by switching a mobile device from a 
telephone provider to a Wifi. The VPN point of presence might be far away from 
where the individual is located. In extreme cases, the author has seen users logging 
in from New York City and then from London—within ten minutes of each other.

Nevertheless, the IP address does provide a good sense of geographic loca-
tion. However, it is not guaranteed to be accurate and requires care when using.

geolocation on mobile devices

Mobile devices provide another solution to the problem of locating users: geo-
positioning services on the device itself. These provide latitude and longitude 
information about the location of the device; the latitude and longitude can, 
in turn, be used to find almost any level of geography. The problem with geo-
positioning is that users may not always have the services available or turned 
on. So, although this information is more reliable than IP addresses, it is less 
available and device-dependent.

ancillary Information

Some information associated with geography might be available through other 
means. In particular, web browsers can provide information on the preferred 
language and time zone where the computer or device is located. This informa-
tion can be very useful for subsequent analysis.

An interesting example of using this sort of data comes from the dark side, 
a computer worm called Conficker. This particular worm would look at the 
computer being infected, and if the keyboard layout used on the computer were 
Ukrainian, then it would delete itself—the authors of the worm being Ukrainian 
wanted to protect their own computers. Such language information is available 
when someone is browsing the web—and has much more helpful uses than 
propagating damaging malware.

Calculating County Wealth
This section focuses on wealth in counties, which provides an opportunity to 
make comparisons across different levels of geography. The place to begin is 
in identifying the counties.

Identifying Counties

If Orders contained complete addresses and the addresses were geocoded, 
the county would be available as well as the zip code (and census tract and 
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other information). However, the data contains zip codes, rather than geo-
coded addresses. The county for a zip code can be looked up using ZipCounty 
(the information is also available in ZipCensus). This is an approximate 
mapping, based on the zip codes existing in 1999. Even though zip codes 
can span both state and county borders, this table assigns one single county 
to each zip code.

What is the overlap between ZipCounty and ZipCensus? This question is quite 
similar to the question about the overlap between zip codes in Orders and 
ZipCensus. The query is similar as well:

SELECT inzc, inzco, COUNT(*) as numzips, MIN(zipcode), MAX(zipcode),
       MIN(countyname), MAX(countyname)
FROM (SELECT zipcode, MAX(CountyName) as countyname, SUM(inzc) as inzc,
             SUM(inzco) as inzco
      FROM ((SELECT zcta5 as zipcode, '' as countyname,
                    1 as inzc, 0 as inzco
             FROM ZipCensus)
            UNION ALL
            (SELECT ZipCode, countyname, 0 as inzc, 1 as inzco
             FROM ZipCounty)) z
      GROUP BY zipcode) zc
GROUP BY inzc, inzco;

This query is typical of queries that determine the overlap of two or more tables, 
with the addition of the county name and the zip code for informational purposes.

Table 4-12 shows that almost all zip codes in ZipCensus are also in ZipCounty. 
Almost ten thousand zip codes in ZipCounty are not in ZipCensus, because 
ZipCensus consists of zip code tabulation areas maintained by the Census 
Bureau. Zip code tabulation areas are defined only for a subset of zip codes that 
would be expected to have a residential population. The presence of so many 
additional zip codes is why having this secondary table is useful.

Measuring Wealth

The typical attribute for wealth is medianhhinc, the median household income. 
Unfortunately, this is not available at the county level. Fortunately, a reasonable 

table 4-12: Overlap of Zip Codes in ZipCensus and ZipCounty

In ZIp 
CenSuS

In ZIp 
County

number 
oF ZIpS

mInImum 
ZIp

maxImum 
ZIp

mInImum 
County

maxImum 
County

0 1 9,446 00773 99950 Acadia Ziebach

1 0 343 01434 99354

1 1 32,646 01001 99929 Abbeville Ziebach



 Chapter 4 ■ Where Is It all happening? Location, Location, Location 183

approximation is the average of the median incomes in all zip codes in the 
county. The average of a median is an approximation, but such approximations 
are often good enough for relative comparisons. The following query calculates 
the average median household income for each county:

SELECT zco.countyfips, zco.countyname,
       (SUM(medianhhinc * tothhs) / NULLIF(SUM(tothhs), 0)) as income
FROM ZipCensus zc JOIN
     ZipCounty zco
     ON zc.zcta5 = zco.zipcode
GROUP BY zco.countyfips, zco.countryname

Notice that this query uses the weighted average (weighted by the number 
of households), rather than just the average. The alternative formulation, 
AVG(medianhhinc), would calculate a different value; each zip code would have 
the same weight regardless of its population.

t Ip When averaging ratios at a higher level of aggregation, it is generally better to 
take the ratio of sums than the average of the ratios.

The NULLIF() function accounts for counties having zero households, an 
unusual situation. The only example in the data is Williamsburg, VA, an 
independent city in Virginia (meaning it is its own county). Three of its five 
zip codes are in neighboring counties. The only two zip codes assigned to 
Williamsburg are for the College of William and Mary, which has “group 
housing” but no “households.” Such is the census data: accurate, detailed, 
and sometimes surprising.

Distribution of Values of Wealth
The distribution of median household income for both zip codes and coun-
ties is in Figure 4-12. This distribution is a histogram, with the values in 
thousand-dollar increments. The vertical axis shows the proportion of zip 
codes or counties whose median household income falls into each range. 
Overall the distribution looks like a normal distribution, although it is skewed 
a bit to the left, meaning that more areas are very rich than very poor (the 
peak on the left means that the tail extends further to the right). One reason 
for the skew is that the median household income is never negative, so it 
cannot fall too low.

The peak for both zip codes and counties is in the range of $30,000–$31,000. 
However, the peak for counties is higher than the peak for zip codes. And, the 
curve for counties is narrower, with fewer very large values or very small values. 
Does this tell us anything interesting about counties?

Actually no. We can think of counties as being samples of zip codes. As 
explained in the previous chapter, the distribution of the average of a sample is 



184 Chapter 4 ■ Where Is It all happening? Location, Location, Location

narrower than the original data, clustering more closely to the overall average. 
Geographic hierarchies usually follow this pattern.

The data in Figure 4-12 was calculated in SQL and Excel. The SQL query 
summarizes the counts by bin, which Excel then converts to ratios for the chart:

SELECT bin, SUM(numzips) as numzips, SUM(numcounties) as numcounties
FROM ((SELECT FLOOR(medianhhinc / 1000) * 1000 as bin,
              COUNT(*) as numzips, 0 as numcounties
       FROM ZipCensus zc
       WHERE tothhs > 0
       GROUP BY FLOOR(medianhhinc / 1000) * 1000
      ) UNION ALL
      (SELECT FLOOR(countymedian / 1000) * 1000 as bin, 0 as numzips,
              COUNT(*) as numcounties
       FROM (SELECT CountyFIPs,
                   (SUM(medianhhinc * tothhs * 1.0) /
                    SUM(zc.tothhs) ) as countymedian
             FROM ZipCensus zc JOIN
                  ZipCounty zco
                  ON zc.zcta5 = zco.ZipCode AND
                     zc.tothhs > 0
             GROUP BY CountyFIPs) c
       GROUP BY FLOOR(countymedian / 1000) * 1000
      ) ) a
GROUP BY bin
ORDER BY bin

This query creates a bin for median income by taking only the thousands 
component of the number. So, an income of $31,948 is placed into the $31,000 
bin. The calculation for this is simple arithmetic that uses the FLOOR() 
function. The query calculates this bin both at the zip code level and at the 
county level.

Figure 4-12:  The distribution of median household income for counties is “narrower” than for zip codes.
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Which Zip Code Is Wealthiest Relative to Its County?
Local areas that are significantly different from their surrounding areas are 
interesting: What is the wealthiest zip code relative to its county?

Answering this question requires understanding what it really means. One 
possibility is that the difference between the median incomes is as large as pos-
sible. Another is that the ratio is as large as possible. Both of these are reason-
able interpretations. The second leads to the idea of indexing values between 
different geographic levels, a useful idea.

t Ip Dividing the value of a variable in one geographic level by the value in a larger 
area is an example of indexing. This can find interesting patterns in the data, such as 
the wealthiest zip code in a county.

The following query finds the ten zip codes with more than one thousand 
households whose index relative to their county is the largest in the country:

SELECT TOP 10 zc.zcta5, zc.state, zc.countyname, zc.medianhhinc,
       c.countymedian, zc.medianhhinc / c.countymedian, zc.tothhs, c.hh
FROM (SELECT zc.*, zco.CountyFIPs, zco.CountyName
      FROM ZipCensus zc JOIN
           ZipCounty zco
           ON zc.zcta5 = zco.ZipCode) zc JOIN
     (SELECT zco.CountyFIPs, SUM(tothhs) as hh,
             SUM(medianhhinc * tothhs * 1.0) / SUM(tothhs) as countymedian
      FROM ZipCensus zc JOIN
           ZipCounty zco
           ON zc.zcta5 = zco.ZipCode AND
              tothhs > 0
      GROUP BY zco.CountyFIPs) c
     ON zc.countyfips = c.countyfips
WHERE zc.tothhs > 1000
ORDER BY zc.medianhhinc / c.countymedian DESC

This query has two subqueries. The first appends the FIPS county code onto each 
row in ZipCensus. The second approximates the median household income for 
the county. These are joined together using the FIPS code. The ORDER BY clause 
then supplies the intelligence behind the query, by ordering the result by the 
ratio in descending order.

These wealthy zip codes (in Table 4-13) all seem to be in counties whose 
income is a bit above average and whose population is quite large (they have 
hundreds of thousands or millions of households). These are wealthy enclaves 
in highly urban counties.

County with Highest Relative Order Penetration
Geographic hierarchies can also be used for customer-related information. For 
instance: Which counties in each state have the highest order penetration relative to the state?
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In addition to calculating order penetration, the following query also calcu-
lates some other statistics about the counties and states:

 ■ Estimated number of households

 ■ Estimated median income

 ■ Percent of households on public assistance

 ■ Percent of population with a college degree

 ■ Percent of housing units owned

The purpose is to compare the highest penetration county to the state, to see if 
other factors might be correlated with high penetration.

Table 4-14 shows the top ten counties whose order penetration is highest relative 
to their states. For the most part, these consist of small counties with a smallish 
number of orders. However, the penetration by household is quite high. Interestingly, 
the larger counties with high relative penetration are wealthier than their states. 
However, some of the smaller counties are poorer. In general, these counties do 
seem to be better educated and have fewer people on public assistance.

The query that finds these counties is:

SELECT c.*, s.*, c.orderpen / s.orderpen
FROM (SELECT zcounty.*, ocounty.numorders,
             (CASE WHEN numhh > 0 THEN numorders * 1.0 / numhh ELSE 0
              END) as orderpen
      FROM (SELECT zco.CountyFIPs, zco.State,
                   MIN(countyname) as countyname, COUNT(*) as numorders

table 4-13: Wealthiest Zip Codes Relative to Their Counties

ZIp 
Code County name

medIan InCome houSehoLdS

ZIp County Index ZIp County

07078 Essex County, NJ $234,932 $65,516 3.59 3,942 277,630

60022 Cook County, IL $190,995 $57,780 3.31 2,809 1,878,050

10282 New York County, NY $233,409 $74,520 3.13 2,278 703,100

33158 Miami-Dade County, FL $142,620 $46,660 3.06 2,082 826,183

90077 Los Angeles County, CA $182,270 $60,784 3.00 3,195 3,191,944

76092 Tarrant County, TX $181,368 $60,756 2.99 8,279 631,364

10007 New York County, NY $210,125 $74,520 2.82 2,459 703,100

38139 Shelby County, TN $136,603 $50,416 2.71 5,411 328,973

60093 Cook County, IL $156,394 $57,780 2.71 6,609 1,878,050

75225 Dallas County, TX $141,193 $53,861 2.62 8,197 921,715



 Chapter 4 ■ Where Is It all happening? Location, Location, Location 187

            FROM Orders o JOIN
                 ZipCounty zco
                 ON o.ZipCode = zco.ZipCode
            GROUP BY CountyFIPs, zco.State) ocounty JOIN
           (SELECT zco.countyfips, zco.state, SUM(zc.tothhs) as numhh,
                   (SUM(medianhhinc * zc.tothhs)/
                    SUM(zc.tothhs) ) as hhmedincome,
                   (SUM(numhhpubassist * 1.0)/
                    SUM(zc.tothhs) ) as hhpubassist,
                   SUM(bachelors * 1.0) / SUM(over25) as popcollege,
                   SUM(ownerocc * 1.0) / SUM(zc.tothhs)  as hhuowner
            FROM ZipCensus zc JOIN
                 ZipCounty zco
                 ON zc.zcta5 = zco.ZipCode
            WHERE zc.tothhs > 0
            GROUP BY zco.countyfips, zco.state) zcounty
           ON ocounty.countyfips = zcounty.countyfips) c JOIN
     (SELECT zstate.*, ostate.numorders,
             numorders * 1.0 / numhh as orderpen
      FROM (SELECT o.state, COUNT(*) as numorders
            FROM Orders o JOIN
                 ZipCensus zc
                 ON o.ZipCode = zc.zcta5 AND zc.tothhs > 0)
            GROUP BY o.state) ostate JOIN
           (SELECT zc.stab, SUM(zc.tothhs) as numhh,
                  SUM(medianhhinc*zc.tothhs) / SUM(zc.tothhs) as
                      hhmedincome,
                  SUM(numhhpubassist*1.0) / SUM(zc.tothhs) as hhpubassist,
                  SUM(bachelors * 1.0) / SUM(zc.over25) as popcollege,
                  SUM(ownerocc * 1.0) / SUM(zc.tothhs) as hhuowner
            FROM ZipCensus zc
            WHERE zc.tothhs > 0
            GROUP BY zc.stab) zstate
           ON ostate.state = zstate.stab) s
      ON s.stab = c.state
ORDER BY c.orderpen / s.orderpen DESC

This complicated query is built around four subqueries. The first two calculate 
the number of orders and the number of households in each county, in order 
to calculate the order penetration by county. The second does the same thing 
for states. These are then combined to calculate the order penetration index. 
The dataflow for this query in Figure 4-13 shows how these four subqueries 
are combined together.

The calculation of the demographic ratios at the county and state level follows 
the same methods seen earlier in the chapter. The percentages are multiplied 
by the appropriate factors to get counts (number of households, population, 
educated population). The counts are aggregated and then divided by the sum 
of the factors.
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table 4-14: Counties with Highest Order Penetration Relative to Their State

houSehoLdS

County 
FIpS/

State number
medIan 
InCome

on pubLIC 
aSSISt

anCe

oWner 
oCCu

pIed

% WIth 
CoLLege 
degree

order 
penetratIon Index

56039  7,142 $69,620 0.49% 61.40% 34.28% 0.48% 11.7

WY 221,523 $57,937 1.55% 70.29% 16.16% 0.04%

16013  9,126 $62,727 1.88% 68.15% 31.25% 0.39% 11.6

ID 577,434 $47,580 2.84% 70.09% 16.97% 0.03%

46027  5,294 $36,628 3.57% 56.44% 22.40% 0.19% 10.3

SD 320,310 $49,854 2.61% 68.62% 18.27% 0.02%

08097  6,164 $67,710 1.31% 64.44% 40.79% 0.96% 9.0

CO 1,962,800 $61,291 2.09% 65.93% 23.45% 0.11%

37135  42,762 $58,973 1.47% 57.55% 25.67% 0.56% 8.8

NC 3,693,221 $48,490 1.89% 67.08% 17.82% 0.06%

08079  366 $56,731 0.00% 85.52% 26.08% 0.82% 7.7

CO 1,962,800 $61,291 2.09% 65.93% 23.45% 0.11%

51610  6,120 $126,885 0.57% 73.17% 32.39% 1.01% 7.5

VA 3,006,262 $69,888 1.97% 67.80% 20.28% 0.13%

45013  50,482 $56,540 1.35% 68.20% 22.55% 0.35% 7.3

SC 1,768,255 $46,001 1.77% 69.46% 15.81% 0.05%

28071  14,672 $44,074 0.98% 61.87% 22.05% 0.12% 6.7

MS 1,087,728 $40,533 2.53% 69.91% 12.76% 0.02%

49043  13,631 $88,867 0.98% 75.06% 30.64% 0.24% 6.2

UT 880,631 $59,777 2.13% 70.43% 20.12% 0.04%

Mapping in Excel

Maps are very useful when working with geographic data. This section discusses 
the issue of creating maps in Excel. The short answer is that if mapping is important, 
Excel is not the right tool, at least without add-ins or extensions specifically for map-
ping. However, the longer answer is that basic charting in Excel can get you started.

Why Create Maps?
The purpose of mapping is to visualize trends and data, making it easier to 
understand where things are and are not happening. The zip code maps seen 
earlier in the chapter (for solar power and wealthy zip codes) contain tens of 
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Figure 4-13:  This dataflow calculates index of order penetration in a county to its state; this is 
the ratio between the order penetration in the county to the order penetration in its state.
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. . .
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APPEND
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numorders / numhh

JOIN
State

APPEND
s.orderpen = numorders / numhh
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ratio= c.orderpen / s.orderpen

thousands of zip codes in a format readily understandable by most people. A 
map summarizes information at different levels—showing differences across 
regions, between urban and rural areas, and for particular geographic areas. 
And this is just from rudimentary zip code maps.

Beyond this, there are several things that mapping software should do. Mapping 
software should be able to show different levels of geography. In the United States, 
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this means the ability to see the boundaries of states at a minimum as well as coun-
ties and zip codes. In other parts of the world, this means the ability to see different 
countries, regions in countries, and different linguistic areas. It can also be impor-
tant to see other points of references, such as lakes, rivers, and interstate highways.

Another important capability is being able to color and highlight different 
geographic regions based on data, whether this is derived from business data 
(the number of orders) or census data (population and wealth). Fancy mapping 
software allows you to include specific markers for specific types of data, to 
use graduated colors, and to fill regions with textures. In Excel, only the first of 
these is possible without using Power View.

The maps should include data available for geographic areas. This especially 
includes census population counts, so it is possible to measure penetration. Other 
census variables, such as wealth and education, types of home heating systems, 
and commuting times, are also useful. And this additional data should not be 
particularly expensive, because it is available for free from the census website. It is 
also nice to see other features on maps, such as roads, rivers, and lakes.

This list is intended to be a bare-bones discussion of what is needed for visu-
alization using maps. Advanced mapping software has many other capabilities. 
For instance, mapping software often has the ability to integrate into GPS (global 
positioning services) systems to trace a route between different points following 
roads, to incorporate satellite imagery, to overlay many different features, and 
other advanced capabilities.

It Can’t Be Mapped
Once upon a time, Excel did include mapping capabilities similar to its charting 
capabilities. Excel was able to create maps and color and highlight states and 
countries based on data attributes. This product was a trimmed-down version 
of a product from Mapinfo (www.mapinfo.com). However, Microsoft removed 
this functionality in Excel 2002, separating out the mapping tool into a separate 
product called MapPoint. MapPoint is one of several products on the market; 
others include products from Mapinfo and ESRI’s ArcView. Mapping abilities 
are also available through Power View and Power Pivot.

Excel requires purchasing additional products for creating and manipulating 
maps. This chapter has shown basic maps for data visualization, and often these 
are sufficient for analytic purposes, although prettier maps are better for pre-
sentations. For basic data visualization, the needs are often more basic than the 
more advanced geographic manipulations provided by special-purpose software.

Mapping on the Web
There are various map sites on the web, such as Yahoo!, Google, MapQuest, 
and Microsoft Live. These websites are probably familiar to most readers for 

http://www.mapinfo.com
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finding specific addresses and directions between addresses. They also include 
nifty capabilities, such as satellite images and road networks and include other 
features, such as local businesses and landmarks on the maps.

Perhaps less familiar is the fact that these websites have application program-
ming interfaces (APIs), so the maps can be used for other purposes. A good 
example is www.wikimapia.org, which shows the ability to annotate features 
on Google Maps. Wikimapia incorporates Google Maps using an API, which 
can also be called from other web applications and even from Excel.

The upside to interfacing with online maps is the ability to create cool graphics 
that can even be updated in real time. The downside to using then is that they 
require programming, which can distract from data analysis. These systems 
are designed to make maps for websites, rather than for visualizing data. It is 
possible to use them for visualizing data, but that is not their primary purpose.

Warn Ing Having to use programming to visualize data (such as using an API to 
web mapping software) often distracts from data analysis. It is all too easy for analysis 
efforts to become transformed into programming projects.

State Boundaries on Scatter Plots of Zip Codes
Scatter plots of zip codes make functional maps, and they have the ability to 
annotate specific points on them. One of the features that would make them 
more useful is the ability to see boundaries between states. This section discusses 
two methods for doing this. Both methods highlight powerful features of Excel.

Plotting State Boundaries

The boundaries between states are defined by geographic positions—longitude 
and latitude. Excel scatter plots have the ability to connect the points in the scatter 
plot. For instance, Figure 4-14 shows the boundary of the state of Pennsylvania, 

Figure 4-14:  The outline for Pennsylvania consists of a set of points connected by lines.

http://www.wikimapia.org
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table 4-15: Latitude and Longitude of Points Defining Colorado State Border

State LongItude LatItude

CO −107.9 41.0

CO −102.0 41.0

CO −102.0 37.0

CO −109.0 37.0

CO −109.0 41.0

CO −107.9 41.0

Figure 4-15:  The outline for Colorado and Wyoming, drawn using the scatter plot, has an 
extraneous line.

where the boundary is really defined by a handful of points. Some parts of the 
boundary have very few points (because the boundary is a line). Some parts of 
the boundary have many points, usually because the boundary follows natural 
features such as rivers. The Pennsylvania border has a very unusual feature. 
The boundary between Pennsylvania and Delaware is actually defined as a 
semi-circle, the only such circular-arc state border in the country. In this map, 
the arc is approximated by line segments.

The points defining the outline of the states are defined by their latitude 
and longitude. Colorado is a particularly simple state because it is shaped like 
a rectangle. Table 4-15 shows the boundary data for Colorado; the first and last 
points on the boundary are the same, so there is a complete loop. To create the 
map of Colorado, these points are plotted as a scatter plot, with lines connect-
ing the points, and no markers shown at each point. These options are on the 
“Patterns” tab of the “Format Data Series” dialog box.

Adding more states requires getting the latitude and longitude, and making sure 
that extraneous lines do not appear. For instance, Figure 4-15 shows what happens 
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when the outline of Wyoming is added to the Colorado outline. An extraneous 
line appears. Excel connects the points in the scatter plot without picking up the 
pen, so an extra line segment appears where Colorado ends and Wyoming begins. 
Fortunately, Excel makes it easy to eliminate this extraneous segment, merely by 
including empty cells between the two boundaries. This makes it possible to plot 
discrete entities on a scatter plot, without having a separate series for each one. 
Figure 4-9 used this technique to include state boundaries on the maps.

t Ip To make a particular line segment disappear from a scatter plot, simply insert a 
blank line in the data between the two points. The scatter plot skips the lines in the chart.

The boundary data was manually modified from detailed outlines of the 
states. It consists of several thousand points rounded to the nearest tenth of a 
degree. This scale captures the zigs and zags of the state boundaries to within 
ten miles or so, which is quite sufficient for a map of the country. However, the 
boundaries are not accurate at the finest level of detail.

Pictures of State Boundaries

An alternative method of showing state boundaries is to use a real map as the 
background for the scatter plot. The first challenge is finding an appropriate 
map. Plotting latitudes and longitudes as straight lines on graph paper is not 
the recommended way of showing maps in the real world, because such maps 
distort both distances and areas. Unfortunately, this is how most maps appear 
on the web. An exception is the national atlas at www.nationalatlas.com, which 
has curved lines for latitude and longitude.

The maps on websites cannot generally be copied as convenient image files. 
Instead, save the image file on the web or capture the screen image (using Print 
Screen), paste it into a program such as PowerPoint, and crop the image to the 
appropriate size. PowerPoint then allows you to save just the image as a picture 
file (right-click the image and choose “Save as”).  The second challenge is setting 
the scale for the map. This is a process of trial and error, made easier by lining 
up the state boundaries on both maps.

Figure 4-16 shows an example using a map from Wikimapia that mimics the 
data from Figure 4-9. The map is copied into the chart by right-clicking the chart 
and choosing “Format Plot Area.” On the right side is an option for “Fill,” which 
brings up options for the background of the chart. The “Picture or Texture” tab, 
has the option to select a picture, which in this case is a map copied from the 
web. Of course, this works for any picture, not just a map.

The advantage of a picture is that that you can include any features available 
in the map. One disadvantage is that you cannot rescale the map to focus in on 
particular areas. Another is that the map and the data points may not exactly 
line up.

http://www.nationalatlas.com
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t Ip The background of a chart can be any picture that you want. Simply insert it 
through the “Picture” tab on the “Fill Effects” dialog box brought up through the 
“Format Plot Area” option.

Lessons Learned

This chapter discusses one of the most important characteristics of customers—
where they live. Geography is a complicated topic; this chapter shows how to 
use geographic data in SQL and Excel.

Using geography starts with geocoding addresses to locate them in the world. 
Geocoding translates points into latitudes and longitudes and identifies census 
blocks, and tracks, and counties, and other geographic entities. Using the scatter 
plot mechanism in Excel, the latitudes and longitudes can even be charted, in 
a way that resembles a map.

One of the advantages of using geography is that the Census Bureau provides 
demographic and other data about customers’ neighborhoods and other regions. 
Fortunately, one level of the census geography is the zip code tabulation area 
(ZCTA), and these match most of the zip codes in databases. Information such 
as the population of the area, the median income, the type of heating, the level 
of education—and much more—is available from the Census Bureau, for free.

Any given location is in multiple geographies. A location lies within a zip 
code, within a county, within a state, within a country. Comparing information 
at different levels of the hierarchy can be quite informative. One example is the 
wealthiest zip code in each state, or the highest penetration county in each state. 
Such questions use geographic hierarchies.

Figure 4-16:  This example shows data points plotted on top of a map (from Wikimapia). The 
challenge in doing this is aligning the latitudes and longitudes so the points are properly placed.



 Chapter 4 ■ Where Is It all happening? Location, Location, Location 195

No discussion of geography would be complete without some discussion of 
mapping. Unfortunately, the simple answer is that Excel does not support maps, 
so use other software or add-ins. For simply locating a point, there are resources 
on the web. For fancy maps, there are more sophisticated mapping packages.

However, rudimentary mapping is quite useful and often sufficient for data 
analysis. For this purpose, Excel can be a useful visualization tool because it can use 
latitude and longitude to display locations and boundaries on a scatter plot. By using 
background maps, it is even possible to include many other features in the maps.

The next chapter steps away from geography and moves to another critical 
component for understanding customers: time.
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Along with geography, time is a critical dimension describing customers 
and businesses. This chapter introduces dates and times as tools for under-
standing customers. This is a broad topic. The next two chapters extend these 
ideas by introducing survival analysis, the branch of statistics also known as 
time-to-event analysis.

This chapter approaches time from several different vantage points. One 
perspective is the values that represent dates and times, the years, months, 
days, hours, and minutes. Another is when things happen, along with ways 
to visualize changes over time and year-over-year comparisons. Yet another 
perspective is duration, the difference between two dates, and even how dura-
tions change over time.

The two datasets used for examples—purchases and subscribers—have date 
stamps accurate to the day, rather than time stamps accurate to the minute, 
second, or fraction of a second. This is not an accident. For many business pur-
poses, the date component is the most important part, so this chapter focuses 
on whole dates. The ideas can readily be extended from dates to times with 
hours, minutes, and seconds.

Times and dates are complex data types, comprised of six different compo-
nents and an optional seventh. Years, months, days, hours, minutes, and sec-
onds are the six. In addition, time zone information may or may not be present. 
Fortunately, databases have similar functionality for dates and times, such as 
functions to extract each component. Unfortunately, each database seems to 
have its own set of functions and peculiarities. The analyses presented in this 
chapter do not rely on any one particular database’s methods for doing things; 
instead, the analyses offer an approach that works broadly on many systems. 

C h a p t e r 

5

It’s a Matter of time
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The syntax is the syntax for SQL Server. Appendix A provides equivalent syntax 
for other databases.

The chapter starts with an overview of date and time data types in SQL and 
basic types of questions to ask about such data. It continues by looking at other 
columns and how their values change over time, with tips on how to do year-
over-year comparisons. The difference between two dates represents duration; 
durations tie together events for each customer over a span of time. Analyzing 
data over time introduces new questions, so the chapter includes forays into 
questions suggested by the time-based analysis.

The chapter finishes with two useful examples. The first is determining 
the number of customers active at a given point in time. The second relies on 
simple animations in Excel to visualize changes in durations over time. After 
all, animating charts incorporates the time dimension directly into the presen-
tation of the results. And, such animations can be quite powerful, persuasive, 
and timely.

Dates and Times in Databases

The place to start is the timekeeping system: how the passage of time is measured. 
Within a day, the system is rather standardized, with 24-hour days divided into 
60 minutes and each minute divided into 60 seconds. The big issue is the time 
zone, and even that has international standards.

For dates, the Gregorian calendar is the calendar prevalent in most of the devel-
oped world. February follows January, school starts in August or September, and 
pumpkins are ripe at the end of October (in much of the Northern Hemisphere 
at least). Leap years occur just about every four years by adding an extra day 
to the miniature winter month of February. This calendar has been some-
what standard in Europe for several centuries. But it is not the only calendar  
around.

Over the course of millennia, humans have developed thousands of calendars 
based on the monthly cycles of the moon, the yearly cycles of the sun, cycles 
of the planet Venus (courtesy of the Mayans), logic, mere expediency, and the 
frequency of electrons whizzing around cesium atoms. Even in today’s rational 
world with instant international communications and where most people use 
the Gregorian calendar, there are irregularities. Some Christian holidays float 
around a bit from year to year, and Orthodox Christian holidays vary from other 
branches of the religion. Jewish holidays jump around by several weeks from one 
year to the next, while Muslim holidays cycle through the seasons because the 
Islamic year is shorter than the solar year. Chinese New Year is about a month 
later than the Gregorian New Year.

Even rational businesses invent their own calendars. Many companies observe 
fiscal years that start on days other than the first of January, and some use a 5-4-4 
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system as their fiscal calendar. The 5-4-4 system describes the number of weeks 
in a month, regardless of whether the days actually fall in the calendar month. 
All of these are examples of calendar systems, whose particular characteristics 
strive to meet different needs.

Given the proliferation of calendars, it shouldn’t be surprising that databases 
handle and manage dates and times in different ways. Each database stores 
dates in its own internal format. What is the earliest date supported by the 
database? How much storage space does a date column require? How accurate 
is a time stamp? The answers are specific to the database implementation and 
to the types supported by the database. However, databases do all work within 
the same framework, the familiar Gregorian calendar, with its yearly cycle of 12 
months and a leap year almost every four years. The next few sections discuss 
some of the particulars of using these data types.

Some Fundamentals of Dates and Times in Databases
Dates and times have their own data types. The ANSI standard types are DATETIME 
and INTERVAL, depending on whether the value is absolute or a duration. Each 
of these can also have a specified precision, typically in days, seconds, or frac-
tions of a second. The ANSI standard provides a good context for understanding 
the data types, but every database handles them differently. The aside “Storing 
Dates and Times in Databases” discusses different ways that date and time 
values are physically stored.

This section discusses topics such as extracting components, measuring 
intervals, and handling time zones. In addition, it introduces the Calendar 
table, which describes features of days and is included on the companion 
website.

Extracting Components of Dates and Times

The six important components of date and time values are year, month, day of 
month, hour, minute, and second. For understanding customers, year and month 
are typically the most important components. The month captures seasonality 
in customer behavior, and the year makes it possible to look at changes over 
longer periods of time.

Excel supports functions to extract components from dates, where the 
function name is the same as the date part: YEAR(), MONTH(), DAY(), HOUR(), 
MINUTE(), and SECOND(). The first three are also common to most databases. 
The ANSI standard function is EXTRACT() with an argument for the date 
part. An example is EXTRACT(year FROM <col>), which is equivalent to 
YEAR(<col>). These functions return numbers, rather than a special date-time 
value or string.
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StorIng DateS anD tIMeS

Date and time values are generally presented in human-readable format. For instance, 
some dispute whether the new millennium started on 2000-01-01 or on 2001-01-01, 
but we can agree on what these dates mean. This format for representing dates con-
forms to the international standard called ISO 8601 (http://en.wikipedia
.org/wiki/ISO_8601 or available for purchase through the International 
Standards Organization) and is used throughout this book. Fortunately, most data-
bases understand date constants in this format.

Under the hood, databases store dates and times in many different ways, almost all 
of which look like meaningless strings of bits. One common way is to store a date as 
the number of days since a specific reference date, such as 1899-12-31. In this scheme, 
the new millennium started 36,526 days after the reference date. Or was that 36,892 
days? To the human eye, both numbers are incomprehensible as dates. Excel happens 
to use this mechanism, and the software knows how to convert between the internal 
format and readable dates, using “Number” formats on cells.

One way to store time is as fractions of a day; so, noon on the first day of the year 
2000 is represented as 36,526.5. Microsoft Excel also uses this format, representing 
dates and times as days and fractional days since 1899-12-31.

An alternative method for both dates and times is to store the number of seconds 
since the reference date. Using the same reference day as Excel, noon on the first day 
of 2000 would be conveniently represented by the number 3,155,889,600. Well, what’s 
convenient for software makes no sense to people. Unix systems and some databases 
use a reference date of 1970-01-01, and measure the time as integer values represent-
ing the number of seconds or milliseconds since the reference date. Dates before the 
reference date are stored as negative numbers. SAS uses yet another reference date, 
1960-01-01.

Another approach eschews the reference date, storing values as they are in the 
Gregorian calendar. That is, the year, month, day, and so on are stored separately, typi-
cally as half-byte or one-byte numbers. In the business world, a date 2,000 years ago is 
safely before the data that we work with. Even so, as more information is stored in data-
bases, there are uses for dates in ancient times, and most databases do support them.

SQL Server has several data types for dates and times. The most common one, 
DATETIME, can represent dates from the year 1753 through the year 9999 with an 
accuracy of about 10 milliseconds. The less accurate SMALLDATETIME supports dates 
from 1900 through 2079-06-06 with an accuracy of one minute. In both cases, the 
internal format consists of two integer components: The date is the number of days 
since a reference date and the time is the number of milliseconds or minutes since 
midnight. Durations are stored using the same data types. Other databases store 
dates and times in entirely different ways.

The variety of internal coding systems is a testament to the creativity of software 
designers. More important than the internal coding system is the information derived 
from dates and times and how that information gets used. Different databases offer 
similar functionality with the caveat that the syntax may vary from product to prod-
uct. Appendix A shows different syntax for some databases for the constructs used 
throughout this chapter and the book.

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
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Converting to Standard Formats

The ISO (International Standards Organization) standard form for dates is 
“YYYY-MM-DD” (or “YYYYMMDD”), where each component is left-padded with 
zeros if necessary. So, the first day of 2000 is “2000-01-01” rather than “2000-1-1.” 
There are two good reasons for including the zeros. First, all dates consist of 
exactly ten characters. The second is also practical. Ordering dates alphabetically 
is the same as ordering them chronologically. Alphabetically, the string “2001-
02-01” follows “2001-01-31,” just as February 1st follows January 31st. However, 
alphabetically the string “2001-1-31” would be followed by “2001-10-01” rather 
than by “2001-2-01,” even though October does not immediately follow January.

The simplest way to convert a value in Excel to a standard date is to set the 
numeric format of the cell to YYYY-MM-DD. This can also be done as a formula: 
TEXT(NOW(),"YYYY-MM-DD"). The function NOW() returns the current date and 
time in Excel, as the number of days and partial days since 1899-12-31.

Unfortunately, the syntax for similar conversions in SQL depends on the 
database. One way to get around the peculiarities of each database and still 
get a common format is to convert the date to a number that looks like a date:

SELECT YEAR(OrderDate)* 10000 + MONTH(OrderDate) * 100 + DAY(OrderDate)
FROM Orders

The results are numbers like 20040101, which is recognizable as a date when 
written without commas. In Excel, such a number can even be given the custom 
number format of “0000-00-00” to make it look even more like a date.

This convert-to-a-number method can be used for any combination of date 
parts, such as year with month, month with day, or hour with minute. This can 
be handy when the components of dates are available, but you do not want to 
construct a full date—such as aggregating by year and month.

As an example, the following query returns the number of orders and average 
order size in dollars for each calendar day of the year:

SELECT MONTH(OrderDate) * 100 + DAY(OrderDate) as monthday,
       COUNT(*) as numorders, AVG(TotalPrice) as avgtotalprice
FROM Orders
GROUP BY MONTH(OrderDate) * 100 + DAY(OrderDate)
ORDER BY monthday

Figure 5-1 shows the result as a line chart for each day in the year, with the number 
of orders on the left axis and the average dollars on the right axis. The average order 
size does not vary much during the year, although it appears a bit higher before 
August than after. On the other hand, the chart shows the expected seasonality in 
the number of orders, with more orders appearing in December than in any other 
month. The peak in early December suggests a lead time, with customers ordering 
earlier to ensure delivery by the holiday. This chart suggests that reducing the lead 
times might increase impulse sales in the two or three weeks before Christmas.
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The challenge in making this chart is the scale on the horizontal axis. It is 
tempting to make a scatter plot, but such a chart looks quite awkward because 
the “date” values are really numbers. There is a big gap between the values 
0131 and 0201. These would be 70 units apart on a scatter plot, even though the 
corresponding dates are one day apart.

t Ip Dates or times on the horizontal axis suggest using a line chart or column chart, 
rather than a scatter plot. A scatter plot treats the values as numbers, whereas the line 
and column charts understand date components.

The fix is to convert the numbers back into dates in Excel, using:

=DATE(2000, FLOOR(<datenum> / 100, 1), MOD(<datenum>, 100))

This formula extracts the month and day portions from the number, and puts 
them into a date with the year 2000. The year is arbitrary, because the chart does 
not use it. The line chart does recognize dates on the horizontal axis, so the 
“Number format” can be set to “Mmm” and the axis labels placed at convenient 
intervals, such as one month apart.

The right-hand axis (secondary axis) also uses an Excel trick. Notice that the 
numbers line up on the decimal point, so all the “0”s are neatly stacked. This 
occurs because there are spaces between the “$” and the digits for numbers 
under $100. The format for this is “$??0.” Note that this trick can be used without 
the “$” to align numeric axis labels on a decimal point.

Intervals (Durations)

The difference between two dates or two times is a duration. ANSI SQL repre-
sents durations using the INTERVAL data type with a specified precision up to 
any date or time part. However, not all databases support intervals, so sometimes 
the base types are used instead.

Figure 5-1:  This chart uses a line chart to show the number of orders and average order size by 
calendar day.
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Logically, durations and dates differ from each other. For instance, durations 
can be negative (four days ago rather than four days in the future). They can also 
take values larger than would be expected for a date or time value. A difference 
between two times, for instance, might be more than 24 hours. Also, durations 
at the level of hours might measure differences in decimal hours rather than 
hours, minutes, and seconds.

For analyzing customer data, these distinctions are not important. Most 
analysis is at the level of dates, and durations measured in days are sufficient. 
Durations in a single unit, such as days, can simply be measured as numbers.

Time Zones

Dates and times in the real world occur in a particular time zone. ANSI SQL 
offers full support of time zones within the date and time values themselves, 
so values in the same column on different rows can be in different time zones. 
For some types of data, this is quite useful. For instance, when browsers return 
time and date information on website visitors’ machines, the results may be in 
any time zone.

In practice, dates and times rarely need time zone information. Most time 
stamp values come from operational systems, so all values are from the same 
time zone anyway, typically the location of the operational system, the company 
headquarters, or Greenwich Mean Time. It is worth remembering, though, that 
an online purchase made at midnight might really be a lunchtime order from a 
customer in Singapore (or New York, depending on your location).

Calendar Table

The companion website includes a table called Calendar that describes dates 
from 1950-01-01 to 2050-12-31. The table includes columns such as the following:

 ■ Date

 ■ Year

 ■ Month as both a string and abbreviation

 ■ Day of the week

 ■ Number of days since the beginning of the year

 ■ Holiday names for various holidays

 ■ Holiday categories for various categories

This table is intended to be an example of what a calendar table might contain. 
Throughout the chapter, various queries that use features of dates, such as day 
of the week or month, can be accomplished either using SQL functions or by 
joining to the Calendar table.
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Calendar is useful, but not absolutely necessary. However, within a sin-
gle business, a calendar table can play a more important role, by maintaining 
important information about the business, such as when the fiscal year ends, 
important holidays, dates of product releases, and so on. The source of the 
holidays and categories for the calendar table comes from an editor called 
emacs, which supports a command called list-holidays. Emacs is distributed 
by the Free Software Foundation through the GNU project (http://www.gnu
.org/software/emacs).

Starting to Investigate Dates

This section covers some basics when looking at date columns. The compan-
ion data sets have several date columns. Subscriptions contains the start 
date and stop date of subscriptions. Orders contains the order date, and 
the related OrderLines contains the billing date and shipping date for each 
line item in the order. Throughout this chapter, all these dates are used in 
examples. This section starts by looking at the date values themselves, and 
continues from there.

Verifying That Dates Have No Times
Sometimes, the result set for a query shows only the date components of datetime 
values, and not the time components. The date part is usually more interesting; 
and, leaving out the time reduces the width needed for output. Non-zero time 
values may not be visible, which can be misleading. For instance, two dates 
might look equal—say, as 2014-01-01. In a comparison, the two dates might not 
be equal because one is for noon and the other for midnight. Also, when aggre-
gating by the date-time column, a separate row is created for every unique time 
value—which can result in unexpectedly voluminous results if every date has an  
associated time.

Verifying that date columns have only dates is a good idea: Does a date 
column have any unexpected time values? One solution is to look at the hour, 
minute, and second components of the date. When any of these are not zero, 
the date is categorized as “MIXED”; otherwise, the date is “PURE.” The fol-
lowing query counts the number of mixed and pure values in ShipDate in 
OrderLines:

SELECT (CASE WHEN DATEPART(HOUR, ShipDate) = 0 AND
                  DATEPART(MINUTE, ShipDate) = 0 AND
                  DATEPART(SECOND, ShipDate) = 0
             THEN 'PURE' ELSE 'MIXED' END) as datetype,
       COUNT(*), MIN(OrderLineId), MAX(OrderLineId)
FROM OrderLines ol

http://www.gnu.org/software/emacs
http://www.gnu.org/software/emacs
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GROUP BY (CASE WHEN DATEPART(HOUR, ShipDate) = 0 AND
                    DATEPART(MINUTE, ShipDate) = 0 AND
                    DATEPART(SECOND, ShipDate) = 0
               THEN 'PURE' ELSE 'MIXED' END)

This query uses a large CASE statement to identify dates where the time parts 
might not be zero. In SQL Server, the first argument to DATEPART() is the name 
of the date part. Although SQL Server supports the use of abbreviations such 
as HH and MM, the code is usually more readable and less ambiguous with the 
full name such as HOUR and MINUTE. The query does not actually run in SQL 
Server, because ShipDate is stored as a DATE, not a DATETIME; SQL Server does 
not allow you to extract time components from a DATE.

All the values in the ShipDate column are pure dates. If any were mixed, the 
OrderLineIds could be investigated further. In fact, all the date columns in the 
companion database tables are pure. If, instead, some dates were mixed, we 
would want to eliminate the time values before using them in queries designed 
for dates.

An alternative approach is to remove the time component from the date 
column and compare the two values. If they are equal, then the time com-
ponent was originally zero. SQL Server does this by casting the column as a 
Date data type:

SELECT (CASE WHEN ShipDate = CAST(ShipDate as DATE)
             THEN 'PURE' ELSE 'MIXED' END) as datetype,
       COUNT(*), MIN(OrderLineId), MAX(OrderLineId)
FROM OrderLines ol
GROUP BY (CASE WHEN ShipDate = CAST(ShipDate as DATE)
               THEN 'PURE' ELSE 'MIXED' END)

This also indicates that the column has no time component.

Comparing Counts by Date
Often, just looking at the number of things that happen on a particular date is 
useful. The following SQL query counts the number of order lines shipped on 
a given day:

SELECT ShipDate, COUNT(*)
FROM OrderLine
GROUP BY ShipDate
ORDER BY ShipDate

This is a basic histogram query for the shipping date, which was discussed in 
Chapter 2. A similar query generates the histogram for the billing date. The 
next sections look at counting more than one date column in a single query, and 
counting different things, such as customers rather than order lines.
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Order Lines Shipped and Billed

How many items shipped each day and how many billed each day? The ship date and 
bill date are both columns in OrderLines. At first, this might seem to require 
two queries. Although a possible solution, using two queries is messy because 
the results then have to be combined in Excel.

A better approach is to get the results in a single query. However, this 
is a little more complicated than it seems. Two different approaches are 
described here, one using joins and aggregations and the other using unions 
and aggregations. A further complication is including dates with no bills 
or shipments.

One place to start is a query that takes all the ship dates and matches them 
to the bill dates:

SELECT s.ShipDate as thedate, s.numship, b.numbill
FROM (SELECT ShipDate, COUNT(*) as numship
      FROM OrderLines
      GROUP BY ShipDate
     ) s LEFT OUTER JOIN
     (SELECT BillDate, COUNT(*) as numbill
      FROM OrderLines
      GROUP BY BillDate
     ) b
     ON s.ShipDate = b.BillDate
ORDER BY thedate

This query has a problem: Some dates might have bills but no shipments. When 
this happens, these dates are lost in the join operation. The opposite problem, 
dates with shipments but no bills, is handled by the LEFT OUTER JOIN. One 
solution is to replace the LEFT OUTER JOIN with a FULL OUTER JOIN, as in the 
following version:

SELECT COALESCE(s.ShipDate, b.BillDate) as thedate,
       COALESCE(s.numship, 0) as numship,
       COALESCE(b.numbill, 0) as numbill
FROM (SELECT ShipDate, COUNT(*) as numship
      FROM OrderLines
      GROUP BY ShipDate
     ) s FULL OUTER JOIN
     (SELECT BillDate, COUNT(*) as numbill
      FROM OrderLines
      GROUP BY BillDate
     ) b
     ON s.ShipDate = b.BillDate
ORDER BY thedate

Note the use of COALESCE() in the FROM clause. When using FULL OUTER JOIN, 
this function is often used because any of the resulting columns might be NULL.
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t Ip LEFT and RIGHT OUTER JOINs keep rows from one table but not both. When 
you need rows from both tables, the right solution is probably UNION ALL (with a 
subsequent aggregation) or FULL OUTER JOIN.

Another approach is to use the UNION ALL operator with GROUP BY. This 
first brings all the values together from the two columns and then does the 
aggregation:

SELECT thedate, SUM(isship) as numships, SUM(isbill) as numbills
FROM ((SELECT ShipDate as thedate, 1 as isship, 0 as isbill
       FROM OrderLines
      ) UNION ALL
      (SELECT BillDate as thedate, 0 as isship, 1 as isbill
       FROM OrderLines)
     ) bs
GROUP BY thedate
ORDER BY thedate

The first subquery chooses the shipping date, setting the isship flag to one 
and the isbill flag to zero. The second chooses the billing date, setting 
the flags in reverse. The aggregation then counts the number of shipments 
and bills on each date, just using SUM(). If nothing shipped on a particular 
date and something is billed, the date appears with the value of numships 
set to zero. Dates that have neither shipments nor bills do not appear in the  
output.

To include all dates between the first and last, we would need a source of 
dates when nothing happens. The Calendar table comes to the rescue: Make 
Calendar the first table in a sequence of LEFT OUTER JOINs. It can also be used 
with the UNION ALL approach:

SELECT thedate, SUM(isship) as numships, SUM(isbill) as numbills
FROM ((SELECT date as thedate, 0 as isship, 1 as isbill
       FROM Calendar c CROSS JOIN
            (SELECT MIN(ShipDate) as minsd, MAX(ShipDate) as maxsd,
                    MIN(BillDate) as minbd, MAX(BillDate) as maxbd
             FROM OrderLines) ol
       WHERE date >= minsd AND date >= minbd AND
             date <= maxsd AND date <= maxbd
      ) UNION ALL
      (SELECT ShipDate as thedate, 1 as isship, 0 as isbill
       FROM OrderLines
      ) UNION ALL
      (SELECT BillDate as thedate, 0 as isship, 1 as isbill
       FROM OrderLines
      ) ) bsa
GROUP BY thedate
ORDER BY thedate
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This query just adds an additional subquery for Calendar, with isship and 
isbill both set to zero.

This is the type of question where having a time component makes a 
difference. With time components, two order lines shipped or billed on the 
same date, but at different times, would appear as two rows in the output 
rather than one.

Figure 5-2 shows the results for just the year 2015 as a line chart (because 
the horizontal axis is a date). This chart is difficult to read because the 
number shipped and number billed track each other so closely. In fact, 
there is typically a one-day lag between the two, which makes patterns 
very difficult to see.

The CORREL() function in Excel calculates the correlation coefficient (tech-
nically the Pearson correlation), which measures how closely correlated two 
curves are to each other. The result is a value between minus one and one, 
with zero being totally uncorrelated, minus one negatively correlated, and 
plus one positively correlated. The correlation coefficient for the two series 
is 0.46, which is high, but not that high. On the other hand, the correlation 
coefficient between numships lagged by one day and numbills is 0.95, which 
says that the value of ShipDate is very highly correlated with BillDate 
minus one.

Customers Shipped and Billed

Perhaps more interesting than the number of order lines shipped each day is 
the question: How many customers were sent shipments and bills on each day? A 
customer might have an order with multiple shipping and billing dates. Such 
customers would be counted multiple times, once for each date.

Figure 5-2:  The number of items in an order and the number billed so closely track each other 
that the chart is difficult to read.
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The approach to this query is similar to the previous query. However, the 
subqueries in the UNION ALL statement are aggregated prior to the UNION ALL 
operation, and the aggregations count the number of distinct customers:

SELECT thedate, SUM(numship) as numships, SUM(numbill) as numbill,
       SUM(numcustship) as numcustship, SUM(numcustbill) as numcustbill
FROM ((SELECT ol.ShipDate as thedate, COUNT(*) as numship, 0 as numbill,
              COUNT(DISTINCT o.CustomerId) as numcustship,
              0 as numcustbill
       FROM OrderLines ol JOIN Orders o ON ol.OrderId = o.OrderId
       GROUP BY shipdate
      ) UNION ALL
      (SELECT ol.BillDate as thedate, 0 as numship, COUNT(*) as numbill,
              0 as numcustship,
              COUNT(DISTINCT o.CustomerId) as numcustbill
       FROM OrderLines ol JOIN Orders o ON ol.OrderId = o.OrderId
       GROUP BY BillDate)) a
GROUP BY thedate
ORDER BY thedate

The results for this query look essentially the same as the results for the previ-
ous query; most customers have only one order with one ship date and bill date.

Number of Different Bill and Ship Dates per Order

That last statement is worth verifying: How many different order and ship dates do orders 
have? This question is not about time sequencing, but it is interesting nonetheless:

SELECT numbill, numship, COUNT(*) as numorders
FROM (SELECT OrderId, COUNT(DISTINCT BillDate) as numbill,
             COUNT(DISTINCT ShipDate) as numship
      FROM OrderLines
      GROUP BY OrderId) o
GROUP BY numbill, numship
ORDER BY numbill, numship

This query uses COUNT(DISTINCT) in the subquery to calculate the number of bill 
dates and ship dates for each order. These counts are then summarized for all orders.

The results in Table 5-1 confirm that almost all orders have a single value 
for order date and a single value for ship date. This makes sense because most 
orders have only one order line (and hence only one product). The table also 
shows that orders with multiple dates typically have the same number of bill 
dates and ship dates. The policy on billing is that customers only get billed 
when the items are shipped. The 61 exceptions are probably worth investigating 
further to determine why this policy is occasionally violated.
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Counts of Orders and Order Sizes
Business changes over time, and understanding these changes is important for 
managing the business. Two typical questions are: How many customers place 
orders in each month? How does an average customer’s monthly order size change 
over time? The first question is unambiguous, and answered by the following 
aggregation query:

SELECT YEAR(OrderDate) as year, MONTH(OrderDate) as month,
       COUNT(DISTINCT CustomerId) as numcustomers
FROM Orders o
GROUP BY YEAR(OrderDate), MONTH(OrderDate)
ORDER BY year, month

The second question is ambiguous. How many “items” as measured by the 
number of units in each customer’s purchases? How many distinct products, 
as measured by distinct product IDs in each customer’s order? How has the 
average amount spent per customer order changed? The next three subsections 
address each of these questions.

table 5-1: Number of Orders Having b Bill Dates and s Ship Dates

# BIll DateS # ShIp DateS # orDerS % oF orDerS

1 1 181,637 94.1%

1 2 8 0.0%

2 1 35 0.0%

2 2 10,142 5.3%

2 3 1 0.0%

3 2 10 0.0%

3 3 999 0.5%

3 4 2 0.0%

4 3 3 0.0%

4 4 111 0.1%

5 4 1 0.0%

5 5 23 0.0%

6 4 1 0.0%

6 6 9 0.0%

17 17 1 0.0%
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Items as Measured by Number of Units

Determining the number of units is easy using Orders and is a simple modifica-
tion to the customer query. The SELECT statement needs to include the following 
additional variables:

SELECT SUM(NumUnits) as numunits,
       SUM(NumUnits) / COUNT(DISTINCT CustomerId) as unitspercust

This query combines all orders from a single customer during a month, rather 
than looking at each order individually. If a customer places two orders in the 
same month, and each has three units, the query returns an average of six units 
for that customer, rather than three. The original question is unclear on how to 
treat customers who have multiple orders during the period.

If instead we wanted the customer to count as having three units, the query 
would look like:

SELECT SUM(NumUnits) as numunits,
       SUM(NumUnits) / COUNT(*) as unitspercustorder

This takes all the units and divides them by the number of orders, rather than 
the number of customers. There is a subtle distinction between counting the 
average units per order and the average per customer. Both are equally easy to 
calculate, but they might produce (slightly) different results.

Items as Measured by Distinct Products

Examples in Chapter 2 showed that some orders contain the same product on 
multiple order lines. With this in mind, another way to approach the original 
question is to calculate two values. The first is the average number of products 
per order in a month. The second is the average number of products per customer 
per month. The SQL uses two levels of aggregation: first at the order level and 
then again by year and month:

SELECT YEAR(OrderDate) as year, MONTH(OrderDate) as month,
       COUNT(*) as numorders, COUNT(DISTINCT CustomerId) as numcusts,
       SUM(prodsperord) as sumprodsperorder,
       SUM(prodsperord) * 1.0 / COUNT(*) as avgperorder,
       SUM(prodsperord) * 1.0 / COUNT(DISTINCT CustomerId) as avgpercust
FROM (SELECT o.OrderId, o.CustomerId, o.OrderDate,
             COUNT(DISTINCT ProductId) as prodsperord
      FROM Orders o JOIN OrderLines ol ON o.orderid = ol.orderid
      GROUP BY o.orderid, o.customerid, o.orderdate ) o
GROUP BY YEAR(OrderDate), MONTH(OrderDate)
ORDER BY year, month
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Figure 5-3:  The size of orders as measured by average number of products per order changes 
from month to month.

One notable feature in this query is the multiplication by 1.0, to ensure that 
the division operation is done on floating-point numbers rather than integers. 
SQL Server (but not necessarily other databases) does integer division, so three 
divided by two would be one rather than one and a half.

The average products per order and per customer are pretty much the same 
on a monthly basis. Figure 5-3 shows the results of the query, with the number 
of customers plotted on the left axis and the average products per order plotted 
on the right. This chart shows peaks in the average products in an order. Most 
months have a bit over one product per order, but October 2014 and May 2015 
peak at twice that value.

Such unexpected peaks suggest further analysis: Is there anything different about 
the products being ordered in different months? One way to answer this question is 
to look at information about the most popular product in each month. What is 
the product group of the most popular product during each month?

To find the most popular product, the products are enumerated from the 
highest frequency to the lowest using ROW_NUMBER():

SELECT ymp.yr, ymp.mon, ymp.cnt, p.GroupName
FROM (SELECT YEAR(o.OrderDate) as yr, MONTH(o.OrderDate) as mon,
             ol.ProductId, COUNT(*) as cnt,
             ROW_NUMBER() OVER (PARTITION BY YEAR(o.OrderDate),
                                             MONTH(o.OrderDate)
                                ORDER BY COUNT(*) DESC
                               ) as seqnum
      FROM Orders o JOIN OrderLines ol ON o.OrderId = ol.OrderId
      GROUP BY YEAR(o.OrderDate), MONTH(o.OrderDate), ol.ProductId
     ) ymp JOIN
     Products p
     ON ymp.ProductId = p.ProductId AND seqnum = 1
ORDER BY yr, mon



 Chapter 5 ■ It’s a Matter of time 213

Figure 5-4:  The most popular product group varies from month to month.

Figure 5-5:  This Excel screen shot shows the formulas used to pivot the product group data for 
the groups ARTWORK and APPAREL for the stacked column chart in the previous figure. Formulas 
for other groups are similar.

The subquery does the enumeration using ROW_NUMBER(). The outer query selects 
the top value for each month with the condition seqnum = 1.

Figure 5-4 shows the frequency and product group of the most frequent prod-
uct for each month. In October 2014, the FREEBIE product group appears for 
the first time, and the high peaks in November and December are for FREEBIE 
products. Presumably, a marketing offer during this time gave customers a free 
product in many orders. This also explains why the average order size increases 
by about one product during this time. It looks like a similar offer was tried 
again six months later, but to lesser effect.

The chart in Figure 5-4 is a stacked column chart. The original data is in a 
tabular format, with columns for year, month, the product category, and the 
frequency. In Excel, an additional column is added for each product; the value 
in the cells is the frequency for the product group that matches the column and 
zero otherwise. When plotted as a stacked column chart, the groups with zero 
counts disappear, so only the most popular is shown. Figure 5-5 shows a screen 
shot of the Excel formulas that accomplish this.
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t Ip Stacked column charts can be used to show one value for each category, such as 
information about the most popular product for each month.

Size as Measured by Dollars

Back to measuring the order size. Perhaps the most natural measurement is 
dollars. Because Orders contains TotalPrice, calculating the average dollars 
per order or the average per customer on a monthly basis is easy:

SELECT YEAR(OrderDate) as year, MONTH(OrderDate) as month,
      COUNT(*) as numorders, COUNT(DISTINCT CustomerId) as numcust,
      SUM(TotalPrice) as totspend,
      SUM(TotalPrice) * 1.0 / COUNT(*) as avgordersize,
      SUM(TotalPrice) * 1.0 / COUNT(DISTINCT CustomerId) as avgcustorder
FROM Orders o
GROUP BY YEAR(OrderDate), MONTH(OrderDate)
ORDER BY year, month

Note that this query calculates the average for orders and customers at the same 
time. In both cases, an explicit division is used, instead of the AVG() function. 
AVG() would return the average order size, not the average per customer.

Figure 5-6 shows a “cell” chart of the results. The order size tends to increase 
over time, although there were some months with large average order sizes 
early on.

The results use a clever mechanism for creating bar charts directly in spread-
sheet cells, rather than in a separate chart. Such a mechanism is useful for 
showing summaries next to a row of data. The idea is credited to the folks at 
Juice Analytics through their blog.

The idea is quite simple. The bar chart consists of repeated strings of verti-
cal bars, where the bars are formatted to be in the Ariel 8-point font (another 
option is Webdings font at about 4-points for a solid bar). The specific formula 

Figure 5-6:  This bar chart is shown in Excel cells rather than as a chart. This is a good approach 
when there are too many rows to fit easily into a chart.
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is =REPT("|", <cellvalue>). The function REPT() creates a string by repeat-
ing a character the number of times specified in the second argument. Because 
only the integer portion of the count is used, fractions are not represented in the 
length of the bars. Of course, a similar chart could be created using sparklines.

Days of the Week
Many business events occur on weekly cycles, with different days of the week 
(DOWs) having different characteristics. Monday might be a busy time for starts 
and stops because of pent-up demand over the weekend. Business operations can 
determine day of week effects as well. Customers are usually identified as late 
payers (and forced to stop, for instance) during the billing processing, which may 
be run on particular days of the month or on particular days of the week. This sec-
tion looks at various ways of analyzing days of the week. Later in the chapter we’ll 
look at how to count the number of times a given day occurs between two dates.

Billing Date by Day of the Week

How many order lines are billed on each day of the week (DOW)? This seems like 
an easy question, but it has a twist: SQL has no standard way to determine the 
DOW. One way around this is to do the summaries in Excel. Histograms for 
billing dates were calculated earlier and this approach builds on that data. In 
Excel, the following steps summarize by day of the week:

 ■ Determine the day of the week for each date, using the TEXT() function.  
TEXT(<date>, "Ddd") returns the three-letter abbreviation.

 ■ Summarize the data, using SUMIF() or pivot tables.

Table 5-2 shows that Wednesday is the most common day for billing and Sunday 
the least common. Calculating these results is also possible in SQL. The simplest 
method is to use an extension to get the day of the week, such as this version 
using SQL Server syntax:

SELECT billdow, COUNT(*) as numbills
FROM (SELECT ol.*, DATENAME(dw, BillDate) as billdow
      FROM OrderLines ol) ol
GROUP BY billdow
ORDER BY (CASE WHEN billdow = 'Monday' THEN 1
               WHEN billdow = 'Tuesday' THEN 2
               WHEN billdow = 'Wednesday' THEN 3
               WHEN billdow = 'Thursday' THEN 4
               WHEN billdow = 'Friday' THEN 5
               WHEN billdow = 'Saturday' THEN 6
               WHEN billdow = 'Sunday' THEN 7
          END)



216 Chapter 5 ■ It’s a Matter of time

The most interesting part of the SQL statement is the ORDER BY clause. Ordering 
the days of the week alphabetically would result in: Friday, Monday, Saturday, 
Sunday, Thursday, Tuesday, Wednesday—a nonsensical ordering. SQL does not 
understand the natural ordering implied by the names. One solution is to use 
the CASE statement in the ORDER BY clause to explicitly assign numbers to the 
days of the week and sort by those numbers.

An alternative approach uses CHARINDEX(), a function that finds one string 
inside another and returns the position of the string:

ORDER BY CHARINDEX(billdow,
                   'MondayTuesdayWednesdayThursdayFridaySaturdaySunday')

So, “Monday” would return a value of 1 because “Monday” starts at the first 
position. “Tuesday” would return 7 (because “T” is in the 7th position), and 
these are in order by the day of the week. You do need to be careful with this 
approach because the first appearance of a substring is the match. It works fine 
for days of the week, but it might get confused by “pineapple” and “apple.”

t Ip Using a CASE statement in an ORDER BY clause allows you to order things, such 
as days of the week, the way you want to see them.

Changes in Day of the Week by Year

Has the proportion of bills by day of the week changed over the years? This can be 
answered by manipulating the day-by-day data in Excel. It is also possible to 
answer the question directly using SQL. The following query outputs a table 
with rows for years and columns for days of the week:

SELECT YEAR(BillDate) as theyear,
       AVG(CASE WHEN dow = 'Monday' THEN 1.0 ELSE 0 END) as Monday,
       . . .
       AVG(CASE WHEN dow = 'Sunday' THEN 1.0 ELSE 0 END) as Sunday

table 5-2: Number of Units Billed by Day of the Week

Day oF Week nuMBer oF BIllS

Monday 17,999

Tuesday 61,019

Wednesday 61,136

Thursday 54,954

Friday 49,735

Saturday 32,933

Sunday 8,241
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FROM (SELECT ol.*, DATENAME(dw, BillDate) as dow FROM OrderLines ol) ol
GROUP BY YEAR(BillDate)
ORDER BY theyear

Table 5-3 shows the results. Monday and Saturday stand out as having the larg-
est variance from one year to the next. It suggests that something has changed 
from year to year, such as operations changing to prefer one day over another. 
Or, perhaps the date recorded as the billing date is changing due to systems 
issues, and the underlying operations remain the same. The results only show 
that something is changing; they do not explain why.

Comparison of Days of the Week for Two Dates

The StartDate and StopDate columns in Subscribers contain the start and stop 
dates of customers of a mobile telephone company. When two dates describe 
such customer behaviors, a natural question is: What is the relationship between the 
days of the week when customers start and the days of the week when customers stop?

SQL can provide the answer:

SELECT startdow,
       AVG(CASE WHEN stopdow = 'Monday' THEN 1.0 ELSE 0 END) as Mon,
       . . .
       AVG(CASE WHEN stopdow = 'Sunday' THEN 1.0 ELSE 0 END) as Sun
FROM (SELECT s.*, DATENAME(dw, StartDate) as startdow,
             DATENAME(dw, StopDate) as stopdow
      FROM Subscribers s) s
WHERE startdow IS NOT NULL AND stopdow IS NOT NULL
GROUP BY startdow
ORDER BY (CASE WHEN startdow = 'Monday' THEN 1
               . . .
               WHEN startdow = 'Sunday' THEN 7 END)

table 5-3: Proportion of Order Lines Billed on Each Day of the Week, by Year

year Mon tue WeD thu FrI Sat Sun

2009 0.1% 21.1% 22.0% 15.2% 25.5% 14.1% 2.1%

2010 1.4% 27.5% 17.1% 22.0% 17.5% 13.1% 1.5%

2011 11.2% 21.9% 25.9% 18.4% 13.6% 5.0% 4.1%

2012 4.8% 22.9% 19.3% 18.5% 17.2% 14.7% 2.6%

2013 1.4% 20.2% 19.3% 16.3% 20.8% 17.3% 4.7%

2014 1.5% 18.6% 22.5% 21.0% 18.5% 15.5% 2.4%

2015 16.1% 22.8% 19.7% 19.8% 14.2% 4.0% 3.3%

2016 4.7% 19.5% 24.7% 18.4% 19.2% 13.1% 0.3%
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The results in Table 5-4 show very little correlation between the start dates and 
stop dates of customers. More customers are likely to stop on a Thursday than 
any other day, regardless of the day they started. And fewer customers are likely 
to stop on a Wednesday, regardless of the day they started.

How Long Between Two Dates?

Perhaps the most natural relationship between two dates is the duration between 
them. This section looks at differences between dates in different time units: 
days, months, years, and by the number of specific days of the week. Surprisingly, 
investigating durations at each of these levels produces interesting results.

Duration in Days
The BillDate and ShipDate columns provide a good place to start the investi-
gation, particularly in conjunction with the OrderDate column in Orders. Two 
natural questions are: How long after the order is placed are items shipped? How long 
after the order is placed are items billed?

These questions are about durations. In most dialects of SQL, simply sub-
tracting one date from the other calculates the duration between them in days 
(and this works for the DATETIME data type in SQL Server but not for the DATE 
data type). This also works in Excel, but Microsoft SQL uses the DATEDIFF() 
function for DATE and DATETIME.

The following calculates the duration between the order date and shipping date:

SELECT DATEDIFF(day, o.OrderDate, ol.ShipDate) as days,
       COUNT(*) as numol

table 5-4: Proportion of Stops by Day of Week Based on Day of Week of Starts

Start Day oF Week

Stop Day oF Week

Mon tue WeD thu FrI Sat Sun

Monday 13.7% 11.0% 5.2% 22.4% 18.7% 15.0% 13.9%

Tuesday 12.9% 10.7% 7.6% 22.9% 18.2% 14.5% 13.2%

Wednesday 12.6% 9.9% 7.4% 23.9% 18.6% 14.7% 13.0%

Thursday 13.5% 9.5% 4.4% 21.5% 20.4% 16.1% 14.4%

Friday 13.9% 9.6% 4.2% 21.3% 18.6% 16.9% 15.5%

Saturday 14.7% 9.8% 4.4% 21.5% 18.4% 15.2% 16.0%

Sunday 15.4% 10.3% 4.6% 21.9% 18.5% 15.0% 14.3%
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FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId
GROUP BY DATEDIFF(day, o.OrderDate, ol.ShipDate)
ORDER BY days

Notice that this query is actually counting order lines, which makes sense 
because a single order can have multiple ship dates.

The results are shown in Figure 5-7. In a handful of cases, the ship date is 
before the order date. Perhaps this is miraculous evidence of customer insight 
and service—sending customers what they want even before the orders are 
placed. Or, perhaps the results are preposterous, suggesting a problem in the 
data collection for the 28 orders where this happens. At the other extreme, the 
delay from ordering to shipping for a handful of orders is measured in hundreds 
of days, a very long lead time indeed.

The cumulative proportion in the chart shows that about three quarters of 
order lines are fulfilled within a week. This fulfillment time is an important 
measure for the business. However, an order should be considered fulfilled 
only when the last item has been shipped, not the first. Calculating the time to 
fulfill the entire order uses an additional aggregation:

SELECT DATEDIFF(day, OrderDate, fulfilldate) as days,
       COUNT(*) as numorders
FROM (SELECT o.OrderId, o.OrderDate, MAX(ol.ShipDate) as fulfilldate
      FROM Orders o JOIN
           OrderLines ol
           ON o.OrderId = ol.OrderId
      GROUP BY o.OrderId, o.OrderDate) o
GROUP BY DATEDIFF(day, OrderDate, fulfilldate)
ORDER BY days

Figure 5-7:  The delay from ordering to shipping is shown here, both as a histogram and a 
cumulative proportion.
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This query summarizes the orders in the subquery to calculate the fulfillment 
date. It aggregates by both OrderId and OrderDate. Strictly speaking, only 
OrderId is necessary because each order has only one date. However, includ-
ing OrderDate in the GROUP BY is simpler than putting MIN(OrderDate) in the 
SELECT clause.

Table 5-5 shows the cumulative fulfillment by days after the order for the 
first ten days. About 70% of orders have all their items shipped within a week.

Duration in Weeks
Duration in weeks is calculated directly from days. The number of weeks is the 
number of days divided by seven:

SELECT FLOOR(DATEDIFF(day, OrderDate, fulfilldate) / 7) as weeks, . . .
. . .
GROUP BY FLOOR(DATEDIFF(day, OrderDate, fulfilldate) / 7)

Notice that this query uses the FLOOR() function to eliminate any fractional part. 
Alternatively, the function call can be written as DATEDIFF(week, OrderDate, 
fulfilldate).

Using weeks is advantageous when data is relatively sparse because a week 
brings together more instances than a day. Another advantage is when the 
business has a natural weekly cycle. For instance, if orders were not shipped or 
billed on weekends, then that would introduce a weekly cycle. Summarizing 
by weeks removes the extraneous cycle within a week, making longer-term 
patterns more visible.

table 5-5: Days to Fulfill Entire Order

DayS Count CuMulatIve proportIon

0 10,326 5.4%

1 42,351 27.3%

2 22,513 39.0%

3 17,267 47.9%

4 14,081 55.2%

5 11,115 61.0%

6 9,294 65.8%

7 8,085 70.0%

8 5,658 72.9%

9 4,163 75.1%

10 3,373 76.8%
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Duration in Months
Measuring the number of months between two dates is more challenging than 
measuring the number of days or weeks. The problem is that two dates might 
differ by 30 days and be one month apart (say, 15 April and 15 May) or might 
be zero months apart (say, 1 Jan and 31 Jan). A good approximation is to divide 
the difference in days by 30.4, the average number of days in a month.

The SQL Server DATEDIFF() function accepts month as the first argument, but 
the results are not intuitive. It counts the number of month boundaries between 
dates, returning one month for 2000-01-31 and 2000-02-01. These two dates have 
a month boundary between them. It counts zero months between 2000-01-01 
and 2000-01-31 because there is no month boundary between these dates.

A more exact calculation requires some rules:

 ■ The duration in months between two dates in the same month is zero. So, 
the duration between 2000-01-01 and 2000-01-31 is zero months.

 ■ The duration in months between a date in one month and a date in the 
next month depends on the day of the month. The duration is zero when 
the day in the second month is less than the day in the first month. So, the 
duration between 2000-01-01 and 2000-02-01 is one month. The duration 
between 2000-01-31 and 2000-02-01 is zero months.

These rules can be implemented in a query:

SELECT ((YEAR(s.StopDate) * 12 + MONTH(s.StopDate)) -
        (YEAR(s.StartDate) * 12 + MONTH(s.StartDate)) -
        (CASE WHEN DAY(s.StopDate) < DAY(s.StopDate)
              THEN 1 ELSE 0 END)
       ) as tenuremonths, s.*
FROM Subscribers s
WHERE s.StopDate IS NOT NULL

The query calculates the number of months since the year zero for each of 
the dates and then takes the difference. The number of months since year 
zero is the year times 12 plus the month number. One adjustment is needed 
to take care of the situation when the start date is later in the month than 
the stop date. The extra month has not gone by, so the difference has over-
counted by one.

How Many Mondays?
Normally, durations are measured in units of time, such as the days, weeks, 
and months between two dates. Sometimes, understanding milestones between 
two dates, such as the number of birthdays or the number of school days, is 
important.
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This section goes into detail on one particular example, finding the number 
of times that a specific day of the week occurs between two dates. This is moti-
vated by a specific business problem, so this section illustrates taking a business 
problem and some observations on how to solve it, converting the observations 
into rules, and implementing the rules in SQL to address the problem.

A Business Problem about Days of the Week

This example originated at a newspaper company studying its home delivery 
customers. The newspaper customer database typically contains the start and stop 
dates of each customer’s subscription, similar to the information in Subscribers. 
In the newspaper industry, though, not all days of the week are created equal. 
In particular, Sunday papers are more voluminous and more expensive, filled 
with more advertising, and their circulation is even counted differently by the 
organization that audits newspaper circulation, the Alliance for Audited Media 
(formerly named the Audit Bureau of Circulation).

This newspaper was interested in knowing: How many Sunday copies did any 
given home delivery customer receive? This question readily extends to the number 
of copies received on any day of the week, not just Sunday. And more generally, 
for any two dates, the same techniques can count the number of Sundays and 
Mondays and Tuesdays and so on between them. This section shows how to do 
this calculation in SQL using the subscription data. Why SQL and not Excel? 
The answer is that there are many start dates, and many stop dates, and many, 
many combinations of the two. The data simply does not fit into a worksheet, 
so SQL is needed to do the heavy lifting.

Outline of a Solution

The first observation is that complete weeks are easy, so customers whose start 
and stop dates differ by some multiple of seven days have the same number of 
Sundays and Mondays and Tuesdays and so on—and the number is the num-
ber of weeks between the dates. For any two dates, we can subtract complete 
weeks from the later one until there are zero to six days left over. The problem 
is half solved.

When complete weeks are subtracted out, the problem reduces to the following: 
Given a start date and a period of zero to six days, how often does each day of the week 
occur during this period? Periods longer than six days have been taken care of by 
subtracting out complete weeks.

Table 5-6 is a lookup table that answers this question for Wednesdays. The 
first row says that if the start date is Sunday, there have to be at least four days 
left over in order to have a Wednesday in the period. Notice that the first column 
is all NO because no days are left over when the difference between the dates 
is a whole number of weeks.
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Unfortunately, a solution using this approach requires a separate table for 
each day of the week. Can we determine this information without a plethora 
of lookup tables?

There is a way, and although a bit cumbersome arithmetically it provides a 
nice illustration of observing rules and implementing them in SQL. This method 
rests on two additional rules, which in turn need two variables. The first is 
leftover, the number of days left over after all the complete weeks have been 
counted. The second is the day of the week as a number, which for convention 
we are taking to start on Sunday as one through Saturday as seven (this is the 
default convention for the Excel function WEEKDAY()).

With this information, the following rules tell us whether a Wednesday, whose 
number is four, is included in the leftover days:

 ■ If the start day of the week falls on or before Wednesday, then Wednesday 
is included when the start day of the week number plus the leftover days 
is greater than four. For example, if someone starts on a Sunday (value 
one), then leftover days needs to be at least four.

 ■ If the start day of the week is after Wednesday, then Wednesday is included 
when the start day of the week number plus the leftover days is greater 
than 11. For instance, if someone starts on a Saturday (value seven), then 
leftover days needs to be at least five.

These generalize to the following rules, where DOW is the day we are looking for:

 ■ If the start day of the week is on or before DOW, then DOW is included 
when the start day of the week number plus the leftover days is greater 
than the DOW number.

 ■ If the start day of the week is after DOW, then DOW is included when the 
start day of the week number plus the leftover days is greater than seven 
plus the DOW number.

table 5-6: Extra Wednesday Lookup Table, Given Start Day of Week and Days Left Over

Start Day oF Week

DayS leFt over

0 1 2 3 4 5 6

Sunday (1) NO NO NO NO YES YES YES

Monday (2) NO NO NO YES YES YES YES

Tuesday (3) NO NO YES YES YES YES YES

Wednesday (4) NO YES YES YES YES YES YES

Thursday (5) NO NO NO NO NO NO NO

Friday (6) NO NO NO NO NO NO YES

Saturday (7) NO NO NO NO NO YES YES
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The next section builds the rules in SQL.

Solving It in SQL

The SQL implementation calculates three values:

 ■ weeksbetween is the number of complete weeks between the two dates, 
calculated by taking the duration in days, dividing by seven, and ignor-
ing the remainder.

 ■ leftover is the days left over after all the weeks have been counted.

 ■ downum is the day of week number determined using a CASE statement on 
the day of week name.

The following query uses nested subqueries for the calculation:

SELECT s.*,
       (weeksbetween +
        (CASE WHEN (downum <= 1 AND downum + leftover > 1) OR
                   (downum > 1 AND downum + leftover > 7 + 1)
              THEN 1 ELSE 0 END)) as Sundays,
       (weeksbetween +
        (CASE WHEN (downum <= 2 AND downum + leftover > 2) OR
                   (downum > 2 AND downum + leftover > 7 + 2)
              THEN 1 ELSE 0 END)) as Mondays
FROM (SELECT daysbetween, FLOOR(daysbetween / 7) as weeksbetween,
             daysbetween – 7 * FLOOR(daysbetween / 7) as leftover,
             (CASE WHEN startdow = 'Monday' THEN 1
                   . . .
                   WHEN startdow = 'Sunday' THEN 7 END) downum
      FROM (SELECT s.*, DATENAME(dw, StartDate) as startdow,
                   DATEDIFF(day, StopDate, StartDate
                           ) as daysbetween
            FROM Subscribers s
            WHERE s.StopDate IS NOT NULL
           ) s
     ) s

The outermost query calculates the number of Sundays and Mondays between 
the start date and stop date using the two rules. Other days of the week follow 
the same logic as these counts.

Using a Calendar Table Instead

The Calendar table could be used instead:

SELECT s.CustomerId,
       SUM(CASE WHEN c.dow = 'Mon' THEN 1 ELSE 0 END) as Mondays
FROM Subscribers s JOIN
     Calendar c
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     ON c.date BETWEEN s.StartDate AND DATEADD(day, -1, s.StopDate)
WHERE s.StopDate IS NOT NULL
GROUP BY s.CustomerId

This query is clearly easier to read and understand. The downside is performance. 
The join operation creates an intermediate result with one row for every calendar 
date between the start date and stop date, potentially multiplying the number 
of rows by hundreds or thousands. This query has very poor performance.

If counting weekdays is important, there is a more efficient method both in 
terms of representation and performance. Calendar has seven additional col-
umns to count the number of each day of the week since some reference date. 
So, Mondays is the number of Mondays since the reference date.

The following query uses these columns:

SELECT s.*, (cstop.Mondays - cstart.Mondays) as mondays
FROM Subscribers s JOIN
     Calendar cstart
     ON cstart.Date = s.StartDate JOIN
     Calendar cstop
     ON cstop.Date = s.StopDate
WHERE s.StopDate IS NOT NULL

This method joins Subscribers to Calendar twice, once to look up the Mondays 
value for the start date and once for the stop date. The number of Mondays 
between the two dates is just the difference between these values.

When Is the Next Anniversary (or Birthday)?
Anniversaries are important—as ads for diamonds and bad jokes by comedians 
can attest to. In business, they are also important. Some companies give custom-
ers special offers on their birthdays or on the anniversary of their starting. Other 
companies may keep track of customers and place them into tenure groups by 
year. And, in some businesses, anniversaries may be correlated with customers 
stopping—because of the expiration of contracts.

The question arises: When is the next anniversary date for each customer? This 
is a bit harder than it sounds. After all, the next anniversary might be in the 
current year or it might be next year.

First Year Anniversary This Month

How many subscribers have their first (or tenth) anniversary this month? This question 
is actually simple to answer because it does not require much date arithmetic. 
The logic is simple:

 ■ The month of the start date is this month.

 ■ The year of the start date is exactly one year ago.
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The one important thing needed is the current date. Most databases provide some 
mechanism for getting the current date, such as GETDATE() in SQL Server. The 
ANSI standard specifies the expression CURRENT_TIMESTAMP as the current date.

The SQL is then:

SELECT COUNT(*)
FROM Subscribers s
WHERE MONTH(StartDate) = MONTH(CURRENT_TIMESTAMP) AND
      YEAR(StartDate) = YEAR(CURRENT_TIMESTAMP) – 1

Of course, this data is all historical, so the value returned by this query is zero—
there are no such customers. By adjusting the – 1, you can find customers who 
have a specific anniversary coming up.

First Year Anniversary Next Month

How many subscribers have their first (or tenth) anniversary next month? This ques-
tion would seem almost the same as the previous one. But there is a subtle 
difference. If the current month is December, then the next month is January 
of the next year. The customers to be counted actually come from the current 
year rather than the previous year.

One approach is to use a CASE statement specific for December. The WHERE 
clause would then be:

WHERE (MONTH(CURRENT_TIMESTAMP) <> 12 AND
       MONTH(StartDate) = MONTH(CURRENT_TIMESTAMP) + 1 AND
       YEAR(StartDate) = YEAR(CURRENT_TIMESTAMP) – 1
      ) OR
      (MONTH(CURRENT_TIMESTAMP) = 12 AND
       MONTH(StartDate) = 1 AND
       YEAR(StartDate) = YEAR(CURRENT_TIMESTAMP)
      )

This definitely gets the job done; however, it is a bit messy and difficult to follow.
Instead, let’s just add one month to the current date and use that in the expres-

sion. To avoid writing the expression twice, the following version uses a CTE 
to express this calculation once:

WITH params as (
      SELECT DATEADD(MONTH, 1, CURRENT_TIMESTAMP) as nextmonth
     )
SELECT COUNT(*)
FROM params CROSS JOIN Subscribers s
WHERE MONTH(StartDate) = MONTH(nextmonth) AND
      YEAR(StartDate) = YEAR(nextmonth) - 1

This query defines the next month in a CTE called params. The CROSS JOIN is 
perfectly reasonable because params has exactly one row. Using a CTE makes 
changing the query for any month in the future easy.
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t Ip A CTE can be a handy way to define constant values used throughout a query. Of 
course, you do have to join it to the other tables being used.

Manipulating Dates to Calculate the Next Anniversary

There are basically three approaches to getting the next anniversary. One is the 
“create-a-date” approach, where the next date is constructed from parts and 
logic. The second is the “add just enough years” approach. And the third is to 
use the calendar table.

Creating the anniversary as a Date String

The first tends to be messy because of the conversions. The following query 
approaches this by using REPLACE() to format the string as a date:

SELECT s.*,
       (CASE WHEN MONTH(StartDate)*100 + DAY(StartDate) <=
                  MONTH(CURRENT_TIMESTAMP)*100 + DAY(CURRENT_TIMESTAMP)
             THEN REPLACE(REPLACE(REPLACE('YYYY-MM-DD', 'YYYY',
                                          YEAR(CURRENT_TIMESTAMP)
                                         ),
                                  'MM', MONTH(CURRENT_TIMESTAMP)
                                 ), 'DD', DAY(CURRENT_TIMESTAMP)
                         )
             ELSE REPLACE(REPLACE(REPLACE('YYYY-MM-DD', 'YYYY',
                                          1 + YEAR(CURRENT_TIMESTAMP)
                                         ),
                                  'MM', MONTH(CURRENT_TIMESTAMP)
                                 ), 'DD', DAY(CURRENT_TIMESTAMP)
                         )
        END) as NextAnnivesary
FROM Subscribers s

This query returns the value as a string formatted as YYYY-MM-DD. This can 
easily be converted back to a date using CAST(as DATE).

The logic in the WHEN clause is noteworthy. It converts the month and day 
portions of StartDate to numbers. So, March 7th becomes 307 and November 
11th, 1111. These can then be compared to see which is earlier or later.

The logic seems sound, but it has a problem. It fails for leap years. For instance, 
one year after 2016-02-29 would be 2017-02-29, but the latter is not a valid date. 
Of course this can be fixed by using appropriate CASE logic to take leap years 
into account. The next section suggests a cleaner alternative.

adding years to Calculate the next anniversary

The second method is to add just enough years to the start date to get a date 
in the future. This allows the database to handle the issue with leap years. 
Some might insist that the anniversary for February 29th is February 28th. 



228 Chapter 5 ■ It’s a Matter of time

Others might insist that the real date is March 1st. Either is fine for most busi-
ness purposes.

The number of years to add is the difference in years between the current 
date and the start date—or one more than this difference:

SELECT s.*,
     (CASE WHEN MONTH(StartDate) * 100 + DAY(StartDate) <=
                MONTH(CURRENT_TIMESTAMP) * 100 + DAY(CURRENT_TIMESTAMP)
           THEN DATEADD(YEAR, YEAR(CURRENT_TIMESTAMP) - YEAR(StartDate),
                        StartDate)
           ELSE DATEADD(YEAR,
                        YEAR(CURRENT_TIMESTAMP) - YEAR(StartDate) + 1,
                        StartDate)
      END) as NextAnnivesary
FROM Subscribers s

This query uses a CASE statement to determine whether an additional year 
needs to be added.

A slight modification to the CASE condition is to add the difference in years 
and compare it to the current date:

WITH params as (
     SELECT YEAR(CURRENT_TIMESTAMP) as curyear
    )
SELECT s.*,
      (CASE WHEN DATEADD(YEAR, curyear - YEAR(StartDate),
                         StartDate) >= CURRENT_TIMESTAMP
            THEN DATEADD(YEAR, curyear - YEAR(StartDate), StartDate)
            ELSE DATEADD(YEAR, curyear - YEAR(StartDate) + 1, StartDate)
       END) as NextAnnivesary
FROM params CROSS JOIN Subscribers s

This version has the advantage of using logic that is similar to the final 
calculation.

using a Calendar table to Calculate the next anniversary

At first glance, the calendar table should simplify this manipulation. However, 
the logic is still a bit convoluted. One method looks for the next date with the 
same month and day as the start date:

SELECT s.*,
       (SELECT TOP 1 c.date
        FROM Calendar c
        WHERE c.month = MONTH(s.StartDate) AND
              c.dom = DAY(s.StartDate) AND
              c.date >= CURRENT_TIMESTAMP
        ORDER BY c.date
       ) as FirstAnniversary
FROM Subscribers s



 Chapter 5 ■ It’s a Matter of time 229

This uses a correlated subquery to get the matching date. This has the leap year 
problem: For February 29th, it will return the next anniversary as four years in 
the future, rather than one year.

There is not a simple fix for the leap year problem. One solution is to add 
explicit logic to change February 29th to March 1st:

SELECT s.*,
       (SELECT TOP 1 c.date
        FROM Calendar c
        WHERE c.month = MONTH(s.NewStartDate) AND
              c.dom = DAY(s.NewStartDate) AND
              c.date >= CURRENT_TIMESTAMP
        ORDER BY c.date
       ) as FirstAnniversary
FROM (SELECT s.*,
             (CASE WHEN MONTH(s.StartDate) = 2 and DAY(s.StartDate) = 29
                   THEN DATEADD(day, 1, StartDate)
                   ELSE StartDate
              END) as NewStartDate
      FROM Subscribers s
     ) s

This is one case where having a calendar table does not particularly help the 
calculation—unless the table explicitly stores the date one year in the future. 
The simplest method for getting the next anniversary is probably to use the 
second method of adding years.

Year-over-Year Comparisons

The previous year usually provides the best comparison for what is happening 
the following year. This section talks about such comparisons, with particular 
emphasis on one of the big challenges. This year’s data is usually not complete, 
so how can we make a valid comparison?

Comparisons by Day
The place to start is with day-by-day comparisons from one year to the next. 
Here is a method where much of the work is done in Excel:

 1. Query the database and aggregate by date.

 2. Load the data into Excel, with all the dates in one column.

 3. Pivot the data into 366 rows (for each day in the year) and a separate 
column for each year.
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Figure 5-8:  This line chart shows the pattern of starts by day throughout the year for three years.

This is actually more work than necessary. An easier way is to use the MONTH(), 
DAY(), and YEAR() functions in SQL to create the resulting table directly, as in 
the following example using starts from Subscribers:

SELECT MONTH(StartDate) as mon, DAY(StartDate) as dom,
       SUM(CASE WHEN YEAR(StartDate) = 2004 THEN 1 ELSE 0 END) as n2004,
       SUM(CASE WHEN YEAR(StartDate) = 2005 THEN 1 ELSE 0 END) as n2005,
       SUM(CASE WHEN YEAR(StartDate) = 2006 THEN 1 ELSE 0 END) as n2006
FROM Subscribers s
WHERE YEAR(StartDate) IN (2004, 2005, 2006)
GROUP BY MONTH(StartDate), DAY(StartDate)
ORDER BY mon, dom

Figure 5-8 shows the results as a line chart with three series. All three years 
have a weekly cycle of peaks and valleys. The chart illustrates that starts in 2006 
are lower than in the other years during most months.

The horizontal axis has only the month name. In a line chart, the horizontal 
axis can be a date, which is calculated using the DATE() function on the month 
and day values in each row. The chart sets the “Number” format to “Mmm” to 
display only the month. The scale is set to show tick marks every month.

Adding a Moving Average Trend Line

The within-week pattern in the starts obscures larger trends. Adding a trend 
line with a seven-day moving average is one way to fix this, as shown in Figure 
5-8. The seven-day moving average eliminates the weekly cycle.

To add the trend line, left-click a series to select it. Then right-click and choose 
the “Add Trendline…” option. Choose “Type” in the left-hand pane. In the right 
pane, “Moving Average” is the option on the lower right, with the width of 
the moving average in the “Period” box. Change the default value to seven to 
eliminate weekly cycles, and then click “OK” to finish.
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Comparisons by Week
An alternative way of eliminating the bumpiness is to aggregate the data by 
week rather than by day. We can calculate the week number by calculating the 
number of days since the beginning of the year and dividing by seven:

WITH s as (
      SELECT s.*,
             (CASE WHEN YEAR(StartDate) = 2004
                    THEN FLOOR(DATEDIFF(day, '2004-01-01', StartDate) / 7)
                   WHEN YEAR(StartDate) = 2005
                    THEN FLOOR(DATEDIFF(day, '2005-01-01', StartDate) / 7)
                   WHEN YEAR(StartDate) = 2006
                    THEN FLOOR(DATEDIFF(day, '2006-01-01', StartDate) / 7)
              END) as weekofyear
     FROM Subscribers s
     WHERE YEAR(StartDate) in (2004, 2005, 2006)
    )
SELECT weekofyear,
       SUM(CASE WHEN YEAR(StartDate) = 2004 THEN 1 ELSE 0 END) as n2004,
       SUM(CASE WHEN YEAR(StartDate) = 2005 THEN 1 ELSE 0 END) as n2005,
       SUM(CASE WHEN YEAR(StartDate) = 2006 THEN 1 ELSE 0 END) as n2006
FROM s
GROUP BY weekofyear
ORDER BY weekofyear

The CTE defines weekofyear using DATEPART(), with an explicit difference for 
each year.

An alternative method uses the day of year:

SELECT DATEPART(dayofyear, StartDate) / 7 as weekofyear

The week of the year is simply the day of the year divided by seven.
A chart from this data is similar to the previous chart. The main difference 

is the calculation for the horizontal axis. Instead of using DATE(), the date is 
created by adding 7 * weekofyear to a base date, such as 2000-01-01.

Excel can also handle the transformation from daily data to weekly data, using 
the same method of subtracting the first day of the year, dividing by seven, and 
then summing the results using SUMIF().

Comparisons by Month
A year-over-year comparison by month follows the same structure as the com-
parison by day or week:

SELECT MONTH(StartDate) as month,
       SUM(CASE WHEN YEAR(StartDate) = 2004 THEN 1 ELSE 0 END) as n2004,
       SUM(CASE WHEN YEAR(StartDate) = 2005 THEN 1 ELSE 0 END) as n2005,



232 Chapter 5 ■ It’s a Matter of time

Figure 5-9:  Column charts are useful for showing monthly data, year over year, such as this 
example showing subscription starts.

       SUM(CASE WHEN YEAR(StartDate) = 2006 THEN 1 ELSE 0 END) as n2006
FROM Subscribers
WHERE YEAR(StartDate) IN (2004, 2005, 2006)
GROUP BY MONTH(StartDate)
ORDER BY month

Monthly data is often better represented by column charts with the different 
years side-by-side, as shown in Figure 5-9.

The next example examines TotalPrice in Orders. This differs from the 
examples so far for two reasons. First, the results are not just counts but dol-
lars. Second, the last day of data has a date of September 20th, although data is 
incomplete after September 7th. In other words, the data cutoff seems to really be 
2016-09-07, with some sporadic data after that date. The incomplete September 
data poses a challenge.

The following SQL query extracts total monthly orders:

SELECT MONTH(OrderDate) as month,
       SUM(CASE WHEN YEAR(OrderDate)=2014 THEN TotalPrice END) as r2014,
       SUM(CASE WHEN YEAR(OrderDate)=2015 THEN TotalPrice END) as r2015,
       SUM(CASE WHEN YEAR(OrderDate)=2016 THEN TotalPrice END) as r2016
FROM Orders
WHERE OrderDate <= '2016-09-07'
GROUP BY MONTH(OrderDate)
ORDER BY month

Table 5-7 shows the results, which suggest that sales have dropped precipi-
tously in the final month. This is misleading, of course, because only the 
first few days of September are included for the third year. There are two 
approaches to fixing the data so the comparisons are valid for the incomplete 
month (typically the most recent). The first is to look at month-to-date (MTD) 
comparisons for previous years. The second is to extrapolate the values to 
the end of the month.
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Month-to-Date Comparison

The month-to-date comparison is shown in the upper chart in Figure 5-10. 
The bars for September in 2014 and 2015 have overlapping columns, where the 
shorter ones in September are the month-to-date values and the taller ones are 
the total revenue. These month-to-date numbers are the appropriate level of 
comparison for September.

How are these overlapping columns created? Unfortunately, Excel does not 
have an option for column charts that are both stacked and side-by-side, but 
we can improvise by using two sets of three series. The first set is plotted on 
the primary axis and contains the full month revenue numbers. The second 
set is plotted on the secondary axis and contains only the month-to-date rev-
enue numbers for September. Both groups must contain the same number of 
columns, to ensure that the column widths are the same, and the columns 
overlap completely.

The data for this chart is calculated by adding the following three columns 
to the previous SQL statement:

SUM(CASE WHEN OrderDate >= '2014-09-01' AND OrderDate < '2014-09-08'
         THEN TotalPrice END) as rev2014mtd,
SUM(CASE WHEN OrderDate >= '2015-09-01' AND OrderDate < '2015-09-08'
         THEN TotalPrice END) as rev2015mtd,
SUM(CASE WHEN OrderDate >= '2016-09-01' AND OrderDate < '2016-09-08'
         THEN TotalPrice END) as rev2016mtd

table 5-7: Revenue by Month for Orders

Month 2014 2015 2016

1 $198,081.37 $201,640.63 $187,814.13

2 $125,088.95 $191,589.28 $142,516.49

3 $171,355.72 $215,484.26 $251,609.27

4 $188,072.17 $140,299.76 $193,443.75

5 $239,294.02 $188,226.96 $247,425.25

6 $250,800.68 $226,271.71 $272,784.77

7 $206,480.10 $170,183.03 $250,807.38

8 $160,693.87 $157,961.71 $164,388.50

9 $234,277.87 $139,244.44 $26,951.14

10 $312,175.19 $170,824.58

11 $394,579.03 $409,834.57

12 $639,011.54 $466,486.34



234 Chapter 5 ■ It’s a Matter of time

This subquery uses conditional aggregation to calculate the month-to-date num-
bers in each year. Although the last column is redundant (because it contains 
the same data as the corresponding full month column), having it simplifies 
the charting procedure, by providing the third series on the secondary axis. 
Note that the comparisons use “>= first date” and “< last date plus one.” This 
structure is intentional. When comparing dates, do not use BETWEEN. A problem 
arises when the dates have time components: BETWEEN does not work as expected.

t Ip When looking for dates within a range, use two explicit comparisons (>= and >). 
This logic works for dates that have a time component as well as those that do not.

Creating the chart starts by pasting the results in Excel. The horizontal axis 
uses the month name; although we could type in the month abbreviations, an 
alternative method is to use dates formatted to just show the month: copy the 

Figure 5-10:  The upper chart shows month-to-date comparisons using overlapping column 
charts. The lower chart shows the end-of-month estimate using Y-error bars.
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formula “DATE(2000, <monthnum>, 1)” down a column to create the dates, use 
that column as the horizontal axis, and then set its “Number” format to “Mmm.”

Next, a column chart is created with the following columns:

 ■ The new date column goes on the horizontal axis.

 ■ The three full revenue columns are data columns, for the first three series 
on the primary axis.

 ■ The three month-to-date-revenue columns are data columns, for the second 
three series on the secondary axis.

Now the chart needs to be customized. First, the three month-to-date columns 
need to be switched to the secondary axis. To do this, right-click each series, choose 
“Format Data Series. …” Choose “Axis” on the left pane, and click “Secondary 
axis.”

To clean up the secondary axis:

 ■ The month-to-date numbers need to be on the same scale as on the other 
axis. Click the secondary vertical axis and make the maximum value the 
same as the maximum value on the primary axis.

 ■ The secondary axis labels and tick marks need to be removed, by clicking 
them and pressing Delete.

Finally, the month-to-date series should be colored similarly so they can be seen.

t Ip If you make a mistake in Excel, just hit Ctrl+Z to undo it. You can always experi-
ment and try new things, and undo the ones that don’t look right.

Extrapolation by Days in Month

The lower chart in Figure 5-10 shows a different approach. Here, the comparison 
is to an estimated value for the end of the month, rather than to the past month-
to-date values. The simplest end-of-month estimate is a linear trend, calculated 
by multiplying the current value for the month times the number of days in the 
month and dividing by the number of days that have data. For the September 
data, divide the $26,951.14 by 7 to get the average per day and then multiply by 
30 (for the days in the month) to get $115,504.89.

The chart shows this difference using Y-error bars. The length of the bar is 
the difference from the end-of-month estimate and the current value; that is 
$88,553.75 = $115,504.89 – $26,951.14.

Starting with the column chart that has three series for each year, add the 
Y-error bar by doing the following:

 1. Add a column to the table in Excel where all the cells are blank except for 
the one for September. This one gets the difference value.
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 2. Add the error bars by double-clicking the series for 2016 to bring up the 
“Format Data Series” dialog box and choose “Error Bars” on the left 
pane. On the “Y-Error Bars” tab, choose “Plus” (the second option) 
and “Cap” for the End Style. Then set the sizes of the error bars by 
choosing “Custom,” the bottom option, and then clicking “Specify 
Value.” Set the “Positive Error Value” series to refer to the difference 
column.

 3. Format the error bar by double-clicking it.

The difference calculation can be done in Excel. However, doing it in SQL shows 
the power of manipulating dates in the database.

Unfortunately, SQL lacks a simple way to calculate the number of days in the 
month. The solution starts with the following observations:

 ■ The first day of the month is the date minus the day of the month plus one.

 ■ The first day of the next month is the first day of this month plus one month.

 ■ The difference is the number of days in the month.

Combined into a query, this looks like:

WITH o as (
       SELECT o.*, YEAR(OrderDate) as ordyy, MONTH(OrderDate) as ordmm,
              DAY(OrderDate) as orddd
       FROM Orders o
      )
SELECT ordmm,
       SUM(CASE WHEN ordyy = 2014 THEN TotalPrice END) as r2014,
       SUM(CASE WHEN ordyy = 2015 THEN TotalPrice END) as r2015,
       SUM(CASE WHEN ordyy = 2016 THEN TotalPrice END) as r2016,
       (SUM(CASE WHEN ordyy = 2016 AND ordmm = 9 THEN TotalPrice END) *
        ((MAX(daysinmonth)*1.0/MAX(CASE WHEN ordyy = 2016 AND ordmm = 9
                                        THEN orddd END)) - 1)
       ) as IncrementToMonthEnd
FROM (SELECT o.*, DATENAME(dayofweek, OrderDate) as dow,
             DATEDIFF(day, DATEADD(day, - (orddd - 1), OrderDate),
                      OrderDate) as daysinmonth
      FROM o
     ) o
WHERE OrderDate <= '2016-09-07'
GROUP BY ordmm
ORDER BY ordmm

The query calculates the linear trend to the end of the month. The subquery 
calculates the number of days in the month (some databases have simpler 
methods of doing this). The column incrementtomonthend is then calculated 
by taking the total for the month so far, multiplying by one less than the days 
in the month divided by the cutoff date in the month. The “one less” is because 
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we want the increment over the current value, rather than the month-end 
estimate itself.

Estimation Based on Day of Week

Linear extrapolation may not produce the best estimate for the end-of-month 
value. If there is a weekly cycle, a method that takes into account days of the 
week should do a better job. The previous example has seven days of data for 
September 2016. If weekdays have one set of behavior and weekends another 
set, how could we use this information to extrapolate the $26,952.14 to the end 
of September? This estimation is only possible after at least one weekday and at 
least one weekend day has passed, unless we borrow information from previ-
ous months or previous years.

This calculation has two parts. The first is calculating the average weekday 
and the average weekend contribution for September. The second is calculating 
the number of weekdays and number of weekend days during the month. We’ll 
do the first calculation in SQL and the second calculation in Excel. The follow-
ing additional two columns contain the averages for weekdays and weekends 
in September 2016:

(SUM(CASE WHEN ordyy = 2016 AND ordmm = 9 AND
               orddow NOT IN ('Saturday', 'Sunday')
          THEN totalprice END) /
 COUNT(DISTINCT (CASE WHEN ordyy = 2016 AND ordmm = 9 AND
                           orddow NOT IN ('Saturday', 'Sunday')
                      THEN OrderDate END)) ) as weekdayavg,
(SUM(CASE WHEN ordyy = 2016 AND ordmm = 9 AND
               dow IN ('Saturday', 'Sunday') THEN totalprice END) /
 COUNT(DISTINCT (CASE WHEN ordyy = 2016 AND ordmon = 9 AND
                           orddow IN ('Saturday', 'Sunday')
                      THEN OrderDate END)) ) as weekendavg

Notice that the average calculation for weekdays takes the sum of all the 
orders on weekdays and divides by the number of distinct days when orders 
were placed. This gives the average total order volume on weekdays. By 
contrast, the AVG() function would calculate something different: the aver-
age order size.

Without a calendar table, determining the number of weekdays and weekend 
days in a given month is rather complicated using SQL. Excel has the advantage 
of being able to define a lookup table, such as the one in Table 5-8. This table 
has the number of weekend days in a month, given the start date and number 
of days in the month.

The following Excel formula calculates the number of days in a month:

days in month = DATE(<year>, <mon>+1, 1) – DATE(<year>, <mon>, 1)
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This works in Excel even for December because Excel interprets month 13 as 
January of the following year. The day of the week when the month starts is 
calculated using:

startdow = TEXT(DATE(<year>, <mon>, 1), "Dddd")

Using this information, the number of weekdays can be looked up in the pre-
ceding table using the following formula:

VLOOKUP(<startdow>, <table>, <daysinmonth>-28+2, 0)

Figure 5-11 shows a screen shot of Excel with these formulas. Taking weekdays 
and weekends into account, the end-of-month estimate is $109,196.45, which is 
only slightly less than the $115,504.89 linear estimate.

table 5-8: Weekdays and Weekend Days by Start of Month and Length of Month

Month Start 
Day oF Week

WeekDayS WeekenD DayS

28 29 30 31 28 29 30 31

Monday 20 21 22 23 8 8 8 8

Tuesday 20 21 22 23 8 8 8 8

Wednesday 20 21 22 23 8 8 8 8

Thursday 20 21 22 22 8 8 8 9

Friday 20 21 21 21 8 8 9 10

Saturday 20 20 20 21 8 9 10 10

Sunday 20 20 21 22 8 9 9 9

Figure 5-11:  This screen shot of Excel shows the calculation of the number of days in the month, 
the number of weekdays, and the number of weekend days, which can then be used to estimate 
the end-of-month average taking into account the day of the week.
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Estimation Based on Previous Year

Another way to estimate the end of the month value uses the ratio of the previous 
year month-to-date and previous year month total. Applying this ratio to the 
current month gives an estimate of the end-of-month value. This calculation has 
the advantage of taking into account holidays because the same month period 
the year before probably had the same holidays. Of course, this might not work 
well for floating holidays such as Easter and Rosh Hashanah.

For instance, in the previous year, the monthly total was $139,244.44. The total 
for the first seven days during that month was $41,886.47, which is about 30.1% 
of the total. The current month to date is $26,951.14. This is 30.1% of $89,594.48. 
The estimate for the entire month calculated using this approach is considerably 
smaller than using the linear trend.

Counting Active Customers by Day

Determining the number of active customers as of the database cut-off date is 
easy, by simply counting those whose status code indicates that they are active. 
This section extends this simple counting mechanism to historical time periods, 
by progressing from counting the active customers on any given day in the past, 
to counting active customers on all days, and finally, to breaking customers into 
tenure groups and counting the sizes of those groups on any given day.

How Many Customers on a Given Day?
On a given day in the past, customers who are active have two characteristics:

 ■ They started on or before the given day.

 ■ They stopped (if at all) after the given day.

The following query answers the question: How many subscriptions customers 
were active on Valentine’s Day in 2005?

SELECT COUNT(*)
FROM Subscribers
WHERE StartDate <= '2005-02-14' AND
      (StopDate > '2005-02-14' OR StopDate IS NULL)

The WHERE clause implements the logic that selects the right group of customers.
The query returns the value of 2,387,765. By adding GROUP BY clauses, this 

number can be broken out by features such as market, channel, rate plan, or 
any column that describes customers.

The data in Subscribers does not contain any accounts that stopped prior to 
2004-01-01. Because these accounts are missing, it is not possible to get accurate 
counts prior to this date.
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How Many Customers Every Day?
Calculating the number of active customers on one date provides informa-
tion about only one date. A more useful question is: How many customers were 
active on any given date in the past? For the subscriptions data, this question 
has to be tempered: It is only possible to get an accurate count after 2004-
01-01 because customers who started and stopped prior to that date are not 
in the table.

Answering this question relies on an observation: The number of custom-
ers who are active on a given date is the number who started on or before that 
date minus the customers who stopped on or before that date. The preceding 
question simplifies into two other questions: How many customers started as of a 
given date? How many customers stopped as of a given date?

These individual questions are readily answered using SQL. Excel can be 
used to accumulate the numbers and then to subtract the cumulative number 
of stops from the cumulative number of starts. The following SQL finds all the 
starts by day, grouping all the pre-2004 starts into one bucket:

SELECT thedate, SUM(nstarts) as nstarts, SUM(nstops) as nstops
FROM ((SELECT (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                    ELSE '2003-12-31' END) as thedate,
              COUNT(*) as nstarts, 0 as nstops
       FROM Subscribers
       WHERE StartDate IS NOT NULL
       GROUP BY (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                      ELSE '2003-12-31' END) )
      UNION ALL
      (SELECT (CASE WHEN StopDate >= '2003-12-31'
                    THEN StopDate ELSE '2003-12-31' END) as thedate,
              0 as nstarts, COUNT(*) as nstops
       FROM Subscribers
       WHERE StartDate IS NOT NULL AND StopDate IS NOT NULL
       GROUP BY (CASE WHEN StopDate >= '2003-12-31'
                      THEN StopDate ELSE '2003-12-31' END) )
     ) a
GROUP BY thedate
ORDER BY thedate

The query works by separately counting starts and stops, combining the results 
using UNION ALL, and then combining the start and stop numbers for each date. 
These cannot be counted without subqueries because the aggregation column 
is different. Starts and stops prior to 2004 are placed in the 2003-12-31 bucket. 
The query uses UNION ALL rather than a JOIN because some dates may have no 
starts and other dates may have no stops.

The Subscribers table has 181 records where StartDate is set to NULL. With 
no start date, these rows either could be excluded (the choice here) or the start 
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date could be replaced with some reasonable value (if one is known). Both 
subqueries have the restriction on start date not being NULL, even though one 
subquery counts starts and the other stops. Both subqueries need to include 
exactly the same population of customers in order to get accurate results. Because 
the second subquery counts stops, it has an additional restriction that custom-
ers have stopped.

Excel then does the cumulative sums of the starts and stops, as shown in 
Figure 5-12. The difference between the cumulative starts and the cumula-
tive stops is the number of active customers on each day since the begin-
ning of 2004.

How Many Customers of Different Types?
The overall number of customers on any given day can be broken out by cus-
tomer attributes. The following query is a modification of the previous query 
for the breakdown by market:

SELECT thedate, SUM(numstarts) as numstarts,
       SUM(CASE WHEN market = 'Smallville' THEN numstarts ELSE 0
           END) as smstarts,
       . . .
       SUM(numstops) as numstops,
       SUM(CASE WHEN market = 'Smallville' THEN numstops ELSE 0
           END) as smstops,
       . . .
FROM ((SELECT (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                    ELSE '2003-12-31' END) as thedate,
              market, COUNT(*) as numstarts, 0 as numstops
       FROM Subscribers s
       WHERE StartDate IS NOT NULL
       GROUP BY (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                      ELSE '2003-12-31' END), market

Figure 5-12:  This Excel screen shot shows a worksheet that calculates the number of customers 
on each day.
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      ) UNION ALL
      (SELECT (CASE WHEN StopDate >= '2003-12-31'
                    THEN StopDate ELSE '2003-12-31' END) as thedate,
              market, 0 as numstarts, COUNT(*) as numstops
       FROM Subscribers
       WHERE StartDate IS NOT NULL AND StopDate IS NOT NULL
       GROUP BY (CASE WHEN StopDate >= '2003-12-31'
                      THEN StopDate ELSE '2003-12-31' END), market )
     ) s
GROUP BY thedate
ORDER BY thedate

Each subquery aggregates by date and also market. In addition, the outer 
query sums the starts and stops separately for each market. The data is 
handled the same way in Excel, with the starts and stops being accumulated, 
and the difference between them being the number active in each market 
on any given day.

Figure 5-13 shows the results. Gotham is always the largest market and 
Smallville the smallest. It appears, though, that Smallville is catching up to 
Gotham. In addition, all three markets have an increase at the end of 2005 and 
a decrease in 2006. The decrease for Gotham is larger than for the other two 
markets. Interestingly, Smallville has no stops until Oct 26, 2004. As already 
noted, the markets have different left truncation dates.

How Many Customers by Tenure Segment?
A tenure segment divides customers into groups based on their tenure. For 
instance, customers might be divided into three such segments: the first-year 
segment, consisting of those who have been around less than one year; the 
second-year segment, consisting of those who have been around between one 
and two years; and the long-term segment.

Figure 5-13:  This chart shows the number of active customers by day in each market.
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This section extends the counting of active customers over time to active 
customers by tenure segment. The definition of the tenure groups can vary. 
There is nothing sacrosanct about milestones at one and two years. On any 
given date, how many subscribers have been around for one year, for two years, and for 
more than two years?

The answer to this question relies on a few observations about the relation-
ship between the size of a tenure segment on a particular date and the size on 
the day before. This logic uses a mathematical technique called induction.

The number of customers in the first-year segment on a particular date con-
sists of:

 ■ All the customers in the first-year segment the day before;

 ■ Minus the first-year segment customers who graduated (by passing the 
one year milestone) on that date;

 ■ Minus the first-year segment customers who stopped on that date;

 ■ Plus new customers who started on that date.

The number of customers in the second-year segment consists of:

 ■ All the second-year segment customers who were around the day before;

 ■ Minus the second-year segment customers who graduated (by passing 
the two year milestone);

 ■ Minus the second-year segment customers who stopped on that date;

 ■ Plus customers who graduated from the first-year segment on that date.

Finally, the number of customers in the long-term segment:

 ■ All the long-term segment customers who were around the day before;

 ■ Minus the long-term segment customers who stopped;

 ■ Plus customers who graduated from the second-year segment.

These rules suggest the information needed for tracking the segments day-by-
day. The first is the number of customers who enter each segment on each day. 
For the first-year segment, this is the number of customers who start. For the 
second-year segment, it is the customers who pass their 365-day milestone. For 
the long-term customers, it is the customers who pass their 730-day milestone. 
Also needed is the number of customers within each segment who stop.

Figure 5-14 shows the dataflow processing for this calculation. The first 
three subqueries calculate the number of customers that enter each segment 
at a given unit of time. The last row calculates the segment when customers 
stop. These are then combined using UNION ALL and then summarized for 
output.
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The following SQL corresponds to this dataflow:

SELECT thedate, SUM(numstarts) as numstarts, SUM(year1) as enters1,
       SUM(year2) as enters2, SUM(year0stops) as stops0,
       SUM(year1stops) as stops1, SUM(year2plstops) as stops2pl
FROM ((SELECT (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                    ELSE '2003-12-31' END) as thedate,
              COUNT(*) as numstarts, 0 as YEAR1, 0 as YEAR2,
              0 as year0stops, 0 as year1stops, 0 as year2plstops
       FROM Subscribers s
       WHERE StartDate IS NOT NULL
       GROUP BY (CASE WHEN StartDate >= '2003-12-31' THEN StartDate
                      ELSE '2003-12-31' END))
      UNION ALL
      (SELECT (CASE WHEN StartDate >= '2002-12-31'

OUTPUT
SORT
ratio 
DESC

FILTER
StartDate is not null

READ
Subscribers

AGGREGATE
group by thedate

numstarts= count(*)

APPEND
thedate = 

greatest(StartDate, 
'2013-12-31')

FILTER
StartDate is not null 
and Tenure >= 365

READ
Subscribers

AGGREGATE
group by thedate
Year1 = count(*)

APPEND
thedate = 

greatest(StartDate+ 
365, '2013-12-31')

FILTER
StartDate is not null 

and Tenure >= 
365*2

READ
Subscribers

AGGREGATE
group by thedate

Year2 = count(*)

APPEND
thedate = 

greatest(StartDate+ 
365*2, '2013-12-31')

UNION 
ALL

AGGREGATE
group by thedate

numstarts = sum(numstarts)
enters1 = sum(year1)
enter2 = sum(year2)
stops0 = sum(year0stops)
stop1 = sum(year1stops)
stops2 = sum(year2stops)

FILTER
StartDate is not null 

and
StopDate is not null

READ
Subscribers

AGGREGATE
group by thedate

year0stops = . . .
year1stops = . . .
year2stops = . . .

APPEND
thedate
=greatest(StopDate, 
'2013-12-31')

Figure 5-14:  The dataflow processing shows how to calculate the number of customers that 
enter and leave each tenure segment.
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                    THEN DATEADD(day, 365, StartDate)
                    ELSE '2003-12-31' END) as thedate,
              0 as numstarts, COUNT(*) as YEAR1, 0 as YEAR2,
              0 as year0stops, 0 as year1stops, 0 as year2plstops
       FROM Subscribers s
       WHERE StartDate IS NOT NULL AND Tenure >= 365
       GROUP BY (CASE WHEN StartDate >= '2002-12-31'
                      THEN DATEADD(day, 365, StartDate)
                      ELSE '2003-12-31' END))
      UNION ALL
      (SELECT (CASE WHEN StartDate >= '2001-12-31'
                    THEN DATEADD(day, 365 * 2, StartDate)
                    ELSE '2003-12-31' END) as thedate,
              0 as numstarts, 0 as year1, COUNT(*) as year2,
              0 as year0stops, 0 as year1stops, 0 as year2plstops
       FROM Subscribers s
       WHERE StartDate IS NOT NULL AND Tenure >= 365 * 2
       GROUP BY (CASE WHEN StartDate >= '2001-12-31'
                      THEN DATEADD(day, 365 * 2, StartDate)
                      ELSE '2003-12-31' END))
      UNION ALL
      (SELECT (CASE WHEN StopDate >= '2003-12-31' THEN StopDate
                    ELSE '2003-12-31' END) as thedate,
              0 as numstarts, 0 as YEAR0, 0 as YEAR1,
              SUM(CASE WHEN Tenure < 365 THEN 1 ELSE 0 END
                 ) as year0stops,
              SUM(CASE WHEN Tenure BETWEEN 365 AND 365 * 2 - 1
                       THEN 1 ELSE 0 END) as year1stops,
              SUM(CASE WHEN tenure >= 365 * 2 THEN 1 ELSE 0 END
                 ) as year2plstops
       FROM Subscribers s
       WHERE StartDate IS NOT NULL AND StopDate IS NOT NULL
       GROUP BY (CASE WHEN StopDate >= '2003-12-31'
                      THEN StopDate ELSE '2003-12-31' END) )
     ) a
GROUP BY thedate
ORDER BY thedate

This query follows the same structure as the dataflow. The first three subqueries 
calculate the number of customers who enter each segment. Separate subqueries 
are needed because the entry dates are different. A customer who starts on 
2005-04-01 enters the first-year segment on that date. The same customer enters 
the second-year segment on 2006-04-01, one year later. Each of these subqueries 
selects the appropriate group using the WHERE clause and the tenure column. 
The first segment has no restriction. For the second, the tenure is at least one 
year. For the third, the tenure is at least two years.

The fourth subquery calculates the stops for all three segments. Because the 
stop date does not change, only one subquery is needed for all three segments. The 
Excel calculation then follows the rules described at the beginning of this section.
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Figure 5-15 shows the three segments of customers using stacked area charts. 
This chart shows the total number of customers as well as the breakdown 
between the different tenure segments over time.

Calculating Actives Entirely Using SQL
The entire calculation for the number of customers on any given date can be 
done in SQL. An inefficient method for all but a few days is to use Calendar:

SELECT c.date,
       (SELECT COUNT(*)
        FROM Subscribers s
        WHERE s.StartDate <= c.date AND
              (s.StopDate > c.date OR s.StopDate IS NULL)
       ) as NumSubs
FROM Calendar c
WHERE c.date BETWEEN '2006-01-01' AND '2006-01-07'

The correlated subquery counts the number of subscribers on each date. The 
only nuance to this query is that the correlated subquery checks for NULL values 
for the stop date.

Although this works, more efficient methods use cumulative sums: Count 
the number of customers who start and stop on each date. Then calculate 
their cumulative sum. The difference is the number of customers active on 
that date.

This readily translates into a query:

SELECT Dte, MAX(cumestarts) as numstarts, MAX(cumestops) as numstops,
       (MAX(cumestarts) - MAX(cumestops)) as numactive
FROM ((SELECT StartDate as Dte, COUNT(*) as numstarts, 0 as NumStops,
              SUM(COUNT(*)) OVER (ORDER BY StartDate) as cumestarts,

Figure 5-15:  This chart shows the number of active customers broken out by one-year tenure 
segments.
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              0 as cumestops
       FROM Subscribers
       GROUP BY StartDate
      ) UNION ALL
      (SELECT COALESCE(StopDate, '2007-01-01'), 0, COUNT(*), 0,
              SUM(COUNT(*)) OVER (ORDER BY COALESCE(StopDate,
                                                    '2007-01-01'))
       FROM Subscribers
       GROUP BY StopDate
      )
     ) s
WHERE Dte >= '2004-01-01'
GROUP BY Dte
ORDER BY Dte

This query has several nuances. The basic structure is a UNION ALL whose 
results are then aggregated. The UNION ALL combines two aggregation queries, 
one that counts starts and one that counts stops. Note that these two queries 
calculate the cumulative sum of the aggregation by combining window func-
tions with aggregation functions. The query does the cumulative sum in the 
subquery so the outer query can use the WHERE clause without affecting the 
calculation.

This structure of the query solves the problem for any given day. To break 
out the results by a particular column, such as channel, requires only minor 
modifications—using conditional aggregation in the subquery, including more 
fields in the outer query, and PARTITION BY in the cumulative sums.

This query works correctly for all days because all days have at least one 
start and one stop. If this is not true, then the query needs do a union of all the 
dates, doing the cumulative sum in another subquery between the inner and 
outer queries.

Simple Chart Animation in Excel

This section goes back to the purchases dataset to investigate the delay between 
the date when an order is placed and when the last item is shipped, the fulfillment 
date. Investigating the fulfillment date gets rather complicated because other 
features (such as the size of the order) undoubtedly affect the delay. Visualizing 
the results is challenging because there are two time dimensions, the duration 
and order date.

This example provides an opportunity to show rudimentary chart animation 
in Excel, using a Visual Basic macro. This is the only place in the book that uses 
macros because even without them SQL and Excel are quite powerful for data 
analysis and visualization. However, animation is also powerful and the macro 
is simple enough for anyone to implement.
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Order Date to Ship Date
What is the delay between the order date and the fulfillment date? The following SQL 
query answers this question, breaking out the delay by number of units in the order:

SELECT DATEDIFF(day, OrderDate, fulfilldate) as delay, COUNT(*) as cnt,
       SUM(CASE WHEN numunits = 1 THEN 1 ELSE 0 END) as un1,
       . . .
       SUM(CASE WHEN numunits = 5 THEN 1 ELSE 0 END) as un5,
       SUM(CASE WHEN numunits >= 6 THEN 1 ELSE 0 END) as un6pl
FROM Orders o JOIN
     (SELECT OrderId, MAX(ShipDate) as fulfilldate
      FROM OrderLines ol
      GROUP BY OrderId) ol
     ON o.OrderId = ol.OrderId
WHERE OrderDate <= fulfilldate
GROUP BY DATEDIFF(day, OrderDate, fulfilldate)
ORDER BY delay

This query summarizes OrderLines to get the last shipment date. As a reminder, 
the number of units is different from the number of distinct items. If a customer 
orders ten copies of the same book, that is one item but ten units.

The data has a handful of anomalies, such as the 22 orders that completely 
shipped before the order was placed. Obviously, an explanation exists, such as 
the order being “fixed” after it was shipped with the date mistakenly updated. 
For this discussion, these few extraneous cases are not of interest, so a WHERE 
clause eliminates them. Note that pending orders are not in the database, because 
every row in OrderLines has a valid ShipDate.

Figure 5-16 shows the cumulative proportion of fulfilled orders by days after 
order for different numbers of units. For all groups, over half the orders have 
been completely fulfilled within a week. The most common orders have one 
unit, and over 70% of these are fulfilled within one week.

Figure 5-16:  The delay from order to fulfillment depends on order size.
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Orders with more units do take longer to fulfill. At 50 days, about 98% of the 
smaller orders have been fulfilled, compared to 94% of the large orders. Looking 
at it the other way, fewer than 2% of the smaller orders have such a long delay, 
whereas about 6% of the larger orders do.

Although difficult to see on the chart, something interesting happens in the 
first few days. Of all the groups, orders with six or more units actually have the 
largest proportion shipping on the day the order is placed. This means that the 
curve for the largest orders crosses all the other curves. Curves that cross like 
this are often interesting. Is something going on?

t Ip Curves that intersect are often a sign that something interesting is happening, 
suggesting ideas for further investigation.

To investigate this, let’s ask the question: What is the relationship between the 
number of units in an order and the number of distinct products? The hypothesis is 
that larger orders are actually more likely to have only one product, so they 
can ship efficiently. Orders with only one unit have only one product, so these 
don’t count for the comparison. The following SQL calculates the proportion 
of orders having one product among the orders with a given number of units:

SELECT numunits, COUNT(*),
       AVG(CASE WHEN numprods = 1 THEN 1.0 ELSE 0 END) as prop1prod
FROM (SELECT OrderId, SUM(NumUnits) as numunits,
             COUNT(DISTINCT ProductId) as numprods
      FROM OrderLines ol
      GROUP BY OrderId) o
WHERE numunits > 1
GROUP BY numunits
ORDER BY numunits

The subquery counts the number of units and the number of distinct products in 
each order. The number of units is calculated by summing NumUnits . An alternative 
would use the NumUnits column in Orders, but that requires an additional join.

Figure 5-17 shows a bubble plot of the results. The horizontal axis is the number 
of units in the order. The vertical axis is the proportion of the orders consisting 
of only one product. The size of each bubble is the log of the number of orders 
(calculated in Excel using the LOG() function). Larger bubbles account for even 
more orders than the bubbles suggest because the bubble size is based on the log.

The largest bubble is missing because all orders with only one unit have only 
one product. For larger orders, the proportion of one-product orders starts off 
fairly low. For orders with two units, it is 21.8%; for three, 13.9%. However, the 
proportion then starts increasing. For orders with six or more units, almost one 
third (32.1%) have only one product. These one-product orders are the ones that 
ship quickly, often on the same day they are placed. Orders with more different 
products take longer to fulfill.
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Order Date to Ship Date by Year
The previous section showed the overall situation with delays in shipping orders. 
The question now includes changes over time: Does the delay between the order 
date and fulfillment date change from year to year? To calculate the delay for any 
given year, extend the WHERE clause in the delay query, restricting the results to 
a particular year; something like AND YEAR(OrderDate) = 2014.

This section proposes another solution where the data for all years is brought 
into Excel. Then, a subset of the data is placed into another group of cells, a 
“one-year” table, which in turn is used for generating a chart. By changing the 
contents of one cell in the spreadsheet, the chart can flip between the years. 
Note that you can also do this by using filtering, but that requires a couple 
more keystrokes.

Querying the Data

The query to fetch the results simply adds YEAR(OrderDate) as an aggregation 
on the query that calculates the delays:

SELECT YEAR(OrderDate) as yr,
       DATEDIFF(day, OrderDate, fulfilldate) as delay,
       COUNT(*) as cnt,
       SUM(CASE WHEN numunits = 1 THEN 1 ELSE 0 END) as un1,
       . . .
       SUM(CASE WHEN numunits >= 6 THEN 1 ELSE 0 END) as un6pl
FROM Orders o JOIN
     (SELECT OrderId, MAX(ShipDate) as fulfilldate
      FROM OrderLines
      GROUP BY OrderId) ol
     ON o.OrderId = ol.OrderId AND o.OrderDate <= ol.fulfilldate

Figure 5-17:  This bubble chart shows that as the number of units increases in an order, more 
orders have only one product.
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GROUP BY YEAR(OrderDate), DATEDIFF(day, OrderDate, fulfilldate)
ORDER BY yr, delay

With almost one thousand rows and three dimensions, these results pose a 
challenge for charting. The data could be plotted on a single chart, but it is not 
clear how to make the chart intelligible. There are already several different 
curves for the number of units, leaving year and delay on the horizontal axis. 
A separate graph for each year, such as shown in Figure 5-15 (page 246), would 
be easier to interpret.

One option for creating a chart for different years is to plot all the data and 
then use filtering to select only one year at a time. That is a feasible solution, 
but the next section offers are more flexible alternative.

Creating the One-Year Excel Table

The one-year table is a group of cells that contains the delay information for a 
single year. It has the same columns and rows as the original data, except for 
the year column because the year is in a special cell, which we’ll call the year-
cell. The data in the table is keyed off of this cell, so when the value is updated, 
the table is updated for that year.

One column in the one-year table is the delay. This starts at zero and is incre-
mented by one until it reaches some large number (the maximum delay in the 
data is 625). The one-year table finds the appropriate value in the overall data 
using the year in the year-cell and the delay on the row. Three steps are needed 
to make this work.

First, a lookup key is added to the query results to facilitate finding the appro-
priate row in the original data by the combination of year and delay. This addi-
tional column consists of the year and delay concatenated together to create a 
unique identifier:

<key> = <year>&":"&<delay>

The first value, for instance, is “2009:1”—a colon is used to separate the two values.
The second step is to find the offset into the table by matching each row in the 

one-year table to this column. The Excel function MATCH() looks up the value in 
its first argument in a list and returns the offset where the value is found in the 
list. If the value is not found and the third argument is FALSE, it returns NA():

<offset> = MATCH(<year cell>&":"&<delay>, <key column>, FALSE)

The third step is to get the right data for each cell in the one-year table by using 
the OFFSET() function to skip down <offset>-1 rows from the top of each 
column. Figure 5-18 shows a screen shot of Excel with the formulas for the “1 
Unit” column.

The one-year table is now keyed off of the year-cell. Changing the value in 
that cell causes the table to be updated.
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Creating and Customizing the Chart

Figure 5-19 shows the resulting chart for one year. Notice that this chart has a 
title that incorporates the year. This is accomplished by pointing the title box 
to a cell that has a formula for the title, using the following steps:

 1. Place the desired title text in a cell, which can be a formula: 
 ="Days from Order to Fulfillment by Units for "&<year-cell>.

 2. Add an arbitrary title to the chart by right-clicking inside the chart, choos-
ing “Chart Option,” going to the “Titles” tab, and typing some text in the 
“Chart Title” box. Then exit the dialog box.

 3. Click once on the chart title to select the title box. Then type = into the 
formula bar and click on the cell with the title (or type in its address). 
Voila! The cell contents become the chart title.

Figure 5-18:  These Excel formulas show the formulas for constructing the intermediate table for 
one year of data for the “1 Unit” column.

Figure 5-19:  This chart shows the delay information for one year.
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SIMple anIMatIon uSIng exCel MaCroS

Excel macros are a very powerful component of Excel. They provide the capability 
to customize Excel using the power of a full programming language, Visual Basic. 
Because the focus of this book is on analyzing data, macros are generally outside the 
scope. However, one is so useful, simple, and impressive that it is worth including: the 
animation macro.

The text describes the ability to create a chart whose contents are determined by 
the value in the year-cell. Animating the chart just requires automatically incrementing 
the year-cell, starting at one value, ending at another, and waiting for a small number 
of seconds in between. To set this up, we’ll put the start value, the end value, and the 
time increment in the three cells adjacent to the year-cell, so they look something like:

year Start enD SeConDS

2009 2009 2016 1

The macro automatically increments the year-cell.
First, create a macro by bringing up the Macro dialog box, by going to the 

Developer ribbon and choosing Macro  View Macros or the Tools menu and choosing 
Macro. In the “Macro Name” box, type in a name, such as “animate,” and then click the 
“Create” menu button. This brings up the Visual Basic editor.

The following macro code then creates the macro (the template that automatically 
appears already has the first and last lines of this code):

Sub animate()

    Dim startval As Integer, endval As Integer

    startval = ActiveCell.Offset(0, 1).Value

    endval = ActiveCell.Offset(0, 2).Value

    For i = startval To endval

        ActiveCell.Value = i

        Application.Wait(Now() +

            TimeValue(ActiveCell.Offset(0, 3).Text))

    Next i

End Sub

When the code appears, leave the Visual Basic editor by going to the “File” menu or 
(“Excel” on the Mac) and choosing “Close and Return to Microsoft Excel” (or use Alt+Q). 
This adds the macro into the current Excel file. The macro gets saved with the workbook.

To use the macro, place the cursor on the year-cell and go to the Macro dialog 
box and choose “Run.” It is also possible to assign the macro to a keystroke through 
the “Options” on the dialog box.

This example uses animation to walk through time values, which changes both the 
chart and the corresponding table. The more impressive part is the chart changing as 
the values change. Animation can be used to walk through other values, such as prod-
ucts, number of units, and so on.
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With this mechanism, the chart title and chart contents both update when the 
value in the year-cell changes. The aside “Simple Animation Using Excel Macros” 
discusses how to take this one step further with a rudimentary animation.

Lessons Learned

Time is important for understanding the universe and time is important for data 
analysis. In databases, times and dates have six components: years, months, days, 
hours, minutes, and seconds. In addition, a time zone might also be attached. 
The structure is complicated, but within one database, times and dates tend to 
be from one time zone and at the same level of precision.

As with other data types, dates and times need to be validated. The most 
important validations are checking the range of values and verifying that dates 
have no extraneous time component.

Analyzing dates starts with the values and the counts themselves. Looking 
at counts and aggregations over time is informative, whether the number of 
customers, the order size, or the amount spent. Seasonal patterns appear in 
the data, further showing what customers are really doing. Many businesses 
have weekly cycles. For instance, stops may be higher on weekdays than on 
weekends. Comparisons at the day level show these differences. Trend lines or 
weekly summaries remove them, highlighting longer-term patterns instead. 
Another challenge is determining the next anniversary for a given date.

Individual time values are interesting; more so are durations between two 
values. Duration can be measured in many different ways, such as days between 
two dates or months between two dates. One challenge is determining the 
number of a particular day of the week, such as Mondays, between two dates. 
However, even this is possible with SQL and Excel.

This chapter presents two important applications involving dates. The first is 
calculating the number of customers active on a particular date, which is simply 
the number who started as of that date minus the number who stopped before 
that date. This can be broken out by different groups, including tenure groups.

The last example looks at changes over time in a duration value—the delay 
from when a customer places an order to when the order is fulfilled. With two 
time dimensions, a good way to visualize this is through a simple Excel anima-
tion, which requires just a dab of macro programming.

The next chapter continues the exploration of time through survival analysis, 
the part of statistics that deals with time-to-event problems.
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How long will a lightbulb last? Which factors influence a cancer patient’s prog-
nosis? What is the average time to failure (MTTF) of a disk drive? These ques-
tions may seem to have little relationship to each other, but they do have one 
thing in common: They all involve estimating time to an event, so they can be 
answered using survival analysis. And, these ideas apply to customers, their 
tenures, and their value.

The scientific and industrial origins of survival analysis explain the terminol-
ogy. Its emphasis on “failure” and “risk” and “mortality” and “recidivism” may 
explain why, once upon a time, survival analysis did not readily catch on in the 
business and marketing world. That time has passed, and survival analysis is 
recognized as a powerful set of analytic techniques for understanding custom-
ers. And, the combination of SQL and Excel is sufficiently powerful to apply 
many of these techniques to large customer databases.

Survival analysis estimates how long until a particular event happens. A 
customer starts; when will that customer stop? By assuming that the future 
will be similar to the past, historical customer behavior can help us understand 
what will happen and when.

Subscription relationships have well-defined beginnings and ends. For these, 
the most important time-to-event question is when customers stop. Examples 
abound:

 ■ Customers get a mortgage and remain customers until they pay the mort-
gage off (or default).

 ■ Customers get a credit card and remain customers until they stop using 
the card (or stop paying).

 ■ Customers get a telephone and remain customers until they cancel the 
phone service (or stop paying).

C h a p t e r  

6
how Long Will Customers Last? 

Survival analysis to Understand 
Customers and their Value 
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 ■ Customers subscribe to a website and are customers until they cancel (or 
stop paying).

This chapter focuses on these types of relationships. Chapter 8 looks at time-to-
event problems in other areas, such as retailing relationships where customers 
return multiple times, but the relationship has no explicit end.

Survival analysis is a broad, multifaceted subject. This chapter introduces 
the important concepts and their application to customer data using SQL and 
Excel. It starts with a bit of history to put the topics in a good context for under-
standing time-to-event analysis. Examples give a qualitative feel for the results 
of survival analysis because this type of analysis is a powerful way of gaining 
insight into customer behavior, both qualitatively and quantitatively.

Of course, survival analysis is more than history and description. The quan-
titative sections describe how to do the calculations, starting with the hazard, 
moving to survival, and then extracting useful measures from the survival 
probabilities. An example shows how to use survival analysis for estimating 
customer value, or at least estimate future revenue. The final example discusses 
using survival analysis for forecasting. The next chapter picks up where this 
one leaves off, covering some more advanced topics in the subject.

Background on Survival Analysis

The origins of survival analysis can be traced back to a paper published in 1693 
by Edmund Halley, as described in the aside “An Early History of Survival 
Analysis.” The techniques were developed further in the late 19th and 20th cen-
turies, particularly for applications in social sciences, industrial process control, 
and medical research. These applications necessarily used a small amount of data 
because all data was collected by hand. A typical medical study, for instance, 
has dozens or hundreds of participants, rather than the multitudes of customers 
whose information is stored in today’s databases.

This section shows some examples of survival analysis without strictly defining 
terms such as hazard probabilities and survival. The examples start with life expectancy, 
then an explanation of survival in the medical realm, and finally give an example 
of hazard probabilities and how they shed light on customer behavior.

Life Expectancy
Life expectancy is a natural application of survival analysis because it answers 
the question how long people will survive. Figure 6-1 shows life expectancy 
curves for the U.S. population broken out by gender and race (http://www.cdc
.gov/nchs/data/dvs/LEWK3_2009.pdf), as calculated by the U.S. Census Bureau 
in 2009. For instance, the curves show that 90% of black males survive to age 55. 
By comparison, 90% of white women survive to their early 70s. More than 40% 

http://www.cdc.gov/nchs/data/dvs/LEWK3_2009.pdf
http://www.cdc.gov/nchs/data/dvs/LEWK3_2009.pdf
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an earLy hiStory of SUrViVaL anaLySiS

Survival analysis predates what we call statistics by about two centuries. Much 
of what we call statistics was invented in the 19th and 20th centuries; however, 
the origins of survival analysis go back to the 17th century, specifically to a paper 
presented in 1693 to the Royal Society in London. The paper, published in the 
Royal Society’s Philosophical Transactions, was titled “An Estimate of the Degrees 
of the Mortality of Mankind, drawn from curious Tables of the Births and Funerals 
at the City of Breslaw, with an Attempt to ascertain the Price of Annuities.” It is 
available online at http://www.pierre-marteau.com/editions/1693-
mortality.html.

The paper’s author, Edmund Halley, is now famous for quite another reason. In 
1758, 16 years after his death, a comet he predicted to return did indeed return. And 
Halley’s comet has continued to return every 76 or so years.

In the paper, Halley derives the basic calculations for survival analysis using mortal-
ity data collected from Breslau (a city in southwestern Poland now known by its Polish 
name, Wroclaw). These techniques are still used today.

In other ways, the paper is quite modern. Technological innovations in computing 
enabled Halley’s analysis. No, not the calculator or electronic computer. Logarithms 
and the slide rule were invented earlier in the 1600s, making it possible to do lots of 
multiplications and divisions more efficiently than ever.

Halley was also responding to the availability of data. The “curious tables of births 
and funerals” refers to the fact that Breslau was keeping track of births and deaths 
at the time. Why Breslau and not some other city? The reason is unknown. Perhaps 
Breslau was keeping accurate records of births and deaths in response to the Counter-
Reformation (religious wars between Catholics and Protestants in Europe at that 
time). Mandating records strengthened the Catholic churches that gathered these 
vital statistics, helping to ensure that everyone (or almost everyone) was born and 
died a Catholic.

And what was the application of the new techniques, calculated using the new 
technology, on the newly available data? Financial calculations for annuities or 
pensions. This is surely an application we can still relate to. In fact, this particular 
method of calculating survival values is now called the life table method because 
actuaries in life insurance companies have been using the same techniques for over 
two centuries.

Some things do change, however. His opinions that “four of six [women] should 
bring a Child every year” and “Celibacy ought to be discouraged . . . by extraor-
dinary Taxing and Military Service” are no longer mainstream. The paper also 
includes what is, perhaps, the earliest reference to infant mortality rates. At the 
time, Breslau had a rate of 281 infant deaths, per 1000 births, meaning that 281 
newly born babies died before their first birthday. By comparison, the countries 
with the worst infant mortality rates in the modern world—Angola, Afghanistan, 
and Somalia—all have rates under 200 deaths, per 1000 births. Poland had 
improved to a very respectable 6.24 per 1000. Some things do change for the 
better.

http://www.pierre-marteau.com/editions/1693-mortality.html
http://www.pierre-marteau.com/editions/1693-mortality.html
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of females—whether black or white—are expected to survive to age 90, which 
is much larger than the proportion for males.

Life expectancy curves are examples of survival curves. They always start at 
100% and decline toward 0%. They also provide information, such as the fact 
that almost everyone survives to age 50 or so. After that, the curves decline more 
sharply; as people age, their risk of dying increases. Even at age 50, the figure 
shows that groups differ by their survival, with black men having noticeably 
lower survival than the other groups.

The point where half the population survives differs for the four groups:

 ■ For black males, half survive to about age 80.

 ■ For white males, half survive to about age 85.

 ■ For black females, half survive to about age 87.

 ■ For white females, half survive to about age 89.

This age, where half survive, is called the median age, and it is a useful measure 
for comparing different groups.

Medical Research
Purportedly, one of the ten most cited scientific papers of all time is a classic 
paper on survival analysis called “Regression Models and Life Tables (with 
Discussion).” Published in 1972, this paper by Sir David Cox—the “Sir” was 
added because of his renown as a statistician—introduced a technique, now 
called Cox proportional hazards regression, which provides a way of measuring 
the effects of various factors on survival.

As an example, consider what happens to prisoners after they are released from 
prison. Longitudinal studies follow groups of prisoners over time to determine 

figure 6-1: Life expectancy curves are an example of survival curves.
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what happens to them. These studies are for understanding recidivism, a fancy 
word for prisoners who return to their criminal behavior. Some prisoners return 
to a life of crime. Others are rehabilitated. Others are lost to follow-up for some 
reason.

What factors affect the ultimate outcome? Is it the length of time in prison? Do 
work programs in prison reduce recidivism? Is it the crime that they commit-
ted? Their gender? Previous criminal history? Availability of counseling after 
release? Ability to get a job?  A supportive family? Data from longitudinal stud-
ies is analyzed to understand which factors are most important in determining 
who goes back to prison, and who doesn’t. The analysis often uses techniques 
invented by Sir David Cox back in 1972 (and so any paper describing such a 
study typically cites the original paper).

These ideas have been applied in many different areas, from the effect of 
smoking and diabetes on longevity to the factors that affect the length of time 
people remain unemployed, from the factors that affect the length of business 
cycles to the impact of a drug such as Vioxx on cardiovascular disease and the 
timing of parliamentary elections in the United Kingdom. Determining which 
factors affect survival—for better or worse—is quite useful.

Examples of Hazards
A hazard probability is the probability that someone succumbs to a risk at a 
given point in time. Figure 6-2 shows two examples of hazard probability curves.

The top chart in Figure 6-2 is the overall risk of dying at a given age, based on 
the 2009 data for the U.S. population. This chart shows the risk at yearly intervals 
and reveals interesting facts. During the first year, the hazard is relatively large. 
The infant mortality rate, as this number is called, is about 0.64% (which is many 
times less than in Angola now or Breslau in the 1680s). After the first year, the 
risk of dying falls considerably, rising a bit as teens learn how to drive, and then 
more as people age. The shape of this curve, where it starts a bit high, falls, and 
then increases again is called the “bathtub-shaped” hazard. The name comes 
from the shape of the curve, which follows the contours of a bathtub. Imagine 
the drain on the left side.

The bottom chart in Figure 6-2 shows the more complicated hazard probabili-
ties for the risk of customers stopping a subscription a certain number of days 
after they start. This chart also has several features. First, the hazard at tenure 
zero is quite high because many customers are recorded as starting but are not 
able to start—perhaps their credit cards didn’t go through, or their addresses 
were incorrect, or they immediately changed their mind. The next two peaks 
between 60 and 90 days out correspond to customers not paying and to custom-
ers stopping after the end of the initial promotional period.

The hazard curve is bumpy, with an evident weekly pattern and peaks about 
every 30 days. The explanation is the billing period: Customers are more likely 
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to stop shortly after receiving a bill. Finally, the long-term trend in the hazard 
probabilities is downward, indicating that as customers stay longer, their chance 
of leaving decreases. This long-term downward trend is a good measure of loy-
alty; it shows that as customers stay around longer, they are less likely to leave.

tip The long-term trend in the hazard probabilities is a good measure of loyalty 
because it shows what happens as customers become more familiar with you.

The Hazard Calculation

The rest of this chapter explores and explains various calculations used in sur-
vival analysis, with particular emphasis on using SQL and Excel to do them. The 
examples in the rest of the chapter use the subscription dataset, which consists 
of customers of a mobile phone company in three markets.

figure 6-2: These are two examples of hazard probabilities: the top chart is mortality, and the 
bottom chart is stopped subscriptions.
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The hazard calculation is the foundation of survival analysis, and it depends 
on the start date, stop date, and stop type columns. This section first explores 
these columns and then goes into the calculation of the hazard itself.

Data Investigation
Survival analysis fundamentally relies on two pieces of information about each 
customer, the stop flag (whether the customer is stopped or active) and the tenure 
(how long the customer was active). Often, these columns must be derived from 
other columns in the database. In Subscribers, for instance, the tenure is already 
calculated but the stop flag must be derived from other columns.

Because this information is so important, a good place to start is with data 
exploration. This is true even when the fields are pre-calculated because the 
definitions in the data may not match exactly the definitions that we need.

Stop Flag

The stop flag specifies which customers are active and which are stopped, as of 
the cutoff date. What happens to customers after the cutoff date is unknown. 
The column StopType contains stop reasons. What values does this column take 
on? A simple aggregation query answers this question:

SELECT StopType, COUNT(*) as n, MIN(SubscriberId), MAX(SubscriberId)
FROM Subscribers
GROUP BY StopType
ORDER BY StopType

Table 6-1 shows three stop types and NULL to indicate that customers are still 
active. The query includes the minimum and maximum customer ID, which is 
useful for finding examples for each value.

The stop types have the following meanings:

 ■ NULL means that the customer is still active.

 ■ I stands for “involuntary” and means the company initiated the stop, 
usually due to nonpayment on bills.

table 6-1: Stop Types in the Subscription Data

Stop_type CoUnt MiniMUM SUBSCriBeriD MaXiMUM SUBSCriBeriD

NULL 2,390,959 2 115985522

I 790,457 217 115960366

M 15,508 9460 115908229

V 1,871,111 52 115962722
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 ■ V stands for “voluntary” and means the customer initiated the stop.

 ■ M stands for “migration” and means the customer switched to another product.

A customer is active when the stop type is NULL. Otherwise, the customer has 
stopped. This rule is expressed in SQL as:

SELECT (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END) as isstop

The inverse of the stop flag is the active flag, which is simply one minus the 
stop flag. The active flag has a special name in statistics, the censor flag (which 
is defined in greater detail in the next section). The two are related in a simple 
manner, and either can be used for calculations.

Originally, the stop type had dozens of values, indicating the myriad reasons 
why someone might stop (“bad service,” “no service at home,” “billing dispute,” 
and so on). These specific reasons were mapped into the three categories in the 
StopType column.

Tenure

Tenure is the length of time between a customer’s start date and stop date. 
Usually, the tenure needs to be calculated, using differences between the dates. 
The subscription table, though, already has tenure defined. Using the Microsoft 
SQL function for subtracting dates, the definition is:

SELECT DATEDIFF(day, StartDate,
                (CASE WHEN StopType IS NOT NULL THEN '2006-12-28'
                      ELSE StopDate END)) as tenure

A customer’s tenure is known when the customer has already stopped. However, 
if the customer has not stopped, the tenure is known as of the cutoff date (which 
would typically be the current date or the most recent load date).

Warning A stop date can be the first day a customer is no longer active. Or, 
it can be the last day a customer is active—the particular definition depends on the 
database. The tenure calculation is slightly different for these two cases. In the first 
case, the tenure is the difference between the start and stop dates. In the second, it is 
one more than the difference.

For an unbiased calculations, the start and stop dates need to be accurate and 
come from the same population. Many things can affect the accuracy of dates, 
particularly older dates:

 ■ Customer records for stopped customers fail to be loaded into the database.

 ■ The start date gets replaced with another date, such as the date the account 
was loaded into the database.

 ■ The stop date gets overwritten with dates that occur after the stop date, 
such as the date an unpaid account was written off.
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 ■ The start date gets overwritten with another date, such as the date the 
customer switched to another product.

Investigating dates is important.
The place to start is with a histogram of the starts and stops over time. The fol-
lowing query produces a histogram by year:

SELECT the year, SUM(isstart) as starts, SUM(isstop) as stops
FROM ((SELECT YEAR(StartDate) as theyear, 1 as isstart, 0 as isstop
       FROM Subscribers s)
      UNION ALL
      (SELECT YEAR(StopDate), 0 as isstart, 1 as isstop
       FROM Subscribers s)
     ) s
GROUP BY theyear
ORDER BY theyear

The results from this query are in Table 6-2. Notice that more than two million 
customers have NULL stop dates indicating that they are still active. The first two 

table 6-2: Start and Stop Date by Year

year StartS StopS

<NULL> 181 2,390,959

1958 1 0

1988 70 0

1989 213 0

1990 596 0

1991 1,011 0

1992 2,288 0

1993 3,890 0

1994 7,371 0

1995 11,638 0

1996 22,320 0

1997 42,462 0

1998 66,701 0

1999 102,617 0

2000 146,975 0

2001 250,471 0

2002 482,291 0

2003 865,219 0

2004 1,112,707 793,138

2005 1,292,819 874,845

2006 656,194 1,009,093
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rows of the table also show that 182 customers have questionable start dates—
either NULL or in 1958. The data for these customers is invalid. No customers 
should predate the invention of wireless phones. Because there are so few, the 
best thing to do is just filter them out.

No customers in this data stopped before 2004. Was this because superior 
business practices during that time resulted in no stops? Probably not. Was this 
because the company forgot to record stops in the database? Probably not. The 
most likely reason is that this data was loaded in 2004, and only active customers 
were loaded. This is an example of left truncation. Rows have been filtered out 
based on the stop date. The next chapter explains how to handle left truncation.

In order to get unbiased estimates of the hazard and survival probabilities, the 
start and stop dates need to come from the same time period. For now, the solution 
is to filter the data, removing any starts that happened prior to 2004. In addition, 
one customer has a negative tenure. Throughout this chapter, an expression such 
as WHERE StartDate >= '2004-01-01' AND Tenure >= 0 is part of most of the 
queries on Subscribers so that the queries produce unbiased hazards.

Hazard Probability
The hazard probability at tenure t is the ratio between two numbers: the number 
of customers who succumb to the risk at that tenure divided by everyone who 
could have succumbed to the risk at that tenure. The denominator is called the 
population at risk at tenure t. The hazard probability is always between 0% and 
100%. It is never negative, because the population at risk and the population that 
succumbs to the risk are never negative. It is not greater than 100%, because the 
population at risk always includes at least everyone who succumbs to the risk. 
The calculation is easy; for any given tenure, we simply divide two numbers. 
Getting the right numbers is the challenge.

As a simple example, consider 100 customers who start on January 1st and are 
still active on January 31st. If two of these customers stop on February 1st, then 
the 31-day hazard is 2%. There are 100 customers in the population at risk and 
two who succumb. The ratio is 2%.

The 31-day hazard remains the same regardless of how many customers actu-
ally start on January 1st, so long as all but 100 stop during the month of January. 
The customers who stop in January are not at risk on day 31, because they are no 
longer active. These stopped-too-early customers do not affect the 31-day hazard.

The following SQL query calculates the hazard at tenure 100:

SELECT 100 as tenure, COUNT(*) as popatrisk,
       SUM(CASE WHEN Tenure = 100 AND StopType IS NOT NULL
                THEN 1 ELSE 0 END) as succumbtorisk,
       AVG(CASE WHEN Tenure = 100 AND StopTYpe IS NOT NULL
                THEN 1.0 ELSE 0 END) as h_100
FROM Subscribers
WHERE StartDate >= '2004-01-01' AND Tenure >= 100



 Chapter 6  ■ how Long Will Customers Last? 265

The population at risk consists of all customers whose tenure is greater than or 
equal to 100. Of the 2,589,423 customers at risk, 2,199 of them stopped at tenure 
100. This gives a 100-day hazard of 0.085%. Notice that this calculation considers 
only customers since 2004 because of the left truncation issue.

Visualizing Customers: Time versus Tenure
Figure 6-3 shows two pictures of the same group of customers. In each picture, 
a line represents one customer, with a vertical bar indicating when a customer 
starts and a circle indicating the stop date or current date (for active customers). 
An open circle means that the customer is still active, suggesting an open account. 
A filled circle means the customer has stopped, suggesting a closed account.

figure 6-3: This is a picture of customers on the calendar and tenure timelines.
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The two charts show the same customers from two different perspectives: 
calendar time and tenure time. In the top chart (calendar time), customers start 
at any time, and active customers are lined up on the right—customers are active 
until the cutoff date. In the bottom chart, the customers have been shifted to 
the left, so they all start at tenure zero. Active customers are interspersed at all 
tenures. Some long tenure customers are no longer active, and some are. Some 
short tenure customers are active; some are not. The aside, “Visualizing Survival 
Customers Using Excel” explains how these charts were made using Excel.

Both time frames show customers and their tenures. Survival analysis focuses 
on the tenure time frame because tenure generally has the greater effect on 
customer retention. After all, the fact that customers can stop only after they 
have started puts a condition on the tenure, but not on the calendar time. Also, 
myriad events happen on the tenure time frame, such as monthly bills, contract 
renewals, and the end of the initial promotion.

The calendar time frame is also important. It has seasonality and other things 
that affect all customers at the same time. One of the challenges in survival 
analysis is incorporating all the available information from both time frames.

Censoring
Figure 6-3, the visualization of customers in the two time frames, also hints at 
one of the most important concepts in survival analysis. The tenure of stopped 
customers is known because these customers have both a start date and a stop 
date. However, the tenure of active customers is unknown. Their tenure is at 
least as long as they have been around, but the ultimate value is unknown. Any 
given active customer could stop tomorrow, or ten years from now.

Tenure is an example of censored data, a statistical term that means that the 
ultimate value of tenure is greater than some value. In Figure 6-3, censored 
customers are represented by empty circles on the right, and censoring is syn-
onymous with being active. Censoring can have other causes, as we will see 
later in this chapter and in the next chapter.

Censored data values are central to survival analysis. There are three differ-
ent types of censoring.

Right-censoring, the type just described, occurs when the tenure for some 
customers is known to be greater than some value T. Right censoring is the 
most common type of censoring.

Left censoring is the opposite of right censoring. This occurs when the tenure 
is known to be less than some value T. Left censoring is not very common, but 
it can occur when we have forgotten the start date of a customer but we know 
it was after some date. Another example occurs when the data is a current 
snapshot of customers and contains a stop flag but not a stop date. A row in 
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ViSUaLizing SUrViVaL CUStoMerS USing eXCeL

The charts in Figure 6-3 (page 265) were created using Excel. Each chart has two series 
plotted using a scatter plot. One series is for all customers. This series has the tail, which is 
really an X-error bar, and head. The other series fills in some of the circles for the active cus-
tomers. The advantage to using a chart is that when the data changes, the chart changes.

The following data describes the customers:

naMe iD y-VaLUe X-Start X-enD Length

Ann 8 7.5 12 14 2

Bob 7 6.5 6 13 7

Cora 6 5.5 6 13 7

Diane 5 4.5 0 3 3

Emma 4 3.5 3 14 11

Fred 3 2.5 5 10 5

Gus 2 1.5 1 7 6

Hal 1 0.5 9 14 5

The X-START, X-END, and Y-VALUE columns describe the beginning and end of each 
line. The reason for starting the Y-VALUEs at 0.5 and incrementing by 1 is purely aes-
thetic. These values control the spacing of the lines on the chart and the distance from 
the customers to the top and bottom of the chart. The spacing can also be controlled 
by adjusting the Y-axis, but the fraction 0.5 is simpler.

The points are plotted using a scatter plot with the X-END cells as the X values and 
the Y-VALUE cells as the Y values. The symbol is a circle, with a size of 10 points and a 
white background (if no background color is set, the gridlines show through). To set 
the symbol, right-click the series, choose “Format Data Series…” Then find “Marker 
Options,” which may be under the left-most icon on the “Marker” tab. Change the 
Marker to have a solid white fill using the options under “Fill.”

The tail is added using Error Bars, by clicking “Add Chart Element” on the ribbon 
and then choosing “Error Bars ➢ More Error Bar Options” or by clicking the + near the 
upper-right corner of the chart. In the options dialog, choose the “Error Bar Options” 
➢ “X error bars” to set the direction to Minus. You can now put in the appropriate 
series using the “Custom” option. Note: You may need to set the Y error bars to a Fixed 
Value of 0 and “No Cap” to make them disappear.

Next, label the lines. Add the labels by right-clicking on the series and choosing 
“Add Data Labels ➢ Add Data Labels.” When the values appear, select one value by 
left-clicking, and then right-click and choose “Format Data Labels.”

There is not a great deal of flexibility on the placement of data labels, so we have 
to improvise. Under “Label Options,” set the “Label Position” to “Left” so that the 
text goes to the left of the circle. Then set the text by using a Custom format under 
Number, by unclicking “Linked to source,” choosing “Custom” and typing Customer 0 
in the Format Code box. The line is still going through the label. To fix that, let’s make 
it a superscript. Go to the Home Ribbon and choose the icon to expand the font 

continues
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continued

such data specifies that a customer has stopped, along with the start date and 
snapshot date. All we know is the customer stopped before the snapshot date.

Interval censoring is the combination of left censoring and right censoring. It 
occurs when data is being collected at long intervals. For instance, researchers 
studying prisoners after their release may check in on the prisoners every 
year. If a prisoner drops out of the study, the tenure is known only to the 
nearest year.

In customer databases, the start date is usually known. An example of a situ-
ation where the start date is not known is the survival of patients after cancer 
appears. The “start” date is the diagnosis date of the cancer, not when the cancer 
first appeared. This is an example of right censorship because the actual start 
date is not known, but is known to be before the diagnosis date. Ironically, 
one consequence of relying on the detection date is that better detection can 
result in better five-year survival after diagnosis, even for the same treatment. 
The cancer is simply diagnosed earlier so the patient survives longer after the 
diagnosis. (This was particularly true after the introduction of more extensive 
usage of MRIs and CT scans in the 1990s.)

Left censoring and interval censoring are unusual in customer databases. 
The typical situation with customer databases is that the start date is known, 
and active customers are right censored.

options. Choose “Superscript” in the “Effects” area so that the text is above the line. 
(You can control how far up and down by adjusting the “Offset”). Increase the size 
of the font to something like 12-pt Arial. Alternatively, the XY-Labeler, introduced in 
Chapter 4, can be used to label the lines with actual customer names.

Add the filled circles using another data series, setting the options on “Marker” and 
“Marker Fill” to fill in the circle. Copy the data for the three customers who are active 
(customers 1, 4, and 8) and add the series. The X-error bar and data labels do not need 
to be set in this case.

Next, add the cutoff line. This is a simple line whose coordinates are (14, 0) and 
(14, 8). These values can be put into cells or directly as a “Data Series” (with the values 
{14, 14} for the X series and {0, 8} for the Y series). To format the series as a line, 
set the “Marker Style” to “No Marker” and the “Line” to an appropriate color.

Adjust the axes so the vertical axis has a maximum of 8 and the horizontal axis has 
a maximum of 15. On the Chart Layout ribbon, choose the “Axis Options…” for the 
horizontal and vertical axes and set the values accordingly.

The final step is to add the vertical gridlines (by going to the Format ribbon and 
choosing Gridlines ➢ Vertical Gridlines ➢ Major Gridlines) and to remove two axes (by 
clicking on each of them and hitting Delete).

Voila! The end result is a chart that depicts customers using Excel—certainly an 
unexpected application for charting.
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Survival and Retention

Hazard probabilities measure the probability that someone succumbs to a risk 
at a given time. Survival is the probability that someone has not succumbed to 
the risk up to that time. In other words, survival accumulates information about 
hazards, or more specifically about the inverse of hazards.

Point Estimate for Survival
Survival at tenure t is the number of customers who are active at tenure t divided 
by the population at risk at tenure t. How many customers survived to at least tenure 
t, how many stopped, and what is the survival value? This question is easy to answer 
in SQL for any given tenure:

SELECT 100 as tenure, COUNT(*) as popatrisk,
       SUM(CASE WHEN Tenure < 100 AND StopType IS NOT NULL
                THEN 1 ELSE 0 END) as succumbtorisk,
       AVG(CASE WHEN tenure >= 100 OR StopType IS NULL
                THEN 1.0 ELSE 0 END) as s_100
FROM Subscribers
WHERE StartDate >= '2004-01-01' AND Tenure >= 0 AND
      StartDate <= DATEADD(day, -100, '2006-12-28')

This calculation is similar to the point estimate for the hazard, including filter-
ing out the customers who started before 2004-01-01. The population at risk is 
everyone who started more than 100 days before the cutoff date.  Only these 
customers could have survived to 100 days. The ones who survived are those 
who are either still active or whose tenure is greater than 100 days. Survival is 
the ratio of those who survived to the population at risk.

Calculating Survival for All Tenures
The survival at tenure t is the product of one minus the hazards for all tenures 
less than t; one minus the hazard is the probability of surviving for that tenure 
rather than the probability of stopping. It could also be called the incremental 
survival because it corresponds to the survival from tenure t to tenure t+1. Overall 
survival at tenure t is the product of the incremental survivals up to t.

The calculation is easy using the combination of SQL and Excel. The first 
step is to calculate the hazards for all tenures, then to calculate the incremental 
survival, and then the cumulative product.

This calculation uses the following two items:

 ■ Population that succumbed to the risk: The number of customers who 
stopped at exactly tenure t.

 ■ Population at risk: The number of customers whose tenure is greater than 
or equal to t.
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The population at risk at tenure t is an example of a cumulative sum because it 
is the count of all customers whose tenure is greater than or equal to t.

The value for each tenure can be calculated in SQL:

SELECT Tenure, COUNT(*) as popt,
       SUM(CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END) as stopt
FROM Subscribers
WHERE StartDate >= '2004-01-01' AND Tenure >= 0
GROUP BY Tenure
ORDER BY Tenure

When the results are copied into Excel, one column has Tenure, one column popt, 
and the third stopt. Assume that the results are copied, with the data starting 
at cell C27. What is the population at risk at a given tenure? The population 
at risk is the sum of the popt values (in column D) for that tenure and higher.

To do the calculation without typing in a separate formula for all 1,093 rows, 
construct a formula that changes when it is copied down the column. Such 
a formula for cell F27 is =SUM($D27:$D$1119). This formula has the range 
$D27:$D$1119, so the sum starts at D27 and continues through D1119. The prefix 
“$” holds that portion of the cell reference constant. Copying the formula down 
(by highlighting the region and typing Ctrl+D) changes the first cell reference 
for each pasted formula. Cell F30 gets the formula: =SUM($D30:$D$1119), and 
so on to =SUM($D1121:$D$1119).

The hazard is then the ratio of the stops to the population at risk, which for 
cell G29 is =E29/F29. Figure 6-4 shows an Excel spreadsheet with these formulas.

The next step is to calculate the survival as the cumulative product of one minus 
the hazards. The following formula in cell H27 calculates survival: =IF($C27=0, 
1, H26*(1-G26)). The “if” part of the formula handles the case when the tenure 
is zero and the survival is 100%. Each subsequent survival value is the previ-
ous survival value multiplied by one minus the previous hazard. This type of 
formula, where the formulas in a column of cells refer to the values calculated 
in previous rows in the same column is called a recursive formula. When this 
formula is copied down the column, the formula calculates the survival for all 
tenures. The resulting survival curve is shown in Figure 6-5.

figure 6-4: These formulas in an Excel spreadsheet calculate hazards and survival.
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figure 6-5: This is the survival curve for the subscription data.

In this case, all tenure values appear in the table, so the tenure column has 
no gaps. However, there can be gaps when no stopped or active customers 
have exactly that particular tenure. The hazard is zero for the missing tenure, 
and the survival is the same as the previous survival. This does not cause any 
problems with the calculation. It does, however, make scatter plots preferable 
for survival curves rather than line charts. When values are skipped, scatter 
plots do a better job labeling the X-axis.

Calculating Survival in SQL
Calculating the hazard and survival probabilities in SQL rather than Excel is 
convenient. The results can be stored in SQL tables, without having to re-import 
the values from a spreadsheet.

The calculation in SQL uses window functions and a trick to do the aggregate 
multiplication. The following version uses a common table expression (CTE) to 
calculate the hazards and then calculates the survival:

WITH h as (
      SELECT Tenure, SUM(1 - IsActive) as numstops,
             COUNT(*) as tenurepop,
             SUM(COUNT(*)) OVER (ORDER BY Tenure DESC) as pop,
             LEAD(Tenure) OVER (ORDER BY Tenure) as nexttenure,
             (LEAD(Tenure) OVER (ORDER BY Tenure) – Tenure) as numdays,
             SUM(1.0 - IsActive) /
              SUM(COUNT(*)) OVER (ORDER BY Tenure DESC) as h
      FROM Subscribers
      WHERE StartDate >= '2004-01-01' AND Tenure >= 0
      GROUP BY Tenure
     )
SELECT h.*,
       COALESCE(EXP(SUM(LOG(1 - h)) OVER
                        (ORDER BY Tenure
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                         ROWS BETWEEN UNBOUNDED PRECEDING AND
                                      1 PRECEDING
                        )), 1
               ) as S
FROM h
ORDER BY Tenure

The CTE starts by calculating the number of stops and the number of custom-
ers for each tenure. The population is the cumulative sum of the populations 
for all tenures larger than or equal to the current tenure, calculated using a 
window function. The hazard for each tenure is the number of stops divided 
by the population.

The variables nexttenure and numdays allow each row to represent more than 
one tenure, just in case there are gaps in the tenures. The use of buckets makes 
the results of this query more useful as a lookup table.

The calculation for the survival from the hazards has two unusual compo-
nents. The first is the calculation of the product. The second is the additional 
clause in the window function to specify the window extent.

Calculating the Product of Column Values

Unfortunately, SQL does not have a PRODUCT() aggregation function that multiplies 
numbers in the same way that SUM() adds them. To handle this, we have to go 
back to high school algebra and remember how to use logarithms: raising e to 
the power of the sum of the logarithms of numbers is the same as multiplying 
the numbers together.

Hence, PRODUCT() is basically calculated as:

SELECT EXP(SUM(LOG(1 - s2.hazard)))

This expression sums the logs of the incremental survival and then undoes the 
log, a roundabout but effective way to do aggregate multiplication. Note that 
in some databases, the names of the functions might be different, such as LN() 
instead of LOG().

This formula for the product is a simplification because the value for 
each hazard is always non-negative and less than one. The general expres-
sion for an aggregate product needs to take positive and negative numbers 
into account as well as the fact that logarithms are undefined for negative 
numbers and zero.

The following query handles the logic:

SELECT (1 – 2 * MOD(SUM(CASE WHEN col < 0 THEN 1 ELSE 0 END), 2)) *
       MIN(CASE WHEN col = 0 THEN 0 ELSE 1 END) *
       SUM(EXP(LOG(ABS(CASE WHEN col = 0 THEN 1 ELSE col END))))

This formula has three expressions on the three lines. The first handles the 
sign of the result by counting the number of values less than zero. If the 
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ControLLing the WinDoW eXtent

The formula for survival multiplies the incremental survival for all values less than 
the given tenure. By default, the value in the current row would be included. The 
ROWS clause prevents this by specifying that only values up to the preceding row are 
included in the calculation—the 1 PRECEDING part of the clause.

SQL offers two similar clauses for the window extent, ROWS BETWEEN and RANGE 
BETWEEN. There is a subtle and a not-so-subtle difference between them. ROWS 
defines the window extent in terms of the rows in the window. RANGE defines it in 
terms of the values. This is the subtle difference.

A very simple example illustrates the more substantive effect of these definitions:

WITH t as (

    select 1 as i, 1 as col union all

    select 2, 1

   )

SELECT t.*,

       SUM(col) OVER (ORDER BY col

                      ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

                     ) as ROWSresult,

       SUM(col) OVER (ORDER BY col

                      RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

                     ) as RANGEresult

FROM t

This simple example has two rows and two columns, with different values in the first 
column and the same value in the second.  The results for the two columns are in the 
following table. The ROWS clause calculates up to each row, so the value is 1 for the 
first row and 2 for the second. The RANGE clause calculates the same value for both 
rows. The window extent is defined by the value in the current row. Because both rows 
have the same value, both rows are included in the window extent.  In practice, ROWS 
is more common than RANGE.

i CoL roWSreSULt rangereSULt

1 1 1 2

2 1 2 2

An alternative approach does not require a window extent. The current value can 
be removed by dividing it out:

SELECT h.*,

       EXP(SUM(LOG(1 – h)) OVER (ORDER BY Tenure)) / (1 – h) as S

FROM h

This formula produces the same value and is simply an alternative approach.
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count is even, the result is one; if odd, then the result is minus one. The 
second expression handles zero values—then the result is zero. The third 
expression handles the actual product, with a lot of care to prevent errors in 
the LOG(). The ABS() guarantees that the argument to LOG() is never nega-
tive, and the CASE guarantees that the argument is never zero—preventing 
errors. The first two expressions have already handled the work for negative 
numbers and zeroes.

Adding in More Dimensions

More dimensions can be handled by adding them to the aggregations and 
window functions. To calculate survival by market:

WITH h as (
      SELECT Market, Tenure,
             SUM(1 - IsActive) as numstops, COUNT(*) as tenurepop,
             SUM(COUNT(*)) OVER (PARTITION BY Market
                                 ORDER BY Tenure DESC) as pop,
             LEAD(Tenure) OVER (PARTITION BY Market
                                ORDER BY Tenure) as nexttenure,
             SUM(1.0 - IsActive) /
              SUM(COUNT(*)) OVER (PARTITION BY market
                                  ORDER BY Tenure DESC) as h
      FROM Subscribers
      WHERE StartDate >= '2004-01-01' AND Tenure >= 0
      GROUP BY Tenure, Market
     )
SELECT h.*,
       EXP(SUM(LOG(1 - h)) OVER (PARTITION BY Market
                                 ORDER BY Tenure)) / (1 - h) as S
FROM h
ORDER BY Market, Tenure

The only difference is the addition of Market to the GROUP BY clauses and the 
inclusion of PARTITION BY for all the window functions.

A Simple Customer Retention Calculation
Survival is one method of understanding how long customers stay around. 
Customer retention is an alternative approach. The purpose in presenting 
it here is to better understand survival by comparing it to another sensible 
measure.

A typical customer retention question is: Of customers who started xxx days 
ago, how many are still active? This question can be answered directly in SQL:

SELECT DATEDIFF(day, StartDate, '2006-12-28') as daysago,
       COUNT(*) as numstarts,
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       SUM(CASE WHEN StopType IS NULL THEN 1 ELSE 0 END) as numactives,
       AVG(CASE WHEN StopType IS NULL THEN 1.0 ELSE 0 END) as retention
FROM Subscribers s
WHERE StartDate >= '2004-01-01' AND Tenure >= 0
GROUP BY DATEDIFF(day, StartDate, '2006-12-28')
ORDER BY daysago

This query counts the customers who started on a certain day, calculating the 
proportion still active.

The result has three columns of data. The first is the number of days ago 
that customers started, relative to the cutoff date of the data. Other time units, 
such as weeks or months, might be more appropriate. The second column is 
the number of starts that occurred on that day. And the third column specifies 
how many of those customers are currently active. Figure 6-6 shows a plot of 
the results as a retention curve, which is the proportion of customers who are 
active as of the cutoff date.

Like the survival curve, the retention curve always starts at 100% because 
customers who just started are still active. Second, it generally declines, although 
the decline can be jagged. For instance, of customers who started 90 days ago, 
80.1% are still active on the cutoff date. Of customers who started 324 days ago, 
80.4% are still active, or equivalently that 19.9% of customers stopped in the first 
90 days.  Slightly fewer (19.6%) stopped in the first 324 days.

Intuitively, these results do not make sense. Customers who stopped in the 
first 90 days also stop in the first 324 days. In practice, such a result probably 
means that particularly good customers were acquired 324 days ago and par-
ticularly bad customers were acquired 90 days ago. Jaggedness in retention 
is counterintuitive: Fewer older customers ought to be around than newer 
customers.

figure 6-6: This is an example of a retention curve for the subscription data.
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Comparison between Retention and Survival
Figure 6-7 shows retention and survival on the same chart, combining the curves 
in Figures 6-5 and 6-6. Both curves start at 100% and decline. However, the sur-
vival curve has no jaggedness, It is always flat or declining—mathematically, 
this property is called monotonically decreasing, and survival curves are always 
monotonically decreasing. Survival curves are smooth; they do not exhibit the 
jaggedness of retention curves.

In many ways, the survival is the expected value of the retention (at any 
given tenure). The jaggedness of the retention curve leads to the question: 
Why is retention sometimes higher (or lower) than the survival? The answer to this 
question can give insight into the customers. It is tempting to eliminate the jag-
gedness by using moving averages. A much better solution is to calculate the 
corresponding survival curve.

Simple Example of Hazard and Survival
The simplest example of survival is the constant hazard. Although such sim-
plicity does not occur with customers, constant hazards appear in very dif-
ferent domains, such as radioactivity. A radioactive isotope decays at a 
constant rate by emitting subatomic particles, thereby transmuting into other 
elements. The rate of decay is usually described in terms of the half-life. For 
instance, the most common isotope of uranium, U-238, has a half-life of about  
4.5 billion years, meaning that half the U-238 in a sample decays in this time. On 
the other hand, another isotope called U-239 has a half-life of about 23 minutes. The 
longer the half-life, the slower the rate of decay, and the more stable the isotope.

Radioactivity is a useful example for several reasons. Because the decay rates 
are constant (at least according to modern theories of physics), radioactivity 
provides simple examples of survival outside the realm of human behavior. 

figure 6-7:  Retention and survival plots are shown for the same dataset.
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Also, constant hazards are a good baseline for understanding more complex 
hazards. We can always ask what constant survival rate would have resulted 
in the survival observed at a given tenure.

Constant hazards are also a good tool for understanding unobserved hetero-
geneity. This phenomenon is quite important in the world of survival analysis. 
However, as its name suggests, it is not observed directly, making it a bit chal-
lenging to recognize and understand.

Constant Hazard

When the hazard is constant, Excel can handle all the calculations. The half-life 
and hazard probability are interchangeable. If cell A1 contains the half-life in 
days, then the following formula in cell B1 translates this into a daily hazard 
probability:

=1-0.5^(1/A1)

Conversely, if B2 contains the daily hazard probability, then the following for-
mula in cell C1 calculates the half-life in days:

-1/LOG(1-B1, 2)

Consider two radioactive isotopes of radium, RA-223 and RA-224. The first has 
a half-life of 11.43 days and the second a half-life of 3.63 days. These correspond 
respectively to daily hazard (decay) probabilities of 5.9% and 17.4%. After one 
day, about 95.1% of RA-223 remains, and about 82.6% of RA-224 remains. Figure 
6-8 shows the survival curves for these two elements.

The shape of the survival curve follows an exponential curve, which is always 
the case when the hazard is constant. These survival curves show that within 
a few weeks, almost all the RA-224 has disappeared. On the other hand, some 
RA-223 remains because it decays more slowly.

figure 6-8: Survival curves for RA-223 and RA-224 show the proportion of the elements 
remaining after a given number of days.
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What Happens to a Mixture?

Assume that a sample contains 100 grams of RA-223 and 100 grams of RA-224. 
How does this mixture behave? Table 6-3 shows the amount of each isotope that 
remains after a given amount of time. (The actual mass of the sample—if it is 
enclosed—remains pretty close to 200 grams because the radium just changes 
into other elements, primarily radon, and very little mass is lost in the process.)

The amount of radium remaining is the sum of the amount of RA-223 and 
RA-224. The proportion of the original radium remaining is this sum divided by 
200 grams. In fact, the proportion is the weighted average of the survival, where 
the weights are the proportions in the original sample. Because the original 
sample started out with equal amounts of the two isotopes, the weights are equal.

Given the proportions, what hazard probabilities correspond to the overall 
radium mixture? One guess would be the average of the two original hazard 
probabilities, or a constant hazard of about 11.6%. Although inspired, this guess 
is wrong. A mixture of two things with different constant hazards does not 
have a constant hazard.

Warning Hazards are complicated.  A mixture of two groups with constant 
hazards does not have a constant hazard.

Hazard probabilities can be calculated in reverse from the survival values. 
The hazard at a given time t is the proportion of the population at risk that stops 
before time t+1 (or decays in the case of radioactivity). The hazard is one minus 
the ratio of the survival at t+1 divided by the survival at t.

table 6-3: Amount of Radium Left, Assuming 100 Grams of RA-223 and RA-224 at Beginning

DayS ra-223 (graMS) ra-224 (graMS) totaL (graMS) ra-223 %

0 100.0 100.0 200.0 50.0%

1 94.1 82.6 176.7 53.3%

2 88.6 68.3 156.8 56.5%

3 83.4 56.4 139.8 59.7%

4 78.5 46.6 125.1 62.7%

5 73.8 38.5 112.3 65.7%

6 69.5 31.8 101.3 68.6%

7 65.4 26.3 91.7 71.3%

8 61.6 21.7 83.3 73.9%

9 57.9 17.9 75.9 76.4%

10 54.5 14.8 69.3 78.6%
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figure 6-9: The hazard probabilities corresponding to a mixture of Radium 223 and Radium 224 
are not constant, even though the two components have constant hazards.

Figure 6-9 shows the resulting hazards, along with the constant hazards for the 
two isotopes. The hazard of the mixture is not constant at all. It starts at the average 
value and declines to be more like RA-223’s hazard as the mixture of radium becomes 
denser in RA-223. The RA-224 has decayed into something else. The proportion of 
RA-223 in the sample increases over time, which is also shown in Table 6-3.

The purpose of this example is to show what happens when a population 
consists of groups that behave differently. If we are given a sample of radium 
and measure the hazard probabilities and they follow the pattern in Figure 6-9, 
we might assume that the hazards are not constant. In fact, this is evidence 
that two groups with constant hazards are mixed together. This phenomenon 
is called unobserved heterogeneity. Unobserved heterogeneity means that things 
that affect the survival are not being taken into account.

The same phenomenon applies to customers. If there are two ways of acquir-
ing customers, one that attracts lots of short-term customers (“bad”) and one 
that attracts some long-term customers (“good”), which is better in the long 
term? Say 1,000 “bad” customers and 100 “good” customers start at the same 
time. After a year, 20 “bad” customers might remain compared to 60 “good” 
customers. Even though “good” customers were acquired at a rate one-tenth 
that of the bad customers, after a year, three times as many remain.

Constant Hazard Corresponding to Survival

Each point on a survival curve has a constant hazard that would produce that 
survival value at that tenure. To calculate the corresponding constant hazard, 
assume that cell A1 contains the number of days and cell B1 contains the sur-
vival proportion at that day. The following formula in cell C1 calculates the 
corresponding daily hazard probability:

=1-B1^(1/A1)
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For different tenures, this value changes because in the real world, hazards 
are not constant. The “effective constant” hazard formally fits an exponential 
survival function to each point on the survival curve.

Figure 6-10 compares this “effective constant” hazard to the actual hazard for 
the subscriber data. The constant hazard is spreading the hazard risk equally 
over all tenures, so it provides an expected value for the hazard. When the 
actual hazard is less than the constant one, customers are leaving more slowly 
at that particular tenure than the long-term average would suggest. Similarly, 
when the average hazard is greater than the constant one, customers are leav-
ing more quickly.

A survival curve (or retention plot) paints a pretty picture. Survival is not 
only for creating pretty pictures. It can also be used to calculate measures for 
different groups of customers, as discussed in the next section.

Comparing Different Groups of Customers

This section walks through an example comparing different groups of subscrib-
ers using attributes that are known when they start. These attributes are called 
time-zero covariates because they are known at tenure zero. The next chapter 
investigates approaches for working with time-dependent covariates, things 
that happen during customers’ lifetimes.

Summarizing the Markets
The subscriber data contains three markets: Gotham, Metropolis, and Smallville. 
A good way to start the analysis is by looking at the proportion of customers in 

figure 6-10: Comparison of the effective constant hazard to the actual hazard for the 
subscription data.
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each market who are active as of the cutoff date.  The following query generates 
interesting summary information by market:

SELECT Market, COUNT(*) as customers, AVG(Tenure) as avg_tenure,
       SUM(CASE WHEN StopType IS NULL THEN 1 ELSE 0 END) as actives,
       AVG(CASE WHEN StopType IS NULL THEN 1.0 ELSE 0 END
          ) as ActivesRate,
       MIN(StopDate) as minStopDate
FROM Subscribers s
WHERE StartDate >= '2004-01-01' AND Tenure >= 0
GROUP BY market

The results are in Table 6-4.
Two pieces of evidence suggest that Gotham is the worst market and Smallville 

the best, in terms of retention. First, the average tenure of customers in Gotham 
is about 81 days shorter than the average in Smallville. Second, of all the cus-
tomers that started in Gotham since 2004, only about 46% are still active. For 
Smallville, the proportion is close to 70%.

Combined, these two pieces of evidence are quite convincing that Smallville 
is inhabited by better customers. However, care must be taken when interpret-
ing such evidence. The final column shows another possible reason: Smallville 
has a different left truncation date from the other two markets, 2014-10-27 rather 
then 2014-01-02. This makes survival look better because there are almost 11 
months that have no stops.

Stratifying by Market
A WHERE clause can be used to calculate survival for one market:

WITH h as (
      SELECT Tenure,
             SUM(1 - IsActive) as numstops, COUNT(*) as tenurepop,
             SUM(COUNT(*)) OVER (ORDER BY Tenure DESC) as pop,
             LEAD(Tenure) OVER (ORDER BY Tenure) as nexttenure,
             SUM(1.0 - IsActive) /
              SUM(COUNT(*)) OVER (ORDER BY Tenure DESC) as h
      FROM Subscribers

table 6-4: Comparison of Customers and Active Customers by Market

Market CUStoMerS
aVerage 
tenUre aCtiVeS

proportion 
aCtiVe

Min Stop 
Date

Gotham 1,499,396 383.5 685,176 45.7% 2014-01-02

Metropolis 995,572 415.3 519,709 52.2% 2014-01-02

Smallville 566,751 464.3 390,414 68.9% 2014-10-27
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      WHERE StartDate >= '2004-01-01' AND Tenure >= 0 AND
            Market = 'Gotham'
      GROUP BY Tenure
     )
SELECT h.*,
       EXP(SUM(LOG(1 - h)) OVER (ORDER BY Tenure)) / (1 - h) as S
FROM hORDER BY Tenure

This is cumbersome to repeat for each market.
A better approach is to pivot the data so the columns contain the information 

about each market. The desired results would have the tenure, then the popula-
tion for each market (in three columns), and then the number of stops in each 
market (in three more columns). The SQL to do this is:

WITH s as (
      SELECT s.*,
             (CASE WHEN Market = 'Gotham' THEN 1.0 ELSE 0 END) as isg,
             (CASE WHEN Market = 'Metropolis' THEN 1.0 ELSE 0 END) as ism,
             (CASE WHEN Market = 'Smallville' THEN 1.0 ELSE 0 END) as iss,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
       FROM Subscribers s
     ),
     h(Tenure, stopg, popg, stopm, popm, stops, pops) as (
      SELECT Tenure,
             SUM(isg * (1.0 - IsActive)),
             NULLIF(SUM(SUM(isg)) OVER (ORDER BY Tenure DESC), 0),
             SUM(ism * (1.0 - IsActive)),
             NULLIF(SUM(SUM(ism)) OVER (ORDER BY Tenure DESC), 0),
             SUM(iss * (1.0 - IsActive)),
             NULLIF(SUM(SUM(iss)) OVER (ORDER BY Tenure DESC), 0)
      FROM s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure
     )
SELECT h.*,
       EXP(SUM(LOG(1 - stopg / popg)) OVER
               (ORDER BY Tenure)) / (1 - stopg / popg) as Sg,
       EXP(SUM(LOG(1 - stopm / popm)) OVER
               (ORDER BY Tenure)) / (1 - stopm / popm) as Sm,
       EXP(SUM(LOG(1 - stops / pops)) OVER
               (ORDER BY Tenure)) / (1 - stops / pops) as Ss
FROM h
ORDER BY Tenure

Notice that the second CTE for h uses an alternative method for specifying 
column names, by including them in parentheses when the CTE is defined. 
Putting the names directly in the subquery is generally safer because adding 
or removing a column does not affect the names.
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The first CTE defines the appropriate left truncation date, which is then used 
in the WHERE clause of the second. The indicator variables defined in s indicate 
whether someone is in a particular market. Logic such as this:

SUM(CASE WHEN Market = 'Gotham' THEN 1.0 – IsActive ELSE 0 END) as stopg

can be replaced with

SUM(isg * (1.0 - IsActive)) as stopg

This shorter expression uses multiplication instead of conditional logic. The 
performance should be about the same.  Indicator variables can make code 
easier to write and to read—and more consistent.

tip Indicator variables are variables that take on a value of 0 or 1 for a given value for 
a category. They can simplify a query by eliminating lots of repetitive CASE statements.

The resulting survival curves are shown in Figure 6-11. The legend has the popula-
tion in parentheses after the market name. The population was appended onto the 
market name for just this reason. Surprisingly, the difference in hazards for Smallville 
using the correct left truncation date versus 2004-01-01 is quite small—because few 
customers in Smallville leave during the first 11 months of tenure.

These curves confirm the earlier observation that survival in Gotham seems 
worse than survival in the other two markets. All three markets show the drop 
in survival at one year, which corresponds to the contract expiration date. At 450 
days—safely after the contract expiration—only 50.1% of Gotham’s customers 
remain, compared to 59.2% for Metropolis and 73.3% for Smallville.

These survival values could also be calculated in Excel using summarized 
data from SQL:

SELECT Tenure,
       SUM(isg) as popg, SUM(ism) as popm, SUM(iss) as pops,
       SUM(isg * isstopped) as stopg, SUM(ism * isstopped) as stopm,

figure 6-11: Survival by market for the subscription data shows that Smallville has the best 
survival and Gotham the worst.
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       SUM(iss * isstopped) as stopg
FROM (SELECT s.*,
             (CASE WHEN Market = 'Gotham' THEN 1 ELSE 0 END) as isg,
             (CASE WHEN Market = 'Metropolis' THEN 1 ELSE 0 END) as ism,
             (CASE WHEN Market = 'Smallville' THEN 1 ELSE 0 END) as iss,
             (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0 END
             ) as isstopped,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s) s
WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY Tenure
ORDER BY Tenure

Figure 6-12 shows the first few rows of the resulting table for Gotham, along 
with the formulas used for the calculation. The columns are in groups, with the 
population columns coming first and then the stop columns, so the hazard and 
survival formulas can be entered once and then copied to adjacent cells—to the 
right as well as downward.

Survival Ratio
The ratio between survival curves provides a good qualitative comparison for 
different groups. Let’s use the best survival as the standard. Figure 6-13 shows 
the ratio of survival for the three markets to customers in Smallville. Smallville’s 
survival ratio is uninteresting because it is always one.

figure 6-12: These screen shots show the data and Excel formulas for calculating survival by 
market (only Gotham is shown; the columns for Metropolis and Smallville are hidden).
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figure 6-13: The survival ratio is the ratio of survival in each market compared to Smallville’s 
survival.

tip In Excel, you can label a single point on a series. To do so, click the series to 
select it. Then click again to select the point. Then right-click and choose “Add Data 
Label.” Then double-click the text to format it. A good idea is to make the text the 
same color as the series itself.

The survival ratio chart shows that Gotham’s survival is uniformly worse 
than Smallville’s at all points in time. “Worse” because the ratio is always less 
than one. Survival in Metropolis is as bad as Gotham in the first year, but then 
improves. Although the chart does not specify what is happening, the timing 
is suggestive. For instance, some customers start with one-year contracts, some 
with two-year contracts, and some with no contracts at all. Further, customers 
on one-year contracts are more likely to cancel at one year than before the one-
year anniversary. So, perhaps the difference between Metropolis and Gotham 
is due to the proportion of customers on one-year contracts. Whatever the cause, 
the survival ratio changes for different tenures. The relationships between the 
curves (and hence the markets) change for different tenures.

Sometimes the ratio between survival curves can provide somewhat mislead-
ing results. For instance, if one market has very poor coverage in outlying areas, 
then customers from these areas would sign up for the service and quickly 
stop—their phone is not working. Say, 15% of the customers stop in the first 
couple of months due to bad coverage. This 15% lingers in the survival curves. 
So, even if the two markets are identical—except for the outlying coverage issue 
that only affects customers immediately after they start—the ratio will always 
show that the first market is worse.

Conditional Survival
The survival ratio suggests another question about survival. Two markets have 
essentially the same survival characteristics for the first year, but then their 
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survival diverges after the contract expiration period. What about customers 
who make it beyond the contract expiration? Do customers start to look more 
similar or more different?

Conditional survival answers the question: What is the survival of customers 
given that they have survived to a certain tenure? Contract expiration typically occurs 
after one year. However, customers procrastinate, so a period a bit longer than 
one year is useful, such as thirteen months (390 days).

A brute-force calculation is to re-run the entire survival calculation, only 
including customers who survive at least 390 days. The following WHERE clause 
could be added to the survival query:

WHERE Tenure >= 390

The downside to this approach is the need to recalculate all the survival values.
There is a simpler approach. Conditional survival can also be calculated with 

the following two rules:

 ■ For tenures <= 390, the conditional survival is 100% (because of the assump-
tion that all customers survive to 390 days.)

 ■ For tenures > 390, the conditional survival is the survival at tenure t divided 
by the survival at time 390.

Excel’s VLOOKUP() function makes it easy to find the survival at time 390. The 
conditional survival is then just the ratio of the survival to this value.

Figure 6-14 shows the survival and the conditional survival at time 390 for 
the three markets. The markets look similar after 13 months, with Smallville 
being the best and Gotham the worst for survival after 13 months.

This calculation can also be done in SQL:

WITH h as (
      SELECT Tenure,

figure 6-14: Conditional survival after 13 months shows that Smallville is still the best market 
and Gotham the worst.
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             SUM(1.0 - IsActive) /
              SUM(COUNT(*)) OVER (ORDER BY Tenure DESC) as h
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s
           ) s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure
     ),
    s as (
     SELECT h.*, EXP(SUM(LOG(1-h)) OVER (ORDER BY Tenure)) / (1-h) as S
     FROM h
    )
SELECT s.*,
       (CASE WHEN Tenure < 390 THEN 1.0
             ELSE S / MAX(CASE WHEN Tenure = 390 THEN S END) OVER ()
        END) as S390
FROM s
ORDER BY Tenure

This query uses a window function to get the survival value at tenure 390. The 
OVER () clause says to do the calculation over the entire result set. The calcula-
tion calculates the “maximum” value of survival when the tenure is 390. There 
is only one such value, so the maximum is the value we are looking for. A JOIN 
could also be used for the lookup.

Comparing Survival over Time

The subscribers data has three years of complete starts. The analyses so far 
have mixed all the data together, calculating “average” hazards over the entire 
period. Have the hazards have changed over time?

This section presents three ways to approach this problem. The first looks 
at whether a particular hazard has changed over time. The second looks at 
customers by the year in which they started, answering the question: What 
is the survival of customers who started in a given year? The third takes snap-
shots of the hazards at the end of each year, answering the question: What 
did the hazards look like at the end of each year? All these ways of approaching 
this question use the same data. They simply require cleverness to calculate 
the hazards.

The next chapter presents yet another way to look at this problem. It 
answers the question: What did the hazards look like based on the stops in each 
year? Answering this question requires a different approach to the hazard 
calculation.
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How Has a Particular Hazard Changed over Time?
The hazard calculation is really the average of the particular hazard probability 
during a period of time. So far, this average has been for three years of data 
starting in 2004. Trends in hazards, particularly in hazards relevant to the busi-
ness, can provide important information.

Figure 6-15 shows the trend in the 365-day hazard for stops in 2005 and 2006. 
This hazard is interesting because it is associated with anniversary churn—
customers leaving one-year after they start. The chart shows that anniversary 
churn increased in 2005, hitting a peak at the end of the year, and then stabilized 
through 2006. The 28-day moving average removes much of the variability, 
making the long-term pattern more visible.

Calculating the hazard requires thinking carefully about the population at 
risk at each point in time. At any given tenure, the population at risk for the 365-
day hazard probability is all customers whose tenure is exactly 365. Calculating 
this population for any given date, such as Feb 14, 2006, is easy:

SELECT COUNT(*) as pop365,
       SUM(CASE WHEN StopDate = '2006-02-14' THEN 1 ELSE 0 END) as s365,
       AVG(CASE WHEN StopDate = '2006-02-14' THEN 1.0 ELSE 0 END) as h365
FROM Subscribers s
WHERE StartDate >= '2004-01-01' AND Tenure >= 0 AND
      (StopDate >= '2006-02-14' OR StopDate IS NULL) AND
       DATEDIFF(day, StartDate, '2006-02-14') = 365

Almost all the work in this calculation is in the WHERE clause. The first two condi-
tions are the standard conditions for filtering the data because of left truncation 
(these conditions are redundant in this case and we don’t have to worry about 
Smallville because the condition on the start date ensures that the stop date is 
after the left truncation date). The next condition says that only customers who 
were active on Feb 14, 2006, are considered. And the final condition selects only 
customers whose tenure is exactly 365 on that date.

figure 6-15: The hazard at 365 days changes throughout 2005 and 2006.
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Extending this idea to all tenures is fairly easy. Customers are at risk for the 
365-day hazard exactly 365 days after they start. The following SQL extends 
the calculation to all dates in 2005 and 2006:

SELECT date365, COUNT(*) as pop365,
       SUM(CASE WHEN StopDate = date365 AND StopType IS NOT NULL
                THEN 1 ELSE 0 END) as stop365,
       AVG(CASE WHEN StopDate = date365 AND StopType IS NOT NULL
                THEN 1.0 ELSE 0.0 END) as h365
FROM (SELECT s.*, DATEADD(day, 365, StartDate) as date365
      FROM Subscribers s) s
WHERE StartDate >= '2004-01-01' AND Tenure >= 365
GROUP BY date365
ORDER BY date365

Most of the work in this query is being done in the GROUP BY and SELECT clauses. 
The date of interest is 365 days after the start. All customers who are active 365 
days after they start are in the population at risk on exactly that date. Of these, 
some customers stop, as captured by the stop date being 365 days after the 
start date. Because no accumulations are necessary, the hazard can be readily 
calculated.

One particular hazard—even one as large as anniversary churn—has a very 
small impact on overall survival. However, trends in particular hazards can be 
useful for tracking particular aspects of the business. The next two subsections 
discuss changes in overall survival from one year to the next.

What Is Customer Survival by Year of Start?
Filtering customers by their start year is an acceptable way of calculating 
 hazards—that is, filters by start year do not bias the hazard estimates because 
the start year is known at tenure zero and does not change. The calculation 
itself is similar to the calculation using market for stratifying the hazards. 
The major difference is that flags specifying the year of start are defined in 
the first CTE:

WITH s as (
      SELECT s.*,
             (CASE WHEN yr = 2004 THEN 1 ELSE 0 END) as is2004,
             (CASE WHEN yr = 2005 THEN 1 ELSE 0 END) as is2005,
             (CASE WHEN yr = 2006 THEN 1 ELSE 0 END) as is2006,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
      FROM (SELECT s.*, YEAR(StartDate) as yr FROM Subscribers s) s
     ),
     h as (
      SELECT Tenure,
             SUM(is2004 * (1.0 - IsActive)) as stop2004,
             NULLIF(SUM(SUM(is2004)) OVER (ORDER BY Tenure DESC),
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                    0) as pop2004,
             SUM(is2005 * (1.0 - IsActive)) as stop2005,
             NULLIF(SUM(SUM(is2005)) OVER (ORDER BY Tenure DESC),
                    0) as pop2005,
             SUM(is2006 * (1.0 - IsActive)) as stop2006,
             NULLIF(SUM(SUM(is2006)) OVER (ORDER BY Tenure DESC),
                    0) as pop2006
      FROM s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure
     )
SELECT h.*,
       EXP(SUM(LOG(1 - stop2004 / pop2004)) OVER
               (ORDER BY Tenure)) / (1 - stop2004 / pop2004) as S2004,
       EXP(SUM(LOG(1 - stop2005 / pop2005)) OVER
               (ORDER BY Tenure)) / (1 - stop2005 / pop2005) as S2005,
       EXP(SUM(LOG(1 - stop2006 / pop2006)) OVER
               (ORDER BY Tenure)) / (1 - stop2006 / pop2006) as S2006
FROM h
ORDER BY Tenure

The NULLIF() function prevents division by zero. This function returns NULL if 
both arguments are the same—a very handy way to avoid an undesired error. 
This function is equivalent to (CASE WHEN A = B THEN NULL ELSE A END).

Figure 6-16 shows the resulting survival curves for starts in each year. The 
length of the curves varies by year. Because the cutoff date is in 2006, the starts 
in 2006 have survival for only about one year. The starts in 2005 have survival 
values for two years, and 2004 starts have three years of survival.

What Did Survival Look Like in the Past?
This question is more challenging than the previous one because shifting the 
cutoff date to an earlier date potentially changes both the tenures and stop flags; 

figure 6-16: The survival curves here are based on starts in each of the years.
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plus, customers who started after the date are not included in the population. 
Figure 6-17 illustrates what happens. Customers who are now stopped, such as 
customers 3, 6, and 7, are active as of the earlier cutoff date. Similarly, the tenure 
for most customers also changes. Technically, the process of shifting the cutoff 
date is forcing the right censorship date to be at an earlier date than the cutoff 
date for the data. This discussion uses “cutoff date” to mean the latest date in 
the database, and “right censorship date” to be the earlier date. Up to now, these 
two dates have been the same.

Consider a customer who started on 2004-01-01 and stopped on 2006-
01-01. This customer has a tenure of two years and a stop flag of 1. What 
does the customer look like at the end of 2004? The customer is active on 
that date, so the current stop flag is incorrect. And, the customer’s tenure 
is one year, rather than two years. Both the tenure and the stop flag need 
to be recalculated.

The rules for the stop flag are as follows:

 ■ Only customers who started on or before the right censorship date are 
included in the calculation.

 ■ For customers who are currently active, the stop flag is 0, indicating that 
they were active as of the right censorship date.

 ■ For customers who are currently stopped and whose stop date is after the 
right censorship date, the stop flag is 0.

 ■ Otherwise, the stop flag is 1.

figure 6-17: Shifting the right censorship date into the past changes the tenure, the stop flag, 
and the group of customers included in the survival calculation.
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The tenure on the right censorship date follows a similar logic, incorporating 
the following rules:

 ■ For customers whose stop date is on or before the right censorship date, 
the tenure is the stop date minus the start date.

 ■ For the rest of the customers, the tenure is the right censorship date minus 
the start date.

The following SQL uses CTEs to calculate the new stop flag and tenure columns:

WITH s as (
      SELECT s.*,
             (CASE WHEN StopType IS NULL OR StopDate>censordate THEN 0.0
                   ELSE 1 END) as isstop2004,
             (CASE WHEN StopType IS NULL OR StopDate > censordate
                   THEN DATEDIFF(day, StartDate, censordate)
                   ELSE Tenure
              END) as tenure2004
      FROM (SELECT s.*, CAST('2004-12-31' as DATE) as censordate,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s) s
      WHERE StartDate <= censordate AND
            StartDate >= LeftTruncationDate AND Tenure >= 0
     ),
     h as (
      SELECT Tenure2004,
             SUM(isstop2004) /
              SUM(COUNT(*)) OVER (ORDER BY Tenure2004 DESC) as h2004
      FROM s
      GROUP BY Tenure2004
     )
SELECT h.*,
       EXP(SUM(LOG(1-h2004)) OVER (ORDER BY Tenure2004))/(1-h2004) as S
FROM h
ORDER BY Tenure2004

Note that censordate is defined only once in a subquery, reducing the possi-
bility of errors in the query.  Also the calculation is based on an “is stopped” 
flag rather than an “is active” flag, so the query has nothing like “1 – active 
flag.”

Figure 6-18 shows the survival curves at the end of 2004, 2005, and 2006. 
These curves vary in length, with the 2004 curve only having one year of 
survival data, 2005 having two years, and 2006 having three years. The 2004 
curve is the survival for only 2004 starts, whereas the other curves incorporate 
starts for multiple years The survival curves as of the end of 2005 and 2006 
are similar to each other because there is a big overlap in the customers used 
for the calculations.
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Important Measures Derived from Survival

Survival and hazard curves provide nice pictures of customers over time. Pretty 
pictures are great for conveying information and qualitatively comparing dif-
ferent groups, but survival analysis can also provide quantitative metrics. This 
section discusses three particular measures: the point estimate of survival, the 
median customer lifetime, and the average remaining customer lifetime. It ends 
with a discussion of confidence in the hazard values.

Point Estimate of Survival
The point estimate of survival is the survival value at a particular tenure. It 
answers the simple question: How many customers do we expect to survive up to a 
given point in time? This calculation is easy—looking up the survival value at a 
particular tenure.

The point estimate is sometimes the best measure to use. For instance, many 
companies invest in customer acquisition, so customers must stay around long 
enough to recoup this investment. This is true when telephone companies give 
away handsets, when insurance companies pay commissions to agents, and so 
on. For a given acquisition effort, an important question is how many customers 
“graduate” to the profitable stage of the customer relationship.

Answering such a question in detail might require understanding the cash flows 
that each customer generates and a range of models to handle expected tenure 
and expected revenues and expected costs. This is difficult enough for existing 
customers, and harder still for prospects. A simpler approach is to see which 
customers survive to a particular tenure—likely a good enough approximation:

 ■ Perhaps when the customer has passed the initial promo period and is 
paying the full bill

figure 6-18: Shifting the right censorship date back to the end of each year makes it possible to 
reconstruct the survival curves as of the end of 2004, 2005, and 2006.
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 ■ Perhaps when revenues from the customer have paid for initial outlays, 
such as commissions to agents or the cost of handsets

 ■ Perhaps a seemingly arbitrary period, such as one year

The point estimate is then a good measure for the effectiveness of such cam-
paigns in attracting profitable customers.

As an example, a major newspaper publisher used survival analysis for 
understanding its home delivery customers (as well as its online readers). Many 
things happen during the initial period when customers sign up for home 
delivery. For instance:

 ■ The customer may never get a paper delivered because they live in a 
non-routable area.

 ■ The customer may not pay their first bill.

 ■ The customer may have only signed up for the initial promotional discount.

Each of these affects the survival during the first few months. After analyzing 
the customers, it became clear that four months was an important milestone, and 
quite predictive of longer-term survival. One advantage of four months over one 
year (the previous measure) is that four-month survival is available eight months 
sooner for new customers. That is, it became possible to measure the retention 
effectiveness of acquisition campaigns—using four-month survival—within a 
few months after the campaign starts.

Median Customer Tenure
Another measure of survival is the median customer tenure or customer half-life. 
This is the tenure where exactly half the customers have left. The median cus-
tomer tenure is easy to calculate. It is simply the tenure where the survival curve 
crosses the horizontal 50% line, as shown in Figure 6-19. There is nothing magic 

figure 6-19: The customer half-life is the tenure where the survival curve passes the 50% line.
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about 50%, except that it has the special name of “median.” Sometimes, other 
percentages may be important, such as 90% or 20%.

The median customer tenure suffers from the same problem that all medians 
do. It tells us about exactly one customer, the one in the middle. Consider three 
different scenarios:

 ■ Scenario 1: All customers survive for exactly one year and then all cus-
tomers stop.

 ■ Scenario 2: Customers stop at a uniform pace for the first two years, so 
half the customers have left after one year and the remaining half in the 
second year.

 ■ Scenario 3: Half the customers minus one stop on the first day, then one 
customer stops after a year, and the remaining customers stay around 
indefinitely.

All these scenarios have exactly the same median customer tenure, one year, 
because that is when half the customers have left. However, in the first scenario, 
all the customers survived for all of the first year, whereas in the third, almost 
half were gone immediately. The first scenario has no one surviving beyond 
one year; the second has no one surviving beyond two years, and in the third, 
they survive indefinitely. These examples illustrate that the median tenure does 
not provide information about all the customers. It tells us about exactly one 
customer, the one that stopped when nearly half his or her fellow customers 
had already stopped.

The median tenure also illustrates one of the disadvantages of the retention 
curve versus the survival curve. Because it is jagged, the retention curve might 
cross the 50% line several times. Which is the correct value for median reten-
tion? The right answer is to use survival instead of retention.

Average Customer Lifetime
The median customer lifetime provides information about exactly one customer, 
the one in the middle. Averages are more useful because they can be included in 
financial calculations. So if a customer generates $200 in revenue per year, and 
the average customer stays for two years, then the average customer generates 
$400 in revenue.

The average truncated tenure is the average tenure for a given period of time 
after customers start, answering a question such as: “What is the average num-
ber of days that customers are expected to survive in the first year after they 
start?” Limiting the span to one year is helpful for both business reasons and 
technical reasons. On the business side, the results can be validated after one 
year. On the technical side, average truncated tenures are easier to calculate 
because they are for a finite time period.
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Calculating the average truncated tenure from the survival curve turns out to 
be quite easy. To illustrate the process, start with the simplest case, the average 
one-day tenure. What is the average tenure of customers in the one day after 
they start? The number of customers who survived to day one is the number 
who started times day-one survival. The average divides by the number who 
started, so the average is just the survival on day one. If 99% of customers sur-
vive for one day, then the average customer survives for 0.99 days in the first 
day after they start.

What is the average two-day tenure? This is the average number of days 
that customers are active in the two days after they start. The total number of 
days that customers survive is the sum of those who were around on days one 
and two. So, the total number of days is day-one survival times the number of 
customers who started plus day-two survival times the number of customers 
who started. The average divides out the number of customers. The average 
two-day tenure is survival on day one plus survival on day two.

This generalizes to any tenure: The average tenure for any given time after a 
customer starts is the sum of the survival values up to that tenure.

Another way of looking at the calculation leads to the observation that the 
area under the survival curve is the average truncated tenure. Figure 6-20 
shows how to calculate the area, by placing rectangles around each survival 
value. The area of each rectangle is the base times the height. The base is 
one time unit. The height is the survival value. Voila! The area under the 
curve is the sum of the survival values, which as we just saw, is the average 
truncated tenure.

figure 6-20: The average customer lifetime is the area under the survival curve.

tip The area under the survival curve is the average customer lifetime for the period 
of time covered by the curve. For instance, for a survival curve that has two years of 
data, the area under the curve up to day 730 is the two-year average tenure.
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Confidence in the Hazards
Hazards are statistical estimates that have confidence bounds. A statistician 
would pose the question as something like: How close are the observed hazard 
probabilities to the true hazards in the population? To the non-statistician, such 
a question can be a bit hard to understand. After all, aren’t the calculations 
producing accurate values?

So, let’s phrase the question a bit differently. Say that one year of customer 
data has been used to calculate one year of hazards. How does calculation com-
pare to using two years of customer data instead of one? Intuition says that the 
results based on two years should be more stable because there is more data 
supporting them. On the other hand, the one-year estimate is based on more 
recent data, so is closer to what’s happening now.

Chapter 3 discussed confidence intervals in general and the standard error of a 
proportion in particular. Table 6-5 applies the standard error of a proportion to vari-
ous hazard probabilities, based on calculations using one and two years of starts.

The standard error is quite small and can generally be safely ignored. Second, 
there are theoretical reasons why the standard error of a proportion overstates the 
error for hazards. That said, for larger tenures, the population at risk is smaller, so 
the standard error is bigger. When the population at risk has one million customers, 
the standard error is negligible. However, when the population at risk measures 
only in the hundreds (as for the last row), the standard error is relatively large.

table 6-5: Standard Error for Hazard Calculations Using One Year vs. Two Years of Starts

one year tWo year

tenUre
CUMULatiVe 
popULation h

StanDarD 
error

CUMULatiVe 
popULation h

StanDarD 
error

0 656,193 0.016% 0.002% 1,292,819 0.016% 0.001%

30 544,196 0.158% 0.005% 1,203,641 0.148% 0.004%

60 492,669 0.042% 0.003% 1,183,680 0.033% 0.002%

90 446,981 0.070% 0.004% 1,169,947 0.054% 0.002%

120 397,010 0.110% 0.005% 1,142,629 0.157% 0.004%

150 339,308 0.097% 0.005% 1,105,942 0.065% 0.002%

180 290,931 0.076% 0.005% 1,081,174 0.046% 0.002%

210 246,560 0.073% 0.005% 1,059,359 0.046% 0.002%

240 205,392 0.049% 0.005% 1,040,035 0.036% 0.002%

270 159,290 0.058% 0.006% 1,023,114 0.034% 0.002%

300 108,339 0.051% 0.007% 1,008,171 0.030% 0.002%

330 59,571 0.045% 0.009% 993,844 0.033% 0.002%

360 4,272 0.094% 0.047% 965,485 0.173% 0.004%
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The query used to generate the data for this is:

WITH s as (
      SELECT s.*,
             (CASE WHEN yr = 2005 THEN 1.0 ELSE 0 END) as is2005,
             (CASE WHEN yr = 2006 THEN 1.0 ELSE 0 END) as is2006,
             (CASE WHEN StopType IS NULL THEN 0.0 ELSE 1 END) as isstop,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
     FROM (SELECT s.* YEAR(StartDate) as yr FROM Subscribers s) s
    ),
     su as (
      SELECT Tenure,
             NULLIF(SUM(SUM(is2006)) OVER (ORDER BY TENURE DESC),
                    0) as pop1yr,
             NULLIF(SUM(SUM(is2005)) OVER (ORDER BY TENURE DESC),
                    0) as pop2yr,
             SUM(is2006 * isstop) as stop1yr,
             SUM(is2005 * isstop) as stop2yr
      FROM s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure
     )
SELECT Tenure, pop1yr, stop1yr, h1, SQRT((h1*(1.0-h1)/pop1yr)) as se1,
       pop2yr, stop2yr, stop2yr/pop2yr as h2,
       SQRT((h2 * (1.0 - h2) / pop2yr)) as se2
FROM (SELECT su.*, stop1yr/cast(pop1yr as float) as h1,
             stop2yr / cast(pop2yr as float) as h2
      FROM su
     ) su
WHERE Tenure % 30 = 0
ORDER BY Tenure

This query is quite similar to earlier queries that calculated hazards, with the 
addition of the formula for the standard error of a proportion.

Warning Survival values and hazards are accurate when lots of data are used 
for the calculation. As the number of data points for a given tenure decreases (even 
down to the few hundreds), the resulting values have a much larger margin of error.

Using Survival for Customer Value Calculations

The customer value calculation is theoretically quite simple. The value of a customer 
is the product of the estimated future revenue per unit time and the estimated 
future duration of the customer relationship. This just has one little challenge: 
knowing the future. We can make informed guesses using historical data.
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How far in the future? One possibility is “forever”; however, a finite amount 
of time—typically, one, two, or five years—is usually sufficient. The future 
revenue stream is a guesstimation process. Typically, the goal is to understand 
customers, not a full financial profitability model, with all the checks and bal-
ances of corporate accounting.

The choice of revenue instead of profit or net revenue is intentional. In gen-
eral, customers have some control over their revenue flow because revenue is 
related to product usage patterns. Plus, because customers are actually paying 
the money, they pay much more attention to revenue than to costs.

Often, customers have little control over costs, which might be subject to inter-
nal allocation formulas. An actual profitability calculation would necessarily 
make many assumptions about the future, and these assumptions might turn 
out to have a greater impact on customer value than actual customer behavior. 
Although such profitability analyses are interesting and perhaps necessary 
for financial modeling, they do not necessarily benefit from being done at the 
granularity of individual customers.

Consider a magazine as an example. Subscription customers receive the 
magazine, hopefully paying for copies that in turn generate revenue for the 
company. Customers continue their subscription while they see value in the 
relationship. However, profitability depends on all sources of revenue and 
costs, including advertising, the cost of paper, and the cost of postage. These 
cost factors are beyond customer control; on the other hand, revenue is based 
on when customers start and stop and is under their control.

This section discusses customer value, with particular emphasis on using 
survival analysis for estimating customer duration. It starts with a method of 
estimating revenue, which is then applied to estimating the value of future starts. 
Then, the method is applied to existing customers. The purpose of customer 
value is generally to compare different groups of customers or prospects over 
time. Customer value is a tool to help enable companies to make more informed 
decisions about their customers.

Estimated Revenue
The estimated revenue is assumed to be a stream of money that arrives at a given 
rate, such as $50/month. This rate may be calculated based on the history of a 
particular customer or group of customers. It might also be estimated for a group 
of prospects based on the products they will use after they start. A real financial 
calculation would typically discount future revenue. When customer value cal-
culations are for insight rather than accounting, discounts can be a distraction.

The subscribers used in the survival analysis examples do not have a sepa-
rate revenue history, so this section uses the initial monthly fee as a reasonable 
proxy for the revenue stream. Actual billing data or payment data would be 
preferable but is not available.
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Let’s assume that the number of future customers is forecast by market and 
channel. This forecast does not include the monthly fee. What revenue should be 
used for prospective customers? This question in turn becomes: What is the average 
monthly fee for recent starts by market and channel? The following query answers 
this question for the most recent year of customers:

SELECT Market, Channel, COUNT(*) as numsubs,
       AVG(MonthlyFee) as avgmonthly,
       AVG(MonthlyFee) / 30.4 as avgdaily
FROM Subscribers s
WHERE StartDate >= '2006-01-01' AND Tenure >= 0
GROUP BY Market, Channel
ORDER BY Market, Channel

This query uses the constant 30.4 as the number of days in a month., a reason-
able approximation that simplifies the calculations based on tenure.

Table 6-6 shows the average fee for each of the 12 groups, both per month and 
per day. Notice that the variation in rates is not that great, between $36.10 per 
month and $39.61. The “Chain” channel seems to have the lowest revenue, regard-
less of market. And Metropolis’s revenue is higher than the other two markets.

Estimating Future Revenue for One Future Start
Survival analysis can estimate the expected lifetime—and hence expected 
revenue—for new starts. The key is to generate separate survival curves for each 

table 6-6: Average Monthly and Daily Revenue for Customer by Market and Channel

Market ChanneL
nUMBer of 

SUBSCriBerS
$ aVerage 
MonthLy

$ aVerage 
DaiLy

Gotham Chain 9,032 $36.10 $1.19

Gotham Dealer 202,924 $39.05 $1.28

Gotham Mail 66,353 $37.97 $1.25

Gotham Store 28,669 $36.80 $1.21

Metropolis Chain 37,884 $36.86 $1.21

Metropolis Dealer 65,626 $38.97 $1.28

Metropolis Mail 53,082 $39.61 $1.30

Metropolis Store 65,582 $38.19 $1.26

Smallville Chain 15,423 $37.48 $1.23

Smallville Dealer 44,108 $37.82 $1.24

Smallville Mail 24,871 $38.43 $1.26

Smallville Store 42,640 $37.36 $1.23
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market and channel combination and then to expected lifetime by the average 
daily revenue from the previous section.

Table 6-7 shows an example: Assume that 100 customers start tomorrow in 
Gotham from the Dealer channel. On the first day, there are 100 customers, and 
then the number decreases according to the survival curve. The revenue on any 
particular day is the product of the survival times the daily revenue times the 
number of customers. The total revenue for the first year after they start is the 
sum of the daily contributions.

Value in the First Year

Of course, measuring the revenue for a single day is not as interesting as cal-
culating the revenue for a period of time. Table 6-8 shows the total first year 
revenue for each of the 12 groups. Per customer, Gotham-Chain generates the 
least revenue and Smallville-Dealer generates the most. These one-year revenue 
values can be compared to the cost of acquisition to determine how much an 
additional $1,000 in spending buys in terms of first year revenue.

SQL Day-by-Day Approach

The survival and revenue calculations can be combined together into a single 
query. We have already done these calculations earlier in this chapter.

table 6-7: First Few Days of Survival Calculation for Market = Gotham and Channel = Dealer

DayS SUrViVaL
nUMBer of 
CUStoMerS DaiLy reVenUe

CUMULatiVe 
reVenUe

0 100.00% 100.0 $128.46 $128.46

1 100.00% 100.0 $128.46 $256.92

2 99.51% 99.5 $127.84 $384.76

3 99.12% 99.1 $127.34 $512.10

4 98.80% 98.8 $126.92 $639.02

5 98.50% 98.5 $126.54 $765.56

table 6-8: First Year Revenue for Market/Channel Combination

firSt year reVenUe By ChanneL

Market Chain DeaLer MaiL Store

Gotham $283.78 $392.53 $331.31 $385.13

Metropolis $349.10 $399.52 $349.64 $408.33

Smallville $396.05 $415.31 $370.62 $411.99
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The following query puts these together, with the calculation of the estimated 
revenue in the first 365 days after a customer starts:

WITH rmc as (
      SELECT Market, Channel, COUNT(*) as numsubs,
             AVG(MonthlyFee) / 30.4 as avgdaily
      FROM Subscribers s
      WHERE StartDate >= '2006-01-01' AND Tenure >= 0
      GROUP BY Market, Channel
     ),
     hmc as (
      SELECT Market, Channel, Tenure,
             SUM(1 - IsActive) as numstops, COUNT(*) as tenurepop,
             SUM(COUNT(*)) OVER (PARTITION BY Market, Channel
                                 ORDER BY Tenure DESC) as pop,
             LEAD(Tenure) OVER (PARTITION BY Market, Channel
                                ORDER BY Tenure) as nexttenure,
             (LEAD(Tenure) OVER (PARTITION BY Market, Channel
                                 ORDER BY Tenure) – Tenure) as numdays,
             SUM(1.0 - IsActive) /
              SUM(COUNT(*)) OVER (PARTITION BY Market, Channel
                                  ORDER BY Tenure DESC) as h
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s
           ) s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure, Market, Channel
     ),
     smc as (
     SELECT hmc.*,
             EXP(SUM(LOG(1 - h)) OVER (PARTITION BY Market, Channel
                                       ORDER BY Tenure)) / (1 - h) as S
      FROM hmc
     )
SELECT s.Market, s.Channel, SUM(s.s * numdays365 * avgdaily) as estRev
FROM (SELECT smc.*,
             (CASE WHEN nexttenure > 365 THEN 365 - tenure
                   ELSE nexttenure - tenure END) as numdays365
      FROM smc
     ) s JOIN
     rmc r
     ON s.Market = r.Market AND s.Channel = r.Channel
WHERE s.Tenure BETWEEN 0 and 365
GROUP BY s.Market, s.Channel
ORDER BY s.Market, s.Channel

The final query basically joins the two result sets together. It uses a WHERE clause 
to get the first 365 days and GROUP BY to aggregate the results. The result sets 
are CTEs that we have already seen.
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The calculation for revenue uses NUMDAYS365 because some tenure values 
might be skipped in the survival result set. For instance, if days 101 and 102 
were missing, the row for tenure 100 would have nexttenure set to 103. This 
means that the survival remains the same between tenures 100 and 103. The 
revenue calculation needs to include these missing tenures.

The need for NUMDAYS365 occurs when the missing tenures are at the end of 
the first year. For instance, if tenure 364 had nexttenure set to 374, its survival 
would be counted ten times instead of one. The definition of NUMDAYS365 fixes 
this boundary-effect problem.

For the remainder of this section, the table aliases rmc, hmc, and smc will be 
used without redefining them.

Estimated Revenue for a Group of Existing Customers
Existing customers pose a different challenge from new starts. Obtaining 
historical revenue is simply a matter of adding up the revenue that existing 
customers have paid. For future revenue, there is a hitch. Existing customers 
are not starting at tenure zero, because these customers are active now and 
have a particular tenure. So, direct application of survival values is not the 
right approach. The solution is to use conditional survival, that is, survival 
conditioned on the fact that customers have already survived up to their cur-
rent tenure.

Estimated Second Year Revenue for a Homogenous Group

To illustrate this process, let’s start with a simple group consisting of customers 
who started exactly one year prior to the cutoff date. What is the second year 
of revenue for these customers?

Because this group of customers has already survived for one year, the con-
ditional survival for one year is needed. Remember the one-year conditional 
survival at tenure t is simply the survival at tenure t divided by the survival 
at 365 days. The following query calculates the conditional survival for their 
next year:

WITH hmc as ( <see definition on page 302> ),
     smc as ( <see definition on page 302> )
SELECT s.*,
       (CASE WHEN Tenure < 365 THEN 1.0
             ELSE S / MAX(CASE WHEN Tenure = 365 THEN S END) OVER
                          (PARTITION BY Market, Channel)
        END) as S365
FROM smc s
WHERE Tenure >= 365 AND Tenure <= 365 + 365
ORDER BY Tenure, Market, Channel

This query follows the same structure as other queries.  The final division cal-
culates the conditional survival rather than overall survival.



304 Chapter 6  ■ how Long Will Customers Last?

Applying conditional survival to the existing customers uses a join. Each 
customer is joined to the conditional survival for days 365 through 730.

 ■ The group of customers needs to be defined. This consists of customers 
who are active and who started exactly 365 days before the cutoff date. 
There are 1,928 of them.

 ■ The conditional survival needs to be calculated. This uses the survival 
divided by the survival at day 365, and only applies to tenures greater 
than or equal to 365.

 ■ Each customer is joined to the survival table, for all tenures between 365 
and 729 (the tenures these customers have in the forecast year).

 ■ This table is then aggregated by the market and channel dimensions.

The query that does this is:

WITH oneyear as (
      SELECT market, channel, COUNT(*) as numsubs,
             SUM(CASE WHEN StopType IS NULL THEN 1 ELSE 0
                 END) as numactives
      FROM Subscribers
      WHERE StartDate = '2005-12-28'
      GROUP BY market, channel
     ),
     rmc as ( <see definition on page 302> ),
     hmc as ( <see definition on page 302> ),
     smc as ( <see definition on page 302> )
SELECT ssum.market, ssum.channel, oneyear.numsubs, oneyear.numactives,
       oneyear.numactives*ssum.survdays*r.avgdaily as year2revenue
FROM oneyear JOIN
     (SELECT s.market, s.channel, SUM(numdays730 * s365) as survdays
      FROM (SELECT s.*,
                   (CASE WHEN nexttenure > 730 THEN 730 - tenure
                         ELSE numdays END) as numdays730,
                   S / MAX(CASE WHEN Tenure = 365 THEN S END) OVER
                           (PARTITION BY Market, Channel) as S365
            FROM smc s
            WHERE tenure >= 365 and tenure < 365 + 365
           ) s
      GROUP BY Market, Channel
     ) ssum
     ON ssum.Market = oneyear.Market and
        ssum.Channel = oneyear.Channel JOIN
     rmc r
     ON ssum.Market = r.Market AND ssum.Channel = r.Channel
ORDER BY ssum.Market, ssum.Channel

This query pre-aggregates the results for the tenures before joining in the other 
information. Because Subscribers has millions of rows, doing the aggregation 
before the join is much more efficient than doing the aggregation after the join.
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tip When combining multiple tables and doing an aggregation, it is often more effi-
cient to aggregate first and then do the joins, if this is possible.

Table 6-9 shows the second year revenue for the group that started exactly one 
year before. There are two ways of calculating revenue per customer. The “Year 2 
Revenue per Start” column is based on the original number of starts; the “Year 2 
Revenue per Year 1 Active” is based on the customers who survived the first year. 
Comparing this table to Table 6-8, the second year revenue per start is always lower 
than the first year because some customers leave during the first year. Some groups, 
such as Smallville/Store, have very high retention, so their second year revenue is 
almost as high as the first year revenue.

Estimated Future Revenue for All Customers
Estimating the next year of revenue for all existing customers adds another 
level of complexity. Pre-calculating as much as possible helps. What is needed 
is a survival table with the following columns:

 ■ Market

 ■ Channel

table 6-9: Second Year Revenue per Customer by Market/Channel Combination

nUMBer of 
SUBSCriBerS

year 2 reVenUe

Market ChanneL StartS
year 1  

aCtiVeS totaL per Start
per year 1 

aCtiVe

Gotham Chain 29 23 $7,179.80 $247.58 $312.17

Gotham Dealer 1,091 883 $252,336.63 $231.29 $285.77

Gotham Mail 15 9 $3,314.24 $220.95 $368.25

Gotham Store 55 44 $16,269.76 $295.81 $369.77

Metropolis Chain 348 239 $79,047.43 $227.15 $330.74

Metropolis Dealer 192 148 $46,307.53 $241.19 $312.89

Metropolis Mail 19 7 $2,702.21 $142.22 $386.03

Metropolis Store 169 148 $57,627.20 $340.99 $389.37

Smallville Chain 161 144 $56,558.29 $351.29 $392.77

Smallville Dealer 210 179 $62,062.77 $295.54 $346.72

Smallville Mail 13 6 $2,424.49 $186.50 $404.08

Smallville Store 107 95 $38,564.71 $360.42 $405.94
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 ■ Tenure in days

 ■ Sum of conditional survival for the next 365 days

One big problem is what happens to the oldest customers.
The largest tenure is 1,091 days. There is no data beyond this point, so what 

do we do?

 ■ Assume that everyone stops. This is not reasonable because longer-tenured 
customers are typically better customers.

 ■ Assume that no one stops. This is the approach we take, although it over-
estimates revenue for long-term customers because it assumes they do 
not stop.

 ■ Calculate a longer-term rate of decline, perhaps using a constant hazard. 
Add rows to the survival table incorporating this information.

The third approach is the most accurate and not difficult to implement. It uses 
the table of survival values directly.

The following query calculates the sum of the conditional survival values for 
the next 365 days. It uses a self-join for the calculation:

WITH hmc as ( <see definition on page 302> ),
     smc as ( <see definition on page 302> )
SELECT s.market, s.channel, s.tenure, s.nexttenure,
       SUM((s1year.s / s.s) *
           (CASE WHEN s1year.nexttenure - s.tenure >= 365 or
                      s1year.nexttenure is null
                 THEN 365 - (s1year.tenure - s.tenure)
                 ELSE s1year.numdays END)) as sumsurvival1year
FROM smc s LEFT OUTER JOIN
     smc s1year
     ON s.market = s1year.market AND
        s.channel = s1year.channel AND
        s1year.tenure BETWEEN s.tenure AND s.tenure+364
GROUP BY s.market, s.channel, s.tenure, s.nexttenure
ORDER BY s.market, s.channel, s.tenure

The next step is to join this to the revenue table and to the original data. 
For convenience, the original data is aggregated by market, channel, and 
tenure.

WITH subs as (
      SELECT market, channel, tenure, COUNT(*) as numsubs,
             SUM(CASE WHEN StopType IS NULL THEN 1 ELSE 0 END
                ) as numactives
      FROM Subscribers
      WHERE StartDate >= '2004-01-01' AND Tenure >= 0
      GROUP BY market, channel, tenure
     ),
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    rmc as ( <see definition on page 302> ),
    hmc as ( <see definition on page 302> ),
    smc as ( <see definition on page 302> ),
    ssum as (
     SELECT s.market, s.channel, s.tenure, s.nexttenure,
            SUM((s1year.s / s.s) *
                (CASE WHEN s1year.nexttenure - s.tenure >= 365 OR
                           s1year.nexttenure is null
                      THEN 365 - (s1year.tenure - s.tenure)
                      ELSE s1year.numdays END)
               ) as sumsurvival1year
     FROM smc s LEFT OUTER JOIN
          smc s1year
          ON s.market = s1year.market AND
             s.channel = s1year.channel AND
             s1year.tenure BETWEEN s.tenure AND s.tenure+364
     GROUP BY s.market, s.channel, s.tenure, s.nexttenure
    )
SELECT subs.market, subs.channel, SUM(subs.numsubs) as numsubs,
       SUM(numactives) as numactives,
       SUM(subs.numactives*ssum.sumsurvival1year*r.avgdaily) as revenue
FROM subs LEFT OUTER JOIN
     ssum
     ON subs.market = ssum.market AND
        subs.channel = ssum.channel AND
        (subs.tenure >= ssum.tenure AND
         (subs.tenure < ssum.nexttenure OR ssum.nexttenure is null)
        ) LEFT OUTER JOIN
     rmc r
     ON subs.market = r.market AND
        subs.channel = r.channel
GROUP BY subs.market, subs.channel
ORDER BY subs.market, subs.channel

Table 6-10 shows the next year revenue for each of the groups based on starts 
since 2004. This table also shows the revenue per start and the revenue per 
active customer.

Three factors affect the next year revenue for these customers. The first is 
the average revenue for the group. The second is the estimated survival over 
the next year. And the third is when the starts occurred. For example, a group 
might in general have poor survival. However, if lots and lots of starts came in 
two years ago and a significant number survived, then the next year revenue 
is probably pretty good because it is based on the customers who survived one 
year. The revenue per start will be much lower than the revenue per active, as 
is the case with customers from Gotham-Chains.

Such a table often suggests more questions than it answers: What difference 
does the mix of rate plans make to the revenue? What is the revenue for starts 
by year in each of the groups? What other factors affect revenue?
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table 6-10: Next Year Revenue for Existing Customers

# of SUBSCriBerS reVenUe

Market ChanneL StartS aCtiVeS totaL per Start per aCtiVe

Gotham Chain 67,054 18,457 $6,354,927 $94.77 $344.31

Gotham Dealer 1,089,445 480,811 $170,636,341 $156.63 $354.89

Gotham Mail 236,886 117,230 $44,200,098 $186.59 $377.04

Gotham Store 106,011 68,678 $26,109,568 $246.29 $380.17

Metropolis Chain 226,968 103,091 $36,711,583 $161.75 $356.11

Metropolis Dealer 301,656 140,632 $51,799,400 $171.72 $368.33

Metropolis Mail 204,862 102,085 $40,388,696 $197.15 $395.64

Metropolis Store 262,086 173,901 $69,210,279 $264.07 $397.99

Smallville Chain 68,448 49,903 $20,557,418 $300.34 $411.95

Smallville Dealer 240,753 152,602 $60,622,309 $251.80 $397.26

Smallville Mail 100,028 65,007 $27,583,248 $275.76 $424.31

Smallville Store 157,522 122,902 $51,511,268 $327.01 $419.12

TOTAL 3,061,719 1,595,299 605,685,105 $197 $379

Forecasting

How many customers do we expect to be active on a given date in the future? Survival-
based forecasting is a powerful tool for answering this and related questions. 
Survival forecasting builds the answer up from individual customers. By con-
trast, other forecasting techniques often start with the summary numbers—an 
approach that makes slicing and dicing the results much harder. This section 
sketches out how to apply survival analysis to the problem of forecasting the 
number of customers on a given date.

The forecasting problem has two fundamental components: existing cus-
tomers and new customers that start in the future. Remember, even new 
customers can stop during the forecast period, and the forecast needs take 
this into account.

This section focuses on the question: Based on customers who started after the 
left truncation date, how many customers will be around on 2006-07-01? The next 
chapter addresses the issue of left truncation.

July 1st is 181 days after January 1st. So, the question is how many existing 
customers will survive an additional 181 days? And, how many new customers 
will survive to July 1st.
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Existing Base Forecast
Forecasting the existing base combines two pieces of information. The first is 
the size of the existing base—the number of customers, by tenure, at the begin-
ning of the year. The second is the survival for an additional 181 days of tenure.

Let’s explain the process by example. On January 1st, assume that 100 subscribers 
have a tenure of 200. The survival curve specifies that 83% of tenure 200 sub-
scribers are still around 181 days later, at tenure 381. That means that 83% of 
the 100 customers will be around on July 1st. The idea is to do that calculation 
for all the tenures and add up the results.

A big challenge is that the hazard values are known only up to a maximum 
tenure—but the calculation needs hazards for that tenure plus 181 days.

Existing Base Calculation

Determining the existing base as of 2006-01-01 uses aggregation with a WHERE 
clause. One complication is tenure needs to be recalculated as of that date:

SELECT (CASE WHEN StopType IS NOT NULL AND StopDate <= censordate
             THEN Tenure ELSE DATEDIFF(day, StartDate, censordate)
        END) as tenure2006, COUNT(*)
FROM (SELECT s.*, CAST('2005-12-31' as DATE) as censordate,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
              ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s) s
WHERE StartDate <= censordate AND
      StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY (CASE WHEN StopType IS NOT NULL AND StopDate <= censordate
               THEN Tenure ELSE DATEDIFF(day, StartDate, censordate)
          END)
ORDER BY tenure2006

This query will subsequently be used as a CTE called ep for “existing 
population.”

Calculating Survival on July 1st

An earlier example in this chapter showed how to calculate the survival as of a 
particular date—such as the last date in 2005. The next question is: Given a group 
of customers with a particular tenure, how many of them will survive 181 additional days?

The simple solution is, for each tenure, to calculate the ratio of the survival 
181 days later by the survival for that tenure. Assuming that S has the survival 
calculations:

SELECT S.*, S181.S / S.S as S181
FROM S JOIN
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     S S181
     ON s.tenure2006 + 181 >= s181.tenure2006 AND
        (s.tenure2006+181 < s181.nexttenure or s181.nextTenure IS NULL)
ORDER BY Tenure2006

In this calculation, survival can be calculated through any method.
Figure 6-21 illustrates a problem with this approach. Initially, it works fine. 

But, the longest term hazards are zero because long tenures have no stops. This 
means that the incremental survival increases to 100%.

Let’s make some assumptions. Let’s decide (somewhat arbitrarily) that for 
tenures of 700 or greater, the calculation should use a constant hazard of 0.1%. 
This value is consistent with the longer term hazards. With a constant hazard, we 
can calculate the survival using powers of 0.999 (this magic number is 1 – 0.1%).

Then, starting at tenure 520, the value of “S181” has to incorporate this new 
survival calculation. At tenure 700, the entire calculation uses the new hazards. 
The following variation incorporates this idea:

SELECT S.*,
       (CASE WHEN S181.tenure2006 <= const.maxt THEN S181.S
             ELSE POWER(1 - const.h, 181 - (maxt - s.tenure2006)) * S700
        END) / S.S as S181ratio
FROM S JOIN
     S S181
     ON s.tenure2006 + 181 >= s181.tenure2006 AND
        (s.tenure2006 + 181 < s181.nexttenure OR
         s181.nextTenure IS NULL) CROSS JOIN
     (SELECT 700 as maxt, 0.001 as h, S as S700
      FROM S
      WHERE 700 >= s.tenure2006 and 700 < s.nexttenure) const
ORDER BY Tenure2006

figure 6-21: Although the survival continues to decrease, the 181-day survival starts to increase. 
A major factor is because the hazards are zero after the longest tenure in the data.
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This version includes a subquery that extracts the survival at 700 days, as well 
as setting the long-term hazard and tenure cutoff. The SELECT then uses this 
information to calculate the survival for tenures longer than 700 days.

Calculating the Number of Existing Customers on July 1st

Calculating the number of customers combines the population on January 1st 
and the survival values to July 1st. The following query does this calculation:

WITH subs as (
      SELECT s.*,
             (CASE WHEN StopType IS NULL THEN 0.0
                   WHEN StopDate > censordate THEN 0
                   ELSE 1 END) as isstop2006,
             (CASE WHEN StopType IS NOT NULL AND
                        StopDate <= censordate THEN Tenure
                   ELSE DATEDIFF(day, StartDate, censordate)
              END) as tenure2006
      FROM (SELECT CAST('2005-12-31' as DATE) as censordate, s.*
            FROM Subscribers s) s
      WHERE StartDate <= censordate AND
            StartDate >= '2004-01-01' AND Tenure >= 0
     ),
     pop2006 as (
      SELECT tenure2006, COUNT(*) as pop
      FROM subs
      WHERE StopDate >= censordate or StopDate IS NULL
      GROUP BY tenure2006
     ),
     h as (
      SELECT Tenure2006,
             LEAD(Tenure2006) OVER (ORDER BY Tenure2006) as nexttenure,
             SUM(isstop2006) /
              SUM(COUNT(*)) OVER (ORDER BY Tenure2006 DESC) as h2006
      FROM subs
      GROUP BY Tenure2006
     ),
     S as (
      SELECT h.*,
             EXP(SUM(LOG(1 - h2006)) OVER (ORDER BY Tenure2006)) /
               (1 - h2006) as S
      FROM h
     ),
     S181 as (
      SELECT S.*,
             (CASE WHEN S181.tenure2006 <= const.maxt THEN S181.S
                   ELSE POWER(1-const.h, 181-(maxt-s.tenure2006)) * S700
              END) / S.S as S181
      FROM S JOIN
           S S181
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           ON s.tenure2006 + 181 >= s181.tenure2006 AND
              (s.tenure2006 + 181 < s181.nexttenure OR
               s181.nextTenure IS NULL) CROSS JOIN
           (SELECT 700 as maxt, 0.001 as h, S as S700
            FROM S
            WHERE 700 >= s.tenure2006 and 700 < s.nexttenure
           ) const
      )
SELECT pop2006.tenure2006, (pop2006.pop * S181.S181) as pop
FROM pop2006 LEFT JOIN
     S181
     ON pop2006.tenure2006 = S181.tenure2006
ORDER BY Tenure2006

This query looks complicated—and it is. But it is built from fairly simple 
components:

 ■ subs: This is what the world looks like as of 2005-12-31. Two notes: This 
includes customers who stopped after that date. And, it only includes 
subscribers after the left truncation date.

 ■ Pop2006: This is the population as of 2006-01-01. This incorporates stop 
conditions into the subs population.

 ■ h, S, S181: These calculate the hazard, survival, and conditional survival 
as throughout the chapter.

The final SELECT multiplies the population and the survival out for 181 days.
This forecast calculates the expected number of customers who will still be 

around 181 days later. The expected value is a floating point number rather than 
an integer—as expected values often are. To get the number of stops, subtract 
the expected number from the actual starts.

The forecast also breaks the results into individual tenures. The tenure is 
the tenure as of the beginning of the period, but it could also be as of the end 
of the period. This can be handy for understanding which customer groups 
are leaving.

How Good Is It?

This forecast is a rudimentary forecast that only takes tenure into account. The 
total population on January 1st is 1,597,956 and on July 1st, the population is 
1,313,944. About 17.8% of the existing customers have stopped.

The forecast estimate is 1,278,378.0. This is about 2.7% less than the actual 
number. The prediction here is that about 20.0% of the customers will stop.

One cause of error is in the long-term survival. The estimate of 0.1% for the 
long-term hazard was just a guess—although it is quite close to the actual esti-
mated value. A larger source of error appears to be changes in the business in 
2006, affecting the hazards.
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Estimating the Long-Term Hazard

A better estimate for the long-term hazard is simple. Add up all the tenures 
greater than 700 and divide by the number of stops in this group. The left-
truncated data does not have many long-term subscribers.

An alternative calculation uses all customers who hit tenure 700 after the left 
truncation date. This calculation counts the number of days that each customer 
is at risk after tenure 700 and after the left truncation date:

WITH subs as (
      SELECT s.*,
             DATEDIFF(day, StartDate, LeftTruncationDate) as TenureAtLT
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s) s
      WHERE Tenure >= 0
     )
SELECT (SUM(CASE WHEN StopType is not null THEN 1.0 ELSE 0 END) /
        SUM(CASE WHEN TenureAtLT >= 700 THEN Tenure – TenureAtLT
                 ELSE Tenure - 700 END)
       ) as h700
FROM subs
WHERE tenure >= 700

The ratio of the number of stops to the number of days at risk is the best estimate 
of the long-term hazard. For this data, the value is about 0.837%—not far off 
from the original guesstimate of 0.1%.

New Start Forecast
The new start forecast uses estimates for new starts by day between January 
1st and July 1st. One solution is to use the starts from the previous year. For this 
example, we’ll take the starts from 2006—that way, there is no error in the starts 
themselves. Typically, a business process produces these estimates because 
managers are responsible for meeting such goals.

The second component is the survival. This is easier than for the existing base. 
We just need to know if someone is going to survive to July 1st. If they start on 
January 1st, that is 181 days of survival. If they start on June 30th, that is one day. 
In other words, calculate the number of days into the period for each start, and 
then subtract this from 181 days for the survival. The query is:

WITH subs as ( . . . ),
     ns2006 as (
      SELECT DATEDIFF(day, censordate, StartDate) as daysafter,
             COUNT(*) as pop
      FROM (SELECT CAST('2005-12-31' as DATE) as censordate, s.*
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            FROM Subscribers s) s
      WHERE StartDate >= censordate AND StartDate <= '2006-07-01'
      GROUP BY DATEDIFF(day, censordate, StartDate)
     ),
     h as ( . . . ),
     S as ( . . . )
SELECT ns2006.daysafter, ns2006.pop, S.tenure2006, S.S,
       ns2006.pop * S.S as pop
FROM ns2006 LEFT JOIN
     S
     ON s.tenure2006 = 181 - ns2006.daysafter
ORDER BY ns2006.daysafter

Most of this query consists of familiar elements. The only new component is 
ns2006, the starts, by day, during the period.

Of the 362,641 subscribers who started in 2006 before July 1st, the forecast 
predicts that 321,237.0 will survive to July 1st. The actual number is 316,208—just 
a 1.6% difference.

Lessons Learned

This chapter introduces survival analysis for understanding customers. The 
origins of survival analysis were for understanding mortality rates to calculate 
the value of financial products. This was pretty sophisticated stuff for 1693. 
Since then, the technique has been used in many areas, from manufacturing 
to medical outcomes studies to understanding convicts released from prison.

Two key concepts in survival analysis are the hazard probability, which is 
the probability that someone will succumb to a risk at a given tenure, and sur-
vival, which is the proportion of people who have not succumbed to the risk. 
For customer-based survival, these two values are calculated for all tenures. 
The resulting hazard and survival charts can be quite informative and help us 
better understand customers and the business.

Survival can also be quantified. The median customer tenure (or customer 
half-life) is the time it takes for half of the customers to stop. The point estimate 
of survival, such as the one-year survival, is the proportion of customers who 
make it to one year. The average truncated tenure is the average tenure of a 
customer during a period of time.

One powerful use of survival analysis is for estimating customer value by 
predicting future customer revenue. This works for both new and existing 
customers. Although the calculations are a bit complicated, the ideas are fairly 
simple—just multiplying the average expected survival by the revenue. Another 
powerful application is forecasting—for both existing customers and new cus-
tomers based on their survival.

The next chapter dives into survival analysis in more detail, introducing 
the concepts of time windows (to handle left truncation) and competing risks.
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The previous chapter demonstrated the value of survival analysis for under-
standing customers and their stop behaviors. It introduced empirical hazards 
estimation, which calculates a separate hazard probability for each tenure. It 
included several examples and extensions showing how to apply survival 
analysis to some business problems, including customer value and forecasting 
the number of active customers in the future.

This chapter builds on this foundation by introducing three extensions to 
basic survival analysis. These extensions solve common, real-world problems. 
They also make it possible to understand the effects of other factors besides 
tenure on survival.

The first extension focuses on factors other than tenure that affect survival. 
A big complication here is that the effect may vary, depending on tenure. For 
instance, customers in Gotham and Metropolis have about the same survival 
for the first year. Around the one-year anniversary, Gotham customers start 
leaving at a much faster rate. In other words, the effect of market on survival 
varies by tenure.

The most prominent statistical technique in this area, Cox proportional haz-
ards regression, assumes that the effects do not change over time. Although this 
method is outside the scope of this book, it does inspire us to look at the changing 
effects of each factor at different tenures. This chapter explains several differ-
ent approaches for understanding how and when such factors affect survival.

The second extension is using time windows for the hazard calculation. This 
chapter introduces time windows as a way to solve a problem in many data 
sources, including the subscription data: Starts come from a longer time period 
than stops. Time windows do much more than just solve the left truncation prob-
lem. They are powerful tools for estimating unbiased hazard probabilities based 
on a time window of customer activity, rather than on a time window of starts.

C h a p t e r 

7
Factors affecting Survival:  

the What and Why of  
Customer tenure 
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The third extension goes in a different direction. The factors that affect sur-
vival occur at the beginning of or during the customer life cycle. At the end of 
the life cycle, customers stop and they stop for some reason. This reason may 
be voluntary (customers switch to competitors); or the reason may be forced 
(customers stop paying their bills); or customers might migrate to different 
products. Competing risks is a method for incorporating these different out-
comes into survival analysis.

Competing risks answers the question: “What happens next for all the cus-
tomers?” That is, at a given point in the future, what proportion of customers 
have stopped for each of the competing risks? This question follows from the 
forecasting introduced in the previous chapter. Forecasts can include not only 
the numbers of remaining customers, but also of what happens to the stopped 
customers. Before diving into what happens next, let’s start at the beginning. 
How do the factors known at the beginning of the customer relationship affect survival?

Which Factors Are Important and When

Survival analysis can be used to compare different groups of customers by 
creating a separate curve for each group. This process, called stratification, quali-
tatively shows the effect of market, or rate plan, or channel, or a combination 
of them, on survival.

This section shows how to quantify the effects at different tenures. For numeric 
variables, the comparison uses averages of the variable at different tenures for 
customers who stop and do not stop. For categorical variables, the comparison 
uses hazards ratios at different tenures. The key idea is that the effect of such 
variables may be stronger during some parts of the customer tenure and weaker 
during others. Being able to see the effects at different tenures sheds light on 
the effect of the variables on customer relationships.

Explanation of the Approach
Figure 7-1 shows a group of customers on the tenure timeline. The chart is 
similar to the charts in the previous chapter that illustrated the calculation of 
hazard probabilities. Here, though, we are going to look at the chart a bit dif-
ferently. The chart shows eight customers. At tenure three, exactly one of them 
stops, and the rest remain active. What differentiates the customer(s) who stop from 
the customer(s) who remain active?

Part of the answer is obvious: What differentiates them is that one group 
stopped and the other did not. A better way to phrase the question is to ask 
what differentiates the two groups by other variables. The goal is to estimate, 
understand, and visualize the effects of other variables on survival at any 
given tenure.
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The factors that differentiate between stopped customers and active custom-
ers may change for different tenures. For instance, during some tenure periods, 
initial promotions end. During others, customers are stopped because they do 
not pay their first bill. The groups of stopped customers at these tenures are 
unlikely to be similar. Tenures with no stops have no answer because the group 
of stopped customers is empty.

The comparison between the customers who stop at a particular tenure and 
those who remain active was first investigated by Sir David Cox, the inventor 
of Proportional Hazards Regression. A statement such as “Every cigarette a 
person smokes reduces his or her life by 11 minutes” is an example of results 
obtained with this technique. The aside “Proportional Hazards Regression” 
introduces the basic ideas.

The next two sections show reasonable ways to compare the effects of vari-
ables in customer data. In one sense, these techniques are more powerful than 
proportional hazards regression because they eliminate the assumption of 
proportionality. They are also better suited for understanding and visualizing 
the effects. On the other hand, the proportional hazards regression is better for 
reducing the effects down to a single number, to a coefficient in the language 
of statistics.

Using Averages to Compare Numeric Variables
A good way to see the effect of a numeric variable on survival is to compare 
the average value for stopped customers and for active customers at each 
tenure. These averages can be plotted in a chart, making it easy to compare 
them.

Figure 7-1: At any given tenure, what differentiates customers who stop and those who remain 
active?
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proportional hazardS regreSSion

In 1972, Prof. David Cox at the University of Cambridge in England published a paper 
with the entertaining title, “Regression Models and Life Tables (with discussion).” This 
paper is purportedly one of the most cited scientific papers because his techniques 
are widely used in medical research studies. Because of his contributions to statistics, 
Prof. Cox was knighted and is now known as Sir David Cox.

Why is this paper so important? Sir Cox’s method measures the effect of variables 
on survival without actually calculating the hazards. His method is quite clever and 
understanding how it works is worthwhile. Although available in almost all statistics 
tools, replicating the method directly in SQL and Excel is impractical. This is actually 
okay because the method relies on an assumption that is generally not true in cus-
tomer data. The proportionality assumption asserts that the effect of a variable is the 
same for all tenures. For the subscription data, this assumption fails for market, chan-
nel, rate plan, and monthly fee. In general, the assumption is important for technical 
reasons and, unfortunately, not true for most real-world data.

Nevertheless, proportional hazards regression is important for at least three rea-
sons. First, even when the proportionality assumption is violated, the results are often 
qualitatively correct. Second, the method allows forward selection of variables, so it 
can choose which variables have the biggest impact on survival. Finally, proportional 
hazards regression inspires us to look at the effects of factors over time, the methods 
discussed in the text.

Let’s assume that each customer has his or her own hazard function.  The survival 
probability is a big equation consisting of products of expressions, such as (1–h(t)) 
for the tenures when the customer remains active and h(t) for the final tenure.  This 
is the approach described in the previous chapter.

Cox’s brilliant idea was to look at the hazards in a different way.  Instead of asking 
about the tenure when a customer would stop, he asked: What is the likelihood that 
exactly the customers who stopped at a given tenure are the customers who actually did 
stop? So, if there are four customers and the third stops at tenure 5, then the likelihood 
equation for tenure 5 looks like: (1–h1(5))*(1–h2(5))*h3(5)*(1–h4(5)). Each 
customer hazard function is then expressed as a function of the variables describing 
each customer. Then, this equation is repeated for all tenures (or at least all tenures 
with stops).

This is a complicated equation. The hazards themselves are functions of covariates. 
By assuming that the effect of any given covariate is the same for all tenures, Cox was 
able to calculate the impact of each covariate. In essence, the hazard probabilities 
 simply cancel out, leaving a complicated function of the covariates and their param-
eters. A technique called maximum likelihood estimation (MLE) can then estimate the 
parameters that make the observed stops the most likely.

The result is a measure of the importance of each variable on survival. This measure 
is useful as an overall measure. Because the proportionality assumption is not neces-
sarily reasonable on customer data, we need to do additional investigations anyway, 
using the methods discussed in the text.
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The subscribers data has one numeric variable, MonthlyFee. What is the differ-
ence in the average value of the monthly fee for customers who stop versus customers 
who remain active for all tenures?

The Answer

Figure 7-2 shows such a chart for the monthly fee. This chart has two series: one 
for the average monthly fee of the stopped customers, the other for the active 
customers.

Customers who stop during the first year have higher monthly fees than 
those who remain active. This may be due to price-sensitive customers who 
are paying too much when they sign up. Almost all customers start on a one- 
or two-year contract, with a penalty for breaking the contract. The purpose of 
the penalty is to prevent customers from stopping during the contract period. 
However, customers with higher monthly fees have more to gain by stopping 
than those with lower monthly fees, so the contract penalty has less effect on 
customers paying higher fees.

Around the first-year anniversary, the curves for the active and stopped cus-
tomers intersect. Stopped customers initially have a higher monthly fee; after 
the one-year mark, active customers have the higher monthly fee. Presumably, 
many customers on less expensive plans who want to stop during the first year 
end up stopping around the anniversary date. This washes out after a month 
or two, and the averages for the two groups are essentially the same for the 
rest of second year. After the second year, they reverse yet again, although by 
the third year, the data is becoming sparser because only three years of starts 
are used for the analysis.

Figure 7-2: This chart compares the average monthly fees of customers who stop and who 
remain active at each tenure.
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Notice that one curve is smooth and the other jagged. The average for the active 
customers is smooth because millions of customers are active for many of the 
tenures. In addition, the customers active for two adjacent tenures significantly 
overlap—because all customers active for the longer tenure are also active for the 
shorter one. The average for the stopped customers jumps around because there are 
many fewer stopped customers at a given tenure (just a few hundred or thousand) 
and the stopped customers at any two tenures do not overlap with each other at all.

Answering the Question in SQL and Excel

This chart requires two values for each tenure: the average value for stopped 
customers and the average value for active customers. The first of these quantities 
is easy to calculate because each stopped customer is included in the average 
only at the tenure when the customer stops:

SELECT Tenure, AVG(MonthlyFee) as AvgMonthlyFee
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s
     ) s
WHERE StopType IS NOT NULL AND StartDate >= LeftTruncationDate AND
      Tenure >= 0
GROUP BY Tenure
ORDER BY Tenure

This calculation takes left truncation into account. For the stops, this logic makes 
no difference because the table has no stops before the left truncation date. But, 
for active customers, it does matter. Customers who stopped have been filtered 
out, and they were active for many tenures before they stopped; not including 
them (when they should be) could bias the results.

The calculation for stopped customers is simple; the one for active custom-
ers is more complex. At any given tenure, the average monthly fee of the active 
customers is the sum of the monthly fees of all active customers divided by the 
number of active customers.

How can we calculate these two values? The idea is similar to the idea for 
calculating the population at risk for hazards, an iterative calculation. The 
number of active customers at any given tenure is the number of customers 
who are active at the previous tenure minus the ones who stop. Similarly, the 
sum of the monthly fees at any given tenure is the sum of the monthly fees at 
the previous tenure, minus the sum for those who stop.

These observations lead to the following variables:

 ■ Tenure

 ■ Number of customers at each tenure
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 ■ Number of customers who stop at each tenure
 ■ Sum of the initial monthly fees of all customers at each tenure
 ■ Sum of the initial monthly fees of stopped customers at each tenure

These variables can readily be calculated in SQL:

SELECT Tenure, COUNT(*) as pop, SUM(isstop) as numstops,
        SUM(MonthlyFee) as mfsumall, SUM(MonthlyFee * isstop) as   

mfsumstop
FROM (SELECT s.*,
            (CASE WHEN StopType IS NULL THEN 0 ELSE 1 END) as isstop,
            (CASE WHEN Market = 'Smallville'
                  THEN CAST('2004-10-27' as DATE)
                  ELSE '2004-01-01' END) as LeftTruncationDate
       FROM Subscribers s) s
WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY Tenure

ORDER BY Tenure

The active population for each tenure is the sum of the customers with tenures 
as large as or larger than each tenure. The active population is split into two 
groups: the customers who stop at that tenure (which is one of the five variables 
returned by the query), and everyone else.

The total initial monthly fees are split in a similar manner. These calcu-
lated values provide the information to calculate the average for each group. 
Figure 7-3 shows an Excel spreadsheet that does this calculation.

Answering the Question Entirely in SQL

This calculation can be done entirely in SQL using cumulative sums:

WITH t as (
      SELECT Tenure, COUNT(*) as pop, SUM(isstop) as numstops,
             SUM(MonthlyFee) as mfsumall,
             SUM(MonthlyFee * isstop) as mfsumstop
      FROM (SELECT s.*,
                   (CASE WHEN StopType IS NULL THEN 0 ELSE 1
                    END) as isstop,

Figure 7-3: This Excel spreadsheet calculates the average monthly fee for active customers and 
for stopped customers.
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                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s) s
      WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
      GROUP BY Tenure
     )
SELECT Tenure, SUM(pop) OVER (ORDER BY Tenure DESC)-numstops as actives,
       (SUM(mfsumall) OVER (ORDER BY Tenure DESC) –
        mfsumstop) as mfsumactives,
       ((SUM(mfsumall) OVER (ORDER BY Tenure DESC) - mfsumstop) /
        (SUM(pop) OVER (ORDER BY Tenure DESC) - numstops)
       ) as MFActiveAvg,
       mfsumstop / NULLIF(numstops, 0) as MFStopAvg
FROM t
ORDER BY Tenure

The previous query is used to define t. The outer SELECT does the cumulative 
sums that can also be done in Excel. Note the use of NULLIF() to prevent a 
divide-by-zero error.

Extension to Include Confidence Bounds

The values just calculated are examples of sample averages. As discussed in 
Chapter 3, such averages have confidence intervals based on the standard error, 
so a reasonable enhancement is to include the standard error or confidence 
bounds in the chart.

Figure 7-4 shows the previous chart with 95% confidence bounds for the stopped 
customers. The confidence bounds for the active customers are so small as to 
be negligible, so the chart does not show them. Because the confidence bounds 
depend on the number of points at each point, the data is summarized at the 
weekly level rather than the daily level to narrow them for the stopped customers.

Figure 7-4: The comparison of averages can include error bars that show a confidence interval for 
either average. In this case, the 95% confidence bound is shown for the monthly fee average for stops.
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This chart clearly illustrates that during the first year, stopped customers have 
an average monthly fee that is significantly higher than that of active customers. 
After a year and a few months, the averages become quite similar.

Even if the two curves had overlapping confidence bounds during the first 
year, the difference between the curves would probably still be statistically 
significant because the trends are so consistent. Overlapping confidence inter-
vals suggest that at any given tenure, two points might be in either order due 
to random variation. However, a consistent trend undercuts this observation. 
If the difference between two groups were due to chance, there would not be 
long sequences where one is greater or lower than the other.

tip When looking at confidence bounds on series, it is important to look at trends as 
well as overlapping confidence intervals.

The confidence bound uses the statistical formula for the standard error of a 
sample. The bound is 1.96 times the standard error. Recall from Chapter 3 that 
the standard error for a sample average is the standard deviation divided by 
the square root of the size of the sample. The standard deviation is calculated 
as follows:

 1. Take the sum of the squares of the monthly fees.

 2. Subtract the average monthly fee squared divided by the number of values.

 3. Divide the difference by one less than the number of values.

 4. Then estimate the standard deviation by taking the square root.

This calculation requires several aggregated values in addition to the values 
used for the average initial monthly fee averages.

The following query does the necessary calculations:

SELECT FLOOR(Tenure / 7) as tenureweeks, COUNT(*) as pop,
       SUM(isstop) as numstops, SUM(MonthlyFee) as mfsumall,
       SUM(MonthlyFee * isstop) as mfsumstop,
       SUM(MonthlyFee * MonthlyFee) as sum2all,
       SUM(MonthlyFee * MonthlyFee * isstop) as mfsum2stop
FROM (SELECT s.*,
             (CASE WHEN StopType IS NULL THEN 0 ELSE 1 END) as isstop,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
       FROM Subscribers s) s
WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY FLOOR(Tenure / 7)
ORDER BY tenureweeks

This query adds several aggregations to the SELECT clause of the query used 
in the previous section; this version includes the sum of the squares of the 



324 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure   

monthly fee for all customers and for stopped customers. The query also uses 
an indicator variable, isstop, for the stop calculations.

The sum of squares values are accumulated for each tenure, and split into two 
groups for active customers and stopped customers; this is the same process 
used for the monthly fee average calculation. The sum provides the missing 
information for the standard deviation calculation. The rest of the calculation 
subtracts the number of values times the sum of squares of the averages from 
the sum of squares and divides the difference by one less than the number of 
values. The standard error is then the standard deviation divided by the square 
root of the number of stops. And, the 95% confidence bound is 1.96 times the 
standard error.

Showing the result as confidence bounds in the chart makes use of posi-
tive and negative Y-error bars. These are placed in the chart by selecting 
the series, right-clicking to bring up the “Format Data Series” dialog box, 
and choosing “Error Bars” on the left pane. On this tab, choose the “Both” 
option, and then choose the “Custom” option on the bottom. Place the cell 
range with the confidence bounds in the “+” and “–” boxes. The same range 
is used for both.

Hazard Ratios
Averages work for numeric variables, but they do not work for categorical variables: 
The “average” value of a column that takes on distinct values, such as Gotham, 
Smallville, and Metropolis does not make sense. Yet, the question remains: What 
is the effect of a categorical variable (such as market or rate plan) on survival for different 
tenures? Because averages do not work, an alternative approach is needed, the 
ratio of hazard probabilities.

Interpreting Hazard Ratios

Figure 7-5 shows two hazard ratio charts. The top chart shows the ratio of the 
hazards by market for the Smallville to Gotham and Metropolis to Gotham. 
The Gotham to Gotham ratio is not interesting, because it is uniformly one.

Smallville’s survival is better than Gotham’s, so as expected, the ratio of 
Smallville’s hazards to Gotham’s hazards is uniformly less than one. This 
effect is strongest during the first year, with the ratio climbing up a bit in the 
second year. Although they are much better customers, Smallville’s customers 
are becoming less good, relative to Gotham’s, at longer tenures.

The situation with Metropolis is the opposite. During the first year, the hazard 
ratio is close to one, so Metropolis’s customers are almost as bad as Gotham’s 
in the first year. In the second year, the hazard ratio drops from about 0.96 to 
0.75. So, Metropolis’s customers are getting better while Smallville’s are getting 
worse. After two years, though, Smallville’s customers are still stopping at a 
lower rate than Metropolis’s.
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Figure 7-5: The top chart shows hazard ratios for market, compared to Gotham, and the bottom 
shows hazard ratios for channel, compared to Dealer.

The lower chart in Figure 7-5 shows the hazard ratios by channel for Chain, 
Store, and Mail compared to Dealer. The hazards for the Store channel are almost 
uniformly lower than for Dealer, implying that survival of customers from Store 
is better than customers from Dealer. This makes sense because the Store chan-
nel consists of own-branded stores, where the personnel are actually employees 
of the cell phone company. Customers who purchase through that channel are 
attracted to the brand. It is not surprising that these stores attract and retain the 
best customers, and in particular, better than the independently owned dealers.

The Mail and Chain hazard ratios are interesting because these ratios are 
greater than one during the first year and then lower during the second year. 
One possibility is that the Dealers are intentionally churning their customers 
in the second year. That is, the independently owned dealers switch customers 
who have been around a year to another carrier in order to get an acquisition 
bonus from the second carrier. Customers who were acquired through national 
chains and customers who come in by signing up on the phone or Internet 
would not be subject to such a ploy.
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Calculating Hazard Ratios Using SQL and Excel

Calculating the hazard ratios is basically the same as calculating the hazard 
probabilities. SQL can be used in conjunction with Excel for the calculation. The 
query to calculate the hazards by market and channel is:

SELECT Tenure,
       SUM(isms) as ms, SUM(ismm) as mm, SUM(ismg) as mg,
       . . .
       SUM(isms * isstop) as ms_stop, . . .
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville '
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate,
             (CASE WHEN StopType IS NULL THEN 0 ELSE 1 END) as isstop,
              (CASE WHEN market = 'Smallville' THEN 1 ELSE 0 END) as isms,
             . . .
             (CASE WHEN channel = 'Mail' THEN 1 ELSE 0 END) as iscm
      FROM Subscribers s) s
WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY Tenure
ORDER BY Tenure

The results can be copied into Excel to calculate the hazards. For the ratios, 
Gotham and Dealer were chosen arbitrarily. The one with the best survival 
(Smallville) or worst survival (Gotham) are good choices. Comparing to the 
population as a whole can be interesting. However, be careful because the com-
position of the overall population may change over time. In other words, if the 
hazard ratio approaches one, you need to determine whether the population is 
becoming more like that category or if all the categories are converging to be 
similar at that tenure.

One caution: The hazard ratio does not work when the comparison group has 
no stops at a given tenure. For the comparison by market, this does not happen. 
In other cases, it might be desirable to use a larger time period, such as seven 
days (one week) or 30 days (approximately one month).

tip When using hazard ratios, adjust the time period used for the tenure calcula-
tions to ensure that each time period has enough stops, for instance, by summarizing 
at the weekly level rather than the daily level.

Calculating Hazard Ratios in SQL

The calculation can also be done in SQL, using window functions:

SELECT Tenure, SUM(IsStop) / NULLIF(SUM(COUNT(*)) OVER
                                          (ORDER BY Tenure DESC), 0) as pop,
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           SUM(isms * isstop)/NULLIF(SUM(SUM(isms)) OVER
                                     (ORDER BY Tenure DESC), 0) as h_ms,
           . . .
           SUM(iscd * isstop)/NULLIF(SUM(SUM(iscd)) OVER
                                     (ORDER BY Tenure DESC), 0) as h_cd
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE  '2004-01-01' END) as LeftTruncationDate,
             (CASE WHEN StopType IS NULL THEN 0 ELSE 1.0 END) as isstop,
             (CASE WHEN Market = 'Smallville' THEN 1 ELSE 0 END) as isms,
             . . .
             (CASE WHEN Channel = 'Dealer' THEN 1 ELSE 0 END) as iscd
      FROM Subscribers s) s
WHERE StartDate >= LeftTruncationDate AND Tenure >= 0
GROUP BY Tenure
ORDER BY Tenure

This query combines the window functions with the aggregation functions, 
resulting in the nested SUM() calls. The ORDER BY Tenure DESC calculates the 
cumulative sum to the end of the tenures rather than from the beginning.

Why the Hazard Ratio?

A question may be occurring to some readers: Why the hazard ratio and not 
the survival ratio? First, the survival ratio can also be informative by directly 
comparing the point-estimates of survival. If 40% of one group survives to a 
given tenure, and another group has a survival ratio of 0.5 compared to that 
group, then that group’s survival is 0.5 * 40% = 20%.

The hazard ratio has two advantages, one theoretical and one practical. The 
theoretical advantage is that the hazard ratio is related to the methods used for 
Cox proportional hazards regression. Both techniques look at characteristics of 
stops at each tenure. This relationship is theoretically appealing.

The more practical reason is that the hazard ratio gives independent informa-
tion for each tenure, as opposed to survival, which accumulates information up 
to each tenure. In the charts, the hazard ratio flipped around the one-year mark. 
This phenomenon shows up much more gradually in the survival ratio because the 
information has to accumulate over many tenures. In fact, the hazard ratio shows 
that the hazard probabilities for Smallville are getting worse while the hazard 
probabilities for Metropolis are getting better. However, even after two years, 
Smallville still has better survival than Metropolis because of what happens dur-
ing the first year. The survival ratio does not show this phenomenon clearly at all.

One drawback of the hazard ratio is that any given tenure might have only 
a small amount of data. This can be fixed by using longer tenure periods, such 
as weeks or multiples of weeks, instead of days.
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Left Truncation

This section moves to another topic, which is the accurate calculation of 
hazard probabilities. As noted in the previous chapter, the customers in the 
Subscribers table data have an unexpected property: Customers who stopped 
before some date (that depends on the market) are excluded from the table. 
This phenomenon, where customers are excluded based on their stop date, 
is called left truncation, and naïve hazard calculations on left-truncated data 
produce incorrect results. In the previous chapter, the problem of left trunca-
tion was handled by introducing LeftTruncationDate into all the queries. 
This section presents a more flexible method, based on an idea called time 
windows.

Left truncation is a problem because hazard estimates on left truncated data 
are simply incorrect. The solution to left truncation is to calculate the hazards 
using only a “time window” of activity—the calculation only uses information 
from customers active during the time window. This technique is a powerful 
enhancement to survival analysis that has other applications. Before discuss-
ing time windows in general, though, let’s look at the left truncation problem 
that they solve.

Recognizing Left Truncation
The previous chapter identified the left truncation problem by looking at the 
minimum stop date in each market. Even when left truncation is an issue, this 
approach is often not sufficient—some customers might sneak into the data 
even though they stopped before the left truncation date.

A better approach is to use a histogram of starts and stops by date. The chart 
itself is similar to other histograms, except two curves are shown on the same 
chart. One approach is to generate the data for each histogram separately, and 
then combine them in Excel. However, producing the right format in SQL sim-
plifies the Excel work. The following query returns the number of starts and 
stops by month:

SELECT YEAR(thedate) as year, MONTH(thedate) as month,
       SUM(numstarts) as numstarts, SUM(numstops) as numstops
FROM ((SELECT StartDate as thedate, COUNT(*) as numstarts, 0 as numstops
       FROM Subscribers
       GROUP BY StartDate)
      UNION ALL
      (SELECT StopDate as thedate, 0 as numstarts, COUNT(*) as numstops
       FROM Subscribers
       GROUP BY StopDate)) a
WHERE thedate IS NOT NULL
GROUP BY YEAR(thedate), MONTH(thedate)
ORDER BY year, month
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This histogram query uses UNION ALL to ensure that all months with either a 
start or stop are included.

The resulting histogram in Figure 7-6 suggests that starts are coming from 
a much longer time period than stops. One way to confirm this is to ask: How 
many years (or months or days) have both starts and stops and how many have one 
without the other?

The following query characterizes years according to whether or not the year 
has any starts and whether or not the year has any stops:

SELECT (CASE WHEN numstarts = 0 THEN 'NONE' ELSE 'SOME' END) as starts,
       (CASE WHEN numstops = 0 THEN 'NONE' ELSE 'SOME' END) as stops,
       COUNT(DISTINCT yy) as numyears,
       MIN(yy) as minyear, MAX(yy) as maxyear
FROM (SELECT yy, SUM(numstarts) as numstarts, SUM(numstops) as numstops
      FROM ((SELECT YEAR(StartDate) as yy, COUNT(*) as numstarts,
             0 as numstops
             FROM Subscribers
             GROUP BY YEAR(StartDate) )
            UNION ALL
            (SELECT YEAR(StopDate) as yy, 0, COUNT(*) as numstops
             FROM Subscribers
             GROUP BY YEAR(StopDate) )) ss
      GROUP BY yy) ssy
GROUP BY (CASE WHEN numstarts = 0 THEN 'NONE' ELSE 'SOME' END),
         (CASE WHEN numstops = 0 THEN 'NONE' ELSE 'SOME' END)
ORDER BY starts, stops

The results in Table 7-1 confirm what we already know. Prior to 2004, starts 
were recorded in the database but not stops—and the exact date differs by 
market (the above queries are easy to generalize to get information by other 
dimensions, such as market and channel). Chapter 6 got around this prob-
lem by filtering the starts to include only after the left truncation date. The 

Figure 7-6: This histogram of start and stop counts by month suggests that prior to 2004, starts 
are recorded in the database but not stops.
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resulting calculations use customers whose full start and stop information 
is available.

Subscribers has a particularly obvious form of left truncation because all 
stopped customers are excluded. Often, left truncation is not quite so blatant. 
For instance, some stops might make it into the database, perhaps because 
they were pending on the cutoff date. Or, the left truncation may be within a 
single market or customer subgroup. Perhaps a small company was acquired, 
and only their active customers were included in the database. Fortunately, the 
techniques that deal with left truncation can be enhanced to deal with a separate 
left truncation date for each customer.

Effect of Left Truncation
Left truncation, in general, biases hazard probabilities by making them 
smaller, because the population at risk is bigger than it should be. Customers 
are included in the population at risk for tenures when these customers are 
not at risk. For instance, a customer that started in 2001 is included in the 
population at risk for tenure one. If this customer had stopped at tenure one, 
she would not be in the data, so her stop would not be counted. Because she 
is in the data, her stop date, if any, must be after the left truncation date. Yet, 
making the mistake of including her in the population at risk for tenure one 
is easy.

As a consequence, the denominator of the hazard probability ratio is too large, 
so the hazard probability too small, which in turn makes the survival estimates 
too big. Figure 7-7 compares survival curves generated from all the customers 
and from only those who started after the left truncation date. The survival 
values are too optimistic. Optimism is good. Ungrounded optimism border-
ing on fantasy might lead to incorrect decisions and assumptions. Unbiased 
estimates are much preferred.

Warning Naïve hazard calculations on left truncated data usually underestimate 
the hazard values, overestimating survival.

Although left truncated data usually underestimates hazard probabilities, 
the resulting hazard probabilities could actually be either larger or smaller than 
the unbiased estimate. Consider the hazard probability at 730 days. It can be 

table 7-1: Number of Years, Characterized by Presence of Starts and Stops

StartS StopS number oF yearS minimum year maximum year

SOME NONE 17 1958 2003

SOME SOME   3 2004 2006
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set to almost any value by making up data before the left truncation date. So, 
consider the customers who start on 2001-01-01. If all these customers stop at  
exactly 730 days, then they all stop before the left truncation date (2003-01-01 
is before 2004-01-01), and they are not in the data. However, their stops would 
increase the 730-day hazard relative to the observed value. If, instead, these  
customers all stop at exactly 731 days of tenure, then they have survived  
730 days without stopping, thereby decreasing the 730-day hazard. Because 
these customers are not in the data, we don’t know which, if either, of these 
scenarios occurred.

When doing survival analysis, we assume that the hazard probabilities do 
not change radically over time—that they are stable. The scenarios described 
in the previous paragraph severely violate hazard stability at tenure 730. 
Figure 6-15 on page 288 did show that the 365-day hazard probability changes 
over time. However, the change is gradual, so this hazard does not seem 
to severely undermine the assumption of stability (for the observed data). 
Assuming the hazards are stable or relatively stable, hazard probabilities 
calculated from left truncated data underestimate the hazards and hence 
overestimate the survival.

tip We often assume that hazard probabilities are stable and do not change radi-
cally or suddenly over time. This is usually a reasonable assumption for customer data-
bases, although it is worth validating.

How to Fix Left Truncation, Conceptually
Figure 7-8 shows several customers on the calendar time line. Two dates 
are highlighted; the earlier is the left truncation date and the later one is 
the cutoff date. Only customers active after the left truncation date are in 
the database.

Figure 7-7: Calculations on left truncated data overestimate the survival. Filtering is one way to 
get unbiased estimates.
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Figure 7-8: Customers who stop before the left truncation date are not included in the database.

Customer #5 started and stopped before the left truncation date. This customer 
is simply missing from the data. We do not even know to look for the customer, 
because no records refer to that customer. Customer #2 started at about the same 
time yet appears in the data because this customer survived to the left trunca-
tion date. That one customer is present and another absent is a property of the 
data, as opposed to a property of any particular record. This is a particularly 
insidious form of missing data because the entire record is missing, not just a 
value in a column.

How can hazard probabilities be calculated without the biases introduced by 
this type of missing data? Remember, the hazard probability at a particular 
tenure is the number of customers who have an observed stop at that ten-
ure divided by the number of customers who are at risk of stopping. The 
population at risk was defined as everyone who was active at that tenure 
and could have stopped.

Left truncation adds a twist. Consider the at-risk population for customers 
at tenure zero in left-truncated data. Customers who started before the left 
truncation date and then stopped immediately had a tenure of zero. But, these 
customers are simply not in the data. Neither the stop nor the customer is in 
the population. The at-risk population at tenure zero consists only of customers 
who started after the left truncation date.

Consider the at-risk population for customers at tenure one. These customers 
have to be at risk of stopping at tenure one and the stop needs to occur after the 
left truncation date. So, tenure one needs to occur on or after the left truncation 
date. In other words, the customer must start between one day before the left 
truncation date and one day before the cutoff date.

The general rule is that a customer is in the population at risk at a given ten-
ure when that tenure occurs on or after the left truncation date and before the 
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cutoff date. The following two rules for membership in the population at risk 
encapsulate this observation for a given tenure t:

 ■ Customers start in the time period from the left truncation date minus t 
to the cutoff date minus t.

 ■ Customers are active at tenure t.

Together, these two rules imply that the customer is in the at-risk population 
at that tenure.

Estimating Hazard Probability for One Tenure
The preceding rules readily translate into SQL for a given tenure—for instance, 
the hazard probability for tenure 100:

SELECT t, COUNT(*) as poprisk_t,
       SUM(CASE WHEN tenure = t THEN isstop ELSE 0 END) as numstops,
       AVG(CASE WHEN tenure = t THEN isstop*1.0 ELSE 0 END) as haz_t
FROM (SELECT s.*,
             (CASE WHEN StopType IS NULL THEN 0 ELSE 1 END) as isstop,
             (CASE WHEN Market = 'Smallville'
                    THEN CAST('2004-10-27' as DATE)
                    ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s) s CROSS JOIN
     (SELECT 100 as t) const
WHERE Tenure >= t AND
      DATEADD(day, t, StartDate) >= LeftTruncationDate AND
      DATEADD(day, t, StartDate) <= '2006-12-31'
GROUP BY t

The result is 0.092%. Notice that this query uses a subquery to define the ten-
ure of interest (t). Changing the value of this variable results in estimates for 
other tenures. For instance, changing it to 1460 gives the tenure at four years 
(1460 = 365 * 4). That value is 0.073%.

Wow. Calculating the hazard for such a large tenure is remarkable. Up to 
this point, hazard probabilities have been limited to tenures less than three 
years because starts before 2014-01-01 were filtered out. However, by using 
a time window, hazard probabilities can be accurately estimated for almost 
any tenure.

Estimating Hazard Probabilities for All Tenures
The method used to estimate hazard probabilities for a single tenure does 
not readily scale to all tenures. Doing the calculation efficiently for all tenures 
requires a bit more cleverness based on observations about the population at 
risk. These observations look at the calculation from a different perspective, the 
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relationship between the population at risk for one tenure and the population 
at risk for the previous tenure.

The observations are:

 ■ The population at risk for a given tenure t is the population at risk for 
t − 1; plus

 ■ Customers who enter the time window with tenure t (that is, those who 
have tenure t on the left truncation date); minus

 ■ Customers who leave the time window with tenure t − 1 (that is, those 
who are stopped or censored at the previous tenure).

These observations use the number of customers who enter and leave the time 
window defined by the left truncation date and the cutoff date. The number 
of customers who enter at a given tenure is easily calculated. Customers who 
start on or after the left truncation date enter at tenure zero. Customers who 
start before the left truncation date enter the time window on their tenure as 
of the left truncation date. Only customers who have entered the time window 
are counted in the population at risk.

The number of customers who leave the time window at a given tenure is 
even easier. This is the number of customers with a given tenure, regardless of 
whether or not they stop. Any customers who stop before the left truncation 
date need to be excluded from both the “enters” and “leaves” calculations. This 
condition is a bit redundant for the data we are using because customers who 
stop before the left truncation date are not in the data at all, which is why we 
are going through this effort to calculate unbiased hazards.

The following SQL calculates numenters, numleaves, and numstops for all 
tenures less than 1000 by placing all longer tenure customers into one group 
(this is just a convenience for the calculation and not necessary for handling 
left truncation):

SELECT (CASE WHEN t < 1000 THEN t ELSE 1000 END) as tenure,
       SUM(enters) as numenters, SUM(leaves) as numleaves,
       SUM(isstop) as numstops
FROM ((SELECT (CASE WHEN StartDate >= LeftTruncationDate THEN 0
                    ELSE DATEDIFF(day, StartDate, LeftTruncationDate)
               END) as t,
              1 as enters, 0 as leaves, 0.0 as isstop, StartDate, Tenure
       FROM (SELECT s.*,
                    (CASE WHEN Market = 'Smallville'
                          THEN CAST('2004-10-27' as DATE)
                          ELSE '2004-01-01' END) as LeftTruncationDate
             FROM Subscribers s) s
      ) UNION ALL
      (SELECT tenure as thetenure, 0 as enters, 1 as leaves,
              (CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
               END) as isstop, StartDate, Tenure
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       FROM Subscribers s) ) a
WHERE StartDate IS NOT NULL AND Tenure >= 0
GROUP BY (CASE WHEN t < 1000 THEN t ELSE 1000 END)
ORDER BY tenure

The two subqueries calculate the number of customers who enter and leave the 
time window. The second of these subqueries also keeps track of the custom-
ers who stop because the tenure at the stop is the same as the tenure when the 
customer leaves the time window.

These columns provide the fodder for the Excel calculation, which follows the 
logic suggested by the preceding observations. Figure 7-9 shows the formulas 
for an Excel spreadsheet that does the calculations. The population at risk for 
a given tenure is the previous population at risk plus the new customers that 
enter minus the ones that leave at the previous tenure. The hazard probabilities 
are then calculated by dividing the number of stops by the population at risk. 
When doing the calculation for all tenures, it is worth validating the result for 
one or two tenures, using the single-tenure estimate in the previous section.

Notice that the number of customers who enter the time window at tenure 
zero is in the millions, but for the other tenures, the count is, at most, in the 
thousands. This is because all customers who start on or after the left truncation 
date enter the time window at tenure zero. So, the tenure zero number includes 
three years’ worth of starts. On the other hand, the customers who enter at larger 
tenures started that number of days before the left truncation date.

Doing the Calculation in SQL
This calculation can also be done in SQL using window functions. Using the 
previous query as the base calculation, the following does the cumulative sums 
for the hazard calculation:

WITH ss as ( < previous query with no ORDER BY> )
SELECT ss.*,

Figure 7-9: The Excel calculation for handling left truncation is not much more difficult than the 
calculation for empirical hazards.



336 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure   

       (SUM(numenters - numleaves) OVER (ORDER BY Tenure) +
        numleaves) as pop,
       numstops / (sum(numenters - numleaves) OVER (ORDER BY Tenure) +
                   numleaves) as h
FROM ss
ORDER BY Tenure

This query has one small trick. The expression SUM(numenters - numleaves) OVER 
(ORDER BY Tenure) almost does the correct calculation. This calculates the cumu-
lative sum of enters minus the cumulative sum of leaves.  However, we want the 
cumulative sum of enters minus the cumulative sum of leaves for the previous tenure. 
In other words, this expression undercounts the population by including the stops 
at the given tenure.  The fix is easy: Just add the stops at the current tenure back in.

Time Windowing

Time windows are more than just the solution to left truncation. They are a 
powerful technique for other purposes. This section investigates time windows 
in general and some ways to use them.

A Business Problem
Once upon a time, a mobile phone company was developing a forecasting 
application using survival analysis. This type of application was discussed in 
the previous chapter, and forecasting can be a powerful application of survival 
analysis. They provided a large amount of data for tens of millions of custom-
ers early one May for a proof-of-concept. The schedule called for the proof-of-
concept to be reviewed in the summer, steadily improved upon, and then the 
final forecasting project would begin at the end of the year. So, using historical 
data, the proof-of-concept began that May.

In April, a shrewd person in finance decided to change one of the company’s 
policies, just a little tweak actually. The old policy was to disconnect a customer 
on the date the customer requested the stop. The new policy was to disconnect 
customers at the end of their billing cycle, unless the customer very loudly objected.

The merits of the new policy were multifold and manifest. The new policy 
meant that almost no monies needed to be refunded to customers because 
accounts were paid up through the end of the billing period. Such refunds 
were generally small amounts of money, and the overhead for each refund was 
a significant proportion of the amount refunded. In addition, the new policy 
kept customers active for a longer period of time. Assuming that customers 
call randomly during their billing periods to stop, it would add half a billing 
period—or two weeks—onto each customer’s tenure.

Hmmm, would the new policy have an effect on customers’ tenures? Could 
adding an extra two weeks of tenure to every customer who stops conceivably 
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have an effect on the proof-of-concept project? No suspense here: The answer 
is “yes.” The more important question is how to deal with the situation.

Filtering customers who started after the date the new policy went into effect 
at the beginning of May would not work, because the population would con-
sist of customers having only very short tenures—less than one month for the 
proof-of-concept and less than one year for the larger project. A better solution 
would be to calculate unbiased hazard probabilities using only stops after the 
new policy went into effect. In other words, forcing the left truncation date to be 
a recent date would only use stops that have the new policy. Voila! The hazard 
estimates would reflect the new policy, while still having hazard estimates for 
all tenures.

Forcing left truncation solves the problem. Other situations are amenable to 
the same solution. Another company changed its initial non-payment policy. 
Previously, customers were cancelled after 63 days, if they did not pay their 
initial bill. This was changed to 77 days. And, yes, this has an impact on the 
forecast customer numbers. Eventually, the policy was made more complicated, 
varying from 56 days to 84 days for different groups of customers. Estimating 
hazards based only on the period when customers are active after the new 
policies went into effect (using left truncation) enables the accurate estimation 
of hazards under the new policy.

Time Windows = Left Truncation + Right Censoring
The examples in the previous section force a left truncation date to handle a 
change in business rules. A more general way to think about time windows 
is that they calculate unbiased estimates of hazard probabilities using a time 
window of customer activity. The beginning of the time window is the left 
truncation date and the end of the time window is the cutoff date (technically 
called the right censor date).

Customers are in the at-risk population only when they enter the time win-
dow; otherwise, the stop would not be recorded in the database. This discussion 
focuses on a common time window for all customers. The same ideas apply to 
different time windows for different groups of customers.

Figure 7-10 illustrates a general time window for a small number of customers. 
A given time window is a combination of left truncation and forcing an earlier 
right censorship date (which we saw in the previous chapter in Figure 6-17 on 
page 291). With these two ideas, it is possible to generate unbiased hazards using 
almost any time window when stops occur.

Figure 7-10 is generated through a clever combination of different chart 
types. The shaded area is a bar chart plotted on the secondary X-axis. The 
number of bars is carefully chosen so the shading aligns with the vertical 
gridlines. By choosing a semi-transparent shading, the gridlines show 
through.
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Figure 7-10: Time windows make it possible to estimate unbiased hazard probabilities for stops 
during a particular period of time (the shaded area).

Calculating One Hazard Probability Using a Time Window

What are the hazard probabilities at tenure 100 based on stops in 2004, in 2005, and in 
2006? This is a question about changes in a hazard probability over time. The 
following SQL statement does the calculation based on stops in 2004:

SELECT t as tenure, COUNT(*) as poprisk_t,
       SUM(CASE WHEN tenure = t THEN isstop ELSE 0 END) as numstops,
       AVG(CASE WHEN tenure = t THEN isstop ELSE 0 END) as haz_t
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
              ELSE '2004-01-01' END) as LeftTruncationDate,
             (CASE WHEN StopType IS NOT NULL AND StopDate <= '2004-12-31'
                   THEN 1.0 ELSE 0 END) as isstop
      FROM Subscribers s) s CROSS JOIN
     (SELECT 100 as t) const
WHERE Tenure >= t AND
      DATEADD(day, t, StartDate) BETWEEN LeftTruncationDate AND
                                         '2004-12-31'
GROUP BY t

This SQL statement combines left truncation and forced censoring. Left truncation 
is implemented in the WHERE clause, by restricting the customers only to those 
whose 100th day of tenure is during 2004. The forced censoring is as of the end 
of 2004, so the definition of isstop is as of that date.

The queries for 2005 and 2006 are similar. Table 7-2 shows the hazard probability 
for tenure 100 for stops during each of the three years. The probability itself is quite 
low. The hazard is lowest during 2005, the year with the largest population at risk.
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table 7-2: Hazard Probability for Tenure 100 Based on Stops in 2004, 2005, and 2006

year tenure population at riSk StopS hazard probability

2004 100 850,170 957 0.1126%

2005 100 1,174,610 777 0.0661%

2006 100 750,064 808 0.1077%

All Hazard Probabilities for a Time Window

Calculating a hazard probability for a single tenure is a good illustration of time 
windows. More interesting is calculating hazard probabilities for all tenures. 
This calculation follows the same form as the left truncation calculation, where 
stops, enters, and leaves variables are calculated for all tenures. The next sec-
tion provides an example of this calculation in Excel and the following section 
does the calculation in SQL.

Comparison of Hazards by Stops in Year in Excel

The previous chapter showed two ways of comparing changes in survival prob-
abilities over time. The first method was to use starts in a given year, which 
provides information about acquisition during the year, but not about all the 
customers who were active during that time. The second approach forces the 
right censorship date to be earlier, creating a snapshot of survival at the end of 
each year. Using starts, customers who start in 2006 have relatively lower sur-
vival than customers who start in 2004 or 2005. However, the snapshot method 
shows that 2006 survival looks better than survival at the end of 2004.

This section proposes another method, based on time windows. Using time 
windows, hazard probabilities are estimated based on customers’ activity dur-
ing each year. Time windows make it possible to calculate hazard probabilities 
for all tenures.

The approach is to calculate the number of customers who enter, leave, and 
stop at a given tenure, taking into account the time window. The following 
query does the calculation for stops during 2006:

WITH const as (
      SELECT CAST('2006-01-01' as DATE) as WindowStart,
             CAST('2006-12-28' as DATE) as WindowEnd
     )
SELECT (CASE WHEN tenure < 1000 THEN tenure ELSE 1000 END) as tenure,
       SUM(enters) as numenters, SUM(leaves) as numleaves,
       SUM(isstop) as numstops
FROM ((SELECT (CASE WHEN StartDate >= WindowStart THEN 0
                    ELSE DATEDIFF(day, StartDate, WindowStart)
               END) as tenure, 1 as enters, 0 as leaves, 0.0 as isstop
       FROM const CROSS JOIN Subscribers s
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       WHERE Tenure >= 0 AND StartDate <= WindowEnd AND
             (StopDate IS NULL OR StopDate >= WindowStart)
      ) UNION ALL
      (SELECT (CASE WHEN StopDate IS NULL OR StopDate >= WindowEnd
                    THEN DATEDIFF(day, StartDate, WindowEnd) ELSE Tenure
               END) as tenure, 0 as enters, 1 as leaves,
              (CASE WHEN StopType IS NOT NULL AND StopDate <= WindowEnd
                    THEN 1 ELSE 0 END) as isstop
       FROM const CROSS JOIN Subscribers s
       WHERE Tenure >= 0 AND StartDate <= WindowEnd AND
             (StopDate IS NULL OR StopDate >= WindowStart) )
    ) s
GROUP BY (CASE WHEN Tenure < 1000 THEN Tenure ELSE 1000 END)
ORDER BY tenure

Notice first that the stop window ends on 2006-12-28 rather than 2006-12-31.  
The 28th is the cut-off date for the data; the table has no starts or stops beyond 
that date. If the later date were used, then active customers would have their 
tenures extended by three days. That is, a customer who started on 2006-12-28 
would have a tenure of three rather than zero, and the resulting hazards would 
differ slightly from the point estimates in the last section.

The variable enters counts the number of customers entering the time window 
at each tenure. This tenure is zero for customers who start during the window 
and a larger value for customers who start before the window. The variables 
leaves and stops are calculated based on the tenure on the right censorship 
date or the tenure when a customer stops.

Each subquery has the same WHERE clause in order to select only customers 
active during the time window—customers had to start before the end of the 
year and stop after the beginning of the year in order to be included. For good 
measure, each subquery also requires that tenure be non-negative, eliminating 
the row with a spurious negative value.

Figure 7-11 shows the survival curves based on a one-year time window for 
each of the three years. These curves are comparable to Figures 6-16 and 6-18 
(pages 290, 293), which show the survival based on starts and the end-of-year 
snapshots, respectively. This chart has a more complete picture. Using time 
windows, all three years have survival estimates for all tenures. None of the 
series are longer or shorter than the others.

The chart shows that the anniversary churn effect is much stronger in 2005 
and 2006 versus 2004. Anniversary churn is the tendency of customers to stop 
on the one-year anniversary of their start, typically because their contracts 
expire. So, although customers in 2005 and 2006 survive better in the first year 
(compared to customers in 2004), as the tenures stretch out, the difference in 
survival disappears. Based on the stops, 2006 seems to be the worst of all pos-
sible worlds, with the worst short-term survival (in the first 90 days) and the 
worst long-term survival (over 720 days), although it does a bit better in between.
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Figure 7-11: Using time windows, the stops during different years can be used to calculate 
hazard probabilities and survival.

Comparison of Hazards by Stops in Year in SQL

The calculation can also be done in SQL. This follows the same structure as the 
calculation for left truncation:

WITH params as (
      SELECT CAST('2006-01-01' as DATE) AS WindowStart,
             CAST('2006-12-28' as DATE) as WindowEnd
     ),
     t as (
      SELECT (CASE WHEN tenure < 1000 THEN tenure ELSE 1000
              END) as tenure,
             SUM(enters) as numenters, SUM(leaves) as numleaves,
             SUM(isstop) as numstops
      FROM ((SELECT (CASE WHEN StartDate >= WindowStart THEN 0
                          ELSE DATEDIFF(day, StartDate, WindowStart)
                     END) as tenure,
                    1 as enters, 0 as leaves, 0 as isstop
             FROM params CROSS JOIN Subscribers s
             WHERE Tenure >= 0 AND StartDate <= WindowEnd AND
                   (StopDate IS NULL OR StopDate >= WindowStart)
            ) UNION ALL
            (SELECT (CASE WHEN StopDate IS NULL OR StopDate >= WindowEnd
                          THEN DATEDIFF(day, StartDate, '2006-12-28')
                          ELSE Tenure
                     END) as tenure, 0 as enters, 1 as leaves,
                    (CASE WHEN StopType IS NOT NULL AND
                               StopDate <= WindowEnd
                          THEN 1 ELSE 0 END) as isstop
             FROM params CROSS JOIN Subscribers s
             WHERE Tenure >= 0 AND StartDate <= WindowEnd AND
                   (StopDate IS NULL OR StopDate >= WindowStart) )
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           ) s
      GROUP BY (CASE WHEN Tenure < 1000 THEN Tenure ELSE 1000 END)
     )
SELECT t. *,
       (SUM(numenters - numleaves) OVER
            (ORDER BY tenure) + numleaves) as pop,
       numstops / (SUM(numenters - numleaves) OVER (ORDER BY tenure) +
                   numleaves) as h
FROM t
ORDER BY tenure

The same logic holds here for adding back numleaves into the population. The 
formula for the population at risk is the cumulative sum of numenters minus 
the cumulative sum of numleaves at the previous tenure.

Competing Risks

The opening lines to Leo Tolstoy’s classic novel Anna Karenina are often translated 
as: “All happy families are alike; each unhappy family is unhappy in its own 
way.” This book is not about Russian literature, but what Tolstoy wrote in the 
19th century about families is also true of customers in the 21st century. Happy 
customers who stay are all alike because they remain customers. Unhappy 
customers stop, and they do so for a variety of reasons. Although perhaps not 
as compelling as the family tragedies in a Tolstoy novel, these different reasons 
are of analytic interest. Competing risks is the part of survival analysis that 
quantifies the effects of these different reasons.

Examples of Competing Risks
One way to think about competing risks is to imagine a guardian angel “compet-
ing” with various devils of temptation for each customer. The guardian angel 
encourages each customer to remain happy, loyal, and paying. The various devils 
of temptation urge the customer to defect to a competitor, or to stop paying, or 
quit for some other reason. This competition goes on throughout the customer 
lifetime, with the guardian angel usually winning . . . but, eventually, a devil 
of temptation comes out ahead, and the customer stops.

This image of guardian angels and devils encapsulates the central notion of 
competing risks: At a given tenure, a customer not only has a risk of stopping, 
but the stop could be for of a variety of reasons. For instance, the subscription 
data has three types of customer unhappiness encoded in the StopType col-
umn. So far, we have used the stop type to identify whether or not customers 
have stopped, lumping together all non-NULL values into one group of stopped 
customers. The next three subsections explain the stop types in more detail.
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tip When working with many different reasons for customers leaving, it is a good 
idea to classify them into a handful of different categories, say between two and five. 
These categories depend on the business needs.

I = Involuntary Churn

Stop type “I” stands for “involuntary churn,” which occurs when the com-
pany initiates the stop. In this dataset, involuntary churn is synonymous with 
 customers not paying their bill.

Involuntary churn may not really be involuntary. Customers may communi-
cate their desire to leave by not paying their bills. Once upon a time, a mobile 
telephone company believed that none of its churn was actually involuntary; 
that is, the company performed credit checks and believed that all customers 
could pay their bills.

What the company did have was poor customer service—the hold times in 
the call center were often measured in tens of minutes. Customers would call 
customer service, perhaps with a billing or coverage question, and very likely 
get angry over the long wait time. Instead of canceling by calling back—and 
waiting again—some customers simply stopped paying their bills. The data 
suggested this because many customers who stopped paying had called cus-
tomer service shortly before they stopped, even though their high credit scores 
indicated an ability to pay.

V = Voluntary Churn

Another form of churn is “V,” which stands for “voluntary churn.” This is a 
diverse array of customer-initiated reasons. Customers may stop because the 
price is too high, or because the product does not meet expectations (such as 
coverage for a cell phone company), or because customer service has treated 
them poorly, or because they are moving, or because of a change in financial 
conditions, or to boycott the company’s environmental policy, or because their 
astrologer recommended change. Myriad reasons often gets encoded into doz-
ens or hundreds of detailed stop codes. In Subscribers, all these reasons (and 
more) are grouped together into one group, “V.”

Not all voluntary churn is necessarily truly voluntary. Often, customers cancel 
their accounts after late notices start appearing. They may stop voluntarily but 
they owe money. These customers were en route to involuntary churn, but took 
a detour by stopping on their own.

These borderline cases do not affect the applicability of competing risks. 
Instead, they suggest that under certain circumstances, additional data might be 
incorporated into the stop types. For instance, customers who stop voluntarily 
with an outstanding balance (larger than a certain size or so many days past 
due) probably differ from other customers who stop voluntarily.
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M = Migration

The third type of churn in the subscription data is migration churn, indicated 
by “M.” One example of migration churn is when a company introduces a new, 
improved product and wants to move customers to the new product. This occurred 
when companies introduced digital cell phone technologies, and moved good 
customers from analog services.

The accounts in this dataset consist of customers on subscription accounts. 
These customers pay for service one month at a time as part of an ongoing ser-
vice arrangement. Prepaid customers pay in advance for a block of time. The 
prepaid option is more appropriate for some customers, particularly those with 
limited financial means.

Migration from a subscription account to a prepaid account is a downgrade 
because the prepay product is not as profitable as the subscription product. In 
other cases, migration might be an upgrade. In a credit card database, switching 
to a gold, platinum, titanium, or black card might close one credit card account 
but open another, more valuable account. In the pharmaceutical world, a patient 
might go from a 10-mg dose to a 40-mg dose.

From the holistic customer perspective, migration may not actually indicate 
a stop at all. After all, the customer remains a customer with the company. On 
the other hand, from the perspective of a particular product group, migrated 
customers no longer use that product. Whether or not migration indicates a 
stop is a business question whose answer varies depending on the particular 
business needs.

tip Whether or not a customer has stopped is sometimes a business question. For 
some analyses (more product-centric), customers who migrate to another product 
might be considered stopped. For other more customer-centric analyses, such customers 
would still be active.

Other

Another type of churn is “expected” churn. For instance, customers may die or 
might move outside the service area or reach retirement age (and no longer be 
eligible/interested in retirement savings accounts); in these cases, the cancel-
lation is not because the customer does not want to be a customer; it is due to 
extraneous factors.  Similarly, the company might be responsible by closing down 
its operations in a geographic area or selling a business unit to a competitor. 
These are examples of situations where customers cease being customers, but 
through no fault of their own.

Competing risks could handle all the dozens of types of churn specified by 
reason codes. However, it is usually better to work with a smaller number of 
reasons, classifying the reasons into a handful of important stop classes.
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Competing Risk “Hazard Probability”
The fundamental idea behind competing risks is that a customer who is still active 
has not succumbed to any of the risks. In the original imagery, this means that the 
guardian angel and the devils of temptation keep battling for the customer’s fate.

Figure 7-12 illustrates a small group of customers. In this chart, open circles 
indicate that the customer is still active. The dark and light shadings indicate 
different ways that customers might leave. It is possible to calculate the hazard for 
each of the risks, by dividing the number of stops for that risk by the population 
at risk. Because the angel and the devils are all competing for the same custom-
ers, the population at risk is the same for all the risks. Actually, the population at 
risk might vary slightly for different risks, but this variation is a technical detail. 
For intuitive purposes, it is safe to assume that the populations are the same.

The following query sets up the appropriate data in SQL:

SELECT Tenure, COUNT(*) as pop,
       SUM(CASE WHEN StopType = 'V' THEN 1 ELSE 0 END) as voluntary,
       SUM(CASE WHEN StopType = 'I' THEN 1 ELSE 0 END) as involuntary,
       SUM(CASE WHEN StopType = 'M' THEN 1 ELSE 0 END) as migration
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville'
                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s
     ) s
WHERE StartDate IS NOT NULL AND Tenure >= 0 AND
      StartDate >= LeftTruncationDate
GROUP BY Tenure
ORDER BY Tenure

Figure 7-12: Different customers stop for different reasons, such as voluntary and involuntary 
churn and migration.
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This SQL simply divides the stops into three groups, the “V,” the “I,” and the 
“M” groups. Competing risk hazards are then calculated separately for each of 
these groups, using the same population at risk.

There is a theoretical reason for slightly tweaking the population at risk, by 
making a small adjustment for the customers who stop. Even though all of them 
stopped during the same discrete time interval, we can imagine that they stopped 
in some order. Once a customer has stopped for any reason, that customer is no 
longer in the population at risk for the other risks. On average, all the customers 
who stopped for a particular risk stopped halfway through the time interval. 
These customers are not at risk for stopping again. A reasonable adjustment to 
the population at risk for a particular risk is to subtract half the stops.

This adjustment generally has a negligible impact on the hazard probabilities 
because the number of stops at any given time is much smaller than the popu-
lation at risk. When the number of stops and the population at risk are more 
similar in size, the adjustment has a larger effect. However, this happens when 
the population at risk is small, so the confidence interval around the hazard 
probability is large anyway. Incidentally, this same adjustment can be made for 
the overall hazard calculation.

What does the competing risk hazard mean? A good intuitive answer is that 
the hazard is the conditional probability of succumbing to a particular risk, 
given that the customer has not succumbed to any risk so far. Competing risk 
hazard probabilities are always smaller than or equal to the overall hazard 
probabilities at the same tenure. In fact, if all competing risks have been taken 
into account, the overall hazard probability is the sum of the competing risk 
hazard probabilities (or at least, very close to the sum if using the adjustment).

Is there an alternative approach? One idea might be to keep only the stops for 
one risk, filtering out all the others. This is a no-no. Earlier, there was a warning 
that filtering or stratifying customers by anything that happens during or at 
the end of the customer relationship results in biased hazards. Competing risks 
are no exception. The customers who stop involuntarily are at risk of stopping 
voluntarily before they actually stop. Removing them from the calculation for 
voluntary hazards reduces the size of the population at risk, which, in turn, 
overestimates the hazards.

tip When using survival techniques, be sure that all stops are taken into account. 
Use competing risks to handle different stop reasons, rather than filtering the custom-
ers by stop reason.

Competing Risk “Survival”
The next step is to calculate the competing risk survival from the hazard prob-
abilities, to get results such as those in Figure 7-13. The survival values for one 
competing risk are always larger than the overall survival. For a large numbers 
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of customers and relatively few stops at any given tenure, the product of all the 
competing risk survival values at a given tenure is a good approximation of 
the overall survival. This formula is not exact, just a very good approximation.

Competing risk survival curves do not have an easy interpretation. They 
are conditional on a customer not stopping for other reasons. So, the “V” curve 
answers the question: What is the probability of surviving to a given tenure assum-
ing that the customer does not stop for any reason other than “V”? This question is 
rather arcane; customers do stop for other reasons.

Competing risk survival curves do not have the nice analytic properties of 
overall survival curves. In particular, the area under the curve does not have 
easily understood interpretations.

On the other hand, the curves are useful qualitatively. For instance, the chart 
shows that anniversary churn is voluntary churn. On the other hand, involuntary 
churn predominates at a few months after a customer starts, and becomes less 
significant after that. Migration is never a big cause of churn. This ability to see 
the importance of different cancellation types makes competing risk survival 
charts useful, though more qualitatively than quantitatively.

What Happens to Customers over Time
Survival curves have a nice property. At any given tenure, the survival curve 
estimates the proportion of customers who are active; and hence the number who 
have stopped up to that point. Or, if the risk is something other than stopping, 
the curve tells us the proportion of customers who have succumbed to the risk 
and the proportion who have not. Competing risks extends this by refining the 
stopped population by risk type.

Example

Figure 7-14 shows a graph of the subscribers by tenure, divided into four parts. 
The lowest region represents active customers. The next is the customers who 

Figure 7-13: Competing risk survival is always larger than overall survival.
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stopped voluntarily, and the next region is for the customers who stopped 
involuntarily. At the very top is a thin line for customers who migrated, but it 
is invisible because the group is so small. For instance, at 730 days, 42.3% are 
still active, 37.1% have stopped voluntarily, 20.2% have stopped involuntarily, 
and 0.4% have migrated. At every point, all customers are accounted for, so the 
sum of the three curves is always 100%.

These curves show what happens next after customers start. The only possi-
bilities in this data are remaining active, or stopping—voluntarily, involuntarily, 
or by migrating. However, some customers who stop may restart and become 
active again. Customers who migrate away may also migrate back. These curves 
do not take these more complex scenarios into account, because they only show 
the next thing that happens.

The boundary between the active customers and the voluntary customers 
is the overall survival curve. The other three regions are calculated from the 
hazards, but not in exactly the same way as the survival curves. There are two 
approaches for creating a “what-happens-next” chart. The first is a brute-force, 
cohort-based approach. The second uses survival analysis.

A Cohort-Based Approach

One way to create a chart of what happens next is by doing a cohort-based 
calculation. This focuses on the outcomes of a group of customers who all start 
around the same time. For instance, the following SQL keeps track of the cohort 
of customers who start on the left truncation date:

SELECT Tenure, COUNT(*) as pop,
       SUM(CASE WHEN StopType = 'V' THEN 1 ELSE 0 END) as voluntary,
       SUM(CASE WHEN StopType = 'I' THEN 1 ELSE 0 END) as involuntary,
       SUM(CASE WHEN StopType = 'M' THEN 1 ELSE 0 END) as migration
FROM (SELECT s.*,
             (CASE WHEN Market = 'Smallville'

Figure 7-14: This chart shows what happens after subscribers start, by breaking the stops into 
different groups based on the stop type.
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                   THEN CAST('2004-10-27' as DATE)
                   ELSE '2004-01-01' END) as LeftTruncationDate
      FROM Subscribers s) s
WHERE StartDate = LeftTruncationDate
GROUP BY Tenure
ORDER BY Tenure

This query is quite similar to the previous query. The only difference is that the 
query restricts the population to one day of starts. The idea is to use this data 
to calculate the cumulative number of starts and stops for each tenure, directly 
from the data.

Calculating the cumulative numbers for all tenures relies on two rules: The 
number of active customers at a given tenure is the sum of all customers with 
longer tenures, plus the number at that tenure who are active. For the other three 
groups, the rule is simply a forward cumulative sum. The number of voluntary 
stops is the number of voluntary stops for all tenures less than or equal to the 
given tenure.

Excel readily supports these calculations. Figure 7-15 shows the resulting 
chart, with the population of each group on a separate line. This chart is not 
stacked, so it is not obvious that the sum at any given tenure is the same value, 
the 349 customers who started on 2004-01-01.

This information can also be calculated in SQL:

WITH s as (
      SELECT Tenure, COUNT(*) as pop,
             SUM(CASE WHEN StopType = 'V' THEN 1 ELSE 0 END) as vol,
             SUM(CASE WHEN StopType = 'I' THEN 1 ELSE 0 END) as invol,
             SUM(CASE WHEN StopType = 'M' THEN 1 ELSE 0 END) as mig
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'

Figure 7-15: This chart shows what happens to customers who started on the left truncation 
date by showing the size of the groups that are active, voluntary stoppers, involuntary stoppers, 
and migrators.
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                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s) s
      WHERE StartDate = LeftTruncationDate
      GROUP BY Tenure
     )
SELECT s.tenure, pop,
        SUM(pop) OVER (ORDER BY tenure DESC)-(vol+invol+mig) as actives,
       SUM(vol) OVER (ORDER BY tenure) as voluntary,
       SUM(invol) OVER (ORDER BY tenure) as involuntary,
       SUM(mig) OVER (ORDER BY tenure) as migration
FROM s
ORDER BY Tenure

The only nuance here is the subtraction of the stops from the population at each 
tenure. The stops take effect on the next tenure.

The cohort approach is very useful for seeing what happens to a group of 
customers. With additional information, customers could be placed into differ-
ent groups, such as:

 ■ Active, with no overdue amount

 ■ Active, with overdue amount

 ■ Stopped voluntarily, no money owed

 ■ Stopped voluntarily, with an outstanding balance

 ■ Stopped involuntarily, outstanding balance written off

 ■ Stopped involuntarily, eventually paid outstanding balance

 ■ Migrated, still active on migration product

 ■ Migrated, stopped

 ■ Migrated, but returned to subscription product

These groups combine different types of information, such as the outstand-
ing balance and whether a customer who migrated returned to the original 
product.

The cohort approach does have a downside. The wider the time period when 
customers start, the more difficult it is to use. The problem occurs because dif-
ferent groups of customers are eligible for different tenures. Customers who 
started in January 2004 can be tracked for 36 months. However, customers who 
started in January 2006 can only be tracked for 12 months; their data cannot be 
used for months 13 through 36.

Sometimes, the cohort approach is implemented in Excel. This can get quite 
complicated as the number of months increases, because there are separate 
values for each start month and each tenure month. Then, breaking this into 
smaller groups for analysis adds even more complication. Eventually, the cohort 
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approach reaches its limits. Fortunately, an alternative is available: using survival 
analysis and competing risks.

The Survival Analysis Approach

This section explains how to use competing risk hazards to quantify what hap-
pens after customers stop for all tenures. The place to start is with the overall 
survival, which splits the customer base into customers who are active and 
customers who have stopped up to any given tenure. To address the question 
of what happens to customers when they stop, two questions are key: What 
proportion of customers stop at each tenure? Of the customers who stop at each tenure, 
what proportion stopped for each of the competing reasons?

Answering the first is easy. The proportion of customers who stop is the dif-
ference between overall survival at tenure t and overall survival at tenure t+1. 
The answer to the second question is almost as easy. The solution is to divide 
the customers who stop proportionally among the competing risks. So, assume 
that 10, 20, and 70 customers stop for each of three risks at a given tenure. The 
proportion of customers who stop at that tenure is split into three groups, one 
with 10% of the stops, one with 20%, and one with 70%.

Earlier, we saw the query for calculating the competing risk hazards. 
Figure 7-16 shows a screen shot of the Excel spreadsheet that completes the 
calculation. This calculation determines the proportion of customers who stop 
at the tenure by taking the survival at that tenure and subtracting the survival 
at the next tenure. The difference is then divided proportionately among the 
competing risks; their cumulative sum is the proportion of customers who have 
succumbed to a particular risk at a particular tenure.

This method of calculation has an advantage over the cohort approach because 
it readily combines data from many start dates. It can also be extended to define 
additional groups by introducing more competing risks. For instance, the risk 
for voluntary churn could be split into two risks, one where the outstanding 
balance is zero and the other where the customer owes money.

Competing risks shows what happens to customers over time. However, our 
intuition leads to an interesting paradox involving competing risk hazard probabili-
ties and survival values, discussed in the aside “A Competing Risks Conundrum.”

Figure 7-16: In Excel, it is possible to calculate what happens next using competing risk survival.
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a Competing riSkS Conundrum

Competing risks survival suggests two approximations that seem intuitive (or at least 
very reasonable). The first is that the product of the competing risk survival values 
equals the overall survival. The second approximation is that the sum of the competing 
risk hazard probabilities at a particular tenure equals the overall hazard probability.

Fortunately, these approximations are very good for customer data. In particular, 
both these statements are very close to being true when the number of customers 
is large and the number of stops at each tenure is relatively small. In extreme cases, 
though, the discrepancies are blatant. It is worth explaining these discrepancies to 
help better understand competing risks in general.

The first approximation about the survival runs into a problem when all customers 
stop. Consider three customers at risk at a given tenure and all three stop, for three 
different reasons. The overall hazard is 100%, and the hazard probability for each 
competing risk is 33.3%. The survival at the next time period is 0%. However, the 
 survival for each competing risk is 66.7%, so the product is 29.6%, quite different from 
0%. A bit of reflection suggests that almost no matter how we handle the competing 
risk hazard probabilities, they are always going to be equal and less than 100%. The 
product of the resulting survival is never going to be 0%.

This problem arises because the survival probability drops to zero when all customers 
stop. Fortunately, when working with large numbers of customers, this does not happen.

What about the sum of the competing risk hazards being the overall hazard? In 
this case, the explanation is a bit different. Imagine the same situation as before, with 
three customers, each of whom stops for a different reason. What is the “real” compet-
ing risk hazard when we look at this under a microscope? What would happen to the 
hazard probabilities if we assumed that the stops do not occur at exactly the same 
time, but in some sequence?

Well, the first customer who stops, say for competing risk A, has a hazard of 1/3, 
about 33.3%. An instant later, when the second customer stops for competing risk 
B, the population at risk has only two members, B and C (because the one customer 
has stopped). So, the competing risk hazard is 1/2 or 50%. And for the third one, the 
 hazard comes to 1/1 or 100%. These look quite different from the hazards as calcu-
lated over the whole population.

The problem is, we don’t know the exact order of the stops. It could be A then B 
then C, or B then C then A, or A then C then B, and so on. One solution is to guessti-
mate the hazard by taking the average hazard probability for the three cases. This 
comes to 11/18 (61.1%).

Another approach is to say that for any given risk, the population at risk needs to be 
reduced by half the customers who stop. And, on average, those customers stop halfway 
through the time period. This yields a hazard probability of 66.7% for each of the risks.

All this discussion is academic because only a very small fraction of the popula-
tion at risk stops at any given tenure for most survival problems. Each competing risk 
hazard estimate can be made a bit more accurate by reducing the population at risk 
by half the number of customers who stop. In practice, though, this adjustment has a 
small effect on the hazards. And, this effect is much less than the effect of other biases, 
such as left truncation.



 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure    353

Before and After

This chapter started with the analysis of factors known about customers when 
they start, using stratification and hazard ratios. The previous section explained 
how to analyze factors that occur at the end of the customer relationship, by 
using competing risks. The final topic in this chapter is about events that happen 
during customers’ life cycles, technically known as time-dependent covariates. In 
particular, this section talks about survival measures before and after an event 
occurs during the customer lifetime.

Understanding time-dependent covariates starts to push the limits of what 
can be accomplished using SQL and Excel; statistical methods such as Cox 
proportional hazard regression continue the analysis beyond what we can 
accomplish with these tools. However, some interesting results are still possible.

This section discusses three techniques for understanding these types of 
factors. The first is to compare forecasts. The second is a brute-force approach 
using cohorts. And the third is to directly calculate survival curves for before 
the event and after the event. Before explaining the techniques, the section starts 
with three scenarios to illustrate these types of problems.

Three Scenarios
This section discusses three business problems that involve time-dependent 
events. The scenarios are intended to show the challenges in approaching these 
problems.

A Billing Mistake

Oops! An insurance company makes a little billing boo-boo. During one bill 
cycle, some long-standing customers who paid their premiums are accidentally 
sent dunning notices, accusing them of not paying their bill; worse, the notices 
continue even after the customers complain. This angers a few customers, and 
angry customers are more likely to cancel their policies. What is the cost of this 
mistake, in terms of lost customers?

Figure 7-17 illustrates this situation on both the calendar time line and the 
tenure time line. The “X”s indicate when the billing mistake occurred. It affects 
everyone at the same time on the calendar time line; however, the effect is at 
a different tenure for each customer. From a business perspective, we expect 
the effect of such a one-time billing mistake to pass quickly. During the period 
when the error occurs, stops spike up and hazards go up. This spike should 
pass quickly, as the company recovers from the mistake. It is possible, of course, 
to test this assumption, by comparing hazards before and after the event using 
time windows to detect any long-term effects.



354 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure   

Figure 7-17: These two diagrams show the effect of a billing mistake on the calendar time line 
and on the tenure time line.

A Loyalty Program

Not all events are negative. Consider customers in a subscription-based business 
who enroll in a loyalty program. How can the company measure the effectiveness of 
the loyalty program in terms of increased customer tenure?

In this case, customers enroll in the program at different points on both the 
calendar and tenure time lines. Of course, some enrollment tenures may be more 
common than others; this would be the case if customers were only eligible for 
the program after their first year, resulting in an enrollment spike around the 
one-year anniversary. Similarly, some calendar times may be more common than 
other times, particularly when marketing campaigns encourage customers to 
enroll. With a loyalty program, we know everyone who is enrolled. In the case of 
the billing error, we may not know all customers who stopped because of the error.
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The tenure when customers enroll is important because the probability of a 
customer leaving depends on tenure. The tenure at enrollment is, in fact, another 
problem amenable to survival analysis. Perhaps more interesting is translating 
enrollment into increased tenure, and increased tenure into dollars and cents.

An increase in tenure for the customers in the loyalty program does not, by 
itself, illustrate that the program is causing the increase. An alternative expla-
nation is that better customers join the program in the first place. This is an 
example of the difference between causation and correlation. Increased tenure 
may be correlated with customers in the program, but it does not imply that 
the program caused the increase.

tip Historical data can show correlation between different events. However, we 
have to reach outside mere data analysis to justify causation, either through formal 
testing or by suggesting how one thing causes the other.

Unlike the billing error, we expect the loyalty program to continue having an 
effect even after customers are enrolled. The effect of the event (enrollment) on 
survival is not limited to a short period. Instead, at some point in each customer’s 
tenure the customer changes state from unenrolled to enrolled, and we expect 
the enrolled customers to have better survival after that point.

Raising Prices

The third scenario is a price increase on a subscription product. An increase 
in prices can have two effects. Existing customers might leave in response 
to higher prices. This would occur around the date when the increase goes 
into effect (which might be a different date for each customer based on billing 
cycles). The second is that new customers may leave at a faster rate. Some of the 
customers who stop are identified; presumably (hopefully), they complained 
about the price increase when they stopped. However, not all such customers 
give price as the reason. A customer might say “customer service is awful,” 
when the customer really means “for the price I’m paying, customer service is 
awful.” Typically only one stop reason gets recorded, although customers may 
be unhappy for more than one reason.

Measuring the impact of the price increase requires comparing survival both when 
the event occurs and after the event occurs. There are several interesting questions:

 ■ Who likely stopped during the period of the price increase and what 
impact did this have? This is a question about excess stops during a par-
ticular period.

 ■ Did existing customers who survived the initial shakeout period have 
worse survival after the price increase?

 ■ Did new customers who started after the increase have worse survival?
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These questions are all related to the financial impact of the price increase on 
existing customers. Of course, customers who stay are paying more money, 
often offsetting the loss from customers who leave.

The remainder of this section discusses different ways of quantifying the 
effects of events during customer lifetimes, starting with an approach based 
on forecasting.

Using Survival Forecasts to Understand One-Time Events
Forecasts, which were introduced in the previous chapter, are a powerful tool 
for measuring the impact of events on customers. Remember that a forecast 
takes a base of customers and applies a set of hazards, producing an estimate 
of the number of customers and stops on any day in the future. Forecasts 
based on existing customers show declines over time because new customers 
are not included.

Summing the estimates over a period of time calculates customer-days, which 
in turn can be turned into a financial value, based on the monetary value that a 
customer contributes on each day. Two basic approaches use forecasts to under-
stand the effect of an event. The two differ, depending on whether the specific 
customers who stop can be identified.

Forecasting Identified Customers Who Stopped

When the customers who stop are known, forecasting can be applied just to 
these customers. This is the most direct method of using survival forecasting 
to measure the impact of an event. The method is to apply the forecast hazards 
only to the subset of customers identified as leaving due to the event. The result 
is the number of customer-days expected from those customers. The difference 
between these expected days and the actual days is the lost customer-days, 
which can in turn be used to calculate a financial loss. For this to work, the 
stopped customers need to be clearly identified. Another challenge is getting 
the right set of hazards.

A good set of hazards would be based on stops from some period before 
the event occurred, such as the month or year before the event, using a time 
window to calculate unbiased hazards. This has the advantage of a clean set 
of comparison data.

Another approach for estimating the hazards is to use competing risks. Remove 
the customers who stopped for the particular reason, and calculate the hazards 
using the remaining customers and remaining stops. The previous section 
warned against using competing risks this way because it underestimates the 
hazards. However, when the group of customers who leave is small relative to 
all stops, the error may be small enough to be ignored.
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Estimating Excess Stops

The customers who leave for a specific reason may not be clearly identified. In the 
case of the loyalty program, all the customers in the program are identified, but 
the customers of interest are those who do not even stop. In this case, the approach 
is to estimate an excess (or deficiency) of stops indirectly rather than directly.

The approach here is the difference between two forecasts. One is the forecast 
of what would have happened if the event had not occurred and the other is the 
forecast of what actually did happen. Because the customer base is the same—
consisting of the customers who are active just when the event happens—the 
difference between the two forecasts is the hazard probabilities.

The hazard probabilities for what actually did happen are easy to calculate 
using a time window of stops after the event. Similarly, the hazard probabilities 
ignoring the event can be calculated by taking a time period from before the 
event. The difference between the two is the lost customer-days.

The problem is slightly more complicated when the event occurs relative to 
the customer lifetime, such as joining a loyalty program that takes place at a dif-
ferent tenure for each customer. This case has no overall “before” date. Instead, 
customers are right censored on the date that they join the program, if ever. Prior 
to joining the loyalty program, customers contribute to both the population at 
risk and the stops. Once they join, they no longer contribute to either one.

Before and After Comparison
The before and after calculation of hazards is simple, using the time window 
technique for estimating hazards. These hazards generate survival curves, and 
the area between the survival curves quantifies the effect in customer-days.

Because the effect starts at tenure zero, this is most readily applied to new 
customers. Figure 7-18 illustrates an example. Remember from the previous 
chapter that the area between the curves is easy to calculate; it is simply the 
sum of the differences in the survival values during a particular period of time.

Figure 7-18: The area between two survival curves quantifies the difference between them in 
customer-days.
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Cohort-Based Approach
The cohort-based approach for calculating the remaining customer tenure after 
an event is appropriate when the event does not affect all customers at the same 
time. An example is enrollment in a loyalty program. This approach is very 
computationally intensive. This section describes how to do the calculation, 
even though the calculation may not be feasible on even largish sets of data.

Cohort-Based Approach: Full Cohorts
Figure 7-19 shows the basic idea. A customer experiences an event that occurs 
at some point in his or her lifetime. Also shown are a group of other customers 
who are candidates for this customer’s cohort. To be in the cohort, the candidate 
customers must meet some conditions:

 ■ The cohort customers start at about the same time as the customer.

 ■ The cohort customers have similar initial start characteristics to the 
customer.

 ■ The cohort customers are active at the tenure when the event occurred 
to the customer.

 ■ The cohort customers do not experience the event.

The cohort is a comparison group that can be used to understand survival after 
the event. The same customer can appear in multiple cohorts, so long as the 
customer meets the criteria for each one.

Figure 7-19: A customer has a cohort defined by initial characteristics and when the event 
occurred. In this chart, THE CUSTOMER experiences an event at some time. Customers 1 and 7 are 
in the cohort because they started at the same time and survived to the event time. The other 
customers fail one or both of these conditions.
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The approach starts by calculating the survival for customers who experi-
ence the event using only the tenure after the event date. That is, the event 
date becomes tenure zero in the tenure timeframe. Then, the survival of each 
cohort is calculated, after the event date that defines the cohort. This provides 
a comparison for the customer that defined the cohort. These cohort surviv-
als are averaged into a single survival curve, and compared to the survival of 
customers who experience the event.

For the customers that succumb to the event, calculating the survival 
after the event requires knowing the event date, available in column named 
something like EVENT_DATE (even though this is not available in the data). 
The survival after the event is the survival calculation, where the start date 
is fast-forwarded to the event date, and the tenure is measured only after 
the event:

SELECT EventTenure, COUNT(*) as pop, SUM(isstop) as stopped
FROM (SELECT DATEDIFF(day, StartDate, EventDate) as EventTenure,
             (CASE WHEN StopType IS NULL THEN 0 ELSE 1 END) as isstop
      FROM Subscribers
      WHERE EventDate IS NOT NULL) s
GROUP BY EventTenure
ORDER BY EventTenure

This query generates the information needed for the calculation of survival after 
the event for the customers who experience the event. The survival can then be 
calculated in either Excel or SQL.

The challenge is to get the survival for a cohort of customers similar to 
the original customer. For any given customer, the cohort survival could be 
defined by:

SELECT cohort.Tenure - ev.EventTenure,
       COUNT(*) as pop,
       SUM(CASE WHEN cohort.StopType IS NOT NULL THEN 1 ELSE 0
           END) as isstop
FROM (SELECT s.*,
             DATEDIFF(day, StartDate, EventDate) as EventTenure
      FROM Subscribers
      WHERE SubscriberId = <event subscriber id>) ev JOIN
     (SELECT *
      FROM Subscribers
      WHERE EventDate IS NUL
     ) cohort
     ON cohort.StartDate = ev.StartDate AND
        cohort.Market = ev.Market AND
        cohort.Channel = ev.Channel AND
        cohort.Tenure >= ev.EventTenure
GROUP BY EventTenure
ORDER BY EventTenure
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In this case, the cohort is defined as customers who started on the same date, 
in the same market, and did not have the event. The actual survival values can 
then be calculated in Excel or by using the cumulative sum functions in SQL.

The challenge is doing this for all cohorts and averaging the curves. It is 
tempting to modify the preceding query so the first subquery looks like:

FROM (SELECT s.*,
             DATEDIFF(day, StartDate, EventDate) as tenure_at_event
      FROM Subscribers s
      WHERE EventDate IS NOT NULL) s

However, this is incorrect because it combines all members of all cohorts 
into one big pool of customers, and then calculates the survival of the pool. 
Because cohorts have different sizes, the larger cohorts would dominate 
this calculation. We want each customer’s cohort to have a weight of one, 
regardless of its size.

One solution is to determine the size of the cohort and then weight everything 
appropriately. Once the weight is determined, the counts pop and isstop are 
just multiplied by the weight. The following query includes the weight:

SELECT cohort.Tenure - ev.EventTenure,
       SUM(weight) as pop,
       SUM(CASE WHEN cohort.StopType IS NOT NULL THEN weight ELSE 0
           END) as isstop
FROM (SELECT ev.SubscriberId, EventTenure,
             COUNT(*) as cohort_size, 1.0 / COUNT(*) as weight
      FROM (SELECT s.*,
                   DATEDIFF(day, StartDate, EventDate) as EventTenure
            FROM Subscribers s
            WHERE EventDate IS NOT NULL) ev JOIN
           (SELECT s.*
            FROM Subscribers s
            WHERE EventTenure IS NULL) cohort
           ON cohort.StartDate = ev.StartDate AND
              cohort.Market = ev.Market AND
              cohort.Channel = ev.Channel AND
              cohort.Tenure >= ev.EventTenure
      GROUP BY ev.SubscriberId, ev.EventTenure
     ) ev JOIN
     (SELECT s.*
      FROM Subscribers s
      WHERE EventDate IS NULL) cohort
     ON cohort.StartDate = ev.StartDate AND
        cohort.Market = ev.Market AND
        cohort.Channel = ev.Channel AND
        cohort.Tenure >= ev.EventTenure
GROUP BY EventTenure
ORDER BY EventTenure
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Survival can then be calculated using the weighted counts. The only subtlety is 
that population counts and stop counts are now decimal numbers rather than 
integers.

This approach can be quite useful, particularly for creating charts showing the 
difference between the before and after groups.  The query can be slow because 
it is a non-equijoin on a large table. Although the join looks like an equijoin, 
it isn’t because the join keys are not unique in the table. There are some ways 
to improve performance. If the size of the group that experiences the event is 
small, the calculation should be feasible in either Excel or SQL. Another alterna-
tive is to calculate the size of the cohort using SQL window functions instead 
of subqueries. Another alternative would be to choose a random member from 
each cohort and use that for the survival calculation.

A different approach is to estimate the effect of a time-varying covariate 
without resorting to cohorts or to sophisticated statistical software. The next 
section explains this approach.

Direct Estimation of Event Effect
This section explains stratifying survival based on whether or not a time-
dependent event has occurred. This method generates two separate survival 
curves; one for survival without the event and the other for survival with the 
event. These curves can be used to qualitatively describe what happens to cus-
tomers before and after the event; or they can be used to quantitatively measure 
differences between the groups.

Approach to the Calculation

To illustrate this, let’s assume that something happens on 2005-06-01, such as 
a price increase. This is an arbitrary date used as an example; the technique 
works not only for a single date but also for different dates for each customer. 
Customers who start before this date are in the “before” group until they reach 
2005-06-01. Customers who start after this date are in the “after” group for 
their entire tenure. What are the survival and hazard probabilities for the “before” 
and “after” groups?

The key to answering this question is calculating unbiased hazards for cus-
tomers in the two groups. This is basically an application of time windows, but 
the survival for both groups is calculated at the same time.

Customers who start and stop before the event date are only in the “before” 
population at risk. Other customers who start before the event remain in the 
“before” population at risk until the event date. For larger tenures, they contribute 
to the “after” population at risk. And customers who start after the event date 
only contribute to the “after” population at risk.
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Calculating the population at risk for the “after” group is a bit more compli-
cated. Customers who start on or after the event date enter the “after” population 
at risk from tenure zero; they leave when they are censored or stop. The number 
of such customers at a given tenure is simply the population of such customers 
whose tenure is greater than or equal to the given tenure.

Customers who start before the event date enter the “after” population at risk 
on their tenure as of the event date. They remain at risk until they stop or are 
censored. The size of this group is calculated using the following rules:

 ■ The population at risk at tenure t is the population at risk at tenure t–1.

 ■ Plus the customers who started before the event date who passed the 
event date at tenure t.

 ■ Minus the customers who started before the event date, who passed the 
event date, and who stopped or were censored at tenure t.

Unlike many of the earlier examples, the population at risk for this problem is 
calculated using a forward summation, rather than a backward summation.

Time-Dependent Covariate Survival Using SQL and Excel

Answering this question in SQL requires adding some information onto each 
subscriber record:

 ■ Did the subscriber start before 2005-01-01?

 ■ Did the subscriber stop before 2005-01-01?

 ■ What was the subscriber’s tenure on 2005-01-01, if the customer was still 
active?

These are the key items of information needed to calculate the population 
at risk.

This information is then transformed into summaries for each tenure:

 ■ The number of subscribers who started at that tenure in the “before” 
population (actually, this is only relevant for tenure zero because time 
windows are not being used to handle left trunction).

 ■ The number of subscribers who started at that tenure in the “after” group 
(zero for customers who start on or after 2005-01-01; larger for those who 
pass that date as active subscribers).

 ■ The number of subscribers who stop, in the “before” and “after” groups, 
at each tenure.

 ■ The number of customers who “graduate” from the “before” group to 
the “after” group.

These, in turn, are aggregations of the key items of information.
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The following SQL gathers this information together. The CTE calculates 
some basic indicator flags, which are then aggregated in the SELECT:

WITH s AS (
      SELECT Tenure,
             (CASE WHEN StartDate >= '2005 -06 -01' THEN 0
                   ELSE DATEDIFF(day, StartDate, '2005-06-01')
              END) as AftEntryTenure,
             (CASE WHEN StopDate IS NOT NULL THEN 1 ELSE 0
              END) as IsStopped,
             (CASE WHEN StartDate < '2005-06-01' THEN 1 ELSE 0
              END) as IsBeforeStart,
             (CASE WHEN StopDate IS NULL OR StopDate >= '2005 -06 -01'
                   THEN 1 ELSE 0 END) as IsAfterStop
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s
           ) s
      WHERE tenure >= 0 AND StartDate >= LeftTruncationDate
     )
SELECT Tenure, SUM(BefPop) as BefPop, SUM(BefStop) as BefStop,
       SUM(BefLeave) as BefLeave, SUM(AftPop) as AftPop,
       SUM(AftStop) as AftStop, SUM(AftLeave) as AftLeave
FROM ((SELECT AftEntryTenure as Tenure, 0 as BefPop, 0 as BefStop,
              SUM(IsBeforeStart) as BefLeave,
              COUNT(*) as AftPop, 0 as AftStop, 0 as AftLeave
       FROM s
       WHERE Tenure >= AftEntryTenure
       GROUP BY AftEntryTenure
      ) UNION ALL
      (SELECT Tenure, 0, SUM(IsStopped * (1 - IsAfterStop)) as BefStop,
              0, 0 as AftPop, SUM(IsStopped * IsAfterStop) as AftStop,
              SUM(IsAfterStop * (1 - IsStopped)) as AftLeave
       FROM s
       GROUP BY Tenure
      ) UNION ALL
      (SELECT 0, COUNT(*) as befPop, 0.0, 0.0, 0.0, 0.0, 0.0
       FROM s
       WHERE IsBeforeStart = 1
      )) s
GROUP BY Tenure
ORDER BY Tenure

This query uses arithmetic on the indicator flags to express logic. For instance, 
the expression SUM(IsAfterStop * (1 - IsStopped)) is logically equivalent 
to SUM(CASE WHEN IsStopped = 0 AND IsAfterStop = 1 THEN 1 ELSE 0 
END). Using arithmetic is shorter (and easier to type) and often easier to read 
and maintain.
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Figure 7-20: This spreadsheet calculates the survival curves based on whether an event occurred 
or did not occur during the customer lifetime.

Figure 7-20 shows a screen shot of the Excel spreadsheet that implements 
the calculations. This figure shows the population at risk calculations for each 
of the three groups. Calculating the hazards is just a matter of dividing the 
population at risk by the appropriate stops.  Survival is calculated from the 
hazards.

This approach to handling an event date combines two ideas already discussed. 
The survival for the “before” group uses forced censoring. The censor date is 
the event date, and only stops before the event date are counted.

The “after” group (combining both the customers who start before and survive 
to the event date and those who start after) uses time windows to define the 
values. In this case, the event date becomes the left truncation date for the group.

This example uses a single calendar date as the event date; a fixed date is not 
a requirement. The date could be defined on a customer-by-customer basis, 
requiring only minor modifications to the queries.

Doing the Calculation in SQL

This calculation in SQL uses cumulative sums:

WITH s AS (
      SELECT Tenure,
             (CASE WHEN StartDate >= '2005-06-01' THEN 0
                   ELSE DATEDIFF(day, StartDate, '2005-06-01')
              END) as AftEntryTenure,
             (CASE WHEN StopDate IS NOT NULL THEN 1 ELSE 0
              END) as IsStopped,
             (CASE WHEN StartDate < '2005-06-01' THEN 1 ELSE 0
              END) as IsBeforeStart,
             (CASE WHEN StopDate IS NULL OR StopDate >= '2005-06-01'
                   THEN 1 ELSE 0 END) as IsAfterStop
      FROM (SELECT s.*,
                   (CASE WHEN Market = 'Smallville'
                         THEN CAST('2004-10-27' as DATE)
                         ELSE '2004-01-01' END) as LeftTruncationDate
            FROM Subscribers s
           ) s
      WHERE tenure >= 0 AND StartDate >= LeftTruncationDate



 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure    365

     ),
    st as (
     SELECT Tenure, SUM(BefPop) as BefPop, SUM(BefStop) as BefStop,
            SUM(BefLeave) as BefLeave, SUM(AftPop) as AftPop,
            SUM(AftStop) as AftStop, SUM(AftLeave) as AftLeave
     FROM ((SELECT AftEntryTenure as Tenure, 0.0 as BefPop, 0.0 as BefStop,
                    SUM(IsBeforeStart) as BefLeave,
                    COUNT(*) as AftPop, 0.0 as AftStop, 0.0 as AftLeave
            FROM s
            WHERE Tenure >= AftEntryTenure
            GROUP BY AftEntryTenure
           ) UNION ALL
           (SELECT Tenure, 0,
                   SUM(IsStopped * (1 - IsAfterStop)) as BefStop, 0,
                   0 as AftPop, SUM(IsStopped * IsAfterStop) as AftStop,
                   SUM(IsAfterStop * (1 - IsStopped)) as AftLeave
            FROM s
            GROUP BY Tenure
           ) UNION ALL
           (SELECT 0, COUNT(*) as befPop, 0, 0, 0, 0, 0
            FROM s
            WHERE IsBeforeStart = 1
           )) s
      GROUP BY Tenure
     )
SELECT Tenure,
       (SUM(BefPop - BefLeave - BefStop) OVER (ORDER BY Tenure)  +
        BefStop) as BefPop,
       BefStop,
       (BefStop / NULLIF(SUM(BefPop- BefLeave - BefStop) OVER
                            (ORDER BY Tenure) + BefStop, 0)) as Befh,
       (SUM(AftPop - AftLeave - AftStop) OVER (ORDER BY Tenure) +
        AftLeave + AftStop) as AftPop,
       AftStop,
       (AftStop / NULLIF(SUM(AftPop - AftLeave - AftStop) OVER
                             (ORDER BY Tenure) +
                         AftLeave + AftStop, 0)) as Afth
FROM st
ORDER BY Tenure;

The basic structure of this query follows the structure of the previous query. 
The CTE st represents the output of that query.  NULLIF() prevents divide-by-
zero errors.

There is one nuance to the query. The basic logic for calculating the population 
at a given tenure is the following: It is the population at the previous tenure plus 
the incremental population at this tenure, minus the customers who stopped 
at the previous tenure. The latter is the customers who leave (because they are 
censured) and those who stop.



366 Chapter 7 ■ Factors affecting Survival: the What and Why of Customer tenure   

The calculation for AftPop follows this logic. The expression SUM(AftPop – 
AftLeave – AftStop) calculates the cumulative sum up to the current tenure.  
Hence, this expression over counts the stops, and AftLeave and AftStop must 
be added back in.

The calculation for BefPop only adds in BefStop, but not AftLeave. BefLeave 
is already offset by one because it is the first tenure where the customer is in the 
“after” group. The reason is convenience. The middle subquery (where these 
values are calculated) aggregates by Tenure. This is correct for the after variables, 
but it should really be Tenure - 1 for the before variables because customers 
leave the “before” group on the day before they enter the “after” group. However, 
it is easy enough to adjust the calculation in the next step.

Lessons Learned

The previous chapter introduced survival analysis and the calculation of haz-
ard and survival probabilities using SQL and Excel. This chapter extends these 
ideas, showing ways to calculate survival in other situations and to measure 
the effects of covariates on survival.

The chapter starts by showing how to understand the effects on survival of 
variables known at the beginning of the customer relationship. The effects might 
change over time, even though the variables remain constant during each customer’s 
lifetime. Hazard ratios capture the effects for categorical variables by taking the ratio 
of the hazards. For numeric variables, the right measure is the average of a numeric 
variable at different points in the survival curve for active and stopped customers.

One of the biggest challenges in using survival analysis is calculating unbi-
ased hazard probabilities. This is particularly challenging when the data is 
left truncated—that is, when customers who stopped before some date are 
not included in the database. The solution to left truncation is the use of time 
windows. Time windows are a powerful tool that goes beyond solving left 
truncation. They make it possible to calculate unbiased hazard probabilities 
based on stops during a particular period of time.

The chapter continues by looking at what happens at the end of the customer 
lifetime using competing risks. The survival analysis discussion assumes that all 
customers who leave are equal. However, why customers leave can also be impor-
tant. Competing risks allows us to calculate how many customers are still active, 
and how many have left due to voluntary churn, involuntary churn, and migration.

Time-dependent covariates occur during a customer’s lifetime, rather than at 
the beginning or end. Calculating before and after hazard for an event combines 
forced right censoring (discussed in the previous chapter) with time windows.

The next chapter moves to a related topic, the subject of recurrent events. 
Unlike survival analysis so far, though, recurrent events happen more than 
once, a twist that we haven’t yet considered.
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C h a p t e r 

8
Customer purchases and Other 

repeated events 

Subscription-type customer relationships have well-defined starts and stops. 
This chapter moves from these types of relationships to those defined by mul-
tiple events that take place over time, such as purchases and website visits, 
donations and handset upgrades. Such relationships do not necessarily have 
a definite end, because any particular event could be the customer’s last, or it 
could be just another in a long series of events.

Repeated events require correctly assigning the same customer to events that 
happen at different times and perhaps through different channels. Sometimes 
we are lucky and customers identify themselves, perhaps by using an account. 
Identification of individuals can still be challenging. Consider the example of 
Amazon.com and a family account. The purchase behavior—and resulting 
recommendations—might combine a teenage daughter’s music preferences 
with her mother’s technical purchases with a pre-teen son’s choice of games.

Disambiguating individuals within one account poses one problem; identify-
ing the same customer over time is another. When no account is available, fancy 
algorithms might match customers to transactions using name matching and 
address matching, credit card numbers, email address, and browser cookies and 
other information. This chapter looks at how SQL can help facilitate building 
and evaluating such techniques.

Sometimes, events occur so frequently that they actually represent subscrip-
tion-like behaviors. For instance, prescription data consists of drug purchases 
or prescriptions. Multiple sequential prescriptions for a given customers are 
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combined into episodes of treatment. Websites, such as Facebook and eBay, have 
a similar conundrum. Users typically visit often; however, they do not signal the 
end of their relationship by politely closing their accounts. They stop visiting, 
emailing, bidding, or offering. At the other extreme are rare events. Automobile 
manufacturers trying to understand long-term customer relationships must 
deal with purchase intervals that stretch into multiple years.

This chapter focuses on retail purchase patterns that are in-between—not too 
frequent and not too rare. In addition to being a common example of repeated 
events, these purchases provide a good foundation for understanding such 
data. Because of this focus on retail data, the examples in this chapter use the 
purchases dataset exclusively.

The traditional method for understanding retail purchasing behaviors focuses 
on three specific dimensions: recency, frequency, and monetary. RFM analysis 
is a good background for understanding customers and some of their behav-
iors over time. As important as it is, RFM leaves out many other dimensions of 
customer behavior.

Customer behaviors change over time, and tracking and measuring these 
changes is important. One approach is to compare the recent behaviors to earlier 
behaviors; another is to fit a trend line to each customer’s interactions. Survival 
analysis is yet another alternative for addressing a critical question: how long 
until the next interaction? The answer depends on the particular customer and 
that customer’s past behavior. If too much time has elapsed, perhaps it is time 
to start worrying about how to get the customer back. Before worrying about 
getting the customer back, let’s start at the beginning: identifying customers 
on different transactions.

Identifying Customers

Identifying transactions as belonging to the same customer is challenging, both 
for retail customers (individuals and households) and for business customers. 
Even when customers have an ongoing relationship, such as a loyalty card, 
they may not always use their identification number. This section discusses the 
definition of “customer” and how customers are represented in data. The next 
section looks at other types of data, such as addresses.

Who Is the Customer?
The transactions in the purchases dataset are orders. The database has several 
ways to tie transactions together over time. Each order has OrderId, which leads 
to a CustomerId and a HouseholdId. The following query provides the counts 
of orders, customers, and households:
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SELECT COUNT(*) as numorders, COUNT(DISTINCT c.CustomerId) as numcusts,
       COUNT(DISTINCT c.HouseholdId) as numhh
FROM Orders o LEFT OUTER JOIN
     Customers c
     ON o.CustomerId = c.CustomerId

This query returns 192,983 orders for 189,559 customers comprising 156,258 
households. So, there are about 1.02 orders per customer and about 1.2 custom-
ers per household. This data has some examples of repeating customers, but 
not very many.

A slightly different way to answer the same question, counts the number of 
households, customers, and orders using subqueries:

SELECT numorders, numcusts, numhh
FROM (SELECT COUNT(*) as numorders FROM Orders) o CROSS JOIN
     (SELECT COUNT(*) as numcusts, COUNT(DISTINCT HouseholdId) as numhh
      FROM Customers) c

The CROSS JOIN creates all combinations of rows from two tables (or subqueries). 
The CROSS JOIN is sometimes useful when working with very small tables, such 
as the two one-row subqueries in this example.

The two approaches are quite similar but they could yield different results. 
The first counts CustomerIds and HouseholdIds that have orders. The second 
counts everything in the database, even those without orders. The results are 
the same on this data.

t Ip Even a seemingly simple question such as “how many customers are there?” can 
have different answers depending on specifics: “How many customers have placed 
an order?” and “how many households are in the database?” may have very different 
answers.

The purchases data already has the customer and household columns assigned. 
The database intentionally does not contain identifying information (such as 
last name, address, telephone number, or email address), but it does contain 
gender and first name.

How Many?

How many customers are in a household? This is a simple histogram question on 
Customers:

SELECT numinhousehold, COUNT(*) as numhh,
       MIN(HouseholdId), MAX(HouseholdId)
FROM (SELECT HouseholdId, COUNT(*) as numinhousehold
      FROM Customers c
      GROUP BY HouseholdId
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     ) h
GROUP BY numinhousehold
ORDER BY numinhousehold

The results in Table 8-1 emphasize that most households have only one customer. 
At the other extreme, two have over 100 customers each. Such large households 
suggest an anomaly in the house-holding algorithm. In fact, in this dataset, busi-
ness customers from the same business are grouped into a single household. 
Whether or not this is correct depends on how the data is used.

table 8-1: Histogram of Household Sizes

aCCOunts In 
hOusehOld

number Of 
hOusehOlds

CumulatIve 
number

CumulatIve 
perCent

1 134,293 134,293 85.9%

2 16,039 150,332 96.2%

3 3,677 154,009 98.6%

4 1,221 155,230 99.3%

5 523 155,753 99.7%

6 244 155,997 99.8%

7 110 156,107 99.9%

8 63 156,170 99.9%

9 28 156,198 100.0%

10 18 156,216 100.0%

11 9 156,225 100.0%

12 14 156,239 100.0%

13 4 156,243 100.0%

14 4 156,247 100.0%

16 2 156,249 100.0%

17 2 156,251 100.0%

21 2 156,253 100.0%

24 1 156,254 100.0%

28 1 156,255 100.0%

38 1 156,256 100.0%

169 1 156,257 100.0%

746 1 156,258 100.0%
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A related question is the average size of a household. It is tempting to use 
the previous query as a subquery for this calculation. A much simpler query 
does the same calculation:

SELECT COUNT(*) * 1.0 / COUNT(DISTINCT HouseholdId)
FROM Customers c

This query divides two numbers. The first is the number of customers. The second 
is the number of households.  (The *1.0 prevents integer division.) The answer 
is 1.21, consistent with the fact that most households have only one customer.

How Many Genders in a Household?

We might expect that customers have only two genders, but one never knows 
what the values are until one looks at the data:

SELECT Gender, COUNT(*) as numcusts, MIN(CustomerId), MAX(CustomerId)
FROM Customers
GROUP BY Gender
ORDER BY numcusts DESC

Table 8-2 shows the results of this query.

table 8-2: Genders and Their Frequencies

Gender frequenCy prOpOrtIOn

M 96,481 50.9%

F 76,874 40.6%

16,204 8.5%

t Ip Looking at the data is the only way to see what values really are in a column; the 
answer is a histogram created using GROUP BY.

These results include the two expected genders, male and female. There 
is also a third value that looks blank. Blanks in output are ambiguous. The 
column value could be NULL, blank, or, perhaps, a string containing a space, or 
some other unorthodox value (some database interfaces return NULL values as 
blank, although SQL Server Management Studio—the interface to Microsoft 
SQL Server—uses the string “NULL”).

The following variation on the query provides more clarity:

SELECT (CASE WHEN Gender IS NULL THEN 'NULL'
             WHEN Gender = '' THEN 'EMPTY'
             WHEN Gender = ' ' THEN 'SPACE'
             ELSE Gender END) as gender, COUNT(*) as numcusts
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FROM Customers
GROUP BY Gender
ORDER BY numcusts DESC

For further refinement, the function ASCII() returns the actual numeric value 
of any character. The results show that the third gender is actually the empty 
string as opposed to the other possibilities.

This query has an interesting feature; the GROUP BY expression differs from 
the SELECT expression. Consider the following query, which classifies the gen-
ders as “GOOD” and “BAD.” In the first version, the GROUP BY clause and the 
SELECT use the same expression:

SELECT (CASE WHEN Gender IN ('M', 'F') THEN 'GOOD' ELSE 'BAD' END) as g,
       COUNT(*) as numcusts
FROM Customers
GROUP BY (CASE WHEN Gender IN ('M', 'F') THEN 'GOOD' ELSE 'BAD' END)

A slight variation uses only the GENDER variable in the GROUP BY clause:

SELECT (CASE WHEN Gender IN ('M', 'F') THEN 'GOOD' ELSE 'BAD' END) as g,
       COUNT(*) as numcusts
FROM Customers
GROUP BY Gender

The first version returns two rows, one for “GOOD” and one for “BAD.” The 
second returns three rows, two “GOOD” and one “BAD”; the two “GOOD” 
rows are for males and females. Figure 8-1 shows the dataflow diagrams corre-
sponding to each of these queries. The difference is whether the CASE statement 
is calculated before or after the aggregation.  The aggregation determines the 
number of rows in the result set.

The only difference is two or three rows for this example. In some situations 
the difference can be much more significant. For instance, the SELECT statement 
might assign values into ranges. If the corresponding GROUP BY does not have 
the same expression, the aggregation might not reduce the number of rows.

t Ip When using an expression in the SELECT statement of an aggregation query, 
be careful to think about whether the GROUP BY should contain the full expression or 
just the variable. In most cases, the full expression is the correct approach.

The relationship between genders and households leads to the next ques-
tion: How many households have one gender, two genders, and three genders? This 
question does not require knowing the specific genders, just how many are in 
the household. A household with only one member has only one gender, so 
household size and the number of genders are related to each other. For each 
household size (by number of customers), how many households have one gender, two 
genders, and three genders?
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figure 8-1:  These dataflow diagrams show the difference in processing between aggregating 
first and then calculating an expression versus aggregating on the calculated value.

READ
Customers

APPEND
gendergroup= . . . OUTPUT

CustomerId Gender
47149 M
104162
47355 F
125694 M

. . .

GenderGroup num
GOOD 16,204
BAD 173,355

AGGREGATE
group by gendergroup

num = count(*)

CustomerId Gender GenderGroup
47149 M GOOD
104162 BAD
47355 F GOOD
125694 M GOOD

. . .

READ
Customers

APPEND
gendergroup= . . .

OUTPUT

CustomerId Gender
47149 M
104162
47355 F
125694 M

. . .

GenderGroup num
BAD 16,204

GOOD 76,874
BAD 96,481

AGGREGATE
group by gender

num = count(*)

Gender num
M 96,481
F 76,874

16,204

SELECT numcustomers, COUNT(*) as numhh,
       SUM(CASE WHEN numgenders = 1 THEN 1 ELSE 0 END) as gen1,
       SUM(CASE WHEN numgenders = 2 THEN 1 ELSE 0 END) as gen2,
       SUM(CASE WHEN numgenders = 3 THEN 1 ELSE 0 END) as gen3
FROM (SELECT HouseholdId, COUNT(*) as numcustomers,
             COUNT(DISTINCT Gender) as numgenders
      FROM Customers c
      GROUP BY HouseholdId) hh
GROUP BY numcustomers
ORDER BY numcustomers

This query uses conditional aggregation to calculate the gender counts in col-
umns, rather than having a separate row for each customer and gender.

The results in Table 8-3 look suspicious. One would not expect 94.1% of house-
holds with two people to have only one gender. Further, in almost all these cases, 
the households consist of people with the same first name. The logical conclu-
sion is that the identification of individuals does not work well. One customer 
is being assigned multiple values of CustomerId. For this reason, and for others 
discussed later in this chapter, the HouseholdId is preferable for identifying 
customers over time.
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table 8-3: Count of Households by Number of Customers and Genders

CustOmers In 
hOusehOld

number Of 
hOusehOlds 1 Gender 2 Genders 3 Genders

1 134,293 134,293   0 0

2  16,039  15,087 952 0

3   3,677   3,305 370 2

4   1,221   1,102 118 1

5    523    478  43 2

6    244    209  35 0

7    110     99  11 0

8     63     57   6 0

9     28     24   4 0

10     18     16   2 0

11      9      8   1 0

12     14     13   1 0

13      4      3   1 0

14      4      4   0 0

16      2      2   0 0

17      2      2   0 0

21      2      2   0 0

24      1      1   0 0

28      1      1   0 0

38      1      0   0 1

169      1      1   0 0

746      1      0   0 1

Investigating First Names

Something is awry when many households consist of multiple customers having 
the same first name. These households probably have one individual assigned 
multiple CustomerIds. To investigate this, let’s ask the question: How many house-
holds consist of “different” customers that have the same first name and the same gender?

Two approaches to answering this question are presented here. One way is 
to count the number of values of Gender and of Firstname in each household 
and then count the number of households that have one of each:
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SELECT COUNT(*) as numhh,
       SUM(CASE WHEN numgenders = 1 AND numfirstnames = 1 THEN 1 ELSE 0
           END) as allsame
FROM (SELECT HouseholdId, COUNT(*) as numcustomers,
             COUNT(DISTINCT Gender) as numgenders,
             COUNT(DISTINCT Firstname) as numfirstnames
      FROM Customers c
      GROUP BY HouseholdId) hh
WHERE numcustomers > 1

The second approach compares the minimum and maximum values of the two 
columns. When these are the same, the household has only one value:

SELECT COUNT(*) as numhh,
       SUM(CASE WHEN minfname = maxfname AND mingender = maxgender
                THEN 1 ELSE 0 END) as allsame
FROM (SELECT HouseholdId, COUNT(*) as numcustomers,
             MIN(Firstname) as minfname, MAX(Firstname) as maxfname,
             MIN(Gender) as mingender, MAX(Gender) as maxgender
      FROM Customers c
      GROUP BY HouseholdId) hh
WHERE numcustomers > 1

Table 8-4 shows the results broken out by the number of customers in the house-
hold (by adding numcustomers to the SELECT clause and replacing the WHERE clause 
with GROUP BY numcustomers). It suggests that many households with multiple 
customers seem to consist of one individual assigned multiple customer IDs.

table 8-4: Customers with Same Identifying Information in Household

number Of 
CustOmers

number Of 
hOusehOlds

same Gender 
and fIrst name

1 134,293 134,293

2  16,039  14,908

3   3,677   3,239

4   1,221   1,078

5    523     463

6    244     202

7     110      97

8      63      52

9     28      24

10      18      14

continues
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table 8-4 (continued)

These queries may not be doing exactly what we expect when the columns 
have NULL values. If Firstname only contains NULL values for a given household, 
COUNT(DISTINCT) returns zero, rather than one. So, the first query does not count  
that household even though all values are identical. The second query produces 
the same result, but for a different reason: The minimum and maximum values 
are both NULL and these fail the equality test.

Warn InG Using standard SQL, NULL values tend not to be counted when 
looking at the number of values a column takes on. Use an expression such as 
COALESCE(<column>, '<NULL>') to count all values including NULLs.

Similarly, a household consisting of customers with a mixture of NULL and 
one non-NULL value gets counted as having only one customer. This is because 
COUNT(DISTINCT) counts the non-NULL values, and MIN() and MAX() ignore NULL 
values. To count NULL values separately, use the COALESCE() function to assign 
another value:

COALESCE(Firstname, '<NULL>')

This conversion then treats NULL as any other value; be careful that the second 
argument to COALESCE() is not a value already in the table. Alternatively, count 
them explicitly by adding an expression such as:

MAX(CASE WHEN Firstname IS NULL THEN 1 ELSE 0 END)

number Of 
CustOmers

number Of 
hOusehOlds

same Gender 
and fIrst name

11      9       8

12 14 13

13 4 3

14 4 4

16 2 2

17 2 2

21 2 2

24 1 1

28 1 1

38 1 0

169 1 0

746 1 0
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Counts of first names are interesting, but examples of first names are even 
better. What are some examples of first names from each household where all members 
have the same genders?

SELECT HouseholdId, MIN(Firstname), MAX(Firstname)
FROM Customers c
GROUP BY HouseholdId
HAVING MIN(Firstname) <> MAX(Firstname) AND MIN(Gender) = MAX(Gender)

This query selects households that have multiple names all of the same gender. 
By using the HAVING clause, no subqueries or joins are needed. The MIN() and 
MAX() functions provide example values.

As with the previous query, households with NULL first names are not included 
in the results. To include them, the HAVING clause could be modified using the 
COALESCE() function:

HAVING (MIN(COALESCE(firstname, '<NULL>')) <>
        MAX(COALESCE(firstname, '<NULL>'))) AND. . .

This query returns 301 rows; the following are examples of customer names 
that appear in the same household:

 ■ “T.” and “THOMAS”

 ■ “ELIAZBETH” and “ELIZABETH”

 ■ “JEFF” and “JEFFREY”

 ■ “MARGARET” and “MEG”

These four examples are probably referring to the same individual, but with 
variations on the name caused by:

 ■ Use of an initial rather than the full name

 ■ Shortened version of a name

 ■ Misspellings

 ■ Nicknames

Such are a few of the complications in matching customers using names.
There are some ways to mitigate this problem. When a household contains a 

name that is an initial of another name, ignore the initial. Or, when the first part 
of one name exactly matches another name, ignore the shorter one. These are 
reasonable rules for identifying essentially the same names on different records.

The rules are easy to express. However, implementing them in SQL is more 
challenging. The idea behind the SQL implementation is to introduce a new 
column for each name, called altfirstname, which is the full form of the name 
gleaned from other names on the household. Calculating altfirstname requires 
a self-join on the HouseholdId because every name in a household has to be 
compared to every other name in the household:
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SELECT c1.HouseholdId, c1.CustomerId, c1.Firstname, c1.Gender,
       MAX(CASE WHEN LEN(c1.Firstname) >= LEN(c2.Firstname) THEN NULL
                WHEN LEFT(c1.Firstname, 1) = LEFT(c2.Firstname, 1) AND
                     SUBSTRING(c1.Firstname, 2, 1) = '.' AND
                     LEN(c1.Firstname) = 2
                THEN c2.Firstname
                WHEN c2.Firstname LIKE c1.Firstname + '%'
                THEN c2.Firstname
                ELSE NULL END) as altfirstname
FROM Customers c1 JOIN Customers c2 ON c1.HouseholdId = c2.HouseholdId
GROUP BY c1.HouseholdId, c1.CustomerId, c1.Firstname, c1.Gender

This query implements the first two rules: the ones for the initial and for the 
shortened version of names. Adding rules for misspellings and nicknames is 
more difficult because these need a lookup table to rectify the spellings.

These rules highlight issues about matching names and other short text data. 
Values are often subject to misspellings and interpretations (such as whether 
“T.” is for “Thomas” or “Theodore” or “Tiffany”). SQL string and text-processing 
functions are quite rudimentary. However, combined with SQL’s data processing 
capability and the CASE statement, it is possible to use SQL to make some sense 
out of such data. The aside “Levenshtein Distance” explains another method 
for measuring the similar of strings, one that is often useful for names.

Other Customer Information
A database with identified customers would normally also have full name, 
address, and probably other identifying information such as telephone numbers, 
email addresses, browser cookies, and social security numbers. None of these 
are ideal for matching customers over time, because customers move and change 
names. In the United States, even social security numbers may not be unique due 
to issues such as employment fraud. This section discusses these types of data.

First and Last Names

Some names, such as James and Gordon, George and John, Kim and Kelly 
and Lindsey, are common as both first and last names. Other names, though, 
almost always fall in one or the other categories. When the Firstname col-
umn has values such as “ABRAHAMSOM,” “ALVAREZ,” “ROOSEVELT,” or 
“SILVERMAN,” it is suspicious that the first and last names are being inter-
changed on some records. This might be either a customer input error or a 
data processing error.

When both first name and last name columns are available, it is worth check-
ing to see if they are being swapped. In practice, it is cumbersome to look at 
thousands of names and impossible to look at millions of them. A big help is 
to look at every record with a first and last name and calculate the suspicion 
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levenshteIn dIstanCe

Comparing strings for similarity is important when trying to match names and 
addresses. What is a good way to measure distance between two strings? How far 
apart is “John” and “Jon”?  Or “Stella” and “Luna”?

One method would be to count the number of letters in common.  So, “John” 
and “Jon” would be a distance one apart. But this doesn’t always work. The distance 
between “Roland” and “Arnold,” “Sonja” and “Jason,” and “Carol” and Carlo” are all 
zero by this measure, although these names are clearly different.  This problem gets 
worse as the strings get longer (and have more different characters).

A refinement to this method uses n-grams—counting the number groups of letters in 
common. So if n = 3, “Arnold” would be characterized by four 3-grams “arn,” “rno,” “nol,” 
and “old.” “Roland” would be “rol,” “ola,” “lan,” and “and”—no trigrams in common. 
Alas, a small misspelling can have a big impact. So, “Roland” and “Roalnd” also have no 
trigrams in common, although the second simply seems to be a typo. Trigrams don’t 
necessarily work well for shorter strings, but they are often useful for longer ones.

Vladimir Levenshtein, a Russian scientist, proposed an alternative solution in the 
1960s. This solution is based on the edit distance between two strings. An “edit” con-
sists of one of the following:

 ■ Replacing one letter with another letter

 ■ Inserting a letter

 ■ Deleting a letter

(Sometimes, swapping two letters is also included.) The Levenshtein distance is 
the minimum number of such operations needed to transform one string into 
another.

Using this measure, the distance between “Jon” and “John” is 1 because the let-
ter “h” just needs to be inserted in the third position. The distance from “Roland” to 
“Arnold” is 4 (ignoring capitalization):  Arnold  Rnold  Rold  Rolad  Roland.

Levenshtein not only devised the measure, he also found a relatively efficient way 
to calculate the distance for any two strings. This distance has been implemented as a 
user-defined function in many databases (source code is readily available on the web); 
it is built directly into Postgres and Teradata.

However, the calculation of Levenshtein distance cannot take advantage of 
indexes. As a result, calculating Levenshtein distance requires comparing a given 
string to all strings—and this can take a long time if you need to compare all the val-
ues in one column with lots of values to each other.

that the names might be swapped. A convenient definition of this suspicion is 
the following:

suspicion = firstname as lastname rate + lastname as firstname rate

That is, a name is suspicious based on how suspicious the value in the Firstname 
column is and how suspicious the value in the Lastname column is.
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The following query calculates the first name suspicion value, assuming the 
existence of a Lastname column, and outputs the results in order by highest 
suspicion:

WITH suspicion AS (
      SELECT name, SUM(IsLast) / (SUM(IsFirst) + SUM(IsLast)) as lastrate,
             SUM(IsFirst) / (SUM(IsFirst) + SUM(IsLast)) as firstrate
      FROM ((SELECT Firstname as name, 1.0 as IsFirst, 0.0 as IsLast
             FROM Customers c)
            UNION ALL
           (SELECT Lastname as name, 0.0 as IsFirst, 1.0 as IsLast
            FROM Customers c)) n
      GROUP BY name
     )
SELECT c.*, (susplast.lastrate + suspfirst.firstrate) as swapsuspicion
FROM Customers c JOIN
     suspicion susplast
     ON c.FirstName = susplast.name JOIN
     suspicion suspfirst
     ON c.LastName = suspfirst.name
ORDER BY swapsuspicion DESC

The key to this query is calculating firstrate and lastrate, which is the 
proportion of times that a particular name is used as a first or last name 
among all occurrences of the name. So, “Smith” might occur 99% of the time 
in the last name column. If we see “Smith” in the first name column, it has 
a suspicion value of 99%. 

The CTE suspicion calculates the value by first combining the name fields 
into a single column and then calculating the two proportions. The first name 
suspicion is the proportion of times that the name occurs as a last name. If the 
name is always a first name, the suspicion is zero. If the name is almost always 
a last name, the suspicion is close to one. The overall row suspicion is the sum 
of the two values, all calculated using SQL. The best way to look at the results 
is by sorting suspicion in descending order.

t Ip An alternative to using proportions is the chi-square value associated with a 
name, following the guidelines in Chapter 3.

Addresses

Address matching is a cumbersome process that often uses specialized software 
or outside data vendors. There are many ways of expressing an address. The 
White House is located at “1600 Pennsylvania Avenue, NW.” Is this the same 
as “1600 Pennsylvania Ave. NW”? “Sixteen Hundred PA Avenue, Northwest”? 
The friendly Post Office recognizes all these as the same physical location, even 
though the strings have subtle and not-so-subtle differences.



 Chapter 8 ■ Customer purchases and Other repeated events  381

Address standardization transforms addresses by replacing elements such 
as “Street,” “Boulevard,” and “Avenue” with abbreviations (“ST,” “BLVD,” and 
“AVE”). Street names that are spelled out (“Second Avenue” or “First Street”) 
are usually changed to their numeric form (“2 AVE” and “1 ST”). The United 
States Post Office has a standard address format (http://pe.usps.gov/cpim/
ftp/pubs/Pub28/pub28.pdf).

Standardization solves only part of the problem. Addresses in apartment 
buildings, for instance, should include apartment numbers. Determining this 
information requires comparing addresses to a master list that knows whether 
or not the street address refers to a multi-unit building.

Although fully disambiguating addresses is difficult, even an approximate 
solution can be helpful to answer questions such as:

 ■ Are external house-holding algorithms capturing all individuals in the 
same household?

 ■ How much duplicate mail is being sent out to the same household?
 ■ Approximately how many households have made a purchase this year?

 ■ Did prospects who received a marketing message respond through other 
channels?

 ■ About how many new customers are returning customers?

These questions can help evaluate assignments of household IDs. They also 
provide a very rudimentary way to understand which addresses belong in the 
same household when no household IDs are available.

Rudimentary house-holding with names and addresses is possible using clever 
rules. The following simple rules identify many individuals in a household:

 ■ The last names are the same.

 ■ The zip codes are the same.

 ■ The first five characters in the address are the same.

The following SQL creates household keys using these rules:

SELECT Lastname + ': ' + Zip + ': ' + LEFT(Address, 5) as tempkey, c.*
FROM Customers c

This is not perfect and has some obvious failings (married couples with different 
last names, neighborhoods with high proportions of people with similar names, 
and so on). This is not a complete solution. The idea is to find individuals that 
look similar so they can be further verified.

Email Addresses

Email addresses identify online customers. Their advantage is that customers 
can use them from any device. Of course, people often have more than one email 
address, so if a customer wants to register multiple times, that is pretty easy.

http://pe.usps.gov/cpim/ftp/pubs/Pub28/pub28.pdf
http://pe.usps.gov/cpim/ftp/pubs/Pub28/pub28.pdf


382 Chapter 8 ■ Customer purchases and Other repeated events 

Typically, an email address consists of two components separated by an 
at-sign (@). The first is the local part and the second is the domain. The logic for 
extracting these components is simple: Use a function to determine where the 
@ is and then take the part of the string before and after that character. In Excel, 
this looks something like:

=LEFT(A1, FIND("@", A1) - 1)
=MID(A1, FIND("@", A1) + 1, 100)

The first is the local part and the second is the domain.
In SQL, the logic is similar—find the at-sign and use string operations to 

extract the two components:

SELECT LEFT(Email, CHARINDEX('@', Email) - 1) as localpart,
       SUBSTRING(Email, CHARINDEX('@', Email) + 1, LEN(Email)) as domain

This follows the same logic as Excel, just using the corresponding functions 
in SQL Server. The functions for finding a character and extracting substrings 
differ among databases.

Another important component of email addresses is the suffix on the domain. 
This can distinguish education addresses from government addresses from 
other email domains. In addition, the suffix can contain country information 
as well. The logic for extracting the suffix is similar to the logic for extracting 
the domain.

Other Identifying Information

Other types of identifying information such as telephone numbers, email 
addresses, browser cookies, and credit card numbers are also useful for provid-
ing hints to identify a given customer over time. For instance, a customer might 
make two online purchases, one at work and one at home. The accounts could 
be different, with goods being sent to the work address during one purchase 
transaction and being sent to the home address during another. However, if the 
customer uses the same credit card, the credit card number can be used to tie 
the transactions together.

Warn InG Do not store clear-text credit card numbers in an analysis database. 
Keep the first six digits to identify the type of credit card, and store the number using 
an ID or hash code so the real value is hidden.

Of course, each type of identifying information has its own peculiarities. 
Telephone numbers might change through no fault of the customer simply 
because the area code changes. Email addresses might change through no 
fault of the customer simply because one company purchases another and the 
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domain changes. Credit cards expire and the replacement card may have a 
different number.

These challenges are aggravated by the fact that households change over time. 
Individuals get married, and couples divorce. Children grow up and move out. 
And sometimes, older children and elderly relatives move in. Identifying the 
economic unit is useful but challenging.

How Many New Customers Appear Each Year?
How many new customers appear each year? This section discusses this question 
and related questions about customers and purchase intervals.

Counting Customers

The basic question is almost a trick question, easy if we think about it the right 
way, difficult if we think about it the wrong way. One approach is to find all 
customers who place an order in a given year and then filter out those who 
made any purchase in previous years. Implementing such a query requires a 
complicated self-join on Orders. This is not unreasonable. But, consider a much 
simpler line of reasoning.

From the perspective of the customer, each customer makes an initial purchase, 
which is determined by MIN(OrderDate). The year of this minimum is the year 
that the customer first appears, an observation that results in:

SELECT firstyear, COUNT(*) as numcusts,
       SUM(CASE WHEN numyears = 1 THEN 1 ELSE 0 END) as year1,
       SUM(CASE WHEN numyears = 2 THEN 1 ELSE 0 END) as year2
FROM (SELECT c.CustomerId, MIN(YEAR(o.OrderDate)) as firstyear,
             COUNT(DISTINCT YEAR(o.OrderDate)) as numyears
      FROM Orders o
      GROUP BY c.CustomerId) c
GROUP BY firstyear

ORDER BY firstyear

This query also calculates the number of years when a customer ID placed an 
order. The customer IDs are valid only during one year, so numyears is always 
one.  This explains why households are better for tracking customers.

Revising the query for households requires joining in Customers to get the 
HouseholdId:

SELECT firstyear, COUNT(*) as numcusts,
       SUM(CASE WHEN numyears = 1 THEN 1 ELSE 0 END) as year1,
       SUM(CASE WHEN numyears = 2 THEN 1 ELSE 0 END) as year2
FROM (SELECT c.HouseholdId, MIN(YEAR(o.OrderDate)) as firstyear,
             COUNT(DISTINCT YEAR(o.OrderDate)) as numyears
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figure 8-2:  The number of new households that make purchases varies considerably from one 
year to another.

      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId) h
GROUP BY firstyear
ORDER BY firstyear

Figure 8-2 charts the results of this query, showing a significant variation in 
attracting new customers/households from year to year.

The next variation on the question is more difficult: What proportion of custom-
ers who place orders in each year are new customers? This question is more difficult 
because all transactions in the year need to be taken into account, not just the 
ones with new customers. There is a shortcut: The number of new customers 
and the number of total customers can be calculated in separate subqueries:

SELECT theyear, SUM(numnew) as numnew, SUM(numall) as numall,
       SUM(numnew * 1.0) / SUM(numall) as propnew
FROM ((SELECT firstyear as theyear, COUNT(*) as numnew, 0 as numall
       FROM (SELECT c.HouseholdId, MIN(YEAR(o.OrderDate)) as firstyear
             FROM Orders o JOIN Customers c
                  ON o.CustomerId = c.CustomerId
             GROUP BY c.HouseholdId) a
       GROUP BY firstyear)
      UNION ALL
      (SELECT YEAR(OrderDate) as theyear, 0 as numnew,
              COUNT(DISTINCT HouseholdId) as numall
       FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
       GROUP BY YEAR(OrderDate))
     ) a
GROUP BY theyear
ORDER BY theyear

The first subquery calculates the new households in the year. The second cal-
culates the number of households that make a purchase each year, using COUNT 
DISTINCT. Perhaps the most interesting aspect is the UNION ALL and subsequent 
GROUP BY at the outermost level. It is tempting to write this using a join:
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SELECT theyear, n.numnew, a.numall
FROM (<first subquery>) n JOIN
     (<second subquery>) a
     ON n.firstyear = a.theyear

However, years where one or the other groups have no data would be excluded—
years with no new customers, for instance. Although this problem is unlikely 
with yearly summaries, the UNION ALL method is safer.

The alternative version does work using FULL OUTER JOIN operator:

SELECT COALESCE(n.theyear, a.theyear) as theyear,
       COALESCE(n.numnew, 0) as numnew, COALESCE(a.numall, 0) as NUMALL
FROM (<first subquery here>) n FULL OUTER JOIN
     (<second subquery here>) a
     ON n.firstyear = a.theyear
ORDER BY theyear

This version uses COALESCE() to handle unmatched values on either side of 
the join.

The first row of the results in Table 8-5 shows that households that made 
purchases during the earliest year are all new households (as expected). After 
that, the proportion of new households tends to decrease from year to year, 
falling to less than 85%.

This query can also be written using window functions, simplifying the logic. 
The key idea is to summarize the data by household and the year of the order. 
This gives enough information for the calculation:

SELECT theyear, COUNT(*) as numall,
       SUM(CASE WHEN theyear = firstyear THEN 1 ELSE 0 END) as numnew,
       AVG(CASE WHEN theyear = firstyear THEN 1.0 ELSE 0 END) as propnew
FROM (SELECT c.HouseholdId, YEAR(o.OrderDate) as theyear,

table 8-5: New and All Customers by Year

year
number neW 
CustOmers

tOtal number 
Of CustOmers % neW

2009    7,077    7,077 100.0%

2010 16,291 17,082 95.4%

2011 22,357 24,336 91.9%

2012 16,488 18,693 88.2%

2013 23,658 26,111 90.6%

2014 35,592 39,814 89.4%

2015 22,885 27,302 83.8%

2016 11,910 14,087 84.5%
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             MIN(YEAR(o.OrderDate)) OVER (PARTITION BY c.HouseholdId
                                       ) as FirstYear
      FROM Orders o JOIN
           Customers c
           ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId, YEAR(o.OrderDate)
     ) hh
GROUP BY theyear
ORDER BY theyear

This query is shorter and the logic is easier to follow. The calculation of the 
proportion the outer SELECT uses an average rather than dividing two sums.

Span of Time Making Purchases

Households make multiple purchases over the course of several years. During how 
many years do households make purchases? This question is different from the total 
number of purchases a household makes because it is asking about the number 
of years when a household is active. The following query answers the question 
and provides sample households for each number of years:

SELECT numyears, COUNT(*) as numhh, MIN(HouseholdId), MAX(HouseholdId)
FROM (SELECT HouseholdId, COUNT(DISTINCT YEAR(OrderDate)) as numyears
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY HouseholdId) h
GROUP BY numyears
ORDER BY numyears

The number of years is calculated using COUNT(DISTINCT) in the subquery.
Table 8-6 shows that thousands of households make purchases in more than 

one year. This is reassuring because repeat business is usually important.

table 8-6: Number of Years When Households Make Purchases

number Of years COunt

1 142,111

2  11,247

3   2,053

4    575

5    209

6     50

7     11

8      2
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figure 8-3:  Customers make purchases at irregular frequencies over time.

The next question relates to the frequency of these purchases during the 
years that have purchases. Figure 8-3 shows several customers on the cal-
endar time line. This chart, incidentally, is a scatter plot where the clip art 
for a shopping basket has been copied onto the points. To do this, adjust any 
picture to be the right size (which is usually quite small), select the series by 
clicking it, and type Ctrl+V to paste the image.

Some households make purchases every year. Some make purchases occa-
sionally. One way to measure the purchase frequency is to divide the total span 
of years by the number of years with purchases. A customer who makes three 
purchases over five years has a purchase frequency of 60%.

The following query calculates purchase frequency, broken out by the span in 
years from the first purchase to the last purchase and the number of purchases:

SELECT (lastyear - firstyear + 1) as span, numyears, COUNT(*) as numhh,
       MIN(HouseholdId), MAX(HouseholdId)
FROM (SELECT c.HouseholdId, MIN(YEAR(o.OrderDate)) as firstyear,
             MAX(YEAR(o.OrderDate)) as lastyear,
             COUNT(DISTINCT YEAR(o.OrderDate)) as numyears
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId) a
GROUP BY (lastyear - firstyear + 1), numyears
ORDER BY span, numyears

The results in Figure 8-4 show that even customers who make purchases over 
large spans of time are often making purchases only during two particular 
years. A note about the bubble chart: Because many, many customers make 
only one purchase and they have a span of one year, these are not included 
in the chart. Also, Excel eliminates the very smallest bubbles because they 
are too small to see.
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Households that made purchases long ago have had more opportunity to make 
a repeat purchase than households that started recently. This observation leads 
to another question: What is the potential span for households? The potential span 
is the potential number of years when a customer could have made a purchase. 
That is, the potential span is the number of years from the first purchase to the 
last year in the data, 2016. The only change to the previous query is to change 
the definition of span to:

(2016 – firstyear + 1) as potentialspan

This change affects both the SELECT and the GROUP BY. The results for the 
potential span are also heavily affected by the fact that most households only 
make a single purchase.

Average Time between Orders

Closely related to the span of time covered by orders is the average time between 
orders, defined for those customers who have more than one order. The query 
uses the subquery in the previous examples:

SELECT FLOOR(DATEDIFF(day, mindate, maxdate) / (numo - 1.0)) as avgtime,
       COUNT(*) as numhh
FROM (SELECT c.HouseholdId, MIN(o.OrderDate) as mindate,
             MAX(o.OrderDate) as maxdate, COUNT(*) as numo
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId
      HAVING COUNT(*) > 1) h
GROUP BY FLOOR(DATEDIFF(day, mindate, maxdate) / (numo - 1.0))
ORDER BY avgtime

figure 8-4:  This bubble chart shows the number of years when customers make purchases 
versus the span of time from the earliest purchase to the latest purchase.
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figure 8-5:  This chart shows the time to purchase (in days) stratified by the number of purchases 
a customer makes.

This query divides the total span by one less than the number of orders. The 
result is the average spacing of orders. The HAVING clause limits the results to 
households with at least two orders, preventing a divide-by-zero error.

The cumulative proportion, which is the cumulative sum for the first n days 
divided by the total for all days, is calculated either in Excel or using window 
functions. This cumulative sum shows how quickly customers place orders (on 
average). Figure 8-5 shows the average time to purchase for customers with two 
or more purchases, stratified by the number of purchases. This curve has some 
unexpected properties.

The curve for six purchases is very ragged because relatively few households 
have so many purchases. This curve peaks around 490 days, hitting 100%. All 
customers with six purchases have an average time between purchases of 490 
days or less—this is not a profound truth. Instead, it is based on the duration 
of the data, which is roughly 490 * 5 days. All the curves show an increase 
around the one-year mark because some customers make purchases once per 
year, probably during the holiday season.

At the 600-day mark, the curves are in the order of the number of purchases. 
The curve for six orders is at 100%, followed by five, four, three, and two. An inter-
esting feature of the two-order households is the lack of marked increase around 
one year. Perhaps customers who make two purchases one year apart are likely to 
make yet another purchase the following year, so they are placed in another group.

The curve for two-order households starts off relatively steep, indicating that 
many households make the two purchases in rapid succession. About half the 
households with two purchases make the second purchase within 136 days 
of the first. For households with more purchases, the median average time-to-
purchase is closer to three hundred days, or twice as long.

If the purchases were randomly distributed, the households with two orders 
would have a longer average purchase time than households with more than 
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two. This is because the two-order households could make a purchase on the 
earliest date and on the latest date, so the maximum span is about seven years. 
If a household has three orders, one on the earliest date, one on the latest date, 
and one in-between, the average time between succession of purchases is smaller, 
about three and a half years.

One explanation for the rapid succession of purchases is marketing efforts 
directed at people who recently made a purchase. A customer buys something 
and a coupon or offer arrives with the purchase, spurring another purchase.

The average time between purchases is one way to measure purchase veloc-
ity. Later in this chapter, we’ll use survival analysis to calculate time-to-next 
purchase, an alternative measure.

t Ip Normally, we expect the average time between orders to be smaller for custom-
ers who have more orders.

Purchase Intervals

Related to the average time between purchases is the average time from the first 
purchase to any other purchase. Figure 8-6 shows the number of days from the 
first purchase in a household to any other purchase. If a household has several 
purchases, all (but the first) are included.

This chart shows a yearly cycle in the household purchasing behavior, as 
illustrated by peaks around 360 days and 720 days and even after that (intui-
tively driven by holidays and birthdays). These yearly peaks become smaller 
and smaller over time. One reason is because the data contains all customers. 
Some of them make their first purchase just one year before the cutoff; these 
customers do not have the opportunity to make repeated purchases at two 
years and three years and so on. On the other hand, customers who start in the 
beginning of the data have the opportunity for several years.

figure 8-6:  This chart shows the time from the first order to every other order; the wave pattern 
indicates customers who have orders at the same time every year.
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To calculate the data for the chart, subtract the first date of a household order 
from all other order dates. This query could be written as a join/aggregation 
query but window functions are simpler:

SELECT DATEDIFF(day, h.mindate, h.OrderDate) as days,
       COUNT(*) as numorders
FROM  (SELECT c.HouseholdId, o.*,
              MIN(OrderDate) OVER (PARTITION BY HouseholdId) as mindate,
              MAX(OrderDate) OVER (PARTITION BY HouseholdId) as maxdate
       FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      ) h
WHERE mindate < maxdate
GROUP BY DATEDIFF(day, h.mindate, h.OrderDate)
ORDER BY days

The query uses both mindate and maxdate to filter out households all of whose 
orders are on the same date.

How Many Days in a Row Do Customers Make Purchases?

How many days in a row do customers make purchases? This question seems very 
difficult to solve in SQL. Let’s start with a simpler question: How many households 
have orders on two consecutive days? One approach uses a self-join:

WITH h AS (
       SELECT DISTINCT c.HouseholdId, o.OrderDate
       FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      )
SELECT COUNT(DISTINCT h1.HouseholdId)
FROM h h1 JOIN
     h h2
     ON h2.HouseholdId = h1.HouseholdId AND
        h2.OrderDate = DATEADD(day, 1, h1.OrderDate)

The JOIN does most of the work for this query, finding orders where the house-
hold also has an order on the following day.

The previous query generalizes to additional days, by adding more joins. An 
alternative implementation uses the window function LEAD(). This function 
gets the value from the next row, as defined by the PARTITION BY and ORDER BY 
clauses. A similar function, LAG(), gets values from the previous row.

WITH h AS (
       SELECT DISTINCT c.HouseholdId, o.OrderDate
       FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      )
SELECT COUNT(DISTINCT HouseholdId)
FROM (SELECT HouseholdId, OrderDate,
             LEAD(OrderDate) OVER (PARTITION BY HouseholdId
                                   ORDER BY OrderDate) as nextod
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      FROM h
     ) h
WHERE nextod = DATEADD(day, 1, OrderDate)

This version is simpler and faster than the self-join method.
LEAD() is powerful but it doesn’t seem to help answer the original ques-

tion about consecutive days. Writing either query to extend to dozens or 
hundreds of possible days seems impractical. We need another way to look 
at the question.

The idea for this new approach is to add a grouping column to identify con-
secutive days. If one column has days, some of which are adjacent, and another 
has a sequence of increasing numbers, then the difference between the two is 
constant for adjacent dates. Table 8-7 illustrates this part of the logic. The rest 
of the logic is basically to group by this difference.

Putting this into a query requires some care. The query needs to handle cus-
tomers that have multiple orders on the same day.  In this case, it de-duplicates 
the dates by aggregating by household id and order date:

WITH h AS (
       SELECT c.HouseholdId, o.OrderDate,
              DATEADD(day, - ROW_NUMBER() OVER (PARTITION BY HouseholdId
                                                ORDER BY OrderDate),
                      o.OrderDate) as grp
       FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
       GROUP BY c.HouseholdId, o.OrderDate
      )
SELECT NumInSeq, COUNT(DISTINCT HouseholdId), COUNT(*)
FROM (SELECT HouseholdId, grp, COUNT(*) as NumInSeq
      FROM h
      GROUP BY HouseholdId, grp
     ) h
GROUP BY NumInSeq
ORDER BY NumInSeq

table 8-7: Assigning a Grouping Variable to a Series of Dates

date sequenCe dIfferenCe

2015-01-01 1 2014-12-31

2015-01-02 2 2014-12-31

2015-01-03 3 2014-12-31

2015-01-06 4 2015-01-02

2015-01-10 5 2015-01-05

2015-01-11 6 2015-01-05
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This query implements the previous observation. The final step is the aggrega-
tion, which includes both the household ID and the new group variable.

Table 8-8 shows the results: Some households have made purchases five 
days in a row. We see that 276 customers have made orders on two consecutive 
dates. Interestingly, the JOIN method calculated 278. This difference is easily 
explained. The JOIN method counts sequences of three, four, and five days as 
having two-day sequences and only counts households once, even those with 
multiple sequences. This method only counts the longest sequence but counts 
households for each sequence they have.

RFM Analysis

RFM is a traditional approach to analyzing customer behavior in the retailing 
industry; the initials stand for recency, frequency, and monetary analysis. This 
type of analysis divides customers into groups, based on how recently they have 
made a purchase, how frequently they make purchases, and how much money 
they have spent. RFM analysis has its roots in techniques going back to the 1960s 
and 1970s—when retailers and cataloguers first had access to digital computers.

The purpose of discussing RFM is not to encourage its use, because there are 
many ways of modeling customers for marketing efforts. RFM is worthwhile 
for other reasons. First, it is based on simple ideas that are applicable to many 
different industries and situations. Second, it is an opportunity to see how 
these ideas can be translated into useful technical measures that, in turn, can 
be calculated using SQL and Excel. Third, RFM introduces the idea of scoring 
customers by placing them in RFM cells, an idea discussed in more detail in the 
last three chapters. And finally, the three RFM dimensions are important dimen-
sions for customer behavior, so RFM can produce surprisingly useful results.

The following observations explain why RFM is of interest to retailing businesses:

 ■ Customers who have recently made a purchase are more likely to make 
another purchase soon.

table 8-8: Number of Consecutive Days of Purchases

numInseq COunt

1 156,104

2     276

3    3

4    3

5    2
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 ■ Customers who have frequently made purchases are more likely to make 
more purchases.

 ■ Customers who have spent a lot of money are more likely to spend more 
money.

Each of these observations corresponds to one of the RFM dimensions. This section 
discusses these three dimensions and how to calculate them in SQL and Excel.

The Dimensions
RFM divides each dimension into equal sized chunks, formally called quantiles. 
The examples here use five quantiles for each dimension (quintiles), although there 
is nothing magic about five. By convention, the best quantile for each dimen-
sion is one, with the worst being five. The best customers are typically in 111.

Figure 8-7 illustrates the RFM cells, which form a large cube consisting of 
125 subcubes. Each customer is assigned to a unique subcube based on his or 
her attributes along the three dimensions. This section discusses each of these 
dimensions and shows how to calculate the values as of a cutoff date, such as 
January 1, 2016.

Recency

Recency is the amount of time since the most recent purchase. Figure 8-8 shows 
a cumulative histogram of recency, as of the cutoff date of January 1, 2016 (orders 
after that date are ignored). This chart shows that 20% of the households have 
placed an order within the previous 380 days. The chart also has the four break-
points that are used for defining the five recency quintiles.

figure 8-7:  The RFM dimensions can be thought of as placing customers into small subcubes 
along the dimensions.
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Recency is calculated at the household level. The most recent purchase is the one 
with the maximum order date before the cutoff, as calculated by the following query:

SELECT recency, COUNT(*)
FROM (SELECT c.HouseholdId,
             DATEDIFF(day, MAX(OrderDate) , '2016-01-01') as recency
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      WHERE o.OrderDate < '2016-01-01'
      GROUP BY c.HouseholdId) h
GROUP BY recency
ORDER BY recency

Excel can accumulate the values to identify the four breakpoints. These can then 
be used in a CASE statement to assign a quintile.

SQL can also handle the entire calculation using RANK() and COUNT() as 
window functions:

SELECT c.HouseholdId,
       DATEDIFF(day, MAX(o.OrderDate) , '2016-01-01') as recency
       CAST(5 * (RANK() OVER (ORDER BY MAX(o.OrderDate) DESC) - 1) /
            COUNT(*) OVER () as INT) as quintile
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < '2016-01-01'
GROUP BY c.HouseholdId

The key idea behind this query is the calculation of quintile. RANK() assigns a 
sequential number to the order dates in inverse order. (This produces the same 
results as using recency.) Dividing the rank by the number of households and 
multiplying by five calculates the five groups. There are two nuances. The –1 is 
needed because ranks start at one rather than zero. And, RANK() is used instead of 
ROW_NUMBER() so one recency value does not span multiple buckets (ROW_NUMBER() 
gives tied values different numbers so they might be assigned different quintiles).

figure 8-8:  To break the recency into five equal-sized buckets, look at the cumulative histogram 
and break it into five groups. The resulting four breakpoints are shown on the chart.
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sql rankInG funCtIOns

ANSI SQL has a special function, NTILE() that assigns quantiles to values in a column. 
This function does exactly what we need to do for finding quintiles. It divides values 
in a column into five equal sized groups and assigns them the values one through five. 
We might expect the syntax for NTILE() to look something like:

NTILE(recency, 5)

Alas, it is not that simple.
NTILE() is a window function, which combines data from multiple rows. The par-

ticular group of rows is the window being used. For recency, the correct syntax is:

NTILE(5) OVER (ORDER BY recency)

The argument “5” to NTILE() is a number that specifies the number of bins. The win-
dow specification says to include all values in all rows. The ORDER BY clause specifies 
the variable (or variables) that define the ordering (whether 1 is high or low).

Putting this together into a query looks like:

SELECT h.*, NTILE(5) OVER (ORDER BY recency)

FROM (SELECT c.HouseholdId,

             DATEDIFF(day, MAX(o.OrderDate), '2016-01-01') as recency

      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

      WHERE o.OrderDate < '2016-01-01'

      GROUP BY c.HouseholdId) h

This syntax is definitely much simpler than alternatives. The subquery is not neces-
sary, but handy because it is easier to use recency rather than the expression that 
defines it. Window functions can be used multiple times in the same statement. So, 
one SQL statement can produce bins for multiple variables.

Two related functions are PERCENTILE_CONT() and PERCENTILE_DISC(). 
These calculate the percentage breakpoints in the sorted data—the “cont” version 
interpolates between data points if needed. So, the expression:

SELECT PERCENTILE_DISC(0.2) WITHIN GROUP (ORDER BY RECENCY) OVER ()

calculates the breakpoint for the first tile. And similarly, an argument of 0.4 would be 
for the second tile.

 NTILE() assigns the bin; the “percentile” functions calculate the breakpoints. 
These functions also happen to be a good way to calculate the median, using 
PERCENTILE_DISC(0.5) or PERCENTILE_CONT(0.5).

The aside “SQL Ranking Functions” describes another method for calculating 
the quintiles, for databases that support that particular functionality.

Frequency

Frequency is the rate at which customers make purchases, calculated as the 
length of time since the earliest purchase divided by the number of purchases 
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(sometimes the total number of purchases over all time is used). This calcula-
tion actually uses the inverse of frequency, so the values are greater than one. 
The breakpoints are determined the same way as for recency and are shown 
in Table 8-9.

The frequency itself is calculated in a way very similar to the span-of-time 
queries:

SELECT DATEDIFF(day, mindate, '2016-01-01') / numo as frequency,
       COUNT(*)
FROM (SELECT HouseholdId, MIN(OrderDate) as mindate, COUNT(*) as numo
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      WHERE OrderDate < '2016-01-01'
      GROUP BY HouseholdId) h
GROUP BY DATEDIFF(day, mindate, '2016-01-01') / numorders
ORDER BY frequency

This query calculates the total span of time between the cutoff date and the 
earliest purchase, and then divides by the number of purchases. Note that this 
calculation actually uses the inverse of the frequency, so low values for “fre-
quency” and recency are both associated with good customers, and high values 
are associated with poor customers.

Monetary

The last RFM variable is the monetary variable. Traditionally, this is the 
total amount of money spent by household. However, this definition is usu-
ally highly correlated with frequency because customers who make more 
purchases have larger total amounts. An alternative is the average amount 
of each order:

SELECT c.HouseholdId,
       CAST(5 * (RANK() OVER (ORDER BY AVG(o.TotalPrice) DESC) - 1) /
            COUNT(*) OVER () as INT) as quintile
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < '2016-01-01'
GROUP BY c.HouseholdId

table 8-9: Breakpoint Values for Recency, Frequency, and Monetary Bins

breakpOInt reCenCy frequenCy mOnetary

20%    380    372 60.50

40%    615    594 29.95

60%  1,067    974       21.00

80% 1,696 1,628 14.95
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The difference between using the average or the total is simply changing 
AVG(totalprice) to SUM(totalprice). Excel or SQL can then be used to find 
the four breakpoints that divide the values into five equal-sized bins, which 
are shown in Table 8-9.

Calculating the RFM Cell
Each RFM cell combines the bins for recency, frequency, and monetary. Its tag looks 
like a number, so 155 corresponds to the cell with the best (highest) recency value 
and the worst (lowest) frequency and monetary values. The tag is just a label; it is 
not sensible to ask whether bin 155 is greater than or less than another bin, say 244.

Although the customers are divided into equal-sized chunks along each 
dimension, the 125 RFM cells vary in size. Some of them are empty, such as 
cell 155. Others are quite large, such as cell 554, the largest with 7.5% of the 
households versus 0.8%, the expected size. This cell consists of households who 
have not made a purchase in a long time (worst recency). The cell has the low-
est frequency, so the households in the cell probably made only one purchase. 
And, the purchase was in the middle of the monetary scale.

Cell sizes differ because the three measures are not independent. Good cus-
tomers make frequent purchases that are higher in value, corresponding to one 
set of RFM values. One-time customers make few purchases (one) that might 
not be recent and are smaller in value.

Attempting to visualize RFM cells is challenging using Excel chart capabili-
ties. What we really want is a three-dimensional bubble chart, where each axis 
corresponds to one of the RFM dimensions. The size of the bubbles would be 
the number of households in that cell. Unfortunately, Excel does not offer a 
three-dimensional bubble plot capability.

Figure 8-9 shows a compromise using a two-dimensional bubble plot. The 
vertical axis has the recency bin and the horizontal axis has a combination of the 
frequency and monetary bins. The largest bubbles are along the diagonal, which 
shows that recency and frequency are highly correlated. This is especially true 
for customers who have made only one purchase. A one-time, recent purchase 
implies that the frequency is quite high. If the purchase was a long time ago, 
the frequency is quite low. In this data, most households have made only one 
purchase, so this effect is quite noticeable. By the way, when creating scatter plots 
and bubble plots using Excel, the axes need to be numbers rather than strings.

Warn InG In Excel, bubble plots and scatter plots require that the axes be num-
bers rather than text values. Using text values results in all values being treated as 
zeros and sequential numbers placed on the axis.

The following query calculates the sizes of the RFM bins for all customers 
using the explicit bounds calculated earlier:
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SELECT recbin * 100 + freqbin * 10 + monbin as rfm, COUNT(*)
FROM (SELECT (CASE WHEN r <= 380 THEN 1 WHEN r >= 615 THEN 2
                   WHEN r <= 1067 THEN 3 WHEN r >= 1686 THEN 4
                   ELSE 5 END) as recbin,
             (CASE WHEN f <= 372 THEN 1 WHEN f >= 594 THEN 2
                   WHEN f <= 974 THEN 3 WHEN f >= 1628 THEN 4
                   ELSE 5 END) as freqbin,
             (CASE WHEN m >= 60.5 THEN 1 WHEN m >= 29.95 THEN 2
                   WHEN m <= 21 THEN 3 WHEN m >= 14.95 THEN 4
                   ELSE 5 END) as monbin
      FROM (SELECT c.HouseholdId, MIN(o.OrderDate) as mindate,
                   DATEDIFF(day, MAX(o.OrderDate), '2016-01-01') as r,
                   DATEDIFF(day, MAX(o.OrderDate), '2016-01-01'
                           ) / COUNT(*) as f,
                   SUM(o.TotalPrice) / COUNT(*) as m
            FROM Orders o JOIN Customers c
                 ON o.CustomerId = c.CustomerId
            WHERE o.OrderDate < '2016-01-01'
            GROUP BY c.HouseholdId) a ) b
GROUP BY recbin * 100 + freqbin * 10 + monbin
ORDER BY rfm

The inner query assigns the RFM values, and the outer query then aggregates 
bins to count the values in each cell.

How Is RFM Useful?
In addition to capturing three important dimensions of customer behavior, 
RFM also encourages two good practices: the use of testing and the tracking of 
customers migrating from one cell to another.

figure 8-9:  This chart shows the RFM cells, with the recency on the vertical axis and the 
frequency and monetary dimensions on the horizontal axis.
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A Methodology for Marketing Experiments

The RFM methodology encourages a test-and-learn approach to marketing. 
Because marketing efforts incur some cost (the “cost” may be a desire not to 
flood customers with emails and other messages rather than a monetary cost), 
companies do not want to contact every possible person; instead, they want to 
contact people who are more likely to respond.

The RFM solution is to assign customers to RFM cells and then to track the 
response of each cell. Once the process is up and running, the following happens:

 ■ The customers in the RFM cells with the highest response rate in the 
previous campaign are included in the next campaign.

 ■ Samples of customers in other RFM cells are included in the campaign, 
so all cells have information moving forward.

The first item is a no-brainer. The point of using a methodology such as RFM 
is to identify customers who are more likely to respond, so better responders 
can be included in the next campaign.

The second part incorporates experimental design. Typically, the best- 
responding cells are the ones in the best bins, particularly recency. If only the 
best cells are chosen, customers in other cells not included in the campaign 
would not have the opportunity to prove themselves as being valuable customers. 
These customers would then fall farther behind along the recency dimension 
and into even less valuable cells.

The solution is to include a sample of customers from every cell, even those 
cells that do not seem to be the best, so all cells can be tracked over time. A 
further advantage of having randomized groups in all cells is that this group 
can provide an unbiased sample for other modeling techniques, some of which 
are discussed in Chapters 11 and 12.

t Ip For companies that have ongoing marketing campaigns, including test cells is 
highly beneficial and worth the effort in the long term. Even though such cells incur a 
cost in the short term, they provide the opportunity to learn about customers over the 
long term.

Including such a sample of customers does have a cost, literally. Some custom-
ers are being contacted even though their expected response rate is lower than 
the threshold. Of course, not all the customers are contacted, just a sample, but 
this is still a cost for any given campaign. The benefit is strategic: Over time, 
the lessons learned apply to all customers rather than to the smaller number 
who would be chosen for each campaign.

Customer Migration

The second advantage of RFM is that it encourages thinking about the migration 
of customers from one cell to another. Customers fall into particular RFM cells 
at the beginning of 2015 (which are based on different breakpoints). However, 
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based on customer behavior, the cells may change during the course of the 
year. What is the pattern of RFM cell migration from the beginning of 2015 to 2016?

This question can be answered by a SQL query. One way to write the query 
would be to calculate the RFM bins for 2015 in one subquery and then calculate 
the RFM bins for 2016 and then join the results together. A more efficient way 
to do the calculation is to calculate the bins for the two years in one subquery, 
although this requires judicious use of the CASE statement to select the right 
data for each year:

SELECT rfm.recbin2015*100+rfm.freqbin2015*10+rfm.monbin2015 as rfm2015,
       rfm.recbin2016*100+rfm.freqbin2016*10+rfm.monbin2016 as rfm2016,
       COUNT(*), MIN(rfm.householdid), MAX(rfm.householdid)
FROM (SELECT HouseholdId,
             (CASE WHEN r2016 <= 380 THEN 1 WHEN r2016 <= 615 THEN 2
                   WHEN r2016 <= 1067 THEN 3 WHEN r2016 <= 1686 THEN 4
                   ELSE 5 END) as recbin2016,
             (CASE WHEN f2016 <= 372 THEN 1 WHEN f2016 <= 594 THEN 2
                   WHEN f2016 <= 974 THEN 3 WHEN f2016 <= 1628 THEN 4
                   ELSE 5 END) as freqbin2016,
             (CASE WHEN m2016 <= 60.5 THEN 1 WHEN m2016 >= 29.95 THEN 2
                   WHEN m2016 <= 21 THEN 3 WHEN m2016 >= 14.95 THEN 4
                   ELSE 5 END) as monbin2016,
             (CASE WHEN r2015 is null THEN null
                   WHEN r2015 <= 174 THEN 1 WHEN r2015 <= 420 THEN 2
                   WHEN r2015 <= 807 THEN 3 WHEN r2015 <= 1400 THEN 4
                   ELSE 5 END) as recbin2015,
             (CASE WHEN f2015 IS NULL THEN NULL
                   WHEN f2015 <= 192 THEN 1 WHEN f2015 <= 427 THEN 2
                   WHEN f2015 <= 807 THEN 3 WHEN f2015 <= 1400 THEN 4
                   ELSE 5 END) as freqbin2015,
             (CASE WHEN m2015 >= 54.95 THEN 1 WHEN m2015 >= 29.23 THEN 2
                   WHEN m2015 >= 20.25 THEN 3 WHEN m2015 >= 14.95 THEN 4
                   ELSE 5 END) as monbin2015
      from (SELECT c.HouseholdId,
                       DATEDIFF(day, MAX(CASE     WHEN o.OrderDate > '2015-01-01'
                                          THEN o.OrderDate END),
                            '2015-01-01') as r2015,
                   FLOOR(DATEDIFF(day,
                                        MIN(CASE    WHEN o.OrderDate > '2015-01-01'
                                           THEN o.OrderDate END),
                                 '2015-01-01')/
                         SUM(CASE WHEN o.OrderDate > '2015-01-01'
                                  THEN 1.0 END)) as f2015,
                   (SUM(CASE WHEN o.OrderDate > '2015-01-01'
                             THEN o.TotalPrice END) /
                    SUM  (CASE WHEN o.OrderDate > '2015-01-01' THEN 1.0 END
                       )) as m2015,
                     DATEDIFF(day, MAX(o.OrderDate),'2016-01-01') as r2016,
                   FLOOR(DATEDIFF(day, MIN(o.OrderDate), '2016-01-01') /
                         COUNT(*)) as f2016, AVG(o.TotalPrice) as m2016
            FROM Orders o JOIN Customers c
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                 ON o.CustomerId = c.CustomerId
            WHERE o.OrderDate > '2016-01-01'
            GROUP BY c.HouseholdId) h
      ) rfm
GROUP BY rfm.recbin2015*100+rfm.freqbin2015*10+rfm.monbin2015,
         rfm.recbin2016*100+rfm.freqbin2016*10+rfm.monbin2016
ORDER BY COUNT(*) DESC

Note that the breakpoints for 2015 are different from 2016—as expected, 
because the population used to calculate the quintiles is somewhat differ-
ent. This query uses explicit thresholds to define the quintiles for the two 
years. This is for convenience. The thresholds could also be defined in the 
same query.

Households that first appear in 2016 have no previous RFM cell, so these are 
given the value NULL for 2015. The new households arrive in only five cells, as 
shown in Table 8-10.

These five cells all have the highest values along the recency dimension for 
2016, which is not surprising because all made a recent purchase—their first 
purchase. They are also highest along the frequency dimension for the same 
reason. Only the monetary dimension is spread out, and it is skewed a bit toward 
higher monetary amounts. In fact, 52.5% are in the two highest monetary buck-
ets, rather than the expected 40%. So, new customers in 2016 seem to be at the 
higher end of order sizes.

The biggest interest is customers who change from the bad bins (high 
values along all dimensions) to good bins (low values along the dimen-
sions). What campaigns in 2016 are converting long-term dormant customers into 
active customers? This question could be answered by diving into the RFM 
bins. However, it is easier to rephrase the question by simply asking about 
customers who made no purchases in, say, the two years before January 1, 
2015. This is easier than calculating all the RFM information, and probably 
just as accurate.

Figure 8-10 shows the channel of the first purchase made in 2016 as a 100% stacked, 
column chart. The purchases are split by the number of years since the household 

table 8-10: RFM Bins for New Customers in 2016

2016 rfm bIn COunt

111 5,884

112 6,141

113 4,549

114 2,343

115 3,968
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figure 8-10:  The channel of first purchases in 2016 shows that some channels are better at 
attracting new customers and others at bringing dormant customers back.

made a previous purchase. This chart suggests that EMAIL is a strong channel for 
bringing customers back. Unfortunately, the EMAIL is also extremely small, with 
only sixteen households making a first 2016 purchase in that channel.

Of the households that place an order in 2016 in the PARTNER channel, 5.6% 
are older than two years. By comparison, only 2.2% of the WEB channel custom-
ers are older than two years.

RFM Limits

RFM is an interesting methodology because it breaks customers into segments, 
promotes good experimental design (by requiring test cells in marketing), and 
encourages thinking about changes in customer behavior over time. However, 
the underlying methodology does have its limits.

One issue with RFM is that the dimensions are not independent. Customers 
who make frequent purchases also, generally, have recent purchases. The example 
in this section uses five cells along each axis; of the 125 cells, 20 have no custom-
ers at all. At the other extreme, the 12 most populated cells have over half the 
customers. In general, RFM does a good job of distinguishing the best custom-
ers from the worst. It does a less good job of distinguishing among different 
groups of customers.

And, this is not surprising. Customer behavior is complex. The three dimen-
sions of recency, frequency, and monetary value are important for understanding  
purchasing behaviors—which is why this section discusses them. However, RFM 
does not include the multitude of other behaviors that describe customers, such 
as geography and the products purchased. These other aspects of the customer 
relationship are also critical for understanding customers.
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Which Households Are Increasing Purchase Amounts 
Over Time?

Are purchase amounts increasing or decreasing over time for any given household? 
This question can be answered in several ways. The most sophisticated is 
to define a trend for each household, using the slope of the line that best fits 
that household’s purchase patterns. Two other methods are also discussed. 
The first compares the earliest and latest spending values, using a ratio or 
difference for the comparison. The second uses the average of the earliest 
few purchases and compares them to the average amount of the last few 
purchases.

Comparison of Earliest and Latest Values
The first and last purchase values for each household contain information about 
changes over time. This analysis has two components. The first is calculating 
the values themselves. The second is deciding how to compare them.

Calculating the Earliest and Latest Values

What is the order amount for the earliest and latest order in each household (that has 
more than one order)? One approach to answering this question is the “find-the-
transaction” method, which works with traditional SQL. Another approach 
uses SQL window functions.

“find-the-transaction” (traditional sql approach)

The traditional SQL approach uses aggregation and joins:

SELECT c.HouseholdId, o.*
FROM Orders o JOIN
     Customers c
     ON o.CustomerId = c.CustomerId JOIN
     (SELECT c1.HouseholdId, MIN(o1.OrderDate) as minOrderDate
      FROM Orders o1 JOIN
           Customers c1
           ON o1.CustomerId = c1.CustomerId
      GROUP BY c1.HouseholdId
     ) h
     ON c.HouseholdId = h.HouseholdId and o.OrderDate = h.minOrderDate

This query uses a subquery to calculate the minimum order date for each house-
hold, which is then used for finding the transaction in the un-aggregated tables. 
This query is simple enough, but there is a catch. The minimum date might 
have more than one order.
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The following query calculates the number of orders on the minimum date:

SELECT nummindateorders, COUNT(*) as numhh,
       MIN(HouseholdId), MAX(HouseholdId)
FROM (SELECT c.HouseholdId, minhh.mindate, COUNT(*) as nummindateorders
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId JOIN
           (SELECT c.HouseholdId, MIN(o.OrderDate) as mindate
            FROM Orders o JOIN Customers c
                 ON o.CustomerId = c.CustomerId
            GROUP BY c.HouseholdId
           ) minhh
           ON c.HouseholdId = minhh.HouseholdId AND
              o.OrderDate = minhh.mindate
      GROUP BY c.HouseholdId, minhh.mindate
     ) h
GROUP BY nummindateorders
ORDER BY nummindateorders

This calculation uses two levels of subqueries. The innermost aggregates 
by HouseholdId to get the smallest OrderDate for each household. The next 
level joins to this subquery to get the minimum date for each household, 
and calculates the number of orders on that date. The outer query does the 
final counts.

The counts are shown in Table 8-11. Although the vast majority of households 
do have only one order on their earliest order date, over one thousand have more 
than one. The strategy of looking for one and only one order on the minimum 
order date does not work correctly.

Fixing this requires adding another level of subqueries. The innermost query 
finds the earliest order date for each household. The next level finds one OrderId 
on that date for the household. The outermost then joins in the order informa-
tion. Using JOINs instead of INs, the resulting query looks like:

table 8-11: Number of Orders on Household’s First Order Date

number Of purChases 
On fIrst day

number Of 
hOusehOlds prOpOrtIOn

1 155,016 99.21%

2  1,184  0.76%

3   45  0.03%

4    9  0.01%

5    1  0.00%

6    2  0.00%

8      1  0.00%
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SELECT c.HouseholdId, o.*
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId JOIN
     (SELECT c.HouseholdId, MIN(o.OrderId) as minorderid
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId JOIN
           (SELECT c.HouseholdId, MIN(o.OrderDate) as minorderdate
            FROM Orders o JOIN Customers c
                 ON o.CustomerId = c.CustomerId
            GROUP BY c.HouseholdId) ho
           ON ho.HouseholdId = c.HouseholdId AND
              ho.minorderdate = o.OrderDate
      GROUP BY c.HouseholdId) hhmin
     ON hhmin.HouseholdId = c.HouseholdId AND
        hhmin.minorderid = o.OrderId

This is a rather complicated query for a rather simple question. Without an 
incredible SQL optimizer, it requires joining Orders and Customers three times 
for what seems like a relatively direct question.

This query could be simplified by assuming that the smallest OrderId in 
a household occurred on the earliest OrderDate. This condition is definitely 
worth checking for:

SELECT COUNT(*) as numhh,
       SUM(CASE WHEN o.OrderDate = minodate THEN 1 ELSE 0
           END) as numsame
FROM (SELECT c.HouseholdId, MIN(o.OrderDate) as minodate,
             MIN(o.OrderId) as minorderid
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId
      HAVING COUNT(*) > 1) ho JOIN
     Orders o
     ON ho.minorderid = o.OrderId
ORDER BY numhh

This query looks only at households that have more than one order. For those, it com-
pares the minimum order date to the date of the order with the minimum order ID.

This query finds 21,965 households with more than one order. Of these, 18,973 
have the order date associated with the smallest ID being the same as the ear-
liest order date. There remain 2,992 households whose minimum order date 
differs from the order date on the minimum order ID. Assuming that the mini-
mum OrderId occurred on the earliest OrderDate would be convenient, but it is 
simply not true.

using Window functions

The following query calculates the earliest date for each household using a 
window function and uses this value for the rest of the calculation:

SELECT nummindateorders, COUNT(*) as numhh,
       MIN(HouseholdId), MAX(HouseholdId)
FROM (SELECT c.HouseholdId, o.OrderDate, COUNT(*) as nummindateorders,
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             MIN(o.OrderDate) OVER (PARTITION BY c.HouseholdId
                                   ) as minOD
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
      GROUP BY c.HouseholdId, o.OrderDate
     ) h
WHERE OrderDate = minOD
GROUP BY nummindateorders
ORDER BY nummindateorders

This version is much simpler because it uses only one subquery. Notice that 
the GROUP BY clause uses both the order ID and the order date. This allows the 
MIN(OrderDate) expression to calculate the first order date for each household.

The above query returns all the orders on the earliest date. Because the earliest 
date might have multiple orders, it is better to use ROW_NUMBER() to choose just one:

SELECT h.*
FROM (SELECT c.HouseholdId, o.OrderDate,
             ROW_NUMBER() OVER (PARTITION BY c.HouseholdId
                                ORDER BY OrderDate, OrderId) as seqnum
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
     ) h
WHERE seqnum = 1

ROW_NUMBER() assigns a sequence of values for each household based on the 
date. The outer query chooses the row with the smallest value.

sql WIndOW funCtIOns and GettInG the fIrst and last rOW

The ranking functions discussed earlier in this chapter are examples of SQL window 
functions (discussed in Chapter 1). SQL window functions are similar to aggregation 
functions in that they calculate summary values. Instead of returning a smaller set of 
summary rows, the summary values are appended onto each row in the original data.

For example, the following statement returns all the records in Orders along with 
the average order amount:

SELECT AVG(TotalPrice) OVER (), o.*

FROM Orders o

The syntax is similar to the syntax for the ranking functions. The OVER keyword indi-
cates that this is a window aggregation function rather than a group by aggregation 
function. The part in parentheses describes the window of rows that the AVG() works 
on. With no PARTITION BY clause the statement takes the average of all rows.

The partitioning statement acts like a GROUP BY. So, the following calculates the 
average order amount for each household:

SELECT AVG(o.TotalPrice) OVER (PARTITION BY c.HouseholdId), o.*

FROM Orders o JOIN

     Customers c

     ON o.CustomerId = c.CustomerId

continues
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Unlike aggregation functions, the household average is appended onto every row. 
Window functions can also take an ORDER BY clause, which makes the values cumulative.

Window aggregation functions are quite powerful and quite useful. The sim-
plest way to get the first and last values is to use FIRST_VALUE():

SELECT FIRST_VALUE(TotalPrice) OVER (PARTITION BY c.HouseholdId

                                     ORDER BY OrderDate) as tpfirst,

       FIRST_VALUE(TotalPrice) OVER (PARTITION BY c.HouseholdId

                                           ORDER BY OrderDate DESC) as tplast,

       o.*

FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

Unfortunately, this function is not available in all databases, even those that support 
window functions.

A relatively simple work-around is to use ROW_NUMBER() and conditional 
aggregation:

SELECT HouseholdId,

       MAX(CASE WHEN i = 1 THEN TotalPrice END) as pricefirst,

       MAX(CASE WHEN i = n THEN TotalPrice END) as pricelast

FROM (SELECT o.*, c.HouseholdId,

             COUNT(*) OVER (PARTITION BY c.HouseholdId) as n,

             ROW_NUMBER() OVER (PARTITION BY c.HouseholdId

                                ORDER BY o.OrderDate ASC) as i

      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

     ) h

GROUP BY HouseholdId

The subquery enumerates the orders in each household and calculates the total num-
ber.  It then uses conditional aggregation in the outer query to get the amounts of the 
first and last orders.

Window functions are very useful, even though their functionality can often be 
expressed using other SQL constructs (this is not true of the ranking window func-
tions). They are equivalent to doing the following:

 1. Doing a GROUP BY aggregation on the partition columns; and then,

 2. Joining the results back to the original on the partition columns.

Window functions are a significant improvement for several reasons. First, they allow 
values with different partitioning columns to be calculated in the same SELECT state-
ment. Second, the ranking window functions introduce a new level of functionality 
that is much harder to replicate without the functions. Third, they work on NULL val-
ues as well as other values—so you do not have to worry about losing rows because 
of NULL comparisons in a join. And finally, they are often more efficient because SQL 
engines have special optimizations for them.

continued
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Comparing the First and Last Values

Given the order amounts on the earliest and latest dates, what is the best way 
to compare these values? Four possibilities are:

 ■ The difference between the earliest and latest purchase amounts. This 
is useful for determining the households whose spending is increasing 
(positive differences) and decreasing (negative differences).

 ■ The ratio of the latest purchase amount to the earliest purchase amount. Ratios 
between zero and one are decreasing and ratios over one are increasing.

 ■ The difference divided by the time units. This makes it possible to say 
that the customer is increasing their purchase amounts by so many dollars 
every day (or week or month or year).

 ■ The ratio raised to the power of one divided by the number of time units. 
This makes it possible to say that the customer is increasing their purchase 
amounts by some percentage every day (or week or month or year).

What do the differences look like? Only about twenty thousand households have 
more than one order. This is a small enough number for an Excel scatter plot.

Figure 8-11 shows the distribution and cumulative distribution of the differ-
ences. The cumulative percent crosses the $0 line at about 67%, showing that 
more households have decreasing order amounts than increasing order amounts. 
The summaries for the chart are done in Excel.

What happens as Customer span Increases

Figure 8-12 shows what happens to the difference as the span between the first 
and last purchases increases. The chart has two curves, one for the total number 
of households whose purchases have that span (in 30-day increments) and one 
for the average price difference.

figure 8-11:  The distribution of the differences in total price between the first order and the last 
order shows that more households have decreases than increases in the order amounts.
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For the shortest time spans, the second purchase has a lower value than the 
first for a strong majority of households. However, after about six months, the 
breakdown is more even. As the time span between the first purchase and last 
purchase increases, the later purchase is more likely to be larger than the first. 
The count of purchases has a wave pattern that fades over time, corresponding 
to households that make purchases at the same time of the year.

The SQL for making this chart uses the subquery that finds the first and last 
total price amounts; the query then aggregates these results for the chart:

WITH ho as (
      SELECT HouseholdId,
             (MAX(CASE WHEN i = n THEN TotalPrice END) -
              MAX(CASE WHEN i = 1 THEN TotalPrice END) ) as pricediff,
             DATEDIFF(day, MIN(OrderDate),
                      MAX(OrderDate)) + 1 as daysdiff
      FROM (SELECT o.*, c.HouseholdId,
                   COUNT(*) OVER (PARTITION BY c.HouseholdId) as n,
                   ROW_NUMBER() OVER (PARTITION BY c.HouseholdId
                                      ORDER BY o.OrderDate ASC) as i
            FROM Orders o JOIN Customers c
                 ON o.CustomerId = c.CustomerId
           ) h
      GROUP BY HouseholdId
      HAVING MIN(OrderDate) < MAX(OrderDate)
     )
SELECT FLOOR(daysdiff / 30) * 30 as daystopurchase,
       COUNT(*) as num, AVG(pricediff) as avgdiff
FROM ho
GROUP BY FLOOR(daysdiff / 30) * 30
ORDER BY daystopurchase

The chart itself uses a trick to align the horizontal grid lines; this is challenging 
because the count on the left-hand axis has only positive values, and the dollar 

figure 8-12:  As the customer time span increases, the amount that customers increase their 
spending also increases.
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amount on the right-hand axis has both positive and negative values. The grid 
lines are lined up by making the left-hand axis go from –1,500 to +2,500 and the 
right hand from –$75 to +$125. The left-hand axis spans 4,000 units, which is a 
multiple of the 200 spanned by the right-hand axis, so aligning the horizontal 
grid lines on both axes is easy. Negative values make no sense for counts, so 
the left-hand axis does not show negative values.  The trick is using a special 
number format, “#,##0;”. This says “put commas in numbers greater than or 
equal to zero and don’t put anything for negative numbers.”

t Ip When using two vertical axes, make the horizontal grids line up. This is  
easiest if the range on one axis is a multiple of the range on the other axis.

What happens as Customer Order amounts vary

The alternative viewpoint is to summarize the data by the difference in TotalPrice 
between the latest order and the earliest order. This summary works best when 
the difference is placed into bins. For this example, the bins are defined by the 
first number of the difference followed by a sufficient number of zeros: $1, $2, 
$3, . . . $9, $10, $20, . . . $90, $100, $200, and so on. Formally, these bins are powers 
of ten times the first digit of the difference. Other binning methods are possible, 
such as equal-sized bins. However, binning by the first digit makes the bins 
easy to read and easy for others to understand.

The chart in Figure 8-13 shows the number of households in each bin and 
the average time between orders. The number of households is quite spiky 
because of the binning process. Every power of ten, the size of the bin suddenly 
jumps by a factor of ten. The range of $90–$100 is in one bin. The next bin is not 
$100–$110, it is instead $100–$200, which is ten times larger. One way to eliminate 
the spikiness is to show the cumulative number of households, rather than the 
number in the bin itself. This eliminates the spikiness but may be less intuitive 
for people seeing the chart for the first time.

figure 8-13:  The span of time that customers make purchases is related to the average 
difference in dollar amounts between the first and last orders.
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The average time span tends to increase as the difference in order sizes 
increases. This suggests that the longer a customer is active, the more the customer 
is spending, on average. However, this effect is most pronounced for the most 
negative differences. Customers whose purchases decrease dramatically are 
making purchases during relatively short time spans.

The query that generates the data for this chart is similar to the previous 
query, except for the GROUP BY clause:

WITH ho as (

      SELECT HouseholdId,

             (MAX(CASE WHEN i = n THEN TotalPrice END) -

              MAX(CASE WHEN i = 1 THEN TotalPrice END) ) as pricediff,

              DATEDIFF(day, MIN(OrderDate),

                       MAX(OrderDate)) + 1 as daysdiff

      FROM (SELECT o.*, c.HouseholdId,

                   COUNT(*) OVER (PARTITION BY c.HouseholdId) as n,

                   ROW_NUMBER() OVER (PARTITION BY c.HouseholdId

                                      ORDER BY o.OrderDate ASC) as i

            FROM Orders o JOIN Customers c

                 ON o.CustomerId = c.CustomerId

           ) h

      GROUP BY HouseholdId

      HAVING MIN(OrderDate) < MAX(OrderDate)

     )

SELECT diffgroup, COUNT(*) as numhh, AVG(daysdiff) as avgdaysdiff

FROM (SELECT ho.*,

             (CASE WHEN pricediff = 0 THEN '$0'

                   WHEN pricediff BETWEEN -1 and 0 THEN '$-0'

                   WHEN pricediff BETWEEN 0 AND 1 THEN '$+0'

                   WHEN pricediff < 0

                   THEN '$-' + LEFT(-pricediff, 1) + 

                        LEFT('000000000', FLOOR(LOG(-pricediff)/LOG(10)))

                   ELSE '$' + LEFT(pricediff, 1) + 

                        LEFT('000000000', FLOOR(LOG(pricediff)/LOG(10)))

              END) as diffgroup

      FROM ho

     ) ho

GROUP BY diffgroup 

ORDER BY MIN(pricediff)

Two notable features in the query are the CASE expression for binning the 
difference in values and the ORDER BY clause. The bin definition uses the 
first digit of the difference and then turns the rest of the digits into zeros, 
so “123” and “169” go into the “100” bin. The first digit is extracted using 
the LEFT() function, which takes the first digit of a positive numeric argu-
ment. The remaining digits are set to zero, by calculating the number of 
digits using a particular mathematical expression. The number of zeros is 
the log in base 10 of the difference, and the log in base 10 is the log in any 
base divided by the log of 10 in that base (so the expression works even in 
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databases where LOG() calculates the natural log). The process is the same 
for negative differences, except the absolute value is used and a negative 
sign prepended to the result.

The purpose of the ORDER BY clause is to order the bins numerically. An 
alphabetical order would order them as “$1,” “$10,” “$100,” “$1,000,” and these 
would be followed by “$2.” To get a numeric ordering, we extract one value from 
the bin, the minimum value, and order by this. Actually, any value would do, 
but the minimum is convenient.

Comparison of First Year Values and Last Year Values
The previous section compared the first order amount value to the last order 
amount. This section makes a slightly different comparison: How does the aver-
age household’s purchase change from the first year they make a purchase to the most 
recent year?

Table 8-12 contains the difference between the order amount during the 
earliest year and the latest year. When the purchases are on successive years, 
the difference is almost always negative. However, as the time span grows, 
the difference becomes positive indicating that the order sizes are growing. A 
simple explanation might be that prices increase over time.

Figure 8-14 shows these results as a scatter plot, where the horizontal axis 
is the average amount in the first year and the vertical axis is the average 
amount in the last year. The diagonal line divides the chart into two regions. 
Below the line, purchases are decreasing over time and above it, purchases 
are increasing. The lowest point in the chart shows the households whose 
earliest purchase was in 2009 and whose latest purchase was in 2011; the 
earlier purchase average was about $35 and the later was about $37. An 
interesting feature of the chart is that all the points below the line come 
from either one- or two-year spans. The longer the time span, the larger the 
later purchases.

table 8-12: Difference between Average First and Last Year Order Amounts

year 2010 2011 2012 2013 2014 2015 2016

2009 $9.90 $6.74 $38.46 $32.67 $40.32 $51.08 $69.10

2010 -$16.11 -$1.07 $26.81 $11.19 $22.75 $49.26

2011 $2.22 $16.26 $11.53 $12.88 $27.82

2012 $2.40 $8.50 $16.19 $52.11

2013 -$16.57 -$7.84 $35.23

2014 -$20.82 -$16.71

2015 -$68.71
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The query calculates the average purchase size for pairs of years, the first 
and last years that households make purchases. Each row also contains the 
average size of the purchase during the first year and the average size during 
the second year:

SELECT minyear, maxyear, AVG (avgearliest) as avgearliest,
       AVG(avglatest) as avglatest,
       (AVG(avglatest) - AVG(avgearliest)) as diff, COUNT(*) as numhh
FROM (SELECT hy.householdid, minyear, maxyear,
             MAX(CASE WHEN hy.theyear = minyear THEN sumprice END
                ) as avgearliest,
             MAX(CASE WHEN hy.theyear = maxyear THEN sumprice END
                ) as avglatest
      FROM (SELECT c.HouseholdId, YEAR(o.OrderDate) as theyear,
                   SUM(o.TotalPrice) as sumprice,
                   MIN(YEAR(OrderDate)) OVER (PARTITION BY HouseholdId
                                             ) as minyear,
                   MAX(YEAR(OrderDate)) OVER (PARTITION BY HouseholdId
                                             ) as maxyear
            FROM Orders o JOIN Customers c
                 ON o.CustomerId = c.CustomerId
            GROUP BY c.HouseholdId, YEAR(o.OrderDate)
           ) hy
      WHERE minyear <> maxyear
      GROUP BY hy.HouseholdId, minyear, maxyear) h
GROUP BY minyear, maxyear
ORDER BY minyear, maxyear

This query aggregates the orders data using nested subqueries. The innermost is 
by HouseholdId and the year of the order date. This calculates the total amount 

figure 8-14:  This scatter plot shows the average order amount for the earliest orders and latest 
orders for households. Households below the diagonal line have decreasing orders; those above 
have increasing orders.
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in each year and it also calculates the first and last years using window func-
tions. These results are aggregated at the household level, to get the earliest 
and latest years. The final aggregation summarizes the orders by pairs of years.

Trend from the Best Fit Line
This section goes one step further by calculating the slope of the line that best fits 
the TotalPrice values. This calculation relies on some mathematical manipula-
tion, essentially implementing the equation for the slope in SQL. The advantage 
is that it takes into account all the purchases over time, instead of just the first 
and last ones.

Using the Slope

Figure 8-15 shows the purchases for two households over several years. One 
household has seen their orders increase over time; the other has seen them 
decrease. The chart also shows the best-fit line for each household. The house-
hold with increasing purchases has a line that goes up, so the slope is positive. 
The other line decreases, so its slope is negative. Chapter 12 discusses best-fit 
lines in more detail.

The best-fit line connecting the household with increasing purchases has a 
slope of 0.464, which means that for each day, the expected value of an order 
from the household increases by $0.46, or about $169 per year. This slope can 
be useful for reporting purposes, although it works better when there are more 
data points. Slopes are better at summarizing data collected monthly, rather 
than for irregular, infrequent transactions.

Calculating the Slope

The formula for a line is often written in terms of its slope and Y-intercept. If we 
knew the formula for the best-fit line, the slope would fall out of it. Fortunately, 

figure 8-15:  These customers have different purchase trends over time.
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the best-fit line is not difficult to calculate in SQL. Each data point—each order—
needs an X-coordinate and a Y-coordinate. The Y-coordinate is the TotalPrice 
on the order at that point in time. The X-coordinate should be the date. Dates 
do not work particularly well in mathematical calculations, so instead we’ll use 
the number of days since the beginning of 2000. The idea is to use these X- and 
Y-coordinates to calculate the trend (slope) of the best-fit line.

The formula requires five aggregation columns:

 ■ n: the number of data points

 ■ sumx: the sum of the X-values of the data points

 ■ sumxy: the sum of the product of the X-value times the Y-value

 ■ sumy: sum of the Y-values

 ■ sumyy: sum of the squares of the Y-values

The slope is then the ratio between two numbers. The numerator is n*sumxy – 
sumx*sumy; the denominator is n*sumxx – sumx*sumx.

The following query does this calculation:

SELECT h.*, (1.0*n*sumxy - sumx*sumy)/(n*sumxx - sumx*sumx) as slope
FROM (SELECT HouseholdId, COUNT(*) as n,
             SUM(1.0*days) as sumx, SUM(1.0*days*days) as sumxx,
             SUM(totalprice) as sumy, SUM(days*totalprice) as sumxy
      FROM (SELECT o.*, DATEDIFF(day, '2000-01-01', OrderDate) as days
            FROM Orders o
           ) o JOIN
           Customers c
           ON o.CustomerId = c.CustomerId
      GROUP BY HouseholdId
      HAVING MIN(OrderDate) < MAX(OrderDate) ) h

The innermost subquery defines days, which is the difference between the 
order date and the beginning of 2000. Then the five variables are calculated in 
another subquery, and finally slope in the outermost.

The slope is defined only when a household has orders on more than one 
day. So, this query also limits the calculation to households where the span 
between the earliest date and the latest date is greater than zero. This eliminates 
households with only one purchase, as well as those with multiple purchases 
all on the same day.

Time to Next Event

The final topic in this chapter combines the ideas from survival analysis with 
repeated events. This topic is quite deep, and this section is just an introduction. 
The question is: How long until a customer places another order?
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Idea behind the Calculation
To apply survival analysis to repeated events, each order needs the date of the 
next order in the household (if any). The order date and next order date provide 
the basic information needed for time-to-event survival analysis. The definitions 
for survival analysis are inverted from the last two chapters:

 ■ The “start” event is when a customer makes a purchase.

 ■ The “end” event is either the next purchase date or the cutoff date.

This terminology for repeated events is backward. “Survival” ends up meaning 
the survival of the customer’s “non-purchase” state. In fact, we are interested in 
the exact opposite of survival, 100%-Survival, which is the cumulative prob-
ability that customers have made a purchase up to some given point in time. 
In statistics, this value is called failure (because of the application of survival 
analysis for understanding the failure of mechanical objects). Cumulative events 
or something similar is a better name for our purposes.

Figure 8-16 shows the overall time-to-next purchase curve for all households 
along with the daily “hazard” that a customer makes a purchase. Note that after 
three years only about 20% of customers have made another purchase. This is 
consistent with the fact that most households have only one order.

The hazards show an interesting story. A peak is clearly visible at one year, 
with echoes at two years and three years. These are customers making pur-
chases once per year, most likely holiday shoppers. It suggests that there is a 
segment of such shoppers.

Calculating Next Purchase Date Using SQL
The hardest part of answering the question is appending the date of the next 
order. One method of calculation uses a correlated subquery. First, the Orders 

figure 8-16:  This chart shows the time to next order, both as a cumulative proportion of 
customers (1-Survival) and as a daily “risk” of making a purchase (hazard probability)



418 Chapter 8 ■ Customer purchases and Other repeated events 

table and Customer table are joined together to append the HouseholdId to 
every order. A correlated subquery then gets the first order date bigger than 
the current one for each order:

SELECT c.HouseholdId, o.*,
       (SELECT TOP 1 o.OrderDate
        FROM Orders o2 JOIN Customers c2
            ON o2.CustomerId = c2.CustomerId
        WHERE c.HouseholdId = c2.HouseholdId AND
              o2.OrderDate > o.OrderDate
        ORDER BY o2.OrderDate
       ) as nextdate
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

If nothing matches in the correlated subquery, then it returns NULL.
Alternatively, the window function LEAD() can be used:

SELECT c.HouseholdId, o.*,
       LEAD(o.OrderDate) OVER (PARTITION BY c.HouseholdId
                               ORDER BY o.OrderDate) as nextdate,
       ROW_NUMBER() OVER (PARTITION BY c.HouseholdId
                          ORDER BY o.OrderDate) as seqnum,
       COUNT(*) OVER (PARTITION BY c.HouseholdId) as numorders
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

Remember that LEAD() gets the value for a column from the “next” row, where 
“next” is defined by the PARTITION BY and ORDER BY clauses. Queries using 
window functions are simpler and more efficient.

From Next Purchase Date to Time-to-Event
The time to next purchase is calculated as follows:

 ■ The days to next purchase is the next order date minus the order date.

 ■ When the next purchase date is NULL, use the cutoff date of Sep 20, 2016.

This is the duration in days. In addition, a flag is needed to specify whether the 
event has occurred.

The following query aggregates by the days to the next purchase, summing 
the number of orders with that date and the number of times when another 
order occurs (as opposed to hitting the cutoff date):

WITH ho as (

      SELECT HouseholdId, OrderDate,

             LEAD(OrderDate) OVER (PARTITION BY HouseholdId

                                   ORDER BY OrderDate) as nextdate,

             ROW_NUMBER() OVER (PARTITION BY HouseholdId

                                ORDER BY OrderDate) as seqnum,
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             COUNT(*) OVER (PARTITION BY HouseholdId) as numorders

      FROM (SELECT DISTINCT c.HouseholdId, o.OrderDate

            FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId

           ) ho

     )

SELECT DATEDIFF(day, OrderDate,

                COALESCE(nextdate, '2016-09-20')) as days,

       COUNT(*) as numorders,

       SUM(CASE WHEN seqnum = 1 THEN 1 ELSE 0 END) as ord_1,

       . . .

       COUNT(nextdate) as numorders,

       SUM(CASE WHEN seqnum = 1 AND nextdate IS NOT NULL THEN 1 ELSE 0

           END) as hasnext_1,

       . . .

FROM ho

GROUP BY DATEDIFF(day, OrderDate, COALESCE(nextdate, '2016-09-20'))

ORDER BY days

The calculation then proceeds by calculating the hazard, survival, and 1–S values 
as described in the previous two chapters. Both survival and 1–S are calculated 
because the latter is the more interesting value.

Stratifying Time-to-Event
As with the survival calculation, the time-to-event can be stratified. For instance, 
Figure 8-17 shows the time-to-next-event stratified by the number of orders that 
the customer has already made. These curves follow the expected track: The 
more often that someone places orders, the sooner they make another order.

Of course, the number of previous orders is only one variable we might want 
to use. We can also stratify by anything known at the order time:

figure 8-17:  This chart shows the time to next purchase stratified by the number of previous 
purchases.
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 ■ Has the time-to-next order varied for orders placed in different years?

 ■ Does the time-to-next order vary depending on the size of an order?

 ■ Does the time-to-next order depend on the credit card used for the 
transaction?

 ■ Do customers make a repeat order sooner or later when a particular item 
is in their basket?

All of these are simple extensions of the idea of calculating the next order date 
and then applying survival analysis for repeated events.

Lessons Learned

This chapter introduces repeated events, using the purchases data. Repeated 
events are customer interactions that occur at irregular intervals.

The first challenge with repeated events is determining whether separate events 
belong to the same customer. In this chapter, we learned that the CustomerId 
column is basically useless because it is almost always unique. A better column 
for identifying transactions over time is HouseholdId.

Matching customers on transactions using names and addresses is challeng-
ing and often outsourced. Even so, using SQL to validate the results is useful. 
Do the customers in the households make sense?

The classic way of analyzing repeated events uses RFM analysis, which 
stands for recency, frequency, monetary. This analysis is feasible using SQL and 
Excel, particularly when using the ranking functions in SQL. However, RFM 
is inherently limited because it focuses on only three dimensions of customer 
relationships. It is a cell-based approach, where customers are placed into cells 
and then tracked over time.

An important topic in looking at repeated events is whether the sizes of 
purchases change over time. There are different ways of making the comparison, 
including simply looking at the first and last order to see whether the size is 
growing or shrinking. The most sophisticated way presented in this chapter is 
to calculate the slope of the best-fit line connecting the orders. When the slope 
is positive, order sizes are increasing over time; when the slope is negative, 
order sizes are decreasing.

The final topic in the chapter applies survival analysis to repeated events, 
addressing the question of how long it takes a customer to make the next order. 
This application is quite similar to survival analysis for stopped customers, 
except that the important customers—the ones who make the purchase—are 
the ones who do not survive.

The next chapter continues analysis of repeated events, but from a perspective 
that is not covered in this chapter at all. It discusses the actual items purchased 
in each order and what this tells us about the items and the customers.
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C h a p t e r 

9
What’s in a Shopping Cart? 

Market Basket analysis 

The previous chapter discussed everything about customer behavior—when, 
where, how—with one notable exception: the products actually being purchased. 
This chapter and the next dive into the detail, focusing on the specific products, 
to learn both about customers and the products they buy. Market basket analysis 
is the general name for understanding product purchase patterns at the cus-
tomer level. Association rules, covered in the next chapter, are specifically about 
discovering which products are purchased together.

This chapter starts by exploring the individual products purchased in an 
order. Visualizing the products tells us about both products and customers. 
And brings up unusual questions, such as “Why do customers purchase the 
same product multiple times in an order?”

These types of questions naturally lead to investigating the relationship between 
products and customer behavior. Is purchasing some particular product or products 
an indicator that the purchaser will return? Conversely, do some products indicate 
that the customer will make no more purchases? Can we measure the contribution 
of a product to overall customer value? Answering this question leads to residual 
value, the value of everything else in orders containing a particular product. Residual 
value is a useful measure of how good products are for driving increased sales.

Products are related to other customer attributes as well. Some products 
have a wide geographic distribution; others may be more narrowly focused. 
One of the challenges in understanding products is that each product is on its 
own row in the database. This is true even for simple questions, such as which 
orders contain two or three specific products. This type of query is called a 
set-within-a-set query, and SQL offers several ways to approach this type of query.

The data for market basket analysis is more complex than for survival analysis 
because a single transaction is represented by multiple rows—each row containing 
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a separate product. Analyzing such data introduces some new capabilities in 
SQL, including the ability to concatenate strings in an aggregation query.

Exploring the Products

This section explores the purchases database from the perspective of under-
standing the products in the orders.

Scatter Plot of Products
The Products table contains about 4,000 products, which are classified into nine 
product groups. Chapter 3 analyzed the orders and determined that the most 
popular group is BOOK.

Two of the most interesting features of products are price and popularity. 
Scatter plots are a good way to visualize this information, with different groups 
having different shapes and colors. The following query extracts the informa-
tion for the scatter plot:

SELECT p.ProductId, p.GroupName, p.FullPrice, olp.numorders
FROM (SELECT ol.ProductId, COUNT(DISTINCT ol.OrderId) as numorders
      FROM OrderLines ol
      GROUP BY ol.ProductId
     ) olp JOIN
     Products p
     ON olp.ProductId = p.ProductId

This is a basic JOIN and aggregation query, providing the number of orders a 
product is in as well as its full price.

The scatter plot in Figure 9-1 shows relationships among these three features. 
Along the bottom of the chart are the few dozen products that have a price of $0. 
Most of these are, appropriately, in the FREEBIE category, along with a handful 
in the OTHER category. Although not obvious on the scatter plot, all FREEBIE 
products do, indeed, have a price of zero as their name suggests.

Figure 9-1:  This scatter plot shows the relationship between product groups, price, and number 
of purchases.
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The upper left-hand portion of the chart consists almost entirely of products 
in the ARTWORK product group. These products are expensive and rarely pur-
chased. A few products in the ARTWORK group are quite popular (purchased 
by more than a thousand customers) and some that are relatively inexpensive 
(well under one hundred dollars), but these are exceptions within the category.

The most popular product group is BOOK, as seen by the abundance of 
triangles on the right side of the chart. Most are inexpensive, but one is among 
the most expensive products. This is, perhaps, an example of misclassification 
or perhaps the product is really a collection of books. The rest of the products 
tend to be in the middle, both in terms of pricing and popularity.

The scatter plot is a log-log plot, meaning that both the horizontal and vertical 
axes are on a logarithmic scale where one unit on either axis increases the axis 
value by a factor of ten. Log scales are useful when the values on an axis are all 
positive and have a wide range of values with a long tail.

Log-log plots are not able to plot zero because the logarithm of zero is unde-
fined, and yet the chart shows the “0” value. The chart is using a trick: the “zero” 
value is really 0.1, which when formatted to have no decimal places looks like 
“0” instead of “0.1.” To make this work, the zeros in the data have to be replaced 
by the value 0.1, either using SQL:

(CASE WHEN <value> = 0 THEN 0.1 ELSE <value> END) as <whatever>

Or using Excel:

=IF(<cellref>=0, 0.1, <cellref>)

The number format for the chart simply shows the value with no decimal places.

t Ip Use the log scale on axes where the values have a wide range and all values are posi-
tive. The log scale does not work when values are negative or zero; however, it is possible 
to show zero values by changing them to a small value and then using clever formatting.

Which Product Groups Are Shipped in Which Years?
This is a rather simple question about product groups and years. Yet, it introduces 
a subtly. What if we are interested in product groups not shipped in particular years? 
(The only reason for asking about the shipping date rather than the order date 
is to avoid the extra join back to Orders.)

An aggregation query readily answers the question about which product 
groups are shipped in each year:

SELECT YEAR(ol.ShipDate) as yr, p.GroupName, COUNT(*) as Count
FROM OrderLines ol JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY YEAR(ol.ShipDate), p.GroupName
ORDER BY yr, GroupName
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table 9-1: Number of Orders with a specific Product Group in 2009

Year produCt Group Count

2009 APPAREL 15

2009 ARTWORK 4,835

2009 BOOK 3,917

2009 CALENDAR 15

2009 OCCAsION 1,112

Table 9-1 shows the results for 2009.
But can we get the year/group name combinations with no orders? This 

question poses a fundamental challenge: SQL only operates on the data in 
the tables, but this question is asking about data that is not the table. SQL 
statements have no special clause that says, “include extra values that are not 
in the original table.”

The solution lies in thinking about the problem a little bit differently. The 
key idea is to break the logic into three steps: First, get the combinations of 
all the years and all the product groups—a CROSS JOIN operator can generate 
these combinations. Then use LEFT JOIN to get the counts. Finally, use a WHERE 
clause to get the values that have no corresponding rows. That is, generate all 
possible combinations first, and then filter out the ones that are present. The 
query then returns the missing combinations.

The following query enhances the above results by including zeros for the 
year/group combinations that are not present:

SELECT y.yr, g.GroupName, COALESCE(cnt, 0) as cnt
FROM (SELECT DISTINCT YEAR(ShipDate) as yr FROM OrderLines ol 
       ) y CROSS JOIN
     (SELECT DISTINCT GroupName FROM Products) g LEFT JOIN
     (SELECT YEAR(ol.ShipDate) as yr, p.GroupName, COUNT(*) as cnt
      FROM OrderLines ol JOIN
           Products p
           ON p.ProductId = ol.ProductId
      GROUP BY YEAR(ol.ShipDate), p.GroupName
     ) olp
     ON olp.yr = y.yr and olp.GroupName = g.GroupName
ORDER BY y.yr, g.GroupName

The FROM clause has three subqueries. The first extracts all the years of interest 
from OrderLines. The second extracts all the group names from Products. The 
CROSS JOIN creates a Cartesian product, which is all the combinations of product 
groups and years—all the possible rows that we could want.
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The third subquery calculates the count where data is available (the first 
subquery in this section). The LEFT JOIN keeps all the combinations from the 
CROSS JOIN. The COALESCE() in the outer query turns the non-matching counts 
from NULL to zero. Table 9-2 shows the results for 2009. Notice that all product 
groups are now present.

Finding the product/year combinations that are missing uses a similar query; 
but this version can be simplified because the count is unnecessary. There are 
several approaches—using NOT EXISTS, for instance. Here is another method 
that uses LEFT JOIN and a WHERE clause:

SELECT y.yr, g.GroupName
FROM (SELECT DISTINCT YEAR(ShipDate) as yr FROM OrderLines ol
      ) y CROSS JOIN
     (SELECT DISTINCT GroupName FROM Products) g LEFT JOIN
     (SELECT YEAR(ol.ShipDate) as yr, p.GroupName
      FROM OrderLines ol JOIN
           Products p
           ON p.ProductId = ol.ProductId
     ) olp
     ON olp.yr = y.yr and olp.GroupName = g.GroupName
WHERE olp.yr IS NULL
ORDER BY y.yr, g.GroupName

Note that this query eliminates the count and even the aggregation in the third 
query. The count is unnecessary because it is always zero. If the count is unneeded, 
so is the aggregation.

t Ip When you have a question about combinations of things that are not in the data, 
think about using CROSS JOIN in combination with a LEFT JOIN.

table 9-2: Number of Orders for All Product Groups in 2009

Year Group naMe nuMBer oF orderS

2009 #N/A 0

2009 APPAREL 15

2009 ARTWORK 4,835

2009 BOOK 3,917

2009 CALENDAR 15

2009 FREEBIE 0

2009 GAME 0

2009 OCCAsION 1,112

2009 OTHER 0



426 Chapter 9 ■ What’s in a Shopping Cart? Market Basket analysis 

table 9-3:  Years with No shipments of Particular Product Groups

Year produCt Group

2009 #N/A

2009 FREEBIE

2009 GAME

2009 OTHER

2010 #N/A

2010 GAME

2011 #N/A

2012 #N/A

2012 FREEBIE

2013 #N/A

2013 FREEBIE

2015 #N/A

2016 #N/A

Table 9-3 shows the results, which are not particularly interesting. The group 
#N/A appears to be some sort of error in the data with only nine products in 
2014. Freebies are part of marketing promotions, so are not under the control 
of customers. GAME and OTHER appear to have been introduced in 2010 
and 2011.

Duplicate Products in Orders
Sometimes, the same product occurs multiple times in the same order. This is 
an anomaly because such orders should use the NumUnits column for multiple 
products rather than replicating the same product on multiple order lines. What 
is happening? Let’s investigate this phenomenon and several hypotheses along 
the way.

Counting the number of orders with duplicate products is a good place to 
start:

SELECT numinorder, COUNT(*) as cnt, COUNT(DISTINCT ProductId) as numprods
FROM (SELECT ol.OrderId, ol.ProductId, COUNT(*) as numinorder
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ) olp
GROUP BY numinorder
ORDER BY numinorder
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The query counts the number of orders that have the same product on more 
than one order line, and the number of different products that appear on 
those orders.

Table 9-4 shows that almost 98% of the time products appear on only one 
order line, as expected. However, there are clearly exceptions. What might be the 
cause of such duplicates? The next few sections discuss different possibilities and 
how these can be investigated in SQL.

Are Duplicates Explained by the Product?

One possible explanation is that some small group of products is to blame. Perhaps 
some products just have a tendency to appear on multiple order lines. The fol-
lowing query counts the number of products that are duplicated in any order:

SELECT COUNT(DISTINCT ProductId)
FROM (SELECT ol.OrderId, ol.ProductId
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
      HAVING COUNT(*) > 1
     ) op

There are 1,343 such products—about a third of all the products. With such a 
large number appearing multiple times, no particular products seem to explain 
the order line duplication.

table 9-4:  Number of Order Lines within an Order Having the same Product

LIneS In order 
WIth produCt

nuMBer oF 
orderS

nuMBer oF 
produCtS % oF orderS

1 272,824 3,684 97.9%

2 5,009 1,143 1.8%

3 686 344 0.2%

4 155 101 0.1%

5 51 40 0.0%

6 20 14 0.0%

7 1 1 0.0%

8 4 3 0.0%

9 1 1 0.0%

11 2 2 0.0%

12 1 1 0.0%

40 1 1 0.0%
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Are Duplicates Explained by the Product Group?

Perhaps some product groups are more likely to have duplicates than other 
product groups. This leads to the question: What proportion of products is ever 
duplicated for each product group? This query is a little challenging to answer 
because first we have to find the duplicated products, and then we need to 
summarize the products by their group:

SELECT p.GroupName,
       SUM(CASE WHEN maxnumol = 1 THEN 1 ELSE 0 END) as Singletons,
       SUM(CASE WHEN maxnumol > 1 THEN 1 ELSE 0 END) as Dups,
       AVG(CASE WHEN maxnumol > 1 THEN 1.0 ELSE 0 END) as DupRatio
FROM (SELECT olp.ProductId, MAX(numol) as maxnumol
      FROM (SELECT ol.OrderId, ol.ProductId, COUNT(*) as numol
            FROM OrderLines ol
            GROUP BY ol.OrderId, ol.ProductId
           ) olp
      GROUP BY olp.ProductId
     ) lp JOIN
     Products p
     ON lp.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY DupRatio DESC

This query actually contains three levels of aggregations—not uncommon for 
some interesting questions. Of note are the nested aggregations. The innermost 
subquery aggregates by product and order, to gather the basic information about 
which products appear more than once. The next level aggregates by product, 
before joining in the Products table.

The query can actually be simplified by eliminating one level of aggregation. 
The key observation is that we can count the number of orders a product is in 
and the number of order lines—by using COUNT DISTINCT:

SELECT p.GroupName,
       SUM(CASE WHEN NumOrderLines = NumOrders THEN 1 ELSE 0
           END) as Singletons,
       SUM(CASE WHEN NumOrderLines > NumOrders THEN 1 ELSE 0 END) as Dups,
       AVG(CASE WHEN NumOrderLines > NumOrders THEN 1.0 ELSE 0
           END) as DupRatio
FROM (SELECT ol.ProductId, COUNT(DISTINCT ol.OrderId) as NumOrders,
             COUNT(*) as NumOrderLines
      FROM OrderLines ol
      GROUP BY ol.ProductId
     ) lp JOIN
     Products p
     ON lp.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY DupRatio DESC



 Chapter 9 ■ What’s in a Shopping Cart? Market Basket analysis  429

This query compares the number of order lines to the number of orders for each 
product. If these are the same, then there are no duplicates.

Which approach is better, the extra subquery or COUNT(DISTINCT)? There is 
no right answer. The subquery is more versatile because the same logic can be 
used to count products that appear exactly twice in orders, exactly three times, 
and so on. From a performance perspective, the two are probably similar because 
COUNT(DISTINCT) is an expensive operation and similar, in a very broad sense, 
to doing another level of aggregation.

The results in Table 9-5 show a wide variation in the number of products 
that are duplicated. On the high side are CALENDAR and BOOK. On the low 
side are ARTWORK and GAME. This relationship is not particularly surpris-
ing. ARTWORK, for instance, has many more products than expected with a 
quantity of one in orders—and if only one of something is being ordered, then 
it is not duplicated.

Are Duplicates Explained by Timing?

The products do not seem to explain the duplication. What might be another 
explanation? A reasonable alternative hypothesis is that the duplicates come from 
a particular period of time. Perhaps there was a period of time when NumUnits 
was not used. Looking at the date of the first order containing each duplicate 
product sheds light on this:

SELECT YEAR(minshipdate) as year, COUNT(*) as cnt
FROM (SELECT ol.OrderId, ol.ProductId, MIN(ol.ShipDate) as minshipdate
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId

table 9-5: Number of Products in a Group Having Multiple Order Lines

produCt 
Group naMe

produCtS never 
dupLICated

produCtS WIth 
SoMe dupLICatIon

dupLICatIon 
ratIo

CALENDAR 9 22 71.0%

BOOK 112 128 53.3%

OCCAsION 34 37 52.1%

APPAREL 43 43 50.0%

OTHER 31 24 43.6%

ARTWORK 2,254 1,046 31.7%

FREEBIE 19 6 24.0%

GAME 194 37 16.0%

#N/A 1 0 0.0%
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      HAVING COUNT(*) > 1
     ) olp
GROUP BY YEAR(minshipdate)
ORDER BY year

The query uses ShipDate instead of OrderDate simply to avoid joining in Orders. 
The HAVING clause chooses only those OrderId and ProductId pairs that appear 
more than once—the orders that have duplicates.

Some years have much higher occurrences of products on duplicate order 
lines, as shown in Table 9-6. However, the phenomenon has occurred in all 
years that have data. The reason for the duplicates is not a short-term change 
in policy.

Are Duplicates Explained by Multiple Ship Dates or Prices?

The duplicates seem to be due neither to products nor time. Perhaps in despera-
tion, the next thing to consider is other data within OrderLines. Two columns of 
interest are ShipDate and UnitPrice. These columns suggest the question: How 
often do multiple ship dates and unit prices occur for the same product within an order?

The idea behind answering this question is to classify each occurrence of 
multiple lines into the following categories:

 ■ "ONE" or "SOME" unit prices

 ■ "ONE" or "SOME" shipping dates

Table 9-7 shows the results from such a classification. Having multiple values 
for ShipDate suggests an inventory issue. A customer orders multiple units 
of a particular item, but there is not enough in stock. Part of the order ships 
immediately, part ships at a later time.

table 9-6: Number of Orders with Duplicate Products by Year

Year nuMBer oF orderS WIth dupLICate produCtS

2009 66

2010 186

2011 392

2012 181

2013 152

2014 1,433

2015 2,570

2016 951
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Having multiple values for UnitPrice suggests that a customer may be getting 
a discount on some of the units, but the discount is not available on all of them. 
And, over 1,000 orders still have duplicate products with the same ship date and 
unit price on all of them. These might be errors. Or, they might be related to data 
that is unavailable, such as orders going to multiple shipping addresses.

The following query was used to generate the table:

SELECT prices, ships, COUNT(DISTINCT ProductId) as numprods,
       COUNT(*) as numtimes
FROM (SELECT ol.OrderId, ol.ProductId,
             (CASE WHEN COUNT(DISTINCT UnitPrice) = 1 THEN 'ONE'
                   ELSE 'SOME' END) as prices,
             (CASE WHEN COUNT(DISTINCT ShipDate) = 1 THEN 'ONE'
                   ELSE 'SOME' END) as ships
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
      HAVING COUNT(*) > 1
     ) olp
GROUP BY prices, ships
ORDER BY prices, ships

Figure 9-2 shows the dataflow diagram for this query. The order lines for each 
product are summarized, counting the number of different prices and ship dates 
on the lines. These are then classified as “ONE” or “SOME” and aggregated again. 
This query only uses GROUP BY to do the processing; it contains no joins at all.

Histogram of Number of Units
What is the average number of units by product group in a given order? It is tempting 
to answer this question using the following query:

SELECT p.GroupName, AVG(ol.NumUnits * 1.0) as avgnumunits
FROM OrderLines ol JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY p.GroupName

table 9-7: Classification of Duplicate Order Lines by Number of shipping Dates and Prices 
within Order

prICeS ShIp dateS nuMBer oF produCtS
nuMBer oF 

orderS

ONE ONE 262 1,649

ONE SOME 1,177 4,173

SOME ONE 33 44

SOME SOME 59 65
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table 9-8: Number of Units by Order and by Order Line

produCt Group order averaGe orderLIne averaGe

#N/A 1.00 1.00

APPAREL 1.42 1.39

ARTWORK 1.26 1.20

BOOK 1.59 1.56

CALENDAR 1.67 1.64

FREEBIE 1.53 1.51

GAME 1.49 1.46

OCCAsION 1.82 1.79

OTHER 2.44 2.30

Figure 9-2:  This dataflow diagram shows the processing for calculating the number of prices 
and of ship dates on order lines with the same product.

READ
OrderLines

APPEND
prices = (case when nump = 1
then 'One' else 'Some' end)
Ships = (case when nums = 1
then 'One' else 'Some' end)

OUTPUT

prices ships numprocs numorders
SOME ONE 1 1

ONE SOME 1 1
SOME SOME 1 1

AGGREGATE
group by OrderId, ProductId

nump = count(distinct UnitPrice)
nums = count(distinct ShipDate)
numlines = count(*)

n

OrderLine OrderId ProductId ShipDate Price

1 1 A 1 Jan $20

2 1 A 1 Jan $30

3 1 B 1 Jan $40

4 1 B 5 Jan $50

5 2 C 1 Jan $100

6 3 D 1 Jan $70

7 3 D 3 Jan $80

8 4 E 1 Jan $100

9 4 F 1 Jan $100

10 4 G 1 Jan $100

OrderId ProductId nump nums numlines
1 A 2 1 2

1 B 1 2 2

2 C 1 1 1

3 D 2 2 2

4 E 1 1 1

4 F 1 1 1

4 G 1 1 1

OrderId ProductId nump nums numlines prices ships
1 A 2 1 2 SOME ONE

1 B 1 2 2 ONE SOME

2 C 1 1 1 ONE ONE

3 D 2 2 2 SOME SOME

4 E 1 1 1 ONE ONE

4 F 1 1 1 ONE ONE

4 G 1 1 1 ONE ONE

AGGREGATE
group by prices, ships

numprods= count(distinct ProductId)
numorders = count(*)

OrderId ProductId nump nums numlines prices ships

1 A 2 1 2 SOME ONE

1 B 1 2 2 ONE SOME

3 D 2 2 2 SOME SOME

FILTER
umlines > 1

However, this query misses the important point that we just investigated: some 
products are split among multiple order lines in the data. Adding up NumUnits 
for each product in each order, and then taking the average solves this.

Both the correct average value and the incorrect value from the first query are in 
Table 9-8. The difference between these two values shows how often the product 
appears on multiple order lines in a single order. Some products, such as ARTWORK, 
are less likely to have multiple units in the same order. Other products, such as those 
in the OCCASION product group, are more likely to be ordered in multiple quantities.
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For most of the product groups, the first method undercounts the number of 
units in an order by about 2%; this is consistent with the fact that about 2% of 
products in an order are on multiple lines. Some categories are affected more 
than others. The undercounting for ARTWORK is over 5%, for instance.

The following query generated the data for the table:

SELECT p.GroupName, AVG(ol.NumUnits) as orderaverage,
       SUM(ol.NumUnits) / SUM(ol.numlines) as orderlineaverage
FROM (SELECT ol.OrderId, ol.ProductId, SUM(ol.NumUnits) * 1.0 as numunits,
             COUNT(*) * 1.0 as numlines
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ) ol JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY p.GroupName

This query summarizes the order lines, summing the NumUnits values for a given 
product in each order, and then taking the average. This is the real average of 
the number of products in an order. The query can also calculate the average 
number of products per order line by counting the total number of order lines 
for the product, and doing the division at the outer level. Both values can be 
calculated with a single query.

Which Products Tend to be Sold Multiple Times Within  
an Order?
Some products appear on multiple order lines; some do not. In fact, some prod-
ucts are never singletons. Table 9-9 shows the top ten products by the ratio of 
orders with the product with more than one unit.

This table highlights that these products tend to occur in few orders. Perhaps a 
threshold on the minimum number of orders where the product appears would 
produce more interesting results. Table 9-10 shows the results with a cut-off of 
20 orders, meaning that a product needs to appear in at least 20 orders to be 
in the table (there are 788 such products). This table shows more variation. As 
expected, very few products typically appear multiple times in a single order. 
The exceptions are FREEBIE and OTHER products.

This type of analysis can suggest opportunities for cross-selling or bundling. 
Perhaps some products naturally sell in multiple quantities. These can be put 
into bundles to help consumers—and to increase overall product sales.

The query used to generate the second table is:

SELECT TOP 10 ol.ProductId, p.GroupName, COUNT(*) as NumOrders,
       AVG(CASE WHEN NumUnits > 1 THEN 1.0 ELSE 0 END) as MultiRatio
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table 9-10: Number of Units by Order and by Order Line

produCt Id produCt Group nuM orderS
MuLtIpLe unIt 

averaGe

10969 OTHER 22 100.0%

13323 FREEBIE 23 52.2%

12494 BOOK 253 48.2%

11047 ARTWORK 1,715 36.3%

10003 CALENDAR 168 34.5%

11090 OCCAsION 32 34.4%

11009 ARTWORK 5,673 32.8%

12175 CALENDAR 216 32.4%

13297 CALENDAR 257 31.1%

12007 OTHER 235 30.6%

table 9-9: Number of Units by Order and by Order Line

produCt Id produCt Group nuM orderS
MuLtIpLe unIt 

averaGe

10555 ARTWORK 1 100.0%

10830 APPAREL 2 100.0%

10831 APPAREL 2 100.0%

10832 APPAREL 2 100.0%

10833 APPAREL 1 100.0%

10876 GAME 1 100.0%

10969 OTHER 22 100.0%

10970 OTHER 11 100.0%

10998 OTHER 1 100.0%

10999 OTHER 1 100.0%

FROM (SELECT ol.OrderId, ol.ProductId, SUM(ol.NumUnits) as numunits
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ) ol JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY ol.ProductId, p.GroupName
HAVING COUNT(*) >= 20
ORDER BY MultiRatio DESC, ProductId
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Notice the use of AVG() with CASE to calculate the ratio. To calculate a percent-
age (between 0 and 100) rather than a ratio, simply use  THEN 100.0  instead of  
THEN 1.0.

Changes in Price
Products on different order lines sometimes have different prices. Many prod-
ucts also change prices throughout the historical data. How many different prices 
do products have? Actually, this question is interesting, but it is more feasible to 
answer a slightly simpler question: What proportion of products in each product 
group has more than one price?

SELECT GroupName, COUNT(*) as allproducts,
       SUM(CASE WHEN numprices > 1 THEN 1 ELSE 0 END) as morethan1price,
       SUM(CASE WHEN numol > 1 THEN 1 ELSE 0 END) as morethan1orderline
FROM (SELECT ol.ProductId, p.GroupName, COUNT(*) as numol,
             COUNT(DISTINCT ol.UnitPrice) as numprices
      FROM OrderLines ol JOIN
           Products p
           ON ol.ProductId = p.ProductId
      GROUP BY ol.ProductId, p.GroupName
     ) olp
GROUP BY GroupName
ORDER BY GroupName

This query does not do the division, but it calculates the numerator and the 
denominator.

Products must appear in more than one order line to have more than one 
price. Table 9-11 shows that 74.9% of products appearing more than once have 
multiple prices. In some product groups, such as APPAREL and CALENDARS, 
almost all the products have more than one price. Perhaps this is due to inven-
tory control. Calendars, by their very nature, become outdated, so once the year 
covered by the calendar begins, the value decreases dramatically. APPAREL is 
also quite seasonal, with the same effect.

Figure 9-3 shows the average price by month for CALENDARs compared 
to BOOKs, for products costing less than $100 (expensive products appear for 
short periods, confusing the results). For most years, the average unit price 
for calendars increases in the late summer, and then decreases over the next 
few months.

By contrast, BOOKs tend to have their lowest price of the year in January, 
presumably representing after-holiday discounts. The peaks seem to appear 
randomly throughout the year, perhaps depending on when new books 
are released. Such charts suggest questions about price elasticity (whether 
changes in price for a product affects demand), which we’ll discuss more 
in Chapter 12.
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table 9-11: Products by Product Groups That Have More Than One Price

produCt Group

produCtS WIth 
tWo or More 

orderS

produCtS WIth 
tWo or More 

prICeS proportIon

#N/A 0 1 0.0%

APPAREL 79 84 94.0%

ARTWORK 2,145 2,402 89.3%

BOOK 230 236 97.5%

CALENDAR 30 30 100.0%

FREEBIE 0 23 0.0%

GAME 176 211 83.4%

OCCAsION 53 70 75.7%

OTHER 37 50 74.0%

totaL 2,750 3,107 88.5%

The query that generates the results for this chart is an aggregation query:

SELECT YEAR(o.OrderDate) as yr, MONTH(o.OrderDate) as mon,
       AVG(CASE WHEN p.GroupName = 'CALENDAR'
                THEN ol.UnitPrice END) as avgcallt100,
       AVG(CASE WHEN p.GroupName = 'BOOK'
                THEN ol.UnitPrice END) as avgbooklt100
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId
WHERE p.GroupName IN ('CALENDAR', 'BOOK') AND p.FullPrice < 100
GROUP BY YEAR(o.OrderDate), MONTH(o.OrderDate)
ORDER BY yr, mon

Figure 9-3:  The average prices of calendars and books sold change during the year by month.
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This query selects appropriate product groups and then does the conditional 
aggregation using a CASE expression. Notice that the condition on FullPrice 
is in the WHERE clause rather than the CASE. Having the condition in the WHERE 
clause reduces the amount of data processed by the query, which should make 
the query faster. In addition, the query can also make use of an appropriate 
index for further optimization. The CASE expression does not have an ELSE 
clause intentionally. Non-matching rows get NULL values, which do not affect 
the average.

Products and Customer Worth

This section investigates the relationship between products and customer worth. 
It starts with the question of whether good customers are consistent over time 
in their purchasing behavior. It then looks at the relationship between products 
on the one hand and good and bad customers on the other. Finally, this section 
defines and measures residual value.

Consistency of Order Size
Each order is a certain size, which can be defined in terms of its total value 
(amount paid). Over time some customers place multiple orders. Are orders 
consistently about the same size for a given customer? Or do the orders for a given 
customer vary significantly in size? The answers to these questions can give 
some indication of price sensitivity. For instance, if customers tend to have 
orders that are similar in size, we want to be cautious about recommending 
products that are either much more or much less expensive than the ones they 
have already ordered. On the other hand, if order sizes are not consistent, then 
this is less of a concern.

This analysis has several challenges, perhaps the hardest of which is framing 
the question so it can be answered analytically. It is tempting to look at the order 
size distribution for a given customer. The problem with this approach is that 
most customers only have a single order—so their distribution is one hundred 
percent pure. We might restrict the distribution only to customers who have made 
more than one order. But then the question arises: how do we compare customers 
who have two orders to customers who have three or four? Further complications 
arise because customers with more orders have many more possible comparisons.

Is there a way of comparing order sizes that is not biased by the number of 
orders that customers make? A reasonable approach is to re-phrase the question 
as: What is the relationship of the next order size to the current order size? A customer 
who has two orders has one comparison, which can be used to answer this ques-
tion. A customer who has ten orders has nine comparisons, one for each order 
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except for the last one. The number of comparisons does not get out of hand. 
The approach still requires customers to have more than one order.

This relationship can be investigated in various ways. One method is to use 
a scatter plot of order size along with the next order size. With a bit over 30,000 
such orders, this is just feasible in Excel. Figure 9-4 shows the results along with 
the best-fit line. With an R-square value of just 0.1078, the best-fit line suggests 
a weak relationship between one order amount and the next one. Very large 
values (outliers) can have a big impact on the best-fit line; and the largest orders 
have little correlation with the next order.

Binning the order sizes makes the results less sensitive to very large order 
sizes. Table 9-12 shows a relationship among order sizes when they are broken 
into quintiles. The first number, 47.1%, says that customers who have an order 
in the first quintile by value have their next order in the same quintile almost 
half the time. Similarly, 47.7% of orders in the top quintile have their next order 
(if there is one) in the top quintile. If there were no relationship, then the values 
would all be about 20%. The higher ratios on the diagonal suggest a reasonably 
strong relationship between the size of one order and the next.

Figure 9-4:  The scatter plot of current order size to next order size shows little relationship.

table 9-12:  Previous and Next Order size by Quintile 

next QuIntILe

prev QuIntILe 1 2 3 4 5

1 47.1% 13.1% 14.2% 14.2% 11.4%

2 21.5% 29.6% 17.8% 19.4% 11.7%

3 20.4% 14.3% 33.6% 19.0% 12.7%

4 23.0% 12.9% 18.9% 27.7% 17.5%

5 20.7% 6.5% 10.9% 14.3% 47.7%
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Binning the orders sizes shows a stronger relationship than a simple best-fit 
line. The difference in results between the best-fit line (very weak relationship) 
and binning (noticeable, relatively strong relationship) is the effect of very large 
orders. Even though two large orders can be in the same quintile, they can differ 
by thousands of dollars—a difference that has a large effect on the best-fit line 
and no effect on quintiles.

This calculation for the results in the table has two components: determin-
ing the quintiles for the orders and then determining the quintile for the next 
order. The goal is to produce a result set with three columns: current quintile, 
next quintile, and the number of orders. The pivoting and ratios can then be 
done in Excel (or with additional logic in SQL).

The following query does the work to calculate the quintiles of an order and 
the next order:

WITH oq as (
      SELECT o.*,
             CEILING((RANK() OVER (ORDER BY o.TotalPrice)) * 5.0 /
                       COUNT(*) OVER ()
                    ) as quintile
      FROM Orders o
     )
SELECT quintile, next_quintile, COUNT(*)
FROM (SELECT c.HouseholdId, oq.quintile,
             LEAD(oq.quintile) OVER (PARTITION BY c.HouseholdId
                                     ORDER BY oq.OrderDate
                                    ) as next_quintile
      FROM Customers c JOIN
           oq
           ON c.CustomerId = oq.CustomerId
     ) hq
WHERE next_quintile IS NOT NULL
GROUP BY quintile, next_quintile
ORDER BY quintile, next_quintile

The CTE oq calculates the quintile for the orders based on their size. It does this 
by ranking the price, multiplying by five, and dividing by the total number of 
rows.  NTILE() could also be used.

The rest of the query follows simple logic. The subquery gets the next quintile 
using LEAD(). The outer query filters the results to include only those orders 
that have a next order. It then counts the values by the two quintiles. A very 
similar query, without the quintile calculation, can be used for the scatter plot.

Products Associated with One-Time Customers
Products associated with one-time customers pose a conundrum. They may 
be bad, in the sense that people purchase these products and never come back 
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again—perhaps because the products fail to meet expectations. They may be 
good in the sense that people who would never make a purchase are attracted 
to these products, and what is missing are subsequent cross-sell opportunities 
to increase customer engagement. They may be neutral in the sense that some 
products might simply be very new, so first-time purchasers may not have had 
the opportunity to return.

The data sets do not have much information that can distinguish among 
these scenarios (except for the last which can use the first purchase date of 
each product)—other information, such as complaints, returns, and customer 
demographics would be helpful. Nevertheless, this turns into an interesting 
question: How many products are purchased exactly once by a household that never 
purchases anything else?

The following query returns the fact that 2,461 products have one-time 
purchasers:

SELECT COUNT(DISTINCT ProductId)
FROM (SELECT c.HouseholdId, MIN(o.ProductId) as ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON o.OrderId = ol.OrderId
      GROUP BY c.HouseholdId
      HAVING COUNT(DISTINCT ol.ProductId) = 1 AND
             COUNT(DISTINCT o.OrderId) = 1
     ) h

The HAVING clause does much of the work for this query. Of course, Customers, 
Orders, and OrderLines all need to be joined together and aggregated. Then, 
the HAVING clause chooses only those households that have exactly one order 
and exactly one product.

One nuance to the query is the  MIN(ProductId) as ProductId  in the subquery. 
Normally, this would be a strange construct. But, the HAVING clause limits the 
number of products in each group to just one. The minimum of a single product 
is that product—which is exactly the product that we want.

t Ip When bringing together data from different tables that have a one-to-many 
relationship, such as products, orders, and households, COUNT(DISTINCT) correctly 
counts the values at different levels. Use COUNT(DISTINCT OrderId) rather than 
COUNT(OrderId) to get the number of orders.

Many products are purchased only once by a household. More interesting 
are products that tend to be associated with one-time household purchasers: 
Which products have a high proportion of their purchases associated with one-order 
households? The answer to this question is the ratio of two numbers:
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 ■ The number of households where the product is the only product the 
household ever buys

 ■ The total number of households that purchase the product

Both these numbers can be summarized from the data:

SELECT p.productid, numhouseholds, COALESCE(numuniques, 0) as 
numuniques,
       COALESCE(numuniques * 1.0, 0.0) / numhouseholds as prodratio
FROM (SELECT ProductId, COUNT(*) as numhouseholds
      FROM (SELECT c.HouseholdId, ol.ProductId
            FROM Customers c JOIN
                 Orders o ON c.CustomerId = o.CustomerId JOIN
                 OrderLines ol ON o.OrderId = ol.OrderId
            GROUP BY c.HouseholdId, ol.ProductId
           ) hp
      GROUP BY ProductId
     ) p LEFT OUTER JOIN
     (SELECT ProductId, COUNT(*) as numuniques
      FROM (SELECT HouseholdId, MIN(ProductId) as ProductId
            FROM Customers c JOIN
                 Orders o ON c.CustomerId = o.CustomerId JOIN
                 OrderLines ol ON o.OrderId = ol.OrderId
            GROUP BY HouseholdId
            HAVING COUNT(DISTINCT ol.ProductId) = 1 AND
                   COUNT(DISTINCT o.Orderid) = 1) h
      GROUP BY ProductId
     ) hp
     ON hp.ProductId = p.ProductId
ORDER BY prodratio DESC, ProductId

This query aggregates the product and household information two ways. The 
first subquery calculates the total number of households that purchase each 
product. The second subquery calculates the total number of households whose 
only order is a one-time purchase of the product.

The results are somewhat expected. The products that have the highest ratios 
are the products that have only one order. In fact, of the 419 products where every 
order is the only household order, only one has more than ten purchases. The 
results highlight the fact that products have different behavior with respect to 
bringing in one-time households. And the category of the product makes a big 
difference. Of the 419 products that bring in exclusively one-time purchasers, 
416 of them are in the ARTWORK category.

An entirely different way to approach this question uses window functions. 
For each order line, we can keep track of information about the households:

 ■ Minimum order ID on the household

 ■ Maximum order ID on the household



442 Chapter 9 ■ What’s in a Shopping Cart? Market Basket analysis 

 ■ Minimum product ID on the household

 ■ Maximum product ID on the household

When the first two are equal and last two are equal, then the household meets 
the condition of being “unique.”

This observation results in a simpler query for the same information:

SELECT ProductId, COUNT(DISTINCT HouseholdId) as numhouseholds,
       COUNT(DISTINCT (CASE WHEN minp = maxp AND mino = maxo
                            THEN HouseholdId END)) as numhouseholds,
       (COUNT(DISTINCT (CASE WHEN minp = maxp AND mino = maxo
                             THEN HouseholdId END)) * 1.0 /
        COUNT(DISTINCT HouseholdId)) as prodratio
FROM (SELECT ol.ProductId, c.HouseholdId,
             MIN(ol.Orderid) OVER (PARTITION BY c.HouseholdId) as mino,
             MAX(ol.OrderId) OVER (PARTITION BY c.HouseholdId) as maxo,
              MIN(ol.ProductId) OVER (PARTITION BY c.HouseholdId) as minp,
             MAX(ol.ProductId) OVER (PARTITION BY c.HouseholdId) as maxp
      FROM Customers c JOIN
           Orders o ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol ON o.OrderId = ol.OrderId
     ) hp
GROUP BY ProductId
ORDER BY prodratio DESC, productid

Note the use of conditional aggregation with COUNT(DISTINCT). This counts the 
number of distinct households that meet the condition. It would seem unneces-
sary because the households are being restricted to one product and one order. 
However, there is the possibility of a household ordering the same product on 
multiple order lines within an order.

This query could replace each condition with something like COUNT(DISTINCT 
ol.Orderid) OVER (PARTITION BY c.HouseholdId) = 1. There are two reasons 
for preferring the version with MIN() and MAX(). First, not all databases support 
COUNT(DISTINCT) as a window function. Second, even if they do, the version 
with MIN() and MAX()is more efficient because of the overhead of keeping track 
of the distinct values.

This suggests a follow-up question: For the different product groups, what is the 
proportion of one-time purchasing households?

WITH ph as (
      SELECT ProductId, COUNT(DISTINCT HouseholdId) as numhouseholds,
             COUNT(DISTINCT (CASE WHEN minp = maxp AND mino = maxo
                                  THEN HouseholdId END)) as numuniques,
             (COUNT(DISTINCT (CASE WHEN minp = maxp AND mino = maxo
                                   THEN HouseholdId END)) * 1.0 /
              COUNT(DISTINCT HouseholdId)) as prodratio
      FROM (SELECT ol.ProductId, c.HouseholdId,
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                   MIN(ol.Orderid) OVER (PARTITION BY c.HouseholdId
                                        ) as mino,
                   MAX(ol.OrderId) OVER (PARTITION BY c.HouseholdId
                                        ) as maxo,
                   MIN(ol.ProductId) OVER (PARTITION BY c.HouseholdId
                                          ) as minp,
                   MAX(ol.ProductId) OVER (PARTITION BY c.HouseholdId
                                          ) as maxp
            FROM Customers c JOIN
                 Orders o
                 ON c.CustomerId = o.CustomerId JOIN
                 OrderLines ol
                 ON o.OrderId = ol.OrderId
           ) hp
     GROUP BY ProductId
    )
SELECT p.GroupName, COUNT(*) as numprods,
       SUM(numhouseholds) as numhh, SUM(numuniques) as numuniques,
       SUM(numuniques * 1.0) / SUM(numhouseholds) as ratio
FROM ph JOIN
     Products p
     ON ph.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY ratio DESC

This query uses the previous query (without the ORDER BY clause) as a subquery 
and joins it to Products to get the product group:

Figure 9-5 shows number of households that have made a purchase and the 
proportion that are one-time-only within each category. By this measure, the 
worst product group is APPAREL, where over half the purchasers are one-time 
only. The best is FREEBIE, with less than 1%. That is presumably because the 
FREEBIE products are typically included in bundles with other products.

Figure 9-5:  The proportion of households that purchase only one product varies considerably 
by product group. some groups, such as APPAREL, are associated with such unique purchasers.
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Products Associated with the Best Customer
The previous section asked about products associated with the worst (i.e., one-
time) customers. The natural follow-on question is which products are associ-
ated with the best customers. Of course, this leads to the question of who are 
the best customers. Are they the ones who have the most orders? Purchased the 
most diverse items? Spent the most money? Or some combination of all three?

This investigation uses the total money spent to define the best customers, 
dividing the customers into roughly three equal-sized groups:

SELECT c.HouseholdId, SUM(o.TotalPrice) as Total,
       FLOOR((RANK() OVER (ORDER BY SUM(o.TotalPrice)) - 1) * 3.0 /
             COUNT(*) OVER ()
            ) as tercile
FROM Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId
GROUP BY c.HouseholdId

This query calculates the three groups by enumerating the households (by total 
amount spent) multiplying by three and dividing by the total number. Note that 
this calculation is slightly different from the calculation in the previous section 
for quintile. This uses FLOOR(), whereas the other uses CEILING(), for instance. 
The difference is strictly a matter of style—both methods produce equalish-sized 
groups. In this version, the numbering starts at zero; for the quintiles it starts at 
one. And, of course, NTILE() can be used for this calculation as well.

Table 9-13 shows the boundaries for the different groups and hints at a prob-
lem with this approach. The cutoff for the first group is $20 and for the second 
$41.95. Almost half the products (1,969 of them) never sell for less than $41.95. So, 
any customer who purchases one of these products is automatically considered 
the “best.” For now, we’ll ignore this issue.

table 9-13: Total spending by Tercile

terCILe nuM houSehoLdS MIn totaL Max totaL

0 52,477 $0.00 $20.00

1 51,721 $20.01 $41.95

2 52,060 $41.96 $11,670.00

To continue answering the question, the following query calculates the pro-
portion of purchases in the top tercile for each product:

WITH hh as (
      SELECT c.HouseholdId, SUM(o.TotalPrice) as Total,
             FLOOR((RANK() OVER (ORDER BY SUM(o.TotalPrice)) - 1) * 3.0 /
                   COUNT(*) OVER ()
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                  ) as tercile
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId
      GROUP BY c.HouseholdId
     )
SELECT ol.ProductId, COUNT(*) as cnt,
       AVG(CASE WHEN hh.tercile = 2 THEN 1.0 ELSE 0 END) as topratio
FROM Customers c JOIN
     Orders o
     ON o.CustomerId = c.CustomerId JOIN
     OrderLines ol
     ON ol.OrderId = o.Orderid JOIN
     hh
     ON c.HouseholdId = hh.HouseholdId
GROUP BY ol.ProductId
ORDER BY topratio DESC

This query basically just looks up the tercile for each product and then calculates 
the proportion.

The results are rather disappointing. Most of the products (3,280) are exclu-
sively associated with the top third of the customers. Just 11 products are never 
purchased by the best customers.

It is, of course, possible to refine this analysis. Perhaps the definition of the 
best customer is not the best definition. They could be defined as the top fifth, 
or ten percent. Or, they could have to purchase a certain minimum number of 
products, or have at least a certain number of orders. The definition becomes 
rather ad hoc. Is there a better way to understand the relationship between 
product purchases and the best customers?

Residual Value
Once upon a time, in the 1990s, when bill-paying services were very expen-
sive (because banks actually had to write checks and send them out), Fidelity 
Investments considered canceling its bill-paying service. After all, this service 
cost a lot of money and was provided free to qualified customers. Then someone 
in its special projects group noticed that customers who used the service had 
the largest balances and best retention. Customers who trust someone else to 
pay their bills are likely to be the very best customers. Cancelling the service 
might make these customers unhappy, and unhappy customers are more likely 
to leave, taking all their investments with them.

A similar moral comes from a very different business. A manager in a high-end 
grocery store decided to remove gourmet mustard from shelves to make room 
for other, faster moving items. Some of the mustard jars were actually gathering 
dust—anathema in the grocery business, which thrives on fast-moving merchan-
dise. Further analysis showed that customers who purchased any of these gourmet 
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mustards tended to do so in very large purchases. Without the mustard, the store 
feared losing the sales of everything else in those customers’ carts.

Such insights (as well as our own personal experiences) illustrate that customers 
might make decisions about large purchases based on particular products—whether 
a bill-paying service or gourmet mustard. This observation leads to a question: 
Which products have the largest remaining average value in the orders where they appear? 
This remaining value, called residual value, is the value that remains in the order 
after said products are removed. An order containing only one product contributes 
no residual value for that product. A jar of gourmet mustard would contribute 
a large residual value. This section discusses an approach to residual value cal-
culations, as well as certain biases in the calculation that are difficult to remove.

The following query calculates the average residual value for each product; that 
is, it calculates the average remaining value in orders that contain the product:

SELECT op.ProductId, COUNT(*) as numorders, AVG(ototal) as avgorder,
       AVG(prodprice) as avgprod, AVG(ototal - prodprice) as avgresidual
FROM (SELECT ol.OrderId, SUM(ol.TotalPrice) as ototal
      FROM OrderLines ol
      GROUP BY ol.OrderId
      HAVING COUNT(DISTINCT ol.ProductId) > 1
     ) o JOIN
     (SELECT ol.OrderId, ol.ProductId, SUM(ol.TotalPrice) as prodprice
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ) op
     ON op.OrderId = o.OrderId
GROUP BY op.ProductId
ORDER BY avgresidual DESC

The first subquery summarizes orders with more than one product to calculate 
the total amount for the order. The second subquery summarizes the same 
orders by product as well. Note that this combines multiple order lines with the 
same product into a row for that product. The residual value for each product 
is the order total minus the amount for each product in the order—the sum of 
everything else in the order. The average of the residual is then calculated for 
each product across all orders.

This is a type of query we have seen before, where two aggregations of the 
same table are joined together. As you might expect, this query can be written 
more simply using analytic functions:

SELECT op.ProductId, COUNT(*) as numorders, AVG(ototal) as avgorder,
       AVG(prodprice) as avgprod, AVG(ototal - prodprice) as avgresidual
FROM (SELECT ol.OrderId, ol.ProductId, SUM(ol.TotalPrice) as prodprice,
             SUM(SUM(ol.TotalPrice)) OVER (PARTITION BY ol.OrderId
                                          ) as ototal,
             COUNT(*) OVER (PARTITION BY ol.OrderId) as cnt
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ) op
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WHERE cnt > 1
GROUP BY op.ProductId
ORDER BY avgresidual DESC

Notice the use of SUM(SUM()) to calculate the total value of each order, based 
on the order lines—the nesting of an aggregation function inside a window 
function. Also notice the use of COUNT(*) as a window function to count the 
number of products in each order. The outer WHERE clause has the same purpose 
as the HAVING clause in the previous query.

Summarizing by product group uses the previous query as a CTE called pp:

SELECT p.GroupName, COUNT(*) as numproducts,
       SUM(numorders) as numorders, AVG(avgresidual) as avgresidual
FROM pp JOIN
     Products p
     ON pp.ProductId = p.ProductId
GROUP BY p.GroupName
ORDER BY p.GroupName

This query calculates the average residual for each product and then returns the 
average for all products within a product group. This is different from calculat-
ing the average residual for a product group, which would require modifying 
the CTE to be at the product group level rather than the product level. Doing the 
calculation at the product group level would only calculate residuals that cross 
product boundaries, so two different books would not contribute to the residual 
for BOOK at the product group level (although it does for the above results).

Table 9-14 shows the average residual value by product group as well as the average 
price of items. Not surprisingly, the most expensive products—ARTWORK—have, 

table 9-14: Average Residual Value by Product Group

produCt 
Group

nuMBer oF 
produCtS

nuMBer 
oF orderS

averaGe order 
reSIduaL

averaGe 
houSehoLd 

reSIduaL

#N/A 1 9 $868.72 $658.40

APPAREL 85 4,030 $39.01 $618.88

ARTWORK 2,576 21,456 $1,032.24 $1,212.27

BOOK 236 48,852 $67.94 $365.06

CALENDAR 31 3,211 $37.01 $387.74

FREEBIE 25 27,708 $28.27 $1,584.93

GAME 230 12,844 $133.50 $732.72

OCCAsION 71 16,757 $41.98 $719.87

OTHER 53 3,100 $36.49 $1,123.14
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by far, the highest residual value. This suggests that customers are purchasing 
multiple expensive items at the same time, rather than mixing and matching 
less expensive items with more expensive ones.

Calculating the average residual at the household level requires joining in the 
household ID, using Customers and Orders. The household average residual is larger 
than the residual at the order level, even though most households are one-time pur-
chasers. The reason points to a challenge when working with market basket data.

A handful of households have very many orders. As a result, these house-
holds have very large residual values for any product they purchase, and, they 
have generally purchased products from all product groups. In short, large 
households dominate the residual value calculation.

One way to remove the bias is to limit the calculations to households with only two 
purchases. Another way is to randomly choose one pair of products in each house-
hold, but such a technique is outside the scope of this book. The effect exists at the 
order level, but because there are many fewer humongous orders, the bias is smaller.

Warn InG When analyzing market basket data, the size of orders (or of house-
holds) can introduce unexpected biases in results.

Product Geographic Distribution

As we saw in Chapter 4, geography is a key dimension for analysis. This is true 
at the product level as well. This section investigates some interactions between 
geography and products.

Most Common Product by State
One common question is what “thing” is most frequently associated with some-
thing else, such as the most common product in each state. The easiest approach 
to this type of question is to use window functions, particularly ROW_NUMBER():

SELECT sp.State, sp.ProductId, cnt, p.GroupName
FROM (SELECT o.State, ol.ProductId, COUNT(*) as cnt,
             ROW_NUMBER() OVER (PARTITION BY o.State
                                ORDER BY COUNT(*) DESC,
                                         ol.ProductId) as seqnum
      FROM Orders o JOIN
           OrderLines ol
           ON o.OrderId = ol.OrderId
      GROUP BY o.State, ol.ProductId
     ) sp JOIN
     Products p
     ON sp.ProductId = p.ProductId
WHERE seqnum = 1;
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The COUNT(*) in the ORDER BY is another example of using window functions with 
aggregation functions. Notice that the ORDER BY clause also includes the ProductId. 
The row with the first sequence number is actually for the product with the highest 
count and, if there are ties, the one that has the lowest product ID. This ensures that 
the sort is stable and the result consistent, meaning that running the same query 
produces the same results, whether on the same database or on another database.

What do the results tell us? Table 9-15 shows the products that appear as the 
most popular product in more than one “state.” There are 24 such products, but 
the top product appears in almost two-thirds of the “states.” Interestingly, any 
state that has a reasonable number of purchases has product 12820 as the most 
common product. This is a freebie product given out with many different products.

The smaller areas—unrecognized state codes, that is—often have some other 
product as the most common one. These areas are associated with just one or 
a handful of orders. FREEBIEs are not given out with every order, so the par-
ticular orders for the “states” with few orders may not have the freebie. Hence, 
other products rise to the top. “States” have an unusual most common product 
because the “state” itself is unusual. The “state” may be a mistake, or it might 
be a foreign province or country placed in the state field.

Which Products Have Broad Appeal Versus Local Appeal
Which products sell in all the states? This can seem like an easy or a hard question 
to answer in SQL. One simple approach is to count the number of states where 
each product has been sold and to compare that to the total number of states.

The following query is a basic aggregation query with a join and a HAVING clause:

SELECT ol.ProductId, COUNT(DISTINCT o.State) as NumStates
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId
GROUP BY ol.ProductId
HAVING COUNT(DISTINCT o.State) = (SELECT COUNT(DISTINCT State)
                                  FROM Orders
                               )

table 9-15:  Most Common Product by state (for Products That Appear More Than Once)

produCt Id Group nuM StateS MIn State Max State

12820 FREEBIE 59 WY

11009 ARTWORK 6 AA sK

11016 APPAREL 3 NF VC

11070 OCCAsION 2 BD sO

10005 BOOK 2 DF NT
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Notice that this query makes use of a subquery in the HAVING clause. The same 
logic could have been accomplished using a JOIN:

SELECT ol.ProductId, COUNT(DISTINCT o.State) as NumStates
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId CROSS JOIN
     (SELECT COUNT(DISTINCT State) as NumStates
      FROM Orders
     ) cnt
GROUP BY ol.ProductId
HAVING COUNT(DISTINCT o.State) = MAX(cnt.NumStates)

These two queries do the same thing. The difference is a matter of preference.
Sadly—or instructively—neither returns any products. The problem, as 

observed in the previous section, is that there are many more “states” than 
actual states. The extra “states” have just a small number of orders and hence 
a small number of products. So, let’s limit the number of products to “states” 
that have at least 100 orders.

The interesting parts of this query are the changes from the first query in 
this section:

WITH states AS (
      SELECT State
      FROM Orders
      GROUP BY State
      HAVING COUNT(*) >= 100
     )
SELECT ol.ProductId, AVG(p.UnitPrice) as UnitPrice,
       COUNT(DISTINCT o.State) as NumStates, p.GroupName
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId
WHERE o.state IN (SELECT state FROM states)
GROUP BY ol.ProductId, p.GroupName
HAVING COUNT(DISTINCT o.State) = (SELECT COUNT(*) FROM states)

This follows a similar form to the first query. The biggest addition is states, 
a CTE that provides the list of valid states (there are 55 of them). This is then 
used twice: once in the WHERE clause to filter the states being counted and the 
second time in the HAVING clause.

Table 9-16 shows the nine products that appear in all 55 such states. Three 
of these are freebies, but the other six are bona fide products. These products 
have wide geographic appeal.
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table 9-16:  Products That Appear in All states with More Than 100 Orders

produCt Id unIt prICe Group naMe

10005 $14.86 BOOK

11009 $9.61 ARTWORK

11016 $11.10 APPAREL

11107 $14.81 OCCAsION

12139 $23.79 OCCAsION

12819 $0.00 FREEBIE

12820 $0.00 FREEBIE

13190 $0.00 FREEBIE

13629 $28.28 BOOK

Understanding products with limited geographic appeal is actually much 
harder. The problem is that all the products that are purchased only once are 
necessarily purchased in only one geographic area.

Which Customers Have Particular Products?

This section moves from any product to particular products. It is also going to 
introduce aggregate string concatenation, an operation that is unfortunately 
not part of the SQL standard. So every database has a different method—with 
SQL Server’s being the most arcane. Let’s start with the most popular products 
and the customers who purchase them.

Which Customers Have the Most Popular Products?
It is easy to get the list of the most popular products by using an aggregation 
query. Let’s ask a slight variation on this question: How many customers purchase the 
ten most popular products? As a further refinement, let’s ask how many customers 
purchase one, two, three, and so on of these products.

The following query uses a subquery to identify the most popular products. 
This subquery is used in the WHERE clause in the subquery:

SELECT cnt, COUNT(*) as households
FROM (SELECT c.HouseholdId, COUNT(DISTINCT ol.ProductId) as cnt
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
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           ON ol.OrderId = o.OrderId
      WHERE ol.ProductId IN (SELECT TOP 10 ProductId
                             FROM OrderLines ol
                             GROUP BY ProductId
                             ORDER BY COUNT(*) DESC
                            )
      GROUP BY c.HouseholdId
     ) h
GROUP BY cnt
ORDER BY cnt

This is a basic histogram query with a twist. The WHERE clause selects only the 
ten most popular products.

Table 9-17 shows the results. Of households that have any of the products, 
most only have one or two. However, several hundred have three or more, with 
one household having nine of the most popular products.

Note that this table does not contain the number for zero products. There are 
10,288 of these households. Perhaps the easiest way to find them is to use a LEFT 
JOIN for the filtering rather than IN:

SELECT cnt, COUNT(*)
FROM (SELECT c.HouseholdId, COUNT(DISTINCT popp.ProductId) as cnt
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId LEFT JOIN
           (SELECT TOP 10 ProductId
            FROM OrderLines ol
            GROUP BY ProductId
            ORDER BY COUNT(*) desc
              ) popp
           ON popp.ProductId = ol.ProductId

table 9-17:  Number of Households That Purchase Top 10 Products

nuMBer oF top 10 produCtS nuMBer oF houSehoLdS

1 47,477

2 5,373

3 472

4 45

5 6

6 1

9 1
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       GROUP BY c.HouseholdId
      ) h
GROUP BY cnt
ORDER BY cnt

One subtlety is the COUNT(DISTINCT). It uses the column from the second table, 
rather than the first. When there is no match, the column has NULL—and aggrega-
tion functions ignore NULL values. The count returns zero when there is no match.

Which Products Does a Customer Have?
This section starts with a simple question: Of the ten most popular products, which 
has each household purchased? This question has a simple answer, if we put the 
results into a table with multiple rows for each household, and one row per 
household and product:

SELECT DISTINCT c.HouseholdId, ol.ProductId
FROM Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId JOIN
     OrderLines ol
     ON ol.OrderId = o.OrderId
WHERE ol.ProductId IN (SELECT TOP 10 ProductId
                       FROM OrderLines ol
                       GROUP BY ProductId
                       ORDER BY COUNT(*) desc
                      )
ORDER BY c.HouseholdId, ol.ProductId

This query is a slight modification of the previous query. Note the use of SELECT 
DISTINCT to remove duplicates—households that purchased the same product 
multiple times.

This is all well and good. However, one row per household might be more 
useful than one row per household and product. One column with “10834, 
11168, 12820” is often clearer than three rows with one value per row. Same 
information, different format.

Comma-delimited strings are a very reasonable format for humans to 
read. However, databases do not support such strings very well. There are 
at least four reasons why you do not want to store such values in a database 
column:

 ■ Numbers should be stored in numeric columns, not as strings.

 ■ SQL has a very good data structure for storing lists. It is called a table, 
not a string.

 ■ Ids such as these should be declared as having foreign key references to 
another table. That is not possible when they are stored as strings.



454 Chapter 9 ■ What’s in a Shopping Cart? Market Basket analysis 

 ■ SQL has much better support for values stored in columns than in 
strings.

Although they are useful, comma-delimited strings can be difficult for SQL to 
generate. For an application being developed with a SQL back end, combining 
string values from multiple rows into a single value is often easier to do at the 
application layer. However, that solution is insufficient for mere analytic pur-
poses, and it is possible to do this in SQL.

Lists Using Conditional Aggregation

When you know the maximum number of products, then you can approach 
this problem with conditional aggregation. For instance, the following query 
produces a comma-delimited list for households that purchased three or more 
of the top ten products:

WITH hp AS (
      SELECT DISTINCT c.HouseholdId,
             CAST(ol.ProductId as VARCHAR(255)) as ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
      WHERE ol.ProductId IN (SELECT TOP 10 ProductId
                             FROM OrderLines ol
                             GROUP BY ProductId
                             ORDER BY COUNT(*) desc
                            )
     )
SELECT hp.HouseholdId, COUNT(*) as NumProducts,
       (MAX(CASE WHEN seqnum = 1 THEN ProductId ELSE '' END) +
        MAX(CASE WHEN seqnum = 2 THEN ',' + ProductId ELSE '' END) +
        . . .
        MAX(CASE WHEN seqnum = 10 THEN ',' + ProductId ELSE '' END)
       ) as Products
FROM (SELECT hp.*, ROW_NUMBER() OVER (PARTITION BY HouseholdId
                                      ORDER BY ProductId) as seqnum
      FROM hp
     ) hp
GROUP BY hp.HouseholdId
HAVING COUNT(*) >= 3

The CTE hp (which is used in other queries in this and the next section) simply 
gets the lists of products, with ProductId converted to a string because it will 
be used for concatenation. The subquery then enumerates each product in a 
household assigning a sequence number, and the sequence number is used for 
the conditional aggregation. Also note that the comma is put before the product 
ID for all but the first product.
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This method is cumbersome because the list of products is constructed one 
element at a time, with a separate MAX(CASE . . .) expression for each element. 
Not only does this generate lots of repetitive code, it also requires knowing the 
maximum number of elements. For this example with ten products, the code is 
not too long. But, the SQL does not generalize very well.

When you only want a fixed number of items in the list—such as the top 
three products for each household—then string concatenation by conditional 
aggregation is reasonable. For a query such as this, the ORDER BY clause is quite 
important. You might use it to get the products with the largest count or with 
the highest price.

Aggregate String Concatenation in SQL Server

Because conditional aggregation does not generalize easily for string concatena-
tion, another approach is needed. The idea is to use a string aggregation function 
that concatenates strings together. A function that does for strings what SUM() 
does for numbers: It combines multiple values into a single value.

Unfortunately, SQL does not have a standard function for this purpose. 
Oracle has a function called listagg(). Postgres has string_agg(). MySQL, 
group_concat(). All three have different syntax conventions. And, unfortunately, 
SQL Server does not offer such a simple function.

Instead, you can take the following approach, convert the query results to a 
format called XML for each row, and then extract the concatenated value from 
the XML. The aside “XML and String Aggregation” talks about this approach 
in more detail.

The place to start is with a single household. The following query produces 
XML that contains the concatenated values:

WITH hp AS ( <defined on page 454> )
SELECT ',' + ProductId
FROM hp
WHERE HouseholdId = 18147259
FOR XML PATH ('')

The expression FOR XML PATH is specific to SQL Server and it tells the engine 
to create an XML value for the result. The query returns a single row with one 
column: “,10834,12510,12820,13629”—the values concatenated together. Note that 
the separator is part of the SELECT statement. This is a super-simple version of 
XML because it contains no tags. Normally, each column name would have its 
own tag, but no column alias is defined, so the result has no tags.

When using this method, some special characters are treated in a funny way; 
for instance, ampersands are turned into "&amp;". This conversion is due to the 
XML standard. Some characters, such as the ampersand, are used in a special 
way, so an alternative representation is needed for them.
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The problem with these characters can be fixed using a slightly more com-
plicated expression:

WITH hp AS ( <defined on page 454> )
SELECT (SELECT ',' + ProductId
        FROM hp
        WHERE HouseholdId = 18147259
        ORDER BY ProductId
        FOR XML PATH (''), TYPE
       ).VALUE('.', 'varchar(max)')

This query creates an XML value—one that looks like “,10834,12510,12820,13629”. 
The result has a high-level tag that describes the record name and then values 
for the record. The TYPE keyword specifies that the return is an XML type (that 
is, a string that represents XML).

We want a string, not an XML type.  The value is extracted in the last line 
of the query. The VALUE() function extracts a value from the XML represen-
tation as a string, specifically as varchar(max). The value being extracted is 
the element referred to using “.” (meaning the entire value, in this case). The 
VALUE() function converts the XML to a string, which fixes the problem with 
“&” “,>”, and “<.”

The result of either of the preceding queries is a list of products, prepended by 
a comma: “,10834,12510,12820,13629”. The STUFF() function is the most convenient 
way of eliminating the leading comma; it replaces a particular substring with 
another. Unlike REPLACE() the substring is defined by position:

WITH hp AS ( <defined on page 454> )
SELECT STUFF((SELECT ',' + ProductId
              FROM hp
              WHERE HouseholdId = 18147259
              ORDER BY ProductId
              FOR XML PATH (''), TYPE
             ).VALUE('.', 'varchar(max)'),
             1, 1, '')

The arguments 1, 1, '' to STUFF() say to replace the characters starting at 
position one for one character with the empty string—exactly what is needed 
to get rid of the leading comma. Note that if the delimiter were a comma  
followed by a space, there would be two characters and the arguments would 
instead be 1, 2, ''.

Lists Using String Aggregation in SQL Server

The code from the previous section demonstrates string concatenation for a 
single household. This can be extended to all households, using a correlated 
subquery:
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xML and StrInG aGGreGatIon

XML stands for the Extensible Mark-up Language. It is a standardized way of describ-
ing complex data structures using text strings so structured data can be passed back 
and forth between different applications. An XML document stores both the data and 
its structure using tags and nested tags to define elements in the data structures. For 
instance, a row of data in a database can be represented as a record, with fields; the 
document also contains field names.

XML is a rich language that can express multiple levels of hierarchy. For more com-
plicated data structures, the XML reference can be more complicated; for instance,  
the reference “/A[1]/B[3]/C[1]” would be to the first element of C nested in the third  
element of B nested in the first element of A.

XML can easily store much more complicated data than SQL. Not all records 
need to have the same fields, for instance. And, records can contain lists and other 
records—ad infinitum. The data itself is typically in a tree structure. So, if you 
stored the SQLBook database as an XML document, the top level would have the 
database, the next level would have each table in the database, and below that 
would be the fields in the tables, and finally the data being stored. The data struc-
ture could also have other information, describing tables, databases, indexes, and 
so on.

What does this have to do with databases? XML is a standard used for many 
applications. As a result, many databases now support reading and writing XML 
data (as well as JSON, another common data interchange format). SQL Server does 
this through an extensive interface that includes a built-in data type called XML and 
associated functions.

For instance, the following query returns an XML string:

WITH hp AS ( <defined on page 454> )

SELECT ',' + ProductId

FROM hp

WHERE HouseholdId = 18147259

ORDER BY ProductId

FOR XML PATH (''), TYPE

This string looks like: “,10834,12510,12820,13629”.
Two key aspects of XML functionality are the VALUE() function, which extracts 

a particular value from an XML string, and the FOR XML clause, which creates an 
XML string. In addition, SQL Server supports indexes on the XML data type; these 
indexes can speed operations considerably when looking up fields in large XML 
values.

Because XML data is a long string of characters, creating an XML value necessarily 
requires creating a long string. Hence, XML requires a form of string concatenation—a 
form useful for aggregation as well as for its intended purpose.

As mentioned in the text, most other databases support built-in operations for 
string concatenation. These functions greatly simplify the process so aggregate string 
concatenation is as easy as any other aggregation.
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WITH hp AS ( <defined on page 454> )
SELECT hp.HouseholdId,
       STUFF((SELECT ',' + ProductId
              FROM hp hp2
              WHERE hp2.HouseholdId = hp.HouseholdId
              ORDER BY ProductId
              FOR XML PATH (''), TYPE
             ).VALUE('.', 'varchar(max)'),
             1, 1, '') as Products
FROM hp
GROUP BY hp.HouseholdId
HAVING COUNT(*) >= 3

This query follows the general structure of string aggregation queries in SQL 
Server. They require a correlated subquery to implement the XML aggregation 
logic. The subquery does the aggregation for a single household. The STUFF() 
function then gets rid of the leading comma, and the outer query does an 
aggregation so each household has only one row in the result set.

The subquery can include an ORDER BY clause so the values are in a particular 
order. It can also include SELECT DISTINCT, to remove duplicates. Three tips on 
the subquery. First, be careful that all arguments to the + operator are strings, 
so it does not generate an error. Second, do not give the column a name (for 
this purpose) because the name turns into a tag in the XML. Third, a GROUP BY 
clause is unnecessary in the subquery.

Which Customers Have Three Particular Products?
Which households have all three products 12139, 12820, and 13190? This is one of 
the most common product combinations, so this is a natural question to ask. 
Even this simple question has two variations: which households have these 
products as well as others, perhaps, and which have these products but no 
others.

These questions are trickier than they first appear because they are not about 
values in a single row; they are about values in multiple rows. This section 
investigates three different ways of answering this question: using joins, using 
exists, and using aggregation. The latter generalizes most easily to many similar 
types of queries.

Three Products Using Joins

The first approach uses joins to answer the question:

WITH hp AS (
      SELECT DISTINCT c.HouseholdId, ol.ProductId
      FROM Customers c JOIN
           Orders o
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           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
     )
SELECT hp1.HouseholdId
FROM hp hp1 JOIN
     hp hp2
     ON hp2.HouseholdId = hp1.HouseholdId JOIN
     hp hp3
     ON hp3.HouseholdId = hp1.HouseholdId
WHERE hp1.ProductId = 12139 AND
      hp2.ProductId = 12820 AND
      hp3.ProductId = 13190

Each table reference in the FROM clause is for a different product. The first join 
is on HouseholdId, so only households that have both products match. The 
third join brings in the third product. The result is to get households that 
have all three products. Note that the definition of hp varies slightly from 
the proceeding query because the products are not limited to the ten most 
popular products.

This query does not need SELECT DISTINCT in the outer query because the 
CTE already selects distinct household product pairs. The joins cannot pro-
duce duplicates. For a given household, there is at most one row in hp for a 
product—regardless of the number of times the household purchased the product.

The result of this query is a list of 153 households that have all three products—
and perhaps some others. Answering the related question of which households 
have these three products and no others requires an additional filter. This filter 
uses yet another self-join, a LEFT OUTER JOIN:

WITH hp AS (
      SELECT DISTINCT c.HouseholdId, ol.ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
     )
SELECT hp1.HouseholdId
FROM hp hp1 JOIN
     hp hp2
     ON hp2.HouseholdId = hp1.HouseholdId JOIN
     hp hp3
     ON hp3.HouseholdId = hp1.HouseholdId LEFT JOIN
     hp hp4
     ON hp4.HouseholdId = hp1.HouseholdId AND
        hp4.ProductId NOT IN (12139, 12820, 13190)
WHERE hp1.ProductId = 12139 AND
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      hp2.ProductId = 12820 AND
      hp3.ProductId = 13190 AND
      hp4.ProductId IS NULL

The extra join filters out households that have products other than the three 
of interest.

Three Products Using Exists

Another approach puts all the logic in the WHERE clause. In a sense, finding the 
households with all three products is a question about filtering, although the 
filter conditions are on different rows. The key to the filtering is multiple EXISTS 
expressions with correlated subqueries:

WITH hp AS (
      SELECT DISTINCT HouseholdId, ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
     )
SELECT DISTINCT c.HouseholdId
FROM Customers c
WHERE EXISTS (SELECT 1 FROM hp hp1
              WHERE hp1.HouseholdId = c.HouseholdId AND
                    hp1.ProductId = 12139) AND
      EXISTS (SELECT 1 FROM hp hp2
              WHERE hp2.HouseholdId = c.HouseholdId AND
                    hp2.ProductId = 12820) AND
      EXISTS (SELECT 1 FROM hp hp3
              WHERE hp3.HouseholdId = c.HouseholdId AND
                    hp3.ProductId = 13190)

This version is actually quite similar to the version with the JOIN. Instead of a 
self-join, this checks for each product individually using EXISTS. In many data-
base engines, the execution plan for these two versions would be quite similar.

One small comment about the use of SELECT DISTINCT in this query: What 
is really needed is just a list of households. However, the database does not 
have a table of just households. The DISTINCT is needed because households 
can appear multiple times in Customers. A table containing households would 
be a better choice, if one were available.

Getting households that have only these products and no other products can 
follow similar logic, using NOT EXISTS:

NOT EXISTS (SELECT 1 FROM hp hp4
            WHERE hp4.HouseholdId = c.HouseholdId AND
                  hp4.ProductId NOT IN (12139, 12820, 13190)
           )
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This simply checks that matching households have no other products, apart 
from the three of interest.

Using Conditional Aggregation and Filtering

The third approach uses conditional aggregation. But, instead of the values 
going in the SELECT clause, they will be used for filtering in the HAVING 
clause:

WITH hp AS (
      SELECT DISTINCT HouseholdId, ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
     )
SELECT hp.HouseholdId
FROM hp
GROUP BY hp.HouseholdId
HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId = 12820 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId = 13190 THEN 1 ELSE 0 END) > 0

This is a simpler query. But what is it doing?
The HAVING clause is doing the work. Each clause counts the number of rows 

that have one of the products. The >0 is simply requiring that the household 
have at least one row with the product. Voila! Only households that meet all 
three conditions satisfy the condition.

An alternative way of writing this query condenses the logic:

WITH hp AS (
      SELECT DISTINCT HouseholdId, ProductId
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol
           ON ol.OrderId = o.OrderId
     )
SELECT hp.HouseholdId
FROM hp
WHERE hp.ProductId IN (12139, 12820, 13190)
GROUP BY hp.HouseholdId
HAVING COUNT(*) = 3

This version uses a WHERE clause for filtering just for the three products. The 
HAVING clause checks for three matches. Note that no household has duplicate 
products because the definition of hp removes duplicates; otherwise, the condi-
tion would need to use COUNT(DISTINCT).
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Getting households that have only these three products and no others can be 
handled in a variety of ways. Perhaps the simplest is this additional condition 
on the first query:

COUNT(hp.ProductId) = 3

This simply says that the household has three products, and because of the 
other conditions, we know what those products are.

Generalized Set-Within-a-Set Queries
The previous question about households having three products is an example of 
a set-within-a-set query. This is a type of question often asked of hierarchical data, 
when you want to filter by multiple conditions at lower levels of the hierarchy 
and the conditions are stored on separate rows. The previous question can be 
phrased as: When does the set of products purchased in a household contain all three 
of these products? The question is about the “set” of products for each household.

t Ip Aggregation and a smart HAVING clause are the most general way of solving 
set-within-set questions. For a particular question, joins may have better perfor-
mance, but aggregation is flexible and can answer a very broad range of questions 
about hierarchical data.

A nice characteristic of the aggregation approach is that it is quite generalizable. 
Consider the following questions and the HAVING clause that implements the logic:

Which households have purchased none of the three products?

HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) = 0 AND
       SUM(CASE WHEN hp.ProductId = 12820 THEN 1 ELSE 0 END) = 0 AND
       SUM(CASE WHEN hp.ProductId = 13190 THEN 1 ELSE 0 END) = 0

The only difference here is that the comparisons are now =0 rather than >0. 
This is saying that none of the products are purchased, rather than all of them.

Which households have purchased these three products but not 13629? This is a 
combination of the two comparisons:

HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId = 12820 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId = 13190 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId = 13629 THEN 1 ELSE 0 END) = 0

This adds a fourth condition, the comparison to zero for the additional product.
Which households have purchased at least two of the three products?

HAVING COUNT(DISTINCT CASE WHEN hp.ProductId IN (12139, 12820, 13190)
                           THEN hp.ProductId END) >= 2
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The structure here consists of only one comparison. COUNT(DISTINCT) is used 
to count the number of products in the group.

Which households purchased 12139 with either 12820 or 13190?

HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) > 0 AND
       (SUM(CASE WHEN hp.ProductId = 12820 THEN 1 ELSE 0 END) > 0 OR
        SUM(CASE WHEN hp.ProductId = 13190 THEN 1 ELSE 0 END) > 0
       )

Or equivalently:

HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) > 0 AND
       SUM(CASE WHEN hp.ProductId IN (12820, 13190) THEN 1 ELSE 0 END) > 0

Which households purchased 12139 with either 12820 or 13190, but not both?

HAVING SUM(CASE WHEN hp.ProductId = 12139 THEN 1 ELSE 0 END) > 0 AND
       COUNT(DISTINCT CASE WHEN hp.ProductId IN (12820, 13190)
                           THEN hp.ProductId END) = 1

In this version, COUNT(DISTINCT) is used to be sure that only one of the two 
products passes the filter. Alternatively, this could be expressed using SUM() 
conditions, but the logic is a little more complicated.

These examples show that the use of conditional aggregation and a HAVING 
clause is a powerful way to implement many different types of set-within-a-set 
query logic.

Lessons Learned

This chapter looks at what customers purchase, rather than when or how they 
purchase, with an emphasis on exploratory data analysis. The contents of market 
baskets can be very interesting, providing information about both customers 
and products.

A good way to look at products is by using scatter plots and bubble charts to 
visualize relationships. A useful Excel trick makes it possible to see products 
along the X- and Y-axes for bubble charts and scatter plots.

Investigating products includes finding the products associated with the best 
customers, and finding the ones associated with the worst customers (those 
who only make one purchase). It is also interesting to explore other facets of 
products, such as the number of times a product changes price, the number of 
units in each order, the number of times products are repeated within an order, 
and how often customers purchase the same product again.

Exploratory data analysis goes beyond just these questions. Pricing is a very 
important aspect of products, and the price for a given product can vary over 
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time. Residual value is the value of the rest of the stuff the customer purchases—
and this can be a good indicator of products that drive additional value.

Sometimes, particular products are drivers of customer value. Some products 
are more frequently purchased by the best customers. Others tend to be only 
purchased once, perhaps indicating a poor customer experience with the product 
or an opportunity to broaden the customer relationship.

One important type of question about the products purchased by households 
is set-within-a-set queries. These queries can be solved using several methods, 
but aggregation with an intelligent HAVING clause is very versatile.

The next chapter extends these ideas by looking at products that tend to be 
purchased together. These are item sets and association rules that dive into the 
finest level of customer interactions.
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Association rules go beyond merely exploring products: They identify groups 
of products that tend to appear together. A big part of the allure and power of 
association rules is that they “discover” patterns automatically, rather than by 
the hypothesis testing methods used in the previous chapter.

A classical example of association rules is the beer and diapers story, which 
claims that the two items are purchased together late in the week. This makes 
for an appealing story. Young mom realizes that there are not enough diapers 
for the weekend. She calls young dad as he comes home from work, asking him 
to pick up diapers on the way home. He knows that if he gets beer (and drinks 
it), he won’t have to change the diapers.

Although a colorful (and sexist) explanation, association rules were not used 
to find this “unexpected” pattern (the details were explained in a Forbes article 
in 1998). In fact, retailers already knew that these products sold together. The 
story itself has been traced to Shopko, a chain of retail stores based in Green 
Bay, Wisconsin. During the many icy winter months in northern Wisconsin, 
store managers would easily notice customers walking out with bulky items 
such as beer and diapers. The observation was verified in the data.

Association rules can reduce millions of transactions on thousands of items 
into easy-to-understand rules. This chapter introduces the techniques for dis-
covering association rules using SQL. Some data mining software includes 
algorithms for association rules. However, such software does not provide the 
flexibility available when using SQL directly.

C h a p t e r 

10

association rules and Beyond 
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One advantage of using SQL for association rules is that the technique can 
be modified to fit particular needs. SQL can readily calculate the three tradi-
tional measures—support, confidence, and lift. SQL queries can also calculate 
an improved measure based on the chi-square metric.

Association rules can be about products purchased in a single order or about 
products purchased over time. A slight variation, called sequential association rules, 
finds the order in which products are purchased. And, finally, the “product” 
does not have to be an actual product ID. It can be attributes of the product, 
customer, or order.

The place to start with association rules is with combinations of items, which 
are also called item sets.

Item Sets

Item sets are combinations of products that appear together within an order. 
This section starts by considering items sets comprising two products, show-
ing how to use SQL to generate all such combinations. It then moves to some 
interesting variations, especially combinations of products at the household 
level rather than the order level. The next sections apply these ideas to creat-
ing association rules.

Combinations of Two Products
Item sets with just one product are not particularly interesting, so this section 
starts by looking at pairs of products. An item set is unordered, so the combination 
consisting of products A and B is the same as B and A. This section counts the 
number of product pairs in orders and shows how to use SQL to generate them.

Number of Two-Way Combinations

If an order contains one product, how many two-way combinations of products 
does it have? The answer is easy. There are none, because the order has only 
one product. An order with two products has one combination: A and B is the 
same as B and A. And an order with three products? The answer happens to 
be three, but the situation is starting to get more complicated.

An easy formula calculates the number. Understanding the formula starts 
with the observation that the number of pairs of products is the number of 
products squared. Because pairs where the same product occurs twice are not 
interesting, subtract out the pairs consisting of identical products. And, because 
pairs are being counted twice this way (A and B as well as B and A), the differ-
ence needs to be divided in two. The number of two-way combinations in an 
order is half the difference between the number of products in the order and 
that number squared.
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The following query calculates the number of two-way combinations among 
all orders in OrderLines:

SELECT SUM(numprods * (numprods - 1) / 2) as numcombo2
FROM (SELECT ol.OrderId, COUNT(DISTINCT ol.ProductId) as numprods
      FROM OrderLines ol
      GROUP BY ol.OrderId
     ) o

This query counts distinct products rather than order lines, so orders with the 
same product on multiple lines are not over counted.

The number of two-way combinations for all the orders is 185,791. This is use-
ful because the number of combinations pretty much determines how quickly 
the query generating them runs. A single order with a large number of prod-
ucts can seriously degrade performance. For instance, if one order contained 
one thousand products, there would be about five hundred thousand two-way 
combinations in just that one order—versus 185,791 in all the orders. As the 
number of products in the largest order increases, the number of combinations 
increases faster.

Warning Large orders that contain many items can seriously slow down que-
ries for combinations and association rules. A particularly dangerous situation is when 
a “default” order ID, such as 0 or NULL, corresponds to many purchases.

Generating All Two-Way Combinations

To generate all the combinations do a self-join on OrderLines, with duplicate 
product pairs removed. The goal is to get all pairs of products, subject to the 
conditions:

 ■ The two products in the pair are different.

 ■ No two combinations have the same two products.

The first condition is easily met by filtering out any pairs where the two products 
are equal. The second condition is also easily met, by requiring that the first 
product ID be smaller than the second one.

These rules are combined in the following query, which counts the number 
of orders having any given pair of products:

SELECT p1, p2, COUNT(*) as numorders
FROM (SELECT op1.OrderId, op1.ProductId as p1, op2.ProductId as p2
      FROM (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op1 JOIN
           (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op2
           ON op1.OrderId = op2.OrderId AND
              op1.ProductId < op2.ProductId
     ) combinations
GROUP BY p1, p2
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OUTPUT

READ
OrderLines

READ
OrderLines

AGGREGATE
group by op1.ProductId,

op2.ProductId
numorders = count(*)

AGGREGATE
group by OrderId,

ProductId

AGGREGATE
group by OrderId,

ProductId

op1

op2

JOIN
ProductId,

op1.OrderId <
op2.OrderId

Figure 10-1:  This dataflow generates all the two-way combinations of products in the Orders 
table.

Figure 10-1 shows the data flow for this query. The innermost subqueries, op1 
and op2, are joined together to generate all pairs of products within each order. 
The JOIN condition restricts these pairs to those having different products, 
with the first smaller than the second. The outer query aggregates each pair of 
products, counting the number of orders along the way.

Sometimes, we do not want to include all orders. The most common reason 
is to limit the combinations to reasonable market baskets, such as those with 
between two and ten products. Other reasons are to use orders from a particular 
source, or a particular geographic region, or a particular time frame. Because 
the preceding query works directly on OrderLines, filtering by conditions on 
the orders requires additional joins. And, it would seem that both subqueries 
need the filtering logic.

An alternative solution is to use another subquery to define the population 
of orders and use join for the filtering:

SELECT p1, p2, COUNT(*) as numorders
FROM (SELECT op1.OrderId, op1.ProductId as p1, op2.ProductId as p2
      FROM (SELECT OrderId
            FROM OrderLines
            GROUP BY OrderId
            HAVING COUNT(DISTINCT OrderLineId) BETWEEN 2 and 10
           ) filter JOIN
           (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op1
           ON filter.OrderId = op1.OrderId JOIN
           (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op2
           ON op1.OrderId = op2.OrderId AND
              op1.ProductId < op2.ProductId
     ) combinations
GROUP BY p1, p2
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The filter subquery chooses orders that have between two and ten orders. 
Here the subquery is really just an aggregation of OrderLines, but it could also 
be choosing orders based on characteristics in Orders, or even other tables such 
as Customers or Campaigns.

Examples of Item Sets

Generating hundreds of thousands of combinations is interesting. Looking at 
a few examples is informative. The following query fetches the top ten pairs of 
products in orders with two to ten products, along with the associated product 
groups:

SELECT TOP 10 p1, p2, COUNT(*) as numorders
FROM (SELECT op1.OrderId, op1.ProductId as p1, op2.ProductId as p2
      FROM (SELECT OrderId
            FROM OrderLines
            GROUP BY OrderId
            HAVING COUNT(DISTINCT OrderLineId) BETWEEN 2 and 10
           ) filter JOIN
           (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op1
           ON filter.OrderId = op1.OrderId JOIN
           (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op2
           ON op1.OrderId = op2.OrderId AND
              op1.ProductId < op2.ProductId
     ) combinations
GROUP BY p1, p2
ORDER BY numorders desc

This query is basically the same as the previous one, with the addition of TOP 
10 and ORDER BY.

The ten most common product pairs are in Table 10-1. Of the ten, seven include 
FREEBIE products, which are usually part of some promotion. Sometimes more 
than one FREEBIE is included in the promotion or a given order may qualify 
for more than one promotion.

Warning Association rules often reconstruct bundles of products that were 
sold together explicitly or sold via recommendation engines.

The three combinations that do not have a FREEBIE in them have ARTWORK 
and BOOK, BOOK and BOOK, and ARTWORK and OCCASION. These may be 
examples of products that customers purchase together on their own. On the 
other hand, these may be examples of product bundles: two or more products 
that are marketed together. The product-level combinations may have recon-
structed the bundles. In fact, this is something that commonly happens when 
generating combinations of products.
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More General Item Sets
There are two useful variations on the pair-wise item set. The first uses the product 
hierarchy to look at combinations of product groups. The second looks at add-
ing more items into the combinations, moving beyond two-way combinations.

Combinations of Product Groups

Market basket analysis can be extended beyond products to product features. 
This example uses the product group rather than the product itself. An order 
with three books on three order lines becomes an order with one product group, 
BOOK. An order that has a CALENDAR and a BOOK has two product groups, 
regardless of the number of products in these groups in the order.

Fewer product groups means fewer combinations—just a few dozen. The 
following query generates the two-way product group combinations, as well 
as the number of orders having the combination:

WITH og as (
      SELECT DISTINCT ol.OrderId, p.GroupName
      FROM OrderLines ol JOIN Products p ON ol.ProductId = p.ProductId
     )
SELECT pg1, pg2, COUNT(*) as cnt
FROM (SELECT og1.OrderId, og1.GroupName as pg1, og2.GroupName as pg2
      FROM og og1 JOIN
           og og2
           ON og1.OrderId = og2.OrderId AND
              og1.GroupName < og2.GroupName
     ) combinations
GROUP BY pg1, pg2
ORDER BY cnt DESC

table 10-1: Pairs of Products Appearing Together in the Most Orders

produCt 1 produCt 2
numBer oF 

orders
produCt 
group 1

produCt 
group 2

12820 13190 2,580 FREEBIE FREEBIE

12819 12820 1,839 FREEBIE FREEBIE

11048 11196 1,822 ARTWORK BOOK

10956 12139 1,481 FREEBIE OCCASION

12139 12820 1,239 OCCASION FREEBIE

12820 12851 1,084 FREEBIE OCCASION

11196 11197 667 BOOK BOOK

12820 13254 592 FREEBIE OCCASION

12820 12826 589 FREEBIE ARTWORK

11053 11088 584 ARTWORK OCCASION
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Figure 10-2:  This bubble chart shows the most common product pairs. One product is along 
each dimension, with the bubble showing the number of orders containing the product.

This query is similar to the query for products. The subquery for generating 
the group name has been split out into a CTE.

Figure 10-2 shows a bubble chart of the results. The two most common 
product group pairs are FREEBIE with BOOK and FREEBIE with OCCASION. 
This is not surprising, because FREEBIE products are used as marketing 
incentives.

The two axes in the bubble chart are the two product groups in an order. 
Creating this bubble chart is challenging because Excel charting does not allow 
the axes of scatter plots and bubble charts to be names. The technical aside, 
“Bubble Charts and Scatter Plots with Non-Numeric Axes,” explains one method 
for getting around this limitation.

Larger Item Sets

Two-way combinations are often sufficient; multi-way combinations can be 
more useful. Generating larger combinations in SQL requires an additional JOIN 
for each item in the combination. To keep the combinations distinct (that is, to 
avoid listing A, B, C and A, C, B as two different combinations), an additional 
comparison on the product ID needs to be added for each product.

BuBBle Charts and sCatter plots With non-numeriC axes

Unfortunately, bubble charts and scatter plots only allow numbers for the X- and 
Y-coordinates. Fortunately, the XY-labeler introduced in Chapter 4 can make scat-
ter plots and bubble plots with non-numeric dimensions, such as product group 
names. As a reminder, the XY chart labeler is not part of Excel. It uses an add-in, writ-
ten by Rob Bovey, and available for download at http://www.appspro.com/
Utilities/ChartLabeler.htm.

Continues

http://www.appspro.com/Utilities/ChartLabeler.htm
http://www.appspro.com/Utilities/ChartLabeler.htm
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The first step is to transform the data so that the dimensions are actually 
numbers—because numbers are needed to create the bubble chart. Then, two  
additional series are included in the chart along each dimension. These series are 
given labels using the XY-labeler, and these labels are used on the axes.

Assume that the data is in three columns, the first two are the X- and Y-values, the 
third is the bubble size, and the first two are names, rather than numbers. The exam-
ple in Figure 10-2 has product group names in these columns. The bubble chart is cre-
ated using the following steps:

 1. Create a lookup table for the values in each dimension to map each value to a 
sequence of integers, the new dimension.

 2. Look up the new dimensions for these two new columns.

 3. Insert the chart, using the new dimensions rather than the names.

 4. Insert two new series, for use as the X-labels and the Y-labels.

 5. Format the two series so they are invisible.

 6. Use the XY-labeler to label the points with strings.

 7. Format the chart as you wish.

This process starts by creating the lookup table. An alternative to manually typing it in 
is to take all the distinct values in the columns, sort them, and create the new dimen-
sion value in an adjacent column using the formula "=<prev cell>+1".

To get the distinct values, copy both columns of product group names into one column, 
below the data. Filter out duplicates using the Data  Filter  Advanced menu option, and 
choose “Unique Records Only.” Highlight the values using the mouse, copy the values in 
the cells (Ctrl+C), and paste them into another column (Ctrl+V). Remember to go the Data  
Filter  Show All menu selection to undo the filtering, so you can see all the distinct values.

The next step is to lookup the values in the desired X- and Y-columns to get their 
lookup dimensions. Use VLOOKUP() to look up the appropriate values:

VLOOKUP(<column cell>, <lookup table>, 2, 0)

This provides the number column accepted by the bubble chart. Labeling the axes 
requires more information, so add two more columns to the lookup table, the first 
with values set to zero and the second with values set to 1000. The first is the coordi-
nate position of the labels; the second is the width of the bubbles.

The axis labels are attached to two new series. Add the series by right-clicking in the 
chart and choosing “Source Data.” Then choose “Add” and give it the name “X-labels.” 
The X-values for this are the second column in the lookup table, the Y-values are the 
third column (which is all zeros), and the sizes are the fourth column (all 1000). Repeat 
for the Y-values, reversing the X- and Y-coordinates. To make the series invisible, left-
click each one and select “None” for both the “Border” and “Area” on the “Patterns” tab.

Now, choose the menu option Tools  XY Chart Labels  Add Chart Labels. The 
“X-labels” are the values in the data series and the label range is the first column of the 
lookup table. Place the X-labels “Below” the data bubbles. Repeat for the “Y-labels,” 
placing them to the “Left.” The labels appear in the chart and can be formatted to any 
font or rotated by clicking them. It is also a good idea to adjust the scale of the axes to 
go from 0 to 9 in this case.

continued
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The following query is an example for three items:

WITH op as (
      SELECT DISTINCT OrderId, ProductId FROM OrderLines
     )
SELECT op1.ProductId as p1, op2.ProductId as p2,
       op3.ProductId as p3, COUNT(*) as cnt
FROM op op1 JOIN
     op op2
     ON op2.OrderId = op1.OrderId AND
        op1.ProductId < op2.ProductId JOIN
     op op3
     ON op3.OrderId = op1.OrderId AND op2.ProductId < op3.ProductId
GROUP BY op1.ProductId, op2.ProductId, op3.ProductId
ORDER BY cnt DESC

The results from this query are the combinations of items. The products are in 
numerical order because of the comparisons in the join conditions. This ordering 
ensures no duplicate sets of products among the different item sets.

For a particular order to be included in the result set, it needs to have at 
least three distinct products. We know that many orders have only one or two 
products, so filtering by the orders can improve performance. This filter can be 
added in the FROM clause:

FROM (SELECT OrderId, COUNT(DISTINCT ProductId) as numprods
      FROM OrderLines
      GROUP BY OrderId
      HAVING COUNT(DISTINCT ProductId) >= 3
     ) ofilter JOIN
     op op1
     ON op1.OrderId = ofilter.OrderId JOIN
     . . .

Filtering the orders reduces the amount of data generated by the inter-
mediate joins; however, it does not affect the final result set, which has 
1,163,893 rows.

Table 10-2 shows the top ten combinations of three products. The three-way 
combinations have lower counts than the two-way combinations. For instance, 
the top two-way combinations appeared in more than 2,000 orders. The top 
three-way combinations occur in fewer than 400. This is typical because the 
more products in the order, the fewer the customers who have ordered all of 
them at once.

All Item Sets Up to a Given Size

The previous example produced all item sets with three items.  A natural exten-
sion is producing all the items sets with up to three items. Of course, one method 
is to use UNION ALL on the queries for one, two, and three items. And, UNION 
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ALL can be the best method in terms of performance. On the other hand, the 
resulting queries are long and complicated, with logic such as filtering imple-
mented multiple times.

It is tempting to generate all the items sets by replacing the JOIN with LEFT 
JOIN:

WITH op as (
      SELECT DISTINCT OrderId, ProductId FROM OrderLines
     )
SELECT op1.ProductId as p1, op2.ProductId as p2,
       op3.ProductId as p3, COUNT(*) as cnt
FROM op op1 LEFT JOIN
     op op2
     ON op2.OrderId = op1.OrderId AND
        op1.ProductId < op2.ProductId LEFT JOIN
     op op3
     ON op3.OrderId = op1.OrderId AND op2.ProductId < op3.ProductId
GROUP BY op1.ProductId, op2.ProductId, op3.ProductId
ORDER BY cnt DESC

Alas, this query is an example of hope over experience. It does return single-
tons, doubletons, and triples of products, along with the counts for them. (For 
singletons, the second and third columns are NULL.) However, the numbers 
are wrong. The most common product, 12821, appears in 18,441. However, the 
singleton has a count of only 9,229. Why the discrepancy? What is going on?

This query undercounts singletons and doubletons. The problem is the LEFT 
JOIN. When orders have more than one product, the LEFT JOIN always finds a 
matching product; no singleton is created: Products in orders with more than 

table 10-2: Top Ten Combinations of Three Products

produCt 
1

produCt 
2

produCt 
3 Count

group  
1

group  
2

group  
3

12506 12820 12830 399 FREEBIE FREEBIE GAME

12820 13144 13190 329 FREEBIE APPAREL FREEBIE

11052 11196 11197 275 ARTWORK BOOK BOOK

12139 12819 12820 253 OCCASION FREEBIE FREEBIE

12820 12823 12951 194 FREEBIE OTHER FREEBIE

10939 10940 10943 170 BOOK BOOK BOOK

12820 12851 13190 154 FREEBIE OCCASION FREEBIE

11093 12820 13190 142 OCCASION FREEBIE FREEBIE

12819 12820 12851 137 FREEBIE FREEBIE OCCASION

12005 12820 13190 125 BOOK FREEBIE FREEBIE
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one product are never counted as singletons. Similarly, products in orders with 
more than two products are never counted as doubletons.

The way to fix this is to adjust the query by introducing a fake product ID 
into each order. A simple method is to have an ID larger than any existing 
product:

WITH op as (
      SELECT DISTINCT OrderId, ProductId FROM OrderLines UNION ALL
      SELECT DISTINCT OrderId, 9999999 FROM OrderLines
     )
SELECT op1.ProductId as p1, NULLIF(op2.ProductId, 9999999) as p2,
       NULLIF(op3.ProductId, 9999999) as p3, COUNT(*) as cnt
FROM op op1 LEFT JOIN
     op op2
     ON op2.OrderId = op1.OrderId AND
        op1.ProductId < op2.ProductId LEFT JOIN
     op op3
     ON op3.OrderId = op1.OrderId AND op2.ProductId < op3.ProductId
WHERE op1.ProductId <> 9999999
GROUP BY op1.ProductId, op2.ProductId, op3.ProductId
ORDER BY cnt DESC

The fake product ID is treated as NULL for output purposes. With this version, 
the LEFT JOIN keeps all the smaller orders, so the counts are correct.

A similar modification uses NULL for the additional product, changing the 
FROM clause to:

WITH op as (
      SELECT DISTINCT OrderId, ProductId FROM OrderLines UNION ALL
      SELECT DISTINCT OrderId, NULL FROM OrderLines
     )
SELECT op1.ProductId as p1, op2.ProductIdas p2,
       op3.ProductId as p3, COUNT(*) as cnt
FROM op op1 JOIN
     op op2
     ON op2.OrderId = op1.OrderId AND
        (op1.ProductId < op2.ProductId OR
         op2.ProductId IS NULL) LEFT JOIN
     op op3
     ON op3.OrderId = op1.OrderId AND
        (op2.ProductId < op3.ProductId OR
         op3.ProductId IS NULL)
WHERE op1.ProductId IS NOT NULL
GROUP BY op1.ProductId, op2.ProductId, op3.ProductId
ORDER BY cnt DESC

This version uses LEFT JOIN to prevent the second join from filtering out the 
singletons. All three of these methods generate item sets up to a given size; 
which method performs best depends on how the queries are optimized.
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Households Not Orders
So far, we have considered only combinations of products within an order. 
Another possibility is to look at products that households purchase, even 
though the purchases occur at different times. One application is particularly 
interesting, looking at combinations that occur within a household but not 
within a particular order, because such combinations suggest opportunities 
for cross-selling.

Combinations within a Household

The following query extends two-way combinations to products in the same 
household:

WITH hp as (
      SELECT DISTINCT c.HouseholdId, ol.ProductId
      FROM OrderLines ol JOIN
           Orders o
           ON o.OrderId = ol.OrderId JOIN
           Customers c
           ON o.CustomerId = c.CustomerId
     )
SELECT hp1.ProductId as p1, hp2.ProductId as p2, COUNT(*) as cnt
FROM (SELECT HouseholdId
      FROM hp
      GROUP BY HouseholdId
      HAVING COUNT(DISTINCT ProductId) BETWEEN 2 AND 10
     ) hfilter JOIN
     hp hp1
     ON hp1.HouseholdId = hfilter.HouseholdId JOIN
     hp hp2
     ON hp2.HouseholdId = hfilter.HouseholdId AND
        hp1.ProductId < hp2.ProductId
GROUP BY hp1.ProductId, hp2.ProductId
ORDER BY COUNT(*) DESC

The CTE hp handles the logic to get the household ID along with the prod-
ucts purchased by that household. The structure of the rest of the query 
remains the same. This version has a filter on the households, limiting the 
number of products because a few households have a very large number 
of purchases, and those households both slow down the query and skew 
the results.

Investigating Products within Households but Not within Orders

The questions so far have all been within the realm of traditional association 
rules—just varying the unit of aggregation (order or household), the number of 
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products being considered, or the definition of product (product ID or product 
group). The next question shows the power of doing this work in SQL: What 
pairs of products occur frequently among household purchases but do not appear in the 
same order? Such a question can provide very valuable information on potential 
cross-selling opportunities because such product pairs indicate affinities among 
products at different times.

Answering this question requires only minor modifications to the household 
query. This query had the following conditions:

 ■ The household has two to ten products.

 ■ Both products appear within the household.

 ■ The first product in the pair has a lower product ID than the second 
product.

One more condition is needed:

 ■ The products are in the same household but not in the same order.

SQL can readily handle all these conditions;

WITH hop as (
      SELECT DISTINCT c.HouseholdId, ol.OrderId, ol.ProductId,
             p.GroupName
      FROM OrderLines ol JOIN
           Orders o ON o.OrderId = ol.OrderId JOIN
           Customers c ON o.CustomerId = c.CustomerId JOIN
           Products p ON ol.ProductId = p.ProductId
     )
SELECT TOP 10 hop1.ProductId as p1, hop2.ProductId as p2,
       COUNT(DISTINCT hop1.HouseholdId) as cnt,
       hop1.GroupName as Group1, hop2.GroupName as Group2
FROM (SELECT HouseholdId
      FROM hop
      GROUP BY HouseholdId
      HAVING COUNT(DISTINCT ProductId) BETWEEN 2 AND 10
     ) hfilter JOIN
     hop hop1
     ON hop1.HouseholdId = hfilter.HouseholdId JOIN
     hop hop2
     ON hop2.HouseholdId = hfilter.HouseholdId AND
        hop1.ProductId < hop2.ProductId AND
        hop1.OrderId <> hop2.OrderId 
GROUP BY hop1.ProductId, hop2.ProductId, hop1.GroupName, hop2.GroupName
ORDER BY cnt DESC

The differences between this query and the household query are instructive. The 
CTE hop now includes both the household and the order. As a consequence, the 
same product can appear multiple times for a household—in different orders. 
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Hence, hfilter uses COUNT(DISTINCT) instead of COUNT() to find households 
with between two and ten different products. And, the outer query also uses 
COUNT(DISTINCT).

Table 10-3 shows the top ten results from this query. These results differ 
from the products within an order because the FREEBIE product group is 
much less common. Some of the combinations are not particularly surpris-
ing. For instance, customers who purchase calendars one year seem likely to 
purchase calendars in another year. This combination occurs three times in 
the top ten products.

Multiple Purchases of the Same Product

The previous example excluded from consideration the same product purchased 
at different times (that is, the query only considers two different products). This 
suggests another interesting question, although one that is not directly related 
to product combinations: How often does a household purchase the same product in 
multiple orders? The following query answers this question:

SELECT numprodinhh, COUNT(*) as numhouseholds
FROM (SELECT c.HouseholdId, ol.ProductId,
             COUNT(DISTINCT o.OrderId) as numprodinhh
      FROM Customers c JOIN
           Orders o ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol ON o.OrderId = ol.OrderId
      GROUP BY c.HouseholdId, ol.ProductId
     ) h
GROUP BY numprodinhh
ORDER BY numprodinhh

table 10-3: Top Ten Pairs of Products Purchased by Households At Different Times

produCt1 produCt2 Count group1 group2

11196 11197 462 BOOK BOOK

11111 11196 313 BOOK BOOK

12139 12820 312 OCCASION FREEBIE

12015 12176 299 CALENDAR CALENDAR

11048 11196 294 ARTWORK BOOK

12176 13298 279 CALENDAR CALENDAR

10863 12015 255 CALENDAR CALENDAR

11048 11052 253 ARTWORK ARTWORK

11111 11197 246 BOOK BOOK

11048 11197 232 ARTWORK BOOK
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The subquery aggregates the order lines by household ID and product, using 
COUNT(DISTINCT) to count the number of orders containing the product within 
a household. The outer query then creates a histogram of the counts.

More than 8,000 households have purchased the same product more than 
once. The most frequent ones purchase the same product more than 50 times. 
These very frequent purchases are possibly anomalous, perhaps a small busi-
nesses purchasing the same product multiple times.

One question often leads to another. What are the top products appearing in 
these orders? The following query shows which product groups have the most 
repeated products:

SELECT p.GroupName, COUNT(*) as numhouseholds
FROM (SELECT c.HouseholdId, ol.ProductId,
             COUNT(DISTINCT o.OrderId) as numorders
      FROM Customers c JOIN
           Orders o ON c.CustomerId = o.CustomerId JOIN
           OrderLines ol ON o.OrderId = ol.OrderId
      GROUP BY c.HouseholdId, ol.ProductId
     ) h JOIN
     Products p
     ON h.ProductId = p.ProductId
WHERE numorders > 1
GROUP BY p.GroupName
ORDER BY numhouseholds DESC

The subquery summarizes information for each household by product. The 
overall query is quite similar to the previous query, except the product informa-
tion is being joined in, and then the outer query is aggregating by GroupName.

Table 10-4 shows that the three product groups with the most repeats are BOOK, 
ARTWORK, and OCCASION. This differs from the common combinations, which 

table 10-4: Products That Appear in More Than One Order, by Product Group

produCt group numBer oF households

BOOK 2,709

ARTWORK 2,101

OCCASION 1,212

FREEBIE 935

GAME 384

CALENDAR 353

APPAREL 309

OTHER 210
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always include FREEBIE products. In fact, one FREEBIE product, whose ID is 
12820, is the top product that appears in multiple orders within a household. 
Without this product, the FREEBIE category would have only 210 occurrences 
of the same product appearing in multiple orders, and would fall to the bottom 
of the table. This product is a catalog that was included in all shipments during 
a period of time. Customers who placed multiple orders during this period of 
time received the catalog with each purchase.

The Simplest Association Rules

Item sets are interesting. Association rules transform the item sets into rules. 
This section starts the discussion of association rules by calculating the pro-
portion of orders that have a given product. These are the simplest, most basic 
type of association rule, one where the “if” clause is empty and the “then” 
clause contains one product: Given no information, what is the probability 
that a given product is an order? This idea of “zero-way” association rules 
is useful for two reasons. First, it provides a simple introduction to the ideas 
and terminology. Second, this overall probability is important for assessing 
more complex rules.

Associations and Rules
An association is a group of products that appear together—typically in an order, 
but the hierarchy could be at any level. The word “association” implies that the 
products have a relationship with each other based on the fact that they are 
found together. An association rule has the form:

<left-hand side>  <right-hand side>

The arrow in the rule means “implies,” so this rule is read as “the presence 
of all the products on the left-hand side implies the presence of the products 
on the right-hand side in the same order.” Of course, a rule is not always 
true, so there is a probability associated with it (called the confidence, which 
will be more formally defined later). The left- and right-hand sides are item 
sets that can be of any size, although typically the right-hand side consists 
of one product.

The automatic generation of association rules demonstrates the power 
of using detailed data. It must be admitted that the resulting rules are not 
always necessarily interesting. It is tempting to interpret the association rule 
as causality because of the “if”; but they do not show causal relationships. 
One early example, published in the 1990s by Sears, a large department store 
chain, was based on data from a multi-million dollar investment in a data 
warehousing system. They learned that customers who buy large appliance 
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warranties are very likely to buy large appliances. No doubt, an affinity exists. 
Warranties are indeed sold with large appliances, but the causality goes in 
the other direction.

Warning Association rules are not necessarily interesting. They are sometimes 
trivial, telling us something we should already know.

Such a rule is trivial because we should have known. Although trivial rules 
are not useful from a business perspective, they are resounding successes for 
the software—because the pattern is undeniably in the data. By the way, trivial 
rules can be useful. Exceptions to trivial rules that have a very high confidence 
might point to data quality or operational issues.

Zero-Way Association Rules
The zero-way association rule represents the idea that nothing else in an order 
implies that the order contains a given product:

<nothing>  <product ID>

It is “zero” way because the left-hand side has no products.
This rule is really just the probability that an order contains the product in 

question. The probability in turn is the number of orders containing a product 
divided by the total number of orders:

SELECT ProductId, COUNT(*) / MAX(numorders) as p
FROM (SELECT DISTINCT OrderId, ProductId FROM OrderLines) op CROSS JOIN
     (SELECT COUNT(*) * 1.0 as NumOrders FROM Orders) o
GROUP BY ProductId
ORDER BY p DESC

This query calculates the number of orders having any particular product, 
taking care to avoid double counting products on multiple order lines of the 
same order. The number of orders with the product is then divided by the total 
number of orders. A subquery, brought in using CROSS JOIN, calculates the total 
number of orders, which is converted to a real number by multiplying by 1.0 
to avoid integer division.

The result is each product with the proportion of orders containing the product. 
For instance, the most popular product is product ID 12820, which is a FREEBIE 
product that occurs in about 9.6% of the orders.

What Is the Distribution of Probabilities?
With more than 4,000 products, looking at all the probabilities individually is 
cumbersome. What do these probabilities look like? The following query pro-
vides some information about the values:
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SELECT COUNT(*) as numprods, MIN(p) as minp, MAX(p) as maxp,
       AVG(p) as avgp, COUNT(DISTINCT p) as nump
FROM (SELECT ol.ProductId,
             (COUNT(DISTINCT ol.OrderId) * 1.0 /
              (SELECT COUNT(*) FROM Orders)
             ) as p
      FROM OrderLines ol
      GROUP BY ol.productid
     ) op

This version of the calculation uses an in-line query, rather than the CROSS 
JOIN. Both methods work equally well, but the CROSS JOIN is actually better 
because you can add several variables at once and give them informative 
names. In addition, in some databases, the CROSS JOIN has performance 
advantages.

These probabilities have the following characteristics:

 ■ The minimum value is 0.0005%.

 ■ The maximum value is 9.6%.

 ■ The average value is 0.036%.

 ■ There are 385 different values.

This last number is curious. Why are there only a few hundred distinct values 
when there are thousands of products? The probabilities are ratios between 
two numbers, the number of times that a product appears, and the number 
of orders. For all products, the number of orders is the same, so the number 
of different probabilities is the number of different frequencies of products. 
There is much overlap, especially because over one thousand products appear 
only once.

Just a few hundred values can readily be plotted, as in Figure 10-3, which 
has both the histogram and the cumulative histogram. The histogram is on 

Figure 10-3:  This chart shows the distribution of probabilities of an order containing a product.
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the left-hand axis. However, this histogram is visually misleading because the 
points are not equally spaced.

The cumulative distribution is the other curve on the chart, and it provides 
more information. For instance, it says that half the products have a prob-
ability of less than about 0.0015%, so many products are quite rare indeed. 
Only half a percent of the products (23) occur in more than one percent of 
the orders.

What Do Zero-Way Associations Tell Us?
Zero-way association rules provide basic information about products. Given 
no other information about purchases, such rules give the probability of 
a given product being in an order. For instance, the top product, with ID 
12820, occurs in about 9.6% of the orders. This is a FREEBIE product, which 
is not so interesting.

The second product is a book that occurs in 4.9% of orders; its product ID is 
11168. An association rule predicting it has the form:

<LHS>  <product 11168>

If this more complex rule were accurate 50% of the time, then it is useful. If it 
were accurate 10% of the time, then it is useful. However, if it were accurate 
only 4.8% of the time, the rule does worse than an informed guess based on the 
zero-way rule. Such a rule is not useful, at least in the positive direction. The 
overall probability is a minimum level required for a rule to be useful (at least 
as a positive predictor of the right-hand side). This comparison is an important 
measure for the effectiveness of association rules.

One-Way Association Rules

This section moves from combinations of products to rules specifying that the 
presence of one product implies the presence of another. For many purposes, 
finding combinations of products that occur together is quite useful. However, 
these are still combinations, not rules.

Before investigating how to generate the rules, this section starts with the 
issue of evaluating rules. What makes one rule better than another?

Evaluating a One-Way Association Rule
The two most common products have IDs 12820 and 13190, suggesting the rule:

Product 12820  Product 13190

The traditional ways of evaluating such a rule are called support, confidence, and lift.
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Calculating these measures uses the following information:

 ■ The total number of orders

 ■ The number of orders that contain the left-hand side of the rule

 ■ The number of orders that contain the right-hand side of the rule

 ■ The number of orders that contain both the left- and right-hand sides

And these are calculated by the following query:

SELECT COUNT(*) as numorders, SUM(lhs) as numlhs, SUM(rhs) as numrhs,
       SUM(lhs * rhs) as numlhsrhs
FROM (SELECT OrderId,
             MAX(CASE WHEN ProductId = 12820 THEN 1 ELSE 0 END) as lhs,
             MAX(CASE WHEN ProductId = 13190 THEN 1 ELSE 0 END) as rhs
      FROM OrderLines ol
      GROUP BY OrderId) o

Notice that this query calculates the presence of the left-hand and right-hand 
products using conditional aggregation. Because the maximum function is used, 
the calculation counts only the presence of these products, ignoring NumUnits 
and counting duplicate products only once for each order. Also notice that the 
query has no WHERE clause. Filtering would work for all the calculations, except 
for the first one—the total number of orders.

The first evaluation measure in Table 10-5 is support. This is the proportion of 
orders where the rule is true. Support is the ratio of number of orders that have 
both the left side and right side to the total number of orders. For this rule, the 
support is 2,588 / 192,983 = 1.3%. Rules with higher support are more useful 
because they apply to more orders. A second measure is confidence, which is 
how often the rule is true, given that the left-hand side is true. Confidence is 
the ratio of orders that have both products to those that have the left-hand-side 
product. The confidence is 2,588 / 18,441 = 14.0%.

table 10-5: Traditional Measures for the Rule Product 12820  Product 13190

measure Value

Number of Orders 192,983

Number of Orders with Left-Hand Side 18,441

Number of Orders with Right-Hand Side 3,404

Number of Orders with Both Sides 2,588

Support 1.3%

Confidence 14.0%

Lift 8.0



 Chapter 10 ■ association rules and Beyond  485

The third traditional measure is lift, which tells us how much better using 
the rule is than just guessing. Without the rule, we would expect 1.8% (3,404 / 
192,983) of orders to have product 13190. When the rule is true, 14.0% have it. The 
rule does about eight times better than just guessing, so the rule has a high lift.

The following query calculates these values directly for this rule:

SELECT numlhsrhs / numorders as support, numlhsrhs / numlhs as confidence,
       (numlhsrhs / numlhs) / (numrhs / numorders) as lift
FROM (SELECT 1.0 * COUNT(*) as numorders, 1.0 * SUM(lhs) as numlhs,
             1.0 * SUM(rhs) as numrhs, 1.0 * SUM(lhs * rhs) as numlhsrhs
      FROM (SELECT orderid,
                   MAX(CASE WHEN ProductId = 12820 THEN 1 END) as lhs,
                   MAX(CASE WHEN ProductId = 13190 THEN 1 END) as rhs
            FROM OrderLines ol
            GROUP BY OrderId) o
     ) r

This query does the calculation for only one rule. The challenge in the next 
sections is to calculate these values for all possible rules.

Before looking at all rules, let’s look at just one other, the inverse rule:

Product 13190  Product 12820

The support for the inverse rule is exactly the same as the support for the original 
rule because the two rules have the same combination of products.

Perhaps more surprising, the lift for the two rules is the same as well. This is 
not a coincidence; it comes from the definition of lift. The formula simplifies to:

(numlhsrsh * numorders) / (numlhs * numrhs)

Both the rule and its inverse have the same values of numlhsrsh and numorders, 
so the numerator is the same. The values of numlhs and numrhs are swapped, so 
the product of the two values remains the same. As a result the lift is the same 
for any rule and its inverse.

The confidence values for a rule and its inverse are different. However, there is a 
simple relationship between them. The product of the confidence values is the same 
as the product of the support and the lift. So, given the confidence, support, and lift for 
one rule, it is simple to calculate the confidence, support, and lift for the inverse rule.

Generating All One-Way Rules
The query to generate one-way association rules is similar to the query to cal-
culate combinations, in that both involve self-joins on OrderLines. The query 
starts by enumerating all the possible rule combinations:

WITH items as (
      SELECT DISTINCT ol.OrderId as basket, ol.ProductId as Item
      FROM OrderLines ol
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     )
SELECT REPLACE(REPLACE('<lhs> -> <rhs>', '<lhs>', lhs),
               '<rhs>', rhs) as therule,
       lhs, rhs, COUNT(*) as numlhsrhs
FROM (SELECT lhs.basket, lhs.item as lhs, rhs.item as rhs
      FROM items lhs JOIN
           items rhs
           ON lhs.basket = rhs.basket AND
              lhs.item <> rhs.item
      ) rules
GROUP BY lhs, rhs

This query is similar to the previous queries, with some additions for actually gen-
erating the rule. First, notice that the query uses more generic names for columns 
and CTEs. This makes it easier to use almost the same code for different examples.

The rule itself is generated using REPLACE() to construct the rule as a single 
string from a template. An alternative to REPLACE() is to use string concatena-
tion: (CAST(lhs as VARCHAR(255)) +  ' —> ' + CAST(rhs as VARCHAR(255))). 
Changing the format of the string is easier with the version using REPLACE(). 
In addition, the use of the template gives a clearer idea of what the final result 
looks like. As a note, there is nothing special about the “255” in VARCHAR(255). 
When using VARCHAR() in SQL Server, you want an explicit length because the 
default length varies by context, and errors caused by leaving out a length can be 
quite hard to find. The value of 255 is more than long enough for this purpose.

One important difference from the combination query is that all pairs of 
products are being considered, rather than only unique pairs, because A  B 
and B  A are two different rules. The subquery Rules generates all candidate 
rules in Orders, instead of all pairs of items.

This form of the query does not restrict the orders, say, to orders that have 
between two and ten products. This condition can be added using the filter 
subquery as shown earlier.

One-Way Rules with Evaluation Information
The previous query generates all the possible one-way rules. Getting evaluation 
information is just a matter of calculating the right measures for each rule and 
then doing the necessary arithmetic, by modifying the previous query:

WITH items as (
      SELECT ol.OrderId as basket, ol.ProductId as item,
             COUNT(*) OVER (PARTITION BY ol.ProductId) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM OrderLines ol
      GROUP BY ol.OrderId, ol.ProductId
     ),
     rules as (
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      SELECT lhs, rhs, COUNT(*) as numlhsrhs, numlhs, numrhs,
             numbaskets
      FROM (SELECT lhs.basket, lhs.item as lhs, rhs.item as rhs,
                   lhs.cnt as numlhs, rhs.cnt as numrhs, lhs.numbaskets
            FROM items lhs JOIN
                 items rhs
                 ON lhs.basket = rhs.basket AND
                    lhs.item <> rhs.item
            ) rules
      GROUP BY lhs, rhs, numlhs, numrhs, numbaskets
     )
SELECT TOP 10 rules.lhs, rhs, numlhsrhs, numlhs, numrhs, numbaskets,
       numlhsrhs * 1.0 / numbaskets as support,
       numlhsrhs * 1.0 / numlhs as confidence,
       numlhsrhs * numbaskets * 1.0 / (numlhs * numrhs) as lift
FROM rules
ORDER BY lift DESC, lhs, rhs

The structure of the query is familiar. The subquery in items calculates the num-
ber of orders. An alternative is COUNT(DISTINCT OrderId) OVER (). However, 
this window function is not supported by all databases that support window 
functions.

Table 10-6 shows the top few rules with the highest lift. These rules are rather 
uninteresting because the highest lift rules are the ones where two products 
appear together and the two products never appear without the other. This 
tends to occur somewhat randomly for the least common products.

table 10-6: Top One-Way Rules with Highest Lift

rule
num 

lhsrhs
num 
lhs

num 
rhs

num 
orders support ConFidenCe liFt

10051  10267 1 1 1 192,983 0.0% 100.0% 192,983.0

10058  11794 1 1 1 192,983 0.0% 100.0% 192,983.0

10060  12964 1 1 1 192,983 0.0% 100.0% 192,983.0

10097  10529 1 1 1 192,983 0.0% 100.0% 192,983.0

10248  12470 1 1 1 192,983 0.0% 100.0% 192,983.0

10248  12703 1 1 1 192,983 0.0% 100.0% 192,983.0

10255  11424 1 1 1 192,983 0.0% 100.0% 192,983.0

10263  11711 1 1 1 192,983 0.0% 100.0% 192,983.0

10267  10051 1 1 1 192,983 0.0% 100.0% 192,983.0

10294  12211 1 1 1 192,983 0.0% 100.0% 192,983.0
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One way to fix this is by putting in a threshold value for support. For instance, 
to consider only rules where the support is at least 0.1%:

WHERE numlhsrhs * 1.0 / numbaskets >= 0.001

126 rules meet this restriction. Almost all of them have a lift greater than one, 
but a small number have a lift less than one. Rules with high support do not 
necessarily have good lift, although they often do.

One-Way Rules on Product Groups
As another example of one-way association rules, let’s consider rules about 
product groups. This is basically just a small change to the items CTE:

WITH items as (
      SELECT ol.OrderId as basket, p.GroupName as item,
             COUNT(*) OVER (PARTITION BY p.GroupName) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM OrderLines ol JOIN
           Products p
           ON ol.ProductId = p.ProductId
      GROUP BY ol.OrderId, p.GroupName
     ),
     rules as (
      SELECT lhs, rhs, COUNT(*) as numlhsrhs, numlhs, numrhs,
             numbaskets
      FROM (SELECT lhs.basket, lhs.item as lhs, rhs.item as rhs,
                   lhs.cnt as numlhs, rhs.cnt as numrhs, lhs.numbaskets
            FROM items lhs JOIN
                 items rhs
                 ON lhs.basket = rhs.basket AND
                    lhs.item <> rhs.item
            ) rules
      GROUP BY lhs, rhs, numlhs, numrhs, numbaskets
     )
SELECT rules.lhs, rhs, numlhsrhs, numlhs, numrhs, numbaskets,
       numlhsrhs * 1.0 / numbaskets as support,
       numlhsrhs * 1.0 / numlhs as confidence,
       numlhsrhs * numbaskets * 1.0 / (1.0 * numlhs * numrhs) as lift
FROM rules
ORDER BY lift DESC

This query shows the power of having generic queries that use CTEs. 
Everything except the definition of items remains the same as in the query 
for products.

Figure 10-4 shows the results as a bubble plot. The bubble plot contains two 
series. One consists of pretty good rules where the lift is greater than one. The 
rest are grouped into not-good rules. This bubble chart uses the same tricks for 
labeling the axes that were discussed earlier.
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Figure 10-4:  The good rules and not-so-good rules are shown in this bubble plot.

Not many of these rules have a good lift. One reason is that most orders 
have only one product and hence only one product group. These orders 
inflate the values of numlhs and numrhs, without contributing to the value 
of numlhsrhs.

Two-Way Associations

The calculation for two-way association rules follows the same logic as for the 
one-way rules. This section looks at the SQL for generating such rules, as well 
as some interesting extensions by extending the idea of item and the relation-
ships among them.

Calculating Two-Way Associations
The basic query for calculating two-way associations is quite similar to the 
query for one-way associations. The difference is that the left-hand side has 
two products rather than one.

The following two rules are equivalent:

A and B  C

B and A  C

Hence, the products on the left-hand side are an item set, so the products should 
not be repeated.
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This query implements this by requiring that the first product ID be smaller 
than the second on the left-hand side. The left- and right-hand sides of the rule 
are different, so each needs its own CTE:

WITH items as (
      SELECT ol.OrderId as basket, p.ProductId as item,
             COUNT(*) OVER (PARTITION BY p.ProductId) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM OrderLines ol
      GROUP BY ol.OrderId, p.ProductId
     ),
     lhs as (
      SELECT lhs1.basket, lhs1.item as lhs1, lhs2.item as lhs2,
             COUNT(*) OVER (PARTITION BY lhs1.item, lhs2.item) as cnt
      FROM items lhs1 JOIN
           items lhs2
           ON lhs1.basket = lhs2.basket AND
              lhs1.item <> lhs2.item
     ),
     rules as (
      SELECT lhs1, lhs2, rhs, COUNT(*) as numlhsrhs,
             numlhs, numrhs, numbaskets
      FROM (SELECT lhs.basket, lhs.lhs1, lhs.lhs2, rhs.item as rhs,
                   lhs.cnt as numlhs, rhs.cnt as numrhs, rhs.numbaskets
            FROM lhs JOIN
                 items rhs
                 ON rhs.basket = lhs.basket AND
                    rhs.item NOT IN (lhs.lhs1, lhs.lhs2)
            ) rules
      GROUP BY lhs1, lhs2, rhs, numlhs, numrhs, numbaskets
     )
SELECT lhs1, lhs2, rhs, numbaskets, numlhs, numrhs,
       numlhsrhs * 1.0 / numbaskets as support,
       numlhsrhs * 1.0 / numlhs as confidence,
       numlhsrhs * numbaskets * 1.0 / (numlhs * numrhs) as lift
FROM rules
WHERE numlhsrhs * 1.0 / numbaskets >= 0.001
ORDER BY lift DESC

The CTE lhs calculates the two products for the left-hand side. Some extra logic 
is needed to ensure the right-hand side item differs from the left-hand side items 
(so the rule is not trivial). The overall flow of this query is remarkably similar to 
the previous query. And, the traditional measures are calculated in exactly the 
same way. By using careful naming conventions in the intermediate table, the 
same query can calculate support, confidence, and lift for one-way association 
rules and two-way association rules.

The results from this query are also rather similar to the results for the one-
way associations. The rules with the highest lift are the extremely rare ones 
with three products. By the measure of lift, the best rules seem to be those that 
have products that only occur together and never separately.
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Using Chi-Square to Find the Best Rules
Lift provides one measure of “best,” but perhaps it is not the most practical. The 
rules with the best lift are those that have the least common products that hap-
pen to be purchased at the same time—this means that the rules with the highest 
lift have the lowest support. The typical way to get around this is by requiring a 
certain level of support for the rule. However, the rules with the highest lift are 
often still the ones with the rarest products that meet the support criterion. This 
section discusses an alternative measure, the chi-square measure.  It produces a 
better subjective ordering of the rules, and one whose basis is in statistics.

Applying Chi-Square to Rules

The chi-square measure was introduced in Chapter 3 as a way to measure 
whether particular splits in data across multiple dimensions are due to chance. 
The higher the chi-square value for a particular set of splits, the less likely that 
observed data is happening due to chance. The measure can be used directly 
or it can be converted to a p-value based on the chi-square distribution.

Chi-square can also be applied to rules, and it provides a single value that 
determines whether or not the rule is reasonable. Lift, confidence, and support 
all measure how good a rule is, but they are three different measures. One 
warning, though: Chi-square does not work very well unless all cells have a 
minimum expected value. The usual value is a minimum of five.

The chi-square measure works on contingency tables, which—at first glance—do 
not have much to do with rules. But, they do. Start by considering a general rule:

LHS  RHS

This rule divides all the orders into four discrete groups:

 ■ LHS is TRUE and RHS is TRUE.

 ■ LHS is TRUE and RHS is FALSE.

 ■ LHS is FALSE and RHS is TRUE.

 ■ LHS is FALSE and RHS is FALSE.

Table 10-7 shows the counts of orders that fall into each of these groups for the 
rule 12820  13190. The rows indicate whether the orders contain the left-hand 
side of the rule. The columns are whether they contain the right-hand side. The 
816, for instance, is the number of orders where the rule is true.

table 10-7: Counts of Orders for Chi-Square Calculation for Rule 12820  13190

rhs true rhs False

lhs true 816 15,853

lhs False 2,588 173,726
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This matrix is a contingency table as described in Chapter 3. And the chi-
square measure is a natural measure for determining whether the contingency 
table values are due to chance (uninteresting) or some other mechanism besides 
randomness (such as some underlying pattern captured by a rule). As described 
in Chapter 3, calculating the chi-square values is not difficult in Excel. Sum the 
rows and columns and then calculate an expected value matrix using these 
sums. The expected value is the product of the row sum times the column sum 
divided by the sum of all the cells in the table. The observed value minus the 
expected value is the variance. The chi-square value is then the sum of the vari-
ances squared divided by the expected values.

Chi-square has some nice properties compared to lift. It provides a measure 
of how unexpected the rule is rather than the improvement from using it. In 
one measure, it takes into account both the goodness and coverage of the rule. 
The standard measures of support and lift address these issues separately.

Applying Chi-Square to Rules in SQL

Excel is not sufficiently powerful to perform the chi-square calculation for 
millions of rules. As shown in Chapter 3, doing the chi-square calculation in 
SQL is also possible—it just requires a bunch of arithmetic.

Four counts have been used for calculating support, confidence, and lift:

 ■ numlhsrhs is the number of orders where the entire rule is true.

 ■ numlhs is the number of orders where the left-hand side is true.

 ■ numrhs is the number of orders where the right-hand side is true.

 ■ numbaskets is the total number of orders.

The chi-square calculation uses four slightly different counts, based on the 
contingency table for the rule:

 ■ LHS true, RHS true: numlhsrhs

 ■ LHS true, RHS false: numlhs – numlhsrhs

 ■ LHS false, RHS true: numrhs – numlhsrhs

 ■ LHS false, RHS false: numorders – numlhs – numrhs + numlhsrhs

With these values, the chi-square calculation can use the same query structure 
along with some additional arithmetic.

The following query calculates the traditional measures as well as the chi-
square measure:

WITH items as (

      SELECT o.OrderId as basket, ol.ProductId as item,

             COUNT(*) OVER (PARTITION BY ProductId) as cnt,

             (SELECT COUNT(*) FROM Orders) as numbaskets

      FROM OrderLines ol
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      GROUP BY o.OrderId, ol.ProductId

     ),

     rules as (

      SELECT lhs, rhs, COUNT(*) as numlhsrhs, numlhs, numrhs, numbaskets,

             numlhs - COUNT(*) as numlhsnorhs,

             numrhs - COUNT(*) as numnolhsrhs,

             numbaskets - numlhs - numrhs + COUNT(*) as numnolhsnorhs,

             numlhs * numrhs * 1.0 / numbaskets as explhsrhs,

              numlhs*(1.0*numbaskets - numrhs)*1.0 / numbaskets as explhsnorhs,

             (1.0*numbaskets - numlhs)*numrhs*1.0 / numbaskets as expnolhsrhs,

             ((1.0*numbaskets - numlhs)*(1.0*numbaskets - numrhs) / numbaskets

             ) as expnolhsnorhs,

             COUNT(*) * 1.0 / numbaskets as support,

             COUNT(*) * 1.0 / numlhs as confidence,

             COUNT(*) * numbaskets * 1.0 / (numlhs * numrhs) as lift

      FROM (SELECT lhs.basket, lhs.item as lhs, rhs.item as rhs,

                   lhs.cnt as numlhs, rhs.cnt as numrhs, lhs.numbaskets

            FROM items lhs JOIN

                 items rhs

                 ON lhs.basket = rhs.basket AND

                    lhs.item <> rhs.item

            ) rules

      GROUP BY lhs, rhs, numlhs, numrhs, numbaskets

     )

SELECT (SQUARE(explhsrhs - numlhsrhs) / explhsrhs +

        SQUARE(explhsnorhs - numlhsnorhs) / explhsnorhs +

        SQUARE(expnolhsrhs - numnolhsrhs) / expnolhsrhs +

        SQUARE(expnolhsnorhs - numnolhsnorhs) / expnolhsnorhs

       ) as chisquare, rules.*

FROM rules

ORDER BY chisquare DESC

This follows the same structure as the previous queries; more columns are 
added to support the chi-square calculation.

Comparing Chi-Square Rules to Lift

At first glance, the rules with the highest chi-square values are the same as the 
rules with the highest lift. These are the rules consisting of products that appear 
in only one order. However, one of the conditions of the chi-square calculation 
is that the expected value of every cell should have a count of at least five.

This condition can be incorporated into the query using a WHERE condition:

WHERE explhsrhs > 5 AND explhsnorhs > 5 AND
      expnolhsrhs > 5 AND expnolhsnorhs > 5

Table 10-8 shows the top ten rules with the highest chi-square values and 
the highest lift values. The first thing to notice is that the two sets have some 
 overlap—four of the ten rules are the same. Notice, further, that the rules all 
come in pairs. Both lift and chi-square have the property that A  B and B  A 
have the same values for the two measures.
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table 10-8: Top Rules by Lift and by Chi-Square Measures

Best Chi-square Best liFt

rule
sup-
port

Chi-
square liFt rule

sup-
port

Chi-
square liFt

11048  11196 0.95% 40,972.6 23.5 10940  10943 0.21% 28,171.4 72.4

11196  11048 0.95% 40,972.6 23.5 10943  10940 0.21% 28,171.4 72.4

10940  10943 0.21% 28,171.4 72.4 10939  10943 0.17% 16,299.6 50.8

10943  10940 0.21% 28,171.4 72.4 10943  10939 0.17% 16,299.6 50.8

11052  11197 0.28% 20,440.4 39.0 11052  11197 0.28% 20,440.4 39.0

11197  11052 0.28% 20,440.4 39.0 11197  11052 0.28% 20,440.4 39.0

10956  12139 0.77% 19,804.6 14.6 10939  10942 0.17% 10,691.3 34.9

12139  10956 0.77% 19,804.6 14.6 10942  10939 0.17% 10,691.3 34.9

12820  13190 1.34% 17,715.6 8.0 10939  10940 0.12% 7,167.9 31.8

13190  12820 1.34% 17,715.6 8.0 10940  10939 0.12% 7,167.9 31.8

The rules with the highest lift are all similar: these rules all have low sup-
port and the products in the rules are quite rare. The average support for these 
rules is 0.19%, with the highest support at 0.28%. These rules do have reasonable 
confidence levels. What makes them good, though, is that the products are rare, 
so seeing them together in an order is quite unlikely. Most of the top rules by 
lift are about BOOKs, with one product being ARTWORK.

The rules with the highest chi-square values look more sensible. The top rule 
here has a support of over 1.34%, and the average support is 0.71%. The support is 
much better, and the confidence is also larger. The range of products is broader, 
including FREEBIE, BOOK, ARTWORK, and OCCASION.

tip The chi-square measure is better than support, confidence, or lift for choosing a 
good set of association rules.

The chi-square values and lift values are not totally independent. Figure 10-5 
shows a bubble plot comparing decile values of chi-square with decile val-
ues of lift. The large bubbles along the axis show that lift and chi-square are 
correlated; overall, they put the rules in a similar order. However, the many 
smaller bubbles indicate that chi-square and lift disagree on how good many 
rules are.

Calculating the deciles for the lift and chi-square uses window functions:

SELECT chisquaredecile, liftdecile, COUNT(*), AVG(chisquare), AVG(lift)
FROM (SELECT NTILE(10) OVER (ORDER BY chisquare) as chisquaredecile,
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Figure 10-5:  This bubble plot compares the values of lift and chi-square, by decile.

             NTILE(10) OVER (ORDER BY lift) as liftdecile, a.*
      FROM (on page 492) a
      WHERE numlhsrhs >= 5 AND numlhsnorhs >= 5 AND numnolhsrhs >= 5) a
GROUP BY chisquaredecile, liftdecile

Notice that this query requires a subquery because window functions cannot 
be used for aggregation. The results are plotted as a bubble chart in Excel.

Chi-Square for Negative Rules

The chi-square value measures how unexpected the rule is. However, a rule 
can be unexpected in two ways. It could be unexpected because the right-hand 
side occurs much more often when the left-hand side appears. Or, it could be 
unexpected because the right-hand side occurs much less often.

In the previous example, all the rules with the highest chi-square values have 
a lift greater than one (as seen in Table 10-8). In this case, the lift is saying that 
the right-hand size occurs more frequently than expected. For these rules, the 
chi-square value is indeed saying that the rule is a good rule.

What happens when the lift is less than one? Table 10-8 has no examples of 
this. However, this situation can occur.  For instance, in a grocery store, a rule 
for “tofu  meat” could have a high chi-square value but a negative lift—if we 
assume that many tofu eaters are vegetarians who never buy meat.
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Lift less than one means that the negative rule is the stronger rule:

LHS  NOT RHS

For our example, it would mean that the real rule is “tofu  NOT meat.” The 
chi-square value for this rule is the same as the chi-square value for the positive 
rule. On the other hand, the lift changes, so the lift for this rule is greater than 
one when the lift for the positive rule is less than one (and vice versa). In fact, 
the lift for a rule and its negative are multiplicative inverses—the product of 
the two values is one.

The chi-square value and lift can be used together. When the chi-square is 
high and the lift greater than one, then the resulting rule is the positive rule. 
When the chi-square value is high and the lift less than one, then the resulting 
rule is the negative rule. Using these values together makes it possible to look 
for both types of rules at the same time.

Heterogeneous Associations
The rules described so far have been about products or product groups, 
with the same items on both the left-hand and right-hand sides. This is 
traditional association rule analysis. Because we are building the rules 
ourselves, it is possible and feasible to extend the rules to include addi-
tional types of items.

The idea is to add other features into the rules. This section discusses two 
ways of doing this. The first is a “hard” approach, which generates rules where 
the left-hand side consists of two specific types of items in specific positions. 
The second is a “soft” approach, where the definition of item mixes different 
things together, allowing any item anywhere in the rule. The steps for calculat-
ing the measures, such as chi-square, are the same regardless of the definition 
of an item.

Rules of the Form “State Plus Product”

The first approach is to form rules with two different types of items on the left-
hand side, such as an attribute of the order or customer followed by a product. 
The right-hand side is still a product. A typical rule is:

NY + ProductId 11197  ProductId 11196

The rules generated by this example are always of the form:

state plus product  product

These types of rules require only a slight modification to the rule generation 
query.
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The first item is the State column from Orders, rather than ProductId from 
OrderLines. The overall query is a bit more complicated because the left-hand 
side and right-hand side need separate CTEs:

WITH items as (

      SELECT ol.OrderId as basket, ol.ProductId as item,

             COUNT(*) OVER (PARTITION BY ol.ProductId) as cnt,

             (SELECT COUNT(*) FROM Orders) as numbaskets

      FROM OrderLines ol

      GROUP BY ol.OrderId, ol.ProductId

     ),

     lhs as (

      SELECT lhs.basket, o.State as lhs1, lhs.item as lhs2,

             COUNT(*) OVER (PARTITION BY o.State, lhs.item) as cnt

      FROM Orders o JOIN

           items lhs

           ON lhs.basket = o.OrderId

     ),

     rules as (

      SELECT lhs1, lhs2, rhs, COUNT(*) as numlhsrhs,

             numlhs, numrhs, numbaskets,

             numlhs - COUNT(*) as numlhsnorhs,

             numrhs - COUNT(*) as numnolhsrhs,

             numbaskets - numlhs - numrhs + COUNT(*) as numnolhsnorhs,

             numlhs * numrhs * 1.0 / numbaskets as explhsrhs,

              numlhs*(1.0*numbaskets - numrhs)*1.0 / numbaskets as explhsnorhs,

             (1.0*numbaskets - numlhs)*numrhs*1.0 / numbaskets as expnolhsrhs,

             ((1.0*numbaskets - numlhs)*(1.0*numbaskets - numrhs) / numbaskets

             ) as expnolhsnorhs,

             COUNT(*) * 1.0 / numbaskets as support,

             COUNT(*) * 1.0 / numlhs as confidence,

             COUNT(*) * numbaskets * 1.0 / (numlhs*numrhs) as lift

      FROM (SELECT lhs.basket, lhs.lhs1, lhs.lhs2, rhs.item as rhs,

                   lhs.cnt as numlhs, rhs.cnt as numrhs, rhs.numbaskets

            FROM lhs JOIN

                 items rhs

                 ON rhs.basket = lhs.basket AND

                    rhs.item NOT IN (lhs.lhs2)

            ) rules

      GROUP BY lhs1, lhs2, rhs, numlhs, numrhs, numbaskets

     )

SELECT (SQUARE(explhsrhs - numlhsrhs) / explhsrhs +

        SQUARE(explhsnorhs - numlhsnorhs) / explhsnorhs +

        SQUARE(expnolhsrhs - numnolhsrhs) / expnolhsrhs +

        SQUARE(expnolhsnorhs - numnolhsnorhs) / expnolhsnorhs

       ) as chisquare, rules.*

FROM rules

WHERE explhsrhs > 5 AND explhsnorhs > 5 AND expnolhsrhs > 5 AND

      expnolhsnorhs > 5

ORDER BY chisquare DESC
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table 10-9: Top Ten Rules with State and Product on Left-Hand Side

rule Counts

rule lhs rhs lhsrhs Chi-square liFt

NY + 11196  11048 2,193 3,166 848 18,847.5 23.6

NY + 11048  11196 1,487 4,729 848 18,673.1 23.3

NY + 11052  11197 644 1,900 280 11,968.8 44.2

NY + 11197  11052 873 1,410 280 11,877.9 43.9

NJ + 11196  11048 1,071 3,166 431 9,945.4 24.5

NJ + 11048  11196 746 4,729 431 9,589.1 23.6

NY + 12820  13190 4,442 3,404 769 6,343.2 9.8

NY + 13190  12820 989 18,441 769 5,349.9 8.1

CT + 11196  11048 468 3,166 208 5,326.7 27.1

CT + 11048  11196 332 4,729 208 5,042.0 25.6

The structure of this query is quite similar to the structure for the two-way 
association rules, with the addition of the chi-square measure. Do note that 
removing duplicates is not necessary, because states are quite distinct from 
product IDs.

The resulting table has the same format as the earlier rule tables, so the same 
chi-square query can be used for choosing rules. Table 10-9 shows the top ten 
rules.

Rules Mixing Different Types of Products

Another method for adding different types of items is to expand the notion of 
item. By adding the state into the products, any of the following rules is possible:

 ■ product plus product  product

 ■ product plus product  state

 ■ product plus state  product

 ■ state plus product  product

In addition, the following rules are conceivable, but not possible, because there 
is only one state associated with each order:

 ■ state plus state  state

 ■ state plus state  product

 ■ state plus product  state

 ■ product plus state  state
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These rules would be possible if an order could have more than one state.
Creating such rules is a simple matter of modifying the items CTE to include 

the state item, by using the UNION ALL operator.

WITH items as (
      SELECT OrderId as basket,
             CAST(ProductId as VARCHAR(255)) as item,
             COUNT(*) OVER (PARTITION BY ProductId) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM OrderLines ol
      GROUP BY OrderId, ProductId
      UNION ALL
      SELECT OrderId, State,
             COUNT(*) OVER (PARTITION BY State) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM Orders
     ),
     . . .

The only tricky part is handling the data types because ProductId is an integer 
and the state a string, so it needs to be cast to a character. The best rules have 
one state, so they are the same as the ones in Table 10-9.

Extending Association Rules

Association rule methods can be extended in several different ways. The most 
obvious extension is adding additional items on the left-hand side. Another 
extension is to have entirely different sets of items on the left-hand side and 
the right-hand side. And, perhaps the most interesting extension is the creation 
of sequential association rules, which look for patterns of items purchased in 
a particular order.

Multi-Way Associations
Association rules can have more than two items on the left-hand side. The 
mechanism is to continue adding in joins for every possible item, similar to the 
method for going from one item on the left-hand side to two items. As the number 
of items grows, the size of the intermediate results storing the candidate rules 
can get unmanageably large and take a long, long time to generate. The way to 
handle this is by adding restrictions so fewer candidate rules are considered.

tip As the number of items in association rules gets larger, query performance can 
get worse. A filter subquery to limit the orders you are working on usually improves 
performance.
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One obvious filter is to include only orders having at least as many items as 
used by the rule. Several examples in this chapter have used this restriction. A 
second restriction is to require a minimum support for the rule. This restriction 
also applies to products: Products that have less than the minimum support can 
be filtered out. A rule having a given level of support implies that each product 
in the rule has at least that level of support as well.

The third restriction is to remove the largest orders. Because large orders have 
many products, they result in very large numbers of combinations. These orders 
typically add very little information because there are few of them. However, 
they can contribute the vast bulk of processing time.

The following query combines these together for three-way combinations, 
with a minimum support of 20 and using orders with no more than ten products:

WITH filterorders as (
      SELECT OrderId
      FROM OrderLines
      GROUP BY OrderId
      HAVING COUNT(DISTINCT ProductId) BETWEEN 4 AND 10
     ),
     filterproducts as (
      SELECT ProductId
      FROM OrderLines
      GROUP BY ProductId
      HAVING COUNT(DISTINCT Orderid) >= 20
     ),
     items1 as (
      SELECT ol.OrderId as basket, ol.ProductId as item,
             COUNT(*) OVER (PARTITION BY ol.ProductId) as cnt,
             ROW_NUMBER() OVER (PARTITION BY ol.OrderId
                                ORDER BY ol.ProductId) as seqnum
      FROM filterorders fo JOIN
           OrderLines ol
           ON ol.OrderId = fo.OrderId JOIN
           filterproducts fp
           ON ol.ProductId = fp.ProductId
      GROUP BY ol.OrderId, ol.ProductId
     ),
     items as (
      SELECT i.*, SUM(CASE WHEN seqnum = 1 THEN 1 ELSE 0
                      END) OVER () as numbaskets
      FROM items1 i
     ),
     lhs as (
      SELECT lhs1.basket, lhs1.item as lhs1, lhs2.item as lhs2,
             lhs3.item as lhs3,
             COUNT(*) OVER (PARTITION BY lhs1.item, lhs2.item,
                                         lhs3.item) as cnt
      FROM items lhs1 JOIN
           items lhs2
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           ON lhs2.basket = lhs1.basket AND
              lhs2.item > lhs1.item JOIN
           items lhs3
           ON lhs3.basket = lhs1.basket AND
              lhs3.item > lhs2.item
     ),
. . .

The first two CTEs, filterorders and filterproducts, introduce the filters for 
orders and products. In this case, the filters are based on counts. These are then 
used in the items CTE. The lhs CTE has an additional join for the additional prod-
uct. In addition, the subsequent code needs to change to handle the extra column.

Multi-Way Associations in One Query
The queries so far have done n-way associations in a single query for a given 
value of n. That is, the chapter has not presented a single query for both one- 
and two-way associations. This is intentional.

Association rules are part of exploratory data analysis. That is, humans 
generally need to evaluate whether the top performing rules make sense and 
are useful. As part of exploratory data analysis, it makes sense to start with 
one-way rules, then two-way rules, and so on. And, because no more than 
a handful of products typically make sense in such rules, only a handful of 
queries are needed.

It is simple enough to modify the logic for two-way queries to include one-
way queries. In fact, the modifications are similar to generating item sets with 
up to a given number of items:

WITH items as (
      SELECT OrderId as basket, ProductId as item,
             COUNT(*) OVER (PARTITION BY ProductId) as cnt,
             (SELECT COUNT(*) FROM Orders) as numbaskets
      FROM OrderLines ol
      GROUP BY OrderId, ProductId
      UNION ALL
      SELECT o.OrderId, NULL as ProductId,
             COUNT(*) OVER () as cnt, COUNT(*) OVER () as numbaskets
      FROM Orders o
     ),

It would seem that the rest of the query remains basically the same. However, 
because all rules are being considered—including zero-way associations—
some of the expected values for chi-square are zero. This poses a problem with 
divide-by-zero.

The arithmetic problems can be fixed. Two other important considerations 
arise. The first is filtering. This is used to make the query for n-way associa-
tions more efficient. However, it would have to work differently for a query 
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that returned up-to-n-way rules. Second, the query itself becomes less efficient 
because the UNION ALL prevents certain optimizations.

So, if you want to generate all the rules up to a given value of n, the best way 
is to use UNION ALL to combine the results for one-way association rules, two-
way association rules, and so on.

Rules Using Attributes of Products
So far, all the rules have been based on products or one attribute of products, 
the product group. Products could have different attributes assigned to them, 
such as:

 ■ Whether the product is discounted in the order

 ■ The manufacturer of the product

 ■ The “subject” of the product, such as whether art is photography or paint-
ing, whether books are fiction or non-fiction

 ■ The target market for the product (kids, adults, left-handers)

The idea is that attributes of the products are used for the rules instead of 
the products themselves. Adjusting the SQL to handle this is not difficult. It 
simply requires joining in the table containing the attributes when generat-
ing the item sets, similar to the way states were added in the examples in the 
previous section.

A problem is lurking with a naïve application of using attributes for rules. Each 
product would typically have the same set of attributes, wherever it appears. 
So, combinations are going to co-occur with each order, simply because they 
describe the same product. In other words, a rule specifying that certain attri-
butes tend to occur together may only be telling us about a single product that 
has those attributes. This is not what we want, because we don’t want rules on 
attributes to tell us what we already know.

Earlier, the section on item sets discussed a particular method for finding 
products that households purchase in different orders. The same idea can be 
used for categories. The approach is to find combinations that are in the same 
order, but not in the same product, in order to find the strength of affinities 
among the attributes.

Rules with Different Left- and Right-Hand Sides
Another variation on association rules is to have different types of items on the 
left- and right-hand sides of the rule. A small example of this was the use of 
state on the left-hand side, but not on the right-hand side. The implementation 
in SQL is a simple modification to the association rule query to generate the 
right item set for items on the left-hand side and the right-hand side.
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Why would this be a good idea? One application is when customers are doing 
a variety of different things. For instance, customers may be visiting web pages 
and then clicking advertisements; or they may be visiting web pages and then 
making a purchase, or they may be receiving multiple marketing messages 
through different channels and then responding. In these cases, the left-hand 
side of the rule could be the advertising pages exposed, the web pages visited, 
or the campaigns sent out. The right-hand side could be the nature of the clicks 
or purchases or responses. The rules describe what combinations of actions are 
associated with the desired action.

This idea has other applications as well. When customizing banner ads or 
catalogs for particular types of products, the question might arise: What items 
have customers purchased that suggest they are interested in these products? Using 
association rules with purchases or visits on the left-hand side and banner 
clicks on the right-hand side is one possible way of approaching this question.

Such heterogeneous rules do bring up one technical issue. The question is 
whether to include customers who have no events on the right-hand side. Consider 
the situation where the left-hand side has pages on a website and the right-hand 
side has products purchased by customers. The purpose of the rules is to find 
which web pages lead to the purchase of particular products. Should the data 
used to generate these rules include customers who have never made a purchase?

This is an interesting question with no right answer, because the answer 
depends on the particular business needs. Using only customers who make 
purchases reduces the size of the data (since, presumably, many people do not 
make purchases). Perhaps the first step in approaching the problem is to ask 
which web pages lead to any purchase at all. The second step is to then find the 
product affinity based on the web pages.

Before and After: Sequential Associations
Sequential associations are quite similar to simple product associations. The 
difference is that the rule enforces the ordering of the products in purchases. 
So, a typical rule is:

Product 12175  Product 13297 will be purchased at a later time.
Such sequences can prove interesting, particularly when many customers have 
purchase histories. Sequential rules cannot be found within a single order, 
because all the products within an order are purchased at the same time. Instead, 
sequential rules need to consider all orders of products within a household.

The basic logic for generating sequential rules is quite similar to the logic for 
association rules. However, the calculation has some nuances. First, the household 
ID needs to be brought in along with the order date. This seems like a small 
change, but now households can qualify for the rule multiple times—there is 
no obvious way to restrict the data to one product per household because we 
need each order date.
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This issue affects the calculations in the rules CTE. The number of “baskets” 
satisfying the rule has for the most part been calculating using COUNT(*). This 
needs to change to COUNT(DISTINCT basket). The following code shows the 
structure of the sequential rules query:

WITH items1 as (
      SELECT c.HouseholdId as basket, ol.ProductId as item,
             p.GroupName, o.OrderDate as basketdate
      FROM OrderLines ol JOIN
           Orders o
           ON o.OrderId = ol.OrderId JOIN
           Customers c
           ON c.CustomerId = o.CustomerId JOIN
           Products p
           ON ol.ProductId = p.ProductId
      GROUP BY c.HouseholdId, ol.ProductId, o.OrderDate, p.GroupName
     ),
     items as (
      SELECT i.*,
             SUM(CASE WHEN bi_seqnum = 1 THEN 1 ELSE 0
                 END) OVER () as cnt,
             SUM(CASE WHEN b_seqnum = 1 THEN 1 ELSE 0
                 END) OVER () as numbaskets
      FROM (SELECT i.*,
                   ROW_NUMBER() OVER (PARTITION BY item
                                      ORDER BY basket) as bi_seqnum,
                   ROW_NUMBER() OVER (PARTITION BY basket
                                      ORDER BY basket) as b_seqnum
            FROM items1 i
           ) i
     ),
     rules as (
      SELECT lhs, rhs, lhsGroup, rhsGroup,
             COUNT(DISTINCT basket) as numlhsrhs,
             numlhs, numrhs, numbaskets,
             numlhs - COUNT(DISTINCT basket) as numlhsnorhs,
             numrhs - COUNT(DISTINCT basket) as numnolhsrhs,
             (numbaskets - numlhs - numrhs +
              COUNT(DISTINCT basket) ) as numnolhsnorhs,
             numlhs * numrhs * 1.0 / numbaskets as explhsrhs,
             (numlhs * (1.0 * numbaskets - numrhs) * 1.0 /
              numbaskets) as explhsnorhs,
             (1.0 * numbaskets - numlhs) * numrhs * 1.0 /
              numbaskets) as expnolhsrhs,
             ((1.0 * numbaskets - numlhs)*
              (1.0 * numbaskets-numrhs) / numbaskets) as expnolhsnorhs,
             COUNT(DISTINCT basket) * 1.0 / numbaskets as support,
             COUNT(DISTINCT basket) * 1.0 / numlhs as confidence,
             (COUNT(DISTINCT basket) * numbaskets * 1.0 /



 Chapter 10 ■ association rules and Beyond  505

              (numlhs * numrhs)) as lift
      FROM (SELECT lhs.basket, lhs.item as lhs, rhs.item as rhs,
                   lhs.cnt as numlhs, rhs.cnt as numrhs,
                   lhs.numbaskets,
                   lhs.GroupName as lhsGroup, rhs.GroupName as rhsGroup
            FROM items lhs JOIN
                 items rhs
                 ON lhs.basket = rhs.basket AND
                    lhs.basketdate < rhs.basketdate AND
                    lhs.item <> rhs.item
            ) rules
      GROUP BY lhs, rhs, numlhs, numrhs, numbaskets, lhsGroup, rhsGroup
     )
SELECT (SQUARE(explhsrhs - numlhsrhs) / explhsrhs +
        SQUARE(explhsnorhs - numlhsnorhs) / explhsnorhs +
        SQUARE(expnolhsrhs - numnolhsrhs) / expnolhsrhs +
        SQUARE(expnolhsnorhs - numnolhsnorhs) / expnolhsnorhs
       ) as chisquare, rules.*
FROM rules
WHERE explhsrhs > 5 AND explhsnorhs > 5 AND expnolhsrhs > 5 AND
      expnolhsnorhs > 5
ORDER BY chisquare DESC

This query also takes a different approach to calculating the number of prod-
ucts and the number of households—these calculations get confused because 
products can now appear multiple times in a household. Although the query 
could use COUNT(DISTINCT) in items, it opts for a slightly different approach. 
It uses ROW_NUMBER() to enumerate the rows, based on either basket or item. It 
then counts the number of times that the value is one—this counts the number 
of distinct values. Using a separate CTE is also more robust. When modifying a 
query based on orders to households, it is easy to miss that the subquery using 
Orders also has to change.

Apart from the subtlety about counting things, this structure of this query 
is very similar to the earlier queries.

Comparing all the products and orders in a household is a brute-force 
approach. There is an alternative. The calculation can use the minimum and 
maximum order date for each product within a household. These dates can 
then be used in rules to enforce the sequencing, without having to change 
the COUNT(*). However, this approach cannot be generalized for rules, such 
as products in the left-hand side occurring within three weeks before the 
products in the right-hand side.

Table 10-10 shows the resulting sequential association rules. These are inter-
esting because they are intuitive. Three of the ten top rules (by the chi-square 
measure) are for calendars—which is quite reasonable. Customers who purchase 
calendars at one point in time are likely to purchase calendars later in time, 
probably about a year later.
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table 10-10: Top Ten Sequential Association Rules

rule produCt groups support liFt Chi-square

11196  11197 BOOK  BOOK 0.2918% 4.5 1,296.2

12015  12176 CALENDAR  CALENDAR 0.2099% 3.2 528.5

11196  11111 BOOK  BOOK 0.2099% 3.2 528.5

12176  13298 CALENDAR  CALENDAR 0.1933% 3.0 413.9

10863  12015 CALENDAR  CALENDAR 0.1754% 2.7 306.2

11197  11111 BOOK  BOOK 0.1690% 2.6 271.7

11048  11052 ARTWORK  ARTWORK 0.1658% 2.5 255.2

11048  11197 ARTWORK  BOOK 0.1542% 2.4 200.0

11196  11052 BOOK  ARTWORK 0.1498% 2.3 180.4

12139  12820 OCCASION  FREEBIE 0.1466% 2.2 167.0

Lessons Learned

This chapter introduces association rules—automatically generated rules about 
the items most likely to appear together in an order. This is one of the most 
detailed ways of analyzing transaction information.

Simple one-way association rules specify that when a customer purchases 
one product (the left-hand side), then the customer is likely to purchase another 
product (the right-hand side) in the same order. The traditional way of measuring 
the goodness of these rules is with three measures: support, confidence, and lift. 
Support measures the proportion of orders where the rule is true. Confidence 
measures how often the rule is true when it applies. And lift specifies how much 
better the rule works rather than just guessing.

A better measure, however, is based on the chi-square value introduced in 
Chapter 3. This gives an indication of how likely it is that the rule is random—
and when this likelihood is very small, then the rule is important.

Association rules are very powerful and extensible. Using SQL, the simple 
one-way associations can be extended to two-way rules and beyond. Non-
product items, such as the state where the customer resides and other customer 
attributes, can be incorporated into the rules. With a relatively simple modifica-
tion, the same mechanism can generate sequential rules, where products occur 
in a specific order.

With association rules we have dived into the finest details of customer pur-
chase behavior. The next chapter moves back to the customer level, by using 
SQL to build basic data mining models on customers.
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Data mining is the process of finding meaningful patterns in large quantities 
of data. Traditionally, the subject is introduced through statistics and statisti-
cal modeling. This chapter takes an alternative approach that introduces data 
mining concepts using databases. This perspective presents the important 
concepts, sidestepping the rigor of theoretical statistics to focus instead on the 
most important practical aspect: data.

The next two chapters extend the discussion that this chapter begins. 
Chapter 12 covers linear regression, a more traditional starting point for 
modeling and data mining. Chapter 13 focuses on data preparation, often the 
most challenging part of a data mining endeavor.

Earlier chapters have already shown some powerful techniques implemented 
using SQL. Snobs may feel that data mining is more advanced than mere SQL 
queries. This sentiment downplays the importance of data manipulation, which 
lies at the heart of even the most advanced techniques. Some powerful tech-
niques adapt well to databases, and learning how they work—both in terms of 
their application to business problems and their implementation on real data—
provides a good foundation for understanding modeling. Some techniques do 
not adapt as well to databases, so they require more specialized software. The 
fundamental ideas about how to use models and how to evaluate the results 
remain the same, regardless of the sophistication of the modeling technique.

Earlier chapters contain examples of models, without describing them as 
such. The RFM methodology introduced in Chapter 8 assigns an RFM bin to 

C h a p t e r 

11

Data Mining Models in SQL



508 Chapter 11 ■ Data Mining Models in SQL

each customer; the estimated response rate of the RFM bin is a model score for 
estimating response. The expected remaining lifetime from a survival model is 
a model score. Even the expected value from the chi-square test is an example 
of a model score, produced by a basic statistics formula. What these have in 
common is that they all exploit patterns in data and apply the findings back to 
the original data or to new data, producing a meaningful result.

The first type of model in this chapter is the look-alike model, which takes 
an example—typically of something particularly good or bad—and finds other 
rows similar to the example. Look-alike models use a definition of similarity. 
Nearest-neighbor techniques are an extension of look-alike models that esti-
mate a value by combining information from similar records where the value 
is already known.

The next type of model is the lookup model, which summarizes data along 
various dimensions to create a lookup table. These models are quite powerful 
and fit naturally in any discussion of data mining and databases. However, they 
are limited to at most a handful of dimensions. Lookup models lead to naïve 
Bayesian models, a powerful technique that combines information along any 
number of dimensions, using some interesting ideas from the area of probability.

Before talking about these techniques, the chapter introduces important 
data mining concepts and the processes of building and using models. There 
is an interesting analogy between these processes and SQL. Building models 
is analogous to aggregation because both are about bringing data together to 
identify patterns. Scoring models is like joining tables—applying the patterns 
to new rows of data.

Introduction to Directed Data Mining

Directed data mining is the most common type of data mining. “Directed” 
means that the historical data used for modeling contains examples of the target 
values, so the data mining techniques have examples to learn from. Directed 
data mining also makes the assumption that the patterns in historical data are 
applicable in the future.

Another type of data mining is undirected data mining, which uses sophis-
ticated techniques to find patterns in the data without the guidance of a target. 
Without a target, the algorithm cannot determine if the results are good or bad; 
as a consequence, undirected data mining requires additional human judgment 
to assess the results. Association rules are one example of undirected data min-
ing. Other undirected techniques are typically more specialized, so this chapter 
and the next two focus on directed techniques.

t Ip The purpose of a directed model may be to apply model scores to new data or to 
gain better understanding of customers and what’s happening in the business.
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Directed Models
A directed model finds patterns in historical data by using examples where 
the answer is already known—how to take advantage of patterns in the input 
variables to approximate the target value. The process of finding the patterns 
is called training or building the model. The most common way to use the model 
is by scoring data to append a model score.

Sometimes, understanding gleaned from a model is more important than the 
model scores it generates. The models discussed in this book lend themselves 
to understanding, so they can contribute to exploratory data analysis as well as 
directed modeling. Other types of models, such as neural networks and sup-
port vector machines, are so complicated that they cannot readily explain how 
they arrive at their results. Such “black-box” models might do a good job of 
estimating values, but people cannot easily peek in and understand how they 
work or use them to learn about the data.

t Ip If understanding how a model works is important (which variables it is choos-
ing, which variables are more important, and so on), then choose techniques that 
produce understandable models. The techniques discussed in this book fall in this 
category.

The models themselves take the form of formulas and auxiliary tables that 
are combined to generate scores for any given record. The process of training 
the model generates the information needed for scoring. This section explains 
important facets of modeling, in the areas of data and evaluation.

As a note, the word “model” has another sense in databases. As discussed in 
Chapter 1, a data model describes the contents of a database, the way that the data 
is structured. A data mining model, on the other hand, is the result of a process 
that analyzes data and produces useful information about the business. Both 
types of model are about patterns, one about the structure of the database and 
the other about patterns in the content of the data, but otherwise they are two 
very different things.

The Data in Modeling
Data is central to the data mining process. It is used to build models; it is used 
to assess models; and it is used for scoring models. This section discusses the 
different uses of data in modeling.

Model Set

The model set, which is sometimes also called the training set, consists of historical 
data with known outcomes. It generally has the form of a table, with rows for 
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Figure 11-1:  A model set consists of records with data where the outcome is already known. The 
process of training a model assigns a score or educated guess, estimating the target.
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138.3S11999-06-082620000230
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This column is an id 
�eld that identi�es 
the rows.

These columns are input columns.

This column is the target 
we want to predict.

The data type of this column is not suitable for the 
techniques discussed in this chapter, but features can be
extracted from them.

. . . 

each example. Typically, each row is the granularity of what is being modeled, 
such as a customer.

The target is what we want to estimate; this is typically a value in one of the 
columns and is known for all the rows in the model set. Most of the remain-
ing columns consist of input columns. Figure 11-1 illustrates data in a possible 
model set.

The goal of modeling is to intelligently and automatically assign values to the 
target column using the values in the input columns. The specific techniques 
used for this depend on the nature of the data in the input and target columns, 
and the data mining technique.

From the perspective of modeling, each column contains values that are one 
of a handful of types.

Binary columns (also called flags) contain one of two values. These typi-
cally describe specific aspects about a customer or a product. For instance, the 
subscription data consists of customers who are active (on the cutoff date) or 
stopped. This would lend itself naturally to a binary column.

Category columns contain one of multiple, known values. The subscription 
data, for instance, has several examples, including market, channel, and rate plan.

Numeric columns contain numbers, such as dollar amounts or tenures. 
Traditional statistical techniques work best on such columns.

Date-time columns contain dates and time stamps. These are often the most 
challenging type of data to work with. They are often converted to tenures and 
durations for data mining purposes.
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Text columns (and other complex data types) contain important information. 
Some techniques are designed specifically for this type of data. However, these 
are not used directly in the process of modeling as described in this book. 
Instead, features of one of the other types are extracted, such as extracting the 
zip code from an address column.

Most of the techniques discussed in this chapter can handle missing values 
(represented as NULL). However, not all statistical and data mining techniques 
are able to handle missing values.

Score Set

Once a model has been built, the model can be applied to a score set, which has 
the same input columns as the model set, but does not necessarily have the target 
column. When the model is applied to the score set, the model processes the inputs 
to calculate the value of the target column, using formulas and auxiliary tables.

If the score set also has known target values, it can be used to determine 
how well the model is performing. The model set itself can be used as a score 
set. Note that models almost always perform better on the data used to build 
them than on unseen data, so performance on the model set is not indicative 
of performance on other data.

Warn Ing A model almost always works best on the model set. Do not expect 
the performance on this data to match performance on other data.

Prediction Model Sets versus Profiling Model Sets

One very important distinction in data mining is the difference between pro-
filing and prediction. This is a subtle concept because the process of building 
models and the applicable data mining techniques are the same for the two. 
The difference is solely in the data.

Each column describing a customer has a time frame associated with it, the 
“as-of” date when that datum becomes known. For some columns, such as mar-
ket and channel in the subscription data, the “as-of” date is when the customer 
starts because these are the original channel and market. Other columns, such 
as the stop date and stop type, have an as-of date of when the customer stops. 
A column such as total amount spent is accurate as of some cutoff date when 
the value was calculated. Unfortunately, the as-of date is not normally stored 
in the database, although it can often be imputed from knowledge about how 
data is loaded.

In a profiling model set, the input and target columns come from the same 
time period. That is, the as-of date of the target is similar to some of the inputs. 
For a prediction model set, the as-of date of the target is strictly later than all 
the input columns. The input columns are “before” and the target is “after.”
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Figure 11-2:  In a model set used for prediction, the target column represents data from a time 
frame strictly after the input columns. For a model set used for profiling, the target comes from 
the same time frame.

AugJulJunMayAprMarFebJan

Time frame for INPUT columns

Time frame for INPUT columns and TARGET

TAR-
GET

The model set for PREDICTION: Input columns are strictly before the target.

The model set for PROFILING: Input columns and target come from the same time frame. 

The upper part of Figure 11-2 shows a model set for prediction because the 
inputs come from an earlier time period than the target. The target might consist 
of customers who stopped during July or who purchased a particular product 
in July. The lower part of the chart shows a model set for profiling because the 
inputs and target all come from the same time period. The customers stopped 
during the same time period that the data comes from.

Building a model set for profiling, rather than for prediction, is usually easier 
because profiling does not care about the as-of date of the input columns. On 
the other hand, prediction model sets usually lead to better models. Because of 
the “before” and “after” structure of the data, they are less likely to find spuri-
ous correlations. An easy way to make prediction models is to limit the input 
columns to what is known when customers start. The downside is that such 
inputs are not as descriptive as customer behavior variables that use informa-
tion during the customer relationship.

To illustrate the distinction between profiling and prediction, consider a bank 
that wants to estimate the probability of customers responding to an offer to open 
investment accounts. The bank has customer summaries stored in a table with vari-
ous input columns describing the banking relationship—the balances in accounts 
of different types, dates when the accounts were opened, and so on. The bank also 
has a target column specifying which customers have an investment account.

The data contains at least one very strong pattern regarding investment 
accounts. Customers with investment accounts almost always have low sav-
ings account balances. On reflection, this is not so surprising. Customers with 
both investment accounts and savings accounts prefer to put their money in the 
higher yielding investment accounts. However, the reverse is not true. Targeting 
customers with low savings account balances to open investment accounts is a 
bad idea. Most such customers have few financial resources.

The problem is that the values in the input columns came from the same time 
period as the target, so the model is a profiling model. It would be better to take 
a snapshot of the customers before they opened an investment account, and to 
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use this snapshot for the input columns—of course, the model set would need 
to contain customers that did not open accounts after the snapshot as well. The 
better approach uses a prediction model set, rather than a profiling model set.

Examples of Modeling Tasks
This section discusses several types of tasks that models might be used for.

Similarity Models

Sometimes, the purpose of mining data is to find more instances similar to 
a given target instance. In this case, an entire row is the target, and the score 
represents the similarity between any given row and the target instance.

The target may be a made up ideal, or it might be an actual example. For 
instance, the highest penetration zip code for the purchase data is 10007, a 
wealthy zip code in Manhattan. A similarity model might use census demo-
graphics to find similar zip codes from the perspective of the census data. The 
assumption is that if a wealthy zip code is working well, then other similar zip 
codes should also work well. Marketing efforts can be focused on similar areas. 
What constitutes a “good” area might include financial data, education data, 
home values, and other features gathered by the Census Bureau.

Yes-or-No Models (Binary Response Classification)

Perhaps the most common problem addressed by modeling is assigning “yes” 
or “no.” This type of model addresses questions such as:

 ■ Who is likely to respond to a particular marketing promotion?

 ■ Who is likely to leave in the next three months?

 ■ Who is likely to purchase a particular product?

 ■ Who is likely to go bankrupt in the next year?

 ■ Which transactions are likely to be fraud?

 ■ Which visitors are likely to subscribe in the next day?

Each of these scenarios involves placing customers into one of two categories. 
Such a model can be used for:

 ■ Saving money by contacting customers likely to respond to an offer

 ■ Saving customers by offering an incentive to those likely to stop

 ■ Optimizing campaigns by sending marketing messages to those likely to 
purchase a particular product

 ■ Reducing risk by lowering the credit limit for those likely to go bankrupt



514 Chapter 11 ■ Data Mining Models in SQL

 ■ Reducing losses by investigating transactions likely to be fraud

Yes-or-no models are also called binary response models.

Yes-or-No Models with Propensity Scores

A very useful variation on yes-or-no models assigns a propensity to each cus-
tomer, rather than a specific classification. Everyone gets a “yes” score that 
varies from zero (definitely “no”) to one (definitely “yes”). One reason why a 
propensity score is more useful is that any particular number of customers can 
be chosen for a campaign by adjusting the threshold value. Values on one side 
of the threshold are “no” and values on the other side are “yes.” The model can 
choose the top 1%, or the top 40%, simply by varying the threshold.

Often, the propensity score is a probability estimate, which is even more use-
ful. A probability can be combined with financial information to calculate an 
expected dollar amount. With such information, a campaign can be optimized 
to achieve particular financial and business results.

t Ip When a model produces a probability estimate, the estimate can be multiplied by 
a monetary value to get an expected value for each customer/prospect being scored.

Consider a company that is sending customers an offer in the mail for a new 
product. From previous experience, the company knows that customers who 
order a new product generate an additional $200 during the first year, on aver-
age. Each item of direct mail costs $1 to print, mail out, and process. How can 
the company use modeling to optimize its business?

Let’s assume that the company wants to invest in expanding its customer 
relationships, but not lose money during the first year. The campaign then needs 
to address the following constraints:

 ■ Every customer contacted costs $1.
 ■ Every customer who responds is worth $200 during the first year.

 ■ The company wants to break even during the first year.

One responsive customer generates an excess value of $199 in the first year, 
which is enough money to contact an additional 199 customers. So, if one out 
of 200 customers (0.5%) respond, the campaign breaks even. To do this, the 
company looks at previous, similar campaigns and builds a model estimating 
the probability of response. The goal is to contact the customers whose expected 
response exceeds the break-even point of 0.5%.

Multiple Categories

Sometimes, two categories (“yes” and “no”) are not enough. For instance, con-
sider the next offer to make to each customer. Should this offer be in BOOKs or 
APPAREL or CALENDARs or something else?
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For a handful of categories, building a separate propensity model for each 
category is a good way to handle this. But then the question arises of how to 
combine the different propensity scores. One method is to assign to each cus-
tomer the product with the highest propensity score. Another approach is to 
multiply the propensity probabilities by the value of the product, and choose 
the product that has the highest expected value.

When the target category has many values, association rules (covered in 
Chapter 10) are probably a better place to start. Some of the most interesting 
information may be the products that have been purchased together.

Estimating Numeric Values

The final category is the traditional statistical problem of estimating numeric 
values. This might be a number at an aggregated level, such as the penetration 
within a particular area. Another example is the expected value of a customer 
over the next year. And yet another is tenure related, such as the number of 
days we expect a customer to be active over the next year.

There are many different methods to estimate real values, including regres-
sion and survival analysis.

Model Evaluation
Model evaluation is the process of measuring how well a model works. The best 
way is to compare the results of the model to actual results. How this comparison 
is made depends on the type of the target. This chapter covers several different 
methods of evaluating models.

When evaluating models, the choice of data used for the evaluation is very 
important. Models almost always perform better on the model set, the data used 
to build the model. Assuming that performance on the model set generalizes to 
other data is misleading. It is better to use a hold-out sample, called a test set, for 
model evaluation. For models built on prediction model sets, the best test set is 
an out-of-time sample; that is, data that is a bit more recent than the model set. 
However, such an out-of-time sample is often not available.

Warn Ing Evaluating models on the data used to build the model is cheating. 
Use a hold-out sample for evaluation purposes.

Look-Alike Models

The first modeling technique is look-alike models, which are used to measure 
similarity to a known good or bad instance.
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What Is the Model?
The look-alike model produces a similarity score. The model itself is a formula that 
describes the similarity, and this formula can be applied to new data. Typically, 
the purpose of a look-alike model is to choose some groups of customers or zip 
codes for further analysis or for a marketing effort.

The similarity measure cannot really be validated quantitatively. However, we 
can qualitatively evaluate the model by seeing if the rankings look reasonable 
and if the historical ranking of something we care about—such as response—is 
similar to the rankings provided by the similarity score.

What Is the Best Zip Code?
This example starts with the question: Which zip codes have the highest penetra-
tion of orders and what are some of their demographic characteristics? For practical 
purposes, the zip codes are limited to those with 1,000 or more households. The 
following query answers this question:

SELECT TOP 10 o.ZipCode, zc.Stab, zc.ZipName,
       COUNT(DISTINCT c.HouseholdId)/MAX(zc.tothhs*1.0) as penetration,
       MAX(zc.tothhs) as hh, MAX(zc.medianhhinc) as hhmedincome,
       MAX(zc.pctbachelorsormore) as collegep
FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId JOIN
     ZipCensus zc ON o.ZipCode = zc.zcta5
WHERE zc.tothhs >= 1000
GROUP BY o.ZipCode, zc.Stab, zc.ZipName
ORDER BY penetration DESC

Penetration is defined at the household level, by counting distinct values of 
HouseholdId within a zip code.

The top ten zip codes by penetration are all well-educated and wealthy (see 
Table 11-1). Which zip codes are similar to the zip code with the highest penetration? 
This question suggests a look-alike model.

The first decision with a look-alike model is to decide on the dimensions used 
for the comparison. For the statistically inclined, one interesting method might 
be to use principal components. However, using the raw data has an advantage 
because human beings can then understand each dimension.

The approach described in this section uses only two attributes of the zip 
codes, the median household income and the proportion of the population 
with a college education. The limit to two variables is for didactic reasons. Two 
dimensions can be plotted on a scatter plot. In practice, using more attributes 
is a good idea.

Figure 11-3 shows a scatter plot of the approximately 10,000 largish zip codes 
that have orders. The scatter plot has three symbols. The diamonds are the zip 
codes with the highest number of orders, the squares are in the middle, and 
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the triangles have the fewest orders. This scatter plot confirms that the highest 
penetration zip codes also seem to have high median household incomes and 
are well educated.

Alas, this scatter plot is potentially misleading because the three groups seem 
to differ in size. Many of the zip codes are in the big blob on the lower left-hand 
side of the chart—median income between $20,000 and $70,000 and college 
proportion between 20% and 50%. The three groups overlap significantly in 
this region. Because Excel draws one series at a time, a later series may hide the 
points in an earlier series, even when the symbols are hollow. The order of the 

Figure 11-3:  This scatter plot shows that the zip codes with the highest penetration do seem to 
have a higher median household income and higher education levels.

table 11-1: Ten Zip Codes with Highest Penetration

ZIp 
CODe State CItY

pene-
tratIOn

hOUSe-
hOLDS

hOUSehOLD 
MeDIan InCOMe

COLLege 
%

10021 NY New York 8.2% 23,377 $106,236 79.6%

07078 NJ Short Hills 5.4% 3,942 $234,932 87.2%

10004 NY New York 5.1% 1,469 $127,281 77.6%

10538 NY Larchmont 5.0% 5,992 $155,000 78.4%

90067 CA Los Angeles 5.0% 1,470 $82,714 53.6%

10504 NY Armonk 5.0% 2,440 $178,409 67.5%

10022 NY New York 4.8% 17,504 $106,888 79.5%

07043 NJ Upper Montclair 4.8% 4,300 $159,712 79.3%

10506 NY Bedford 4.8% 1,819 $173,625 71.7%

10514 NY Chappaqua 4.8% 4,067 $213,750 81.5%
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series affects how the chart looks. To change the order, select any of the series, 
right-click, and bring up the “Format Data Series” dialog box. The order of the 
series can be changed by selecting “Order” on the left pane.

Warn Ing When plotting multiple series on a scatter plot, one series may over-
lap another, hiding some or many points. Use the “Series Order” option to rearrange 
the series and see the hidden points. Of course, changing the order may cause other 
points to be hidden.

A Basic Look-Alike Model
Zip code 10021 has the highest penetration and the following characteristics:

 ■ Median household income is $106,236.

 ■ College rate is 79.6%.

The first attempt at a look-alike model simply calculates the distance from each 
zip code to these values using the Euclidean distance formula:

SQRT(SQUARE(medianhhincome – 106236)+SQUARE(pctbachelorsormore - 0.796))

The lower the score the better (i.e., more similar).
This model can be used to assign a similarity measure to all zip codes using SQL:

WITH oz as (
      SELECT zc.zcta5, 
             (COUNT(DISTINCT c.HouseholdId) /
              MAX(zc.tothhs*1.0) ) as penetration,
             zc.tothhs, zc.medianhhinc, zc.pctbachelorsormore
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId JOIN
           ZipCensus zc ON o.ZipCode = zc.zcta5
      WHERE zc.tothhs >= 1000
      GROUP BY zc.zcta5, zc.tothhs, zc.medianhhinc,
               zc.pctbachelorsormore
     )
SELECT TOP 10
       SQRT(SQUARE(oz.medianhhinc - zc10021.medianhhinc)+
            SQUARE(oz.pctbachelorsormore - zc10021.pctbachelorsormore)
           ) as dist, oz.*
FROM oz CROSS JOIN
     ZipCensus zc10021
WHERE zc10021.zcta5 = '10021'
ORDER BY dist ASC

Instead of hardwiring the values into the query, this version looks them up. 
Note that the oz CTE will be used in other queries in this section.
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Table 11-2 shows the ten closest zip codes by this measure. The median income 
for all these is right on the money, being very close to the value for 10021. On the 
other hand, the education levels vary rather widely. This is because the median 
income is measured in units of dollars with values going into the hundreds 
of thousands. The proportion of college educated is always less than one. The 
median household income dominates the calculation.

This is not a good thing. One variable is dominating the model.  One way to 
fix this problem is to normalize values by subtracting the minimum from each 
value and dividing by the range (the difference between the maximum and the 
minimum). A better approach borrows an idea from Chapter 3.

Look-Alike Using Z-Scores
Z-scores replace numeric values that have wildly different ranges with values 
on the same scale. The z-score is the difference between a value and the average 
value for that column, measured in standard deviations.

The following query calculates the standard deviation and average value for 
the household median income and the proportion of college graduates:

WITH oz as (<defined on page 518>)

SELECT AVG(medianhhinc) as avghhmedinc, STDEV(medianhhinc) as stdhhmedinc,

       AVG(pctbachelorsormore) as avgpctbachelorsormore,

       STDEV(pctbachelorsormore) as stdpctbachelorsormore

FROM oz

table 11-2: Ten Zip Codes Most Similar to 10021 (First Similarity Measure)

DIStanCe
ZIp 

CODe penetratIOn hOUSehOLDS

hOUSehOLD 
MeDIan 
InCOMe

COLLege 
%

0.0 10021 8.2% 23,377 $106,236 79.6%

2.0 55331 0.3% 6,801 $106,238 57.7%

12.0 20715 0.1% 8,707 $106,224 44.0%

14.0 23059 0.1% 11,736 $106,250 59.5%

14.0 11740 0.8% 3,393 $106,250 43.4%

17.0 01730 0.5% 4,971 $106,219 63.3%

61.0 60012 0.2% 3,776 $106,297 53.0%

74.0 19343 0.1% 2,761 $106,310 45.6%

82.0 91301 0.1% 9,209 $106,318 53.3%

82.0 96825 0.1% 10,699 $106,154 50.9%



520 Chapter 11 ■ Data Mining Models in SQL

This query uses the CTE oz defined in the previous query.
Because the model is restricted to zip codes that have at least 1,000 house-

holds, the z-scores are restricted to this group of zip codes as well. The 
values are:

 ■ HH median income: Average is $61,826; standard deviation is $25,866.50.

 ■ Proportion College Grads: Average is 32.3%; standard deviation is 16.9%.

A scatter plot using the z-scores instead of the original values would look almost 
exactly the same as the scatter plot already seen in Figure 11-3; the only differ-
ence is that the X- and Y-axes would have different scales. Instead of going from 
$0 to $200,000, the range for median household income would go from about 
–3 to +6. For the proportion of college graduates, the z-scores would go from 
about –1.9 to 4.0, rather than from 0% to 100%.

To apply the z-score to a look-alike model, both the comparison values and 
the rows being scored need to be transformed into z-score values. The following 
query uses this same logic to calculate the similarity score:

WITH oz as (<defined on page 518>),
     ozm as (
      SELECT AVG(medianhhinc) as avgmedianhhinc,
             STDEV(medianhhinc) as stdmedianhhinc,
             AVG(pctbachelorsormore) as avgpctbachelorsormore,
             STDEV(pctbachelorsormore) as stdpctbachelorsormore
      FROM oz
     ),
     ozs as (
      SELECT oz.*,
             ((oz.medianhhinc - ozm.avgmedianhhinc) / ozm.stdmedianhhinc
             ) as z_medianhhinc,
             ((oz.pctbachelorsormore - ozm.avgpctbachelorsormore) /
              ozm.stdpctbachelorsormore) as z_pctbachelorsormore
      FROM oz CROSS JOIN ozm
     )
SELECT TOP 10 ozs.*,
       SQRT(SQUARE(ozs.z_medianhhinc - ozs10021.z_medianhhinc) +
            SQUARE(ozs.z_pctbachelorsormore –
                   ozs10021.z_pctbachelorsormore)
           ) as dist
FROM ozs CROSS JOIN
     (SELECT ozs.* FROM ozs WHERE ozs.zcta5 = '10021') ozs10021
ORDER BY dist ASC

This query has a simple flow. The first CTE is the one we have already used. 
The second calculates the average and standard deviation for the variables. The 
third, ozs calculates the standardized values. These are then plugged into the 
distance formula to get the nearest values.
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Table 11-3 shows the ten closest zip codes using the z-scores for distance. 
All the zip codes in this table have similar median incomes and proportions 
of college graduates. The college proportion now varies from 78.3% to 81.9%, 
rather than from 44.0% to 79.6%. The household median incomes still cluster 
around the value for 10021.

The look-alike model finds the zip codes that look like 10021 along both 
these dimensions, so the results are much more reasonable. However, the 
penetrations for similar zip codes vary from 0.0% to 4.8%. The 0.0% is an 
anomaly. 10065 is a new zip code and actually has a high penetration for the 
products—it was created in 2007 after the product data was generated. The 
wide range suggests that look-alike zip codes may not be similar in terms of 
penetration. On the other hand, perhaps the look-alike zip codes should be 
similar, and these other zip codes represent lost opportunity, perhaps because 
fewer households in those zip codes have been included in prospecting cam-
paigns in the past.

Example of Nearest-Neighbor Model
Nearest-neighbor models are a variation on look-alike models. They use the 
measure of similarity to define a neighborhood of similar cases, and then sum-
marize the cases to estimate a value.

As an example, the following query estimates the penetration for zip code 
10021, using the similarity measure by median income and college proportion:

table 11-3: Ten Zip Codes Most Similar to 10021 (Z-Score Measure)

DIStanCe
ZIp 

CODe penetratIOn hOUSehOLDS

hOUSehOLD 
MeDIan 
InCOMe

COLLege 
%

0.00 10021 8.2% 23,377 $106,236 79.6%

0.03 10022 4.8% 17,504 $106,888 79.5%

0.04 94123 0.9% 13,774 $107,226 79.7%

0.05 10023 3.2% 32,610 $105,311 79.1%

0.08 10017 3.9% 10,111 $108,250 79.2%

0.10 02445 1.1% 8,645 $104,069 78.7%

0.10 10028 3.1% 24,739 $107,976 80.9%

0.14 10014 2.5% 18,496 $105,144 81.9%

0.15 22202 0.6% 11,217 $109,006 81.3%

0.16 10065 0.0% 18,066 $109,960 78.3%
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WITH oz as (<defined on page 518>),
     ozm as (<defined on page 520>),
     ozs as (<defined on page 520>)
SELECT AVG(penetration) as estpenetration
FROM (SELECT TOP 5 ozs.*,
             SQRT(SQUARE(ozs.z_medianhhinc - ozs10021.z_medianhhinc) +
                  SQUARE(ozs.z_pctbachelorsormore –
                         ozs10021.z_pctbachelorsormore)
                 ) as dist
      FROM ozs CROSS JOIN
           (SELECT ozs.* FROM ozs WHERE ozs.zcta5 = '10021') ozs10021
      WHERE ozs.zcta5 <> '10021'
      ORDER BY dist ASC
     ) neighbors

This query uses the same CTEs as the previous queries. The subquery pulls the five 
nearest neighbors and uses this information to calculate the estimated penetration.

A nearest-neighbor model consists of three things:

 ■ The table of known instances

 ■ A formula for calculating the distance from a new instance to the known 
values

 ■ A formula for combining the information from the neighbors into an 
estimate of the target

The methodology is reasonably efficient for scoring one row at a time. However, 
for scoring large numbers of rows, every row in the score set has to be compared 
to every row in the training set (unless special-purpose software is used), which 
can result in long-running queries.

Lookup Model for Most Popular Product

A lookup model partitions the data into non-overlapping groups, and then 
assigns a constant value within each group. Lookup models do not look like 
fancy statistical models, because they pre-calculate all the possible scores, rather 
than estimating coefficients for a complicated equation.

The first example of a lookup model finds the most popular product group 
in a zip code using the purchases data. This model is a profiling model, as 
opposed to a predictive model.

Most Popular Product
The most popular product group in a zip code is easy to determine. The model 
itself is a lookup table with two columns: a zip code and a product group. Using 
the model simply requires looking up the appropriate value in the table, using 
the customer’s zip code.



 Chapter 11 ■ Data Mining Models in SQL 523

Once upon a time, a company was customizing its email offers. One of the 
things known about prospects was their zip codes. The marketing idea was 
to customize each email by including information about products of potential 
interest to that geographic area. Prospects were indeed more interested in the 
most popular product in their neighborhood (as defined by zip code) than in 
random products.

Calculating Most Popular Product Group
An earlier chapter noted that BOOKs is the most popular product group. The 
following query is one way to determine this information:

SELECT TOP 1 p.GroupName
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId and
        p.GroupName <> 'FREEBIE'
GROUP BY p.GroupName
ORDER BY COUNT(*) DESC

This query aggregates the sales to get the count for each group. It then chooses 
the value with the highest count, using ORDER BY and TOP. This query does not 
include FREEBIE products, because they are not interesting for cross-selling 
purposes.

The most popular product is, in itself, a very simple model. However, we want 
to refine the model by zip code, resulting in a similar query:

SELECT ZipCode, GroupName
FROM (SELECT o.ZipCode, p.GroupName, COUNT(*) as cnt,
             ROW_NUMBER() OVER (PARTITION BY o.ZipCode
                                ORDER BY COUNT(*) DESC, p.GroupName
                               ) as seqnum
      FROM Orders o JOIN OrderLines ol ON o.OrderId = ol.OrderId JOIN
           Products p
           ON ol.ProductId = p.ProductId and
              p.GroupName <> 'FREEBIE'
      GROUP BY o.ZipCode, p.GroupName
     ) zg
WHERE seqnum = 1

This query aggregates the data by zip code and product group, and then assigns 
a sequential number using ROW_NUMBER(). This function assigns one to rows 
with the largest count for each zip code. If multiple groups are all equally the 
most common, then the query chooses the first one alphabetically. To get all of 
them, use RANK() or DENSE_RANK() instead of ROW_NUMBER().
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t Ip When looking for rows containing the minimum and maximum values in a table, 
always consider that there might be more than one matching row.

The result contains two columns: the zip code and the most popular product 
group. This is the lookup table needed for the model. This model is a profil-
ing model because the zip code and product group come from the same time 
frame. There is no “before” and “after.” Note that, the most popular product 
group has been defined as the one with the most orders. Other definitions are 
possible, such as the one with the most households purchasing it or the largest 
dollar amount per household.

Table 11-4 shows each product group and the number of zip codes where that 
group is the most popular. Not surprisingly, BOOKs wins in over half the zip 
codes, as shown by the following query:

SELECT GroupName, COUNT(*) as cnt
FROM (SELECT o.ZipCode, p.GroupName, COUNT(*) as cnt,
             ROW_NUMBER() OVER (PARTITION BY o.ZipCode
                                ORDER BY COUNT(*) DESC, p.GroupName
                               ) as seqnum
      FROM Orders o JOIN OrderLines ol ON o.OrderId = ol.OrderId JOIN
           Products p
           ON ol.ProductId = p.ProductId and
              p.GroupName <> 'FREEBIE'
      GROUP BY o.ZipCode, p.GroupName
     ) zg
WHERE seqnum = 1
GROUP BY GroupName
ORDER BY cnt DESC

This query is quite similar to the previous query, with the addition of the GROUP 
BY and aggregation function.

table 11-4: Number of Zip Codes Where Product Groups Are Most Popular

prODUCt grOUp nUMBer OF ZIpS % OF aLL ZIpS

BOOK 8,409 53.9%

ARTWORK 2,922 18.7%

OCCASION 2,067 13.2%

GAME 900 5.8%

APPAREL 771 4.9%

CALENDAR 404 2.6%

OTHER 123 0.8%
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Evaluating the Lookup Model
This model uses all the zip codes for determining the most popular product. 
There is no data left over to quantify how good the model is.

One idea for testing it would be to partition the data into two parts, one for 
determining the most popular product and the other for testing it. This strat-
egy of testing a model on a separate set of data is a good idea and important to 
data mining. The next section describes an alternative approach that is often 
more useful.

Using a Profiling Lookup Model for Prediction
The “most popular product” model just created is a profiling model because 
the target (the most popular product group) comes from the same time frame 
as the input (the zip code). This is the nature of the model and the model set 
used to create it. However, it is possible to use a profiling model for prediction 
by making a small assumption.

The assumption is that the most popular product group prior to 2016 is the 
most popular after 2016. This assumption also requires building the model—
still a profile model because of the dataset—using data prior to 2016. The only 
modification to the query is to add the following WHERE clause to the innermost 
subquery:

WHERE OrderDate < '2016-01-01'

The model now finds the most popular product group prior to the cutoff date.
A correct classification matrix is used to evaluate a model that classifies custom-

ers. It is simply a table where the modeled values are on the rows and the cor-
rect values are across the columns (or vice versa). Each cell in the table consists 
of the count (or proportion) of rows in the score set that have that particular 
combination of model prediction and actual result.

Figure 11-4 shows a classification matrix, where the rows contain the predicted 
product group (the most popular group prior to 2016) and the columns contain 

Figure 11-4:  This classification matrix shows the number of zip codes by the predicted and actual 
most popular product group in 2016. The highlighted cells are where the prediction is correct.
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the actual product group (the most popular after 2016). Each cell contains the 
number of zip codes with that particular combination of predicted and actual 
product groups. All the zip codes in the table have orders in the model set (prior 
to 2016) and the score set (after 2016). For 1,406 zip codes, BOOK is predicted to 
be the most popular product and it is actually BOOK. For an additional 1,941 
zip codes (483 + 938 + 303 + 149 + 30 + 38), BOOK is predicted to be the most 
popular and it is not.

The cells in the table where the row and the column have the same value are 
shaded using Excel’s conditional formatting capability, as explained in the aside 
“Conditional Formatting in Excel.”

Although BOOK is still the most popular product group in 2016, its popular-
ity is waning. If we totaled the values across the rows, BOOK consists of about 
70% of the predicted values. However, if we total the rows across the columns, 
BOOK accounts for only about 40% of the actual values.

How well is the model doing? In this case, not so well. The model does well 
when its prediction agrees with what actually happens. So, there are 1,406 + 
89 + 227 + 25 + 16 + 4 + 1 = 1,768 zip codes where the prediction matches what 
actually happened. This comes to 37.4% of the zip codes. This is much better 
than randomly guessing one out of seven categories. However, it is doing worse 
than just guessing that BOOK is going to be the most popular.

Using Binary Classification Instead
BOOK is so popular that we might tweak the model a bit, to look just for BOOK 
or NOT-BOOK as the most popular category, grouping all the non-book products 
together into a single value. To do this in SQL, replace the innermost references 
to product group with the following CASE statement:

(CASE WHEN GroupName = 'BOOK' THEN 'BOOK' ELSE 'NOT-BOOK' END) as GroupName

Not surprisingly, this model performs better than the categorical model, as 
shown in the classification matrix in Table 11-5. Now, the model is correct for 
576 + 2,195 zip codes (58.4% versus 37.4%). In particular, the model does a better 
job predicting NOT-BOOK, where it is correct 73.6% of the time versus only 
32.5% when it predicts BOOK.

table 11-5: Classification Matrix for BOOK or NOT-BOOK

aCtUaL

preDICteD BOOK nOt-BOOK

BOOK 567 1,179

NOT-BOOK 786 2,195
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COnDItIOnaL FOrMattIng In exCeL

Excel has the ability to format each cell based on the value in the cell. That is, the bor-
der, color, and font in the cell can be controlled by the contents of the cell or even by a 
formula that refers to other cells. This conditional formatting can be used to highlight 
cells, as shown in Figure 11-4.

Conditional formatting comes in several flavors, the most common are formatting by 
the value in the cell or by a formula. The “Conditional Formatting” dialog box is accessed 
in one of three ways: using the Format  Conditional Formatting menu option; using the 
Condition Formatting icon on the Home ribbon; or using the key sequence Alt+O, Alt+D.

To highlight cells with particular values, use formatting by a value. For instance, in a 
table showing chi-square values, the cells with a chi-square value exceeding a threshold 
can be given a different color. To do this, bring up the “Conditional Formatting” dialog 
box, click the “+” on the lower left to define a new rule. Then, choose the “Format only 
cells that contain” option, and set the condition. Then set the appropriate format.

Using a formula provides even more power. When the formula evaluates to true, the 
formatting gets applied. For instance, the shaded format in Figure 11-4 is when the name 
of the row and the name of the header have the same value: 

=($I42 = J$41)

Where row 41 has the column names and column “I” has the row names. The formula uses “$” 
to ensure that the formula can be correctly copied to other cells. When copied, cell references 
in a conditional formatting formula change just like cell references for a regular formula.

Conditional formatting can be used for many things. For instance, to color every 
other row, use:

=MOD(ROW(), 2) = 0

To color every other column, use:

=MOD(COLUMN(), 2) = 0

To create a checkerboard pattern, use:

=MOD(ROW() + COLUMN(), 2) = 0

These formulas use the ROW() and COLUMN() functions, which return the current row and 
current column of the cell. To create a random pattern, with about 50% of the cells shaded, use:

=rand() < 0.5

Conditional formatting can also be used to put borders around regions in a table. Say 
column C has a key in a table that takes on repeated values and then changes. To put a 
line between blocks of similar values, use the following condition in the cells on row 10:

=($C10 <> $C11)

This says to apply the formatting when cell C11 has a different value from C10. If you 
make the formatting the bottom border and copy this over a range of cells, then hori-
zontal lines appear between the different groups.

Using the paintbrush copies the conditional formatting as well as the overall for-
matting, so it is easy to copy formats from one cell to a group of cells.
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The number of zip codes where BOOK is the most popular before and after has 
dropped from 1,406 to 576. These 576 zip codes are where the majority of orders 
are in BOOK. The rest are where BOOK has the most orders, but not over 50%.

This example shows a modeling challenge. When working with two categories 
of about the same size, binary models often do a pretty good job of distinguish-
ing between them. When working with multiple categories, a single model can 
be less effective.

Another challenge in building a model is the fact that BOOK is becoming 
less popular as a category over time, relative to the other categories. (More 
optimistically, the other categories are growing in popularity.) There is a big 
word to describe this situation, nonstationarity, which means that patterns in 
the data change over time. Nonstationarity is the bane of data analysis, but is, 
alas, quite common in the real world.

Warn Ing When building models, we assume that the data used to build the 
model is representative of the data used when scoring the model. This is not always the 
case, due to changes in the market, in the customer base, in the economy, and so on.

Lookup Model for Order Size

The previous model was a lookup model for classification, both for multiple 
classification and binary classification. The lookup itself was along a single 
dimension. This section uses lookup models for estimating a real number. It starts 
with the very simplest case, no dimensions, and builds the model up from there.

Most Basic Example: No Dimensions
Another basic example of a lookup model is assigning an overall average value. 
For instance, we might ask the question: Based on purchases in 2015, what do we 
expect the average order size to be in 2016? The following query answers this ques-
tion, by using the average of all purchases in 2015:

SELECT YEAR(o.OrderDate) as year, AVG(o.TotalPrice) as avgsize
FROM Orders o
WHERE YEAR(o.OrderDate) in (2015, 2016)
GROUP BY YEAR(o.OrderDate)
ORDER BY year

This query gives the estimate of $86.07. This is a reasonable estimate, but it is a 
bit off the mark because the actual average in 2016 is $113.19. The average could 
change for many reasons, perhaps all the prices went up, or customers ordered 
more expensive products, or customers ordered more products, or better customers 
placed orders, or for some other reason. Or, more likely, some combination of these.
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This example is a predictive model. The average from 2015 is being used to 
estimate the value in 2016. This is a big assumption, but not unreasonable. Let’s 
see what happens as we add more dimensions.

Adding One Dimension
The following query calculates the average by state:

SELECT State,

       AVG(CASE WHEN YEAR(OrderDate) = 2015 THEN TotalPrice END) as avg2015,

       AVG(CASE WHEN YEAR(OrderDate) = 2016 THEN TotalPrice END) as avg2016

FROM Orders o

WHERE YEAR(OrderDate) in (2015, 2016)

GROUP BY State

This query uses the AVG() function with a CASE statement to calculate the aver-
ages for 2015 and 2016. The CASE statement quite intentionally does not have an 
ELSE clause. Rows that do not match the WHEN condition are given a NULL value, 
which is ignored for the average. Of course, using ELSE NULL would have the 
same effect with more typing. The results from this query are a lookup table.

A good score set for evaluating the model is orders in 2016. Applying the 
model means joining the score set to the lookup table by state. One caveat is 
that some customers may be in states that did not place orders in 2015. These 
customers need a default value, and a suitable value is the overall average order 
size in 2015.

The following query attaches the estimated order size for 2016 onto each row 
in the score set:

SELECT toscore.*,
       COALESCE(statelu.avgamount, defaultlu.avgamount) as predamount
FROM (SELECT o.*
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2016) toscore LEFT OUTER JOIN
     (SELECT o.State, AVG(o.TotalPrice) as avgamount
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2015
      GROUP BY o.state) statelu
     ON o.State = statelu.State CROSS JOIN
     (SELECT AVG(o.TotalPrice) as avgamount
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2015) defaultlu

The dataflow diagram for this query, shown in Figure 11-5, has three sub-
queries. The first is for the score set that chooses orders from 2016. The 
second two are the lookup tables, one for state and one for the default value 
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Figure 11-5:  This dataflow diagram shows the processing needed for scoring a lookup model 
with one dimension.
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(when no state matches). These lookup tables use the orders from 2015 to 
calculate values.

Comparing the average predicted amount to the average actual amount is an 
overall measure of how good the model is doing:

SELECT AVG(predamount) as avgpred, AVG(totalprice) as avgactual
FROM (<lookup-score-subquery>) subquery

This query uses the previous lookup score query as a subquery. The overall 
average by state is similar to the average overall. The structure of the query 
makes it easy to evaluate different dimensions by replacing state with another 
column name.

Table 11-6 shows the average amounts for various different dimensions, 
including channel, zip code, payment type, and month of order. What stands 
out is that the actual value is much larger than the predicted values—it appears 
that the order sizes are getting larger, and none of these variables explains 
what changed.
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table 11-6: Performance of Various One-Dimensional Lookup Models

DIMenSIOn preDICteD 2016 aCtUaL 2016

State $85.89 $113.19

Zip Code $88.21 $113.19

Channel $86.49 $113.19

Month $88.05 $113.19

Payment Type $87.22 $113.19

Adding More Dimensions
Adding more dimensions is a simple modification to the basic query. The fol-
lowing query uses month and zip code as the dimensions:

SELECT toscore.*,
       COALESCE(dimllu.avgamount, defaultlu.avgamount) as predamount
FROM (SELECT o.*, MONTH(o.OrderDate) as mon
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2016
     ) toscore LEFT OUTER JOIN
     (SELECT MONTH(o.OrderDate) as mon, o.ZipCode,
             AVG(o.TotalPrice) as avgamount
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2015
      GROUP BY MONTH(o.OrderDate), o.ZipCode
     ) dimllu
     ON toscore.mon = dimllu.mon AND
        toscore.ZipCode = dimllu.ZipCode CROSS JOIN
     (SELECT AVG(o.TotalPrice) as avgamount
      FROM Orders o
      WHERE YEAR(o.OrderDate) = 2015
     ) defaultlu

The structure of the query is the same as the query for one dimension. The only 
differences are changes related to the additional column in the dim1lu subquery.

With the lookup table, the average rises to $90.76. The two-dimensional lookup 
table does a better job, but the average is still off from the actual value.

Examining Nonstationarity
As shown in Table 11-7, the average order size is increasing from year to year. 
Without taking into account this yearly increase, estimates based on the past 
are not going to work so well. This is an example of nonstationarity.
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table 11-7: Average Order Size Varies Over Time

Year average OrDer SIZe Change Year Over Year

2009 $34.14

2010 $52.24 53.0%

2011 $51.35 −1.7%

2012 $68.40 33.2%

2013 $74.98 9.6%

2014 $70.62 −5.8%

2015 $86.07 21.9%

2016 $113.19 31.5%

What is causing this change is perhaps a mystery. A likely reason is that prices 
increase from year to year. Alternatively, the product mix could be changing 
(more ARTWORK and fewer CALENDARs). Perhaps customers’ initial orders 
are smaller than repeat orders, and the number of repeat orders (as a proportion 
of the total) increases from year to year. There are many possible reasons. So 
far, we have determined that variations in state, zip code, channel, price, and 
market from one year to the next only explain a small part of the difference 
from 2015 to 2016.

We could make an adjustment. For instance, note that the average purchase 
size increased by 22% from 2014 to 2015. If we increased the 2015 estimate by 
the same amount, the result would be much closer to the actual value.

Of course, to choose the appropriate factor it helps to understand what is 
happening. This requires additional understanding of the data and of the 
business.

Evaluating the Model Using an Average Value Chart
An average value chart is used to visualize model performance for a model 
with a numeric target, such as the look up models just created. The average 
value chart breaks customers into equal sized groups, based on the customers’ 
predicted values. It might divide the customers into deciles, ten equal-sized 
groups, with the first one consisting of customers with the highest predicted 
order amounts, and the next highest in the second decile, and so on. The chart 
then shows the average of the predicted value and the average of the actual 
value for each decile.

Figure 11-6 shows an example for the lookup model using month and zip 
code as dimensions. The dotted line is the predicted average amount in each 
decile. It starts high and then decreases, although the values for deciles two 
through seven are flat.
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The actual values look quite different. They are basically a horizontal line, 
indicating the lack of a relationship between the predicted amount and the actual 
amount. The average value chart shows visually that the model is doing a poor 
job of estimating the actual values because the actual values and the predicted 
values appear to have little relationship to each other.

The goal in the average value chart is for the actual values to correspond at 
least somewhat to the predicted values. Figure 11-7 shows a better model, which 
uses channel, payment type, and customer gender. Although the actual values 
are still (generally) higher than the predicted values, the deciles are generally 
doing what we expect. The actual values are higher when the predicted values 
are higher and lower when the predicted values are lower. Overall, this model 
does a much better job than the previous one.

Figure 11-6:  This average value chart is for a model that does not work for predicting the size of 
2016 orders. This is apparent because the actual values are nearly a horizontal line.

Figure 11-7:  This average value chart uses channel, payment type, and customer gender. Here, 
the model is working better because the actual values are decreasing as the predicted values 
decrease.
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One observation about both models is that the actual values are almost always 
higher than the predicted values. This is a result of the fact that order sizes in 
2016 are larger than in 2015.

Creating an average value chart starts by assigning a decile to customers in the 
score set, based on the predicted amount. For each decile, the averages of the pre-
dicted value and of the actual value are calculated using basic aggregation functions:

SELECT decile, AVG(predamount) as avgpred, AVG(totalprice) as avgactual
FROM (SELECT lss.*, NTILE(10) OVER (ORDER BY predamount DESC) as decile
      FROM (<lookup-score-subquery>) lss
     ) s
GROUP BY decile
ORDER BY decile

This query uses the scoring subquery to get the predicted amount. The middle 
level uses the NTILE()window function to divide the scores into ten equal-sized 
groups (although this could use other window functions as well, as we have 
seen in other examples for creating quantiles). The outermost level calculates the 
average for the predicted amount and average amount for each of the groups.

Lookup Model for Probability of Response

This section considers a different sort of problem, related to the subscription data. 
What is the probability that a customer who starts in 2005 is going to last for one year?

The Overall Probability as a Model
The way to start thinking about this problem is to consider all customers who 
start in 2004 and ask how many of them survive for exactly one year. Using 
one year of starts dampens seasonal effects occurring within a year. Also, the 
subscription table has no stops prior to 2004, limiting how far back in time we 
can go.

Chapter 8 addressed several different methods for looking at survival and 
retention. This section looks only at the point estimate after one year, as calcu-
lated by the following query:

SELECT AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                THEN 1.0 ELSE 0 END) as stoprate
FROM Subscribers
WHERE YEAR(StartDate) = 2004

Customers who stop within one year have tenures less than one year and a non-
NULL stop type. Strictly speaking, the test for stop type is unnecessary, because 
all customers who both start in 2004 and have tenures less than 365 are stopped.
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This query uses AVG() to calculate the proportion of customers who stop. The 
argument to the average is 1.0, rather than 1, because some databases return 
the average of an integer as an integer rather than as a real number. In such 
databases, the integer average would always be zero except when all customers 
stop within their first year.

Of the customers who start in 2004, 28.0% stop during the first year after they 
start. Given a new customer who starts in 2005, the best guess for that customer’s 
stop rate during the first year is 28.0%.

The actual stop rate for 2005 starts is 26.6%, which is similar to the rate in 
2004. This supports using the 2004 data to develop a model for 2005.

Exploring Different Dimensions
Five dimensions in the subscription data are known when customers start:

 ■ Channel

 ■ Market

 ■ Rate Plan

 ■ Initial Monthly Fee

 ■ Date of Start

These are good candidates for modeling dimensions. Although the monthly fee 
is numeric, it only takes on a handful of values.

The following query calculates the stop rate by channel:

SELECT Channel,
       AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                THEN 1.0 ELSE 0 END) as stoprate
FROM Subscribers
WHERE YEAR(StartDate) = 2004
GROUP BY Channel

The result is a lookup table that has the expected stop rate for different channels.
The lookup table is a model. To score data with the lookup table, it needs to be 

joined back to a score set. The following query calculates the probability that a 
customer who starts in 2005 is going to leave, using the channel for the lookup:

WITH toscore as (

      SELECT s.*,

             (CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                   THEN 1 ELSE 0 END) as is1yrstop

      FROM Subscribers s

      WHERE YEAR(StartDate) = 2005

     ),

     lookup as (

       SELECT Channel,
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              AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                       THEN 1.0 ELSE 0 END) as stoprate

       FROM Subscribers

       WHERE YEAR(StartDate) = 2004

       GROUP BY Channel

      ),

      defaultlu as (

       SELECT AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                       THEN 1.0 ELSE 0 END) as stoprate

       FROM Subscribers

       WHERE YEAR(StartDate) = 2004

      )

SELECT toscore.*, COALESCE(lookup.stoprate, defaultlu.stoprate) as predrate

FROM toscore LEFT OUTER JOIN

     lookup

     ON toscore.channel = lookup.channel CROSS JOIN

     defaultlu

The common table expressions define the three different result sets needed for 
the query: the records being scored, the lookup table by channel, and the default 
lookup value if the channel does not match. This query takes into account the 
fact that there might be no matching channel.

The process of scoring is the process of bringing this data together—using 
joins. The COALESCE() function chooses either the value from the channel lookup 
or the default value. In this case, the defaultlu is superfluous because all chan-
nels are represented in both years.

The following query calculates the overall stop rate and the predicted stop rate:

WITH . . .,
     Scored as (<previous query here>)
SELECT AVG(predrate) as predrate, AVG(1.0 * is1yrstop) as actrate
FROM scored

In this query, the previous query is referred to as the CTE scored.
The model works very well overall. In fact, the query predicts an overall 

stop rate of 27.2%, which is quite close to the actual rate. However, Table 11-8 
shows that the model does not work so well within each channel, especially 
for the chains.

table 11-8: Actual and Predicted Stop Rates by Channel for 2005 Starts, Based on 2004 Starts

ChanneL preDICteD aCtUaL DIFFerenCe

Store 16.3% 17.6% −1.3%

Chain 41.0% 24.0% 17.0%

Mail 36.8% 34.6% 2.2%

Dealer 25.0% 27.0% −2.1%
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Warn Ing Just because a model works well overall does not mean that the 
model works well on all subgroups of customers.

How Accurate Are the Models?
Table 11-9 compares the overall predicted stop rates and actual stop rates of one-
dimensional lookup models, using each of five different dimensions. All the 
models do a reasonable job of estimating the overall stop rate. Notice that the 
accuracy of the models does not necessarily improve as the number of values 
in the dimension increases.

A reasonable business goal is to identify a group of customers that has a 
much greater chance of stopping than other customers, in order to offer them 
incentives to remain. Such incentives cost money, suggesting: How many custom-
ers who actually stop are captured by the model in the top ten percent of model scores?

This question motivates the cumulative gains chart, which is used to visualize 
model performance for models on binary targets. The cumulative gains chart 
provides a visual answer to the question. Its cousin, the ROC chart (described 
in the next section), also provides some very useful measures.

On a cumulative gains chart, the horizontal axis is a percentage of customers 
chosen based on the model score, ranging from 0% to 100%. The highest scoring 
customers are chosen first—in the left-most decile, so to speak—and the lower 
scoring customers are on the right. The vertical axis measures the proportion of 
the actual target found cumulatively in that group of customers, ranging from 0% 
(none of the desired target) to 100% (all of the desired target). The curves start at 
the lower left at 0% on both axes and rise to the upper right to 100% on both axes. 
If the model assigned a random score to customers, the cumulative gains chart is 
a diagonal line. The cumulative gains chart is useful because the horizontal axis 
measures the cost of a campaign (each person contacted costs money). The vertical 
axis measures the benefit (each responder is worth a certain amount of money).

Figure 11-8 shows a cumulative gains chart for the channel lookup model for 
stops. The horizontal axis is the percentage of customers with the highest scores. 

table 11-9: Actual and Predicted Stop Rates by Modeling Dimension for 2005 Starts, Based on 
2004 Starts

DIMenSIOn
nUMBer OF 

vaLUeS preDICteD aCtUaL DIFFerenCe

Channel 4 27.2% 26.6% 0.58%

Market 3 27.1% 26.6% 0.54%

Rate Plan 3 27.8% 26.6% 1.27%

Monthly Fee 25 23.1% 26.6% −3.46%

Month 12 29.0% 26.6% 2.40%



538 Chapter 11 ■ Data Mining Models in SQL

Figure 11-8:  This cumulative gains chart shows the performance of the channel model on both 
the model set (2004 starts) and on the score set (2005 starts).

So, 10% represents the top decile of all customers; 20% represents the top two 
deciles. The vertical axis is the percentage of stoppers captured by that segment 
of customers.  Sometimes this curve is called the cumulative captured response curve.  
This mouthful does a good job of expressing what the curve really is doing.

The chart has three curves. The best one, on the top, shows the performance 
of the model on the data used to build it. Models generally perform best on the 
model set. The middle curve is for the test set using 2005 starts, and the straight 
line is a reference assuming no model. For instance, the point at the 25% mark on 
the 2005 curve says that the top 25% of customers with the highest model score 
captures 28.6% of the customers who stop. Lift is one way to measure how well 
the model is working. At the 25% mark the lift is 28.6% / 25% = 114.4%. Note 
that lift always declines to one as the percentage moves toward 100%.

A cumulative gains chart is a good way to compare models. Figure 11-9 shows 
the chart for several lookup models on the test set of 2005 starts. The cumulative 
gains chart can also be used to select how many customers are needed to get a 
certain number of customers expected to have the target value.

The curves in these charts chart are based on a summary of the data, shown 
in Table 11-10:

 ■ The quantile, which divides the customers into equal-sized groups based on 
the model score (the charts in the text divide the customers into percentiles)

 ■ The predicted stop rate for the quantile (the average model score)

 ■ The predicted number of stops (the average model score times the number 
of customers)

 ■ The predicted and actual stop rate for the quantile

 ■ The cumulative number of actual stops up to and including the quantile 
and the cumulative stop rate

 ■ The lift of actual stops compared to no model
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Figure 11-9:  Cumulative gains charts for five models using 2005 charts are a good way to 
compare the performance of different models.

Only the first and last of these are used for the cumulative gains chart. The 
other information is helpful for understanding model performances and useful 
for creating other charts.

The following steps calculate the information in the table:

 1. Apply the model to the score set to obtain the predicted stop rate.

 2. Divide the scored customers into ten (or whatever) equal sized groups.

 3. Calculate the summary information for each group.

table 11-10: Summary Information for Cumulative Gains Chart

nUM StOpS StOp rate CUMULatIve StOpS

LIFtDeCILe preDICteD aCtUaL preDICteD aCtUaL nUMBer rate prOp

1 52,722.6 31,701 40.8% 24.5% 31,701 24.5% 9.2% 0.92

2 47,558.7 43,837 36.8% 33.9% 75,538 29.2% 22.0% 1.10

3 42,297.0 41,149 32.7% 31.8% 116,687 30.1% 34.0% 1.13

4 32,281.6 37,021 25.0% 28.6% 153,708 29.7% 44.7% 1.12

5 32,281.6 37,199 25.0% 28.8% 190,907 29.5% 55.6% 1.11

6 32,281.6 35,847 25.0% 27.7% 226,754 29.2% 66.0% 1.10

7 32,281.6 32,016 25.0% 24.8% 258,770 28.6% 75.3% 1.08

8 32,281.6 34,459 25.0% 26.7% 293,229 28.4% 85.3% 1.07

9 25,996.2 26,910 20.1% 20.8% 320,139 27.5% 93.2% 1.04

10 21,078.2 23,478 16.3% 18.2% 343,617 26.6% 100.0% 1.00
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These steps are just another layer of query built on top of the previous query 
for getting scored results:

SELECT decile, COUNT(*) as numcustomers, SUM(is1yrstop) as numactualstops,

       SUM(predrate) as predactualstops,

       AVG(is1yrstop * 1.0) as actualstop, AVG(predrate) as predrate

FROM (SELECT SubscriberId, predrate, is1yrstop,

             CEILING(10 * (ROW_NUMBER() OVER (ORDER BY predrate DESC) - 1) /

                     COUNT(*) OVER ()) as decile

      FROM scored

     ) s

GROUP BY decile

ORDER BY decile

The calculation starts by assigning the quantile, which could also be done 
using the window ranking function NTILE(). Within each quantile, the 
query counts the number of customers who do actually stop and estimates 
the number of predicted stops by taking the average predicted stop rate 
and multiplying it by the number of customers in the quantile. The cumu-
lative number of stops is calculated in Excel, although SQL can also do the 
calculation.

ROC Charts and AUC
These three-letter acronyms are another method for visualizing and measur-
ing the effectiveness of models. The first, the ROC chart, is a cousin of the 
cumulative gains chart. The second acronym, AUC, stands for “area under 
the curve,” the curve in question being the ROC curve. The technical aside 
“Receiver Operating Characteristics,” discusses the naming and history for 
this chart.

The ROC curve has two advantages over the cumulative gains chart. The first 
is that the area under the curve is a good measurement of how well the model 
is performing. The second is that the ROC curve is independent of “oversam-
pling.” This means that the ROC curve should not change if the score set has a 
target density of 10%, 50%, or 90%. The cumulative gains chart (and the lift as 
well) shifts for different densities of the target.

Creating an ROC Chart

Perhaps the easiest way to understand the ROC chart is by comparison to the 
cumulative gains chart. The horizontal axis on the cumulative gains chart 
divides the entire score set into deciles based on the model score. The entire 
score set includes customers who both responded and did not respond—or 
who stopped and stayed active.  The top decile is the decile of all customers 
with the top score.
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The ROC chart is subtly different. The horizontal axis only considers the records 
that are classified as “no.” So the top decile is the top ten percent of customers 
who have a “no” value—meaning that the model is wrong for these customers. 
The vertical point is the same as for the cumulative gains chart, which explains 
why the ROC chart and the cumulative gains chart look so similar.

The SQL to calculate the points on the ROC chart is quite similar to the SQL 
for the cumulative gains chart:

WITH . . .
     Scored (<defined on page 536>)
SELECT decile, COUNT(*) as numcustomers,
       SUM(is1yrstop) as numactualstops,
       SUM(predrate) as predactualstops,
       AVG(is1yrstop * 1.0) as actualstop, AVG(predrate) as predrate,
       (SUM(SUM(is1yrStop) * 1.0) OVER (ORDER BY decile) /
            SUM(SUM(is1yrStop)) OVER ()) as CumStops
FROM (SELECT SubscriberId, predrate, is1yrstop,
             CEILING(10 *
                     (SUM(1 - is1yrstop) OVER (ORDER BY predrate DESC,
                                                    SubscriberId DESC) - 1) /
                      SUM(1 - is1yrstop) OVER ()
                    ) as decile
      FROM scored
     ) s
GROUP BY decile
ORDER BY decile

The main difference is the decile calculation, which for ROC curves is based 
only on the stops. Figure 11-10 shows the ROC curves for the five models shown 
in Figure 11-9.

Figure 11-10:  This chart shows the ROC curves for five models using one variable predicting 
stops on the survival data.
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Calculating Area under the Curve (AUC)

The area under the ROC curve happens to be a good measure of how well a 
model is working. It is easily calculated using the sum of cumstops from the 
previous query:

WITH . . .
     Scored (<defined on page 536>)
SELECT decile, COUNT(*) as numcustomers,
       SUM(is1yrstop) as numactualstops,
       SUM(predrate) as predactualstops,
       AVG(is1yrstop * 1.0) as actualstop, AVG(predrate) as predrate,
      (SUM(SUM(is1yrStop) * 1.0) OVER (ORDER BY decile) /
           SUM(SUM(is1yrStop)) OVER ()) as CumStops

reCeIver OperatIng CharaCterIStICS

Radar was invented some time before World War II. During the war, it was refined and 
proved very valuable for detecting approaching aircraft. Alas, in those days, radars were 
also very good at detecting approaching flocks of birds. And, to further complicate 
things, the distinction between friendly airplanes and enemy aircraft was rather subtle.

So, the Department of Defense had a problem. How could it train radar operators 
to distinguish between the friendly, the benign, and the dangerous? And the training 
department had its own problem: How would it know if the trainings were effective?

This latter question is remarkably similar to the problem of measuring how good 
a model is—instead of a human operator marking incoming trails on a radar as “bad” 
(enemy aircraft) or “something else,” a model does a similar assignment automatically. 
The same process can be used to measure how good the assignment is.

Two key characteristics for the operators were sensitivity and specificity:

 ■ Sensitivity is the proportion of items of interest (enemy aircraft, in this case) 
correctly identified by the operator.

 ■ Specificity is the proportion of items actually of interest out of all the items an 
operator identified.

Note that 100% sensitivity is possible, simply by identifying everything as enemy air-
craft. But, this isn’t a very good assignment, because the specificity is quite low.

Part of the evaluation plotted sensitivity against 1 – specificity. Not only is this 
hard to pronounce, but the language tends to obscure what is actually happening. 
Sensitivity is pretty easy to understand because it is the proportion of enemy aircraft 
that are assigned properly.

1 – specificity is also easy to understand, but in a different way. It measures nega-
tives—the proportion of non-items of interest mislabeled by the process. That is, how 
often a flock of birds is labeled an enemy aircraft.

The ROC chart plots the proportion of “correct positive” predictions on the vertical axis 
for a given proportion of negative predictions on the horizontal axis. The result is something 
very similar to the cumulative gains chart, but with the advantages explained in the text.
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FROM (SELECT SubscriberId, predrate, is1yrstop,
             CEILING(10 *
                     (SUM(1 - is1yrstop) OVER (ORDER BY predrate DESC,
                                               SubscriberId DESC) - 1) /
                      SUM(1 - is1yrstop) OVER ()
                     ) as decile
      FROM scored
     ) s
GROUP BY decile
ORDER BY decile

The result varies from 0 (for a really bad model) to the number of deciles. The 
result should really be an average, divided by 10 in this case.

The exact value depends on the number of quantiles used for the calculation. 
An alternative method calculates the AUC without the intermediate calculation 
at the quantile level. The idea is to go to the finest level of granularity, which is 
a single non-stop. This following query uses this approach:

SELECT SUM(CumStopRate) / COUNT(*)

FROM (SELECT s.*,

            (SUM(is1yrStop * 1.0) OVER (ORDER BY actstopprop) /

              SUM(is1yrStop) OVER ()) as CumStopRate

      FROM (SELECT SubscriberId, predrate, is1yrstop,

                   ((SUM(1.0 - is1yrstop) OVER

                         (ORDER BY predrate DESC, SubscriberId DESC) - 1) /

                     SUM(1 - is1yrstop) OVER ()) as actstopprop

            FROM scored s

          ) s

     ) s

WHERE is1yrstop = 0

The structure of this query is similar to the previous one. The middle query, 
however, is not doing an aggregation, just cumulative sums. Notice that the 
WHERE clause is in the outermost query. Because the subqueries use the value of 
is1yrstop, we do not want to prematurely filter by that value.

Table 11-11 shows the AUC measurement for the five one-variable models, 
indicating that the Monthly Fee model is the best one.

table 11-11: Summary Information for Area-Under-Curve (AUC) Measurement

MODeL aUC

Channel 0.543

Market 0.558

Rate Plan 0.528

Monthly Fee 0.603

Month 0.511
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Figure 11-11:  The lookup model with three dimensions does better than most of the models 
with one dimension.

Adding More Dimensions
A lookup model can have more than one dimension. Up to a point, increasing 
the number of dimensions usually improves the model. Figure 11-11 shows the 
cumulative gains chart for the model using three dimensions. This model does 
better than most of the models with one dimension. Interestingly, the model 
on MonthlyFee alone does a slightly better job by the AUC measure. The AUC 
for this model is 0.593 versus 0.602 for the one variable model. The MonthlyFee 
model does better in the first five deciles. This model does better in the lower 
five. Usually the top deciles are more important.

Generating such a model is simply a matter of replacing the lookup CTE with 
a more refined lookup table, resulting in a scoring query that starts:

WITH toscore as (
      SELECT s.*,
             (CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                   THEN 1 ELSE 0 END) as is1yrstop
      FROM Subscribers s
      WHERE YEAR(StartDate) = 2005
     ),
     lookup as (
       SELECT Market, Channel, RatePlan,
              AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                       THEN 1.0 ELSE 0 END) as stoprate
       FROM Subscribers
       WHERE YEAR(StartDate) = 2004
       GROUP BY Market, Channel, RatePlan
      ),
      defaultlu as (
       SELECT AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                       THEN 1.0 ELSE 0 END) as stoprate
       FROM Subscribers
       WHERE YEAR(StartDate) = 2004
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      ),
      scored as (
       SELECT toscore.*,
              COALESCE(lookup.stoprate, defaultlu.stoprate) as predrate
       FROM toscore LEFT OUTER JOIN
            lookup
            ON toscore.Market = lookup.Market AND
               toscore.Channel = lookup.Channel AND
               toscore.RatePlan = lookup.RatePlan CROSS JOIN
            defaultlu
      )

This creates the scored data set, which can then be used for calculating lift and 
creating cumulative gains charts.

Adding more dimensions is beneficial because the lookup model captures 
more interactions among those features. However, as the number of dimensions 
increases, each cell has fewer and fewer customers. In fact, using MonthlyFee 
instead of RatePlan for the third dimension results in some of the combina-
tions having no customers at all, and more than one in six cells having fewer 
than ten customers. The histogram in Figure 11-12 shows these cell sizes. The 
largest cell (for the market Gotham, the channel Dealer, and a monthly fee of 
$40) accounts for 15% of all customers.

Having large numbers of cells has another effect as well. The resulting estimate 
for the stop rate has a confidence interval, as discussed in Chapter 3. The fewer 
customers contributing to the proportion, the less confident we are in the result.

For this reason, cells in the lookup table should have some minimum size, 
such as a minimum of 500 customers. This is accomplished by including a 
HAVING clause in lookup:

HAVING COUNT(*) >= 500

Figure 11-12:  This histogram chart shows the cumulative number of cells that have up to each 
number of customers for the market, dealer, and monthly fee lookup model. Note that the 
horizontal axis uses a log scale because the range of cell sizes is very large.
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Combinations of market, channel, and monthly fee that are not in the lookup 
table but are in the score set are then given the default value. Lookup models 
are useful, but they become less practical as the number of cells gets larger. The 
next section presents another method for bringing together data from many 
dimensions, a method that borrows ideas from probability.

Naïve Bayesian Models (Evidence Models)

Naïve Bayesian models extend the idea of lookup models for probabilities to 
the extreme. It is possible to have any number of dimensions and still use the 
information along each dimension to get sensible results, even when the cor-
responding lookup model would have an empty cell for that combination of 
values—or even for all combinations of values. Instead of creating ever smaller 
cells, naïve Bayesian models combine the information from each dimension, 
making a simple assumption.

The “naïve” part of the name is this assumption: The dimensions are independent 
of each other, statistically speaking. This makes it possible to combine information 
along the dimensions into a single score. The Bayesian part of the name refers to 
a simple idea from probability. Understanding this idea is a good place to start.

Some Ideas in Probability
The chi-square calculation uses expected values, and the calculation works 
for any number of dimensions, as explained in Chapter 3. The expected value 
is itself an estimate of the actual value. The chi-square test uses the expected 
value for another purpose, calculating the probability that the deviation from 
the expected values is due to chance.

In a similar way, naïve Bayesian models produce expected values based on 
summaries of the probabilities along the dimensions. The model itself is just 
complicated arithmetic. To get a feel for what it is doing requires some language 
from probability.

Probabilities and Conditional Probabilities

Figure 11-13 shows four distinct groups of customers. The light gray shaded 
ones are customers who stop in the first year. The striped customers are from 
a particular market. Everyone is in exactly one of the groups:

 ■ 38 customers stopped and are not in the market (gray, unstriped area).

 ■ 2 customers stopped and are in the market (gray striped area).

 ■ 8 customers are in the market and not stopped (not gray, striped).

 ■ 52 customers are not in the market and not stopped (not gray, not striped).
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Figure 11-13:  Four groups of customers here are represented as a Venn diagram, showing 
the overlaps between the customers in one market and the stopped and not stopped  
customers.

STOPS (40) NOT STOPS (60)

In MARKET STOPS In MARKET NOT STOPS

40% have stopped

60% have not stopped

10% are in the market

2% are in the market
and have stopped

The purpose of the chart is to illustrate some ideas and vocabulary about prob-
ability. The chart itself is a Venn diagram, showing overlapping sets.

What is the probability that someone stops? (Strictly speaking, the question 
should be “If we choose one customer at random, what is the probability of 
choosing a customer who stops?”) The answer is the number of customers 
who stop divided by the total number of customers. There are 40 customers 
who stop (38 + 2) out of 100 customers (38 + 2 + 8 + 52), so the probability is 
40%. Similarly, the probability of someone being in the market shown in the 
chart is 10%.

It is worth pondering how useful this information is. If told that of 100 cus-
tomers 40% stop and 10% are in a given market, what does this tell us about 
the relationship between stops and the market? The answer: very little. All the 
customers in the market could be stopped; all the customers in the market could 
be not stopped; or anything in between.

However, once the probability of stops within the market is known, then 
the various counts are all determined. The probability of stopping within the 
market is an example of a conditional probability. It is the number of customers 
in the market who stop divided by the number of customers in the market, or 
20% (2 / 10).

When the conditional probability is the same as the overall probability, 
the two phenomena are said to be independent. Being independent simply 
means that knowing the market provides no additional information about 
stopping and vice versa. In this case, the probability of stopping is 40% and 
the probability of stopping for customers in the market is 20%, so the two 
are not independent: The market, either directly or indirectly, influences 
stopping behavior.
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Odds

Another important concept from probability is odds. These are familiar to anyone 
who has ever understood the expression “50-50” to mean an equal chance for 
two outcomes. Odds are the number of times something happens for every time 
it does not happen (although colloquially the phrasing is often the non-event 
to the event, such as 7-1 odds for a horse in a race).

Overall, 40% of customers stop and 60% do not, so the odds are forty-to-sixty. 
This is often simplified, so two-to-three and 0.667 (the “to one” being implicit) 
are equivalent ways of saying the same thing. When the probability is 50%, the 
odds are one.

Odds and probabilities can readily be calculated from each other:

odds = probability  /  (1 – probability) =  –1 + 1 / (1 – probability)
probability = 1 – (1  / (1 + odds))

Given the probability it is easy to calculate the odds, and vice versa. Note that 
probabilities vary from zero to one whereas odds vary from zero to infinity.

Likelihood

The likelihood of someone in a market stopping is the ratio between two  
conditional probabilities: the probability of someone being in the market given 
that they stopped and the probability of someone being in the market given 
that they did not stop.

Figure 11-14 illustrates what this means. The probability of someone being in 
the market given they stopped is 2 divided by 40. The probability of someone 
being in the market given they did not stop is 8 divided by 60. The ratio is 3/8. 
This means that someone in the market has a 3/8 chance of stopping compared 
to not stopping.

Figure 11-14:  A likelihood is the ratio of two conditional probabilities.

STOPS (40) NOT STOPS (60)

8
52

2
38
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An alternative way of expressing the likelihood is as the ratio of two odds. 
The first is the odds of stopping in the market and the second is the overall 
odds of stopping. The odds of stopping in the market are 2/8; the overall 
odds are 4/6. The ratio produces the same value: (2 / 8) / (4 / 6) = (2 * 6) / 
(4 * 8) = 3 / 8.

Calculating the Naïve Bayesian Model
This section moves from the simple ideas in probability to an intrigu-
ing observation by Thomas Bayes that motivates naïve Bayesian models. 
Although Bayes himself probably did not realize it, the observation also has 
philosophical implications, and it is the foundation of a branch of statistics 
called Bayesian statistics (which has little relationship to naïve Bayesian 
modeling). The aside “Bayes and Bayesian Statistics” discusses the man 
and the statistics.

An Intriguing Observation

Thomas Bayes made a key observation in the realm of statistics, which connects 
the following two probabilities:

 ■ What is the probability of stopping for a customer in the particular 
market?

 ■ What is the probability of being in the market for a customer who 
stops?

These are two ways of understanding the relationship between markets and 
stops, one focusing on what happens in the market and the other focusing on 
the customers who stop. Bayes proved that these probabilities are related to 
each other by a simple formula.

The two probabilities themselves are conditional probabilities. The first 
is the probability of stopping, given that a customer is in a market. The 
second is the probability of being in a market, given that a customer stops. 
In the example data, the first is 20% because two out of ten customers in the 
market stop. The second is 5% because two out of 40 stopped customers are 
in the market.

Simple enough. The ratio between these numbers is four (20% / 5% = 4). 
Remarkably, this is also the ratio between the overall stop rate (40%) and the 
overall proportion of customers in the given market (10%).

This observation is true in general. The ratio between two conditional prob-
abilities that are the inverses of each other is the ratio between the two prob-
abilities with no conditions. In a sense, the conditional parts of the probabilities 
cancel out. This is Bayes’ Formula.
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BaYeS anD BaYeSIan StatIStICS

Rev. Thomas Bayes was born at the beginning of the 18th century to a family of 
Nonconformists. According to English law at the time, members of non-Anglican 
churches were officially classified as “nonconformist”; eventually, he took a minister-
ing position in a Presbyterian church.

Bayes was quite interested in mathematics, yet he lived up to his religious affiliation 
in one striking way. His ideas in probability theory were published in 1763, three years 
after his death—distinctly nonconformist.

The paper, An Essay Towards Solving a Problem in the Doctrine of Chances, appeared 
in the Philosophical Transactions of the Royal Society of London. (The paper is available 
at http://www.stat.ucla.edu/history/essay.pdf.) For several decades 
the paper languished, until found and expounded upon by a French mathematician 
Pierre-Simon Laplace.

By the mid-20th century, statistics had two competing perspectives, the 
Frequentists and the Bayesians. To outsiders (and many insiders), this competition 
often looks like a religious debate, so it is perhaps fitting that Bayes himself was reli-
giously ordained.

The primary difference between the two groups is how to deal with subjective 
information in probability theory. Both Bayesians and Frequentists would agree that 
the probability of a coin about to be flipped landing heads side up is 50% (because 
this is not a trick question).

Consider a slightly different scenario, though. Someone has flipped the coin, hid-
den it from view, and looked at whether the coin is heads or tails. Now, is the prob-
ability still 50% even though you cannot see the coin? Frequentists would say that 
probability does not apply because the event has occurred. The coin either is or is not 
heads, so the “probability” is either 0% or 100%. Bayesians are more comfortable say-
ing that the probability is 50%. Which is true? There is no right answer. This is a ques-
tion as much about philosophy as about probability.

Chapter 3 introduced the concept of the confidence interval and the p-value as a con-
fidence. These are Frequentist notions. The Bayesian perspective has similar ideas, called 
“credible intervals” and Bayesians often treat p-values as actual probabilities. Thankfully, 
the mathematics is the same (or similar enough) for basic statistical measures.

The Bayesian perspective makes it possible to incorporate prior beliefs when ana-
lyzing data. This can be quite powerful and can simplify some very difficult problems, 
often using lots of computing power. Frequentists counter that any given outcome 
can be generated, just by choosing appropriate prior beliefs.

An old saying says that “statistics don’t lie but statisticians do.” Even without 
resorting to complex mathematical modeling, it is possible to mislead with statistics. 
Responsible analysts and statisticians—whether Bayesian or Frequentist—are not try-
ing to mislead. They are trying to analyze data to increase understanding and provide 
useful results.

This history offers an important lesson. When analyzing data, the only responsible 
thing to do is to be explicit about assumptions being made. This is particularly important 
when working with databases, where business processes can result in unusual behavior. 
Be explicit about assumptions, so the results rest on a solid and credible foundation.

http://www.stat.ucla.edu/history/essay.pdf
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Bayesian Model of One Variable

The Bayesian model of one variable applies the formula in the following way: 
calculate the odds of stopping given that a customer is in the market by multi-
plying two numbers. The first is the overall odds of stopping; the second is the 
likelihood of the customer in the market stopping.

Let’s work this out for the example. The probability of stopping given that a 
customer is in the market is 20%. Hence, the odds of a customer stopping are 
20% / (1 – 20%) = 1 / 4. Is this the same as the product of the overall odds and 
the likelihood?

As observed earlier, the overall odds of stopping are 2/3. The likelihood of 
the customer stopping was also calculated as 3/8. Well, in this case, the result 
holds: 1/4 = (2 / 3) * (3 / 8).

The case with one dimension is trivially correct. Recall the alternative way of 
expressing the likelihood is the ratio of the odds of a customer stopping divided by 
the overall odds. The Bayesian model becomes the product of the overall odds times 
this ratio, and the overall odds cancel out. The result is what we were looking for.

Bayesian Model of One Variable in SQL

The goal of the Bayesian model is to calculate the conditional probability of a 
customer stopping. For the simple example in one dimension, the formula is 
not necessary. The following query calculates the odds by market:

SELECT Market,
       AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                THEN 1.0 ELSE 0.0 END) as stoprate,
       (-1 + 1 / (1 - AVG(CASE WHEN tenure < 365 AND StopType IS NOT NULL
                                THEN 1.0 ELSE 0.0 END))) as stopodds,
       SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                THEN 1 ELSE 0 END) as numstops,
       SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                THEN 0 ELSE 1 END) as numnotstops
FROM Subscribers
WHERE YEAR(StartDate) = 2004
GROUP BY Market

The results are shown in Table 11-12.
Although the direct calculation is easy, it is instructive to show the alternative 

approach using the odds-times-likelihood approach, which uses the following:

 ■ The overall odds

 ■ The likelihood of a customer stopping given that the customer is in the market

The odds given the market are then the overall odds times the likelihood of 
stopping in the market. These odds can easily be converted to a probability.
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table 11-12: Results by Market for Bayesian Model of One Variable

MarKet StOp rate StOp ODDS
nUMBer OF 

StOpS
nUMBer OF  
nOt StOpS

Gotham 33.0% 0.49 176,065 357,411

Metropolis 29.0% 0.41 117,695 288,809

Smallville 10.1% 0.11 17,365 155,362

Both of these values can readily be calculated in SQL because they are based 
on counting and dividing:

WITH dim1 as (
      SELECT Market,
             SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                      THEN 1.0 ELSE 0 END) as numstop,
             SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                      THEN 0.0 ELSE 1 END) as numnotstop
      FROM Subscribers
      WHERE YEAR(StartDate) = 2004
      GROUP BY Market
     ),
     overall as (
      SELECT SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                      THEN 1.0 ELSE 0 END) as numstop,
             SUM(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                      THEN 0.0 ELSE 1 END) as numnotstop
      FROM Subscribers
      WHERE YEAR(StartDate) = 2004
     )
SELECT Market, (1 - (1 / (1 + overall_odds * likelihood))) as p,
       overall_odds * likelihood as odds, overall_odds, likelihood,
       numstop, numnotstop, overall_numstop, overall_numnotstop
FROM (SELECT dim1.Market,
             overall.numstop / overall.numnotstop as overall_odds,
             ((dim1.numstop / overall.numstop)/
              (dim1.numnotstop / overall.numnotstop)) as likelihood,
             dim1.numstop, dim1.numnotstop,
             overall.numstop as overall_numstop,
             overall.numnotstop as overall_numnotstop
      FROM dim1 CROSS JOIN overall
     ) d
GROUP BY Market
ORDER BY Market

The first CTE, dim1, calculates the number of customers who do and do not stop 
in each market. The second, overall, calculates the same values overall. The 
subquery in the outer query calculates the likelihood and overall odds, which 
are brought together in the outermost query.
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The alternative formulation for odds changes the definition of likelihood to 
the arithmetically equivalent:

(dim1.numstop / dim1.numnotstop) / (overall.numstop / overall.numnotstop)

This formulation is easier to calculate in SQL.
The results in Table 11-13 are exactly the same as the results calculated directly. 

This is not a coincidence. With one variable, the Bayesian model is exact.

The “Naïve” Generalization

The “naïve” part of naïve Bayesian means “independent,” in the sense of prob-
ability. This implies that each variable can be treated separately in the model. 
With this assumption, the formula for one dimension generalizes to any number 
of dimensions: The odds of stopping given several attributes in several dimen-
sions are the overall odds of stopping times the product of the likelihoods for 
each attribute. What makes this powerful is the ease of calculating the overall 
odds and the individual likelihoods.

t Ip Naïve Bayesian models can be applied to any number of inputs (dimensions). 
There are examples with hundreds of inputs.

Table 11-14 shows the actual probability and the estimated probability 
by channel and market for stopping in the first year. The estimates from 
the model are pretty close to the actual values. In particular, the ordering 
is quite similar. Unlike the one-attribute case, the estimate for two attri-
butes is an approximation because the attributes are not strictly independent. 
This is okay; we should not expect modeled values to exactly match actual 
values.

The following query calculates the values in this table:

WITH dim1 as (
      SELECT Market,
             -1+1/(1-AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                              THEN 1.0 ELSE 0 END)) as odds
      FROM Subscribers

table 11-13: Results for the Naïve Bayesian Approach, with Intermediate Results

MarKet p ODDS OveraLL ODDS LIKeLIhOOD

Gotham 33.0% 0.493 0.388 1.269

Metropolis 29.0% 0.408 0.388 1.050

Smallville 10.1% 0.112 0.388 0.288
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      WHERE YEAR(StartDate) = 2004
      GROUP BY Market
     ),
     dim2 as (
      SELECT Channel,
             -1+1/(1-AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                              THEN 1.0 ELSE 0 END)) as odds
      FROM Subscribers
      WHERE YEAR(StartDate) = 2004
      GROUP BY Channel
     ),
     overall as (
      SELECT -1+1/(1-AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                              THEN 1.0 ELSE 0 END)) as odds
      FROM Subscribers
      WHERE YEAR(StartDate) = 2004
     ),
     actual as (
      SELECT Market, Channel,
             -1+1/(1-AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL
                              THEN 1.0 ELSE 0 END)) as odds
      FROM Subscribers
      WHERE YEAR(StartDate) = 2004
      GROUP BY Market, Channel
     )
SELECT Market, Channel,

table 11-14: Results from Naïve Bayesian Model, Using Channel and Market for First Year Stops

prOBaBILItY ranK

MarKet ChanneL preDICteD aCtUaL DIFFerenCe preDICteD aCtUaL

Gotham Chain 46.9% 58.7% −11.8% 1 1

Gotham Dealer 29.7% 28.9% 0.8% 5 5

Gotham Mail 42.5% 41.9% 0.6% 2 2

Gotham Store 19.8% 21.3% −1.5% 7 7

Metropolis Chain 42.2% 38.2% 4.1% 3 4

Metropolis Dealer 25.9% 23.1% 2.7% 6 6

Metropolis Mail 37.9% 41.1% −3.2% 4 3

Metropolis Store 17.0% 17.9% −0.9% 8 8

Smallville Chain 16.7% 9.1% 7.6% 9 11

Smallville Dealer 8.7% 9.7% −1.0% 11 10

Smallville Mail 14.4% 13.9% 0.4% 10 9

Smallville Store 5.3% 8.5% −3.2% 12 12
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       1-1/(1+pred_odds) as predp, 1-1/(1+actual_odds) as actp,
       1-1/(1+market_odds) as marketp, 1-1/(1+channel_odds) as channelp,
       pred_odds, actual_odds, market_odds, channel_odds
FROM (SELECT dim1.Market, dim2.Channel, actual.odds as actual_odds,
             (overall.odds*(dim1.odds/overall.odds)*
              (dim2.odds/overall.odds)) as pred_odds,
             dim1.odds as market_odds, dim2.odds as channel_odds
      FROM dim1 CROSS JOIN dim2 CROSS JOIN overall JOIN
           actual
           ON dim1.Market = actual.Market AND
              dim2.Channel = actual.Channel
     ) dims
ORDER BY Market, Channel

This query has four CTEs. The first two calculate the odds for the market and 
channel separately. The third calculates the odds for the overall data. And the 
fourth calculates the actual odds, which are used only for comparison purposes. 
The middle subquery combines these into predicted odds, and the outermost 
query brings together the data needed for the full calculation.

The expression to estimate the odds multiplies the overall odds by several 
odds ratios. This can be simplified by combining the overall odds into one 
expression:

POWER(overall.odds, -1) * dim1.odds * dim2.odds as pred_odds

The simpler expression is helpful as the model incorporates more attributes.

Naïve Bayesian Model: Scoring and Lift
This section generates scores for the naïve Bayesian model, using the estimates 
from 2004 to apply to 2005.

Scoring with More Attributes

Adding more dimensions to the naïve Bayesian model is simple. The major 
change is adding a separate CTE for each dimension and then updating the 
expression for predicted odds:

POWER(overall.odds, 1 - <N>)*dim1.odds* . . . *dimN.odds as pred_odds

That is, the overall odds are raised to the power of one minus the number of 
dimensions and these are then multiplied by the odds along each dimension.

One complication arises when the score set has values with no correspond-
ing odds. This can occur for two reasons. One is that new values appear, from 
one year to the next. The second is restricting the model to a minimum num-
ber of instances for the odds calculation, so some values are missing from the 
dimensional tables.
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Naïve Bayesian models handle missing values quite well, theoretically. If a 
value is not available along a dimension, the likelihood value for the dimen-
sion is simply not used. As with many things, the practice is a bit more detailed 
than the theory.

A missing dimension is missed in two places:

 ■ The likelihood value is NULL.

 ■ The exponent used for the POWER() function needs to be decreased by one 
for each missing dimension.

Neither of these is insurmountable; they just require arithmetic and clever 
query logic.

The first thing is to use LEFT OUTER JOIN rather than JOIN for combining the 
dimensions tables with the score set. The second is to default the missing odds 
to one (rather than NULL or zero), so they do not affect the multiplication. The 
third is to count the number of dimensions that match.

The first is trivial. The second uses the COALESCE() function. The third could 
use a gargantuan, ugly nested CASE statement. But there is an alternative. Within 
each dimension subquery, a variable called n is given the value 1. The following 
expression calculates the number of matching dimensions:

COALESCE(dim1.n, 0) + COALESCE(dim2.n, 0) + . . . + COALESCE(dimn.n, 0)

Missing values are replaced by zeros, so the sum is the number of matching 
dimensions.

t Ip In a query that has several outer joins, you can count the number that succeed 
by adding a dummy variable in each subquery (let’s call it N) and giving it a value of 1. 
Then, the expression COALESCE(q1.N, 0) + . . . + COALESCE(qn.N, 0) 
counts the number of successful joins.

The following query calculates the naïve Bayesian predicted score for two 
dimensions, channel and market:

WITH dim1 as (

      SELECT Market, 1 as n,

             -1 + 1 / (1 - (AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                                       THEN 1.0 ELSE 0 END))) as odds

      FROM Subscribers

      WHERE YEAR(StartDate) = 2004

      GROUP BY Market

     ),

     dim2 as (

      SELECT Channel, 1 as n,

             -1 + 1 / (1 - (AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                                       THEN 1.0 ELSE 0 END))) as odds

      FROM Subscribers

      WHERE YEAR(StartDate) = 2004
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      GROUP BY Channel

     ),

     overall as (

      SELECT -1 + 1 / (1 - (AVG(CASE WHEN Tenure < 365 AND StopType IS NOT NULL

                                    THEN 1.0 ELSE 0 END))) as odds

      FROM Subscribers

      WHERE YEAR(StartDate) = 2004

     ),

     score as (

      SELECT s.*,

             (CASE WHEN Tenure < 365 AND StopType IS NOT NULL THEN 1.0

                   ELSE 0 END) as is1yrstop

      FROM Subscribers s

      WHERE YEAR(StartDate) = 2005

     )

SELECT score.SubscriberId, score.channel, score.market, is1yrstop,

       (POWER(overall.odds,

              1 - (COALESCE(dim1.n, 0) + COALESCE(dim2.n, 0))) *

        COALESCE(dim1.odds,0) * COALESCE(dim2.odds, 0)) as predodds

FROM score CROSS JOIN overall LEFT OUTER JOIN

     dim1

     ON score.Market = dim1.Market LEFT OUTER JOIN

     dim2

     ON score.Channel = dim2.Channel

The odds for each dimension use COALESCE(), so the query can handle values 
that don’t match the dimension tables.

Creating a Cumulative Gains Chart

Creating a cumulative gains chart (or ROC chart or calculating AUC) uses the 
preceding query as a subquery, calculating the percentile based on the predicted 
odds. For this purpose, the predicted odds and predicted probability are inter-
changeable because they have the same ordering, and these charts only care 
about the relative ordering of the scores.

The resulting query is basically the same query used earlier for creating 
these charts:

SELECT percentile, COUNT(*) as numcustomers,

       SUM(is1yrstop) as numactualstops,

       SUM(predrate) as predactualstops,

       AVG(is1yrstop * 1.0) as actualstop, AVG(predrate) as predrate

FROM (SELECT SubscriberId, predrate, is1yrstop,

             CEILING(100 * (ROW_NUMBER() OVER (ORDER BY predrate DESC) - 1) /

                     COUNT(*) OVER ()) as percentile

      FROM (SELECT s.*, 1 - (1 / (1 + predodds)) as predrate

            FROM scored s

           ) s

     ) s

GROUP BY percentile

ORDER BY percentile
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Figure 11-15:  This chart shows cumulative gains charts for the naïve Bayesian model on the 
training set (2004 starts) and on the score set (2005 starts).

This query calculates the percentile based on the predicted score and counts 
the number of actual stops in each percentile. These are calculated in a CTE, 
scored, using the logic from the previous query.

The cumulative gains chart in Figure 11-15 shows the cumulative proportion 
of stops for two score sets. As expected, the better one is for the scores on the 
model set. The data from 2005 is a more reasonable score set. It demonstrates 
that the model does still work on data a year later, although not as well.

Comparison of Naïve Bayesian and Lookup Models
Both naïve Bayesian models and lookup models estimate probabilities 
based on values along dimensions. The two modeling techniques produce 
exactly the same results for one dimension; the results differ for multiple 
dimensions.

The lookup approach is a brute force approach that breaks the data into 
smaller and smaller cells. As the number of cells grows—either because there 
are more dimensions or because each dimension has more possible values—
the cells become smaller and smaller. The data is literally partitioned among 
the cells. This means that the number of cells needs to be limited in some 
way, probably by using few dimensions that take on few values (as in the 
subscription data).

By contrast, naïve Bayesian models use all the data to estimate values for 
each dimension. The data is not divided and subdivided over and over. Instead, 
the approach uses probability theory and a reasonable assumption to combine 
the values along the dimensions into an estimated prediction. The assumption 
often works well in practice, despite the fact that dimensions are almost never 
completely independent.
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Of course, both approaches are making another, unstated assumption. The 
assumption is that the past tells us about the future. As we saw in the cumula-
tive gains charts that compare the two values, the models do work, but they do 
not work as well on the data being scored as they do on the data used to build 
the model.

Lessons Learned

A data mining model takes inputs and produces an output, which is typically a 
prediction or estimation of some value. There are two major processes involved 
with models. The first is training or building the model. The second is applying 
the model to new data.

SQL provides a good basis for learning the basics about data mining. Although 
this may seem surprising, some powerful techniques are really more about 
manipulating data than about fancy statistical techniques. The GROUP BY opera-
tion in SQL is analogous to creating a model (both summarize data). The JOIN 
operation is analogous to scoring a model.

This chapter discusses several different types of models. The first is a look-alike 
model, where the model score indicates how close one example is to another. 
For instance, the model score might indicate how similar zip codes are to the 
zip code that has highest market penetration.

Lookup models are another type. These create a lookup table, so the process 
of scoring the model is the process of looking up values. The values might be 
the most popular product, or the probability of someone stopping, or something 
else. Although any number of dimensions could be used to create the lookup 
table, the data gets partitioned into smaller and smaller pieces, meaning that 
the values in the table become more uncertain or even empty when there are 
more dimensions.

Naïve Bayesian models address this shortcoming. They use some basic prob-
ability theory along with Bayes’ formula, an important formula in probability 
proven almost 300 years ago. This approach makes it possible to calculate lookup 
tables along each dimension separately, and then to combine the values together. 
The big advantage to the naïve Bayesian approach is the ability to handle many, 
many dimensions and missing values.

Naïve Bayesian models make an assumption about the data. This assumption 
is that the different dimensions are independent (in the probabilistic sense). 
Although this assumption is not true when working with business data, the 
results from the model are often still useful. In a sense, naïve Bayesian models 
produce an expected value for a probability, similar to the way that the chi-
square approach calculates an expected value along the way to calculating the 
chi-square measure.
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Evaluating models is as important as creating them. A cumulative gains 
chart shows how well a binary response model is performing. Its cousin, the 
ROC chart, has a similar shape. The area under the ROC curve, called AUC, is 
a valuable measure of how good a model is. An average value chart shows the 
performance of a model estimating a number. And a classification chart shows 
the performance of classification models.

This chapter has introduced modeling in the context of SQL and working 
with large databases. The traditional way of introducing modeling is through 
linear regression, covered in the next chapter.
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The previous chapter introduced data mining ideas using various data mining 
techniques well suited to databases, such as look-alike models, lookup tables, and 
naïve Bayesian models. This chapter extends these ideas to the realm of the most 
traditional statistical modeling technique: linear regression and best-fit lines.

Unlike the techniques in the previous chapter, linear regression requires 
that input and target variables all be numeric. The results of the regression are 
coefficients in a mathematical formula. A formal treatment of linear regression 
involves lots of mathematics and proofs. This chapter steers away from an overly 
theoretical approach.

In addition to providing a basis for statistical modeling, linear regression has 
many applications. Regressions—especially best-fit lines—are a great way to 
investigate relationships between different numeric quantities. The examples 
in this chapter include estimating potential product penetration in zip codes, 
studying price elasticity (investigating the relationship between product prices 
and sales volumes), and quantifying the effect of the initial monthly fee on 
yearly stop rates.

The simplest linear regression models are best-fit lines that have one input 
and one target. Such two-variable models are readily understood visually, using 
scatter plots. In fact, Excel builds linear regression models into charts via the 
best-fit trend line, one of six built-in types of trend lines.

Excel can explicitly calculate best-fit lines in the spreadsheet as well as in the 
charts. The most general function introduces a new class of Excel functions that 
return multiple values in multiple cells—an extension of the array functions 
introduced in Chapter 4.

Apart from the built-in functions, Excel offers two other ways to calculate the 
linear regression formulas. These methods are more powerful than the built-in 

C h a p t e r 

12
the Best-Fit Line: Linear 

regression Models



562 Chapter 12 ■ the Best-Fit Line: Linear regression Models

functions. One is a direct method, using somewhat complicated formulas for 
the parameters in the model. The other uses a capability provided by the Solver 
add-in to iteratively estimate the parameters. Solver is a general-purpose tool 
included with Excel that searches for optimal solutions to chains of calculations 
set up in a spreadsheet. Its ability to build linear regression models is just one 
example of its power.

Measuring how well the best-fit line fits the data introduces the idea of correla-
tion, which fortunately is easy to calculate. As with many statistical measures, 
correlation does what it does well, but it comes with some warnings. Over-
interpreting correlation values is easy but can lead to erroneous conclusions.

Multiple regression extends “best-fit line” regression by using more than one input 
variable. Fortunately, multiple regression is quite feasible in Excel. Unfortunately, 
it does not produce pretty scatter plots, because there are too many dimensions.

SQL can also be used to build basic linear regression models with one or 
even two input variables. Unfortunately, standard SQL does not have built-in 
functions to do this, so the equations have to be entered explicitly (and SQL has 
no equivalent of Solver). These equations become more and more complicated 
as more variables are added, as we’ll see with the two-variable example at the 
end of this chapter. The chapter begins not with complicated SQL statements, 
but with the best-fit line, which enables us to visualize linear regression.

The Best-Fit Line

The simplest case of linear regression has one input variable and one target 
variable. This case is best illustrated with scatter plots, making it readily under-
standable visually and giving rise to the name “best-fit line.”

Tenure and Amount Paid
The first example is for a set of customers in a subscription-based business, 
comparing the tenure of each customer with the total amount the customer 
has paid. The longer customers remain active, the more they pay—an evident 
relationship between the two values.

Figure 12-1 shows the resulting best-fit line, with the tenure on the X-axis and 
the amount paid on the Y-axis. The chart clearly shows a relationship; both the 
points and the best-fit line start low and rise upward to the right.

One way to use the best-fit line is to estimate how much a customer would pay 
if he or she survived to a given tenure. A typical customer with tenure of 360 
days should pay about $192.30. This amount might influence acquisition budgets.

This simple example shows the virtues of the best-fit line. It is a good way 
to visualize data and to summarize the relationship between two variables. It 
can also be useful for estimating values.
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t Ip The best-fit line can be seen in an Excel chart by selecting a series, right-clicking 
the series, and adding a trend line. The linear best-fit line makes it possible to see 
trends in the data.

Properties of the Best-fit Line
Of all these possible lines that go near the data points, the best-fit line is a very 
specific one. Figure 12-1 shows the vertical line segments, connecting each 
observed data point to the point on the line directly above or beneath it. The 
best-fit line is the one where the vertical distances between the observed point 
and the line are as small as possible—for some definition of “small.”

What Does Best-Fit Mean?

The specific definition of best-fit is that the line minimizes the sum of the squares 
of the distances between the observed data points and the line, along the vertical 
dimension. This type of regression is also called ordinary least squares (OLS) regression.

The sum of squares results in relatively simple calculations for the coefficients 
of the line. These simpler calculations were feasible before the era of comput-
ers, as explained in the aside “Dwarf Planets and Least Squares Regression.” 
After centuries of use, the technique and models are well understood. There 
are a plethora of measures to understand the models and to determine when 
and whether they are working.

The definition of the best-fit line uses the distance along the Y-dimension (all 
the line segments are vertical instead of being horizontal, for instance). Why the 
Y-dimension? The simple answer is almost obvious: the Y-value is the target, 
the thing we are trying to estimate.

Figure 12-1:  This chart shows the best-fit line for a set of data points showing the relationship 
between customers’ tenures and the amount they have paid.
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Although the best-fit line is (almost always) unique, it is worth pointing 
out that slight variations in the definition result in different lines. If another 
distance were used, such as the horizontal distance, the resulting “best-fit” 
line would be different. If the lengths of the line segments were combined 
in a way other than by taking the sum of the squares, say by taking the 
sum of the distances instead, the resulting line would also be different. The 
traditional definition of the best-fit line is quite useful because it is so well 
understood, is calculated relatively easily, and captures important features 
of data.

DwarF pLanets anD Least squares regressIon

The dwarf planet Ceres and linear regression may seem to have nothing to do with 
each other. However, the method of least squares regression was invented by Carl 
Friederich Gauss and first applied to the problem of finding this celestial body.

At the end of the 1700s, astronomers predicted the existence of a planet between 
Mars and Jupiter. In January 1801, an Italian astronomer named Giuseppe Piazzi 
discovered a new body in the solar system in the right place. He named the object 
Ceres and observed it until mid-February of that year. At that point it disappeared 
behind the sun. Based on a handful of Piazzi’s observations, astronomers rushed to 
figure out the full orbit of Ceres, so they could continue observations as soon as it 
reappeared.

Of course, in those days, telescopes used mirrors ground by hand and positions 
were recorded on paper. The resulting observations were rather inexact. Gauss, who 
was just starting his career, recognized several key aspects of the problem, some 
involving astronomy and physics. The most innovative part dealt with the inaccu-
racy in the measurements: Gauss found the orbit (an ellipse) that was closest to the 
observed positions, defining closest as the sum of the squares of the distances from 
the orbit to the observed positions.

Based on the observed positions, Gauss correctly estimated the orbit and accu-
rately predicted when and where Ceres would reappear. By the fall of 1801, it did 
reappear, very close to where Gauss predicted—and his prediction was better than 
the predictions of much more established astronomers. This reinforced the strength 
of Gauss’s methods.

This history is interesting for several reasons. First, Gauss is considered by some to 
be the greatest mathematician ever, for his contributions to a wide range of subjects, 
including statistics. It is also interesting because the first problem was not a linear 
regression problem as explained in the text. Gauss was trying to estimate an ellipse 
rather than a line.

The third reason is practical. Ordinary least squares regression uses the sum of the 
distances from the line, rather than the distances themselves. Perhaps this is because 
the distance is the square root of some quantity. Hence, calculating the distance 
squared is easier than calculating distance. In a world where all calculations have to be 
done by hand, Gauss may have preferred the simpler calculation that ignores taking 
the final square root.
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Formula for Line

The best-fit line is a line, and lines are defined by a formula that readers may 
recall from high school math:

Y = m * X + b

In this equation, m is the slope of the line and b is the Y-intercept, which is where 
the line crosses the Y-axis. When the slope is positive, the values of Y increase 
as the values of X increase (positive correlation). When the slope is negative, 
the line goes down instead (negative correlation). When the slope is zero, the 
line is horizontal. The goal of linear regression is to find the values of m and b 
that minimize the sum of the squares of vertical distance between the line and 
the observed points.

The best-fit line in Figure 12-1 has a formula:

<amount paid> = $0.5512 * <tenure> - $8.8558

This line defines a simple relationship between the two variables: tenure and 
amount paid. They are positively correlated (meaning that amount paid goes up 
as tenure goes up) because the coefficient on tenure is positive. One easy way 
to calculate the values m and b in Excel is using the SLOPE() and INTERCEPT() 
functions.

There is nothing special about calling the slope m and the intercept b. In fact, 
statisticians have different names for them. They use the Greek letter beta for 
the coefficients, calling the Y-intercept ß0 and the slope ß1. This notation has the 
advantage of being readily extensible to more coefficients.

Renaming the coefficients (albeit for a good reason) is not the only odd-
ity in standard statistical terminology. From perspective of statistics, the 
Xs and Ys are constants, the betas are variables, and lines do not have to 
be straight. The aside “Some Strange Statistical Terminology” explains 
this in more detail.

Expected Value

For a given value of X, the equation for the line can be used to calculate a value 
of Y. This expected value represents what the model “knows” about the relation-
ship between X and Y, applied to a particular value of X.

Table 12-1 shows the expected values for various tenure values shown in 
Figure 12-1. The expected values can be higher or lower than the actual values. 
They can also be out-of-range, in the sense that a negative amount paid makes 
no sense (and the expected values for small tenures are negative). On the other 
hand, all values of tenure have expected values, making it possible to use the 
line to estimate the value of a customer at any tenure.
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soMe strange statIstICaL terMInoLogy

In the equation for the line, the Xs and Ys are normally thought of as being variables 
and the coefficients as being constants. That is because we are thinking of using the 
line to estimate a Y-value given an X-value.

In statistics, the problem is estimating the coefficients, so the language of statistical 
modeling turns this terminology upside down. The Xs and Ys are constants because 
they refer to known data points (perhaps with an uncertainty in the measurement). 
The data may have two data points or two million, but for all of them the X- and 
Y-values are known. On the other hand, the challenge in statistical modeling is to find 
the line, by calculating coefficients that minimize the sum of the squares of the dis-
tances between the points and the line. The coefficients need to be solved for; hence, 
they are the “variables.”

This inverse terminology actually explains why the following are also examples of 
“linear” models although the formulas do not look like the formula for a line:

Y = ß1 * X
2 + ß0

ln(Y) = ß1 * X + ß0
ln(Y) = ß1 * X

2 + ß0

These are linear because they are linear in the coefficients. The funky functions of Xs 
and Ys do not make a difference. The coefficients are the important part. We know the 
values of X and Y; the coefficients are unknown.

A good way to think about this is that all the observed data could be transformed. 
For example, in the first example, the X-value could be squared and called Z:

Z = X2

In terms of Y and Z, the first equation becomes:

Y = ß1 * Z + ß0

This is a linear relationship between Y and Z. And Z is just as known as X is because it is 
the square of the X value.

table 12-1: Some Expected Values for Best-Fit Line in Figure 12-1

tenure expeCteD $$ (0.55*tenure − $8.86) aCtuaL $$ DIFFerenCe

5 −$6.10 $1.65    $7.75

8 −$4.45 $0.90    $5.35

70   $29.72 $15.75 −$13.97

140   $68.30 $91.78    $23.48

210   $106.88 $71.45 −$35.43

365   $192.30 None N/A
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The expected value can be calculated directly from two columns of X- and 
Y-values using the FORECAST() function in Excel. This function takes three 
arguments: the value to make the estimate for, and ranges for the Y-values and 
the X-values. It returns the expected value, using a linear regression formula. 
FORECAST() applies the model, without producing any other information to 
determine how good the model is or what the model looks like.

One rule of thumb when using best-fit lines is to use the line for interpolation 
rather than extrapolation. In English, this means calculating expected values 
only for values of X that are in the range of the data used to calculate the line.

Error (Residuals)

The expected value generally differs from the actual value because the line does 
not perfectly fit the data. The difference between the two is called the error or 
residual. When the residuals are calculated for the best-fit line using the data 
used to define the line, their sum is zero. The best-fit line is not the only line 
with this property, but it also has the property that the sum of the squares of 
the residuals is as small as possible.

There is a wealth of statistical theory about residuals. For instance, a model is 
considered a good fit on data when the residuals follow a normal distribution 
(which was discussed in Chapter 3). The residuals should be independent with 
respect to the X-values.

Figure 12-2 plots the residuals from the data in Figure 12-1 against the X-values. 
As a general rule, the residuals should not exhibit any particular pattern. In 
particular, long sequences of positive or negative residuals indicate that the 
model is missing something. Also, the residuals should not get bigger as the 
X-values get bigger.

Figure 12-2:  This chart shows the residuals for the data in Figure 12-1. Notice that the residuals 
tend to get larger as the X-values get larger.
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These residuals are pretty good, but not perfect. For instance, the initial residu-
als are almost all positive and relatively small. This is because the expected 
values are negative for small values of X, but actual values are never negative. 
That the model is not perfect should not be surprising because it takes only one 
variable into account. Although important, other things also affect customers’ 
total payments.

t Ip Creating a scatter plot of the residuals and the X-values in the model is one way 
to see if the model is doing a good job. In general, the scatter plot should look ran-
dom, with no long sequences of positive or negative values.

Preserving Averages

One very nice characteristic of best-fit lines (and linear regression models in 
general) is that they preserve averages: The average of the expected values of the 
original data is the same as the average of the observed values. Geometrically, 
this implies that all best-fit lines go through a particular point. This point is 
the average of the X-values and the average of the Y-values of the data used to 
build the model.

In practical terms, this property means that best-fit lines preserve some key 
characteristics of the data used to build them. Applying the model does not 
“move” the center of the data. So, taking the average of a large number of 
expected values (such as for all customers) is usually a fairly accurate estimate 
of the average of the actual values, even if the individual estimates vary signifi-
cantly from the actual values.

Inverse Model

Another nice feature of best-fit lines is that the inverse model can be readily 
constructed. That is, given a value of Y, the corresponding value of X can be 
determined using the following formula:

X = (Y – b) / m

This formula calculates the value of X for any given value of Y.
Note that the inverse model calculated this way is different from the inverse 

model calculated by reversing the roles of X and Y. For instance, for the best-fit 
line in Figure 12-1 (on page 563), the “mathematical” inverse is:

<tenure> = 1.8145 * <tenure> + 16.0687

However, reversing the roles of X and Y generates a different line:

<tenure> = 1.5029 * <tenure> + 35.6518

The fact that these two lines are different is interesting from a theoreti-
cal perspective. Reversing the roles of X and Y is equivalent to using the 
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horizontal distance, rather than the vertical distance to calculate the best-fit 
line. For practical purposes, if we need the inverse relationship, then either 
works well enough.

w arn Ing The inverse relationship for a linear regression model is easy to 
 calculate from the model equation. However, this is not the same as building another 
model by swapping the X-values and the Y-values.

Beware of the Data
A model is only as good as the data used to build it. There are many ways of 
understanding how well a model fits a particular set of data. Alas, there are many 
fewer ways of determining whether the right data is being used for the model.

The data used for the scatter plot in Figure 12-1 (on page 563) is missing an 
important subset of customers; the data excludes customers who never paid. 
Hence, the relationship between payment and tenure is only for the customers 
who make a payment, not for everyone.

Almost half the customers in this sample never make a payment, because the 
customers come from the worst channel. When these freeloading customers are 
included, they have a small effect on the best-fit line, as shown in Figure 12-3. 
The non-payers are shown as the circles along the X-axis, and the best-fit line is 
the dashed line. The line has shifted a bit downward and become a bit steeper 
as it attempts to get closer to the zero values on the left.

Before diving into the contents of the chart, it is worth commenting on how 
this chart is created. Although only two series are visible, the chart has three. 
One is for all customers and is used to generate the dotted best-fit line. The 

Figure 12-3:  When non-paying customers are included, the best-fit line shifts a bit to the right 
and becomes a bit steeper.



570 Chapter 12 ■ the Best-Fit Line: Linear regression Models

trend line for this series is visible, although the points are not. Another series is 
for the paying customers, shown in Figure 12-1. The best-fit line for this dataset 
is the solid gray line. Then, the third series is the non-payers, and is used to 
show the customers who never paid. The best-fit lines are also given names, 
to make them clearer in the legend.

The chart has 226 customers, of whom 108 are non-payers (48%), and, of course, 
including them changes the line. What is the expected revenue for a new customer 
who survives for one year? For the original data, the answer was $192.30. When all 
customers including non-payers are included, the value goes up slightly to $194.41.

Huh? The expected value has gone up by including customers who did not 
pay. This is counterintuitive. One could argue that linear regressions are not 
good for extrapolation. However, this example does not extrapolate beyond the 
range of the data because the data extends beyond 365 days (although 365 days 
is among the higher tenure values). One could argue that the values are close  
and within some margin of error, which is undoubtedly true for just a couple of 
hundred data points. The irony is that we could add more and more non-paying 
customers to obtain almost any value at the one-year mark.

With a bit more thought, the issue goes from counterintuitive to absurd. 
Consider using the model to estimate revenue for customers who survive for one 
year. If one hundred customers start and are expected to stay for one year, what 
is their expected revenue during the first year? Using the model that includes all 
customers—payers and non-payers—the estimate is $19,441. However, building 
the model only on customers who pay reduces the estimate to $19,230. Although 
the difference is small, it raises the question: How does including non-paying 
customers increase the one-year estimated revenue? And, as noted earlier, addi-
tional non-paying customers could push the estimate up even more.

Something curious is happening. A line is rigid. If it goes down on one 
side, then either the whole line shifts downward (if the slope remains the 
same), or it goes up somewhere else. The freeloading customers all have low 
tenures because non-payers stop (or are stopped) soon after starting. Hence, 
the non-paying customers are all on the left of the scatter plot. These custom-
ers pull down the best-fit line, which in turn gets steeper. And steeper lines 
produce higher values for longer tenures, even though the line also shifts 
downward a bit.

w arn Ing Best-fit lines are rigid models. Changes to the data in one area (such 
as small X-values) often have a large effect far away (such as large X-values).

Which is the better estimate? The examples show different factors at work, one 
for initial non-payment and one for the longer-term trend. For paying customers, 
using the initial model makes more sense because it is built using only paying 
customers. It is not distracted by the non-payers.

The purpose of this example is to stress the importance of choosing the right 
data for modeling. Be aware of local effects of data on the resulting model.
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Trend Lines in Charts
Best-fit lines are one of several types of trend lines supported in Excel’s charts. 
The purpose of trend lines is to see patterns that may not be apparent when 
looking at disparate points. Trend lines are only available in Excel when the data 
has one input and one target variable. Nevertheless, they can be quite useful.

Best-Fit Line in Scatter Plots

A powerful and simple way to calculate a linear regression is directly within 
a chart using the best-fit trend line, as already shown in Figures 12-1 and 12-3. 
To add the best-fit trend line:

 1. Left-click the series to select it.

 2. Right-click and choose “Add Trendline ….” to bring up the “Format 
Trendline” dialog box.

 3. Choose the “Linear” option on the upper-left side.

At this point, you can exit the dialog box, and the best-fit line appears between 
the first and the last X-values.

The line appears in the chart as a solid black line. Because the trend line is 
generally less important than the data, change its format to a lighter color or 
dotted pattern. When the chart has more than one series, make the color of 
the trend line similar to the color of the series. As with any other series, just 
right-click the line to change its format.

t Ip When placing a trend line in a scatter plot or a bubble plot, change its format to 
be lighter than the data points but similar in color, so the trend line is visible but does 
not dominate the chart.

The “Options” tab of the “Format Trendline” dialog box has several useful 
options:

 ■ To give the trend line a name that appears in the chart legend, click by 
“Custom” and type in the name.

 ■ By default, the trend line is only for the range of X-values in the data. To 
extend beyond this range, use the “Forecast” area and specify the number 
of units “Forward” after the last data point.

 ■ To extend the range to values before the first data point, use the “Forecast” 
area and specify the number of units “Backward” before the first data point.

 ■ To see the formula, choose “Display equation on chart.” Once the equation 
appears, it is easy to modify the font and move it around.

 ■ To see how well the model fits the data, choose “Display R-squared value 
on chart.” The R2 value is discussed later in this chapter.
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If you forget to add options when the trend line is created, double-click the trend 
line and choose “Format Trendline” to bring up the dialog box. One nifty feature 
is that the trend line itself can be formatted to be invisible, so only the equation 
appears on the chart. Also note that when the data in the chart changes (even 
just by using a data filter), the trend line changes as well.

Logarithmic, Power, and Exponential Trend Curves

Three types of trend curves are variations on the best-fit line, the difference 
being the shape used for the curve is not a line:

 ■ Logarithmic: Y = ln(ß1*X + ß0)

 ■ Power: Y = ß0*X^ß1
 ■ Exponential: Y = exp(ß1*X + ß0)

Fitting these curves has the same spirit as linear regression because all three 
formulas have two coefficients that are analogous to the slope and intercept 
values for a line. Each of these curves has its own particular properties. The 
first two, the logarithmic and power curves, require that the X-values be posi-
tive. The second two always produce Y-values that are positive (Excel does not 
allow the coefficient ß0 to be negative for the power trend line).

The logarithmic curve decreases slowly, much more slowly than a line does. 
So, doubling the X-value only increases the Y-value by a constant. The left side 
of Figure 12-4 shows the logarithmic trend line for the payment data. Because 
the data has a linear relationship, the logarithmic curve is not a particularly 
good fit.

The logarithmic trend line and the best-fit line are related to each other. 
Changing the X-axis to be on a “logarithmic” scale (by clicking the “Logarithmic 
Scale” button on the “Scale” tab of the “Format axis” dialog box) makes the 
logarithmic curve look like a line. Figure 12-4 shows a side-by-side comparison 
of the same data, with one chart having the normal scale on the X-axis and the 
other, the logarithmic scale.

The exponential curve increases very rapidly, much more rapidly than a 
line. Its behavior is similar to the logarithmic trend line, but with respect to the 
Y-axis rather than the X-axis. That is, when the Y-axis has a logarithmic scale, 
the exponential curve looks like a line.

The power curve increases more slowly than the exponential. It looks like a 
line when both the X-axis and the Y-axis have a logarithmic scale. It also looks 
like a line under normal scaling when ß1 is close to one.

One way of thinking about these trend lines is that they are best-fit lines, but 
the data is transformed. This is, in fact, the method used to calculate the curves 
in Excel. As we’ll see the later in the chapter, this method is useful practically, 
but it is an approximation. The results are a bit different from directly calculating 
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Figure 12-4:  When the X-axis has a logarithmic scale, the logarithmic trend line looks like a line.

the actual best-fit curves. Excel’s trend curves are good, but not the theoretically 
correct best-fit curves.

Polynomial Trend Curves

The polynomial curve is a bit more complicated because polynomial curves can 
have more than two coefficients. The form for these curves is:

 ■ Polynomial: Y = ßn*X
n + . . . + ß2*X

2 + ß1*X + ß0

The degree of the polynomial is the largest value of n in the equation, which is 
input into the box labeled “Order” on the “Type” tab of the “Format Trendline” 
dialog box.
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Figure 12-5:  A polynomial of sufficiently high degree can fit any set of data exactly. This 
example shows five points and the best-fit polynomials of degrees one through four. The fourth 
degree polynomial goes through all five points.

Polynomial fitting can be quite powerful. In fact, for any given set of 
points where the X-values are all different, there exists a polynomial that 
fits them exactly. This polynomial has a degree one less than the number of 
points. Figure 12-5 shows an example with five data points and polynomials  
of degree one (a line) through four. Higher degree polynomials capture more 
of the specific features of the data points, rather than the general features. This 
is an example of overfitting, which is when a model memorizes the detail of the 
training data without finding larger patterns of interest. Also notice that the 
equations for the polynomials have nothing to do with each other. So, finding 
the best-fit polynomial of degree two is not a simple matter of adding a squared 
term to the equation for the best-fit line.

When the order of the polynomial is odd, the curve starts high and goes low 
or starts low and goes high. The typical example is the line, which either slants 
upward or downward, but all odd degree polynomials have this property.

Polynomials of even degree either start and end high or start and end low. 
These have the property that there is either a minimum or maximum value, 
among the values. For some optimization applications, having a minimum or 
maximum is a very useful property.

t Ip When fitting polynomial trend curve to data points, be sure that the degree of 
the polynomial is much smaller than the number of data points. This reduces the likeli-
hood of overfitting.

Moving Average

After the best-fit line, probably the most common type of trend line is the mov-
ing average. These are often used when the horizontal axis is time because they 
wash away variation within a week or within a month.
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Figure 12-6:  Starts by day are very jagged, because there are few starts on the weekend. The 
7-day moving average does a better job of showing the trend during the year.

Figure 12-6 shows starts by day for the subscription data. Weekly variation 
dominates the chart because human eyes tend to follow the maximum and 
minimum values. The peaks might obscure what’s really happening. The trend 
line shows the 7-day moving average, in order to eliminate the within-week 
variation and highlight the longer-term trend.

Moving averages can sometimes be used to spot subtle patterns. This example 
looks at the relationship between the proportion of a zip code that has graduated 
from college and the proportion on public assistance, for zip codes in Minnesota. 
This data comes from ZipCensus, using the following query:

SELECT zcta5, pctbachelorsormore, pctnumhhpubassist
FROM ZipCensus
WHERE stab = 'MN' AND pctbachelorsormore IS NOT NULL AND
      pctnumhhpubassist IS NOT NULL
ORDER BY zcta5

The scatter plot in Figure 12-7 does not show an obvious pattern, although it 
does seem that zip codes where most adults have a college degree have relatively 
few residents on public assistance.

Figure 12-7:  The relationship between the proportion of a zip code with a college education 
and the proportion on public assistance in the state of Minnesota is not obvious.
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Figure 12-8:  A moving average can find patterns in the data, as shown in the lower chart 
where the X-values are sorted. However, if the data is not sorted, the moving average can be a 
meaningless scribble.

The top chart in Figure 12-8 shows one of the dangers when adding a moving 
average trend line. This chart applies the moving average directly to the data as 
pulled from the database, producing a zigzag line that bounces back and forth 
and makes no sense. The lower chart fixes this problem by sorting the data by the 
X-values. A pattern is visible, although the relationship is not a line. As zip codes have 
more college graduates, they seem to have fewer households on public assistance.

In general, when using moving averages, make sure that the data is sorted. 
Sorting is only needed for the moving average trend line; the other types are 
insensitive to the ordering of the data.

t Ip When using the moving average trend line, be sure that the data is sorted by the 
X-values.

To sort the data in place, select the table to be sorted and use the Data  Sort 
menu option (or choose “Sort” on the Data ribbon or type Alt+D, Alt+S) and 
choose the column for sorting. For multiple columns, bring up the advanced 
sort dialog and add new keys using the “+” option. Older versions of Excel only 
allowed sorting by up to three columns. One trick for sorting by more columns 
in those versions is to carefully append the values together in another column.
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Best-Fit Using the LINEST() Function
Trend lines are not the only way to do linear regression in Excel. The function 
LINEST() provides the full functionality of linear regression, including calculat-
ing various statistics that describe the goodness of fit, such as:

 ■ The R2 value

 ■ The standard error for the coefficients

 ■ The standard error for the Y-estimate

 ■ The degrees of freedom

 ■ The sum of squares

 ■ The sum of the squares of the residuals

This chapter discusses the first of these because it is the most practical. The 
remaining are more advanced statistical measures, which are more appropriately 
discussed in a statistics book.

Returning Values in Multiple Cells

Before moving to the statistics and the calculation of these values, a question arises: 
How can a single function such as LINEST() can return more than one value? All the 
functions we have seen so far reside in only a single cell and the return value goes 
into the cell. In fact, this seems like the intuitive behavior of what a “function” does.

The answer is array functions, as discussed in the aside “Excel Functions 
Returning More Than One Value.” The call to an array function that returns 
multiple values looks like other function calls:

= LINEST(<y - values>, <x - values>, TRUE, TRUE)

The first argument is the range of cells containing the target (typically a 
column of values); the second argument is the range containing the input 
values (typically one or more adjacent columns). The final two arguments 
are flags. The first flag says to do a normal linear regression (when FALSE 
or zero, this would force the constant ß0 to have the value of zero, which is 
sometimes useful). The final flag says to calculate various statistics along 
with the coefficients.

Although this is an Excel formula, it is not entered in quite the same way as 
other Excel formulas. First, the formula is entered for multiple cells rather than 
just one, so select the cells and then type in the formula. In this particular case, 
the resulting values are in ten cells, two across by five down. The function always 
returns values in five rows (when the last argument is TRUE) and one column 
for each coefficient. With one column of X-values, there are two coefficients, one 
for the X and one for the constant.
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Array formulas are entered using Ctrl+Shift+Enter rather than just Enter. 
Excel shows the formula surrounded by curly braces (“{” and “}”) to indicate 
that it is an array formula. These curly braces are not typed in when the for-
mula is entered.

Once the formula is in place, it can only be modified by highlighting all the 
cells where it is defined. Attempts to modify a single cell in the array cause an 
error: “You cannot change part of an array.” Similarly, removing the formula 
requires selecting all the cells in the formula and then hitting the Delete key or 
right clicking and choosing “Clear Contents.”

w arn Ing When you try to change one cell in an array of cells that has an array 
function, Excel returns an error. Select the whole array of cells to delete or modify the 
formula.

Calculating Expected Values

Although staring at the coefficients and statistics that describe a linear 
regression model may be interesting and informative, probably the most 
important thing to do with a model is to apply it to new data. Because 
LINEST() produces coefficients for a line, it is simple enough to apply the 
model using the formula:

= $D$2 * A2 + $D$3

where $D$2 and $D$3 contain the coefficients calculated by LINEST(). Notice 
that the last coefficient is the constant.

Excel offers several other ways of calculating the coefficients. For instance, the 
formula produced in a chart for the best-fit line is the same as the one calculated 
by LINEST(). In addition, the following formulas also calculate the expected 
value for a line that has one input variable:

= SLOPE(<y - values>, <x - values>) * A2 + INTERCEPT(<y - values>, <x - values>)
= FORECAST(A2, <y - values>, <x - values>)
= TREND(<y - values>, <x - values>, A2, TRUE)

The first method calculates the slope and intercept separately, using the appro-
priately named functions SLOPE() and INTERCEPT(). The second and third use 
two functions that are almost equivalent. The only difference is that TREND() 
takes a final argument specifying whether or not to force the Y-intercept to be 
zero. The advantage of using the formula explicitly with LINEST() is that it 
generalizes to more variables. The advantage to the other methods is that all 
the calculations fit in one cell.
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exCeL FunCtIons returnIng More than one VaLue

Chapter 4 introduced array functions as a way of performing complicated arithmetic on col-
umns of numbers. For instance, array functions can combine the functionality of IF() and 
SUM(). Array functions not only have the ability to accept arrays of cells as inputs, they can 
also return arrays of values. In fact, almost any Excel function can be used in this fashion.

Consider a simple situation, where columns A and B each contain 100 numbers and 
each cell in column C contains a formula that adds the values in the same row in col-
umns A and B. Cells in column C have formulas that look like:

= A1 + B1

= A2 + B2

. . .

= A100 + B100

The formula is repeated on every row; typically, the first formula is typed on the first 
row and then copied down using Ctrl+D.

An alternative method of expressing this calculation is to use an array function. 
After selecting the first 100 rows in column C, the array function can be entered as:

= A1:A100 + B1:B100

And then completed using Ctrl+Shift+Enter, rather than just Enter. Excel recognizes 
this as an array function and puts curly braces around the formula:

{= A1:A100 + B1:B100}

All 100 cells have exactly the same function.
Excel figures out that the range of 100 cells in the A column matches the 100 cells 

in the B column and this also matches the 100 cells in the C column containing the 
array formula. Because all these ranges match, Excel iterates over the values in the cell 
ranges. So the formula is equivalent to C1 containing A1 + B1 and C2 containing 
A2 + B2 and so on to C100.

This simple example of an array formula is not particularly useful, because in this 
case (and many similar cases), the appropriate formula can simply be copied down the 
column. One advantage of array formulas is that the formula is only stored once rather 
than once for each cell. This can make a difference when the function is being applied 
to thousands of rows and the overall size of the Excel file is an issue.

A handful of functions are designed to work as array functions because they return 
values in arrays of cells. This chapter discusses LINEST(), which is one such function. 
A similar function, LOGEST(), is also an array function. It fits an exponential curve to 
data, rather than a line.

Other examples of array functions are those that operate on matrixes, such as 
TRANSPOSE(), MINVERSE(), and MMULT().
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LINEST() for Logarithmic, Exponential, and Power Curves

The logarithmic, exponential, and power curves are three types of trend lines 
related to the best-fit line, and these formulas can be approximated using LINEST() 
as well. The results are not exact, but they are useful.

The key is to transform the X-values, Y-values, or both using logs and expo-
nential functions. To understand how this works, recall how logarithms and 
exponentiation work. These functions are inverses of each other, so EXP(LN(<any 
number>)) is the original number (when the number is positive). A useful prop-
erty of logarithms is that the sum of the logs of two numbers is the same as the 
log of the product of the numbers.

The first example shows how to calculate the coefficients for the logarithmic 
curve by transforming the variables. The idea is to calculate the best-fit line for 
the X-values and the exponentiation of the Y-values. The resulting equation is:

EXP(Y) = ß1 * X + ß0

By taking the logarithm of both sides, this equation is equivalent to the following:

Y = LN(ß1 * X + ß0)

This is the formula for the logarithmic trend line. The coefficients calculated with 
the transformed Y-values are the same as the coefficients calculated in the chart.

The transformation for the exponential is similar. Instead of using EXP(Y), 
use LN(Y), so the resulting best-fit equation is for:

LN(Y) = ß1 * X + ß0

When “undoing” the log by taking the exponential, the formula is very similar 
to the formula for the exponential trend line:

Y = EXP(ß1 * X + ß0) = EXP(ß0) * EXP(ß1 * X)

The difference is that the ß0 coefficient produced this way is the log of the coef-
ficient given in the chart.

Finally, the transformation for the power curve uses the log of both the X-values 
and the Y-values:

LN(Y) = ß1 * LN(X) + ß0 = LN(EXP(ß0) * X^ß1)

Undoing the log on both sides produces:

Y = EXP(ß0) * X^ß1

The only difference between these coefficients and the ones in the chart is 
that the ß0 calculated using LINEST() is the logarithm of the value calculated 
in the chart.
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The Excel function LOGEST() fits the exponential curve directly. The coef-
ficients are related to the coefficients in the charts. The ß0 is the same, but log 
of ß1 is the corresponding coefficient in the chart.

When calculated using any of these methods—in the charts, using LOGEST(), 
or by transforming the original data—the resulting coefficients are only 
approximations of the correct values. The problem is that transforming the 
Y-value also changes the distance metric. Hence, what is the “best-fit” for 
the transformed data may not quite be the “best-fit” on the original data, 
although the results are usually similar enough. The transformation method 
does make it possible to fit these curves in a “quick and dirty” way. To obtain 
more exact answers in Excel, use the Solver method (described later in this 
chapter) or a statistics tool.

w arn Ing In Excel, the exponential, logarithmic, and power curve trend lines, 
as well as LOGEST(), are approximately correct. The coefficients are not optimal, but 
they are generally close enough.

Measuring Goodness of Fit Using R2

How good is the best-fit line? Understanding how well a model works can be as 
important as building the model in the first place. Scatter plots of some data look 
a lot like a line; in such cases, the best-fit line fits the data quite well. In other 
cases, the data looks like a big blob, and the best-fit line is not very descriptive. 
The R2 value provides a measure to distinguish these situations.

The R2 Value
R2 measures how well the best-fit line fits the data. When the line does not fit 
the data at all, the value is zero. When the line is a perfect fit, the value is one.

The best way to understand this measure is to see it in action. Figure 12-9 
shows four sets of data artificially created to illustrate different scenarios. The 
two on the top have an R2 value of 0.9; the two on the bottom have an R2 value 
of 0.1. The two on the left have positive correlation, and the two on the right 
have negative correlation.

Visually, when the R2 value is close to one, the points are quite close to the 
best-fit line. They differ a little bit here and there, but the best-fit line does a 
good job of capturing the trend. When the R2 value is close to one, the model 
is stable in the sense that removing a few points has a negligible effect on the 
best-fit line.

On the other hand, when the R2 value is close to zero, the resulting line does 
not have much to do with the data (at least visually). This is probably because 
the X-values do not contain enough information to estimate the Y-values very 



582 Chapter 12 ■ the Best-Fit Line: Linear regression Models

Figure 12-9:  The four examples here show the different scenarios of positive and negative 
correlation among the data points, and examples with R2 of 0.1 (loose fit) and 0.9 (tight fit).

well, or because there is enough information, but the relationship is not linear. 
Removing a few data points could have a big impact on the best-fit line.

In short, the R2 tells us how tightly the data points fit around the best-fit line, 
which is a good description of how well the best-fit line fits the data.

Limitations of R2

R2 does not tell us whether a relationship exists between the X- and Y-values; it 
only tells us how good the best-fit line is. This is an important distinction. There 
may be an obvious relationship, even when the R2 value is zero.

Figure 12-10 shows two such cases. In the chart on the left, the data forms a 
U-shape. The relationship is obvious, and yet the best-fit line has an R2 value of 
zero. This is actually true for any symmetric pattern flipped around a vertical 
line. The pattern is obvious, but the best-fit line does not capture it.

The chart on the right side of Figure 12-10 shows what can happen with outli-
ers. For any given set of data, it is possible to add one data point that makes the 
R2 value be zero. This occurs when the additional data point causes the best-fit 
line to be horizontal.
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These examples are intended to show the limits of R2. When the value is 
close to one, the regression line explains the data well. When the value is close 
to zero, the best-fit line does not explain what is happening.

t Ip When the R2 value is close to one, the particular model explains the relationship 
between the input variables and the target. When the value is close to zero, the par-
ticular model does not explain the relationship, but there may be some other relation-
ship between the variables.

What R2 Really Means
The R2 value is the ratio of two values. The numerator is the total variation of 
the Y-values explained by the model. The denominator is the total variation  
of the Y-values. The ratio measures how much of the total variation in the data 
is explained by the model.

Simple enough. Excel can calculate the value using the CORREL() function. 
This function calculates the Pearson correlation coefficient, which is called r. 
As its name implies, R2 is the square of r.

The R2 value can also be calculated directly from the data. The numerator is 
the sum of the squares of the differences between the expected Y-values and 
the average Y-value; that is, the numerator measures how far the expected val-
ues are from the overall average. The denominator is the sum of the squares 
of the differences between the observed Y-values and the average Y-value. The 
denominator measures how far the observed values are from the overall average.

Table 12-2 walks through the calculation for the example on the right of  
Figure 12-10 where the R2 value is zero. Columns two and three have the observed 
Y-value and the expected Y-value. Columns four and six have the differences 
between these and the average. Columns five and seven have the squares. The 
R2 value is then the ratio of the sums of these squared values.

Figure 12-10:  There may be an obvious relationship between the X and Y values even when the 
R2 value is zero. The relationship is not the best-fit line, however.
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This table shows what happens when the R2 value is zero. The expected value 
is a constant, which is the average of the Y-values (remember that one of the 
properties of the best-fit line is that it goes through the point that is the average 
of the X-values and the average of the Y-values). The R2 value can only be zero 
when the expected value is always constant. Similarly, when the R2 value is 
small, the expected values do not vary very much.

Notice that the R2 value can never be negative, because the sums of squares 
are never negative. However, the Pearson correlation (r) can be negative, with 
the sign indicating whether the relationship is positive correlation (as X gets 
bigger, Y gets bigger) or negative correlation (as X gets bigger, Y gets smaller).

The R2 value only makes sense for the best-fit line. For an arbitrary line, the 
value can be greater than one, although this never happens for the best-fit line.

Direct Calculation of Best-Fit Line Coefficients

There are two reasons for explaining the arithmetic for calculating the coef-
ficients of the best-fit line. Directly calculating the coefficients makes it possible 
to do the calculation in SQL as well as Excel. More importantly, though, Excel 
is missing a bit of useful functionality: the ability to do a weighted best-fit line, 
which is addressed later in this chapter.

Calculating the Coefficients
Calculating the best-fit line means finding the values of the coefficients ß1 and 
ß0 in the equation for the line. The mathematics needed for the calculation is 

table 12-2:  Example of an R2 Calculation

x y yexp yexp-yaVg (yexp-yaVg)2 y-yaVg (y-yaVg)2

1.0 5.5 6.83 0.0 0.0 −1.3 1.78

2.0 6.0 6.83 0.0 0.0 −0.8 0.69

3.0 6.5 6.83 0.0 0.0 −0.3 0.11

4.0 7.0 6.83 0.0 0.0 0.2 0.03

5.0 7.5 6.83 0.0 0.0 0.7 0.44

6.0 8.0 6.83 0.0 0.0 1.2 1.36

7.0 8.5 6.83 0.0 0.0 1.7 2.78

8.0 9.0 6.83 0.0 0.0 2.2 4.69

9.0 9.5 6.83 0.0 0.0 2.7 7.11

10.0 0.8 6.83 0.0 0.0 −6.0 36.00

Sum 0.0 55.0

r2 0.0
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simple addition, multiplication, and division. There is nothing magical about 
the calculation itself, although the proof that it works is beyond the scope of 
this book.

The calculation uses the following easily calculated intermediate results:

 ■ Sx is the sum of the X-values.

 ■ Sy is the sum of the Y-values.

 ■ Sxx is the sum of the squares of the X-values.

 ■ Sxy is the sum of each X-value multiplied by the corresponding Y-value.

The first coefficient, ß1, is calculated from these values using the formula:

ß1 = (n*Sxy – Sx*Sy) / (n*Sxx – Sx*Sx)

The second coefficient has the formula:

ß0 = (Sy/n) – beta1*Sx/n

Table 12-3 shows the calculation for the data used in the R2 example. The top 
portion of this table contains the data points, along with the squares and prod-
ucts needed. The sums and subsequent calculation are at the bottom of the table.

table 12-3:  Direct Calculation of the Coefficients

X Y X2 X*Y

1.0 5.5 1.00 5.5

2.0 6.0 4.00 12.0

3.0 6.5 9.00 19.5

4.0 7.0 16.00 28.0

5.0 7.5 25.00 37.5

6.0 8.0 36.00 48.0

7.0 8.5 49.00 59.5

8.0 9.0 64.00 72.0

9.0 9.5 81.00 85.5

10.0 0.8 100.00 8.3

VARIABLE Sx Sy Sxx Sxy

Sum 55.0 68.3 385.0 375.8

n * Sxy - Sx * Sy 0.00

n * Sxx - Sx * Sx 825.00

Beta1 0.00

Beta0 6.83
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Calculating the Best-Fit Line in SQL
Unlike Excel, SQL does not generally have functions to calculate the coefficients 
for a linear regression formula (although some databases such as Postgres and 
Oracle do have such functions). For the simple case of one variable, the calcula-
tions can be done explicitly, using the preceding formulas. For the Minnesota 
example in Figure 12-7:

SELECT (1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx) as beta1,
       (1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx)) / n as beta0,
        POWER(1.0*n*Sxy - Sx*Sy, 2) / ((n*Sxx-Sx*Sx)*(n*Syy-Sy*Sy)) as r2,
       s.*
FROM (SELECT COUNT(*) as n, SUM(x) as Sx, SUM(y) as Sy,
             SUM(x*x) as Sxx, SUM(x*y) as Sxy, SUM(y*y) as Syy
      FROM (SELECT pctbachelorsormore as x, pctnumhhpubassist as y
            FROM ZipCensus
            WHERE stab = 'MN'
           ) z
     ) s

The innermost subquery defines X and Y variables. The middle subquery calculates 
Sx, Sy, Sxx, Sxy, and Syy (the latter is needed for R2). These are then combined 
in the next level into the coefficients. This query also calculates the R2 value, 
using an alternative formula that does the calculation directly, rather than by 
first calculating expected values.

Table 12-4 contains the resulting values. Although the moving average 
suggests a relationship, the very low R2 value suggests that the relationship 
is not a line.

table 12-4: Coefficients for Relationship College Education and Public Assistance in Minnesota 
Zip Codes

CoeFFICIent/statIstIC VaLue

N 885

Sx 185.0340

Sy 25.6020

Sxx 53.9560

Sxy 5.0619

Syy 1.8146

Beta1 −0.0190

Beta0 0.0329

R2 0.0052
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Price Elasticity
Price elasticity is the economic notion that product prices and product sales are 
inversely related to each other. As prices go up, sales go down, and vice versa. 
In practice, price elasticity provides information about the impact of raising or 
lowering prices. Although the economic relationship is approximate, and some-
times quite weak, price elasticity is useful for what-if analyses that investigate 
the effects of changing prices.

The subject of price elasticity opens up the subject of prices in general. Typically, 
a product has a full price. Customers may pay the full price or a discounted 
price—the product may be on sale, the customer may have a loyalty relation-
ship that offers discounts, the product may be bundled with other products, 
the customer may have a group discount, and so on.

This section starts by investigating prices, first by product group and then 
more specifically for books whose full price is $20. It then shows how basic 
regression analysis can be used to estimate elasticity effects. These effects are 
only approximate, because demand is based on more than pricing (what com-
petitors are doing, marketing programs, and so on). Even so, regression analysis 
sheds some light on the subject.

Price Frequency

Visualizing the relationship is a good place to start. A price frequency chart 
shows how often products are sold at a given price. The horizontal axis is the 
price; the vertical axis is the frequency, so each point shows the number of 
products sold at a particular price. A price frequency chart might use the full 
price, the average price, or a bar showing the range of prices.

Figure 12-11 shows a full price frequency chart broken out by product groups. 
Because the range of values is so large and values are always positive, both axes 
use a logarithmic scale. The seven symbols represent the seven product groups 
of interest. Each point in the chart is an instance of products in the product 
group having a particular full price.

As a whole, the chart gives an idea of the relationship between full prices, prod-
uct groups, and demand. The circled point at the top, for instance, indicates that 
17,517 orders contain ARTWORK products whose full price is $195. Although not 
shown on the chart, this point actually corresponds to 670 different products in 
the product table, all in the ARTWORK group and all having the same full price.

The pricing frequency chart has other interesting information. The most com-
monly sold items are ARTWORK products having a full price of $195 (the circled 
point is the highest point in the chart). Although relatively expensive, the ARTWORK 
products selling at this price are inexpensive relative to other ARTWORK prod-
ucts. The products in this category typically cost more, as seen by the fact that 
the ARTWORK products (labeled with “x”s) are to the right of the circled marker.
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Figure 12-11:  This pricing frequency chart shows the relationship between sales volume and 
full price by product group.

Almost all the expensive products are ARTWORK, with the exception of 
one BOOK and one CALENDAR (and these may be examples of misclassifica-
tion). On the other hand, the BOOK group is quite well represented as having 
many products selling in more than one thousand orders—these are the solid 
squares on the upper left of the chart. Books are also generally moderately 
priced. The least expensive products further to the left include many GAMEs 
and CALENDARs. FREEBIEs, which are by definition free, are not included 
in the chart.

The pricing frequency chart is a good way to visualize the relationship between 
pricing and sales. With respect to price elasticity, its use is limited. The best-
selling books, for instance, have a price point pretty much in the middle of the 
book prices. Books that are more expensive sell fewer copies. But also, books 
that are less expensive sell fewer copies. Unsurprisingly, something besides 
price is important for book sales.

The following query gathers the data for the chart:

SELECT p.GroupName, p.FullPrice, COUNT(*) as cnt
FROM OrderLines ol JOIN Products p ON ol.ProductId = p.ProductId
WHERE p.FullPrice > 0
GROUP BY p.GroupName, p.FullPrice
ORDER BY cnt DESC
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This query uses OrderLines to calculate the total number of orders and Products 
to get FullPrice and the group name. This query counts the number of lines in 
orders for the frequency, which is reasonable. Another reasonable alternative 
would be counting the number of units.

The results are broken out by product group—a natural way to compare 
products. To create the chart, the data needs to have a separate column for 
each product group. FullPrice is placed in the appropriate column for each 
row, with NA() going in the other columns. A scatter plot is created from the 
pivoted data.

Price Frequency for $20 Books

The range of prices and sales volumes is interesting. For elasticity, though, 
it is better to focus on a single product or group of similar products. This 
section investigates products in the BOOK category whose full price is $20. 
Even though the full price is $20, these are often discounted, using marketing 
techniques such as coupons, clearance offers, product bundles, and customer 
loyalty discounts.

Price elasticity suggests that when prices are lower, sales should be higher 
and when prices are higher, sales should be lower. Of course, this is economic 
theory, and a lot of things get in the way in the real world. Prices lower than the 
full price may indicate special promotions for the product that further increase 
demand, beyond the change in price. Or, low prices may indicate inventory 
clearance sales for the last few copies of otherwise popular books. In such a 
case, demand might be relatively high, but because inventory is not sufficient 
to fulfill all demand, sales are relatively low.

This investigation assumes that most of the discounts are available for all 
customers, and the discounts are available for a certain period of time. The price 
elasticity question is then one about the relationship of volume and average 
prices by month, suggesting the following summary:

 ■ The average price of $20 full-price books sold in the month

 ■ The total units sold in the month for these products

Just to be clear, the full price is $20, but customers may be getting a discount. Also, 
a given book always has the same full price, which is in Products, not Orders. 
In the real world, products may have different full prices at different times. If 
this is the case, OrderLines should include the full price as well as the price the 
customer pays (or the table containing the product pricing should be designed 
as a slowly changing dimension, meaning that time frames are included in the 
pricing table).
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The following query summarizes the data for the scatter plot in Figure 12-12:

SELECT YEAR(o.OrderDate) as year, MONTH(o.OrderDate) as mon,
       COUNT(DISTINCT ol.ProductId) as numprods,
       AVG(ol.UnitPrice) as avgprice, SUM(ol.NumUnits) as numunits
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId
WHERE p.GroupName = 'BOOK' and p.FullPrice = 20
GROUP BY YEAR(o.OrderDate), MONTH(o.OrderDate)
ORDER BY year, mon

The horizontal axis in the plot is the price in the month and the vertical axis is 
the total units sold. Each point in the scatter plot is the summary of one month 
of data for $20 books. The chart does not show which point corresponds to which 
month, because the purpose is to determine the relationship between average 
price and volume, not to see trends over time.

In most months, the average price of these books is over $17, as seen by the 
prevalence of points on the lower right. During these months, the sales are 
often on the low side, particularly as the average increases toward $20. This 
does suggest a relationship between price and demand. During some months, 
the average price is absurdly low, less than $10, suggesting that $20 books are 
sometimes sold at a hefty discount.

The best-fit line is also shown in the chart. This line is not a particularly good 
fit, but it does suggest that as the price increases, demand decreases. The slope 
of the line is minus 5.7, which means that for every dollar increase in price, the 
demand decreases by 5.7 units per month.

Figure 12-12:  This scatter plot shows the actual prices of books whose full price is $20. Each 
point is the average price by month and the average sales by month.
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There is no a priori reason to believe that the relationship is a simple line, so 
more sophisticated models might be needed. On the other hand, a line produces 
a very handy number—minus 5.7—that can be used to inform pricing and 
discounting efforts.

The analysis is complicated by the real world. Any given month has different 
numbers of products for sale at that price and different amounts of inventory 
for those products. When inventory is an issue, customers may try to purchase 
the product and fail because of a lack of inventory. The relationship between 
price and demand is interesting to investigate; it is also related to many other 
factors that can make it challenging to tease out a particular formula.

Price Elasticity Model in SQL

The coefficients for the line can also be calculated in SQL. The following query 
performs the same analysis, finding the relationship between the price of $20 
full-price books and the volume of sales on a monthly basis:

SELECT (1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx) as beta1,
       (1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx)) / n as beta0,
          POWER(1.0*n*Sxy - Sx*Sy, 2) / ((n*Sxx-Sx*Sx)*(n*Syy - Sy*Sy)) as R2
FROM (SELECT COUNT(*) as n, SUM(x) as Sx, SUM(y) as Sy,
             SUM(x*x) as Sxx, SUM(x*y) as Sxy, SUM(y*y) as Syy
      FROM (SELECT YEAR(o.OrderDate) as year, MONTH(o.OrderDate) as mon,
                   AVG(ol.UnitPrice) as x, 1.0*SUM(ol.NumUnits) as y
            FROM Orders o JOIN
                 OrderLines ol
                 ON o.OrderId = ol.OrderId JOIN
                 Products p
                 ON ol.ProductId = p.ProductId
            WHERE p.GroupName = 'BOOK' and p.FullPrice = 20
            GROUP BY YEAR(o.OrderDate), Text MONTH(o.OrderDate)
           ) ym
     ) s

The innermost query summarizes the appropriate orders by month. The rest of 
the query we have seen earlier as the logic for calculating the coefficients and 
R-square value. Note that the Y-value is multiplied by 1.0, so it is not treated as 
an integer in the calculation. Reassuringly, this SQL calculates the same coef-
ficients as the best-fit line in Excel’s charts.

Price Elasticity Average Value Chart

As explained in the previous chapter, the average value chart is a good way 
to evaluate a model whose target is numeric. This chart divides the estimates 
of the target into ten deciles, and compares the actual target and the expected 
value within each decile. Figure 12-13 shows such a chart for comparing the 
actual demand and the estimated demand based on the best-fit line for price.



592 Chapter 12 ■ the Best-Fit Line: Linear regression Models

The chart emphasizes that the model simply does not work well (which we 
already suspected because of the low R2 value). The expected sales generally 
decrease as the deciles increase, although it gets rather flat after the first three 
deciles. The actual sales have a different pattern, starting high, dipping, and then 
going up again. The top two deciles also have much lower average prices than 
the rest of the deciles ($8.31 and $13.77 versus over $17 in the remaining ones).

Deciles 4 and 5 are particularly problematic because the actual sales are notice-
ably bigger than the expected sales—or alternatively the demand for the first 
three deciles is much lower than it should be. Despite the low R2 value, there 
does seem to be a relationship between price and sales, albeit with exceptions, 
suggesting that pricing discounts on the books are not the only factor driving 
sales. Some discounts seem to drive sales of popular books even higher. Other 
discounts seem designed to sell the last available copies books. When it comes 
to estimating sales volume, price is only one factor.

Weighted Linear Regression

Bubble charts are a natural way to visualize many types of summarized data. 
The data is located on the chart according to X- and Y-values, and the size of 
each bubble is the frequency count. Alas, when Excel calculates the best-fit line 
in a bubble chart, it does not take into account the sizes of bubbles. The result-
ing best-fit line does a poor job showing trends in the data.

w arn Ing When Excel calculates best-fit lines in bubble charts, it does not take 
the size of the groups into account. This can significantly skew the resulting line. The 
desired line requires doing a weighted linear regression.

Figure 12-13:  This average value chart shows the relationship between the expected number of 
sales and the actual number of sales by sales price for books whose full price is $20.
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The way to solve this problem is by using weighted linear regression to 
take the sizes of the bubbles into account. Unfortunately, this capability is 
not built into Excel directly. There are two ways to do the calculation. One 
is to apply the formulas from the previous section, adjusting the various 
intermediate sums for the frequencies. The other uses special functionality 
in Excel called Solver, which is a general-purpose tool that can be used for 
this specific need.

This section starts with a basic business problem where weighted linear 
regression is needed. It then discusses various ways to address the problem in 
Excel and SQL.

Customer Stops during the First Year
In the subscriptions data, is there a relationship between the monthly fee and 
the stops during the first year? The hypothesis is that each increment in the 
monthly fee increases the overall stop rate.

The bubble chart in Figure 12-14 shows the monthly fee on the horizontal 
axis and the proportion of customers who stop during the first year on the 
vertical axis. The size of each bubble is the number of customers in the group. 
Many bubbles are so small that they do not appear in the chart. For instance, 
two customers started with a monthly fee of $3, and one of them stopped. 
However, they are not visible because a bubble for two customers is simply 
too small to see on a chart where the largest bubbles represent hundreds of 
thousands of customers.

Figure 12-14:  This bubble chart shows the relationship between the initial monthly fee 
(horizontal axis) and the stop rate during the first year for customers who started in 2004 and 
2005. The size of the bubble represents the number of customers.
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The chart itself includes the best-fit line for the data, as produced in Excel. This 
line is almost horizontal, suggesting almost no relationship between the monthly 
fee and the stop rate. The lack of relationship is corroborated by the miniscule R2 
value, which suggests that any relationship that might exist is not a line.

The following query provides the data for the bubble chart:

SELECT MonthlyFee,
       AVG(CASE WHEN tenure < 365 AND StopType IS NOT NULL THEN 1.0
                ELSE 0 END) as stoprate,
       COUNT(*) as numsubs
FROM Subscribers
WHERE StartDate BETWEEN '2004-01-01' and '2005-12-31'
GROUP BY MonthlyFee
ORDER BY MonthlyFee

This query simply aggregates all the customers who started in 2004 and 2005, 
keeping track of those who stopped during the first year.

Weighted Best Fit
Table 12-5 shows the data used to create the bubble chart. Notice that most of 
the groups are quite small. Over half have fewer than three hundred customers, 
and these do not even show up on the chart. When Excel calculates the best-fit 
line, it does not take the size of the bubbles into account, so these invisible points 
are worth as much as the visible ones, which have 99.9% of the customers. This 
is true both for the best-fit line in the charts and for the LINEST() function.

table 12-5: First Year Stop Rate and Count by Initial Monthly Fee

MonthLy 
Fee

stop 
rate # suBs

MonthLy 
Fee

stop 
rate # suBs

MonthLy 
Fee

stop 
rate # suBs

$0 100% 1 $25 46% 2,901 $80 26% 7,903

$7 0% 1 $27 57% 7 $90 32% 79

$10 18% 1,296 $30 21% 803,481 $100 43% 34,510

$12 100% 1 $35 19% 276,166 $117 0% 1

$13 50% 2 $37 100% 1 $120 33% 3,106

$15 89% 38 $40 34% 797,629 $130 81% 26

$16 100% 1 $45 14% 39,930 $150 45% 11,557

$18 50% 2 $50 35% 193,917 $160 100% 4

$19 100% 3 $60 21% 48,266 $200 58% 6,117

$20 15% 120,785 $70 52% 35,379 $300 10% 241

$22 67% 9 $75 17% 22,160 $360 100% 6
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This is a problem; some bubbles are clearly more important than others. 
One approach is to filter the data, and choose only the bubbles that exceed a 
certain size. To do this, select the cells and turn on filtering using the Data  
Filter menu option (or the sequence of three keys: Alt+D, Alt+F, Alt+F). When 
the filter appears, apply a “(Custom…)” filter in the numsubs column to select 
the rows that have a count greater than, say, 1,000. When the data is filtered, the 
chart automatically updates both the data and the best-fit line. The resulting R2 
value increases to 0.4088, suggesting a relationship between monthly fee and 
surviving the first year.

t Ip When filtering rows of data that have an associated chart on the same work-
sheet, be sure that the chart is either above or below the data. Otherwise, the filters 
might reduce the height of the chart, or cause it to disappear altogether.

Using filters is an ad hoc approach, depending on the choice of an arbitrary 
threshold. And, the resulting line is still giving all bubbles the same weight. A 
better approach is to use all the data to calculate a weighted best-fit line. The 
weighted best-fit is used when data is summarized, and the groups have differ-
ent sizes. This is a common occurrence, particularly when summarizing data 
from large databases and analyzing the data in Excel.

The calculations take the weights into account for all the various intermediate 
sums. Table 12-6 shows the calculation of ß1, ß0, and R2 for the best-fit line with 
and without weights. The calculation of N, the total number of points, shows the 
difference. The unweighted case has 33 points because monthly fee takes on 33 
different values. These groups correspond to 2.4 million customers, which is the 
value of N using the weights. The 1,296 customers who initially paid $10 and have 
a stop rate of 17.6% are instead treated as 1,296 rows with the same information.

table 12-6:  Comparison of Calculations with and without Weights

CoeFFICIent/statIstIC unweIghteD weIghteD

N 33.00 2,405,526.00

Sx 2,453.00 94,203,540.00

Sy 16.33 647,635.68

Sxx 404,799.00 4,394,117,810.00

Sxy 1,241.02 27,310,559.03

Syy 11.68 190,438.85

Beta1 0.00 0.00

Beta0 0.49 0.16

R2 0.0009 0.3349
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The resulting best-fit line now has the following characteristics:

 ■ slope = 0.0028

 ■ intercept = 0.2665

 ■ R2 = 0.3349

The slope indicates that for each dollar that the monthly fee increases, the stop 
rate increases by 0.28%. Without the weighting, the increase was a negligible 
0.01%. The R2 value suggests that the pattern is of medium strength, not domi-
nant, but potentially informative. Doing the analysis with the weights changes 
the results from no pattern to one of medium strength.

Based on this analysis, if the company were to raise the monthly fee by $10 
for new customers, it would expect an additional 2.8% of them to leave during 
the first year.

Weighted Best-Fit Line in a Chart
Being able to plot the weighted best-fit line in a chart is useful. Even though 
Excel’s charts do not support this functionality directly, we can trick it into 
doing what we want.

The idea is to insert another series in the chart corresponding to the best-fit 
line, add the line for the series, and make the new series invisible so only the 
line is visible:

 1. For each monthly fee, apply the weighted best-fit formula to get the expected 
value.

 2. Add a new data series to the chart with the monthly fee and the expected 
value. Because this is a bubble chart, be sure to include a size for the 
bubbles as well.

 3. Add the trend line for the new monthly fee series. This line perfectly fits 
the data.

 4. Format the series so it is invisible, either by making the pattern and area 
be transparent or by making the width of the bubbles equal to zero.

Figure 12-15 shows the original data with the two trend lines. The sloping trend 
line that takes into account the sizes of the bubbles does a better job of capturing 
the information in the chart.

Weighted Best-Fit in SQL
The following query uses the same ideas to calculate the coefficients and R2 
value directly in SQL for a weighted linear regression:

SELECT (1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx) as beta1,
       (1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx)) / n as beta0,
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       (POWER(1.0*n*Sxy - Sx*Sy, 2) / ((n*Sxx-Sx*Sx)*(n*Syy - Sy*Sy))
       ) as Rsquare
FROM (SELECT SUM(cnt) as n, SUM(x*cnt) as Sx, SUM(y*cnt) as Sy,
             SUM(x*x*cnt) as Sxx, SUM(x*y*cnt) as Sxy,
             SUM(y*y*cnt) as Syy
      FROM (SELECT MonthlyFee as x,
                   AVG(CASE WHEN tenure < 364 THEN 1.0 ELSE 0 END) as y,
                   COUNT(*) as cnt
            FROM Subscribers
            WHERE StartDate BETWEEN '2004-01-01' AND '2005-12-31'
            GROUP BY MonthlyFee
           ) xy
     ) s

The only difference between this query and the unweighted query is the cal-
culation of the intermediate values in the middle subquery. This query returns 
the same results at the Excel calculation.

Weighted Best-Fit Using Solver
Using the formulas is one way to calculate the coefficients of the weighted best-
fit line. However, this works only for one input variable, not to mention the fact 
that remembering and typing the formulas is onerous.

This section describes an alternative approach using an Excel add-in called 
Solver (included for free with Excel). Solver allows you to set up a spreadsheet 
model, where certain cells are inputs and one cell is an output. Solver then finds the 
right set of inputs to obtain the desired output—very powerful functionality. The 
question is how to set up a spreadsheet model that does the weighted best-fit line.

Figure 12-15:  The weighted best-fit line does a much better job of capturing the patterns in the 
data points.
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The Weighted Best-Fit Line

So far, this chapter has approached the problem of finding the coefficients for 
a best-fit line by applying complicated mathematical formulas. An alternative 
approach is to set up a spreadsheet model. This spreadsheet would have two input 
cells, one for each parameter in the line, and an output cell, which is the sum of the 
distance squared from each point to the line defined by the input coefficients. Both 
the distance and the appropriate sum can be easily calculated in the spreadsheet. 
The challenge is finding the coefficients that minimize the value in the output 
cell. One method is to manually attempt to minimize the total error—playing a 
game by changing the coefficients and seeing what happens to the sum.

Setting up a spreadsheet model for the basic best-fit line is not very useful, 
because built-in functions do exactly what is needed. No such functions exist for 
the weighted version, making this a better example. Figure 12-16 shows a spread-
sheet that contains the grouped data with frequency counts, various columns that 
do calculations, two cells for input (I3 and I4), and one that has the error (I5).

The first of the additional columns contains the expected value, which is 
calculated using the input cells:

=<beta1> * <monthly_fee> + <beta0>

The next column has the error, which is the absolute value of the difference between 
the expected value and the actual value, and the column after that, the error squared. 
The final column calculates the square of the error times the count. The total error 
cell contains the sum of these squares, which the best-fit line minimizes.

Modifying the values in cells I3 and I4 changes the error value. One way 
to minimize the error is to manually try different combinations of values. The 
spreadsheet recalculates very quickly and with only two input cells, a person 
can get reasonably close to the minimum value.

Figure 12-16:  This is a spreadsheet model for calculating the error between a given line and the 
data points (taking the weight into account).
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Solver Is More Accurate Than a Guessing Game

Solver uses the same spreadsheet model. However, instead of guessing the values 
of the coefficients that minimize the error, Solver finds the coefficients automati-
cally. But first, it has to be loaded in using the menu item Tools  AddIns (Alt+T 
then Alt+I). Then click “Solver,” and “OK.” Once installed, Solver is available 
under the menu Tools  Solver or using the keystrokes Alt+T then Alt+V.

The “Solver Parameters” dialog box, shown in Figure 12-17, has several prompts 
for information. At the top is the entry “Set Objective” to specify the target cell. The 
goal can be to minimize, maximize, or to set the target cell to a particular value.

The list of cells that Solver can change is in the area called “By Changing 
Variable Cells.” In addition, Solver allows you to set constraints on the cells, 
such as requiring that all values be positive or in some range. This functional-
ity is not needed for finding the weighted best-fit line. Solver also allows you 
to choose the optimization method. The default method is quite suitable for 
weighted regression.

Clicking “Solve” causes Excel to try many different combinations of coefficients 
looking for the optimal value. This problem is not particularly complicated, and 
Solver finds the right solution quickly, placing the optimal coefficients in the input 
cells. The aside “Discussion of Solver” discusses this add-in in a bit more detail.

Figure 12-17:  The “Solver Parameters” dialog box has areas for the cell to optimize, the type of 
optimization, the cells whose values can change, and any constraints on the problem.
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More Than One Input Variable

Linear regression has been introduced using the best-fit line, which has one 
input and one target variable. In practice, more than one possible input vari-
able is typically of interest. This section touches on the topic. So-called multiple 
regression pushes the abilities of SQL. In general, such problems are better solved 
with statistics tools rather than Excel.

DIsCussIon oF soLVer

Solver is an add-in developed by the company Frontline Systems (www.solver.com). 
A basic version of Solver has been bundled with Excel since 1991. More advanced ver-
sions are offered by Frontline Systems.

Finding the optimal value is determining the coefficients that minimize or maximize 
some objective function. For our purposes, the objective function simply means the value 
in the target cell, such as the example in the text for the total error for the weighted best-
fit line. The objective function can be quite complicated because it can depend directly 
on the input cells or the spreadsheet could have many intermediate calculations.

The weighted best-fit line is a simple type of problem to solve because it is in a class 
called convex conic quadratics. The simplest example of this, a parabola, has a single 
minimum value. By analyzing information at any point along the curve, it is possible to 
determine whether the minimum is to the left or right of that point. Solver guesses the 
solution and then refines the guess, getting closer and closer each time.

Making even small changes to the spreadsheet model can change the structure 
of the problem. So, changing the objective function to something more complicated 
could have a big impact on the efficiency of the algorithm. A small change could result 
in Solver taking much more time to find the optimal solution—or not being able to 
find one at all.

The Solver software is quite powerful. It can detect when a problem is easy to solve 
and solve it using the appropriate methods. More complicated problems sometimes 
need more complicated algorithms.

Finding the coefficients for a best-fit line is only a taste of what Solver can do. One 
interesting class of problems is resource allocation. This occurs when there are many 
constraints and the goal is to maximize profit. An example is dividing the marketing 
budget to bring in new customers in various channels. Different channels have differ-
ent costs for acquiring customers. The customers who come in may behave differently, 
and different times of year may have better response or different mixes, and each 
channel has a maximum or minimum capacity. It is possible to set up a spreadsheet 
that, given a mix of customers, is able to calculate the profit. Then, the overall profit 
can be maximized using Solver. Of course, the result is only as good as the assump-
tions going into the worksheet model, and these assumptions are only estimates 
about what might happen in the future.

This type of resource allocation problem is called a linear programming problem 
(for technical reasons; it is not related to linear regression), and Solver knows how to 
solve such problems as well.

http://www.solver.com
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table 12-7:  Relationship between Three Variables Independently and Product Penetration

sLope InterCept r-square

HH Median Income 0.0000 −0.0041 0.2512

% HH On Public Assistance −0.0466 0.0036 0.0357

College Percent 0.0169 −0.0031 0.2726

Multiple Regression in Excel
The function LINEST() can take more than one input column, as long as the 
input columns are adjacent. The function call is the same, except for the size of 
the array containing the returned values. The width of this array should be the 
number of different input variables plus one. It always has five rows.

Getting the Data

The penetration of a zip code in the orders data is related to the average household 
income, the proportion that have graduated from college and the proportion 
of people on public assistance. Such relationships can be investigated further 
using multiple regression.

This example uses zip codes that have more than one thousand households 
and at least one order:

SELECT o.zipcode, (numorders * 1.0 / tothhs) as pen,
       Zc.medianhhinc, zc.pctnumhhpubassist, zc.pctbachelorsormore
FROM ZipCensus zc JOIN
     (SELECT o.ZipCode, COUNT(*) as numorders
      FROM Orders o
      GROUP BY o.ZipCode
     ) o
     ON zc.zcta5 = o.ZipCode
WHERE zc.tothhs >= 1000

The returned data has 10,175 rows. The second column pen is the Y-value. The 
last three columns are X-values.

Investigating Each Variable Separately

A good first step is to investigate each of the variables one-by-one. The best-
fit-line and R2 values for each variable can be calculated using the functions 
SLOPE(), INTERCEPT(), and CORREL().

Table 12-7 shows this information. Note that the best variable is the proportion 
of the zip code in college. This is the best because it has the highest R2 value.
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The signs of the slope are interesting. Positive slope means that as the input 
value increases, the target value increases. So, penetration increases as median 
income goes up and as the proportion graduating from college goes up. On the 
other hand, penetration decreases as a greater proportion of the population is 
on public assistance.

It would seem that variables with larger slope (steeper lines) would have a 
bigger impact on the target. Unfortunately, the sizes of the slope provide no 
information about which variables are better or which have a bigger impact on 
the target. The reason is that the original variables have very different ranges. 
The median income is measured in thousands of dollars, so its coefficient is 
going to be very close to zero. The other two are ratios and vary between zero 
and one, so their coefficients are higher.

This is unfortunate because it is useful to know which variables have greater 
effects on the target. Standardizing the inputs fixes this problem. As explained 
in Chapter 3, the standardized value is the number of standard deviations of a 
value from the average. The Excel formula looks like:

=(A1 – AVERAGE($A1:$A10176)/STDEV($A1:$A10176)

This formula is then copied down the column to get standardized value for all 
inputs.

t Ip If you want to compare the effects of a variable on the target (in a linear 
regression), standardize the input value before calculating the coefficients.

Table 12-8 shows the results with the standardized values. The R2 values 
remain the same. The slopes and intercepts change. Standardizing the inputs 
has no impact on how good the resulting line is.

The constant in the formula (ß0) is the same for all three formulas. This is not 
a coincidence. When doing the linear regression on standardized input values, 
the constant is always the average of the Y-values. The converse is not true. If 
the intercept happens to be the average, this does not mean that the X-values 
are standardized.

The bigger the slope (either positive or negative) on the standardized values, 
the bigger the impact on the predicted penetration.

table 12-8:  Relationship between Standardized Values and Product Penetration

sLope InterCept r-square

HH Median Income 0.0027 0.0024 0.2512

% HH On Public Assistance −0.0010 0.0024 0.0357

College Percent 0.0028 0.0024 0.2726
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Building a Model with Three Input Variables
Building a model with all three input variables is as easy as building a model 
with one. The call to LINEST() looks like:

=LINEST('T11-07'!D14:D10188, 'T11-07'!E14:G10188, TRUE, TRUE)

Remember, this is an array function. The three input variables mean that the 
function needs to be entered into an array of four cells across and five cells down, 
as shown in the screen shot in Figure 12-18. All the cells in the array have the 
same formula, shown in the formula bar. Remember that Excel adds the curly 
braces to indicate that the formula is an array formula.

How does this model compare to the models with a single variable? The R2 
value is in the middle cell in the first column. The value is higher, so by that 
measure the model is better. The R2 value is 0.312, which is not a big increase 
over the best single variable model, which had an R2 value of 0.273. Adding new 
variables should not make the model worse, but it may not make the model 
much better.

The coefficients for this model are all positive, which is interesting—because 
this is not true of the models for each variable individually. The coefficient for 
the proportion of the population on public assistance is negative when it is the 
only variable in the model. With other variables in the model, this variable 
becomes positively correlated. Whatever else, this illustrates that the coefficients 
can change dramatically as new variables are added into the regression. How 
and why does this happen?

The answer is at once simple and rather profound. The simple answer is that 
the other variables overcompensate for the proportion of the population on 
public assistance. That is, all the variables are trying to determine what makes 
a good zip code for penetration, and it seems to be wealthier, better educated 
zip codes. The other variables do a better job of finding these, so when they 
are included, the effect of the public assistance variable changes dramatically.

More formally, the mathematics of multiple regression assume that the vari-
ables are independent. This has a specific meaning. It basically means that the 
correlation coefficient—the CORREL() function in Excel—is zero (or very close to 

Figure 12-18:  The call to LINEST() with three input columns requires entering the formula in 
an array four columns wide and five rows down.
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zero) for any two input variables. The correlation between the household median 
income and the proportion of the population on public assistance is –0.55. It is 
negative because as one goes up the other goes down (wealthier people tend to 
have fewer neighbors on public assistance; people on public assistance tend to 
have fewer wealthy neighbors). The correlation is rather strong, so the variables 
are somewhat redundant.

In fact, when doing linear regression, it is easy to forget that the technique 
works best when the variables are independent. This is because, in practice, 
input variables are rarely independent unless we make them so. One way of 
doing that is by using a technique called principal components, which is beyond 
the scope of this book, although it is included in most statistics packages.

Using Solver for Multiple Regression
Just as Solver was used for weighted regression, Solver can also be used for 
multiple regression. The coefficients are entered into one area of the spreadsheet. 
The spreadsheet calculates the expected values and total error. Solver can be 
used to minimize the total error to find the optimal coefficients.

This is useful for at least two important reasons. First, Solver allows you to 
create more complicated expressions, such as ones using logarithms, or expo-
nentials, or other fancy mathematical functions. Second, Solver allows you to 
incorporate weights, which is just as useful for multiple regression as for the 
one-input variety.

As an example, when the multiple regression is run on the standardized inputs, 
Solver and LINEST() calculate the same coefficients. In some earlier versions of 
Excel, LINEST() used a different method for calculating the coefficients, one that 
was numerically unstable. A numerically unstable algorithm means that interme-
diate values might get very large, so the results are prone to errors caused by the 
computer not being able to keep enough significant digits during the computation. 
In those versions, Solver provided better estimates than the built-in functions.

Choosing Input Variables One-By-One
One powerful way of using regression is to choose the variables one at a time, 
first the best variable, then the next best, and so on. This is called forward selec-
tion and is particularly useful for many potential input variables, such as the 
many variables that describe zip codes.

Excel is not the optimal tool for doing forward selection, because the LINEST() 
function requires that the X-values be in adjacent columns. This means that 
essentially every combination of variables needs to be placed into a separate 
set of adjacent columns.

Different pairs of variables can be tested manually. Create a regression with 
two columns for the input variables. Then, copy two original columns into 
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these columns for the regression. You can copy different columns in for another 
regression.

A similar but easier method uses the OFFSET() function along with a column 
offset in another cell. Changing the value of the column offset cell has the effect 
of copying data from one of the original columns into the input column for the 
regression.

With this set up, it is easy to try different pairs of columns by changing the 
offset values and looking at the resulting R2 value. It would be convenient to 
find the optimal offsets using Solver. Unfortunately, the version of Solver pro-
vided with Excel cannot handle this type of optimization. Frontline Systems 
does offer other versions that do.

Multiple Regression in SQL
As more variables are added into the regression formula, it becomes more and 
more complicated. The problem is that solving the regression requires matrix 
algebra, in particular, calculating the determinant of a matrix. With one input 
variable, the problem is a two-by-two matrix, which is pretty easy to solve. Two 
input variables require a three-by-three matrix, which is at the edge of solving 
explicitly. And for larger numbers of variables, standard SQL is simply not the 
best tool, unless the database has built-in functions for this purpose.

This section demonstrates how the logic can be implemented in SQL, even 
though the resulting queries are complicated and very prone to error. This 
method is not recommended, because special purpose tools do a much better job.

Solving the equation for two input variables (X1 and X2) requires quite a bit 
more arithmetic than for one. Two input variables require three coefficients 
(ß0, ß1, and ß2), and more intermediate sums. The following combinations are 
needed to calculate the coefficients:

 ■ Sx1, which is the sum of the X1-values

 ■ Sx2, which is the sum of the X2-values

 ■ Sx1x1, which is the sum of the squares of the X1-values

 ■ Sx2x2, which is the sum of the product of X1-values and X2-values

 ■ Sx2x2, which is the sum of the squares of X2 values

 ■ Sx1y, which is the sum of the products of the X1-values and Y-values

 ■ Sx2y, which is the sum of the products of X2-values and Y-values

 ■ Sy, which is the sum of the Y-values

A few more similar variables are needed for R2. These then need to be combined 
in rather complicated ways.

The following example calculates the coefficients for penetration, using 
MedianHHIncome and PctBachelorsOrMore as the two input variables. The CTE 
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renames the input variables to y, x1, and x2, so the arithmetic in the outer 
subqueries is generic.

WITH xy as (
      SELECT o.ZipCode, numorders * 1.0/tothhs as y,
             CAST(medianhhinc as FLOAT) as x1, pctbachelorsormore as x2
      FROM ZipCensus zc JOIN
           (SELECT ZipCode, COUNT(*) as numorders
            FROM Orders o
            GROUP BY ZipCode
           ) o
           ON zc.zcta5 = o.ZipCode
      WHERE tothhs >= 1000
     )
SELECT beta0, beta1, beta2,
       (1 - (Syy - 2*(beta1*Sx1y+beta2*Sx2y + beta0*Sy) +
        beta1*beta1*Sx1x1 + beta2*beta2*Sx2x2 + beta0*beta0*n +
        2*(beta1*beta2*Sx1x2 + beta1*beta0*Sx1 + beta2*beta0*Sx2)) /
       (Syy-Sy*Sy / n)) as rsquare
FROM (SELECT (a11*Sy + a12*Sx1y + a13*Sx2y) / det as beta0,
             (a21*Sy + a22*Sx1y + a23*Sx2y) / det as beta1,
             (a31*Sy + a32*Sx1y + a33*Sx2y) / det as beta2, s.*
      FROM (SELECT (n*(Sx1x1*Sx2x2 - Sx1x2*Sx1x2) -
                    Sx1*(Sx1*Sx2x2 - Sx1x2*Sx2) +
                    Sx2*(Sx1*Sx1x2 - Sx1x1*Sx2)) as det,
                   (Sx1x1*Sx2x2 - Sx1x2*Sx1x2) as a11,
                   (Sx2*Sx1x2 - Sx1*Sx2x2) as a12,
                   (Sx1*Sx1x2 - Sx2*Sx1x1) as a13,
                   (Sx1x2*Sx2 - Sx1*Sx2x2) as a21,
                      (n*Sx2x2 - Sx2*Sx2) as a22, (Sx2*Sx1 - n*Sx1x2) as a23,
                   (Sx1*Sx1x2 - Sx1x1*Sx2) as a31,
                   (Sx1*Sx2 - n*Sx1x2) as a32,
                   (n*Sx1x1 - Sx1*Sx1) as a33,
                   s.*
            FROM (SELECT COUNT(*) as n, SUM(x1) as Sx1, SUM(x2) as Sx2,
                         SUM(y) as Sy, SUM(x1*x1) as Sx1x1,
                         SUM(x1*x2) as Sx1x2, SUM(x2*x2) as Sx2x2,
                         SUM(x1*y) as Sx1y, SUM(x2*y) as Sx2y,
                         SUM(y*y) as Syy
                  FROM xy
                 ) s
            ) s

      ) s

Embedded within the query are aliases such as a11 and a12. These values 
represent cells in a matrix. In any case, after all the arithmetic, the results are 
in Table 12-9. These results match the results in Excel using the same two vari-
ables. Note: The median income is an important variable, but because it is not 
standardized, the coefficient looks like it is zero.
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table 12-9:  Coefficients for Regression of HHMEDINCOME, PCOLL, to Predict Penetration, 
Calculated Using SQL

CoeFFICIent/statIstIC VarIaBLe VaLue

beta0 Intercept −0.004463

beta1 MedianHHInc 0.000000

beta2 PctBachersOrMore 0.010819

R2 R-square 0.304130

Understanding the particular arithmetic is not important. At this point, 
though, we have clearly pushed the limits of what can be accomplished with 
SQL, and adding more variables is not feasible. Doing more complicated regres-
sions requires the use of statistics tools that support such functionality or Excel.

Lessons Learned

This chapter introduces linear regression (best-fit lines) from the perspective 
of SQL and Excel. Linear regression is an example of a statistical model and is 
similar to the models discussed in the previous chapter.

There are several ways to approach linear regressions using SQL and Excel. 
Excel has at least four ways to create such models for a given set of data. Excel 
charting has a very nice feature where a trend line can be added to a chart. One 
of the types of trend lines is the best-fit line, which can be included on a chart 
along with its equation and statistics describing the line. Other types of trend 
lines—polynomial fits, exponential curves, power curves, logarithmic curves, 
and moving averages—are also useful for capturing and visualizing patterns 
in data.

A second way to estimate coefficients for a linear regression is with the array 
function LINEST() and various other functions that return individual coefficients, 
such as SLOPE() and INTERCEPT(). LINEST() is more powerful than the best-fit 
line in charts because it can support more than one X-variable.

Calculating the coefficients explicitly, using the formulas from mathematics, 
is the third approach. And, the fourth way is to set up the linear regression 
problem as an optimization problem using a spreadsheet model. The coefficients 
are in input calls and the target cell has the sum of the squares of the differences 
between the expected values and the actual values. The coefficients that minimize 
the sum define the model. An Excel add-in called Solver finds the optimal set 
of coefficients to minimize the error. The advantage to this approach is that it 
supports regressions on summarized data by doing weighted regressions. This 
is quite powerful, and not otherwise supported in Excel.
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Regression has many variations besides weighted regression. Multiple regres-
sion handles more than one input variable. A good way to choose variables is 
using forward selection—that is, selecting one variable at a time to maximize 
the R2 value (or more formally something called the f-statistic).

For one or two input variables, the calculations can be set up in SQL as well 
as Excel. This has the advantage of overcoming the limits of the spreadsheet. 
However, the arithmetic quickly becomes too complicated to express in SQL, 
and only a few databases do have built-in support for multiple regression.

Although Excel is quite useful for getting started, the serious user will want 
to use statistical packages for this type of work. The next chapter of this book 
recognizes that SQL and Excel cannot solve all problems. Some problems require 
more powerful tools. Setting up the data for these tools—the topic in the next 
chapter—is an area that takes advantage of the power of SQL.
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The combination of SQL and Excel is powerful for manipulating data,  visualizing 
trends, exploring interesting features, and finding patterns. However, SQL is still 
a language designed for data access, and Excel is still a spreadsheet designed 
for investigating relatively small amounts of data. Although powerful, the 
combination has its limits.

The solution is to use more powerful data mining and statistical tools, such as 
SAS, SPSS, R, and Python (among others) or even special purpose code. Assuming 
that the source data resides in a relational database, SQL still plays an important 
role in transforming it into the format needed for further analysis. Even NoSQL 
databases often use SQL-like syntax for accessing and processing data.

Preparing data for such applications is where customer signatures fit in. 
A customer signature contains summarized attributes of customers, putting 
important information in one place. This is useful both for building  models and 
for scoring them, as well as for reporting and ad hoc analyses. The model sets 
discussed in the previous two chapters are examples of customer signature tables.

Signatures are useful beyond sophisticated modeling, having their roots in 
customer information files developed for reporting purposes. However, sig-
natures are summaries designed for analytic purposes rather than reporting 
purposes, taking special care with regards to the naming of columns, the time 
frame of the data going into the signature, and similar considerations.

Customer signatures are powerful because they include both behavior and 
demographics in one place. The term “customer” should not be taken too literally. 
In some businesses, for instance, prospects are more important than  customers. 
So, the “customer” may be a prospect and “behavior” may be exposure to 
 marketing campaigns. Or, the level of modeling may be at the zip code level, 
so the signatures represent zip codes rather than specific customers.

C h a p t e r 

13
Building Customer  

Signatures for Further analysis
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The word “signature” arises from the notion that customers are unique in the 
specific behavioral and demographic traces that each leaves behind in databases. 
This is an intriguing notion of human individuality. Unlike human signatures, 
unique identification is not the purpose; bringing information to the surface 
for analysis is.

Even though other tools offer more advanced analytics, SQL has an advantage 
for data preparation: databases exploit parallel processing. In simple terms, this 
means that database engines can keep multiple disks spinning, multiple proces-
sors active, and lots of memory filled while working on a single query. And SQL 
is quite scalable. So a query that works on a smaller sample is re-optimized for 
processing larger amounts of data or on different hardware. Another advan-
tage of SQL is that a single query often suffices for all the data processing for 
customer signatures, eliminating the need for intermediate tables.

Many of the ideas in this chapter have been discussed in earlier chapters. 
This chapter brings these ideas together around the concept of the customer 
signature, information that summarizes customers along multiple dimensions. 
This chapter starts by explaining customer signatures and time frames in more 
detail. It then discusses the technical operations for building signatures, and 
interesting attributes to include in them.

What Is a Customer Signature?

A customer signature is a row in a table that describes many aspects of  customers—
behavior, demographics, neighborhoods, and so on. This section introduces 
 customer signatures, how they are used, and why they are important. The process 
of building them should make it possible to reconstruct what customers look like 
at any point in the past. This may be a snapshot on the same date for all custom-
ers, or a different date for each customer, such as one year after the customer 
starts, when the customer makes a second visit, when the customer purchases a 
particular product, or when the customer enrolls in the loyalty program.

t Ip The process for creating customer signatures should be customizable to take a 
snapshot of customers any point in time or relative to events during the customer tenure. 
The process for building a customer signature table is as important as the table itself.

Customer signatures summarize longitudinal information as a snapshot. In 
this context, longitudinal does not mean the distance east or west of Greenwich, 
England. Longitudinal is a word borrowed from medical research where it describes 
keeping track of patients over time including all the treatments, measurements, 
and things that happen to the patients. Almost everything is of interest to medical 
researchers because they are dealing with life and death issues. Although infor-
mation about customers is not typically quite so detailed and personal, customer 
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signatures serve a similar purpose in the business world by combining many 
features of customers over time to understand particular outcomes.

What Is a Customer?
The definition of customer permeates the earlier chapters. Chapter 1 brings 
up the difficulties of identifying customers; Chapter 8 discusses challenges in 
tracking them over time; and Chapter 10 describes association rules at different 
levels of the customer relationship (orders and households).

What is a customer? As we’ve seen, the question can have multiple answers. 
Four typical ones are:

 ■ An anonymous transaction

 ■ An account, cookie, or device ID

 ■ An individual

 ■ A household

From the perspective of identifying customers in a database over time, accounts 
and anonymous transactions are usually easy; individuals and households 
require more work.

At the account/cookie level, one quickly discovers that individuals and house-
holds can have multiple relationships. Multiple accounts belonging to the same 
customer result in operational inefficiencies—multiple contacts to the same house-
hold, for instance. These multiple accounts can interfere with analysis. For instance, 
when trying to understand why customers stop, summaries at the account level 
may miss the fact that some people have remained customers—on another account. 
The same problem arises when using cookies or device IDs to identify users.

On the other hand, the identification of individuals and households over time 
requires a lot of work to identify the same person across multiple transactions, accounts, 
channels, and devices. Households pose acute problems because their composition 
changes over time. These changes represent potential marketing opportunities: 
marriage, divorce, cohabitation, children moving in, children moving out, and so on.

Tracking households and individuals over time also presents a challenge. 
For instance, users may use a site anonymously from different devices. Then, 
when the user does identify him or herself (by making a purchase or logging 
in), should you go back and add the identifier to earlier anonymous sessions that 
have the same cookie/device ID? This question has no right answer; it depends 
on the business requirements for customer identification.

The purchases dataset contains a customer ID table that provides lookups 
for the household for any account. These IDs tie disparate transactions together 
over time. Such customer IDs are often assigned by matching names, addresses, 
phone numbers, email addresses, and credit cards on the transactions. These 
are then grouped together into households, typically assigned by a third-party 
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vendor. If more complete data were available, these household IDs would have 
effective dates on them, identifying when the household information is active 
and when the information changes.

Sources of Data for the Customer Signature
In a typical database, data about customers is spread though many different 
tables, some of which do not even know that they help describe customers. 
Products is intended to describe products, not customers. Yet, when combined 
with transaction information, this table helps answer questions such as:

 ■ Which customers only purchase products at discounted prices?

 ■ Does a customer have an affinity with a particular product group?

 ■ Does this affinity change over time?

These questions highlight the interplay between different types of data.
Information about customers comes from diverse subject areas, as shown in 

Figure 13-1. One particularly important attribute is the time frame for each item 
of data. The time frame is when the data becomes known for analytic purposes.

Current Customer Snapshot

Sometimes, a table is already available that describes the current customers (and 
perhaps former customers as well), containing information such as:

 ■ Customer ID

 ■ Customer name

 ■ Original start date or first purchase date

 ■ Current product or most recent purchase date

 ■ Total spending

 ■ Current contact information

Customer
Summary

Customer
Initial

Self-
Reported

Neighbors and
Geographic
Summaries

External Transaction
Summaries

Figure 13-1:  Customer signatures are records that describe customers, containing information 
from different subject areas.
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This information is a snapshot of what customers look like at the time the 
snapshot is created. Such a snapshot is a good starting point for a customer 
signature. It has useful information and is at the right level of granularity. The 
most useful columns are the ones that do not change over time, because these 
can be used to create a snapshot of customers at any point in time.

For instance, the customer ID and original start date do not change. The contact 
information can change over time, although slowly. Total spending, most recent 
product, and most recent purchase date all change frequently. “Frequently,” of 
course, depends on the business. Updates on automobile purchases might change 
over a period of years; updates on electricity usage, every month or even more 
frequently. Updates on web visits or phone usage, every day or even more often.

In a poorly designed data warehouse or data mart, snapshot information 
might contain data elements that are not otherwise available in transaction 
tables. Once upon a time, a company had a customer snapshot with the dunning 
level, a field that described how late customers were in paying their bills: The 
higher the dunning level, the later the customer payment, until the account 
was suspended. This information was only kept current in the snapshot infor-
mation, with no historical transaction table. Although quite important for 
understanding customers and a driver of important behaviors, the dunning 
level could not be used for analysis, because the values could not be recon-
structed in the past.

The solution was simple enough. On the analysis side, we could capture the 
dunning level periodically from the current snapshot, and create a dunning 
transaction table for analysis purposes.

Initial Customer Information

Initial customer information remains constant for the duration of the customer 
relationship (except when households merge or split). This information includes:

 ■ The customer start date

 ■ Initial products and spending amounts

 ■ Channel and marketing promotions that led to the initial relationship

 ■ Other relevant information (underwriting, credit scores, and so on)

The initial customer relationship describes the expectations when a customer 
starts. Exceeding expectations can result in delighted customers who survive 
for long periods of time. On the other hand, unfulfilled expectations can lead 
to disappointed customers who were, perhaps, never in the target market in the 
first place, but were led to start by aggressive marketing tactics.

t Ip Initial customer information, both demographic and behavioral, is quite 
valuable for understanding customers because the initial interactions set customers’ 
longer term expectations.
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Self-Reported Information

Customers explicitly provide some valuable data. Basic contact information, such 
as name, address, telephone number, and email address is provided when they 
start. Addresses used for billing and delivery lead to geocoding and associated 
geographic information. Email addresses contain domain information. Names 
suggest gender and ethnicity. Credit cards provide credit card types.

In addition, customers may complete application forms, provide information 
for credit checks, and respond to questionnaires and surveys. These additional 
sources of self-reported information are often available only for the few rather 
than the many. One challenge is to extend learnings from this subset to all cus-
tomers. A survey might find an interesting subset of customers; the next problem 
is to find similar customers in the overall data. Similarity models described in 
Chapter 11 are one way to approach this.

Self-reported information has a time frame associated with it. Some is available 
at the beginning of the customer relationship because such information is part 
of the application process. Some is only available sporadically after customers 
begin. The information itself is current as of the date it is collected.

External Data (Demographic and So On)

External data is typically purchased from outside bureaus that specialize in 
demographic data or from business partners who share similar information. 
Such information is usually a current snapshot of customers. Unfortunately, 
reconstructing what a customer used to look like is difficult.

Changes in such information can be quite informative. When a couple marries 
in the United States, one spouse often legally changes his or her name. After a 
period of time, the newlyweds often unify their financial accounts into a single 
household account. This offers an opportunity to the bank of the name-changing 
spouse because it receives notice of the name change. More often than not, a 
name change gets recorded in a database as the current name, and the previous 
name is simply forgotten, or at least unavailable outside operational systems.

When a customer moves from one neighborhood to another, the neighborhood 
demographics change. The address is updated, and the old address forgotten (or 
at least not readily available for analysis). Without the ability to compare neigh-
borhood demographics, it is not possible to know if the customer is moving up or 
moving down, into a great school district or into a peaceful retirement community.

t Ip Changes in demographic information can be very informative, particularly 
because such changes can reveal information about the customer’s life stages.

Banks usually know when customers reach retirement age. Do the banks 
cease marketing to customers who are no longer eligible to contribute to 
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individual retirement accounts (IRAs)? Customers are no longer eligible for 
these once they reach a certain age.

The time frame for demographic information usually represents a compro-
mise because the information is not maintained over time. Only the current 
snapshot of data is available for current customers, and the last snapshot for 
stopped customers.

About Their Neighbors

Some information does not tell us directly about customers, but instead about 
the neighborhoods where they live. The Census Bureau for instance provides 
detailed information for free. Other “neighborhood” information consists of 
dynamic summaries of customer behavior, projected onto the neighborhood 
level. Although “neighborhood” usually refers to geography, it could refer to 
other types of similarity, such as all customers who arrived via a particular 
marketing campaign or who have the same email domain.

Using geographic data requires geocoding addresses or GPS coordinates—
typically identifying the census block groups or census tracts where individuals 
or addresses are located. Zip codes are a poor man’s geocoding. They often work 
well enough but the census geographies are better designed for characterizing 
neighborhoods.

Census blocks change periodically as populations shift. If you are looking 
at customers over long periods of time, maintaining the history of the census 
variables can be useful for understanding how neighborhoods and customers 
are evolving.

Census information is also used for developing marketing clusters, of which 
the best known are probably Claritas’s Prizm codes. These are descriptions 
of the people living in particular areas using catchy names such as “Young 
Digerati,” “Kids & Cul-de-Sacs,” “Shotguns and Pickups,” and “Park Bench 
Seniors,” that are based primarily on census data augmented with market 
research data (you can look up any U.S. zip code by choosing zip code lookup 
at http://www.claritas.com/MyBestSegments/Default.jsp).

Transaction Summaries and Behavioral Data

Transactions, web logs, online behavior, historical marketing contacts—these are 
typically the most voluminous of the data sources, at least by number of rows 
of data. This type of data describes customers’ behaviors. The useful attributes 
in the torrents of records are not always obvious.

The key to effectively using such information is summarization and feature 
extraction. Some basic methods of summarization are taking sums and averages 
and counts. More advanced methods identify the presence, absence, or extent 
of particular behaviors.

http://www.claritas.com/MyBestSegments/Default.jsp
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Customer interactions, particularly on-line, provide additional information 
that customers may not even be aware that they are sharing. For instance, you 
can determine the browser preference, mobile device type, language preference, 
and time zone simply by collecting the right information from online interac-
tions. This can be quite useful—perhaps iPhone users are different from other 
mobile customers.

Transaction history and online behavior is quite amenable to the use of time 
frames, assuming that enough data is available. Shifting the time frame is sim-
ply a matter of taking transactions before a certain date and then summarizing 
them appropriately.

Using Customer Signatures
Customer signatures have a variety of uses, as discussed in this section.

Data Mining Modeling

Customer signatures provide the inputs to models, including predictive models 
and profiling models. These models use most of the columns as input variables 
to estimate values in one or more target columns. Chapters 11 and 12 discuss 
several different types of models. More advanced data mining and statistical tools 
can access the signatures directly in a table or perhaps via files of exported data.

Scoring Models

Customer signatures are also used for scoring models, although only a subset 
of the columns are typically needed for any given model. The data can be kept 
up to date perhaps by using daily processes to update the signature or even 
real-time processes for key fields. If so, model scores can be updated in real 
time or close to real time.

Ad Hoc Analysis

Reporting systems do a good job of slicing and dicing business information 
along important dimensions, such as geography, customer type, department, 
product, and so on. Because the volume of data is so large and the data is quite 
complex, signatures can be a convenient way to approach ad hoc analysis.

Repository of Customer-Centric Business Metrics

Columns in a customer signature can go beyond merely gathering data from 
other tables. Customer signatures are a place to put interesting metrics, particu-
larly those derived from customer behavior information.
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For instance, the history of marketing efforts might include attempted 
contacts by email, telephone, direct mail, and other channels. One of the 
attributes in the signature might be “email responsiveness.” Customers who 
responded to email offers in the past would have higher email responsive-
ness scores. Customers who have been contacted many times and never 
responded would have low scores.

This idea can extend beyond the channel preference, of course. The times when 
customers shop might be summarized to define who is a “weekend” shopper, 
who is a “weekday” shopper, who is an “after-work” shopper. The times when 
customers go to the web site might distinguish between “work browsers” and 
“home browsers.” Customers who buy the newest products without a discount 
might be “leading edge” shoppers. Credit card customers might be classified 
as revolvers (keep a high balance and pay interest), transactors (pay off the bill 
every month), or convenience users (charge up for a vacation or furniture or 
something and then pay the balance over several months). A customer signa-
ture is a good place to publish these types of business metrics and make them 
available for a wide range of analytic purposes.

t Ip Customer signatures are a good place to publish important measures about cus-
tomers that might otherwise go undocumented and be forgotten.

Designing Customer Signatures

Before going into the details of the data manipulations, let’s cover some key ideas con-
cerning the design of customer signatures. These ideas ensure that they work well for 
analytic purposes, and that they can be generated to be as-of arbitrary points in time.

Profiling versus Prediction
Chapter 11 introduces the distinction between a profiling model set and a pre-
diction model set. In a profiling model set, the inputs and the targets come from 
the same time frame. In a prediction model set, the inputs are known before 
the target. The same ideas hold for customer signatures.

This chapter focuses on prediction model sets because they are more powerful. 
In a profiling model set, the target variables can simply be created in the same 
way as the input variables. In a prediction model set, the cutoff date is for the 
input variables, and the target comes from a time frame after the cutoff date.

Column Roles
Columns in a customer signature have various roles, related to how the col-
umns are used in modeling. The roles are important because they affect how 
the columns are created.
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Identification Columns

Some columns uniquely identify each customer. Identification columns are impor-
tant because they provide a link back to the detailed customer data in other 
databases. Customers often have more than one method of identification. For 
instance, the customer ID in the data warehouse could be different from the 
customer ID in the operational systems; the on-line registration ID is probably 
different from the account number. Sometimes external vendors return match 
keys, which are different from the keys used internally.

What is important about identification columns is that they uniquely identify 
each customer—or at least that customer’s records in a particular system—for 
the duration of the data in the customer signature. The identification column 
prevents customers from being confused with each other.

Input Columns

Most columns in the customer signature are input columns. These columns 
describe customer characteristics and are intended for use as inputs in model-
ing. Input columns are all defined by a cutoff date. No information from after 
the cutoff date should be included in the inputs.

This date may be a single date for the entire customer signature, so the cus-
tomer signature is a snapshot of what all customers look like on that date. 
Alternatively, the cutoff date could be defined individually for each customer. 
For instance, it could be one year after the customer starts, or when the customer 
adds a particular product, or the first time that the customer complains.

Target Columns

Target columns are added to the customer signature during the analysis phase 
for predictive modeling. For such models, the target columns come from a 
later time frame than the input columns. Target columns already present in 
the signature (as opposed to being added in a subsequent step) usually imply 
a customer signature for profiling rather than prediction.

Foreign Key Columns

Some columns are used to look up additional information. Usually, the addi-
tional information is simply added in by joining other tables or subqueries. The 
key used for the join can remain in the signature, although it is not usually as 
useful as the data brought in.

Cutoff Date

The cutoff date should be included in each customer signature record. This date 
may be fixed for all customers, or it may vary. The purpose of including the cutoff 
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date is to inform subsequent analysis, for instance, to convert dates into tenures. It 
should not be used as an input column for modeling. The cutoff date refers to the 
cutoff date for the input columns; target information may come from after the cutoff.

Time Frames
One key question in designing customer signatures is: “What do we know and 
when did we know it?” All the inputs in the signature come from a time frame 
before the cutoff date. Each column has a time frame associated with it because 
each value in a database becomes known at some point in time and the value in 
the column may be replaced at a later point in time. Columns are only available 
for analysis when the cutoff date for the customer signature is on or after the 
time frame for the values in those columns.

t Ip  “What do we know?” and “When do we know it?” are key questions about col-
umns going into customer signatures.

The goal of using time frames is to be able to create the customer signature 
with arbitrary cutoff dates. This goal has some consequences in terms of naming 
columns, handling dates and times, and incorporating seasonality.

Naming of Columns

Column names should respect the cutoff date. So, the names should not be 
tied to particular dates or date ranges. Instead, they should be relative. Good 
examples of such columns are:

 ■ Sales in the customer’s first year

 ■ Average number of weekend visits to a website

 ■ Most recent month billing invoice

On the other hand, bad examples of columns specify particular dates (such as 
months and years) that would not be relevant in another time frame.

Eliminating Seasonality

Columns that include data from explicit dates and times cause problems because 
they interfere with generating the signatures for different time frames. Tenures 
and time spans are better than including explicit dates:

 ■ Instead of the start date, include the number of days before the cutoff date 
when the customer started.

 ■ Instead of the date of the first purchase and the second purchase, include 
the number of days from one to the next.

 ■ Instead of the date when a customer enrolled in a program, include the 
tenure of the customer at that time.
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 ■ Instead of the date of the most recent complaint, include the tenure of the 
customer on the first complaint and on the most recent complaint.

As a general rule, specific dates are less important relative to the calendar time 
line than relative to the customer life cycle time line. Dates on the calendar time 
line should be turned into numbers of days before the cutoff date for the signature.

This also eliminates many effects of seasonality. For instance, many cell phone 
customers sign up around Christmas. As a result, many pre-paid customers stop 
in May—four or five months after the phones are activated. These are customers 
who never replenish their phone account.

This peak in May is not really related to the month of May. Instead, it is related 
to the peak in starts during the preceding December and January and the busi-
ness rules that define churn for pre-paid customers. On the customer timeline, the 
same proportion stops after four or five months regardless of when they started. 
A peak in starts, though, does result in a peak of stops several months later.

Having the tenure of the customer in the customer signature rather than the dates 
themselves makes signatures independent of such inadvertent seasonality effects.

Adding Seasonality Back In

Of course, seasonality is useful and informative. For instance, purchases in 
August may be related to students starting a new school year (in the United 
States). Students behave differently from other customers. They may be more 
likely to change brands, more responsive to certain types of promotions, and 
have fewer financial resources.

Some of this information can be captured in the customer signature by including 
information such as the season when a customer started. The average customer 
who starts during the back-to-school season may be different from the average 
customer who starts at other times. In fact, the subscription data has slight dif-
ference in survival for customers who start in August and September versus 
December, as shown in Figure 13-2. The important point is that customers who 

Figure 13-2:  Survival can differ based on the month when customers start.
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start at different times throughout the year may behave differently because the 
mix of different customer segments changes throughout the year.

The following are some examples of seasonality variables that might be 
included to capture possibly interesting characteristics:

 ■ Quarter of the year when a customer started

 ■ Proportion of transactions on the weekend

 ■ Website visits during the traditional work day

 ■ Volume of purchases during the preceding holiday season

 ■ Day of the week of the start and stop

The idea is to first wash seasonality out of the data, to get a better picture of 
what customers are doing independently of the calendar. This makes it easier to 
focus on customers, rather than on extraneous events. Of course, seasonality is 
so important that such effects should go into the customer signature intention-
ally rather than accidentally. For this reason, separate out variables that capture 
seasonality information, so it is purposefully in the signature.

t Ip Remove inadvertent seasonality from the customer signature by looking at com-
plete years of data and time frames relative to the customer life cycle. Then explicitly 
add important variables describing seasonality, such as purchases in the last holiday 
season as a proportion of one year’s purchases.

Multiple Time Frames

For predictive modeling purposes, model sets are more powerful when they 
contain records with different time frames. This prevents the models from 
“memorizing” one particular time frame. Figure 13-3 shows an example.

Figure 13-3:  Model sets can mix customer signatures from different time frames. Having 
multiple time frames is actually a best practice for prediction model sets.
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When using a model set with multiple time frames, the same customer can 
appear more than once. In general, this is not a big problem when most of the 
columns are based on transactions and behavior. If most are based on more 
static information, then the overlap can be an issue. In general, it is better to 
not have too many duplicates in a model set.

Operations to Build Customer Signatures

Customer signatures bring data together from disparate data sources, as suggested 
in Figure 13-4. Some data is already in the right format, and at the right granularity. 
This data merely needs to be copied. Some fields are keys into other tables, where 
information can be looked up. Other data is in the format of regular time series that 
can be pivoted. Irregular time series, such as transactions, need to be summarized. 
This section describes these operations in the context of building customer signatures.

Driving Table
The first step in building customer signatures is identifying the correct group 
of customers and the appropriate cutoff date. A customer signature has a set 
of conditions that determine whether any given customer should be in the 

Figure 13-4:  The data in customer signatures needs to be brought together using a variety of 
processing methods.
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signature. The table that defines these customers is the driving table, which may 
be an actual table or a subquery.

The driving table defines the population for the signatures and the cut off 
date. If the signatures are built only for customers who have been around for 
one year, then the driving table defines this population. Sometimes, filtering 
can be done after the customer signature has been created for all customers. 
Sometimes it is simpler to do it when building the signatures.

In an ideal situation, all other subqueries would simply be joined into the 
driving table using LEFT OUTER JOINs. Important parameters such as the cutoff 
date (if constant) can be defined using a CTE, resulting in a query like:

WITH params as (
      SELECT <custoffdate> as CutoffDate
     )
SELECT *
FROM (<driving table>) dt LEFT OUTER JOIN
     (SELECT CustomerId, <summary information>
      FROM params CROSS JOIN <other table>
      GROUP BY CustomerId
     ) t1
     ON dt.CustomerId = t1.CustomerId LEFT OUTER JOIN
     <ref table> rt
     ON rt.<key> = dt.<key>

That is, the driving table would be joined to summaries (typically at the customer 
level) and reference tables to calculate the columns in the customer signature. 
This ensures the correct population in the customer signature and that rows 
do not get inadvertently duplicated.

Using an Existing Table as the Driving Table

Sometimes a table with the right level of granularity can be used for the 
driving table, although not all its columns are necessarily appropriate for 
the signature.

Consider Subscribers. The most useful columns in this table describe customers 
when they start, such as start date, channel, and market. Information that occurs 
after the customer start date is not appropriate, so the resulting query might be:

WITH params as (
      SELECT CAST('2005-01-01' as DATE) as CutoffDate
     )
SELECT SubscriberId, RatePlan as initial_rate_plan,
       MonthlyFee as initial_monthly_fee,
       Market as initial_market, Channel as initial_channel,
       DATEDIFF(day, StartDate, CutoffDate) as days_ago_start,
       CutoffDate
FROM params CROSS JOIN Subscribers s
WHERE StartDate < CutoffDate
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Only customers who started before the cutoff date are included. This is handled 
through the use of the params CTE. Start dates are transformed into tenures, as 
of the cutoff date. And, only columns whose value is known at the beginning 
of the customer relationship are included in the query.

t Ip The CROSS JOIN operation is a convenient way to incorporate constants into 
queries, by using a subquery or CTE that defines the constants and returns one row.

Often, an existing table is really a snapshot of a customer at a given point in 
time. Some columns may still be usable for the driving table, assuming they 
are modified for different cutoff dates. For instance, the Tenure and StopType 
columns could also be included, but they have to be modified to take the cutoff 
date into account:

WITH params as (
      SELECT CAST('2005-01-01' as DATE) as CutoffDate
     )
SELECT SubscriberId, RatePlan as initial_rate_plan,
       MonthlyFee as initial_monthly_fee,
       Market as initial_market, Channel as initial_channel,
       DATEDIFF(day, StartDate, CustoffDate) as days_ago_start,
       DATEDIFF(day, StartDate,
                (CASE WHEN StopDate IS NOT NULL AND
                           StopDate < CutoffDate
                      THEN StopDate ELSE CutoffDate END)) as tenure,
       (CASE WHEN StopDate IS NOT NULL AND StopDate < CutoffDate
             THEN StopType END) as StopType,
       CutoffDate
FROM params CROSS JOIN Subscribers s
WHERE StartDate < CutoffDate

The logic says that customers who stopped on or after the cutoff date are con-
sidered active as of the cutoff date, and customers who stopped before the cutoff 
date are considered stopped. For the customers who are stopped, the stop type 
does not change.

Some columns in a snapshot table cannot be used directly in the customer 
signature. These columns contain information that cannot be rolled back in 
time, such as total number of purchases, the date of the last complaint, and 
the customer’s billing status. These have to be derived again from transac-
tion tables.

Derived Table as the Driving Table

Sometimes, the appropriate table is not available. In this case, the driving table 
is a subquery. For instance, consider customer signatures at the household 
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level for the purchases dataset. The database does not have a household table 
(although perhaps it should). Relevant information can be derived from other 
tables.

The following query provides a basic summary of households, based on 
Customers and Orders:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId, COUNT(DISTINCT c.CustomerId) as numcustomers,
       SUM(CASE WHEN Gender = 'M' THEN 1 ELSE 0 END) as nummales,
       SUM(CASE WHEN Gender = 'F' THEN 1 ELSE 0 END) as numfemales,
       MIN(first_orderdate) as first_orderdate,
       DATEDIFF(day, MIN(first_orderdate),
                MIN(cutoff_date)) as days_since_first_order,
       MIN(CutoffDate) as CutoffDate
FROM params CROSS JOIN Customers c JOIN
     (SELECT CustomerId, MIN(OrderDate) as first_orderdate
      FROM Orders o
      GROUP BY CustomerId) o
     ON c.CustomerId = o.CustomerId
WHERE o.first_orderdate < params.CutoffDate
GROUP BY HouseholdId

This query looks up the earliest order date for customers. Only customers with 
an order before the cutoff date are included in the driving table.

Looking Up Data
A lookup table can either be a fixed table that describes features that do not change 
or a dynamic summary of customer data. Such historical summaries along business 
dimensions can be very valuable, but they need to take the cutoff date into account.

Fixed Lookup Tables

Fixed lookup tables contain information that does not change over time. These 
tables can be included without reference to the cutoff date. The classic example 
is census information. The data from the 2010 Census does not change. However 
subsequent Census data will supersede it, just as the 2010 Census data super-
seded the 2000 data.

Census data can be useful in a customer signature, such as:

 ■ Household median income

 ■ Education variables

 ■ Number of households in the zip code
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Looking up the values requires a zip code for each customer. Often, the zip code 
(and other geocoded information) would be a column in a household table and 
hence part of the driving table.

This example gets the most recent valid-looking zip code in each household:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId, ZipCode as first_zip
FROM (SELECT c.HouseholdId, o.ZipCode,
             ROW_NUMBER() OVER (PARTITION BY c.HouseholdId
                                ORDER BY o.OrderDate DESC) as seqnum
      FROM params CROSS JOIN Customers c JOIN
           Orders o
           ON o.CustomerId = c.CustomerId
      WHERE SUBSTRING(o.ZipCode, 1, 1) BETWEEN '0' AND '9' AND
            SUBSTRING(o.ZipCode, 2, 1) BETWEEN '0' AND '9' AND
            SUBSTRING(o.ZipCode, 3, 1) BETWEEN '0' AND '9' AND
            SUBSTRING(o.ZipCode, 4, 1) BETWEEN '0' AND '9' AND
            SUBSTRING(o.ZipCode, 5, 1) BETWEEN '0' AND '9' AND
            LEN(o.ZipCode) = 5 AND
            OrderDate < CutoffDate
     ) h
WHERE seqnum = 1

This uses the typical method of getting the most recent value by using 
ROW_NUMBER() and conditional aggregation. Note that the window function 
FIRST_VALUE()can also be used.

The expression in the WHERE clause that chooses the appropriate zip codes 
is not:

ZipCode BETWEEN '00000' AND '99999'

The problem is that poorly formed zip codes such as ‘1ABC9’ would fall into this 
range. Each digit needs to be tested separately. SQL Server offers an extension 
to LIKE, so this could be written as:

ZipCode LIKE '[0-9][0-9][0-9][0-9][0-9]'

This syntax is specific to SQL Server. Other databases support regular expres-
sions, and the regular expression pattern would be similar to this pattern.

With the appropriate zip code, the lookup then takes the form:

SELECT HouseholdId, zc.*
FROM (<hh first zip subquery>) hhzip LEFT OUTER JOIN
      ZipCensus zc
      ON hhzip.firstzip = zc.zipcode

This query looks up the zip in ZipCensus and extracts the columns of interest.
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Customer Dimension Lookup Tables

Some very powerful lookup tables are summaries of customer behavior along 
various dimensions. For example, the following might be interesting:

 ■ Penetration by zip code

 ■ Response rate by device type

 ■ Average transaction amount by channel

 ■ Average transaction amount in the state

 ■ Stop rate by channel, market, and monthly fee

This process is sometimes described as projecting one or more measures onto 
a dimension.

It is tempting to create summaries using simple aggregations. Resist this 
 temptation. All the data in the summaries have to be from a period before the 
cutoff date to meet the requirements of the input variables. A simple aggrega-
tion over all the data might include information from the same time frame as 
the target—creating customer signatures that cheat.

Warn Ing When summarizing variables for customer signatures (such as histori-
cal churn rates by handset type or historical purchases by zip code), be sure that the 
data in the summary table comes from a time frame before the target variables’.

As an example, consider penetration by zip code, which is the number of 
households in a zip code with an order divided by the number of households 
in the zip code. The first number is calculated from the orders data. The second 
comes from census information.

The following query is the basic query to retrieve the counts:

SELECT o.ZipCode, COUNT(DISTINCT c.HouseholdId) as numhhwithorder
FROM Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId
GROUP BY o.ZipCode

This summary has two problems, one obvious and one subtle. The obvious problem 
is that it does not use the cutoff date, so the resulting columns include information 
from the target time frame. The subtle problem is that as the cutoff date moves into 
the future, larger amounts of time are used for the calculation. As a result, customer 
signatures with more recent cutoff dates necessarily have larger penetrations than 
customer signatures with earlier cutoff dates. Penetration can only grow over time.

The following version solves both these problems:

WITH params AS (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
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SELECT o.ZipCode, COUNT(DISTINCT c.HouseholdId) as numhh
FROM params CROSS JOIN Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId
WHERE DATEDIFF(day, o.OrderDate, CutoffDate) BETWEEN 0 AND 365
GROUP BY o.ZipCode

This query uses a fixed period of one year before the cutoff date for the  calculation 
of penetration. Using a fixed period makes the variable more compatible with 
different cutoff dates.

When the cutoff date differs for each household, the driving table is needed 
to get the date:

SELECT o.ZipCode, COUNT(DISTINCT c.HouseholdId) as numhh
FROM <driving table> dt JOIN
     Customers c
     ON c.HouseholdId = dt.HouseholdId JOIN
     Orders o
     ON c.CustomerId = o.CustomerId
WHERE DATEDIFF(day, o.OrderDate, CutoffDate) BETWEEN 0 AND 365
GROUP BY o.ZipCode

In this version, the cutoff date comes from the driving table rather than from a 
constant subquery. Using the cutoff date ensures that future information is not 
inadvertently incorporated into the signature.

Initial Transaction
The first transaction provides a lot of information about a customer. This informa-
tion might include the sections of a web site visited on the first visit, the referral 
URL, the browser type, and the amount of time spent on the site; or, the contents of 
the market basket on the first purchase, discounts applied, and the payment type.

As an example, let’s gather information from the first purchase in Orders. 
Unfortunately, SQL does not have direct support for joining in just the first trans-
action. Because the driving table for the purchases data includes the customer 
start date, which is also the first order date, we can get pretty close:

SELECT dt.HouseholdId, firsto.*
FROM (<driving table>) dt LEFT OUTER JOIN
     (SELECT c.HouseholdId, o.*
      FROM Customers c JOIN
           Orders o
           ON c.CustomerId = o.CustomerId) firsto
     ON firsto.HouseholdId = dt.HouseholdId AND
        firsto.OrderDate = dt.first_orderdate

Although this looks like a good idea, some customers have multiple orders on 
the first day.
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Some solutions to this problem include:

 ■ Fix the orders so the order date has a time stamp in addition to a date stamp.

 ■ Treat all orders on the first day as a single order.

 ■ Choose a single, reasonable first day transaction.

The first possibility is generally a non-starter. Data analysis projects often find 
opportunities to improve source data. Alas, fixing data problems is usually 
outside the scope of such projects.

The second approach requires combining multiple orders on the same day. 
Some attributes, such as the original channel and the original payment type, 
need to be combined from more than one order. There is no obvious way to do 
this consistently.

The preferred solution is to choose a single, reasonable first day transaction. 
We have already encountered the problem of having multiple transactions on 
the same date in Chapter 8. This is easily solved using ROW_NUMBER():

SELECT h.*
FROM (SELECT HouseholdId, o.*,
             ROW_NUMBER() OVER (PARTITION BY HouseholdId
                                ORDER BY OrderDate, OrderId) as seqnum
      FROM Customers c JOIN
           Orders o
           ON o.CustomerId = c.CustomerId) h
WHERE seqnum = 1

ROW_NUMBER() assigns a sequence number to the orders within each household, 
starting with the earliest OrderDate and smallest OrderId on that date. The first 
order is simply the one whose sequence number is one.

Sequence numbers can be quite convenient for analytic purposes. They 
make it easier to determine what happens first and next and right before 
something else (as well as the window functions LAG() and LEAD()). If these 
values are not included in the data warehouse, then window functions can 
calculate them.

t Ip Sequence numbers on transactions are useful for finding the first transaction 
(as well as the next and previous ones). They can be added easily using the 
ROW_NUMBER() window function.

Pivoting
Pivoting is a common way to summarize data. It is the process of taking cus-
tomer transactions that follow a regular pattern and summarizing multiple 
transactions into a single row with columns describing them. Each pivot col-
umn corresponds to a particular value or group of values, such as transactions 
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during a month or transactions containing a particular product. The columns 
themselves contain basic summaries, such as:

 ■ Counts of orders

 ■ Sum of dollar amounts

 ■ Average of dollar amounts

 ■ Counts of some distinguishing feature (such as counts of distinct orders)

The examples in this section calculate the first of these.
The purchases dataset has several obvious dimensions for pivoting:

 ■ Payment type pivot—Summarizing the transactions by payment type

 ■ Campaign pivot—Summarizing the transactions by campaign

 ■ Time pivot—Summarizing the transactions by time period

 ■ Product pivot—Summarizing the transactions by product information

This section walks through the process of adding these pivots to the customer 
signature.

Conditional aggregation for pivoting creates multiple columns independently. 
Although this is a hassle, it only needs to be done once. When there are large 
numbers of columns, Excel can be used to automatically generate the code, as 
discussed in the aside “Using Excel to Generate SQL Code.” Some databases 
support the PIVOT or CROSSTAB keyword; although this keyword simplifies the 
code a little, it is not as flexible as conditional aggregation.

Payment Type Pivot

The first example of a pivot is by payment type. This is the simplest because 
payment type is an attribute of Orders. Table 13-1 shows the six different 
payment types.

table 13-1: Payment Types in Orders Table

payment type # OrderS deSCrIptIOn

?? 313 Unknown

AE 47,382 American Express

DB 12,739 Debit Card

MC 47,318 MasterCard

OC 8,214 Other Credit Card

VI 77,017 Visa
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USIng exCel tO generate SQl COde

Creating pivot columns requires repetitive code that can be cumbersome to type in. 
Earlier chapters (2 and 12 in particular) contain examples of using SQL to generate 
code. Excel can also be used to generate SQL statements.

For example, the payment type pivot contains several SELECT statements similar to:

SUM(CASE WHEN paymenttype = 'VI' THEN 1 ELSE 0 END) as pt_vi,

Assume that the various payment type values are in one column (for instance, the col-
umn B) and the preceding statement is in cell $A$1. To get the appropriate statement 
in column C, use the following formula:

=SUBSTITUTE($A$1, "VI", $B2)

And copy this formula down column C. The results can be copied into the SQL expres-
sion to add the appropriate columns.

Extra spaces before the SUM() cause the resulting expressions to “line up,” making 
the query much easier to read. Also, the final comma needs to be removed from the 
last expression to prevent a syntax error in the SQL.

The ability to generate code in Excel is useful for other purposes as well. For instance, 
sometimes character strings contain unrecognized characters and we might want to look 
at the numeric values of each character. For this, the SELECT statement might look like:

SELECT ASCII(SUBSTRING(<str>, 1, 1)), SUBSTRING(<str>, 1, 1),

       ASCII(SUBSTRING(<str>, 2, 1)), SUBSTRING(<str>, 2, 1)

       . . .

Each expression extracts one character from the string and converts it to its ASCII 
code. The character itself is also included after the code.

Generating all these SELECT statements is cumbersome. Excel can simplify this 
task. The only difference is that column B contains the numbers 1, 2, 3, and so on, 
rather than values from the database.

The two smallest groups, “OC” and “??,” can be combined into a single group, 
indicating some other credit card. The following query does the pivot:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId,
       SUM(CASE WHEN PaymentType = 'VI' THEN 1 ELSE 0 END) as pt_vi,
       SUM(CASE WHEN PaymentType = 'MC' THEN 1 ELSE 0 END) as pt_mc,
       SUM(CASE WHEN PaymentType = 'AX' THEN 1 ELSE 0 END) as pt_ax,
       SUM(CASE WHEN PaymentType = 'DB' THEN 1 ELSE 0 END) as pt_db,
       SUM(CASE WHEN PaymentType IN ('??', 'OC') THEN 1 ELSE 0 END
          ) as pt_oc
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FROM params CROSS JOIN Orders o JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

The pivoting uses the CASE statement nested in SUM() to calculate counts based 
on the payment type. Because the results are for the customer signature, the 
aggregation is at the household level. The query restricts orders to those before 
the cutoff date.

Channel Pivot

The next step is to include the channel pivot into the same query. This is 
only slightly more complicated because the channel is in Campaigns, so an 
additional join is needed. Table 13-2 shows the campaigns with the number 
of orders.

As with many categorical columns, a small number are quite common and 
many are uncommon. The first three values will go into their own columns, 
with the remaining going into an “OTHER” column.

The columns for the channels can be added directly into the query for the 
payment type pivot:

table 13-2:  Channels in Orders Table

Channel COUnt

PARTNER 84,518

WEB 53,362

AD 40,652

INSERT 7,333

REFERRAL 2,550

MAIL 1,755

BULK 1,295

CATALOG 710

EMPLOYEE 642

EMAIL 128

INTERNAL 34

CONFERENCE 3

SURVEY 1
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WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId,
       . . .
       SUM(CASE   WHEN channel = 'PARTNER' THEN 1 ELSE 0 END) as ca_partner,
       SUM(CASE WHEN channel = 'WEB' THEN 1 ELSE 0 END) as ca_web,
       SUM(CASE WHEN channel = 'AD' THEN 1 ELSE 0 END) as ca_ad,
       SUM(CASE WHEN channel NOT IN ('PARTNER', 'WEB', 'AD') THEN 1
                ELSE 0 END) as ca_other
FROM params CROSS JOIN Orders o JOIN
     Campaigns ca
     ON o.CampaignId = ca.CampaignId JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

This query joins in Campaigns to get the channel code. It would be more 
fitting to use LEFT OUTER JOIN rather than a regular JOIN because this 
explicitly preserves all the rows in Orders. In this case, the JOIN never has 
an unmatched value, because all campaign IDs in the orders table are pres-
ent in the lookup table.

Year Pivot

The next example is pivoting by time. The cutoff date used for the driving table 
is 2016-01-01. The idea is to summarize the number of orders placed in each year. 
A first attempt might have column names such as Orders2013, Orders2014, and 
Orders2015. This works when the cutoff date is in 2016, but not for other cutoff 
dates. For instance, if the cutoff date were in 2014, then the last two variables 
would not make sense.

Instead, the column names should be relative to the cutoff date. The fol-
lowing query adds the appropriate SELECT clauses onto the payment type/
channel pivot:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId,
       . . .,
       SUM(CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 0 THEN 1
                ELSE 0 END) as yr_1,
       SUM(CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 1 THEN 1
                ELSE 0 END) as yr_2,
       SUM(CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 2 THEN 1
                ELSE 0 END) as yr_3,
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       SUM(CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 3 THEN 1
                ELSE 0 END) as yr_4
FROM params CROSS JOIN Orders o JOIN
     Campaigns ca
     ON o.CampaignId = ca.CampaignId JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

This pivot calculates the number of years before the cutoff date using the 
DATEDIFF() function with the year argument.

Note that this works because the cutoff date is the first date of the year. 
DATEDIFF() counts the number of year boundaries between two dates, so 2015-
12-31 and 2016-01-1 are one year apart. Chapter 5 discusses other ways to do 
this calculation.

Order Line Information Pivot

The product pivot counts the number of orders having a product in each of the 
eight product groups, as shown in Table 13-3.

This information can be calculated in the same subquery as the order infor-
mation because order lines are logically related to orders. This also limits the 
number of places where the query needs to look up HouseholdId and apply the 
date restriction. 

table 13-3:  Product Group Information in Orders

prOdUCt grOUp nUmBer OF Order lIneS nUmBer OF OrderS

BOOK 113,210 86,564

ARTWORK 56,498 45,430

OCCASION 41,713 37,898

FREEBIE 28,073 22,261

GAME 18,469 11,972

APPAREL 12,348 10,976

CALENDAR 9,872 8,983

OTHER 5,825 5,002

#N/A 9 9
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A basic version is:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate
     )
SELECT HouseholdId,
       SUM(CASE WHEN p.GroupName = 'BOOK' THEN 1 ELSE 0
           END) as pg_book,
       SUM(CASE WHEN p.GroupName = 'ARTWORK' THEN 1 ELSE 0
           END) as pg_artwork,
       SUM(CASE WHEN p.GroupName = 'OCCASION' THEN 1 ELSE 0
           END) as pg_occasion,
       SUM(CASE WHEN p.GroupName = 'FREEBIE' THEN 1 ELSE 0
           END) as pg_freebie,
       SUM(CASE WHEN p.GroupName = 'GAME' THEN 1 ELSE 0
           END) as pg_game,
       SUM(CASE WHEN p.GroupName = 'APPAREL' THEN 1 ELSE 0
           END) as pg_apparel,
       SUM(CASE WHEN p.GroupName = 'CALENDAR' THEN 1 ELSE 0
           END) as pg_calendar,
       SUM(CASE WHEN p.GroupName = 'OTHER' THEN 1 ELSE 0
           END) as pg_other
FROM params CROSS JOIN OrderLines ol JOIN
     Products p
     ON ol.ProductId = p.ProductId JOIN
     Orders o
     ON ol.OrderId = o.OrderId JOIN
     Customers c
     ON c.CustomerId = o.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

The  SUM(CASE . . . ) statements count order lines instead of orders, which 
is not quite the intention, but possibly close enough.

There are two ways to calculate a count of orders rather than order lines in this 
pivot query: One uses a single subquery for all the information from the order lines 
and the second uses multiple subqueries. The first approach basically changes all the 
previous SUM(CASE . . . ) expressions to COUNT(DISTINCT CASE . . . OrderId 
END) in order to count the distinct order IDs rather than order lines.

This is a clever solution, and it works for a handful of columns. However, count-
ing distinct order IDs is slower than simply adding up a bunch of ones and zeros.

The second approach is to summarize the order line data twice, once at the 
orders level and then again at the household level. The summary at the order 
lines level looks like:

SELECT ol.OrderId,
       MAX(CASE WHEN p.GroupName = 'BOOK' THEN 1 ELSE 0
           END) as pg_book,
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       MAX(CASE WHEN p.GroupName = 'ARTWORK' THEN 1 ELSE 0
           END) as pg_artwork,
       MAX(CASE WHEN p.GroupName = 'OCCASION' THEN 1 ELSE 0
           END) as pg_occasion,
       MAX(CASE WHEN p.GroupName = 'FREEBIE' THEN 1 ELSE 0
           END) as pg_freebie,
       MAX(CASE WHEN p.GroupName = 'GAME' THEN 1 ELSE 0
           END) as pg_game,
       MAX(CASE WHEN p.GroupName = 'APPAREL' THEN 1 ELSE 0
           END) as pg_apparel,
       MAX(CASE WHEN p.GroupName = 'CALENDAR' THEN 1 ELSE 0
           END) as pg_calendar,
       MAX(CASE WHEN p.GroupName = 'OTHER' THEN 1 ELSE 0
           END) as pg_other
FROM params CROSS JOIN OrderLines ol JOIN
     Products p
     ON ol.ProductId = p.ProductId
GROUP BY ol.OrderId

This query uses MAX() to create an indicator variable for each product group in the 
order. This query does not join in the HouseholdId , nor does it apply the restric-
tion on OrderDate. These restrictions can be applied at the next level to the order. 
The database does some unnecessary calculations (summarizing the order lines for 
orders that are not part of the final result). Sometimes including the restrictions at 
this level can improve performance, although the query is a bit more complicated.

Summarizing the order lines at the order level is only half the work. This 
order summary needs to be summarized again at the household level:

WITH params as (. . .),
     os as (previous query here)
SELECT HouseholdId, . . .,
       SUM(pg_book) as pg_book,
       SUM(pg_artwork) as pg_artwork,
       SUM(pg_occasion) as pg_occasion,
       SUM(pg_freebie) as pg_freebie,
       SUM(pg_game) as pg_game,
       SUM(pg_apparel) as pg_apparel,
       SUM(pg_calendar) as pg_calendar,
       SUM(pg_other) as pg_other
FROM params CROSS JOIN Orders o LEFT OUTER JOIN
     Campaigns ca
     ON o.CampaignId = ca.CampaignId LEFT JOIN
     os
     ON os.OrderId = o.OrderId JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

The order line subquery is joined in using a LEFT OUTER JOIN to ensure that 
orders are not lost, even orders having no order lines. This is good practice, even 
though all orders do in fact have order lines in this database.
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The subquery that summarizes the order lines could use SUM() to count order 
lines rather than MAX() to create an indicator flag. The outer query would then 
use a slightly different expression to count orders:

SUM(CASE WHEN pg_book > 0 THEN 1 ELSE 0 END) as pg_book

These two forms are equivalent, but the first has slightly simpler code. On the 
other hand, the second produces an intermediate result that could be used for 
other purposes.

Although this query looks complicated, it is composed of well-defined pieces, 
carefully sewn together and made visible by the use of indentation and CTEs. 
This structure works for a couple of reasons. First, each subquery is created sub-
ject to the constraints of the customer signature. Also, each table and subquery 
is carefully joined in with consideration of how it affects the number of rows in 
the final result. Care is taken not to lose rows or to multiply rows inadvertently.

Warn Ing When joining tables together for a customer signature, be very 
careful that there are no duplicate rows in the tables being joined into the driving 
table. Duplicate rows can inadvertently multiply the number of rows in the customer 
signature table.

Summarizing
Pivoting data summarizes transactions by aggregating information along vari-
ous dimensions. There are other ways to summarize data. Some fit directly 
into the pivoting query built in the previous section. Some are a bit more 
complicated and provide an opportunity to add in customer-centric business 
measures.

Basic Summaries

Basic summaries of the orders data include information such as:

 ■ Total number of orders

 ■ Total number of units ordered

 ■ Total dollar amount of orders

 ■ Average dollar amount

These summaries can be calculated in the same way as the pivoted data. The 
only difference is the particular expressions used for calculating the values.

More Complex Summaries

Interesting indicators of customer behavior lurk inside customer transactions. 
One credit card company, for instance, tracks how often a customer spends 
more than $100 at a restaurant more than 50 miles from the customer’s home.
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In the purchases data, the following are potentially interesting questions:

 ■ How many of the customer’s orders are over $200?

 ■ What is the maximum number of different products in any one order?

 ■ How many different products has the customer ordered over time?

 ■ What is the longest duration between the order date and the ship date?

 ■ How often has the ship date been more than one week after the order date?

Each of these questions suggests a particular measure that might be useful for 
the customer signature.

The following query calculates the answers as measures for each customer:

SELECT HouseholdId,
       COUNT(DISTINCT CASE WHEN o.TotalPrice > 200 THEN o.OrderId END
            ) as numgt2000,
       COUNT(DISTINCT ol.ProductId) as numhhprods,
       MAX(op.numproducts) as maxnumordprods,
       MAX(DATEDIFF(day, o.OrderDate, ol.ShipDate)) as maxshipdelay,
       COUNT(DISTINCT CASE WHEN DATEDIFF(day, o.OrderDate, ol.ShipDate) > 7
                           THEN o.OrderId END)
FROM Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     (SELECT ol.OrderId, COUNT(DISTINCT ol.ProductId) as numproducts
      FROM OrderLines ol
      GROUP BY ol.OrderId) op
     ON o.OrderId = op.OrderId
GROUP BY c.HouseholdId

This version of the query has the same problem as some of the earlier queries. 
It does not take the cutoff date into account. To fix this:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate)
     )
SELECT HouseholdId,
       COUNT(DISTINCT CASE WHEN o.TotalPrice > 200 THEN o.OrderId END
            ) as numgt2000,
       COUNT(DISTINCT ol.ProductId) as numhhprods,
 
       MAX(op.numproducts) as maxnumordprods,
       MAX(DATEDIFF(day, o.OrderDate, ol.ShipDate)) as maxshipdelay,
       COUNT(DISTINCT CASE WHEN DATEDIFF(day, o.OrderDate, ol.ShipDate) > 7
                           THEN o.OrderId END)
FROM params CROSS JOIN Customers c JOIN
     Orders o
     ON c.CustomerId = o.CustomerId JOIN
     OrderLines ol
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     ON o.OrderId = ol.OrderId JOIN
     (SELECT ol.OrderId, COUNT(DISTINCT ol.ProductId) as numproducts
      FROM OrderLines ol
      GROUP BY ol.OrderId) op
     ON o.OrderId = op.OrderId
WHERE o.OrderDate < params.CutoffDate AND ol.ShipDate < params.CutoffDate
GROUP BY c.HouseholdId

The WHERE clause requires that both OrderDate and ShipDate be before the 
cutoff date.

Clearly, only orders whose order date precedes the cutoff date should be 
included in the customer signature. It is not clear if the ship date should have 
this restriction. The decision depends on how data is loaded into the database. 
The following are some possibilities:

 ■ Only completed orders are loaded in the database. An order is completed 
when the last item is shipped.

 ■ All orders are in the database; ship dates in order lines are updated as 
new information is available.

 ■ All orders are in the data, but order lines are available only after they 
ship.

These different scenarios affect the relationship between the ship date and the 
cutoff date. If the first is true, then orders are only available after the last ship 
date, so the signature should only include orders whose last ship date is before 
the cutoff date. If the second scenario is true, then it is okay to ignore the ship 
date. Future ship dates are “intended ship dates.” If the third is true, then very 
recent orders should be smaller than orders even a week old. In addition, some 
orders might have no order lines.

Understanding when data is loaded is important. We could imagine a scenario 
where order lines are only available after they ship, although the correspond-
ing orders are already in the database. An analysis might “discover” that the 
most recent orders are smaller than older orders. This fact would merely be 
an artifact of how the data is loaded because the most recent orders might not 
have all their order lines.

t Ip Understanding the process of loading the database is important. This process 
leaves artifacts in the data that might be “discovered” when analyzing the data.

Extracting Features

Sometimes, the most interesting features are the descriptions of products and 
channels, markets and retailers. These descriptions include more complex data 
types, such as text and geographic position. This section discusses some ideas 
about extracting information for geographic and character data types.
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Geographic Location Information
Geographic location information is represented as latitudes and longitudes, and 
perhaps as geographic hierarchies. When mapped, this information is quite 
interesting. However, maps do not fit well into customer signatures nor are they 
well-suited for most statistical and data mining algorithms.

Longitudes and latitudes are generated by geocoding addresses or by read-
ing positioning information on a mobile device. The most obvious address is 
the customer address. However, there are addresses for retailers, and ATM 
machines, and mobile phones, and city centers, and Internet service provider 
points-of-presence, and so on. Such geocoding leads to questions such as:

 ■ How far is a customer from the center of the nearest MSA (metropolitan 
statistical area)?

 ■ How many purchases were made more than 100 miles from home?

 ■ What proportion of ATM transactions is within 10 miles of home?

 ■ What is the direction from the customer to the nearest MSA center?

These questions readily turn into customer attributes.
Geographic positions typically have two types of information. The most 

common is distance, which was discussed in Chapter 4, along with formulas 
for calculating the distance between two geographic points.

The other type of information is directional, calculated using a basic trigo-
nometric formula:

direction = ATAN(vertical distance / horizontal distance)) * 180 / PI()

This formula is very similar in both Excel and SQL.

Date Time Columns
Customer behavior varies by time of day, by day of week, by season of the 
year. Some businesses classify their customers as “weekday lunch buyers” or 
“weekend shoppers” or “Monday complainers.” These are examples of business 
classifications that can be captured in the customer signature.

t Ip The timing of customer interactions is a good example of a business metric to 
incorporate in the customer signature.

The customer signature can capture the raw information by pivoting date and 
time information. For instance, the following SELECT statement can be added to 
the pivot query to add up the number of orders made on each day of the week:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate)
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     )
SELECT HouseholdId, . . .
       SUM(CASE WHEN cal.dow = 'Mon' THEN 1 ELSE 0 END) as dw_mon,
       SUM(CASE WHEN cal.dow = 'Tue' THEN 1 ELSE 0 END) as dw_tue,
       . . .
       SUM(CASE WHEN cal.dow = 'Sun' THEN 1 ELSE 0 END) as dw_sun,
       . . .
FROM params CROSS JOIN Orders o JOIN
     Campaigns ca
     ON o.CampaignId = ca.CampaignId JOIN
     Calendar cal
     ON o.OrderDate = cal.Date JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < params.CutoffDate
GROUP BY c.HouseholdId

This query uses Calendar to find the day of the week. An alternative is to use a 
database function, such as DATENAME(weekday, <col>). Using Calendar makes 
further refinements possible, such as distinguishing holidays from non-holidays. 
And, a calendar table has another advantage because internationalization set-
tings in a database can affect the names of weekdays and months.

If OrderDate had a time component, the following SELECT statement would 
add up the number of orders during from midnight to 3:59:59.999 a.m.:

SELECT SUM(CASE WHEN DATEPART(hour, o.OrderDate) BETWEEN 0 AND 3
                THEN 1 ELSE 0 END) as hh00_03

This is the same structure as the earlier pivot statements, but applied to times.

Patterns in Strings
Traditionally, SQL has only rudimentary string manipulation functions, but these 
are often sufficient for extracting interesting features. More recently, databases 
have started to provide better string functions, such as regular expressions, 
and support for XML and JSON data types. Unfortunately, these functions are 
database specific.

t Ip Descriptions and names often contain very interesting information. However, 
the information needs to be extracted feature by feature into the customer signature.

Email Addresses

An email address has the form “<user name>@<domain name>”, where the 
domain name has an extension, such as .com, .edu, .uk, or .gov. The domain 
name and domain name extension can be interesting features about users.
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The following code extracts these features from an email address:

SELECT LEFT(emailaddress, CHARINDEX('@', emailaddress) - 1) as username,
       SUBSTRING(emailaddress, CHARINDEX('@', emailaddress) + 1, 1000
                ) as domain,
       RIGHT(emailaddress, CHARINDEX('.', REVERSE(emailaddress))
            ) as extension

The user name takes all characters up to the “@,” and the domain is all characters 
after it. The domain extension is everything after the last period. This expres-
sion uses a trick to find the position of the last period by finding the position 
of the first period in the reversed string.

Addresses

Addresses are complicated strings that are difficult to use directly for data 
mining purposes. Geocoding converts them to latitudes and longitudes, and 
the associated census descriptors of the location.

The address line itself might provide information about customers:

 ■ Is the address for an apartment?

 ■ Is the address for a PO Box?

The following code identifies whether a column called address contains an 
apartment number or a post office box:

SELECT (CASE WHEN address LIKE '%#%' OR
                  LOWER(address) LIKE '%apt.%' OR
                  LOWER(address) LIKE '% apt %' OR
                  LOWER(address) LIKE '% unit %'
             THEN 1 ELSE 0 END) as hasapt,
       (CASE WHEN REPLACE(REPLACE(UPPER(address), '.', ''), 6),
                          ' ', '') LIKE 'POBOX%'
             THEN 1 ELSE 0 END) as haspobox

The apartment indicator is defined by the presence of “ apt.” or “ apt ” (rather 
than just “apt”) to avoid matching street names such as “Sanibel-Captiva Road,” 
“Captains Court,” and “Baptist Camp Road.” For post office boxes, the address 
should start with “PO BOX”, “P.O. Box.”, or “POBOX”.

Product Descriptions

Product descriptions often contain useful information such as:

 ■ Color

 ■ Flavor

 ■ Special attributes (such as organic, all cotton, and so on)
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Interesting attributes can be turned into flags:

(CASE WHEN LOWER(description)  LIKE '%diet%' THEN 1 ELSE 0 END) as is_diet,
(CASE WHEN LOWER(description)  LIKE '%red%' THEN 1 ELSE 0 END) as is_red,
(CASE  WHEN LOWER(description) LIKE '%organic%' THEN 1 ELSE 0 END) as is_org

These cases look for particular substrings in the description.
A product description might have a specific format. For instance, the first 

word may be the product group name. It can be extracted using:

SUBSTRING(description, CHARINDEX(' ', description), 1000) as productgroup

Or, the last word might be something interesting such as the price:

RIGHT(description, CHARINDEX(' ', REVERSE(description)) as price

Discovering what is interesting is a manual process that often involves reading 
through the descriptions and making judgments as to what is important for 
distinguishing among customers.

Credit Card Numbers

Credit card numbers are useful for analysis in two ways. The first is by identify-
ing the type of credit card. The second is by identifying whether the same card 
is being used over time. Chapter 2 has both the table mapping the initial digits 
of credit card numbers to credit card types and a SQL query for transforming 
the information.

Comparing credit card numbers on different payment transactions is as easy 
as comparing two columns. However, storing credit card numbers in analytic 
databases poses a security risk, so storing them explicitly is a bad idea.

An alternative is to convert the credit card number to something unrecognizable 
as a credit card number. One way is to have a master table that contains credit 
card numbers, with no duplicates. The row number from this table replaces the 
credit card number, and very few people have access to the master table. This 
approach just shifts the security risk to another system.

Another approach uses hashing. There are many different hashing algorithms. 
One very simple algorithm that is often sufficient is:

 1. Treat the credit card number as a number.

 2. Multiply the number by a large prime number.

 3. Add another large prime number.

 4. Divide by yet another and take the remainder.

This works because two different numbers very, very rarely get mapped to the 
same number. Extracting the original credit card number is difficult unless 
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you know the specific primes used in the formula.  Databases also have hash 
functions built in. (In SQL Server two such functions are CHECKSUM() and 
HASHBYTES().)

t Ip When storing sensitive customer information in a database, consider hashing it 
so that the analysis database doesn’t store the real value.

Summarizing Customer Behaviors

The customer signature has been presented as a place to put lots of data ele-
ments and basic summaries. It is also a place to put more complex measures of 
customer behaviors that rise to being customer-centric business metrics.

This section has three examples. The first is calculating the slope, the beta 
value, for series of transactions. The second is identifying weekend shop-
pers, and the third is applying metrics to identify customers whose usage is 
decreasing.

Calculating Slope for Time Series
Pivoting numeric values creates a time series, such as the dollar amount of pur-
chases in a series of months. Using the ideas from Chapter 12, we can calculate 
the slope for these numbers.

Most households in the purchases data have one order, which does not 
provide a good example for finding a trend. Instead, let’s look at the zip-
code level: Which zip codes have seen an increase in customers in the years before 
the cutoff date? Notice that this question is still about what happens before 
the cutoff date, so the resulting measures can be included in a customer 
signature.

This section answers the question three different ways. The first is to use the 
pivoted values to calculate the slope—but the SQL is messy. The second way is 
to summarize each year of data for the zip codes. The third method generalizes 
the second for any series of values.

Calculating Slope from Pivoted Time Series

The following query calculates the number of households who place an order 
in each year for each zip code.

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate)
     )
SELECT o.ZipCode, COUNT(*) as cnt,
       FLOOR(DATEDIFF(year, '2009-01-01', MIN(CutoffDate))) as numyears,



 Chapter 13 ■ Building Customer Signatures for Further analysis  645

       COUNT(DISTINCT (CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 1
                            THEN c.HouseholdId END)) as year1,
       COUNT(DISTINCT (CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 2
                            THEN c.HouseholdId END)) as year2,
       . . .
       COUNT(DISTINCT (CASE WHEN DATEDIFF(year, OrderDate, CutoffDate) = 7
                            THEN c.HouseholdId END)) as year7
FROM params CROSS JOIN Orders o JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
GROUP BY o.ZipCode

This query is carefully dependent on the cutoff date, so the results can be used in 
the customer signature. The number of years of data is contained in the column 
numyears. The remaining columns contain the summaries by year.

The query uses DATEDIFF(year, . . .). This works because the cutoff 
date is on the first of the year. As already noted, in SQL Server this function 
does not calculate the number of years between two dates; it calculates the 
number of year boundaries—the number of times the ball drops in Times 
Square at the end of New Year’s Eve between two dates. A more accurate 
function for any cutoff date would be something like: FLOOR(DATEDIFF(day, 
OrderDate, CutoffDate) / 365.25) or one of the methods described in 
Chapter 5.

Chapter 12 has the formula for the slope:

slope = (n*Sxy – Sx*Sy) / (n*Sxx – Sx*Sx)

The pivoted data has no explicit X-values. They can be assumed to be a sequence 
of numbers starting with one for the oldest value. The resulting slope can be 
interpreted as the average number of additional households that make a pur-
chase in each succeeding year.

The following query calculates the intermediate values and then the slope:

WITH zsum AS (<previous query>)
SELECT (n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx), z.*
FROM (SELECT zipcode, cnt,
             numyears*1.0 as n,
             numyears*(numyears + 1) / 2 as Sx,
             numyears*(numyears + 1)*(2*numyears + 1) / 6 as Sxx,
             (CASE WHEN numyears < 2 THEN NULL
                   WHEN numyears = 3 THEN year3 + year2 + year1
                   WHEN numyears = 4 THEN year4 + year3 + year2 + year1
                   WHEN numyears = 5 THEN year5 + year4 + year3 + year2 +
                                          year1
                   WHEN numyears = 6 THEN year6 + year5 + year4 + year3 +
                                          year2 + year1
                   ELSE year7 + year6 + year5 + year4 + year3 + year2 +
                        year1 END) as Sy,
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             (CASE WHEN numyears < 2 THEN NULL
                   WHEN numyears = 3 THEN 1*year3 + 2*year2 + 3*year1
                   WHEN numyears = 4 THEN 1*year4 + 2*year3 + 3*year2 +
                                          4*year1
                   WHEN numyears = 5 THEN 1*year5 + 2*year4 + 3*year3 +
                                          4*year2 + 5*year1
                   WHEN numyears = 6 THEN 1*year6 + 2*year5 + 3*year4 +
                                          4*year3 + 5*year2 + 6*year1
                   ELSE 1*year7 + 2*year6 + 3*year5 + 4*year4 + 5*year3 +
                        6*year2 + 7*year1 END) as Sxy
      FROM zsum z) z

This follows the logic from Chapter 12. The slope represents the growth in 
terms of the number of additional customers who make purchases each year 
in a zip code.

Eliminating the intermediate sums makes the query even more cumbersome 
and prone to error:

SELECT (CASE WHEN numyears < 2 THEN NULL
             WHEN numyears = 3
             THEN numyears*(1*year3 + 2*year2 + 3*year1)-
                  (numyears*(numyears + 1) / 2)*(year3 + year2 + year1)
             WHEN numyears = 4
             THEN numyears*(1*year4 + 2*year3 + 3*year2 + 4*year1)-
                 (numyears*(numyears + 1) / 2)*(year4 + year3 + year2 + year1)
             WHEN numyears = 5
             THEN numyears*(1*year5 + 2*year4 + 3*year3 + 4*year2 +
                  5*year1) - (numyears*(numyears + 1) / 2)*(year5 + year4 +
                  year3 + year2 + year1)
             WHEN numyears = 6
             THEN numyears*(1*year6 + 2*year5 + 3*year4 + 4*year3 +
                  5*year2 + 6*year1) -
                 (numyears*(numyears + 1)/2)*(year6 + year5 + year4 +
                 year3 + year2 + year1)
             ELSE numyears*(1*year7 + 2*year6 + 3*year5 + 4*year4 +
                  5*year3 + 6*year2 + 7*year1) -
                 (numyears*(numyears + 1) / 2)*(year7 + year6 + year5 +
                  year4 + year3 + year2 + year1)
            END) / (1.0*numyears * numyears*(numyears + 1)*(2*numyears + 1) / 6
              - ((numyears*(numyears + 1) / 2))*(numyears*(numyears + 1) / 2)
      ) as slope, z.*
FROM zsum

Under these circumstances, keeping the intermediate sums is preferable, even 
though they are not otherwise useful. One simplification is to remove the com-
plicated CASE statement by assuming that all the pivot columns have data, but 
this assumption may not be true.



 Chapter 13 ■ Building Customer Signatures for Further analysis  647

Calculating Slope for a Regular Time Series

An alternative approach does not use the pivot columns, instead using an inter-
mediate result set with a separate row for each zip code and year:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate)
     )
SELECT o.ZipCode, DATEDIFF(year, o.OrderDate, CutoffDate) as yearsago,
       DATEDIFF(year, '2009-01-01', MIN(CutoffDate)) as numyears,
       (DATEDIFF(year, '2009-01-01', MAX(CutoffDate)) -
        DATEDIFF(year, o.OrderDate, CutoffDate)) as x,
       COUNT(DISTINCT HouseholdId) as y
FROM params CROSS JOIN Orders o JOIN
     Customers c
     ON o.CustomerId = c.CustomerId
WHERE o.OrderDate < CutoffDate
GROUP BY o.ZipCode, DATEDIFF(year, o.OrderDate, CutoffDate)

When a given year has no orders, the data is simply missing from the 
summary. For zip codes that have years with no customers, the slope cal-
culated this way is going to be different from the slope calculated on the 
pivoted data.

The following query calculates the intermediate values and slope:

WITH zysm as (<previous query>)
SELECT (CASE WHEN n = 1 THEN 0
             ELSE (n*Sxy - Sx*Sy) / (n*Sxx - Sx*Sx) END) as slope, zy.*
FROM (SELECT zipcode, MAX(numyears) as numyears, COUNT(*)*1.0 as n,
             SUM(x) as Sx,
             SUM(x*x) as Sxx,
             SUM(x*y) as Sxy,
             SUM(y) as Sy
      FROM zysum
      GROUP BY zipcode
     ) zy
ORDER BY n DESC

This query is simpler than the previous version. Instead of using the 
pivoted time series, it calculates the X-value implicitly from the years 
before the cutoff date. The CASE statement in the SELECT assigns a value 
for slope when only one year has purchases; otherwise, the formula 
would result in a divide-by-zero error. The results from this query are 
slightly different from the pivoted version because the pivoted version 
treats years with no data as having zero sales, whereas this excludes such 
years from the calculation.
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Calculating Slope for an Irregular Time Series

The previous calculation can be extended to irregular time series as well as 
regular time series. An irregular time series is one where the spacing between 
the X-values is not constant. Purchases for customers are a typical example, and 
determining the trend can be quite useful.

The query for this is essentially the same as the previous example, except the 
X-values would come from some other value in the data.

Weekend Shoppers
A “perfect” weekend shopper has the following characteristics:

 ■ All their shopping by number of orders is on Saturday or Sunday.

 ■ All their shopping by dollar value is on Saturday or Sunday.

 ■ All their shopping by number of units is on Saturday or Sunday.

For the perfect weekender, these are all equivalent because all shopping on the 
weekends implies that all units, orders, and dollars are spent on the weekends. 
They also suggest defining a metric that defines how close a customer is to being 
a “perfect” weekender.

Table 13-4 shows some examples of customers with multiple orders: one is a 
perfect weekender, one a partial weekender, and one a never weekender.

table 13-4:  Examples of Transactions for Weekend and Non-Weekend Shoppers

hOUSehOld Id Order Id Order date day OF Week dOllarS UnItS

21159179 1102013 2013-08-17 Sat $40.00 3

21159179 1107588 2013-09-16 Mon $67.00 5

21159179 1143702 2014-08-03 Sun $90.00 6

36207142 1089881 2013-06-13 Thu $10.00 1

36207142 1092505 2013-11-27 Wed $8.00 1

36207142 1084048 2013-12-23 Mon $49.00 3

36207142 1186443 2014-12-05 Fri $5.00 2

36207142 1206093 2014-12-31 Wed $7.00 1

36528618 1013609 2011-01-29 Sat $182.00 2

36528618 1057400 2012-11-25 Sun $195.00 1

36528618 1059424 2012-11-25 Sun $195.00 1

36528618 1074857 2013-12-14 Sat $570.00 2
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The following ratios help distinguish among these groups:

 ■ Proportion of all orders that are on weekends

 ■ Proportion of all dollars spent on weekends

 ■ Proportion of all units on weekends

These all vary from zero (no evidence of weekend shopping behavior) to 
one (always a weekend shopper). Table 13-5 shows the summaries with this 
information.

Recalling some ideas from probability, these can be combined into a single 
likelihood measure, as in the following query:

WITH params as (
      SELECT CAST('2016-01-01' as DATE) as CutoffDate)
     )
SELECT h.*,
       (CASE WHEN weekend_orders = 1 OR weekend_units = 1 OR
                  weekend_dollars = 1 THEN 1
             ELSE (weekend_orders / (1 - weekend_orders))*
                  (weekend_units / (1 - weekend_units))*
                   (weekend_dollars / (1 - weekend_dollars)) END) as weekendp
FROM (SELECT HouseholdId,
             SUM(CASE WHEN cal.dow IN ('Sat', 'Sun') THEN 1.0
                      ELSE 0 END) / COUNT(*) as weekend_orders,
             SUM(CASE WHEN cal.dow IN ('Sat', 'Sun') THEN NumUnits*1.0
                      ELSE 0 END) / SUM(numunits) as weekend_units,
             SUM(CASE WHEN cal.dow IN ('Sat', 'Sun') THEN TotalPrice
                      ELSE 0 END) / SUM(TotalPrice) as weekend_dollars
      FROM params CROSS JOIN Orders o JOIN
           Calendar cal
           ON o.OrderDate = cal.Date JOIN
           Customers c
           ON o.CustomerId = c.CustomerId
      WHERE o.OrderDate < CutoffDate AND
            o.NumUnits > 0 AND o.TotalPrice > 0
      GROUP BY c.HouseholdId) h

table 13-5:  Some Shoppers and Their Weekend Shopping Behavior

hOUSehOld

# OrderS dOllarS # UnItS

all Weekend all Weekend all Weekend

21159179 3 66.7% $197 66.0% 14 64.3%

36207142 5 0.0% $79 0.0% 8 0.0%

36528618 4 100.0% $1,142 100.0% 6 100.0%
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This query calculates three measures of being a weekend shopper along the 
dimensions of orders, units, and price. The likelihood of someone being a week-
end shopper is one minus the product of one minus each of these proportions, 
a method of combining probabilities discussed in Chapter 11 in the context of 
naïve Bayesian models. Although these are not independent, the combination 
still gives an overall measure of being a weekend shopper.

This method for calculating the weekend shoppers has a problem when 
customers have very few purchases; a more intuitive calculation is discussed 
in the aside “Incorporating Prior Information.”

Declining Usage Behavior
Declining usage is often a precursor to customers stopping. One way to quan-
tify declining usage is to use the beta value (slope) of a usage measure, such as 
dollars spent per month or web visits per week.

InCOrpOratIng prIOr InFOrmatIOn

The definition of weekend shopper works well for customers who have lots of data. 
However, it does not work well for only a few transactions. For instance, should the 
score of someone who has made exactly one purchase that is on the weekend be the 
same as someone who has made one hundred purchases, all on the weekend?

Intuitively, the answer is no because much more evidence has accumulated for the 
second customer. How can the weekend shopper score reflect this intuition?

One method from Chapter 3 is to subtract one standard deviation from the score and 
use this as the bound; however, that still does not work for a customer with only one pur-
chase, because the standard deviation is not defined. A more interesting way is to assume 
that everyone has a score between zero and one of being a weekend shopper—and this 
score starts out with some value for everyone, even before they have made a purchase. 
Such an assumption is called a prior, which is a central notion in Bayesian statistics.

For this discussion, let’s consider using only the proportion of transactions as the 
indicator for a weekend shopper (rather than the combined likelihood value). What is an 
appropriate value for the prior? The appropriate prior is the overall proportion of week-
end orders in the data, which is 21.6%. Given no other information, this says that some-
one has a weekend shopper score of 21.6%, even before they make any purchases.

The next question is how to combine information from Orders with the prior. 
What is the estimate for being a weekend shopper for someone who has exactly one 
purchase on the weekend? Remember, the method in the text gives this person a per-
fect 100% score, which seems a bit too high.

The idea is to combine the prior estimate with the new evidence, using a weighted 
average:

new estimate = ((prior * K) + 1) / (K + 1)

The value K represents how much weight we put on the prior. If the value is zero, the 
result is the same as in the text. A reasonable value is one, which results in the score of 
60.8% for the customer with one weekend purchase.

Continues
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What happens for the next purchase? The reasoning is the same, except the value 
of K is incremented by one, because of the additional observation.

The following table shows the scores for customers who make only weekend pur-
chases and no weekend purchases:

Only Weekend ShOpper nOn-Weekend ShOpper

# OrderS k SCOre # OrderS k SCOre

0 1 21.6% 0 1 21.6%

1 2 60.8% 1 2 10.8%

2 3 73.9% 2 3 7.2%

3 4 80.4% 3 4 5.4%

4 5 84.3% 4 5 4.3%

5 6 86.9% 5 6 3.6%

A customer with five weekend purchases (and no others) has a score of 86.9%. A 
customer who has made five weekday purchases (and no others) has a score of 3.6%. 
These seem reasonable.

The following formula allows you to adjust the weight of the prior, using the num-
ber of observations and the average observed value:

Est = (K * prior + number * average) / (K + number)

What happens to a customer who has 100 purchases all on the weekend? The cal-
culation is simple: The number is 100 and the average is 1, resulting in a score of 
99.2%.

This method of incorporating priors requires both finding an appropriate prior 
estimate to use when no evidence is available, and a way of combining new evidence 
with the prior. The use of priors produces more intuitive scores than directly using the 
proportion.

The beta value can be misleading because it fits a long-term trend to the data. 
Often, customer behaviors are relatively steady (varying within a range) and 
then declining. Other measures of declining behavior include:

 ■ Ratio of recent activity to historical activity, such as most recent month 
of usage divided by usage twelve months ago

 ■ Number of recent months where usage is less than the month before

 ■ Ratio of the most recent month to the average over the previous year

 ■ Difference between recent values and the longer term trend, measured 
in standard deviations

InCOrpOratIng prIOr InFOrmatIOn (continued)



652 Chapter 13 ■ Building Customer Signatures for Further analysis 

These are all reasonable measures of declining usage and all are possible to 
implement in SQL.

We’ll investigate the first three by looking at the corresponding quantities 
for zip codes by year:

 ■ Ratio of most recent number of customers to the year before

 ■ Ratio of the most recent number of customers to the average of preceding 
years (the index value)

 ■ Number of recent years where the number of customers is declining

The following query calculates these quantities from the pivoted zip code columns:

WITH zsum as (<zip code summary query>)
SELECT zsum.*,
       NULLIF(year2, 0)  as year1_2_growth,
       (CASE WHEN (COALESCE(year1, 0) + COALESCE(year2, 0) +
                   COALESCE(year3, 0) + COALESCE(year4, 0) +
                   COALESCE(year5, 0) + COALESCE(year6, 0) +
                   COALESCE(year7, 0)) = 0 THEN 1
             ELSE year1 / ((COALESCE(year1, 0) + COALESCE(year2, 0) +
                            COALESCE(year3, 0) + COALESCE(year4, 0) +
                            COALESCE(year5, 0) + COALESCE(year6, 0) +
                             COALESCE(year7,          0)) / 7.0) END) as year1_index,
       COALESCE(CASE WHEN numyears < 2 OR year1 >= year2 THEN 0 END,
                CASE WHEN numyears < 3 OR year2 >= year3 THEN 1 END,
                CASE WHEN numyears < 4 OR year3 >= year4 THEN 2 END,
                CASE WHEN numyears < 5 OR year4 >= year5 THEN 3 END,
                CASE WHEN numyears < 6 OR year5 >= year6 THEN 4 END,
                CASE WHEN numyears < 7 OR year6 >= year7 THEN 5 END,
                6) as years_of_declining_sales
FROM zsum

The calculation for growth is fairly obvious; the NULLIF() expression handles 
division by zero. If the previous year had no customers, the growth is undefined.

The index calculation does a direct calculation of the average over the previ-
ous seven years. A simpler approach would calculate the sum or average in the 
subquery. However, this version uses the zip code summary subquery exactly 
as originally written.

The number of years of declining sales uses the COALESCE() function extensively. 
This function returns the first non-null value. So, the logic proceeds as follows:

 1. If the year1 >= year2, then the first value is zero and COALESCE() returns 
this value; otherwise, the value is NULL, indicating at least one year of 
declining usages, and processing continues.

 2. Then, if year2 >= year3, the decline is only from last year. So, the most recent 
two years show a decline but none before that; otherwise, the value is NULL, 
indicating at least two years of declining usage, and processing continues.

 3. And so on.
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An alternative to the COALESCE() function is a more complicated CASE statement. 
These values can then be included in the customer signature as indicators of 
declining usage.

t Ip The COALESCE() function can be very useful for calculating indexes, counts, 
and averages in sets of columns where some of the values may be NULL.

Lessons Learned

When analytic needs go beyond the capabilities of SQL and Excel, customer 
signatures can be used to store summarized behavior and demographic infor-
mation for other tools. SQL has an advantage for building customer signatures 
because it has powerful and scalable data manipulation capabilities—and data-
bases often contain the data that is ultimately going to be scored.

The customer signature should be based on a cutoff date, only incorporating 
input columns from before the date. For predictive modeling, the targets come 
from a time frame after the cutoff date. A customer signature has columns 
coming from many different tables. Most columns are input columns. The 
customer signature might also include target columns, identification columns, 
and the cutoff date.

Creating customer signatures requires gathering information from different 
sources. Some columns might be copied directly. Others might come from fixed 
lookup tables. Yet others might come from dynamic lookup tables that sum-
marize customer behavior along various dimensions. And others come from 
pivoting and summarizing the most voluminous part of the data, customer 
transactions. These operations can be combined to create very powerful features 
for data mining purposes.

Combining information from multiple columns can lead to very powerful 
features. For instance, trends over time can be added by incorporating the slope 
of the best-fit line, an idea discussed in the previous chapter.

The customer signature provides a structure for understanding customers 
and using many of the techniques described in earlier chapters. Much of the 
effort in data analysis is in bringing the data together and understanding it. The 
ability of SQL to express very complex data manipulations, and the ability to 
optimize the resulting queries on large hardware, makes relational databases 
a powerful choice for creating customer signatures.

As earlier chapters have shown, the combination of SQL and Excel is a power-
ful analysis tool itself for understanding customers. When the combination is 
not powerful enough, they provide the foundation for bringing the right data 
into even more sophisticated tools. Queries that build customer signatures are 
another example of complex queries. As SQL queries become more complex, 
the performance of SQL becomes more important—a topic that brings us to the 
final chapter of the book.
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This chapter differs from the earlier chapters by shifting the focus from func-
tionality to performance. The subject of performance can be highly database 
specific. Fortunately (and perhaps surprisingly), some general rules and con-
siderations apply to most if not all databases. Some of these rules are based on 
general principles of how database engines are designed; others are based on 
how SQL is written; and still others on how the data is represented in the data-
base. This chapter covers these general principles rather than database‐specific 
optimizations.

The power of SQL arises from several factors. First, SQL can express many 
important data manipulations needed for analysis—the use of common table 
expressions and subqueries gives the language a lot of power. Second, the 
database engine optimizes the queries for available hardware and data. This 
optimization is very important: The same SQL query that runs on a small table 
on an Android device can run on a giant table on a massive server with many 
processors. The SQL statement remains the same, even though the underlying 
algorithms may change dramatically. Users do not have to fully understand the 
underlying algorithms to use SQL effectively, any more than commuters need 
to understand mechanics or the physics of the internal combustion engine to 
drive their cars to work.

This chapter discusses different ways that a simple query might be executed, 
to give a flavor of the optimization component of the SQL compiler. This over-
view glosses over the underlying algorithms used for things like joins and 
aggregations. It does introduce key ideas about performance, such as the differ-
ence between full table scans and index lookups and the ability of the database 
engine to take advantage of parallelism.

The most important feature in SQL for improving performance is the index, 
a topic that has so far been studiously avoided in order to focus on what SQL 
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can do rather than how the engine works. Indexes are often the key to getting 
good performance from a database, but they do not provide any new func-
tionality. Fortunately, some handy rules help determine the best index for a 
given query.

The final part of the chapter presents multiple ways of doing the same thing. 
SQL is a very expressive language and often more than one query returns a 
particular result set. Surprisingly, one method can be significantly more effi-
cient than other methods—and the more efficient methods are often the best 
regardless of the database.

Each database offers opportunities for further optimizations specific to that 
database; these are not covered here. For instance, sometimes, using temporary 
tables is better than writing a more complicated query (although this is rarer 
than one might expect). However, that type of optimization is highly data-
base‐specific. Because databases have a similar underlying architecture, some 
common principles work across all, or almost all, databases. This chapter starts 
by discussing these commonalities.

Query Engines and Performance

A SQL query describes the result set but does not specify the particular steps 
or algorithms used for generating the results. This allows the SQL optimizer 
to produce the best query plan—at least in theory.

By contrast, most computer languages are procedural. A command that says 
“sort the data” generally implements a particular algorithm for the sort—bubble 
sort, merge sort, quicksort, or perhaps some fancy parallel out‐of‐memory 
sort. The SQL statement ORDER BY simply says that the result set will be in a 
particular order. The statement does not specify exactly how that should be 
done. And, different databases take different approaches. For instance, in SQL 
Server, if the statement accesses only a single table and the ORDER BY key is 
the clustered index for the table, then an additional sorting step is generally 
unnecessary.

This section starts by introducing “order notation” from computer science as 
a way of characterizing query performance. After all, if we want to talk about 
performance, then understanding a measure—independent of hardware and 
database versions—is helpful. A simple example then illustrates what this really 
means, before we move on to more interesting examples.

Order Notation for Understanding Performance
Computer scientists have a way of measuring the “complexity” of an algorithm. 
In the language of databases, this measures how much longer it takes a query to 
run as the size of the data increases. Order notation—not to be confused with 



 Chapter 14 ■ performance Is the Issue: Using SQL effectively 657

ORDER BY—is written as a capital letter “O” followed by a simple expression in 
parentheses and often called big‐O notation.

A place to start with understanding the concept is O(1), which means that the 
time to run the query is bounded by a constant. Running the query on larger 
tables does not affect the running time. Such queries are not common, but here 
is an example:

SELECT TOP 1 t.*
FROM t

This selects one (arbitrary) row from a table. Because only one row needs to be 
read, the length of time should be independent of the size of table. This nota-
tion is not saying whether this time is long or short, simply that the time does 
not increase with larger data.

More common is O(n), meaning that the time for the query grows as the num-
ber of rows in the table grows (the “n” refers to the size of something, typically 
the number of rows in the table). A typical example is reading all the rows in the 
table—say to count the number of rows. If the number of rows doubles, the amount 
of time needed to count them also doubles, assuming each row needs to be read.

As the function of “n” gets bigger, performance gets worse. For example, O(n2) 
means that the time for the query grows as the square of the number of rows. 
This is the performance of naïve sorting algorithms and unoptimized self‐joins.

Order notation is useful for understanding how the underlying algorithms 
scale as the data gets larger. O(n) is better than O(n2), particularly as the data 
size increases. As we will see, there are other considerations in databases—such 
as memory usage and disk reads—which can be more important for practical 
problems, but order notation captures a key aspect of performance.

A Simple Example
What is the maximum value of a particular column in a table? Let’s step outside the 
world of databases for a moment, and imagine the table printed out neatly on 
sheets of paper. This idea of working with paper can be a useful analogy for 
understanding some of the methods used by databases. A real database has 
numerous advantages over working with paper—particularly for tables that 
have millions of rows.

The SQL query to answer the question is quite simple:

SELECT MAX(t.col)
FROM table t

What are different ways that a database might actually execute this query? 
This is an introduction to several (but by no means all) of the algorithms that 
a database could use.
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Full Table Scan

The most obvious way of finding the maximum value is to read the table, row 
by row, keeping track of the largest value encountered. The analogous method 
using paper is to read the table manually, keeping track of the maximum value 
as you read. This is also the approach that a programmer would typically take 
if the table were stored in a file or in an array in memory.

In terms of order notation, this method is O(n). As the size of the table grows, 
the work needed for the query grows by the same amount. Doubling the size 
of the data roughly doubles the amount of work.

A full table scan can be the best way to answer this question—particularly 
when the table is small. If all the rows fit on one sheet of paper, for instance, 
then scanning down one column might be the fastest way to get the maxi-
mum. For larger amounts of data, full table scans are usually not the most 
efficient method.

Parallel Full Table Scan

One way to speed the execution of the query is to break it down into pieces 
that can run simultaneously. After all, modern computers support multiple 
processors with multiple cores and they can run multiple threads of processing 
at the same time.

In the world of paper, this is equivalent to parceling out sheets to several 
colleagues. Each colleague goes through his or her sheets and calculates the 
maximum on that portion. In the end, the colleagues have looked through all 
the rows and found their own maximum value. You still need to combine their 
intermediate results together, but that should be a fast process.

Taking advantage of parallelism can substantially increase the speed of many 
queries, including this one. How much improvement depends on “how parallel” 
the system is—and for a given query, this is generally a combination of avail-
able hardware, configuration parameters, data size, and query complexity. For 
this type of query, having ten threads running simultaneously would cause the 
query to finish in about one‐tenth the time.

Running operations in parallel incurs some additional overhead, such 
as the need to gather the intermediate results together. This overhead, as 
well as the overhead for setting up the problem, is usually much, much 
smaller than the efficiencies gained by processing large quantities of data 
in parallel.

Parallelism has its limits. For instance, if you are processing paper and you 
have more colleagues than sheets of paper, the additional colleagues really don’t 
help (unless ripping sheets in half is allowed).

Although queries run faster in parallel, the processing is still O(n)—for a given 
number of parallel threads. All the rows still need to be read, even if multiple 
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processors are reading them. However, because each processor finishes faster, 
the query would still finish faster. This explains why throwing more hardware 
at a problem can speed things up—even when the underlying algorithms are 
not particularly scalable.

Index Lookup

At this point, you might be thinking: “Gosh, wouldn’t it just be easier if the 
column was sorted to begin with?” If that were the case, choosing the maximum 
price would be simple—just go to the first or last row in the table (depending 
on the direction of the sort) and get the value. Can’t SQL do the same thing?

Well, the answer is no and yes. SQL tables represent unordered sets: tables 
have no inherent ordering. And, even if there were an ordering, how would 
we access a particular row, without knowing the values in the row? There are 
ways around both of these issues, but let’s stay true to the relational model 
for now.

t Ip SQL tables represent unordered sets, so queries should not assume that the 
data is in any particular order. However, indexes are (generally) ordered and can speed 
up queries by allowing algorithms that take advantage of ordering.

Indexes, which are described in more detail later in this chapter, are the solu-
tion. You can think of these like the index in the back of a book: values from one 
or more columns in the table (called keys) are sorted, along with a reference to 
the original row in the table. Figure 14-1 shows an example.

Because the index is sorted, it is almost trivial to pull out the one with the 
maximum value.

How long does this operation take in terms of order notation? The index 
contains the maximum value, so this is just asking how long it takes to find it. 
The answer depends on the underlying data structure for the index, but typi-
cally this would be O(log n). That means that doubling number of rows only 

Figure 14-1: Indexes are a lookup table that (essentially) stores the columns in sorted order with 
reference back to an internal address to locate any particular row.

TABLE
Col2Col1Internal RowId
302ZYX
104ABC
105CDE
498ABC
100FGH
302FGH

INDEX
RowIdCol2

0002005100
0001002104
0001003105
0001001302
0003001302
0002002498

0001001
0001002
0001003
0002002
0002005
0003001



660 Chapter 14 ■ performance Is the Issue: Using SQL effectively

increases the running time by a constant. For instance, the log of 8 is 3, which 
is 1 more than the log of 4; similarly, the log of 1,024 is 10, which is 1 more than 
the log of 512. An index lookup on one million rows is only about ten times as 
long as an index lookup on one thousand rows. For practical purposes of using 
databases, this is very similar to constant time.

Performance of the Query

This simple query has touched on three different execution methods—a full 
table scan, a parallel full table scan, and an index lookup. In any given environ-
ment, the query optimizer can choose the best of these and other methods. The 
database, which in theory understands the details about the data being stored, 
can decide the best method for executing the query based on the query, the data, 
and the available computing resources.

A database engine has many, many different ways to optimize joins, aggrega-
tions, and other SQL operations. A major power of SQL is that the same query 
can be optimized for its environment, to run as effectively as possible.

t Ip SQL engines have an optimization step that considers many different ways of 
creating the result set. The engine chooses the best method for the query, data, and 
processing resources available.

Considerations When Thinking About Performance
Relational databases are powerful tools for storing and processing data. Query 
optimization takes advantage of available resources, which include:

 ■ Storage management (memory and disk)

 ■ Indexes

 ■ Parallel processing

These three components provide SQL with much of its processing power. They also 
provide a framework for understanding some key performance considerations.

Storage Management (Memory and Disk)

Databases store tables in permanent storage, on disk, yet do their actually process-
ing in memory. Moving data from disk to memory is relatively time‐consuming 
(on the time frames that computer processors work on). A very important part 
of database performance is managing the available memory and minimizing 
the time spent waiting for data movement from disk.

Data is logically structured in tables that contain columns. The actual unit 
of storage, on the other hand, is the data page. These are of a fixed size (such as 
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Figure 14-2: Pages are stored in memory and disk and the page cache manages pages for the 
database.
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Pages are stored on disk. As they are needed by the database engine, they 
are loaded into the page cache.
The page manager typically implements optimizations such as:
• Reading multiple pages at one time
• Loading pages in anticipation of being needed
• Keeping pages in the cache in case they are needed later
• Reading and writing pages while the engine is processing data 

("asynchronous reads and writes")

8,192 bytes in SQL Server), and a given data page contains rows from a single 
table. (If necessary, rows with very large columns can span multiple pages.) 
A table, then, consists of a collection of pages that stores its rows. Figure 14-2 
shows a schematic diagram of this structure.

One fundamental performance question is: How many pages need to be read 
from (and written to) disk? If you know the number of pages that a query must 
read you have a pretty good idea of the query’s overall performance. If a query 
reads all the rows in a table, then—in general—it needs to read each page once 
from disk. This process is called a full table scan.

To make queries more efficient, the database manages pages in a special part 
of memory called the page cache. The page cache (along with caches for other 
objects) typically occupies most of the memory used by the database server. 
Sometimes, the pages needed by a query are already available in the page 
cache; in this case, the query runs faster because the pages do not need to be 
loaded from disk. For this reason, running a query for the first time after a 
database starts often takes longer than running it a second time. The second 
time, the needed data is already in the page cache and does not have to be 
fetched from disk.
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When the database first starts, nothing is in memory. The empty page cache 
is referred to as being “cold.” When the page cache has data of interest, it is 
referred to as “warm.” Proper timings for a query usually clear the page cache, 
so the timings run on a cold cache. Note that this only affects the page cache 
managed by the database. The operating system and network may have addi-
tional caching mechanisms that can also affect database performance.

t Ip A page cache efficiently manages the interface between memory and disk—so 
efficiently that sometimes the data needed for a query is already in memory, making 
the query run faster than it would on a cold cache.

Database engines are smart about how they use data pages. Data pages are 
typically allocated in adjacent disk blocks because reading adjacent data from 
disk in one large read is faster than reading smaller amounts of data scattered 
over the disk. Databases also implement a look‐ahead optimization, where the 
database engine reads pages for a table before it needs them. Modern computers 
can read from disk and process data at the same time, which is a big improve-
ment over earlier generations of processors that had to wait until the read was 
finished to continue processing. There are further optimizations for dirty pages, 
which are pages where data has changed. However, the analytic queries in this 
book are read‐only queries, so dirty pages are not a major concern.

This is a general description of the storage architecture for databases. One 
variation is storing each column on a separate set of pages. This is called a 
column‐oriented database.

The column‐oriented database has two big advantages. First, data within 
a single column has a single type and can be compressed much more effec-
tively than data in a row, where the columns have many diverse data types. 
More compression equals less space on disk and usually reduced time to 
read and write the data—hence better performance. The second is that only 
the columns required by a query need to be transferred between disk and 
memory—as opposed to entire records. The downside to columnar stores 
is that a single record is spread across many pages, complicating the code 
that implements inserts, updates, and deletes.

Another tweak to the architecture is in‐memory databases and—almost 
the equivalent—disk technology (such as solid state) that is almost as fast as 
memory. These technologies generally greatly improve database performance.

Indexes

Indexes, which are described in more detail in the next section, are another 
capability for improving performance. In all databases, indexes can improve the 
performance of JOINs, filters in the WHERE clause (including correlated subque-
ries), and the ORDER BY clause. Most database engines can also take advantage 
of them (in the right circumstances) for GROUP BY and window functions.
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Processing Engine and Parallel Processing

Another important component of database performance is parallelism and the pro-
cessing engine. For most users, this is an invisible layer in the database. The question 
is: Will the SQL engine take advantage of all available hardware for a given query?

Most of the queries in this book can readily take advantage of parallel hardware. 
The underlying algorithms for reading data, writing data, joins, aggregations, 
and sorting can all be implemented in parallel—and are, in any serious database.

Some SQL constructs can significantly impede performance. Cursors are one 
of them. This is a part of the SQL language that allows you to pass data back 
one row at a time to a scripting language (such as T‐SQL for SQL Server). There 
is even an acronym for this type of processing: RBAR (row by agonizing row). 
This book has focused on set‐based queries, which take better advantage of 
available hardware. Cursors are almost never needed for analytic data process-
ing, because set‐based operations work better. However, they are useful under 
some circumstances, such as calling a stored procedure for each row.

A separate processing issue is user‐defined functions. These tend to incur 
more overhead than built‐in functions. And, if a query uses these extensively, 
then performance may be slower than alternative solutions. Once again, this 
can depend on the particular database and version.

Performance: Its Meaning and Measurement
Generally, performance refers to the time taken to run a query—a simple idea, 
but the concept is more complicated than it sounds.

Performance depends not only on the data and the query, but also on the 
system running the database. Of course, more and/or better hardware—more 
memory, more processors, more disks, more I/O bandwidth—usually results 
in better performance.

Even a simple hardware system has many factors that might affect performance:

 ■ Are other queries running on the database system, using hardware 
resources?

 ■ Are other queries running on the database system, locking tables and 
rows, slowing things down?

 ■ Are other processes running on the database server, perhaps using memory 
and processing time?

 ■ Is network traffic interfering with communication from the disk to the 
database machine?

In other words, databases are complex systems that exist in complex technical 
ecosystems. The overall environment can affect query performance.

If you are concerned about the performance of one or more queries, find a 
system that has minimal other stuff on it and start testing. The first thing you 
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might discover is that the query runs slower the first time and then picks up 
speed—like many of us in the morning before coffee. As mentioned earlier in 
this chapter, the increased speed is quite possibly due to data being cached in 
memory. Queries run faster when data is already available in memory.

So, find the “cold cache” option on your database. This option ensures that 
each time the query runs, it has to read all the data from the tables. Then you 
proceed. What do you measure?

The most obvious is elapsed time. Other measures can also be useful, such as 
the number of pages read and written to the disk, the total time spent reading/

DatabaSeS reaLLy are DIFFerent

Although this book has used SQL Server as a reference database, the queries pre-
sented should be able to run on almost any recent version of most databases with 
minor tweaks. (One important exception is the use of window functions, which are not 
supported by MySQL and MS Access.) This aside points out some significant perfor-
mance differences among different databases.

Consider common table expressions. There are basically two approaches to han-
dling these. One is to materialize the CTE, meaning that the results from the CTE are 
placed in a temporary table. The second is to simply incorporate the CTE logic into the 
overall query—treating it as a subquery.

Each of these methods is potentially useful. If the CTE is really complicated, 
then you only want to run it one time: Reusing the results is a performance win. 
Materializing the CTE as a temporary table is a good idea.

On the other hand, sometimes the CTEs might have more efficient paths if they can 
be incorporated into the larger query, particularly because indexes on the underly-
ing tables are available for filtering. As an example, consider the following query and 
assume an index exists on State:

WITH o as (

      SELECT o.*, DATEDIFF(day, OrderDate, GETDATE()) as recency

      FROM Orders o

     )

SELECT o.*

FROM o

WHERE recency < 100 AND State = 'FL'

Materializing the CTE creates an intermediate table with all orders, but no available 
indexes.

The second method processes the query by substitution, so it is equivalent to:

SELECT o.*, DATEDIFF(day, OrderDate, GETDATE()) as recency

FROM Orders o

WHERE “recency” < 100 AND State = 'FL'

(Continues)
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(Regarding the quotes around “recency”: This syntax is not quite valid SQL, but it gets 
the idea across—the value from the SELECT is used for filtering.) This version can take 
advantage of the existing index on State.

How do different database engines handle this? Up through SQL Server 2014 (at least), 
SQL Server implements only the second method. Up through Postgres 9.4, Postgres uses 
only the first method.  Oracle uses the second method, but can sometimes take advantage 
of materialized intermediate results. In other words, there are two possible approaches 
and three databases manage to find three different ways to handle the construct.

Another example is IN with a long list of constant values. Most databases treat the 
values as a sequence of “OR” expressions, searching through the list one at a time. 
MySQL has a more intelligent approach. It transforms the list into an internal sorted 
list, and then uses a binary search—speeding up the comparison.

For a third example, consider the following query:

SELECT OrderDate, COUNT(DISTINCT PaymentType)

FROM Orders

GROUP BY OrderDate

There are basically two ways to approach an aggregation—by sorting all the data or by 
using an algorithm called hash aggregate. Usually, the hash aggregate is faster, unless the 
data is already sorted. Postgres generates a plan that uses sorting for this query. However, 
remove the distinct, and Postgres generates a much better plan using hash aggregate. 
Oracle and SQL Server generate more efficient plans using hash aggregate in both cases.

Different databases have numerous other differences, in the naming of func-
tions (SUBSTR() or SUBSTRING()? CHARINDEX() or INSTR() or POSITION() or 
LOCATE()? And so on). The functions for handling dates and times vary. Some data-
bases support regular expressions, and some don’t. Sometimes, syntax varies as well. 
Optimizers differ. And, other aspects of the database—from replication to backup and 
recovery to syntax for stored procedures—all differ.

Nevertheless, relational databases all implement systems inspired by the ANSI SQL 
standard. Focusing on the differences misses the many opportunities for writing effi-
cient queries across databases.

DatabaSeS reaLLy are DIFFerent (Continued)

writing from disk, and the total time used by the processors. The exact measures, 
of course, differ from one database to the next.

Performance Improvement 101
A good place to get started is with some basic rules for good performance. These 
rules are basically: Don’t do more than you have to, and express things concisely.

The technical aside “Databases Really Are Different” highlights some of the 
issues with discussing performance in general—as opposed to performance 
for a specific database engine. Fortunately, databases have a lot in common, 
despite their differences.
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Ensure that Types are Consistent

When doing a comparison, either for filtering or for a JOIN, make sure that the 
types on the two sides are the same. Avoid:

 ■ WHERE intcol = '123'

 ■ WHERE stringcol = 123

 ■ A JOIN B ON A.intcol = B.stringcol

At the very least, writing conditions using mixed types relies on implicit type con-
version, and when one of the values is a constant, the code is also misleading. Code 
that is hard to understand or at all misleading is a potential maintenance problem.

Although databases sometimes handle these situations well, mismatched 
types can confuse the optimizer. The wrong choice of algorithm for a join has 
a large impact on query performance. Properly declared foreign key relation-
ships help avoid this problem because the foreign key declarations ensure that 
the types are correct.

Reference Only the Columns and Tables That Are Needed by the Query

SQL optimizers can be both really smart and really dumb. A query such as the 
following counts the number of rows in Orders:

SELECT COUNT(*) as NumOrders
FROM Orders o JOIN
     Customers c
     ON o.CustomerId = c.CustomerId

However, the JOIN is unnecessary because all orders have a valid customer ID. 
Alas, the SQL optimizer probably doesn’t know this. So, just do:

SELECT COUNT(*) as NumOrders
FROM Orders o

This version returns the same value and does not require the extra effort for the join.

Use DISTINCT Only When Necessary

The DISTINCT keyword can easily be put in a SELECT clause or COUNT() expres-
sion. Alas, DISTINCT almost always implies more work for the SQL engine—and 
in some cases, the use of DISTINCT can radically change the query plan for the 
worse. Even if the optimizer is smart enough to figure out that the rows are 
unique, the code is misleading to anyone who later reads it.

In short, DISTINCT almost always causes extra work. If it is not really needed, 
then leave it out. Of course, do use it when it is the right thing to do.



 Chapter 14 ■ performance Is the Issue: Using SQL effectively 667

UNION ALL: 1, UNION: 0

Always prefer UNION ALL to UNION because UNION incurs the added cost of remov-
ing duplicates. The SQL engine does this work, even when the rows are already 
distinct. On occasion, removing duplicates is desirable, and this is when UNION 
should be used intentionally.

When using UNION, the subqueries do not generally need SELECT DISTINCT, 
because the UNION removes duplicates anyway. The one exception is when the 
columns in the SELECT are part of an index that can be used for the SELECT 
DISTINCT. SELECT DISTINCT in the subquery allows the index to be used, which 
typically improves overall performance.

Put Conditions in WHERE Rather Than HAVING

Consider the following query to get the number of zip codes in states that start 
with “A”:

SELECT stab, COUNT(*)
FROM ZipCensus zc
GROUP BY stab
HAVING stab LIKE 'A%'

This is a reasonable query, but it does more work than necessary. The query 
aggregates the results for all the states, then it filters the results.

An equivalent query filters the results first, so the data being aggregated is 
smaller:

SELECT stab, COUNT(*)
FROM ZipCensus zc
WHERE stab LIKE 'A%'
GROUP BY stab

In addition, this version can better use an index on stab.
From a performance perspective, reduce the volume of data using filtering 

as “early” as possible. This means putting conditions in a WHERE clause in the 
deepest possible subquery.

Use OUTER JOINs Only When Needed

The SQL optimizer has more options with inner joins than with outer joins. More 
options generally mean that the resulting query will run faster as an inner join 
than as an outer join—even when the result sets are exactly the same.

Of course, when the query logic requires an outer join, don’t hesitate to use 
it! Just do not use outer joins unnecessarily. For instance, outer joins are often 
not needed when joining on foreign keys in a well‐designed database.
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Using Indexes Effectively

Indexes are the single most important part of a relational database for improv-
ing query performance. The subject of indexes in databases is very broad. This 
section starts with a discussion of different types of indexes. It then moves on 
to the types of queries that can benefit from indexes and how to look at a query 
from the perspective of “what is the best index.”

What Are Indexes?
An index is a supporting data structure that speeds access to specific rows in a table. 
You do not query indexes directly. Instead, the query optimizer knows about them 
and decides when to use one in addition to—or even instead of—the original table.

Earlier, this chapter discussed a simple way to think of an index: as a table 
with columns sorted along with a row identifier. By providing additional infor-
mation about where values are located, indexes can radically speed up queries.

The syntax for creating an index is:

CREATE INDEX <index name> ON <table name>(<column>, . . .)

For instance, to create an index on OrderId in OrderLines:

CREATE INDEX idx_OrderLines_OrderId ON OrderLines(OrderId)

The basic syntax is sufficient for many purposes. There are additional options, 
some of which are specific to particular databases. The index can be removed 
using DROP INDEX idx_OrderLines_OrderId.

The standard index in SQL is the B‐tree index. This is the default but is only 
one type of index that is available. The following describes some of the types 
of indexes, starting with the most common type.

B‐Trees

Figure 14-3 shows an example B‐tree with one key. The tree consists of 
nodes, which have one or more children. The children are ordered, based 
on values of the keys, with smaller values going to the left children and 
larger values to the right children. Accessing a particular value in the tree 
requires descending through the index tree structure, comparing the value 
to find with the values for the children, and then choosing the correct 
branch at each intermediate node. B-trees can have multiple keys. In such 
cases, the first key has priority, then the second key, and so on.

This process is much, much faster than scanning all the data. In order nota-
tion, it is O(log n). Once the first value is found, subsequent values can easily be 
located, by traversing the tree from the first value. Although most easily shown as 
a binary tree, such an index does not require that nodes have only two children.
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The B in B‐tree stands for balanced, meaning that all the leaves in the tree have the 
same depth. A balanced tree has nice properties when looking up values. However, 
maintaining the balance requires additional overhead on inserts, updates, and deletes.

B‐tree indexes readily support two types of operations for finding data. An 
index lookup goes directly into the index and finds an exact match for given key 
values (or the minimum or maximum value). An index scan matches all the 
records between two values—and this might be the entire index—returning 
them in sorted order.

Here are some examples of how a B‐tree index can be used:

 ■ When the query has a WHERE clause containing an equality condition on 
all keys used in the index, the index can be used to quickly find the rows 
that match the condition. This is an example of an index lookup.

 ■ When the query has an ORDER BY clause, the index can be used to fetch 
the records in the right order. This is an example of an index scan on the 
entire table.

 ■ When the query has a GROUP BY clause on the keys in the index, the index 
can be used to find the records in each group.

 ■ When the query has a JOIN/ON clause, the index can be used to easily find 
matching records.

 ■ When the query uses window functions and the PARTITION BY columns 
(and perhaps ORDER BY as well) are in the index, then the index can be 
used for the calculation.

Figure 14-3: In practice, indexes are usually stored as B‐trees with references to pages containing 
records.

Page 1

Internal RowId Col1 Col2
0001001 ZYX 302
0001002 ABC 104
0001003 CDE 105

Page 2

Internal RowId Col1 Col2
0002002 ABC 498
0002005 FGH 100

Page 3

Internal RowId Col1 Col2
0003001 FGH 302

Index 1
<= 105 > 105
Index Index 

11 12

Index 11
= 100 = 104 = 105
Row Row Row

0002005

Index 12
= 302 = 302 = 498
Row Row Row

0001001 0003001 0002002

B-trees are a balanced index structure, but the nodes do not have a maximum number of children. This 
example uses a B-tree that supports up to three children. The tree has a constant depth, maintained as 
new records are inserted, updated, and deleted.
In this example, the top level of the index has two children (11 and 12). The children are defined by 
inequalities on the key values. Each of these have three children.  The index has a depth of two, so the 
grandchildren point to rows in a table.
In a clustered index , the actual rows are stored at the lowest level of the index.

00010030001002
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B‐tree indexes can be used in many different situations, and the index keys 
can use any type of columns described so far—numbers, strings, or date/
times.

Hash Indexes

A hash‐based index has some similarities to a B‐tree index. However, the under-
lying data structure does not store the keys in sorted order. Instead, it converts 
the key values to a number and the number is essentially used as an index into 
an array.

The advantage of a hash‐based index over a B‐tree is that lookups are even 
faster. The process is simply converting the keys to the number (called hashing) 
and then using the resulting hash value to locate matching record locators in the 
hash array. A lookup in a hash index is typically O(1) rather than the O(log n) 
for a B-tree.

Hash indexes support only index lookups. They do not support index scans. 
So, hash indexes are less useful than B‐tree indexes. The limitation means that 
a hash index can be used in fewer cases, such as:

 ■ Equality conditions on all keys in the index (in either a WHERE clause or 
JOIN clause)

 ■ Aggregation that uses all keys in the index

 ■ Window functions where the PARTITION BY clause uses all the keys in 
the index

By contrast, B‐tree indexes are more versatile and can be used under more 
circumstances.

Spatial Indexes (R-Trees)

Many databases also support special indexes for different types of data. One 
of these is the spatial index, which is structurally related to B‐trees. These 
indexes are used to efficiently find geographic objects that are close to each 
other spatially.

The most important operation supported by these indexes is finding the 
geographic areas that are “next” to each other—think about a zooming out on 
a map and determining what the adjacent areas are so they can be included 
in the next map image. They also enable operations such as determining the 
overlap of two regions or what regions are within a specific distance.

Spatial indexes use a data structure similar to B‐trees, extending the idea to 
support multiple dimensions. Figure 14-4 gives an example. Basically, the index 
divides space into little squares (or cubes). It then keeps track of what is next 
to each square, north, south, east, and west of the square. Then, the tree also 
keeps track of groups of squares at different levels.
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Figure 14-4: Spatial indexes use R‐trees, which generalize B‐trees to multiple dimensions.

Index 1-11
x <= 0.5 x <= 0.5 x > 0.5 x > 0.5
y <= 0.5 y > 0.5 y <= 0.5 y > 0.5
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An example of part of a simple R-tree, showing 
the root of the index and the third child.
Unlike a B-tree, an R-tree defines the children by 
inequalities on all dimensions. The effect is to 
divide space into different regions.
A B-tree on the same columns, by contrast, would
first sort everything by X and then only use Y for 
ties (of which there are no examples in this data).

Full Text Indexes (Inverted Indexes)

Full text indexes are another powerful index structure specialized for a particular 
type of data. The index itself consists of words in the text, along with the list 
of records where they appear. This type of index is an example of an inverted 
index. Instead of words being stored in a document, this index stores individual 
words along with their locations, as shown in Figure 14-5.

Figure 14-5: A full text index keeps track of words in documents, along with their positions.

An inverted index typically stores the 
position of words in every text column that 
is indexed.
Usually, words such as "a," "an," "each," 
"in," "is," "of," "some," "that," "the," and 
"this" (in this example) would not be 
included. These are stop words that have 
little meaning.

FULL TEXT INDEX
Term DocumentId Position

a 1 6
a 2 1

an 1 3
an 2 6

contains 1 9
document 1 7

each 2 11
example 1 4

full 2 2
in 2 13

index 2 4
index 2 8

inverted 2 7
is 1 2
is 2 5
of 1 5

some 1 10
stores 2 10

text 1 11
text 2 3
text 2 15
that 1 8
that 2 9
the 2 14
this 1 1

word 2 12

TABLE WITH TEXT COLUMN
Documentid Document Contents

1 This is an example of a 
document that contains 
some text.

2 A full text index is an 
inverted index that stores 
each word in the text.



672 Chapter 14 ■ performance Is the Issue: Using SQL effectively

The definition of a word is typically a string of characters separated by spaces 
or punctuation, along with some other rules. For instance, a word might have a 
certain minimum length (so “a,” “be,” and “see” would not be included in the 
index). A word might have to have alphabetic characters, so numbers would 
not be words. And, a special list of stop words are not included in the index, 
because they are either very frequent or essentially meaningless (“neverthe-
less,” “however,” “and,” “the”). A full text index might also contain positional 
information about each word, so queries can find words and phrases that are 
close to each other.

Full text capabilities are very powerful, but they are outside the scope of 
this book.

Variations on B‐Tree Indexes

There are a few variations on the theme of B‐tree indexes: clustered versus non‐
clustered indexes, unique indexes, primary key indexes, functional indexes, and 
partial indexes. For the type of queries used for data analysis, the distinctions 
between the first three are usually not very important, but they are worth describing.

A clustered index means that the rows in the table are physically ordered by 
the key or keys. Without such an index, a new row can be inserted into a table 
anywhere free space is available. This is typically—but not necessarily—on the 
last page allocated to the table. If the table has a clustered index (and at most one 
is allowed), then the record is inserted in the appropriate location to keep the rows 
ordered by the primary key. Occasionally, a clustered index is helpful for certain 
types of queries. Generally they are just a slightly more efficient version of a B‐tree.

A unique index enforces the constraint of uniqueness on the values in the index. 
Inserting a row with key values that match another row causes the index inser-
tion to fail—and hence the whole row insertion to fail. Note that the treatment 
of NULL values varies depending on the database. Some allow unique indexes 
to have multiple rows with NULL values in the same key; some only allow one 
occurrence of NULL, some don’t allow NULL values at all.

Occasionally, the query optimizer can take advantage of the fact that one or 
more columns are unique; otherwise, unique indexes are similar to non‐unique 
indexes from the perspective of query performance.

A primary key index is a special index on a table, where the columns are 
both unique and non‐NULL. That means that every row in the table has a unique 
value for the primary key. Typically a primary key is also clustered, but that is 
not a requirement in all databases. Primary keys are often used for foreign key 
references—and the sample data has several examples, such as Orders.OrderId, 
Products.ProductId, and Campaigns.CampaignId.

Function‐based indexes allow indexes on the results of expressions rather 
than on columns themselves. This can be powerful, if certain operations are 
often performed—such as comparing the length of a string. SQL Server supports 
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function‐based indexes in an indirect manner. The expression itself can be added 
to a table as a computed column, and the index is built on the computed column.

Finally, partial indexes are indexes built on a subset of data. In databases that 
support them, they are often defined by adding a WHERE clause to the CREATE 
INDEX statement. The most important use of these indexes is to enforce a unique 
constraint on a subset of rows, although they can also be used for queries that 
have matching conditions in the query’s WHERE clause.

Simple Examples of Indexes
At this point, the discussion moves to “standard” indexes, which are B‐tree 
indexes. As an example, you can create an index on the TotalPrice column in 
OrderLines using:

CREATE INDEX idx_OrderLines_TotalPrice ON OrderLines(TotalPrice)

This section discusses some simple queries and how the database engine would 
process the query with and without the index.

Equality in a Where Clause

The following query returns one order whose price is zero:

SELECT TOP 1 ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0

The result set consists of an arbitrary row where the total price is zero because 
the query lacks an ORDER BY clause, which you would normally use with TOP. 
This query is for discussion only.

Without an index, the database engine reads the entire OrderLines table, one 
row at a time, checking the TotalPrice column until it finds a row where the 
value is zero. The engine returns the values from that row and stops reading 
the table. Of course, database engines are powerful, so millions of rows can be 
read in a relatively short amount of time (say, a few seconds). And the query 
could be lucky or unlucky. Perhaps the first row read has TotalPrice equal to 
zero. Or perhaps only the last row.

An index allows the database engine to quickly find all the rows where the 
TotalPrice is zero. Instead of reading the entire table, the database engine goes 
to the index and quickly fetches the row identifier for the first row that matches 
the condition. It then looks up that row in the data pages and returns the row. 
The index lookup and fetch should be much faster than reading the table—
assuming the table is large enough. However, on a very small table, scanning 
the table might actually be faster than using the index. This is particularly true 
if all the records in the table fit on a single data page.
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Variations on the Theme of Equality

Let’s consider some related queries and how the engine processes them. The 
first is:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0

The variation here is that the query returns all rows that match the condition, 
rather than just one.

The processing is similar to the previous query. Without an index, the engine 
needs to read the entire table. It cannot stop at the first row that matches the 
condition. It must go to the last row because even that could have a zero price.

With an index, the database engine finds the first entry in the index where 
TotalPrice is zero. It fetches the data for the corresponding row, placing it in 
the result set. The engine then moves to the next entry in the index to get the 
next row where TotalPrice is zero, adding that to the result set. And so on.

The rows themselves may be spread out through the table, each located on 
its own page. However, their row identifiers are all adjacent in the index, so the 
group of rows is easy to find quickly.

This variation has a more complicated WHERE clause with two conditions, one 
in the index and one not:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0 AND ol.NumUnits > 1

The SQL engine can use the index to find all rows where the first condition is met. 
However, the information in the index is not sufficient to determine if the rows 
pass both conditions. So, the engine fetches the rows from the data pages and 
uses this information for the second condition. In other words, database engines 
are powerful enough to use indexes for some of the conditions when necessary.

In this case, the index can be used because the conditions are connect by AND. If 
the connector were OR, then the SQL optimizer would probably not use the index.

The next example is one where the actual data for the records is not needed. 
Only the index is needed for the following query:

SELECT COUNT(*)
FROM OrderLines ol
WHERE ol.TotalPrice = 0

When an index can be used to generate the result set without accessing the data 
pages, the index is said to be a covering index for the query. In general, a covering 
index contains all the columns referenced anywhere in the query, although the 
index may have additional columns beyond these.
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t Ip When an index contains all the columns used in a query, in the right order for 
processing, then the index is said to “cover” the query. Such covering indexes typically 
provide the best performance.

Inequality in a WHERE Clause

Indexes can also be used for inequalities in the WHERE clause. So, the SQL opti-
mizer can take advantage of an index for the following clauses:

WHERE TotalPrice > 0
WHERE TotalPrice BETWEEN 100 and 200
WHERE TotalPrice IN (0, 20, 100)

The first two would use index scans. The third would use multiple index lookups. 
Inequalities generally return more rows than equality conditions, so scanning 
the data pages can sometimes be more efficient than using an index.

For example, the first condition returns about 84% of the rows in OrderLines. 
Just scanning the table is likely to be faster than going through the index to read 
almost all the rows; after all, the query probably has to read all the data pages 
either way. A later section discusses some serious performance implications of 
using an index in this case.

ORDER BY

Which two order lines have the highest total prices? This query can also use an index:

SELECT TOP 2 ol.*
FROM OrderLines ol
ORDER BY ol.TotalPrice DESC

The database engine starts at the end of the index—the highest priced order 
line. And it then get scans backwards to get the two rows with the highest price 
and return the information from those two rows.

Of course, some rows may have the same total price on them. If we wanted 
all the rows, including ties, the query might use a subquery, such as:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice IN (SELECT TOP 2 ol.TotalPrice
                        FROM OrderLines ol
                        ORDER BY ol.TotalPrice DESC
                       )

The index would get used twice for this query. First, the database engine uses 
it to find the two records with the highest total price for the subquery. Then the 
query engine uses the index again to fetch all rows with the same values.
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SQL Server offers a simpler syntax for this type of query:

SELECT TOP 2 WITH TIES ol.*
FROM OrderLines ol
ORDER BY ol.TotalPrice DESC

The keywords WITH TIES instruct the query engine to keep returning rows as 
long as the rows have the same values (based on the ORDER BY) as the preced-
ing row.

The index can also be used when a WHERE clause is included in the query. 
For instance, the following query gets all the lines with the lowest priced 
products:

SELECT TOP 1 WITH TIES ol.*
FROM OrderLines ol
WHERE ol.TotalPrice > 0
ORDER BY ol.TotalPrice ASC

The engine can find the first non‐zero value for TotalPrice in the index. It can 
then start scanning from there.

Aggregation

Indexes can also be used for aggregation (by most databases):

SELECT ol.TotalPrice, COUNT(*)
FROM OrderLines ol
GROUP BY ol.TotalPrice

This query can clearly be processed using only the index. In the index, the prices 
with the same value are next to each other, so they are easy to count.

The same query processed without an index requires reading the table, bring-
ing similar values together, and then doing the count—much more work than 
scanning the index.

This also applies to aggregation queries without GROUP BY. For instance:

SELECT MIN(ol.TotalPrice)
FROM OrderLines ol

This query can take advantage of the index to get the smallest value.

Limitations on Indexes
Although indexes are usually beneficial for performance, there are some cases 
where they can actually make things worse, as discussed in the aside “Thrashing: 
When Indexes Go Bad.”
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Indexes do have quirks. SQL optimizers often only consider using an index 
for columns that are being compared to constants (or query parameters), that do 
not require type conversion, and that are not modified by functions or operators. 
Although some engines do occasionally relax some of these rules it is a good 
idea to keep them in mind.

Consider a date comparison on a date time field to get all values from 
today:

WHERE CAST(dte as DATE) = CAST(GETDATE() as DATE)

The optimizer may not be able to use an index on dte. But, the following ver-
sion can:

WHERE dte < CAST(GETDATE() as DATE) AND dte >= CAST(GETDATE() – 1 AS DATE)

These two versions do the same thing, but the second version has no functions 
operating on the column, so it is safer for index use. (Note: SQL Server is smart 
enough to use an index in this case, despite the CAST() function; however, this 
is a rare exception to the rule about indexes and functions.) As a general rule, 
apply functions to query constants rather than columns if you want the query 
to take advantage of indexes.

Comparisons to the beginning of a string provide another example. Both 
these return zip codes in counties that start with the letter Q:

WHERE County LIKE 'Q%'
WHERE LEFT(County) = 'Q'

However, the second version would not use an index because of the func-
tion call. LIKE is smart enough to use an index when the pattern starts with 
constant characters. It cannot use an index when the pattern starts with a 
wildcard.

Warn Ing In a WHERE clause, avoid using functions and operators on columns that 
are included in indexes. Modifying the column value often prevents the use of an index.

The same thing happens with type conversions and even trivial operations:

WHERE TotalPrice + 0 = 0
WHERE TotalPrice = '0'

Modifications to the column, even type conversions and adding zero, usually 
prevent the use of an index.

The same consideration applies to comparisons between columns in an ON 
clause—you want to be sure that these have the same type. Fortunately, most 
joins use primary keys and foreign keys. And, a well‐designed database would 
have the foreign key references defined in the table definitions—so the database 
would guarantee that the types are compatible.
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thraShIng: When InDexeS go baD

Consider the following simple query:

SELECT t.*

FROM table t

ORDER BY t.col

And also assume that the table has an index on t.col.
The SQL optimizer basically has two choices on how to run this query. The first 

method is to read the data, then sort it and return the results. The alternative is to use 
the index to read the data in the proper order. The engine can then fetch the rows in 
order and return the results.

The second method seems so reasonable that some database engines always use 
the index for this type of query. What could be wrong with that?

This is a case where intuition on smaller amounts of data does not scale to large 
data. Consider the simple case, where the table fits into memory. The database 
engine goes to the index and finds the location of the first row—nicely ordered to 
be the first in the result set. It then goes to fetch the rest of the columns for the row 
by loading the data into the page cache. Remember, the row could be anywhere in 
the table.

The engine then goes to the next row in the index. It then fetches the additional 
columns in the row. It is highly unlikely that the second row is on the page containing 
the first row, so the engine loads another page.

This process continues for subsequent records. Sometimes the record is found in 
the page cache because the page has already been loaded for an earlier record (this 
is called a cache hit). Sometimes a new page has to be loaded (called a cache miss). 
Eventually, the entire table is in memory, so cache misses cannot occur. All subsequent 
reads hit the cache. The query goes pretty fast from this point.

When the table is larger than memory, something more ominous happens. The 
page cache eventually fills up. Then another record is located in the index, and 
the page is not in the cache. To make room for the new page, an arbitrary page is 
removed from the cache and the page with the newly located record replaces it. 
This continues, with old pages being overwritten in memory to make room for the 
new.

Then, a record is needed from one of those old pages. So, it has to be re‐read into 
memory—and another arbitrary page removed. In other words, a single page gets 
loaded into the cache multiple times. In the worst case, a page is loaded for each 
record on the page. This continual loading of pages over and over into memory is 
called thrashing. And, it is the bane of systems working with random‐access data 
larger than memory.

Remember the alternative execution plan. That plan just reads the data and sorts 
it without using the index. One method of sorting data requires reading it three times 
and writing it twice. Under some circumstances—for tables too big to fit in the page 
cache—doing the sort is much more efficient than using an index because the latter 
results in thrashing.
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Effectively Using Composite Indexes
The basics of indexes are pretty easy. However, as queries get more complicated 
it can be more challenging to figure out how to define effective indexes.

Often the best index for a query is a single index that contains multiple col-
umns. Such an index is called a composite index. Defining the right composite 
index has some nuances.

Composite Indexes for a Query with One Table

For a query on only one table, some rules specify the columns to put into the 
index and the order of these columns in the index:

 1. Assuming the WHERE clause consists of conditions connected by AND with 
comparisons to constants (or fixed parameters), then index the columns 
used in the WHERE clause. Columns used for equality conditions go first, 
followed by columns used for inequality conditions (such as <, <=, >, >=, 
<>, IS NOT NULL, IN, NOT IN). The index will directly use only one 
column with an inequality condition.

 2. For an aggregation query, then index the columns used for aggregation.

 3. For an order by query, then index the columns in the ORDER BY clause.

 4. If you want a covering index, then include the rest of the columns from 
the SELECT.

The ordering of columns in the index is very important. The correct ordering 
can greatly improve performance for a given query.  Conversely, the same col-
umns in a different order may render the index unusable for the same query.

For example, consider:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0 AND ol.NumUnits = 2

The best index is either on OrderLines(TotalPrice, NumUnits)  or 
OrderLines(NumUnits, TotalPrice). Either index should be equally efficient. 
This is a case where the ordering does not matter because both columns have 
equality conditions.

Modifying the second condition to an inequality means that one index is 
better than the other:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0 AND ol.NumUnits >= 2

The best index for this query is OrderLines(TotalPrice, NumUnits). This index 
allows the database engine to immediately find the first row with TotalPrice 
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of zero and NumUnits equal to two. From that row, the other records meeting 
the condition are located sequentially after that row.

An index with NumUnits as the first key and TotalPrice as the second is 
less effective. The engine uses the index to readily find rows where the sec-
ond condition is met. It finds the first row where the number of units is two 
and scans from that point on. Then the values with total price of zero would 
be scattered through the index. The engine is able to use the index for the 
entire WHERE clause—because both values are in the index—but it must read 
unnecessary entries. This execution plan makes some use of the index, but 
it is less efficient than the version with the correct ordering of the columns 
in the index.

Another example is this aggregation query:

SELECT ol.TotalPrice, COUNT(*)
FROM OrderLines ol
GROUP BY ol.TotalPrice

The best index for this is on TotalPrice. However, not all database optimizers 
use indexes for aggregation.

Changing the query to have a WHERE clause affects the indexing strategy. 
Remember that the best index starts with the columns in the WHERE.

SELECT ol.NumUnits, COUNT(*)
FROM OrderLines ol
WHERE ol.TotalPrice = 0
GROUP BY ol.NumUnits

For this query, the best index is OrderLines(TotalPrice, NumUnits). Reversing 
the columns would probably prevent the index from being used at all.

The related query:

SELECT ol.NumUnits, COUNT(*)
FROM OrderLines ol
WHERE ol.TotalPrice > 0
GROUP BY ol.NumUnits

cannot use the NumUnits part of the index for the aggregation, because of the 
inequality condition.

Similar considerations apply for the ORDER BY clause, so the best index for 
this query:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice = 0
ORDER BY ol.NumUnits DESC
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is an index on OrderLines(TotalPrice, NumUnits). But this query:

SELECT ol.*
FROM OrderLines ol
WHERE ol.TotalPrice > 0
ORDER BY ol.NumUnits DESC

cannot use an index for both the WHERE clause and the ORDER BY.
The following query from Chapter 3 is a bit more complicated than the basic 

examples so far discussed:

SELECT Market, stoprate - 1.96 * stderr as conflower,
       stoprate + 1.96 * stderr as confupper,
       stoprate, stderr, numstarts, numstops
FROM (SELECT Market,
             SQRT(stoprate * (1 - stoprate) / numstarts) as stderr,
             stoprate, numstarts, numstops
      FROM (SELECT Market, COUNT(*) as numstarts,
                   SUM(CASE WHEN StopType IS NOT NULL THEN 1 ELSE 0
                       END) as numstops,
                   AVG(CASE WHEN StopType IS NOT NULL THEN 1.0 ELSE 0
                       END) as stoprate
            FROM Subscribers
            WHERE StartDate in ('2005-12-26')
            GROUP BY Market
          ) s
      ) s

The best index is not hard to figure out. The place to start is the innermost sub-
query. It has a WHERE clause and GROUP BY so that is where the processing starts.

The best index for this subquery is Subscribers(StartDate, Market). In addi-
tion, the SELECT clause uses the column StopType. If this is included in the index, 
then the index is a covering index for the query: Subscribers(StartDate, Market, 
StopType). Note that the extra column should be the last column in the index.

Composite Indexes for a Query with Joins

Joins with equality conditions complicate the use of indexes by introducing a 
wider range of possible execution plans. In general, when the join condition has 
no equals sign, then indexes cannot help the query. On the other hand, a simple 
equijoin query has multiple ways of taking advantage of an index:

SELECT *
FROM A JOIN
     B
     ON A.col = B.col
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The query optimizer might consider three broad strategies for executing the 
query. The first is to use A as the driving table. That is, the engine would read A 
and find the matching record(s) in B. For this situation, an index on B(col) is 
the best index.

The optimizer could decide to use B as the driving table instead of A. The 
best index is then A(col). Or, the engine could use a different algorithm such 
as a merge join or hash join algorithm, which does not have a driving table. A 
merge join first sorts each of the tables and then matches them row by row. Of 
course, the “sort‐and‐compare” could make use of both indexes at the same time.

As a general rule, having indexes on the columns used for joins is a good 
idea. Fortunately, many such queries use primary keys for the join, and these 
automatically have an index.

If the join query has a WHERE clause that mentions only one table, then that 
table is an excellent candidate for the driving table. For instance, consider a 
query like this:

SELECT *
FROM A JOIN B ON A.Col = B.Col
WHERE A.OtherCol = 0

If A is used as the driving table, then the best indexes are A(OtherCol, Col) and 
B(Col). The query engine uses the index on A to find all the rows that match the 
WHERE condition. Because A.Col is already in the index, it can readily locate the 
matching rows in B. Then, the engine fetches those rows from the data pages.

An alternative method would use B for the driving table. In this case the 
best indexes are A(Col, OtherCol) and an index on B does not really help. The 
engine would scan the B table, and use the index to find the matching rows 
in A. Because OtherCol is also in the index, it can do the WHERE filtering before 
fetching the actual data.

For a LEFT OUTER JOIN, the driving table is going to be the first table because 
all the rows from that table are in the result set. Similarly, for RIGHT OUTER JOIN, 
the second table is the driving table. A FULL OUTER JOIN requires a somewhat 
different approach to guarantee that all rows from both tables are in the result set.

This query from Chapter 10 joins three tables:

SELECT YEAR(o.OrderDate) as yr, MONTH(o.OrderDate) as mon,
       AVG(CASE WHEN p.GroupName = 'CALENDAR' AND p.FullPrice < 100
                THEN ol.UnitPrice END) as avgcallt100,
       AVG(CASE WHEN p.GroupName = 'BOOK' AND p.FullPrice < 100
                THEN ol.UnitPrice END) as avgbooklt100
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId JOIN
     Products p
     ON ol.ProductId = p.ProductId
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WHERE p.GroupName IN ('CALENDAR', 'BOOK')
GROUP BY YEAR(o.OrderDate), MONTH(o.OrderDate)
ORDER BY yr, mon

The columns Orders(Orderid) and Products(ProductId) are primary keys. 
Absent any other indexes, the query would generate all combinations of orders, 
order lines, and products, filtering the results either while it generates the com-
binations or just before doing the aggregation.

An index on Products(GroupName, ProductId) might not help this query. Although 
this would filter on the WHERE clause, consider the condition ON ol.ProductId = 
p.ProductId. The join to OrderLines would not have an index available, and that 
might be computationally expensive. Fortunately, another index fixes this problem: 
OrderLines(ProductId, OrderId). The second column is a convenience to handle 
the join to Orders without reading the data pages for OrderLines.

When you have a GROUP BY with a JOIN, then the query engine probably 
cannot use an index for the aggregation. An ORDER BY on the driving table in a 
query with no GROUP BY can sometimes use an index.

Most correlated subqueries can be written as joins. Hence, correlated sub-
queries with equality conditions and no aggregation follow basically the same 
rules as those outlined for joins.

When OR Is a Bad Thing

OR is a very powerful construct in databases. Unfortunately, it is one that opti-
mizers often do not handle well, at least with respect to indexes.

Simple WHERE clauses with conditions on only a single column generally 
do not pose a problem. SQL optimizers are smart enough to use an index on 
Orders(State)for a query such as:

SELECT o.*
FROM Orders o
WHERE State = 'MA' OR State = 'NY'

Note that this would be better written with IN. The two constructs are usually 
identical with respect to optimization.

Sometimes UNION ALL Is Better Than OR
Consider an index on Orders(State, City) and a query to fetch orders from 
Boston and Miami:

SELECT o.*
FROM Orders o
WHERE (o.State = 'MA' AND o.City = 'BOSTON') OR
      (o.State = 'FL' AND o.City = 'MIAMI')
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SQL optimizers may not recognize the opportunity to use the index because 
of the OR. Even if the optimizer is smart enough in this case, it may miss the 
opportunity for a modification like: Get me all order lines from Boston and Miami 
that have a non‐free product:

SELECT ol.*
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId
WHERE ((o.State = 'MA' AND o.City = 'BOSTON') OR
       (o.State = 'FL' AND o.City = 'MIAMI')
      ) AND
      ol.TotalPrice > 0

What can be done?
This is one of the situations when a more complicated query might produce 

a more efficient execution plan. The problem with the previous query is that 
the conditions are complicated—from the perspective of optimization. Some 
databases have optimizers smart enough to catch this, but even the best opti-
mizer can miss opportunities.

There is more than one way to write this query to ensure better performance. 
Once method is to put the constant values in a derived table and use JOIN.  
Another is to use UNION ALL:

SELECT ol.*
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId
WHERE o.State = 'MA' AND o.City = 'BOSTON' AND ol.TotalPrice > 0
UNION ALL
SELECT ol.*
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId
WHERE o.State = 'FL' AND o.City = 'MIAMI' AND ol.TotalPrice > 0

Each subquery uses only AND conditions. That means that the optimizer can 
easily choose to use the index, greatly reducing the effort for each subquery. 
Having to run the two queries twice does not really effect performance because 
each subquery is just looking up rows using an index.

Note the use of UNION ALL here instead of UNION. Remember that UNION goes 
through extra effort to remove duplicates. Hence, you should always use UNION 
ALL, unless you specifically want that extra work to be done.

Sometimes LEFT OUTER JOIN Is Better Than OR
What order lines have been either shipped or billed on national holidays and what 
is the holiday? This is a rather simple question whose answer can readily 
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be turned into SQL. It is just a complicated JOIN between OrderLines and 
Calendar:

SELECT c.hol_national, ol.*
FROM OrderLines ol JOIN
     Calendar c
     ON (ol.ShipDate = c.Date OR ol.BillDate = c.Date) AND
        c.hol_national <> ''

The logic is easy to follow: match one of the two dates to the calendar table and 
check to see if the date is a national holiday.

The query is easy enough, but the OR might prevent the database optimizer 
from using an index—after all, two indexes would be needed for this part of 
the query, one for ShipDate and one for BillDate. One solution is to use UNION 
ALL as described in the previous section. However, this can be cumbersome. 
UNION ALL doubles the length of the query.

An alternative approach is to replace the single JOIN with two JOINs, one 
for each of the dates. Because only one condition might match, the one JOIN 
becomes two LEFT JOINs:

SELECT COALESCE(cs.hol_national, cb.hol_national) as hol_national, ol.*
FROM OrderLines ol LEFT JOIN
     Calendar cs
     ON ol.ShipDate = cs.Date AND cs.hol_national <> '' LEFT JOIN
     Calendar cb
     ON ol.BillDate = cb.Date AND cb.hol_national <> ''
WHERE cs.Date IS NOT NULL OR cb.Date IS NOT NULL

The query has three important changes. First the LEFT JOIN is now used twice, 
once for each date. Although this version has two joins, each can efficiently take 
advantage of an appropriate index.

The second change is the WHERE clause. The left outer join keeps everything 
in OrderLines, so the joins are not filtering the data. Hence, the need for the 
WHERE clause to see if either JOIN found a match.

Finally, the SELECT clause returns the holiday name. However, the holiday 
could come from either the ship date or the bill date. COALESCE() allows the 
query to put the values in a single column.

This query is not exactly the same as the original query. The difference 
occurs when ShipDate and BillDate both fall on holidays. The first ver-
sion returns two rows. This version returns only one row, with the holiday 
from the ShipDate (although the query could be modified to return both 
holidays). If needed, the values from this query could be pivoted to get 
two rows; however, only one holiday per order might be the right answer 
to the question.



686 Chapter 14 ■ performance Is the Issue: Using SQL effectively

Sometimes Multiple Conditional Expressions Are Better
We might ask a relatively simple question about orders and zip code: What orders 
come from zip codes whose median family or household income is more than $250,000? 
The following query answers this question:

SELECT o.*
FROM Orders o
WHERE o.ZipCode IN (SELECT zcta5
                    FROM ZipCensus zc
                    WHERE MedianHHInc > 250000 OR
                          MedianFamInc > 250000
                   )

Note the use of OR in the subquery. Because of the OR, the query engine would 
probably scan all the rows of ZipCensus to find the matching zip codes, even 
when MedianHHInc and MedianFamInc are both indexed. Some databases have 
a capability called index merge to handle two indexes on different variables in 
this case. However, optimizers have a hard time determining when this opera-
tion is better than just scanning the table.

If each column has an index, the following produces an efficient execution 
plan:

SELECT *
FROM Orders o
WHERE o.ZipCode IN (SELECT zcta5
                    FROM ZipCensus
                    WHERE MedianHHInc > 250000
                   ) OR
      o.ZipCode IN (SELECT zcta5
                    FROM ZipCensus
                    WHERE MedianFamInc > 250000
                   )

Each of the conditional expressions can use an index, which should make the 
query run faster if the indexes are available.

Pros and Cons: Different Ways of Expressing the 
Same Thing

SQL is supposed to be descriptive, in the sense that a SQL query describes the 
result set rather than specify the exact steps for creating it (hence the need for 
compiling and optimizing the query). SQL is so descriptive, in fact, that it often 
offers more than one way to express a given result set. The SQL optimizer is 
supposed to “understand” the query and find the best way to execute it.
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That’s the theory. The practice is rather different. Often, one way of writing 
a query is more efficient than other equivalent ways. Of course, sometimes the 
differences depend on the database engine. Perhaps surprisingly, in many situ-
ations the same construct works best across many databases.

What States Are Not Recognized in Orders?
This section investigates the simple question: What states are in Orders but not 
in ZipCensus?

The Most Obvious Query

A simple query answers the question:

SELECT DISTINCT o.State
From Orders o
WHERE o.State NOT IN (SELECT stab FROM ZipCensus)

This query has the advantage of being almost a direct translation of the ques-
tion. However, it is not good from a performance perspective.

The problem is that the WHERE clause is executed before the SELECT DISTINCT, 
so this query tests every state in Orders. There are 192,983 rows in Orders, but 
only 92 distinct state abbreviations. That means that the SQL statement is going 
to check the state code against ZipCensus.stab way more times than necessary—
and then go through additional effort to remove the duplicates.

A Simple Modification

A simple modification of the query should be about 2,000 times faster (192,983÷92):

SELECT o.State
FROM (SELECT DISTINCT o.State FROM Orders o) o
WHERE o.State NOT IN (SELECT stab FROM ZipCensus)

The strategy here is to get the distinct values for State before looking them up in 
ZipCensus. Instead of doing the comparison on 192,983 rows, this query only does the 
comparison on 92 rows. That part of the query should be 2,000 times faster—and as an 
added bonus the SELECT DISTINCT can also make use of an index on Orders(State).

A Better Version

The basic query has another potential problem, which is fixed by this version:

SELECT o.State
FROM (SELECT DISTINCT o.State FROM Orders o) o
WHERE NOT EXISTS (SELECT 1 FROM ZipCensus zc WHERE zc.stab = o.State)
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The difference is the use of NOT EXISTS rather than NOT IN. The two versions 
are not exactly the same, because they treat NULL values differently. If ZipCensus 
ever had even a single NULL value for stab, then the NOT IN query would return 
no rows at all. The semantics of NOT IN cause it to return NULL or false when any 
of the list values are NULL—never returning true. The version using NOT EXISTS 
has more intuitive behavior, which is the primary reason to prefer it to NOT IN.

t Ip Instead of using NOT IN with a subquery, use  EXISTS. NOT IN  will never 
return true if even one of the values in the subquery is NULL, sometimes leading to 
unexpected behavior.

This version has another advantage. The use of NOT IN with a subquery can 
mean that the entire subquery list is generated first, and then the comparison 
made to that list. Although some database engines do optimize the code cor-
rectly, the NOT EXISTS version often has equivalent or better performance. It 
can stop at the first matching value and return false.

An Alternative Using LEFT JOIN

The same query can also be expressed using LEFT JOIN:

SELECT o.State
FROM (SELECT DISTINCT o.State FROM Orders o) o LEFT JOIN
     (SELECT DISTINCT zc.stab
      FROM ZipCensus zc
     ) zc
     ON o.State = zc.stab
WHERE stab IS NULL

In most databases, this has the same performance as the previous version.
Technically, this type of join is called a left anti‐join because rows from the first 

table are kept only when no row matches in the second table (an “anti‐join”). Most 
databases recognize this construct and are able to process it efficiently.

Note that the processing is efficient even when the corresponding join might 
produce a gazillion rows in the logical intermediate results. Consider the fol-
lowing version of the above query:

SELECT DISTINCT o.State
FROM Orders o LEFT JOIN
     ZipCensus zc
     ON o.State = zc.stab
WHERE stab IS NULL

A lot of states match both tables. So, if a state has 100 orders and 500 zip codes, 
then—without the WHERE clause—this query would have an intermediate 
table of 50,000 rows, just for that one state. However, when the query engine 
recognizes the query as an anti‐join, the matching values do not need to be 
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generated—the query only cares about the non‐matches. This leads to the 
next question.

How Big Would That Intermediate Table Be?

The previous query—if it were done naïvely—would have an intermediate result 
set with hundreds of millions of rows. This entire result set is not generated, if 
the database knows what it is doing.

One way to calculate the exact number of rows produced by the query without 
the WHERE clause is to generate and then count them:

SELECT COUNT(*)
FROM Orders o LEFT JOIN
     ZipCensus zc
     ON o.State = zc.stab

However, this is quite inefficient because it has to generate the intermediate 
rows. And there are 223,242,930 to be precise.

The following version does the same calculation much more efficiently:

SELECT SUM(os.cnt * COALESCE(zcs.cnt, 1))
FROM (SELECT o.State, COUNT(*) as cnt
      FROM Orders o
      GROUP BY o.State
     ) os LEFT JOIN
     (SELECT zc.stab, COUNT(*) as cnt
      FROM ZipCensus zc
      GROUP BY zc.stab
     ) zcs
     ON os.State = zcs.stab

Pre‐aggregation reduces the number of rows to at most one in each table for 
each state. And then the sum of the product of the counts gives the number of 
rows. Note that the COALESCE() is needed because the second table has a value 
of NULL for non‐matching rows.

A GROUP BY Conundrum
The last query leads to a question: For states with at least one order, what is the number 
of orders and valid zip codes? Once again, there are various ways of approaching 
this question.

A Basic Query

It is tempting to answer this question with this query:

SELECT o.State, COUNT(o.OrderId) as NumOrders, COUNT(zc.zcta5) as NumZip
FROM Orders o LEFT JOIN
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     ZipCensus zc
     ON zc.stab = o.State
GROUP BY o.State

However, COUNT()—as we know—counts the number of non‐NULL values, not 
the number of distinct values. So this produces incorrect results.

The right function to use is COUNT(DISTINCT):

SELECT o.State, COUNT(DISTINCT o.OrderId) as NumOrders,
       COUNT(DISTINCT zc.zcta5) as NumZip
FROM Orders o LEFT JOIN
     ZipCensus zc
     ON zc.stab = o.State
GROUP BY o.State

This generates the full intermediate table. The query then does additional work 
for each of the distinct counts. This query has poor performance.

Pre‐aggregation Fixes the Performance Problem

Notice that this query uses a left outer join, so the result set needs to have every-
thing in the first table. The values from the first table can be aggregated before 
the join (so indexes can be used for the join to the second table):

SELECT o.State, o.NumOrders, COUNT(zc.zcta5) as NumZips
FROM (SELECT o.State, COUNT(*) as NumOrders
      FROM Orders o
      GROUP BY o.State
     ) o LEFT JOIN
     ZipCensus zc
     ON zc.stab = o.State
GROUP BY o.State, o.NumOrders

Notice two small tweaks to the query structure. First, COUNT() is used instead of 
COUNT(DISTINCT) because unwanted duplication of rows is no longer a problem. 
Also NumOrders is included in the GROUP BY clause.

Another approach pre‐aggregates along both dimensions:

SELECT o.State, o.NumOrders, COALESCE(zc.NumZips, 0) as NumZips
FROM (SELECT o.State, COUNT(*) as NumOrders
      FROM Orders o
      GROUP BY o.State
     ) o LEFT JOIN
     (SELECT zc.stab, COUNT(*) as NumZips
      FROM ZipCensus zc
      GROUP BY zc.stab
     ) zc
     ON zc.stab = o.State
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With this version, the outer aggregation is not needed. However, COALESCE() is 
needed because NumZips could be zero.

Which of these versions is faster? That actually depends on the database 
and data. The second version can take advantage of indexes and statistics 
on each table to optimize the aggregation. But the join cannot make use 
of indexes (because it is on the results of aggregations). The first version 
can use indexes effectively for the join, but the outer aggregation is more 
complicated.

Correlated Subqueries Can Be a Reasonable Alternative

A very different approach uses correlated subqueries. The idea is to do the 
aggregation for the orders, and then use a correlated subquery for the zip codes:

SELECT o.State, COUNT(*) as NumOrders,
       (SELECT COUNT(*)
        FROM ZipCensus zc
        WHERE zc.stab = o.State
       ) as NumZips
FROM Orders o
GROUP BY o.State

For this to work well, the table in the subquery needs an index on the fields 
used for the comparison—ZipCensus(stab).

One situation where the correlated subquery has a major performance advan-
tage over the previous versions is when a WHERE clause restricts the number of 
rows returned by the query. For instance, if we only wanted this information 
for states that begin with the letter “N,” then we can add the filter:

WHERE o.State LIKE 'N%'

This reduces the number of rows returned by the query, and the subquery only 
runs once for each returned row. Note that a HAVING clause would produce the 
same result set but without the performance gain because all the data is aggre-
gated before the filtering takes place.

For the previous queries to be equally efficient, you need to include the filter-
ing condition in the subqueries (and often the outer query as well). That is, the 
condition needs to be included twice, once for each table. Using a correlated 
subquery simplifies the filtering.

Be Careful With COUNT(*) = 0
Consider the question: Which states have no orders with the most common product? 
This section is going to start with a naïve approach for answering the question 
and then build up to a more efficient query.
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A Naïve Approach

This query to answer this question seems to have three components:

 ■ Some way of identifying the most popular product

 ■ Counting up the number of that product in each state

 ■ Choosing the states that have no occurrences of the product

The first is an aggregation subquery or CTE. The second is some sort of join 
and aggregation. And the third can be implemented in various different ways.

The following query answers the question following these three steps:

WITH MostPopular as (
      SELECT TOP 1 ProductId
      FROM OrderLines ol
      GROUP BY ProductId
      ORDER BY COUNT(*) DESC, ProductId DESC
     )
SELECT DISTINCT o.State
FROM Orders o
WHERE (SELECT COUNT(*)
       FROM OrderLines ol
       WHERE o.OrderId = ol.OrderId AND
             ol.ProductId IN (SELECT p.ProductId FROM MostPouplar p)
      ) = 0

The CTE MostPopular finds the most popular product—as measured by the 
number of rows containing the product in OrderLines. The subquery counts 
the number of orders in each state that have the product and the WHERE clause 
chooses those where the count is zero.

What is the problem with this query? Basically, the correlated subquery needs 
to be executed for every row in Orders—and that is a lot of joining and aggregat-
ing. This query can take a long, long time to execute. Despite the performance 
problem, the structure of this query has the advantage of also being able to 
return the states that have a particular number of orders, just by changing the 
comparison to some other number.

NOT EXISTS Is Better

The construct (SELECT COUNT() . . .) = 0 is almost never the right construct. Why? 
Because the count requires processing all the data. This is overkill; the comparison 
to zero just determines whether something exists. The better approach is to use 
NOT EXISTS. (If the comparison were not equals, the right logic would be EXISTS.)

The resulting query should execute much faster:

WITH MostPop as (
      SELECT TOP 1 ProductId
      FROM OrderLines ol
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      GROUP BY ProductId
      ORDER BY COUNT(*) DESC, ProductId
)
SELECT DISTINCT o.State
FROM Orders o
WHERE NOT EXISTS (SELECT 1
                  FROM OrderLines ol
                  WHERE o.OrderId = ol.OrderId AND
                          ol.ProductId IN (SELECT p.ProductId FROM MostPop p)
                 )

The engine can stop processing the subquery at the first order that contains the 
most popular product. For a state that has many thousands of orders, this can 
reduce the number of records processed by a factor of thousands.

Note that this query is still a correlated subquery—so correlation is not spe-
cifically the performance problem. The problem with the first version is the 
aggregation, not the correlation.

Using Aggregation and Joins

The query can also be expressed only using aggregation and joins:

WITH MostPopular as (
      SELECT TOP 1 ProductId
      FROM OrderLines ol
      GROUP BY ProductId
      ORDER BY COUNT(*) DESC, ProductId
     )
SELECT o.State
FROM Orders o JOIN
     OrderLines ol
     ON o.OrderId = ol.OrderId LEFT JOIN
     MostPopular p
     ON p.ProductId = ol.ProductId
GROUP BY State
HAVING COUNT(p.ProductId) = 0

The performance of this version is a bit worse than the version using NOT EXISTS 
because of the lack of filtering before the aggregation. More intermediate data 
processed by the query means lesser performance.

Nevertheless, this version does have an advantage because the number of 
products can be counted. So, this version—unlike the version with NOT EXISTS—
can find the number of states that have exactly one such order.

A Slight Variation

A slight variation on the previous query further improves performance. The 
final aggregation is on all order lines. However, only orders with the most 
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popular product need to be included. How can others be filtered out before the 
aggregation?

The answer uses a subquery to fetch only the orders that have the most com-
mon product:

WITH MostPopular as (
      SELECT TOP 1 ProductId
      FROM OrderLines ol
      GROUP BY ProductId
      ORDER BY COUNT(*) DESC, ProductId
     )
SELECT o.State
FROM Orders o LEFT JOIN
     (SELECT ol.OrderId
      FROM OrderLines ol JOIN
           MostPopular p
           ON p.ProductId = ol.ProductId
     ) ol
     ON o.OrderId = ol.OrderId
GROUP BY o.State
HAVING MAX(ol.OrderId) IS NULL

The subquery summarizes the orders to get only the ones containing the most 
popular product. Note that this subquery uses JOIN rather than LEFT JOIN 
because JOIN does this filtering. The outer query then uses a LEFT JOIN in order 
to find the states with no such orders.

Window Functions

Window functions are a very powerful part of the SQL language. They are 
often the most efficient way to solve problems—this is especially true when 
the window function is the “natural” method for doing a calculation. They can 
also be used in clever ways.

Where Window Functions Are Appropriate
What proportion of a state's population lives in each zip code? This query can be 
answered using “traditional” SQL using a join and an aggregation:

SELECT zc.zcta5, zc.TotPop / s.StatePop
FROM ZipCensus zc JOIN
     (SELECT zc.Stab, SUM(1.0 * zc.TotPop) as StatePop
      FROM ZipCensus zc
      GROUP BY zc.Stab
     ) s
     ON zc.Stab = s.Stab
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Although readily expressed in traditional SQL, this is not the best way to answer 
this question.

One problem with this approach is evident if filtering is needed. Say we were 
to add a WHERE clause to choose a single state: WHERE stab = 'MA'. The subquery 
would still process the data for all the states. From a performance perspective, 
this query performs the aggregation before the join, and it might not make 
optimal use of available indexes.

The version using window functions fixes both these problems:

SELECT zc.zcta5,
       zc.TotPop * 1.0 / SUM(zc.TotPop) OVER (PARTITION BY zc.Stab)
FROM ZipCensus zc

Filtering in a WHERE clause occurs before the work is done to calculate the total 
population in the state—this reduces the volume of data and should speed such 
a query. Similarly, the window function can take direct advantage of an index 
on Stab or on (Stab, TotPop).

This example shows a canonical use of window functions. To a large extent, 
this is how they are defined and they work very well in this situation.

Clever Use of Window Functions
Window functions can be used in some unexpected ways, allowing SQL to 
answer some interesting questions.

Number of Active Subscribers

Chapter 5 showed a clever use of window functions to calculate the number of 
active subscribers on each day. One approach to this problem uses a calendar table:

SELECT c.date,
       (SELECT COUNT(*)
        FROM Subscribers s
        WHERE StartDate <= c.Date AND
              (StopDate > c.Date OR StopDate IS NULL)
       ) as NumActives
FROM Calendar c
WHERE c.Date BETWEEN '2006-01-01' and '2006-01-07'

This query—even for only a week of actives—is painfully slow. In essence, the 
query has to count every subscriber on every day that she or he is active.

A clever approach realizes that you can count the subscribers only when 
they start and then subtract them out when they stop. Window functions then 
accumulate the counts in‐between:

SELECT s.*
FROM (SELECT s.date,
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             SUM(SUM(inc)) OVER (ORDER BY s.Date) as NumActives
      FROM (SELECT StartDate as date, 1 as inc
            FROM Subscribers
            UNION ALL
            SELECT COALESCE(StopDate, '2006-12-31'), -1 as inc
            FROM Subscribers
           ) s
      GROUP BY s.Date
     ) s
WHERE s.Date BETWEEN '2006-01-01' and '2006-01-07'

Note that the WHERE clause is in the outer query, not the subquery. It is tempting to 
use a WHERE or HAVING clause with no subquery. Alas, these filter the dates before 
window function SUM() is executed—so only start dates and stop dates in the 
date range are considered for the calculation. Instead, the subquery calculates 
the results for all dates, so they can be appropriately added together and then 
the totals are limited to the correct range.

The filtering outside the subquery does mean that extra work is being done, 
for customers who start and stop either before the period begins or after the 
period ends. We can fix this by adding the following code to each subquery: 

WHERE StartDate <= '2006-01-07'  AND

        (StopDate >= '2006-01-01' OR StopDate IS NULL) 

This arranges for the calculation to use only customers that are active during 
at least one day during the period of interest, which reduces the size of data 
being processed, and increases performance.

Number of Active Households with a Twist

The orders business has a rule for counting active households. A household 
remains active for one year after a purchase. This is important for marketing 
purposes for distinguishing between active and lapsed customers. How many 
active households are there on each day?

It is quite tempting to use the calendar table for this:

SELECT d.Date,
       (SELECT COUNT(DISTINCT c.HouseholdId)
        FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
        WHERE d.Date BETWEEN o.OrderDate AND o.OrderDate + 365
       ) as NumActives
FROM Calendar d
WHERE d.Date BETWEEN '2009-10-04' AND '2009-10-10'

However, this suffers from the same performance problem that was discussed 
in the previous section: Each order is counted once for every day in the year—
about 365 times.
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A different idea is to figure out when to add in a new household and when 
to remove one. A household starts being counted when it has no orders in the 
preceding year. Similarly, it is counted until one year has elapsed with no orders. 
Both of these can be determined using LAG(), LEAD(), and simple logic. The 
rest is a cumulative sum.

The following query shows the SQL query:

WITH oc as (
      SELECT o.*, c.HouseholdId,
             LAG(o.OrderDate) OVER (PARTITION BY c.HouseholdId
                                      ORDER BY o.OrderDate) as prev_OrderDate,
             LEAD(o.OrderDate) OVER (PARTITION BY c.HouseholdId
                                   ORDER BY o.OrderDate) as next_OrderDate
      FROM Orders o JOIN Customers c ON o.CustomerId = c.CustomerId
     )
SELECT thedate, SUM(inc), SUM(SUM(inc)) OVER (ORDER BY thedate)
FROM ((SELECT oc.OrderDate as thedate, 1 as inc
       FROM oc
       WHERE prev_OrderDate IS NULL OR prev_OrderDate + 365 < OrderDate
      ) UNION ALL
      (SELECT oc.OrderDate + 365, -1 as inc
       FROM oc
       WHERE next_OrderDate IS NULL OR next_OrderDate - 365 > OrderDate
      )
     ) d
GROUP BY thedate

The CTE combines Orders and Customers and calculates the next and previous 
dates. The subquery calculates when households become active. Notice that a 
household could be counted more than once, if it has orders with gaps of more than 
one year. The query then gets households that cease being active. The cumulative 
sum uses the start and stop information to calculate the total at any given time.

When using the calendar table, you can ensure that you get all the dates, even 
those with no orders. This method might have missing dates. If such “holes” in 
the resulting dates are a problem, then add the appropriate calendar range to the 
UNION ALL subquery, giving these dates an inc value of zero. These dates do not 
contribute to the overall sums, but the dates would then appear in the result set.

Number of Maximum Prices

The orders data has products with their prices. Any given time, each product 
has a most expensive price paid for the product, up to that time. How many dif-
ferent maximum prices has a product had? Let’s simplify this to a histogram—the 
number that have had only one, two, and so on. For convenience, this query 
uses the shipping date instead of the ordering date, simply to avoid the join to 
the Orders table.
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This is an example of a snapshotting query because it is capturing informa-
tion that is true at a given point in time, but the information might subsequently 
change. Changes over time suggest using window functions.

t Ip Window functions are very handy for understanding changes over time.

One approach uses a subquery to determine if the current price is larger than 
any previous price. The subquery keeps only rows that have a new maximum 
price:

SELECT ol.ProductId, COUNT(DISTINCT ol.ShipDate)
FROM OrderLines ol
WHERE ol.UnitPrice > (SELECT MAX(ol2.UnitPrice)
                      FROM OrderLines ol2
                      WHERE ol2.ProductId = ol.ProductId AND
                            ol2.ShipDate < ol.ShipDate
                     )
GROUP BY ol.ProductId

This query does a reasonable job of getting the counts for each product. But, 
the subquery has to process a lot of data, slowing it down.

Window functions provide an alternative—if we think about the problem 
a bit differently. For each day, get the cumulative maximum. Then, check the 
cumulative maximum on the previous day. The query looks for changes in the 
maximum price on consecutive days:

WITH ps AS (
      SELECT ProductId, ShipDate,
             MAX(MAX(UnitPrice)) OVER (PARTITION BY ProductId
                                       ORDER BY ShipDate) as maxup
      FROM OrderLines ol
      GROUP BY ProductId, ShipDate
     )
SELECT cnt, COUNT(*), MIN(ProductId), MAX(ProductId)
FROM (SELECT ProductId, COUNT(*) as cnt
      FROM (SELECT ps.*,
                   LAG(maxup) OVER (PARTITION BY ProductId
                                    ORDER BY ShipDate) as prev_maxup
            FROM ps
           ) ps
      WHERE prev_maxup IS NULL OR prev_maxup <> maxup
      GROUP BY ProductId
     ) ps
GROUP BY cnt
ORDER BY cnt

The CTE calculates the maximum unit price up to a given shipping date. The 
innermost subquery gets the maximum from the previous day, and the WHERE 
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clause uses this information to select rows where the maximum has changed. 
The outermost query does an aggregation.

There is one small subtlety. The CTE does the aggregation by product‐day. 
Why? The problem is that each product could be shipped multiple times on a 
given day—and hence the product could have multiple maximum prices even 
within a single day. The maximum of these values is fine; it gets the maximum 
including all shipments on that day.

The problem comes with the LAG(). Without the aggregation by day, it might 
end up choosing a row from the same day as the given row. A problem arises if 
two orders have different prices that are both bigger than the previous maximum. 
Then the day could end up being counted twice. In any case, because the intent 
of the LAG() is for an offset by at least one day, it is best to aggregate at that level.

Most Recent Holiday

What is the most recent national holiday before each order? This simple question 
results in a complicated join between Orders and Calendar. One approach is to 
get the date of the holiday and then join in the rest of the information.

The following query can get the date of the most recent holiday:

SELECT o.OrderId, o.OrderDate,
       (SELECT TOP 1 c.HolidayName
        FROM Calendar c
        WHERE c.Date <= o.OrderDate and
              c.HolidayType = 'national'
        ORDER BY c.date DESC
       ) as HolidayName
FROM Orders o
WHERE o.OrderDate BETWEEN '2015-01-01' and '2015-12-31'

Sadly, this correlated subquery is very bad performance-wise. It requires getting 
all the holidays before the given date, sorting them, and choosing the most recent—
and all that work is just for one order. Filtering the calendar rows to holidays just 
in the right period of time for the data would make this a bit more efficient.

A better way uses window functions. The idea is to interleave the calendar 
data with the orders and then use cumulative functions to fill in the unknown 
values. Figure 14-6 illustrates the idea on a small amount of data.

The following query is the equivalent of the previous query, with the caveat 
that the extra rows from Calendar for holidays are in the result set.

WITH oc as (
      SELECT o.OrderId, o.OrderDate, NULL as HolidayDate,
             NULL as HolidayName
      FROM Orders o
      UNION ALL
      SELECT NULL, Date, Date as HolidayDate, HolidayName
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Figure 14-6: Sometimes interleaving data and using windows functions can be a big win 
performance‐wise.

Combine the records using UNION ALL.

HOLIDAYS
DATE HOLIDAY TYPE

December 25 Christmas National
January 1 New Years National

DATA
DATE . . .

December 18
December 20
December 21
December 30
December 31
January 1
January 2

Two tables have data by dates.
We want to get the most recent holiday 
date for each record in the second table

COMBINED
DATE HOLIDAY . . .

December 18
December 20
December 21
December 25 December 25 NULL
December 30
December 31
January 1 January 1 NULL
January 1
January 2

Calculate the maximum date using 
MAX(HolidayDate) OVER (ORDER
BY DATE).
This assigns the maximum date from 
HOLIDAYS to each record.
Finally, filter out the records that contain 
the data. (This step is not shown.)
A subsequent join can bring in the holiday
name.

INTERLEAVED WITH CUMULATIVE MAXIMUM
DATE HOLIDAY HOLIDAY_CUME . . .

December 18
December 20
December 21
December 25 December 25 December 25 NULL
December 30 December 25
December 31 December 25
January 1 January 1 January 1 NULL
January 1 January 1
January 2 January 1

      FROM Calendar c
      WHERE c.HolidayTYpe = 'national'
     )
SELECT oc.OrderId, oc.OrderDate,
       MAX(oc.HolidayDate) OVER (ORDER BY oc.OrderDate) as HolidayDate
FROM oc

This query takes advantage of window functions to accumulate information—and 
the performance is much better than the version using the correlated subquery. In 
the oc CTE, HolidayDate is uniformly NULL for the orders. It gets filled in with the 
cumulative maximum value. The way that the cumulative max works, all records 
with the same date get the same value for cumulative max. So, the maximum 
is not affected by how the orders and calendar records are interleaved on any 
given day.

Note that this approach works for the date, but it does not work for the holiday 
name, because they are not in alphabetical order. So, if we put in the maximum 
holiday, it quickly becomes “Thanksgiving” for all holiday names. “Thanksgiving” 
is the last national holiday, alphabetically.
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The following assigns the holiday name by using the holiday date as a “group” 
and just taking the maximum value over the group.

WITH oc as (
      SELECT o.OrderId, o.OrderDate, NULL as HolidayDate,
             NULL as HolidayName
      FROM Orders o
      UNION ALL
      SELECT NULL, Date, Date as HolidayDate, HolidayName
      FROM Calendar c
      WHERE c.HolidayTYpe = 'national'
     )
SELECT oc.*
FROM (SELECT Orderid, OrderDate, HolidayDate,
             MAX(HolidayName) OVER (PARTITION BY HolidayDate
                                   ) as HolidayName
      FROM (SELECT oc.OrderId, oc.OrderDate,
                   MAX(oc.HolidayDate) OVER (ORDER BY oc.OrderDate
                                            ) as HolidayDate,
                   oc.HolidayName
            FROM oc
           ) oc
    ) oc
WHERE OrderId IS NOT NULL

These steps could also be done using joins back to the Calendar table.
This method of interleaving records from multiple tables can be quite pow-

erful. The approach works for a single dimension—in this case date. Another 
problem where this can be very practical is looking up IP address information 
in an IP table. Once upon a time, using this technique reduced the running 
time of a query from over 17 hours to under three minutes—a 99.7% reduction 
in query time simply by using a smarter querying method.

Lessons Learned

The power of SQL comes from its being a descriptive language rather than a 
procedural language. A SQL query describes the result set, rather than the spe-
cific algorithms used to create it. Database engines support many different 
algorithms, so even a simple query can have multiple implementation choices, 
as complicated as out‐of‐memory parallel algorithms or as simple as just scan-
ning all the rows in the table as if it were a file.

From a performance perspective, indexes are the most important component 
of relational databases. Indexes do not change SQL queries at all, because the 
optimizer does the work of figuring out how to use them. For the problems 
discussed in this book, B‐tree indexes are the most appropriate. Other types 
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of indexes exist, such as inverted indexes for text, R‐trees for spatial data, and 
even more esoteric types.

Despite the many implementations of relational databases, there are common 
themes for writing good queries that perform well. Of course, indentation and 
naming conventions are important for reading and maintaining SQL code. It is 
also important to avoid mixing types in expressions, to avoid DISTINCT where 
possible (but not if necessary), and to favor UNION ALL over UNION.

Another very important feature is window functions, which allow SQL to 
answer some very complicated questions—quite efficiently. Window functions 
often appear in SQL statements, sometimes significantly improving performance.

One very imporant purpose of using relational databases is to store data 
and analyze it. Performance is necessarily a major consideration when using 
SQL. As examples throughout this book have shown, SQL can answer many 
interesting questions, providing a strong foundation for data analysis. It can 
also take advantage of the most powerful computers and grid computing for 
answering these questions, providing a scalable solution to the problems of 
data big and small.
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A p p e n d i x

equivalent Constructs Among 
databases

Relational databases support SQL in the same way that English is the language 
of Great Britain, the United States, India, and Jamaica. Although there is much in 
common among the databases, each dialect has its own vocabulary and accents.

Throughout the book, the SQL examples have used Microsoft T‐SQL as the dia-
lect of choice. The purpose of this appendix is to show equivalent SQL constructs 
in different databases for many of the capabilities used throughout the chapters.

The six database engines, in alphabetical order, are:

 ■ IBM DB2 version 9 and above
 ■ MySQL version 5 and above
 ■ Oracle version 9 and above
 ■ Postgres version 9 and above
 ■ SAS proc sql
 ■ SQL Server version 2012 and above

The databases from IBM, Microsoft, and Oracle are commercial products, although 
functional versions can often be downloaded for free. MySQL and Postgres 
are free database engines, and Postgres syntax is used for many commercial 
products, such as Netezza, Vertica, Amazon Redshift, ParAccel, and more. SAS 
proc sql is the SQL engine within the SAS language (the most popular com-
mercial statistical software). When using SAS, proc sql can be used in two 
different modes. In one, it communicates directly to a database, and supports 
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the language of the database. In the other, it runs within SAS and uses SAS's 
particular constructs.

This appendix is provided as is, without any guarantees that the software 
has not changed for whatever reason.

This appendix is organized by the following topics:

 ■ String functions

 ■ Date/time functions

 ■ Mathematical functions

 ■ Other functions and features

Within each topic, specific functions are in subsections. Within each subsection, 
the structure for each database is shown.

String Functions

This section includes functions that operate on string values.

Searching for Position of One String within Another
Which function searches for one string inside another string? The arguments are:

 ■ <search string>: The string to be searched

 ■ <pattern>: The string to look for

 ■ <occurrence>: Which occurrence

 ■ <offset>: Where to start searching

IBM DB2

LOCATE(<pattern>, <search string>, <offset>)

The argument <offset> is optional and defaults to 1. The function returns the 
position in the search string where the pattern is found and 0 if the pattern is 
not found.

An alternative method:

POSSTR(<search string>, <pattern>)

The function returns the position in the search string where the pattern is found 
and 0 if the pattern is not found.

MySQL

INSTR(<search string>, <pattern>)
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The function returns the position in the search string where the pattern is found 
and 0 if the pattern is not found.

An alternative method:

LOCATE(<pattern>, <search string>, <offset>)

The argument <offset> is optional and defaults to 1. The function returns the 
position in the search string where the pattern is found and 0 if the pattern is 
not found.

Oracle

INSTR(<search string>, <pattern>, <occurrence>)

The argument <occurrence> is optional and defaults to 1. The function returns 
the position in the search string where the pattern is found and 0 if the pattern 
is not found.

Postgres

POSITION(<pattern IN <search string>)

The argument <occurrence> is optional and defaults to 1. The function returns 
the position in the search string where the pattern is found and 0 if the pattern 
is not found.

SAS proc sql

FIND(<search string>, <pattern>)

The function returns the position in <search string> where the pattern is 
found, and 0 if the pattern is not found.

SQL Server

CHARINDEX(<pattern>, <search string>, <offset>)

The argument <offset> is optional and defaults to 1. The function returns the 
position in the search string where the pattern is found and 0 if the pattern is 
not found.

String Concatenation
Which function and operator append strings together?
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IBM DB2

CONCAT(<string 1>, <string 2>)

Note: This function only takes two arguments, but the function can be nested. 
In addition, the operator || also concatenates strings.

MySQL

CONCAT(<string 1>, <string 2>, . . .)

Note: This function can take two or more arguments.

Oracle

<string 1> || <string 2>

In addition, Oracle supports CONCAT() with only two arguments.

Postgres

<string 1> || <string 2>

In addition, Postgres supports CONCAT() with any number of arguments.

SAS proc sql

CAT(<string 1>, <string 2>, . . .)

Note: This function can take two or more arguments.

SQL Server

<string 1> + <string 2>

The concatenation operator is an overloaded “+” operator. When mixing character 
and numeric types, be sure to cast the numeric values to strings. SQL Server 
also supports CONCAT() with an arbitrary number of arguments.

String Length Function
Which function returns the length of a string?

IBM DB2

LENGTH(<string>)
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MySQL

LENGTH(<string>)

Oracle

LENGTH(<string>)

Postgres

LENGTH(<string>)

SAS proc sql

LENGTH(<string>)

Note: This function ignores trailing blanks.

SQL Server

LEN(<string>)

Substring Function
Which function returns a substring?

IBM DB2

SUBSTRING(<string>, <positive offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest of 
the string. The argument <offset> must be non‐negative.

MySQL

SUBSTRING(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest 
of the string. If <offset> is negative, the function counts from the end of the 
string rather than the beginning. MySQL also supports SUBSTR().

Oracle

SUBSTR(<string>, <offset>, <len>)
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The argument <len> is optional; when missing, the function returns the rest 
of the string. If <offset> is negative, the function counts from the end of the 
string rather than the beginning.

Postgres

SUBSTR(<string>, <positive offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest 
of the string.

SAS proc sql

SUBSTRN(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest of 
the string. Note: SUBSTRN() is preferable to SUBSTR() because it does not produce 
errors or warnings when <offset>+<len> extends beyond the length of <string>.

SQL Server

SUBSTRING(<string>, <positive offset>, <len>)

All arguments are required and the last two must be non‐negative.

Replace One Substring with Another
Which function replaces one substring with another? The REPLACE() function 
is the same across all databases except SAS.

IBM DB2

REPLACE(<string>, <from>, <to>)

MySQL

REPLACE(<string>, <from>, <to>)

Oracle

REPLACE(<string>, <from>, <to>)

Postgres

REPLACE(<string>, <from>, <to>)
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SAS proc sql

RXCHANGE(RXPARSE('<from> to <to>'), 999, <string>))

SQL Server

REPLACE(<string>, <from>, <to>)

Remove Leading and Trailing Blanks
How can spaces at the beginning and end of a string be removed?

IBM DB2

LTRIM(RTRIM(<string>))

MySQL

TRIM(<string>)

Oracle

TRIM(<string>)

Note: LTRIM() and RTRIM() are also supported.

Postgres

TRIM(LEADING | TRAILING | BOTH FROM <string>)

SAS proc sql

BTRIM(<string>)

SQL Server

LTRIM(RTRIM(<string>))

RIGHT Function
Which function and operator return a substring of length <len> from the end 
of a string?

IBM DB2

RIGHT(<string>, <len>)
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MySQL

RIGHT(<string>, <len>)

Oracle

SUBSTR(<string>, ‐ <len>)>

Postgres

RIGHT(<string>, <len>)

SAS proc sql

SUBSTR(<string>, LENGTH(<string>) + 1 ‐ <len>, <len>)

SQL Server

RIGHT(<string>, <len>)

LEFT Function
Which function and operator return a substring from the beginning of a string 
with length <len>?

IBM DB2

LEFT(<string>, <len>)

MySQL

LEFT(<string>, <len>)

Oracle

SUBSTR(<string>, 1, <len>)

Postgres

LEFT(<string>, <len>)

SAS proc sql

SUBSTRN(<string>, 1, <len>)
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SQL Server

LEFT(<string>, <len>)

ASCII Function
Which functions return the ASCII value of an 8‐bit character?

IBM DB2

ASCII(<char>)

MySQL

ASCII(<char>)

Oracle

ASCII(<char>)

Postgres

ASCII(<char>)

SAS proc sql

RANK(<char>)

SQL Server

ASCII(<char>)

Date/Time Functions

This section has functions that deal with dates and times.

Date Constant
How is a date constant represented in code?
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IBM DB2

DATE(<string as YYYY-MM-DD>)

MySQL

DATE(<string as YYYY-MM-DD> )

Strings of the form YYYY‐MM‐DD are interpreted as dates when a date is expected.

Oracle

DATE <string as YYYY-MM-DD>

Postgres

<string as YYYY-MM-DD>::DATE

The ::DATE converts the string to a date. Strings of the form YYYY‐MM‐DD are 
interpreted as dates when a date is expected.

SAS proc sql

<string as ddMmmyyyy>d

SQL Server

CAST(<string as YYYY-MM-DD> as DATE)

Strings of the form YYYY‐MM‐DD are also recognized as date constants for 
almost all settings. (There is one arcane internationalization setting where this 
is not true.)

Current Date and Time
What is the current date and time?

IBM DB2

CURRENT_DATE (for date), CURRENT_TIMESTAMP (for date/time)

MySQL

CURDATE()(for date), NOW() (for date/time)
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Oracle

TRUNC(sysdate) (for date), SYSDATE (for date/time)

Postgres

CURRENT_DATE) (for date), CURRENT_TIMESTAMP (for date/time)

SAS proc sql

TODAY()

SQL Server

CAST(GETDATE() as DATE) (for date),
GETDATE() or CURRENT_TIMESTAMP (for date/time)

Convert to YYYYMMDD String
How can a date be converted to the format YYYYMMDD?

IBM DB2

REPLACE(LEFT(CHAR(<date>, ISO), 10), '‐', '')))

MySQL

DATE_FORMAT(<date>, '%Y%m%d')

Oracle

TO_CHAR(<date>, 'YYYYMMDD')

Postgres

TO_CHAR(<date>, 'YYYYMMDD')

SAS proc sql

PUT(<date>, YYMMDD10.)

This returns a string of the form YYYY‐MM‐DD. This format is usually suf-
ficient, and removing the hyphens in SAS is cumbersome.
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SQL Server

CONVERT(VARCHAR(8), <date>, 112)

Year, Month, and Day of Month
Which functions extract the year, month, and day from a date as numbers?

IBM DB2

YEAR(date)
MONTH(date)
DAY(date)

MySQL

EXTRACT(YEAR FROM <date>) or YEAR(date)
EXTRACT(MONTH FROM <date>) or MONTH(date)
EXTRACT(DAY FROM <date>) or DAY(date)

Oracle

EXTRACT(YEAR FROM <date>) or TO_CHAR(<date>, 'YYYY')
EXTRACT(MONTH FROM <date>) or TO_CHAR(<date>, 'MM')
EXTRACT(DAY FROM <date>) or TO_CHAR(<date>, 'DD')

Postgres

EXTRACT(YEAR FROM <date>) or TO_CHAR(<date>, 'YYYY')
EXTRACT(MONTH FROM <date>) or TO_CHAR(<date>, 'MM')
EXTRACT(DAY FROM <date>) or TO_CHAR(<date>, 'DD')

SAS proc sql

YEAR(date)
MONTH(date)
DAY(date)

SQL Server

YEAR(date) or DATEPART(year, <date>)
MONTH(date) or DATEPART(month, <date>)
DAY(date) or DATEPART(day, <date>)
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Day of Week (Integer and String)
Which functions extract the day of the week as a day number (starting with 1 
for Sunday) and as a name?

IBM DB2

DAYOFWEEK(<date>)
DAYNAME(<date>)

MySQL

DAYOFWEEK(<date>)
DAYNAME(<date>)

Oracle

TO_CHAR(<date>, 'D')
TO_CHAR(<date>, 'DY')

Postgres

EXTRACT(dow FROM <date>)
TO_CHAR(<date>, 'Day')

SAS proc sql

WEEKDAY(<date>)
PUT(<date>, weekdate3.)

SQL Server

DATEPART(dayofweek, <date>)
DATENAME(dayofweek, <date>)

Adding (or Subtracting) Days from a Date
How is a given number of days added to or subtracted from a date?

IBM DB2

<date> + <days> DAYS
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MySQL

DATE_ADD(<date>, INTERVAL <days> DAY)

Oracle

<date> + <days>

Postgres

<date> + <days> * interval '1 day'

SAS proc sql

<date> + <days>

SQL Server

DATEADD(day, <days>, <date>)

Adding (or Subtracting) Months from a Date
How is a given number of months added to or subtracted from a date?

IBM DB2

ADD_MONTHS(<date>, <months>)

MySQL

DATE_ADD(<date>, INTERVAL <months> MONTH)

Oracle

ADD_MONTHS(<date>, <months>)

Postgres

<date> + <months> * INTERVAL '1 month'

SAS proc sql

INTNX('MONTH', <date>, <months>)
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SQL Server

DATEADD(month, <months>, <date>)

Difference between Two Dates in Days
How is the difference between two dates in days calculated?

IBM DB2

DAYS(<datelater>) – DAYS(<dateearlier>)

MySQL

DATEDIFF(<datelater>, <dateearlier>)

Oracle

<datelater> ‐ <dateearlier>

Postgres

<datelater> ‐ <dateearlier>

SAS proc sql

<datelater> ‐ <dateearlier>

SQL Server

DATEDIFF(day, <dateearlier>, <datelater>)

Difference between Two Dates in Months
How is the difference between two dates in months calculated? Note that the 
definition of “month” is not precise, so the following are not all equivalent.

IBM DB2

MONTHS_BETWEEN(<datelater>, <dateearlier>)

Note: This returns a floating‐point number, not an integer.
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MySQL

TIMESTAMPDIFF(month, <dateearlier>, <datelater>)

Oracle

MONTHS_BETWEEN(<datelater>, <dateearlier>)

Note: This returns a floating‐point number, not an integer.

Postgres

EXTRACT(YEAR FROM AGE(<datelater>, <dateearlier>))*12
+ EXTRACT(MONTH FROM AGE(<datelater>, <dateearlier>))

SAS proc sql

INTCK('MONTH', <dateearlier>, <datelater>)

Note: This counts the number of month boundaries between two values, rather 
than the number of full months.

SQL Server

DATEDIFF(month, <dateearlier>, <datelater>)

Note: This counts the number of month boundaries between two values, rather 
than the number of full months.

Extracting Date from Date Time
How is a date extracted from a date time value, removing the time component?

IBM DB2

DATE(<date>)

MySQL

DATE(<date>)

Postgres

DATE_TRUNC('day', <date>)
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Oracle

TRUNC(<date>)

SAS proc sql

DATEPART(<date>)

SQL Server

CAST(<date> as DATE)

Mathematical Functions

These functions operate on numeric values.

Remainder/Modulo
Which function returns the remainder when one number, <num>, is divided by 
another, <base>?

IBM DB2

MOD(<num>, <base>)

MySQL

MOD(<num>, <base>) or <num> MOD <base> or <num> % <base>

Oracle

MOD(<num>, <base>)

Postgres

<num> % <base> or MOD(<num>, <base>)

SAS proc sql

MOD(<num>, <base>)

SQL Server

<num> % <base>
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Power
How do you raise one number, <base>, to another number, <exp>?

IBM DB2

POWER(<base>, <exp>)

MySQL

POWER(<base>, <exp>)

Oracle

POWER(<base>, <exp>)

Postgres

POWER(<base>, <exp>) or <base>^<exp>

SAS proc SQL

<base>**<exp>

SQL Server

POWER(<base>, <exp>)

Natural Logs and Exponential Function
What are the functions for the natural log and exponential function?

IBM DB2

EXP(LN(<number>))

MySQL

EXP(LN(<number>)) or EXP(LOG(<number>))

Oracle

EXP(LN(<number>))
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Postgres

EXP(LN(<number>))

SAS proc SQL

EXP(LN(<number>))

SQL Server

EXP(LOG(<number>))

Floor
Which function removes the fractional part of a number?

IBM DB2

FLOOR(<number>)

MySQL

FLOOR(<number>)

Oracle

FLOOR(<number>)

Postgres

FLOOR(<number>)

SAS proc sql

FLOOR(<number>)

SQL Server

FLOOR(<number>)

“Random” Numbers
How can we get random numbers between 0 and 1? This is useful, for instance, 
for returning a randomized set of rows. For random number generators that 
accept a seed as an argument, the sequence is always the same for a given seed.
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IBM DB2

RAND()

MySQL

RAND()
RAND(<seed>)

Oracle

DBMS_RANDOM.VALUE()

Postgres

RANDOM()

SAS proc sql

RAND('UNIFORM')

Note: SAS has a wide variety of random number generators that pull numbers 
from many different distributions.

SQL Server

RAND(CHECKSUM(NEWID()))

Note: The RAND() function returns a single value for the entire query. However, 
by providing a varying seed, this returns a different value for each row. When 
using a random number for ORDER BY, NEWID() is sufficient.

Left Padding an Integer with Zeros
How can an integer value be converted to a string of a fixed length and padded 
with zeros on the left?

IBM DB2

RIGHT(CONCAT(REPEAT('0', <len>), CAST(<num> as CHAR)), <len>)

                  or
LPAD(<num>, <len>, '0')

MySQL

LPAD(<num>, <len>, '0')
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Oracle

LPAD(<num>, <len>, '0')

Postgres

LPAD(<num>, <len>, '0')

SAS proc sql

PUTN(<num>, Z<len>.)

SQL SERVER

RIGHT(REPLICATE('0', <len>) + CAST(<num> as VARCHAR(32)), <len>)

Conversion from Number to String
How is a number converted to a string?

IBM DB2

CAST(<arg> as CHAR)

MySQL

CAST(<arg> as CHAR) or FORMAT(<arg>, <decimal points>)

Note: VARCHAR does not work.

Oracle

TO_CHAR(<arg>)

Postgres

TO_CHAR(<arg>)

SAS proc sql

PUT(<arg>, BEST.)

The default puts the number into 12 characters. For a wider format, use 
BEST<width> (such as BEST20.) for the second argument.
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SQL Server

CAST(<arg> as VARCHAR(32)) or STR(<arg>, <decimal points>)

Other Functions and Features

These are miscellaneous functions and features that do not fall into any of the 
previous categories.

Least and Greatest
How do you get the smallest and largest values from a list?

IBM DB2

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)
(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:

(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>
      ELSE <arg2> END)
(CASE WHEN <arg2> IS NULL or <arg1> > <arg2> THEN <arg1>
      ELSE <arg2> END)

MySQL

LEAST(<arg1>, <arg2>)
GREATEST(<arg1>, <arg2>)

For NULL values use a CASE statement.

Oracle

LEAST(<arg1>, <arg2>)
GREATEST(<arg1>, <arg2>)

For NULL values use a CASE statement.

Postgres

LEAST(<arg1>, <arg2>)
GREATEST(<arg1>, <arg2>)
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SAS proc sql

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)
(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:
(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>
      ELSE <arg2> END)
(CASE WHEN <arg2> IS NULL OR <arg1> > <arg2> THEN <arg1>
      ELSE <arg2> END)

SQL Server

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)
(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:
(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>
      ELSE <arg2> END)
(CASE WHEN <arg2> IS NULL OR <arg1> > <arg2> THEN <arg1>
      ELSE <arg2> END)

Return Result with One Row
How can a query return a value with only one row? This is useful for testing 
syntax and for incorporating subqueries for constants.

IBM DB2

SELECT <whatever>
FROM SYSIBM.SYSDUMMY1

MySQL

SELECT <whatever>

Oracle

SELECT <whatever>
FROM dual

Postgres

SELECT <whatever>
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SAS proc sql

Does not seem to support this; can be implemented by creating a dataset with 
one row or by using aggregation functions.

SQL Server

SELECT <whatever>

Return a Handful of Rows
How can a query return just a handful of rows? This is useful to see a few results 
without returning all of them.

IBM DB2

SELECT . . .
FROM . . .
FETCH FIRST <num> ROWS ONLY

MySQL

SELECT . . .
FROM . . .
LIMIT <num>

Oracle

SELECT . . .
FROM . . .
WHERE ROWNUM < <num>

or
SELECT . . .
FROM . . .
FETCH FIRST <num> ROWS ONLY

Postgres

SELECT . . .
FROM . . .
LIMIT <num>

or
SELECT . . .
FROM . . .
FETCH FIRST <num> ROWS ONLY
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SAS proc sql

proc sql outobs=2;
     SELECT . . .;

SQL Server

SELECT TOP <num> . . .
FROM . . .

or
SELECT . . .
FROM . . .
FETCH FIRST <num> ROWS ONLY

Get List of Columns in a Table
How can a query return a list of columns in a table?

IBM DB2

SELECT colname
FROM syscat.columns
WHERE tabname = <tablename> AND
      tabschema = <tableschema>

MySQL

SELECT column_name
FROM information_schema.columns
WHERE table_name = <tablename> AND
      table_schema = <tableschema>

Oracle

SELECT column_name
FROM all_tab_columns
WHERE table_name =<tablename> AND
      owner = <owner>

Postgres

SELECT column_name
FROM information_schema.columns
WHERE table_name =
<tablename> AND table_catalog = <databasename>
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SAS proc sql

SELECT name
FROM dictionary.columns
WHERE UPPER(memname) = <tablename> AND
      UPPER(libname) = <tableschema>

SQL Server

SELECT column_name
FROM information_schema.columns
WHERE table_name = <tablename> AND
      table_schema = <tableschema>

Note: This needs to be run in the database where the table is defined or using 
<database>.information_schema.columns.

Window Functions
Does the database support window functions, such as ROW_NUMBER()?

IBM DB2

Supported

MySQL

Not supported

Oracle

Supported; called analytic functions

Postgres

Supported

SAS proc sql

Not supported

SQL Server

Supported
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Average of Integers
Is the average of a set of integers, using the AVG() function, an integer or a float-
ing‐point number?

IBM DB2

Integer

MySQL

Floating‐point

Oracle

Floating‐point

Postgres

Floating point

SAS proc sql

Floating‐point

SQL Server

Integer
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% (modulus operator), 112

A
ACID (database properties, 3
ADD_MONTHS( ) SQL 

function, 716
addresses, 380–381

email addresses, 381–382
aggregation

conditional, 454–455
filtering and, 461–462
indexes and, 676
string, 456–458
string concatenation, 

455–456
aliases, tables, 23
analytic functions. See 

window functions
animation in charts,  

247–254
area charts, 63–64

stacked, 215
array functions, 156, 579
ASCII( ) SQL function, 

372, 711
association rules, 465–466, 

480–481
chi square, 491–496
heterogeneous, 496–499
different left- and right-

hand sides, 499–502

item sets, 466
examples, 469–470
household combinations, 

476–478
large, 471–473
multiple purchases of 

product, 478–480
product group 

combinations, 
470–471

size, 473–475
two-way combinations, 

466–469
one-way, 483–489
probability distribution, 

481–483
product attributes and, 502
right-hand side, 502–503
sequential, 466, 503–506
two-way, 489–499

calculating, 489–490
chi-square and, 491–496

zero-way, 481, 483
average time between orders, 

388–390
average truncated tenure, 

295–296
average value chart, 538–540
averages, 105

AUC (area under curve), 
546–552

moving averages, trend 
line, 574–576

numeric variables and, 
317–324

standard deviation, 105–107
standard error, 106

AVG( ) SQL function, 407, 
435

B
B-trees (index), 668–670
balanced samples, 113–115
Bank Identification Number 

(BIN), 66
bar charts (Excel)

in cells, 57–59, 214
character-based, 57–58
conditional formatting, 

58–59
stacked, 213

Bayes, Thomas, 550, 556
bell curve. See normal 

distribution
best fit line, 415–416

averages, 568
coefficients, calculation, 

584–585
errors, 567–568
expected value, 565–568
formula, 565
inverse model, 568–569

Index
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LINEST( ) Excel function, 
580–581

OLS (ordinary least 
squares), 563

price elasticity, 587–592
properties, 563–569
R2 value, 581–584
regression, 562
residuals, 567–568
scatter plots, 571–572
trend lines, 571–576
weighted, 594–596

charts, 596
Solver, 597–599
SQL and, 596–597

big data, 3
binary response models, 

519–520
BINOM.DIST, 120, 122, 

124–125
blanks, 709–710
BTRIM( ) SQL function, 

709
bubble charts, non-numeric 

axes and, 471–472
weighted best fit line, 

596–597

C
Calendar table, 13, 203–204, 

647, 697–701
calendars, 198–199
cardinality, 11
Cartesian products, 26
CASE expression, 33–34
CAST( ) SQL function, 205, 

395, 397, 454, 712, 713, 719, 
723, 724

CAT( ) SQL function, 706
CEILING( ) SQL function, 

444
censoring, 266–268

interval censoring, 268
left-censoring, 266, 268
right-censoring, 266

census demographics
block groups, 178
blocks, 178
census tracts, 178
county wealth, 181–183

income similarity/
dissimilarity, 163–167

median income, 161–162
proportions of wealthy/

poor, 162–163
values of wealth, 

distribution, 183–184
zip code comparison, 

orders, 167–172
Central Limit Theorem, 

105–107
Ceres, 564
CHAR( ) Excel function, 

148–149
character strings, 10
character-based bar charts, 

57–58
CHARINDEX( ) SQL 

function, 216, 705
Chart wizard, 53–55
charts, histograms, 68–72

counts, 72–74
cumulative, 74–75
numeric values, 75–79

charts (Excel), 51
animation, 247–254
area charts, 63–64
bar charts

in cells, 57–59
character-based, 57–58
conditional formatting, 

58–59
clustered index, 672
column charts, 51–52

creating, 53–55
data, inserting, 51–53
formatting, 55–57
queries, 59
side-by-side columns, 

59–60
stacked and normalized 

columns, 60
stacked columns, 60

composite (multi-column) 
index, 679–683

line charts, 63
link charts, 117–118
scatter plots, 64–65
sparklines, 65–68
X-Y charts, 64–65

CHECKSUM( ) SQL function, 
111, 650

CHIDIST( ) function, 135
chi-square, 132–134, 138–140, 

466, 498
association rules, 491–506
calculation, 134

SQL and, 139–140
degrees of freedom, 

135–136
deviation, 133
dimensions, 141
distribution, 134–135
income similarity 

measurement, 163–167
multidimensional, 141–143
queries, 138–139

SQL, 141–143
versus lift (association 

rules), 493–495
SQL and, 135–137

COALESCE( ) SQL function, 
206–207, 385, 425

collation, 84
COLUMN( ) Excel function, 

533
column charts, 51–57

copies data, 54
creating, 53–55
data, inserting, 51–53
formatting, 55–57
queries, 59
side-by-side columns,  

59–60
stacked and normalized 

columns, 60
stacked columns, 60

columns (tables), 7–8
alias, 23
appending, 19
comparing values, 86
date time columns, 640–641
foreign keys, 11, 27–29
maximum values, 79–80
minimum values, 79–80
mode, 80–81
numeric values, 9–10
partitioning, 6
primary key, 9
selecting, 18
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summarizing
all columns, 93
single column, 90–93

COMBIN( ) Excel function, 
120

combinatorics, 116–122
competing risks, 342–352

expected churn, 344
hazard probabilities and, 

345–346
involuntary churn, 343
migration churn, 344
survival, 346–352
voluntary churn, 343

CONCAT( ) SQL function, 
706

concatenation, 705–706
aggregate string 

concatenation, 455–456
conditional aggregation, 

33–34, 435, 454–455
conditional expressions, 

multiple, 686
conditional formatting

bar charts, 58–59
cells, 532–5333

conditional probability, 553
conditional survival, 285–287
confidence

association rules, 483–484
charts, 322–323
statistics, 100–101

counting and, 122–123
hazards, 297–298
ratios, 129–131

confidence interval 
(statistics), 101

consecutive days of 
purchase, 391–393

constant, 711–712
constant hazard, 276–277
CONVERT( ) SQL function, 

714
convert to string, 713–714
converting number to string, 

723–724
convex conic quadratics,  

600
correct classification matrix, 

531–532

CORREL( ) Excel function, 
208, 601

correlated subquery, 43–44, 
691–693, 699

correlation coefficient, 208
count, customers, active, SQL 

and, 246–247
COUNT( ) SQL function, 24, 

209, 691–694
COUNT(DISTINCT) SQL 

function, 25, 428–429, 440, 
442

COUNTIF( ) Excel function, 
156

counting, 115–116
combinatorics, 116–122
confidence and, 122–123
Null Hypthesis, 122–123
probability, 125–126

counts
customers, 240–241

active, 239
different, 241–242
tenure segment, 242–246

date comparison, 205–210
dollars, 214–215
number of units measure, 

211
products, 211–214

covering indexes, 674–675
Cox, David, 318
Cox proportional hazards 

regression, 258–259, 
317–318

credit card numbers, 66, 
649–650

CROSS JOIN operator, 369, 
424–426

cross-joins, 26–27
CTE (common table 

expression), 36, 271–272, 
624

cumulative distribution, 124
cumulative events (survival 

analysis), 417–420
cumulative gains chart, 

543–546, 563–564
CURDATE( ) SQL function, 

712
current, 712–713

CURRENT_DATE( ) SQL 
function, 712, 713

CURRENT_TIMESTAMP( ) 
SQL function, 226–227,  
713

customer retention, 274–276
customer signatures, 609

ad hoc analysis and, 616
building

data lookup, 625–628
driving table, 622–625
initial transaction, 

628–629
pivoting, 629–637
summarizing, 637–639

customer-centric business 
metrics repository, 
616–617

data mining modeling and, 
616

data page/cache, 660–662
data sources

current customer 
snapshot and, 
612–613

external data, 614–615
initial customer 

information, 613
neighbors, 615
self-reported information, 

614
transaction summaries, 

615–616
design

columns, 617–619
prediction model sets, 617
profiling model sets, 617
time frames, 619–622

longitudinal information, 
610–611

scoring models and, 616
customer tenure, 315–316

averages, 317–324
confidence bounds and, 

322–324
hazard probabilities, 

333–335
hazard ratios

calculating with SQL, 
326–327
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calculating with SQL and 
Excel, 326

interpreting, 324–325
reasons for using, 327

SQL, 321–322
SQL and Excel, 320–321

customer value calculations, 
298–305

estimated future revenue, 
300–303, 305–308

estimated revenue, 299–300, 
303–305

customers
counting, 383–386
definition, 611–612
identifying, 368–378

D
data. See also big data

character strings, 10
copying, to Excel, 54

data analysis definition, 2
data exploration, 50
data flow operators
AGGREGATE, 19
APPEND, 19
CASE, 33–34
CROSSJOIN, 19–20, 27–29, 

424
FILTER, 18–19
IN, 34–35
JOIN, 20
LOOKUP, 19
OUTPUT, 18
READ, 18
SELECT, 18
SORT, 20
UNION, 19
UNION ALL, 33

data mining, 1
addresses, 642
algorithms, 640

data mining models, 507–
508, 616

categories, multiple, 
514–515

directed, 508, 509
evaluation, 515
look-alikes, 515–521
lookup models

AUC, 542–546

binary classification 
option, 526–528

Naïve Bayesian 
comparison, 558–559

order size and, 528–534
popular product, 522–524
prediction and, 525–526
probability of response, 

534–540
profiling lookup models, 

525–526
ROC charts, 540–546

model sets, 509–511
binary columns, 510
category columns, 510
date-time columns, 510
numeric columns, 510
prediction, 511–513
profiling, 511–513
target, 510
text columns, 511

naïve Bayesian models
calculating, 549–555
cumulative gains, 557–558
lookup model 

comparison, 558–559
probabilities and, 546–549
scoring, 555–557

nearest-neighbor, 521–522
numeric value, estimates, 

515
score set, 511
similarity models, 513
yes-or-no models, 513–514

propensity scores and, 514
data models, 6

logical data models, 6
partitioning, 6
physical, 6

data types, 9–10
dates, 199
INTERVAL, 202–203
times, 199

databases, 2–3
date in, 198–199
design, 9
differences, 664–665
document databases, 5
graph-based, 5
relational, 2–4
SQL, 2–3

time in, 198–199
dataflows, 16–18

edges, 16
nodes, 16

datasets
combining, 19
naming conventions, 14–15
purchases, 14
sorting, 20
subscription, 13

DATE( ) SQL function, 712
date time columns, 199–200, 

204–205, 640–641
DATEADD( ) SQL function, 

225–229, 236, 245, 269, 333, 
716, 717

DATE_ADD( ) SQL function, 
716

DATEDIFF( ) SQL function, 
218, 221, 224, 231, 262,  
717, 718

DATE_FORMAT( ) SQL 
function, 713

DATENAME( ) SQL function, 
215, 217, 224, 236, 715

DATEPART( ) SQL function, 
204–205, 231, 715, 719

DATETIME, 199
date/time, 197–199
Calendar table, 203–204
comparisons, 224
components, extracting, 199
converting, to standard 

format, 201–202
count comparison, 205–210
data types, 199
dates without times, 204–205
DOWs (days of the week), 

215–218
milestones, 221–225
next date, 225–229
time between, 218–221

duration, 202–203
time between, 218–221

functions
COALESCE( ), 206–207
DAY( ), 199
EXTRACT( ), 199
HOUR( ), 199
MINUTE( ), 199
MONTH( ), 199
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NOW( ), 201
SECOND( ), 199
YEAR( ), 199

intervals, 202–203
storage, 200
year-over-year 

comparisons, 229–230
by month, 231–239
by week, 231

date/time functions, 711
adding/subtracting days, 

715–716
adding/subtracting 

months, 716–717
constant, 711–712
convert to string, 713–714
current, 712–713
day of week, 715
different between dates, 

717–718
extracting date, 718–719
year, month, day of month, 

714
DATE_TRUNC( ) SQL 

function, 718
DAY( ) SQL function, 199, 

714
day of week, 715
DAYNAME( ) SQL function, 

715
DAYOFWEEK( ) SQL 

function, 715
DAYS( ) SQL function, 717
DBMS_RANDOM.VALUE( ) 

SQL function, 722
decile, 546
DENSE_RANK( ) SQL 

function, 36, 529–530
degree symbol, 148–149
descriptive languages versus 

procedural, 5
design, 9
directed data mining, 

models, 509
distance, Euclidian method, 

149–151
distribution, 124

probability, association 
rules and, 481–483

DMA (Designated Marketing 
Area), 177

document databases, 5
domain (email), 382,  

647–648
DOWs (days of the week), 

215–218
milestones, 221–225
next date, 225–229
time between, 218–221

driving tables, 622–625
duration, 202–203

time between, 218–221

E
edit distance, 379
email addresses, 381–382
entity-relationship diagrams, 

6, 10–12
cardinality, 11

equijoins, 29–30
nonequijoins, 31

error bars (charts), 322–324
errors, best-fit-line 

regression, 567–568
Euclidian method for 

distance calculation, 
149–151

evidence models. See Naïve 
Bayesian models

Excel charts, 2, 51
animation, 247–254
area charts, 63–64
bar charts in cells, 57–59
column charts, 51–57
data, copying to, 54
line charts, 63
link charts, 117–118
maps, 188–190
scatter plots, 64–65
sparklines, 65–68
X-Y charts, 64–65

EXISTS operator, 45–46
EXP( ) SQL function, 

720–721
expected churn, 344
expected value calculation, 

565–567
exponential function, 

720–721
exponential curve, 277
exponential survival 

function, 280

exponential trend curves, 
572–573

expressions
conditional, multiple, 686
EXISTS, 460–461

EXTRACT( ) SQL function, 
199, 714, 715, 718

extracting date, 718–719

F
failure (survival analysis). 

See cumulative events
FETCH FIRST clause, 71
filtering, 18–19

conditional aggregation 
and, 461–462

FIRST_VALUE( ) SQL 
function, 408

FIND( ) SQL function, 705
FIPS county codes, 177
FLOOR( ) SQL function, 444, 

721
FOR XML PATH, 455–458
FORECAST( ) Excel function, 

567
forecasting, 308–314
foreign keys, 11, 27–29
formatting

charts, 55–57
conditional formatting, 

58–59
queries, 39

FULL OUTER JOIN, 20, 31, 
206

full table scan, 658
full text index, 671–672
functions

Excel
AND( ), 156
array functions, 156
CHIDIST( ), 135
CORREL( ), 208, 601
COUNTIF( ), 156
FORECAST( ), 567
HOUR( ), 199
IF( ), 156, 579
INTERCEPT( ), 565, 601
LEFT ( ), 23
LINEST( ), 579, 580–581
LOGEST( ), 579
MINUTE( ), 199
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MINVERSE( ), 579
MMULT( ), 579
NOW( ), 201
OR( ), 156
SECOND( ), 199
SLOPE( ), 565, 601
SUM( ), 156, 579
SUMIF( ), 156
SUMPRODUCT( ), 156
TRANSPOSE( ), 579
VLOOKUP( ), 286–287, 

472
date/time, 711

adding/subtracting days, 
715–716

adding/subtracting 
months, 716–717

ADD_MONTHS( ), 716
CAST( ), 712, 713, 719
constant, 711–712
CONVERT( ), 714
convert to string, 713–714
CURDATE( ), 712
current, 712–713
CURRENT_DATE( ), 712, 

713
CURRENT_TIMESTAMP( 

), 713
DATE( ), 712
DATEADD( ), 716, 717
DATE_ADD( ), 716
DATEDIFF( ), 717, 718
DATE_FORMAT( ), 713
DATENAME( ), 715
DATEPART( ), 715, 719
DATE_TRUNC( ), 718
DAY( ), 714
day of week, 715
DAYNAME( ), 715
DAYOFWEEK( ), 715
DAYS( ), 717
different between dates, 

717–718
EXTRACT( ), 714, 715, 

718
extracting date, 718–719
GETDATE( ), 713
INTCK( ), 718
INTNX( ), 716
MONTH( ), 714

MONTHS_BETWEEN( ), 
717, 718

PUT( ), 713, 715
REPLACE( ), 713
TIMESTAMPDIFF( ), 718
TO_CHAR( ), 713, 715
TODAY( ), 713
TRUNC( ), 713, 719
WEEKDAY( ), 715
year, month, day of 

month, 714
YEAR( ), 714

DAY( ), 199
EXTRACT( ), 199
FLOOR( ), 444
greatest/least, 724–725
LEAD( ), 392
least/greatest, 724–725
list table columns, 727–728
LOG( ), 274
mathematical
CAST( ), 723, 724
converting number to 

string, 723–724
DBMS_RANDOM.VALUE( 

), 722
EXP( ), 720–721
exponential function, 

720–721
FLOOR( ), 721
GREATEST( ), 724
LEAST( ), 724
left padding integers, 

722–723
LPAD( ), 722, 723
MOD( ), 719
natural logs, 720–721
power, 720
POWER( ), 720
PUT( ), 723
PUTN( ), 723
RAND( ), 722
random numbers, 721–722
remainder/modulo, 719
RIGHT( ), 722, 723
SELECT( ), 725–728
TO_CHAR( ), 723

MIN( ), 156
MOD( ), 148–149
MONTH( ), 199

NTILE( ), 396
NULLIF( ), 290
RAND( ), 110–111
RANK( ), 395–396
results in multiple rows, 

726–727
results with one row, 

725–726
SQL
ASCII( ), 372
average of integers, 729
CEILING( ), 444
CHARINDEX( ), 216
COALESCE( ), 206–207, 

385, 425
COUNT( ), 209, 691–694

strings, 704–705
ASCII( ), 711
blanks, 709–710
BTRIM( ), 709
CAT( ), 706
CHARINDEX( ), 705
CONCAT( ), 706
FIND( ), 705
INSTR( ), 704–705
LEFT( ), 710
LEN( ), 707
length, 706–707
LENGTH( ), 706, 707
LOCATE( ), 704, 705
LTRIM( ), 709
position, 704–705
POSITION( ), 705
POSSTR( ), 704
RANK( ), 711
REPLACE( ), 708, 709
RIGHT( ), 709–710
RXCHANGE( ), 709
SUBSTR( ), 707–708, 710
SUBSTRING( ), 707, 708
substring replacement, 

708–709
substrings, 707–708
SUBSTRN( ), 708, 710
TRIM( ), 709

window functions, 694–701, 
728

YEAR( ), 199
function-based indexes, 

672–673
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G
Gauss, Carl Friederich, 564
Gaussian distribution, 

101–104
geocoding, 145
geographic information, 640

ancillary information, 181
hierarchies, 172–188

catchment areas, 179
census hierarchies, 178
counties, 177
DMAs (designated 

marketing areas), 177
electoral districts, 179
school districts, 179
zip codes, 172–176
zip+2, 179
zip+4, 179

IP address lookups, 180
mobile devices, 181
self-reported addresses 

and, 180
GETDATE( ) SQL function, 

226, 713
GIS (geographic information 

systems), 5
graph-based databases, 5
GREATEST( ) SQL function, 

724
GROUP BY clause, 30–35, 

38–41, 689–691

H
Hadoop, 4
Halley, Edmund, 256–257
hardware, SQL, 5
HASHBYTES( ) SQL 

function, 644
hash indexes, 670
hazard, constant, 276–277

survival and, 279–280
unobserved heterogeneity, 

277
hazard calculation

confidence, 297–298
empirical hazards 

estimation, 315
hazard probability,  

264–265
long term, 313

SQL, 335–336
stop flag, 261–262
tenure, 262–264

censoring, 266–268
survival calculation, 

269–271
time and, 265–266
time-zero covariates, 

280–287
hazard probabilities, 256, 

264–265
competing risk and, 

345–346
customer tenure, 333–335
examples, 259–260
left truncation, 328–330

effects, 330–331
repairing, 331–333

survival
over time, 287–293
point estimate, 269

time windows, 338–339
hazard ratios

calculating with SQL, 
326–327

calculating with SQL and 
Excel, 326

interpreting, 324–325
reasons for using, 327

heterogeneous associations, 
496–499

histograms, 68–79
counts, 72–74
cumulative, 74–75
market basket analysis and, 

431–433
numeric values

equal-sized ranges,  
77–79

numeric techniques, 
75–76

string techniques, 77
Hive, 4
HOUR( ) Excel function, 199

I
IBM DB2

date/time functions, 
712–718

integer averages, 729

least and greatest 
functions, 724

mathematical functions, 
719–723

results functions, 725, 726
string functions, 704, 

706–711
table columns functions, 

727
window functions, 728

IF( ) Excel function, 156, 
579

IN operator, 34–35
correlated subqueries, 

43–44
EXISTS operator, 45–46
as join, 42–43
NOT EXISTS operator, 

45–46
NOT IN operator, 44–45

indexes, 667
aggregation, 676
B-trees, 668–670

clustered, 672
composite, 679–683
covering indexes, 674
equality, 673–675
full text, 671–672
hash indexes, 670
index lookup, 658–659
indicator variables, 33–34, 

38, 283, 642–643
infant mortality rate, 259
INFORMATION_SCHEMA.

COLUMNS, 93
inverted, 671–672
limitations, 676–678
ORDER BY clause, 675–676
R-trees, 670–671
spatial indexes, 670–671
WHERE clause, 673, 675

inner joins, 31
INSTR( ) SQL function, 

704–705
INTCK( ) SQL function, 718
INTERCEPT( ) Excel 

function, 565, 601
INTERVAL data type, 199, 

202–203
intervals (duration), 202–203
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INTNX( ) SQL function, 716
inverse model, 568–569
involuntary churn, 343
IP address, 180–181
ISO 8601 (date format),  

200–201
item sets, 466

examples, 469–470
household combinations, 

476–478
large, 471–473
multiple purchases of 

product, 478–480
product group 

combinations,  
470–471

size, 473–475
two-way combinations, 

466–469

J
JOIN operator, 20, 25–32, 

422–423
joining tables, 19–20, 25–26, 

458–460
cross-joins, 26–27
equijoins, 29–30

nonequijoins, 31
inner joins, 31
lookup joins, 27–29
outer joins, 31–32
self-joins, 30
IN operator and, 42–43

JSON, 457

K
key-value pairs, 4–5

L
LAG( ) SQL function, 391, 

621, 697
latitude

definition, 146–147
degrees, 147–149
distance, Euclidian method, 

149–151
measurement, 147–149
scatter plots and, 155–160

LEAD( ) SQL function, 392, 
621, 697

LEAST( ) SQL function, 724

LEFT( ) SQL function, 23, 
66–67, 83, 710

left padding integers, 
722–723

left truncation, 328–342
effects, 330–331
repairing, 331–333
time windowing and, 

337–342
LEN( ) SQL function, 77, 

82–85, 707
length, 706–707
LENGTH( ) SQL function, 

706, 707
Levenshtein, Vladimir, 379
Levenshtein distance, 379
life expectancy, 256–258
lift

association rules, 483–485, 
487–488, 490

models, 544
LIKE, 66–67, 677, 691
line charts, 63
linear regression, 561. See also 

best fit line
coefficients, 566

LINEST( ) Excel function, 
579, 580–581

link charts, 117–118
local part (email), 382
LOCATE( ) SQL function, 

704, 705
location. See also zip code 

tables
census demographics

chi-square, 163–167
income similarity/

dissimilarity, 163–167
median income, 161–162
proportions of wealthy/

poor, 162–163
distance between

accurate method, 151–152
Euclidian method, 

149–151
zip codes
all, 152–154
nearest, 154–155

geocoding, 145
latitude

definition, 146–147

degrees, 147–149
measurement, 147–149

longitude
definition, 146–147
degrees, 147–149
measurement, 147–149

ZCTAs, 145
LOG( ) SQL function, 

271–272
logarithmic trend curves, 

572–573
LOGEST( ) Excel function, 

579
logical data models, 6
longitude. See latitude
longitudinal information, 616
look-alike models, 521–527
lookup joins, 27–29
lookup models, 528–546
lookup models (data mining)

AUC, 542–546
binary classification option, 

526–528
order size and, 528–534
popular product, 522–524
prediction and, 525–526
probability of response, 

534–540
profiling lookup models, 

525–526
ROC charts, 540–546

lookup tables
customer dimension 

lookup tables, 627–628
fixed, 625–626

LPAD( ) SQL function, 722, 
723

LTRIM( ) SQL function, 
82, 709

M
many-to-many relationships, 

11
MapPoint, 188–190
MapReduce, 4
maps

Excel, reasons for, 188–190
MapPoint, 190
web-based, 190–191

market basket analysis, 
421–422
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best customers, 444–445
customers

best, 444–445
one-time, 440–443

one-time customers, 
440–443

order size consistency, 
437–439

price changes, 435–437
products

best customers, 444–445
duplicates, 426–431
geographic distribution, 

448–451
multiples, 433–435
one-time customers, 

440–443
shipping, 423–426
which customers have, 

453
residual value, 445–448
scatter plots and, 422–423
units, histogram, 431–433
WHERE clause, 451–452

MATCH( ) Excel function
mathematical functions

converting number to 
string, 723–724

exponential function, 
720–721

floor, 721
left padding integers, 

722–723
natural logs, 720–721
power, 720
random numbers, 721–722
remainder/modulo, 719

MAX( ) SQL function, 
25, 441–442, 698–699, 
700–701

metadata, 8
migration churn, 344
MIN( ) SQL function, 25, 156
MINUTE( ) Excel function, 199
MINVERSE( ) Excel function, 

579
MLE (maximum likelihood 

estimation), 318
MMULT( ) Excel function, 579
MOD( ) SQL function, 148–

149, 719

mode (statistics), 80–81
model set, 515–517
modulus (%) operator, 112
monotonical decrease, 276
MONTH( ) SQL function, 199, 

714
MONTHS_BETWEEN( ) SQL 

function, 717, 718
Monty Hall Paradox, 102
moving average, best fit line, 

574–576
multiple conditional 

expressions, 686
multiple regression, 600

Excel, 601–602
Solver and, 604
SQL, 605–607
three input variables, 

603–604
MySQL, 4, 665

date/time functions, 
712–718

integer averages, 729
least and greatest 

functions, 724
mathematical functions, 

719–723
results functions, 725, 726
string functions, 704–711
table columns functions, 

727
window functions, 728

N
Naïve Bayesian models

calculating, 549–555
cumulative gains, 557–558
generalization, 553–555
lookup model comparison, 

558–559
one variable, 551–553
probabilities, 546–547

conditional, 547
likelikhood, 548–549
odds, 548

scoring, 555–557
naming conventions, 

datasets, 14–15
naming variables, subqueries 

for, 37–40
natural logs, 720–721

nearest neighbor models, 
527–528

nested aggregations, 428
NEWID( ) SQL function, 

111–115
nodes, dataflows, 16
nonequijoins, 31
nonstationarity, 534,  

537–538
normal distribution, 101–104, 

562–569
NORMDIST( ) Excel function, 

108–109
NORMSDIST( ) Excel 

function, 103, 109
NoSQL, 4–5
NOT EXISTS operator, 45–46, 

687–688, 692–693
NOT IN operator, 44–45, 687
NOW( ) Excel function, 201
NTILE( ) SQL function, 

396
Null Hypothesis, 98–100

counting and, 122–123
NULL values, 8–9, 23, 376–377
NULLIF( ) SQL function, 86, 

290, 322
number format (Excel), 170, 

175, 176, 202, 235, 411, 423
numeric values, 9

dates, 10
date-times, 10
integers, 10
real numbers, 10

O
object function, 600
odds, 554
OFFSET( ) Excel function, 

155, 605
OLS (ordinary least squares), 

563
dwarf planets, 564

one-at-a-time relationships, 
11

one-to-one relationships, 11
one-way association rules, 

483–485
evaluation information 

and, 486–488
generating, 485–486
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product groups and, 
488–489

optimization engine, 4
OR( ) Excel function, 156
Oracle, 665

date/time functions, 
712–719

integer averages, 729
least and greatest 

functions, 724
mathematical functions, 

719–723
results functions, 725, 726
string functions, 705–711
table columns functions, 

727
window functions, 728

ORDER BY clause, 22–24
weekday, 216

order notation, 656–657
outer joins, 31–32
OVER. See window functions
overfitting in models, 574

P
parallel full table scan, 658
partial indexes, 673
partitioning, 6
PARTITION BY. See window 

functions
PERCENTILE_CONT( ) SQL 

function, 396
PERCENTILE_DIST( ) SQL 

function, 396
performance, 663–665

improvement, 665–667
indexes, 662, 667

aggregation, 676
B-trees, 668–670, 672
composite, 679–683
covering indexes, 674
equality, 673–675
full text, 671–672
hash indexes, 670
inverted, 671–672
limitations, 676–678
ORDER BY clause, 675–676
R-trees, 670–671
spatial indexes, 670–671
WHERE clause, 673, 675

LEFT OUTER JOIN and, 
684–685

OR and, 683–684
parallel processing, 663
processing engine, 663
queries

conditions, 667
DISTINCT keyword, 666
storage management, 

660–663
query engines

full table scan, 658
index lookup, 659–660
order notation, 656–657
parallel full table scan, 

658–659
physical data models, 6
PI( ) Excel function, 149
Piazzi, Giuseppe, 564
pivoting, 629–630

channel pivot, 632–633
order line information 

pivot, 634–637
payment type, 630–632
values into columns, 

635–643
year pivot, 633–634

point estimate, survival and, 
269, 293–294

polynomial trend curves, 
573–574

position, 704–705
POSITION( ) SQL function, 

705
POSSTR( ) SQL function, 

704
Postgres, 4

date/time functions, 
712–718

integer averages, 729
least and greatest 

functions, 724
mathematical functions, 

719–723
results functions, 725, 726
string functions, 705–711
table columns functions, 

727
window functions, 728

POWER( ) function, 720

power trend curves,  
572–573

primary key columns, 9, 673
principal components, 604
Prizm codes (Claritas), 621
probability (statistics),  

100–101, 125–126
distribution, association 

rules and, 481–483
procedural languages versus 

descriptive, 5
Proportional Hazards 

Regression. See Cox 
proportional hazards 
regression

proportional stratified 
samples, 112–113

proportionality assumption, 
318

proportions
difference of, 131–132
standard error, 128–129

purchases dataset, 14
days in a row, 391–393
intervals, 390–391
span of time, 386

PUT( ) SQL function, 713, 
715, 723

PUTN( ) SQL function, 723
p-value, 99, 105, 109–110, 

124–125, 134

Q
quantiles, 394–397
queries

basics, 22–24
column charts, 60
formatting, 39
optimization engine  

and, 4
result sets, 21
set-within-sets, 421
subqueries, 36–37
IN operator, 42–46
summary handling, 

40–41
UNION ALL operator, 46
variable naming, 37–40

summary queries, 24–25
quintiles, 394–397, 438–439
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R
R2 value, best fit line, 581–584
RADIANS( ) Excel function, 

149
RAND( ) SQL function, 

110–111, 722
random numbers, 721–722
random samples, 110–115

balanced, 113–115
repeatable, 111–112
stratified, 112–113

RANK( ) SQL function, 36, 
395–396, 439, 444, 529–530, 
711

ranking functions (SQL), 
35–36, 396

ratios
difference of proportions, 

131–132
standard deviation, 128

confidence, 129–131
standard error of a 

proportion, 128–129
statistics and, 128

R-trees (index), 670–671
regression, 561–562

best-fit-line, 562
averages, 568
errors, 567–568
expected value,  

565–567
formula, 565
inverse model, 568–569
LINEST( ) Excel 

function, 577–581
OLS, 563
price elasticity, 587–592
R2 value, 170, 581–584
residuals, 567–568
trend lines, 571–576
weighted, 594–599

linear, 561, 562
coefficients, 566

multiple, 600
Excel, 601–602
Solver, 604
SQL, 605–607
three input variables, 

603–604
weighted, 592–599

relational algebra, 20–21
relational databases, 2–4
relationships

entity-relationship 
diagrams, 11

many-to-many, 11
one-at-a-time, 11
zero/one-to-one, 11

remainder/modulo, 719
repeatable random samples, 

111–112
repeated events, 367–368
REPLACE( ) SQL function, 

227, 486, 708, 709, 713
residual value, 421, 445–448

best-fit-line regression, 
567–568

RFM (recency, frequency, 
monetary) analysis, 
393–403

cell calculation, 398–399
customer migration and, 

400–403
dimensions, 394–398

frequency, 396–397
monetary, 397–398
quantiles, 394
recency, 394–396

limits, 403
RIGHT( ) SQL function, 

709–710, 722, 723
right censoring, 337–342
ROC (receiver operating 

characteristics), 546–552
ROW_NUMBER( ) SQL 

function, 35–36, 407, 448, 
529–530, 632, 635

ROW( ) Excel function, 533
rows (tables), filtering,  

18–19
RXCHANGE( ) SQL function, 

709

S
sampling

balanced samples,  
113–115

margin of error, 97
proportional stratified 

samples, 112–113

random samples, 110–111
repeatable random 

samples, 111–112
SAS proc sql

date/time functions, 
712–719

integer averages, 729
least and greatest 

functions, 725
mathematical functions, 

719–723
results functions, 725, 727
string functions,  

705–711
table columns functions, 

728
window functions, 728

scatter plots, 64–65
best fit line, 571–572
latitude/longitude,  

155–160
log scales, 432
market basket analysis and, 

422–423
multiple series, 524
non-numeric axes and, 

471–472
points, labeling, 176
using clip-art, 387

SCF (Sectional Center 
Facility), 16–17

score set, 517
Seasonality, 625–626
SECOND( ) Excel function, 

199
SELECT statement, 5, 22
self-joins, 30
sequential association rules, 

466, 503–506
set-within-a-set queries,  

421
ShopKo, 455
signatures, customer 

signatures, 609
similarity models, 519
SLOPE( ) Excel function, 

565, 578, 601
Solver, 562, 597–601

regression, multiple, 604
sparklines, 65–68
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SQL (Structured Query 
Language), 2

chi-square and, 135–137
databases, 2–3
date/time functions, 

712–719
functions, LEFT( ), 23
hardware, 5
integer averages, 729
least and greatest 

functions, 725
mathematical functions, 

719–724
multiple regression, 

605–607
MySQL, 4
ORDER BY clause, 22–24
performance and (See 

performance)
Postgres, 4
queries

basics, 22–24
chi-square, 141–143
formatting, 39
optimization engine 

and, 4
result sets, 21
subqueries, 36–46
summary queries, 24–25

results functions, 725, 727
SELECT statement, 22
SQLite, 4
string functions, 705–711
survival analysis, 271–272

column values, 272–274
dimensions, 274

table columns functions, 
728

WHERE clause, 23
window functions, 35–36, 

391–392, 406–409,  
448–449, 694–701, 728

standard deviation, 105–107, 
323

confidence, 129–131
ratios, 128

standard error, 106
standard error of a 

proportion, 128–129
statistics, 97

approaches, 107–110

averages, 105
standard deviation, 

105–107
chi-square, 132–134, 138–140

calculation, 134
distribution, 134–135
SQL and, 135–137

confidence, 100–101
distribution, 124

cumulative distribution, 
124

Monty Hall paradox, 102
normal distribution, 

101–104
Null Hypothesis, 98–100
probability, 100–101, 

125–126
ratios and, 128
survival analysis and, 258
z-score, 103–104

STDEV( ) Excel function, 602
STDDEV( ) SQL function, 106
stop flag (hazard 

calculation), 261–262
storage, date/time, 200
stratification, 316–317

averages, 317–324
strings

Levenshtein, distance, 379
patterns

addresses, 642
credit card numbers, 66, 

643–644
email address, 641–642
product descriptions, 

642–643
values

aggregation, 456–458
case sensitivity, 82–83
characters, 83–85
concatenation, 455–456
histogram of length, 82
spaces, 82

structured data, 6
subqueries, 36–37
IN operator, 42–46
summary handling,  

40–41
UNION ALL operator, 46
variable naming, 37–40

subscription data, 13

SUBSTITUTE( ) Excel 
function, 95

SUBSTR( ) SQL function, 
707–708, 710

SUBSTRING( ) SQL 
function, 83–87, 707, 708

substring replacement, 
708–709

substrings, 707–708
SUBSTRN( ) SQL function, 

708, 710
SUM( ) Excel function, 156, 

579
SUM( ) SQL function, 25, 33, 

446–447, 695–696
SUM(SUM)( ) SQL function, 

446–447
SUMIF( ) Excel function, 156
summaries

basic, 637
complex, 637–639
customer behaviors

declining usage, 650–653
time series, 644–648
weekend shoppers, 

648–650
strings, patterns, 641–644

summary queries, 24–25, 
40–41

SUMPRODUCT( ) Excel 
function, 156

support (association rules), 
483–484

survival analysis. See also 
hazard probabilities

changes over time, 287–293
competing risk and, 346–352
conditional, 285–287
constant hazard and, 

276–280
Cox proportional hazards 

regression, 258–259
curves, 347–352
customer lifetime average, 

295–296
customer retention 

calculation, 274–276
customer tenure, 316–317

averages, 317–324
confidence bounds and, 

322–324
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SQL, 321–322
SQL and Excel, 320–321

customer value 
calculations, 298–299

estimated future revenue, 
300–303, 305–308

estimated revenue, 299–
300, 303–305

hazard probability, left 
truncation, 328–336

hazard ratios
calculating with SQL, 

326–327
calculating with SQL and 

Excel, 326
interpreting, 324–325
reasons for using, 327

life expectancy, 256–258
longitudinal studies, 

258–259
past, 290–293
point estimate, 269, 293–294
ratio, 284–285
in SQL, 271–272

column values product, 
272–274

dimensions, 274
stratification, 316–317
tenure, 269–271

customer half-life, 
294–295

median customer tenure, 
294–295

T time-dependent 
covariates, 353–357

tables, 7
aliases, 23
best practices, 14–16
Calendar, 13–16, 203–204
Campaigns, 11, 14
Cartesian product, 26
columns, 7–8

appending, 19
comparing values, 86–90
foreign keys, 11, 27–29
maximum values, 79–80
minimum values, 79–80
mode, 80–81
numeric values, 9–10
partitioning, 6
primary key, 9

selecting, 18
summarizing, 90–95

Customers, 11, 14
joining, 19–20, 25–26

cross-joins, 26–27
equijoins, 29–30
inner joins, 31
lookup joins, 27–29
nonequijoins, 31
outer joins, 31–32
self-joins, 30

metadata, 8
NULL values, 8–9
OrderLines, 11, 14
Orders, 11, 14
output, 18
Products, 11, 14
rows, filtering, 18–19
Subscribers, 13
zip code, 12–13
ZipCensus, 7, 11–12
ZipCounty, 11–12

tenure (hazard calculation), 
262–264

average truncated tenure, 
295–296

censoring, 266–268
survival calculation, 

269–271
customer half-life, 

294–295
median customer tenure, 

294–295
time and, 265–266
time-zero covariates, 

280–287
tercile, 444–445
text to columns wizard 

(Excel), 54
TEXT( ) Excel function, 175, 

176, 201, 215, 238
thrashing, 678
time, 197–198. See also date/

time
average time between 

orders, 388–390
components, extracting,  

199
data types, 199
databases, 198–199
duration, 202–203

functions
DAY( ), 199
EXTRACT( ), 199
HOUR( ), 199
MINUTE( ), 199
MONTH( ), 199
NOW( ), 201
SECOND( ), 199
YEAR( ), 199

intervals, 202–203, 390–391
to next event, 416–420
span of purchases, 386
storage, 200
tenure (hazard calculation), 

265–266
time zones, 203

time windowing, 336
left truncation and, 337–342
right censoring and, 

337–342
time-dependent covariates, 

353–366
cohort-based approach, 

358–361
event effect, 361–366
scenarios, 353–356
survival forecasts and, 

356–357
TIMESTAMPDIFF( ) SQL 

function, 718
time-zero covariates, 280–287
TO_CHAR( ) SQL function, 

713, 715, 723
TODAY( ) SQL function, 713
TRANSPOSE( ) Excel 

function, 579
TREND( ) Excel function, 578
trend lines

best fit, 571–572
logarithmic, 572–573
moving average, 574–576
polynomial, 573–574
power, 572–573

TRIM( ) SQL function, 
709

TRUNC( ) SQL function, 713, 
719

two-way association rules
calculating, 489–490
chi-square and, 491–496
heterogeneous, 496–499
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U
UNION ALL operator, 33, 

46, 209
UNION operator, 19
unobserved heterogeneity, 

277

V
values

aggregating, 19
earliest/latest calculation, 

404–413
first year/last year,  

413–415
key-value pairs, 4–5
looking up, 19

VALUE( ) SQL function, 457
variables, naming, 

subqueries for, 37–40
vertical partitioning, 6
VLOOKUP( ) Excel function, 

286–287, 472
voluntary churn, 343

W
WEEKDAY( ) Excel function, 

223
WEEKDAY( ) SQL function, 

715
weighted linear regression, 

592–599

WHERE clause, 22–24, 33–45, 
451–453

window functions, 35–36, 
391–392, 406–409, 448–449, 
694–701

controlling window event, 
273

ranking functions, 396. See 
also specific ranking 
functions

wizards, Chart, 53–55

X‑Y‑Z
X-Y charts, 64–65
XY Labeler, 176, 471–472
XML, 455–458

year, month, day of month, 
714

YEAR( ) Excel function, 199
YEAR( ) SQL function, 199, 

714
yes-or-no models, 519–520

ZCTA (zip code tabulation 
areas), 145

zero/one-to-one 
relationships, 11

zero-way association rules, 
481, 483

zip code tables, 12–13
all within area, 152–154
census demographics, 

167–172
chi-square and, 163–167
income similarity/

dissimilarity, 163–167
median income, 161–162
wealthy/poor proportion, 

162–163
distance calculation

accurate method, 151–152
Euclidian method, 

149–151
hierarchies, 172–176, 

185–188
catchment areas, 179
census, 178
counties, 177
DMAs, 177
electoral districts, 179
school districts, 179
zip+2, 179
zip+4, 179

nearest, Excel and,  
154–155

scatter plot maps,  
155–160

state boundaries, 191–194
wealthiest zip code, 185

z-score, 103–104
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