
Blender 3D: Designing Objects

Table of Contents

Blender 3D: Designing Objects
Blender 3D: Designing Objects
Credits
Preface

What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Module 1
1. Straight into Blender!

An overview of the 3D workflow
The anatomy of a 3D scene
What can you do with Blender?

Getting used to the navigation in Blender
An introduction to the navigation of the 3D Viewport
What are editors?

The anatomy of an editor
Split, Join, and Detach
Some useful layout presets

Setting up your preferences
An introduction to the Preferences window
Customizing the default navigation style
Improving Blender with add-ons

A brief introduction to the projects
The Robot Toy
The Alien Character
The Haunted House
The Rat Cowboy

Summary
2. Robot Toy – Modeling of an Object

Let's start the modeling of our robot toy
Preparing the workflow by adding an image reference
Adding the head primitive
The Edit Mode versus the Object Mode

Using the basic modeling tools
Modeling the head
Modeling the antenna
An introduction to the Subdivision Surface modifier

Improving the head shape
Modeling the thunderbolts
Modeling the eyes
Modeling the chest
Modeling the neck
Modeling the torso
Modeling the buttons
Modeling the fork

Modeling protections for the fork
Modeling the main wheel
Modeling the arm
Using Blender Internal to render our Robot Toy

Summary
3. Alien Character – Base Mesh Creation and Sculpting

Understanding the sculpting process
An introduction to sculpting
Choosing sculpting over poly modeling

Using a pen tablet
The sculpt mode

Optimizing the viewport
Anatomy of a brush

Dyntopo versus the Multires modifier
First touch with the Multires modifier
First touch with Dyntopo

Creating a base mesh with the Skin modifier
Visual preparation

An introduction to artistic anatomy
Sculpting the body

The head
The torso
The arms
The legs
The belt

Summary
4. Alien Character – Creating a Proper Topology and Transferring the Sculpt Details

Why make a retopology?
Possibilities of arranging polygons
Errors to avoid during the creation of retopology
Density of polygons

Making the retopology of the alien character
Preparing the environment

The head
The neck and the torso
The arms and the hands
The legs

Unwrapping UVs
Understanding UVs

The placement of the seams
The placement and adjustment of the islands
The baking of textures

The baking of a normal map
What is a normal map?

Making of the bake
Displaying the normal map in the viewport

The baking of an ambient occlusion
Understanding the ambient occlusion map

Creation of the bake
Displaying the ambient occlusion in the viewport

Summary
5. Haunted House – Modeling of the Scene

Blocking the house
Working with a scale

Blocking the bases of the house
Refining the blocking

Adding instantiated objects
Reworking the blocking objects
Breaking and ageing the elements

Simulate a stack of wooden planks with physics
Creation of the simulation of a stack of planks
Modeling the environment (8 pages)

Modeling the cliff
Modeling a tree with curves
Enhancing the scene with a barrier, rocks, and a cart

Organizing the scene
Grouping objects
Working with layers

Summary
6. Haunted House – Putting Colors on It

Unwrapping UVs
Using Project From View
Unwrapping the rest of the house
The tree with the Smart UV Project
Unwrapping the rest of the environment
Tiling UVs

What is tiling for?
The UV layers

Adding colors
Basics of the Texture Paint tool

Discovering the brushes
The TexDraw brush
The Smear brush
The Soften brush
The Clone brush
The Fill brush

The Mask brush
The Stroke option
Delimiting the zones of painting according to the geometry
Painting directly on the texture

Painting the scene
Laying down the colors

Tiled textures
The settings of our workspace
Advice for a good tiled texture

Painting the roof-tile texture
Quick tips for other kinds of hand-painted tiled textures
Baking our tiled textures

Why bake?
How to do it?

Creating transparent textures
The grass texture
The grunge texture

Doing a quick render with Blender Internal
Setting lights
Placing the camera
Setting the environment (sky and mist)

Summary
7. Haunted House – Adding Materials and Lights in Cycles

Understanding the basic settings of Cycles
The sampling
Light path settings
Performances

Lighting
Creating a testing material
Understanding the different types of light
Lighting our scene
Painting and using an Image Base Lighting

Creating materials with nodes
Creating the materials of the house, the rocks, and the tree
Adding a mask for the windows
Using procedural textures
Making and applying normal maps in Cycles

Creating realistic grass
Generating the grass with particles
Creating the grass shader

Baking textures in Cycles
Cycles versus Blender Internal
Baking the tree

Compositing a mist pass
Summary

8. Rat Cowboy – Learning To Rig a Character for Animation
An introduction to the rigging process

Rigging the Rat Cowboy
Placing the deforming bones
The leg and the foot
The arm and the hand
The hips
The tail
The head and the eyes
Mirroring the rig
Rigging the gun
Rigging the holster
Adding a root bone

Skinning
The Weight Paint tools
Manually assigning weight to vertices
Correcting the foot deformation
Correcting the belt deformation

Custom shapes
The shape keys

What is a shape key?
Creating basic shapes
Driving a shape key

Summary
9. Rat Cowboy – Animate a Full Sequence

Principles of animation
Squash and Stretch
Anticipation
Staging
Straight Ahead Action and Pose to Pose
Follow Through and Overlapping Action
Slow In and Slow Out
Arcs
Secondary Action
Timing
Exaggeration
Solid drawing
Appeal

Animation tools in Blender
The timeline
What is a keyframe?
The Dope Sheet
The Graph editor
The Non-Linear Action editor

Preparation of the animation
Writing a short script
Making a storyboard
Finding the final camera placements and the timing through a layout
Animation references

Organization
Animating the scene

The walk cycle
Mixing actions
Animation of a close shot
Animation of the gunshot
Animation of the trap

Render a quick preview of a shot
Summary

10. Rat Cowboy – Rendering, Compositing, and Editing
Creating advanced materials in Cycles

Skin material with Subsurface Scattering
Eye material
The fur of the rat

The Raw rendering phase
Enhance a picture with compositing

Introduction to nodal compositing
Depth Pass
Adding effects
Compositing rendering phase

Editing the sequence with the VSE
Introduction to the Video Sequence Editor

Edit and render the final sequence
Summary

2. Module 2
1. Modeling the Character's Base Mesh

Introduction
Setting templates with the Images as Planes add-on

Getting ready
How to do it…
How it works…

Setting templates with the Image Empties method
Getting ready
How to do it…
How it works…

Setting templates with the Background Images tool
Getting ready
How to do it…

Building the character's base mesh with the Skin modifier
Getting ready
How to do it…
How it works…

2. Sculpting the Character's Base Mesh
Introduction
Using the Skin modifier's Armature option

Getting ready
How to do it…

How it works…
There's more…
See also

Editing the mesh
Getting ready
How to do it…
How it works…

Preparing the base mesh for sculpting
Getting ready
How to do it…
How it works…

Using the Multiresolution modifier and the Dynamic topology feature
Getting ready
How to do it…
How it works…

Sculpting the character's base mesh
Getting ready
How to do it…
There's more…

3. Polygonal Modeling of the Character's Accessories
Introduction
Preparing the scene for polygonal modeling

Getting ready
How to do it…
How it works…

Modeling the eye
Getting ready
How to do it…
How it works…

Modeling the armor plates
Getting ready
How to do it…
How it works…
See also

Using the Mesh to Curve technique to add details
How to do it…
How it works…

4. Re-topology of the High Resolution Sculpted Character's Mesh
Introduction
Using the Grease Pencil tool to plan the edge-loops flow

Getting ready
How to do it…
There's more…
See also

Using the Snap tool to re-topologize the mesh
Getting ready
How to do it…

How it works…
Using the Shrinkwrap modifier to re-topologize the mesh

Getting ready
How to do it…

Using the LoopTools add-on to re-topologize the mesh
Getting ready
How to do it…

Concluding the re-topologized mesh
Getting ready
How to do it…
There's more…
How it works…

5. Unwrapping the Low Resolution Mesh
Introduction
Preparing the low resolution mesh for unwrapping

Getting ready
How to do it…

UV unwrapping the mesh
Getting ready
How to do it…

Editing the UV islands
Getting ready
How to do it…
How it works…
There's more…

Using the Smart UV Project tool
Getting ready
How to do it…

Modifying the mesh and the UV islands
Getting ready
How to do it…

Setting up additional UV layers
Getting ready
How to do it…

Exporting the UV Map layout
Getting ready
How to do it…

6. Rigging the Low Resolution Mesh
Introduction
Building the character's Armature from scratch

Getting ready
How to do it…

Building the rig for the secondary parts
Completing the rig

How it works…
Perfecting the Armature to also function as a rig for the Armor

Getting ready

How to do it…
How it works…

Building the character's Armature through the Human Meta-Rig
Getting ready
How to do it…
How it works…

Building the animation controls and the Inverse Kinematic
Getting ready
How to do it…
See also

Generating the character's Armature by using the Rigify add-on
Getting ready
How to do it…
How it works…
See also

7. Skinning the Low Resolution Mesh
Introduction
Parenting the Armature and Mesh using the Automatic Weights tool

Getting ready
How to do it…
How it works…
There's more…
See also

Assigning Weight Groups by hand
Getting ready
How to do it…
How it works…
See also

Editing Weight Groups using the Weight Paint tool
Getting ready
How to do it…
See also

Using the Mesh Deform modifier to skin the character
Getting ready
How to do it…
How it works…
See also

Using the Laplacian Deform modifier and Hooks
Getting ready
How to do it…
How it works…
See also

8. Finalizing the Model
Introduction
Creating shape keys

Getting ready
How to do it…

How it works…
Assigning drivers to the shape keys

Getting ready
How to do it…
How it works…
There's more…
See also

Setting movement limit constraints
Getting ready
How to do it…
See also

Transferring the eyeball rotation to the eyelids
Getting ready
How to do it…

Detailing the Armor by using the Curve from Mesh tool
Getting ready
How to do it…
There's more…
See also

9. Animating the Character
Introduction
Linking the character and making a proxy

Getting ready
How to do it…
See also

Creating a simple walk cycle for the character by assigning keys to the bones
Getting ready
How to do it…
How it works…
There's more…
See also

Tweaking the actions in Graph Editor
Getting ready
How to do it…
See also

Using the Non Linear Action Editor to mix different actions
Getting ready
How to do it…
See also

10. Creating the Textures
Introduction
Making a tileable scales image in Blender Internal

Getting ready
How to do it…
How it works…

Preparing the model to use the UDIM UV tiles
Getting ready

How to do it…
How it works…

Baking the tileable scales texture into the UV tiles
Getting ready
How to do it…
How it works…
There's more…

Painting to fix the seams and to modify the baked scales image maps
Getting ready
How to do it…
How it works…
There's more…
See also

Painting the color maps in Blender Internal
Getting ready
How to do it…
How it works…
See also

Painting the color maps in Cycles
Getting ready
How to do it…

11. Refining the Textures
Introduction
Sculpting more details on the high resolution mesh

Getting ready
How to do it…

Baking the normals of the sculpted mesh on the low resolution one
Getting ready
How to do it…
How it works…
There's more…

The Armor textures
Getting ready
How to do it…
There's more…
See also

Adding a dirty Vertex Colors layer and baking it to an image texture
Getting ready
How to do it…
How it works…
See also

The Quick Edit tool
Getting ready
How to do it…
How it works…

12. Creating the Materials in Cycles
Introduction

Building the reptile skin shaders in Cycles
Getting ready
How to do it…
How it works…
There's more…
See also

Making a node group of the skin shader to reuse it
Getting ready
How to do it…
How it works…

Building the eyes' shaders in Cycles
Getting ready
How to do it…
How it works…

Building the armor shaders in Cycles
Getting ready
How to do it…
How it works…
There's more…

13. Creating the Materials in Blender Internal
Introduction
Building the reptile skin shaders in Blender Internal

Getting ready
How to do it…
How it works…
There's more…
See also

Building the eyes' shaders in Blender Internal
Getting ready
How to do it…
How it works…

Building the armor shaders in Blender Internal
Getting ready
How to do it…
How it works…
There's more…

14. Lighting, Rendering, and a Little Bit of Compositing
Introduction
Setting the library and the 3D scene layout

Getting ready
How to do it…
How it works…
See also

Setting image based lighting (IBL)
Getting ready
How to do it…

Image based lighting in Cycles

Image based lighting in Blender Internal
How it works…
See also

Setting a three-point lighting rig in Blender Internal
Getting ready
How to do it…
How it works…
See also

Rendering an OpenGL playblast of the animation
Getting ready
How to do it…
How it works…
There's more…
See also

Obtaining a noise-free and faster rendering in Cycles
Getting ready
How to do it…
See also

Compositing the render layers
Getting ready
How to do it…
How it works…
See also

3. Module 3
1. Overview of Materials in Cycles

Introduction
Material nodes in Cycles

Getting ready
How to do it...
How it works...
There's more...
See also

Procedural textures in Cycles
Getting ready
How to do it...
How it works...
There's more...
See also

Setting the World material
Getting ready
How to do it...
How it works...
There's more...

Creating a mesh-light material
Getting ready
How to do it...
How it works...

There's more...
Using volume materials

Getting ready
How to do it...
How it works...
There's more...

Using displacement
Getting ready
How to do it...
How it works...

2. Managing Cycles Materials
Introduction
Preparing an ideal Cycles interface for material creation

Getting ready
How to do it...
How it works...
There's more...

Naming materials and textures
Getting ready
How to do it...
There's more...

Creating node groups
Getting ready
How to do it...
How it works...

Grouping nodes under frames for easier reading
Getting ready
How to do it...

Linking materials and node groups
How to do it...
There's more...

3. Creating Natural Materials in Cycles
Introduction
Creating a rock material using image maps

Getting ready
How to do it...
How it works...
There's more...

Creating a rock material using procedural textures
Getting ready
How to do it...
How it works...

Creating a sand material using procedural textures
Getting ready
How to do it...
How it works...
There's more...

Creating a simple ground material using procedural textures
Getting ready
How to do it...
How it works...

Creating a snow material using procedural textures
Getting ready
How to do it...
How it works...

Creating an ice material using procedural textures
Getting ready
How to do it...
How it works...
See also

4. Creating Man-made Materials in Cycles
Introduction
Creating a generic plastic material

Getting ready...
How to do it...
How it works...

Creating a Bakelite material
Getting ready...
How to do it...
How it works...
There's more...

Creating an expanded polystyrene material
Getting ready...
How to do it...
How it works...

Creating a clear (glassy) polystyrene material
Getting ready...
How to do it...

Creating a rubber material
Getting ready...
How to do it...
How it works...

Creating an antique bronze material with procedurals
Getting ready...
How to do it...
How it works...

Creating a multipurpose metal node group
Getting ready...
How to do it...
How it works...

Creating a rusty metal material with procedurals
Getting ready...
How to do it...
How it works...

There's more...
Creating a wood material with procedurals

Getting ready...
How to do it...
How it works...

5. Creating Complex Natural Materials in Cycles
Introduction
Creating an ocean material using procedural textures

Getting ready
How to do it...

Creating the water surface and the bottom shaders
Creating the foam shader
Creating the stencil material for the foam location
Putting everything together

How it works...
See also

Creating underwater environment materials
Getting ready
How to do it...
How it works...

Creating a snowy mountain landscape with procedurals
Getting ready
How to do it...

Appending and grouping the rock and the snow shader
Mixing the material groups
Creating the stencil shader
Adding the atmospheric perspective

How it works...
Creating a realistic Earth as seen from space

Getting ready
How to do it...

The planet surface
The clouds
The atmosphere

How it works...
6. Creating More Complex Man-made Materials

Introduction
Creating cloth materials with procedurals

Getting ready
How to do it...
How it works...
There's more...
See also

Creating a leather material with procedurals
How to do it...
How it works...

Creating a synthetic sponge material with procedurals

Getting ready
How to do it...
How it works...

Creating a spaceship hull shader
Getting ready
How to do it...
How it works...
There's more...
See also

7. Subsurface Scattering in Cycles
Introduction
Using the Subsurface Scattering shader node

Getting ready
How to do it...
How it works...
See also

Simulating Subsurface Scattering in Cycles using the Translucent shader
Getting ready
How to do it...
How it works...

Simulating Subsurface Scattering in Cycles using the Vertex Color tool
Getting ready
How to do it...
How it works...

Simulating Subsurface Scattering in Cycles using the Ray Length output in the Light Path node
Getting ready
How to do it...
How it works...

Creating a fake Subsurface Scattering node group
Getting ready
How to do it...
How it works...

8. Creating Organic Materials
Introduction
Creating an organic-looking shader with procedurals

Getting ready
How to do it...
How it works...

Creating a wasp-like chitin material with procedural textures
Getting ready
How to do it...
How it works...

Creating a beetle-like chitin material with procedural textures
Getting ready
How to do it...
How it works...

Creating tree shaders – the bark

Getting ready
How to do it...
How it works...
There's more...

Creating tree shaders – the leaves
Getting ready
How to do it...
How it works...
There's more...

Creating a layered human skin material in Cycles
Getting ready
How to do it...
How it works...

Creating fur and hair
Getting ready
How to do it...
How it works...
There's more...
See also

Creating a gray alien skin material with procedurals
Getting ready
How to do it...
How it works...

9. Special Materials
Introduction
Using Cycles volume materials

Getting ready
How to do it...
How it works...
There's more...
See also

Creating a cloud volumetric material
Getting ready
How to do it...
How it works...

Creating a fire and smoke shader
Getting ready
How to do it...
How it works...
See also

Creating a shadeless material in Cycles
Getting ready
How to do it...
How it works...
There's more...

Creating a fake immersion effect material
Getting ready

How to do it...
How it works...

Creating a fake volume light material
Getting ready
How to do it...
How it works...
See also

Bibliography
Index

Blender 3D: Designing Objects

Blender 3D: Designing Objects
Build your very own stunning characters in Blender from scratch

A course in three modules

BIRMINGHAM - MUMBAI

Blender 3D: Designing Objects
Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of the information
presented. However, the information contained in this course is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Published on: September 2016

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-719-7

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Romain Caudron

Pierre-Armand Nicq

Enrico Valenza

Reviewers

Fernando Castilhos Melo

Luo Congyi

Waqas Abdul Majeed

Reynante M. Martinez

Jordan Matelsky

Ian Smithers

Romain Caudron

John E. Herreño

Sanu Vamanchery Mana

Content Development Editor

Parshva Sheth

Graphics

Jason Monteiro

Production Coordinator

Aparna Bhagat

Preface
Blender is a powerful tool, stable, with an integral workflow that will allow you to understand your
learning of 3D creation with serenity. Today, it is considered to be one of the most complete 3D
packages on the market and it is free and open source! It is very efficient for many types of productions,
such as 3D animated or live action films, architecture, research, or even game creation with its
integrated game engine and its use of the Python language. Moreover, Blender has an active community
that contributes to expanding its functionalities. Today, it is used in many professional products and by
many companies.

What this learning path covers
Module 1, Blender 3D By Example,

Through this module, you will create many types of concert projects using a step-by-step approach. You
will start by getting to know the modeling tools available in Blender as you create a 3D robot toy. Then,
you will discover more advanced techniques such as sculpting and re-topology by creating a funny alien
character. After that, you will create a full haunted house scene.

For the last project, you will create a short film featuring a rat cowboy shooting cheese in a rat trap! This
will be a more complex project in which you learn how to rig, animate, compose advanced material,
composite, and edit a full sequence.

Each project in this module will give you more practice and increase your knowledge of the Blender
tools, and Blender game engine. By the end of this book, you will master a workflow that you will be
able to apply to your own creations.

Module 2, Blender 3D Cookbook,

This module will take you on a journey to understand the workflow normally used to create characters,
from the modeling to the rendering stages using the tools of the last official release of Blender
exclusively.

This module helps you create a character mesh and sculpt features, using tools and techniques such as
the Skin modifier and polygon merging. You will also get a detailed, step-by-step overview of how to rig
and skin your character for animation, how to paint textures and create shaders, and how to perform
rendering and compositing. With the help of this book, you will be making production-quality 3D
models and characters quickly and efficiently, which will be ready to be added to your very own
animated feature or game.

Module 3, Blender Cycles: Materials and Textures Cookbook - Third Edition

This module will teach you how to utilize the power of the Blender series to create a wide variety of
materials, textures, and effects with the Cycles rendering engine. You will learn about node-based shader
creation, and master cycles through step-by-step, recipe-based advice. With this book, you will start
small by rendering the textures of stones and water, then scale things up to massive landscapes of

mountains and oceans. You will then learn how to create the look of different artificial materials such as
plastic, carpenter wood, and metal, and utilize volumetric shaders to create the effects of smoke, clouds,
and subsurface scattering effects of skin. You will also learn how illumination works in Cycles,
improvising the quality of the final render, and how to avoid the presence of noise and fireflies. By the
end, you will know how to create an impressive library of realistic-looking materials and textures.

What you need for this learning path
The only software strictly needed to put into practice the content of this course is the last official
Blender release. You just have to download it from http://www.blender.org/download/get-blender; some
Python script may be necessary in some recipes, but for the most part, they should all be included in the
Blender package. Eventually, you can quite surely find any missing add-on at http://wiki.blender.org/
index.php/Extensions:2.6/Py/Scripts.

Any particular texture needed for the exercises in the book is provided as a free download on the Packt
Publishing website itself. Not essential, but handy to have is a 2D image editor, in case you want to
adapt your own textures to replace the provided ones; I suggest you try Gimp, an open source image
editor that you can download from http://www.gimp.org; any other one you prefer is perfect anyway.

http://www.blender.org/download/get-blender
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts
http://www.gimp.org

Who this learning path is for
If you are a graphic designer and are looking for a tool to meet your requirements in designing,
especially with regards to 3D designing, this course is for you. This course will make use of Blender to
meet your design needs.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this course—what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the course's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help you to get the
most from your purchase.

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the course's webpage at
the Packt Publishing website. This page can be accessed by entering the course's name in the Search
box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/PacktPublishing/Blender-
for-Designers/tree/master. We also have other code bundles from our rich catalog of books, videos, and
courses available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our courses—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this course. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your course, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Blender-for-Designers/tree/master
https://github.com/PacktPublishing/Blender-for-Designers/tree/master
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the course in the search field. The required information will appear under the Errata
section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this course, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Part 1. Module 1
Blender 3D By Example

Design a complete workflow with Blender to create stunning 3D scenes and films step-by-step!

Chapter 1. Straight into Blender!
Welcome to the first chapter, in which you will start getting familiar with Blender.

Here, navigation within the interface will be presented. Its approach is atypical in comparison to other
3D software, such as Autodesk Maya® or Autodesk 3DS Max®, but once you get used to this, it will be
extremely effective.

If you have had the opportunity to use Blender before, it is important to note that the interface went
through changes during the evolution of the software (especially since version 2.5).

We will give you an idea of the possibilities that this wonderful free and open source software gives by
presenting different workflows. You will learn some vocabulary and key concepts of 3D creation so that
you will not to get lost during your learning.

Finally, you will have a brief introduction to the projects that we will carry out throughout this module.

Let's dive into the third dimension! The following topics will be covered in this chapter:

• Learning some theory and vocabulary
• Navigating the 3D viewport
• How to set up preferences
• Using keyboard shortcuts to save time

An overview of the 3D workflow
Before learning how to navigate the Blender interface, we will give you a short introduction to the 3D
workflow.

The anatomy of a 3D scene

To start learning about Blender, you need to understand some basic concepts. Don't worry, there is no
need to have special knowledge in mathematics or programming to create beautiful 3D objects; it only
requires curiosity. Some artistic notions are a plus.

All 3D elements, which you will handle, will evolve in to a scene. There is a three-dimensional space
with a coordinate system composed of three axes. In Blender, the x axis shows the width, y axis shows
the depth, and the z axis shows the height. Some softwares use a different approach and reverses the y
and z axes. These axes are color-coded, we advise you to remember them: the x axis in red, the y axis in
green and the z axis in blue.

A scene may have the scale you want and you can adjust it according to your needs. This looks like a
film set for a movie. A scene can be populated by one or more cameras, lights, models, rigs, and many
other elements. You will have the control of their placement and their setup.

A 3D scene looks like a film set.

A mesh is made of vertices, edges, and faces. The vertices are some points in the scene space that are
placed at the end of the edges. They could be thought of as 3D points in space and the edges connect
them. Connected together, the edges and the vertices form a face, also called a polygon. It is a geometric
plane, which has several sides as its name suggests.

In 3D software, a polygon is constituted of at least three sides. It is often essential to favor four-sided
polygons during modeling for a better result. You will have an opportunity to see this in more detail
later.

Your actors and environments will be made of polygonal objects, or more commonly called as meshes.
If you have played old 3D games, you've probably noticed the very angular outline of the characters; it
was, in fact, due to a low count of polygons.

We must clarify that the orientation of the faces is important for your polygon object to be illuminated.
Each face has a normal. This is a perpendicular vector that indicates the direction of the polygon. In
order for the surface to be seen, it is necessary that the normals point to the outside of the model. Except
in special cases where the interior of a polygonal object is empty and invisible. You will be able to create
your actors and environment as if you were handling virtual clay to give them the desired shape.

Anatomy of a 3D Mesh

To make your characters presentable, you will have to create their textures, which are 2D images that
will be mapped to the 3D object. UV coordinates will be necessary in order to project the texture onto
the mesh. Imagine an origami paper cube that you are going to unfold. This is roughly the same. These
details are contained in a square space with the representation of the mesh laid flat. You can paint the
texture of your model in your favorite software, even in Blender.

This is the representation of the UV mapping process. The texture on the left is projected to the 3D
model on the right.

After this, you can give the illusion of life to your virtual actors by animating them. For this, you will
need to place animation keys spaced on the timeline. If you change the state of the object between two
keyframes, you will get the illusion of movement—animation. To move the characters, there is a very
interesting process that uses a bone system, mimicking the mechanism of a real skeleton. Your polygon
object will be then attached to the skeleton with a weight assigned to the vertices on each bone, so if you
animate the bones, the mesh components will follow them.

Once your characters, props, or environment are ready, you will be able to choose a focal length and an
adequate framework for your camera.

In order to light your scene, the choice of the render engine will be important for the kind of lamps to
use, but usually there are three types of lamps as used in cinema productions. You will have to place
them carefully. There are directional lights, which behave like the sun and produce hard shadows. There
are omnidirectional lights, which will allow you to simulate diffuse light, illuminating everything around
it and casting soft shadows. There are also spots that will simulate a conical shape. As in the film
industry or other imaging creation fields, good lighting is a must-have in order to sell the final picture.
Lighting is an expressive and narrative element that can magnify your models, or make them irrelevant.

Once everything is in place, you are going to make a render. You will have a choice between a still
image and an animated sequence. All the given parameters with the lights and materials will be
calculated by the render engine. Some render engines offer an approach based on physics with rays that
are launched from the camera. Cycles is a good example of this kind of engine and succeed in producing

very realistic renders. Others will have a much simpler approach, but none less technically based on
visible elements from the camera.

All of this is an overview of what you will be able to achieve while reading this module and following
along with Blender.

What can you do with Blender?

In addition to being completely free and open source, Blender is a powerful tool that is stable and with
an integral workflow that will allow you to understand your learning of 3D creation with ease. Software
updates are very frequent; they fix bugs and, more importantly, add new features.

You will not feel alone as Blender has an active and passionate community around it. There are many
sites providing tutorials, and an official documentation detailing the features of Blender.

You will be able to carry out everything you need in Blender, including things that are unusual for a 3D
package such as concept art creation, sculpting, or digital postproduction, which we have not yet
discussed, including compositing and video editing. This is particularly interesting in order to push the
aesthetics of your future images and movies to another level.

It is also possible to make video games. Also, note that the Blender game engine is still largely unknown
and underestimated. Although this aspect of the software is not as developed as other specialized game
engines, it is possible to make good quality games without switching to another software.

You will realize that the possibilities are enormous, and you will be able to adjust your workflow to suit
your needs and desires.

Software of this type could scare you by its unusual handling and its complexity, but you'll realize that
once you have learned its basics, it is really intuitive in many ways.

Getting used to the navigation in Blender
Now that you have been introduced to the 3D workflow, you will learn how to navigate the Blender
interface, starting with the 3D viewport.

An introduction to the navigation of the 3D Viewport

It is time to learn how to navigate in the Blender viewport. The viewport represents the 3D space, in
which you will spend most of your time. As we previously said, it is defined by three axes (x, y, and z).
Its main goal is to display the 3D scene from a certain point of view while you're working on it.

The Blender 3D Viewport

When you are navigating through this, it will be as if you were a movie director but with special powers
that allow you to film from any point of view.

The navigation is defined by three main actions: pan, orbit, and zoom. The pan action means that you
will move horizontally or vertically according to your current point of view. If we connect that to our
cameraman metaphor, it's like if you were moving laterally to the left, or to the right, or moving up or
down with a camera crane.

By default, in Blender the shortcut to pan around is to press the Shift button and the Middle Mouse
Button (MMB), and drag the mouse.

The orbit action means that you will rotate around the point that you are focusing on. For instance,
imagine that you are filming a romantic scene of two actors and that you rotate around them in a circular
manner. In this case, the couple will be the main focus. In a 3D scene, your main focus would be a 3D
character, a light, or any other 3D object.

To orbit around in the Blender viewport, the default shortcut is to press the MMB and then drag the
mouse.

The last action that we mentioned is zoom. The zoom action is straightforward. It is the action of
moving our point of view closer to an element or further away from an element.

In Blender, you can zoom in by scrolling your mouse wheel up and zoom out by scrolling your mouse
wheel down.

To gain time and precision, Blender proposes some predefined points of view. For instance, you can
quickly go in a top view by pressing the numpad 7, you can also go in a front view by pressing the
numpad 1, you can go in a side view by pressing the numpad 3, and last but not least, the numpad 0
allows you to go in Camera view, which represents the final render point of the view of your scene.

You can also press the numpad 5 in order to activate or deactivate the orthographic mode. The
orthographic mode removes perspective. It is very useful if you want to be precise. It feels as if you
were manipulating a blueprint of the 3D scene.

The difference between Perspective (left) and Orthographic (right)

If you are lost, you can always look at the top left corner of the viewport in order to see in which view
you are, and whether the orthographic mode is on or off.

Try to learn by heart all these shortcuts; you will use them a lot. With repetition, this will become a
habit.

What are editors?

In Blender, the interface is divided into subpanels that we call editors; even the menu bar where you
save your file is an editor. Each editor gives you access to tools categorized by their functionality. You
have already used an editor, the 3D view. Now it's time to learn more about the editor's anatomy.

In this picture, you can see how Blender is divided into editors

The anatomy of an editor

There are 17 different editors in Blender and they all have the same base. An editor is composed of a
Header, which is a menu that groups different options related to the editor. The first button of the header
is to switch between other editors. For instance, you can replace the 3D view by the UV/Image Editor
by clicking on it. You can easily change its place by right-clicking on it in an empty space and by
choosing the Flip to Top/Bottom option.

The header can be hidden by selecting its top edge and by pulling it down. If you want to bring it back,
press the little plus sign at the far right.

The header of the 3D viewport. The first button is for switching between editors, and also, we can
choose between different options in the menu

In some editors, you can get access to hidden panels that give you other options. For instance, in the 3D
view you can press the T key or the N key to toggle them on or off. As in the header, if a sub panel of an
editor is hidden, you can click on the little plus sign to display it again.

Split, Join, and Detach

Blender offers you the possibility of creating editors where you want. To do this, you need to right-click
on the border of an editor and select Split Area in order to choose where to separate them.

Right-click on the border of an editor to split it into two editors

The current editor will then be split in two editors. Now you can switch to any other editor that you
desire by clicking on the first button of the header bar. If you want to merge two editors into one, you
can right-click on the border that separates them and select the Join Area button. You will then have to
click on the editor that you want to erase by pointing the arrow on it.

Use the Join Area option to join two editors together

You then have to choose which editor you want to remove by pointing and clicking on it.

We are going to see another method of splitting editors that is nice. You can drag the top right corner of
an editor and another editor will magically appear! If you want to join back two editors together, you
will have to drag the top right corner in the direction of the editor that you want to remove. The last
manipulation can be tricky at first, but with a little bit of practice, you will be able to do it closed eyes!

The top right corner of an editor

If you have multiple monitors, it could be a great idea to detach some editors in a separated window.
With this, you could gain space and won't be overwhelmed by a condensed interface. In order to do this,
you will need to press the Shift key and drag the top right corner of the editor with the Left Mouse
Button (LMB).

Some useful layout presets

Blender offers you many predefined layouts that depend on the context of your creation. For instance,
you can select the Animation preset in order to have all the major animation tools, or you can use the
UV Editing preset in order to prepare your texturing. To switch between the presets, go to the top of the
interface (in the Info editor, near the Help menu) and click on the drop-down menu. If you want, you
can add new presets by clicking on the plus sign or delete presets by clicking on the X button. If you
want to rename a preset, simply enter a new name in the corresponding text field. The following
screenshot shows the Layout presets drop-down menu:

The layout presets drop-down menu

Setting up your preferences

When we start learning new software, it's good to know how to set up your preferences. Blender has a
large number of options, but we will show you just the basic ones in order to change the default
navigation style or to add new tools that we call add-ons in Blender.

An introduction to the Preferences window

The preferences window can be opened by navigating to the File menu and selecting the User
Preferences option. If you want, you can use the Ctrl + Alt + U shortcut or the Cmd key and comma key
on a Mac system.

There are seven tabs in this window as shown here:

The different tabs that compose the Preferences window

A nice thing that Blender offers is the ability to change its default theme. For this, you can go to the
Themes tab and choose between different presets or even change the aspect of each interface elements.

Another useful setting to change is the number of undo that is 32 steps, by default. To change this
number, go to the Editing tab and under the Undo label, slide the Steps to the desired value.

Customizing the default navigation style

We will now show you how to use a different style of navigation in the viewport. In many other 3D
programs, such as Autodesk Maya®, you can use the Alt key in order to navigate in the 3D view. In
order to activate this in Blender, navigate to the Input tab, and under the Mouse section, check the
Emulate 3 Button Mouse option. Now if you want to use this navigation style in the viewport, you can
press Alt and LMB to orbit around, Ctrl + Alt and the LMB to zoom, and Alt + Shift and the LMB to
pan. Remember these shortcuts as they will be very useful when we enter the sculpting mode while
using a pen tablet. The Emulate 3 Button Mouse checkbox is shown as follows:

The Emulate 3 Button Mouse will be very useful when sculpting using a pen tablet

Another useful setting is the Emulate Numpad. It allows you to use the numeric keys that are above the
QWERTY keys in addition to the numpad keys. This is very useful for changing the views if you have a
laptop without a numpad, or if you want to improve your workflow speed.

The Emulate Numpad allows you to use the numeric keys above the QWERTY keys in order to switch
views or toggle the perspective on or off

Improving Blender with add-ons

If you want even more tools, you can install what is called as add-ons on your copy of Blender. Add-
ons, also called Plugins or Scripts, are Python files with the .py extension. By default, Blender comes

with many disabled add-ons ordered by category. We will now activate two very useful add-ons that will
improve our speed while modeling. First, go to the Add-ons tab, and click on the Mesh button in the
category list at the left. Here, you will see all the default mesh add-ons available. Click on the check-
boxes at the left of the Mesh: F2 and Mesh: LoopTools subpanels in order to activate these add-ons. If
you know the name of the add-on you want to activate, you can try to find it by typing its name in the
search bar. There are many websites where you can download free add-ons, starting from the official
Blender website. If you want to install a script, you can click on the Install from File button and you
will be asked to select the corresponding Python file.

Note

The official Blender Add-ons Catalog

You can find it at http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts.

The following screenshot shows the steps for activating the add-ons:

Steps for Add-ons activation

Note

Where are the add-ons on the hard-disk?

http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts

All the scripts are placed in the add-ons folder that is located wherever you have installed Blender on
your hard disk. This folder will usually be at Your Installation Path\Blender
Foundation\Blender\2.VersionNumber\scripts\addons.

If you find it easier, you can drop the Python files here instead of at the standard installation.

Don't forget to click on the Save User Settings button in order to save all your changes!

A brief introduction to the projects
You will now be introduced to the fun projects that we will do together during each of the later chapters.
You will need practice to improve your skills.

The Robot Toy

In this project, you will follow step by step the modeling of a little Robot Toy, starting from a simple
cube primitive. This old school mechanic robot will make you re-live your childhood. The goal of this
chapter is to teach you the modeling process in Blender. You will gain a good overview of the main
modeling tools, such as extrude or loop cut. On the other hand, you will discover what a good workflow
is by creating your model according to a reference.

The Alien Character

This project will be exciting! We think you will have enough experience to start learning how to create
your own alien character using the sculpting tools of Blender. During the project, you will encounter a
new modeling process by creating a base mesh for sculpting. After this, you will understand how to
retopologize and keep the details of that sculpt. It will be divided into two parts: the sculpting and the
retopology process.

The Haunted House

The Haunted House is a nice but scary little house in the middle of the
Pennsylvania...Booooohhhhhhhoooohhh! The legend says that it is haunted by thousands of spectrums.
In this project, divided into three parts, you will start by modeling the house and its environment while
discovering new modeling techniques, such as the array modifier. After completing the modeling, you
will learn how to use the powerful Blender texturing and UV tools in order to add colors to your meshes.
Finally, you will use the Cycles nodal editor in order to create materials with the textures previously
made. After reading the corresponding chapters, you will have a good understanding of how a full 3D
scene is constructed and how to organize yourself for such a big task.

The Rat Cowboy

The Rat Cowboy and the story of the holes in the cheese will be your first animated sequence. It will be
a nice starting point to learn more about rigging and animation. The Rat will face a piece of cheese
pinched under a rat trap, and he will unsheathe his gun to shoot the cheese. The Gruyère cheese is born.
In order to produce a polished final shot, you will learn some compositing tricks and how to render the
sequence with Cycles.

Summary
In this chapter, you have learned the steps behind 3D creations. You know what a mesh is and what it is
composed of. Then you have been introduced to navigation in Blender by manipulating the 3D viewport
and going through the user preference menu. In the later sections, you configured some preferences and
extended Blender by activating some add-ons.

You are now ready to start the 3D modeling of our Robot Toy project.

Chapter 2. Robot Toy – Modeling of an Object
In this chapter, we will start our first project in order to discover the fundamental modeling tools of
Blender. We will create a little robot that is inspired by vintage toys with a drawing image reference.
You will learn polygonal modeling workflow, which will be useful for your future 3D productions. The
head will be created with a simple cylindrical primitive that we will modify to give it the right shape.
Then, in the same way, starting from a primitive, we will model the rest of the body, always with a good
topology in mind. Indeed, we are going to maximize the number of quads (polygons with four faces) and
organize them so that they best fit the shape of each part. In the end, we will do a quick render with the
Blender internal render engine. Without further ado, let's enter the marvelous world of 3D modeling! In
this chapter, we will cover the following topics:

• Adding and editing objects
• Using the basic modeling tools
• Understanding the basic modifiers (such as mirror and subsurface)
• Modeling with a proper topology
• Creating a quick preview with Blender Internal

In the following screenshot, on the right, you can see the 3D robot modeled using a sketch, shown on the
left as a reference, with Krita, which is another open source tool for 2D art:

Let's start the modeling of our robot toy
We will now start the modeling of the robot toy by adding the first object to the scene. The robot will be
modeled from a simple cylinder.

Preparing the workflow by adding an image reference

In order to start the modeling of the robot, let's have a look at the following procedure:

1. We will add the robot image reference in a new UV/Image Editor.
2. After dividing the view and selecting the right editor (by clicking on the RMB on the edge of an

editor and selecting Split Area), go to the UV/Image Editor header and select Open Image to
choose the corresponding reference in the file browser.

3. To pan or zoom in this editor, use the same shortcuts as the 3D view. This reference will serve
as a guide during the modeling process. Refer to this in order to get the main shape right, but
don't rely on its details.

Adding the head primitive

When you start modeling an object, you need to start with a basic 3D shape that is close to the shape you
want to model. In our case, we will use a cylindrical primitive to start modeling the head. To do this,
follow these steps:

1. First we will need to remove the 3D cube that is placed by default in any Blender starting file.
The cube is selected if it has an orange outline. If this isn't the case, you can right-click on it.
This is the main selection method in Blender. If you want to select or unselect all the objects
present in the 3D view, you can press the A (All) key.

2. You can now remove the selected cube by pressing the X key or the Delete key. It's now time to
add the cylindrical primitive.

3. All the primitives are going to spawn at the 3D Cursor location. We will ensure that the cursor is
at the center of the scene by pressing Shift + C.

4. We can now use the Shift + A shortcut, and select Mesh | Cylinder to create the primitive at the
center of the scene.

5. Our new object has too many details, so we will decrease the number of vertices in the left 3D
view panel. If you can't see this panel, press the T key. At the bottom of this, you can see the
preferences of the currently active tool (the mesh creation, in our case), and you can change the
number of vertices of our cylinder to 16.

6. We will now set the 3D view focus on the newly created object by pressing the dot numpad key
or by selecting View | View Selected in the 3D view header.

Note

About naming shortcuts

Most of the shortcuts correspond to the first letter of the tool's name. For instance, the Grab tool
can be activated by the G key and the Scale tool can be selected by the S key.

If you want to explore all Blender's shortcuts, visit http://www.shortcutsheaven.com/.

The cylinder located at the cursor position (center of the world) that we will use as a base for
the head of the robot.

http://www.shortcutsheaven.com/

The Edit Mode versus the Object Mode

Currently, we cannot access the components (vertices, edges, and faces) of our cylinder because we are
in the Object Mode. This mode allows you to do basic things on objects such as moving, rotating, or
scaling them. Let's perform the following set of steps:

1. If you want to edit an object, you need to use the Edit Mode. To switch between these modes,
press the Tab key or go to the Modes drop-down menu in the 3D view header while any object
is selected. In the Edit Mode, you can choose the type of components to select by pressing Ctrl
+ Tab or by selecting the component type in the 3D view header.

2. Let's go into the Face Mode and select the top face of the cylinder by right-clicking on it. As
you can see, in Blender, faces (or polygons) are represented by a little square in the middle.

3. Now you can go into the orthographic front view (the 3 numpad key and 5 numpad key for
perspective/orthographic views respectively), and use the z axis of the Gizmo tool to move the
selected face a little bit down.

Note

In Blender, we don't encourage you to use gizmos as there is a much faster method to move,
rotate, or scale your selection. To move a selection, press the G (Grab) key and, if you want to
constrain your move to a certain axis, press the corresponding X, Y, or Z keys. You can even
hide the Gizmo tool by pressing Ctrl + Space.

The top face moved down in the Edit Mode with the z axis of the Gizmo tool or by pressing the
G + Z shortcut.

Using the basic modeling tools
In the following, you will learn the powerful usage of the main modeling tools of Blender, such as the
Extrusion, Bevel, or Loop Cut tool, while creating your little robot toy.

Modeling the head

We will now use the basic modeling tools in order to form the shape of the head. As you may have
understood, we are going to add new geometry gradually to approximate the shape in 3D. One of the
useful tools is called Extrusion.

Note

What is an extrusion?

This is the process of creating new geometry by extending (and optionally transforming) selected
components.

1. While the top face of the cylinder is selected in the Edit Mode, we will press the E key in order
to create a new geometry from that face. Then, we will need to position and validate the
extrusion.

2. We now have two choices in order to confirm the extrusion. If you want, you can move the
extruded geometry, and after this, press LMB in order to validate its position. The other choice
is to press RMB, in order to place the extruded geometry at the same position as that of the
selected component(s). In our case, we will place the extrusion just over the selected face.

3. We can now scale our extrusion by pressing the S key, and repeat the process of extruding the
top face and scaling it three times in order to have a bell shape. We can always go back by
pressing Ctrl + Z and redo these steps.

4. We can also go into the Edge component mode (Ctrl + Tab), and select the edge loops that came
from the different extrusions by placing the mouse pointer over them and pressing Alt and
RMB.

5. After this, we can move them along the volume by tapping the G key twice.

Shaping the head with extrusions.

Note

What is an Edge Loop?

An Edge Loop is a set of edges that are connected together and form a loop. You can also get
face loops to follow the same principle but with faces. They are essential to construct the shape
of an object.

Modeling the antenna

In order to create the antenna, we will start from the head and detach it later. Follow these steps to create
the antenna:

1. In the head Edit Mode, we will select the top face and extrude it a little bit to make the base of
the antenna.

2. Then we will make an inset from the top face of the base by pressing the I key.

Note

What is an inset?

An inset allows you to add some padding on a face:

3. With the inner face of the inset selected, we are going to repeat the process one more time
(extrusion + inset).

The different steps to model the base of the antenna. A succession of insets and extrusions.

4. After this, we will add the stem of the antenna by moving the cursor to the top of the antenna's
base, selecting the top face, pressing Shift + S, and selecting Cursor to Selected.

5. Now we can add a cylinder in the Object Mode that will pop up on the cursor. This cylinder
will represent the stem, so scale it accordingly and end it with some extrusions that you will
form in a sphere shape by scaling them and following the same process as that of head
modeling.

6. You can also select the top part of the stem and use the smooth option (by pressing the W key
and selecting Smooth) to relax the geometry.

The stem with the different extrusions that we have shaped like a sphere with the Smooth tool

7. We now have an N-Gon at the top of the stem. An N-Gon is a polygon that has more than four
edges. It is considered a bad practice to have these kinds of polygons in a 3D object. We are
going to solve this by going into the top view (the 7 numpad key) and by doing a small inset on
the object in order to maintain the border.

8. After this, we will connect some vertices together in order to have only quads (polygons that
have four sides).

9. Then, we select the two opposite vertical vertices by right-clicking on the first one and pressing
Shift and right-clicking on the second one. Pressing Shift and invoking any selection method
allows you to add new items to your current selection.

10. After this, we join them to a new edge with the J key (to connect the vertex path tool) to
separate the N-Gon into two equal parts.

11. Now we ought to select the two opposite horizontal vertices and join them to form a cross. If
you look closely, we haven't resolved the N-Gon problem yet, because we have four more of
them.

12. As we can't leave them in the mesh, we are going to repeat the process by joining the other
facing vertices in order to have only quads. If you want, you can also use the Knife tool in order
to cut in the geometry by pressing K. With the knife we will have to click on the vertices that we
want to connect together and when we finish, we can press the Return key in order to validate.

13. At this point, we can use the LoopTool add-on that we installed in the first chapter. We can
select the four middle faces (in Face Mode) and use the LoopTool circle option (press W then
select LoopTool | Circle). This allows us to form a circle with the selected components.

14. It's time to detach the antenna. In order to do this, we select the loop at the base of the antenna
(press RMB and Alt) and press V to rip the loop. Blender will give us the choice of moving the
ripped part, but we won't. So we cancel the move by clicking the RMB.

15. Now, we will detach the geometry of the antenna to form a new object. First we deselect all the
components (A), then we move our mouse pointer over the antenna and press L to select the
linked geometry.

16. After pressing the P key and choosing Selection in the pop-up menu, the selected part will be
separated to form another object.

N-Gon correction with the Join tool and the Knife

17. We will have to clear three N-Gons: one at the bottom and at the top of the head, and one at the
top of the base of the antenna. We have decided to resolve them with the previously explained
method.

An introduction to the Subdivision Surface modifier

We will now smooth the geometry of the robot head and the antenna using the following steps:

1. First we go to the left 3D view panel (T), and with both objects selected in the Object Mode,
we click the Smooth button under Shading. This will create a blend between the faces but not
round our objects. In order to round our geometry, we will need to use a modifier called
Subdivision Surface.

2. Let's go into the Properties editor and select the adjustable wrench. Then, we choose a
Subdivision Surface modifier in the Add Modifier drop-down menu. All we need to do now is
repeat the process with each object.

Note

What is a modifier?

A modifier is a tool that applies to the entire object. You can push new modifiers on the
modifier stack of the object where the top modifier will take effect before the bottom one. You
can also reorganize their order using the up and down arrows. You may hide a modifier using
the Eye button. If you want to collapse a modifier, use the left-hand side horizontal arrow. You
can also apply the behavior of the modifier with the Apply button. Always save your work
before doing this.

The stack of three object modifiers. The Subdivision Surface applies over the Mirror and the
Bevel modifier.

3. As you may have seen, the subdivision divides all the polygons by four and tries to do an
interpolation by smoothing them. If you want more divisions, you can increase the View slider
under Subdivisions.

4. The shape looks better but needs to be sharp at some points. In order to do this, we will maintain
a border by adding edge loops with Ctrl + R. The LoopCut tool is very useful; it allows us to
add edge loops where we want and as many as we want.

Note

About the LoopCut tool

To add an edge loop, use the Ctrl + R shortcut and move your mouse cursor perpendicular to
where you want to add a new edge loop. You will see a preview of the new cuts. You can add
multiple loops at the same time by scrolling your mouse wheel or by pressing the + or – keys.
After you have validated the cuts, you will need to position them and validate their location by
left-clicking or right-clicking. The later will center the cuts.

5. We can also sharpen the edges by selecting them and using the Bevel tool. Remember that the
nearer the edge loops are, the sharper the result will be.

Note

About the Bevel tool

The Bevel tool allows you to split one edge into multiple edges. When you activate it with Ctrl
+ B, you can choose the number of splits that you want by scrolling your mouse wheel or by
pressing the + or – keys. You can also decrease the speed of the tool by pressing the Shift key.
As always, you can validate your placement by left-clicking or cancel it by right-clicking.

Improving the head shape

Let's select the head and go into the Edit Mode.

1. From the front view, we will now select the central edge loop. One way to do this is to use the
wireframe mode by pressing the Z key. This mode allows us to see through the mesh and the
selected components that are behind it.

2. We can now use the Box Selection tool with the B key in order to draw a rectangle area around
the vertices that we want to select. If you want, you can hide the antenna and the stem by
selecting them and pressing H (Hide). The Bevel tool will help you to create a thin base in the
middle of the head. This bevel will be maintained with two new cuts. To do this, we can do an
extrusion without moving it (cancel the move with RMB).

3. We can now scale the newly extruded faces on the x axis using the S + X shortcut. The thickness
is added by selecting the inner face loop and extruding it at the same place.

4. In order to push the extrusion according to the normals, we use the Alt + S shortcut.
5. We will also have to maintain the shape of the head by adding multiple edge loops (with Ctrl +

R, for instance).

Note

Save your work!

After all the work you've done, it's very important to save it! To write your blend file to your
hard disk, go to the File menu and press the Save option or use the Ctrl + S shortcut. You can

now choose which directory you want to place it in. A nice trick is to press the + or – key to add
or remove one unit from the name of your file.

The head shape without the antenna.

6. You can unhide the antenna and the stem in the Object Mode by pressing Shift + H.

Modeling the thunderbolts

It's now time to start modeling the thunderbolts; let's have a look at the following steps:

1. We will start by going into the Side Orthographic view (the 3 numpad key) and by placing the
cursor next to the head with a simple left-click.

2. Then we will add a plane and in the Edit Mode we will remove all the vertices with the X key.
3. In the Edit Mode, we are going create a chain of vertices that matches the thunderbolt shape of

the image reference.
4. Pressing Ctrl and LMB, we will add new vertices and create the silhouette of the thunderbolt.
5. In order to close the shape, we select the first and last vertices and press the F key to fill them

with an edge.
6. If you want to add more details to the shape, select two connected vertices and with the

LoopCut tool (Ctrl + R), place a new vertex in the middle of both the connected vertices.
7. We can then select all the vertices (A) and fill the shape with an N-Gon (F) that we are going to

resolve later.
8. We can now add an inset (I) in order to keep an outline.
9. After we've done this, we will have to clean the mesh by replacing the N-Gon with quads using

the join tool (J) or the knife tool (K). If you have one triangle or N-Gon, it's not a problem for
now as it could be solved later.

The thunderbolt shape.

10. We can now add a Subdivision Surface modifier in the Object Mode.
11. We will have to sharpen the spikes using tight bevels.
12. Of course, we will have to clean the mesh by removing the N-Gons.

Maintaining the spikes with bevels.

13. It's now time to extrude the whole thunderbolt by selecting all the faces (A). You may get a
lighting error with black faces. It means that the normals are pointing inward and can't catch the
light. You can verify this by opening the right panel of the viewport (N) and, under Normals,
you can check the face icon. If the normals are not pointing outward, then you will need to
recalculate their direction by selecting all the components and pressing the Ctrl + N shortcut.

14. We can now select the inner faces on the outside of the thunderbolt with either Shift + RMB or
using the C key, which allows you to paint and select the components that you want according
to the current view. With these faces selected we can create a small inner extrusion, and
maintain the shape with the LoopCut tool (Ctrl + R).

The finished thunderbolt with a view 2 Subdivision Surface.

15. In order to mirror the thunderbolt on the other side of the head, we will use a Mirror modifier
with the head as the center of a pivot. Place and rotate the thunderbolts according to the image
reference.

Note

The Mirror modifier

This is an easy way to make a symmetry from your 3D model. The basic symmetry is based on
the positioning of the pivot point and the x axis. All of these are configurable by changing the
axis. It is strongly advised you use the Clipping option if you want to weld the components that
are on the symmetry axis of your geometry. By doing this, you will avoid holes. With the
Mirror Object option, you can choose to base the symmetry axis on the pivot point of another
object in your scene.

16. The last thing we may want to do at this stage is to correctly name our objects in the outline
editor that is situated in the top-right corner of the interface by default.

Note

The outliner

The outliner displays a list of all the entities that make up the current scene. When you select an
object in the 3D view, it will be highlighted in the outliner and conversely. You can rename any
item in the list by double-clicking on its name. The outliner also gives you control of the

visibility of any object with the Eye icon button. The mouse cursor button can be toggled on or
off to allow the selection of the corresponding object in the viewport.

Modeling the eyes

It's time to finish the head of our robot by adding a pair of eyes on it. This is done with the following
steps:

1. In the Edit Mode of the head, we select the edge that is roughly positioned at the eye location.
2. We use a bevel to add more geometry.
3. It is now possible to slide the top and bottom edges of the bevel according to the volume by

selecting them in the Edge Mode and pressing G twice to form an ellipsoidal shape.
4. After this, we can use the F key to fill the eye. It will remove the two vertical edges that come

from the bevel.
5. Now we can do a series of insets and extrusions to pop out the eye.
6. Applying the same method to the other side, we will add a little cartoon effect.
7. As always, we now need to clear the geometry by removing N-Gons using the knife.

Modeling the chest

It is time to model the chest. The following steps will help you do so:

1. Now we put the 3D cursor at the center of the space (Shift + S), then we add a box (Shift + A)
for the base shape of the chest.

2. We can adjust the position under the head (G + Z) in the front view, and switch to the Edit
Mode to start the modeling.

3. It is much faster to work with the symmetry, so we are going to cut the cube at its center with an
edge loop (Ctrl + R). We select all the vertices on the left-hand side with the box select tool
(Ctrl + B) in the wireframe shading mode (Z) and we delete them (X).

4. In the object mode (Tab), we add a mirror modifier to work with symmetry.
5. More polygons can be added to create the basic shape of the chest. We, therefore, add two

vertical edge loops (Ctrl + R and scroll the mouse wheel up) from the side view and slide these
on the y axis (S + Y).

6. Next, we move the polygon situated at the center of the chest from the side view (G + X) and
add another vertical edge loop from the front view.

7. In the orthographic (5) front view (1), and with Wireframe (Z) Shading activated, we can easily
work the shape by moving (G) and rotating (R) the selected vertices (refer to 2 and 3 in the
following screenshot). Then we move the top face up a little (G + Z).

8. We can see that our central edge loop is not very well aligned in the front view. Therefore, we
select and replace it by applying a zero scale on the x axis (S + X + 0 on the numeric keypad),
which perfectly aligns our selected vertices.

9. In order to have a less angular shape, we are going to activate the edge mode and select the
edges at the top and bottom of the chest (press Shift + Alt and the LMB) to finally do a bevel
(Ctrl + B) (refer to 5 in the following screenshot).

10. To balance the polygon flow of the mesh, we add a horizontal edge loop to the center (Ctrl + R)
that we will extend with the Scale tool on the y axis (S+Y) (refer to 6 in the following
screenshot). The goal is to use the maximum area of the drawing as a reference. Always
remember to check the silhouette of your object.

11. For a more curved shape, we will use Proportional Editing that can be activated by the small
circle icon located at the header of the 3D view.

12. The Proportional Editing tool will help us to shrink the side of the bust. Be careful to check
the behavior of the clipping option of the mirror modifier for the vertices located on the axis of
symmetry. They don't have to be merged at the center. To smooth the model, we will add a
Subdivision Surface modifier and will check the Smooth Shading option in the Transform
panel (T) in order to remove the flat aspect of the polygons.

Note

The Proportional Editing tool

This allows you to change the shape of an object in the Edit Mode in a smooth manner. It acts
like a magnet for unselected components that are inside a circle of influence that you can adjust
by scrolling the mouse wheel. This is perfect when you want to move a set of components and
when the geometry is too compact.

The Connected option allows you to limit the scope to the geometry connected to the selection.

The Falloff option offers a series of attenuation curve profiles.

13. With some bevels and additional edge loops, we will just sharpen some curves (refer to 7 and 8
in the following screenshot).

14. To flatten the top a little, we will select the highest faces and scale them on the Z axis with the
Proportional Editing tool turned on. (S+Z and O).

15. From the bottom view, we use the Knife Topology tool (K) to change the organization of our
vertices, edges, and faces (refer to 9 and 10 in the preceding screenshot). The process of
arranging the components in the order that they best fit the shape is called "searching for a good
topology". An easy way to grasp good topology is to remember that the edge loops are going to
wrap around the object you want to create. Another thing that we already talked about is using
only quads because they are easier to manage.

16. We form a loop to allow a better subdivision of the surface. Other edge loops can be added
again horizontally and vertically to add details.

17. Then we switch to Face Mode and select six faces on the side of the bust in order to round them
off with the LoopTools Circle feature (press W and select LoopTool | Circle) (refer to 11 in the

following screenshot). We can choose the influence of this tool at the bottom of the left panel
(T). A value of 80 percent will best fit here.

18. Then we adjust the angle of these faces with a rotation on the X axis (R + X). To quickly select
polygons, we advise you to use the Circle Select (press C and the LMB) tool, which is used like
a brush.

19. We do a small inset (I) to sharpen the geometry at the location of the shoulders.
20. We continue to move some vertices (G) here and there to gradually round the shape, and we

adjust sets of vertices by rotating them (R). It is important to always navigate around your object
to have the correct silhouette from different points of view. This is the essence of 3D modeling.

21. If you want more sharp edges, you can add a few edge loops (Ctrl + R) around them. Remember
to use the smoothness parameter of the LoopCut tool (a value ranging from 0 to 1) in the left
panel (T).

Modeling the neck

Still working on the bust in the Edit Mode, we will again flatten the top part of the bust and more
precisely the area.

1. We start with the neck by selecting six polygons and scaling them on the z axis (S + Z + 0 on the
numeric keypad).

2. These faces will be arranged in a circle with the LoopTool Circle (by pressing W and selecting
LoopTools | Circle) (refer to 1 in the following screenshot).

3. Then we make a very light extrusion (E) to hold the lower part of the neck.
4. Afterwards, we continue with another extrusion that penetrates in to the head.
5. In the Wireframe Shading mode, we remove the nonvisible face that is inside the head, which is

useless.
6. Then we add two loops cuts (Ctrl + R and press MMB) (refer to 2 in the preceding screenshot)

that we will divide into thinner edge loops with a slight bevel (Ctrl + B). These newly created
face loops will be extruded (E) and scaled on the x and y axes (S + Shift + Z) (refer to 3 in the
preceding screenshot).

7. As always, we will maintain the shape by adding edge loops with the LoopCut tool (Ctrl + R).
8. We end with a small extrusion (E) at the bottom to get the neck demarcation.

Modeling the torso

We will now work on the torso, which shares essentially the same modeling techniques as the neck. This
will be done as follows:

1. We now snap the cursor on a vertex that lies on the symmetry axis of the lower part of the chest
by opening the Snap floating menu with Shift + S. We select the fourth option.

2. We add a new cylinder (Shift + A) with 16 vertices (the number of vertices could be changed in
the left panel by pressing T). By choosing this number of vertices, we get a cylinder that can be
mirrored at its center and that has enough faces. We place the cylinder under the chest and we
remove the top face that is not visible.

3. Next, we select the top edge loop and we change its scale on the x axis (S + X) and the bottom
one on the y axis (S + Y).

4. We add two edge loops (Ctrl + R), add a bevel (Ctrl + B) to each of them, and finally, extrude
(E) them inside (refer to the neck section).

5. We will round the lower part of the torso with a series of extrusions.

6. To get a smooth surface, we again need a Subdivision Surface modifier with the Smooth Face
Shading option (Left panel: T).

7. We sharpen the edges with some edge loops (Ctrl + R).
8. Then, we clear our topology by solving the N-Gon with the same technique that we've used for

the head.

Modeling the buttons

If you have followed the techniques used previously, the buttons are quite easy to make. The following
steps are used to create the buttons:

1. We add a cylinder (with 16 vertices again), which we adjust in size and rotation with the Scaling
(S) and Rotating tool (R). You can have a Free Rotation in all axes by pressing the R key twice.
Don't forget this tool; it is very useful for aligning objects from a certain point of view!

2. We define the shape with a bevel at the top and an inward and outward extrusion.
3. We sharpen the shape with the LoopCut tool (Ctrl + R) and the Bevel tool (Ctrl +B).

4. The basic shape of one button can be achieved with only these tools (Extrusion, Bevel, and
LoopCut).

5. In the Object Mode, we duplicate this with the Duplicate Linked tool (Alt + D).

Note

The Duplicate Object (Shift + D) and the Duplicate Linked (Alt + D) tools

These both duplicate objects or components. The Duplicate Linked tool creates an instance of
the object while in the Object Mode. The mesh data are connected. It means that, in the Edit
Mode, any change of geometry will be reflected on the linked objects. However, the
transformations done in the Object Mode are not reflected. If you want to break the link
between two linked objects, press U (in the Object Mode) – Make Single User – Object &
Data.

6. We will add a mirror modifier on each button. In the Mirror Object option, we select the torso.
It will serve as the origin for the symmetry.

Modeling the fork

Now that we have finished the body, we will model the fork that covers the wheel, with the following
steps:

1. In order to do this, we place the cursor to the right in the front orthographic view and add a
cylinder (Shift + A).

2. In the Active tool options, we change the Cap Fill Type to Nothing. Our cylinder will have
holes at the bottom and at the top.

3. Then we scale it in the Object Mode and rotate it with the R key, always in the front view for
greater precision.

4. We can now add a Subdivision Surface modifier and apply Smooth Shading.
5. As always, we will maintain the shape with edge loops in the Edit Mode.
6. We select the outer edge loop and, pressing Ctrl and LMB, we extrude the fork in a twisted arch

manner. This is the same tool that was used for the thunderbolt creation.

7. The last edge loop should be flattened on the x axis. To do this, we select it and press the S + X
and 0 numpad key shortcut to constrain our scaling on the x axis and give it a value of 0.

Flattening the last (inner) edge loop.

8. We will mirror the half fork to the other side using a mirror modifier. But if we do it right now,
we will have a problem with pivot point placement. We have to move the pivot of our object to
the same location as our body. To do this, we select the body and using the Shift + S command,
we select the fourth option, Cursor to Selected (Note that, in any floating menu, you can
choose the option that you want by typing the corresponding key on your numpad).

9. Now that the cursor is placed at the pivot point of the body, we will map the origin (also called
pivot) of our fork by selecting it and going to the Object menu in the 3D view header and
selecting Transform | Origin to 3D Cursor. You can also get a pop-up menu with the same
options as that of the Transform menu with the Ctrl + Alt + Shift + C shortcut (one of the
longest in Blender's history). Our origin is at the same location as that of the body.

10. Now, we apply the rotation by pressing Ctrl + A and selecting Rotation. Applying the rotation
is important here because we changed it in the Object Mode.

11. We can now safely add a Mirror modifier.
12. At this point, we will add a temporary cylinder that will represent the wheel. This will help us to

correctly place the fork.
13. If you want to adjust the thickness of the fork tube, use the Alt + S shortcut to push the polygons

along the normals.

The fork in the Edit Mode, with its mirror modifier and the temporary wheel.

Note

About the origin/pivot

The origin, also called the pivot, is represented with a small origin circle in Blender. It
determines the center of the mass of an object. Any rotation or scale modifications will take the
origin into account by default. You can change the way these transformations work by using the
Pivot Point drop-down menu in the 3D View header (next to the Shading drop-down menu).

We will revisit the fork later. It's now time to create protections that cover it.

Modeling protections for the fork

In order to model this piece, we go inside the view by pressing the 3 numpad key and perform the
following set of operations:

1. We add a plane, and in the Edit Mode, do an inset.
2. After this, we add a loop cut in the middle with Ctrl + R and scale it on the z axis by pressing S

+ Z.
3. With the two outer vertices of the top selected, we do a scale constrained on the x axis. This will

give us a pointed shape.
4. After this, we do a bevel of the center edge loop and add loop cuts horizontally and vertically.

5. We will then round the lower part of the shape. While the two middle edge loops are selected,
we go inside the orthographic view and, with Proportional Editing (O) using a sphere curve,
we move the vertices back to round the shape.

6. We can now place the piece near the fork in the Object Mode and, with the wireframe shading
activated (Z) in the Edit Mode, we can adapt its silhouette by following the fork shape.

7. It's now time to use Smooth shading and the Subdivision Surface modifier in the Object
Mode. We will add a new modifier that will add thickness to the object as if we were extruding
it entirely. This modifier is called the Solidify modifier. You can tweak its Thickness slider to
change the amount of thickness that you want. This modifier will be placed under the
Subdivision Surface in order to be applied to it. If you now go into the Edit Mode, you will
see that it has added a new geometry.

8. You can maintain the newly added thickness with loop cuts.
9. We added some details on the side using the Inset tool and by extruding the created faces.

10. We will now combine protections with the fork. To do this, we first select the protection and
then the fork, and by pressing Ctrl + J we will join them in one mesh. As a result, the protection
is mirrored because it is inside an object that has a mirror modifier. Note that, if you reverse the
order of selection, you will join the fork in the protection. That's not what we want.

11. Going back to the fork, we can add decorations to it by adding two edge loops near the top.
12. We can extrude the face loop between these edge loops and scale them according to the normals

with E and Alt + S.
13. Of course, we can sharpen the edges with the LoopCut tool.

The process of modeling the protections and the final result with the fork.

Modeling the main wheel

We will start modeling the wheel with the temporary cylinder that we have placed in the fork section.
There are many methods to do this. We will do this here with the same tools that we introduced to you
before.

1. We will resize the wheel by enlarging it on the y and z axes (press S + Shift + X). When you
press Shift and click on any axis during a transformation (rotation, scale, or grab), it will remove
the constraint on that axis.

2. We then place our cylinder at the center of the forks.
3. Before you enter the Edit Mode, consider applying the rotation and the scale (press Ctrl + A

and select Scale and Rotate) to avoid unpleasant surprises.
4. In the Edit Mode, we add an edge loop at the center (Ctrl + R) and remove the faces on the left-

hand side (press X and select Delete faces).
5. Then we can add a mirror modifier with the clipping option activated.
6. In the Edges Mode, we add several loop cuts using a Bevel (press Ctrl + B and scroll the mouse

wheel up) on the outer edge of the wheel (refer to 2 in the following screenshot), then a
succession of insets and extrusions to form the side of the wheel. To work more easily on this,
we will enter the Local Mode by pressing the slash key (/). This is like hiding all the other
objects. If you want to leave the Local Mode, press the slash key again.

7. A Subdivision Surface can be added.
8. The N-Gon will also be transformed in quads on the side with the Vertex Connect Path (J) (refer

to 4 in the preceding screenshot).
9. We will round the wheel by adding an edge loop to the center of it from the front view.

10. After this, we will add some grooves. For this, we will add five edge loops vertically on the
front of the wheel (refer to 6 in the preceding screenshot). We will set the smoothness option to
1 in the last active tool panel in order to place the grooves without destroying the curve profile
of the wheel.

11. Then we add a Bevel (Ctrl + B) and push its resulting faces by doing an Extrude (E) with a
scale based on the normals (Alt + S).

12. Then we accentuate every stripe with the LoopCut tool (Ctrl + R).

Modeling the arm

The arm is composed of four objects: the shoulder, the articulation ball, the arm, and the wheel. We will
review the previous techniques by always focusing on the topology. Let's begin with the shoulder.

1. We will start with the arm articulation. For this, we simply add a cylinder that will be placed at
the right shoulder location (refer to 1 in the preceding screenshot). It must be correctly oriented
with a rotation (R) and flattened in the Object Mode with the Scale tool (S). When doing this,
remember to constrain on the correct axis of transformation. To do these manipulations, it is
better to be in orthographic view. Whenever we transform an object in the Object Mode, we
don't forget to apply these transformations (Ctrl + A).

2. Then, we do a series of extrusions (E) in the Local Mode (/) and remove the face that enters the
chest and thus will not be visible. Avoiding polygons that are not displayed is a good practice.
Not doing this might lead to wastage of your computer resources and this is especially true for
complex scenes with many polygons.

3. We can add details by digging a face loop (extrude and scale on the normals with Alt + S),
which can be created with two edge loops (refer to 2 in the preceding screenshot).

4. We add a Subdivision Subsurface modifier and we apply Smooth Shading.
5. Then we extrude the tip that will hold the articulation ball. This extrusion will be flattened on

the x axis (S + X + 0 numpad key) (refer to 3 in the preceding screenshot).

6. We add a sphere by placing the cursor in the middle of the last edge loop right at the tip of the
articulation (press Shift + S and select Cursor to Selected).

7. The cursor is in the right place within the Object Mode, so we add a UV sphere (Shift + A). We
lower the number of segments to 16 and the number of rings to 8 in the last active tool panel.

8. We add a Subdivision Surface and apply a Smooth Shading.
9. We can delete the two vertices that are located on either side of the sphere as they will be hidden

by other objects (press X and select Delete vertices).
10. We place the cursor at the center of the sphere and add a cube.
11. We need to resize the cube and then, in the Edit Mode, we move the top and bottom faces on

the z axis (G + Z) to set the height of the arm (refer to 4 in the following screenshot).
12. With the bottom face selected, we make a scale on the Y axis (refer to 5 in the following

screenshot).
13. We select the external edge of the top face and slightly move it on the x axis (refer to 6 in the

following screenshot).

14. We add an edge loop to the center (refer to 7 in the preceding screenshot) in the side view and
round the shape by slightly moving it upwards.

15. Then, we add a vertical edge loop in the front view in order to add the needed geometry for the
protection of the wheel with an extrusion (refer to 8 in the preceding screenshot).

16. We now select the two right faces from the bottom view (Ctrl + 7).
17. We scale the faces slightly.
18. We will round the profile of the arm by selecting the middle edge loop and by pushing it along

the normals (Alt + S).

19. It's time to add our lovely Subdivision Subsurface modifier and remove the flat shading. As
always, we will maintain the sharp angles with a couple of edge loops.

20. We will then select the four inner faces of the hand and do an inset. This will create a face loop
delimiting the inner part of the hand. These inner faces will then be extruded inward in order to
create the hole that will keep the wheel.

21. We will then do an inset of the external faces of the arm.
22. These faces will then be extruded to create a small thickness.
23. It's now time to add the cylinder primitive of the hand.
24. We place it at the right location and change its size. As always, we will apply the transformation

(Ctrl + A).

25. It will be easier to model the wheel with a mirror modifier. So we will cut the cylinder into two
equal parts (Ctrl + R), and we will remove the left side of it to add the Mirror modifier with the
clipping option checked on.

26. With multiples insets and extrusions, we then construct the wheel while in the Local view (/)
(refer to 18 in the following screenshot).

27. We will again use the subsurface modifier with the Smooth Shading option.
28. After we have shaped the silhouette of the wheel, we will add asymmetric details on its left-

hand side by applying the mirror modifier. Add a hole here with your best friends: the Inset and
Extrude tools.

29. We will then fix the hand to encapsulate the wheel in it with precision. For this, we will use
Proportional Editing.

30. Maybe you've seen that there are bad tensions in the right-angle form of the hand and the arm
due to the Subdivision Surface modifier. These kind of artifacts warns you of a bad topology.
So we will, of course, find a way to correct this. To do this, we use the Knife tool (K) and we cut
by following the hand outline (refer to 16 in the preceding screenshot).

31. We can use the Merge tool (press Alt + M and select At center) in order to merge the two
vertices that are part of the newly created triangle.

32. We will also close the newly created N-Gon with the Vertex Connect Path tool (J).
33. The Bevel tool will be useful to maintain the inner border of the hand.
34. We will now mirror the arm, its clip, and its wheel in the Object Mode with the mirror modifier

using the chest as the mirror object.
35. You can always push your modeling further by adjusting the transformation of each part and by

adding details with the tools that we have introduced you to (such as the LoopCut tool, Extrude,
and Scale along the normals).

All the parts of the robot are done now! Congratulation!

Using Blender Internal to render our Robot Toy

We will now select the camera of our scene, and in a new 3D editor, we will see through it. To do so,
we'll perform the following set of steps:

1. We will split the 3D view, and in the newly created editor (which should be 3D view), we will
press the 0 numpad key.

2. We can move or rotate the camera like a normal object. Notice that the camera is shaped like a
triangle. This represents the field of the view of your camera. If you want to place your camera
while navigating around the robot, you can press the Ctrl + 0 shortcut.

3. Now that our camera is correctly placed (that is, focusing on our robot), we can try to render the
scene. We will do a very basic render by activating Ambient Occlusion in the Additive Mode.
This option is located under the World icon button in the Properties editor. You just need to
check the corresponding check box.

4. In order to do a render, we will press the F12 key or go to the Camera icon button in the
Properties editor and press the big Render button. Blender will automatically switch your
current 3D View to a UV/Image Editor that will show you the calculated image. You can, of
course, switch it back to a 3D view as we showed you in the first chapter.

You've now completed the Robot Toy project!

Summary
In this chapter, you learned to use the main modeling tools in Blender. You will keep learning about the
other ways of modeling in the next chapters. Polygons can be seen as virtual clay. There are some rules
to follow, but as soon as you know them, you will be free to model everything you wish

Chapter 3. Alien Character – Base Mesh
Creation and Sculpting
In this chapter, you will discover a new way of modeling 3D objects with the powerful sculpting tools of
Blender.

We will start with an overview of the sculpting process including brush settings and how to optimize the
viewport. We will then create a base mesh with an amazing tool that Blender offers called the Skin
modifier, which follows the concept art of an alien character.

Afterwards, we will sculpt the character using the tools that we had previously introduced and learn
more about their usage in the different cases that are required for our character.

As sculpting is an artistic process, you will also learn about proportions and anatomy.

Let's jump to another planet! This chapter will cover the following topics:

• Understanding the sculpting process
• Optimizing the viewport
• Learning about and using brushes
• Creating a base mesh with the Skin modifier
• Using Dyntopo
• Understanding the basics of anatomy and proportions

You will start the sculpting of the following alien character (shown on the right) using a sketch as a
reference (shown on the left). This is done with Krita (an open source tool for 2D art).

Understanding the sculpting process
Before starting to sculpt our alien, we will take some time to understand what this means and what the
advantages are of using this modeling method. We will then give an overview of the basic tools that
Blender has to offer.

An introduction to sculpting
Before the introduction of sculpting in the 3D world, there was only the polygonal modeling method
(the method that we've used in the second chapter) that takes more time when creating organic shapes.
The goal of sculpting is to have more freedom while modeling. The process looks a little bit like real
sculpting art, but in this case we sculpt over a 3D mesh (our digital clay). When sculpting in Blender, we
use brushes as tools that act on the mesh. There are many brushes that have different behaviors such as
digging, moving, or pinching.

Choosing sculpting over poly modeling
Sculpting allows us to think more about the shape of the object and less about its technical part, such as
its topology. So, the goal of this method is to really concentrate on the design part of the object. We
won't see the vertices, edges, or polygons. The technique is more efficient when the goal is to reach an
organic object. When you model with the tools that we have previously shown to you (the poly
modeling method) you need to keep the topology in mind while researching the shape, and it is even
more complicated when you have finer details. So what if we want to have a good topology with a
sculpture? We have to do a retopology, but you'll see this in the next chapter

Using a pen tablet

When we modeled the Robot Toy in the previous chapter, we used a mouse. While we are sculpting, it's
pretty hard to use a mouse because it is not precise according to the process. This is why we use a pen
tablet that gives the sensibility needed to get the right shape. It takes some time to get used to this, but
with practice you will have more control over your sculpture.

In order to navigate with the pen tablet in the 3D viewport, go to the User Preferences panel (Ctrl + Alt
+ U) and check the Emulate 3 Button mouse option. We will now be able to use the Alt key to
navigate. Refer to Chapter 1, Straight into Blender! for more precise details.

It's also a good thing to check the Emulate Numpad option in order to be able to switch views with the
keys that are above the QWERTY keys.

A pen tablet with its stylus

The sculpt mode

In order to access all the tools needed for sculpting we need to go into the Sculpt Mode. The Sculpt
Mode won't let us access the components of our mesh as in the Edit Mode, and we also won't be able to
apply transformations on our objects as in the Object Mode. To switch to the Sculpt Mode, we select it
in the drop-down menu located in the header of the viewport. As you can see, it is in the same place as
the Edit Mode and the Object Mode.

Optimizing the viewport

Sculpting usually takes more resources than poly modeling because the number of polygons will quickly
increase each time you want to add details. This is why we need to activate some settings that will boost
our viewport. This is done as follows:

1. The first setting that we will check is located under the System tab in the User Preferences
window (Ctrl + Alt + U) and it is called VBOs. It is used by OpenGL (the rendering API used
by Blender) to better organize the data displayed on the screen.

2. In the Options tab, under the Options subpanel in the left panel of the viewport (in the Sculpt
Mode), we will activate the Fast Navigate option.

3. We will also ensure that the Double Sided option is turned off. To do this, we can use a nice
little add-on called Sculpt Tool. After the add-on is installed, on the Sculpt tab of the left panel
of the viewport we now have the Double Sided Off option. Note that you can always access any
option by pressing the Space key in the viewport and by typing the name of the tool that you
want.

4. Later, when we sculpt our objects, we don't want to have something else other than our objects
in the viewport. So we will deactivate the grid, the gizmos, and any other viewport information
that we don't need.

5. In order to do this, we will go to the right panel of the viewport. We can open this by pressing
the N key, and under the Display subpanel we will check the Only Render option.

6. By checking this option, we will simply deactivate all the options that are below the Only
Render option, such as Outline Selected that consumes a lot of resources of the viewport.
Remember this option as we will toggle it on or off depending on our needs.

Anatomy of a brush
As previously mentioned, we will use a lot of brushes that behave differently in order to sculpt our alien.
In this section, we will take our hands over the settings that are shared between all the brushes with the
Sculpt/Draw brush as an example. Let's perform the following set of steps:

1. In order to do our experimentation, we will use a Cube primitive. In the Object Mode, we place
our cursor at the center of the scene (Shift + C) and we add a Cube (Shift + A). Note that you can
use the one placed by default in any new scene if you want.

2. The Cube has a low polygonal resolution so we will have to subdivide it by going in to the Edit
Mode, select all its components, and use the Subdivide Smooth option under the Specials
menu (the W key). We will repeat this action six times in order to have a good density of
polygons.

3. In the Sculpt Mode, we will then select the Standard brush (if not already selected) in the left
panel of the 3D viewport by clicking on the brush icon button under the Tools tab (refer to 1 in
the following screenshot).

4. We can now draw on the subdivided cube. As you can see, it pushes the geometry. This is
because our brush has the Add option activated by default. If we want to go deeper, we will
need to switch to the Subtract mode. The Subtract option simply reverses the behavior of the
brush. Both the options are placed under the Brush subpanel in the Tools tab (refer to 2 and 3 in
the following screenshot). It's not very convenient to click on buttons in order to do such a
simple manipulation, so we encourage you to use the Ctrl key while sculpting on your mesh to
switch between these modes.

5. As you may have seen, we are not really precise because of the size of our brush.
6. In order to change the size, we will use the corresponding slider under the brush icon called

Radius (refer to 4 in the following screenshot). We can (and recommend this to you) use the F
key as a shortcut.

7. Now that we have more control over the size of our brush, we will change its Strength under
the Radius slider (refer to 5 in the following screenshot). We can use the Shift + F key as a
shortcut. As you can see, on the right-hand side of both sliders (Strength and Radius), there is a
little icon that allow us to use the pen tablet sensitivity in order to dynamically change these
options. We will only use this for the Strength option, so when we lightly press on the pen
tablet, we will have less strength than if we were pressing it harder.

Brush options

8. Another interesting thing that we can set for our brushes is Texture (also called an alpha). An
alpha is usually a black and white image that is useful while adding details such as skin pores or
patterns to an object. When an alpha is added to a brush, the black pixels will remove the brush
behavior during sculpting. To import an alpha, we will first need to go in the Textures subpanel
of the Properties panel (on the far left of the interface, by default) and click on the third icon (a
checker pattern) (refer to 1 in the following screenshot).

9. We can now add a new texture, and under the Image subpanel, we can open an image. We can
now go under the Textures subpanel of the Tools tab in order to select our newly imported
texture (refer to 2 in the following screenshot).

10. If we want, we can also change the repetition of our alpha by changing the X, Y, and Z size
sliders (refer to 3 in the following screenshot).

Adding a Texture (alpha) to our brush

11. The last setting that we will test is the Curve profile of our brush. The curve of the brush is
located under the Curve subpanel in the Tools tab. Changing the curve profile allows us to
change the behavior of the brush. For instance, with our current brush, Sculpt/Draw, if we click
on the last icon (the flat curve) under the curve, we can see that the brush is harder while
sculpting over our cube.

12. To understand this setting better, imagine that this is half of the profile of a real brush (see the
following screenshot). We can select each point that composes the curve and move it to change
the curve profile. We can also add a new point on the curve by clicking anywhere on it. When a
point is selected, we can remove it by clicking on the X button. This curve is called a Bezier
curve, so we can also change the smoothness of a point using the Tool icon and choosing the
handle type that we want.

A modified curve of a brush.

Dyntopo versus the Multires modifier

In order to test our brush settings, we subdivided our cube by hand but it's not practical while sculpting
an object because we didn't have enough control over the subdivision. In order to have control over our
mesh, Blender gives us two main methods, the Multires (a.k.a. Multiresolution) modifier and Dyntopo.

First touch with the Multires modifier

The Multires modifier is added to the modifier stack of an object and allows us to maintain subdivision
levels of sculpture. For instance, we can sculpt at a low level (with a low resolution), and the details will
be transferred to the higher levels and vice versa. We will test it right now! This is done as follows:

1. We will first create a new Blender file (by navigating to File | New) and then with the default
cube selected, we will go to the Properties panel in order to add a Multires modifier.

2. We will subdivide our cube six times with the Subdivide button (refer to 1 in the following
screenshot). If we were using a Subdivision surface modifier, our cube will be rounder. To test
this out, we can go into the sculpt mode and start sculpting our cube with the Draw brush.

3. We can now move between the different subdivision levels with the Sculpt slider of the
Multires modifier (refer to 2 in the following screenshot). As you can see, we don't lose our
sculpted information while changing levels, we are just changing the amount of details of the
object. Of course, when you are at a lower level, you won't have as much detail as at the higher
levels. The goal of all of this is to give you the possibility of changing the main shape of your
sculpture at a low resolution without overwhelming yourself with all the details that you have
sculpted at the higher levels. So don't try to add details too early in order to get the shape right
and progressively increase the subdivisions.

The Multires modifier with an example of three different levels of subdivisions

First touch with Dyntopo

The Dyntopo method will generate details according to the amount that we choose. The geometry will
be subdivided when we sculpt an object and will be located where we have placed our mouse pointer.
We will be using this method for our alien soon, so let's test this to get used to it:

1. We will first create a new Blender file (by navigating to File | New).
2. The cube is a little bit low in resolution, so we will subdivide it twice with the Subdivide

Smooth option (the W key).
3. In the Tools tab, under the Dyntopo subpanel, we can activate Dyntopo by clicking on the

Enable Dyntopo button. Our cube will now be converted to triangles (this is not a problem
because remember, while sculpting an object, we don't care about its topology, we care about its
shape). If you want to look at the wireframe of the object, use the Z key or simply go into the
Edit Mode.

4. By default, we are in Relative Details as you can see in the second drop-down menu. This
option means that the amount of detail will be proportional to the distance of your working
camera view. If we sculpt near the object, the amount of detail will be much more important
than if we sculpt far from the object.

5. This method is nice, but there is another method that allows us to control the amount of detail
without caring about our distance from the object. This is the constant details option (we will
use this one for the alien). We can change from Relative details to Constant Details in the
Sculpt details drop-down menu.

The Dyntopo settings

6. As you can see, we now have the detail size slider expressed by a percentage that allows us to
change the amount of detail that our brush will generate on our mesh. With a small percentage,
we will have finer details and vice versa.

A Dyntopo mesh with different levels of sculpted details.

Creating a base mesh with the Skin modifier
Before we sculpt our alien, we need to have a base mesh that has roughly its proportions. If you want,
you can use the methods that you've learned in the previous chapter in order to model it, but here we are
going to use a cool modifier that Blender has to offer: the Skin modifier. Its goal is to create a geometry
around each vertex. We can simply extrude some vertices as if we were doing a real wire armature, and
the Skin modifier will add volume around it. For each vertex, we have control over the volume size.
Let's start our base mesh:

1. We will start by entering in to the Edit Mode of our default cube. Then we will select all the
vertices (A) and merge them to a sole vertex at the center (press Alt + M and click on the center).
We now have our root vertex that will be the pelvis of our alien.

2. It's now time to add a Skin modifier to our object in the modifier stack. As you can see, our
vertex is controlling a new geometry around it. The geometry is low, so we will add a
Subdivision surface modifier on top of the Skin modifier in order to have a smoother look. As
you may have seen, the vertex has a red circle around it. This means that it is the root of our
armature.

3. We can now extrude our vertex (E) on the Z axis in order to start the torso of our alien.
4. Now we will add a Mirror modifier with the Clipping option turned on. This modifier needs to

be placed before the Skin and Subdivision Surface modifier (use the up and down arrows to
move it to the first place). Ensure that the vertices that are on the symmetry axis are merged.

5. We can now select the top vertex (the base of the neck) and extrude it by pressing Ctrl and LMB
to the right in order to create the shoulder. Be careful with the position of your vertex as the
topology generated could be bad. Always try to move your vertices a little bit in order to see
whether you can't have a better topology.

6. We will now change the size of the volume that has been generated around the shoulder vertex.
To do this, we will use the Ctrl + A shortcut and we move our mouse to adjust it.

7. We will then extrude the arm. In order to give a more dynamic shape, we will bend it at the
elbow. We then adjust its size. At this point, it is very important to match the proportions of the
concept. Proportions means the length and size of the different members with respect to each
other. If you need to constrain the size or change the volume on a certain axis, you can press
Ctrl + A + X, Y, or Z.

8. Let's extrude the long neck of our alien.
9. It's now time to add the legs of our alien. We will do this by extruding the pelvis vertex at a 45

degree angle (press Ctrl and LMB). Then we extrude the leg and adjust its profile by changing
the size of the different vertices (Ctrl + A). As we did for the arm, we will bend the leg a little
bit at the knee location. Note that the pelvis vertex should be always marked as the root of the
armature. If this is not the case, select it and in the Skin modifier, press the Mark Root button.

10. The foot will be then extruded and resized. We can create the heel by simply extruding the ankle
vertex to the back. The ankle vertex needs to be marked as Loose in order to have a nice
transition with the front and the heel of the foot. To do this, we select it and use the Mark Loose
button in the Skin modifier.

11. It's now time to create the hand by extruding the wrist vertex. From the new vertex, we will
extrude three fingers that will be rescaled appropriately. Note that the thumb is at a 45 degree
angle from the other fingers. To add a more dynamic feeling to the hand, we will slightly bend
the fingers inwards.

12. We will then extrude the base of the neck. From the newly created vertex, we can extrude the
head vertex that will then be the base for the chin and the cranium.

The steps of the base mesh creation with the Skin modifier.

13. We can now apply all our modifiers from the top to the bottom of the stack.
14. If we enter in the Edit Mode, we can see that some parts are very dense. This is why we are

going to remove some edge loops from certain parts such as the fingers. However, rather than
doing this for both sides of the model, we are going to split the mesh in two and add a mirror
modifier. To do this, we first need to ensure that there is a symmetry axis in the middle of our
mesh. If this not the case, you can use the knife tool (K) to create it. Then we can delete half of
our model and add a mirror modifier as we did in the previous chapter. We can now select some
edge loops where there is a lot of condensed geometry by pressing Shift + Alt and the RMB, and
by pressing X we can delete them (delete the edge loops, not the vertices or faces).

Removing some edge loops of the dense parts.

15. The base mesh is now ready to be sculpted.

The final base mesh

Visual preparation

While sculpting, it's nice to use Matcap. It is simply an image that will be projected on your mesh in the
viewport and that looks like a material. For instance, you can use a Matcap that reminds you of clay.
Let's begin with our sculpting:

1. To set up a Matcap for our mesh, we will have to set up the default material of our mesh in the
Properties panel under the Material tab (refer to 1 in the following screenshot). Note that if you
can't see a material, you can press the New button.

2. Now we will check the Shadeless option under the Shading subpanel (refer to 1 in the
following screenshot).

Creation of a new material with the Shadeless option.

3. As we have said before, a Matcap is an image, so we will import our image as the texture of our
material. To do this, we go to the Texture tab (refer to 3 in the following screenshot) and we
add a new texture by clicking on the New button. In the image subpanel, we will click on the
Open button (refer to 4 in the following screenshot) and we choose our Matcap image.

4. A Matcap is mapped to a mesh according to its normals, so in the Mapping subpanel change the
Coordinates from UV to Normals (refer to 5 in the following screenshot). We will also adjust
the size of our projection by decreasing the X, Y, and Z size sliders to 0.95 (refer to 6 in the
following screenshot).

Setting the Matcap image texture for our material

5. In order to see our Matcap in the viewport, we will replace the Multitexture display mode with
GLSL in the right panel of the 3D view (N) under the Shading subpanel.

6. Last but not least, we will go into the Shading mode under Texture Viewport using the
corresponding drop-down menu in the 3D view header. You can also use the Alt + Z shortcut to
quickly switch to this mode. Our Matcap is now perfectly set up!

Setting the GLSL display mode in the right panel of the viewport (N).

An introduction to artistic anatomy
Before continuing with the alien creation, some basic knowledge of anatomy can be very useful. It is a
basic discipline for a character artist. Don't worry, we will clarify the concerned parts of the body for
each step with illustrations.

Of course it is an alien, so we can accept the fact that we don't always have to respect human anatomy
for specific parts. He has a huge head, only two fingers and a thumb, and very different feet. His
humanoid appearance imposes some anatomical likelihood. This is especially useful if you plan to
animate it later on. Improving your knowledge of this topic will help you to understand the movements
and postures better.

In the early 16th century, Leonardo Da Vinci was one of the first artists who tried to understand the
human anatomy. While religious obscurantism prohibited the examination of corpses, he dared to defy
this. By dissection and observation, he did many illustrations detailing the positioning of muscles, joints,
nerves, and organs.

It won't be necessary in our case to know the scientific names by heart. It's rather important to know and
understand their general forms. Overall, it's more about the comprehension of human body mechanisms.

Note

Many good books treat this subject. For more information, you can have a look at these websites:

• http://md3dinc.com/
• https://www.anatomy4sculptors.com/
• http://www.3d.sk/

Sculpting the body

We are continuing the modeling of our alien using Dyntopo as we had previously mentioned. This will
allow the creation of the antennae very easily while they are not yet present in the base mesh.

The following is the preparation of our environment before sculpting:

1. We will set the optimizing options that were previously explained.
2. We can adjust the lens parameter in the right panel of the 3D viewport (N). A high value lessens

the focal deformations.
3. We must check the mirror options in the left panel of the 3D viewport (T) to Symmetry/Lock by

choosing the axis of symmetry. It is very important in order to save time.
4. We will then activate the Dyntopo option in the left panel of the viewport. A detail size of

around 25 percent is enough to start. It depends on the size of your model.

For a better understanding, we are going to start sculpting by adding details by iteration.

http://md3dinc.com/
https://www.anatomy4sculptors.com/
http://www.3d.sk/

The head

We start defining the jaw and chin with the Clay Strips brush (refer to 1 in the following screenshot). It
is unnecessary to have too many details for the moment. While sculpting, always remember to define the
main shapes (the volumes) and then gradually move towards the details.

We then accentuate the delimitation between the jaw and neck without exaggeration. A strength of 0.5 is
enough.

Note

The Clay Strips brush

The Clay Strips brush is a very useful brush to define muscles, dig or add polygons in a straight
direction with pretty sharp outlines. It is the equivalent of the Clay Buildup in Zbrush.

1. In order to dig into the polygons, we press Ctrl while sculpting. It allows us to switch to the
Subtract mode on the fly.

2. Then we slightly smooth the added geometry with the Smooth brush for a better blend of the
created shape. You need to remember to smooth the shape very often in order to avoid having
something too grainy.

Note

The Smooth brush

This is often a very useful brush. It allows you to soften and smooth your shapes. This brush is
so useful that there is a special shortcut that you absolutely need to know. Hold the Shift key
while sculpting in order to use it. It works while using any brush. When you use it over a big
density of polygons, it will be harder to smooth your shape, so it will be mainly useful before
working on the details.

3. Now that the jaw is sketched, we will go to the side view. Then we have to adjust the silhouette
of the neck, as well as the skull with the Grab brush. Our alien has a very curved neck.

4. We will adjust the shape of our model little by little by turning it around. It's very important to
observe your model from different points of view.

Do not hesitate a moment to look at the reference sketch and position the alien in a very similar
pose. You can also create a new 3D view editor to keep an eye on the view of your choice (in
our case, we've used the orthographic side view).

Note

The Grab brush

This is often a very useful brush when you start a new model. It works a little bit in the same
way that the Proportional Editing tool does. If you have any difficulties using it, you can go to
the Curve options in the left panel of the viewport and modify the curve to decrease its profile.

In our case, we are going to use a very soft curve for the Smooth brush.

1. Again, we will take the Clay Strips brush to keep going on the face of the alien in order to dig
the orbits and accentuate the eyebrows by adding matter (refer to 2 and 3 in the previous
screenshot). Be careful to not add too much volume at this place. Do not hesitate to decrease the
strength (Shift + F) of your brush, if necessary.

2. We will also start to sketch the nose and the mouth (refer to 3 in the previous screenshot).
Before detailing the lips, we need to start adding some new volume. We form a rounded edge
created by the maxilla and the jaw. Remember that the front of a set of teeth has almost a semi-
cylindrical shape. It's easier to create the mouth rounded volume from the bottom view.

3. Once this is done, we can start sketching the opening of the mouth with the Crease brush,
which allows us to draw a mined line. Consider the fact that the geometry is dynamic, so don't
hesitate to add some resolution and pinch your shapes in order to make them more accentuated.

Note

The Crease brush

This brush will allow you to draw lines by digging or adding some volume to your shapes while
being pinched. It is perfect to accentuate muscles and make them well visible. It is the
equivalent of the Dam Standard in Zbrush.

4. We will again use the Clay Strips brush in order to give some volume to the lips.

Remember to leave a little gap between the lower lip and the top lip. The top lip is a little bit
more forward than the lower lip from a profile view.

5. In the face view (refer to 5 in the previous screenshot), we will go back to the Object Mode
(Tab) and place the 3D cursor where we want the eye at the middle of the orbit. It doesn't matter
if the orbit is not completely dug.

6. We will add UVSphere (Shift + A). We will resize this with the Scale Tool (S), and we will
position it (G) in the front view (1) just as in the side view (3). For a good placement of the eye,
looking at the wireframe can be helpful. You only need to go to the Object Data tab and then to
the Group in the Properties editor, and check the Wire and Draw all Edges option.

7. Then, we can sculpt around the eyelids with the Clay Strips brush by being careful to
accentuate the outside and inside corner (the lacrimale caruncle) (refer to 7 in the following
screenshot).

8. In order to accentuate the eyes, let's pinch the upper and lower eyelids with the Crease brush
(refer to 8 in the following screenshot).

Finding a good position of the eye is not an easy task. You can move the facial structure with
the Grab brush if you have problems. The top eyelid must be slightly forward. Conceptually,
the eyes are inordinately big, so be careful that they don't touch each other.

9. Now that the face begins to take shape, we will continue with the neck. We adjust the shape a
little bit more with the Grab brush, then we start sculpting the muscles and bones of the neck.
We carve the clavicles with the Clay Strips brush.

10. Then we will move on the sterno-mastoid muscles. It is a muscle group that starts from the
mastoid near the ear and attaches to the sternum and the clavicle. We keep working with the
Clay Strips brush (refer to 9 and 10 in the following screenshot).

11. In the side view, we can polish the silhouette of the neck with the Grab brush (refer to 11 in the
following screenshot).

Now let's refine the face:

1. We will come back to the mouth by adding some volume to accentuate the circular muscles
around the mouth. Be careful to adjust the level details of Dyntopo to around 10 percent (refer

to 13 in the following screenshot). As you may have seen, when you are sculpting an object, you
don't directly get the shape that you want, so you always need to go back and forth over the
different parts.

2. This brings us to accentuating the wrinkles that make the junction with the cheeks.
3. Then we will go and pinch the upper lips with the Pinch/Magnify brush. The lower lip doesn't

need to be as pinched like the upper one. Again, you can increase the level detail of Dyntopo to
around 7%.

Note

The Pinch/Magnify brush

This brush allow us to pinch the polygons outwards or inwards (in the Subtract mode). It is
perfect in our case to detail the lips, the wrinkles, or accentuate the contour of muscles. It is
often used to get a cartoon style or for a hard surface modeling where you need to sculpt angular
surfaces.

4. We will take a moment to turn the head, including the top view (16); then we adjust the round
shape of the skull with the Grab brush.

5. Now, it's time to add the antennae (refer to 17 in the following image). For this, we are going to
use the Snake Hook brush with a Dyntopo level detail of around 14%. The difficulty will be to
find a good point of view of the head because we can't move the view while extracting the
geometry with the Snake Hook brush. We must be positioned on the side in order to be able to
extract the matter from a little area on the top of the forehead and stretch it outwards in a good
direction. Do not hesitate to make several tries if this does not suit you. You can always adjust
the size of the brush and the level of detail.

Note

Undo while being in the Sculpt Mode

Unfortunately, the Undo function of Blender is not very optimized for the moment in the Sculpt
Mode. It can be very slow, so do not use it too often. In many cases, you can probably quickly
fix your mistakes without Undo.

The Snake Hook brush

This is very useful to sculpt horns or tentacles. This brush is more interesting with Dyntopo. The
problem with a mesh that uses a Multires modifier is that topology problems quickly appear
with a lack of geometry. As long as the topology is dynamic, we can easily create an arm, a leg,
or anything else. We can extend this as long as we wish the shape of our model to be.

6. Once the antennae are sculpted, we will add some polygons with the Clay Strips brush, then we
will smooth them with the Smooth brush. We will magnify the extremity with the Inflate/
Deflate brush (refer to 18 in the preceding screenshot).

7. We will end this by digging forward a little bit with the Clay Strips brush in order to break the
rounded shape.

Note

The Inflate/Deflate brush

This brush will allow you to inflate volumes by pushing the polygons in the normal's direction,
or the inverse in the opposite direction in the Subtract mode. It can be very useful for meshes
with closely spaced surfaces that are difficult to sculpt. This gives a very fast volume that makes
it much more comfortable for sculpting.

So our little alien has now its telepathy organs. We are going to sculpt the torso.

The torso

We will start the torso by sketching the pectoralis major muscle:

1. We will start by smoothing the surface and adding enough details.
2. With the Clay Strips brush, we will dig the dividing lines with the clavicle and the shoulder.

(refer to 19 in the following screenshot).
3. Then gradually, we will add some volume accentuating the muscle fibers. The brush strokes

start from the bottom of the shoulder at the clip with the biceps and go to the center of the chest
(refer to 20 in the following screenshot). Get used to guiding your brush movements in the
direction of the muscle.

4. Once the pectoral is sculpted, we will slightly accentuate the bottom of the chest and the abs
with very light touches of the Clay Strip brush. This is to suggest forms rather than showing
them (refer to 21 in the preceding screenshot).

5. We will then work on the back part of the alien. It is a complex part of the body. So we will start
to draw the muscles (refer to 22 and 23 in the following screenshots) to gain visibility with the
Crease brush. We can soften and smooth the muscle shapes. Then we will accentuate the spine
with the Pinch/Magnify brush.

6. Now we will sculpt the buttocks. Avoid putting too much volume here. Turn the model around
and observe the side view a moment, if necessary adjust the silhouette. Remember to draw a
pinch line to accentuate the bottom of the buttocks with the Pinch/Magnify brush. This forms a
fold between the buttock and the thigh (refer to 24 in the following screenshot).

7. We will add a few folds to show that it is a combination.
8. We will use the Pinch brush to accentuate the lower abdomen and pelvic bones (refer to 25 in

the following screenshot). Unless you desire a different sexual orientation for our alien, feel free
to add some volume to his crotch, it brings a little more realism. Don't be shy.

Note

The Clay brush

This brush allows you to add planar relief with a few soft edges. It is quite close to the Clay
Strip brush that you already know but with a less sharp effect. It adds volume by raising with a
low intensity. It is very good to refine organic shapes with precision.

The arms

Now, let's start the arms. We can see in the drawing that they are pretty fine and not very muscular. His
hands have two fingers and a thumb.

We won't need a lot of muscle details. We will be just interested in the major forms.

Let's begin the process:

1. We will start by digging the part between the shoulder and the biceps with the Clay brush (refer
to 26 in the following screenshot). This accentuates the shoulders.

2. We will smooth a little, and then add some volume to the biceps (refer to 27 in the following
screenshot). Slightly, we mark the outline of the muscles with the Crease brush and adjust the
shape with the Grab brush.

3. Then we will work on the triceps that is located at the back of the arm. It is a muscle connected
to the deltoid and covers the entire rear portion of the upper arm. We give it some volume by
drawing the muscle fibers with some touches of the Clay Strips brush.

4. The forearm is a complex area of human anatomy. It is usually quite difficult to sculpt. It
consists of several muscles that twist to ensure the mobility of the hand and the fingers. For our
alien, we simplified it by lessening the muscle visibility. With the Clay Strips brush, we will
draw the long supinator that emerges because it forms the junction with the end of the biceps
(refer to 28 in the preceding screenshot) near the elbow. We will then add some volume to the
elbow.

5. We will start from the elbow, and we mark a slight stroke of the Clay Strips brush in the
direction of the wrist.

6. The wrist is reinforced by slightly accentuating the bones on the sides of the upper part.
7. We go and dig and slightly flatten the lower part of the wrist. (Refer to 30 in the following

screenshot.)

The hand is also a fairly complex part of the body. We will not detail the anatomy here. We will try to
focus on the main forms that compose it. Observe your own hands for better understanding of the forms.

Now, we will begin forming gristle on the upper part of the hand with the Clay Strips brush.

1. We have placed a bit of volume to the different phalanges in order to accentuate them. (Refer to
29 in the preceding screenshot.)

2. There is some skin between the two fingers and between the index finger and thumb that we
will dig. This skin allows the flexibility and elasticity of finger movements.

3. We will take the Crease brush and mark the lower part of the phalanges where the folds of
fingers will be.

4. We will keep working with the Crease brush and draw the lines of the hands. The three main
lines are enough to give the appearance of a palm (refer to 30 in the preceding screenshot).

The legs

We continue our sculpture with the legs. We can see that he has quite muscular thighs. The feet have a
dynamic style that reflects the legs of a rabbit.

1. As with other parts of the body previously created, we will adjust the silhouette of the legs with
the Grab brush before detailing the shapes.

2. We will slightly dig a line from the hip to the inside of the thigh that allows us to accentuate the
adductor muscles (refer to the following screenshot).

3. Now it is time to use the Mask brush that will be only shown without our Matcap activated,
that's why you can't see the Matcap in the following screenshots. The boots are up to the knees
and have a window over the calves (refer screenshot 34). It is necessary to have enough
polygons in order to get the mask contour sharp.

4. In order to highlight the edges of boots, we will reverse the mask with the shortcut Ctrl + I
(refer to 35).

Note

The Mask brush

This is a quite special brush. It allows us to mask an area of the mesh. It means that this area
stays unchanged when any other brush is used as long as it is masked. Thus, we can create
shapes that would be impossible to do otherwise. The uses are many. It is very useful for
extruding surfaces.

5. With the Grab brush, we will pull the polygons at the edge of the masking. Then we slightly
raise them (refer to screenshot 36).

6. We increase the level of detail to enhance the edges of the boots. We mark the separation with
the Flatten/Contrast brush. We need to zoom enough and adjust the brush size (F) accordingly.

Note

The Flatten/Contrast brush

In the Flatten mode, this brush allows us to smooth over a surface while digging slightly, or
otherwise in the Contrast mode, it greatly increases the height of the relief. These two very
different functions make it an even more interesting brush.

By using the same technique, we can sculpt the collar in the neck area.

The belt

The belt needs to be treated separately because it's not about sculpting. We are going to use more the
traditional tools that we saw in the previous chapter. But as you'll see, it is very interesting to mix the
different techniques that you've learned in this chapter with polygonal modeling tools. That's why we are
going to use the Grab brush in order to wrap the belt around his waist.

We will start the modeling of the belt with a primitive circle. After this, we will then place our cursor at
the center of the character in the Object Mode from the top view in order to add a new circle with 32
vertices.

1. In the Edit Mode (Tab), and with the Wireframe option of Viewport Shading on, we will
adjust the size of the circle by scaling on the Y axis (S + Y). We then rotate it a little bit in order
to match with the shape of the alien (refer to 39 in the preceding screenshot).

2. We will then extrude the circle to form the height and the thickness of the belt. As we said
before, we can now use the Grab brush (in the Sculpt Mode) in order to stick the belt to the
waist. In our case, it's as if we were using the Proportional Editing tool (refer to 40 of the
preceding screenshot).

3. Then we will go back to the Edit Mode in order to add more resolution with the Loop Cut tool
(Ctrl + R). We will also place a loop cut in the middle of the belt on which we will add a little
Bevel (Ctrl + B).

4. In the middle of the bevel, we will add a new edge loop that we will scale along the normals (Alt
+ S) (refer to 41 in the preceding screenshot).

5. We can now switch back to the Sculpt Mode, and with the X symmetry option off, we can
move the right-hand side down a little with the Grab brush.

Now that we've finished the belt, it's now time to add the belt buckle as follows:

1. In the Object Mode, we will add a new plane.
2. Then we will go in the Edit Mode (Tab) and add a horizontal and a vertical edge loop (Ctrl +

R).
3. We will then resize these edge loops so that they form a diamond shape (refer to 42 in the

preceding screenshot).
4. It's now time to add a Subdivision Surface modifier.
5. We will then add some edge loops on both sides in order to maintain the diamond shape.
6. In order to add thickness to the buckle, we will do some extrusions of the whole geometry (A

and E). As always, we will maintain the shape with the Loop Cut tool (Ctrl + R).
7. We will also scale the front polygons of the buckle.
8. Finally, we can place our belt buckle at the right place in the Object Mode.

There you go! Our little alien is ready for crazy galactic adventures!

A render of the final alien sculpt with Blender Internal Renderer

Summary
In this chapter, you've learned a new modeling technique that is best suited for your organic models. By
mixing this method with polygonal modeling techniques you will be able to create awesome characters
in a very short time! If you have a powerful computer, you can go into further details such as skin pores
and wrinkles using alphas, for instance. For now, the alien character doesn't have a good topology, so we
will learn how to create a new topology over the model and extract the details of our sculpting in the
next chapter.

Chapter 4. Alien Character – Creating a Proper
Topology and Transferring the Sculpt Details
This chapter will be more technical than the previous one. We will see how to create a production-ready
character with a nice topology, starting with the sculpture of our little alien. Of course, we can't go
through all every possible techniques to reach our goal but you will have a solid understanding of what a
good organic topology is. You will also learn how to retrieve the details of a sculpture with a normal
map. Furthermore, you will learn how to enhance the look of the alien with an ambient occlusion. These
maps could be a good starting point to create a more complex and rich texture later. As you learn more
and more tools, you will be able to have more possibilities to express your imagination. What you really
need to grasp in this chapter is the logical way of doing a good topology, because each object needs one
topology according to your needs. So, let's dive in!

This chapter will cover the following topics:

• Understanding the retopology process
• Using the UV unwrapping tools
• Baking normal maps and Ambient Occlusion
• Displaying the baked maps in the 3D viewport
• Making a good topology

We will now create a retopology of our sculpture by using some of the tools that you've already
encountered during the robot toy modeling, and some new tools. But, wait a minute, why are we
remodeling our alien if we have already sculpted it?

Why make a retopology?
The main goal of doing a retopology is to have a clean version of the sculpture with a good topology. It
means that the mesh geometry needs to follow the shapes of the sculpture by defining proper edge loops.
A good topology is also a must-have when you want to animate an object, and it's even more important
when you are dealing with organic shapes. The muscles need to correctly bend, so this is why we are
following them with edge loops. But, of course, we can't delimit each of the muscles, so we are thinking
more about their overall form, treating them as groups, such as the pectorals muscles.

Another goal of a retopology is to have a less dense object. I don't know whether you have already made
the mistake of entering into the Edit Mode of the alien sculpture, but if this is the case, you have seen a
tremendous amount of polygons organized in a fancy way. Technically, the process will be as easy as
adding new geometry that snaps to the sculpture. However, it could quickly turn out to be a puzzle if you
don't know what you are doing.

Possibilities of arranging polygons

As we have mentioned before, we will be using pretty much all of the poly modeling tools that we've
learned previously, such as the grab, rotate, or face creation tool. But what really matters while doing a
retopology is the arrangement of the polygons through the loops that defines the shape. In this section,

we will give you some useful techniques in order to help you rework the flow of your topology. Before
reading further, we advise you to train yourself on a subdivided plane:

1. Create a new plane (Shift + A).
2. Select it in the Edit Mode and under the Specials menu (W), select the Subdivision option.
3. Redo step 2 thrice.

Five topology cases you may encounter

We will now go through the five cases presented in the preceding screenshot.

In many cases, you will need to change the direction of a loop. As you can see in the first case of the
preceding screenshot, we have two colored face loops. We will rearrange them so that the blue one
doesn't cross the red one. Remember that in order to select a face loop, we will use the Alt + RMB
shortcut.

1. To resolve the first case, we will select the bottom edge of the blue face situated below the cross
intersection.

We will then select the Rotate Edge CCW (Counter Clock Wise) in the Edge menu (Ctrl + E).

Now, we can rearrange the polygons to get a nice round corner.

Sometimes, you may want to have a circular shape in your topology. This occurs mainly in hard
surface modeling.

2. In order to resolve the second case, we will select the piece of geometry that will be of circular
shape and use the Mesh Loop add-on (by pressing W and selecting LoopTools | Circle) to form
a circle. You can also move your vertices one by one if you don't want a perfect circle.

Now, we will maintain the geometry by doing an inset of the selected faces. As you can see, our
circle perfectly incorporates the flow of our geometry.

Another situation that you may encounter is when two face loops forming an arc are stuck
together. This technique can be useful when defining muscles or articulations. We will later use
this for the knee of the alien.

3. For the third case, we will start with the Knife tool by cutting the three edges that form an arc.

As you may have seen, we now have two triangles that we need to resolve in quads. So, we will
add a cut in the middle of both of them with the Knife tool or the Loop Cut tool.

You will often need to reduce the number of polygons at some location. For instance, there
could be lot of condensed polygons behind the head, so in order to have less of them for the
back, we will make a U shape.

4. So, our goal for the fourth case is to make a U shape with blues faces that leaves us with only
one face under it:

1. To do this, we will first dissolve all the vertical vertices that are in the middle of, and
below, the blue faces (the dashed line in the screenshot).

2. Now we can do a bevel of the edges that separates the two vertical lines of the face.
3. We can now use the J key to join the two vertices that form the base of the U shape (the

one marked in the screenshot).

5. We will now show you one last technique, but you need to keep in mind that there are many
other methods that we can't show you here because it would require a whole book! Sometimes
you need to rotate some polygons in the geometry, but you don't want stretches after rotating
them.

If you look at the last case of the preceding screenshot, the red square of the polygons has been
simply rotated with the R key.

At this point, the geometry around it should be stretched. The best way to solve this is to simply
remove the parts that are causing you problems and recreate the geometry in a better way. In our
case, we've done this by bridging the square outline back to the rest of the geometry with the F
key.

Errors to avoid during the creation of retopology

We will now talk a little bit about the main problems that you should avoid while creating a proper
topology. The first thing that we have already expressed before is that we need to try to have as few
triangles possible. Triangles are bad because they break the face loops, and they can cause some
rendering artifacts with the lighting, and the topology could be harder to maintain.

Some people may think that this is not a problem because triangles are used a lot in the video game
industry, but usually, the triangles that we see in a game model result from a tessellation made by the
game engine after the model was created. They are also needed in cases where there is a lack of
performance, especially in mobile games where the amount of geometry needs to be lowered. But the
performance of smart phones are doing better with time, so this is not going to be a problem in the
future. Sometimes, triangles can be placed at a position that doesn't bend a lot. For instance, the ear of a
human rarely deforms, so it's not a problem to place a triangle here. When you add triangles, do it in
such a way that it doesn't bother the silhouette of your object.

Another thing that you want to avoid is poles. A pole is a vertex that connects a minimum of four edges.
Usually, poles are useful to redirect face loops, so they are usable but they need to be carefully managed.
You can create poles if, and only if, you need to change the flow of your face loops and if you are in a
place where the geometry won't bend a lot during animation. For instance, on the human face, we can
place poles on the cheekbone because we need to redirect the topology. You will encounter this with the
alien's head.

An example of two selected poles

Don't be discouraged if you don't get the topology right the first time, come back later and you'll have a
clear mind to try to figure out the problem again. Another thing to keep in mind while doing a
retopology is that if you want to have a certain loop, create it without waiting because you'll be quickly
overwhelmed by polygons, and you could face problems when you need to remove a lot of geometry in
order to connect the loop back. Creating a good topology is like solving a puzzle—it always has a
solution!

Density of polygons

While doing a retopology, you need to think about the general flow of your topology. If you've done this
right, you'll be able to quickly add or remove edge loops in order to increase or decrease the density of
the mesh. The more geometry you have, the more you will be able to be precise in the approximation of
the sculpted shape. Of course, you need to take into account the eventual constraints that you will have.
For instance, if you are creating a mobile game character, it's best to try to reach the minimum number
of polygons that gives you the global silhouette. Choosing the right number of polygons is more of a
decision that you'll take on the fly.

Making the retopology of the alien character
Now that we have seen a few basic techniques, we are going to see a practical case by working on our
little alien character sculpture.

Preparing the environment

Before starting the retopology of our little character that came from distant worlds, we must prepare the
working environment for the method that we will use. There are several possibilities in Blender to do a
retopology, including with very good add-ons (Retopology MT and Retopology Tools, for example). We
will not use them here; instead we will focus mainly on internal Blender tools.

1. We will start by placing the cursor at the center of our sculpted mesh. For this, we will select the
mesh and press Shift + S to open the snap menu. Then, we will choose the Cursor to Selected
option.

2. We will then create a plane in the Object Mode (pressing Shift + A and selecting Mesh | Plane)
that we will place in front of the eyes. This new object that has been created is going to be the
new mesh for our character. We rename it as Alien_Retopo.

3. In the Edit Mode, we will bisect the plane, delete the vertices on the left-hand side, and then we
will add a Mirror Modifier. Don't forget to check the Clipping option.

4. We need to make a transparent shader that will allow us to work comfortably in order to
visualize the mesh. In the Material menu, we will check the New button. It's also good to name
this; in our case, it is M_Retopo. This way, we can look through our polygons and check the
Transparency option with an Alpha value of 0.208.

5. We will then go in the GLSL mode in the Shading menu of the right panel of the 3D viewport
(N). This allows us to visualize the new material that has been created.

6. We will also check the Backface Culling option just below the Shading menu to avoid being
too bothered by the rear faces.

7. We switch to the Texture shading mode in the corresponding drop-down menu located in the
3D view header.

8. After this, we need to add a Hemi light (by pressing Shift + A and selecting Lamp | Hemi) that
is to be placed just above the 3D model in the direction of the ground. We will set its energy
value to 1.

9. We will activate Xray in the Properties editor in the Object tab under the Display subpanel.
10. For our comfort, we need to change the size of the vertices. For this, we will go to File | User

Preferences | Theme | 3DView | Vertex Size. We will enter a value of 6.
11. In the User Preferences menu, we will check that the F2 add-on is activated.
12. In the 3D viewport header bar, we will activate Snap (it looks like a little magnet) in Face

Mode (just on the right-hand side of the snap icon).
13. We still have to activate the buttons located a little more on the right-hand side called as Project

Individual Elements on the surface of other objects and Snap onto itself. Let the mouse hover
over a button for a moment so that you can see its tooltip appear.

Now we can start to build the new topology.

The head

Let's start our retopology with the head of our alien character:

1. In the Edit Mode, we will snap our first polygon with the Grab tool (G).
2. We will then begin to form the first face loop around the eyes. We will select the edge on the

right-hand side of the plane and pressing Ctrl and a left-click, we will create new polygons in
sequence on the surface of the sculpted mesh. There is no need to be very accurate while tracing
the first face loop. We will be able to reposition the vertices and adjust the number of polygons
thereafter. So, we will make the first face loop, which passes through the eyebrow, the cheek,
and joins the symmetry axis right at the nose. At the corner of the eye, we need to be careful
while placing an edge that extends the diagonal direction of the eye (refer step 2 in the
following screenshot). This face loop is called the mask.

Note

Pair number of polygons

Be careful to always have a pair number of polygons whenever you form a face loop. This will
allow you to connect the polygons more easily. If in some cases you only have an odd number,
you can try to delete an edge loop and replace the polygons around (with G) it.

3. We will then add two edge loops (Ctrl + R). Try to equalize as much as possible the size and the
distribution of the polygons. We will reposition the vertices to have a rounded shape (refer to
step 3 in the preceding screenshot). For our selected components snap on to the sculpture, we
have to move them with the Grab tool (G). Remember to do this often, but only with the
components that directly face your point of view.

4. We will add an edge loop to the nose in order to have enough polygons to better define the
outline shape. We will have a 28-face face loop.

5. We will join the nose with the new polygons (refer to step 4 in the following screenshot).
6. To save time, you can start making a shape with a few big polygons to cover a large area that

you want to work on. You can then define the number of cuts that you need and snap the
topology, rather than make many little polygons one after the other.

Try to follow the shape of the sculpted mesh as much as possible.

Note

F2 add-on

We mentioned this while preparing the environment. F2 is an essential add-on in Blender that
allows us to quickly create faces.

Between the two rows of the edges, the F2 add-on can generate the missing faces. You can also
generate a face by selecting one vertex on the intersection of two faces by pressing F. Repeat
the process to quickly make a face loop, and remember to weld them (select the polygons, and
then press W and select Remove doubles).

You can also generate the face loops in the edge mode. You need to select a starting edge (the
one to the left and perpendicular to the x axis according to the following screenshot) by pressing
F. The sense of creation of a face can be determined by the placement of the mouse if the
starting edge is at the center of the face loop that is to be created.

7. We can see that we have a pole. We will avoid making it too visible, so we will place it under
the eyebrow.

8. We complete the topology of the upper nose with a polygon reduction on the forehead (refer to
step 5 in the preceding screenshot).

9. Now, we will select the edge loop that bypasses the eye, and we do an extrusion by changing the
scale (E and S). We will then place the vertices on the outline of the eye (G). We will have a
24-face face loop (refer to step 6 of the preceding screenshot).

10. We will add two edge loops (Ctrl + R) around the eye that we will reposition correctly (G). A
first edge loop takes the shape of the eye, marking the fold with the eyebrow. A second edge
loop makes the link between the two shapes.

11. At the left outer corner of the eye, we will tighten the vertices. We will take care to have a
conical shape that spreads outwards (refer to step 7 in the preceding screenshot).

12. Now, we create a face loop from the nose to the chin. It is called the nasolabial loop. We will
add the polygons using F2 (by selecting a corner vertex and pressing F). Just like the eye, we
extrude an edge and form a face loop from it that follows the circular shape of the mouth. We
will have a 16-face face-loop (refer to step 8 of the preceding screenshot).

13. We will add a face loop that comes around the nose. This allows us to define the nose.
Remember to slightly bring the edges at the bottom to the septum of the nose. We will have a
9-face face loop (refer to step 9 of the preceding screenshot).

14. We will create the topology that forms the top and bottom of the nose. We will have a 6-face
face loop (refer to step 10 of the preceding screenshot).

15. Once the nose shape is outlined, we will begin the ala of the nose. We will extrude a face loop
that starts from the top of the nose down to the bottom of the nose, avoiding the nostril. This
arrangement allows us to better create the shape of the nostril loop (refer to step 11 of the
preceding screenshot).

16. We will extrude the edge loop of the nostril with a scale transformation (E and S). We will then
close the hole by connecting the edges (refer to step 12 of the preceding screenshot). If you
don't have enough edges to make four-sided polygons, you can use a triangle. It must be as
hidden as possible.

17. We will start from the corner of the nose to make a face loop that goes under the mouth.
18. We will then close this part by following the shape of the lips. Take care to slightly pinch the

corner of the mouth. The topology must be as symmetrical as possible between the top and
bottom of the mouth in order to connect them later. We will have a 14-face mirrored face loop
(refer to step 13 of the preceding screenshot).

19. We will continue around the mouth by adding a polygon strip above the chin (see 14 and 15 in
the preceding screenshot).

20. Now, we will make the face loop of the jaw, which ascends to make the contour of the face. We
have a 22-face mirrored face loop (refer to step 15 of the preceding screenshot). We need to
align the faces correctly for an easy connection and close the area of the jaw (refer to step 16 of
the preceding screenshot).

21. We will make the contour of the antennas with an extruded vertex on the top of the forehead in a
circular manner (refer to step 17 of the preceding screenshot).

22. We will then continue to form the polygons of the forehead, in line with what was done, by
making a reduction in the number of faces, avoiding the antennas (refer to step 18 of the
preceding screenshot).

23. We will select three edges on the temples and create a polygon strip that follows the back of the
head. We need enough faces to have a nice rounded.

24. We will then select the edge located at the jaw, and we will continue to make the topology of the
back of the head (refer to step 20 of the preceding screenshot).

25. Now that the face strips are facing each other, we can fill the missing topology with the Fill and
Loop Cut tools. (Refer to step 21 of the preceding screenshot.)

26. We will continue to make the faces on the back of the head in the same way. We will form an
angle to close the top of the head later more easily. (Refer to step 22 of the following
screenshot.)

Note

The Smooth option

In order to have a topology as homogeneous as possible, we can use the Smooth option of the Specials
menu (W). This allows us to relax the polygons. We first need to select the faces we want to modify (C).
Be careful as you have to snap them after the process (G), so select only the visible faces in the view.

We now need to close the topology of the top of the head. We must pay attention to respect the number
of edge loops created previously. You can apply the smooth option to quickly relax some misaligned
faces.

Now we are going to make the antennas that require another technique:

1. We will duplicate the edge loop situated at the base of the antenna already created to make a
new object (by pressing P and select Selection).

2. We need to deactivate the Snap option and the Project Individual Elements option.
3. We can extrude this new object following the shape of the antenna. The polygons must

completely cover the surface of the sculpted mesh. You can set Wireframe Shading Mode in
order to view your geometry better.

4. Once we get the desired topology, we add Shrinkwrap modifier and select the sculpted mesh in
the Target parameter, called Body. This modifier allows us to snap a mesh on another.

5. We must apply the modifier by clicking on Apply button, and then we will join it back to our
other piece of geometry. For this, we select the mesh of the antenna, then the mesh of the head,
and we press Ctrl + J.

6. As we want to snap our components on the sculpture again, we will restore the Snap and
Project Individual Elements options.

7. We can add a few edge loops to the antenna in order to get a good enough shape.
8. We will connect the faces in the back of the head in continuity with the topology already done.

9. From the angle of the jaw, we will create a face loop that ends at the symmetry axis on same
level of the glottis (refer to step 25 of the following image).

10. We will then connect the face loop to the chin by adding enough edges. We need to connect the
entire underside of the jaw. We have a 10-face face strip (refer to step 26 of the following
screenshot).

11. This area forms a triangular shape. We need to make loops to reduce the number of polygons
around the chin. We can easily reduce the polygon flow by redirecting the loops on the axis of
the symmetry (refer to step 27 of the following screenshot).

12. To better visualize your polygons, you can hide the ones that you do not want to see. You can
use the H shortcut. Press Alt + H to make them reappear.

The neck and the torso

We will continue this retopology with the neck.

1. We will make a small polygon reduction at the back of the neck in order to lighten the density a
little bit. We only need to progressively extrude the polygons along the neck. We will then align
the polygons on the collar. We slightly pinch the edges to restore the volume of the collar
outline.

The challenge is to properly harmonize the polygon flow along the front and the rear.
2. We will continue to extrude to the clavicles. Using loops, we will add a polygon row in the

middle of the nape, and we will reduce one on the sternum (refer step 28 of the preceding
screenshot).

3. There is an important face loop to place in case we want to animate the arms later. It follows the
lower pectorals and shoulders muscles. We will have a 20-face mirrored face loop (refer to step
31 of the preceding screenshot).

4. We will make another important face loop that goes vertically around the shoulder and passes
under the arm. We will have a 16-face mirrored face loop (refer to step 32 of the preceding
screenshot).

5. Therefore, we will connect the polygons to form the chest and the upper back. On the shoulder,
a new face loop links the polygons that intersect vertically and horizontally (refer to step 33 of
the preceding screenshot).

6. We will extend the topology straight to the pelvis in a cylindrical manner. There is no particular
difficulty on this part (refer to steps 35 and 36 of the preceding screenshot).

7. We end the hip with a strip of polygon that joins the axis of symmetry and we will create the
crotch by connecting the buttocks polygons. Don't add too many edge loops, just what is
needed. We will have a 6-face strip to make the connection (refer to step 37 of the preceding
screenshot).

8. Now, we will make a face loop that follows the shape of the buttocks. This face loop allows us
to have a good deformation when animating the legs. To connect the vertical polygons that
come from the back, we will make a second face loop right in this area (refer to step 38 of the
preceding screenshot).

The arms and the hands

It is time to make the topology of the arms. Considering they are quite thin and not very muscular, we
are going to use the same technique that we used for the antennas.

1. This time we will add a 10-face cylinder (Shift + A) positioned around the arm. Be careful to
match the number of faces on the shoulder (refer to step 39 of the preceding screenshot).

2. To facilitate the visualization of two meshes, we will parent our semitransparent material by
first selecting our retopology, and then selecting our new cylinder by pressing Ctrl + L and
selecting Materials.

3. We will add a Shrinkwrap modifier with the sculpted mesh as a target.
4. We need enough polygons to get a sufficiently smooth shape. We will bring, little more loops on

the elbow in case we need to animate the arm later so that it will bend appropriately.
5. As for the antennas, we will apply the Shrinkwrap modifier in order to freeze the new shape.

We will then join the arm to the rest of the body (Ctrl + J).
6. Now that we have only one mesh, let's connect the arm to the shoulder by selecting the two

opening loops and by bridging them together (by pressing W and selecting Bridge Edge Loop).
Since we have the same number of vertices on the two sides, Bridge must work fine. We will
then need to adjust the topology by adding some edge loops here and there. Don't forget to snap
back the vertices on the sculpture (refer to step 40 in the preceding screenshot).

Let's start the hand. It is a particularly delicate part of the anatomy to do:

1. We will start by doing the fingers using an extruded circle again and the Shrinkwrap modifier
for each finger. This is the same technique used for the antennas and the arm. This time, we
need to extrude a 10-edge circle for each finger. This number is important because we need to
have enough polygons for the hand. Pay attention to the orientation of the thumb (refer to step
41 in the preceding screenshot).

2. Once this is done, each finger is closed by joining six four-sided polygons. Our character has
only two phalanges by the finger, so be sure to place three cuts around each of them if you want
to properly animate the fingers later.

3. Then, we will make some of the important face loops of the palm. There is a 10-face face loop
that passes around the thumb (the thenar muscles). There is a 14-face face-loop on the opposite
side of the hand near the little finger (the hypothenar eminence) (refer to step 42 in the
following screenshot).

4. We will create a face strip in order to accentuate the basis of the fingers. It is also important to
leave a space between each finger (refer to step 43 in the preceding screenshot).

5. Now, all the face loops have to be connected. We have the needed density to only use four-sided
polygons without too much difficulty. Train yourself to fill holes with the number of polygons
that you have. In this case, we can't change the number of polygons that wraps around each
finger (ten in our case) (refer to step 44 in the preceding screenshot).

6. We will add a few more horizontal edge loops around the phalanges in order to have a smooth
shape.

The legs

We are going to finish this retopology with the legs. Let's begin with the thigh:

1. We will select the edge that makes the outline of the leg and extrude it to the knee (E). As
before, we will add a few edge loops (Ctrl + R), and then adjust and snap the topology on the
surface of the sculpted mesh. We could have used the technique used for the antennas and arms
with a cylinder but the thigh is wide enough and less complex (refer to steps 47 and 48 in the
preceding screenshots).

2. We will add an edge loop a little tighter near the knee.
3. We can see that the boots are just above the knees, so we will make two edge loops that stick to

the relief (refer to step 49 in the preceding screenshot).
4. On the front of the knee, there is a loop that will reduce the number of polygons on the shin. It

goes up and down along the thigh (refer to step 50 in the preceding screenshot).
5. There is another face loop to be created that will follow the rounded shape of the boot at the

knee. It goes up toward the thigh (refer to step 51 in the preceding screenshot).

6. We must create the missing polygons on the top of the boot in line with what was done until the
opening of the calf.

7. This opening of the boot requires two face loops that allow us to maintain the hole. We must pay
attention that it is easily connectable between the top and bottom. This looks like the circular
topology case that we had analyzed before. We have two 18-face mirrored face loops.

8. We will continue the retopology by creating a loop that goes under the heel and connects with
the upper leg (refer to step 52 in the preceding screenshot).

9. Let's go back to the front of the thigh and continue to form a strip of polygon that goes around
the foot and forms a long face loop. It goes through the knee. This allows us to control the
polygon flow by adapting it to the shape. We just need to keep the same number of polygons on
both sides of that face loop in order to connect them properly (refer to step 53 in the preceding
screenshot).

10. A final important loop remains to be made. This is located under the foot. It follows the outline
of the plantar arch with a 20-face face loop aligned so that we can easily connect it to the rest of
the foot (refer to step 54 of the preceding screenshot).

11. We still have to connect the inside of this underfoot face loop. To move from one row to three
rows of polygons along the length of the foot, we must create a face loop by cutting the faces at
the ends of the feet (refer to step 55 of the preceding screenshot).

The retopology of this little character is now over. We complete a mesh that offers many possibilities,
such as creating textures or doing animations. All of this couldn't be envisaged with a very high polygon
density and sculpted 3D model. Having a few polygons will facilitate the process. The important thing
now is to get the small details that we had sculpted back on our mesh that we can describe as a low poly
mesh. For this, we must discover a process called UV's unwrapping.

A presentation of each important face-loops of the alien

Unwrapping UVs
Now that we have a clean topology, we can learn more about the UV unwrapping process that we
introduced in the first chapter. We have to do this in order to project the sculpted details on our clean
mesh. Before starting, let's see what UVs are.

Understanding UVs
The goal of the UV unwrapping process is to flatten the 3D mesh in a 2D space in order to project
textures (2D images) on it. To understand the process better, imagine that we are going to remove the
skin of our alien in order to flatten it (I know that the metaphor is a little gory, but stay with us, there
won't be any blood). If we have to do this, we would need to detach the skin by cutting along the
imaginary seams and then flattening it down.

Another way to better understand UV unwrapping is to think about how clothes are made and take the
steps in the reverse order. For instance, at the beginning, a shirt is a flat piece of tissue where all the
seams are marked down. Then, the different cut pieces are attached together in order to form the volume
of the shirt, like the sleeves. So, if we were unfolding a cloth along its seams, we will tell Blender where
the seams are placed on our 3D mesh. After this, the ones that have been marked and the model that has
been flattened down will correspond to each vertex, edge, or face between the 3D model and the
flattened version of it; this is actually a 2D representation of the geometry.

In general, we call the coordinate axes of a 2D space the x and y axes, but in this case they are named as
U and V. Hence, the name UV unwrapping process. Another really important thing to note is that we
often want to avoid any overlap of geometry in the UV space. This is because when we use UVs of an
object in order to project 2D textures on it, we seldom want to have the same texture information twice
on the 3D model. We will also need to optimize the UVs so that they don't generate strange distortions.

Lastly, similar to the shirt example, our UVs will be usually separated in different parts called islands.
For instance, we will disconnect the head of our alien from its hands or other limbs. These islands need
to have a proportional scale to the geometry data they represent (that is, the head is bigger than the
hands, so it needs to be bigger in the UV space).

The placement of the seams

It's now time to unwrap the UVs of our alien character. So, as we stated before, we first need to tell
Blender where the seams are going to be:

1. We will first select all the edges that start from the lower back of the neck to the middle of the
forehead (the ones that are on the symmetry axis). We can also select four perpendicular
connected edges together at the end of the previous group of edges selected. It will look like an
inverted T shape from the front view.

2. Now, in order to mark our selection as seams, we will go to the Edges menu (Ctrl + E) and
select the Mark seam option.

3. Always try to think as if you were using a cutter, so the mesh will be disconnected in the UV
space along the marked edges. Also, note that the seams are in red.

4. Now, we will select the top collar edge loop (press Alt and the RMB) where it meets the
previously marked edge and mark it as a new seam again. This will completely separate the
head and neck portion into a new island.

5. In order to have less deformation under the chin, we will select edges starting from the top of
the collar (where we placed the seam) to the chin along the axis of symmetry. We will add five
perpendicular edges to our selections and mark our selection as new seams. We've done this in
the same way as the forehead.

6. In order to separate the antenna in its own island, we will select the circle loop of its base and
mark it as a seam. We will also have to mark a vertical line of edges that start from the
previously marked seam and end at the top of the antenna.

7. Then, we will end this seam by following the circular cap of the top of the antenna without
closing it completely, leaving an edge unmarked. When you are marking the seams, try to think
of an approximation of the shape that you know in the real life. For instance, in this case, the
antenna looks like a candy wrapper.

8. To end with the head, we will select an edge loop around the eye and mark it as a seam. If you
want to remove a seam, you can simply select a seam, and in the Edges menu (Ctrl + E), you
can select the Clear Seam option. We've now completed the UVs of the head, but we will finish
the body before looking at them unwrapped.

The head seams

9. Now, we will select a vertical edge loop around the shoulder and mark it as a seam. This is
going to represent the separation between the arm UVs and the torso UVs.

10. In order to clearly see that the arm UVs are disconnected from the rest of the body, you can go
in the Face mode, hover your mouse on the arm and press the L key (selection of the linked
parts).

11. We will then separate the torso UVs from the legs by marking an edge loop situated under the
belt.

12. It's best to consider the torso UVs as two separate islands, the front and the back. So, we will
split this by marking the edges that connect the shoulder's vertical seam to the seam of the
collar. These edges follow the angle created by the neck and the shoulder.

13. After this, we will mark a line of edges that start under the arm and go right to the belt seam. As
you can see, using the linked parts method presented before, the torso is now in two parts that
are delimited by the collar, belt, and shoulder seams (of course, we always have the mirror
modifier turned on, so we can only see half of the torso's linked parts)

14. We will then mark an edge loop that follows the top boot outline.
15. As we did with the torso, we will split the legs UVs into two islands. To do this, we simply

mark the edges that start from the belt seam (following the same direction of the seam on the
side of the torso) and end at the boot seam.

16. For now, the legs are still in one part, so we will add a new seam starting from the boot seam
and ending below the pelvis bone. Now, our legs UVs are split into two islands.

17. It's now time to mark the seams of the boots. To do this, we will to the bottom view (Ctrl + 7
numpad key) and mark a loop that follows the footprint of the boot. We will also mark the loop
that follows the hole of the boot on the calf muscles.

18. We will then mark the vertical edges of the back that connect the footprint seam to the hole
seam and the ones that connect the hole seam to the top boot outline.

19. Lastly, we will mark the seams of the hand and the arm. We will mark the wrist edge loop in
order to disconnect its UVs from the arm. Now, we will mark a continuous line of edges that
start from the tip of the thumb and follow the silhouette of the hand by connecting to the wrist
seam. As you can see, we didn't split the top of the thumb so that the interior palm and the back
of the hand share the same UV Island. Then, we will mark a continuous line of edges from the
wrist to the shoulder in order to do the UVs of the arm.

Congratulations! You've finished marking all the seams, and we are now ready to unwrap the alien. In
order to do this, we must first apply our Mirror modifier. As you can see, all the seams are now
mirrored to the other side; what a time saver!

1. Now it's time to unwrap the alien. Let's see how this is done. We will first select all its geometry
by pressing A.

2. Now, we will press the U key to get the UV Mapping menu and select the Unwrap option.
Unwrap is now done!

3. To see the UVs, we will open a new UV/Image Editor by splitting our 3D view into two and
changing the new window to the appropriate editor.

The upper body seams

The seams follow the volume of the each part of the character.

The lower body seams

As you can see, in the Edit Mode, all our 3D geometry is being flattened down in the UV space. We are
now ready to reorganize each island. Note that if you still have problems while understanding the
relation between the 3D space and the UV space (don't be disappointed if this is the case, UVs are hard
to understand in the beginning), you can use the linked method presented before to see how each part is
represented in the UV space.

The placement and adjustment of the islands

We are now going to adjust each island in the UV space. As you can see, all our islands are bounded to a
square. Everything that is on the outside won't be used, so all the islands need to be tightly packed in it.
Moreover, we'll have to check whether there are any important deformations on our 3D mesh. If this is
the case, it means that each texture will be stretched whether we want it or not.

1. In order to adjust the different island placements, in the UV/Image Editor, we will first need to
enter the Island UV selecting mode.

This allows us to select every island and place it with the grab (G) tool, scale (S) or rotate it (R)
in the UV/Image Editor.

2. When we try to place the islands correctly on the UV space, we need to be sure that they don't
go out of the square bounds (represented by a grid).

3. You can also use the Pack Islands tool located under the UVs menu, in order to have this
automatically done. But it's always best to do it by hand.

4. Another thing to remember is to have the island proportional in scale to what they represent on
the mesh. This was automatically done when you first unwrapped your mesh, but if you scale
the islands by hand, be aware of this. However, you can sometimes counter this rule when you
need more texture details on a specific location. For instance, the head is one of the most
important part of the alien, so we can scale its island a little bit more.

5. Once you've packed all your islands, you can add a checker texture to check whether there are
any important stretches with your UVs. We will add a predefined texture by first entering into
the Edit Mode of the alien.

6. We will click on the + New button in the header of the UV/Image Editor, and select a UV Grid
image under the Generated Type drop-down menu. We can then validate it with OK.

7. In order to see the test grid on our alien in the viewport, we will need to enter the Texture
shading mode located under the Viewport shading drop-down menu in the 3D viewport
header. We can also toggle it on or off by pressing Alt + Z.

Now that we see our test grid on our alien, how can we interpret it? If all the squares are still
approximate squares, then it means we don't have any important deformation. Their orientations don't
matter too much here.

The final UV Island placement

The baking of textures

Now that we have UVs on our little alien, we can take a look at how we can transfer all the details from
our sculpture to the new retopologized mesh. The details in the sculpture are simply there because of
the amount of geometry it is composed of, but in the retopology, we have kept the amount of details to
about 5000 polygons, in order to have a manageable mesh.

The baking of a normal map

The best solution that we have in order to transfer the details is to bake a normal map that will act with
lights to give the impression of detail.

What is a normal map?

At its lower state, a normal map is an image or a texture that will be projected on the mesh through the
UVs. This' is why it's important to UV unwrap the object. Note that if the UVs are stretching at some
place, the details that are in the normal map will then be stretched too. As mentioned before, a normal
map will do its magic with the lighting. It is composed of red, green, and blue pixels that respectively
represent the X, Y, and Z orientations of the normal of a face. So, we will need to create a normal map
that will contain all the normal information of the high poly sculpture. The higher the definition of the
normal map texture will be, the most precise the details will be.

Making of the bake

In order to create a normal map from our sculpture, we will need to use the bake tools of Blender.

1. We only need to see the sculpture and the retopology in the 3D view. To hide the rest, we will
select them both and press Shift + H.

2. We can now deselect all our objects by pressing A.
3. In order to do the bake, we will have to first select the alien sculpture and then the retopology

(this becomes the active object).
4. Now, in the Properties editor, under the Render section, we will expand the Bake subpanel.
5. The first option to choose is what type of map (or texture) we want to bake. So, under the Bake

Mode drop-down menu, we will select Normal Map.
6. The next thing we'll have to check is the Selected to Active option that tells Blender to bake

from the sculpture to the active object (our retopology).
7. We will then need to add a blank texture to bake our normal map on. So, we enter the Edit

Mode of the retopology and click on the + New button (or the + icon on the right-hand side of
the texture list), and instead of selecting a UV grid, we choose a Blank texture with a width and
height of 4096 pixels.

8. Before baking our map, we need to click on the Smooth Shading button; otherwise, we will see
the polygons on our bake.

9. Last but not least, we will come back to the Bake panel and click on the Bake button. Don't
forget to save your map (Image | Save As Image or simply press F3) or it will be lost!

At this point, you should see that the normal map has started to appear. If you get an error message, it
may be because you didn't add the texture on the low poly while you were in Edit Mode, or that you've
selected the retopology before the sculpture. If you want to have your normal map packed into the

.blend file, you can go to the File menu and select the Pack All into blend file in the External Data
subpanel.

Note

About the size of the textures

Usually, textures aren't rectangle. They are set with the power of two of the width and the height. The
common sizes are 256 x 256, 1024 x 1024, 2048 x 2048, and 4096 x 4096.

The baked normal map of our alien

Displaying the normal map in the viewport

Now that we have a nice normal map baked, we will show to you how to display it in the viewport:

1. We first need to be in the GLSL mode (press N and select Shading Subpanel | Material mode
dropdown).

2. We also need to add a new material on our low poly. To do this, we can click on the New
material button under the Material tab of the Properties editor.

3. We will then go to the Texture tab of the Properties editor and click on the New texture button.
4. Under the Image subpanel, we can choose our normal map with the left-hand side drop-down

menu.
5. Then, we will check the Normal Map check box under the Image Sampling subpanel.
6. For now, Blender will only interpret the map as a diffuse map. We want to tell Blender to use

the normal information of the map. So, under the Influence subpanel, we uncheck Color slider
and check Normal slider.

7. Now, we will need to add a light in the 3D viewport (press Shift + A and navigate to Lamp |
Hemi) and orient it correctly.

8. Lastly, we need to enter the Texture shading mode. We can now appreciate the comeback of
our sculpture details. If you want, you can move the light around to feel the relief of the normal
map.

The baking of an ambient occlusion
Now that we have the normal map set, we will improve our alien with another map called an ambient
occlusion.

Understanding the ambient occlusion map

An ambient occlusion is a black and white texture that represents the contact shadows of a mesh. The
contact shadows are the shadows produced by the small proximity of objects. In order to have a nice
ambient occlusion, we need to increase a sampling parameter that corresponds to the "noisiness" of the
shadows. The more samples you have, the smoother the shadows will be. This map will then be
multiplied on top of our diffuse material color.

Note

Multiplying colors

In computer graphics, black is represented by a value of 0 and white by a value of 1. So, when we
multiply a color with black, its result is 0, and when we multiply a color with white, its result is the
color. For instance, we will take two colors, J and K, a pure blue that is represented by R(J): 0,
G(J): 0, and B(J):1 (RGB means Red Green Blue), and white, R(K): 1, G(K):1, and
B(K):1. When we multiply both, we will have R(J)*R(K) = 0 * 1 = 0, G(J)*G(K) = 0 * 1 = 0, and
B(J)*B(K) = 1 * 1 = 1, so the resultant color is R:0, G: 0, and B:1. It is the original blue.

Creation of the bake

We will now follow the same principle as the normal map, but we will change the sampling value:

1. The sampling slider is situated under the world tab of the Properties editor in the Gather
subpanel. Even if it's grayed out, it will work for the bake. We will set it to 10 in our case. Don't
go too high with this as it will increase your baking time.

2. Now, refer to the normal map baking process, but instead of choosing a normal map in step 5,
choose an ambient occlusion. Again, don't forget to add the blank texture in Edit Mode, and
save it after the bake. You can also name your textures in the UV/Image Editor in the header
with the corresponding text field.

The baked ambient occlusion map of our alien

Displaying the ambient occlusion in the viewport

In order to see the ambient occlusion applied to our mesh, we will have to add a new texture to our
material. This is done as follows:

1. First, we will select our alien, and then we will select the material that has the normal map on it
in the Material tab of the Properties editor.

2. We will, then, go to the Texture tab of the Properties editor and add a new texture below the
normal map. In order to do this, we select the second slot and click on the big New button.

3. We can now choose our ambient occlusion under the Image subpanel.
4. Under the Influence subpanel, we turn the color slider on but we change the Blend Mode from

mix to multiply, as we had previously explained. As you can see, this perfectly works in the
viewport when the Texture shading mode is turned on. We can clearly see the contact shadows
of our mesh around his eyes, for instance.

The alien with a proper topology (shown on the left-hand side) and with its normal map and
ambient occlusion (on the right-hand side)

Summary
In this chapter, we saw how to create a proper retopology based on the sculpture made in the previous
chapter and retrieve its details with a normal and ambient occlusion map. There are other maps that you
may want to create, such as a diffuse, displace, or lighting map. Now let's go to another project, the
Haunted House!

Chapter 5. Haunted House – Modeling of the
Scene
Welcome to the scary project!

In this chapter, we will model a haunted house that we will texture and render in the future chapters. You
will use the modeling techniques that we have already seen in the previous chapters and learn some new
techniques using some useful modifiers and time-saving tools. Moreover, you will learn how to correctly
organize your scenes by grouping objects and placing elements in layers. Now that you have more
experience with Blender, we aren't going to show you all the steps in detail but rather describe the key
points of the process. If you have any difficulties, you can always go back to Chapter 2, Robot Toy –
Modeling of an Object, and Chapter 4, Alien Character – Creating a Proper Topology and Transferring
the Sculpt Details, in order to review some of the modeling techniques. Let's start our scene! In this
chapter, the following topics will be covered:

• Modeling on scale
• Blocking the house
• Advance modeling tools
• Modeling with curves
• Organizing the scene

The final haunted house should look like the following screenshot:

Blocking the house
Before going into detail, we will start by testing different shapes in order to create the concept of our
house. It is like a 3D sketch.

Working with a scale

In order to create our haunted house and its environment, we need to work with a real world scale.
Indeed, when you are working on objects, such as buildings, where the scale matters, it is important to
remember to adjust the units of measurement of Blender.

Blender uses, basically, its own unit of measure: the Blender units that correspond to a fictitious unit of
measure. You aren't going to encounter Blender units in the real world.

There are two other unit systems of measurement in Blender that you can use: the metric system and the
imperial system. We prefer the metric system. For this, go to the Properties panel on the right-hand side
of the user interface under Outliner (in the default layout). In the Scene tab, you will find the Units tab.
Choose Metric and Degrees.

The metric system allows us to work in kilometers (km), meters (m), centimeters (cm), millimeters
(mm), and micrometers (μm). Let's choose meters in our case. For this, we set the Scale value to 1.000.
A value of 0.1 would make us work in centimeters.

To know the size of your 3D models, in the Object Mode, you can look at their size in the Transform
tab on the right-hand side panel of the 3D viewport (N). This information is also given in the
Dimensions section for the x, y, and z axes.

You can then display the size of the selected edges. In the Edit Mode, under the Transform tab, go to
the Mesh Display tab, and check the Edge Info | Length option. If you want to measure something,
Blender gives you a ruler under the Grease Pencil tab in the left 3D view panel (T). To use this, simply
click on the Rule/Protractor button and drag it in the 3D view.

Be careful to always apply your scale and move or rotate the transformation of your objects when you
manipulate them in the Object Mode. To do this, we open the Apply menu (Ctrl + A) and select
Rotation and scale. It is important to avoid involuntary deformations after this.

Blocking the bases of the house
To make this house, we don't start from concept art but from an idea and a few references found on the
internet.

It is very important during any creation to spend a little time documenting to confront the different
possibilities of shapes and styles. We need to see what has been done previously and be informed
enough to be precise in our work.

As we are not completely sure of the form as a whole, we will adopt a method that involves testing and
quickly developing ideas with simple forms. This method is called Blocking. This is done as follows:

1. We will begin the modeling by adding a cube at the center of a new scene (Shift + A and select
Mesh | Cube), which will represent the central part of the house.

2. In the Object Mode, we will adjust the size in the Transform tab to have something realistic. It
is an imposing house, so we will set 7 m on the z axis, 7 m on the x axis, and 8.5 m on the y
axis.

3. In the Object Mode, let's duplicate our cube (Shift + D) in order to make the terrace. So we will
scale it to a height of 1.26 m, then we will place it at the base of our haunted house under the
main block previously created.

4. The terrace is not completely cubic. We will add two edge loops and an extrusion to the front,
which is less wide (on the x axis) than the main block.

It is necessary that this terrace is large enough to be credible, so we will create a passage of at
least two meters wide. It is not necessary to be very accurate for the moment, but be aware of
your measures, and remember to apply the transformations when you switch back to the Object
Mode (refer to step 1 in the following screenshot).

5. To improve the general shape of our house a little, we will add a new cube that fits in the front
of the central part of the house, centered on the x axis.

The height of this cube exceeds the height of the other cube by one third. The rest is hidden in
the central block. It has a square base, and it is higher than the main block by about 45 cm (refer
to step 2 of the following screenshot).

6. Likewise, on the rear part, we will duplicate our front block (Shift + D) and move it to the other
side on the y axis. This block is lower than the main block. Its size is 4.7 m on the x axis, 1.67 m
on the y axis, and 5.3 m on the z axis.

Now we have our basic volumes. We can now make the roof that is composed of several parts; one for
each block. This is done as follows:

1. We will begin with the roof of the front block by adding a new cube (press Shift + A, and select
Mesh | Cube). We need to adjust its size to be larger on the x and y axis.

2. We will move down the top face to flatten it. It is the bottom part of this section of the roof.
3. Then we will do an inset (I) and an extrude (E) to the top. We will adjust the scale of the top,

and then we will add two extrusions (E) to make the top thicker and finish the shape (refer to
step 4 of the following screenshot).

4. We will duplicate this part of the roof (Shift + D), and we will place it on the rear half of the
central block. We will scale it on the x axis (press S + X) in order to have the same width as the
central block. This is also lower than the roof of the front part, so we will also scale it on the z
axis (S + Z) (refer to step 4 of the following screenshot).

5. In the same way, we will make another roof that covers the front portion of the terrace. It will be
supported by pillars. We will again duplicate our roof that is cut in half, and we will adjust it
according to the dimensions of the front of the terrace. We will remove the top part to form a
small balcony (refer to step 5 of the preceding screenshot).

6. For the roof of the rear block, we will slightly change the style with a simple tilted platform. We
will change the rear block to bevel it. We will duplicate the top face (Shift + D) and make a new
object with it (press P and select Selection). We will need to make an extrusion on the z axis to
add a thickness, then we will adjust the size and the position of the wireframe in the Shading
Mode (refer to step 6 in the preceding screenshot).

7. We will now mark a boundary of two floors with a concrete ledge. For this, we will need to add
a new cube (press Shift + A and select Mesh | Cube) scaled on the y and x axes (S + Shift + Z) to
be around the main block. We will give it a height of 15 cm and make it exceed the block by
about 20 cm (refer to step 7 in the preceding screenshot). We will do an inset (I) on the top and
bottom faces, then we will delete the nonvisible faces.

8. Let's form the stairs. We will add another cube, then we will resize it to be 84 cm on the z axis
and 1.5 m on the y axis. We will need to divide it into six equal parts horizontally and vertically.
In order to gain time, we will add a Mirror modifier (refer to step 8 in the preceding
screenshot). We will remove the unwanted faces, and then extrude the contour of the top
towards the symmetry axis to create the missing faces (refer to step 9 in the preceding
screenshot). We will place our stairs in the middle of the front part of the terrace.

These few simple 3D models done in a short time gives us an idea of what our haunted house will look
like with further modeling.

Refining the blocking
Now that we have the foundations of our model, we will go into the details by adding more defined
objects.

Adding instantiated objects

If we analyze the majority of the houses, we can see that they are mainly composed of repetitive shapes
such as windows and doors.

So we will use the techniques that allow us to duplicate objects by instance. This means that if we
change the geometry of the source object, all the duplicates will change too. As you may have
understood, this is really useful in order to save time: for instance, with UVs. Now, perform the
following set of steps:

1. Let's start with the low wall around the steps. We will add a cube that we will orient with the
slope of the stairs.

2. We will add an edge loop in order to break the slope. Then we will add a thinner piece that
recovers the slope. To do this, we will extrude the top faces and scale them appropriately on the
same level, and we can redo an extrusion.

3. In order to mirror the other side of the low wall, we will center the pivot point of the stair object
at its center (Ctrl + Alt + Shift + C and select Origin to Geometry). Now we can safely add a
mirror modifier with the stairs as the mirror object (refer to step 12 of the preceding screenshot).

4. Next, we will do the columns that will support the roof that covers the front of the terrace. We
will need a 16-face cylinder that is 18 cm wide with a height of 2.8 m. In the last tool options in
the left 3D view panel, we will choose the Nothing option under Cap Fill Type. We will then
position it on the left-hand side of the stairs, and we will duplicate it as instances with the
Duplicate Linked (Alt + D) function.

5. In the Object Mode, we will place our columns at the four corners of the terrace roof. In order
to add some details to the columns, we will add some loop cuts (Ctrl + R) on the top of the roof
and extrude the face loops along the normals (E + Alt + S) (refer to step 13 of the preceding
screenshot).

Note

Duplicate Linked

This tool allows you to duplicate your 3D model as instances. This means that when you do a
modification in the Edit Mode on the source object, the transformations are applied to the other
duplicated objects in real time. The UVs are also instantiated. However, when you manipulate
the object in the Object Mode, the changes are not reflected in the other instances.

In order to break the instantiation link, we can use the Make Single User menu (Call Menu
(press U) | Object and Data).

6. We will now work on the bars that delimit the terrace. We will take a new cylinder, this time
thinner with a radius of 5 cm and a height of 1.2 m. We will again remove the caps that are
pointless here.

7. In order to duplicate our 3D object, we are going to use the Array modifier. We will use a
relative offset of 3.100 on the x axis. We will take advantage of the replication of the array in
order to improve the shape of the bars a little bit with some loop cuts and extrusions (refer to
step 14 of the previous screenshot).

8. Since the bars are along a straight line, we will duplicate them with a normal duplicate (Shift +
D) to place them on each side of the terrace. We will also need to adjust the number of bars to
match the surface of the terrace.

Note

The Array modifier

This modifier allows you to duplicate your 3D models with a customizable offset. You only
need to choose the number of repeated objects that you need with the Count parameter and the
distance of the offset (constant or relative) on any axis. You can also automatically merge your
duplicated polygons with the Merge option.

If you want to modify the geometry of a mesh, the array takes the object volume into account,
so be careful. A transformation in the Edit Mode can change the offset.

9. We will complete this with ramps. The ramp is a simple cube scaled on the x axis to make it
longer. We will duplicate the ramp as an instance (Alt + D) wherever needed, but remember that
you need to duplicate with Shift + D if you want to do some changes in the geometry (refer to
steps 15 and 16 in the previous screenshot).

The Duplicate Linked tool is very useful, but it is not very flexible when we only want to do a transform
on certain objects.

1. Let's repeat the same technique to make a balcony railing on the top of the roof that covers the
front of the terrace. We are going to change the shape of bars a little (refer to step 17 of the
preceding screenshot).

2. We will also use an Array modifier to make the wall brackets that will support the different
parts of the roof. We will use one Array modifier to make a pair and another to duplicate it with
a good offset (refer to steps 18 and 19).

3. The same thing is done for the pikes on the roof that give a threatening look (refer to step 20 in
the preceding screenshot).

4. The walls are a bit flat at the moment, so we are going to model a bay window with a particular
shape (refer to step 21 in the preceding screenshot). We will start with a new cube (press Shift +
A and select Mesh | Cube), and we will resize it on the x axis to form the base.

5. We duplicate it to make the top part and add an inset for the frames of the windows. When this
is done, we will duplicate it as a new instance (Alt + D), and we will place it on both sides of the
main block of the house.

It is also time to make a few conventional old-style windows. We will start with the windows on the
front of the house (refer to step 22 in the previous screenshot). Let's start again from a cube:

1. We will delete the left side to use a Mirror modifier. From the front view, we will make the
shape of the window with a few edge loops (Ctrl + R) and add an inset. From this model we will
can make the frame and extract the shutters (refer to step 23 in the preceding screenshot).

2. We will create another window model for the roof. We will start its base with a flattened (S + Z)
and beveled (B) cube. The central part is an extruded edge with an inset, and there is a little roof
with a curved slope (refer to step 24 in the preceding screenshot).

3. Let's add a fireplace (refer to step 25 in the preceding screenshot). This is also fairly simple to
model, starting from a cube that is extruded and scaled. It uses the same basic modeling
techniques that we have previously covered.

Reworking the blocking objects
Until now, we had quickly added a series of 3D objects to form a fairly rudimentary house and have a
general idea of the entire model of the house. Now we will finish the modeling and review the topology
of our models in order to make them more presentable.

There is still a final important object to be made: the front door. It is composed of several 3D objects.
There is the frame, door, lock, handle, and there is the top frame with a decorative pattern. The frame
and the door are quite similar to the windows. The door will be created as follows:

1. We will use a mirror modifier each time. The lock is quite simple, just an extruded cube with a
few insets (I) (refer to step 23 in the preceding screenshot). For the decorative pattern, we will
use a circle in order to get a better round shape.

The rays are extruded and moved by hand. Don't forget to add a few edge loops when you add
the Subsurface modifier (refer to steps 24 and 25 in the preceding screenshot).

2. We will place the address number of the house. For this, we will use the Text tool (Shift + A and
select Text). We will use the basic Bfont font of Blender, but you can download and use any
font instead. We will use the Extrude: 2.3 cm and Depth: 1.2 cm parameters to make a small
bevel. We will make two small nails to hold them.

3. We will now review every asset and remove the nonvisible polygons that are useless in our case.
Instantiating many of our objects has greatly facilitated the work.

4. We will also often add a Subdivision Surface modifier when it's needed.

But sometimes, this is not the case, as a simple bevel will do the job as well. As always, you
need to maintain your geometry with loop cuts or bevels. In both cases, we want to activate the
Smooth Shading (in the left panel of the 3D viewport).

5. We will also detach some parts of the geometry from other objects. To do this, we will go in the
Edit Mode and we will select the faces that we want to detach by pressing P and selecting
Selection.

This will allow us to rework certain objects and add the Subdivision Surface modifier with
ease. For instance, for the roof, we will detach the center part and add tight edges near the four
corners with the Bevel tool. We can also increase the windows' resolution by adding and placing
some edge loops to form a nice round shape in the corners.

All the improvements that we've done here are, in our case, pretty easy because we don't have to get a
realistic result. We are taking a more "cartoony" path, and in the next chapter, we will paint textures by
hand in order to add more details.

Breaking and ageing the elements
It's now time to refine some elements in order to give them an old/destroyed look. This will mainly
come from the texturing work that we will do later, but we can still work on the geometry a little bit:

1. We will begin by working on the stairs. We will delete the side faces that are invisible. (Refer to
step 1 in the following screenshot.)

2. Let's add loop cuts below the angle of each stair. This will allow us to extrude a face in the front
direction of the top of each stair. (Refer to step 2 of the following screenshot.)

3. We will then add two edge loops at the center to add more resolution.
4. Now with Proportional Editing turned on (O), we can select some vertices on the stairs and

move them to break the shape a little bit. (Refer to step 3 of the following screenshot.)
5. We will now enter the stair ramps object and delete the one on the left. We will have to delete

the invisible faces, those that are in the ground and in the house.
6. After this, we can move the origin back to its center (Ctrl + Alt + Shift + C) and duplicate the

object (in the Object Mode) with Shift + D in order to move it back to the left-hand side.
7. We can then add definition to the object on the right-hand side with the Loop Cut tool.
8. At the top of the ramp, we will use the Knife tool and cut around a loop cut that we had made

before. We will then push this hole inwards. (Refer to step 4 in the following screenshot.)
9. We can then repeat this process elsewhere on the other object. (Refer to step 5 in the following

screenshot.)
10. The stairs are now finished. (Refer to step 6 in the following screenshot.)
11. We can also add a cut in the back wall of the house and move the vertices a little bit to add some

sag.

We now encourage you to go over each object and slightly move the geometry, with the Proportional
Editing tool turned on (O), in a random manner in order to break each object's silhouette. You can also
rotate the objects, such as the curtains. This is a house that is not new, plus it's probably abandoned!

Simulate a stack of wooden planks with physics

We are now going to add little bit more details by adding a stack simulation of wooden planks in the
front of the house. But instead of placing each plank by hand, we will take advantage of the physics
engine of Blender that will do the job for us. In order to keep our stack simple and manageable, we will
use the instancing principle that we've seen before. Let's start with the modeling of the plank:

1. The plank will be very easy to model by starting with a cube primitive.
2. We will then rescale this cube to make it thinner and larger. Note that if you do this in the

Object Mode, you will have to apply the scale with Ctrl + A.
3. In order that the plank catches the light on its edges better, we will add a small bevel to it. There

are two ways of adding bevels in Blender. The first one is the one that we've already used before
with Ctrl + B. The other method is by adding a Bevel modifier. That's what we've done here.
Note that if you want, you can apply the modifier too.

4. We will now duplicate the planks by instancing them (Alt + D). You need to place them one on
top of the other. In order to add a little bit of randomness, we will rotate them slightly in an
unordered way.

Note

About the Bevel modifier

The Bevel modifier is nice because it is applied on the whole object, so we don't have to manage a lot of
geometry while we are in the Edit Mode. We can adjust the Width slider to tighten or enlarge the effect
of the bevel. The Segments option allows us to choose the number of cuts the bevel will be made of.
The Profile of the bevel corresponds to the direction of the bevel; if it's negative, it will go inwards.

Creation of the simulation of a stack of planks
We will now create our simulation. In any rigid body simulation, the objects have some properties that
define them. For instance, you can set their mass, velocity, or simply let gravity act on them as the sole
force. In any decent physics engine, you can have static and dynamic objects. A static object is an object
that, as its name implies, can't move at all but will be considered in the simulation when collisions occur.

A dynamic object is an object that can receive forces. In Blender, static objects are defined as Passive
and dynamic objects as Active.

1. We will select all our planks, and in the Physics tab, in the left 3D view panel (T), we will press
the Add Active button. They will have a green outline.

2. Now we will set the ground object as passive by pressing the Add Passive button so that the
planks don't pass through the house.

The Physics tab

3. In order to simulate our stack, we will launch the animation. To do this, we will use the Alt + A
shortcut or press the Play button of the Timeline editor. Note that if the simulation doesn't seem
to launch, you can replace the Timeline bar on the first key frame.

The final stack of wooden planks

4. As you may have seen, there is an orange line on the Timeline that tells us that a simulation has
been cached, but as soon as you go backwards in time, the simulation will be removed. So after
the simulation has been completed, we will have to apply the placement of each of the planks.
In order to do this, we will select them and click on Apply Transformation in the Physics tab.
We can now safely replace the Timeline bar at the first frame, and our stack will rest still.

Modeling the environment (8 pages)
Now that we've finished the house modeling, we will improve our scene with an environment composed
of a cliff, a barrier, a cart, and some rocks.

Modeling the cliff

Let's now model the cliff:

1. We will start by modeling its ground part. In order to do this, we add a plane and scale it.
2. We will then move the ground, so the house is placed above it.
3. We will use the scale tool in order to make the ground wider.
4. In the side view, we will enter the Edit Mode and activate the wireframe (Z). We will select the

two vertices in the front of the plane, and by pressing Ctrl and the LMB, we will extrude the
cliff profile to the left.

5. We will then reshape the geometry from a top view by moving the vertices with the Grab (G)
tool. The cliff should be narrower where the house is.

6. The whole geometry will then be extruded down to form the height of the cliff.

Note

Note that you may have the normals of the face pointing inwards causing lighting mistakes. In
order to recalculate them, use the Ctrl + N shortcut.

Starting the cliff modeling

7. At this point, we can add some new horizontal loop cuts (Ctrl + R) in order to add definition to
our model.

Now our goal is to give the impression of a rock with the few polygons that we have. To get the shape,
we will go in the top view, and with the wireframe turned on, we will select the edges of the contour of

the cliff and move them to form ridges and a valley. This will give an angular look. Remember that all
the details will come with the texturing process in the next chapter, so we only have to give the overall
shape here.

1. We can improve the model with some randomness. To do this, we go in the Tool tab of the left
3D view panel, and under the Deform section of the Mesh Tools subpanel, we click on
Randomize. The effect of the tool can be tweaked with the Amount slider in the last tool option
panel. This tool will simply push all the individual selected components in a random direction.

The final cliff

2. Lastly, we can arrange the global shape of our object with Proportional Editing. For instance,
we can scale the tip of the cliff with it.

Modeling a tree with curves

We are now going to learn a new way of modeling certain objects with curves. Curves are entities that
can be useful to model ornaments, shoelaces, ropes, tree branches, and so on. In our case, we will model
an entire tree with them.

Note

A word about curves

A curve is defined by control points that are connected together. Each point has a handle type. This can
be changed by first selecting the control point that you want and by pressing the V key. By choosing the
Vector type, the point will be angular. We are choosing Automatic or Aligned, so you will have Bezier
handles that define the smoothness of the point. Handles always work in pairs. You can break their link
by selecting the handle that you want to disconnect and by pressing V and select Free. In the beginning,

you will find that curves are hard to manipulate, but with a little bit of practice, it will become as easy as
pie. But, of course, there is lot more to discover about them!

1. We will add a new curve of the Bezier type (press Shift + A and select Curve | Bezier). Then we
will enter in the Edit Mode.

2. We will then turn off the handles and the normals of the curve. To do this, we will uncheck the
Handles and Normals check boxes under the Curve Display subpanel in the right 3D view
panel (N).

The Curve display options in the N panel.

3. When you start working on a shape that uses curves, it's easier to set all the control points as
Vector (press V and select Vector).

4. Now we will leave the Edit Mode and add a new curve object of the bezier circle type (press
Shift + A and select Curve | Circle). This circle will define the volume of our bezier curves.

5. We will select the bezier curve, and in the Properties editor, we will click on the object data
icon. Under the Shape subpanel, we will then select the circle as the Bevel Object. As you can
see, the curve is now getting a volume defined by the circle. If you change the circle, its scale,
for instance, will change the curve volume.

6. We will then close the holes on each side of the curve by checking the Fill caps option under the
Bevel Object one.

7. We can now modify our curve to form the trunk of the tree. To do this, we can simply vertically
rotate the two points that we already have and extrude the tip several times with E or press Ctrl
and LMB. You can also subdivide the curve by selecting at least two consecutive points and
pressing W and select Subdivide.

8. Now we can change the radius of each point by changing its value in the Transform subpanel in
the left 3D view panel. This is how we will taper the trunk.

9. We can now add new branches to our tree by simply adding a new point by pressing Ctrl and
LMB without anything else selected. This point could then be extruded.

We can also change the radius of the branch. If you want to quickly select a branch, you can
either select one of its points and press Ctrl + L, or select one of its points and press Ctrl and the
+ numpad key several times.

10. We will now add more branches by duplicating the first one that we've created. The process
simply involves the duplication and placement of a lot of branches that differ in size and radius.

11. Next, we can convert our curves to a mesh object. In order to do this, we will have to first
decrease the subdivision of our branches and our circle profile object by going to their Object
data tab in the Properties editor and by changing the Preview U (for the viewport) and Render
U (for the final render) sliders. We can now select our curve object and press Alt + C and select
Mesh from Curve/Meta/Surf/Text to convert our curve object into polygonal geometry.

The curves option in the Properties editor

We will now show you how to deform the tree with a special type of object called a lattice. This will
serve us to change the overall shape of it.

Note

What exactly is a lattice?

A lattice is a very useful object that is bound to another object. It is a cube that can be subdivided along
three axes: U, V, and W. This needs to encapsulate the object to which it is bound. Then, when we move
its control points, it performs a sort of a projection that allows us to deform the bound mesh.

The Lattice options in the Properties editor.

1. We will add a new lattice by pressing Shift + A as usual.
2. Now that we have a new lattice, we can place it around our tree. No geometry should be outside

the lattice or it will cause problems.
3. We will now increase the subdivisions of the lattice in U, V, and W to 4. This will gives us

enough control points in order to tweak our tree.
4. Now it's time to bind our lattice to our tree by simply selecting our tree and adding a new

Lattice modifier. We will now have to specify to Blender the lattice object that we want to bind
to our mesh in the Object parameter. In our case, we only have one lattice so it's easy to find it
in the list, but if you have many lattices, don't forget to name them.

5. We can now enter Lattice Edit Mode and move the control points as if they were vertices.

The final tree with its lattice

Enhancing the scene with a barrier, rocks, and a cart

We will now enhance our scene by adding some cool assets using the techniques that we've seen in this
chapter:

1. Let's start with the easiest asset, the rock. We will start this element with a cube.
2. Now in Edit Mode, we will use the Subdivide smooth option (press W and select Subdivide

smooth).
3. In the last tool subpanel of the left 3D view panel, we can tweak the Fractal slider in order to

add some randomness to the subdivision.
4. We can now repeat steps 2 and 3 several times.

A single rock

5. Now that we have a pretty spherical rock, we will use a Lattice modifier to shape it more like a
rock. In our case, we will set our lattice with three subdivisions in U, V, and W, and after we've
done the job, we will apply the modifier on the rock.

6. We can now use the instance duplication (Alt + D) tool in order to populate our terrain with
rocks. This is a little bit of cheating, but we don't have to do any other objects in order to give
the impression that there are many different rocks. Indeed, we can simply rotate and scale the
rocks in a random manner! In this case, the Free Rotation tool (press R key twice) is quite
useful.

The rocks are now placed all around the house.

We will now create a barrier in front of the house with a very nice modifier.

1. We will first add a new cube that we will scale on the x and y axes to make it thinner.
2. Next, we can select the top face in the Edit Mode and move it to change the height of the plank.
3. With the top face selected, we will extrude the top part of the plank and scale it on X.
4. We can then select all the objects (A) and use the Bevel tool (Ctrl + B) to smooth their edges.

The barrier plank

5. We can now place it on the far left of the cliff in front of the house.
6. The next thing is to use the Array modifier in order to do a line of planks to the middle of the

house.
7. We can duplicate this barrier piece on the other side.
8. In order to break the boring alignment of these objects a little bit, we will use a path curve (Shift

+ A and select Curve | Path) that will guide the planks.

9. The path object looks like a curve. We can select each control point, extrude them, and
subdivide them. We will extend the path object from the far left to the far right of the cliff and
subdivide it several times (W and select Subdivide).

10. We can now break the path by moving each control point in a random way.
11. On the barriers, we will add Curve modifiers and select our path as the object. In our case, the

deformation axis is x. Be careful that curve modifier is placed above the array of the stack.
Indeed, we want to deform only one plank. As you can see, we now have our barrier following
the path.

The final barriers with their curve

The following screenshot shows the barrier modifiers:

The barrier modifiers

It's now time to model the cart, which is a more complex object, but still simple to do with all the tools
you've learned until now:

1. Let's start by duplicating one of the planks that we used in our physics simulation. This time we
want to modify it without breaking the ones that are part of our simulation, so we press the U
key and select Object & Data to make it a single user.

2. We can now use an Array modifier to make the bottom part of our cart. We can specify a little
margin between each of them.

3. Now we will apply the modifier and tweak each plank so that they don't look the same.
4. We will now add a small cube and change its height. We can break its silhouette a little bit with

Loop Cut (Ctrl + R) that we will move, and finally, add a bevel.
5. Now we can duplicate this object (Shift + D) at each corner of the cart.
6. We can now add a small plane that we will extrude by following the outline of the cart. We will

add a Solidify modifier and apply it.
7. We can now add a new cube that we will shape into handles. As always, it's a matter of loop

cuts, bevel, and placement.
8. Now, the last thing we need is two big wheels. To do this, we will add a circle, and in the Edit

Mode, we will extrude it along the normals (press E + Alt + S). We can also extrude the wheel
to give it a thickness. Remember to check your normals' orientations and clean them with Ctrl +
N if needed.

9. Now we will add some radius. To do so, we first select one of the inner faces of the wheel,
duplicate it and extrude it. We can select the whole radius and press P for Separate selection.
We will also need to change its pivot point at the center of the wheel (press Ctrl + Alt + Shift +
C and select At center).

10. We then duplicate the wheel with Alt + D, and without validating the action, we will press R to
rotate it. This is because now we can press Ctrl + R to repeat the duplication and rotation
process. What a time saver!

11. In order to cap the wheel, we will add a cylinder that will be extruded several times.
12. Finally, we can duplicate the wheel on the other side with Alt + D and add a cylinder that will

connect both wheels. Remember to delete the unneeded faces on each side.

The final cart

As you can see, the items that we created are quite simple, so we encourage you to add more of them,
such as a dead trunk or a scarecrow. Be creative, you have all the tools needed to do that yourself.

Organizing the scene
This is maybe the largest scene you have ever made, in terms of details and number of objects. So we
will take some time to learn how to organize ourselves in order to have a more manageable scene.

Grouping objects

One interesting thing that Blender has to offer is the grouping tool. Let's see how it is working:

1. We will group objects that have a logical relationship between them. So we first select every
part of the house, such as the foundations, the walls, the curtains, and the fireplace, and we will
place them in a group by pressing Ctrl + G.

2. If we look at the last tool options in the left 3D view panel, we can enter a name for our newly
created group.

3. Now we can select barriers and create a new group with them.
4. We'll leave the cliff alone, so we don't have to put it in a group.
5. The rocks will also be part of a group.
6. We will also group all the cart pieces.

Note

Using groups

Groups are very useful as they allow you to organize a scene better. You can see all the groups
that are in a scene in the outline by changing the All Scenes drop-down menu to Groups. Here
you can select them, disable their render, and hide them. You can also select one object that is
part of a group in 3D view and press Shift + G and select Group to select all the other objects of
the same group. You can add or remove an object from a specific group in the Object tab of the
Properties editor under the Groups subpanel.

Working with layers

Another thing that can help your scene organization are the layers. They are located in the 3D View
header. You can move objects on specific layers with the M key. A popup will show you all the layers.

You can move an object on multiple layers by pressing shift and selecting the layers that you want. The
layers that have objects are marked with a little circle. You can display multiple layers at a time by
pressing the Shift key and clicking on them in the header bar. Note that you can also see the layers in
Scene tab of the Properties editor. In our case, the house is on layer one and the other elements on layer
two.

Layer one is selected, but we can see that there are objects on layer two

Summary
You have completed the first part of the Haunted House project! You have learned some tricks to save
time, such as how to instantiate objects or how to use the array modifier. You have also learned another
modeling method with curves. You will clearly see the purpose of duplicating objects by instance in the
next chapter where we will UV unwrap the objects. But don't think that it's over with the modeling
process here. We can later change our objects after the texturing part in order to break the likeness
between each instantiated object. Let's texture our scene!

Chapter 6. Haunted House – Putting Colors on It
This chapter will be devoted to the texture creation pipeline. We will explain new ways to you for the
UV unwrapping processes, such as the Project From View or the Smart UV method. Then we will
cover the basis of the powerful Texture Paint tool in order to create hand-painted textures for our house
and environment. You will also learn about the tiling method in order to save time. In order to enhance
the final set, we will show you how to create transparent textures, such as grass or grunge to age the
house. In this chapter, you will not learn how each object is unwrapped and painted step by step, but you
will gain a thorough understanding of the process. Finally, you will learn how to produce a test render
with Blender Internal. This will be a good transition to the next chapter. So let's dive into the texture
creation process with Blender!

In this chapter, we will cover the following topics:

• Learning the different ways to project UVs on an object
• Painting your model with the Texture Paint tool
• Creating hand-painted and tile-able textures
• Baking diffused textures on proper UVs
• Making transparent textures
• Creating a draft render in Blender Internal

Unwrapping UVs
We will now cover the UV unwrapping process that will later allow us to add textures to our objects.

Using Project From View

In order to quickly unwrap the UVs of the walls of the house, the shape and size of the wall still being
accurate, we can use the Project From View method.

For this to work, we need to align the walls on the axis of the world coordinates (X, Y, Z). Indeed, we
are going to make use of the angle of the 3D View of Blender to project the UVs. So, for each wall, we
are going to rotate our view so that the wall that we are going to project is flat. This method only works
for objects that are flat and aligned, so don't use it for organic shapes:

1. We will enter the Orthographic mode (5) and then enter the view that corresponds to the face
that we want to unwrap. For instance, in order to unwrap the UV of the front wall we go into the
front view (1).

2. In the Edit Mode and in the Face Mode, we will select all the polygons of the 3D model that
we want to unwrap and be careful with the beveled parts.

3. In the UV Mapping menu (U), we will select the Project From View option.

We will obtain a perfect UV Island that is well proportioned according to the mesh. Usually, we
don't need to tweak UVs with this method, except when we are willing to scale them. To check
the size of our UVs, we will use a UV grid texture.

4. We will create a new editor by selecting Split Area, then we will go to UV/Image Editor.

5. We will need to create a new image. So we will chose Image | New Image and Generated
Type | UV Grid.

This UV grid allows us to adjust the island's size at the uniform scale for all walls of the house.

We will use Project From View for all the walls as well as the big flattened surface such as the platform
of the terrace. For the later one, we will avoid having seams that are too visible:

1. We will select all the top faces with the bevel part. We will then go into the top view (7), and we
will do a Project From View unwrap.

2. Still being in the Project From View, we will select and unwrap the polygons of the sides, one
after the other.

3. To make some seams invisible, we need to weld the vertices of some of the side islands of the
platform with the central island. In order to weld the vertices in the UV/Image Editor, we will
select them and press W | Weld. This acts like the merge tool in the 3D Viewport but in the UV
space.

Unwrapping the rest of the house

For the other parts of the house—that is, the front door, windows, fireplaces, roofs, staircase, columns,
bars, railing, and other little objects that form the house—we will place the seams to demarcate the UV
islands like we did before with the Alien Character – Creating a Proper Topology and Transferring the
Sculpt Details in Chapter 4, Alien Character – Creating a Proper Topology and Transferring the Sculpt
Details. We keep using the UV Grid to check the scale.

We will start with a pretty simple object, that is, the roof of the front block of the house:

1. We will place the seams to delimit the four sides evenly. We will select the desired edges with a
right-click, and then we select Mark Seam in the Edges Menu (Ctrl + E).

2. We will make an automatic unwrap (press U and select Unwrap) that allows us to reveal the
UV without any deformation, but to check this we will use the Stretch option in the right panel
(press N and select Display | UVs | Stretch). You will recall that blue means there are no
noteworthy deformations.

3. We must keep a little space between the different UV islands. Indeed, we will have a small gap
that exceeds the islands later with the baking process. We will need to provide sufficient space
in order to not see the seams on the 3D mesh displaying the textures.

4. We will reduce our UV islands and try to keep the same scale for the walls and the platform of
the terrace. The position is not important for the moment.

We will continue with a slightly more complex object: the bay window.

You may have observed that the object has formed recurrences. It is angular. So we will avoid laying the
seams directly on steep angles and take advantage of the beveled geometry if possible. We will also try
to get a UV continuity on the window frame, the lower part and the upper part of the window frame. We
must, therefore, make some adjustments after the UV unwrap.

The goal by doing the UV is to try to reproduce a flattened shape of the 3D mesh with the least
distortion possible. This is done as follows:

1. We must place the seams at the roof level of the bay window. We will only use seams on this
part of the object. We will cut the roof into three parts and three others for the bottom part.

2. As we have detached the other parts of the bay window before, we don't need to place the
seams. If, in your case, all the faces are welded, take the time to place the seams.

3. We will select the entire object, and we will perform an Unwrap operation (press U and select
Unwrap). This gives us seven UV islands that we can place in a corner for the moment.

We don't have to select all the faces of an object to unwrap the UVs; we can select and unwrap only a
few selected faces, but we will lose the scale based on the other faces. This forces us to make some
adjustments.

1. We will check whether there are deformations with the Stretch option (press N and under
Display select UVs and Stretch).

2. Now we will align the edges that need to be like the window frame. We will select the edges
that must be vertically aligned, and we will scale them on the x axis (use the S, X, and 0
shortcuts).

3. Similarly for the edges that need to be horizontally aligned, we will select them and we will
scale them on the y axis (use the S, Y, and 0 shortcuts).

4. Once the object is aligned, we will place a UV Grid texture to check the scale.

Aligning the edges is a process that can be long but it is important to do this for objects such as pipes or
angular structures. There are add-ons that can save us some time, such as Quad Unwrap.

In this way, we will continue unwrapping the UVs of other objects that compose the house.

The tree with the Smart UV Project

We will now learn a new unwrapping technique with the tree. The tree will be quite far in the scene, so
we don't need to have perfect UVs on it. This is why we are going to use an automatic method that
Blender provides called the Smart UV Project. This is done as follows:

1. In order to unwrap an object with the Smart UV Project method, we don't have to put seams on
it. So, in order to UV unwrap our tree, we will need to select it entirely in the Edit Mode, press
U, and select Smart UV Project.

2. As you can see, we now have the ability to tweak some options. The most useful is Island
Margin, which allows us to choose how much space there is between each UV Island.

The Smart UV Project options

3. Now we can see our new UVs in the UV/Image Editor.

The Smart UVs of the tree

This method is quite useful but not very accurate. It generates a lot of seams that can cause visual
artifacts. This is why it is only interesting for objects that are far away, small, blurred (in the depth of
field), or with a small number of polygons. In the case of our tree, the wood texture will also be quite
repetitive, so this will do the trick!

Unwrapping the rest of the environment

There are other methods to unwrap objects such as cube, sphere, or cylinder projections, but in our case,
they won't be very useful. In order to unwrap the rest of the environment, we will use techniques that we

have already seen in the Alien project. If you don't remember how to put seams on an object, we
encourage you to read Chapter 4, Alien Character – Creating a Proper Topology and Transferring the
Sculpt Details, again. To refresh our mind, we will just do the cliff together as follows:

1. The cliff will be separated into three islands. The first seam separates the top where the ground
will be from the lower section. We simply select a horizontal edge loop near the top and mark it
as a seam (Ctrl + E and select Mark seam).

2. We will now separate the sides into two islands by placing a vertical seam from the front tip to
the bottom of the cliff.

3. We will then select our whole object, press U, and select Unwrap.
4. Lastly, we can rearrange our islands in the UV/Image Editor in order to align them vertically.

The seams and the UVs of the cliff

Now that you are nearly a pro, you can unwrap the rock and the barrier alone by following the same
method.

Tiling UVs

Now comes the interesting part! We will show you a very useful technique in order to save time with the
texturing process, so we won't have to paint our objects entirely. So let's learn a little bit more about
tiling.

What is tiling for?

The main goal of tiling is to allow a texture to repeat itself on the mesh. For instance, in the case of a
very large wall, it would be very tedious to paint each brick one by one over the entire wall. So what is
preferable to do is to use a "tile-able" texture and scale the UV islands. Scaling the islands will simply
repeat the texture. Later, we will show you how to paint a tile-able texture within Blender. If you
remember the UV unwrapping part of the alien project, we had mentioned that all the islands will be

placed in the UV finite space. This was because we didn't want repeated textures. But in this project, we
can use this to our advantage. But it doesn't mean that we won't keep our UV islands in the finite UV
space too. This is why we are going to need different UV coordinates on each object.

The UV layers

As we said before, we need to find a way to keep our proper UV (in the UV "square") and create a new
set of UVs. Blender allows us to use multiple UV layers on each object. We can use a layer when we
want to have another UV layout while maintaining the UV that we've already done before. It is similar
to storing different UVs on the same object. We will show you how to create a new layer that will
contain the scaled islands for tiling. As this will be the same for many objects, we will just show you the
method for the wall of the house, and let you repeat the process for the rest of the objects:

1. We will select the wall and enter Edit Mode.
2. We will then click on the Object Data icon in the Properties editor, and under the UV Maps

subpanel, we will click on the + (plus) icon. This will create a copy of the current UV set of our
object.

3. We will now need to change the UVs on this particular layer. Be sure that it is selected, and in
the UV/Image Editor, scale the current UVs with the S key. You can always check the tiling
effect with a checker. Our wall has now two sets of UVs.

Note

The UV layers options

There are very few options to manage our different sets of UVs. The first one is the little camera icon
that tells Blender which UV set should be used at render time and the second one is the ability to rename
a set by double clicking on its name. The only thing that you need to think about is which set to select.

Now that you know the technique, you can add a Tiling UV set for each object.

Adding colors
Now that we have the proper UVs on our objects, let's dive into the fun part, that is, the texturing. It is
the more artistic part of the process, so let's start by discovering the Texture Paint tool of Blender.

Basics of the Texture Paint tool

The Texture Paint tool is a mode that allows you to paint directly on a 3D object in the 3D Viewport
while applying color to the texture. This requires having textures with a sufficiently high resolution. One
of the interesting points is to paint on a 3D polygonal mesh with a low density.

To observe the paint of our textures in 2D, we need to split the 3D Viewport in two and switch the
second type editor to UV/Image Editor.

To activate this, we first select an object, click on the Mode drop-down menu in the Header, and switch
to the Texture Paint mode.

If you don't have any UVs, a message will warn you in the left panel (T) of the 3D Viewport. You can
generate UVs automatically with the Add Simple UVs option, but it is much better to unwrap them
yourself as we saw earlier.

In the Slots tab, there is an important parameter, that is, the Painting Mode. It gives a choice between
two options. The Material option allows us to paint automatically linked textures to a material in
Blender Internal. The Image option allows us to paint the texture without necessarily having a material
linked to the object. For this first approach of the Texture Paint tool, we will be especially interested in
the Material option.

If in Texture viewport Shading Mode (Z) your object displays a pink color and you see the message
Missing Data in the left panel (T). Select Tools, to correct this; you will need to click on the Add Paint
Slot option. Here, several texture types are available. This will automatically create a texture
corresponding to a slot of the material with the required settings during the painting phase.

We can start testing a Diffuse Color map. Several options are proposed. They are the same as when we
create a new texture. You can rename the texture and choose the height, the width, and the color with an
alpha value. You can also choose whether you want an alpha layer (it is the opacity), the type of texture
to generate, and finally, the 32-bit float option. Press OK to create this texture. A new material is then
automatically created if there are none of them. You can visualize it in the Material editor on the right-
hand side of the work space.

To modify this, you can change the name with a double left-click on the name.

It is possible to create several stacked textures one above the other like layers in the material. You must
select the one that you want to paint in the Slots tab of the left panel. The bottom slot is the one that is
first visible. You can also choose the Blend Type to mix pixels. There are the usual Blend Types (add,
subtract, multiply, and so on.) that we can find in every decent image editing software. The Slots tab
allows us to also change the UV layers, which can be very useful.

Now that you know the basics to generate and manage a texture for painting, we will look at the brushes.

Discovering the brushes

As in the Sculpt Mode that we saw previously, we have multiple brushes in order to paint our texture.
They all have some specific purpose that we will test on a simple sphere object in a new scene file. Be
aware that the goal here is not to do something beautiful but to test our brushes.

The TexDraw brush

This is the brush that allows us to paint the desired color in a localized manner.

You can use the blender mode in order to create effects. For instance, the Add mode is very useful for
lighting texturing effect (refer to 1 on the following screenshot).

The Smear brush

The Smear brush allows us to move the color while blurring it. It is very useful to create some blown or
flame painting effects. If you change the strength parameter to a higher value, you can stretch your paint
to a higher distance (refer to 2 on the following screenshot).

The Soften brush

This brush allows us to blur the painting. It is useful to mix the colors and create gradients (refer to 3 in
the following screenshot).

The Clone brush

This brush allows you to copy a specific zone on another place. This is very useful when you need to fill
some untextured space or when you want to correct the seams. You select the zone that you want to copy
by placing the 3D cursor on it with Ctrl and LMB (refer to 4 in the following screenshot).

The Fill brush

This is a new brush that Blender has had since version 2.72. This brush allows us to fill the whole object
with the selected color. With the Use Gradient option, you can do a gradient that stretches over the
whole object. Remember to set the strength parameter to 1 to have a sufficient opacity. A line under the
mouse cursor will inform you where the start and the end of the gradient will be. You can also use the
Multiply Blend mode while using it (refer to 5 in the following screenshot).

The Mask brush

As with the Sculpt Mode, it is possible to mark a zone that you want to avoid painting. To do this, you
will create a stencil image. Don't worry, Blender will ask you to create the image as soon as you create a
mask, if it can't find one. You only need to click on the New button or select a preexisting image in the
.blend file and validate the image settings like we are used to. To clear a masked part, press Ctrl and
LMB. To remove your mask, you can remove the mask option in the Slot tab. Be aware that the masks
are not visible in Material Viewport Shading Mode (refer to 6 in the following screenshot).

If you have a pen tablet, you can check out the small button on the right of the radius and strength
parameters (an icon with a hand). This allows you to vary the amplitude of the parameter according to
the pressure sensitivity of your stylus.

The Stroke option

The Stroke option allows us to completely modify the brushes' behavior. It is, therefore, important to
focus on this for a little while.

First of all, there is the Stroke Method option that allows us to choose among several methods for
applying the colors:

• Space: This is the basic method with a variable dot space.
• Curve: This is a new method since Blender 2.72 that allows us to paint in a well-defined curve

with controllable points. Press Ctrl and left-click to create the points defining the curve. Each
point can be controlled with the transform tools: Grab (G), Scale (S), and Rotate (R). In order to
apply your painting, you need to press Return.

• Line: This method simply allows you to draw lines. You must do a pushed left-click to draw the
line from one point to another. The paint is then projected onto the 3D mesh.

• Anchored: This allows you to drag your stroke. You first need to select the placement of the
stroke or the texture you want to paint, and then, without releasing the mouse, you will be able
to control its scale. This method is especially interesting when projecting a texture.

• Airbrush: This method could be used to project a multitude of little spots, for instance, you can
change the radius so that it is smaller with Rate of 0.10 and Jitter of 2. It is useful to create skin
textures, for example.

• Drag Dots: This allows you to paint points or spots by placing them one by one.
• Dots: With a Jitter parameter at 0, you get a textured line to paint. With a Jitter parameter at 1,

you will get a multitude of spots.

There is another key element that will determine the settings of your brush. It is the curve located just
below the Stroke tab. It works exactly in the same manner as the Sculpt mode that we saw previously.
Depending on whether you want a hard or thin brush to paint the details, remember to use and test
several curve profiles. There are already several predefined shapes that can meet your needs.

Delimiting the zones of painting according to the geometry

So that we paint in a precise manner, it is possible to limit the zone that we want to paint by selecting
polygons.

After you have selected the desired faces in the Edit Mode, you can go to Texture Paint and check the
Face Selection Masking for Painting button on the left-hand side of the layers in the 3D View header.
The icon shows a small cube with a checker pattern on a side.

You can now paint without fear of overflow.

Painting directly on the texture

If for any reason you have difficulties when painting directly on the mesh in the 3D View, you can also
paint on the texture.

You simply need to select your texture in the UV/Image Editor, click on the Mode drop-down menu,
and choose Paint. The View Mode is the one by default.

You have all the painting tools that you already know in the left panel (N). For your comfort, you can
always set your view in full screen with Shift + Space.

Painting the scene

We are now ready to apply what we've learned previously about the Texture Paint tool on our haunted
house. Let's start!

Laying down the colors

For any image that uses colors, it is necessary to lay down a color palette. This means that we will need
to find the colors that will make up our image. In our case, for the house, we have chosen the following
color codes:

• R: 0.259 – G: 0.208 – B:0.149
• R: 0.180 – G: 0.141 – B: 0.102
• R: 0.149 – G: 0.102 – B: 0.082
• R: 0.337 – G: 0.318 – B: 0.310

• R: 0.188 – G: 0.145 – B: 0.055
• R: 0.251 – G: 0.192 – B: 0.075
• R: 0.780 – G: 0.596 – B: 0.231
• R: 0.212 – G: 0.267 – B: 0.373
• R: 0.176 – G: 0.063 – B: 0.067

We have the ability to create a color palette by clicking on the + (plus) button near the color wheel.
However, in order to have an idea of the whole color scheme, we will start by fulfilling the 3D mesh that
we had unwrapped object with the colors. This is done as follows:

1. We will select one of our objects.
2. We will split our screen into two, and we will open UV/Image Editor, if it's not already the

case.
3. In the Edit Mode, we will move the UV in a corner. We will keep a space for a margin, and we

will not place our UVs too close to the border.
4. We will create a new diffuse map with a resolution of 4096x4096.
5. With the Fill brush, we will apply the corresponding base color for the object.
6. We will select another 3D mesh.
7. In the Edit Mode, we will select Diffuse Map for this mesh, and we will move the UV near the

UVs of the previous mesh. This will be easy as you will see the previous fill.
8. Again, with the fill brush, we will apply our color for this new object.

We redo these steps for all the objects. Since our objects' UVs are proportionally scaled, their size
should be sufficient in order to place the maximum number of objects on the same diffuse map.

Be careful to not select the tiling layer for the UVs while filling your objects.

Tiled textures

It's now time to take advantage of our tiled UVs by painting our own tiled textures by hand! In this
section we are going to show you how to create the roof texture step by step, and as the process will be
very similar for the wood plank, ground, brick wall, and rock texture, we will only give you some advice
in order to get a nice result. So let's get started by setting up our painting environment.

The settings of our workspace

One of the strengths of the Blender painting tool is to be able to paint in the UV/Image Editor in such a
way that the strokes that you paint repeat themselves on the borders.

1. We will first open the UV/Image Editor, and make it full screen by pressing Ctrl + Space while
hovering over it. After that we will create a new 1024 x 1024 Texture with a greyish dark blue
color (Image | New Image).

2. We now need to enter the Paint mode by choosing it in the header drop-down menu. By default
the mode is set to View.

3. Now we will activate the Wrap option in the Option tab of the UV/Image Editor (T). This
allows our stroke to repeat to the other side while painting on an edge.

4. Another nice feature is to check the Repeat option located in the Right panel (N) under the
Display subpanel. It allows us to see the tiling effect.

5. Let's try this by painting on our texture with the basic brush and a different color. As you can
see our strokes are repeated and we can see the tiling effect! Press Ctrl + Z to undo your testing
strokes.

The Wrap option in the Options tab

Advice for a good tiled texture

Before starting the painting of our roof texture, we will give you some good advice that can lead you
with a nice tiled texture. We first need to remember that the goal of a tiled texture is to give the
impression of a pattern that repeats on a surface but in real life, even with a perfect wall pattern for
instance, we can see differences between each brick. That's why we need to have a pretty homogenous
texture.

We will need to balance the contrast of our tints so they don't disturb our eyes after the tiling. Another
important thing to remember is that the pattern should be repetitive in some way. We cannot paint a
computer keyboard texture in a tileable manner for instance, because the keys are not the same size and
don't contain the same letters. But it can work with a lot of things such as a brick wall, concrete, wood,
and so on. We also need to think about the scale of the elements that compose the pattern. For instance,
in the case of our roof tiles, we don't want to have one that is very small compared to the others; it will
break the illusion of repetition. So now that we know the pitfalls of the tiled texture art we can start
working on our roof-tiled texture.

Painting the roof-tile texture

Let's start our roof tile texture from the texture that we've created in the UV/Image Editor in the
previous section.

1. Before starting to paint our texture we will change our curve to be a little bit pointier. We can
easily select a curve preset in the Curve subpanel.

2. The first thing that we need to lay down is the tile pattern. In order to trace that we will use the
same tint as the background color that we chose when creating the texture but darker. We then
re-size our brush size (F) and start to paint a row of 'U' shapes for the first top tiles. We need to
space them proportionally according to the size of our texture. For the next rows we will do the
same thing with a little offset. The top-left part of the 'U' shape needs to touch the middle of the
above ones. Note that if you are lost while having the repeat option activated, you can always
help yourself with small helping markers that you can erase later (refer to 1 in the following
screenshot).

3. Now that we have the basic pattern drawn, we can start to add a little bit more detail with the
shadows. For this we are going to select a darker color, but still in the blue shades. Because
shadows will be faded, we are going to decrease our strength a little bit (Shift + F). Here, the
shadows that we are going to paint are projected because of the tiles that are placed above. This
will act like contact shadows (refer to 2 in the following screenshot).

4. Now that we have our shadows we can start to add some scratches on the tip of each tile. You
need to remember the fact that it needs to be as homogeneous as possible, so don't paint big
scratches or it will break the tiling effect (refer to 2 in the following screenshot).

5. The last thing that we are lacking here is some highlights. When painting highlights we use a
white color and decrease our strength and size. We then slightly paint the highlights where we
think we have hard edges. For instance we can emphasize the scratches (refer to 2 in the
following screenshot).

6. That's all, you've now completed your first hand-painted texture (refer to 3 in the following
screenshot).

Steps for the roof tile texture creation

Quick tips for other kinds of hand-painted tiled textures

We aren't going to show you step by step how to do each tiled texture as it would require a lot of space
and it would be a very repetitive task. Indeed when we are doing such a texture we first always create a
texture with a flat color, and then lay down the pattern with a darker color. Once we are satisfied with
the pattern and the way it tiles, we add the shadows, more details, and finally the highlights (the
specularity).

As you can see on the wood texture, it is quite difficult to add the ribs and having a good tiling, so later
we will need to take this problem into account on the objects that will receive the texture. But we can't

add ribs on wood or it will look strange. For the ground we can add a little bit more detail, such as small
rocks and crackles. The bricks are quite easy to do, but if you feel you can add more detail, you can
easily paint moss between each brick.

Examples of other tiled textures painted in the UV/Image Editor

Baking our tiled textures

We are now going to project our tiled textures on other textures that correspond to the UVs of our
different objects.

Why bake?

As we saw it with the Alien character, texture baking is very useful in order to capture relief, shadow, or
color information. In the case of our haunted house, we are going to capture the color information of the
tiled textures in order to have them on a large texture with the proper UVs. This lets us achieve our tiled
patterns on one big map in order to add all the tweaks that we want later on. We could for instance paint
the window contact shadows, add some grunge, and age our objects.

In our scene we aren't going to bake everything. So some objects are still going to use their tiling UV
layer. It will simplify our work and still leave us with a nice result.

How to do it?

To obtain a successful bake, the manipulations will be quite similar to what we've done with the normal
and ambient occlusion map of the alien. We will start by doing the baking of the walls.

1. We select our walls joined as one object and we go into Edit Mode.
2. In the UV Map subpanel under the Data tab we click on the camera icon on the right of the

Tiling layer. This will tell Blender to use this layer for the render and baking process. We then
select the first layer in order to project the details on it with the proper UVs that are normalized.

3. Still being in Edit Mode, we create a new map that we call Color_walls_01 with a 4096 x 4096
resolution. We also un-check the Alpha checkbox. This image will contain the result of our
bake.

4. We now go to the Bake tab from the Render tab.
5. Under the Bake button we select Texture as the Bake Mode.

6. In the Margin option we choose 10px.
7. Repeat those steps with the objects that share the same UV space.
8. We can now click on Bake in order to start the process. Voilà! Your baked texture is now ready

to be placed as a diffuse color texture on a material.

Creating transparent textures

One thing we haven't learnt until now is how we can produce texture with an alpha channel. Indeed this
could be very useful in order to add some details on the previously baked texture (grunge or leaks, for
instance) or even grass.

The grass texture

Usually, when doing grass, fur, or hair, we use the integrated particle hair system of Blender, but in our
case we will show you a technique that can do the job as well and can save us render time. It will also
accommodate very well with the style of our scene. This technique will simply consists of a plane mesh
on which some grass strands will be projected; using the alpha we will be able to just render the strands.
Note that this is a very common technique in the video game industry. So let's start our grass texture by
first setting up our transparent texture!

1. We will first go in the UV/Image Editor and create a new texture. In the color setting of the
texture, we will change the alpha channel to 0 in order to have a full transparent image. We then
leave the 1024 x 1024 resolution and validate our settings.

The grass texture settings

2. We can now use a pointy curve and start to paint some strands starting from the bottom of the
texture to the top with a de-saturated green. We really need to think about painting a dense grass
mound.

3. In order to add more realism to our grass texture, we can add some touch of yellow. We also
need to add some white on the tip of each strand. It is quite important to use a reference when

painting some textures; it helps to develop our sense of perspective and come with more
believable results.

4. Remember to save your texture on your hard drive or you will lose it (Image | Save as image)!
5. We can now place our texture on a new plane (Shift + A). We do a quick UV on it by simply

pressing U and selecting Unwrap in the Edit Mode.
6. We will now create a new material that will use our texture. To do that, go to the Material icon

in the Properties editor and press the plus icon. If you already have a default material, you can
delete it with the minus icon.

7. So our material can understand the alpha channel, we will have to activate the check box of the
Transparency subpanel and select the Z-Transparency mode with its Alpha value set to 0.

8. Now we will tell our material to use our grass texture. To do this we click on the texture icon of
the Properties editor and click on the first available texture slot. Under the Image subpanel we
click on the far left drop-down menu and select our grass texture. The last thing we need to do is
to activate and set the Alpha slider under the Influence subpanel to 1.0.

9. We can have a preview of our texture in the 3D Viewport by activating the GLSL mode in the
right panel of the 3D View (N) under Shading. Note that you will need to be in the Texture
Shading mode (located under the Viewport shading drop-down menu in the 3D View header)
and you also need to have lights.

10. We can now duplicate the plane object as an instance to have more grass. Note that you can also
add a subdivision to the plane and in the last tool options you can change the Fractal slider in
order to add a little bit of randomness. Remember that the render in the viewport is a preview,
not the final render.

The final grass texture in the viewport (left) and in the UV/Image Editor (right)

Note

More about the color wheel window

When selecting a color in Blender we have many options. You can of course select the color that you
want with the color circle or by changing the slider's values. In RGB Mode we can act on each red,
green, and blue component plus on the Alpha channel. In HSV Mode we can change the hue (the tint),
the saturation, and the value of the color. If you put the saturation down to 0 the color will be on a gray
scale. The Hex Mode allows you to type a hexadecimal value such as FFFFFF (white) or FF0000 (red).
Hexadecimal simply means that instead of counting from 0 to 9 we count from 0 to F. It represents 16
possible values. The easy thing to remember when dealing with hexadecimal colors is that the first two
digits represent the Red value, the next two digits represent the green, and the last two represent the
Blue: RR GG BB. FF is the full color, 00 means no color. For instance 00FF00 is full green.

The grunge texture

The grunge texture will be useful in order to add details on the wall texture of the house. The technical
process is the same as the grass texture. For the painting we simply use a dark brown color and paint
some vertical leaks from the top to the middle of the texture.

Now we can stamp this texture on our wall.

1. We select the wall and ensure that its baked texture is selected in the UV/Image Editor while
being in Edit Mode. Another thing you may want to do if you are still in GLSL mode is to
create a new material with the baked texture set.

2. In order to paint our leaks we will use the Anchored stroke method located in the Stroke
subpanel. It allows us to precisely place our leaks near the top and the bottom of the wall.

The grunge placed on the house in the viewport (on the left) and the grunge in the UV/Image
Editor (on the right)

Doing a quick render with Blender Internal
Welcome to the bonus section! Here we are going to do a quick render with the Blender Internal render
engine to get an idea of what the whole scene will look like. Note that this is totally optional as we are
going to create a render with cycles later. In order to do our render, we will need to add a material for
each object in the scene like we did for the walls but with their corresponding textures.

Setting lights

Now that we have all our materials created we will need to turn up the lights! Of course if you don't
have light you won't see anything like in the real world.

1. We add a sun lamp (press Shift + A and select Lamp | Sun) and change its color to a grayish
yellow in the light settings situated in the Properties editor. We leave its energy to a value of 1.
We place it behind the house and rotate it so it hits the back of the house.

2. The next light we will add is point light. This one is going to be much more intense so we bump
up the energy value to 20 and also change its color to a light yellow. This one will fill the scene
a little bit more.

3. Now we need to add lights behind the house to fake the lighting of the windows. In total we
added three yellowish point lights with a value of 10 for their energy.

4. The last point light we can add will be near the camera, so we would have to place it correctly
after choosing our point of view. This light allows us to see a little bit more of the close
environment.

5. If you want to see the lighting effect in the viewport, it is best to turn off the Texture Shading
mode and the GLSL option.

The final light placement

Placing the camera

We can now choose our point of view, by moving our camera. If you don't have a camera, you can add
one (press Shift + A and select Camera). You can also add many cameras and switch between them by
selecting the one you want to look through and pressing Ctrl + P. In order to look through your camera
in the viewport you can press the 0 numpad key. Usually it's a good habit to change the focal length of
your camera in the Camera setting tab in the Properties editor (click on the Camera icon). In our case
we wanted a fleeting camera so we set a focal length of 20mm.

Setting the environment (sky and mist)

Now in order to improve our render we will change the sky color and add a mist.

1. To do that we go into the world settings in the Properties editor (click on the earth icon).
2. Under the World subpanel we check the Paper sky and Blend sky option; we change the

Horizon color to a dark brown color and the Zenith color to an even darker color. It's not
realistic, but this image is not intended to be realistic.

3. We can now check the Ambient Occlusion checkbox and set it in the Multiply mode.
4. The Environment Lighting option will serves to light the scene with the Sky Color option

(and not White, the default option).
5. Lastly we can activate the Mist subpanel and change the Depth parameter to 30m. We also set

the start option to 0. You may have to tweak those values in order to match your own scene.
6. Now you can press the Render button in the Render tab of the Properties editor or press F12.

Note that if you want to improve your render with some automatic compositing you can go to
the Scene tab of the Properties editor and under Color Management you can use a look preset;
you won't have to re-render your scene! You can also tweak Exposure, Gamma and change the
CRGB (Contrast, Red, Green and Blue) curve by clicking on the Curve checkbox. As you can
see, you render is displayed in a UV/Image Editor, so you can save your image (Image | Save
Image as). Congratulations, you've done your first render of the haunted house!

The world settings

The final haunted house after the Blender Internal render will look like the following screenshot:

Summary
In this chapter you completed the UVs and the textures of the scene. You have learned a technique to
paint textures by hand with the Texture Paint tool of Blender and how to create and use tileable textures.
You also learned more about baking. Now that we have introduced the rendering process with the
Blender Internal render engine, we can start to learn more about the other render engine called Cycles,
which has different approach. So let's dive into Cycles!

Chapter 7. Haunted House – Adding Materials
and Lights in Cycles
This chapter will be devoted to the Cycles render engine. You will learn how to achieve a convincing
render of the haunted house by understanding the different types of light work and by creating complex
materials using the previously made textures. You will learn some nice tricks such as how to produce
normal maps of our hand-painted textures without leaving Blender or how to create realistic-looking
grass. You will also discover how to use the Cycles baking tool. In order to conclude our project, we will
show you how to integrate a mist effect in the final composition.

In this chapter, we will cover the following topics:

• Understanding the essential settings of Cycles
• Using lights
• Painting and using an Image Base Lighting
• Creating basic materials with nodes
• Using procedural textures
• Baking textures in Cycles for real-time rendering

Understanding the basic settings of Cycles
To switch to the Cycles render engine, you must select it in the list of proposed engines that Blender
offers in the menu bar. We will see in the first part of this chapter some of the very useful settings that
should be known while using Cycles.

The sampling

If you directly try to make a render with Cycles without changing the parameters of Blender, you will
certainly see some noise in the image. To make this less visible, one of the first things to do is change
the sampling settings. Unlike Blender Internal, Cycles is a Raytracer Engine. While rendering, Cycles
will send rays from the camera in order to generate pixels. The noise is due to a small amount of the
samples. Cycles, therefore, needs more samples; the more sampling, the more accurate the final render.

The following sampling settings are in Properties editor. Just select Render | Sampling:

• Render samples: This is the number of samples for your renders. The more samples you add,
the longer the rendering time will be.

• Preview samples: This is the number of samples Blender will calculate to preview your scene
in the 3D viewport in Rendered Viewport Shading. A value between 20 and 50 samples is
correct. This value depends on the performance of your computer.

The Render sample must be higher than the Preview sample.

Note

The GPU device

If you have a fairly recent CUDA®-compatible graphic card, you can opt for GPU rendering. This
allows you to make renders very quickly and visualize your scene in the 3D viewport nearly in real time.

For this, go to User Preferences | System | Computer Device and select CUDA. Then, in Properties,
go to Render | Device and select GPU.

Note that the most recent AMD GPU has been supported since Blender 2.75.

Clamp direct and indirect

This allows us to clamp the intensity of the rays of light launched from the camera. This can also help to
reduce the noise effect, but it blurs the pixels together.

Light path settings

You will find the following light path settings in the menu:

• Max and Min Bounces: This is the number of minimum and maximum bounces a ray of light
can do in the scene to render a pixel. This mimics the way photons bounce from objects in real
life. The higher the value of the maximum bounce, the greater the precision will be, and the
quality of the rendering will increase. A high value of minimum bounce will also improve the
quality but may considerably increase the rendering time. It is advisable to set the same
minimum and maximum value.

• Filter Glossy: This will blur glossy reflections and reduce the noise effect. You can put a 1.0
value.

• Reflective and refractive caustics: Caustics are light effects related to transparent and reflexive
materials. We can observe this light effect with diamonds, for instance. This uses a lot of
resources and generates some noise. By unchecking these two options, you can completely turn
off these effects during rendering. In the case of our haunted house scene, we are going to
disable them.

Performances

You will find the following performance settings in the menu:

• Viewport BVH Type: There are two types of this: Dynamic and Static. This is a way to let
Cycles remember some of its rendering calculations for the next render. The Static option is
highly recommended to optimize the rendering time, if you have no more polygonal
modifications in your scene. Otherwise, you can use the Dynamic mode.

• The Tiles: This helps to manage the pixel groups that are to be rendered. So you can control
their size along the x and y axes and also control the method to render the image (if you prefer to
start rendering through the center of the image, or from left to right, and so on). The size of the
pixel group to be rendered should be chosen according to your machine settings. If you are
rendering with your CPU, you can choose a smaller tile size than if you were rendering with
your GPU.

Note

For more information, you can have a look at the official Blender manual at these addresses:

http://www.blender.org/manual/render/cycles/settings/integrator.html

http://wiki.blender.org/index.php/Dev:2.6/Source/Render

http://www.blender.org/manual/render/cycles/settings/integrator.html
http://wiki.blender.org/index.php/Dev:2.6/Source/Render

Lighting
We are now going to look at a very important aspect of the rendering process: the lighting. Without
lights, you won't see any objects, as in the real world. Good lighting can be hard to achieve, but it can
give a nice atmosphere to the scene. One of the things that is true with a scene with good light is that
you won't even notice the lights as they look like natural lighting. In order to get our lighting job done
correctly, we are going to add a basic shader to every object in our scene.

Creating a testing material

Let's add a very basic material with Cycles in order to see the effects of the lights. In order to better
understand the lights in the next section, we are going to create a blank scene and test our lights on a
cube that is laid on a plane:

1. Let's start by creating a new scene and by adding a plane scaled ten times (S > 10) under the
default cube.

2. We also want to delete the default light and turn the Cycles render engine on.
3. We aren't going to explore material creation in depth for now, so we advise you to follow these

steps in order; later you will have more information about this process. We need to select the
cube and open the Material tab of the Properties editor.

4. Now we will create a new material slot by clicking on the New button.
5. Under the Surface subpanel, we will click on the color and change its value to 1.0 in order to

have a full white color. That's all for the material. It will be a handy material to test the different
types of light.

6. The last thing we need to do is to add the same shader to the plane. To do this, we can copy the
material of the cube. We will first select the object (or objects) to which we want to copy the
material, in our case, the plane, and then we will select the object that owns the material that we
want to copy. Then we will press Ctrl + L and select Material. The plane should now have the
same white material.

Understanding the different types of light

The goal of this section is to understand how each type of light can affect our objects in a scene. We will
give you a brief explanation and a short preview of what effects they can provide you with:

1. Before our tests, we will need to change the world shader that contributes to the lighting of the
scene. If you press Shift + Z or change the Viewport Shading mode to Rendered in the 3D
View header, you can see what the scene will look like, but you will see it in real-time in the
viewport. Here you can clearly see the objects even if we don't have any lights. That's because
the background color acts as if there was an ambient lighting.

2. If we go into the world settings of the Properties editor and change the Surface color to black,
we will not see anything.

3. We can now add a light and have a better understanding of its effect without being disturbed by
the world shader.

The settings of the lights can be found under the Object Data tab of the Properties editor (a yellow dot
with a ray icon) while the light is selected. There are five types of lights (but four work in Cycles) that
have many options in common: Size influences the hardness of the shadows they produce on objects and
Max Bounces tells Blender the maximum number of bounces the light rays can travel. They also have
the ability to cast shadows with the Cast Shadow checkbox turned on. Of course, they also have a
strength that you can tweak in the Nodes subpanel. Note that, if you can't see the strength option, you
need to click the Use Node button.

The shared light options

The different types of light are as follows:

• Point: As its name implies, it emits lights according to its position. It emits light rays in all
directions, but these rays are limited to a certain distance from the center of the light. We often
call it a spherical lamp.

A point light with a strength of 500 and a size of 0.1

• Sun: As you can imagine, this type of light represents the way the sun works. As the sun is very
far away from earth, we can admit the way we perceive its rays as parallel. So in Blender, the
sun produces parallel rays, and we also don't care about its location, but only its orientation
matters. With a small size, you can quickly represent the lighting of a bright day. You will
mostly use it as a global light as it lights the entire scene. Also, notice that its strength should be
less than the point light that we saw previously.

A 45-degree angle on Y and Z sun light with a strength of 2 and a size of 0.05

• Spot: The spot light is a conic light. It looks like the lamps used on stage in order to light the
show presenter. The lighting that it will produce depends on its location, direction, and the spot
shape. You can change its shape in the Spot Shape subpanel, and size will determine the size of
the circle of light influence. The blend will define the hardness of the circle shadow. The circle
size and the strength of the spot light will depend on its distance from the objects.

A 45-degree angle on a Y spot light with a strength of 5000, a size of 0.5, a shape size of 30
degree, and a blend of 0.8

• Hemi: For now, the Hemi type of light is not supported in Cycles. If you use it, it should react
like a sun lamp.

• Area: This is one of the more common lights. It emits light rays from a plane according to a
direction represented by a dotted line. It could be squared or rectangular. Its size, like for the
other types, will affect the hardness of the shadows. The strength of the light will also depend
on its distance from the objects. With this light, you can achieve a very precise lighting, so we
strongly advise you to test this in order to be familiar with the way it reacts.

An area light with a strength of 500 and a square size of 5

Another option that many Blender users appreciate is using an emission shader to act as a light on an
object (a plane, for instance). The emission shader is, in fact, the base shader of the other types of lights.

1. First let's add a plane.
2. Then, under the Material tab of the Properties editor, we will add a new material slot.
3. Change the diffuse surface shader from Diffuse BSDF to Emission.
4. As you may notice, if the plane is in the camera field, you can see it. We don't want this, so go

into the Object tab of the Properties editor, and under the Ray visibility subpanel, uncheck
Camera.

You may find this easier, but, in fact, with this method we lose a lot of control. The main problem we've
found with this method is that we can't control the way the rays are emitted, for instance, with the area
light. This can be useful when you want visible objects to emit light, but this is not very good for precise
lighting.

The cube with an emission shader

Lighting our scene

As you can see from the previous part, there are many types of light that we can manipulate in order to
achieve a nice lighting effect. But in the case of our haunted house, we are only going to use area and
sun lights because the other types of light are often used in specific situations.

1. We will start by opening our haunted house scene and saving it in another name
(HauntedHouseCyles.blend, for instance).

2. Now we can delete all the lights that we used in the Blender Internal render.
3. While doing a lighting effect, it's a good to have an idea of the volume of your objects with a

neutral material. So we will select one of the objects in the scene, remove its existing material,
and create a new material in the Material tab of the Properties editor. As we did for our testing
scene, we will change the color value to 1.0.

4. Rename the material as Clay.
5. Now we will select all the objects in scene (A), and reselect the object that is the clay material

while pressing Shift in order to make it the active object.
6. Press Ctrl + L and select Material. All objects will now share the same material.
7. We can now split our interface in two. One of the 3D views will display the camera point of the

view (the 0 numpad key) and will be rendered in real time (Shift + Z) with a preview sampling
of 50 (decrease it if you don't have a powerful computer).

8. The first light to be added is the sun. We will orient it, so it lights the right-hand side of the
house. It will be nearly horizontal. Our goal here is to have a dawn lighting. The sun has a size
of 5 mm in order to have harsh shadows and a strength of 1.0.

9. The next light that we will add will fill up the front of the house a little bit. It will be an area
light that is a slightly tilted down and located on the front left side of the house. We want
smooth shadows, so we will change its size to 5 m. Its intensity will be around 400. We can also
change its color to be a little bit yellowish.

10. The last light will act as rim light. It will be an area light that comes from the back of the house
on the left-hand side. Its size will be 10 m and its strength around 700. We have also tinted it a
little bit towards blue.

The lighting of the haunted house scene

11. That's all for the basic lights. The light settings are in constant evolution during the whole image
creation pipeline, so don't be afraid to change them according to your needs later. Note that we
are missing an environment lighting that we are going to set up in the next part of the chapter.

Painting and using an Image Base Lighting

An Image Base Lighting (IBL) is a very convenient technique that allows us to use the hue and the
light intensity of an image to lighten up a 3D scene. This can be a picture of a real place taken with a
camera. HDR images provide very realistic results and may be enough to light a 3D scene, but for our
haunted house scene, we will paint it directly in Blender with Texture Paint. This technique allows us to
do complex lighting in less time and will enrich the lighting that we have prepared previously. We will
start by seeing how to prepare the painting phase of a customized IBL:

1. We will open a new scene in Blender.
2. We will split the working environment in half with a UV/Image Editor on the right-hand side

and a 3D View on the left-hand side.
3. We will add a UV Sphere at the center of the world (Shift + A and select Mesh | UV Sphere) on

which we will paint the sky.
4. We will delete the vertices at the two poles of the sphere. We will make a scale extrusion (E and

S) of the edges and slightly reposition them again for a well-rounded look. We will obtain a
sphere pierced on both ends. It is important to have these holes for the UV projection.

5. We will select all the polygons of the sphere (A), then we will apply Unwrap Cylinder
Projection (U). In the Cylinder Projection options on the left panel (T) of the 3D Viewport, we
will change the Direction parameter by selecting the Align to Object option. This allows us to
get straight UVs that occupy the most space on the entire UV Square.

6. Once the UVs are created, we will select the edge loops that form the holes at the poles of the
sphere, and we will merge them each in turn to form a complete sphere. This will form triangles
in the UV, but it does not matter.

7. We will again select all the polygons of our sphere, and we will then add a new texture by
clicking on the + New button in the UV Image Editor.

8. In Blender Internal Renderer mode, we will create a new material on which we will place our
IBL texture. To better visualize the texture, we will check the Shadeless option (Material |
Shading | Shadeless).

9. In Texture Paint, we can start to paint.

10. We will use Fill Brush with the Use Gradient option in order to prepare the gradients of the sky.
We will use the following Gradient Colors from left to right. The color marker number 1 on the
far left is R: 0.173, G: 0.030, and B: 0.003. The color marker number 2 is located at 0.18, and
its color is R to 0.481, G to 0.101, and B to 0.048. The color marker number 3 is at position 0.5,
and its color is R to 0.903, G to 0.456, and B to 0.375. The color marker number 4 is located at
0.78, and its color is R to 0.232, G to 0.254, and B to 0.411, and the last marker at the far right
is the color R: 0.027, G: 0.032, and B: 0.085. We will then apply the gradient upwards on the
sphere.

11. On the texture in the UV/Image Editor, we can see some black near the poles, which may
interfere with the lighting calculation. Thus, in the Paint Mode, we will take the nearest color
of the black triangles by pressing the S shortcut (without clicking), and we will fill the black
triangles with Fill Brush (without Gradient).

12. When this is finished, we can save this image as IBL_Sky.
13. In the Texture Paint mode, in the Slots tab, we will add a Diffuse Color texture that will be

transparent this time. For this, we will check the Alpha box, and we will change the alpha value

of the default fill color to 1 in the Texture Creation menu. This will allow us to create clouds
on another texture while keeping our sky visible.

14. With the TexDraw brush and the R: 0.644, G: 0.271, B: 0,420 color, we will draw a few
clouds. We must think that there will be only the upper half that will be displayed on the
framing of the haunted house. This part will have the greatest importance for the lighting. So we
must focus on the upper half of the texture.

15. We will save the image as IBL_Cloud.
16. From this cloud texture, we will make a mask that allows us to properly mix the sky and the

clouds. For this, we must save our image, with the BW (Black and White) option and not in
RGBA, by naming it as IBL_Mask.

17. We will then return to the haunted house scene, and in the Node Editor, we will click on the
World icon that is represented by an earth, and we will check the Use Node option.

18. We have two nodes that appear: Background and World Output. We will add an Environment
Texture node (press Shift + A and select Texture | Environment Texture).

19. We will duplicate the Environment Texture node twice (Shift + D). We will place them one
above the other and to the left.

20. In each Environment Texture node, we will open the IBL textures created previously.
21. We will add a Mix RGB node (press Shift + A and select Color | Mix RGB) that will allow us

to mix our textures. We will connect the IBL_Sky Color Texture Image Output socket to the
Color1 input socket of Mix Shader, the IBL_Cloud Texture Image Color Output socket to the
Color2 input socket of Mix Shader, and the IBL_Mask Color Output Socket to the Fac input
socket. We will keep Mix as the Blending mode.

22. We will add a Mapping node (press Shift + A and select Vector | Mapping) that we will
duplicate once, and we will position them one above the other on the left-hand side of the
Environment Textures node. We will rename them as Mapping_1 and Mapping_2. We will

connect Mapping_1 to the IBL_Sky Texture Image node and Mapping_2 to the two other
Environment Textures.

23. We will add a Texture Coordinate node (press Shift + A and navigate to Input | Texture
Coordinate) that we will position at the left. We will connect the Generated socket of the
Texture Coordinate node to the Vector Input socket of the two Mapping nodes

24. To get a better contrast for the IBL_Mask, we will place a RGB Curves node (Shift + A and
select Color | RGB Curves) between the Environment Texture node and Mix RGB. We will
set the following two points: the first point at the X= 0.24 and Y= 0.65 position, and the second
point at the X= 0.65 and Y= 0.58 position.

25. We have all the necessary nodes. To finish, we will need to modify the mapping of the IBL_Sky
texture. Therefore, we will modify the X= 6°, Y= 23.9°, and Z= 0° rotation parameters. These
values vary according to the painted texture, so adjust them accordingly.

To visualize your Image Base Lighting (IBL) better, you can display it in the viewport. In the Solid
mode, in the right panel of the 3D Viewport, check the World Background option (Display | World
Background).

Creating materials with nodes
It's now time to discover the material creation process with Cycles. In this section, we are going to
create the basic shaders that are composed of our previously painted textures. The shaders won't be at
their final stage here. Later, we are going to improve them with normal maps.

Creating the materials of the house, the rocks, and the tree

Let's start with the wall shader of the house:

1. We will first select the corresponding object.
2. We are going to duplicate the clay shader that we had added in order to test our lighting in the

previous section. As you can see, it is used by 68 objects in the scene. If you click on the 68
button on the right-hand side of the material name in the material tab of the Properties editor,
you will duplicate the shader and make it unique. At this time, we can now rename it as
HouseWall.

3. We are now going to switch to the Node Editor in order to have more control on our shader. In
fact, we can do everything in the Properties editor, but it will be quite hard to manage with a
complex shader. So open a new editor and change it to a Node Editor.

4. As you can see, we already have Diffuse BSDF plugged into the Surface input of the Material
Output node.

5. A diffuse shader has no shine on it. It looks flat. In real life, every surface is at least a little
specular, so we are going to mix our diffuse shader with another shader that will bring us the
shiny effect. To do this, we will first add a Glossy BSDF shader (press Shift + A and select
Shader | Glossy BSDF) and place it under the diffuse shader. Don't connect it for the moment.

6. In order to mix the two shaders together, we will use a Mix Shader node (Shift + A and select
Shader | Mix Shader). As you can see, this node has two shader inputs. Plug the BSDF output
(green dot) of the diffuse shader to the first shader input of the Mix shader, and the BSDF
output of the Glossy shader to the second shader input of the Mix shader. Now plug the Mix
shader output to the surface input of the Material Output node. As you can see, both shaders
have been mixed together. You can now use the Factor slider in order to choose which one is
predominating. If you put a value of 0, you will only use the shader connected to the first input
(the diffuse), and if you put a value of 1, you will only use the shader connected to the second
input (the glossy one).

7. The blend between these shaders is not going to look right with any value, so we are going to
connect a Fresnel node to the fac input (press Shift + A and select Input | Fresnel).

Note

About the Fac input

The role of the fac input is to control how both shaders will be mixed. Usually, the Fac input
needs to be fed with black and white information where the amount of black tells us how much
the first shader will be used, and the amount of white tells us how much the second shader will
be used for the final output.

8. We can now change the value of the Fresnel to 1.4.

Note

About the Fresnel

The Fresnel node will produce a black and white texture according to the volume of the
geometry. It will be calculated according to the light ray's incidence. We usually use a Fresnel
node in order to catch the highlights better. You can use a pretty interesting add-on called node
wrangler that allows you to quickly see the result of each node without shadows. In order to use
it, right-click on the node you want to see while pressing Ctrl and Shift.

9. We will now change the glossy color to a yellowish tint. Don't forget to turn on real-time
shading in order to have a preview of what this will look like in the render. You can also drag a
rectangle to the zone you want to preview with the Shift + B shortcut while being in camera
view. If you want to remove the rectangle zone, drag a new zone to the outer zone of the camera
in the camera view.

The base of our wall shader

The last thing we will do with this material for now is plug it into our texture:

1. We will add a new Image Texture node (press Shift + A and select Texture | Image Texture).
2. We will need to connect the Color output of this node to the Diffuse BSDF color input.
3. It's also a good idea to add a Texture Coordinate (press Shift + A and select Input | Texture

Coordinate) node and plug the UV slot to the Vector input of the Image Texture node.

By default, the Vector inputs are set to be UV, but with this node, we can clearly see the mapping
method used for the textures.

1. We can now select one of the roofs and change its clay shader to the one we created because the
roof shader will be nearly the same. Now, in order to break the link between the roof and the
wall shader, we can press the button with the number of objects that share the same material in
order to copy the material.

2. We will rename this shader to HouseRoof1.
3. The only thing we need to do for now is to change the texture of the Image Texture node to the

corresponding roof texture.
4. We can now select all the objects that need to share the same material (the other blue roofs), and

finally, we select the roof that has the shader that we want to share, press Ctrl + L, and select
Material.

5. We will now repeat the process of creating a new material by copying it from the previous one,
changing its name and texture information, and linking it to its corresponding objects.

We will now have a shader on the rocks, the tree, and all the different objects that make up the house.
The only shader that will be different is the one on the top window. It needs to emit light. In order to do
this, we will copy the previous material, delete the diffuse, glossy, and mix shader (X or Delete), replace
them with an Emission shader (press Shift + A and select Shader | Emission), and plug the window
texture to this. Now the top light is going to emit light! You can tweak the emission value if you want
more light. As you can see, we need to do this for the other windows as well, but in the case of the other
windows, we can't do this simply because they are not planes and their color information is located on
the wall texture. That's why we need to paint a mask.

The top window shader

Adding a mask for the windows

We are now going to improve our wall material by creating a mask that will separate the windows that
are shining from the rest. These windows are going to be painted white and the rest will be black. So
when we plug the mask in the Fac input of a Mix material node, we will be able to choose an emission
shader for the white parts.

1. We are going to paint our map in the Blender Internal context. Note that we can actually use
the Texture Paint mode while being in Cycles, but this implies that we add and select a texture
node that uses the texture that we want to paint.

2. So we will select the wall object, and in the UV Image editor, we will create a new 1024 x 1014
black texture. Usually, masks don't need large resolutions.

3. Now in pure white paint the windows that shine (the light yellow ones on the color map).
4. Let's go back to our wall material and add a mix shader just before the output node. If you want

to save time, you can drag the node on the connection line of the previous Mix shader and the
Output node. This will automatically do the connections for you.

5. The first shader input is already used by our old Mix shader. Now we are going to add a new
Texture node with our mask and plug its output to the Fac input of our new Mix shader.

6. The second shader input will be fed with an Emission shader (press Shift + A and select Shader
| Emission). In the Color input of this node, we will plug our color map (the same as in Diffuse
shader).

The wall material with the mask on the left-hand side and the result in the real-time rendered 3D
view.

7. Now we can increase the strength of the Emission shader to 2.0. As you can see, now our
shining windows (and only them) emit light!

Using procedural textures

One thing that could be very interesting when creating materials is generating their textures
procedurally. In this render, we are going to replace the hand-painted ground by a procedural material.
This is done as follows:

1. We will select the cliff and create a new material for it.
2. The next thing is to add a Diffuse BSDF node. The color input of this diffuse material will be

fed with a mix of procedural textures.
3. Let's add a Noise texture node (Shift + A and select Textures | Noise) and duplicate it (Shift +

D). The first one will have a scale of 2.0, and the second one will have a scale of 10.0. Our goal
is to have a mix of both levels of noise. Both of them will use the Tiled UV layer, so add a UV
Map node (press Shift + A and select Input | UV Map), select the correct map, and feed the
Vector input of the noise textures with the UV Map node output.

4. As these nodes are textures and not shaders, we aren't going to use the Mix Shader node but the
MixRGB node instead. So we will add one of these nodes (press Shift + A and select Color |
MixRGB), and feed the inputs with their noise Fac output. Don't use the color output as we
want a black and white mix here. Remember that you can always test your results with the Node
Wrangler add-on (press Shift + Ctrl and right-click on any node).

5. We are now going to mix this result with a Musgrave node (press Shift + A and select Texture |
Musgrave). We also need the Tiled UV for the vector input. We will set the Scale to 20.0, the
Detail to 3.5, and the Dimension to 1.7. Its effect will be pronounced in the final result, so we
are going to mix it with white. To do this, we will add the MixRGB node and plug the first
color input with the Fac output of the Musgrave Texture. The second color slot can be changed

to white. We are going to change the Fac slider of the MixRBG node to 0.98; this will make
Musgrave very subtle.

6. We can now mix our noises and the Musgrave results together with one more MixRGB node.
7. If we plug this directly to the color input of the diffuse, we will get a black and white result. In

order to introduce color, we will need another MixRGB node, but instead of feeding the color
inputs we are going to plug our texture in the Fac input and choose two brownish colors. Now
we can plug the result to the color input of the Diffuse shader.

8. Lastly, we can plug the black and white texture to the displacement input of the Material output
node. In order to raise the displacement effect, we can place a Math node in-between (press
Shift + A and select Converter | Math). We can change its operation to Multiply and use a 3.5
value.

The ground material with the procedural texture made with a noise and Musgrave combination
on the left-hand side and, the result in the real time rendered 3D view.

Making and applying normal maps in Cycles

As we saw it previously with the alien character, normal map allows us to simulate a relief on a 3D mesh
very efficiently. It would be good to generate a few of them in order to add some relief to our scene. We
will explore a method to easily generate normal maps from tiled, hand-painted textures:

1. We will open a new Blender scene.
2. We will delete the cube (X) and then we will add a plane in the middle of the scene (press Shift +

A and select Mesh | Plane) that we name as Plane-1.
3. We will split the screen in two parts to open the UV/Image Editor at the right-hand side.
4. We will add a Multires modifier to our plane and a Displace modifier. We will place the

Multires modifier above the Displace modifier.
5. In the Texture tab, we will create a new texture by pressing New, and then we will load the tiled

texture of wood, that is, WoodTilePlank.png.
6. We will check that the texture is loaded in the Displace modifier.
7. In the Multires modifier, we will check the Simple mode, and we will click on subdivide until

we get to level 8. The more the mesh is subdivided, the more the Displace effect is accurate, but
we must pay attention to the RAM of the computer.

8. We will modify Strength to 0.25. This can vary depending on the texture. We must avoid
important deformations on the mesh.

9. We will duplicate the plane (Shift + D), and then we will delete the modifiers of this new plane
that we name as Plane-2.

10. We will select all the faces (A) of Plane-2 in the Edit Mode, and we will do an unwrap (U |
Unwrap) with a square shape taking all the UV surfaces. Then, we will add a new image. In the
UVMap Editor, we will click on New Image (Image | New Image). We will name it as
WoodTilePlank_NM.png.

11. We will move Plane-2 to the same height as Plane-1.
12. Enter the top view (the 7 numpad key) for a better view of the mesh.

If the Displace doesn't give exactly the effect we want, we can make a few modifications with the
Sculpt mode after applying the displace modifier by pushing on Apply. This is what we will do with the
rock and the tile roof textures.

We can now bake a normal map as follows:

1. We will need to click on the Smooth Shading button, otherwise we will see the polygons on our
bake.

2. Then, we will have to first select Plane-1 (RMB) and then Plane-2 (press Shift and the RMB).
This becomes the active object.

3. Now, in the Properties editor, under the Render section, we will expand the Bake subpanel.
4. The first option to choose is what type of map (or texture) we want to bake. So, in the Bake

Mode drop-down menu, we will select Normal Map.
5. The next thing we'll have to check is the Selected to Active option that tells Blender to bake

from the sculpture to the active object (our low poly plane).
6. Now you can click the Bake button. Don't forget to save your map (select Image | Save As

Image or press F3), or it will be lost!

We will use the same process of Normal Map creation for every tiled texture. Once this is done, we can
return to our shaders and apply our normal maps.

We will start with the House-Rock shader, which is very simple for the moment:

1. We will add a Glossy node (Shift + A) and navigate to Shader | Glossy BSDF, which we will
mix with diffuse using a Mix Shader (Shift + A and select Shader | Mix Shader). To better
visualize the normal maps, we will need glossiness.

2. We will add Fresnel (Shift + A and navigate to Input | Fresnel) that we will position in the FAC
input socket of the Mix Shader node. We will put a IOR value of 1.4.

3. We will add a Normal Map node (Shift + A and select Vector | Normal Map) with a Strength
value of 1.0 and connect its output to the Normal input socket of the Diffuse and Glossy
shaders.

4. We will duplicate an Image Texture node (Shift + D), and we will open the normal map texture
named Roch-Tilling-NM.png file. We must switch the Color Data option of this second Image
Texture to Non-Color Data. The data should not be interpreted as color data but as normal
direction data.

5. We will add a UV Map node (Shift + A) and navigate to Input | Glossy UV Map. Then we will
change the UVLayer to Tiled. You will recall that the rocks have two UV layers, so we must
select one.

We can apply this process for almost every shader using hand-painted tiled textures, except the brick
walls in our case. It is a special case that requires that we bake the normal map on a larger map with a
little modification of painting in order to hide the bricks behind the windows.

The normal map of the rock (low left corner) and its material in the nodal editor (top)

Creating realistic grass
In this section, you will see how we can create realistic grass in place of the actual grass planes. In order
to create our realistic grass, we are going to use a hair particle system.

Generating the grass with particles

A particle system will be used here in order to generate the grass strand without modeling and placing
them by hand:

1. We will first select the cliff and isolate it (/ Numpad). Then, we can go into the Particle tab of
the Properties editor and add a new particle system. This will add a new modifier in the stack,
but we can only control it here.

2. We will now have to change the type from Emitter to Hair. We can activate the Advance tab.
3. In the Emission subpanel, we can change the Number value to 10000, which corresponds to the

number of grass strands that we will have. We will also emit the particle from the faces in a
Random manner. We can also change the Hair Length to 0.26.

4. In the Physics subpanel, we can change the Brownian value to 0.120 in order to add more
randomness to the grass.

5. In the Children subpanel, we can set the amount of strands we want to spawn around the main
guides. In our case, we will activate the Simple mode and set 10 children for the preview (in the
viewport) and 100 for the render. In the effect section, we can change the Clump value to
-0.831 so that the children start near the base of the guide strand and are sprayed out near the
tip. We can also change the Shape value to -0.124 to shrink the children in the middle a little.
We will also change the Endpoint value to 0.018 to add more randomness.

6. We will now paint a vertex group with the Weight paint tool in order to choose where we want
grass on the cliff. For instance, we don't want strands under the house. To do this, we will switch
from Object mode to Weight Paint mode while the cliff is selected. As you can see, you have
brushes as in the Sculpt mode. We can use the Add brush to add weight and the Subtract brush
to remove weight. Red means that it will be full of grass, Blue means you won't have grass.
Now, we can choose the vertex group that we have painted in the Density field of the Vertex
Groups subpanel in the Particle System settings.

7. Now we can add a new particle system in order to add long grass. To do this, we will add a new
slot in the particle settings. We will also copy the settings from the previous particle system but
unlink them (the button with the number on the right-hand side of the name). We can lower the
number of particles to 1000 and change the Hair Length to 1.120. The number of children will
be 5 in the Simple mode.

The settings of the grass

Creating the grass shader

Now the last thing that we will create is the grass material:

1. The first thing we will need to do is change the Cycles Hair Settings in the Particle Systems
tab. We will change Root of the strand to 0.20 and set Tip to 0.0.

2. We can now add a new material slot for the cliff and rename it as Grass. In the particle settings,
we will change the material to Grass under the Render subpanel.

3. We will now select the grass shader and open the Node editor. The first node that we will add is
the Hair BSDF shader (press Shift + A and select Shader | Hair BSDF) and change it from
Reflection to Transmission. We will mix it using Mix Shader with a Glossy BSDF shader. We
will change Glossy Roughness to 0.352 so that the glossiness is more diffuse.

4. Next, we will have to plug a Fresnel node to the Fac input of Mix Shader.
5. For the color of Hair BSDF, we will add a Color Ramp node (press Shift + A and select

Converter | Color Ramp). For its Fac input, we will add a Hair Info node (press Shift + A and
select Input | Hair Info) and choose the Intercept output. This will enable us to set the
different colors along the strand. We will do a gradient that starts from a brownish color (to the
left) to a desaturated green (to the right). Usually, the tip of the grass strand is white, so we will
add a small amount of white on the far right of the color ramp.

The grass shader (to the right) and the result (to the left)

6. We will also mix the result of our Mix shader with a Translucent BSDF shader (press Shift + A
and select Shader Translucent). Indeed, the grass is very translucent. We will change its color
to a desaturated yellow and change the Fac value of the shader to 0.3. We can finally plug our
latest Mix shader to the surface input of the Material output node.

Baking textures in Cycles
Cycles allow us to bake textures as does Blender Internal, but there are some differences between the
two render engines.

Cycles versus Blender Internal

As we have seen previously, texture baking in Blender Internal can be very efficient to produce normal
maps, ambient occlusion, color textures, and many other kinds of maps that we won't cover here. All of
this in a very short time. So you might wonder why it is interesting to bake in Cycles.

Cycles is a ray tracer render engine based on physical parameters with global illumination. It is then
possible to get some very realistic renders in a much more efficient manner. Baking in Cycles allows us,
for example, to calculate a few heavy special effects only once, such as caustics. When a render is baked
on a texture, you can visualize the effect in real time. This can be very useful if you want to change the
frame and make several renders. In this way, it is possible to create a realistic environment in real time.

However, in the context of a video game, if you have many dynamic assets you must pay attention. You
could be limited by fixed lighting. Even though baking in Cycles can be very interesting, it has some
faults. Doing a good baking without noise requires the same settings as a normal render, so you do need
a high sampling value, which greatly increases rendering time compared to Blender Internal.

Note

For more information, you can have a look at the official Blender Reference manual at this address:

http://www.blender.org/manual/render/cycles/baking.html

Baking the tree

We won't bake the maps of every objects in our scene with Cycles; however, we will see how to proceed
with the 3D mesh of the tree as an example.

In order to optimize the render time, we will import our 3D mesh to another Blender window:

1. We will launch Blender a second time.
2. We will select the tree in the scene of the haunted house, and we will press Ctrl + C to copy it.

You will see the Copied selected object to buffer message in the header of the work space.
3. In the other Blender window, we will press Ctrl +V to paste the tree. We will see the Objects

pasted from buffer message.
4. In the same way, we will also import all the lights, and we must recreate the shader of the Image

Base Lighting (we can append it from the main file). We don't modify the location of the tree
and the lights in order to keep the same light configuration. But this wont be exactly the same
lighting effect as we don't have the house here.

5. We will need a second UVs layer with UVs that are restrained in the UV square this time. We
will use the Ctrl + P shortcut to automatically replace the UVs. Then we will adjust the margin
in the options of the left panel of the 3D viewport.

http://www.blender.org/manual/render/cycles/baking.html

6. We will start with color baking using the new UVs. For this, we will add an Image Texture
node (Shift + A and select Texture | Image Texture) to the shader of the tree.

7. We will select all the polygons of the tree in the Edit Mode (Tab and A), and then we will create
a new image named Tree_Color. A size of 2048 x 2048 is enough.

8. In the Image texture node that we have just created, we will select the Tree_Color texture.
This node must stay u.nconnected.

9. Now we will need to go into the Bake tab in the Render options. Here, we will change the type
to Diffuse Color. We will set the Margin value to 5, and then we will press Bake.

10. When we have our color map, we must adjust the seams with Texture Paint. We will use the
Soften Brush in order to blur the problems of the too visible seams.

Hiding the seams on the color bake

11. When the color texture is fine, we will again select the polygons of the tree in the Edit Mode,
and we will create a new image (the same size) and rename it as Tree_Combined.

12. Now we can make another combined baking following the same process, which this time allows
us to get all the lighting information on the texture. Make sure you open the good image in the
Image Texture node with a high enough sample value. In our case, we have 500 samples to
obviate the noise.

13. We can now go back to our haunted house scene and replace the tree with the one with new UVs
(Ctrl + C and Ctrl + V); then we can replace the old texture with the Tree Combined texture in
our shader.

The combined bake of the tree

Compositing a mist pass
As a bonus, we are going to learn how we can create and composite a mist pass with Cycles. But to do
this, we will need to do a render. So let's do a render with 500 samples:

1. We will first have to activate the mist pass in the Render Layer tab of the Properties editor.
Now we can access the mist settings in the World setting panel. We will set Start to 0 m and
Depth to 37 m.

2. In order to see the mist, we will need to composite it over the render. We will learn more about
compositing in further chapters, so don't worry if we don't go deep into the subject right now. In
the Node Editor, we will have to switch to the Compositing Node mode (the second button after
the material in the header). We will need to check Use Nodes and Backdrop in order to see our
changes in real time. As you can see, we already have a RenderLayers node plug in the
Composite node (the final output of the image).

3. In between, we can add a Mix node (press Shift + A and select Color | Mix) and feed the first
color input with the Image output of the RenderLayers node. The Fac input of the Mix node
will receive a Map Value node (press Shift + A and select Vector | Map Value) with Offset of
0.105 and Size of 0.06. For the input of Map Value, we will simply plug our Mist pass (the
fourth output of the RenderLayers node). The Map Value will control the amount of mist we
see.

4. In order to view the result in the Node Editor in real time, you will have to add a Viewer Node.
To do this, we will simply press Ctrl + Shift and right-click on any node.

The final Cycles render of the Haunted House project

5. We now have a nice mist! In order to change the aspect of the final render, we can tweak the
Color Management options as we did in the previous chapter. Congratulations, you've
completed the Haunted House project.

Summary
This chapter was really robust, but you now understand how to create nice materials with the Cycles
Render engine and how to light a scene properly. You also learned how to produce normal maps and
how to bake your objects. This last technique would be very interesting for video games. We also
covered Blender's Compositing tool to a slight extent by mixing a mist pass. Now let's create a new
project!

Chapter 8. Rat Cowboy – Learning To Rig a
Character for Animation
This chapter will cover the rigging and the skinning of a character. This character will be a Rat Cowboy
that has been already modeled for you. Here, you will understand what the rigging process involves. We
will start by placing deforming bones. After this, we will learn how to rig these bones with controllers
and constraints such as IK or Copy. Then, we will skin our character so that the mesh follows the
deforming bones. As a bonus, you will learn how to use shape keys in order to add some basic facial
controls that will be controlled by drivers. The rig, which is covered here, will be basic, but you will
have all the necessary knowledge to go further. We are going to use this rig to animate our character in
the next chapter. Enjoy!

In this chapter, we will cover the following topics:

• Making a symmetric skeleton
• Using the basic bones constraints
• Rigging the eyes
• Correcting the deformation of the meshes with weight painting
• Improving the accessibility of the rig with custom shapes
• Using shape keys

An introduction to the rigging process
We are now going to discover the process of character rigging. The point of this is to prepare objects or
characters for animation in order to pose them in a simple way. For instance, when rigging a biped
character, we will place virtual bones that mimic the character's real skeleton. Those bones are going to
have relationships between them. In the case of a finger, for instance, we will usually add three bones
that follow the phalanges. The tip bone will be the child of the mid bone, which in turn will be the child
of the top bone. So when we rotate the top bone, it will automatically rotate its children. On the top of
the network of the bones, we will need to add some constraints that define automation so that it is easier
for the animator to pose the character. The next step is to specify to the geometry to follow the bones in
some way. For instance, in the case of a character, we will tell Blender to deform the mesh according to
the deformable bones. This stage is called Weight Painting in Blender and Skinning is a common term,
too. However, we will not always face a case where skinning is necessary. For instance, if you have to
rig a car, you will not want to deform the wheels, so you will create a bone hierarchy or constraints in
order to follow the rig. The entire process could be tricky at some point, but mastering the rigging
process allows you to better understand the animation process and is the reason why having a good
topology is so important.

Note

Anatomy of a bone in Blender

A bone has a root and a tip. The root corresponds to the pivot point of the bone, and the tip defines the
length of the bone. Bones can have a parent-child relationship in two ways. The first method is by
connecting them, so the root of the child is merged with the tip of its parent. The other method is by

telling Blender that they are visually disconnected while still having a parent/child relationship. Each
bone has a roll that corresponds to its orientation on itself. When manipulating an Armature object, you
can be in the Edit Mode to create the network of the bones and set their relationships, or you can be in
the Pose Mode where you can pose the rig as if you were posing a marionette.

Rigging the Rat Cowboy
Let's do the rig of the Rat Cowboy. We are not going to show the modeling process here as you already
know how to model proper characters from the Alien project.

Placing the deforming bones

The first thing that we will need to do for our rig is place the bones that will directly deform our mesh.
These are the main bones. In Blender, a rig is contained in an Armature object, so let's go!

Let's begin with the process:

1. We will first be sure that our character is placed at the center of the scene with his feet on the x
axis.

2. Now we can add a new bone that will be placed in an Armature object (press Shift + A and
select Armature | Bone).

3. Next, we will enter the Edit Mode of our new Armature object, and we will place the bone in
the hip location and rename it as hips. You can rename a bone in the right panel of the 3D
view in the Item subpanel. Be careful to rename just the bone and not the Armature object.

4. We can now start to extrude the bones of the spine. To do this, we will select the tip of the hips
and extrude it (E) twice as far as the base of the neck. It's very important that you don't move
these bones on the X axis. We will rename the bones as Spine01 and Spine02 respectively.
From the side view, be sure that these bones are slightly bent.

5. We will now extrude the left clavicle according to the Rat Cowboy's structure and rename it as
Clavicle.L. The .L part is really important here because Blender will understand that this is on
the left-hand side and will manage the right-hand side automatically later when mirroring the
rig.

6. Now, from the tip of the clavicle, we will extrude the bones of the arm. Rename the two bones
as TopArm.L and Forearm.L.

7. Now it's time to extrude the bone of the hand, starting from the tip of the forearm. Name this as
Hand.L.

Note

Please note that if you want to follow the process step by step, you can download the starting
file for this chapter on the Packt Publishing website.

8. In order to create the finger bones, we will start from a new chain and parent it back to the hand.
This will allow us to have bones that are visually disconnected from their parents. To do this, we
will place the 3D cursor near the base of the first finger and press Shift + A. Since you can only
add bones when you are in the Edit Mode of the Armature, this will automatically create a
new bone. We will orient it correctly and move its tip to the first phalange. We will extrude its
tip to form the next two bones. It's important to place the bones right in the middle of the finger
and on the phalanges so that the finger bends properly. Analyze the topology of the mesh to do
this precisely. If you want, you can activate the Snap option (the magnet in the 3D view header)
and change its mode from Increment to Volume to automatically place the bones according to
the volume of the finger.

9. Then we will create the chains for the other fingers and the thumb and rename them as
Finger[Which finger]Top.L, Finger[Which finger]Mid.L, and Finger[Which finger]Tip.L.

10. We will now need to re-parent them to the hand so, when the hand moves, the fingers follow. To
do this, we will select the top bone of each finger (the root of each finger chain) and then select
the hand bone (so that it is the active selection) while holding Shift, pressing Ctrl + P, and
selecting Keep Offset. Keep Offset means that the bones are going to be parented but they will
keeping their original positions (that is, they are not connected to their parent).

11. We will now change our cursor location to the left thigh of our character and press Shift + A. We
can then place the tip of this bone to the knee location. Also, check the side view and put this tip
a little bit forward. We can then extrude a new bone from the knee to the ankle. Rename these
bones as Thigh.L and Bottom Leg.L.

12. We can then extrude the foot and the toes. Name them as Foot.L and Toes.L.
13. The leg chain needs to be parented to the hips. This can be done with Ctrl + P and selecting

Keep Offset. Remember to first select the child and then the parent while doing your selection
for parenting.

14. Now we can add the bones of the tail. We will create a chain of bones starting from the back of
the Rat Cowboy to the tip of the tail where the tips and roots of each bone are placed according
to the topology of the mesh. Remember to rename the bones properly from Tail01 to Tail07.

15. Then we will parent Tail01 to Hips by pressing Ctrl + P and selecting Keep Offset so that the
whole tail is attached to the rest of the body.

16. The last bones that we will need to extrude are the neck and the head. The neck starts from the
tip of the Spine01 bone and goes straight up along the Z axis. Then we will extrude the head
bone from the neck tip. We will rename them as Neck and Head.

Now we will have to verify on which axis the bone will rotate. You can display the axes of the bones in
the Armature tab of the Properties editor under the Display subpanel. We will need to adjust the roll of
each bone (Ctrl + R in the Edit Mode) to align them along the x axis. You can test the rotations by going
to the Pose Mode (Ctrl + Tab) and rotating the bones around their x local axis by pressing R and then
pressing X twice. Beware, rolls are very important!

Placement of the deforming bones

Note

The Display options

You can find different display options for your bones in the Display subpanel in the Object Data tab of
the Properties editor. A nice way to display the bones is to activate the X-Ray display mode, which
allows us to see the bones through the mesh even in Solid shading mode. We can also display the axes of
orientation and the name of each bone and change its shape.

For instance, we can use the B-Bone mode that changes the bones to boxes that we can rescale with Ctrl
+ Alt + S. This is a nice way to display bones that are on top of each other. You can also use the
Maximum Draw Type drop-down menu in order to change the shading of your selected object in the
Display subpanel in the Object tab of the Properties editor.

The following image will show the placement of the deforming bones of the hand:

Placement of the deforming bones of the hand with a correct roll

The leg and the foot

Now that we have all the deforming bones that are needed, we are going to add some bones that will
help us to control the leg and the foot in a better way.

1. We will now add a bone that will be a controller for the Inverse Kinematic (IK) constraint of
the leg. We add this to the ankle and align it with the floor. It's important that this bone is
disconnected for now. We rename it as LegIK.L.

2. Under the Bone tab of the Properties editor, we will uncheck the Deform checkbox so that our
bone does not deform our geometry later.

Note

What is an IK constraint?

Usually, when you manipulate bones in the Pose Mode, you rotate each one in order to pose
your object, and this method is called FK (Forward Kinematic). The role of an IK constraint
is to let Blender calculate the angle between a minimum of two bones according to a target. To
better understand what this does, imagine that your foot is a 3D object and you can move it
where you want in space. As you can see, your thigh and lower leg will automatically bend with
an appropriate angle and direction. That's the whole point of IK!

3. Now we are going to tell Blender that this new bone is the target that will control the IK
constraint. To do this, we will first select it in the pose mode (Ctrl + Tab) and then select the
lower leg bone to make it the active bone. Now we can use the Shift + I shortcut to create a new
IK constraint. As you can see, the lower leg bone turns yellow.

4. Now we will change the settings of the constraint. The bone Constraints panel is located in the
properties editor (a bone with a chain icon) in the Pose Mode. If we select the lower leg bone,
we can see our IK constraint located here. As we've used the Shift + I shortcut, all the fields are
already filled. The setting that we will change is Chain Length. We set this to two. This will tell
Blender to calculate our IK constraint from the bone where the constraint is on the tip to the
next bone in the leg chain.

5. We can now go back to the Edit Mode (Tab) and add a new floating bone in front of the knee
location. This bone will be the target of the knee. Rename it as PollTargetKnee.L.

6. Back in the Pose Mode (Ctrl + Tab), we will set this new bone as the Pole Target bone for the
IK constraint. We will first select the Armature object and then the bone. After this, we will
adjust Pole Angle to reorient the IK constraint so that the leg points to the knee target. In our
case, it's set to 90°.

7. The next thing to do is to uncheck the stretch option so that the leg can't be longer than it
already is.

8. Now that we've rigged the leg, it's time to rig the foot. We are going to make an easy foot rig
here. But note that a foot rig can be much more complex with a foot roll. In our case, we will
first remove the Foot.L parentation. To do this, we go into the Edit Mode, select the parent,
press Alt + P, and select Clear parent.

9. Now we want to switch the direction of the bone so that its root is located at the toes. To do that,
we will select the bone in the Edit Mode, press W, and select Flip Direction. Remember that a
bone rotates around its root, so this will give us the ability to lift the foot up on the character's
toes.

10. Now we can connect the IK target to the foot bone. To do this, we will simply select the child
(LegIK.L), select the parent (Foot.L), press Ctrl + P, and select Connected. So now, when we
rotate the foot in the Pose Mode, the IK target is going to lift up and the IK constraint will do its
job.

11. The last thing that we will need to do is create a master bone that will move all our foot bones.
In the Edit Mode, we will add a bone that starts from the heel to the toes and rename it as
FootMaster.L. We will then parent the toes to this with the Keep Offset option. Then we will
parent the foot to the toes with the Keep Offset option. As you can see, if you move the master
bone in the Pose Mode, all the bones will follow this. We are done with the foot and the leg rig!

The rigging of the foot and the leg

The arm and the hand

The next important part to rig is the arm. In many rigs, you will have a method to switch between FK
and IK for the arms. In our case, we are only going to use IK because it will be quite long and boring to
teach how to create a proper IK/FK switch with snaps. When animating the arm with IK, you will have
to animate arcs by hand, but this will allow you much more control if you don't have an FK/IK switch.

1. We will create a new floating bone that will become our IK target for the arm by duplicating the
bone of the hand and clearing its parent. Remember that the target of an IK switch needs to be
freely movable! We will rename this bone as HandIK.L.

2. Then we will set up our IK constraint by first selecting the target, then the forearm, and then
pressing Shift + I. Now, we can change the chain length to two as we did for the leg.

3. The next thing to do is add a poll target for the orientation of the elbow. To do this, we will
create a floating bone behind the elbow of our left arm, we rename this as ElbowPollTarget.L,
and we set this as the poll target of the IK constraint. Also, we will change the Poll Angle to
match the correct orientation of the elbow.

4. Both the target and the IK target need to have the Deform option turned off.

5. The animator will only want to manage one bone for the hand. The bone that will deform the
hand is not the target as it needs to be connected to the arm, so we will need to find a way to tell
the hand-deforming bone to follow the IK target rotation. If this happens, the animator will only
control the target for both arm placement and the hand rotation. To do this, the IK target is going
to transfer its rotation to the deform bone. So, we will first select the HandIK.L bone, then the
Hand.L bone, and then press Ctrl + Shift + C to open the constraint floating menu and select
CopyRotation.

6. We are now going to rig the fingers again with a Copy Rotation constraint. The motion that we
want to achieve is that, when the base of the finger is rotated around the X local axis, the finger
curls. To do this, we will indicate to the mid bone of the finger to copy the rotation of its parent
(the top bone) and the tips to copy the rotation of its parent too (the mid bone). We will show the
process for the index finger and let you do the rest for the others.

7. We will select the Finger1Top.L bone, then the Finger1Mid.L bone, press Ctrl + Shift + C, and
select CopyRotation. After this, we will select the Finger1Mid.L bone, then the
Finger1Tip.L bone, and create a copy rotation constraint. If we rotate Finger1Top.L on the X
local axis, we can see that the finger bends.

8. In order to finish the hand, we will disable the Y and Z local rotations of the mid and tip bones
of each finger. To disable a rotation on a particular axis, we will open the right panel of the 3D
view (N) and change the rotation type from Quaternion to XYZ Euler. Then we can use the
lock icon on a particular axis.

The rigging of the arm and the hand

Note

What is a Copy Rotation constraint?

As its name implies, the copy rotation constraint will tell an entity to copy the rotation of another entity.
The settings of the constraint allow you to choose in which space the rotation will be. The often used
spaces are World or Local.

The World space has its axes aligned with the world (you can see them in the left corner of the 3D
view).

The Local space has to do with the orientation of an object. For instance, if an airplane has a certain
direction, but when it rotates around its fuselage, this takes into account its orientation.

The hips

Now it's time to do the hips motion so that it is easier to control for animation. You have done a lot of
work until here. Have yourself a cookie, you deserve it!

1. To create our hips motion, we will duplicate the hip bone. Also, remember to uncheck the
Deform option. We will rename it as HipsReverse.

2. Now, we are going to flip the direction of this bone so that the hip deforming bone rotates
around its tips (because the root of the hip's reverse bones will be here).

3. Now you can test in the Pose Mode that, when you rotate the HipsReverse bone, the hip's
deform bone rotates with it.

The rigging of the hips with the reversed bone

The tail

A rat without a tail is pretty strange, so we will take some time to rig his tail. The technique that we will
show here is quite simple but very effective:

1. In order to rig the tail of the Rat Cowboy, we will need to add a new bone that controls this in
the Edit Mode. To do this, we will extrude the last Tail07 bone so that it is placed at the right
location, and we will un-parent it with Alt + P and select Clear Parent. Rename this as TailIK.

2. We will now need to create an IK constraint. We will first select the target, then the Tail07 bone
(the last in the chain), and press Shift + I.

3. Now in the IK constraint settings, we will change the chain length to 7 (to let the IK constraint
solve the angles from the tip to the last bone of the tail chain).

4. We will check the Rotation option, too. Now, as you can see, the tail is fully rigged and can be
placed and rotated through the tail target:

The rigging of the tail with a chain length of 7

The head and the eyes

In order to control the head, we will only manipulate the bone of the head, so we will directly begin the
rigging of the eyes. We will ensure that the eyes are two separated objects and they have their pivot
points at the center to make for good rotation. In our case, we have two half spheres, so we don't waste
performance with hidden geometry:

1. We will select one of the eyes, and in the Edit Mode (Tab), we will select the outer edge loop.
We will press Shift + S to open the Snap menu, then we will select the Cursor to Selected
option, and then, in the Object Mode (Tab), we will press Ctrl + Alt + Shift + C and select
Origin to 3D cursor. The pivot point must be at the right location. Do not hesitate to test this
with a free rotation (R x 2) in the Object Mode. We must repeat the same process for the other
eye.

2. In the Object Mode, we will select the eyes and the teeth, and then we will parent them to the
head bone, but not with the usual method of parenting the bones that we saw earlier. To do this,
we will first select the eyes and the teeth, and then the head bone (the armature must be in the
Pose Mode). We will press Ctrl + P, and we will select the Bone option.

3. We now want to create a controller bone for each eye. We will select the armature, and in the
Edit Mode (Tab), with the 3D Cursor in the middle of the eye, we will create a bone (Shift + A).
In the Orthographic (5) left (3) view, we will move the controller bone in the front of the
character. We need a small distance between the head and the bone controller. We will repeat the
same process for the other eye, and we will rename them as EyeTarget.L and EyeTarget.R.

4. We will set the eyes to look at their controllers with a Damped Track constraint (Properties |
Constraint). We will start with the left eye. We must select the Armature as Target and
EyeTarget.L as the bone. Now, we must adjust the rotation by tweaking the Z axis.

The eyes' controllers

Note

The Damped Track constraint

This allows us to constrain a 3D object to always point towards a target on an axis. The 3D object
doesn't move, it just rotates on its pivot point depending on the location of the object.

Both the eyes must now follow the EyeTargetMaster movements. Do a test by pressing G.

Mirroring the rig

In order to save time, as in the modeling or the sculpting process, it is often very useful to work with
symmetry. There are three ways to do this in an armature.

The first method consists of checking the X-Axis Mirror option in the Armature Options tab in the left
panel of the 3D Viewport (T) that allows us to directly create the bones in a symmetry. We must extrude
the bones by pressing E while also pressing Shift. This solution doesn't copy the constraints.

The second method is efficient even if it requires some manipulations to get a perfect mirror. Until then,
we will place the bones of the arms and legs on the left-hand side with all the constrains that we need
and the appropriate names:

1. We will select the armature in the Edit Mode, and we will align the 3D cursor at the center
(Shift + S and select Cursor to Center).

2. In the Header, we will put the Pivot Point options on 3D Cursor.
3. Then, we will select every bone of the arm and the leg on the left-hand side.
4. We will duplicate them (Shift + D), and we will mirror them by pressing S + X + 1 on the

numeric keyboard. Then we will press Enter.
5. In the Edit Mode, we will select the bones of the arm and the leg on the right-hand side and flip

the names (Armature | Flip Names). This renames all the bones of the left-hand side with the
.R termination.

Mirroring the bones with their constraints from the left to the right side

The third method is very interesting. It has been available since Blender 2.75.

Once we have placed and named all the bones with the .L termination and have all the constraints, we
will select them in the Edit Mode, and then we will press W and select Symmetrize. This will
automatically rename the bones of the right-hand side and the constraints will be copied.

Let's now focus on the gun for a rig.

Rigging the gun

In order to easily animate the gun, we will need it to be able to follow the hand of our character when
the Rat Cowboy uses it, and the gun must be able to follow the holster all the time. To do this, we will
use a bone and a Child Of constraint.

Note

The Child Of constraint

This constraint allows us to make an object a parent of another object by weighting their influences. This
allows the animator to animate its influence in order to change its parent. This is much better than a
classical parentation. This is very useful to make an object follow different objects one after another like
a character driving with one hand on the steering wheel and the other hand on the speed box. You can
also combine multiple children of the constraints.

1. We will begin by taking care to apply the rotation of the gun (press Ctrl + A and select Scale
and Rotate).

2. We will select our Armature, and in the Edit Mode, we will place the 3D Cursor at the location
of the hammer; then we will create a bone (Shift + A) that follows the length of the gun. We will
rename this new bone as Gun.

3. We will make the gun the parent of the bone by first selecting the gun in the Object Mode, then
the Gun bone in the Pose Mode, and then we will press Ctrl + P and select Bone.

4. We will then modify the appearance of the bone in B-Bone (Properties | Object Data | Display
| B-Bone). We will scale it to make it easier to rig (Ctrl + Alt + S).

5. We will check the X-Ray option.
6. We will move the gun in the holster by moving and rotating the Gun bone. You can also directly

rotate the gun a little bit in order to get the best position.

7. We will add two Child Of constraints to the Gun bone. We will uncheck the scale option of both
the constraints.

8. We will decrease the influence to 0 on both the Child Of constraints.
9. With the first Child Of constraint, we will put our Armature as Target with the Hand.L bone in

the bone option. We will press the Set Inverse button.
10. For the second Child Of constraint, we will put the Holster object as Target, and we will press

the Set Inverse button again.

Now, when we place the left hand with HandIK.L near the gun and put the influence of the first Child
Of constraint at 1.000 (the influence of the second Child Of constraint must still be at 0), the gun joins
the HandIK.L bone and follows it. In order to reposition the gun in the holster, it must be very near to
the holster. The influence of the first Child Of constraint must be at 0, and the influence of the second
one must be at 1.0 (reversed influences).

The gun bone

Rigging the holster

Now we are going to rig the holster. As you can see, it is a separate object. We will need to pin it to the
belt. In this section, we won't use bones, but they are still a part of the rigging process.

1. First, what we are going to do here is create an empty object that will be the parent of the
holster. To create an empty object, press Shift + A and select Empty | Plain Axis.

2. Now we will select the empty object, and while holding Shift, we will select the belt. We can
now enter the Edit Mode of the belt and choose a vertex near the pin of the holster. We can
press Ctrl + P and choose Make Vertex Parent. Now when we move the vertex, it moves the
empty object!

3. The last thing that we need to do is make the holster the parent of the empty object, and the trick
is done! Of course, we could have made the holster object a parent of the vertex directly, but it's
always nice to have an empty object in between in this kind of situation.

The rigging of the holster

Adding a root bone

The root bone is also called the master bone; it is the bone that will control the entire skeleton and is the
top parent. With this, it is very convenient to place our character and animate it anywhere.

1. We will select the Armature, switch in the Edit Mode (Tab), place the Pivot Point at the center
of the world (press Shift + S and select Cursor to Center), and then we will add a bone (Shift +
A).

2. We will make this bone bigger (Ctrl + Alt + S in the B-Bone mode) because it represents the
central control element of the Armature. We will flatten it by selecting and moving the tip of
the bone. We will rename it as Root.

3. In the Edit Mode, we will select the IK bone controllers of the hands, feet, tail,
EyeTargetMaster that controls the Eyes, Hips, and Pole Targets at the location of the knees
and the elbows; finally, we will select the master bone (so that it is the active selection).

4. We will make them parents (press Ctrl + P and select Keep Offset).
5. Remember to uncheck the Deform option (Properties | Bone | Deform).
6. You can see all the bones follow when you move the Root Bone.

The root bone at the center of the world

Skinning
Skinning is a very important step in the setup of a character for animation that will allow us to deform a
mesh parented to a rig. It should be noted that the term skinning is not directly used in Blender. In
Blender, you will generally find the term "Weight" designating the influence that a bone has on the
geometry. It is often a long and delicate step, but fortunately, Blender allows us to perform an automatic
skinning that is already very clean and quick. This is one of the most efficient skinning algorithms.

Before skinning our character, just as a reminder, we must determine which bones will deform the mesh
and which not. This will be done as follows:

1. We will verify whether the Deform option is unchecked for all deforming bones (Properties |
Bone | Deform).

2. In the Object Mode, we will select the mesh of the Rat Cowboy, then the Armature, and we
will make them child and parent (press Ctrl + P and select With Automatic Weight).

A nice skinning has been done for us. You can make a few rotations on the rig in the Pose Mode to
visualize the result.

However, we must do a few adjustments to improve this. Let's dive into the tools that we have at our
disposal.

The Weight Paint tools

If we select our mesh and observe the Data menu of the Properties panel, we can see Vertex Groups
that matches the bones of the Armature. This menu, in Weight Paint mode, allows us to select and view
the influence of each bone. The Weight Paint mode could be activated directly on the object. If the
armature is in the Pose Mode, it is possible to select the bones by a RMB click as well while we are in
the Weight Paint mode of the object.

In the Weight Paint mode, we can view the influence that each bone has on the geometry with a color
play. Blue means a 0% influence, a greenish-blue color means 25%, green means 50%, yellow means
75%, orange means 85%, and red means 100%.

In order to modify the influence, we have several brushes that can be used exactly in the same manner as
Texture Paint and Sculpt Mode in the left panel of the 3D viewport. These brushes allow us to paint
bones influence directly on the mesh. In our case, we will use only three brushes. The brushes that will
serve us for sure will be the Add, Subtract, and Blur brushes.

• The Add brush allows us to increase the weights
• The Subtract brush allows us to reduce the weights
• The Blur brush allows us to soften and mix the weights

The options of the brushes are exactly the same as with Texture Paint and Sculpt Mode. We can change
the radius of the brush by pressing F and moving the mouse. Also, we can change the strength of the
brush that will completely modify the impact of the brush. You can change the curve, too.

We can paint the weight in symmetry. To do this, the mesh must be perfectly symmetrical. We will check
the X-Mirror option in the Option tab of Left Panel (T).

There are also a few useful options in the Weight Tools menu. For example, Mirror, to make a
symmetric skinning and Invert, to invert the influence of our bones.

Note

For more information, you can have a look at the official Blender manual at this address:
https://www.blender.org/manual/modeling/meshes/vertex_groups/weight_paint_tools.html.

https://www.blender.org/manual/modeling/meshes/vertex_groups/weight_paint_tools.html

The weight paint of the Rat Cowboy (here the head influence is shown)

Manually assigning weight to vertices

Weight Paint is a very useful technique, but sometimes it is not very accurate. It can be useful to assign
weight precisely on some geometry components.

To do this, we must be in the Edit Mode and select the vertices to which we want to assign a weight.
Then we can go in the Vertex Group menu (Properties | Data | Vertex Groups). There will be a
Weight bar from which we must select the desired weight and click on Assign. If you don't have any
group, you can click on the + icon.

Another nice feature is located in the Right Panel (N). There the Vertex Weight menu allows us to
visualize the bones that influence the selected vertex and adjust the vertex directly. We will notice that
the total weights assigned to a vertex group may exceed 1.000. In fact, Blender will add the total of
influences and make an average.

Correcting the weight paint of the toes.

Correcting the foot deformation

If you have used the With Automatic Weight option, you should have a very few things to change. The
arms, legs, and head deformations should be quite good.

However, the toes aren't working well because there isn't a bone for each toe. So we will fix this as
follows:

1. We will check the X-Mirror option, and we will select Toe bone.
2. Now, we can paint with Add Brush to add some weight to the toes until we get a red color

(100%).
3. Then, we will need to remove the influence that the foot bone has on the toes. To do this, we

will use the subtract brush. Now the foot shouldn't affect the toes.

Note

Stick Display for Weight Paint

To easily edit a skinning, it is advised to change the appearance of the bones to Stick Mode
with the X-Ray activated option. You will get better visibility.

Correcting the belt deformation

Let's do the skinning of the belt. It is not a particularly easy element to skin because of its thickness and
possible interpenetration with the body, but do not be discouraged. In this case, we will manually assign
the weight to the vertices. This is shown in the following steps:

1. We will start by selecting the belt, then select the Armature, and we will make them child and
parent (Ctrl + P and select With Automatic Weight).

2. In the Vertex Groups menu (Properties | Data | Vertex Groups), we will remove all the vertex
groups except these: Hips, Thigh.L, and Thigh.R with the - button.

3. First, we will assign a weight of 1.000 to the Hips vertex group, so the hips bone deforms all the
belt.

4. Then, we will select the vertices on the right half of the belt in the Edit Mode, and we will
assign a weight of 0.2 to the Thigh.R group.

5. We will do the same thing for the vertices on the left half of the belt but with Thigh.L.
6. Then we will check the rotations of the Belt bone to verify some of the potential problems of

transition. We will adjust the weight of a few vertices. The goal here is to create a gradient of
weight at the center according to each thigh bone so that the thigh "attracts" some part of the
belt in a smooth manner.

The weight of the left-hand side of the belt

Custom shapes
Now that our rigging is almost finished, we can opt for custom shapes. These are 3D objects that can
replace the usual look of bones. The purpose is primarily aesthetic, but functional as well. We can make
bone shapes that will go around the mesh and allow us to uncheck the X-ray option. Also, it will allow
us to manipulate bones more easily.

We can hide the bones that do not require manipulation, such as the arms that are in fact only controlled
by HandIK.L and HandIK.R.

To implement a custom shape, we must first to create a form, usually from a circle. We are going to
make the custom shape of the Neck bone together and let you do the rest as this is very repetitive:

1. We will add a circle (eight sides is enough) to the scene (press Shift + A and select Mesh |
Circle).

2. In the Edit Mode, we will select the opposite vertices on the Y axis, and we will connect them
(J). This connection in the custom shape allows us to visualize the orientation of the bone better.

3. We will rename this object as SHAPE_Circle_01.
4. Now we will select the neck bone and SHAPE_Circle_01 in the Custom Shape option

(Properties | Bone | Display | Custom Shape).
5. There is often a problem with the axis of rotation and the scale. These must be adjusted in the

Edit Mode. We can work on SHAPE_Circle_01 again in the Object Mode without modifying
the custom shape applied to the neck bone.

6. Once the custom shape is adjusted, we don't have to see the SHAPE_Circle_01 object, so we
move it to another layer (M). We will choose the last layer to the right in our case. This layer is
usually used as a garbage layer where we put unwanted objects.

We redo the same process for almost every controller bone. Some shapes are very often used, such as
glasses for the eyes, but try to find custom shapes that fit your needs. They must be explicit and made of
very few vertices.

The custom shape of the neck bone

The shape keys
In the following sections, we are going to learn about shape keys and drivers. This will help us to create
some very basic facial controls that we will use in the next chapter. Facial rigging is a long process, so
we are not going to create a fully functioning facial rig here, but you will have all the tools needed to
create your own if you want to.

What is a shape key?

A shape key is a method to store a change of geometry in a mesh. For instance, you can have a sphere
object, add a shape key, move your vertices so that the sphere looks like a cube, and the shape key will
store the changes for you. A shape key is controlled by a slider. The value of the slider corresponds to
the distance each vertex has to move to get to the stored positions. As you can imagine, shape keys are
very useful for facial rigging as they allow us to create different expressions and turn them on or off.

Example of a shape key with Suzanne

Creating basic shapes

In this section, we will create five basic shape keys. They are eye blink left and right, smile left and
right, and frown. This will be done as follows:

1. First, we will need to select the object that will receive the shape keys. Then we will go to the
Object Data tab of the Properties editor, and we will open the Shape Keys subpanel.

2. When creating the shape keys, we always need to have a reference key that will store the default
position of each vertex. To do this, we will click on the + button. It is called Basis by default.

3. Now we can add a new shape key with the + icon and name it as EyeBlink.L. As you can see in
the following, there is a value slider. At 0, the shape key is turned off, so change the value to 1.0
in order to view your changes in the Edit Mode.

4. Now in the Edit Mode, we can change the left eye geometry to close the eye. You can use the
Connected Proportional Editing tool (Alt + O) in order to smoothly move each eyelid to the

center of the eye. Beware, you only want to move the eyelid's geometry, otherwise any other
changes done will be part of the shape key.

5. Next, we will mirror the shape key without tweaking our geometry on the right side again. We
can do this because our mesh is perfectly symmetrical. We are going to create a new shape key
based on the one that is currently active in the shape key stack. The value of EyeBlink.L is still
at 1.0, so we can click on black arrow under the – icon and choose New Shape From Mix.
Now, we have a new shape key with the same information as EyeBlink.L, but this not what we
want. We will need to mirror this to the other side. To do this, we will again click on black
arrow, and we will press Mirror Shape Key. We can also rename this as EyeBlink.R. Now if
you change the value of EyeBlink.R, you can see that the right eye of the Rat Cowboy is
closing perfectly. What a huge time-saver!

6. The next two keys, Smile.L and Smile.R, are created using the same method. What you need to
do is create a nice smile on one side and mirror it using New Shape From Mix and Mirror
Shape Key.

7. The last key to be created is a frown. To do this, we are just going to create a new key with the +
icon and move the geometry between the eyebrows. There are tons of other things to know
about shape keys, but for now this is all we are going to need.

Our facial shape keys

Driving a shape key

You might be thinking that animating directly shape key from the sliders is not very practical, and you
are right! This is why we are going to use drivers. It is a method to indicate to an entity (object, bones,
and so on) to control another value. In our case, we are going to tell Blender that the sliders of our shape
keys are going to be controlled according to the transformations of the bones located on the face. This
will give an impression that we are directly manipulating the head of our Rat Cowboy.

1. The first thing to do is add three new bones to our Armature object in the Edit Mode. The first
one will be located between the two eyebrows, and this will control the frown. The others are
going to be near the mouth corner and will be symmetrical. They are called Frown, Smile.L,

and Smile.R respectively. In order to control the eyes, we are going to use the bones we've used
previously as targets.

2. Now we will add a driver to the EyeBlink.L shape key by right-clicking on the value slider.
Note that the value slider is now inaccessible, so it will be driven by another entity.

Adding a driver to a shape key

3. Now split your view in a new editor of the Graph Editor type. Switch the mode from F-
Curves to Drivers in the Graph Editor's header. As you can see, if you still have the rat mesh
selected, you will have a new key on the left-hand side of Graph Editor. We can click on the
white arrow on the left-hand side to unfold the group of keys, and we can select the EyeBlink.L
one.

4. Now we will open the right panel of Graph Editor (N), and under the Drivers subpanel, we
can change the different settings. First, if you have an error, you can go to the user preferences
under the File tab and check Auto Run Python Scripts. Drivers work with Python internally,
so you must accept that it runs scripts. But don't be afraid, we are not going to code here!

5. The first thing that we will change in our settings is the Ob/Bone field. We are going to choose
the EyeTarget.L bone. So first choose the Armature object and then the bone. This will tell
Blender that the target will be the bone that affects the driver.

6. Now we are going to set Type to Y Scale and Space to Local. This means that, when we scale
our target, the value of the variable called var in the upper field will take the value of Y Local
scale of the bone.

7. Now you need to imagine that the field called Expr is directly linked to the value slider of the
shape key. You can even test this. If you enter 0, the eye will open, and if you enter 1, the eye
will close. So now what we can do is replace this field with the var variable that holds the value
of the y local scale. You can now see that the Rat Cowboy's eye is closed. But if you scale it, it
will open. We are close to the required result.

8. The last thing to do is change the expression so that it is open by default. We know that the Y
local scale of our bone is 1 by default and that the "open state" of the eye corresponds to the 0
value of the shape key slider. So we can add the 1-var expression to the Expr field. If the Y
local scale of the bone is 1, we will have 1-1 = 0 and the slider value will be 0, so the eye will
be open. If the Y local scale of the bone is 0, we will have 1-0 = 1 and the slider value will be
1, so the eye will be closed. Done!

9. We can replicate the same process with the other eye. In order to save time when creating the
driver, you can simply right-click on the EyeBlink.L value slider, press Copy Driver, right-
click on the EyeBlink.R, and choose Paste Driver. At this point, you just need to change which
bone is controlling the key in the driver settings.

10. For the smile driver, we will do a similar thing. But instead of feeding the variable with the Y
local scale of the eye target bone, we are going to use the local Y location of the Smile.L bone.
If you see a need to move the bone a lot in order to change the shape key, you can simply
multiply var time a scalar in the Expr field. In our case, the expression will be var * 5.

11. We can do the same thing for the other Smile.R bone and for the frown. The expression of
Frown is -var * 10 in our case. As you can see, we have negated the var variable because we
want to move the Frown bone down in order to control the shape key.

12. As a bonus, we are going to lift the hat with the frown. To do this, we will copy our Frown
driver to the X rotation of the hat object in the right pane of the 3D view (N). We will adjust the
expression. In our case, the expression is simply -var.

13. We will need to add a Limit Location constraint to the Frown bone as well. This will provide
the animator with the ability to lift the hat high or low by locking the bone between a minimum
and a maximum value on the Y axis in local space. To do this, we will change the settings of the
constraint. We will check Minimum Y and set the value to -0.115, and then check Maximum Y
and set its value to 0. Also, we can provide moves on the X and Z location by checking the other
check boxes and setting their value to 0. Then we will need to select the Local Space.

14. Now, we have minimum control over the Rat Cowboy's face in order to start animating our
character. We advise you to go further yourself in order to gain experience with shape keys and
drivers. For instance, you could add cheek puff or eyebrow shape keys.

The setup of the Frown driver in Graph Editor

Summary
In this chapter, you've learned how to create a simple bipedal rig. All the knowledge that you've
acquired could be used to push this further. For instance, you can add an FK/IK switch slider for the
arms and the legs, add more facial controls, or create a more complex foot roll. If you want to see or use
a more complex rig, you can check the rigify add-on (integrated in Blender by default). However, this
rig will be quite interesting for animation. Talking about animation, let's start using our rig in the next
chapter!

Chapter 9. Rat Cowboy – Animate a Full
Sequence
This chapter will be devoted to the animation of a full sequence. We will begin our journey by
discovering the 12 animation principles. Then, we will learn more about the preproduction stage that is
all the things that we need in order to prepare the animation such as the writing of a script and the
creation of a storyboard. After this, we will learn some important tools in order to animate in Blender
such as the Timeline, Dope Sheet, Graph editor, and NLA. Next, we will create a layout that is a rough
3D visualization of the sequence without animation. After we've done all this, it will be time to start
animating our shots. We will first learn how to animate a walk and use the NLA in order to mix actions
together. We will then animate a close shot and a gunshot inspired by old western movies. The graph
editor will be used extensively in order to animate a trap. Finally, we will learn how we can render a
playblast of our shots. So let's dive into the wonderful world of animation where things start to move!

In this chapter, we will cover the following topics:

• Learning the principles of animation
• Preparing our animation with a script, storyboard, and layout
• Using the Blender animation tools
• Animate different shots
• Render a playblast

Principles of animation
In order to start to animate with Blender in the best way, it is important to understand some basic
principles defined in the 80's by Ollie Johnston and Frank Thomas. These principles are inherited from
the 2D animation art called "traditional animation". Animation involves recreating the illusion of motion
by a sequence of images. Most of these principles also work for 3D animation. Here, they have been
developed for a cartoon style, quite far from realistic movements. So, we don't have to apply them to any
situation, but they still contain the secrets of animation.

Squash and Stretch

This is one of the common principles that applies to cartoon-style animation. The goal is to over-
exaggerate the effect of inertia and elasticity on a particular object. From a 2D perspective, it's quite
hard to manage because the object doesn't need to lose its volume, so we need to judge the shape by eye,
but in 3D this is just a matter of a good rig.

Anticipation

The principle of Anticipation describes the anticipation before an action. For example, a character ready
to jump is going to bend the knees, the back, and the arms before the actual jump. It is important in order
to add realism to the action you want to depict through your animation. To better understand this
principle, try punching with your hand, you'll see your hand going back first.

Staging

This principle is applied in cinema and theater to retain the attention of the spectator on specific
elements and remove every useless detail from their view. This is useful to communicate a perfectly
clear idea. This may include many areas of animation such as lighting, acting, or camera positions.

Straight Ahead Action and Pose to Pose

These are two different approaches while animating. The Straight Ahead Action method consists of
making an animation gradually frame by frame from the beginning to the end. With 2D animation, this
is especially useful to create special effects such as fire and water, and this allows improvisation.

The Pose to Pose method allows us a much better control of the timing and is easier to manage. This is
often much more efficient when we animate characters. For this method, we start by adding the Key
Poses. They are the main keys that indicate the action. Then comes the Extremes that we add to the
extremities of motions that exaggerate the action between two key poses. Then, there are the
Breakdowns that are the main intermediate keys of the action between the extremes. These add more
fluidity to the action. A mix of the both methods is often used.

Follow Through and Overlapping Action

Follow Through and Overlapping Action techniques being very close consist of giving some inertia to
an animated object and add a better sense of realism. Follow Through consists of continuing the
movement of a part of an object after it has stopped moving. This can be applied to a tail, for instance.
Overlapping Action consists of creating an offset between a movement of an object and a part of this
object. For example, long hair moves at a different speed than the head.

Slow In and Slow Out

These are two effects that consist of attenuating the speed of a moving object around the extreme keys.
A Slow In effect is a deceleration at the beginning of an action, and a Slow Out effect is a deceleration at
the end of an action. In Blender, these effects can be seen in the form of Bezier curves and are controlled
by their handles in the Graph Editor.

Arcs

This is a principle that consists of creating movements that follow an arc trajectory. Almost every
motion follows this principle. For instance, when a character throws a ball, his or her hand follows an
arc trajectory. If you take a pendulum and fix the ball, you will see that it follows an arc.

Secondary Action

The Secondary Action principle is about how every little action adds dimension to the main action. For
example, in the case of a facial expression, a blink of the eyes can add more expression to the character.
Another example could be the ears of a dog that hangs when he turns his head.

Timing

The number of frames between the beginning and end of an action directly affects the speed of the
action. Timing is related to a physical consistency respecting certain laws of physics. In order to animate

a character, timing defines its personality and emotions. For example, if a character is sad, timing is
going to be definitely slower.

Note

24 images per second

The frame rate in cinema is 24 images per second, and this is enough for the eye to have an impression
of fluidity. This frame rate is used in the basic parameters of Blender.

Exaggeration

The exaggeration principle is used when you want to accentuate the action that you are transmitting to
the viewer. The action can be a pose, a gesture, or an expression. Sometimes it is better to slightly get
away from realistic animation to get a better impact. For instance, if you want to accentuate a punch,
you can exaggerate the proportions of the arm of a character.

Solid drawing

This principle mostly applies to 2D animation. It consists of ensuring certain realism in drawing
regarding volume, weight, and balance. This advocates paying attention to volume and perspective in
order to avoid a flat render. A character must be possibly seen from any angle of view. In 3D animation,
it is a bit different. Even for a 3D animator, drawing can be seen as a strength, because it allows to
quickly put the poses you have in mind on paper, but this is not going to be your main tool.

Appeal

This principle is mainly about the interest and appearance of the characters you will animate. It means
making a dynamic design through shapes, colors, proportions, gestures, and personality. It can be a hero
or a villain, whatever.

Animation tools in Blender
Now that you understand a little bit more about what animation involves, we are going to dive into the
different tools that we are going to use when animating our sequence. In order to test these tools, we are
going to use the default cube of a new .blend file.

The timeline

The timeline editor gives us a lot of information about the animations of our file. The timeline represents
each frame as you can see in its lower part. You can navigate to any frame by dragging the green bar.
Using the Left and Right arrows, we will move one frame at a time. Using Shift and Up or Down arrows,
we will move by an increment of ten frames. In the header we have two sliders, Start and End, which
respectively represent at which frame the animation starts and ends. As you can see, we have dark grey
parts in the timeline that visually shows this range. If you want, you can set the start and end frame by
placing the timeline bar where they need to be and by pressing S and E respectively. You can quickly
move the timeline bar to the start and end frame by pressing Shift and left or right mouse buttons. You
can also zoom in to the frame with the Mouse Wheel. You can use the well-known play, rewind, and
pause buttons in order to play the animation. The shortcut to play the animation is Alt + A.

The timeline

What is a keyframe?

Now it's time to learn how to set keyframes. But wait a minute, what is a keyframe? It is used to store
the state of an object (or any other animatable thing) at a certain frame. Let's add a keyframe to our
default cube:

1. We will open a fresh new blend file, and we will select the default cube.
2. We will then place the timeline bar at frame 0 and press I to open the Insert Keyframe Menu.

We can now choose between many options, but we are going to choose the LocRotScale one
because we are going to keyframe the location, rotation, and scale of our object.

3. Now we will go to frame 20 (remember the Shift + Up arrow shortcut of the timeline), and we
will move, scale, and rotate our cube. Now we can add a new key to store the current state of the
cube, press I and select LocRotScale.

4. If you move the timeline bar or play the animation, you can see that Blender automatically
interpolates the motion for you! You can clearly see that you have two keyframes represented in
yellow. Congratulations, this is your first animation in Blender.

Note

The AutoKey option

In the timeline header, we have a nice little red circle button that allows us to automatically create a
keyframe as soon as we change the location, rotation, or scale of our selected object. Thus we don't have
to call the Insert Keyframe menu every time.

The Dope Sheet

The timeline is great but is not very useful when we want to manipulate our keys. To do so, we can use a
more robust editor called Dope Sheet (as always you can split your view and select the editor type that
you want on the left-hand side of the header). On the left-hand side, we can see every object that has
keys on it. In the header, we have many important options such as the Show only selected button (a
mouse pointer icon) that tells Blender to only show the keyframe of the selected objects. The keys are
represented by a diamond shape and can be selected with by right-clicking on them or by using the B
key for the box select tool. Of course, you can select all the keys by pressing A. You can move the keys
with G. You can also scale a group of keys with S. In this case, the timeline bar will be the pivot point.
The Dope Sheet Summary row enables us to select every key that is below the corresponding key.

For instance, if we select the dope sheet summary key at frame 0 by right-clicking on it, we will
automatically select every key on frame 0.

The Dope Sheet editor

The Graph editor

Now we will learn a little bit more about curves with the Graph editor. This is a really important editor
to learn in order to become a good animator. It mainly allows us to control the interpolation between the
keys. It looks like graph paper with the y axis corresponding to the value of the key and the x axis to the
time. We can select the keys in the same way as the Dope Sheet. As you can see on the left-hand side,
we still have the objects on which we added the keyframes. We can also see that we have the type of the

keyframe that we've placed; LocRotScale in the case of our cube. If we open this with the white arrow,
we can see each transformation and its corresponding curve on the right-hand side. Each frame has a
handle type that you can change with the V key. It looks a little bit like the curve handles that we saw in
the Haunted House project. We can set them as Vector to have a linear interpolation, for instance. We
can also change the interpolation type of each frame by pressing the T key. This is a very useful menu
that we are going to use in order to quickly animate the bounce of our trap. If you press the N key, you
will see a bunch of options. You can even see modifiers that allow us to add procedural effect to our
curves, for instance, noise. Note that you can use the Ctrl + MMB shortcut to squash the graph.

Note

Default interpolation setting

In User preferences, in the Editing tab, we have the ability to choose the default type of interpolation
that we want between two keys. Many animators like to set it as constant so they don't have any
interpolation. When the animation plays, it looks like stop motion. After they have the right poses, they
select all their keys in the graph editor, and they press V to set the Bezier interpolation type back in order
to polish the animation.

The Graph editor

The Non-Linear Action editor

The NLA or Non-Linear Action editor is a huge time-saver tool! It allows us to edit actions. Similar to
doing video editing, you will edit tracks on which there are actions. You can see an action like a box of
keyframes that represent a certain motion of an object. Actions are located in the Dope Sheet editor. In
its header, we can see a drop-down menu. We can change it from Dope Sheet to Action Editor. Near
this drop-down menu, we have a text field with the name of our action. We can create multiple actions
by duplicating them with the + button. Each action has its own set of keyframes. So, for instance, you
could animate the walk of a character in a specific action, its displacement in another action, and mix
them back together in the NLA editor. Back to the NLA editor, we can press Shift + A in order to add a
new action to a specific track. Tracks are represented on the left-hand side. We can add new tracks by

going to the Add menu in the header and by choosing the Add Tracks option. We can open a hidden
panel by pressing N. In this panel, you will have many options concerning the selected action.

For instance, we can repeat the selected action by changing the Repeat value under the Action Clip
subpanel. We can also move actions by pressing G. This also allows us to move an action from one track
to another.

The NLA editor

Preparation of the animation
Before starting the creation of the sequence, it is important to plan what we are going to do.

Writing a short script

We start by organizing our ideas with some brief writing work. We must describe the scene to be
animated shot by shot. We can be creative at this moment of the process and imagine any kind of place
and situation.

In the first part, we will put some useful information such as the title, exposure (for instance, Out-Day in
order to indicate that the action happens outdoors during the day), and the number of the sequence. In
our case, there is only one sequence, so we call it Sequence 1. This kind of information is usual in a
movie script.

The action of the sequence is in the desert. In a very warm and dangerous place, our rat sees a trap after
a very long walk. This trap seems to be there for him.

We will follow a rather traditional script structure. There is an initial situation, a disruptive element that
happens, and then the fall. In the case of a short animated film of one minute, there is no time to
introduce and develop the characters and an enigma. We must go straight to the point.

For our short film, we will do a staging composed of different camera shots, which will require an
editing step later. But we must conceive it now. Maybe you know that cinema has a visual grammar that
is expressed by editing. It allows us to make sense of the different shots. It is something that you can
learn, and there are certain rules to understand. Going deep in this area can only be a huge advantage for
your 3D projects.

In order to write a script, we must describe our shots. There are different types of information. These are
the field sizes of a shot:

• The extreme long shot: This is used for panoramas.
• The long shot (or establishing shot): This allows us to introduce a situation.
• The full shot: This frames the characters entirely. It is great for large movements.
• The medium shot: This frames the chest and the head of the character.
• The American shot (or ¾ shot): This frames a character from the thighs to the head. It is close

enough to a medium shot.
• The close-up shot: This frames the face of the character, and it allows us to perceive emotions

better.
• The Italian shot (or extreme close up): This frames the eyes of the character.

There are also the angles of a shot:

• The low angle shot: The camera is low and the frame upwards. This will enhance the character.
• The high angle shot: The camera is high and the frame downward.
• The aerial shot: This frames the scenery viewed from the sky.

The camera can also rotate with a pan or be mobile. We often speak of a tracking shot. In cinema, the
camera is often mounted on a camera dolly or a steady cam for a perfect smooth shot. There are other
types of shots and framing, but these are the main types you should know in order to express yourself.

The storyboard

Making a storyboard

After this first reflection of writing the script, we can start making a storyboard. It is a technical
document that the areas of animation films have been using since the 30's. A storyboard allows us to
describe the action with drawings, but it also to goes further than the text in the design of the shots. In
the case of teamwork, it is a very useful tool to communicate the work, and it gives a comprehensive
view of a project.

Seeing that the storyboard allows us to save a huge amount of time and money, it is a practice that has
gradually extended to the field of cinema (classical movies, but mostly special effects movies), theater,

clips, and commercials. Even if we are very far from making a blockbuster, and have no team to
communicate our work to, a storyboard is a very important step to make a good animated short film.

Don't worry if you are not very gifted in drawing. Many storyboards are very simple and schematic. The
most important thing is to clarify your ideas of staging. It must be easy to understand with the
indications of stage direction such as camera and character motion.

For our storyboard, we draw the different shots referring to the script that we have done previously.
Continuity is from left to right like a comic. To describe a shot, we can make several drawings. For shot
1, three drawings are used to describe the movement of the camera and the character. In order to avoid
getting lost, we mark the number of the matching shot at the bottom left of each thumbnail.

Storyboard

Finding the final camera placements and the timing through a
layout

The layout is an animated version of the storyboard. It is sometimes called an "Animatic". We don't need
to animate our character at this stage. We simply need to visualize the shots that we imagined previously
with the script and the storyboard. We can then verify if this works and get a better idea of the time we
need for each shot.

The process is as follows:

1. We will import the character in Blender by simply copying it from the
RayCharacter.blend file to a new file.

2. We will save the scene as RatLayout.blend.
3. We will start outlining very simple scenery with a few low poly 3D models. We will use a plane

for the floor and an extruded cube for the mountains beyond.
4. We will model a simple cactus and duplicate it pretty much everywhere on the floor.
5. We will also make a simple model of the trap and the cheese. We only need to get the basic

shape.
6. To be more comfortable with this, we will organize the environment by dividing it in several

parts. It is much better to display the Dope Sheet, Graph Editor, and camera view in a little
window (0 of the numeric keyboard).

7. For each shot, we will create a new scene by clicking on the + button in the main menu bar, and
we will select the Full Copy option.

8. The placement of our character, the trap with the cheese and making a few tests with the camera
are still remaining.

This is the step where we can still make a few changes and test movements and timings.

Screenshot of the layout shot 03 with the rough modeling

Animation references

While animating, it is important to have as many references as you can so that you can have the perfect
shot. Many computer animators have a folder with videos of themselves acting the shot. Recording
yourself is one of the best ways to understand the gesture of a character. This way you will be able to
catch many unconscious movements that you do when you look at the video. It is also a way to
improvise different acts. Other reference materials such as character poses or animation cycle images are
very interesting. Apart from this, paper and pencil are often useful in order to grasp some poses that you
have in mind. You don't need to draw in detail, as a simple stick figure will suffice in order to put the
poses ideas on paper.

Organization

Before starting to animate our shots, we will introduce to you how to organize yourself for the whole
sequence. The different assets have been created in different .blend files. What's neat about this is that
we are going to link them all in one final file for each shot. The benefit of this is that if we want to
change the look of one of the assets, we can do it in the original file and it will replicate in the master
file. For the rig of the rat cowboy, we are going to create a proxy.

In our case, we have ten shots, so we will create one .blend file for each of them. All these files will
be placed in a Scene folder and will reference files that are placed one folder up in the folder hierarchy.
Let's create our files:

1. We will first create a new blank file in Blender and save it as 01.blend in a new folder named
Scene. Note that you can create a new folder in the file browser with the I key.

2. Now let's open the terrain file and select everything that needs to be linked in the shot file. We
are only selecting the mesh type objects here. We are going to group our selection with Ctrl + G
and rename the group as Terrain in the last tool option subpanel.

3. We will then repeat the same process with the other asset files. For the cactus file, you can
create one group for each cactus.

4. Now the different groups are ready to be linked in the shot file. In the 01.blend file, select the
Link option in the File menu or press Ctrl + Alt + O. We can now click on the Terrain file and
navigate to the Group folder in order to select the Terrain group that we've created within this
file. We can validate by pressing Link from Library.

Note

The Link and Append file structures

The structure of a .blend file is composed of different sections that represent the file. Each
section is related to the entity it contains. For instance, in the Group section, you will find every
group that has been created in the file, and in the Nodes section, you will every node that has
been created in the file, and so on. This file format is quite nice because it's open and very well
organized.

One very cool feature of Blender is the ability to mix files or parts of files together by linking or
appending them. With the Link option, you keep a relation with the original file, so any
modification will be replicated. The Append method creates a pure copy of what you want to
mix.

The structure of a blend file

5. The link should be done. You can test whether it works by saving the 01 file then tweaking the
Terrain file, and going back to the 01 file to see whether the changes appear. Now we can
repeat the same process with the other assets that need to be linked in the shot file. You can
easily nest files by linking groups to files that are linked themselves as a group in another file.

6. Cactus, bones, and bush are linked in the terrain file and they are part of the Terrain group
(remember to add them to this group, as it will be linked in each shot file). The terrain is linked
in each shot file. The Cheese group is linked to the Trap file, and the Trap group is linked to
the 02, 03, 05, 07, and 08 files. We will not link the trap in the terrain file as it won't be needed
for each shot. For the rat character, we will simply create a group with the Armature and Mesh
object that we will link to the 01, 03, 04, 06, 08, and 10 files.

7. In each file, we need to create a proxy for the rig of the rat. To do so, we will select the rig, and
we will press Ctrl + Alt + P and click on the Armature object.

Note

Proxy

You may have already seen that when you use the link option, you can't do any modifications in the
linked file. This is a security guard, so you only manage your art in one file. But in the case of a rigged
character, this could be embarrassing. That's why we create a local access of the rig called a Proxy in the
linked file with Ctrl + Alt + P.

You can have a look at the structure of our project as follows:

The architecture of our project

Animating the scene
Now that we have a story to tell, let's start to animate each shot using the tools that we saw previously.

The walk cycle

We are now going to learn how to create a walk cycle for the first shot. Why a cycle? This is because we
are simply going to repeat the walk actions automatically later in order to save time. There are different
types of walk that can express the actual feeling of the character. In our case, we are going to animate a
cowboy walk, so this means our character will need a certain assurance. In order to be efficient, we are
first going to "key" the three main poses of a walk as follows:

1. We will first open the 01.blend file and focus our view on the left-hand side view of the
character. We will need to be sure that the Auto Key button is turned on, so any translation
(grab, rotate, or scale) will create or override a key where the bar is located in the timeline. This
button is located in the header of the Timeline editor and looks like a recording button.

2. Before creating our poses, we will have to select our armature in pose mode. We can then hide
the Master bone by selecting it and pressing H because our walk will be animated onsite. Also,
be sure that your timeline bar is at frame 0.

3. The first pose that we are going to create is usually called the "Contact pose" because both feet
are touching the ground. From the side view, we will select the left foot bone, and we will move
it in front of the character. We will then place the other foot bone in the opposite location. As
you can see, because the legs are too far apart, the character isn't able to touch the ground
(represented here by the Y world axis). So we have to select all the visible bones and move
them down until the character is on the ground.

4. Now we will lift the front leg toes up a little bit on the local x axis (press R and then X twice).
5. We will then pose the back foot so that the rat stands on its toes.
6. From a front view, we will orient both legs outwards a little bit.
7. The arms need to follow the direction of their opposite leg. To move the arm, we will use the

HandIK bone. We can also slightly bend the arms and rotate it, and then break the hand rotation
a little bit.

8. From a front view, we can slightly put the right arm inward. The left arm will not rotate as much
inward because of the holster.

9. In order to polish this pose, we will rotate the Hips bone down in the direction of the right leg
and the Spine01 and the Neck bone in the opposite direction of the hips. We will also rotate the
head down so that the character looks at the ground. We will also pose the fingers so that the
index finger is straighter than the others. We will also rotate the tail outward.

10. At this point it's a good idea to open a Dope Sheet editor. As you can see, we have small
diamonds that represent the keys on each bone (described in the list on the left-hand side). For
the main poses, it's always a good idea to have a key placed on every bone. To do so, we will
select them all in the 3D view, and we will press I and choose the LocRotScale option.

11. In order to have a perfect cycle motion, the first and the last key of the walk needs to be the
same. So in the dope sheet, we will select all the keys of our first pose by right-clicking on the
Dope Sheet Summary corresponding to the key, and we will press Shift + D to duplicate this.
We can move this to frame 24. You can clearly see that the keys are the same because of the
dark lines that link them.

12. Now, we will copy this pose right between these two keys but in a mirror. To do so, we will
select every bone in the 3D viewport, and we will store the pose with Ctrl + C. At frame 12, we
can press Ctrl + Shift + V in order to copy the pose in the mirror, thanks to our bone naming
convention with the .L and .R suffixes. If we scrub the timeline bar, we can see a preview of our
walk. But there are still many things missing.

Congratulation, you have made the contact poses of the walk cycle! Now we will create the "Passing
pose". This is done as follows:

1. To create our passing pose, we will use the same process as before. We will first create our pose
between the 1 key and the 12 key, and we will mirror it between the 12 and 24 keys.

2. So we will place our timeline bar at frame 6. We will start creating our pose from the side view.
The leg that was in the front of the character will be straight. So we will select the left foot
controller, and we will align it horizontally with the rest of the body. As you can see, the leg
can't be straight if the hips aren't moved up. We move the hips up. This is the key point of any
walk: the body always moves up and down.

3. The other foot is bent. It is also placed slightly behind the straight leg, and the toes point
downward.

4. At this point, the arms are almost straight and aligned with the rest of the body.
5. From the front view, Hips, Spine01, and Neck need to be aligned with the ground.
6. We can slightly rotate the head on the z axis to the left of the rat.
7. Now we ensure that we have keys on every bone. After this, we will copy our pose in the mirror

on frame 18 with the same method seen previously.
8. A nice trick you can do is to change the visual look of your keys in the Dope Sheet by selecting

them and by pressing R.

We now have the essential poses of a walk. The rest of our work will consist of exaggerating the motion
by adding a "Down" and "Up" pose. This is done as follows:

1. The "Down" pose will be placed before the "Passing" pose. To create this, we will clear the toe
rotation of the front foot.

Then we will exaggerate the pose by slightly moving the pelvis down. The whole goal of this
pose is to feel the weight of body on the ground.

2. The "Up" pose is placed after the "Passing" pose. This consists of lifting the character on his
straight leg and toes.

3. After we have finished these poses, we can duplicate them in the mirror by following the same
order according to the "Passing" pose.

Walk cycle poses

The walk cycles is completed now! We can view it by scrubbing on the timeline or simply by changing
the end frame to the 23 frame in the timeline header and by playing the animation with Alt + A.

The Dope Sheet for our walk cycle

Mixing actions

We are now going to create three new actions that we will blend in with the NLA editor. One will be in
charge of moving the character from its current location to the front of the camera. One will represent
the character lifting his head up, and the last one will contain a mix of the others. This is done as
follows:

1. The first thing to do is to copy the camera from the Layout blend file. To do so, we will simply
copy the camera of the first scene in the corresponding file with Ctrl + C, and we will paste it
with Ctrl + V in the 01.blend file. If you have any other cameras in the scene, remove them and
be sure that the copied one is the active one by selecting it and pressing Ctrl + 0 numpad key.

2. In order to create our new actions, we will need to open the Action Editor from the Dope Sheet
editor. As you can see, our walk cycle has been already placed on the default action. By the way,
we can rename it Walk.

3. We can now click on the + button in order to create a new action. This new action will be a copy
of the walk action, so we can delete all the present keys and rename the action Move.

4. Now we can start to animate the character displacement on this action. To do this, we will
simply use the Master bone of our rig. In our case, we have added two keys at frame 0 and 225.

5. The problem now is that the rat seems to accelerate at the beginning and decelerate at the end.
To solve this, we are going to use the graph editor and change the shape of the Y location curve.
So in the graph editor, we select the keys for the Y location, and we press V and Vector. Now,
as you can see, the curve is linear. Remember to save your file!

6. Now we are going to mix the walk and the displacement together. To do this, we will create a
new action that contains all the others. We rename it as Final and remove all the present keys.

7. In the NLA editor, we will ensure that we are editing on this action. We will then create a new
track (Add | Add tracks) and press Shift + A to add the Move action to it.

8. We can then press Shift + A in order to add the Walk action under the Move track. Now we just
need to repeat our walk cycle with the Repeat option located in the right menu (N) under
Animation Clip (be sure that the walk action is selected in your track). The important thing
here is that the cycle stops just before the Move action because we are going to animate be hand
the end of the walk and the head in a new action.

9. We now need to copy the pose of the character when the walk cycle stops, so we can start with
this pose in a new action. We will use Ctrl + C with all the bones selected.

10. Now we are going to create the next action. To do this, we will click on the + button again,
delete the keys, and rename the action End.

11. We can now paste our pose (Ctrl + V) on the same frame where we copied it in the NLA in the
End action. This is because of the camera motion.

12. Now we need to complete a half walk and animate the character's head. In our case the
animation starts at frame 216 and ends at frame 248. We ensure the character stands on his feet
correctly, and we can animate the head pointing towards the camera. We can also add an eye
blink in the middle. We will also rotate the head to the left of the camera.

13. After finishing the animation of the action, we will need to reposition our keys so that they start
at frame 0. In the Action Editor, we will press A in order to select all the keys, and with G, we
will drag them until the first frame of our animation is on frame 0.

14. Now we can go back to the Final action and open the NLA editor. We will then place our End
when the walk cycle ends.

The NLA with our three actions mixed together in the Final action.

15. That's all! We have now blended our three actions with the NLA. Note that you can also rename
your tracks on the left-hand side of the NLA by clicking on their default name.

One frame of the End action

Animation of a close shot

The close up of the face that we are going to do is directly inspired by Italian westerns of the 60's. A
close up allows us to give a tension focusing on the eyes of our character. This is done as follows:

1. We will start by opening the 04.blend scene.
2. We will need to place our character at the same place as in the 01.blend scene, so we will also

open the 01.blend scene.

3. In the Right Panel (N) of scene 01, we must copy the location information of the Master bone
(Root) on the three axes, X, Y, and Z. In our case, X: -1.19863, Y: 0,0, and Z: 12.29828, and we
will paste them on the location parameters of the Master bone in scene 04. Our character is now
in the right place.

4. We need to be sure that the Auto Key button is turned on, and we add the first key at frame 1 on
the camera and all the bones of the character.

This animation will be in 50 frames.

1. We also need to place the camera in front of the face of the character.
2. We will move to frame 50 of the timeline, and we will slightly move the camera on the local z

axis.
3. We can see a slow in and slow out effect of the camera, the keys are in Bezier interpolation

mode. In order to change the interpolation mode, we must open the Graph Editor. We will
select the keys of the camera and press V and select Vector. Now the camera is moving in a
linear way.

Let's animate our character. He is watching the trap, so he doesn't move a lot. The animation is done as
follows:

1. We begin by animating the head. We will move the cursor of the Timeline at frame 50, and we
make a little rotation on the local z axis, a new key frame is added.

2. The Frown bone stays down to keep a serious look.
3. We can now animate the eyes. At frame 50, we will move down the EyeTargetMaster a little

bit. He is still looking straight toward the camera.
4. We will now add a blink of the eyes to give more realism.
5. We will select the both EyeTarget.L and EyeTarget.R, and we will add a key at frames 16 and

23 (press I and select Scale). We will move then at frame 19, and we will scale the bone
controllers to close his eyes.

The close shot

This very short animation for shot 4 is finished. Shot 10 is almost the same but with a smile at the end.
Let's start the animation of the gunshot!

Animation of the gunshot

The animation of shot 8 this time is a bit more complex. This will be done as follows:

1. We will start by opening the 08.blend scene.
2. We will place our character at the same location as the 01.blend file.
3. With the Auto Key button turned on, we will start placing the camera on the left-hand side of

the character.

It is an animation in 30 frames.

1. We will put the camera on the left-hand side of the character, and then we will move it slightly
to the left along the y axis to frame 30. We will change the keys of the camera in the Vector
mode (V) in the Graph Editor.

2. We can now animate our character. We will start animating the hand. The hand must go straight
to the butt of the gun to hold it. The position and the inclination of the hand are very important.
It doesn't matter if there is a little interpenetration of the thumb. The animation is fast, and the
point of view of the camera can hide small mistakes. The forefinger must be close to the trigger
when he holds the gun.

The gun shot

3. To move the fingers, we must select the top bones and rotate them on the local x axis (press R
and then press X twice). The Copy Rotation constraints will make the rest.

4. When the gun is caught, we must change the influence of the Child Of constraint of the gun
bone. The influence of child of controlled by the holster is now at 0.000, and the influence of
child of controlled by the left hand is now at 1.000. The gun is now following the hand. We can
keep animating the left hand.

5. We will position the hand so that the gun gives the impression that it will shoot ahead. There is
the recoil of the gun, so the hand makes a sudden rotational movement upwards.

Animation of the gun shot

When the animation of the left hand and the gun is done, the largest part of the animation of the
sequence will be done too, but we still need to polish this shot a little bit. The rest of the body must be
animated and can't stay inert. This will be done as follows:

1. We need to make a rotation of the Spine01 bone on the z and y local axis when the left hand
catches the butt of the gun. Likewise, the left shoulder must rotate towards the top (refer to 2
and 3 in the preceding screenshot) at this moment.

2. As the rotation of the spine01 bone the head is inclined to the right, we will rotate it a little bit to
adjust it. For the recoil of the gun, we will make a little rotation of the head.

3. The HipsReverse bone also makes a rotation on the local z and y axes to gives a more realistic
feeling.

4. The right hand and the tail also make a little arc. In this case, they are quite important details.

So, the animation of the gunshot is now complete. Let's talk about the animation of the trap.

Animation of the trap

It's now time to animate one of the most technical shots of our sequence where the cheese gets shot on
the trap. This will be done as follows:

1. We will start by opening the 09.blend file. Then we can frame the trap with camera as done in
the layout.

2. The first thing to do is to add a key frame on each bone of the trap only for rotation, so we select
them and press I and select Rotation. We won't use AutoKey for now. Remember that the trap is
linked. If you can't access the rig, it's simply because you don't have a proxy in order to
manipulate it.

3. Now we can go to frame 13 and rotate the TopStick and the TrapPlank bone on the their x
local axes as far as their can logically go.

4. The Spring bone animation will be shorter, though. We will key its extreme rotation on frame 7.
5. We can now test our animation to see what's wrong with it, but first we will hide the cheese with

the H key. As you can see, the animation doesn't seem very natural. This is why we are going to
tweak the curves in the graph editor.

6. We will open the graph editor and click on the Show only selected button in the header.
7. Now we can select the TopStick bone and unfold its Rotation values on the left-hand side of

the Graph editor. We can even hide the other y and z rotations as we don't need them. To do so,
we will use the Eye icon. As you can see, the curve has an ease in and ease out effect. We don't
want this. We want a bounce effect. To do so, we can, of course, add more keys and waste time
to animate it by hand, or we can use the power of the Dynamic effects of the interpolation menu.
So we select our keys, and we press T and select Bounce. As you can see, the curve changes.

8. We can do the same with the TrapPlank and the Spring bones. For this, a later bounce will be
more subtle. Now if we play our animation, everything looks more natural.

9. Now let's animate the cheese. First unhide it with Alt + H.
10. We can now reactivate the AutoKey option, it will be easier. Let's start by adding a key on

frame 0 with press I and select LocRotScale. Now, because of autokey, we can move to frame
16 and move the cheese to its final destination.

11. We can now go to frame 5 and put the cheese in the air. This will change its Z location. We can
also rotate it and scale it locally on its z axis (press S and then press Z twice).

12. The animation at this point is not very convincing. In order to add more realism to it, we can
open the graph editor and change the curve of the Z location of the cheese, so it is much more
like a "dome" at the beginning. To do so, we can set frames 0 and 9 to a vector type (press V and
select Vector). We will need to change the handles of frame 5 too.

13. Next, we will change the end of the motion by adding two new keyframes on the Z location at
frames 11 and 17. These keys will have a Bounce Dynamic effect. We will use the handles in
order to smooth the curve as much as possible where it is needed. Remember that the animation
process involves a lot of trial and error. You also need to constantly play your animation in order
to know what you'll have to correct.

14. We can now reset the scale of the cheese at frame 11 by pressing Alt + S.
15. What we've done so far is the base of the cheese animation. Now we can polish the animation

by changing its rotation here and there and by polishing the Y location curve.

16. We can now animate the camera. Between keys 0 and 16, the camera doesn't move, so we
simply duplicate frame 0 to frame 16.

The TopStick X rotation curve

17. We can now place our timeline bar at frame 37 and focus on the cheese closely, so we can see
the hole due to the gunshot. The key has been placed due to the AutoKey option.

The cheese Z location curve

The animation of the 09 shot is now completed, congratulations!

Frame 4 of the 09 shot.

Render a quick preview of a shot
The last thing we are going to do is render quick previews of each shot. This is often called a PlayBlast.
This simply renders the animation of the viewport. In this section, we are only going to render the
playblast of the first shot. So let's start:

1. We will open the 01.blend file.
2. In the Properties editor, in the Render tab, we will go to the Output subpanel. Here we can

choose the path where the render will be. To be well organized, let's create a Playblast folder in
our Scene folder and set it as the output path.

3. Now we will need to choose the file format. By default, it will output a sequence of a PNG file.
We change it to H.264 in order to have a movie type file.

4. In the Encoding section, we can choose the extension of our movie, and we choose Quicktime
to have a .mov file. Later, you'll see how to render the shots frame by frame in a non-video
format, but for now in order to quickly see the result, we will use .mov.

5. Be sure that you are viewing from the camera by pressing the 0 numpad key. In order to render
the playblast, we can press the OpenGL Render active viewport button in the header of the 3D
View (a clap icon).

The Output option for the Playblast rendering

Summary
This was a very tough chapter, but we hope you have found it interesting. We covered a lot of things
here, such as the principles of animation, the majority of the Blender animation tools, and how to
prepare ourselves with a script, storyboard, and layout. We also learned how to animate a walk cycle and
mix it with other actions using the NLA. We applied many of the 12 principles of animation such as
pose-to-pose, squash, and stretch overlapping. Now, you should have all the knowledge to start telling
your own stories with Blender. In the next chapter, we are going to finalize our sequence by rendering it
with cycles and editing it with the VSE.

Chapter 10. Rat Cowboy – Rendering,
Compositing, and Editing
Welcome to the last chapter of the module. In this chapter, you will learn advance material creation in
Cycles, such as how to use a skin shader or how to create a realistic fur. Next, you will learn about
passes and how to do a raw render with the different passes. Then, you will receive an introduction to
the nodal compositing so that you can enhance your shots. Lastly, we will talk about the Video Sequence
Editor in order to edit the final sequence. Let's start!

In this chapter, we will cover the following topics:

• Creating advance material
• Creating fur particle systems
• Setting up Cycles for an animated scene
• Using passes
• Introducing nodal compositing
• Editing a sequence

Creating advanced materials in Cycles
We already covered material creation with Cycles in the Haunted House project, but now we are going
to go further by creating a skin material using subsurface scattering, a complete fur, and an eye material.
Let's start!

Skin material with Subsurface Scattering

The skin has a very translucent aspect. We can truly see this effect when we pass our hand in front of a
lamp or in the thin part of the ear (the helix). So, when creating a skin material, we get this phenomena
with a Subsurface Scattering node (usually abbreviated SSS). It is called this because the light rays are
scattered through the geometry when intersecting the mesh. This is not the case with a diffuse shader, for
instance, as the light rays are simply blocked. SSS often gives a reddish tint to the thin parts where light
rays scatter a lot. So let's create the skin material of the rat.

The way light rays react on SSS surfaces

1. We will open the RatCharacter.blend file and split our interface so that we have a second
3D view for the real-time renderer and a node editor. Note that the real-time renderer for the
SSS shader will only work in the CPU mode or with the GPU in the experimental mode.

2. We will add a new slot in the material tab of the Properties editor and a new material that we
name as Skin. We will press the Use node button in order to work in the node editor.

3. In the node editor, we will remove the default Diffuse shader by selecting it and pressing X.
Then, we can add a Subsurface Scattering shader by pressing Shift + A.

4. We have some options to tweak for this shader. The first one is the Scale option, which
corresponds to the amount of SSS that we want. In the case of the rat, we set it to 0.1, but in
order to have the correct value, you will need to perform a test. It's just a matter of placing a
light in the back of the character and looking at the thin parts, such as the ears.

5. The next very important setting to tweak is the radius that corresponds to the predominant color
that will result to the SSS effect. In many cases, we will let more red than green and blue
because of the color of the blood that's under the skin. This is a set of three values that
corresponds to R, G, and B, in our case, we set them to 1.0, 0.7, and 0.5 respectively.

6. Now, we will plug our texture in the Color input. Finally, we can connect the shader to the
output.

7. We will now add a reflection to our skin by mixing our SSS shader with a glossy shader. To do
so, we append a Mix Shader on top of the SSS to the Material output wire.

8. In the second shader input, we can bring a Glossy BSDF shader and change the Roughness
value to 0.392 so that the reflection is less sharp.

9. For the Fac input of the Mix Shader, we will add a Fresnel node. This skin shader will be
sufficient for our needs, but note that we can go much deeper in the subject by creating a shader

with multiple maps that corresponds to the different skin parts, such as sub-dermal and
epidermal.

The skin material nodes

The SSS effect on the ears to the right and on the hand to the left in viewport rendered mode will look
like the following:

Eye material

We are now going to create a less difficult material, that is, the one of the eye corneas. This will be like a
glass material, but we will optimize it a little bit because the default glass shader is so physically
accurate that it also casts shadows of the glass itself. These take a long time to render and are rarely

visible. In order to apply our material, we will model a simple cornea in the eye mesh itself. The front
part of the cornea is extruded a little bit. This allows us to catch the reflections rays better:

1. We will first need to add another material slot and a material that we rename as Cornea. As you
can see, we already have three slots that correspond to the white part and the pupil of the eyes.
Feel free to replace it with one material with a texture.

2. Next, we can select the cornea piece of the mesh in the Edit Mode with the L key and press the
Apply button in order to apply the cornea material on this part of the mesh.

3. In the node editor, we will replace the default Diffuse shader with a Glass BSDF shader.
4. We will now mix the Glass BSDF shader with a Transparent BSDF shader. A transparent

shader simply lets every ray to pass through.
5. Now, in the Fac input of the Mix Shader, we will plug a Light Path node (press Shift + A and

select Input) with the Is Shadow Ray output. This will tell the render engine to use the
transparent shader for the incoming shadow rays and the glass shader for the others. At this
point, we should have a nice reflecting eye.

The fur of the rat

Now, let's dive into a complex section about fur creation. In order to create a convincing fur, we will
have to create a complex material, have a perfect hair particle combing, and correct lighting. If one of
these three parameters is sloppy, it won't look great. Let's start with the particle systems:

1. In order to add more realism, we are going to create three particle systems. Let's first select the
character in the Edit Mode and add the main particle system in the Particle tab of the Properties
editor. We will name both the system and its settings Basic_FUR.

2. We will change the system's type from Emitter to Hair. In the Emission subpanel, we will
change the Number to 500, which correspond to the guiding hairs. We can also change the hair
length to 0.140.

3. In the Children section, we will choose the Interpolated method. The number of children that
will follow the guiding hairs is too low. We will change the Render option to 600, so each guide
will have 600 children. We can also change the display option to 100 to preview the result in the
viewport.

4. In the Children subpanel, we can change the Length setting to 0.640 and the Threshold to
0.240. This will add some randomness to the length of the children.

5. Then, in the Roughness section, we can change the Endpoint value to 0.046 and the Random
to 0.015. Endpoint will spread the tips of each hair strand.

6. Now, we will create a Vertex group that will determine where the fur will be located on the rat.
In the Object data tab of the Properties editor, in the Vertex Groups section, we will start by
locking all our skinning groups by selecting the black arrow button and choosing the Lock All
option. This will ensure that we don't change them inadvertently. We can now add a new group
with the + button and name it Fur. In the Edit Mode, we can select the hands, nose, ears, tail,
mouth, and eye contour. We invert the selection with Ctrl + I and press the Assign button with a
weight of 1.0.

7. Back in Particle tab, in the Vertex Groups section, we can set the Density field to our new
vertex group. We should now only have hairs on the needed parts.

8. In order to improve our system, we will create a new vertex group named Fur_Length that will
affect the length of the hair on certain parts. To create the group, we can duplicate the previous
Fur group with the corresponding option in the black arrow drop-down menu. We can then use

the weight paint tools in order to subtract weight from different parts. In our case, the head is
green and the arms and the legs are orange and blue under the belt.

9. In the Vertex Groups section of the Particle Settings tab, we can change the Length field to
this new group.

Now, we need to comb our particles as follows:

1. To do so, we can use the Particle Mode (located in the same drop-down menu of the Object
Mode or Edit Mode). By pressing T, we open the Brush panel where we can use the Comb
brush to comb the character's hair.

2. We will use the same shortcuts as the sculpt mode for the brush settings. The Add brush is nice
in order to add new strands when you find some gaps. When using this brush, it's best to check
the Interpolate option so that it smoothly blends with the others.

3. In the header of the 3D view, you have three new buttons (to the right of the layers) that allow
you to select the particle in different ways. With the Path mode (the first one), you can only
control them with brushes, while with the Point mode (the middle one), you have access to each
point of the hair, and with the Tip mode (the last one), you only control the tip. With the last
two modes, you can grab and rotate your character's hair with G and R. In the left panel, we can
also activate the Children option in order to see the children.

4. Now let's add another particle system and name it Random_FUR. We can then copy the
settings of the first one by choosing it in the Settings field and pressing the 2 button to make a
unique copy of it. Now, we can safely change the setting without affecting the other system. We
can click on the Advanced option.

5. We will start by changing the amount of guiding hairs to 50 and their length to 0.1.
6. In the Emit from section, we will choose Verts and check the Random option.
7. In the Physics subpanel, we can change the Brownian value to 0.090 to add a little bit of

randomness.
8. In the children section, we will change the Render and Display sliders to 50.
9. We will then change the Length to 0.288 and the Threshold to 0.28.

10. We will then ensure that the Density field still contains the Fur group, but we will remove the
Length field.

The children settings of the Basic_Fur system.

11. Just as we did for the first two systems, we will add a new system for the fur of the ears. This is
very subtle. It has a short hair length and a vertex group for the Density field. It also has only 20
children.

The Particle Edit Mode

You are now done with the particle systems. It's now time to create the materials and change the strand
thickness and shape. This will be done as follows:

1. Let's add a new slot in the material tab and a new material named Fur.
2. In the node editor, we will delete the default Diffuse shader and add two Hair BSDF shaders.

The first one will be of the Reflection type with RoughnessU and RoughnessV set to 0.500,
and the second will be of the Transmission type with RoughnessU to 0.1 and RoughnessV to
0.2. We will mix them with Mix Shader. The Fac input will be plugged with the intercept
output of a Hair info node.

3. We will then add Musgrave Texture node with a scale of 538. We will add a
HueSaturationValue node with the Fac output of the texture connected to the color input. We
will then mix the result with a MixRGB node and ColorRamp. The Fac input of the color ramp
is fed with the intercept output of a Hair info node. This will add a gradient map on each strand.

4. We will then plug the output of the MixRGB node into another MixRGB node. The second
input of this node will be fed with a HueSaturationValue node. The Hue input will receive the
color output of a Musgrave texture node. This will add color variety to the strand. But in order
to lessen the coloring effect, we will change the Fac of the MixRGB node to 0.047.

5. Finally, we can plug the result of the last MixRGB node in the color input of the first Hair
BSDF node. Our hair material is now completed!

6. We now have to change the Render settings of each particle system. In the Render subpanel of
the particle settings of each system, we will choose our fur material and activate the B-Spline
option with a value of 4. This will smoothen the render of the hairs.

7. Then, for the Basic_Fur system in the Cycles Hair Settings subpanel, we will change the root
to 0.5 with a scaling of 0.01 and a shape of -0.09. We will use the same settings for the
Random_Fur, except for the root that we set to 0.15. Again, we will use the same settings for
the Ear_Fur system, except for the root that we set to 0.05.

8. We can now add temporary lights in our RatCharacter.blend file in order to do test
renders. We will set our samples to 300 and render a preview of our rat.

The fur material in the Node editor

The image with a preview render with low render settings is a follows:

Now you have the knowledge to create even more complex materials with Cycles! We are now going to
show you how to render the first shot of the sequence, and what's nice with the link is that we will see
our fur and materials in each shot file.

The Raw rendering phase
Previously, we have seen how to render an image in Cycles. It is quite different for an animation. It's
best to first do a raw render of the shots with the following settings:

1. We will start by adjusting the device. If you have a good graphics card, remember to check the
GPU device option.

2. Let's now adjust the samples in the Render panel (Properties | Render | Sampling). The skin
needs enough samples to reduce a noisy effect. 100 or 150 samples are enough to have an idea,
but consider setting a higher value for the final render.

3. Still in the Sampling tab, we will put 1.00 to Clamp Direct and 1.00 to Clamp Indirect. It
allows us to reduce the noise, but you may lose a little bit of the bright colors.

4. We should remember to check the Cache BVH and the Static BVH options in the
Performance tab. It allows us to optimize the render time.

5. You can make a test by just rendering a frame (F12). Pay attention to the time it takes to
complete the rendering process for only one frame. Thus, you can calculate the time needed for
a shot.

6. In the Passes tab (Properties | Render Layers | Passes), we will verify whether Combined and
Z passes are checked.

Note

Passes in Cycles

Passes are a decomposition of the 3D image rendered in Cycles. We can also render passes with
Blender Internal but in a different way. Once the rendering calculation is over, we can combine
these passes and combine each pass together to create the final image with directly compositing
in Blender or another software. The passes allow us to get a control to considerably improve an
image and make changes even after the image is rendered. So, it gives more fine-tuning
opportunities and saves us a lot of render time.

If you want to explore all the passes of Cycles, visit this link:

http://wiki.blender.org/index.php/Doc:UK/2.6/Manual/Render/Cycles/Passes

7. Now that the image quality parameters are set, we must choose an output format of our
animation. In the Output tab, we will choose the OpenEXR MultiLayer format.

This format has the advantage of containing all active passes with a lossless compression. The
passes are a decomposition of the rendered picture (Diffuse, Shadows, Ambient Occlusion, and
so on). In our case, we are going to save some time by only rendering the combined and the Z
passes. The combined pass corresponds to the final image with all the different passes already
combined, and the Z pass gives us a black and white image corresponding to the depth of the
scene.

8. In the Output tab, we must choose an Output path. We will write the following address:
//Render\01\. We will press Enter to validate the address. The // symbols create a file just
next to the blend file.

http://wiki.blender.org/index.php/Doc:UK/2.6/Manual/Render/Cycles/Passes

9. It is a raw render, so we uncheck the Compositing option in the Post Processing tab
(Properties|Processing).

Note

OpenEXR

This is a high dynamic-range (HDR) image file format created and used for special effects in the
VFX industry. It is now a standard format supported by most of 3D and compositing softwares.
The OpenEXR Multilayer format is a variation. It can hold unlimited layers and passes.

If you want more information about OpenEXR in Blender, visit this link:

http://blender.org/manual/data_system/files/image_formats.html#openexr

You are now ready to render the animation. You can press the Animation button to start rendering. We
must repeat this process for each shot.

http://blender.org/manual/data_system/files/image_formats.html#openexr

Enhance a picture with compositing
Now that we have a raw render, it is time to learn how to improve it using the compositing tools of
Blender.

Introduction to nodal compositing

Blender is a complete tool that also allows compositing. This is the ability to edit an image or a sequence
after the rendering phase. You probably have already tried compositing, maybe unknowingly. For
example, Adobe Photoshop© is a software that allows us to composite a single image. Unlike Adobe
Photoshop©, Blender uses a nodal system that provides a great flexibility. We can make changes at any
point without the loss of information. Let's try this:

1. For a first approach of nodal compositing, let's open a new Blender scene.
2. In order to access the compositing mode, you must open the Node Editor. This is the same as

the Node Editor for materials.
3. We must then check the Compositing button near the Shader button in the Header options. It

is a small icon button symbolizing an image over another.
4. We must also check the Use Nodes button.

We have now two nodes, a Render Layer node and a Composite node.

1. We can split our scene to open the 3D View and make a render of the cube in the middle of the
scene (F12).

2. We can also add a Viewer node (press Shift + A and select Output | Viewer). This node will
allow us to visualize the compositing result directly in the Node Editor. You only need to
connect the Image output socket of the Render Layer node to the Image input socket of the
Viewer node and check the Backdrop option of the Header.

Now the render image appears behind the nodes. It will be pretty useful to do compositing in full screen.
If you want to move the render image, use Alt and MMB. Two other interesting short keys are V to zoom
in and Alt + V to zoom out.

1. We will add a Color Balance (press Shift + A and select Color | Color Balance) and connect it
between the Render Layers node (to the Image output socket) and the Viewer node (to the
Image input socket).

2. If we change the lift color, the render image is directly updated.

3. We can also replace the render of the cube by any other picture, by adding an Image node (press
Shift + A and select Input | Image), and connecting the Image output socket to the Image input
socket of the Color Balance node.

Note

Looking at a texture node through the Viewer

There is a node that can help you to better visualize what the compositing looks like at a certain point.
You can press Ctrl + Shift and right-click on any node to append a ViewNode and connect to it.

The possibilities of compositing in Blender are enormous. For instance, you can easily use keying
techniques that are often needed in the movie industry. It consists of replacing a green or a blue screen
behind an actor by a virtual set. Compositing is an art and it take too long to explain everything, but we
will see some of its basic concepts so that we can improve the shots of our sequence.

Now, we are going to work on the first shot of the sequence:

1. As with any other image file, we must add an Image node (press Shift + A and select Input |
Image) and connect it to the viewer.

2. We press the Open button of the Image node, and we take the corresponding OpenEXR
Multilayer file. We also check Auto-refresh.

Depth Pass

The following is the combined output socket of the Image node, and there is a Depth output socket. This
pass will allow us to simulate an atmospheric depth. It is an effect that can be observed when we look at
a distant landscape and a kind of haze is formed. The Depth pass is a visual representation of the Z-
Buffer on a grayscale. The objects near the camera will have a gray value close to black, unlike the
distant elements, which will have a value close to white. This pass could serve for other things such as
masking or blurring the focal depth. It all depends on the context. A controlled atmospheric effect may
bring realism to the image.

1. We will start by adding a Normalize node (press Shift + A and select Vector | Normalize). This
allows us to clamp all pixel values between 0 and 1. We cannot visualize the Depth pass without
a Normalize node.

2. We will add RGB Curves (press Shift + A and select Color | RGB Curves) to change the
contrast of the ZDepth pass and control its strength effect.

3. We will then add a Mix node (press Shift + A and select Color | Mix) with a Mix blend mode.

Now that we have added the nodes, we are going to connect them as follows:

1. We will need to connect the Z output of the Image node to the input of the Normalize node and
the output of the Normalize to the Image input of the RGB Curves node.

2. We will also connect the Image output of the RGB Curves node to the Fac input of the Mix
node and the Combined output socket of the Image node to the first Image input socket.

3. We must adjust the RGB Curves node by adding another point to the curve. The point is located
at X: 0.36667 and Y: 0.19375.

4. We will also need to change the color of the second Image input socket of the Mix node. The
hex code of the color is D39881. It will color the white pixels.

A render before and after the ZDepth pass

Color correction of the shot

One of the most important aspects of compositing is color calibration. Fortunately, there are easy-to-use
tools in Blender to do that.

1. In order to quickly change the hue, we will add a Color Balance node (press Shift +A and select
Color | Color Balance). The hue corresponds to the color tint of the image.

2. We must be very careful to slightly change the value of Lift, Gamma, and Gain. They become
strong quickly. The RGB values of Lift are R: 1.000, G: 0.981, and B: 0.971. The RGB values
of Gamma are R: 1.067, G: 1.08, and B: 1.068. The RGB values of Gain are R:1.01, G: 0.998,
and B: 0.959.

Note

There are two correction formulas: Lift/Gamma/Gain and Offset/Power/Slope. These are the two ways
to get the same result. For each one, there are three color wheels and a value controller (Fac). You can
modify the darker, the mid-tone, and the highlight values separately.

If you want more information about the color balance node in Blender, visit this link :

https://www.blender.org/manual/composite_nodes/types/color/color_balance.html

A render image with an adjustment of the Color Balance node will look like this:

https://www.blender.org/manual/composite_nodes/types/color/color_balance.html

Before finishing the compositing, let's add a few effects.

Adding effects

We will add a Filter node (press Shift + A and select Filter | Filter). We must connect the Image output
socket of the Mix node to the Image input socket of the Soften node, and we will connect the image
output socket of the Soften node to the Image input socket of the color balance node. We will keep the
filter type to Soften with Fac of 0.500. This blends the pixels so that the image is less sharp. A photo is
never perfectly sharp.

We will add then a Lens distortion node (press Shift + A and select Distort | Lens Distortion). We must
connect the Image output socket of the Color Balance to the Image input socket of the Lens Distortion
node and the Image output socket of the Lens Distortion node to the Image input socket of the Viewer
node. We will check the Projector button. The distort option is at 0.000, and the dispersion option at
0.100. This node usually allows us to make a distortion effect such as a fish eye, but in our case, it will
allow us to make a chromatic aberration. This adds a soft and nice effect.

The nodes of compositing

We have now completed the appearance of the shot.

A render with final compositing

Compositing rendering phase

We are now ready to make the render of our compositing:

1. In the Output options (Properties | Render | Output), we must change the Output path. We
will write the following address: //Render\01\Compositing\. We will press Enter to validate the
address.

2. We will also change the Output format to TGA.
3. It is a compositing render, so we will check the Compositing option in the Post Processing tab

(Properties | Processing).
4. Now, we are ready to render the scene. We will use the same process for each scene.

Editing the sequence with the VSE
Now that we've rendered and done some compositing on each shot, it's time to bring back the whole
sequence in one final place. In this section, we are going to do a basic video editing with the VSE.

Two VSE, one is set to the Image Preview (top), the other to the Sequencer (bottom)

Introduction to the Video Sequence Editor
The VSE or Video Sequence Editor is a method of video editing in Blender. It is really simple to use and
could be very powerful. The best way to use it is to use the Video Editing layout located in the menu
bar. We usually don't use the Graph editor here, so we can join it back. We have now an interface with
two Video Sequence Editors and the Timeline at the bottom. On the head of the VSE, we have three
icons that are used to display Sequencer, the place where we edit strips, and Image Preview, where we
see the result of our editing, or both. In Sequencer, we can add different types of strips with Shift + A.
We are mainly using Image, Movie, or Sound. We can import Image Sequences with the Image option.
You can select a strip with RMB and move it with G. When you have a strip selected, you have access to
two buttons to the left and right represented with arrows that define the start and the end of the strip. You
can cut a strip by placing the timeline where you want the split to be and pressing K (for knife).

We are not going to go deep into every setting of the VSE, but for each selected strip, you have some
options in the right panel of the editor (N), such as the opacity of an image or movie strip or the volume
of an audio strip. Of course, you can animate each option by right-clicking on them and choosing the
Insert Keyframe option, or by simply pressing I while hovering over them. You can press Ctrl to snap a
selected strip to another strip. You can also use the Shift + D shortcut in order to duplicate a selected
strip.

Edit and render the final sequence

Let's now create the editing of our sequence with the shots that we've composited and rendered before:

1. In order to edit our sequence, we will open a new fresh file. We will also change the layout of
our interface so that we have two VSEs, one with Image Preview and the other with
Sequencer.

2. Now, we can add our first shot by pressing Shift + A in the sequencer and by choosing Image. In
the file browser, we will go to the Render folder and select the 01-compositing folder in order
to select every .targa file with A. We will now have a new strip that corresponds to the first
shot. We will repeat the same process with the other shots.

3. Now, we can move each shot one after the other to create continuity. Be sure that each strip is
snapped to the previous one by pressing the Ctrl key while moving them.

4. We will also need to readjust the animation start and end in the timeline from the beginning of
sequence to its end frame.

5. If you want, you can add Sound strips in order to add music or sound effects.
6. We are now ready to render our final edited sequence. To do this, we will change the Output

path in the Render tab of the Properties editor, and we will choose the H.264 file type. In the
Encoder section, we will use the Quicktime type, and we will, finally, press the render button.

Summary
First, congratulation for arriving at this point of the module; we hope you've learned a lot of things and
that you can now realize all the ideas that you ever dreamed about. In this last chapter, we learned how
to finalize our sequence by creating advance materials. We also learned how to use the particle system to
create a complex fur. Then we set up our render with the OpenEXR MultiLayer format and discovered
what passes are. After this, we saw the power of nodal compositing by changing the color balance and
adding effects to our shot. As a bonus, we learned how to use the VSE in order to edit our full sequence.
Be aware that we didn't explain a lot of things, and you can go deeper into each subject. We recommend
that you practice a lot and skim the web and the other books of the PacktPub collection in order to
extend your knowledge. Remember, you can learn a tool, but creativity is one of the most important
things in this field. We wish you a successful continuation.

Part 2. Module 2
Blender 3D Cookbook

Build your very own stunning characters in Blender from scratch

Chapter 1. Modeling the Character's Base Mesh
In this chapter, we will cover the following recipes:

• Setting templates with the Images as Planes add-on
• Setting templates with the Image Empties method
• Setting templates with the Background Images tool
• Building the character's base mesh with the Skin modifier

Introduction
In this chapter, we are going to do two things: set up templates to be used as a reference for the
modeling, and build up a base mesh for the sculpting of the character.

To set up templates in a Blender scene, we have at least three different methods to choose from: the
Images as Planes add-on, the Image Empties method, and the Background Images tool.

A base mesh is usually a very low poly and simple mesh roughly shaped to resemble the final character's
look. There are several ways to obtain a base mesh: we can use a ready, freely downloadable mesh to be
adjusted to our goals, or we can model it from scratch, one polygon at a time. What's quite important is
that it should be made from all quad faces.

To build the base mesh for our character, we are going to use one of the more handy and useful
modifiers added to Blender: the Skin modifier. However, first, let us add our templates.

Setting templates with the Images as Planes add-
on
In this recipe, we'll set the character's templates by using the Images as Planes add-on.

Getting ready

The first thing to do is to be sure that all the required add-ons are enabled in the preferences; in this first
recipe, we need the Images as Planes and Copy Attributes Menu add-ons. When starting Blender with
the factory settings, they appear gray in the User Preferences panel's Add-ons list, meaning that they
are not enabled yet. So, we'll do the following:

1. Call the User Preferences panel (Ctrl + Alt + U) and go to the Add-ons tab.
2. Under the Categories item on the left-hand side of the panel, click on 3D View.
3. Check the empty little checkbox on the right-hand side of the 3D View: Copy Attributes Menu

add-on to enable it.
4. Go back to the Categories item on the left-hand side of the panel and click on Import-Export.
5. Scroll down the add-ons list to the right-hand side to find the Import-Export: Import Images

as Planes add-on (usually, towards the middle of the long list).
6. Enable it, and then click on the Save User Settings button to the left-bottom of the panel and

close it.

The User Preferences panel with the Categories list and the Addons tab to enable the several
add-ons

There are still a few things we should do to prepare the 3D scene and make our life easier:
7. Delete the already selected Cube primitive.
8. Select the Lamp and the Camera and move them on to a different layer; I usually have them on

the sixth layer (M key), in order to keep free and empty both the first and second rows of the
left layer's block.

9. The Outliner can be found in the top-right corner of the default workspace. It shows a list view
of the scene. Set Display Mode of the Outliner to Visible Layers.

10. Lastly, save the file as Gidiosaurus_base_mesh.blend.

How to do it…

Although not strictly necessary, it would be better to have the three (at least in the case of a biped
character, the Front, Side, and Back view) templates as separated images. This will allow us to load a
specific one for each view, if necessary. Also, to facilitate the process, all these images should be the
same height in pixels.

In our case, the required three views are provided for you in the files that accompany this module. You
will find them in the templates folder. The Import Images as Planes add-on will take care of
loading them into the scene:

1. Left-click on File | Import | Images as Planes in the top-left menu on the main header of the
Blender UI.

2. On the page that just opened, go to the Material Settings column on the left-hand side (under
the Import Images as Planes options) and enable the Shadeless item. Then, browse to the
location where you placed your templates folder and load the
gidiosaurus_front.png image:

The Import pop-up menu and the material settings subpanel of the Import Images as Planes
add-on

3. Rotate 90 degrees on the x axis (R | X | 90 | Enter) of the Plane that just appeared at the center of
the scene (at the 3D Cursor location, actually; to reset the position of the 3D Cursor at the
center of the scene, press the Shift + C keys).

4. Press N to call the Properties sidepanel on the right-hand side of the active 3D window, and
then go to the Shading subpanel and enable the Textured Solid item.

5. Press 1 on the numpad to go to the Front view:

The imported plane with the relative UV-mapped image

Now, we know that our Gidiosaurus is a 2.5 meters tall beast. So, assuming that 1 Blender
Unit is equal to 1 meter, we must scale the plane to make the character's front template two
and a half Blender Units tall (Note that it is not the plane that must be 2.5 units tall, it's the
character's shape inside the plane).

6. Add an Empty to the scene (Shift + A | Empty | Plain Axes).
7. Duplicate it and move it 2.5 units up on the z axis (Shift + D | Z | 2.5 | Enter).
8. Go to the Outliner and click on the arrows on the side of the names of the two Empties

(Empty and Empty.001), in order to make them gray and the Empties not selectable.
9. Select the Plane and move it to align the bottom (feet) guideline to the horizontal arm of the

first Empty (you actually have to move it on the z axis by 0.4470, but note that by pressing the
Ctrl key, you can restrict movements to the grid and with Ctrl + Shift, you can have even finer
control).

10. Be sure that the 3D Cursor is at the object origin, and press the period key to switch Pivot
center for rotation/scaling to the 3D Cursor.

11. Press S to scale the Plane bigger and align the top-head guideline to the horizontal arm of the
second Empty (you have to scale it to a value of 2.8300):

The properly scaled plane in the 3D scene

12. Left-click again on File | Import | Images as Planes in the top-left menu on the main header of
the Blender UI.

13. Browse to the location where you placed your templates folder and this time load the
gidiosaurus_side.png image.

14. Shift + right-click on the first Plane (gidiosaurus_front.png) to select it and make it the
active one. Then, press Ctrl + C and from the Copy Attributes pop-up menu, select Copy
Location.

15. Press Ctrl + C again and this time select Copy Rotation; press Ctrl + C one more time and
select Copy Scale.

16. Right-click to select the second Plane (gidiosaurus_side.png) in the 3D view, or click
on its name in the Outliner, and rotate it 90 degrees on the z axis (R | Z | 90 | Enter).

17. Optionally, you can move the second Plane to the second layer (M | second button on the Move
to Layer panel).

18. Again, left-click on File | Import | Images as Planes, browse to the templates folder, and
load the gidiosaurus_back.png image.

19. Repeat from step 12 to step 15 and move the third Plane on a different layer.
20. Save the file.

How it works…

We used a Python script, which is an add-on, to import planes into our scene that are automatically UV-
mapped with the selected image, and inherit the images' height/width aspect ratio.

To have the textures/templates clearly visible from any angle in the 3D view, we have enabled the
Shadeless option for the Planes materials; we did this directly in the importer preferences. We can also
set each material to shadeless later in the Material window.

We then used another add-on to copy the attributes from a selected object, in order to quickly match
common parameters such as location, scale, and rotation:

The template planes aligned to the x and y axis (Front and Side views)

The imported Planes can be placed on different layers for practicality; they can also be on a single layer
and their visibility can be toggled on and off by clicking on the eye icon in the Outliner.

Setting templates with the Image Empties
method
In this recipe, we'll set the character's templates by using Image Empties.

Getting ready

For this and the following recipes, there is no need for any particular preparations. Anyway, it is handy
to prepare the two Empties to have markers in the 3D view for the 2.5 meters height of the character; so
we'll do the following:

1. Start a brand new Blender session and delete the already selected Cube primitive.
2. Select the Lamp and Camera and move them on a different layer; I usually have them on the

sixth layer, in order to keep free and empty both the first and second rows of the left layer's
block.

3. Add an Empty to the scene (Shift + A | Empty | Plain Axes).
4. Duplicate it and move it 2.5 units up on the z axis (Shift + D | Z | 2.5 | Enter).
5. Go to the Outliner and click on the arrows on the side of the names of the two Empties

(Empty and Empty.001), in order to make them gray and the Empties not selectable.
6. Save the file as Gidiosaurus_base_mesh.blend.

How to do it…

So, now we are going to place the first Image Empty in the scene:

1. Add an Empty to the scene (Shift + A | Empty | Image; it's the last item in the list).
2. Go to the Object Data window in the main Properties panel on the right-hand side of the

Blender UI; under the Empty subpanel, click on the Open button.
3. Browse to the templates folder and load the gidiosaurus_front.png image.

The Add pop-up menu and the Image Empty added to the 3D scene, with the settings to load and
set the image

4. Set the Offset X value to -0.50 and Offset Y to -0.05. Set the Size value to 2.830:

The Offset and Size settings

5. Rotate the Empty 90 degrees on the x axis (R | X | 90 | Enter).
6. Go to the Outliner and rename it Empty_gidiosaurus_front.
7. Duplicate it (Shift + D), rotate it 90 degrees on the z axis, and in the Outliner, rename it as

Empty_gidiosaurus_side.
8. In the Empty subpanel under the Object Data window, click on the little icon (showing 3 users

for that data block) on the right-hand side of the image name under Display, in order to make it
a single user. Then, click on the little folder icon on the right-hand side of the image path to go
inside the templates folder again, and load the gidiosaurus_side.png image.

9. Reselect Empty_gidiosaurus_front and press Shift + D to duplicate it.
10. Go to the Empty subpanel under the Object Data window, click on the little icon (showing 3

users for that datablock) on the right-hand side of the image name under Display, in order to
make it a single user. Then, click on the little folder icon on the right-hand side of the image
path to go inside the templates folder again, and this time load the
gidiosaurus_back.png image.

11. Go to the Outliner and rename it Empty_gidiosaurus_back.

How it works…

We have used one of the most underrated (well, in my opinion) tools in Blender: Empties, which can
show images! Compared to the Images as Planes add-on, this has some advantages: these are not 3D
geometry and the images are also visible in the 3D view without the Textured Solid option enabled
(under Shading) and in Wireframe mode.

The Image Empties appear as textured also in Wireframe viewport shading mode

Exactly, as for the imported Planes of the former recipe, the visibility in the 3D view of the Image
Empties can be toggled on and off by clicking on the eye icon in the Outliner.

Setting templates with the Background Images
tool
In this recipe, we'll set the character's templates by using the Background Images tool.

Getting ready

As in the former recipe, no need for any particular preparations; just carry out the preparatory steps as
mentioned in the Getting ready section of the previous recipe.

How to do it…

So let's start by adding the templates as background images; that is, as reference images only visible in
the background in Ortho view mode and, differently from the previous recipes, not as 3D objects
actually present in the middle of the scene:

1. Press 1 on the numpad to switch to the orthographic Front view and press Alt + Home to center
the view on the 3D Cursor.

2. If not already present, press N to bring up the Properties sidepanel to the right-hand side of the
3D window; scroll down to reach the Background Images subpanel and enable it with the
checkbox. Then click on the little arrow to expand it.

3. Click on the Add Image button; in the new option panel that appears, click on the Open button
and browse to the templates folder to load the gidiosaurus_front.png image.

4. Click on the little window to the side of the Axis item and switch from All Views to Front, and
then set the Opacity slider to 1.000.

5. Increase the Y offset value to make the bottom/feet guideline of the reference image aligned to
the horizontal arm of the first Empty (you have to set it to 0.780).

6. Scale Size smaller, using both the Empties that we set as references for the 2.5 meters height of
the creature (you actually have to set the Scale value to 0.875).

The background image scaled and positioned through the settings in the N sidepanel

7. Click on the little white arrow on the top-left side of the gidiosaurus_front.png
subwindow to collapse it.

8. Click on the Add Image button again; then, in the new option panel, click on the Open button,
browse to the templates folder, and load the gidiosaurus_side.png image. Then, set
the Axis item to Right, Opacity to 1.000, Scale to 0.875, and Y to 0.780.

9. Repeat the operation for the gidiosaurus_back.png image, set Axis to Back, and so on.

Press 3 on the numpad to switch to the Side view, 1 to switch to the Front view, and Ctrl + 1 to switch
to the Back view, but remember that you must be in the Ortho mode (5 key on the numpad) to see the
background templates:

The N sidepanel settings to assign the background image to a view

Building the character's base mesh with the Skin
modifier
In the previous recipes, we saw three different ways to set up the template images; just remember that
one method doesn't exclude the others, so in my opinion, the best setup you can have is: Image Empties
on one layer (visibility toggled using the eye icons in the Outliner) together with Background Images.
This way you can not only have templates visible in the three orthographic views, but also in the
perspective view (and this can sometimes be really handy).

However, whatever the method you choose, now it's time to start to build the character's base mesh. To
do this, we are going to use the Skin modifier.

Getting ready

First, let's prepare the scene:

1. In case it's needed, reopen the Gidiosaurus_base_mesh.blend file.
2. Click on an empty scene layer to activate it; for example, the 11th.

The starting empty scene and the scene layer's buttons on the 3D window toolbar

3. Be sure that the 3D Cursor is at the center of the scene (Shift + C).
4. Add a Plane (press Shift + A and go to Mesh | Plane). If you are working with the Factory

Settings, you must now press Tab to go in to Edit Mode, and then Shift + right-click to deselect
just one vertex.

5. Press X and delete the three vertices that are still selected.
6. Right-click to select the remaining vertex and put it at the cursor location in the center of the

scene (Shift + S, and then select Selection to Cursor).
7. Go to the Object Modifiers window on the main Properties panel, to the right-hand side, and

assign a Skin modifier; a cube appears around the vertex. Uncheck X under Symmetry Axes in
the modifier's panel:

The cube geometry created by just one vertex and the Skin modifier

8. Assign a Mirror modifier and check Clipping.
9. Assign a Subdivision Surface modifier and check Optimal Display.

10. Go to the toolbar of the 3D view to click on the Limit selection to visible icon and disable it; the
icon appears only in Edit Mode and in all the viewport shading modes, except for Wireframe
and Bounding Box, and has the appearance of a cube with the vertices selected:

The “Limit selection to visible” button on the 3D viewport toolbar and the cube geometry
subdivided through the Subdivision Surface modifier

11. Press 3 on the numpad to go in the Side view:

The created geometry and the side-view template reference

How to do it…

We are now going to move and extrude the vertex according to our template images, working as guides,
and therefore generating a 3D geometry (thanks to the Skin modifier):

1. Press G and move the vertex to the pelvis area. Then, press Ctrl + A and move the mouse cursor
towards the vertex to lower the weight/influence of the vertex itself on the generated mesh;
scaling it smaller to fit the hip size showing on the template:

Moving the geometry to the character's pelvis area

2. Press E and extrude the vertex by moving it up on the z axis; place it at the bottom of the rib
cage.

3. Go on extruding the vertex by following the lateral shape of the character in the template. Don't
be worried about the volumes; for the moment, just build a stick-figure going up the torso:

Extruding the vertices to create a new geometry

4. Proceed to the neck and stop at the attachment of the head location.
5. Select the last two vertices you extruded; press Ctrl + A and move the mouse cursor towards

them to scale down their influence in order to provide a slim-looking neck:

Scaling down the influence of the vertices

6. Press 1 on the numpad to switch to the Front view, and then select the bottom vertex and
extrude it down to cover the base of the creature's pelvis. Press Ctrl + A | X to scale it only on
the x axis:

Adjusting the weight of the vertices in the Front view

7. Go to the Mirror modifier and uncheck the Clipping item.
8. Select the middle thorax vertex and extrude it to the right-hand side to build the shoulder. Press

Ctrl + A to scale it smaller:

Creating the shoulders

9. Extrude the shoulder vertex, following the arm shape, and stop at the wrist; select the just-
extruded arms' vertices and use Ctrl + A to scale them smaller.

10. Reselect the shoulder vertex, and use Shift + V to slide it along the shoulder's edge in order to
adjust the location and fix the area shape:

Creating the arms

11. Select the middle thorax vertex we extruded the shoulder from and go to the Skin modifier;
click on the Mark Loose button:

Making a more natural transition from the thorax to the arms

12. Select the second vertex from the bottom and extrude it to the right-hand side to build the hip,
and then extrude again and stop at the knee. Use Ctrl + A on the vertex to make it smaller:

Extruding the thighs

13. Go on extruding the vertex to build the leg. Then, select the wrist vertex and extrude it to build
the hand:

Extruding to complete the leg

14. Press 3 to go to the Side view.
15. Individually, select the vertices of the knee, ankle, and foot, and move them to be aligned with

the character's posture (you can use the widget for this and, if needed, you can press Z to go in
to Wireframe viewport shading mode); do the same with the vertices of the arm:

Adjusting the arm's position

16. Select the vertices of the shoulder and elbow, and move them forward according to the template
position; do the same with the vertices of the neck and waist:

Adjusting the position of the shoulders, thorax, and neck

17. Select the vertex connecting the shoulder to the thorax and use Shift + V to slide it upwards, in
order to make room for more vertices in the chest area. Use Shift to select the vertex at the
bottom of the rib cage and press W; in the Specials pop-up menu, select Subdivide and, right
after the subdivision, in the option panel at the bottom-left of the Blender UI, set Number of
Cuts to 2:

Subdividing an edge

18. In the Side view, select the upper one of the new vertices and use Ctrl + A to scale it bigger.
Adjust the position and scale of the vertices around that area (neck and shoulder) to obtain, as
much as possible, a shape that is more regular and similar to the template. However, don't worry
too much about a perfect correspondence, it can be adjusted later:

Refining the shoulder's shape

19. Extrude the bulk of the head. Select the last hand vertex and scale it smaller. Then, select the
upper hand vertex and extrude two more fingers (scale their influence smaller and adjust their
position to obtain a more regular and ordinate flow of the polygons in the generated geometry):

Creating the head, hands, and fingers

20. As always, following the templates as reference, extrude again to complete the fingers; use all
the templates to check the accuracy of the proportions and positions, and the Front, Side, and
Back views too:

Adjusting the position of the fingers according to the templates

21. Do the same thing for the foot, and we are almost done with the major part of the mesh:

Creating the feet toes

Now, it's only a matter of refining, as much as possible, the mesh's parts to resemble best the
final shape of the character. Let's try with the arm first:

22. Select the two extreme vertices of the forearm and press W | Subdivide | 2 (in the bottom Tool
panel) to add 2 vertices in the middle. Then, use Ctrl + A to scale and move them outward to
curve the forearm a little bit. Do the same for the thigh by slightly moving the vertices outward
and backward:

Refining the shape of arms and legs

23. Repeat the same procedure with the upper arm, shin, foot, and fingers; any part where it's
possible, but don't go crazy about it. The goal of such a technique is just to quickly obtain a
mesh that is good enough to be used as a starting point for the sculpting, and not an already
finished model:

The completed base mesh

24. Press Tab to go out of the Edit Mode; go to the Outliner and rename the base mesh as
Gidiosaurus. Then, save the file.

How it works…

The Skin modifier is a quick and simple way to build almost any shape; its use is very simple: first, you
extrude vertices (actually, it would be enough to add vertices; it's not mandatory to extrude them, but
certainly it's more handy than using Ctrl + left-click to add them at several locations), and then using the
Ctrl + A shortcut, you scale smaller or bigger the influence that these vertices have on the 3D geometry
generated on the fly.

If you have already tried it, you must have seen that the more the complexity of the mesh grows, the
more the generated geometry starts to become a little unstable, often resulting in intersecting and
overlapping faces. Sometimes this seems unavoidable, but in any case it is not a big issue and can be
easily fixed through a little bit of editing. We'll see this in the next chapter.

Chapter 2. Sculpting the Character's Base Mesh
In this chapter, we will cover the following recipes:

• Using the Skin modifier's Armature option
• Editing the mesh
• Preparing the base mesh for sculpting
• Using the Multiresolution modifier and the Dynamic topology feature
• Sculpting the character's base mesh

Introduction
In the previous chapter, we built the base mesh by using the Skin modifier and on the base of the
reference templates; in this chapter, we are going to prepare this basic mesh for the sculpting, by editing
it and cleaning up any mistakes the Skin modifier may have made (usually, overlapping and triangular
faces, missing edge loops, and so on).

Using the Skin modifier's Armature option
The Skin modifier has an option to create an Armature on the fly to pose the generated mesh. This
Armature can just be useful in cases where you want to modify the position of a part of the generated
mesh.

Note that using the generated Armature to pose the base mesh, in our case, is not necessary, and
therefore this recipe is treated here only as an example and it won't affect the following recipes in the
chapter.

Getting ready

So, let's suppose that we want the arms to be posed more horizontally and widely spread:

1. If this is the case, reopen the Gidiosaurus_base_mesh.blend file and save it with a
different name (something like Gidiosaurus_Skin_Armature.blend).

2. Select the Gidiosaurus mesh and press Tab to go into Edit Mode; then, select the central pelvis
vertex.

3. Go to the Object Modifiers window under the main Properties panel to the right-hand side of
the screen and then to the Skin modifier subpanel; click on the Mark Root button:

The root vertex

4. Press Tab again to exit Edit Mode.

How to do it…

Creating the rig (that is the skeleton Armature made by bones and used to deform, and therefore,
animate a mesh) for our character's base mesh is really simple:

1. Again, in the Skin modifier subpanel, click on the Create Armature button. The Armature is
created instantly and an Armature modifier is automatically assigned to the mesh; in the
modifier stack, move it to the top so that it is above the Mirror modifier and our posed half-
mesh will be correctly mirrored:

The Armature created by the Skin modifier

2. Press Ctrl + Tab to enter Pose Mode for the already selected Armature and then select the
upper bone of the arm.

3. In the toolbar of the 3D viewport, find the widget manipulators panel, click on the rotation
Transformation manipulators (the third icon from the left), and set Transform Orientation to
Normal.

4. By using the rotate widget, rotate the selected bone and consequently the arm (be careful that, as
already mentioned, the newly created Armature modifier is at the top of the modifier stack,
otherwise the rotation will not correctly deform the mirrored mesh):

Rotating the arms through the Armature

5. Exit Pose Mode and reselect the Gidiosaurus mesh.
6. Go to the Skin modifier subpanel under the Object Modifiers window; click on the Apply

button to apply the modifier.
7. Go to the Armature modifier and click on the Apply button to also apply the rig

transformations.
8. At this point, we can also select the Armature object and delete it (X key).

How it works…

By clicking on the Create Armature button, the Skin modifier creates a bone for each edge connecting
the extruded vertices, it adds an Armature modifier to the generated base mesh, and automatically
assigns vertex groups to the base mesh and skins them with the corresponding bones.

The bones of this Armature work in Forward Kinematics, which means they are chained following
the child/parent relation, with the first (parent) bone created at the Root location we had set at step 3
of the Getting ready section.

There's more…

Note that the bones of the Armature can be used not only to rotate limbs, but also to scale bigger or
smaller parts of the mesh, in order to further tweak the shape of the base mesh.

See also
• http://www.blender.org/manual/modifiers/generate/skin.html
• http://www.blender.org/manual/rigging/posing/editing.html#effects-of-bones-relationships

http://www.blender.org/manual/modifiers/generate/skin.html
http://www.blender.org/manual/rigging/posing/editing.html#effects-of-bones-relationships

Editing the mesh
Once we have applied the Skin and Armature modifiers, we are left with an almost ready-to-use base
mesh; what we need to do now is clean the possibly overlapping faces and whatever other mistakes were
made by the Skin modifier.

Be careful not to be confused by the previous recipe, which was meant only as a possible example; we
didn't actually use the Skin modifier's Armature to change the pose of the base mesh.

Getting ready

Let's prepare the mesh and the view:

1. Go to the Object Modifiers window under the main Properties panel and then to the Mirror
modifier subpanel and click on the little X icon to the right in order to delete the modifier; you
are left with half of the mesh (actually the half that is really generated by the Skin modifier; the
other side was simulated by the Mirror modifier):

Deleting the Mirror modifier

2. Press Tab to go into Edit Mode, 7 on the numpad to go into Top view, and Z to go into the
Wireframe viewport shading mode.

How to do it…
1. Press Ctrl + R to add an edge-loop to the middle of the mesh; don't move the mouse, and left-

click a second time to confirm that you want it at 0.0000 location:

Adding a central edge-loop

Sometimes, depending on the topology created by the Skin modifier, you may not be able to
make a single clean loop cut by the Ctrl + R key shortcut. In this case, still in Edit Mode, you
can press the K key to call the Knife Tool, left-click on the mesh to place the cuts, and press
Enter to confirm (press Shift + K if you want only the newly created edge-loops selected after
pressing Enter). This way, you can create several loop cuts, connect them together and, if
necessary, move and/or scale them to the middle along the x axis.

In fact, you can do the following:
2. Go out of Edit Mode and press Shift + S; in the Snap pop-up menu, select Cursor to Selected

(to center the cursor at the middle of the mesh).
3. Press the period (.) key to switch Pivot Point to 3D Cursor and then press Tab to go again into

Edit Mode.
4. With the middle edge-loop already selected, press S | X | 0 | Enter to scale all its vertices to the

3D Cursor position along the x axis and align them at the perfect center:

Scaling the central edge-loop vertices along the x axis

5. Press A to deselect all the vertices and then press B and box-select the vertices on the left-hand
side of the screen (actually the mesh's right-side vertices):

Box-selecting the left vertices

6. Press X and, in the Delete pop-up menu, select the Vertices item to delete them:

Deleting the left vertices

7. Go out of Edit Mode and, in the Object Modifiers window, assign a new Mirror modifier
(check Clipping) to the mesh; move it before the Subdivision Surface modifier in the stack.

8. If needed, this is the point where you can manually edit the mesh by converting triangle faces to
quads (select two consecutive triangular faces and press Alt + J), creating, closing, or moving
edge-loops (by using the Knife Tool, for example, around the arms and legs attachments to the
body), and so on.

9. Save the file as Gidiosaurus_base_mesh.blend.

Well, in our case, everything went right with the Skin modifier, so there is no need for any big editing of
the mesh! In effect, it was enough to delete the first Mirror modifier (that we actually used mostly for
visual feedback) to get rid of all the overlapping faces and obtain a clean base mesh:

The "clean" mesh with new Mirror and Subdivision Surface modifiers

In the preceding screenshot, the base mesh geometry is showing with a level 1 of subdivision; in Edit
Mode, it is still possible to see the low-level cage (that is, the real geometry of the mesh) as wireframe.

There are a couple of triangular faces (that, if possible, we should always try to avoid; quads faces work
better for the sculpting) near the shoulders and on the feet, but we'll fix these automatically later,
because before we start with the sculpting process, we will also apply the Subdivision Surface modifier.

How it works…

To obtain a clean half-body mesh, we had to delete the first Mirror modifier and the vertices of the right
half of the mesh; to do this, we had also added a middle edge loop. So, we obtained a perfect left-half
mesh and therefore we assigned again a Mirror modifier to restore the missing half of the body.

Preparing the base mesh for sculpting
Once we have our base mesh completed, it's time to prepare it for the sculpting.

Getting ready

Open the Gidiosaurus_base_mesh.blend file and be sure to be out of Edit Mode, and therefore
in Object Mode.

How to do it…
1. Select the character's mesh and go to the Object Modifiers window under the main Properties

panel to the right.
2. Go to the Mirror modifier panel and click on the Apply button.
3. If this is the case, expand the Subdivision Surface modifier panel, be sure that the View level is

at 1, and click on the Apply button.
4. Press Tab to go into Edit Mode and, if necessary, select all the vertices by pressing A; then,

press Ctrl + N to recalculate the normals and exit Edit Mode.
5. Go to the Properties sidepanel on the right-hand side of the 3D view (or press the N key to

make it appear) and under the View subpanel, change the Lens angle to 60.000 (more natural
looking than 35.000, which is set by default).

6. Under the Display subpanel, check the Only Render item:

Setting the view through the 3D window N sidepanel

7. Go to the Shading subpanel on the sidepanel on the right-hand side of the 3D viewport and
check the Matcap item.

8. Left-click on the preview window that just appeared and, from the pop-up panel, select the red
colored brick material, the one that looks like ZBrush material; obviously, you can choose a
different one if you prefer, but in my experience, this is the one that gives the best visual
feedback in the 3D view:

The available matcaps menu and the selected Zbrush-like matcap

9. Put the mouse cursor inside the active 3D window and press Ctrl + Spacebar to disable the
widget:

The matcap assigned to the mesh and the widget button in the 3D window toolbar

10. Press N to get rid of the Properties 3D window sidepanel.
11. Save the file as Gidiosaurus_Sculpt_base.blend.

How it works…

By checking the Only Render item in the Display subpanel under the Properties 3D window sidepanel,
all the possible disturbing elements that cannot be rendered (such as the Grid Floor, Empties, Lamps,
and so on) are hidden, in order to give a clean 3D viewport ready for sculpting.

Note that with this option enabled, sadly, the Image Empties we set in the previous chapter to work as
templates for references are not visible—instead, the templates we had set as Background Images are
perfectly visible in the 3 orthographic views.

Matcaps can in some cases slow the performance of your computer, depending on the hardware; in any
case, Matcaps is a very useful feature, especially for sculpting, as you can see the mesh shape easily.

Changing the Lens angle from 35.000 to 60.000 makes the perspective view look more similar to the
natural human field of view.

Using the Multiresolution modifier and the
Dynamic topology feature
To be sculpted, a mesh needs a big enough amount of vertices to allow the adding of details; in short, we
now need a way to add (a lot of!) geometry to our simple base mesh.

Besides the usual subdividing operation in Edit Mode (press Tab, then A to select all the vertices, then
press W to call the Specials menu, click on Subdivide, and then set the Number of Cuts value in the
last operation subpanel at the bottom of the Tool Shelf) and the Subdivision Surface modifier, in
Blender, there are two other ways to increase the amount of vertices: one is by assigning a
Multiresolution modifier to the mesh (a nondestructive way) and the other is by using the Dynamic
topology feature. We are going to see both of them.

Getting ready

As usual, let's start from the last .blend file we saved: in this case,
Gidiosaurus_Sculpt_base.blend.

How to do it…

Let's start with the Multiresolution modifier method:

1. First of all, save the file as Gidiosaurus_Multires.blend.
2. Select the base mesh and go to the Object Modifiers window under the main Properties panel

on the right-hand side of the screen; assign a Multiresolution modifier.
3. Click on the Subdivide (Add a new level of subdivision) button 3 times; the mesh has now

reached 143,234 vertices and 143,232 faces.
4. Check the Optimal Display item in the modifier panel:

The mesh with a Multiresolution modifier assigned at level 3 of subdivision

5. On the toolbar of the 3D window, click on the mode button to go into Sculpt Mode.
6. On the Tools tab on the left-hand side of the screen (if necessary, press the T key to make the

Tool Shelf containing the tabs appear), go to the Symmetry\Lock subpanel and click on the X
button under the Mirror item.

7. Click on the Options tab and, under the Options subpanel, uncheck the Size item under Unified
Settings.

8. Start to sculpt.

At this point, to proceed with the sculpting, you should jump to the next recipe, Sculpting the
character's base mesh; instead, let's suppose that we have already sculpted our base mesh, so
let's move ahead:

9. Exit Sculpt Mode.
10. Save the file.

Now, let's see the quick and easy preparation necessary to use the Dynamic topology feature for
sculpting:

1. Reload the Gidiosaurus_Sculpt_base.blend blend file.
2. Then, save it as Gidiosaurus_Dynatopo.blend.
3. On the toolbar of the 3D window, select Sculpt Mode.
4. On the Tools tab on the left-hand side of the screen (press the T key to make the Tool Shelf

containing the tabs appear), go to the Topology subpanel and click on the Enable Dyntopo
button; a popup appears to inform you that the Dynamic topology feature doesn't preserve any

already existing Vertex Color, UV layer, or other custom data (only if the mesh has them).
Then click on the popup to confirm and go on.

5. Change the Detail Size value to 15/20 pixels.
6. Go to the Symmetry\Lock subpanel and click on the X option under the Mirror item:

The dynamic topology tool warning and the settings

7. Start to sculpt.

Again, here you can jump to the next recipe, Sculpting the character's base mesh; in any case, remember
to save the file.

How it works…

The Multiresolution modifier increasingly subdivides the mesh at each level by adding vertices; we
have seen that from 2,240 starting vertices of the base mesh, we have reached 143,234 vertices at level
3, and clearly this allows for the sculpting of details and different shapes. The vertices added by the
modifier are virtual, exactly as the vertices added by the Subdivision Surface modifier are; the
difference is that the vertices added by the latter are not editable (unless you apply the modifier, but this
would be counterproductive), while it's possible to edit (normally through the sculpting) the vertices at
each level of subdivision of a Multiresolution modifier. Moreover, it's always possible to go back by
lowering the levels of subdivision, and the sculpted details will be stored and shown only in the higher
levels; this means that the Multiresolution method is a nondestructive one and we can, for example, rig
the mesh at level 0 and render it at the highest/sculpted level.

The Dynamic topology setting is different from the Multiresolution modifier because it allows you to
sculpt the mesh without the need to heavily subdivide it first, that is, the mesh gets subdivided on the fly
only where needed, according to the workflow of the brushes and settings, resulting in a much lower
vertex count for the final mesh in the end.

As you can see in the screenshots (and in the .blend files provided with this cookbook), starting to
sculpt the character with the Multiresolution modifier or the Dynamic topology is quite different. In
the end, the process of sculpting is basically the same, but in the first case, you have an already
smoothed-looking mesh where you must add or carve features; in the second case, the low resolution
base mesh doesn't change its raw look at all until a part gets sculpted and therefore subdivided and
modified, that is, all the corners and edges must first be softened, in order to round an otherwise harsh
shape.

Sculpting the character's base mesh
Whatever the method you are going to use, it's now time to start with the effective sculpting process.

However, first, a disclaimer: in this recipe, I'm not going to teach you how to sculpt, nor is this an
anatomy lesson of any kind. For these things, a book itself wouldn't be enough. I'm just going to
demonstrate the use of the Blender sculpting tools, showing what brush I used for the different tasks, the
sculpting workflow following the reference templates, and some of the more frequently used shortcut
keys.

Getting ready

In this recipe, we'll use the Dynamic topology method. If you haven't followed the instructions of the
previous recipe, just follow the steps from 12 to 17; otherwise, just open the
Gidiosaurus_Dynatopo.blend file that is provided.

How to do it…

As usual, it's a good habit to save the file with the proper name as the first thing; in this case, save it as
Gidiosaurus_Dynatopo_Sculpt.blend.

If you are going to use a graphic tablet to sculpt, remember to enable the tablet pressure sensitivity for
both size and strength; in any case, it is better to set the respective sliders to values lower than 100
percent; I usually set the size slider around 30/35 and the strength slider to 0.500, but this is subjective:

The tablet pressure sensitivity buttons for the size and the strength

1. If you haven't already, go into Sculpt Mode and enable the Dynamic topology feature by
clicking on the Enable Dyntopo button in the subpanel with the same name under the Tool
Shelf panel or by directly pressing Ctrl + D.

2. Set the Detail Size value to 15, either by using the slider under the Enable Dyntopo button or
by pressing Shift + D and then moving the mouse to scale it bigger or smaller:

Starting to sculpt

3. Click on the Brush selection image (Brush datablock for storing brush settings for painting and
sculpting) at the top of the Tools tab under the Tool Shelf panel, and, from the pop-up menu,
select the Scrape/Peaks brush (otherwise press the Shift + 3 key shortcut):

Selecting the Scrape/Peaks brush in the sculpt brushes menu

4. Start to scrape all the edges and soften the corners to obtain a smooth rounded surface:

Softening the edges of the mesh

5. Change the brush; select the Grab brush (G key) and press 3 in the numpad to go into Side
view; press the F key and move the mouse cursor to scale the brush, in this case, to scale it
much bigger, around 120 pixels (Shift + F is to change the strength of a brush, instead).

6. Using the Background Image showing in the orthographic view (the 5 key in the numpad),
grab the spine and chest areas of the mesh and move them to fit the shape of the template:

Using the Grab brush to modify the mesh

7. Do the same for the other parts of the mesh that don't fit yet, and do it also in Front view (1 key
in the numpad) and Back view (Shift + 1 in the numpad).

8. Select the Scrape/Peaks brush again (Shift + 3 keys) and keep on softening the mesh until
almost every part gets rounded and more organic-looking; you can also use the Smooth (S key)
brush to further soften the mesh:

The character is starting to take a shape

9. Open a new window, switch Editor Type to UV/Image Editor and click on the Open button in
the toolbar; browse to the templates folder and select the
gidiosaurus_trequarters.png image. Then, click on the little pin icon on the right-
hand side of the image name on the window toolbar (Display current image regardless of object
selection).

10. Select the Crease brush (4 key); using it as a chisel and following the loaded image as a
reference, start to outline the character's more important features on the mesh, drawing the
character's anatomy:

Using the Crease brush as a chisel

11. By pressing Ctrl while sculpting, we can temporarily reverse the effect of the brush; so, for
example, the Crease brush, which usually carves lines in the mesh, can sculpt ridges and spike
protrusions. We can use this to add details to the elbow bones and knees on the fly.

12. By pressing the Shift key while sculpting instead, we can temporarily switch whatever brush we
are using with the Smooth brush, in order to instantly soften any newly added detail or feature.

Outlining the major body features

13. When finished with the body, exchange the brush for the Clay Strips brush (3 key), start to add
stuff (the nose, eyebrows, and so on), and outline the features of the head. Again, press Ctrl to
subtract clay (for the eye sockets, for instance) and Shift to soften.

Using the Clay Strips brush to add details and/or carve stuff

14. Always use the templates to check for the proportions and positions of the character's features.
Also, use Wireframe mode if necessary, by going into Ortho view and comparing the sculpted
mesh outline with the background template image; use the Grab brush to quickly move and
shape proportionate features in the right places:

Temporarily switching to the Wireframe viewport shading mode to check the proportions in Side
view

15. Using the Clay Strips (3 key), Smooth (S key), SculptDraw (Shift + 4 key), Crease (4 key),
and Pinch (Shift + 2 key) brushes, build the head of the creature and define as many details as
possible such as the eyebrows, mouth rim, nostrils, and eye sockets; experiment with all the
different brushes:

Detailing the head

16. Go out of Sculpt Mode and press N to make the Properties 3D window sidepanel appear;
uncheck the Only Render item under the Display subpanel.

17. Press Shift + A and add a UV Sphere to the scene. Go into Edit Mode, if you haven't done so
already, select all the vertices and rotate them 90 degrees on the x axis; then, scale them to
0.1000. Finally, scale them again to 0.3600.

18. Exit Edit Mode and move the UV Sphere to fit inside the left eye socket location.
19. Select the character's mesh and press Shift + S; then, in the Snap pop-up menu, choose Cursor

to Selected. Select the UV Sphere and go to the Tools tab under the Tool Shelf; click on the Set
Origin button and choose Origin to 3D Cursor. This way we have set the origin of the UV
Sphere object at the same place as the character's mesh, while the UV Sphere mesh itself is
located inside the left eye socket.

20. Go to the Object Modifiers window under the main Properties panel and assign a Mirror
modifier to it.

21. Go to the Outliner, press Ctrl + left-click on the UV Sphere item, and rename it Eyes:

Positioning the eye spheres

22. Press Shift + A and add a Cube primitive. Go into Edit Mode and scale it a lot smaller; use the
side template as a reference to modify by scaling, extruding, and tweaking the scaled Cube's
vertices in order to build a low resolution fang. Go out of Edit Mode and go to the Object
Modifiers window to assign a Subdivision Surface modifier.

23. Duplicate the fang and, as always, following the side and front templates as a guide, build all
the necessary teeth for the Gidiosaurus.

24. Select all of them and press Ctrl + J to join them into one single object; press Ctrl + A to apply
Rotation & Scale; then, do the same as in steps 19 and 20.

25. Go to the Outliner and rename the new object Fangs.

Making the teeth

26. Add a new Cube and repeat the process to model the talons of the hands and feet:

Making the talons

Note that the Eyes, Fangs, and Talons objects are not going to be sculpted, and therefore they
are kept as separate objects. Later, we'll start to retopologize the sculpted body of the creature,
while the eyes will be modeled and detailed in the traditional polygonal way; fangs and talons
are good enough as they are.

27. Reselect the Gidiosaurus object and go back into Sculpt Mode to keep on refining the
creature's shape more and more; don't be afraid to exaggerate the features, we can always
smooth them later.

The almost completed sculpted mesh

28. Adjust the shape of the eyebrows to perfectly fit the Eyes object; then, work more on the
mouth rim to accommodate the fangs.

Refining the eyebrows and the mouth rim

29. When you think you have arrived at a good enough point, just go out of Sculpt Mode and
remember to save the file!

Just a quick note: we don't actually need to go out of Sculpt Mode to save the file, it's possible to save it
periodically (press Ctrl + S or Ctrl + W to save the file over itself, and Ctrl + Shift + S to save as)
without needing to exit the sculpting session each time.

The completed sculpted mesh compared with the reference templates

So, here we are; the character's sculpting is basically done. We can work on it a lot more, tweaking the
shapes further and adding details such as scales, wrinkles, and veins, but for this exercise's sake (and
for this recipe), this is enough.

There's more…

A nice aspect of the Dynamic topology feature is the possibility to actually join different objects into a
single mesh; for example, with our Gidiosaurus, we can join the teeth and the talons to the sculpted
base mesh and then keep on sculpting the resulting object as a whole.

Actually, there are two ways to do this: simply by joining the objects and by the Boolean modifier.

To join the objects in the usual way, we can do the following:

1. Go out of Sculpt Mode.
2. Select the first object (that is, the teeth), press Shift + select the second object (the talons), and

lastly press Shift + select the sculpted base mesh so that it's the active object (the final
composited object will retain the active object's characteristics).

3. Press Ctrl + J and it is done!

This is the way you join objects in Blender in general, and it can actually work quite well. There is only
one problem: there will always be a visible seam between the different objects, and although in the case

of teeth or talons this will not be a problem, in other cases it should be avoided. Let's say you are
working on a separated head and later you want to join it to a body; in this case, you don't want a visible
seam between the head and neck, obviously!

So, the option is to use the Boolean modifier:

1. Go out of Sculpt Mode.
2. Select the character's base mesh and go to the Object Modifiers window under the main

Properties panel; assign a Boolean modifier.
3. Click on the Object field of the modifier to select the object you want to join (let's say, the

Talons object) and then click on the Operation button to the left to select Union.
4. Click on the Apply button to apply the modifier.
5. Hide, move onto a different layer, or delete the original object you joined (the talons).

Unlike the previous method, with Booleans, it will be possible to sculpt and smooth the joining of the
different objects without leaving visible seams.

Chapter 3. Polygonal Modeling of the
Character's Accessories
In this chapter, we will cover the following recipes:

• Preparing the scene for polygonal modeling
• Modeling the eye
• Modeling the armor plates
• Using the Mesh to Curve technique to add details

Introduction
In the previous two chapters, we did the following:

• Quickly modeled a simple base mesh, as close as possible to the shape of the reference
templates

• Sculpted this base mesh, refining the shapes and adding details to some extent

We have also quickly modeled very simple teeth and talons, and placed bare UV Spheres as placeholders
for the eyes.

It's now time to start some polygonal modeling to complete the eyes, but especially to build the armor
that our character is wearing.

Preparing the scene for polygonal modeling
Coming from a sculpting session, our .blend file must first be prepared for the polygonal modeling,
verifying that the required add-ons are enabled and all the character's parts are easily visible and
recognizable; for this, even though the topic of Materials is complex and there will be an entire chapter
dedicated to it later in this module, we are going to assign basic materials to these parts so that they have
different colors in the 3D viewport.

Getting ready

First, we are going to look for the LoopTools add-on, an incredibly useful script by Bartius Crouch that
extends the Blender modeling capabilities (and that also has other functionalities, as we'll see in the next
chapter about retopology); this add-on is provided with the official Blender release, but still must be
enabled. To do this, follow these steps:

1. Start Blender and call the Blender User Preferences panel (Ctrl + Alt + U); go to the Addons
tab.

2. Under the Categories item on the left-hand side of the panel, click on Mesh.
3. Check the empty little checkbox on the right-hand side of the Mesh: LoopTools add-on to

enable it.
4. Click on the Save User Settings button at the bottom-left of the panel to save your preferences

and close the panel:

The Blender User Preferences panel

5. Open the Gidiosaurus_Dynatopo_Sculpt.blend file.

How to do it…

Now, we can start with the scene setup:

1. Click on the 11th scene layer button (the first one in the second row of the first-left layer block
of Visible Layers in the toolbar of the 3D window) to make it the only one visible (or else, just
put the mouse pointer on the 3D viewport and press the Alt + 11 keys; the Alt button is to allow
for double digits).

2. Press Shift + left-click on the 13th button to multiactivate it (or use the Shift + Alt + 13
shortcut).

3. Go to the Outliner and click on the little grayed arrow icons on the side of the Eyes, Fangs and
Talons items to make them selectable again.

4. If not already present, show the Properties 3D window sidepanel (N key) and go to the
Shading subpanel; uncheck the Matcap item:

Disabling the Matcap item

5. Select the Gidiosaurus mesh; go to the Material window under the main Properties panel to
the right and click on the New button to assign a material (note that, at least at the moment, we
are using the default Blender Internal engine); click on the Diffuse button and change the color
to RGB 0.604, 0.800, 0.306 (a greenish hue, but in this case you can obviously choose any color
you wish). Double left-click on the material name inside the data block slot to rename it as
Body.

6. Select the Eyes object and again in the Material window under the main Properties panel to
the right, click on the New button to assign a new material; click on the Diffuse button and this
time change the color to RGB 0.800, 0.466, 0.000. Rename the material as Eyes.

7. Select the Fangs object and repeat the process; change the diffuse color to RGB 0.800, 0.697,
0.415. Rename the material as Enamel.

8. Select the Talons object and go to the Material window under the Properties panel to the right;
click on the little arrows on the left-side of the New button and from the pop-up menu, select the
Enamel material:

Assigning a material and choosing a color

9. Go to the UV/Image_Editor window on the left-hand side of the screen and press Shift + left-
click on the X icon on the right-hand side of the data block name to get rid of the
gidiosaurus_trequarters.png image. Then, click on the Open button, browse to the
templates folder, and load the gidiosaurus_armor1.png image.

10. Save the file as Gidiosaurus_modeling.blend.

The armoured character's image loaded in the UV/Image Editor for reference

How it works…

We have deselected the Matcap view, assigning also differently colored basic materials to the four parts
making up the character's mesh (body, eyes, fangs, and talons) to have a clearer way of differentiating
the different pieces of the mesh. Then, we have replaced the template we used as reference for the
sculpting of the Gidiosaurus body with a new one showing the armor as well (in the templates
folder there are actually two slightly different versions of the armor; we chose the first one).

We have also activated the 13th scene layer to be ready for the modeling of the armor (in the 11th we
have the character's mesh and in the 12th we have the fangs, talons, and eyes).

Note that, in this cookbook, I will always specify scene layers to indicate the 20 3D layers accessible
from the buttons on the viewport toolbar and distinguish them from other types of layer systems present
in Blender, such as for the bones or the Grease Pencil tool and so on.

Modeling the eye
It's now time to start to define the creature's eyes. We already had UV Sphere placeholders, but we're
going to refine this mesh to deliver a more convincing eye. By the way, keep in mind that a good portion
of the expressiveness of the eye will be due to the use of appropriate textures; for more information, see
Chapter 12, Creating the Materials in Cycles, and Chapter 13, Creating the Materials in Blender
Internal.

Getting ready

Following the previous recipe, there is nothing particular to be prepared before starting, except for the
following:

1. Go to the Properties 3D view sidepanel (N key if not already present) and uncheck the
Background Images item.

2. Press 3 on the numpad to go in Side view and zoom to the UV Sphere location, by pressing
Shift + B and drawing a box around the point you want to zoom at; as you release the mouse
button, the selected area will be zoomed in;

Disabling the background images and zooming to the eyes area

3. Go to the Outliner and click on the eye icon on the right-hand side of the Gidiosaurus item to
hide it; or else, select the mesh in the 3D viewport and press the H key. Alternatively, you can
also press the slash (/) key in the numpad to go in Local view, a particular view mode where
only the selected objects are still visible (press the slash (/) again to go back to the normal view
mode).

How to do it…

Without further ado, let us begin to build the eye:

1. Press Z to go in the Wireframe viewport shading mode.
2. In the Outliner, select the Eyes item (or else, if you wish, in the 3D viewport, select the UV

Sphere object) and rename it as Cornea.
3. Press Shift + D and then immediately press the Esc key or right-click to cancel the Grab/

Translate function, obtaining a duplicated object that now shows as Cornea.001; in the
Outliner, rename the new object as Eyeball.

4. Press Tab to go in Edit Mode; if necessary, press A to select all the vertices and scale them to
0.990 (S | .99 | Enter).

5. Press A to deselect all the vertices. Then, box-select (B key) the pole vertex and the first row of
vertices at the left-side pole (that is, in total 33 vertices); press X to delete them:

Box-selecting the vertices at the UV Sphere pole

6. Reselect all the remaining vertices; then, press the period (.) key on the numpad to center the
view on the selection.

7. Go to the Outliner and click on the eye icon on the left-hand side of the Cornea item to hide it.
8. Rotate the view to align it with the hole in the UV Sphere and, if necessary, press the 5 key on

the numpad to go in Ortho mode.
9. Press Z to go in the Solid viewport shading mode and press A to deselect everything.

10. Select the first row of vertices around the hole (Alt + right-click on the edge-loop). Press E to
extrude them and then S to scale them; keep Ctrl + Shift pressed and scale to 0.9500 (or else,
press S | .95 | Enter).

11. Press E and S again to extrude and scale the vertices to 0.500.
12. Press F to fill the selection and Alt + P to poke the created N-gon face (that is, to automatically

subdivide the single N-gon face into triangular faces connected to a central vertex).

Extruding and closing the eye

13. Press 1 on the numpad to go in Front view. Scale the selected vertices to 0.500 on the x axis (S |
X | .5 | Enter).

14. Press Ctrl + R and add an edge-loop outside of the iris; keep Ctrl pressed and move the mouse
to edge-slide it to -0.900.

Making the pupil

15. In the toolbar of the 3D window, enable the PET (the Proportional Editing tool); set it to
Connected and the Proportional Editing Falloff option to Sphere.

16. Enable the widget, set it to Translate (the second icon from the left, the one with the arrow), set
Transform Orientation to Global, and select the central vertex of the pole. By using the
widget, move it on the y (green) axis to 0.0030 (click on the green arrow and hold Shift for a
finer control as you move the mouse on the y axis), while with the middle mouse wheel, set the
Proportional size value of the PET to a quite small radius, or 0.01 to be precise:

Creating the iris concave shape

17. Press Ctrl and the + key on the numpad 3 times, in order to grow the selection starting from the
single selected vertex at the center of the iris.

18. Go to the Material window, create a new material, and rename it as Iris; change its diffuse
color to something like RGB 0.061, 0.025, 0.028 and then click on the Assign button:

Assigning a material to the iris

19. Press Ctrl and the - key on the numpad just 1 time, in order to reduce the selection to the pupil.
Go to the Material window, create a new material, and rename it as Pupil; change its diffuse
color to plain black and then click on the Assign button.

20. Press Tab to go out of Edit Mode.

The almost completed eye

21. Go to the Object Modifiers window under the main Properties panel on the right-hand side of
the UI and assign a Subdivision Surface modifier; check the Optimal Display item.

22. In the Outliner, unhide the Cornea object and assign a Subdivision Surface modifier as well;
check the Optimal Display item and then hide it again (you can also use the H and Alt + H keys
to do this).

23. Select the Eyeball object and go to the Material window; select the Pupil material and go to
the Specular subpanel to set the Intensity value to 0.000. Set the Specular Shader Model
option of both the Eyes and Iris materials to WardIso and the Slope value to 0.070. Set the
Iris material's Emit value (under the Shading subpanel) to 0.050.

24. In the Outliner, select the Cornea object and in the Material window, click on the little icon
reporting 2 on the right-hand side of the material name (it's the display of the number of users
for that material). The name Eyes automatically changes to Eyes.001: rename it Cornea;
then, go to the Transparency subpanel and enable it. Set the Fresnel value to 1.400 and the
Blend factor to 2.000. Go to the Options subpanel further down and uncheck the Traceable
item.

25. Unhide the Gidiosaurus mesh (Alt + H) and enable the 6th scene layer (the one with the
Camera and the Lamp). Select the Lamp and in the Object Data window, change the type to
Sun and then rotate it to: X = 55.788948°, Y = 16.162031°, and Z = 19.84318°; you can press N
and then type these values in the slots of the Rotation panel at the top of the Properties 3D
window sidepanel.

26. Press N to hide again the Properties 3D window sidepanel and in the toolbar of the 3D window,
go to the Viewport Shading button and select Rendered (or directly press the Shift + Z
shortcut) to have a nice preview of the effect:

The Rendered preview of our character so far

27. Save the file.

How it works…

Actually, the eyes of the character are composed of two distinct objects: the Eyeball and the Cornea
object.

The Cornea object is the transparent layer covering the Eyeball object, and by clicking on the eye icon
in the Outliner, it has been made invisible in the 3D viewport but still renderable. With the Cornea
object visible in the 3D views, irises and pupils would have been hidden behind, making the work of
animating the eyes quite hard; animators always need to know what the character is looking at.

Both the Cornea and Eyeball objects, at the moment, are mirrored to the right by the Mirror modifier;
this will be changed when we skin the mesh to the Armature.

If you can't find the Rendered view in the Viewport Shading mode button on the 3D viewport's
toolbar, you may want to make sure you have the latest version of Blender; only versions after 2.6 have
this feature for the Blender Render engine.

Modeling the armor plates
In the previous recipe, we modeled the character's eye and we had already modeled the teeth in Chapter
2, Sculpting the Character's Base Mesh, because we needed them, at that moment, to go on with the
sculpting; they had been made with simple Cube primitives quickly scaled and tweaked in Edit Mode.

It is now time to model the armor for our warrior. Let's begin by creating the hard metal plates. We are
going to use an approach similar to the modeling of the fangs, which is by starting with a Cube
primitive and subdividing it to have more geometry to be edited in the proper shape, and we'll also use
the LoopTools add-on to simplify some processes.

Getting ready

We will carry on with the Gidiosaurus_modeling.blend file:

1. Press 3 on the numpad to go in Side view.
2. By scrolling the middle mouse wheel, zoom back to frame the Gidiosaurus mesh in the 3D

window.
3. In the Outliner, click on the arrow icon on the right-hand side of the Gidiosaurus item to make

it unselectable.

How to do it…

Now, we can start to build the armor; let's go with the chest piece:

1. Note that the 3D Cursor is in the middle of the scene, at the character's pivot location (Shift + S
| Cursor to Selected or also Cursor to Active, just in case).

2. Press O to disable the Proportional Editing tool; go to the 3D viewport toolbar to verify that
the tool button is grayed.

3. Press Shift + A and add a Cube primitive to the scene.
4. Press Tab to go in Edit Mode and scale all the vertices to 0.500 (or press S | .5 | Enter).

Adding the Cube primitive to the scene

5. Press Ctrl + R to add a loop along the y axis and then left-click twice to confirm it at the middle
of the object:

Adding a central vertical edge-loop to the Cube

6. Select the right-side vertices of the Cube and delete them; then, assign a Mirror modifier and
check the Clipping item:

The Cube with the Mirror modifier

7. Go again in Side view and press Z to go in the Wireframe viewport shading mode; select all the
vertices and move them upward.

8. Rotate the vertices to reflect the angle of the character's chest.
9. Select the upper vertices and scale and rotate them to fit the creature's neck area.

10. Select the bottom vertices and scale and rotate them to fit the base of the chest:

Starting to model the armor from the Cube primitive

11. Press Ctrl + R to add a new horizontal edge-loop at the middle of the Cube; scale it bigger to fit
the shape of the creature's chest.

12. While still in Side view, grab and move the vertices to conform them to the chest shape.
13. Press 1 to go in Front view and again move the vertices to adjust them consistently to the

character's chest shape:

Adding more geometry and shape to the Cube

14. Select the 2 middle outer vertices and move them down, in order to place the edge connecting
them just below the character's armpit.

15. Press Ctrl + R to add a loop along the x axis; click twice to confirm it at the middle of the lateral
side:

Adding more geometry again

16. Press the slash key (/) on the numpad to go in Local view with the selected object (in this case,
even if still in Edit Mode, it is the Cube) and select the upper outer edge-loop.

17. Go to the Tool Shelf panel and scroll down the Tools tab to find the LoopTools subpanel (the
LoopTools items are available also in the Specials menu that we can call by pressing the W key
in Edit Mode); click on the Circle button to make the selection on a circular path:

Using the LoopTools add-on

18. Do the same also with the middle and the bottom edge-loop; then, select the central upper and
bottom pole's vertices and delete them:

Going on with the modeling

19. Press the slash key (/) on the numpad to go out of Local view.
20. Press Tab to go out of Edit Mode and go to the Object Modifiers window under the main

Properties panel; click on the Apply button to apply the Mirror modifier.
21. Go back in Edit Mode and press Ctrl + R to add a horizontal edge-loop to the upper half of the

mesh.
22. Scale the new edge-loop to 1.100:

Adapting the shape of the armor to the chest by adding more geometry as edge-loops

23. Add a new horizontal edge-loop also to the lower half of the mesh.
24. Select the middle edge-loop and scale it smaller on the x axis, to 0.900.
25. Select the bottom edge-loop and scale it smaller on the x axis as well.
26. Select the last edge-loop and repeat the operation.

Going on with the modeling by adding edge-loops

27. Press 3 on the numpad to go in Side view and Z to go in the Wireframe viewport shading
mode.

28. If not already, enable the widget in the toolbar of the 3D window; set the Transformation
manipulators to scaling (the last icon to the right) and the Transform Orientation option to
Normal.

29. Select all the vertices and by moving the green scaling manipulator of the widget, scale smaller
all the edge-loops on the normal y axis; small enough to almost reach the character's back and
chest surfaces.

30. Deselect everything and then select the middle edge-loop (press Alt + right-click); scale it again
by using the widget to get close to the torso shape:

Adjusting the chest armor depth

31. Do the same with the other edge-loops by selecting them individually, rotating and scaling them,
and also by moving the vertices.

Refining the lateral profile of the armor

32. Press the slash (/) key on the numpad to go again in Local view.
33. Select the right-side vertices of the Cube and delete them.
34. Go to the Object Modifiers panel and assign a new Mirror modifier; as usual, check the

Clipping item.
35. Select the central vertex on the upper-side part and delete it.
36. Select the resulting loop of edges around the resulting hole (you can press Alt + right-click and

then Shift + right-click to add the remaining unselected top vertex to the selection; it doesn't get
selected with the edge-loop because there are no faces connecting it to the other vertices, but
only edges).

37. Press E and then S to extrude new faces and scale them (about 0.600).
38. Select the new edge-loop and go to the LoopTools panel under the Tools tab of the Tool Shelf

panel; click on the Circle button to make it rounded:

Adding the arm's holes

39. Go in Front view and move the edge-loop outward.
40. Go out of Edit Mode and press the slash (/) key on the numpad to go out of Local view.
41. Press 1 on the numpad to go again in Front view. Go to the Object Modifiers panel and assign

a Shrinkwrap modifier to the Cube; check the Keep Above Surface item and in the Target
field, select the Gidiosaurus name:

Assigning the Shrinkwrap modifier to the chest armor

42. Set the Offset value to 0.05.
43. Move the Shrinkwrap modifier to the top of the modifier stack and click on the Apply button.
44. Go in Edit Mode and select the shoulder edge-loop; go to the LoopTools panel and click on

the Flatten button:

Refining the modeling through the LoopTools add-on

45. Fix, below the armpit, the lateral vertices that are curved inwards, by using the Alt + S shortcut
to move them outward along their normal, the 3D Cursor and the Snap pop-up menu (Shift + S)
to place them midway from other vertices, and the Shift + V shortcut to slide them along the
edges:

Tweaking vertices

46. Press the K key to activate the Knife Topology Tool; by keeping the Ctrl key pressed to
constrain the cuts to the middle of the edges, cut a new edge-loop as shown in the following
screenshot (each time, press Enter to confirm the cut and then pass to the following one):

Using the Knife tool

47. Press Alt + J to join the already selected triangular faces into quads:

Joining two triangular faces into one quad face

48. Select all the vertices and press Ctrl + N to recalculate the normals.
49. Deselect all the vertices and go to the Object Modifiers window; assign a Subdivision Surface

modifier, set the Subdivisions level for View to 2, and check the Optimal Display item. Click
on the Adjust edit cage to modifier result icon, the last one to the right with the editing triangle,
in order to see the effect of the modifier in Edit Mode.

50. Go out of Edit Mode and then go to the Tools tab under the Tool Shelf; under the Edit
subpanel, select the Smooth shading.

51. Go back in Edit Mode and select the vertices (in our case, mainly on the side and back)
corresponding to areas where the sculpted mesh is overlapping the armor. Press Alt + S to scale
their position along their normals and so fix the overlapping; then, select the upper vertices of
the shoulder and move them closer to the character's shoulder surface:

Tweaking vertices with the visible cage of the Subdivision Surface modifier

52. Repeat the operations of the previous step on all the vertices that need it; select the vertices on
the belly and press Shift + V to move them upward, but along the edges to model the arc shape
at the bottom of the plate:

Sliding the vertices and adjusting the polygonal flow through the LoopTools add-on

53. Select the edges of the front and back and click on the Space button in the LoopTools add-on
panel; if needed, tweak the value of the Influence slider at the bottom of the Tools tab to set the
amount for the operation.

54. Add edge-loops at the bottom of the armor and at the shoulder opening to create a rim; extrude
the neck opening upwards to create a kind of short collar:

Extruding geometry

55. Add edge-loops on the front of the chest plate as shown in the following screenshot (Ctrl + R
and then slide it to 0.500) and then select the front vertices of the alternate edge-loops and in
Side view, move them forward.

56. Select the last bottom edge-loop and scale it bigger (to 1.100):

Adding edge-loops to add detailing to the armor

57. Move the front vertices of the breast and belly downward, using the image loaded in UV/
Image Editor as reference. Add more edge-loops to add definition to the front of the chest plate
(in the following screenshot, the three added edge-loops are selected at the same time only to
highlight them; in Blender, they must be added one at a time). Then, smooth the resulting oddly
spaced back vertices by using the Space button of the LoopTools add-on:

Making the edges' length even through the LoopTools add-on

58. In the Outliner, rename the Cube item as Breastplate (by either double-left-clicking or by
pressing Ctrl + left-click on the item).

59. Then, go to the Material window under the main Properties panel and assign a new material to
the Breastplate object; rename the material as Armor_dark. Set the diffuse color to RGB
0.605, 0.596, 0.686 and the Diffuse Shader Model option to Oren-Nayar; set the specular
color to RGB 0.599, 0.857, 1.000 and the Specular Shader Model option to WardIso; set the
Intensity value to 0.164 and the Slope value to 0.100. Under the Shading subpanel, check the
Cubic Interpolation item.

60. Go to the Object Modifiers window and assign a Solidify modifier; move it up in the stack,
before the Subdivision Surface modifier. Set the Thickness value to 0.0150 and check the
Even Thickness item.

61. Set Viewport Shading to Rendered to have a quick preview (be sure to have the proper scene
layers activated, that is, the 6th for the lighting and the 11th and 13th for the character and
armor). Then, go to the World window under the main Properties panel and activate the
Indirect Lighting tab; then, click on the Approximate button under the Gather subpanel. For
the moment, leave the rest as it is:

The Rendered result so far, with some World Lighting setting

62. Save the file.

How it works…

This is the usual polygonal modeling process that is common to most aspects of 3D packages. Starting
from a Cube primitive, we moved and arranged the vertices to model the chest armor plate, extruding
and also adding new edge-loops by using the Knife Topology Tool and the Ctrl + R shortcut.

We used the Mirror modifier to work only on half of the mesh and to have the other half automatically
updated. In some cases, we had to temporarily apply the Mirror modifier to better scale the edges as
complete circles (otherwise, they would have been half circles with odd scaling pivot points); then, we
had to delete the vertices from one side and assign the Mirror modifier again.

At a certain point, as the armor's shape got more defined, we started to tweak the vertices in Edit
Mode, but with the Subdivision Surface modifier applied to the editing cage in order to have the right
feedback while conforming the armor's shape to the character's shape.

We also used a few of the options available in the LoopTools add-on that has been revealed to be an
incredibly handy aid in the modeling process.

See also
• https://sites.google.com/site/bartiuscrouch/looptools
• http://www.blender.org/manual/modeling/index.html

https://sites.google.com/site/bartiuscrouch/looptools
http://www.blender.org/manual/modeling/index.html

Using the Mesh to Curve technique to add
details
In the previous recipe, we modeled the basic bulk of the Breastplate. We are now going to see a simple
but effective technique to add detailing to the borders of the armor plate.

How to do it…

Assuming we have gone out of Edit Mode and then saved the file, reopen the
Gidiosaurus_modeling.blend file and proceed with the following:

1. Go back in Edit Mode and select the edge-loop around the neck (Alt + right-click), the edge-
loop around the shoulder hole (Alt + Shift + right-click), and the last one at the base of the
Breastplate (Alt + Shift + right-click again).

2. Press Shift + D and soon after, the right-mouse button to duplicate without moving them; press
P to separate them (in the Separate pop-up menu, choose the Selection item):

Separating geometry by selection

3. Go out of Edit Mode to select the Breastplate.001 object (the duplicated edge-loops).
4. Press Alt + C and in the Convert to pop-up menu, select the first item: Curve from Mesh/Text.
5. The mesh edge-loops actually get converted into Curve objects, as you can see in the Object

Data window under the main Properties panel on the right-hand side of the UI:

Converting the geometry in Curves

6. In the Object Data window, under the Geometry tab, set the Extrude value to 0.002 and the
Depth value to 0.010; then, under the Shape tab, set the Fill mode to Full:

"Modeling" the Curves by the settings

7. Press Alt + C and this time, in the Convert to pop-up menu, select the second item: Mesh from
Curve/Meta/Surf/Text.

8. Press Tab to go in Edit Mode, press A to select all the vertices, and in the Mesh Tools tab under
the Tools tab in the Tool Shelf panel, click on the Remove Doubles button (note that in the top
main header, a message appears: Removed 2240 vertices; so always remember to remove the
doubles after a conversion!).

9. Go out of Edit Mode and click on the Smooth button in the Edit subpanel; in the Outliner,
rename it as Breastplate_decorations.

10. Assign a Subdivision Surface modifier, with the Subdivision level as 2 and Optimal Display
enabled.

11. Go to the Material window and assign a new material; rename it as Armor_light and copy
all the settings and options from the Armor_dark material, except for the diffuse and the
specular colors—set them to RGB 1.000 (pure white; a faster way is to assign the
Armor_dark material, make it a single user, change the colors to white, and rename the
material as Armor_light).

Assigning a new material

12. As always, remember to save the file.

How it works…

Even if at first sight this seems a complex process, actually it's one of the easiest and fastest ways to
model a mesh. We have just duplicated the edge-loops that are located where we had the intention of
adding the modeled borders. With a simple shortcut, we have converted them to a curve object that can

be beveled both by other curve objects or simply by values to be inserted in the fields under the
Geometry tab. Then, once we obtained the shape we wanted, we converted the curve back to a mesh
object.

We could have kept the armor decorations as curves, but by converting them to meshes, we have the
opportunity to unwrap them for the mapping of the textures according to the rest of the armor.

Note that the Preview U value under the Resolution item in the Shape subpanel for the curve objects
should be kept low if you don't want a resulting mesh with a lot of vertices; you can set it quite lower
than the default 12. Just experiment before the final conversion, while keeping in mind that once
converted to mesh, the decorations will probably be smoothed by a Subdivision Surface modifier with
the rest of the armor; in any case, the obtained decorations mesh can also be simplified at a successive
stage.

In this chapter, we saw the process that can be used to model the armor meshes. We will not
demonstrate the rest of the armor modeling, as the same techniques can be used over again. However,
feel free to model the rest of the armor on your own or have a look at the provided
Gidiosaurus_modeling_02.blend file:

The completed armor as it appears in the rendering

Chapter 4. Re-topology of the High Resolution
Sculpted Character's Mesh
In this chapter, we will cover the following recipes:

• Using the Grease Pencil tool to plan the edge-loops flow
• Using the Snap tool to re-topologize the mesh
• Using the Shrinkwrap modifier to re-topologize the mesh
• Using the LoopTools add-on to re-topologize the mesh
• Concluding the re-topologized mesh

Introduction
The re-topology of a mesh, as the name itself explains, is simply the reconstruction of that mesh with a
different topology; usually, the re-topology is used to obtain a low resolution mesh from a high
resolution one.

In our case, this is obviously needed because we are later going to rig and animate our Gidiosaurus, and
these tasks would be almost impossible with a mesh as dense as the high resolution sculpted one; we not
only need to reconstruct the shape of the mesh with a lower number of vertices, but also with the edge-
loops properly placed and flowing for the best render and deformation of the character's features.

In Blender, we have several tools to accomplish this task, both hardcoded into the software or as add-ons
to be enabled, and in this chapter, we are going to see them.

Using the Grease Pencil tool to plan the edge-
loops flow
It would be perfectly possible to start immediately to re-topologize the high resolution mesh, at least for
an expert modeler; by the way, it's usually a good practice to have a guide to be followed in the process,
to solve a priori any issue (or at least most of them) that we would come across.

So, let's start this chapter by planning what the right topology can be for a low resolution mesh of our
Gidiosaurus character; we are going to use the Grease Pencil tool to draw the paths of the edge-loops
and polygons flow, straight onto the sculpted mesh.

Getting ready

First, let's prepare the screen:

1. Open the Gidiosaurus_modeling_02.blend file.
2. Go to the UV/Image Editor window to the left and Shift + left-click on the X icon on the

toolbar to get rid of the template image (to be more technically precise, to unlink the template
image data block; the Shift key is to set the users to 0 and definitely eliminate the image from
the file).

3. Put the mouse pointer on the border between the two windows and right-click; in the little Area
Options pop-up panel, left-click on the Join Area item and then slightly move the mouse
pointer to the left and left-click again, to join the two windows and obtain a single big 3D
viewport window:

Joining the two windows into one

4. Click on the 11th scene layer button to show only the sculpted Gidiosaurus mesh and parts
such as the teeth, eyes, and so on.

5. Go to the Outliner and click on the icons showing an eye image placed to the right side of the
Eyeballs, Fangs, and Talons items to hide them.

6. Press the N key to make the Properties 3D view sidepanel appear to the right of the 3D window
and scroll it to find the Grease Pencil subpanel (already enabled by default); go to the Tool
Shelf panel to the left of the 3D window and click on the Grease Pencil tab:

The Grease Pencil panels and the screen layout in current state

7. Check to enable the Continuous Drawing item just below the four buttons at the top of the
Grease Pencil tab on the Tool Shelf.

8. Go to the Grease Pencil subpanel under the Properties 3D view sidepanel to the right and click
on the New button; then, click on the + icon button to the left side to add a new Grease Pencil
layer, which is by default labeled GP_Layer; set the Stroke color to RGB 1.000, 0.000, 0.350
and Thickness of the strokes to 4 pixels.

9. Double-click on the GP_Layer name to rename it as Head.
10. Go to the Tool Shelf and, under Stroke Placement, click on the Surface button:

Starting to use the Grease Pencil tool

11. Save the file as Gidiosaurus_retopology.blend.

How to do it…

We are now going to start to draw on the character's head:

1. Press Shift + B and draw a box around the head of the Gidiosaurus to zoom to it; then, press the
5 key on the numpad to go into Ortho view.

2. Click on the Draw, Line or Poly buttons at the top of the Grease Pencil tab in the Tool Shelf;
alternatively, keep the D key pressed (along with left-click) to start to draw the first stroke on
the mesh (Ctrl + D + left-click and Ctrl + D + right-click, respectively for Line and Poly).

Because we enabled the Continuous Drawing item in the Tool Shelf, we can continue to draw
without the need to reactivate the drawing mode at each stroke. To quit the sketching session
(for example, to change the brush), we can press the Esc or the Enter keys, so confirming the
sketching session itself at the same time; otherwise, without the Continuous Drawing item
enabled, the sketching is confirmed right after each stroke.

3. Start to draw (one half side of the mesh is enough) the strokes; try to make the strokes follow
the main, basic, and more remarkable features of the sculpted mesh such as the main skin
folders going from the snout to the eye sockets and the bags under the eyes, nostril, mouth
rim, and so on.

4. Don't worry too much about the quality or the precision of the strokes; also, don't be afraid to
erase (D + right-click or the Erase button) and/or correct the strokes, if necessary. The Grease

Pencil, in this case, is just a tool to sketch directly on the mesh the guidelines we will later
follow for the re-topology stage:

Drawing the head's main features topology

In the case of our Gidiosaurus, the topology for a correct deformation is similar to the topology
we would use for a human face, but a lot simpler: we just need edge-loops around the eyes and
in the eyebrows area, to give them mobility for expressiveness; a few edge-loops around the
mouth that, however, in our case, remains quite rigid; and edge-loops following the folders on
the top of the snout, which can also be important for the growl expression.

5. Once the strokes for the main features have been posed, try to join them into a web of edges, as
balanced and efficient as possible:

Connecting the strokes

6. At a certain point, when and if the overlapping of the strokes starts to become confusing, you
can uncheck the X Ray item, which is located to the right side of the Thickness slot in the
Grease Pencil layer subpanel, to disable the visibility of the strokes behind the mesh surface.

7. Forget about the edge-loops of stiff parts such as the cranium; it's enough to plan the position
and the flow of the deforming ones. In the screenshot at the bottom right, I have highlighted (in
Gimp) the main facial edge-loops for the Gidiosaurus with different colors:

The X Ray button and the highlighted main edge-loops

8. When you think you are done with the head, click on the + icon button to add a new layer and
rename it as Neck. Set the values the same you did for the Head layer, just change the color of
the strokes; I set mine to RGB 0.106, 0.435, 0.993, but whatever color you choose, be sure that
it stands out in the viewport against the mesh color.

9. In the case of the neck, the important thing is to find the correct joining with the head's edge-
loops under the lower jaw, as you can see in the bottom-right screenshot:

The Neck layer

10. Continue to stroke on the neck by drawing parallel horizontal loops along its length and use the
vertical strokes to outline the neck's muscles (don't look for a sternocleidomastoid muscle
here; the Gidiosaurus, anatomy, although similar in some ways, is not human at all!).

11. Remember that because our character is wearing an armor, it is not necessary to re-topologize
the whole body, but only the exposed parts; so we can stop the planning just a little beyond the
plates outside edges. To verify the correct extension of the strokes, just be sure to have the X
Ray item enabled in the Grease Pencil layers and also the 13th scene layer enabled to show the
armor:

Verifying the extension of the strokes under the armor

12. Click again on the + icon button in the Grease Pencil subpanel under the Properties 3D view
sidepanel and rename the new layer as Arm. Set the values the same as you did for the Head
and Neck layers, but change the color once more (R 0.000, G 1.000, B 0.476); this time, we
have to plan the joining of the cylindrical shape of the arm with the shoulder and the collar
bones areas:

Sketching the guidelines on the arm

13. As before, also in this case, it is not necessary to go beyond the boundaries of the armor chest
plate, but including also the muscles of the chest and back in the topology planning can give a
more natural result:

The completed guidelines for the shoulder and the arm joining

14. When you are done, save the file.

At this point, we can stop with the Grease Pencil sketching of the topology; the remaining parts of the
exposed body are a lot simpler and will be quickly resolved in the successive recipe of this chapter.

There's more…

We can load any already existing Grease Pencil layer data blocks even into an empty scene, by clicking
on the little arrows on the left-hand side of the Gpencil slot (Freehand annotation sketchbook) at the top
of the Grease Pencil subpanel on the Properties 3D view sidepanel, and indifferently for Scene or
Object. Actually, the Grease Pencil tool can be used as a sketchbook tool, to write quick notes and/or
corrections inside the Node Editor window or the UV/Image Editor window, and even as an animation
tool, by drawing inside an empty scene or on the surface of other objects to be used as templates.

In the following screenshot, you can see the sketching sessions previously made on the Gidiosaurus
object's surface, showing a solo and keeping the volumes of the character in the 3D space:

The Grease Pencil layers in the 3D space

See also
• http://www.blender.org/manual/grease_pencil/introduction.html

http://www.blender.org/manual/grease_pencil/introduction.html

Using the Snap tool to re-topologize the mesh
In this recipe, we'll use the Snap tool to start to re-topologize the sculpted high resolution mesh.

Getting ready

First, let's prepare both, the mesh to be traced, which is the high resolution mesh, and the tool itself:

1. Go to the Outliner and click on the Restrict viewport selection icon, which is the arrow one, to
the side of the Gidiosaurus item to make it not selectable.

2. Be sure that the 3D Cursor is at the center of the scene (Shift + C) and add a Plane primitive.
3. Click on the Snap during transform button, the little icon with the magnet, on the 3D view

toolbar, or else press Shift + Tab to activate the tool.
4. Click on the Snap Element button (Type of element to snap to) on the close right to select the

Face item, or else press Shift + Ctrl + Tab to make the Snap Element pop-up menu appear in
order to select the item from:

The Snap Element menu

How to do it…

Now, we are going to start the re-topology:

1. With the Plane object selected, press Tab to go into Edit Mode; with all the vertices already
selected by default, by pressing Shift + right-click, deselect just one vertex (anyone of them, it
doesn't matter which one).

2. Press X to delete the other three vertices that are still selected.
3. Select the single remaining vertex and move it onto the head of the sculpted mesh, close to the

left eye socket; as the Snap tool is enabled, the vertex stays on the mesh surface.
4. Press the period (.) key on the numpad to zoom the 3D view centered on the selected vertex:

Starting the re-topology process

5. Go to the Object Data window and check the X-Ray item under the Display subpanel in the
main Properties panel to the right of the screen.

6. Start to extrude the vertex, building an edge-loop around the eye socket and following the
Grease Pencil guideline, both by pressing the E key or Ctrl + left-click to add vertices; if
needed, press G to move them at the right location (that is, at the intersections of the guidelines).

7. When you have almost completed the edge-loop around the eye socket, select the last and the
first vertices and press the F key to close it.

8. Select the bottom row of vertices of the edge-loop and extrude them; adjust the position of each
vertex on the ground of the strokes guideline:

The first re-topology around the eye socket

9. Do the same with the upper row of vertices and then select the free vertices on the right-hand
side of the edge-loops and press Alt + M to merge them at the center (At Center):

Building the eye edge-loop

10. While still in Edit Mode, select all the vertices and press Ctrl + N to recalculate the normals.
11. Keep on extruding the edge-loops to build the faces around the eye socket. Select the inner

edge-loop and extrude it; then, scale it inside and adjust the vertices position as usual.
12. Cut a new edge-loop in the middle of the eye socket by pressing Ctrl + R and then select each

vertex; press G and, immediately after, click with the left button of the mouse. This way the
newly added vertex stays in place, but is snapped to the underlying surface (sadly, it doesn't
work automatically as you cut or add vertices; they must be moved in some way to make the
Snap tool work).

Adding geometry and snapping the vertices to the surface

13. Keep on adding geometry to the mesh, extruding or Ctrl + left-clicking, and switch between
edges and vertices selection mode to make the workflow faster. Press 5 on the numpad to go
into Ortho view when necessary. Following the strokes guideline, build faces going towards the
median line of the object.

14. As you are arrived to the median line of the object, go to the Object Modifiers window under
the Properties panel and assign a Mirror modifier.

15. Click on the Adjust edit cage to modifier result icon (the last one in the row to the side of the
modifier's name), to activate the modifier during the editing, and check the Clipping item.

16. Adjust the vertices you just added to the median line of the mesh to stay on the y axis and
recalculate the normals.

17. Go to the Outliner and rename the Plane item as Gidiosaurus_lowres.

Going towards the median line

18. Build the remainder of the faces the same way, extruding edges or vertices, moving them to
react to the Snap tool, and adding cuts and edge-loops where needed to keep all quads. N-gons
faces can be split into quads by dividing an edge to add a vertex in the middle, selecting the new
vertex and its opposite one and pressing the J key to connect them (see the two screenshots at
the bottom row):

Building the eyebrows and dividing N-gons into two quad faces

19. Assign a Subdivision Surface modifier to the low resolution mesh and set Subdivisions to 2.
Check the Optimal Display item; if you want, click on the Adjust edit cage to modifier result
icon, which is the last one in the row to the side of the modifier's name. To work with an already
smoothed mesh (in the end, the mesh will be subdivided in any case) is a usual workflow; by the
way, it depends on your preferences. If you prefer to work without the modifier, occasionally go
out of Edit Mode to verify how the geometry behaves under the Subdivision Surface modifier.

The created geometry in the Subdivision Surface visualization mode

20. Around the eyebrows, it is important to have continuous edge-loops to allow for better mesh
deformation; often, it is enough to merge (Alt + M) two vertices to obtain the right flow. Note
that this creates a pole (check out the screenshot at the top right) that can later be eliminated by
a cut and then merges the two tris faces into a quad (Alt + J; the two screenshots at the bottom):

Closing two edge-loops

21. We have almost completed the Gidiosaurus' face. Select the vertices of the lower jaw and press
the H key to hide them; select the upper mouth rim and extrude it and then adjust the vertices'
position.

22. Deselect the vertices, press Alt + H to unhide the mandible, and press Shift + H to hide the
unselected vertices (in this case, the upper face). Select the mouth rim of the mandible and
extrude and then tweak the position of the vertices.

23. Connect the upper and the lower jaws by connecting the last vertices, as shown in the bottom-
left of screenshot and then build a face. Tweak the vertices' position:

Connecting the jaw to the upper mouth

We can stop using the Snap tool at this point and continue with the re-topologizing by using different
tools; we'll see this in the upcoming recipes.

The re-topologized face of the character

How it works…

The main requirement for a re-topology tool is the ability to trace the shape and volume of the high
resolution mesh as easily as possible. In this recipe, we used the Blender Snap tool that, once set to
Face, guarantees that every added vertex lies on the faces of any directly underlying object; this way, it
is quite simple to concentrate on the flow of the polygons, while their vertices stay anchored to the
mesh's surface.

To remark that the strokes are there only as a generic indication, note that in certain areas we are
doubling the number of faces sketched with the Grease Pencil tool as well as to try to keep the density
of the mesh as even as possible.

Using the Shrinkwrap modifier to re-topologize
the mesh
Sometimes, the Snap tool is not enough or can be quite difficult to use because of a particular shape of
the high resolution mesh; in these cases, the Shrinkwrap modifier can be very handy.

Getting ready

Basically, the usage of this method is all in the preparation of the modifier:

1. Assign the Shrinkwrap modifier to the Gidiosaurus_lowres mesh and, in the modifier stack,
move it before the Subdivision Surface modifier.

2. Click on the Target field to select the Gidiosaurus mesh item and leave the Mode option to
Nearest Surface Point (this seems to be the more efficient mode for this task; by the way, you
can experiment with the other two modes that can reveal themselves useful in other situations).

3. Enable the Display modifier in Edit mode and Adjust edit cage to modifier result buttons (the
penultimate one and the last one to the right, with the cube and four selected vertices image and
with the upside-down triangle and three vertices image, respectively) and the Keep Above
Surface item.

4. In Edit Mode, if it's necessary to make the low resolution mesh more easily visible against the
high resolution one, change the Offset value to 0.001.

5. Having the X-Ray item still active, go to the Shading subpanel under the Properties 3D view
sidepanel and check the Backface Culling item:

The Shrinkwrap modifier panel

How to do it…

In Edit Mode, select, extrude, and move the vertices as required! The Shrinkwrap modifier will take
care of keeping the vertices adhering to the target mesh surface.

If you are having issues, such as vertices jumping everywhere as you try to move them, try to disable the
Snap tool. This is not always the case, but sometimes the combination of both the tool and the modifier
can give unexpected results; other times, it can be the opposite.

Extruding and cutting an edge-loop under the Shrinkwrap modifier

Remember that if you are using this method to re-topologize, at the end of the process, you must apply
the Shrinkwrap modifier.

Also, save the file.

Using the LoopTools add-on to re-topologize the
mesh
We have already seen the LoopTools add-on in Chapter 3, Polygonal Modeling of the Character's
Accessories. This incredibly useful Python script can even be used for the re-topology!

Getting ready

If the LoopTools add-on isn't enabled yet, perform the following steps:

1. Start Blender and call the Blender User Preferences panel (Ctrl + Alt + U); go to the Addons
tab.

2. Under the Categories item on the left-hand side of the panel, click on Mesh.
3. Check the empty little box to the right of the Mesh: LoopTools add-on to enable it.
4. Click on the Save User Settings button at the bottom-left of the panel to save your preferences

and close the panel:

The User Preferences panel and the LoopTools add-on enabled

5. Load the Gidiosaurus_retopology.blend file.
6. Click on the Snap during transform button on the 3D view toolbar (or else, press Shift + Tab) to

enable the Snap tool again.

How to do it…

In the LoopTools add-on, there are at least three tools that can be used for the re-topology: Gstretch,
Bridge, and Loft (the last two seem to have almost the same effect so, at least for our present goal, we
can consider them to be interchangeable).

Let's first see the Gstretch tool:

1. Go to the Grease Pencil subpanel under the Properties 3D view sidepanel to the right. Be sure
that the Grease Pencil checkbox is checked and click on the + icon button to add a fourth layer
after the Arm layer (actually, you can also delete the preexisting GPencil data block and start
with a brand new one, or in any case disable the visibility of the other layers); leave the strokes
color as it is by default—that is, pure black.

2. In Edit Mode, press D and sketch one edge-loop stroke.
3. Select the edges of the low resolution mesh and press E to extrude them and then right-click;

click on the Gstretch button (or press W | Specials | LoopTools | Gstretch).
4. In the last operator panel at the bottom of the Tool Shelf (or else, press F6 to make the pop-up

window appear at the mouse cursor location), check the Delete strokes item.
5. Press Ctrl + R to cut the required edge-loops in the new faces:

Using the Gstretch tool in conjunction with the Grease Pencil tool

Yes, it's that simple; it's enough to stroke the target position line and the new extruded vertices will be
moved to that target position.

Also, now let's see the Bridge and the Loft tools:

1. Select a group of edges and press Shift + D to duplicate them.
2. Move them into a new position and adjust the vertices as required.
3. Select both the new edges as the previous group.
4. Go to the LoopTools panel and click on the Bridge button (or again, through the W key to call

the Specials menu).

Using the Bridge tool

5. If you need to add cuts, instead of the usual Ctrl + R shortcut, go to the last operator panel (F6)
and change the value of the Segments slot to the number required.

It's not mandatory to duplicate new edges, it's enough to select the same number of vertices in the two
edge-loops to be connected; here, after the Bridge tool operation, we have set the Segments value to 3:

Adding cuts to the bridge operation

You can repeat the operation and the add-on will keep the last values you entered.

Repeat the steps, and this time click on the Loft button. The effect is almost the same, but if the new
faces come out really messy, just click twice on the Reverse checkbox in the last operator panel; this
should fix the issue.

You can then use all the other buttons to refine the added geometry; in the following screenshots, I
tweaked the new geometry a little bit by selecting the horizontal edges and clicking on the Space,
Flatten, and Relax buttons:

Completing the Gidiosaurus head

Using a mix of all the previous methods, in a short time, we have completed the head and the joining of
the neck of our Gidiosaurus_lowres mesh; as you can see, particularly in the second screenshot at the
bottom, the technique of following the main features and folders of the sculpted surface with the edge-
loops can highlight the organic shapes even with a low resolution mesh:

The completed head

Don't forget to save the file and quit Blender.

Concluding the re-topologized mesh
The Shrinkwrap modifier method can be the way to quickly finish the rest of the re-topology of the
Gidiosaurus sculpted mesh, by quickly re-topologizing the simpler cylindrical shapes and then
completing the more difficult parts by hand.

Getting ready

If necessary, repeat the steps to set up the Shrinkwrap modifier technique:

1. Assign the Shrinkwrap modifier to the Gidiosaurus_lowres mesh and in the modifier stack,
move it before the Subdivision Surface modifier.

2. Click on the Target field to select the Gidiosaurus mesh item and leave Mode to Nearest
Surface Point.

3. Enable the Display modifier in Edit mode and Adjust edit cage to modifier result buttons and the
Keep Above Surface item.

4. In Edit Mode, to make the low resolution mesh more easily visible against the high resolution
one, change the Offset value to 0.001.

5. Having the X-Ray item still active, go to the Shading subpanel under the Properties 3D view
sidepanel and check the Backface Culling item.

6. Then, to conclude the re-topology, we also need to enable the Copy Attributes Menu add-on;
go to Blender User Preferences | Addons | 3D View | 3D View: Copy Attributes Menu.

How to do it…

Let's go on by building the geometry of the neck:

1. While still in Edit Mode, just select the head's last edge loop on the neck and extrude it (E key)
towards the shoulders.

2. Press the Ctrl + R keys and add at least 7 or 8 widthwise edge-loops:

Extruding the neck

3. Also, with the aid of the Snap tool, tweak the position of the bottom row of vertices, extrude
them to add an edge-loop of faces, and tweak again. Go out of Edit Mode.

The re-topology of the neck

We can use the same technique as in steps 1, 2, and 3 to quickly re-topologize the left arm and leg of the
character. Instead of extruding the new geometry from the Gidiosaurus_lowres mesh, in this case, it's
better to add a new simple primitive: a Circle or also a Plane; whatever the primitive, when you add it,
be sure that the 3D Cursor is at the character's origin pivot point.

As you can see in the following screenshot, at first we just created the geometry only for the main
cylindrical sections of the limbs:

Arms and legs re-topologized

Do the same for the body: just a couple of edge-loops placed at the waist to extrude the geometry from;
remember that the chest is covered with the armor breastplate, so only the exposed area needs to be
re-topologized.

One Mirror and one Subdivision Surface modifier has been assigned to the three objects (head/neck,
arm, and hips/leg). Also, because of the Mirror modifier, the vertices of the half side of the abdomen's
edge-loops have been deleted.

There's more…

After the main parts have been re-topologized, we can start to tweak the position of the vertices on the
arm and leg, to better fit the flow and shapes of the muscles and tendons in the sculpted mesh.

Thanks to the aid of the Shrinkwrap modifier, we can do it quite freely; however, before we start with
the tweaking, we require a little bit of preparation for a better visibility of the working objects, to affect
and modify the new geometry (visible as a wireframe) and have the underlying sculpted mesh visible at
the same time.

To do this, we have two ways:

The first way is as follows:

1. Go to the Shrinkwrap modifier panel and set the Offset value to 0.002.
2. Go to the Object window and disable the X-Ray item; in the Maximum Draw Type slot, under

the Display subpanel, select Wire:

The mesh visualized in wireframe mode

The second way is as follows:

1. Go to the Shrinkwrap modifier and set the Offset value back to 0.000.
2. If this is the case, go to the Object window and, under the Display subpanel, enable the X-Ray

item. In the Maximum Draw Type slot, under the Display subpanel, select Textured.
3. Go to the Properties 3D view sidepanel (press N if not already present); if necessary, enter Edit

Mode and under the Shading subpanel, check the Hidden Wire item.
4. In both ways (I used the second one), if you want to enable the Display modifier in Edit mode

and Adjust edit cage to modifier result buttons for the Subdivision Surface modifier to see its
effect in Edit Mode, it is better to move the Shrinkwrap modifier after the Subdivision
Surface modifier in the stack, to have a better looking result.

The second wireframe visualization method

We can now start to add the missing parts, by extruding and moving the vertices to better fit the sculpted
features and also adding, if necessary, new edge-loops to better define these features:

Refining and completing the remaining features

After the wireframe setup, it's easy to tweak the low resolution geometry to better fit the character's
anatomy:

The character's anatomy

The still missing parts are modeled at this stage, such as the inside of the nostrils or the eyelids, again
with the aid of the Shrinkwrap modifier; this time, targeted to the Cornea object to project the eyelids
geometry onto it with an Offset value of 0.0035:

The character's eyelids

Also, we built the inner mouth and the tongue of our character and refined the dental alveoli:

The character's alveoli and tongue

As in every project, we can go on with the refining, adding edge-loops, and so on, and this would seem a
never-ending work; instead, at this point, we can consider the Gidiosaurus re-topology at the end, so it's
time to apply the Shrinkwrap modifiers and, if this is the case, select the Gidiosaurus body's still
separated objects and join them together to have a single mesh.

It's time to do the same with the armor that is still waiting on the 13th scene layer:

The totally completed re-topologized character with the armor

How it works…

First, we have to quickly build the geometry using the Shrinkwrap modifier technique and then set the
visibility of this geometry to wireframe (Wire), to make the underlying sculpted mesh visible.

The Shrinkwrap modifier, in the first case with the Offset value set high enough to allow the wireframe
visibility over the sculpted surface, ensured that all the moved vertices and the new added geometry are
automatically wrapped around the target mesh to preserve the volume.

At the end, we took back the Offset value to 0.000 anyway and we applied the Shrinkwrap modifier;
then, we joined the re-topologized arm and leg objects together to the Gidiosaurus_lowres one.

As you have probably noticed, we haven't applied the Mirror modifiers yet. This is because it will still
be useful in the next chapter.

Chapter 5. Unwrapping the Low Resolution
Mesh
In this chapter, we will cover the following recipes:

• Preparing the low resolution mesh for unwrapping
• UV unwrapping the mesh
• Editing the UV islands
• Using the Smart UV Project tool
• Modifying the mesh and the UV islands
• Setting up additional UV layers
• Exporting the UV Map layout

Introduction
So, at this point, we have sculpted our high resolution character and through the retopology process, we
have obtained a low resolution copy, which is easier to use for rigging, texturing, and animation.

There are several ways to apply textures to a mesh in Blender, as in any other 3D package. In our case,
we are going to use UV Mapping, which is certainly one of the most commonly used and efficient
methods for organic shapes.

Before the unwrapping process, the mesh must be prepared to make the task easier.

Preparing the low resolution mesh for
unwrapping
In this recipe, we'll fix the last details such as the position of some of the character's parts (for instance,
the closed mouth) and in general, anything that is needed to facilitate the unwrapping.

Getting ready

To be more precise, before the unwrapping, we must perform the following tasks in the right order:

1. Join the teeth and talons to the body.
2. Create the vertex group for the mandible.
3. Open the mouth.
4. Mark the seams to unwrap the body.

So, open the Gidiosaurus_retopology.blend file and deactivate the layer with the armor to
hide it; select the Gidiosaurus object and save the file as Gidiosaurus_unwrap.blend.

How to do it…

The simplest of the four tasks just so happens to be the first, joining the body with the teeth and talons.

To join the body parts, follow these steps:

1. Select the Talons item in the Outliner, and then hold Shift and select the Fangs_bottom,
Fangs_upper, and Gidiosaurus_lowres items.

2. Press Ctrl + J to join them.
3. Right away we will notice that, because the retopologized mesh didn't have any material

assigned, the whole object gets the only material available, which is the Enamel material we
had assigned to the talons and teeth earlier.

4. To fix this, assign a new material, or you can also assign the already existing Body material, to
the retopologized mesh before the joining operation.

5. Alternatively, after the joining, click on the + icon to the side of the material names, and then
select the New button in the Material window to create a new material. Now, enter Edit Mode,
put the mouse pointer on the Gidiosaurus mesh, and press the L key to select all the connected
vertices. Because the talons and teeth vertices are joined, but not connected to the face
vertices, they don't get selected; for the same reason, you have to repeat the operation three
times to select the head, arm, hips, and leg vertices:

The head, arm and hip/leg vertices selected in Edit Mode

6. Click on the Assign button and go out of the Edit Mode. Now, edit the name and color of the
new material or whatever, or else switch it with the Body one.

The second task is a bit more complex and is covered in more detail in Chapter 7, Skinning the
Low Resolution Mesh, which is about the skinning process. However, we need to explore this
subject a little bit now, as it will help us operate on a small portion of the mesh easily.

To create a vertex group to open the mouth, follow these steps:
7. Go to the Side view and zoom in on the head of the character.
8. Go to the Object Data window; under the Vertex Groups subpanel, add a new group and

rename it mand (short for mandible).
9. Press Ctrl + Tab to go into Weight Paint mode (or left-click on the mode button on the 3D

window toolbar to switch from Edit Mode to Weight Paint mode); press Z to go into
Wireframe viewport shading mode so that you can see the edges of the topology.

10. By using a combination of vertex selection mode, both in Edit Mode and by painting with
Weight and Strength as 1.000 in the Weight Paint mode, assign vertices to the group of the
mandible area and the part of the neck; obviously, you have to include the vertices of the inner
bottom jaw, as well as the tongue and bottom teeth:

The visualization of the mand vertex group

11. Press Ctrl + Tab to exit the Weight Paint mode.

Note that a vertex group can be edited at a later time, so it will be easier to set the exact amount
of weight on the vertices by looking at the Lattice modifier feedback, which is the next step.

So, to open the mouth, perform the following steps:
12. Add an Empty object to the center of the scene (Shift + A | Empty | Plain Axes).
13. Go to the Side view (press the 3 key on the numpad). Move the Empty to the position where the

mandible should join the skull (to be precise, I placed it at this location: X = 0.0000, Y =
-0.3206, and Z = 2.2644; go to the Properties 3D view sidepanel, and under the Transform
subpanel, enter the values in the first three slots under the Location item).

14. To ensure that the Empty cannot be moved anymore, click on the lock icon on the right-hand
side of its slot in the Outliner and also rename it to Empty_rot_mand:

The Empty_rot_mand in place

15. With the Empty still selected, press Shift + S | Cursor to Selected.
16. Add a Lattice object to the scene (Shift + A | Lattice), and in the Object Data window, set

Interpolation Type for U, V, and W to Linear; select the Gidiosaurus object and go to the
Objects Modifier window; assign a Lattice modifier. Move it before the Subdivision Surface
modifier.

17. In the Object field, select the Lattice item; in the Vertex Group field, select the mand item.
18. In the Side view, select the Lattice object, go into Edit Mode, and select all the vertices and

rotate them 35 degrees counterclockwise around the x axis:

Rotating the Lattice to open the mouth

As you can see, the Lattice only affects the vertices inside the mand vertex group; however,
there is a clear indentation on the throat where the mand vertex group ends abruptly, so now we
must blur this boundary to keep the smooth curved transition from the bottom jaw to the neck,
and remove the abrupt edge.

19. Go back into the Weight Paint mode (Ctrl + Tab) and click on the Brush icon at the top of the
Tools tab to switch the Draw brush with the Blur brush, and then start to blur the boundaries of
the mand vertex group.

20. Sometimes, blurring the edge weights is not enough, so go back to the Draw brush, set the
Strength to 0.500 (or whatever value you find works best), and paint on the vertices; then refine
the transition again with the Blur brush:

Blurring and painting the weights

21. To make the job easier and faster, you can temporarily disable the Lattice modifier, as well as
the Subdivision Surface modifier.

22. When you are done, go out of the Weight Paint mode, apply the Lattice modifier, and delete
the Lattice object.

23. Make sure to keep the Empty_rot_mand, which that will turn out to be useful when rigging the
character. For now, just hide or move it onto a different layer.

At this point, we can obviously edit the throat area vertices as usual: relaxing and tweaking
them and so on. Actually, this is the right moment to tweak all the vertices and any areas that
couldn't be done before, such as the inside of the mouth, the inner cheeks, and so forth, because
now we are going to do the last preparation task before the unwrapping.

To mark seams for the unwrapping of the body, we have to perform the following steps.
Because our low resolution mesh is actually still only one half side, we don't need to place
seams as median cuts, we only need to divide different areas (for example, the inside of the
mouth from the outside of the mouth) and unroll cylindrical parts such as the arms, fingers,
and teeth:

24. Go into Edit Mode and zoom in to the character's head; press Ctrl + Tab to call the Mesh
Select Mode pop-up menu and select the Edge item, and then start to select the edge-loop
inside the mouth (Alt + right-click to select an edge-loop); start from the bottom jaw, switching
direction at the end of the mouth rim to go upward, and finish on the inside of the upper jaw:

The selected edge-loops inside the mouth

25. Press Ctrl + E to open the Edges pop-up menu and select the Mark Seam item. Alternatively,
click on the Shading / UVs tab in the Tool Shelf, to the left-hand side of the screen, and in the
UVs subpanel, click on the Mark Seam button under the UV Mapping item:

Marking the seams

26. Repeat the procedure for the arm; try to place the seams in the less visible areas:

The seams on the arm

27. Do the same for the pelvis and leg; divide them into two parts with the seams and also try to
place the seams inside the natural body folds, if possible:

The seams on the pelvis/leg parts

28. It is important to try to place the seams to divide parts that would get unwrapped badly if treated
as a single object; for example, the inner nostril and tongue from the inner mouth:

The seams inside the head

29. The final seams to add are for the teeth and talons, which would otherwise get badly unwrapped
as squares:

The seams of the small parts

30. Save the file.

UV unwrapping the mesh
At this point, everything is ready for the unwrapping.

Getting ready

Put the mouse pointer on the bottom or on the top horizontal borders of the 3D window. As the mouse
pointer changes to a double-arrow icon, right-click and in the Area Options pop-up menu select the
Split Area item; then, left-click to obtain two windows and switch the left one to UV/Image Editor.

The two windows

How to do it…

To unwrap the mesh in Blender, several options are available; however, the one we are going to use now
is the basic unwrap, the result of which we will edit and refine later:

1. Ensure that the UV/Image Editor window is not set to Render Result, otherwise it won't
display the UV islands.

2. Select the Gidiosaurus_lowres object and enter Edit Mode. Select all the vertices (A key) and
press the U key; in the UV Mapping pop-up menu, select the first item, Unwrap:

Unwrapping the mesh

After a while, the UV layer of the unwrapped mesh appears in the UV/Image Editor window;
as you can see, several things can be improved. Moreover, we are still using only half of a mesh.

3. Go out of the Edit Mode and go to the Object Modifiers window; apply the Mirror modifier.
4. Go back into Edit Mode and press 1 on the numpad to go to the Front view; press Ctrl + R and

place a median seam through the head part of the mesh, as well as through the pelvis part:

A new loop cut

5. Press Ctrl + Tab to switch to vertex selection and press Z to go into the Wireframe viewport
shading mode, and then box-select the vertices on the left-hand side of the mesh (which is the
side created by the Mirror modifier).

6. Go to the UV/Image Editor window; if not already selected, press A to select all the UV
islands of the UV layer, and then press Ctrl + M | X | Enter to mirror these selected islands.

7. Press G to move them (temporarily) outside the default U0/V0 tile space, as shown in the
following screenshot:

The selected half body vertices and the corresponding UV islands outside the U0/V0 tile space

8. Go to the 3D view and press A twice to select all the vertices; go to the UV/Image Editor
window and press Ctrl + A to average the size of all the islands reciprocally.

9. Select all the islands and press Ctrl + P to automatically pack all of them inside the UV tile.
10. If you are not satisfied with the result of the Pack islands tool, adjust the position (G key),

rotation (R key), and scale (S key) of the islands; group together the similar ones (for example,
the teeth, talons, arms, and so on), but try to place them to fill the image tile space as much as
possible. To select one island, just put the mouse over it and press L, and Shift + L to
multiselect. Use the X and Y keys to constrain the movements of the islands on the
corresponding axis:

Adjusting the UV islands' position

11. When you are done, ensure that all the vertices of all the islands in the UV/Image Editor
window are selected, and click on the New button on the toolbar of the UV/Image Editor
window; in the New Image pop-up panel, set Width and Height to 3072 pixels, and Generated
Type should be set to UV Grid. Then, click on the OK button to confirm.

12. Go to the 3D window and press Z to go in the Solid viewport shading mode. Then, go to the
Properties 3D view sidepanel and under the Shading subpanel, check the Textured Solid item.

13. Go out of the Edit Mode and save the file:

Assigning a grid image to the unwrapped UV islands

This should be enough; even if the halves of the mesh are disconnected, Blender can perfectly solve the
mesh painting without visible seams.

However, if we look at the character shown in the Textured Solid mode in the 3D view, it's clear that
the unwrap of some part of the mesh could be better; for example, you can see a difference in the size of
the mapped grid in the head/neck area, inside the mouth, and on the arms and legs (look at the arrows
in the following images):

Differences in the mapped grid image

Although this is not a very big issue, the unwrap can be refined further to avoid distortions as much as
possible, as well as potential future problems when we'll paint the character textures; we are going to see
this in the next recipe.

Editing the UV islands
We are now going to join the two UV islands' halves together, in order to improve the final look of the
texturing; we are also going to modify, if possible, a little of the island proportions in order to obtain a
more regular flow of the UV vertices, and fix the distortions we have seen in the last image of the
previous recipe.

We are going to the use the pin tool, which is normally used in conjunction with the Live Unwrap tool.

Getting ready

First, we'll try to recalculate the unwrap of some of the islands by modifying the seams of the mesh.

Before we start though, let's see if we can improve some of the visibility of the UV islands in the UV/
Image Editor:

1. Put the mouse cursor in the UV/Image Editor window and press the N key.
2. In the Properties sidepanel that appears by pressing the N key on the right-hand side of the

window, go to the Display subpanel and click on the Black or White button (depending on your
preference) under the UV item. Check also the Smooth item box.

3. Also, check the Stretch item, which even though it was made for a different purpose, can
increase the visibility of the islands a lot.

4. Press N again to get rid of the Properties sidepanel.

All these options enabled should make the islands more easily readable in the UV/Image Editor
window:

The UV islands made more easily readable by the enabled items

How to do it…

Now we can start with the editing; initially, we are going to freeze the islands that we don't want to
modify because their unwrap is either satisfactory, or we will deal with it later. So, perform the
following steps:

1. Press A to select all the islands, then by putting the mouse pointer on the two pelvis island
halves and pressing Shift + L, multi-deselect them; press the P key to pin the remaining selected
UV islands and then A to deselect everything:

To the right-hand side, the pinned UV islands

2. Zoom in on the islands of the pelvis, select both the left and right outer edge-loops, as shown in
the following left image, and press P to pin them.

3. Go to the 3D view and clear only the front part of the median seam on the pelvis. To do this,
start to clear the seam from the front edges, go down and stop where it crosses the horizontal
seam that passes the bottom part of the groin and legs, and leave the back part of the vertical
median seam still marked:

Pinning the extreme vertices in the UV/Image Editor, and editing the seam on the mesh

4. Go into Face selection mode and select all the faces of the pelvis; put the mouse pointer in the
3D view and press U | Unwrap (alternatively, go into the UV/Image Editor and press E):

Unwrapping again with the pinning and a different seam

The island will keep the previous position because of the pinned edges, and is now unwrapped
as one single piece (with the obvious exception of the seam on the back).

5. We won't modify the pelvis island any further, so select all its vertices and press P to pin all of
them and then deselect them.

6. Press A in the 3D view to select all the faces of the mesh and make all the islands visible in the
UV/Image Editor. Note that they are all pinned at the moment, so just select the vertices you
want to unpin (Alt + P) in the islands of the tongue and inner mouth. Then, clear the median
seam in the corresponding pieces on the mesh, and press E again:

Re-unwrapping the tongue and inner mouth areas

7. Select the UV vertices of the resulting islands and unpin them all; next, pin just one vertex at the
top of the islands and one at the bottom, and unwrap again. This will result in a more
organically distributed unwrap of the parts:

Re-unwrapping again with a different pinning

8. Select all the faces of the mesh, and then all the islands in the UV/Image Editor window. Press
Ctrl + A to average their relative size and adjust their position in the default tile space:

The rearranged UV islands

Now, let's work on the head piece that, as in every character, should be the most important and
well-finished piece.

At the moment, the face is made using two separate islands; although this won't be visible in the
final textured rendering of our character, it's always better, if possible, to join them in order to
have a single piece, especially in the front mesh faces. Due to the elongated snout of the
character, if we were to unwrap the head as a single piece simply without the median seam, we
wouldn't get a nice evenly mapped result, so we must divide the whole head into more pieces.

Actually, we can take advantage of the fact that the Gidiosaurus is wearing a helmet and that
most of the head will be covered by it; this allows us to easily split the face from the rest of the
mesh, hiding the seams under the helmet.

9. Go into Edge selection mode and mark the seams, dividing the face from the cranium and neck
as shown in the following screenshots. Select the crossing edge-loops, and then clear the
unnecessary parts:

New seams for the character's head part 1

10. Also clear the median seam in the upper face part, and under the seam on the bottom jaw,
leaving it only on the front mandible and on the back of the cranium and neck:

New seams for the character's head part 2

11. Go in the Face selection mode and select only the face section of the mesh, and then press E to
unwrap. The new unwrap comes upside down, so select all the UV vertices and rotate the island
by 180 degrees:

The character's face unwrapped

12. Select the cranium/neck section on the mesh and repeat the process:

The rest of the head mesh unwrapped as a whole piece

13. Now, select all the faces of the mesh and all the islands in the UV/Image Editor, and press Ctrl
+ A to average their reciprocal size.

14. Once again, adjust the position of the islands inside the UV tile (Ctrl + P to automatically pack
them inside the available space, and then tweak their position, rotation, and scale):

The character's UV islands packed inside the default U0/V0 tile space

How it works…

Starting from the UV unwrap in the previous recipe, we improved some of the islands by joining
together the halves representing common mesh parts. When doing this, we tried to retain the already
good parts of the unwrap by pinning the UV vertices that we didn't want to modify; this way, the new
unwrap process was forced to calculate the position of the unpinned vertices using the constraints of the
pinned ones (pelvis, tongue, and inner mouth). In other cases, we totally cleared the old seams on the
model and marked new ones, in order to have a completely new unwrap of the mesh part (the head), we
also used the character furniture (such as the armor) to hide the seams (which in any case, won't be
visible at all).

There's more…

At this point, looking at the UV/Image Editor window containing the islands, it's evident that if we
want to keep several parts in proportion to each other, some of the islands are a little too small to give a
good amount of detail when texturing; for example, the Gidiosaurus's face.

A technique for a good unwrap that is the current standard in the industry is UDIM UV Mapping,
which means U-Dimension; basically, after the usual unwrap, the islands are scaled bigger and placed
outside the default U0/V0 tile space.

Look at the following screenshots, showing the Blender UV/Image Editor window:

The default U0/V0 tile space and the possible consecutive other tile spaces

On the left-hand side, you can see, highlighted with red lines, the single UV tile that at present is the
standard for Blender, which is identified by the UV coordinates 0 and 0: that is, U (horizontal) = 0 and V
(vertical) = 0.

Although not visible in the UV/Image Editor window, all the other possible consecutive tiles can be
identified by the corresponding UV coordinates, as shown on the right-hand side of the preceding
screenshot (again, highlighted with red lines). So, adjacent to the tile U0/V0, we can have the row with
the tiles U1/V0, U2/V0, and so on, but we can also go upwards: U0/V1, U1/V1, U2/V1, and so on.

To help you identify the tiles, Blender will show you the amount of pixels and also the number of tiles
you are moving the islands in the toolbar of the UV/Image Editor window. In the following screenshot,
the arm islands have been moved horizontally (on the negative x axis) by -3072.000 pixels; this is
correct because that's exactly the X size of the grid image we loaded in the previous recipes. In fact, in
the toolbar of the UV/Image Editor window, while moving the islands we can read D: -3072.000
(pixels) and (inside brackets) 1.0000 (tile) along X; effectively, 3072 pixels = 1 tile.

Moving the arm islands to the U1/V0 tile space

When moving UV islands from tile to tile, remember to check that the Constrain to Image Bounds
item in the UVs menu on the toolbar of the UV/Image Editor window is disabled; also, enabling the
Normalized item inside the Display subpanel under the N key Properties sidepanel of the same editor
window will display the UV coordinates from 0.0 to 1.0, rather than in pixels. More, pressing the Ctrl
key while moving the islands will constrain the movement to intervals, making it easy to translate them
to exactly 1 tile space.

Because at the moment Blender doesn't support the UDIM UV Mapping standard, simply moving an
island outside the default U0/V0 tile, for example to U1/V0, will repeat the image you loaded in the U0/
V0 tile and on the faces associated with the moved islands. To solve this, it's necessary, after moving the
islands, to assign a different material, if necessary with its own different image textures, to each group of
vertices/faces associated with each tile space. So, if you shared your islands over 4 tiles, you need to
assign 4 different materials to your object, and each material must load the proper image texture.

The goal of this process is obviously to obtain bigger islands mapped with bigger texture images, by
selecting all the islands, scaling them bigger together using the largest ones as a guide, and then
tweaking their position and distribution.

One last thing: it is also better to unwrap the corneas and eyes (which are separate objects from the
Gidiosaurus body mesh) and add their islands to the tiles where you put the face, mouth, teeth, and so
on (use the Draw Other Objects tool in the View menu of the UV/Image Editor window to also show
the UV islands of the other nonjoined unwrapped objects):

UV islands unwrapped, following the UDIM UV Mapping standard

In our case, we assigned the Gidiosaurus body islands to 5 different tiles, U0/V0, U1/V0, U2/V0, U0/
V1, and U1/V1, so we'll have to assign 5 different materials. However, we will cover this in a later
recipe.

Note that for exposition purposes only, in the preceding screenshot, you can see the cornea and eye
islands together with the Gidiosaurus body islands because I temporarily joined the objects; however,
it's usually better to maintain the eyes and corneas as separate objects from the main body.

Using the Smart UV Project tool
Now, we are going to use a much easier and faster method to do the unwrapping of the Armor: the
Smart UV Project tool.

Getting ready

The first thing to do is to prepare the armor pieces for the unwrap process, so perform the following
steps:

1. Starting from the last Gidiosaurus_unwrap.blend file you saved, click on the 13th
scene layer to reveal the armor and at the same time, hide the Gidiosaurus_lowres object.

2. Go to the Outliner and select the first item, the Breastplate; then, use Shift to multiselect all the
other visible objects.

3. Press Ctrl + J to join them into a single object, and then in the Outliner, rename the result as
Armor.

4. Go to the Object Modifiers window and expand the Mirror modifier subpanel; be sure that the
Clipping item is activated and click on the Apply button:

The Armor as a single object and the Mirror modifier

How to do it…

Here is the unwrap process:

1. Press Tab to go into Edit Mode and press the A key to select all the vertices of the Armor.
2. With the mouse cursor in the 3D view, press the U key, and in the UV Mapping pop-up menu

that just appeared, select the second item from the top, Smart UV Project.
3. A second pop-up appears with some options that you can leave as they are, besides Angle Limit

(the maximum angle in the mesh used by the tool to separate the islands), which by default is set
to 66.00; raise it to the maximum, which is 89.00, and then click on the big OK button:

The Smart UV Project tool

The mesh has been divided into several smaller unwrapped parts and is automatically packed
inside the U0/V0 UV tile.

4. Select all the islands in the UV/Image Editor window, click on the small double-arrow icon on
the toolbar, close to the New and Open buttons, and select the Untitled.001 image (the same
grid image we used for the Gidiosaurus unwrap).

5. Press Tab to go out of Edit Mode:

The unwrapped Armor

Considering the amount of tiny islands that the tool created, it's better to separate the big armor parts
(basically, the plates) from the smaller ones (belts, borders, and so on) and re-unwrap them with the
Smart UV Project tool, as we did for the Gidiosaurus body in the previous recipe; then, place them
into two adjacent tiles:

The Armor islands inside the U0/V0 and U1/V0 tiles

Modifying the mesh and the UV islands
At this point, when we look at the Gidiosaurus mesh, we realize that some detail in the model is still
missing; for example, the lower teeth. In fact, we modeled the mouth closed and the lower teeth,
enclosed in the upper mouth rim, weren't visible.

It's now time to add them; in fact, even though we have already done the unwrapping stage, it's still
possible to modify the mesh further and also update the UV islands accordingly.

Getting ready

Start from the last Gidiosaurus_unwrap.blend file you saved:

1. Press N to open the Properties 3D view sidepanel, and disable the Textured Solid item under
the Shading subpanel.

2. Click on the 11th scene layer button to reveal the Gidiosaurus_lowres object and select it; go
into the Side view, zoom in to the head, and enter Edit Mode. Press the A key to select all the
vertices of the mesh.

3. Put the mouse pointer inside the UV/Image Editor, select all the UV vertices (again the A key),
and pin them by pressing the P key; then deselect everything (the A key once more).

How to do it…

We can now start to add new teeth:

1. Select the vertices of one lower tooth and press Shift + D to duplicate it; using the Transform
Orientation widget set to Normal, scale it smaller, rotate and modify it a bit, and then move it
in a new position along the mandible rim:

The new added tooth

2. Repeat the process to create the bottom teeth row on the left-hand side of the mandible:

Adding the missing teeth

3. Go out of the Edit Mode and put the 3D Cursor at the pivot point of the mesh (coincidentally,
at the center of the scene), and then press the period key (.) to set the Pivot Point around the 3D
Cursor.

4. Press 1 on the numpad to go in the Front view, enter Edit Mode again, and select all the new
teeth; press Shift + D to duplicate them, and then right-click; then, press Ctrl + M | X | Enter to
mirror them on the x axis to the right-hand side of the mandible.

5. Press Ctrl + N to recalculate the normals and go out of the Edit Mode:

The new teeth mirrored on the x axis

Now, we must adjust the rim of the mandible where we added the new teeth, in order to create
the alveoli.

6. Go back into the Edit Mode and start to add vertical edge-loops on the lower mouth rim, in
order to create more geometry for the alveoli:

Adding new edge-loops

7. Click on the Options tab under the Tool Shelf to the left-hand side of the 3D window and
enable the X Mirror item under the Mesh Options subpanel.

8. Tweak the vertices to create the alveoli around the new teeth; enable the Subdivision Surface
modifier visibility during Edit Mode in order to have better feedback:

Modeling the alveoli

9. Press Alt + S to scale the teeth vertices on their normals, in order to thicken them, and add edge-
loops where needed to make the transition from the alveoli to inner mouth as natural as
possible.

When you are done, it's time to update the unwrapped UV layer with the new modifications.
10. In Edit Mode, first select the vertices of the new teeth. Because we made them by duplicating

one of the already unwrapped fangs, the new teeth will share the same UV island. In the UV/
Image Editor, press A to select all their UV vertices and Alt + P to unpin them, and then press
E for a new unwrap.

11. Scale the new teeth islands to 0.200, and then select the original teeth on the mesh; adjust the
size and position of the new islands based on the old ones and then pin them.

12. Now, switch to the Face selection mode and select the Gidiosaurus face; in the UV/Image
Editor window, unpin all the vertices of its island (Alt + P), and then pin only the vertices of
certain areas such as the eyes, nose, and upper outside edge-loop (P key).

With this method, the unwrap of all the new geometry gets recalculated together with the old one.
Thanks to the pinned UV vertices, it will keep the previous size and position as much as possible. In the
following image, you can see the face island before (left) and after (right):

The updated unwrap

Note that you need to recalculate the unwrap for all the islands involved in the mesh's modification, and
then save the file.

Setting up additional UV layers
Up until now, we have set just one UV layer whose name is, by default, UVMap (go to the Object Data
window and look under the UV Maps subpanel):

The UV Maps subpanel with the UV Map coordinates layer

Actually, in Blender, it is possible to set more than one UV coordinates layer on the same object in order
to mix different UV projections that can eventually also be baked into a single image map.

The names of the UV layers under the UV Maps subpanel are important, because they specify which
one of the projections a material has to use for the mapping of a texture. By clicking on the + icon to the
side of the UV Maps subpanel, it is possible to add a new UV layer (whose name, in this case, will be
UVMap.001 by default; of course it's possible to change these names by using Ctrl + clicking on them
and typing the new ones).

Getting ready

We are now going to add a new UV layer to the Gidiosaurus object:

1. Ensure that the Gidiosaurus object is selected and go to the Object Data window under the
main Properties panel to the right-hand of the screen.

2. Go to the UV Maps subpanel and click on the + icon to the right-hand side of the names
window; a new UV layer is added to the list, right under the first one, and its name is

UVMap.001 (in case you don't see it, it may be because the window is too small; just put the
mouse cursor on the = sign at the bottom of the window and drag it down to enlarge it):

The new UV coordinates layer

3. Use Ctrl + left-click on the UVMap.001 item and rename it as UVMap_scales. Then, press
Enter to confirm.

How to do it…

Now we must set the projection of the UV layer:

1. Go into Edit Mode, switch to the Face selection mode, put the mouse pointer on the mesh, and
press the L key to select all the faces of the skin of the Gidiosaurus mesh.

2. Go to the UV/Image Editor window, select all the visible islands and unpin them (Alt + P).
3. Click on the Image item on the toolbar and select the Open Image item in the pop-up menu (or

else, put the mouse cursor in the UV/Image Editor window and press Alt + O); browse to the
textures folder and load the scales_tiles.png image.

4. With the mouse pointer in 3D view, press U and from the UV Mapping pop-up menu, select the
Cube Projection item.

5. In the UV/Image Editor window, select all the islands and scale them 5 times bigger (A | S | 5 |
Enter):

The Cube Projection mapping

6. Go out of the Edit Mode and into the Properties 3D view sidepanel, enable the Textured Solid
item under the Shading subpanel to see the result of the unwrapping in the 3D viewport:

The scales_tiles.png image mapped on the model using the second UV coordinates layer

At this point, as you can see in the UV Maps subpanel, the Gidiosaurus object has 2 different
UV coordinate layers, UVMap and UVMap_scales. We will use the UVMap_scales layer to
map the scales image texture on the body and thereby to bake it on the first UVMap layer; this
will be the one we'll use in the end for the rendering of the model. However, we'll see this in
detail in the texturing and baking recipes.

Repeat the process for the Armor.
7. Add a new UV layer and rename it UVMap_rust; go into Edit Mode, select all the vertices and

all the islands in the UV/Image Editor window, and load the iron_tiles.png image.
8. Switch to the Face selection mode, and in the 3D view, press U and select Reset (the last item)

from the pop-up menu. Then press U again, and this time select the Cube Projection item.
9. Go out of Edit Mode.

As you can see, there are a few visible seams. This will be easily fixed during the texturing stage, but for
the moment we are done:

The second UV coordinates layer for the Armor

Exporting the UV Map layout
In this last recipe, we are going to see how to export the UV coordinate layers outside Blender, in order
to be used as a guide to paint textures inside any 2D image editing software.

Getting ready

We have seen that the Gidiosaurus object and also the Armor object have more than one UV
coordinate layer, so the first thing to do is to be sure to have set the right layer as the active one.

To do this, simply click on the name of the chosen layer inside the UV Maps subpanel under the Object
Data window; if you are in Edit Mode, by clicking on the different names, you can also see the
different layers switch in real time in the UV/Image Editor window.

How to do it…

After you have selected the desired UV layer, do the following:

1. Click on the UVs item in the toolbar of the UV/Image Editor window, and from the menu,
select the Export UV Layout item (the top item).

2. You can browse the directory where the .blend file is saved, as the directory opens, at the
bottom-left side of the screen is the Export UV Layout option panel where you can decide on
several items: the size and format of the exported image, and the opacity of the islands (by
default, for mysterious reasons, it is set to 25 percent rather than 100 percent). Moreover, you
can decide if you want to export all the islands of the selected object or only the visible ones,
and also if you want the modifiers applied to the islands (for example, the Subdivision Surface
modifier).

3. Browse to the folder where you decided to save the UV layout of your model, or click on the
side of the path in the upper line after the slash, and write the name of a new directory. Press
Enter and click on the pop-up panel with the OK? Create New Directory message to confirm
(this actually creates a brand new directory).

4. Write the name of the UV layout in the second line and click on the Export UV Layout button
at the top-right of the screen.

Note that if you want to export all the different tiles placed outside of the default U0/V0 tile space, as
illustrated in the There's more… section of the Editing the UV islands recipe, at least for the moment,
you have to temporarily (using Ctrl) move each island at a time to the default U0/V0 tile space and
export it.

Chapter 6. Rigging the Low Resolution Mesh
In this chapter, we will cover the following recipes:

• Building the character's Armature from scratch
• Perfecting the Armature to also function as a rig for the Armor
• Building the character's Armature through the Human Meta-Rig
• Building the animation controls and the Inverse Kinematic
• Generating the character's Armature by using the Rigify add-on

Introduction
To be able to animate our character, we have to build the rig, which in Blender is commonly referred to
as an Armature, and this is the skeleton that will deform the Gidiosaurus low resolution mesh.

The rigging process in Blender can be accomplished basically in two different ways:

• By building the Armature by hands from scratch
• By using the provided Human Meta-Rig or the Rigify add-on

Building the Armature manually by hand can be a lot of work, but in my opinion, is the only way to
really learn and understand how a rig works; on the other hand, the Rigify add-on gives several tools to
speed up and automate the rig creation process, and this in many occasions, can be very handy.

Building the character's Armature from scratch
So, the first recipe of this chapter is about the making of the Armature by hands for our Gidiosaurus.

Getting ready

In this first recipe, we are going to build by hands the basic rig, which is the skeleton made only by the
deforming bones.

However, first, let's prepare a bit the file to be worked:

1. Start Blender and open the Gidiosaurus_unwrap_final.blend file.
2. Disable the Textured Solid and Backface Culling items in the 3D view Properties sidepanel,

join the 3D window with the UV/Image Editor window, and click on the 11th scene layer to
have only the Gidiosaurus mesh visible in the viewport.

3. Go to the Object window under the Display subpanel and enable the Wire item. This will be
useful in the process in order to have an idea of the mesh topology when in Object Mode and
Solid viewport shading mode. However, for the moment, press the Z key to go in the
Wireframe viewport shading mode.

4. Press 1 on the numpad to go in the Front view, and press 5 on the numpad again to switch to the
Ortho view.

5. Save the file as Gidiosaurus_rig_from_scratch_start.blend.

How to do it…

Let's start:

1. Be sure that the 3D Cursor is at the origin pivot point of the Gidiosaurus mesh. Put the mouse
pointer in the 3D view, press Shift + A, and in the Add pop-up menu, select Armature | Single
Bone:

Adding the first Armature's bone

2. Press Tab to go into Edit Mode and select the whole bone by right-clicking on its central part;
move the bone upwards to the Gidiosaurus's hips area (G | Z | Enter or left-click to confirm),
and then go in the Side view (3 key on the numpad) and center its position by moving it on the y
axis:

Positioning the bone in Edit Mode

3. Right-click on the Head of the bone to select it and by pressing G to move it, scale the bone size
to fit the pelvis area:

Scaling the bone in Edit Mode

4. Go to the Item subpanel under the 3D view Properties sidepanel, or in the Bone window under
the main Properties panel to the right-hand side of the screen, and rename Bone (default name)
as hips:

Renaming the bone

5. Press Z to go in the Solid viewport shading mode, and then go to the Object Data window and
enable the X-Ray item under the Display subpanel.

6. With the tip of the bone selected (the Head), press the E key to extrude it. By this process, and
by following the wire topology visible on the mesh as a guide, go upwards to build the
Gidiosaurus spine (2 bones), chest (1 bone), and neck (1 bone); as much as possible, try to
place the Heads (the tips/joints) of the bones aligned with the transversal edge-loops on the
mesh's articulation:

Extruding the bone to build the spine

7. Go again to the Object Data window under the Display subpanel, and enable the Names item
(in the following screenshot, all the bones have been selected just to highlight them and their
respective names). As you can see in the screenshot, the extruded bones get their names from
the previous one, so we have hips, then hips.001, hips.002, and so on:

The bones' names

8. Select the hips.001 bone and rename it spine.001; select the hips.002 bone and rename it
spine.002.

9. Select the hips.003 bone and rename it chest; select the hips.004 bone and rename it neck.
10. Select the tip of the neck bone and extrude it; rename the new bone (neck.001) as head:

The renamed bones and the head bone

So, now we have built the spine - neck – head part of the Armature; actually, one thing is still
missing: the bone to animate the mandible.

11. Press Tab to get out of Edit Mode. In the Side view, enable the 15th scene layer on the 3D
viewport toolbar, in order to show the Empty_rot_mand object; select it and press Shift + S to
call the Snap pop-up menu. Then, select the Cursor to Selected item.

12. Reselect the Armature and go again into Edit Mode. Press Shift + A to add a new bone; move
its Head to resize and fit it inside the mandible of the Gidiosaurus:

The mandible's bone

13. Rename it mand and in the Bone window under the main Properties panel, in the Relations
subpanel, click on the Parent slot to select the head item from the pop-up menu with the bones
list. Leave the Connected item unchecked:

The Parent slot and the pop-up menu to select the parent bone

At this point, we can already see some particular setting to be applied to the bones.
14. Go to the Object Data window under the Properties panel and in the Display subpanel, switch

from the default Octahedral to the B-bone button:

The bones visualized as B-bones

15. Press A to select all the bones, and then press Ctrl + Alt + S (or go to the Armature item in the
window toolbar, and then go to Transform | Scale Bbone) and scale the B-bones to 0.200 (hold
the Ctrl key to constrain the scaling values; the B-bones scaling works both in Edit Mode and
Pose Mode).

16. Select only the chest bone and scale it bigger to 2.500; select the head bone and scale it to
4.000:

The B-bones scaled for better visualization

17. Go to the Object window and under the Display subpanel, click on the Maximum Draw Type
slot (set to Textured by default) and switch it to Wire.

18. Press Ctrl + Tab to switch the Armature directly from Edit Mode to Pose Mode. Right-click
on the chest bone to select it and go to the Bone window under the main Properties panel; in
the Deform subpanel, set Segments under the Curved Bones item to 3:

The chest B-bone with 3 curved segments

19. Select the spine.002 and spine.001 bones and set Segments to 2. Select the neck bone and set
Segments to 3.

20. Select the Gidiosaurus mesh, go to the Object window, and disable the Wire item under the
Display subpanel:

The rig so far

21. Press Ctrl + Tab to go out of the Pose Mode, and then Shift + S | Cursor to Selected to put the
3D Cursor at the rig/mesh/center of the scene pivot point.

22. Press Tab to go into Edit Mode and press the 1 key on the numpad to go in the Front view; go
to the Object Data window, under the Display subpanel, and switch back from B-bone to
Octahedral (even if the visualization mode is different, the bones set as B-Splines still keep
their curved properties in Pose Mode).

23. Press Shift + A to add a new bone at the cursor position. Move and resize it to put it as the
clavicle bone—almost horizontal and slightly backward oriented, on the left-hand side of the
rig. Rename it shoulder.L and in the Parent slot under the Relations subpanel, select the chest
item:

The shoulder.L bone

24. In the Front view, select the Head of the shoulder.L bone and extrude it 3 times to build the
bones for arm, forearm, and hand:

Extruding the shoulder.L bone to obtain the skeleton's bones for the arm

25. Now, exit Edit Mode and right-click to select the Gidiosaurus mesh; enter Edit Mode, select
one or more edge-loops at the elbow level, and press Shift + S | Cursor to Selected.

26. Get out of Edit Mode, select the Armature; go into Edit Mode, select the joint between the
arm and forearm bones and press Shift + S | Selection to Cursor:

Placing the elbow joint

27. This is the easiest way to correctly align the rig joints with the mesh edge-loops. Do the same
for the joint of the wrist and the bone of the hand; rename the bones as arm.L, forearm.L, and
hand.L:

Fixing the position of the wrist joint and hand's bone

28. Select the hand.L bone and use Shift + D to duplicate it; scale it smaller (S | 0.600 | Enter),
rename it palm_01.L, and move it above the joining of the palm with the thumb. Use Shift + D
to duplicate it 2 more times and move the new bones above the joining of the other two fingers;
rename them palm_02.L and palm_03.L.

29. Use Shift to select the three palm bones and, as the last one, the hand.L bone; press Ctrl + P |
Keep Offset to parent them (not connected) to the latter one:

Adding the palm bones

30. Select (individually) the Heads of each palm bones and extrude the bones for the fingers;
center their joints with the 3D Cursor/Snap menu method and rename them properly (thumb,
index, and middle):

The bones for the fingers

31. Again with the 3D Cursor at the rig pivot point, add a new bone and shape it to fit inside the
left thigh, the Tail at the top, close to the hips bone, and the Head at the knee location; select it
and use Shift to select the hips bone, and then press Ctrl + P | Keep Offset. Extrude the bone's
Head three times to build the leg – foot skeleton.

32. Extrude also the bones for the toes and repeat the previously described process to center the
joints, and then rename all the new bones (leg, calf, foot, toe inn, and ext):

The bones for the leg and toes

In the preceding screenshots, you can see that we have hidden the talons vertices in Edit Mode
(H key), in order to have the possibility to easily select the last edge-loops on fingers and toes.

33. Save the file as Gidiosaurus_rig_from_scratch_01.blend.

Building the rig for the secondary parts

Now that we have completed the main body rigging system, it's time to build the rig for eyes, eyelids,
and tongue:

1. Get out of Edit Mode and select the Eyes item in the Outliner; press the dot (.) key on the
numpad to center the view on the selected object, the Z key to go in Wireframe viewport
shading mode, and Tab to go into Edit Mode.

2. Press the A key to select all the eye vertices and then box-deselect (the B key and the middle
mouse button) the vertices of the right eye; use Shift + S to call the Snap pop-up menu and
select the Cursor to Selected item to place the 3D Cursor at the center of the left eye mesh:

Placing the 3D Cursor at the center of the selected vertices

3. Get out of Edit Mode, press the 3 key on the numpad to go in the Side view and reselect the
Armature item in the Outliner; press Tab to go into Edit Mode, and then use Shift + A to add a
new bone at the cursor position. Press G to grab the already selected Head of the new bone and
move it close to the center of the eye to resize it smaller.

4. Get out of Edit Mode and select the Eyes item; enter Edit Mode and deselect all the vertices
except for the external last iris edge-loop. Then, press Shift + S | Cursor to Selected and get out
of Edit Mode.

5. Again, select the Armature, go into Edit Mode, be sure that the Head of the new bone is still
selected, and press Shift + S | Selection to Cursor:

Placing the bone's head at the iris center location

6. Rename the new bone as eye.L and in the Relations subpanel under the Bone window, parent it
to the head bone (not Connected), or use Shift to select the eye.L and head bones and press
Ctrl + P | Keep Offset.

7. Now, select the Tail of the eye.L bone and press Shift + S | Cursor to Selected to put the 3D
Cursor on it, and then press the period (.) key to switch the Pivot Point around the 3D Cursor;
select the whole eye.L bone and use Shift + D to duplicate it, and soon after, click with the right
mouse button to leave the duplicated bone untouched; rotate it 10 degrees clockwise on the
cursor position (Shift + D | right-click | R | X | 10 | Enter).

8. Rename the new bone as eyelid_upper.L.
9. Reselect the whole eye.L bone and repeat the duplication procedure; rotate the new duplicate 10

degrees counterclockwise (Shift + D | right-click | R | X | -10 | Enter).
10. Rename the new bone as eyelid_bottom.L (in the following screenshot, all the three new

bones—eyelid_upper.L, eye.L, and eyelid_bottom.L—have been selected just to enhance their
visibility):

The bones for the eye and eyelids

11. Now, duplicate the head bone, resize it smaller, and move it to the joining of the tongue with
the inner mouth; rename it from head.001 to tongue.001 and in the Relations subpanel,
change its parenting from neck to mand.

12. Select the Head of the tongue.001 bone and press the E key to extrude 4 new bones:

The tongue bones

13. Rename them accordingly, and then use Shift to select from the tongue.001 to tongue.005 bones
and press Ctrl + R; move the mouse pointer horizontally to roll them on their y axis by 180°
(hold Ctrl to constrain the rolling to intervals of 5 degrees; alternatively, the roll value can also
be set by typing it in the Roll button in the Transform subpanel under the 3D viewport
Properties sidepanel).

Completing the rig

At this point, the basic rig building process is almost done, even if it is only for the left-half part of the
mesh:

1. Get out of Edit Mode and press Shift + S | Cursor to Selected to place the 3D Cursor at the
median pivot point of the Armature.

2. Go back into Edit Mode, select only the left-half part bones and not the median ones (meaning:
leave the hips, spine, neck, head, mouth, and tongue bones unselected), press Shift + D to
duplicate them, and then right-click with the mouse button; press Ctrl + M, then the X key to
mirror the duplicated bones on the x axis, in order to build the missing right-half part of the rig:

Mirroring the duplicated bones on the x axis

3. With the duplicated bones still selected, go to the 3D window toolbar and click on the
Armature item; in the pop-up menu, select the Flip Names item to automatically rename them
with the correct .R suffix:

Renaming the suffix of the duplicated bones

As a very last thing for this recipe, we must verify that the alignment of the bones, especially the
last duplicated ones, is correct and, just in case, recalculate the roll rotation, that is, the rotation
around the y axis of the bone itself.

4. In the Object Data window, under the Display subpanel, check the Axes item to make the
bones orientation axes visible (only in Edit Mode and Pose Mode) in the 3D view.

5. Select all the bones and press Ctrl + N to recalculate the rolling of all of them; in the
Recalculate Roll pop-up menu, there are several different options: because basically the z axis
of the bones must match from the left to the right side of the whole rig, with the Armature (and
the mesh) oriented along the y global axis, as in our Gidiosaurus case, the first top item, Local
X Tangent, can be a good start.

By the way, it is good practice to not trust this automated procedure alone, because sometimes it
can give inconsistent results; so, do the following:

6. After the recalculation, check that the axes of each bone are actually correctly orientated in a
consistent way; effectively, there are some bones that didn't get consistently oriented, meaning
that their x and z local axes are oriented differently from the other bones.

7. In this case, select the incorrectly oriented bone, press Ctrl + R, and move the mouse to change
the rolling; press the Ctrl key to constrain the rolling to intervals of 5 degrees. Alternatively,
select the wrong bones, and then use Shift to select one bone that is correctly oriented and press
Ctrl + N | Active Bone to copy the rolling from the last selected bone.

By enabling the X-Axis Mirror item in the Armature Options tab under the Tool Shelf, you
can recalculate only the bones of one side; the other side bones will follow automatically.

If you want to make sure the bones' orientations are correct and everything is going to work in
animation, just go into Pose Mode and rotate one bone, for example leg.L, and then click on the
Copies the current pose of the selected bones to copy/paste buffer button (Ctrl + C), which is the
first left one of the last three buttons to the right-hand side of the viewport toolbar; then, select
the symmetrical bone, leg.R, and click on the last right button to paste the flipped pose (Ctrl +
Shift + V); if the leg.R bone rotates correctly, then the orientation is OK:

Recalculating the roll of incorrectly oriented bones

8. Now, go to the Object Data window under the main Properties panel and under Display,
switch again the bones visualization from Octahedral to B-bone; select the bones and by
pressing Ctrl + Alt + S, scale the B-bones smaller or bigger, depending on the visual effect you
want to obtain:

The almost completed Armature in B-bones visualization

9. Press Ctrl + Tab to pass directly from Edit Mode to Pose Mode and select the forearm.L bone;
in the Deform subpanel under the Properties panel, set the Segments for the Curved Bones to
12, and then set the Ease In and Ease Out values to 0.000.

10. Repeat this for the forearm.R bone and also for the calf.L and calf.R bones; repeat also for the
arm.L, arm.R, leg.L, and leg.R bones.

In the following screenshot, all the eight B-bones have been selected to make them more
visible. By the way, the highlighted leg.R bone is the active one and shows the Curved Bones
setting in the highlighted Deform subpanel to the right-hand side of the screen.

The Segments setting for the leg bone

11. Select the toe_inn_02.L bone and in the Deform subpanel under the Properties panel, set the
Segments to 6 and leave the Ease In and Ease Out values to 1.000.

12. Repeat this for the toe_ext_02.L bone; then, do the same also to the toe_inn_02.R and
toe_ext_02.R bones.

13. Select the toe_inn_01.L bone and set the Segments to 3; leave the Ease In and Ease Out
values to 1.000.

14. Repeat for the toe_ext_01.L bone; then, do the same also to the toe_inn_01.R and
toe_ext_01.R bones:

The Segments setting for the toes bones

15. Save the file.

How it works…

Although it's often a really time consuming task, the handmade rigging is quite self-explicative; it is,
however, better to explain some of the concepts behind this.

The proper renaming of the bones is important, considering that each deforming bone will affect a vertex
group sharing the same name on the mesh; although in some cases, as for the tongue bones, the bone
naming process can be automated in some way, usually it is better to spend time in giving meaningful
names to each bone, in order to avoid mistakes in the following skinning process.

It's also very important to build the hierarchy of the bones so that a bone at a higher level can lead all of
the children bones, as it would be in a real skeleton (that is, for example, the hand bone leads all the
fingers bones, the forearm bone leads the hand bone, and so on).

Parenting a bone and then obtaining the others by extruding and/or duplicating simplifies the work
because an extruded bone is automatically parented to the bone it has been extruded from, and a
duplicated bone obviously inherits the parenting of the original one; in the case of the tongue.001 bone,
extruding the others has given us a chain with bones automatically parented and named as tongue.002,
tongue.003, tongue.004, and tongue.005.

B-bones are both a visualization mode for the bones and a way of working; B-bones, in fact, can work
inside a chain as splines, which means that the bones are curved according to the number of Segments
and the values of the Ease In and Ease Out items. For the bones of the arms and legs, we have set the
Ease In and Ease Out values to 0.000 (default is 1.000; maximum is 2.000), in order to have the B-
bones rotating only on their y axis but remaining straight along their length, and hence, mimic the
twisting by not only the rotation (pronation and supination of the lower arm) of both the Ulna-Radius
and Tibia-Fibula articulation complexes, but also the (limited) rotation of Femur and Humerus.

In some way, B-bones can work as a kind of simulation for a very basic muscle system; in the following
screenshot, you can see their effect on the skinned mesh for the forearm by rotating the hand.L bone on
the local y axis (to enhance the visibility of the mesh surface's modifications, the wireframe over solid
drawing item has been enabled in the Display subpanel under the Object window):

The effect of the rotation of the hand bone on the forearm B-bone and skinned mesh

Here is the effect of the rotation of the forearm.L bone on the Gidiosaurus high arm:

The effect of the rotation of the forearm bone on the upper arm b-bone and skinned mesh

The effect acts on the shin as well, by rotating the foot.L bone on the global z axis:

The same effect obtained on the calf b-bone by rotating the foot on its local y axis

Also, the same effect acts on the thigh by rotating the calf.L bone:

The same effect obtained on the leg b-bone by rotating the calf

Note that the Gidiosaurus is a digitigrade biped humanoid: the bones that, from our plantigrade point
of view, look like the foot are actually the toes, while the almost vertical structure that we would call an
ankle is the real foot (this is a very common condition among the majority of the terrestrial animals,
both still alive and extinct).

Perfecting the Armature to also function as a rig
for the Armor
So, in the previous recipe, we have built the body deforming Armature for the Gidiosaurus character.

However, the Gidiosaurus is an (almost) evolved and a civilized creature, and being also a warrior, it
wears a metallic Armor; this armor will need to be later parented to the rig as well in order to be
animated.

Some of the bones that we have already created will be perfect to skin the Armor object too, by
assigning the right vertex group to the right mesh part (for example, the head vertex group for the Helm
or the chest vertex group for the Breastplate). However, because the Armor is made also by different
parts that cannot be simply driven by the already existing bones (for example, the belts, Vambraces,
and especially Groinguard), some modification and/or addition to the rig must be done anyway.

Getting ready

Start from the previously saved Gidiosaurus_rig_from_scratch_01.blend file:

1. Enable the 13th scene layer to show the Armor object.
2. Select it and go to the Object Modifiers window under the main Properties panel. Expand the

Subdivision Surface modifier tab and click on the Display modifier in viewport button, the one
with the eye icon, to disable it.

3. Go to the Outliner and click on the arrow icon to the side of the Armor item to make it
unselectable.

4. Click on the arrow icon to the side of the Gidiosaurus_lowres item to make it unselectable as
well.

5. Save the file as Gidiosaurus_rig_from_scratch_02.blend.

How to do it…

Let's start by adding bones dedicated to the Armor:

1. Go into Edit Mode and select the forearm.L bone; use Shift + D to duplicate it and rename it
vanbrace.L. Press M and in the Change Bone Layers pop-up, click on the 2nd button to move
the duplicated bone to that bone layer.

2. Do the same for the forearm.R bone (vanbrace.R) and for the calf.L (greave.L) and calf.R
bones (greave.R).

3. Now, go to the Object Data window and click on the 2nd button under the Layers item in the
Skeleton subpanel, in order to show only the four duplicated bones in the 3D viewport; press
Tab to get out of Edit Mode.

4. Select the vanbrace.L bone and go to the Bone window under the Deform subpanel; under the
Curved Bones item, set back the Segments and Ease In and Ease Out values to default, that is,
1, 1.000 and 1.000.

5. Go back into Edit Mode and click on the Connected item under the Relations subpanel.

6. Get out of Edit Mode and go to the Bone Constraints window under the main Properties
panel (not to be confused with the Object Constraints window); click on the Add Bone
Constraint button and select a Copy Rotation constraint from the pop-up menu (the bone turns
light green, in order to show that it has a constraint assigned now).

7. In the Target field, select Armature; in the Bone field, select the forearm.L item; in the Space
fields, select Pose Space for both.

Alternatively, for steps 6 and 7, select the forearm.L bone and then use Shift to select the
vanbrace.L bone. Hence, press Shift + Ctrl + C to call the Add Constraint (with Targets) pop-
up menu and select the Copy Rotation item. This will automatically add the Copy Rotation
constraint to the vanbrace.L bone, with the first select bone (forearm.L) as a target; the other
setting must be enabled and/or tweaked in the constraint subpanel instead.

8. Click again on the Add Bone Constraint button and this time, select an Inverse Kinematics
constraint (the bone turns yellow, in order to show that an IK solver has been assigned). In the
Target field, select the Armature item, in the Bone field, select the hand.L bone, and set the
Chain Length to 1; deselect Stretch and select Rotation, lowering the weight to the minimum
(that is 0.010):

The constraints assigned to the forearm.L b-bone

9. Repeat the steps from 4 to 8 for the other three duplicated bones (obviously, setting the
appropriate bones as targets for each pair of constraints; the target bone for the IK constraint
assigned to the greave bones is the respective foot bone).

The rig can now drive the vambraces and greaves; let's see the knee guards and Groinguard.
10. First, switch the Armature visualization back to Octahedral, then go into Edit Mode, select

the hips bone and use Shift + D to duplicate it; in the Side view, rotate the duplicate 170

degrees, then move it on the Groinguard part of the armor, in order to have the Head of the
bone placed to the joint of the plate with the ties; select the Tail of the groinguard bone and
scale it smaller to fit the part.

11. To position the bone more precisely, go to the Transform subpanel under the Properties 3D
view sidepanel and set the following values for the Head (of the bone): X = 0.001, Y = 0.020,
and Z = 1.147; for the Tail set the following values: X = 0.001, Y = 0.022, and Z = 0.873.

12. Go to the Item subpanel and rename the bone from hips.001 to groinguard:

The groinguard bone

13. Go to the Bone window in the main Properties panel, and under the Relations subpanel, click
on the Parent empty slot to select the hips item.

14. Now, select the joint of the leg.L bone with the calf.L bone and press Shift + S | Cursor to
Selected; press Shift + A to add a new bone and rescale it smaller.

15. Select the whole new bone and use Shift to select the calf.L bone. Then, go in the 3D view
toolbar and click on the Armature item; go to Transform | Align Bones (or else, press the Ctrl
+ Alt + A keys) to align the new bone as the calf.L one.

16. Enable the widget (Ctrl + spacebar), set the Transform Orientation to Normal, and the
rotation pivot on the 3D Cursor. Then, rotate the new bone 110 degrees on the normal x axis
(the red wheel of the widget, or else R | X | X | 110 | Enter):

Aligning the new bone

17. Go into Object Mode and press Shift + S | Cursor to Selected to place the 3D Cursor at the
median pivot point of the Armature; go back into Edit Mode, press Shift + D to duplicate the
new bone, then Ctrl + M | X to mirror it on the other side.

18. Rename the new bones as kneeguard.L and kneeguard.R; enable the axis visibility and
recalculate the roll by the Ctrl + N | Active Bone tool:

Recalculating the roll angle of the kneeguard bones

19. Parent the kneeguard.L bone to the leg.L bone and the kneeguard.R bone to the leg.R one (not
connected).

20. Select the groinguard bone and use Shift + D to duplicate it, and then scale the duplicated bone
a little bit bigger and rename it as groinguard_ctrl; uncheck the box of the Deform subpanel
under the Bone window:

Creating a control bone for the groinguard bone

21. Select the groinguard bone, go to the Relations subpanel, and click in the Parent field to select
the groinguard_ctrl bone.

22. Get out of Edit Mode and in Pose Mode, select the groinguard_ctrl bone.
23. Go to the Bone Constraints window under the main Properties panel; click on the Add Bone

Constraint button and select a Locked Track constraint from the pop-up menu.
24. In the Target field, select the Armature item; in the Bone field, select the kneeguard.L item.

Set the Head/Tail value to 0.500: To (Axis that points to the target object) = -X and Lock (Axis
that points upward) = Y. In the Constraint Name field, rename it as Locked Track.L.

25. Add a new Locked Track constraint and repeat everything as in the previous one, except in the
Bone field, select the kneeguard.R item; rename it as Locked Track.R.

26. Add a Damped Track constraint: Target = Armature, Bone = kneeguard.L, Head/Tail =
0.728, To = Y, and Influence = 0.263. Rename it as Damped Track.L.

27. Add a new Damped Track constraint and repeat everything as in the previous one, except again
in the Bone field, select the kneeguard.R item; rename it as Damped Track.R.

28. Just to be sure, save the file!
29. Go back into Edit Mode and in the Side view, select the chest bone and use Shift + D to

duplicate it. Press W to call the Specials pop-up menu and select the Switch_Direction item, or
else press Alt + F directly:

The Specials pop-up menu for the bones

30. Go to the Bone window and click on the Parent slot under the Relations subpanel to select the
chest item (not connected); then, go to the Deform subpanel and set the Segments under
Curved Bones to 1. Rename the new bone as armor_ctrl.

31. Press Ctrl + R to roll the armor_ctrl bone, in order to be sure that its local x axis is pointing
towards the front of the model; this is important to make the Transformation constraints, which
we'll add later, work properly:

The armor control bone

32. Go in the Front view. Note that the X-Axis Mirror item in the Armature Options panel under
the Tool Shelf is still enabled; select the Tail of the shoulder.L bone and extrude a new bone
going towards the external edge of the armor spaulder. Then, select the extruded bone, press Alt
+ P | Clear Parent, and move its Head to be positioned above the joint of the spaulder with the
chest plate.

Creating the bone for the spaulder

33. Rename the extruded bone and the corresponding mirrored one as spaulder.L and spaulder.R;
parent them to the armor_ctrl bone (enable the Keep Offset item).

34. Use Shift to select the spaulder.L and arm.L bones and press Ctrl + N | Active Bone; do the
same with the spaulder.R and arm.R bones.

35. Now, put the 3D Cursor at the spaulder.L bone's Head location, and then set the Pivot Point
to the 3D Cursor in the 3D window toolbar. Use Shift + D to duplicate the spaulder.L bone and
rotate the duplicate 70 degrees (in the Front view, R | 70 | Enter).

36. Place the 3D Cursor at the shoulder.L bone's Tail location, select the duplicated bone, and
press Shift + S | Selected to Cursor. Rename the duplicated bone and the mirrored one as
rotarmor.L and rotarmor.R. Go to the Relations subpanel and set the rotarmor.L bone as the
child of the arm.L bone and the rotarmor.R bone as the child of the arm.R bone. Disable the
Deform item for both of them:

Using the 3D Cursor and the Snap menu to exactly place the bones

37. Go into Pose Mode. Select the spaulder.L bone and in the Bone Constraints window, assign a
Copy Rotation constraint: Target = Armature, Bone = arm.L, Space = Pose Space to Pose
Space, and Influence = 0.200.

38. Select the spaulder.R bone and repeat with the Bone = arm.R target.
39. Now, select the armor_ctrl bone and assign a Transformation constraint. Set Target =

Armature, Bone = rotarmor.L, Source = Rot, and Z Max = 20°; Source To Destination
Mapping = switch X with Z; Destination = Rot, X Max = 4°, and Space = Pose Space to Pose
Space. Rename the constraint as Transformation_rot.L and collapse the panel.

40. Assign a second Transformation constraint; set everything as in the previous one, except for
the target Bone = rotarmor.R, Source = Rot, Z Min = -20°, and Destination X Min = -4°.
Rename the constraint as Transformation_rot.R and collapse it.

41. Assign a third Transformation constraint; set everything as in the first one, except do not
switch X with Z, set Destination = Loc and Z Max = 0.050. Rename the constraint as
Transformation_move.L and collapse it.

42. Assign a fourth Transformation constraint; set everything as in the second one, except do not
switch X with Z; set Destination = Loc and Z Min = 0.050. Rename the constraint as
Transformation_move.R and collapse it.

43. Save the file.

How it works…

We couldn't directly use the forearm and calf bones to rig the vanbraces and greaves parts because
being subdivided B-bones, they would curve these armor parts along the length as they actually do by

deforming organic parts as the forearms and shins, and this would look awkward, as you can see in the
following screenshot:

B-bones erroneously deforming stiff objects

Instead, we just duplicated the bones, restored Segments and Ease In and Ease Out to default values,
and assigned 2 bone constraints (note that, as already mentioned, the bones have a Bone Constraints
panel of their own, which is different from the Object Constraints one).

The Copy Rotation constraint, as the name itself explains, copies the rotation in space of the target B-
bone; the position inside the chain is granted because the duplicated bones, although not connected, are
children of the same bones as the original ones.

The Inverse Kinematics constraint—in this case, is used simply to track the local y rotation of the hand
bone in order to rotate correctly on its y axis— is necessary because the Copy Rotation constraint
doesn't seem to read the local y rotation of a subdivided B-bone (besides the technical details, it makes
sense because that's actually not a rotation in space):

The correct rotation of the stiff armor parts

The constraints assigned to the groinguard_ctrl bone are a cheap, but quite an effective, way to fake a
rigid body simulation for the plate that—in actions, for example, a walk cycle—should interact by
colliding with the Gidiosaurus thighs. The Locked Track constraints, targeted to the leg bones,
automatically rotate the plate according to the thighs movements, and the Dumped Track constraints,
targeted to the leg bones as well but with a low influence, add a swinging movement.

The groinguard bone, actually the one affecting the armor plate, is the child of the groinguard_ctrl
bone, and so it inherits the constraint's movements but can be used to refine, tweak, or modify the final
animation of the plate by hands:

The groinguard bone (and plate) automatically rotating during the walk cycle

The armor_ctrl bone is the bone controlling the armor's Breastplate; it's the child of the chest bone,
so it inherits the rotation of the chest, but has four Transformation constraints.

By using as an input the rotation angle of the rotarmor.L and rotarmor.R bones (which are children
themselves of the arm.L and arm.R bones), the constraints give to the Armor chest plate a slight
rotation on the vertical axis and a lateral swinging, driven by the oscillations of the Gidiosaurus arms,
and simulating of the character's shoulders colliding with the armor plate during the walk.

Also, the spaulders are, in turn, partially rotated by bones with the Copy Rotation constraints targeted
to the arms, but with quite a low influence.

Although better appreciated in motion, the following screenshot will show you the effects as the arms
rotate backward:

The rotation and swinging of the armor chest plate according to the arms' movements

Building the character's Armature through the
Human Meta-Rig
In the previous long and quite complex recipe, we hand-built the deforming elements of an average
basic rig for the Gidiosaurus character; actually, in Blender, there are other tools to build rigs,
particularly meant to facilitate the task, and we'll see them in this recipe and in the following ones.

Now, we are going to take a look at the Human Meta-Rig tool.

Getting ready

To be able to use the Human Meta-Rig tool, we must first enable the proper add-on:

1. Start Blender and press Ctrl + Alt + U to call the User Preferences panel. Go to the Add-ons
tab and under Categories on the left-hand side, click on the Rigging item. Go to the right-hand
side of the panel and check the box to the side of the Rigging: Rigify add-on to enable it.

2. Click on the Save User Settings button at the bottom-left of the panel and then close it. Because
we are starting a rig from scratch again, load the Gidiosaurus_unwrap_final.blend
file.

3. Disable the Textured Solid and Backface Culling items in the 3D view Properties panel, join
the 3D window with the UV/Image Editor window, and click on the 11th scene layer to have
only the Gidiosaurus mesh visible.

4. Go to the Object window and under the Display subpanel, enable the Wire item; this will be
useful in the process to have an idea of the mesh topology when in Object Mode and in Solid
viewport shading mode. However, for the moment, press Z to go in the Wireframe viewport
shading mode.

5. Press 1 on the numpad to go in the Front view and 5 on the numpad again to switch to the
Ortho view.

6. Save the file as Gidiosaurus_meta_rigging.blend.

How to do it…

Let's go with the metarig itself:

1. Ensure that the 3D Cursor is at the origin pivot point of the Gidiosaurus mesh. Put the mouse
cursor in the 3D viewport, press Shift + A, and in the pop-up menu, select Armature | Human
(Meta-Rig); a biped Armature, automatically named metarig in the Outliner, appears at the
3D Cursor location:

The Human (Meta-Rig) menu and the rig

2. Press the Tab key to enter Edit Mode and go to the Options tab that appeared under the Tool
Shelf on the left-hand side of the screen; check the box to enable the X-Axis Mirror tool under
the Armature Options item.

3. First, press the period (.) key to set the pivot point around the 3D Cursor and scale the whole
armature bigger while still in Edit Mode, and then start to edit locations and proportions of the
bones of the metarig to fit inside the Gidiosaurus shape:

Tweaking the proportions of the bones of the metarig

4. Select the single joints to move them on the right location according to the mesh topology; to do
this in a more exact way, just use the snap technique explained in steps 25 and 26 of the How to
do it… section of the Building the character's Armature from scratch recipe. Because of the X-
Axis Mirror tool we enabled, it's enough to operate only on one side of the metarig:

Further tweaking of the bones in Edit Mode

5. Delete the bones that you don't need, for example the extra fingers (consider that the
Gidiosaurus has only three fingers in each hand), use Shift + D to duplicate the bones to be
added, for example for the toes, and add new bones where missing, for example for the jaw, and
then parent them. In short, just edit the rig as usual. Again, it should be enough to do all these
operations just on one side of the rig:

The completed skeleton rig

6. Save the file.

We can also add premade rigging sets, for example a whole new leg, spine, or arm, by going, with the
metarig still in Edit Mode, to the Rigify Buttons subpanel under the Armature window in the main
Properties panel. Select the desired item to be added to the rig and click on the Add sample button; the
new part gets added to the rig's pivot point location and must be moved to the right place and tweaked,
rotated, and scaled as needed. Also, the new bones must be named with the correct .R or .L suffix and
the top chain bone must be parented to the bottom metarig bone; for example, in the case of a biped.leg
part addition, the thigh bone must be parented (Ctrl + P | Keep Offset) to the hips bone:

Adding premade rig to the skeleton

How it works…

The Human metarig is actually only the first part of a more complex and complete auto-rigging system
named Rigify, and this we'll see in the next recipe. However, even used by itself, it gives us a readymade
humanoid skeleton to be simply tweaked to fit the character's shape: a good shortcut to quickly build the
Armature rig considering that, at least in its basic form, all the bones are already properly connected
and named with the .L and .R suffices.

Building the animation controls and the Inverse
Kinematic
Whether we built the Gidiosaurus deforming rig part by hands from scratch or by the Human Meta-
rig, we must now add the necessary constraints and controls to allow the animators to easily manipulate
the character.

Note

Note that once the mesh is skinned, the rig, as it is at this point, can actually already work by directly
selecting the interested bones and rotating them in Forward Kinematics; however, to simplify the
animator's work (and complicate our life a little bit more), it's good practice to add the Inverse
Kinematic constraints and the control bones.

Getting ready

Let's start by opening the Gidiosaurus_rig_from_scratch_02.blend file; as usual, enter
Edit Mode to ensure that the X-Axis Mirror item in the Armature Options subpanel under the Tool
Shelf is enabled.

How to do it…

We now need to create the control bones; we can do it by extruding from the bones they will drive:

1. Press the 3 key on the numpad to go in the Side view and, if not already, select the Armature; if
necessary, in the Display subpanel, change the visualization of the bones from B-Bone to
Octahedral.

2. While still in Edit Mode, use Shift to select the joints of the hand with the forearm and the calf
with the foot (it's enough only on one side) and extrude them going backwards (0.400 along
global y axis).

3. Rename the new extruded bones as ctrl_hand.L, ctrl_hand.R, ctrl_foot.L, and ctrl_foot.R
respectively. Deselect the Deform item and unparent them all.

4. Select the Head of the hips bone and repeat: rename the extruded bone as MAIN.
5. Select the hips bone and in the Relations subpanel, parent it as a child of the MAIN bone:

Extruding the control bones part 1

6. Select the elbow joint (between the forearm and arm) and extrude a new bone backwards;
rename the extruded bone and the mirrored one as elbow.L and elbow.R. Disable the Deform
item and parent them (Keep Offset) to the MAIN bone. Move them backwards by 0.500 along
the global y axis.

7. Select the knee joint (between the thigh and calf) and extrude forward; rename the new bones
as knee.L and knee.R. Disable the Deform item and parent them (Keep Offset) to the MAIN
bone as well. Move them forward by -0.500 along the global y axis;

Extruding the control bones part 2

8. Go into Pose Mode and select the forearm.L bone; go to the Bone Constraints window and
assign an Inverse Kinematics constraint. Set Target = Armature, Bone = ctrl_hand.L, Pole
Target = Armature, Bone = elbow.L, Pole Angle = -90°, and Chain Length = 2, and deselect
Stretch. Repeat the process for the forearm.R bone:

Assigning the IK constraint to the forearm.L bone

9. Do the same for the calf.L and calf.R bones, using the ctrl_foot.L and ctrl_foot.R bones as
targets and the knee.L and knee.R bones as poles, but set the Pole Angle to 90° for both.

10. Now, go back into Edit Mode, select the hand and foot bones, and use Shift + D to duplicate
them. Click on the Pivot Point button on the 3D view toolbar, select the Individual Origins
item, and then scale the duplicated bones smaller to 0.600:

Scaling the bones smaller on their individual origin

11. Deselect the Deform item for all of them, and then rename them as: handrot.L, handrot.R,
footrot.L, and footrot.R.

12. In the Relations subpanel (or by the Ctrl + P | Keep Offset shortcut), parent handrot.L to
ctrl_hand.L, handrot.R to ctrl_hand.R, footrot.L to ctrl_foot.L, and footrot.R to
ctrl_foot.R:

Using the Parent slot under the Relations subpanel

13. Use Shift to select the ctrl_foot.L bone and the foot.L bone and press Ctrl + Alt + A to align the
first one with the active one; then, select only the ctrl_foot.L bone, and by the toolbar widget
manipulator set to Normal orientation, rotate it 245° on the x axis:

Rotating the bone on the Normal orientation by the widget

14. Go into Pose Mode and select the hand.L bone; assign a Copy Rotation bone constraint with
Target = Armature and Bone = handrot.L, and set Space = Pose Space to Pose Space.

15. Repeat for the other hand bone and feet.
16. Select the Tails of the eyelid_upper.L, eyelid_bottom.L, and eye.L bones and extrude forward

by 0.0600 along the y axis; rename them as eyelid_ctrl_upper.L, eyelid_ctrl_bottom.L, and
eye_ctrl.L and the same names with the .R suffix for the mirrored ones.

17. Add a new bone in the middle front of the eyes, rename it eyes_ctrl, and parent it with offset to
the head bone; then, select the eye_ctrl.L and eye_ctrl.R bones and parent them with offset to
the eyes_ctrl bone.

18. Select the eyelid_upper.L, eyelid_upper.R, eyelid_bottom.L, and eyelid_bottom.R bones and
parent them with offset to the head bone:

The eyes control rig

19. Select the Tails of the mand and tongue.005 bones and extrude; rename the extruded bones as
ctrl_mouth and ctrl_tongue. Parent with offset the ctrl_tongue bone to the ctrl_mouth bone
and this latter bone to the head bone:

Extruding the control bones for the tongue and jaw

20. Go into Pose Mode and assign Locked Track constraints to the eyelid_upper and bottom with
target to the respective extruded ctrl bones; set Lock to X:

Assigning the Locked Track constraints for the eyelid's controls

21. Assign Damped Track constraints to the eye.L and eye.R bones, again with target to the
respective extruded ctrl bones:

Assigning Damped Track constraints for the eye's controls

22. Assign a Track To constraint to the mand bone with target to the ctrl_mouth bone; check the
Target Z item box and set Space = Pose Space to Pose Space:

Assigning a Track To constraint to the mand bone

23. Assign an Inverse Kinematics constraint to the tongue.005 bone with target to the ctrl_tongue
bone; set Chain Length to 5, deselect the Stretch item, and then enable also the Rotation item;

The IK constraint for the bone's chain of the tongue

At this point, the main controls for the Gidiosaurus rig are made; still something is missing, for
example, the controls to drive fingers or/and toes bones as a whole, and also a muscle system layer of
bones with the Stretch To constraints that can be added to improve the realism of the model. However,
this latter option is quite a complex matter and, for the moment, we will stop here (maybe in another
book).

The very last thing to do is to assign Custom Shapes (usually, simple meshes located on the last scene
layer) to the control and animatable bones widget, and move the rest of the bones to the third Armature
layer to be out of view.

To see the completed rig with the Custom Shapes assigned to the control bones, load the
Gidiosaurus_rig_from_scratch_03.blend file;

The rig with and without Custom Shapes and with the deformation bones hidden on the third (disabled)
Armature layer

See also
• http://www.blender.org/manual/rigging/index.html

http://www.blender.org/manual/rigging/index.html

Generating the character's Armature by using
the Rigify add-on
We have already seen that the Human Meta-Rig armature is part of the Rigify add-on. It is a
tremendously useful Python script, coded by Nathan Vegdhal, that we enabled two recipes ago, and in
this recipe, we are going to use that to build the final rig for the Gidiosaurus.

Getting ready

The preparation steps to use the Rigify add-on are the same as we did in the Building the character's
Armature through the Human Meta-Rig recipe: after we have enabled the add-on in the User
Preferences panel, we load the Gidiosaurus_unwrap_final.blend file, add the Human
metarig to the scene, and then tweak the bone's position, rotation' and size in Edit Mode to fit the
character's shape and topology.

Also, because the rig generated by the Rigify add-on uses some Python script, in the User Preferences
panel, we must enable the Auto Run Python Scripts item (in the File | User Preference | File tab, click
on the Auto Run Python Scripts checkbox).

How to do it…

At this point, in Object Mode, we can go to the bottom of the Armature window under the main
Properties panel and click on the Generate button in the Rigify Buttons subpanel at the bottom of the
Armature window; the add-on will automatically generate a new rig (simply named rig in the
Outliner) using the metarig skeleton as an input and adding all the necessary IK constraints, the bone's
widget controls (generated and located in the last scene layer), and also placing the different bones on
different Armature layers that are easily accessible through the Python interface created by the script in
the 3D window Properties sidepanel on the right-hand side (the Rig Layers subpanel):

The generated rig with the Rig Layers subpanel

Keep the metarig and move it to another layer, just in case we need to do some editing to it in the
future; in fact, by testing the generated rig, sometimes you discover that something must be changed to
work in a different way. In this case, it is enough to modify the metarig and generate the rig again by the
add-on that automatically reuses the elements of any already existing rig and the bone's widgets on the
last scene layer.

Keep in mind that the generated rig can (and often must) be edited later anyway; after the rig generation,
save the file as Gidiosaurus_rigify_01.blend.

How it works…

Being conceived to build a rig for a generic biped humanoid character, the Rigify add-on doesn't
generate everything you need automatically: in our case, bones for the jaw, tongue, eyes, and eyelids
must be added by hands after the rig regeneration and as explained in the Building the character's
Armature from scratch recipe.

The choice to let face-rig elements, at least initially, out of the Rigify add-on has been intentional by
Vegdhal, who thinks that a face-rig tool would probably be better as a separate add-on. By the way, in
the last Blender releases, it is available, in the Armature menu, a Pitchipoy human rig option, which is
an addition to the Rigify script that should help in the face's rig construction
(http://pitchipoy.tv/?p=2026).

http://pitchipoy.tv/?p=2026

Also, at least for the moment, the Rigify add-on doesn't accept custom rig parts, but only the premade
parts that we can add to the metarig by the Add Sample button under the Rigify Buttons subpanel in
Edit Mode; for example, the premade leg rig (biped.leg) has only one bone and not two for the toes, as
would be necessary for the Gidiosaurus character, but in any case, once the final rig is generated by the
script, all the necessary additions and modifications can be (quite) easily made by hand.

Obviously, to modify the generated rig, knowing how a rig works in Blender is mandatory: you can rest
upon the Building the character's Armature from scratch, Perfecting the Armature to also function as a
rig for the Armor, and Building the animation controls and the Inverse Kinematic recipes in this chapter.

In the following screenshot, you can see the Rigify-generated rig modified with all the additional bones
for the Armor, eyes, mouth, and tongue, with the necessary added constraints and the two toed feet
bones; the file is saved as Gidiosaurs_rigify_02.blend:

The final total rig

See also
• http://blenderartists.org/forum/showthread.php?200371-Rigify-Auto-rigging-system-new-and-

improved

http://blenderartists.org/forum/showthread.php?200371-Rigify-Auto-rigging-system-new-and-improved
http://blenderartists.org/forum/showthread.php?200371-Rigify-Auto-rigging-system-new-and-improved

Chapter 7. Skinning the Low Resolution Mesh
In this chapter, we will be covering the following recipes:

• Parenting the Armature and Mesh using the Automatic Weights tool
• Assigning Weight Groups by hand
• Editing Weight Groups using the Weight Paint tool
• Using the Mesh Deform modifier to skin the character
• Using the Laplacian Deform modifier and Hooks

Introduction
In the previous chapter, we saw the rigging stage, that is, how to build the character's rig (which in
Blender is called an Armature) that will be used to deform the mesh for animations. In this chapter,
instead, we are going to see quicker and more effective ways to do the skinning that is a necessary step
to bind the bones of the Armature to the mesh's vertices so that they can be deformed.

To allow an Armature to deform a Mesh, they must be parented with some kind of relation; in Blender,
usually you must select the Mesh and then Shift select the Armature and press Ctrl + P to parent them
with different options.

This automatically makes the Mesh object a child of the Armature object and assigns the Armature
modifier to the Mesh. In fact, the parenting would not be strictly necessary; it would be enough to assign
an Armature modifier to the mesh and manually select the rig as a deforming object, but it's a good
habit to use the Ctrl + P parenting to have the rig as a parent of the mesh, also in Object Mode. This
way, whenever you move the Armature in Object Mode, the mesh will follow it automatically.

For the examples in these recipes, to skin the Armature to the Gidiosaurus mesh, we are going to use
the final version of the rig we have built with our hands: the one saved as
Gidiosaurus_rig_from_scratch_02.blend.

Anyway, if you want to put this to practice, in this chapter, with a more complex and complete Rigify
armature (Gidiosaurus_rigify_02.blend), the procedure is exactly the same. In this case, even
if not strictly necessary, remember that you can enable the 30th Armature layer (in total there are 32)
to show the deforming bones; instead, disable the visibility of all the other bone layers also by the
Python button interface in the Rig Layers subpanel under the 3D window Properties side panel:

The Rig Layers panel in the N Properties sidepanel and the Armature bone layers button in the Skeleton
subpanel under the main Properties panel

Remember to check in your User Preferences panel (press Ctrl + Alt + U to call it) if you have, under
the File tab, the Auto Run Python Scripts item enabled; otherwise, the rig based on Python scripts or
expressions (like the rigs obtained through the Rigify add-on) won't work properly.

In this case, Blender will warn you through an Auto-run disabled message visible in the top main
header; it's enough to click the Reload Trusted button to the right and then confirm by clicking on the
Revert item in the pop-up menu that appears, to reload the .blend file with the scripts enabled and to
have everything working as expected:

To the left, you can see several bones apparently missing in the rig because it is wrongly oriented, and
the "Auto-run disabled" warning in the top main header; to the right, you can see the restored rig

Parenting the Armature and Mesh using the
Automatic Weights tool
In this recipe, we are going to see one of the more commonly used parenting options: the handy
Automatic Weights tool.

Getting ready

Start Blender and open the Gidiosaurus_rig_from_scratch_02.blend file.

1. Select the Armature item in the Outliner and press Ctrl + Tab to go out of Pose Mode and
enter Object Mode.

2. Go to the Armature window under the Properties sidepanel to switch the Display mode from
Wire to Octahedral and deselect the Shapes item.

3. Enable the third Armature layer by clicking on the 3rd button under the Skeleton subpanel.
4. Disable the 13th scene layer to hide the Armor.
5. Go in to Edit Mode and Shift multi-select the MAIN bone, the pole bones and the ctrl bones; in

short, all the bones that don't have to deform anything, but are used to control the rig. Press Shift
+ W and in the Toggle Bone Options pop-up panel, select the Deform item to disable it for all
of them at once:

Toggling the Deform item for all the selected bones at once

6. Now, deselect everything and select all the bones that, in the previous chapter, we had added
specially to rig the Armor object, using the Armature Layers buttons: the armor_ctrl bone,

groinguard, vanbrace.L and .R, greaves.L and .R, kneeguard.L and .R, spaulder.L and .R;
again, press Shift + W | Deform to disable the option.

Repeating for the Armor object bones

7. Don't deselect the Armor bones, simply switch from Edit Mode to Object Mode.

How to do it…
1. Select the Gidiosaurus_lowres object and then Shift-select the Armature, and press Ctrl + P;

in the Set Parent To pop-up menu; select the With Automatic Weights item:

The Set Parent To pop-up menu

2. Reselect the Armature, go in to Edit Mode, and press Shift + W | Deform to re-enable the item
for the still-selected Armor bones; then, go out of Edit Mode.

3. Now, reselect the Gidiosaurus object; go to the Object Modifiers window, move the newly
created Armature modifier upwards in the stack, and enable the Preserve Volume item.

4. Disable the Display modifier in viewport button (the one with the eye icon) of the Subdivision
Surface modifier to speed up the 3D viewport (sadly, Blender still has very bad real-time
viewport performances, so even if you have a lot of RAM and a powerful workstation, it's wise
to stay as light as you can).

5. Select the Armature and under the Object Data window, re-enable the Shapes item and hide
the second and the third Armature Layer; press Ctrl + Tab to go in Pose Mode and try to select
some of the control bones to move or rotate them and so control how they are deforming the
mesh; temporarily, hide the Eyes object in the Outliner.

The Armature modifier subpanel and the posed mesh

To rotate the bones on their local axis, enable the 3D manipulator widget in the 3D view
toolbar (Ctrl + Spacebar), click on the Rotate icon, and set Transformation Orientation to
Normal.

6. Save the file as Gidiosaurus_autoweights.blend.

How it works…

The Automatic Weights tool creates the necessary Vertex Groups based only on the bones that have
been set as Deformers in the subpanel under the Bone window. It then assigns weights inside a range
from 0.000 to 1.000 to the vertices contained in these vertex groups, calculating their proximity to the
bone with the same name. In short, the arm.L bone will deform only the vertices inside the arm.L
vertex group, and with an intensity based on their weights.

Because we used the Automatic Weights tool to skin only the sole Gidiosaurus mesh (leaving the
skinning of other objects such as the Eyes or the Armor for the next recipe and method), before the
parenting we had to check for any bone erroneously left as a deformer (that is, one of the several control
bones in the previous chapter), but, especially we had to temporarily disable the Deform item for the
Armor bones, which otherwise would have also been evaluated by the tool for the body.

In most cases, the Automatic Weights tool can give quite good results without the need of further
tweaking; however in some areas, for example the head, where the head bone length doesn't fully fit the
upper part of the shape of the mesh and where there are also other deforming bones, it can easily fail.

Look at the following screenshot; at first, by rotating the head control, the only issue seems to be some
of the teeth left out from the calculations but then, simply by moving the controls for the eyes, tongue,
and jaw, it becomes evident that the tool assigned several vertices to the wrong bones merely based on
their proximity to that part of the mesh:

The failure of the Automatic Weights tool parenting

Although at first sight this can appear to be a total mess, it's usually less complex to fix than one might
think.

For the moment, by selecting the Gidiosaurus mesh and pressing Ctrl + Tab, we go in to Weight Paint
mode, and by right-clicking on a bone (the Armature is still in Pose Mode), the weights of the
corresponding vertex group became visible as colored areas on the mesh; the color red corresponds to a
weight value of 1.000 and blue to a value of 0.000, with all the intermediate hues corresponding to the
intermediate values. For example, green = 0.500 and so on.

There's more…

Let's see all this step by step:

1. Select the Armature and, while still in Pose Mode, enable the visibility of the third Armature
layer (and therefore of all the deforming bones) and then disable the Shapes item again.

2. Select the Gidiosaurus mesh and by pressing Ctrl + Tab, enter Weight Paint mode (or switch
to it by the object interaction mode button on the toolbar of the 3D view).

3. Click on any one of the deforming bones, for example the neck bone, and notice that while the
weights appear on the mesh surface, at the same time the corresponding vertex group is
highlighted in the Vertex Groups subpanel to the right:

Visualizing the vertex groups on the mesh

By clicking on the head bone and/or the mand bone, the reasons for the bad deformations are
immediately clear: the Automatic Weights tool didn't assign the whole upper part of the head of the
character to the sole head vertex group (and therefore to the bone with the same name) with a full value
of 1.000; instead, it assigned part of the head mesh to the eyes bones, other parts to the tongue.005
bone, some to the mand bone, and so on.

Different weights of the vertex groups associated with different bones

Obviously, this isn't the tool's fault, but it is an unavoidable issue due to the particular arrangement of
the bones in the head area and can be quite easily fixed anyway; we'll see how in the next and the
Editing the Weight Groups by the Weight Paint tool recipe.

See also
• http://www.blender.org/manual/rigging/skinning/obdata.html

http://www.blender.org/manual/rigging/skinning/obdata.html

Assigning Weight Groups by hand
This technique is the oldest way to assign weights to vertices groups in Blender. Although now there are
quicker ways to do the same thing, in some cases it's still one of the best approaches, which can reveal
itself to be quite useful mainly because you can precisely select individual or edge-loops of vertices to
be weighted inside a group.

Getting ready

Open the Gidiosaurus_autoweights.blend file we saved in the previous recipe.

1. If necessary, press Ctrl + Tab to go out of Weight Paint mode.
2. Select the Armature (which should still be in Pose Mode), press the A key twice to deselect-

select all the bones, and press Alt + R and Alt + G to clear any rotation or position and restore
the default pose.

3. Press the 3 key on the numpad to go in to Side view; if necessary, the 5 key on the numpad to
go in to Ortho view and the Z key to go in to Wireframe viewport shading mode.

4. Select the Armature and disable the Shapes item; switch the draw mode of the bones to Stick
and enable the third Armature layer to show the deforming bones.

5. Save the file as Gidiosaurus_skinning_01.blend.

How to do it…

First, we are going to use this technique to fix the head deformation as follows:

1. Press Shift + B to draw a box around the head of the Gidiosaurus mesh and automatically zoom
to it. Select the mesh and enter Edit Mode.

2. Press the C key, through which the mouse cursor turns into a circle whose diameter can be set
by scrolling the mouse wheel.

3. Start to paint-select the vertices you want to add to the vertex group; in this case, we must add
the whole upper head to the head vertex group and also include the upper teeth that were
missing in the group.

4. Be sure that the head vertex group is the selected one in the Vertex Groups subpanel under the
Object Data window to the right, and that the Weight slider is set to 1.000; then, click on the
Assign button.

5. To quickly find a required vertex group, instead of slowly scrolling the list, just click on the
grayed out little + icon at the bottom of the Vertex Groups window (just above the Assign
button) to expand a blank search field and then write a few letters of the group's name followed
by the Enter key:

The vertex group names search function

To get the complete list of vertex groups' names back, just erase the letters you wrote in the field
and press Enter.

6. Now, switch from Edit Mode to Weight Paint mode again, where the head vertex group colors
show a lot different than before:

The modified "head" vertex group

7. Now, while still in Weight Paint mode, go to the Tools tab under the Tool Shelf to the left of
the screen and, in the Weight Tools subpanel, first click on the Normalize All button and then
on the Clean button.

8. Select the mand bone, go in to Edit Mode, and press A to deselect the vertices of the head
vertex group. Select all the vertices of the jaw, including the bottom teeth; then go to the
Vertex Groups subpanel to the right and deselect the tongue group by clicking on the, yes,
Deselect button (we created the tongue vertex group chapters ago, during the modeling stage;
otherwise, just deselect the tongue's edge-loops manually).

9. Find and select the mand group and click on the Assign button.
10. Go again in to Weight Paint mode and click on the Normalize All and Clean buttons under the

Weight Tools subpanel:

The Weight Tools subpanel and the "mand" vertex group

11. Now, go out of Weight Paint mode, select the mesh and, in the Vertex Groups subpanel,
search for the eyelid_upper.L vertex group; enter Edit Mode and click on the Select button:

The selected eyelid_upper.L vertex group

We must get rid of all these vertices erroneously assigned to the vertex group by the Automatic
Weights tool.

12. Click on the Remove button and then press the A key to deselect everything.
13. Repeat this for the eyelid_bottom.L, eyelid_upper.R, eyelid_bottom.R, and also for the eye.L

and eye.R vertex groups.
14. Zoom to the eyes area. Select an edge-loop (Alt + right-click) around the left eyelids and then

press Ctrl and the + key on the numpad to extend the selection; press the H key to hide the
selected vertices (this is simply to isolate the eyelids vertices for easier edge-loops selection):

Isolating the eyelids vertices

15. Select the border upper edge-loops and assign them to the eyelid_upper.L vertex group with a
weight of 1.000; select the second upper edge-loop and again assign it to the eyelid_upper.L
vertex group, but with a weight of 0.500 (see the following screenshot).

16. Do the same for eyelid_bottom.L:

The visualization of the eyelids vertex group with different weights

In the preceding screenshot, to the right, you can see the weights of eyelid_upper and
eyelid_bottom vertex groups on both sides, made visible at the same time by the Multi-Paint
item enabled in the Brush subpanel under the Tool Shelf; here it is used only for visualization
purposes.

17. Repeat the procedure for the eyelids on the right side (eyelid_upper.R and eyelid_bottom.R).
18. In the Vertex Groups subpanel, select the head vertex group and then select the border edge-

loops of both the left and right eyelids. Click on the Remove button to remove those vertices
from the group's evaluation:

Removing the eyelids vertices from the "head" vertex group

Assigning weights by hand can be a handy method also for other parts, for example, the
eyeballs, which are separate objects from the Gidiosaurus mesh.

19. Go out of Edit Mode, and in the Outliner select the Eyes object; press Tab again to go in to
Edit Mode.

20. Go in to Front view and box-select all the vertices of the left eye; then, go to the Vertex
Groups subpanel under the Object Data window and click on the + icon to the right to create a
new group:

Creating the vertex group for the eyeball

21. Ctrl + left-click on the name of the vertex group to rename it as eye.L and then click on the
Assign button to assign all the selected vertices to the group with a value of 1.000.

22. Deselect everything, select the vertices of the other eye, and create a new vertex group; rename
it as eye.R and assign the vertices.

Creating the eye.R vertex group

23. Exit Edit Mode (Tab) and go to the Object Modifier window; assign an Armature modifier,
move it upwards in the stack, and click on the Object field to select the Armature item as a
deforming object.

24. Temporarily, unhide the Corneas object in the Outliner and repeat from step 19 to step 23,
where we created the eye.L and eye.R vertex groups and assigned the appropriate mesh vertices
and the Armature modifier.

The same process must be applied to the skinning of the Armor that, being a single object made
of stiff elements, can be easily and ideally divided into different vertex groups; each one is
skinned with the full value of 1.000.

25. Click on the button to activate the 13th scene layer and show the Armor; select it and enter
Edit Mode.

26. Select all the vertices of the helm, including the decorations, create the head vertex group in
the Armor mesh (remember that the name must be the one of the deforming bones), and click
on the Assign button with a weight value of 1.000:

The "head" vertex group for the Armor object

27. Repeat the operation with each part of the Armor, so creating, always with a weight of 1.000,
the vertex groups: vanbrace.L and vanbrace.R (covering the forearms), greave.L and .R
(covering the calves), groinguard (the front hips), kneeguard.L and .R, spaulder.L and .R,
and armor_ctrl.

You can use the following screenshot as a guide:

The happy colorful Armor guideline

28. Go out of Edit Mode; then, go to the Object Modifier window, assign an Armature modifier
to the Armor, move it upwards in the stack, and click on the Object field to select the
Armature item as a deforming object.

29. Disable the Display modifier in viewport button (the one with the eye icon) for the Subdivision
Surface modifier, to speed up the 3D viewport.

For the moment, ignore the Tiers (which have been separated by the Armor object and simplified by
deleting several alternate edge-loops, this we'll skin in the next recipe) and save the file.

How it works…

The Normalize All button normalizes the weights of all the vertex groups so that their sum is not
superior to 1.000; because we had assigned a weight of 1.000 to the upper head vertices, the vertices in
the other groups that were interfering with the head deformation have been automatically set to 0.000.

The head group, instead, remained the same because it was locked in the Options bottom panel; the
Clean button, then, took care of removing all the unwanted vertices in the active group, restricting the
inclusion of its vertices only to those with a weight greater than 0.000.

When assigning vertices to a group, the Weight slider under the Vertex Groups subpanel can obviously
be set to any value between 0.000 and 1.000, so it's also possible to select a single edge-loop or rows of
vertices and assign them at different times to the same vertex groups, but with different weight values.
For example, a central edge-loop of vertices with the weight of 1.000 can be surrounded by external

edge-loops with weight values of 0.750, 0.500, 0.250, and so on. This is what we have done for the
eyelids after the cleaning of the eye sockets area, thanks to the Select, Deselect and Remove buttons.
Be aware that the same result can be obtained by painting and/or blurring the weights on the mesh, but
we'll see this in the next recipe.

See also
• http://www.blender.org/manual/modeling/meshes/vertex_groups/index.html

http://www.blender.org/manual/modeling/meshes/vertex_groups/index.html

Editing Weight Groups using the Weight Paint
tool
Both the Automatic Weights parenting as well as the Weight Groups created and assigned by hand
must, at a certain point, inevitably be edited for several reasons. As we have already seen, the parenting
tool didn't do a perfect job, or maybe the transition between different weights is too sharp and must be
blurred to smoothly deform the mesh. In any case, the ideal tool for this editing work is the Weight
Paint tool.

Getting ready

As usual, let's first prepare the scene to work on:

1. Open the Gidiosaurus_skinning_01.blend file and hide the 13th scene layer.
2. Enable the 3rd Armature layer and then deselect the Shapes item.
3. Press the 3 key on the numpad to go in to Side view; if necessary, press the 5 key on the

numpad to go in to Ortho view and the Z key to go in to Wireframe viewport shading mode.
4. Save the file as Gidiosaurus_skinning_02.blend.

How to do it…

Also, now let's start with the Weight Paint tool itself:

1. Select the Gidiosaurus mesh and go in to Weight Paint mode; the tabs under the Tool Shelf on
the left-hand side of the 3D window (press the T key in case they are not already present),
change to show the Weight Paint tools.

2. In the viewport, right-click on the head bone to show the head vertex group on the mesh's
surface.

3. Go to the Tool Shelf and click on the Options tab to verify that the X Mirror item in the
Options subpanel is activated. Then, go back to the Tools tab and click on the big Brush
window at the top to select a Blur brush; set Weight to 1.000 and Strength to 0.400.

4. Select the Auto Normalize item at the bottom of the Brush subpanel.
5. Start to paint on the borderline of the vertex group, blurring the separation between the red and

blue colors and trying to obtain, in general, a transition as smooth as possible:

Blurring the edges of the vertex group

6. Switch to the mand vertex group by selecting the corresponding bone and smooth the transition
again:

Smoothing the transition of the "mand" vertex group

7. If you need to reduce the weight of a vertex, switch the Blur brush with a Subtract one, and
with a low Strength (0.100 or even less) paint on it. Then, if necessary, blur the area again.

8. Alternatively, instead of using a Subtract brush, you can paint on the mesh with a Mix brush
set with Strength = 1.000 and Weight = 0.000.

9. Select the neck bone and reduce the weight of the vertices at the neck edges to 0.000.
10. Select the chest bone and paint the vertices at the chest edges to 1.000.
11. Repeat the last step also for the spine.001 and .002 bones:

Other vertex groups

To look at exactly how the weights have been edited by the Weight Paint tool, open the
Gidiosaurus_skinning_03.blend file, hide the Armor, select the Gidiosaurus mesh
and press Ctrl + Tab to go in to Weight Paint mode, and then right-click to select the different
bones.

One last thing still remains to be done: we must also skin the Tiers_simplified object.
12. Enable the 13th scene layer to show the Armor and the Tiers; temporarily hide both the

Armature and the Armor object by clicking on the respective eye icon in the Outliner.
13. Select the Gidiosaurus mesh, then, Shift-select the Tiers object and press Ctrl + Tab to go in to

Weight Paint mode.
14. Go to the Weight Tool subpanel under the Tool Shelf and click on the Transfer Weight button,

which is the last button at the bottom. After a bit of calculation, the weights of the vertices for
the underlying Gidiosaurus mesh have been transferred to the corresponding overlaid vertices
of the Tiers object and the vertex groups as well:

Transferring the vertex group weights from the Gidiosaurus mesh to the tiers object

15. Go out of Weight Paint mode and select the sole Tiers object. In the Object Modifiers
window, assign an Armature modifier or, if you prefer, just join it to the Armor object (Armor
as an active object and then press Ctrl + J). In both cases, just remember to enable the Preserve
Volume item.

16. Save the file.

See also
• http://www.blender.org/manual/modeling/meshes/vertex_groups/weight_paint.html

http://www.blender.org/manual/modeling/meshes/vertex_groups/weight_paint.html

Using the Mesh Deform modifier to skin the
character
The Mesh Deform modifier has been introduced in Blender for the production of the short open movie
Big Buck Bunny and it's a very easy and quick way to skin medium and high resolution characters'
meshes. Although the utility of this modifier really shows the skinning of fat, chubby characters, it will
be useful to see the way it works even if applied to a quite skinny character such as the Gidiosaurus.

Getting ready

First, we must prepare the deforming cage, which is a simplified low poly mesh totally enveloping the
character's mesh; to do this, in our case, we can start from an already made object:

1. Open the Gidiosaurus_skinning_03.blend file.
2. Click on the File | Append menu (or press Shift + F1), browse to the folder with all the project

files, and click on the Gidiosaurus_base_mesh_02.blend file. Then, click on the
Object folder and select the Gidiosaurus item.

3. Move the just-appended object to the first scene layer; then, go to the Outliner and rename it as
Gidiosaurus_cage.

4. This is the base mesh we built in the first chapter of this module, so go to the Object Modifier
window and apply the Skin modifier; delete the Mirror modifier and disable the Subdivision
Surface modifier visibility in the viewport by clicking on the eye icon button.

5. Go in to Edit Mode and by pressing Ctrl +R, cut a median vertical edge-loop at the center of the
mesh.

6. Select the vertices of the missing half and delete them; then, select the median edge-loop and,
with Pivot Point set to 3D Cursor (and the 3D Cursor located at the center of the scene), scale
them to 0.000 along the global x axis.

7. Assign a new Mirror modifier and enable the Clipping item.

Preparing the deforming cage

8. Now, enable the scene layer with the Gidiosaurus mesh, select it, and temporarily disable the
Armature modifier by clicking on the Display modifier in viewport button (the one with the eye
icon).

9. In the Outliner, click on the eye icon to hide the Armature.
10. Reselect Gidiosaurus_cage, enter Edit Mode, and start to edit. Basically, the cage must be

large enough to totally include the character's mesh.
11. Select whole parts such as the head or a hand and scale the vertices on their normals (Alt + S)

and move the vertices by hand.
12. Where necessary, add edge-loops (Ctrl + R) to refine the cage's shape, but try to keep it as

simple and low resolution as possible.

The cage mesh in Edit Mode

13. Once we have confirmed that the Gidiosaurus mesh is totally contained in the cage, we can go
out of Edit Mode.

How to do it…

Now that the deforming cage is made, we can go on with the skinning:

1. Unhide the Armature and select it. Go in to Edit Mode, select the bones deforming the Armor
(see the Parenting the Armature and Mesh using the Automatic Weights tool recipe in this
chapter for this), and press Shift + W | Deform. Don't deselect anything because it will be useful
later on to have the bones still selected, and go straight back to Object Mode.

2. Now, hide the Gidiosaurus_lowres object; then, select the Gidiosaurus_cage object, Shift-
select the Armature, and press Ctrl + P | With Automatic Weights.

3. Select the sole Armature, go in to Edit Mode and press Shift + W | Deform, and then switch to
Pose Mode.

4. Reselect the cage and go to the Object Modifiers window; in the Armature modifier, enable
the Preserve Volume item, but temporarily disable the visibility of the modifier in the viewport
(eye icon button):

Parenting the deforming cage to the Armature

5. Go to the Object window and click on the Maximum Draw Type button under the Display
subpanel to select the Wire item. Unhide the Gidiosaurus_lowres object.

6. Select the Gidiosaurus mesh and go in to Edit Mode. In the Vertex Groups subpanel under the
Object Data window, create a new group and rename it as mdef; select all the vertices of the
Gidiosaurus mesh except feet, fingers, and the head and assign them to the mdef vertex group:

The "mdef" vertex group

7. Go to the Object Modifiers window; in the Armature modifier panel, click on the vertex group
empty field at the bottom (name of Vertex Group which determines influence of modifier per
point) to select the mdef vertex group and then click on the invert vertex group influence button
to the left (the one with the two arrows pointing in opposite directions). Temporarily, disable the
visibility of the modifier in the viewport (eye icon button).

8. Assign a Mesh Deform modifier and move it upwards in the stack, before the Subdivision
Surface modifier but after the Armature one.

9. In the Object field of the Mesh Deform modifier, select the Gidiosaurus_cage item; in Vertex
Group again, select the mdef vertex group, check the Dynamic item box, and then click on the
Bind button.

10. Save the file as Gidiosaurus_mesh_deform.blend.

How it works…

The Gidiosaurus_cage is a very simple mesh. Therefore, it is very easily skinned to the Armature (we
didn't do it in our case, but obviously, when necessary, the automatic weights assigned by the parenting
can be easily edited as in the Editing the Weight Groups using the Weight Paint tool recipe) and is
therefore deforming, through the binding of the Mesh Deform modifier, the more subdivided
Gidiosaurus mesh.

In fact, if everything went right, now we should have the Gidiosaurus body correctly deformed by the
cage only for the vertices that belong to the mdef vertex group, while the Armature, which also
deforms the cage, is still taking care of the vertices outside the group; to check this, just try to pose the

rig and alternatively disable, in the Object Modifiers window, the viewport visibility of the Armature
and Mesh Deform modifiers for the mesh.

Note that even we didn't apply the Mirror modifier to the cage object; the Mesh Deform modifier
works correctly anyway, exactly like the Armature one.

The Gidiosaurus model posed through the Mesh Deform modifier

See also
• http://www.blender.org/manual/modifiers/deform/mesh_deform.html

http://www.blender.org/manual/modifiers/deform/mesh_deform.html

Using the Laplacian Deform modifier and Hooks
One of the last modifiers introduced in Blender, the Laplacian Deform modifier shouldn't actually be
considered as an effective tool to rig a character, but more as a tool to modify, change, or refine a default
pose. Anyway, if set and used smartly it can often give interesting results, so it has been included in this
chapter as well.

Getting ready

First, let's prepare the scene:

1. Open the Gidiosaurus_rig_from_scratch_01.blend file.
2. Select and then delete the Armature in Object Mode; then. select the Gidiosaurus mesh and

delete the Armature modifier too in the Object Modifiers window.
3. In the Outliner, hide the Eyes object.
4. Press the Z key to go in the Wireframe viewport shading mode.

How to do it…

Now let's go with the Laplacian modifier setup:

1. With the Gidiosaurus mesh still in Edit Mode, select all the vertices of the hands, feet, hip,
head, plus the boundary edge-loops where the mesh is missing (look at the following
screenshot).

2. Go to the Vertex Groups subpanel and create a new group named as you wish; I named it
lapldef. Assign the selected vertices with a Weight value of 1.000:

The "lapldef" vertex group

3. Now, box-deselect all the vertices, except the head ones; press Ctrl + H and in the Hooks pop-
up menu, select the Hook to New Object item:

The Hooks menu

4. Click on the Select button under the Vertex Groups subpanel to the right of the screen and then
deselect all the vertices, except the right hand ones. Again, press Ctrl + H and in the Hooks
pop-up menu, select the Hook to New Object item.

5. Click on the Select button again, deselect all the vertices, except the left hand ones, and repeat
the procedure:

The Hook assigned to the left hand vertices

6. Repeat the procedure separately for the left and the right feet and then go out of Edit Mode.
7. In the Outliner, rename the Empties (the Hooks) respectively as Empty_head,

Empty_hand.L and .R, and Empty_foot.L and .R.

The Hooks assigned to the mesh's vertices

8. Select the Gidiosaurus mesh and go to the Object Modifiers window. Collapse all the five
Hook modifiers for better visibility and assign a Laplacian Deform modifier; move it upwards
in the stack, just before the Subdivision Surface modifier (but always after the Hook
modifiers). Click on the Anchors Vertex Group to select the lapldef vertex group and then
click on the Bind button.

9. For better visibility, select each Hook and in the Object Data window, set the size to 0.40.
10. Enable the 3D manipulator widget in the 3D view toolbar (or press Ctrl + Spacebar), Shift-

click on the Translate and Rotate buttons, and set Transform Orientation to Normal.
11. Select the Hooks and start to move and rotate them using the 3D manipulator widget, to pose

the Gidiosaurus mesh:

The Gidiosaurus mesh posed through the Hooks and the Laplacian Deform modifier

12. Save the file as Gidiosaurus_laplacian.blend.

How it works…

Remember that because they don't work through joints, the Laplacian Deform modifier and the Hooks
don't give a realistic deformation and should be used more to tweak a character pose only inside a
limited range. Building a more complex rig, also with Hooks at the elbows and knees, is possible but
probably more useful for other types of unreal characters' shapes.

It should also be remembered that the Hooks, once moved out of their location, can't be simply moved
back to their original position by the Alt + G shortcut because this command would set them at their
original 0, 0, 0 location. Instead, any rotation can be easily removed by the Alt + R shortcut.

In any case, the Ctrl + Z (Undo) shortcut can be used, but first check the number of Steps set in the
User Preferences panel under the Global Undo item (there are only 32 by default).

See also
• http://www.blender.org/manual/modifiers/deform/hooks.html
• http://www.blender.org/manual/modifiers/deform/laplacian_deform.html

http://www.blender.org/manual/modifiers/deform/hooks.html
http://www.blender.org/manual/modifiers/deform/laplacian_deform.html

Chapter 8. Finalizing the Model
In this chapter, we will cover the following recipes:

• Creating shape keys
• Assigning drivers to the shape keys
• Setting movement limit constraints
• Transferring the eyeball rotation to the eyelids
• Detailing the Armor by using the Curve from Mesh tool

Introduction
In this chapter, we'll see how to create and add shape keys (the Blender term for morphing) to the
model, to create facial expressions for the Gidiosaurus and to add shape modifications in a non-
destructive way to the model.

Then, we'll see how to set a limit to the Armature bones' rotation using constraints and how to slightly
transfer a portion of the rotation movement of the eyeballs to the covering eyelids.

Last, we'll add some detail to the Armor by quickly adding rivets through a simple and effective
technique.

Creating shape keys
In this recipe, we'll set the shape keys to create (even if limited) facial expressions and to fake the
stretching and the contracting effect of the character's arm muscles, and we'll add some more shape
keys to fix issues in the character's shape.

Getting ready

First, let's prepare a bit the scene and the model:

1. Start Blender and load the Gidiosaurus_skinning_rigify.blend file, which is the
same as the Gidiosaurus_skinning_03.blend file but with the rig created by the
Rigify add-on (and later edited to add the other bones exactly as explained in the last chapter's
recipes).

2. In the Outliner, click on the respective eye icons to hide the Armor, Eyes, and
Tiers_simplified objects and the Armature, whose name in this case is rig.

3. Select the Gidiosaurus_lowres object and press the 1 key on the numpad to go into the Front
view.

4. Press Z to go into the Wireframe viewport shading mode and the 5 key on the numpad to
switch to the Ortho view if it is not already.

5. Enter Edit Mode and box-select the left half of the mesh vertices (including the middle
vertical edge-loop) and in the Vertex Groups subpanel under the Object Data window, create
a new vertex group; rename it left and assign the selected vertices a weight of 1.000.

6. Deselect everything and repeat this process for the right half of the mesh's vertices to create the
right vertex group:

Assigning the mesh's right side vertices to the "right" vertex group

7. Save the file as Gidiosaurus_shapekeys.blend.

How to do it…

Let's start now by creating the facial expressions shape keys:

1. Exit Edit Mode and expand the Shape Keys subpanel under the Object Data window; click on
the + icon button to the top left to create the Basis shape key (that mustn't be edited), then click
once more to create the Key 1 shape key (that is, instead, the one to be edited):

Creating the Basis and the first shape key

2. Be sure that the X Mirror item in the Mesh Options tab under the Tool Shelf is activated and
click on the PET (Proportional Editing Tool) button in the 3D viewport toolbar (or activate it
by pressing the O key).

3. Zoom to the Gidiosaurus head and again in Edit Mode, select some of the vertices at the center
of the snout area, as indicated in the following screenshot:

Selecting the vertices

4. Move them upwards and towards the eye, set the amount for the PET smoothing by scrolling
the mouse wheel:

Moving the selected vertices slightly backwards and upwards

Note that we selected two faces instead of the folder edges, because the muscular scrunching
involves both movement of the skin and a slight folding of the skin as well; the middle edge
does not move as much as the selected faces due to PET falloff, hence creating a very slight
scrunch and a more naturalistic skin sliding.

5. If necessary, adjust the position of the single vertices, maybe also disabling the PET.
6. Go to the Shape Keys subpanel and rename the Key 1 shape key as grin.
7. Click on the Apply shape key in edit mode button located right above the Value slider to enable

it; go into the Front view and by moving the Value slider from 0.000 to 1.000 and back, check
for the correct working of the shape key on both the sides of the character:

Checking how the "grin" shape key works

8. Go out of Edit Mode and just to have better visibility of the shape key modifications, go to the
Object window to enable the Wire item in the Display subpanel.

9. Go back to the Object Data window and click on the button that has an icon of a downward
pointing arrow (Shape keys specials); from the pop-up menu select the New Shape from Mix
item: this adds a new shape key made by the sum of all the active shape keys. In this case, it is
just a perfect copy of the sole grin shape key (the Basis shape key is, well, just the base starting
position of the vertices in the mesh). Rename the two shape keys as grin.L and grin.R.

Copying the "grin" shape key to a new one

10. Click on the grin.L shape key, set the Value slider back to 0.000, and then click on the Vertex
weight group slot, the one under the Blend item and above the Basis one, and select the left
vertex group.

11. Repeat for the grin.R shape key by selecting the right vertex group, and then once again set the
Value slider to 1.000 and ensure it works correctly.

Each shape key now works only on the respective side, according to the selected vertex group:

The two "grin" shape keys for the right and the left sides

This was for the grin expression; now we need to add at least two or three more kinds of shape
keys, namely: two for the eyebrows (up and down) and one for the nostrils, multiplied for each
side.

This means six more shape keys in total, but as you have seen, the procedure is quite quick and
simple.

12. Set the Value slider for the grin.L and grin.R shape keys back to 0.000 and click on the + icon
button to add a new shape key.

13. Rename it eyebrow_up.L and enter Edit Mode; grab some vertices on the left eyebrow and,
still with the PET activated, move them upward; you can use the mouse wheel to set the
influence of the PET:

Moving the eyebrow upward

14. Repeat the steps from 9 to 11 to create the eyebrow_up.R shape key.
15. Repeat the steps from 3 to 11 to create the eyebrow_down.L and eyebrow_down.R shape keys:

Moving the eyebrow downward

16. Finally repeat step 3 to step 11, this time selecting the vertices around the nostrils and scaling
them to be bigger, creating the snare.L and snare.R shape keys:

The nostril flaring

Note that, when naming the shape key for the enlargement of the nostrils, I erroneously wrote
snare; it should have been something like snarl or flaring, but in the end it's just a naming
convention and therefore, this little mistake doesn't pose a real problem.

We are done with the facial expressions; now let's add one more shape key to enhance some of
the body features of the Gidiosaurus a bit; these are not meant to be animated during the
animation, but are simply a way to apply non-destructive modifications to the model.

17. Add a new shape key and rename it prop (for proportions).
18. In Edit Mode, select the vertices of the left foot, excluding the feet talons, and press Alt + S to

scale them on their normals; if you are using the PET, just be sure to be in the Connected mode
(so that the PET has influence only on the vertices connected to the selected ones, otherwise the
unselected feet talon vertices will also be modified):

Modifying the feet proportions

19. Disable the PET and adjust the transition between the scaled vertices and the surrounding ones,
the area between the two toes, and so on.

20. If you wish, you may also make additional modifications; in my case, besides the bigger feet, I
simply enhanced the knuckles on the hands and at the fingers' joints. Also, I tweaked the rim
shape of the upper and bottom borders of the mandibles a bit:

Enhancing some of the character's features

21. When you are done, set the Value slider of the prop shape key to 1.000.

Now, let's add a couple of shape keys to mimic the movement of the main muscles of the arms,
specifically of the biceps and of the triceps muscles:

22. Add a new shape key, then go to the Gidiosaurus mesh; select some of the vertices in the
middle area of the bicep muscle and after enabling the PET again, move them forward and also
scale them to be bigger, to make the muscle grow:

Making the bicep muscle grow

23. Rename the shape key bicep.L, and then repeat the steps from 9 to 11 to create the bicep.R
shape key.

24. Add a new shape key and repeat everything by selecting vertices on the back of the arm, in the
triceps area, to create the triceps.L and the triceps.R shape keys.

Making the triceps muscle grow

25. Leave the values of these last four shape keys as 0.000 and exit Edit Mode.

More shape keys could be added to simulate a complete muscle system, but in our case we stop
here with the Gidiosaurus mesh; now let's concentrate on the Armor.

26. Go to the Outliner and unhide both Armor and rig.
27. Select the rig and then press N to call the Properties 3D view sidepanel; scroll to the bottom

and first go to the Rig Main Properties subpanel to set both the slider for FK/IK (hand.ik.L)
and (hand.ik.R) to 1.000, then go down to the Rig Layers subpanel and deselect everything
except for the Arm.L (IK) and Arm.R (IK) buttons.

Note

Note that if the FK/IK sliders don't appear, it's because you have to select one of the hand (ik or
fk) bones in the viewport first.

28. Go to the 3D viewport and select the hand.ik.L and hand.ik.R handle bones, go into the Side
view and move them towards the upper back.

Moving the arm control bones backward using the Inverse Kinematics

29. Now press Ctrl + numpad 1 to go in Back view and move the hand.ik.L bone to 0.200 along
the global x axis; select the hand.ik.R bone and move it to -0.200:

Adjusting the lateral position of the arms

30. Now select the Armor object and add the Basis shape key in the Shape Keys subpanel under
the Object Data window, and then add Key 1.

31. Enter Edit Mode and press the slash key (/) on the numpad to go in Local view; this way only
the selected objects are visible in the viewport, in our case only the Armor. Using the
Proportional Editing mode, start to enlarge the back section of the opening for the arms,
adjust the position of the surrounding vertices as required, and also raise the back vertices of the
spaulders a bit, to avoid interpenetration with the borders of the chest plate and the shoulder
as well.

32. Press the numpad slash (/) key again to go out of the Local view and check for the correction
with the Gidiosaurus mesh:

Editing the position of the Armor vertices for a new shape key

33. When you are done, just exit Edit Mode and set the Value slider of the Key 1 shape key for the
Armor to 1.000:

The shape key working as a fix for the Armor

34. Rename the Key 1 shape key as Armor_fix and save the file.

How it works…

Although technically there are no differences, we could say that we created three different types of
shape key:

• One type to fix shape errors or make improvements in the mesh, for example, with the prop and
the Armor_fix shape keys

• The second type to modify the mesh only at certain established moments during the animation
process, in our case just to animate facial expressions

• The third type to simulate muscle movements in the character

Shape keys work in linear space; that means that it's not possible to make vertices rotate around a pivot
through a shape key, but only to move them from point A to point B. That's why we didn't use shape keys
for stuff like the eyelid movements, for example, or the opening/closing of the jaw, but only for actions
including muscles sliding above the bones such as the eyebrows, the grin, and the nostrils, as well as
the bicep/triceps movements.

Thanks to shape keys, we also made last minute modifications and improvements to the Gidiosaurus
mesh and to the Armor; being included inside a shape key, all these modifications are non-destructive
and can be turned on or off at will, or their influence can be set at an intermediate strength value.

When modifying a mesh using a shape key, be careful not to change too much of the mutual proportions
of articulated parts of a to-be-deformed mesh; for example, it's usually problematic to scale a whole part
such as the hands or the head of a character, both smaller or bigger, unless you also scale the
corresponding bones of the rig and the joints' position accordingly as well.

Beyond a certain threshold, the bones of the fingers, or of the eyes and jaw, start to be out of register
compared to the respective mesh's edge-loops and you'll have to fix this by re-positioning the joints of
the Armature's bones (just in case, remember: always do this in Edit Mode).

In our example, with the prop shape key, we just restricted ourselves to enhance the hands' knuckles
and to make stronger feet by simply making the vertices' positions grow in the direction of their
normals.

Assigning drivers to the shape keys
In the previous recipe, we created three different types of shape keys. Besides the fixing shape keys, that
have a fixed value (no pun intended), we now need a way to set the amount of influence of the other two
types of shape keys, facial expressions, and the muscle movements during the animation. This is
accomplished by setting drivers, though with different kinds of controls.

Getting ready

Start from the previously saved Gidiosaurus_shapekeys.blend file:

1. Go to the Outliner and hide the Armor object.
2. Select the Armature rig, switch to the Octahedral bones draw mode, and press Tab to enter

Edit Mode; zoom to the character head and add six bones located as follows: two bones close
to both the right and the left eyebrows, two bones close to both the sides of the grin snout area,
and two bones close to the nostrils. Enable the Names item in the Skeleton subpanel under the
Object Data window and rename the bones accordingly and with the correct .L or .R suffix,
then be sure to have them located on the first bone layer by pressing the M key to call the
Change Bone Layers pop-up.

The new bones for the shape key drivers

3. Exit Edit Mode and select the Gidiosaurus mesh.
4. Go to the Shape Keys subpanel under the Object Data window and expand the list window by

left-clicking on the = icon at the bottom and dragging it downward.

5. Now right-click on the value (0.000) at the right side of the name of the first shape key (grin.L)
and from the pop-up panel, select the Add Driver item; the value is enhanced, in violet, to show
that now it has a driver associated.

6. Repeat the same for all the shape keys in the list except for the prop one, which has a fixed
value of 1.000:

The shape keys list showing they have drivers

7. Split the 3D viewport horizontally into two parts, change the upper part into a Graph Editor
window, or simply switch the screen to the Animation layer (in the two files provided with the
cookbook, there are actually two prepared animation screens, Animation1 and Animation2).
Click on the Editing context being displayed button in the toolbar of the Graph Editor window
and change it from F-Curves to Drivers.

How to do it…

Let's start with the expressions shape keys:

1. If not already present, press the N key to open the Properties sidepanel of the Graph Editor
window, then click on the Value (grin.L) top item in the drivers list at the top-left of the screen:

The Graph Editor window, at the top of the screen, with the driver f-curve

2. Go to the Properties panel of the Graph Editor and, by scrolling down, find the Drivers
subpanel. In the Driver Type slot, switch from the Scripted Expression item to the Averaged
Value one.

3. In the Ob/Bone slot, select rig and in the under slot (Name of PoseBone to use as target), select
the grin.L bone.

4. Going downward, in the Variable Type slot, select the Y Location item and in Space, select
Local Space.

5. Click on the Update Dependencies button at the top of the Drivers subpanel (the Update
Dependencies function works particularly for Scripted Expression; it is quite important to use
it to refresh the new setups each time).

6. Go even further down and click on the Add Modifier button in the Modifier subpanel; from the
Add F-Curve Modifier pop-up menu, select the Generator item.

7. In the Coefficient for polynomial – x slot, change the value 1.000 to the value 20.000 (this is to
re-map the declivity of the f-curve and therefore the speed of the corresponding shape key):

The N Properties Graph Editor sidepanel for the selected driver

8. Now select the grin.L bone and in Pose Mode, move it upward to see the grin.L shape keys
being animated on the character's snout.

9. Go to the Shape Keys subpanel and right-click on the value to the right side of the grin.L
shape; from the pop-up menu, select the Copy Driver item.

10. Select the grin.R shape key and right-click on the value to the right; from the pop-up menu,
select the Paste Driver item.

11. Go to the Animation screen and switch the grin.L to the grin.R bone in the Ob/Bone field
under the Drivers subpanel.

12. Copy and paste the drivers for the eyebrows_up.L and eyebrows_up.R shape keys, then
replace the driver bones names in the Ob/Bone field under the Drivers subpanel.

13. Go to the Shape Keys subpanel under the Object Data window and set the Max value under
the Range item to 0.600 for both the eyebrows_up.L and eyebrows_up.R shape keys; this is to
limit the movement of the shape keys to avoid any intersection with the character's helm.

14. Copy and paste the drivers for the eyebrows_down.L and eyebrows_down.R shape keys. This
time, leave the same driver bone names and instead change the value of the Coefficient for
polynomial – x to negative and -20.000 to invert the direction of the f-curve.

15. Repeat the procedure for the snare.L and snare.R shape keys, this time switching the Variable
Type from Y Location to X Location and assigning a negative -20.000 value to the snare.L
driver and a positive 20.000 value to the snare.R one.

At this point, all that is left is to assign automatic drivers for the shape keys to stretch and grow
muscles we created for the character's arms.

16. Click on the Value (bicep.L) item in the drivers window at the left top of the Graph Editor and
then go to the Properties panel on the right and then to the Drivers subpanel. In the Driver
Type slot, select the Averaged Value item again; in the Variable Type slot, switch to
Rotational Difference.

17. In the Bone1 slot, select rig and in the slot below (Name of PoseBone to use as target), select
the DEF-forearm.01.L bone; in the Bone2 slot, select rig again, and then DEF-
upperarm.02.L.

18. In the Graph Editor, click on a point of the f-curve to select it and then press the L key to
select all the points of the f-curve; move them downward, on the y axis, by -1.400 (G | Y | -1.4 |
Enter).

The triceps Rotational Difference driver

19. Copy and paste the driver to the bicep.R shape key, then change the .L suffixes of the bones to
the .R ones.

20. Copy the bicep.L driver and paste it to the triceps.L shape key; click on the Add Modifier
button under the Modifier subpanel; and from the Add F-Curve Modifier pop-up menu, select
the Generator item.

21. In the Coefficient for polynomial – y slot, write the value 2.300 and in the x slot, write the value
-1.000 (remember that all these values in the recipe are not universal and are valid just for this
Gidiosaurus model in this particular setup; the drivers values could change from character to
character, so always test them on your model).

22. Copy and paste to the triceps.R shape key, and change the suffixes of the bones.
23. Click on the Update Dependencies button at the top of the Drivers subpanel and save the file.

How it works…

Drivers assigned to bones as controllers for the shape keys are not only an effective way to create a
device for animation but also a mandatory technique in the Blender pipeline workflow, where a
character is usually linked into the scene from a different file and the rig gets proxified (we'll see how to
do this in the next chapter). The only possible way to have access to the shape keys in a linked character
is through the drivers and the rig.

As you probably already know, shape keys are often used not only for facial expressions but also to
mimic the stretching and the growing of the body's muscles according to the movement of a character's
limbs. In this case, their influence is automatically driven by the rotation of the respective bones through
the Rotational Difference drivers that, as the name itself says, base their influence on the difference of
rotation between two bones; more precisely, on the angle between them.

The Generator modifier we added is a multiplier we used to virtually modify the slope inclination of
the f-curves of the drivers. The default inclination of the f-curve wasn't enough to fully map the curve
itself to a driver bone movement of (almost) just one or two Blender Units (it was too slow, resulting in
a required driver movement of several units to have an appreciable effect), so we increased the declivity
by a factor of 20.000 to have a faster correspondence.

However, the same modifier was also used to reverse the direction of the f-curve, by using a negative
value of -20.000, for example to drive the downward movement of the eyebrows, or to change the
location of the curve along the y axis so as to tweak the timing of the driver influence, like in the triceps
shape keys.

Therefore, by copying and pasting a driver and giving an opposite declivity at the slope of the copied
one, it is possible to drive two opposite shape keys through the same bone, as for the eyebrows shape
keys:

The same bone moving in two opposite directions to drive two opposite shape keys

There's more…

To add shape keys and the respective drivers to the Gidiosaurus model, we used the
Gidiosaurus_skinning_rigify.blend file, with the rig created by the Rigify addon. The
control bones of a Rigify rig have pre-made Custom Shapes to make their identification and selection
easier and are usually located in the last scene layer.

So, for the last step, I just modeled a new simple custom shape, a small Circle mesh with 16 vertices. I
named it Widget_generic4 and I assigned it to all the driver bones:

The driver bones with the new Custom Shape

See also
• http://www.blender.org/manual/animation/basics/drivers.html

http://www.blender.org/manual/animation/basics/drivers.html

Setting movement limit constraints
Often, it is very useful to put movement limitations on the bones of a rig, for several reasons—usually,
to make them easier to work with, but also to establish a maximum range for the rotation of the limbs or
other parts like in the mandible or the eyelids.

Two types of limits for the bones are: by the Transform locks, and by bone constraints.

Getting ready

Load the Gidiosaurus_shapekeys.blend file, select the Armature, and go in Pose Mode.

How to do it…

Let's start with the Transform locks:

1. Select the eyebrow.L bone and if not already present, press the N key to call the 3D viewport
Properties sidepanel. Go to the Transform subpanel, which is the first entry at the top, or also
to the Transform Locks subpanel under the Bone window in the main Properties panel to the
right of the screen:

The Transform subpanel in the N Properties sidepanel and the corresponding Transform Locks
subpanel under the main Properties panel

2. Click on the lock icon to the right side of the properties; for this bone (which, if you recall, is
the driver control object for the left up and down eyebrow shape keys), we want to lock all the

possible transformations except for the movement on its y axis, so the Location Y lock button is
the only one that should remain untouched:

Setting the axis Transform locks for the Location, Rotation, and Scale

If you now try to move the eyebrow.L bone, you will notice its movement is constrained only to
its local y axis; the movement is directed by the Roll orientation of the bone in Edit Mode (and
not by the Normal item enabled in the Transform Orientation button on the viewport toolbar);
enable the Axes item in the Display subpanel under the Object Data window to see this.

Having locked the other two axes, it's no longer necessary to use the widget arrow to move the
bone on its local y axis but it's enough to simply press the G key and then move the mouse
instead.

And now, let's see limits by constraints.
3. Go to the Bone Constraints window and assign a Limit Location constraint to the eyebrow.L

bone.
4. Check the Minimum X and Maximum X, Minimum Y, and Maximum Y, and Minimum Z

and Maximum Z items. Leave the values for the x and z axes as they are, change Minimum Y
to negative -0.050, and change Maximum Y to positive 0.050 (again, remember that these
values are valid just for this file).

5. In the Convert slot, change the Owner Space item to Local Space:

The assigned Limit Location constraint subpanel under the main Properties panel

In Chapter 1, Modeling the Character's Base Mesh, we enabled the Copy Attributes Menu
add-on in User Preferences and then we saved the User Settings, so I'm taking for granted that
you have the script still enabled.

Therefore, we do the following:
6. Select the eyebrow.R bone and then Shift-select the eyebrow.L bone. Press Ctrl + C and from

the Copy Attributes pop-up menu, select the Copy Bone Constraints item.
7. Select the grin.L and grin.R bones and then Shift-select the eyebrow.L bone. Once again, press

Ctrl + C | Copy Bone Constraints, and in the two copied constraints, set the Minimum Y
value to 0.000.

8. Select the nostril.L and .R bones and Shift-select the grin.L bone, then press Ctrl + C | Copy
Bone Constraints. This time, set both the Y values to 0.000 and Minimum X for the nostril.L
bone to negative -0.050 and the Maximum X for the nostril.R bone to positive 0.050.

9. Save the file.

Several other movement constraints have been added to different bones in the rig, for example the jaw
bone, or the eyelid controllers, but especially to the eye bones, to limit the range of possible rotations.
To have a look at the various settings, just open the Gidiosaurus_limits.blend file.

See also
• http://www.blender.org/manual/animation/techs/object/constraint.html

http://www.blender.org/manual/animation/techs/object/constraint.html

Transferring the eyeball rotation to the eyelids
This is a really simple trick that can add a lot of life to the facial expressions of an animated model,
making the eyelids follow some of the movement of the eyeballs.

Getting ready

Following on from the previous recipes, open the Gidiosaurus_limits.blend file:

1. If not already selected, select the Armature and enter Pose Mode.
2. In the Object Data window, go to the Skeleton subpanel and enable the 30th bone layer, to

show the deforming bones.
3. In the Display subpanel, switch the bones' drawing mode from Wire to Octahedral:

The Skeleton subpanel with the bone layers

How to do it…

Now zoom to the character's head and continue with the following steps:

1. Select the eyelid_upper.L bone and go to the Bone Constraints window; assign a Copy
Rotation constraint.

2. In the Target field, select the rig item, and in the Bone field, select the eye.L bone item. Set
Space = Pose Space to Pose Space.

3. Set the Influence slider value to 0.300.

4. Select the eyelid_bottom.L bone and Shift-select the eyelid_upper.L bone, then press Ctrl + C |
Copy Bone Constraint.

5. Select the eyelid_upper.R bone and repeat the procedure but with eye.R as the target bone;
copy the constraint to the eyelid_bottom.R bone:

The eyelids slightly following the eye movements

6. Save the file.

Detailing the Armor by using the Curve from
Mesh tool
In Chapter 3, Polygonal Modeling of the Character's Accessories, in the Using the Mesh to Curve
technique to add details recipe, you already saw how to use this technique as a modeling tool. In this
recipe, we'll use the same technique but in the opposite direction—to add rivets around the perimeter of
the borders of the different Armor parts.

Getting ready

Re-open the Gidiosaurus_limits.blend file; the first thing to do is to model a very lowpoly
rivet object to be duplicated on the Armor surface:

1. Switch to an empty scene layer, press Shift + C to place the 3D Cursor at the center of the grid,
and add a Cube primitive mesh. Enter Edit Mode and delete the bottom face, then scale the
remaining faces by a value of 0.100 twice, then one last time by 0.500. Move the top face
downward to flatten the overall shape a bit and scale the same face by 0.700.

2. Press A to select all the vertices and W to choose the Subdivide Smooth item from the Specials
pop-up menu, then delete the middle horizontal edgeloop.

3. Put the pivot on the 3D Cursor and while still in Edit Mode, rotate all the vertices by 90° on
the x axis.

4. Select the bottom edgeloop and press Shift + S | Cursor to Selected. Exit Edit Mode and click
on the Set Origin button under the Tool tab to select the Origin to 3D Cursor item.

5. Click on the Smooth button under the Shading item and in the Outliner, rename the rivet
object. Once again, place the 3D Cursor at the center of the grid and the rivet at the Cursor
location; press Ctrl + A to apply the Rotation & Scale option.

6. Enable the scene layer with the Armor on it, and in the Outliner, hide the rig.

How to do it…

Now, let's create the guides to duplicate the rivets on:

1. Select the Armor object and press Shift + D to duplicate it, then place the duplicate Armor.001
object on the scene layer of the rivet. Go to the Shape Keys sidepanel under the Object Data
window and delete the Armor_fix first and then the Basis shape keys.

2. Go to the Object Modifiers window, remove the Armature modifier, and apply the
Subdivision Surface modifier with a Subdivision level of 2.

3. Enter Edit Mode and start to select the edgeloops on the different Armor parts in areas where
you want to add the rivet rows (Alt + right-click for the first one, then Alt + Shift + right-click).
As usual, it's enough to work only on one half of the mesh:

The Armor mesh in Edit Mode with the selected edge-loops

4. Press Shift + D and soon after, click the right mouse button to duplicate the selected edgeloops
without moving them, then press the P key to separate them from the Armor.001 object (in the
Separate pop-up menu, choose the Selection item).

5. Exit Edit Mode and delete the Armor.001 object, or if you don't have problems with big file
sizes, move it to a different scene layer to keep it for future refinements. In this case, you can
save the edge-loops selection as a vertex group named rivets.

6. Select the Armor.002 object (the duplicated and separated edgeloops) and enter Edit Mode;
make the necessary adjustments to the edgeloops by deleting the unnecessary vertices, for
example the backsides of the plates, and disconnect the welded edgeloops by deleting the
common vertices or connecting them where required edges are missing:

Cleaning the edge-loops of the duplicated Armor.002 mesh

7. Press A to select all the vertices and then go to the Tools tab under the Tool Shelf. Go to the
LoopTools subpanel and press the Space button to evenly space the vertices along the
edgeloops.

8. Exit Edit Mode and press Alt + C; in the Convert to pop-up menu, select the first item, Curve
from Mesh/Text. The mesh edgeloops actually get converted into a Curve object, as you can
see in the Object Data window under the main Properties panel to the right of the UI. Click on
the Fill slot to select the Full item.

9. Now the tedious part (but not difficult, just a little tedious); in Edit Mode again, put the mouse
on one of the points and by pressing the L key, select each separate part of the Curve, then press
P to separate the whole selected part. This way, you are going to obtain 16 separated Curve
objects.

10. Select the rivet object and go to the Object Modifiers window; assign an Array modifier with
Fit Type = Fit Length, Length = 0.50, and Relative Offset X = 3.000. Collapse the panel.

11. Assign a Curve modifier, then in the Object field select the Armor.002 curve. Leave the panel
expanded.

12. Assign a Mirror modifier and collapse the panel:

The rivet object instanced on the mirrored curve object

13. In the viewport area, zoom to each curve to check for the correct tilting of the points; if
necessary, select the curve, enter Edit Mode, select all the points, press Ctrl + T, and move the
mouse to rotate the tilting of the curve's points until the instanced rivets are correctly rotated/
aligned with the surface of the main Armor mesh:

Tilting the curve's points

If necessary, you can also select individual points of the curve to tweak the orientation of only a
part of the instanced rivets, even of single rivets at once; this has been done for part of the helm
and for the spaulders, especially.

14. In the Outliner, re-select the rivet and press Shift + D to duplicate it, then in the Object
Modifiers window, under the Curve modifier panel, select the Armor.003 item in the Object
field.

15. Once again, zoom to the curve and if necessary, fix the curve tilting and also adjust the Length
value of the Array modifier (for the Armor.003 curve it has been raised to 0.59) and the
Relative Offset value. By selecting all the points and pressing W, you can also select the Switch
Direction item in the Specials menu.

The rivets on the helm object

16. Duplicate the rivet and repeat the procedure changing the curve name in the modifier for each
curve object and so on. At the end, you should have 16 copies of the rivet as well.

At this point, if required, we can still make some modification to the rivet mesh; in my case, I
just subdivided it a bit more, then deleted some useless edgeloop, made it rounder, and extruded
the open side a bit more.

Now that the rivet is ready, select all the rivet copies (so that the modified one is the active
object, that is the last selected) and press Ctrl + L | Object Data to share the modifications
between them.

Leaving everything selected, press U | Object & Data to make them single users again (this is
necessary for the next step with the modifiers).

17. When you are done, select all the rivets one at a time in the Outliner and apply all the Array
and the Curve modifiers.

18. Join all the rivets into a single object (select all and press Ctrl + J) and in Edit Mode, delete the
unnecessary or overlapping ones, keeping only the rivets that really add to the Armor look.
Then, apply all the Mirror modifiers:

The completed rivets

19. Select the Armor object and then Shift-select the rivets object, press Ctrl + Tab to go in Weight
Paint mode and click on the Transfer Weights button under the Tools tab.

20. Exit Weight Paint mode and assign an Armature modifier to the rivets object, select rig in the
Object field.

21. Save the file as Gidiosaurus_final_detailing.blend.

There's more…

At this point, the Gidiosaurus model is ready to be animated, but some minor adjustments are still
missing and can be added.

I won't go into the details about these additions, they are all processes you have already seen in the
previous chapters and recipes, so this is simply a showcase:

The modeled tiers and the rivets

1. The tier attachments on the Armor's vambraces and on the greaves have been refined by
adding smaller rivets, and new tiers have been added to the sides of the Armor chest plate.
Also, the opening seams in the Armor parts have been modeled under each tier location.

2. The Armor decorations have been separated as a new object (the Armor_decorations item in
the Outliner) and simplified by deleting as many edgeloops as possible without altering their
basic shape:

The simplified decorations in Edit Mode

3. The Armor's shape also has been tweaked even further through the Armor_fix shape key to
adjust some overlaps that were occurring during the movements of the spaulders and in the
stomach area too. The same shape key has been repeated also on the decorations and on the
rivets objects for the areas of interest.

4. A bit of asymmetry has been introduced in the Gidiosaurus mesh by assigning a Lattice
modifier to the character, and slightly modifying the shape on the left side, then applying the
modifier as a shape key (the Apply as Shape Key button):

The asymmetry lattice

5. Finally, after some test renders, I realized that the teeth and the inside of the mouth of the
Gidiosaurus still needed refinements, so I made some more adjustments to the prop shape key
by making the teeth bigger and bolder, and the inner mouth more organic-looking and smooth:

The modified teeth and inner mouth

Be aware that almost in every modeled object there is still room for improvement, and that's okay, it's
not a sign of a bad job! This sort of improvement is done all the time and is simply part of the working
experience.

See also
• http://www.blender.org/manual/modeling/curves/index.html

http://www.blender.org/manual/modeling/curves/index.html

Chapter 9. Animating the Character
In this chapter, we will cover the following recipes:

• Linking the character and making a proxy
• Creating a simple walk cycle for the character by assigning keys to the bones
• Tweaking the actions in Graph Editor
• Using the Non Linear Action Editor to mix different actions

Introduction
There are literally a plethora of tutorials and manuals about animation principles in general, and in
Blender in particular, on the Web and in bookstores, so this one is going to be just a very easy chapter,
mainly about the technical aspects of creating a simple animation with the rigged Gidiosaurus
character, following the most usual pipeline commonly used in Blender (at least for the open movies).

Linking the character and making a proxy
The habit of linking assets from library files is the most useful and used, I would say, not only in a
Blender based workflow, but also in the industry. A linked asset, in our case a creature character, can be
placed and animated even if not already completed in all its parts, thus it allows a team to work almost
at the same time on the different aspects. In our case, the Gidiosaurus is still missing texturing and
shaders, but can already be placed on stage and animated anyway.

To link an asset in Blender and keep the possibility of animating it through a rig, we must make a proxy
of the rig itself. A proxy object overrides the animation controls of a linked object in a non-destructive
way, so that an animator can animate it locally to the .blend file the rigged character has been linked
to. This way, the linked character object retains all its original information and is only locally altered by
the proxy object scene.

Getting ready

As the first thing, we must prepare the library, so open the
Gidiosaurus_final_detailing.blend file:

1. Go to the Outliner and select the Gidiosaurus_lowres mesh, then also Shift-select the Armor,
the Armor_decorations, the rivets, the Eyes, and the Corneas objects.

2. Press Ctrl + G, and all the selected objects are outlined in green to show that now they belong to
a group, in this case, to the same group we created just now.

3. Go to the Object window and in the Groups subpanel, change the generic default Group name
to Gidiosaurus.

Creating a Group and assigning all the selected objects to it

4. Go to the Outliner and click on the eye icon to the side of the rig item to make it visible again,
and then click on the rig item itself to select it.

5. Press Ctrl + Tab to go out of Pose Mode and go to the Groups subpanel under the Object
window again. Click on the Add to Group button and in the pop-up menu, select the
Gidiosaurus item (in this case, the only group already created). The rig is outlined in green as
well:

The rig assigned to the group as well

6. Click again on the Restrict view-port visibility button (the one with the eye icon) to the side of
the rig item to hide it and save the file as Gidiosaurus_library.blend.

How to do it…
1. Click on the File item in the main menu bar, select the New item, and confirm by clicking on

the Reload Start-Up File pop-up (or just press Ctrl + N).
2. Select the default Cube and delete it, then go to File | Link (or press Ctrl + Alt + O). Browse

and click on the Gidiosaurus_library.blend file, then click on the Group folder item,
and finally click on the Gidiosaurus item. Click on the Link from Library button to the top
right of the screen.

A new object has appeared at the 3D Cursor location (that should be placed at the center of the
scene), and what we have got at this point is the linked Gidiosaurus group; this means that the
character and any other object inside the Gidiosaurus group in the library file are now linked
and instanced on an Empty that is named Gidiosaurus as well:

The Gidiosaurus group linked and instanced on the Empty

Remember that in the library file, inside the Gidiosaurus group we put also the rig, which for
the moment is not visible in the linked group because it is hidden in the library file.

3. Press Ctrl + Alt + P, and a new pop-up appears where we can select the item we want to proxify
(although all the objects inside the group appear in the list, at the moment only an Armature
can be proxified). Click on the rig item:

The proxified rig

The rig appears as a separate object in the Outliner, identified by the name
Gidiosaurus_proxy; at this point, it is possible to only select the rig (which is still in Object
Mode) and move it to a different layer.

4. Select the Gidiosaurus_proxy object and move it to the 11th scene layer (use the M key). Shift-
click to enable the layer and then go to the Display subpanel, under the Object Data window, to
enable the X-Ray item.

5. Press Ctrl + Tab to go into Pose Mode and the N key to call the viewport Properties sidepanel.
6. Save the file as Gidiosaurus_proxy.blend.

At this point, looking at the viewport Properties sidepanel, we will see the Rig Layers interface
usually created by the Rigify addon, but if we save the file and reopen it, the interface is gone.

This is because, at least for the moment, the Python script that draws the rig interface doesn't get
automatically linked with the rig, so it's something we must do by hand. This is not a big issue,
and by the way, the procedure is incredibly simple:

7. Click again on File | Link in the main header menu (or press Ctrl + Alt + O).
8. Browse to the Gidiosaurus_library.blend file, click on it, and then click on the Text

item. Click on the rig_ui.py item (the Python script for the interface) and then on the Link
from Library button.

9. Save the file and reopen it; the rig interface is visible again on the viewport Properties sidebar:

The rig interface at the bottom of the Properties sidepanel

See also
• http://wiki.blender.org/index.php/Template:Release_Notes/2.43/Animation/Proxy_Objects
• http://www.blender.org/manual/data_system/linked_libraries.html?highlight=proxy#proxy-

objects

http://wiki.blender.org/index.php/Template:Release_Notes/2.43/Animation/Proxy_Objects
http://www.blender.org/manual/data_system/linked_libraries.html?highlight=proxy#proxy-objects
http://www.blender.org/manual/data_system/linked_libraries.html?highlight=proxy#proxy-objects

Creating a simple walk cycle for the character by
assigning keys to the bones
We are now going to create a simple walk cycle for the Gidiosaurus character by assigning position
and rotation (and in some cases, also scaling) keys to the control bones of the rig.

Getting ready

In Blender, there is already a preset screen layout named Animation that you can switch to and start
animating. By the way, I usually prefer to set up my screen layout for the required task, and animating is
no exception, so let's first prepare the scene and the screen for the job:

1. Open the Gidiosaurus_proxy.blend file.
2. If necessary, enable the 3D manipulator widget in the toolbar of the 3D view (press Ctrl +

Spacebar), click on the Translate icon button, and set Transform Orientation to (just for the
moment) Global.

3. Split the 3D view horizontally into two windows and change the bottom one into a Dope Sheet
window. Click on the Editing context being displayed button on its toolbar to switch from Dope
Sheet to the Action Editor context Mode.

4. Go to the Properties sidepanel of the 3D viewport (use the N key to make it appear if
necessary) and under the Rig Layers subpanel, disable the Arm.L (FK), Arm.R (FK), Leg.L
(FK), and Leg.R (FK) buttons.

5. Select the Gidiosaurus_proxy rig, making sure you're in Pose Mode, and select the hand.ik.L
control bone. Go to the Rig Main Properties subpanel under the Properties panel and set the
FK / IK (hand.ik.L) slider to 1.000:

Switching from the Graph Editor to the Action Editor and setting the Inverse Kinematics in the
Rig Layers subpanel

6. Repeat for the hand.ik.R bone and for the foot.ik.L and foot.ik.R control bones as well.
7. Go to the Scene window, enable the Simplify subpanel, and set the Subdivision level to 0 (or, if

you have a more powerful machine than my laptop, also to 1).
8. Go into the Side view and press the 5 key on the numpad to go into the Ortho view.
9. Click on the red button icon (Automatic keyframe insertion for Objects and Bones) in the

Timeline toolbar.

The red button icon and the Subdivision Surface modifier subpanel

10. Save the file as Gidiosaurus_walkcycle.blend.

How to do it…

To create a walk cycle, it's important to first establish the start and the end poses of the walk, so let's
pose our character for his first step:

1. Be sure to be in the first frame (which in Blender is frame 1 and not 0), both by clicking on the
Jump to first/last frame in frame range left button on the Timeline toolbar or by pressing the
Shift + Left Arrow keys.

2. Select the foot_ik.R control bone and, by using the widget, move it backward on the global y
axis to around 0.350.

As you release the mouse button, an Action datablock, automatically named
Gidiosaurus_proxyAction, is created and a keyframe for the foot_ik.R bone is automatically
added in the first frame in the Action Editor window. We can also see the value for the
movement on the y axis in the Transform subpanel.

Note that all the transformation value slots turned yellow; this is to show that at the current
frame, an animation keyframe exists for all those values:

Setting the first key at frame 1

3. Temporarily, switch 3D View to the Graph Editor window:

The Graph Editor window

As you can see, because we enabled the red button icon (Automatic keyframe insertion for
Objects and Bones) in the Timeline toolbar, every time we move, rotate, or scale a bone, a
keyframe for Location, Rotation, and Scaling is automatically added to the Action. This can
be handy, but also results in a lot of useless keyframes, for example, for most of the rig bones,
we need to set keys for the Location and/or the Rotation, but very rarely for the Scaling.

4. Put the mouse cursor inside the Curve Editor area of the Graph Editor and press the A key to
deselect everything.

5. Shift + left-click on the Scale and Quaternion Rotation items in the Gidiosaurus_proxy
Channel Region to select them, then press X to delete them:

Deleting the useless transformation channels

6. Switch back to the 3D View, and in the Transform subpanel in the Properties sidebar (and in
the Transform subpanel under the Bone window in the main Properties panel), now only the
Location slots are highlighted in yellow.

7. Disable the red button icon (Automatic keyframe insertion for Objects and Bones) in the
Timeline toolbar.

8. Go to frame 21 by grabbing and moving the Time Cursor inside the Timeline window or the
Action Editor window, or by typing the frame number inside the Current Frame button on the
Timeline toolbar.

9. Select the foot_ik.R control bone and by using the widget, move it forward on the global y axis
for around -0.440.

10. Press I and in the Insert Keyframe Menu, select the Location item; this adds a second key to
the foot_ik.R bone at frame 21, but this time only for Location:

Setting a Location only key through the Insert Keyframe Menu pop-up

11. Go to frame 41, right-click to select the key at frame 1 in the Action Editor window, and press
Shift + D to duplicate it, then move the duplicated key to frame 41.

Creating poses at different frames by duplicating keys

12. Put the mouse cursor in the Timeline and press the E key to set the total length of the animation
to the current frame position:

Setting the action total length in frames

13. Still at frame 41 (but this being a cycle, frame 1 could also be fine) and with the foot_ik.R bone
selected, click on the Copy the current pose of the selected bone to copy/paste buffer button on
the 3D viewport toolbar.

14. Go to frame 21 and select the foot_ik.L bone, then click on the Paste the stored pose on to the
current pose button at the extreme right side of the 3D viewport toolbar to paste a mirrored
pose.

15. Press the I key and in the pop-up menu, click on the Location item to add a new key:

Copying a pose and pasting it reversed

16. Now, still at frame 21, select the foot_ik.R bone and click on the Copy the current pose of the
selected bone to copy/paste buffer button on the 3D viewport toolbar.

17. Go to frame 1, select the foot_ik.L bone, and again click on the Paste the stored pose on to the
current pose button to paste the reversed pose, then press I and insert a Location key.

18. Select and duplicate the new key at frame 1 for the foot_ik.L bone and move the duplicated one
to frame 41:

Creating new keyframes by copying, pasting, and duplicating pose keys

At this point, by scrolling the Time Cursor in the Timeline, in the Action Editor window, or
by clicking on the Play Animation button in the Player Control on the Timeline toolbar, we can
already see a complete shuffling cycle of the movement of the feet of the Gidiosaurus:

The Gidiosaurus' walk cycle with sliding feet

19. Now go to frame 1, select the torso bone, and lower it on the z axis for almost -0.200, then
assign a position key.

20. Select the just added torso bone key in the Action Editor window, press Shift + D to duplicate
it, and move the duplicate to frame 21, then repeat for frame 41:

Animating the torso

21. Go to frame 11, select the foot_ik.R bone, and move it on the z axis for 0.200, then assign a
position key.

22. As we already did at steps 16 and 17, copy the bone pose, go to frame 31, and paste it reversed,
then assign a position key to the foot_ik.L bone.

Assigning more translation keys

23. Working in the same manner, select the hand_ik.R and .L bones and animate them according to
the Gidiosaurus' walk (note: as for any average walk cycle, in the opposite position with
respect to the feet):

Animating the arms to complete the walk cycle

24. Reselect the torso bone, go to frame 1, and move it forward for 0.240 on the y axis. Assign a
new position key (to overwrite the old one), then delete the keys at frames 21 and 41 and
substitute them with duplicates of the new frame 1 key.

25. Go to frame 11 and move the torso bone for almost 0.200 upward on the z axis. Duplicate the
key for frame 31.

26. Go to frame 1 and select the toe.R bone, then assign a rotation key. Go to frame 11 and rotate
the bone on the normal x axis (the red circle in the widget tool with Transform Orientation set
to Normal) for 75°. Go to frame 21 and press Alt + R to clear the rotation pose and assign a
rotation key. Use Shift + D to duplicate the last added key and move the duplicated one to frame
41.

27. Select the toe.L bone and assign a rotation key at frame 1, then go to frame 21 and repeat. Copy
the toe.R pose at frame 11 and paste it reversed for the toe.L bone at frame 31, then assign a
cleared rotation pose key at frame 41:

Adding the in-between poses for the feet

28. Following the previous procedures, set keys for the position and/or the rotation of all the
affected bones, also adding movements such as the rotation of the torso and of the hips, the
position of the pole target for legs and arms, the swinging of the head to compensate for the
body's lateral movements, the closed mouth and the open eyelids, and so on:

The first phase of the walk cycle animation is almost done

The animation cycle, at this point, looks really stiff and robotic. This is simply because
everything happens at the same time, that is, in the same frame, as you can easily see in the
Action Editor window (to enlarge a window, put the mouse cursor inside it and press Ctrl + Up
Arrow; to go back, press Ctrl + Down Arrow):

The maximized Action Editor window with the walk cycle action

To make the animation look more realistic and natural, we must offset some of the keys to make
the different actions happen at different times; for example, the torso bone goes down a few
frames later than the foot touching the ground, and goes up a few frames later as well, the same
for the head swinging, and so on.

29. To offset the affected keys, simply select and/or Shift-select and move them for the required
frames, forward or backward in the Action Editor window. Here, a bit of testing is needed to
reach the right number of frames (usually in the range of 3-5 frames, by the way).

30. Where a hole happens at frame 1 in the action channel for a bone because of the dislocation of
the keys, simply duplicate the last right side key of that bone and move it to the appropriate
negative frame position. That is, to the left side of frame 0, and be sure that the relative item,
Allow Negative Frames, is enabled in the Editing tab of the User Preferences panel, as you
can see in the following screenshot for the torso and for the elbow_target_ik bones:

Duplicated keys moved to the Negative Frames space

31. Rename the action Gidiosaurus_Walkcycle. To better check the playing animation, go to
the Timeline toolbar to set the end frame for the total length of the animation to 40 frames,
because frame 1 and frame 41 are the same poses.

32. Save the file.

At this point, we have made our first action with the Gidiosaurus character, and it's a 41 frame-
long walk cycle meant to be repeated in loops for longer animations.

Because in the next recipe we are going to use the Non Linear Action Editor (NLA Editor) to
re-use the action datablocks to build the final animation, we need now to create some more
actions to be mixed with the walk cycle one.

33. Activate the Fake User for the Gidiosaurus_Walkcycle action by clicking on the F icon button
to the side of the action datablock on the Action Editor toolbar, then click on the X icon button
to unlink the action datablock.

34. Put the mouse cursor in the 3D viewport and press the A key to select all the control bones, then
press Alt + G, Alt + R, and Alt + S to clear any position, rotation, or scale and restore the rig
default pose (actually, the only control bones using the scale operator for the animation are the
fingers, which we haven't animated so far).

35. Be sure to be at frame 1 and zoom to the character's head, select the head.001 and neck bones,
and assign a rotation key, then select the ctrl_mouth bone and assign a position key.

36. Rename the action Gidiosaurus_Roar, then enable the Fake User; use Shift + D to
duplicate the keys and move the duplicated ones to frame 21.

37. Go to frame 15 and rotate the head.001 and neck bones clockwise to raise the head, then open
the mouth wide by moving the ctrl_mouth bone down.

38. Go to frame 7 and rotate the head.001 and neck bones counterclockwise a bit to lower the
head:

The Gidiosaurus_Roar action

We have now built a roar action for the Gidiosaurus, but it happens in only 21 frames, so it's
really too fast. Although it is possible to scale any action strip in the NLA Editor window, in
this case it's better to do it directly in the basic action itself.

39. In the Action Editor window, put the Time Cursor to frame 1, then press the A key to select all
the keys of the action. Press S | X | 2 | Enter to scale the action of the double to frame 41:

Scaling the action on the position of the Time Cursor

40. Now that the action length has been doubled, we can move some keys of a few frames and also
animate the movement of the character's tongue a bit during the roar:

Animating the tongue

41. Again, click on the X icon button to unlink the action datablock, select all the bones, then press
Alt + G and Alt + R to clear the poses.

42. Shift-select the thumb.R and .L, f_index.L and .R, and f_middle.L, and .R control bones and
add a Scaling key. Rename the newly created action Gidiosaurus_Fingers and enable the
Fake User:

Renaming the fingers action and enabling the Fake User

43. Now Shift-select for both the .L and .R bones, thumb.01, thumb.02, and thumb.03, f_index.01
and f_index.02, f_middle.01 and f_middle.02, and the palm control bones, then add a
Rotation key:

Adding a first rotation key for all the fingers at the same time

44. Now that we have all the finger bones' names in the Action Editor list-tree to the left (the
Channel Region), start to click on the bone names to highlight them, for example, click on the
thumb.L item, then press Shift + PageUp keys to move it to the top of the list.

45. Then highlight the thumb.01.L bone and by pressing the PageUp arrow, move it right after the
thumb.L bone (press Shift + PageUp to eventually go directly to the top). Repeat with the
thumb.02.L and the thumb.03.L bones, then go to the thumb.R bone, and so on. To move an
item downward in the list-tree, simply press the PageDown key instead (or Shift + PageDown to
go directly to the bottom).

46. Repeat the ordering until you have grouped the bones' names by finger in the list-tree, to make it
easier to individuate them in the Action Editor window, then use Shift + D to duplicate all the
keys and move the duplicated ones to frame 41.

47. Go to frame 21, select thumb.L, .R, f_index.L, .R, f_middle.L, and .R bones and press S to
scale them to 0.900. Assign a Scaling key, then select and rotate the other control bones, and
assign Rotation keys (be aware that the previous scaling bones can also be rotated). Also, by
using the Copy/Paste technique already shown, build a kind of creepy hands animation:

The "creepy hands" animation made by rotating and scaling the bones controls

48. When you are done, thanks to the re-ordering we made in the Channel Region, go to the
Action Editor window and move groups of keys based on their finger group; in short, to avoid
the everything-at-the-same-time issue, dislocate the timing of one finger with respect to the
others:

Offsetting the finger' keys

49. After this, click on the Display number of users of this data button to create a new copy of the
action and change the name to Gidiosaurus_Fingers.L. In the Channel Region, Shift-select all
the .R bones items and delete them (X key), then enable the Fake User.

50. Click on the double arrows icon to the left side of the datablock name (Browse Action to be
linked) and reselect the Gidiosaurus_Fingers action.

51. Again, click on the Display number of users of this data button to create a new copy of the
action and change the name to Gidiosaurus_Fingers.R. Shift-select all the .L bones items and
delete them. Enable the Fake User and click on the X icon button to unlink the action
datablock.

52. Save the file.

To have a look at the completed walk cycle of the Gidiosaurus and the other actions, open the
Gidiosaurus_walkcycle_final.blend file provided with this cookbook.

How it works…

An Action is a bones F-Curves datablock created at the same moment any animation key is added
through the Insert Keyframe Menu (I key) or the red button icon (Automatic keyframe insertion for
Objects and Bones) in the Timeline toolbar. The newly created Action automatically takes the name
from the object itself (Gidiosaurus_proxy in this case) plus the Action suffix.

The Actions are stored inside the .blend file, but thanks to the Fake User they don't necessarily need
to be linked to the rig to be preserved after saving and closing the file.

Note that the scaling operation for the selected keys of an Action in the Action Editor window (and the
same for the Graph Editor and the NLA Editor) use the Time Cursor position as the pivot point. Also
note that even though we did it in our recipe, it wasn't mandatory in this case to declare the x
(horizontal) axis for the scaling.

There's more…

Organizing the bones' names in the list inside an action in the Action Editor window is a good way to
quickly find the required item, but it can be improved even further by Bone Groups:

1. Open the Gidiosaurus_library.blend file and go to the Outliner; click on the eye icon
to the side of the rig item to unhide it.

2. Select the rig and go to the Object Data window, then in the Bone Groups subpanel, click on
the + icon to add a bone group.

3. Double click on it to rename it thumbs, then go into the 3D viewport and Shift-select all the
thumbs' bones.

4. Click on the Assign button, then click on the Color slot to choose a Theme Color Set from the
pop-up menu:

Choosing a Theme Color Set for the Bone Group

5. Repeat the steps from 2 to 4 for the other two fingers, thus creating the indexes and middles
bone groups and selecting a different Theme Color Set option for each group:

Three different Bone Groups

6. In the Outliner, hide the rig item again and save the file.
7. Re-open the Gidiosaurus_walkcycle.blend file; the colored bones don't show in the

proxified rig, and this is because we had already proxified it and only later assigned the bone
groups to the library file.

8. The solution to fix this is simply to select the affected bones one at a time and by going to the
Relations subpanel under the Bone window, click on the Bone Group empty field to select the
name of the appropriate group:

Reassigning the Theme Color Set to the proxified bones

By the way, it is always better to do the Bone Groups before the proxy, if possible.

The colors of the Bone Groups also show as background color for the bone channels inside the Action
Editor window, making it a lot easier to select all the bones of a group; just be sure to have the Show
Group Colors item enabled in the View menu on the Action Editor toolbar:

The Group Colors enabled for the bones

You can find the library with the colored fingers' control bones under the alternative file named
Gidiosaurus_library_colors.blend.

See also

The walk cycle and the other actions we built in this recipe are, from an animation point of view, very
simple and basic, not meant to teach you how to animate but only to show enough of Blender's tools for
you to easily start animating a rigged character.

If you want to go deeper into the animation process, in Blender or not, here are some links to visit:

• http://www.fjasmin.net/walk_cycle_tutorial/index.html
• http://cgcookie.com/blender/2010/01/24/learning-basic-animation-and-a-walk-cycle/
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Techs

http://www.fjasmin.net/walk_cycle_tutorial/index.html
http://cgcookie.com/blender/2010/01/24/learning-basic-animation-and-a-walk-cycle/
http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation
http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Techs

Tweaking the actions in Graph Editor
In the previous recipe, we built Actions by setting position, rotation, and/or scaling keys, which Blender
interpolates through F-Curves to create the character's animation. In this recipe, we are going to see
the Graph Editor window, a tool to modify these F-Curves to fix errors or fine-tune the movements of
the animated character.

Getting ready

Open the Gidiosaurus_walkcycle.blend file.

1. If it's not already loaded, in the Action Editor window, load the Gidiosaurus_walkcycle
action.

2. Go to the top main window header and click on the two little arrows to the left side of the button
labeled as Default. In the pop-up menu, select the Animation item to change the screen layout:

The premade Animation screen layout

3. Press the Ctrl key and left-click on the top right corner of the Dope Sheet window, then drag
the mouse towards the Graph Editor window below to switch the two windows.

4. Go to the 3D viewport and zoom to the character to select the foot_ik.L bone; the F-Curves for
the selected bone appear in the Graph Editor window:

The F-Curve of the animation keys of the selected bone in the Graph Editor window

5. Expand the foot_ik.L item in the Graph Editor list-tree by clicking on the little arrow to the
side of the item itself, then click on the View item in the toolbar and select the View All item to
better visualize the curves inside the Curve Editor area:

The list of the available F-Curves for the selected bone and the automatic zoom through the
View All item

6. Hide (by clicking on the eye icon) and/or delete (select using left-click and the X key) the
unnecessary curve items such as (at least in this case) X Scale, Y Scale, Z Scale or ikfk_switch
(foot_ik.L), and so on. Join the unnecessary windows together and adjust the size of the Edit
Area (the part with the keyframes) in the Dope Sheet to make them more easily readable.
Optionally, enable the Normalize item in the Graph Editor toolbar to show all the F-Curves in
a normalized -1 to 1 range.

7. Save the file as Gidiosaurus_F-Curves.blend:

The Animation screen with a bit of customization

How to do it…

By selecting a curve name item and/or hiding the others in the Graph Editor list-tree, we can
concentrate on one curve at a time. For example, what if we want to change the position of the right
foot at frame 27 on the global x axis, when it's high off the ground?

1. Just left-click on the X Location (foot_ik.L) item in the list to highlight it and/or simply hide
the others. Right-click on the curve keyframe/control point at frame 27 to reveal the handles,
then press G | Y to move the keyframe handles on the vertical axis and see the foot move
accordingly in the viewport on the global x axis:

Editing the points of the F-Curve to tweak the bone's position

2. Or else, right-click only on one of the handles of the keyframe to move it and change the curve's
envelope:

Changing the envelope of the F-Curve by modifying one of the point's handles

3. By Shift-selecting two or more keyframes of an F-Curve and pressing the T key, it is possible to
set the interpolation type through the Set Keyframe Interpolation pop-up menu; by default
the F-Curves are Bezier, but they can be switched to Linear or Constant. There are also
Easing and pre-made Dynamic effects:

Changing the F-Curve Interpolation mode

4. Finally, the handles' type can also be set through the Set Keyframe Handle Type menu by
pressing the V key; by default the handles are Aligned, but they can be set as Free, Vector,
Automatic, and Auto Clamped too:

Changing the handle's type to further tweak the curve's envelope

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Editors/Graph

http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Editors/Graph

Using the Non Linear Action Editor to mix
different actions
It's finally time to use the NLA Editor to compose a longer animation using the actions we built in the
previous recipes.

Getting ready

As usual, first let's prepare the screen:

1. Start Blender and press Ctrl + Alt + U to call the User Preferences panel; in the Editing tab,
enable the Allow Negative Frames item.

2. Click on the Save User Settings button and close the panel.
3. Load the Gidiosaurus_F-Curves.blend file and switch the Graph Editor to the NLA

Editor window, and the Dope Sheet below it with the Action Editor window.
4. If necessary, click on the X icon button in the Action Editor window toolbar to unlink any

action from the rig and clear the pose:

The Animation screen with the (still empty) NLA editor window

How to do it…

We are going to add Action strips to the Gidiosaurus_proxy rig, so it's mandatory to have at least one
bone selected (any one, but in this case, it's the ctrl_mouth bone):

1. Put the mouse cursor in the Track Region (NLA-stack) of the NLA Editor window, right
under where it shows Gidiosaurus_proxy | <No Action> items, and press Shift + A to add a
NlaTrack channel:

Adding a first track to the NLA Editor window

Now, take a moment and load the Gidiosaurus_walkcycle action in the bottom Action Editor
window to see the action extension; it starts at frame -15 and ends at frame 45.

2. Unlink the action in the Action Editor and move the Time Cursor to negative frame -15; put
the mouse cursor in the Strip Edit area to the right side of the NlaTrack item and again press
Shift + A. From the pop-up menu, select the Gidiosaurus_Walkcycle item:

Loading the Gidiosaurus_walkcycle action into the track

A yellow action strip, with the Gidiosaurus_Walkcycle name superimposed, is added to the
track at the Time Cursor location (the vertical green bar showing the frame number. If you now
press the Play button in the Player Control on the Timeline toolbar, the animation starts at
frame 1 and because the animation is only 40 frames long, it loops correctly, exactly as if the
action was loaded in the Action Editor window.

3. If not already present, press the N key to call the Properties sidepanel of the NLA Editor
window, right-click on the action strip to select it, and then go to the Action Clip subpanel.
Under Playback Settings, set the Repeat value to 3.000.

4. Click on the End button in the Timeline toolbar and change the frame value from 40 to 120 (40
frames x 3):

The Gidiosaurus_walkcycle action set to be repeated three times

If you press the Play button now, the animation is repeated 3 times but it doesn't loop correctly
anymore because the negative frames keys are also included, in both the second and third
repetitions. This is because we loaded the action at frame -15, so this is the Start Frame value
for Action Extents (Start Frame = -15, End Frame = 45).

Hence, some adjustment must be done to the action strip:
5. First, move the Time Cursor to frame 1; with the strip selected, press the Tab key to go into

Edit Mode and make the inner keys of the strip visible, both above the strip in the NLA Editor
window, and as an Action in the Action Editor window. This way it's simpler to understand
what keys are at what frame, and so on.

6. Second, go to the Active Strip subpanel and under the Strip Extents item, set the Start Frame
value to 1.000.

7. Go to the Action Clip subpanel and under the Action Extents item, set Start Frame to 1.000
as well and the End Frame value to 41.000:

The action in Edit Mode and the Strip Extents and Action Extents values in the Properties
subpanel of the NLA window

8. Press Tab to go out of Edit Mode.

Now, the walk cycle animation loops correctly for all the 120 frames, and obviously it is also
possible to loop it even more by raising the Repeat value.

So, the correct and fastest procedure would have been, from the start:
1. At frame 1, load the action strip in the NLA Editor window.
2. In the Properties sidepanel, under the Action Extents item in the Action Clip

subpanel, set the Start Frame value to 1.000 and the End Frame value to 41.000.
3. Under Playback Settings, set the Repeat value to 3.000 and the total length of the

animation to 120 frames in the End button of the Timeline toolbar:

Recapitulating the action extents values to be set

Now, let's see how to add the other actions:

1. Put the mouse cursor under the NlaTrack item and press Shift + A to add a new track
(NlaTrack.001); load the Gidiosaurus_Roar action strip and move it (G key) to start at frame
10.

2. Select the Gidiosaurus_Walkcycle strip and in the Active Strip subpanel, disable the Auto
Blend In/Out item but leave the values as 0.000. Select the Gidiosaurus_Roar strip and
disable the Auto Blend In/Out item as well, then set the Blend In value to 10.000 and the
Blend Out value to 5.000.

3. Add two more tracks, select the NlaTrack.002 track and load the action strip
Gidiosaurus_fingers.L, then select the NlaTrack.003 track and load the action strip
Gidiosaurus_fingers.R.

4. Select the Gidiosaurus_fingers.L strip and in the Active Strip subpanel, disable the Auto
Blend In/Out item, and leave the values as 0.000; repeat for the Gidiosaurus_fingers.R strip.

5. Move the two strips separately in different positions inside the 120 frames animation range.

Setting the Blend In and Blend Out values to mix the other actions

6. Press the Play button in the Player Control on the Timeline toolbar to watch the composited
animation and save the file as Gidiosaurus_NLA.blend.

At this point it could be possible to start to render at least some OpenGL preview to see the result, but
there are still several steps missing in our workflow before we reach the final goal, from the texturing to
the shaders, lighting, and finally beauty-rendering and compositing; all stuff that we'll see in the next
few chapters.

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Editors/NLA_Editor

http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Editors/NLA_Editor

Chapter 10. Creating the Textures
In this chapter, we will cover the following recipes:

• Making a tileable scales image in Blender Internal
• Preparing the model to use the UDIM UV tiles
• Baking the tileable scales texture into the UV tiles
• Painting to fix the seams and to modify the baked scales image maps
• Painting the color maps in Blender Internal
• Painting the color maps in Cycles

Introduction
In this chapter, we are finally going to create the textures for the Gidiosaurus character, meaning all the
image textures that we'll need later, to build the shaders for the body and for the armor. Basically, the
essential images we need are:

• A grayscale reptilian scales image to be used as a bump map and to color the skin
• Painted image textures for the skin diffuse coloration
• A tileable image for the worn armor metallic surface
• A bump image for the armor decoration patterns

In this chapter, we'll focus on the skin of the Gidiosaurus, and the last two textures for the armor will
be treated in the next chapter.

The most difficult and tedious part is, no doubt, rendering the scales on the Gidiosaurus skin; I mean, if
we had to paint the scales one by one. Instead, we'll try to obtain the complex scales pattern with the
minimum effort possible, using a couple of techniques to speed up the work.

Trying to keep things clear, from now on we'll use two different texture folders: the usual textures
one and a textures_making folder, where the latter is used to contain the images we need during
the process to produce the final image textures.

Making a tileable scales image in Blender
Internal
So, the first thing to do is to obtain a tileable grayscale reptilian scales image; we'll start from an
already existing image obtained from an old and larger texture I had painted in Gimp for a dinosaur
model some years ago… but that's a different story.

In any case, if you prefer, you can paint a new reptilian scales image from scratch by using painting
software such as Gimp or Photoshop or open source applications such as MyPaint
(http://mypaint.intilinux.com/) or Krita (https://krita.org/).

Getting ready

We are taking for granted that in your Blender User Preferences window, you still have the Import
Images as Planes addon enabled; if not, start Blender and just enable it as already explained in Chapter
1, Modeling the Character's Base Mesh. Then, follow these steps:

1. Select and delete the default Cube primitive in the scene. Select the Camera and the Lamp and
move them to the 6th scene layer.

2. Click on the main File menu and then on the Import item; select the Images as Plane item.
3. Browse to the textures_making folder and select the provided scales.png image

texture, which is a gray painted scales image:

The "scales.png" image provided with this cookbook

4. Press the period (.) key on the numpad to center the view on the selected Plane and then the 7
key on the numpad to switch to the Top Ortho view.

5. Go to the Object Modifiers window and assign an Array modifier to the Plane; check the
Merge item and leave all the other settings as they are.

6. Click on the Copy button to assign a new identical Array modifier, and in the new Array
modifier, under the Relative Offset item, change X to 0.000 and Y to 1.000.

7. Save the file as 4886OS_10_scales_tiles_01.blend.

http://mypaint.intilinux.com/
https://krita.org/

8. Press the period (.) key again on the numpad to center the view on the enlarged Plane, then
switch the Viewport Shading mode to Texture (Alt + Z):

The UV mapped Plane with the Array modifiers assigned

As you can see in the preceding screenshot, the mapped Plane is now repeated 4 times.

By zooming towards the middle seams, it's clear that the mapped scales image is not tileable yet:

The visible seams at the borders of the Plane instances

Tip

Just in case the previous screenshot is not readable enough, open the provided
4886OS_10_scales_tiles_01.blend file to have a better look.

How to do it…

At this point, the file is ready and we can start to paint on the image to make it tileable:

1. Click on the mode button (Sets the object interaction mode) on the viewport toolbar to select the
Texture Paint mode item.

2. Put the mouse cursor on a bright value in the scales image and press the S key to sample it,
then go near the color selector in the Brush subpanel under the Tool Shelf to the left and click
on the Toggle foreground and background brush colors button (the one with the two opposing
arrows) to switch the active color. Otherwise, simply press the X key, put the mouse cursor on a
dark area, and press S again to sample it as the opposite color.

Sampling the light and dark colors of the image

3. Set the brush's Radius and Strength values, and if you are using a graphic tablet, be sure to
have the two tablet pressure sensitivity buttons at the sides of the previous items enabled.

4. Start to paint by fixing the scales on the image at the seams areas. Because we can also paint on
the Planes duplicated by the Array modifier, and because we are always painting on the same
instanced image, it's quite simple to visually join the scales at the four sides, actually making the
image tileable:

Painting on the image at the borders to make the scales seamless

It's enough to fix the areas along the middle horizontal and vertical axes of the Planes to cover
all the four edges (in fact, fixing two edges is automatically fixing four).

5. When you are done, go back into Object Mode and open a new window with UV/Image
Editor; press Tab to go into Edit Mode, make the revised image appear, and save it (by clicking
on Image | Save as Image in the toolbar or simply press the F3 key) in the
textures_making folder as scales_tiles.png:

Saving the tileable scales image with a different name

6. Save the file as 4886OS_10_scales_tiles_02.blend.

How it works…

You might wonder why we didn't use the Make Seamless filter of Gimp (Filters | Map | Make
Seamless) to obtain a tileable image in one click; well, the answer is simple: the Make Seamless plugin
actually offsets and blends together whole areas of the image, and this can work in several cases, but not
for a complex pattern made by scales, where a simple fading is not good enough. In this case, I prefer to
paint the joining line between them by hand.

Preparing the model to use the UDIM UV tiles
In the previous recipe, we made the scales image texture seamless, ready to be seamlessly mapped on
our model. If you go back to Chapter 5, Unwrapping the Low Resolution Mesh, you'll remember that we
assigned two different sets of UV coordinate layers to it: the UVMap layer, divided into 5 different
tiles (this is called UDIM UV Mapping; it's a popular standard in the industry and means U-
Dimension), and the UVMap_scales layer, set up to repeat the scales_tiles.png image pattern at
the right size on the model:

The two UV coordinates layers in the UV Maps subpanel

By zooming in and looking carefully at the result of the tiling (in Textured Solid mode, which is
enabled under the Shading subpanel of the N viewport sidepanel), you can see that although we used a
tileable scales image, we still have seams in some areas. This is obviously due to the fact that the
UVMap_scales layer (as you can see in UV/Image Editor in the Edit Mode after selecting all the
mesh's vertices) is made up of separated and overlapping islands to obtain a randomly distributed
mapping of the scales on the Gidiosaurus skin:

The seams on the Gidiosaurus scales skin

A simple solution to fix these seams is to bake the random scales pattern on the 5 tiles of the UVMap
layer and then use the Paint Tool to adjust the gaps. This a step that we have to do in any case to allow
further texture modifications such as the painting of befitting facial scales around the eyebrows, the
eyes, the nostrils, and so on, but let's go in order.

To be able to bake and then paint on the different tiles in real time through the 3D viewport, we must
prepare the file a bit.

Getting ready

Start Blender and open the Gidiosaurus_library.blend file; save it as
Gidiosaurus_baking_scales_01.blend:

1. Shift-click on the 13th scene layer to disable it and hide the Armor object, then enable the 6th
scene layer to show Camera and Lamp. Split the 3D view into two windows and change the
left one into a UV/Image Editor window (if it shows the Render Result image datablock, just
click on the X icon button to unlink it).

2. Put the mouse in the 3D viewport and press the T key to hide the Tool Shelf panel, and then
maximize the UV/Image Editor window as much as possible. Go to the Outliner and click on
the eye icon to the side of the Camera item to disable its visibility in the viewport.

3. Go to the UV Maps subpanel under the Object Data window and be sure to have the UVMap
layer selected (the one with the 5 different space tiles); if necessary, click on the camera icon to
the right to enable it as the active UV coordinates layer.

How to do it…

Now, let's prepare the materials; remember that, at the moment, we are under the Blender Render
engine and not under Cycles:

1. Go to the Material window and out of Edit Mode, click on the – icon button to the right of the
materials datablock window (Remove the selected material slot) to unlink both the Enamel and
the Body material datablocks.

2. Now click on the + icon button to add 5 material slots, and then add 5 materials by selecting
each slot and clicking on the New button.

3. Starting from the top one, rename the 5 materials as Material_U0V0, Material_U1V0,
Material_U2V0, Material_U0V1, and Material_U1V1.

Adding the 5 materials to the Gidiosaurus object

4. Select the Material U0V0 slot and go to the Textures window to click on the New button
and add a texture.

5. Scroll down the vertical panel by rotating the middle mouse wheel and click on the New button
under the Image subpanel; in the New Image pop-up panel, click on the Color slot to set the
Alpha (A) value to 0.000, then Ctrl + click on the Width slot and right after the default value of
1024, type *3, then press Enter (in Blender, you can do a math calculation for any parameter
like this anywhere). Copy and paste (Ctrl + C and Ctrl + V) the result of the multiplication,
3072, into the Height slot; click on the Name slot to write the texture name as blank_U0V0,
then press the OK button at the bottom of the panel:

Adding a blank image texture to the first material

This adds a blank (alpha background) 3072 x 3072 pixels image as a texture on the material.
6. Ctrl + left-click on the Unique datablock ID name slot right above the Type (Image or Movie)

slot, and rename the default Texture name as U0V0. Go down to the Mapping subpanel and
click on the Map slot to select the UVMap item:

The "Unique datablock ID name" slot, the Image subpanel, and the Mapping subpanel

7. Go to the UV/Image Editor to the left side of the screen and click on the double arrows to the
side of the New button in the toolbar; from the pop-up menu select the blank_U0V0 item. Slide
the toolbar to the right and click on the Image item. In the pop-up menu, select the Save as
Image item (or press the F3 key) and save the image in the texture_making folder as
blank_U0V0.png, then click on the pin icon button to the right to activate it (Display current
image regardless of object selection):

The assigned blank image loaded in the UV/Image Editor window and pinned to be displayed
regardless of the object selection

As the image is saved under the Image subpanel, the Source slot caption changes from
Generated to Single Image.

8. Repeat the procedure for all the remaining four materials, assigning and saving a blank image
texture for each material. So inside the texture_making folder, you have saved the images:
blank_U0V0, blank_U1V0, blank_U2V0, blank_U0V1, and blank_U1V1.

9. Start to split the UV/Image Editor window until you have 5 UV/Image Editor windows. Press
the Tab key to go into Edit Mode with the mesh; put the mouse in the 3D viewport and press
the A key to select all the mesh's vertices and therefore show the UV islands in all the UV/
Image Editor windows.

10. Enlarge one UV/Image Editor window as much as possible and enable the Keep UV and edit
mode mesh selection in sync button on the toolbar.

11. If it's the case, deselect everything, then box-select the islands (B key then left-click and drag
the mouse) in the U1V0 tile space. In the Material window, select the Material_U1V0 slot
and click on the Assign button. Go to the top right UV/Image Editor window and click on the
X icon button on the toolbar to unlink the current image datablock (which is still blank_U0V0).
Then click on the Image item on the toolbar and from the drop-down list, select the
blank_U1V0 image.

12. Press the A key to deselect everything and box-select the islands in the U2V0 tile; select the
Material_U2V0 slot and again click on the Assign button. Go to the following image editor
and unlink the current image datablock to load the blank_U2V0 image.

13. Repeat for the other two missing tiles and material slots (note that this is not necessary for the
U0V0 ones, which are, by default, first assigned to the whole mesh and the first created material
and so still remain associated to Material_U0V0). Then go out of Edit Mode.

The work-space prepared with the 5 UV/Image Editor windows with their respective blank
images

As you can see, by selecting the vertices of the UV islands in UV/Image Editor, the
corresponding vertices on the mesh are also selected. Moreover, this makes all the UV islands
visible in the image editor, even though, we haven't selected a single vertex on the mesh yet
(normally, you see only the islands of the selected vertices in the image editor). This way, it's
simple to associate a certain UV island with a certain material and a certain group of vertices on
the mesh.

14. Go to the Material window and select the Material_U0V0 slot. Go to the Texture window
and click on the second texture slot right under the U0V0 one. Click on the New button, scroll
down to the Image subpanel, and click on the Open button to browse to the
texture_making folder and load the scales_tiles.png image.

15. Go to the Mapping subpanel and in the Map slot, select the UVMap_scales UV coordinates
layer. Rename the Unique datablock ID name slot as scales_tiles. Click on the
checkbox to the side of the U0V0 texture slot to disable it (this is just temporary but mandatory
for the baking, otherwise it would create a dependency loop, that is, the Circular reference in
texture stack message in the top main header and in the Terminal panel as well):

Disabling the blank texture image and loading the "scales_tiles.png" image in the first material

16. Click on the button with a black arrow pointing downward, right after the + and –icon buttons,
and from the pop-up menu, select the Copy Texture Slot Setting item. Select the
Material_U1V0 slot and then click on the second texture slot right under the U1V0 one and
click on the New button. Click again on the black arrow button and this time, select Paste
Texture Slot Setting:

Copying and pasting the "scales_tiles" texture slot to the other materials

17. Repeat this copy and paste for the other three materials, and also remember to disable the first
texture slot for all the materials.

18. Press Tab to go out of the Edit Mode and save the file.

How it works…

Thanks to the pin icon button that is enabled for each loaded image, it's possible to keep the different
images visible at the same time. At this moment, the 5 different PNG images are blank, so this isn't
particularly evident; it will be a lot more clear when we start to actually paint on the model through the
3D viewport.

Baking the tileable scales texture into the UV
tiles
What we have to do now is to bake the scales_tiles.png image map (used in all the materials and
mapped on the UVMap_scales coordinates layer) on the 5 tiles of the UVMap coordinates layer.

Getting ready

At this moment, Blender is not able to bake automatically outside of the default U0V0 tile space yet, so
a bit of additional work is needed; nothing particularly difficult by the way. The steps are as follows:

1. Press Tab to go into Edit Mode again and then put the mouse in the blank_U0V0 UV/Image
Editor window; press the N key to call the Properties sidepanel and under the Display
subpanel, check the Normalized item:

The Normalized item in the Display subpanel under the N Properties sidepanel of the UV/Image
Editor window

2. Press N again to hide the Properties sidepanel. Go to the UV Maps subpanel under the Object
Data window and click on the + icon button to the right to add a new UV coordinates layer
(UVMap.001), then rename it UVMap_temp (or whatever you prefer).

How to do it…

We are now going to create a new UV coordinates layer for the baking by moving all the islands in the
outside tiles to the space of the default one; but before we go on, we must be sure about two things:

• In the toolbar of the blank_U0V0 image editor window, the Keep UV and edit mode mesh
selection in sync button must now be disabled

• In the pop-up menu, accessible by clicking on the UVs item in the image editor toolbar, the
Constrain to Image Bounds item must be deselected:

The "Keep UV and edit mode mesh selection in sync" button and the Constrain to Image Bounds
item

Go to the blank_U0V0 image editor window; if you prefer, maximize it (mouse cursor into the window
and press Ctrl + Up Arrow). If necessary, press A to deselect all the islands.

1. Now, box-select the islands on the U1V0 tile, and move them to the default U0V0 tile space (G |
X | -1 | Enter):

The UV islands of the U1V0 tile space, box-selected and moved to the default U0V0 tile space

2. Deselect everything and box-select the islands at U2V0, then move them to the default space,
which is the same as the previous one (G | X | -2 | Enter).

3. Repeat for the last 2 islands tiles (G | Y | -1 | Enter) and (G | X | -1 | Enter and then G | Y | -1 |
Enter), then rearrange the image editor windows.

4. Go to the Object Data window and in the UV Maps subpanel, be sure to have the
UVMap_temp layer, the last one, enabled as the active one, that is, the camera icon to the
right side of the UVMap_temp item must be the one enabled and visible (Set the map active for
rendering):

The new UVMap_temp coordinates layer

5. Out of Edit Mode, go to the Render window and then go to the Bake subpanel (usually at the
bottom of the panel). If necessary, click on the Bake Mode slot to select Textures, then set the
Margin value to 8 or higher; and check the Clear item flag. Be sure to have the Gidiosaurus
object still selected and press the Bake button.

After a while, the baked scales textures appear on the 5 PNG images, baked according to the
UV islands of the 5 tiles of the UVMap layer:

The 5 baked images and the Bake subpanel under the Render window

6. Click on the Image item on the UV/Image Editor toolbar and from the pop-up menu, select the
Save All Images item or if you want to preserve your blank images (we are going to use them
again later), just save each image at a time (Save As Image item or F3 key) with the names
baked_U0V0.png, baked_U1V0.png, and so on:

Saving the baked image maps

Opening the texture_making folder on your desktop, you will now find the baked textures:

The baked textures saved inside the "texture_making" folder

As you can see in the information bar at the bottom of the GNOME image viewer (I'm working in
Linux Ubuntu), each image saved from Blender is 37.8 megabytes.

The large size of the images can of course be reduced (a lot) by opening them in Gimp (or any other 2D
application) and re-saving.

How it works…

All the UV islands have been moved to the default U0V0 tile space, which is the only one where the
baking happens, but because each image is associated with a different part of the mesh, each image is
correctly baked with the right islands and textures.

In fact, inside Blender, and in our case, the location of each tile in the UV space doesn't actually matter;
we made a new UV coordinates layer and kept the old one just in case the model should be exported to a
different 3D application.

To move the islands exactly by the correct number of pixels, we enabled the Normalized item in the
Display subpanel of the image editor N sidepanel to display the UV coordinates from 0.0 to 1.0, rather
than in pixels. Anyway, without the Normalized item enabled, it would have been enough to move the
islands by 3072 pixels, that is, the width (or/and height) in pixels of the assigned blank image.

There's more…

As with any other software, Blender is not free from bugs; particularly, the baking section seems to have
an annoying bug, which is very difficult to fix because it happens very rarely and randomly, so that it
cannot easily be reproduced and consequently submitted to the Blender bug tracker
(https://developer.blender.org/maniphest/project/2/type/Bug/).

It's difficult to understand the reason for this, but sometimes the software refuses to do the baking,
claiming that No objects or images (are) found to bake to (the message appears on the top right main
header and in the Terminal panel as well); in our case, this seems to happen when you switch the active
for rendering UV coordinates layers.

If this happens, one thing you can do is check that all the images assigned in the UV/Image Editor
windows to the different materials under one UV layer, also appear correctly assigned under the other
UV layer (it shouldn't make a difference, but who knows), eventually re-assigning them one at a time.

If the baking still fails, there is a simple workaround; switch to the UVMap coordinates layer instead,
rather than the UVMap_temp one, and just move the islands to the default U0V0 space and bake them
one at a time. To do this, first bake the islands of the U0V0 tile space and save the image, then move the
islands of the U1V0 tile space to the U0V0 tile space, bake and save as a different image, and so on with
the islands of all the tiles.

https://developer.blender.org/maniphest/project/2/type/Bug/

Painting to fix the seams and to modify the
baked scales image maps
In the previous recipe, we baked the randomly tiled scales image map on the 5 tiles of the UVMap
coordinates layer. This was necessary for the next step to be able to fix seams and modify certain areas
of the baked scales images through the Paint Tool.

In order to paint in real time on both the model and on all the images assigned to the 5 different UV tiles,
and at the same time, once again we need to first prepare the file. To be more precise, we must assign 5
different materials to the mesh, one for each tile and each one with the appropriate image texture.

Getting ready

Start Blender and re-open the Gidiosaurus_baking_scales_01.blend file; save the file as
Gidiosaurus_baking_scales_02.blend.

1. Minimize the image editor windows on the left as much as possible, then also minimize the
Outliner, the Material, and the Texture windows on the right to make room for the 3D
viewport.

2. Click on the Viewport Shading button in the 3D viewport toolbar and switch the shading mode
from Material to Solid, then press the T key to call the Tool Shelf. Then switch from Object
Mode to Texture Paint mode by clicking on the mode button in the toolbar:

Switching to Texture Paint mode

3. Click on the Options tab inside the Tool Shelf and under the Project Paint subpanel, enable the
Occlude, Null, and Normal items:

Items to be enabled under the Options tab

4. Click on the Tools tab inside the Tool Shelf to go back to the Brush subpanel options.

How to do it…

At this point, we are ready to start to paint both directly on the model in the 3D viewport or also in the
UV/Image Editor windows (just for all eventualities, I suggest you make a copy of the baked scales
images before starting to paint):

1. Zoom in on a part of the Gidiosaurus object in the 3D viewport, for example, the head.
2. Put the mouse cursor on a bright value of the scales image on the model and press the S key to

sample it, then go near the color selector in the Brush subpanel under the Tool Shelf to the left
and click on the Toggle foreground and background brush colors button (the one with the two
opposing arrows) to switch the active color. Otherwise, simply press the X key, put the mouse
cursor on a dark area, and press S again to sample it as the opposite color.

3. Scroll down and click on the New button (Add new palette) at the bottom of the Brush
subpanel; + and – icon buttons will have appeared above the color switcher. Click on the + icon
button to add the active color to the palette, then switch the colors and click on the + button
again to add a new color to the palette.

4. Set the brush's Radius value to 6 and Strength value to 1.000, and if you are using a graphic
tablet, be sure to have the 2 tablet pressure sensitivity buttons at the sides of the previous items
enabled. Change the default Palette name in Scales.

Setting a palette and the brush strength and radius

5. Simply start to paint on the model, re-drawing the scales where there are seams by flipping the
color as you need to, by pressing the X key and painting the dark folds and the light scales. The
two colors we sampled, used with the pressure sensitivity enabled, should be enough, but feel
free to sample new ones and add it to the palette as you go on:

Painting on the model to fix the image texture seams

6. From time to time, click on the Slots tab in the Tool Shelf and click on the Save All Images
button.

7. Do most of the fixing you can, across the entire Gidiosaurus body, keeping in mind that it's
quite useless to spend time fixing seams in areas that will later be covered by the Armor (for
example, the top of the head).

8. When you are done, be sure to have saved all the edited images as explained in step 6 (but you
can also do it one image at a time through the Image | Save Image item in each editor window
toolbar or by pressing the Alt + S shortcut).

9. Now, be sure to have the Material_U0V0 slot selected as active in the Material window and
go to the Texture window; left-click on the empty slot right under the U0V0 one and then click
on the New button to add a new image texture.

10. Scroll down to the Image subpanel and click on the New button. In the New Image pop-up
panel, write added_scales_U0V0 in the Name slot, then set the Width and Height values
to 3072 and the Alpha (A) value to 0.000 (basically add a new blank and background
transparent image as shown in step 5 of the How to do it… section of the Preparing the model to
use the UDIM UV tiles recipe):

Adding a new texture paint slot layer

11. Go to the Shading subpanel of the Material window and enable the Shadeless item for the
Material_U0V0 slot. Then go to the 3D viewport toolbar and change Viewport Shading
from Solid to Material.

12. If not selected already, click on the Slots tab in the Tool Shelf panel and select the
added_scales_U0V0 item that appears under the U0V0.png once inside the Available
Paint Slots window.

13. Directly in the 3D view, start to paint new scales on the eyebrows to replace the randomly
distributed ones; use the light color of the palette to conceal the old scales on the first layer, and
the dark color to draw the new ones. Try to build a consistent pattern, also using photos of real
reptiles as references. When you are done, save the image in the texture_making folder:

Painting new scales on the eyebrow

14. Draw new scales around the nostrils and the rim of the mouth:

Painting new scales also around the nostrils and at the rim of the mouth

The Blender Paint Tool also has other handy brushes; a particularly useful one is the Smear
brush, which smudges the borders or any blotch in the scales.

To access the brushes, just click on the big window in the Brush subpanel under the Tool Shelf
and click on the chosen one to select it:

The brushes selection pop-up menu

Remember to always save the painted images before closing Blender, otherwise you'll lose
them.

Also remember that if you have more than one texture layer to save, it's necessary to load each
one of them into an UV/Image Editor window. This is actually very quick and easy, just select
each layer in the Available Paint Slots window (in the Slots subpanel under the Slots tab) to
make it appear in the image editor window and save it through the Image | Save As Image
menu in the editor toolbar.

Once saved the first time, it's possible to re-save all of them in one single click, through the
Save All Images items, both in the tab, as well as in the toolbar menu.

15. Save the file as Gidiosaurus_painting_scales_fix.blend.

Note

In the textures and blend files provided with this cookbook, you'll find textures fixed only in the
head area; I leave the task of finishing the fixing and drawing of new scales on the rest of the
body (for example, bigger scales can be added to the upper side of the hand fingers, feet,
shoulders, and so on) to you.

How it works…

The new Blender 2.73 texture paint layering feature works simply by adding a new texture slot to the
material, and automatically setting it as required, by the type of texture you selected in the Add Texture
Paint Slot; in fact, by going to the Texture window, it is possible to see the added new texture slot and
also, if necessary, to change the settings:

The added texture paint slot also appearing as a texture slot in the Texture window

Nonetheless, it is a great addition to Blender that can simplify the texture painting workflow a lot.

There's more…

To bake the added scales as a single image with the background scales images, perform the following
steps:

1. Enter Edit Mode and click on the Select button for Material_U0V0 to select the vertices
assigned to that tile.

2. Go to the top left UV/Image Editor window and press Alt + N to call the New Image pop-up
menu; add a new blank image of 3072 x 3072 pixels named baked_scales_U0V0, and save
it inside the textures_making folder.

3. Go out of Edit Mode and if it's the case, click on the double arrows icon to the left side of the
image name datablock to re-assign the just-created Untitled image.

4. Repeat for the other four materials, naming the new images according to the tile and saving
them inside the texture_making folder as well.

5. Go to the UV Maps subpanel under the Object Data window to make the UVMap_temp
coordinates layer active.

6. Go to the Render window, and be sure that the Bake Mode under the Bake subpanel is set to
Textures, then click on the Bake button.

7. After the baking is done, click on the Image item in the toolbar of one of the image editors and
select the Save All Images item.

Not necessarily everything has to be fixed by painting in Blender; for example, it would be enough to fix
the scales on only the half of the head, export the painted image texture, and open it in Gimp (or any
other 2D image editing software):

The scales "U0V0.png" image map and the "added_scales_U0V0.png" layer in Gimp

Then, by duplicating the layer and mirroring it, plus a little bit of painting to adjust the seams, it's really
simple to obtain the missing half of the new scales texture:

The duplicated and mirrored "added_scales_U0V0.png" layer in Gimp

Of course, if you want to fix every side and part by hand-painting on the model in Blender to obtain a
more natural looking result, no one is going to stop you!

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Painting
• http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.72/Painting
• http://docs.gimp.org/en/gimp-tutorial-quickie-flip.html

http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Painting
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.72/Painting
http://docs.gimp.org/en/gimp-tutorial-quickie-flip.html

Painting the color maps in Blender Internal
After having obtained the scales textures, we must now paint the diffuse color of the Gidiosaurus
character.

Getting ready

Start Blender and open the Gidiosaurus_baking_scales.blend file:

1. Go to the main Properties panel and be sure to have the UVMap coordinates layer selected and
active, in the UV Maps subpanel under the Object Data window.

2. Go to the Material window and select the Material_U0V0 slot, then go to the Texture
window and be sure to have the scales_tiles texture slot selected; left-click on the X icon button
to the right side of the name datablock to unlink it (Shift + left-click to remove it from the file):

Unlinking the scales_tiles texture slot datablock

3. Select and enable (by clicking on the checkbox to the right) the U0V0 texture slot. Repeat the
procedure at steps 2 and 3 for all 5 materials.

I'll take for granted that you have preserved your blank images and that they are the ones loaded
into the current file; otherwise, substitute them with new blank images (you have to do this both
in the Texture window as well as in the UV/Image Editor windows) by following steps 5 and 7
of the Preparing the model to use the UDIM UV tiles recipe in this chapter.

4. Minimize the image editor windows to the left and the Material and Texture panels to the right
as much as possible, then click on the mode button (Sets the object interaction mode) on the

toolbar to go into Texture Paint mode. Press T with the mouse pointer over the 3D view to call
the Tool Shelf and click on the Viewport Shading button on the toolbar to switch to Solid
mode:

Switching to Solid viewport shading mode

5. Just to verify that everything works correctly, select a black color (or any other one) in the color
wheel under the Brush subpanel and trace a continuous stroke in the 3D viewport that
envelopes all the Gidiosaurus body parts:

Testing that everything works correctly with a single stroke on the mesh

By enlarging the UV/Image Editor windows, you will see that after the stroke, each image has
been updated with the corresponding painting (pay no attention to the over-imposed and
repeated for each window UV islands):

The test stroke correctly visible inside each one of the UV/Image Editor windows

6. Rearrange the image editor windows, then press Ctrl + Z to undo the stroke and save the file as
Gidiosaurus_painting_BI.blend.

How to do it…

We are now ready to paint the basic color for the Gidiosaurus character. But first, one more little thing:

1. Select the Gidiosaurus object and enter Edit Mode; select the vertices of all the teeth and all
the talons, then assign a new vertex group renamed enamel; press Ctrl + I to invert the selection
and go out of Edit Mode.

2. Now, start by selecting a medium dark greenish color (R 0.349, G 0.510, B 0.435) in the color
wheel under the Brush subpanel. Scroll down and go to the bottom of the subpanel and click on
the New button to create a new palette, then click on the + icon button (Add Swatch) above the
Foreground Color slot (the left one) to add the color to the palette. Rename the default Palette
name as Gidiosaurus_colors.

3. In the 3D viewport toolbar, click on the Face selection masking for painting button to enable the
masking tool; now it's possible to paint only on the part of the mesh that has selected vertices in
Edit Mode, so in this case we want to paint only on the skin, leaving the teeth and the talons
blank.

4. Click on the Brush window and select the Fill brush; if necessary, click on the greenish color
box added to the palette (called Swatch) to load it as the foreground color (note that with the
Fill brush, the background color swatch disappears and the foreground color swatch becomes
the only one available). Set the Strength value to 1.000 and click on the Gidiosaurus object in
the 3D viewport.

After a while, all the paintable parts of the mesh are filled with the active color (and therefore
also the textures in the UV/Image Editor windows; there are weird straight lines, probably a
bug, but not a problem in this case because they don't show on the mesh and we can fill in the
texture's backgrounds later anyway). If any tiny part is left out, just click on one of the parts
again to fill it:

The Fill brush and the Mask button in the 3D view toolbar

5. Now select the TexDraw brush and a darker and more saturated green color (R 0.129, G 0.275,
B 0.125) as the foreground color, and add it to the palette.

6. Under the Tool Shelf, go to the Options tab and be sure to have the Occlude, Cull and Normal
items disabled still; then go into the Ortho Side view.

7. Now it's time to use a tablet, if you have one; enable both the tablet pressure sensitivity buttons
to the side of the Radius and Strength items and start to shade the Gidiosaurus body on the
head, shoulders, arms, and legs:

Painting colors on the model

8. Select a brownish color (R 0.204, G 0.188, B 0.133) and add it to the palette; disable the tablet
pressure sensitivity for Radius and lower the Strength to 0.500. Go into the Front view,
maximize the 3D viewport (mouse pointer in the window and press Ctrl + Up Arrow), and keep
on adding shades to the hands, feet, and legs:

Shading the character's limbs with darker hues

9. Increase the Radius value to 100 (using the slider or by pressing the F key and moving the
mouse pointer in the 3D view) and painting on the head and the shoulders:

Shading the head and shoulders

10. If, for any reason, it becomes difficult to paint directly on the model through the 3D viewport,
you can maximize the involved UV/Image Editor window (mouse pointer in the window and
press Ctrl + Up Arrow), click on the Mode button (Editing context being displayed) in the
toolbar (which by default shows View), and switch it to Paint. Press T to call the Tool Shelf and
go on with the painting, smudging, or whatever, directly on the texture image:

Painting directly on the image map in the UV/Image Editor window

For example, this is the way I painted the inside of the mouth and the tongue, then went back to
the 3D viewport to smudge and soften the joining line of the pink tissue with the green skin at
the borders:

Working on the inside of the mouth in the UV/Image Editor window

I'm not going to show you every step in this process, but basically this is the procedure I used to
paint the diffuse coloration for the character. I also added lighter and warmer colors for the
face's areas close to the mouth and more bluish and colder hues to de-saturate the brownish
hands and feet, and then inverting the enamel vertex group to paint in Edit Mode, through the
use of the Mask tool, the teeth and talons as well:

The completed Gidiosaurus diffuse color texturing

To have a look at the final Gidiosaurus_colors palette, open the
Gidiosaurus_painting_BI_02.blend file provided.

11. When you are done, go to the top left UV/Image Editor window, blank_U0V0, and click on
the Image item in the toolbar. Save the image texture in the textures_making folder as
U0V0_col.png, and do the same with the other 4 image textures.

12. To keep the palette, save the file.

How it works…

There is not that much to explain about this recipe, except I just want to highlight the fact that we
disabled the Occlude, Cull, and Normal items in the Options tab under the Tool Shelf. This is so we
were able to paint (from the Side view) on both sides of the model at the same time; in fact, with these
settings disabled, the mesh is not occluding itself. It seems that all three items must be disabled for this
to work.

Instead, to smear and/or soften the texture on some parts, for example, the inside of the mouth, we had
to re-enable them, in order to prevent our mouth-painting from accidentally overwriting our skin-
painting.

Remember, the Occlude, Cull, and Normal items should always be enabled if you want to paint only on
the model's surface right under your brush. You can disable them to paint on the front/outer and the
back/inside of the mesh at the same time.

See also
• http://www.cgmasters.net/free-tutorials/layered-painting-in-blender-2-72/
• http://blender.stackexchange.com/tags/texture-painting

http://www.cgmasters.net/free-tutorials/layered-painting-in-blender-2-72/
http://blender.stackexchange.com/tags/texture-painting

Painting the color maps in Cycles
There are no differences in painting in Blender Internal or in Cycles, because the Paint Tool is exactly
the same; the only difference is in the preparation of the materials.

In this recipe, we are not going to repeat the procedure already explained in the previous one; we'll just
set up the file for the painting and test whether it's possible to paint in real time on all 5 image textures at
the same time, as it is in Blender Internal (spoiler: it is).

Getting ready

Let's start with the Gidiosaurus_painting_BI.blend file; in that file, we already have the UV/
Image Editor windows set and the 5 materials assigned to the 5 different UDIM tiles and parts of the
mesh.

In case you want to start with a brand new file, here you need to repeat the steps of the Preparing the
model to use the UDIM UV tiles recipe in this chapter. Then, continue with the following:

1. Be sure you're in Object Mode.
2. Go to the main top header and click on the Engine to use for rendering button; switch from

Blender Render to Cycles Render.
3. Split the 3D view into two horizontal rows and change the top one into a Node Editor window;

press the N key to get rid of the Properties sidepanel.
4. In the Material window, select the Material_U0V0 slot; click on the Use Nodes button or

select the Use Nodes checkbox in the Node Editor toolbar:

Enabling the nodes for the materials under Cycles

5. Put the mouse pointer inside the Node Editor window and add an Image Texture node (press
the Shift + A keys and in the pop-up menu, go to the Texture item to select Image Texture).
Connect its Color output to the Color input socket of the Diffuse BSDF node.

At this point, if we haven't already painted the color textures in Blender Internal, we should
load the blank_U0V0.png image in the Image Texture node and then do the same for the
other 4 materials.

Instead, because we already have the color textures, let's load them in the Cycles materials. To
see whether everything works as it should, we'll paint on them through the 3D viewport.

6. Click on the double arrows to the side of the Open button in the Image Texture node and select
the U0V0_col.png item from the pop-up menu (remember that the 5 color textures are already
loaded inside the blend file):

Selecting one of the already loaded images in the Image Texture node for the materials under
Cycles

7. Repeat step 4 to step 6 for the other 4 materials.

How to do it…

Now, the steps are really simple:

1. Go to the Brush subpanel and switch the foreground color with the background black color.
2. Trace in the 3D viewport, a continuous stroke enveloping all the Gidiosaurus body parts:

The single stroke test under Cycles

This is the proof that it works exactly as in Blender Internal.
3. Press Ctrl + Z to undo the stroke and save the file as

Gidiosaurus_painting_Cycles.blend.

Chapter 11. Refining the Textures
In this chapter, we will cover the following recipes:

• Sculpting more details on the high resolution mesh
• Baking the normals of the sculpted mesh on the low resolution one
• The Armor textures
• Adding a dirty Vertex Colors layer and baking it to an image texture
• The Quick Edit tool

Introduction
In Chapter 10, Creating the Textures, we have prepared the color and bump texture images for the
Gidiosaurus skin. In this chapter, we'll see the process for creating some additional (but equally
important, nonetheless) textures, both for the character and the iron Armor.

Sculpting more details on the high resolution
mesh
In Chapter 2, Sculpting the Character's Base Mesh, we sculpted the Gidiosaurus character's features,
obtaining a high resolution mesh that we re-topologized in the following Chapter 4, Re-topology of the
High Resolution Sculpted Character's Mesh, to have a low resolution mesh for easy rigging and
texturing.

Because in the following recipe (Baking the normals of the sculpted mesh on the low resolution one) we
are going to bake the normals of the sculpted mesh on the low resolution one, we should now add as
much detailing and finishing to the sculpted model.

I'm not going to explain every step in detail, here, because the procedure is the same as already seen in
the Chapter 2, Sculpting the Character's Base Mesh, so just a quick tour to show what I've done should
be fine.

Getting ready

Let's start by preparing the file:

1. Start Blender and load the Gidiosaurus_painting_BI.blend file; if necessary, go out
of Texture Paint mode back to Object Mode and save the file as
Gidiosaurus_details_sculpt.blend.

2. Collapse all the UV/Image Editor windows on the left of the screen and then join them with the
3D viewport (put the mouse pointer on the edge of one of the two windows; as it changes into a
two opposite arrows pointer, right-click and in the Area Options pop-up menu, left-select the
Join Areas item; then, move the mouse pointer towards the window to be eliminated and left-
click to join them).

3. Join the Material and Texture windows in the main Properties panel, switch to the Object
Data window, and enlarge the 3D viewport as much as possible.

4. Click on the File item in the main top header and then select the Append item (or else, directly
press the Shift + F1 keys); navigate to the Gidiosaurus_retopology_02.blend file,
click on it, and then click on the Object item (folder) to select the Gidiosaurus item.

5. Click on the Append from Library button on the top-right of the screen and then go to the
Outliner window to click on the eye and the arrow icon buttons (Restrict view-port visibility
and Restrict view-port selection) and enable both the object visibility and selection in the 3D
viewport.

6. Move the appended high resolution Gidiosaurus mesh to the 14th scene layer (M key):

The appended, sculpted Gidiosaurus mesh

7. Press N to call the Properties sidepanel and in the Display subpanel, enable the Only Render
item; go down to the Shading subpanel, enable the Matcap item, and then select your favorite
matcap type (mine is always the brick red colored Zbrush-like).

8. Enable the 12th scene layer to show the Eyes; however, in the Outliner, just to be sure, disable
the selection arrow icon button.

9. Press N again to hide the Properties sidepanel and then switch to Sculpt Mode and save the
file.

The Gidiosaurus object ready for the new sculpting session

How to do it…

We are now ready to sculpt again on the Gidiosaurus mesh; first, let's do some more settings pertinent
to the sculpt tools:

1. Go to the Dyntopo subpanel under the Tool Shelf and click on the Enable Dyntopo button; set
Detail Size to 1.60 px and check the Smooth Shading box.

2. Go down to the Symmetry / Lock subpanel to be sure that Mirror is enabled for the x axis.
3. Click on the Options tab and go to the Options subpanel to enable the Fast Navigate item (the

Threaded Sculpt item should be already enabled by default).
4. Go back to the Tools tab and click on the Brush windows; select the Crease brush (press the

Shift + C or 5 keys), zoom to the Gidiosaurus's head, and start to add expression folds:

Adding expression folds with the Crease brush

5. Move to the throat, in the Tool Shelf panel, switch the effect of the brush from Subtract to
Add through the buttons at the bottom of the Brush subpanel (or simply by pressing the Ctrl
key while sculpting), and add veins to the area:

Adding veins under the jaw and on the neck by using the Crease brush again, but with inverted
effect

6. By using the same technique, add veins also on the shoulders and the biceps; then, select the
Polish brush (Shift + 4) and refine the elbow a bit:

Adding the veins on the arm muscles and polishing the elbow's bulging muscle

7. By using the Clay brush (C or 3 keys) and also the Crease (Shift + C or 5 keys) and Pinch (P or
Shift + 3) brushes, refine the shape and the folds of the palm and add details to the back of the
fingers. The Clay brush can be used in Subtract mode too, to carve shapes:

Detailing the palm and the fingers of the hand

8. Similarly, add details and refine the back of the foot and the sole:

Detailing the feet

9. Use the Smooth brush (S or Shift + 7 keys) to gently soften the character's features; when you
are done, save the file.

Smoothing the added features

Now, as we have detailed the body of the Gidiosaurus, it would be a good idea to refine the
Armor also.

10. Switch to the 13th scene layer; select the Armor object and go to the Shape Keys subpanel
under the Object Data window.

11. Select the Basis shape key and then click on the – icon button to delete it (this leaves the only
remaining shape key, Armor_fix, as the base one, so permanently applying the morph to the
mesh); then, also select the Armor_fix shape key and delete it.

12. Repeat the previous steps for the rivets and the Armor_decorations objects as well.
13. Through the Outliner window, Shift-select the rivets, Armor_decorations, and Armor

objects; then, press Ctrl + J to join them as a single object.
14. Go to the Vertex Groups subpanel and add a new vertex group; rename it as shrinkwrap.
15. Enter Edit Mode and select the vertices on the outside of the armor body plates, leaving the

inside faces of the plates, the bottom of the spaulders, the decorations, the rivets, and the
tiers, unselected; if necessary, use the seams to help you to divide the outer from the inner parts
of the mesh. Click on the Assign button at the bottom of the Vertex Groups subpanel:

Selecting the outer parts of the Armor

16. Split the 3D view into two windows and change the left one into a UV/Image Editor window.
17. Go to the UV Maps subpanel under the Object Data window, click on the + icon button to add

a new UV coordinates layer, and rename it as UVMap_norm. Then, click on the camera icon
on the right-hand side of the name to make it the active UV layer.

18. Put the mouse pointer in the 3D viewport and press U; in the UV Mapping pop-up menu, select
the Smart UV Project item; in the pop-up panel, click on the Island Margin value (default =
0.00) and set it to 0.001. Leave the other values as they are and click on the big OK button at
the bottom of the panel.

The UVMap_norm UV coordinates layer for the Armor object

19. Go out of Edit Mode and minimize the UV/Image Editor window as much as possible; press
Shift + D to duplicate the Armor object and move the duplicated one to the 3rd scene layer.

20. Enable the 3rd scene layer; go to the Object Modifiers window and delete the Armature and
the Subdivision Surface modifiers; in the Outliner, rename the new object (now Armor.001)
as Armor_detailing.

21. Assign a Multiresolution modifier. Click on the Subdivide button until it reaches level 3; then,
check the Optimal Display item and go in Sculpt Mode. Using the same procedure as before,
add scrapes, bumps, deformations, and so on, to the armor surface; add some kind of engraving
also, for example, on the groinguard.

Sculpting the Armor_detailing object

22. Save the file.

Baking the normals of the sculpted mesh on the
low resolution one
At this point, we can transfer all the details sculpted on our high resolution meshes (the Gidiosaurus
and the Armor objects) to the low resolution assets; to do this, we have to bake these details as normal
maps.

Getting ready

Continue from the previous Gidiosaurus_details_sculpt.blend file:

1. Split the 3D viewport into two windows and change the left one into a UV/Image Editor
window.

2. Go to the 11th scene layer and select the Gidiosaurus_lowres object; press the Tab key to enter
Edit Mode and, if necessary, press A to select all the vertices.

3. Go to the UV Maps subpanel under the Object Data window, click on the + icon button to add
a new UV coordinates layer, rename it as UVMap_norm, and click on the camera icon to make
it the active UV layer.

4. Put the mouse pointer in the 3D viewport and press U. In the UV Mapping pop-up menu, select
the Smart UV Project item; in the pop-up panel, click on the Island Margin value (default =
0.00) and set it to 0.001. Leave the other values as they are and click the big OK button at the
bottom of the panel.

The UVMap_norm UV coordinates layer for the low resolution Gidiosaurus mesh

5. Deselect all the vertices (the A key again) and zoom to the head; Shift-select the vertices of all
the parts that don't actually exist in the high resolution sculpted model such as the inside of the
mouth, the mouth inner rims, the tongue, the eyelids, the inside of the nostrils, the teeth, and
the talons:

Selecting the low resolution mesh parts that don't have a counterpart in the high resolution
sculpted mesh

6. Go to the Vertex Groups subpanel under the Object Data window and click on the + icon
button to add a new vertex group; rename it as shrinkwrap.

7. Press Ctrl + I to invert the selection and then click on the Assign button below the vertex group
list window in the Vertex Groups subpanel:

Assigning the inverted selection to the "shrinkwrap" vertex group

8. Go out of Edit Mode and press Shift + D to duplicate the Gidiosaurus_lowres object; move the
duplicate to the 4th scene layer and in the Outliner window, rename it as
Gidiosaurus_for_baking.

9. In the Outliner, enable the 3D viewport visibility of the rig; select and move the ctrl_mouth
bone upward to close the Gidiosaurus's mouth and then hide the 11th scene layer.

10. Reselect the Gidiosaurus_for_baking object and go to the Object Modifiers window; click on
the Apply as Shape Key button of the Armature modifier.

11. Go to the Shape Keys subpanel under the Object Data window to find a new shape key at the
bottom of the list: Armature, with the value of 0.000.

12. Rename the new shape key as closed_mouth and set the value to 1.000:

The closed_mouth shape key

13. Go to the Object Modifiers window and assign a Shrinkwrap modifier to the
Gidiosaurus_for_baking object; as Target, select the Gidiosaurs_detailing object and then
click on the Vertex Group slot to select the shrinkwrap vertex group.

In the following screenshot, you can see the effect of the Shrinkwrap modifier on the low resolution
mesh with the Subdivision Surface modifier enabled also for the 3D viewport:

The "shrinkwrapped" low resolution Gidiosaurus mesh

How to do it…

After this quite intensive file preparation, let's go with the baking itself:

1. Enter Edit Mode and select all the mesh vertices; in the UV/Image Editor window, add a new
3072 x 3072 blank image and rename it as norm.

2. Go out of Edit Mode, enable the 14th scene layer, select the Gidiosaurus_detailing object, and
then Shift-select the Gidiosaurus_for_baking object.

3. Go to the Render window, scroll the panel down and, in the Bake subpanel, check the Selected
to Active item. Set Margin to 8 pixels, the Bake Mode to Normals, and the Normal Space to
Tangent; click on the Bake button to start the baking:

The baked normals' image map, the two overlapping and selected objects, and the Bake
subpanel

4. Click on the Image item in the UV/Image Editor window toolbar to save the baked image as
norm.png inside the texture_making folder.

How it works…

To close the mouth (to conform it to the sculpted mesh), we moved the control bone in the rig and then
applied the Armature modifier as a shape key; be aware that a modifier cannot be applied to a mesh
with shape keys (you get a warning message), so we had to use the Apply as Shape Key option or
delete all the shape keys with drivers and redo them later. In this case, however, it wouldn't have been
necessary to duplicate the Gidiosaurus low resolution mesh, but we did it anyway to keep things
simpler and cleaner.

Right before the baking, a Shrinkwrap modifier has been assigned to the lowres
Gidiosaurus_for_baking object, to conform its surface to the high resolution sculpted
Gidiosaurus_detailing object and avoid any possible intersection between the two meshes (that would
give ugly artifacts in the baked image); we used the shrinkwrap vertex group to keep the vertices that
don't have a counterpart on the high resolution mesh (teeth, eyelids, inner mouth, and so on) out of the
modifier influence.

As you can see in the following OpenGL screenshot, comparing the sculpted and the low res
Gidiosaurus meshes, the result of the baked normals on the low resolution object is pretty good and
effective:

Comparison between the high resolution sculpted mesh and the low resolution object with the baked
normal map

There's more…

As we reopen the mouth by lowering the close_mouth shape key value to 0.000 or also by simply
assigning the baked normal map to the Gidiosaurus_lowres object, we see that something is wrong
inside the mouth (and, actually, also on the teeth and talons): the normals have been calculated for
those parts too, but they show wrong and weird artifacts because there were no counterparts to take the
normals from in the sculpted high resolution mesh.

Artifacts of the normal map in some mesh parts

The solution in this case is very simple: we must paint the areas on the baked normal map corresponding
to the afflicted parts, such as the teeth, the tongue, and so on, with a flat normal color (R 0.498, G
0.498, B 1.000) to flatten and therefore erase the unwanted details.

We can do this directly in Blender, by selecting the vertices of the areas to be painted on and enabling
the mask tool in the 3D viewport toolbar:

Flattening the unwanted artifacts by painting on the normal map

Alternatively, we can do it in an external painting software program such as Gimp; in this case, just
delete the vertices of the parts that you don't want to change in the mesh and export the UV layer of all
the remaining parts to be used as a guide to paint.

The Armor textures
The same procedure used in the previous recipe must be used for the Armor object, to bake the normals
of the sculpted high resolution version on the low poly one.

Getting ready

So, in short, we will do the following:

1. Enable the 13th scene layer; select the Armor object and go to the Object Modifiers window.
2. Temporarily, disable the Armature modifier both for rendering, and the viewport, and be sure

that the Subdivision Surface modifier levels are both set to 2.
3. Assign a Shrinkwrap modifier with a target to the Armor_detailing object; in the Vertex

Group slot, select the shrinkwrap vertex group and, just to be sure, also check the Keep
Above Surface item.

Also, in this case, thanks to the shrinkwrap vertex group, only the outside of the armor mesh is
conformed to the sculpted mesh; the insides are not important and can even be deleted (only for the
baking and, of course, on a duplicated armor object, as we did with the Gidiosaurus_for_baking
object). In any case, they will be barely visible.

The Armor object prepared for the baking

How to do it…

Let's now bake the sculpted geometry in a few steps:

1. Enter Edit Mode and select all the mesh vertices; in the UV/Image Editor window, add a new
3072 x 3072 blank image and rename it as norm2.

2. Go out of Edit Mode, enable the 3rd scene layer and select the Armor_detailing object, and
then Shift-select the Armor object.

3. Go to the Render window, scroll the panel down; in the Bake subpanel, check the Selected to
Active item, and set the Margin to 8 pixels, the Bake Mode to Normals, and the Normal
Space to Tangent. Then, click on the Bake button.

4. Click on the Image item on the UV/Image Editor window toolbar to save the baked image as
norm2.png, inside the texture_making folder.

5. Save the file as Gidiosaurus_baking_normals.blend.

In the following OpenGL screenshot, you can see the comparison between the sculpted and the low
resolution Armor objects with the assigned normal map:

A comparison between the sculpted and the normal map versions of the Armor

There's more…

Inside the texture_making folder provided with this cookbook, there is also an already seamless
iron_tiles.png image to be used for the Armor; it has been made seamless in Gimp, but after the

mapping on the model, we'll need to fix some visible seams again by using the Clone brush of the
Blender Paint Tool.

I won't go through all the required steps here, because this would be a repetition of recipes already
explained in Chapter 10, Creating the Textures.

Note

Just remember that all we have to do is to bake the seamless iron_tiles.png image, which is
mapped on the UVMap_rust coordinates layer, on the UDIM UVMap coordinates layer; in this case,
shared into two tiles spaces and then fix the visible seams on the baked images.

So, we have to add two materials to the Armor object; each one with its own image texture and assigned
to the vertices corresponding to each tile, and then also add the iron_tiles.png image to each
affected material.

In short, we have to replicate the steps of the Preparing the model to use the UDIM UV tiles, Baking the
tileable scales texture into the UV tiles, and Painting to fix the seams and to modify the baked scales
image maps recipes from Chapter 10, Creating the Textures.

To use the Clone brush (press the 1 key to call it after entering Texture Paint mode), press Ctrl + left-
click on the area of the mesh you want to clone from; this will place the 3D Cursor in that location.
Then, left-click on the seams to clone the texture from the area under the 3D Cursor:

The Clone brush is cloning the texture area at the 3D Cursor location

Besides the Clone brush, in this case, it is also possible to fix the seams with the Smear brush (4 key).

When you are done, save the two iron images as iron_U0V0.png and iron_U1V0.png inside the
texture folder.

See also

Be aware that the first following link is for Blender version 2.6 (seems there is very little official
documentation for version 2.7 at the moment), and a few things in the Paint Tool have changed; in any
case, I think it can still be an interesting reading:

• http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Painting
• http://www.blender.org/manual/render/blender_render/textures/painting.html

http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Painting
http://www.blender.org/manual/render/blender_render/textures/painting.html

Adding a dirty Vertex Colors layer and baking it
to an image texture
Let's see now how to add a dirty map through the Vertex Colors tool and how to bake it to an image
texture; such a texture map can be useful for the creation of the shaders (which we'll see in the next
chapter).

Getting ready

To do this, we are going to use an already set .blend file:

1. Start Blender and open the Gidiosaurus_baking_normals.blend file; save it as
Gidiosaurus_baking_dirty.blend.

2. Put the mouse pointer in the 3D view and press the Z key twice to switch into Solid viewport
shading mode; click on the 14th scene layer to enable the visibility of the
Gidiosaurus_detailing object.

How to do it…

Let's first go with the creation of the Vertex Colors layer:

1. In the Outliner, select the Gidiosaurus_detailing object and then click on the mode button in
the 3D viewport toolbar to select the Vertex Paint mode:

Selecting the Vertex Paint mode item

2. Now, click on the Paint item in the 3D viewport toolbar and from the menu, select the Dirty
Vertex Colors item; the Gidiosaurus mesh, first filled with a plain white color, gets shaded in
grayscale tones:

Using the Dirty Vertex Colors tool

3. Expand the last operation panel at the bottom of the Tool Shelf and press Ctrl+click on the Dirt
Angle slot to enter the value 90°; the grayscale shading on the mesh gets a lot more darker and
contrasted:

Tweaking the settings for the Dirty Vertex Colors tool

4. Go back in Object Mode and then move to the Material window, where the Body material is
already assigned to the high resolution mesh. Scroll down the panel to reach the Shading
subpanel and enable the Shadeless item; then, reach down the Options subpanel and enable the
Vertex Color Paint item:

The Shadeless and the Vertex Color Paint items

To understand the effect of the items we enabled in the Material window, just switch to the
Rendered viewport shading mode; the mesh surface is self-illuminating and showing the dirty
Vertex Colors layer:

The Dirty Vertex Colors layer visualized in the Rendered preview

Note that the Shadeless item is not actually mandatory for the baking, but is only required to see
the object in the Rendered viewport shading mode as in the previous screenshot.

5. Also, enable the 4th scene layer (Shift+left-click) and in the Outliner window, select the
Gidiosaurus_for_baking object. Go to the Object Data window to be sure that the
UVMap_norm layer is the active one and then go to the Render window and scroll down to
the bottom, to the Bake subpanel; click on the Bake Mode slot to select the Textures item from
the pop-up menu:

Baking the Dirty Vertex Colors layer to Textures

6. With the Gidiosaurus_for_baking object still selected, enter Edit Mode and select all the
vertices; in the UV/Image Editor window, add a new 3072 x 3072 blank image renamed as
vcol.

7. Go out of Edit Mode and in the Outliner, select the Gidiosaurus_detailing object; then, Shift-
select the Gidiosaurus_for_baking object and go to the Bake subpanel under the Render
window to click on the Bake button:

The final baked "vcol.png" image map

8. Save the baked image as vcol.png into the texture_making folder.
9. Enable the 3rd scene layer, select the Armor_detailing object, and repeat the procedure; save

the baked image as vcol2.png in the texture_making folder and also save the file:

The baked vertex color layer for the Armor

How it works…

The Vertex Colors tool can add a color to each vertex of the mesh, so it's actually possible to paint an
object without the need for an image texture; the denser the mesh, the better this works.

The Dirty Vertex Colors tool uses the proximity and the depth of folds and creases on the mesh surface
to calculate grayscale values to be assigned to the vertices; thanks to the Vertex Color Paint item,
enabled in the Material window, this grayscale shows up in the rendering and so it's also possible to
bake it into an image.

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Special_Effects/Vertex_Paint
• http://www.blender.org/manual/render/blender_render/materials/special_effects/

vertex_paint.html

http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Special_Effects/Vertex_Paint
http://www.blender.org/manual/render/blender_render/materials/special_effects/vertex_paint.html
http://www.blender.org/manual/render/blender_render/materials/special_effects/vertex_paint.html

The Quick Edit tool
It's time to talk a bit about a very useful Blender tool: the Quick Edit tool.

Through this tool, it's possible to export a screenshot of the model in our favorite 2D painting software
(Gimp or Photoshop, or whatever), paint on it using a new alpha background layer, and reassign the
painted layer to the model in Blender, which is UV-mapped on the selected UV coordinates layer. All
this, in just a few clicks.

Getting ready

In our case, we don't actually need to use this tool to refine the textures for the Gidiosaurus, so this
recipe is going to be just an example. By the way, to fully understand how to use the tool, I suggest you
to follow all the steps; just don't save the file at the end (or save it with a different name in a different
directory if you want to keep it). So, carry on with the following:

1. Start Blender and call the User Preferences panel (Ctrl + Alt + U); go to the File tab and, in the
Image Editor slot (Path to an image editor), write the path to your 2D image painting software
installation (this is also done by clicking on the open/browse button at the right end of the slot).
The path, of course, changes based on your OS; in my case, in Linux Ubuntu, it's enough to
write gimp:

The Image Editor path in the File tab of the User Preferences panel under Linux Ubuntu

2. Click on the Save User Settings button at the bottom-left of the panel and close it.

How to do it…

Once you've set the path to the image editor, let's load our Gidiosaurus file:

1. Load the Gidiosaurus_painting_BI.blend file and maximize it as much as possible in
the 3D viewport.

You can use both the User or the Camera view; it doesn't make any difference for the tool to
work. By the way, it would be a good idea to use the Camera view so as to have a fixed point of
view for any other case.

2. If necessary, press the T key to call the Tool Shelf panel; select the Gidiosaurus object and then
go in Texture Paint mode.

3. Go to the External subpanel under the Tools tab; set a size for the screenshot to be exported (by
default, it's 512 x 512 pixels; I set it to 3072 x 3072 pixels) and then click on the Quick Edit
button:

The External Image Editor subpanel

After a while, the image editor automatically starts (in my case, it's Gimp 2.8) and opens the
screenshot of the model:

The screenshot previously visible in the Blender Camera view opened in Gimp

4. Add a new transparent layer and start to paint on it, adding some kind of tribal make-up
decoration to the Gidiosaurus:

Tribal painting on the Gidiosaurus warrior

5. When you are done, deselect the visibility for the export layer and export the transparent painted
one by saving it with the same name as the exported one. That is, the Quick Edit tool exported
the screenshot by saving a .png image inside the blend file directory with the name
Gidiosaurus_painting_BI_02_Gidiosaurus_lowres.png; export the painted
layer by saving it as Gidiosaurus_painting_BI_02_Gidiosaurus_lowres.png
as well:

The Gimp layer with the tribal painting "a solo"

This is necessary for Blender to find it in the next step.
6. Back in Blender, click on the Apply button under the External subpanel and watch the new

layer added to the model in the 3D viewport:

7. To make the textures editing permanent, click on the Save All Images button, both under the
Slots tab and the Image item on the UV/Image Editor window toolbar:

The tribal painting transferred on the 3D model

The editing we did in Gimp is now correctly transferred on the image textures:

The tribal painting transferred on the image map

How it works…

As you have seen, the Quick Edit tool worked like a charm on all the 5 different materials assigned to
the Gidiosaurus model for the painting. Be careful that, at least at the moment, this doesn't seem to
work with nodes materials (which we'll see in the next chapter).

Chapter 12. Creating the Materials in Cycles
In this chapter, we will cover the following recipes:

• Building the reptile skin shaders in Cycles
• Making a node group of the skin shader to reuse it
• Building the eyes' shaders in Cycles
• Building the armor shaders in Cycles

Introduction
In Chapter 10, Creating the Textures, and in Chapter 11, Refining the Textures, we have prepared all the
necessary texture images for the Gidiosaurus skin and for the iron Armor (the creation process for
some textures, specifically the two textures for the character's eyes, hasn't been described, but basically
it's a process similar to what we have already seen).

In this chapter, we'll see how to use these textures and how to set up the materials for the Gidiosaurus
and the Armor in the Cycles Render engine.

A rendered example of the Cycles' shader final result

Building the reptile skin shaders in Cycles
So, let's start with the Gidiosaurus skin.

Getting ready

But first, as usual, we must prepare the file:

1. As the very first step, go to the texture_making folder and move the textures vcol.png,
vcol2.png, norm.png, and norm2.png to the textures folder.

2. Then start Blender and open the Gidiosaurus_baking_normals.blend file we saved
in Chapter 11, Refining the Textures.

3. Switch the left UV/Image Editor window with a Node Editor window and press the N key to
get rid of the Properties sidebar. Put the mouse pointer in the 3D viewport to the right and press
the T key to get rid of the Tool Shelf panel, then press the Z key twice to go in Solid viewport
shading mode.

4. Enable the 3rd scene layer, select and delete the Armor_detailing object (press the X key, then
left-click to confirm).

5. Enable the 4th scene layer and select and delete the Gidiosaurus_for_baking object as well.
Enable the 14th scene layer, and also select and delete the Gidiosaurus_detailing and the
enamels objects.

6. Enable the 11th scene layer and right-click on the Gidiosaurus_lowres object to select it.
7. It's not mandatory but, in case it is not already disabled, it is best to go to the Object Modifiers

window and disable the Armature modifier visibility in the viewport by clicking on the eye
icon button.

8. Go to the UV Maps subpanel under the Object Data window and select the UVMap
coordinates layer (the first one); press Tab to enter Edit Mode, then click on the + icon button to
the right side of the UV Maps subpanel to add a new coordinates layer; rename it UVMap2.

9. Go to the left window and change it into a UV/Image Editor; one by one, select the UV islands
of the talons (at the moment these are placed inside the other UDIM tile spaces), and move
them to the default U0V0 tile, to overlap the location of the teeth islands. The reason for this
will be clear later, when we will reuse the same color map both for the teeth and for all the
talons.

10. If necessary, remember to disable the Keep UV and edit mode mesh selection in sync button on
the UV/Image Editor toolbar:

Moving the talon islands to overlap the teeth islands inside the default U0V0 tile space

11. Go out of Edit Mode and switch the UV/Image Editor window back to a Node Editor
window.

12. Click on the Engine to use for rendering slot on the main top header to switch to the Cycles
Render engine.

13. Also, enable the 6th scene layer to show the Lamps. Go to the Outliner, unhide and delete the
Lamp.001 object and select the Lamp object; in the Object Data window, change the type to
Spot and then click on the Use Nodes button. Set the Strength to 10.000 and the Color to R
1.000, G 1.000, B 0.650, then set the Size to 0.500 and enable the Multiple Importance item
(the Multiple Importance Sampling helps in reducing noise for big lamps and sharp glossy
reflections, at the cost of the samples rendering a bit slower).

14. Put the mouse pointer in the 3D viewport and press N to call the Properties sidepanel; in the top
Transform subpanel, type: Location X = 6.059204, Y = -9.912249 and Z = 7.546275, and
Rotation X = 55.788944°, Y = 0° and Z = 30.561825°.

15. Go to the Render window and, under the Sampling subpanel, set the Samples to 400 for
Render and 300 for Preview.

16. Go down to the Light Paths subpanel and disable the Reflective Caustics item, then set Filter
Glossy to 1.000.

17. Re-select the Gidiosaurus_lowres object and go to the Material window:

The 5 materials under the Cycles render engine

As you can see in the previous screenshot, the Gidiosaurus_lowres object has already assigned
the 5 materials corresponding to the 5 UDIM tile spaces (see Chapter 5, Unwrapping the Low
Resolution Mesh, and Chapter 10, Creating the Textures).

The materials have been created under Blender Internal so, switching to Cycles, they show but
aren't initialized as node materials yet; besides this, just before starting the creation of the first
Cycles material, we must add two more materials.

18. Click the + icon button twice (Add a new material slot) to the right side of the Material
window to add two new material slots.

19. Select the penultimate slot and click on the New button; rename the new material as
Material_enamels. Select the last slot, click on the New button and rename it as
Material_wet_U0V0.

20. Press Tab to enter Edit Mode and select all the vertices of the teeth and the talons; assign them
to the Material_enamels slot.

21. Zoom on the Gidiosaurus head; select the vertices of the inner nostrils, of the inner edges of
the eyelids and of the tongue, as shown in the following screenshot, and assign them to the
Material_wet_U0V0 slot:

Selecting the vertices of the "wet" areas of the character's head to assign them to the
"Material_wet_U0V0" slot

22. Save the file as Gidiosaurus_shaders_start.blend file.

How to do it…

We know that the skin of our character is shared in 5 different materials; we are going to focus on the
head (Material_U0V0), as the more representative one.

Once we are happy with the result, we will also copy (with all the due differences) the material to the
other body parts.

Therefore, the steps are as follows:

1. In the materials list inside the Material window, select the Material_U0V0 (the first top
one) and press Ctrl + left-click on it to rename it as Material_skin_U0V0; then, move
down and click on the Use Nodes button inside the Surface subpanel.

Immediately, a Diffuse BSDF shader node (already connected to a Material Output node)
appears inside the Node Editor window to the left of the screen and listed in the Surface slot
inside the Surface subpanel to the right:

The Diffuse BSDF shader node connected to the Material Output node

2. In the Surface subpanel, under the Material window, click on the Surface slot that now shows
the Diffuse BSDF shader: in the pop-up menu that appears, select a Mix Shader node:

Switching the Diffuse BSDF shader node with a Mix Shader node through the Material window
drop-down list

The Surface slot now shows the Mix Shader node item, and right below there are two new
Shader slots that at the moment show the None item; in fact, looking at the nodes inside the
Node Editor window, we see that the Diffuse BSDF shader node has been replaced by a Mix
Shader node, and that the two (green) Shader input sockets are still empty:

The Mix Shader node with its two shader input sockets in the UV/Image Editor window and in
the Material window

3. Click on the first Shader slot under the Surface subpanel to select, again from the pop-up
menu, a Diffuse BSDF shader node; click on the second Shader slot and select a Mix Shader
node; both the two new nodes are added and connected to the proper input socket, as we can see
in the Node Editor window:

Two new nodes connected to the two shader input sockets of the Mix Shader node

At this point, to avoid confusion, it's already better to start to label the various nodes with
meaningful names.

4. Put the mouse pointer inside the Node Editor window and press the N key to call the
Properties sidepanel.

5. Select the last Mix Shader node we added to the material and then go to click on the Label slot
inside the top Name subpanel of the side Properties panel: type Mix Shader1:

Labeling the nodes

6. Select the other Mix Shader node (the old one) and repeat the procedure by labeling it as Mix
Shader2:

Labeling the nodes again

7. Put the mouse pointer on the 3D viewport and press the 0 key on the numpad to enter the
Camera view.

8. Press Shift + B and by left-clicking draw a box around the head of the Gidiosaurus character to
crop the area that can be rendered.

9. Zoom to the red square by scrolling the mouse wheel and then press Shift + Z to switch the
Viewport Shading mode to Rendered:

Cropping the renderable area and zooming to it

10. Put the mouse pointer inside the Node Editor window and press Shift + A. In the pop-up panel
that appears, navigate to Shader and then click on the Glossy BSDF item to add the node; as it
appears, move the mouse to place it to the left side of the Mix Shader1 node.

11. Label it as Glossy BSDF1, connect its output to the first top Shader input socket of the Mix
Shader1 node, and set Distribution to Beckmann:

Adding a Glossy BSDF shader node and labeling it

12. Add a second Glossy BSDF shader node (Shift + A | Shader | Glossy BSDF) and place it right
under the previous one; label it as Glossy BSDF2, connect its output to the second Shader input
socket of the Mix Shader1 node, and set Distribution to Beckmann as well and the
Roughness to 0.400.

13. Set the factor value (Fac) of the Mix Shader1 node to 0.350:

Adding a second Glossy shader node and blending it with the first one through the Fac value of
the Mix Shader1 node

14. Add a Fresnel node (Shift + A | Input | Fresnel) and connect its Fac output to the Fac input
socket of the Mix Shader2 node; set the IOR value to 3.840. Set the Roughness value of the
Diffuse BSDF shader node to 0.500:

Adding a Fresnel node to set the Index of Refraction value to blend the diffuse with the glossy
components

15. Add a Subsurface Scattering node (Shift + A | Shader | Subsurface Scattering) and an Add
Shader node (Shift + A | Shader | Add Shader). Move this last one to the link that connects the
Mix Shader2 node to the Material Output node in order to paste it automatically between the
two nodes (automatically when the connection line becomes highlighted):

Automatically joining the Add Shader node

16. Connect the output of the Subsurface Scattering node to the second Shader input socket of the
Add Shader node. In the SSS node, change Fallof from Cubic to Gaussian, set the Scale to
0.001 and click on the Radius button to set the RGB to 9.436, 3.348 and 1.790:

Connecting and setting the SSS node

17. Add a new Mix Shader node (Shift + A | Shader | Mix Shader) and label it as Mix Shader3.
Connect the output of the Mix Shader2 node to the first Shader input socket of the Mix
Shader3 node, and the output of the Add Shader node to its second Shader input socket. Set
the Fac of the Mix Shader3 node to 0.250 and connect its output to the Surface input socket of
the Material Output node:

A little trick to tweak the influence of the Add shader node

18. Add a Frame (Shift + A | Layout | Frame), box-select all the nodes (except the Material
Output node) and then press Ctrl + P to parent them to the frame; label the frame as
SHADERS.

19. Select the SHADERS frame and go to the Properties sidepanel. Expand the Color subpanel
(right under the Node subpanel) by clicking on the little horizontal black arrow, and enable the
Color checkbox.

20. Click on the color slot and set a light color of your choice (I set it to RGB 1.000, which is
totally white). Then click on the + icon button to the side and in the Name slot of the Add Node
Color Preset pop-up panel, write Frame, then click the big OK button.

21. Select the Material Output node and then Shift-select the Frame again, then go to the Color
subpanel and click on the big vertical arrow under the + and – icon buttons to the side. Click on
the Copy Color item to copy the color of the Frame to the Material Output node:

The SHADERS frame with the nodes and the Copy Color tool under the N sidepanel

22. Select any one of the other nodes, for example the Fresnel node, enable the Color checkbox
and set a new color of your choice (for these nodes, I set it to R 1.000, G 0.819, B 0.617, which
is a light brown).

23. Click on the + icon button to the side and in the Name slot of the Add Node Color Preset pop-
up panel, write Shaders, then click the big OK button.

24. Now box-select all the other nodes inside the frame and click on the Copy Color item to copy
the color from the Fresnel node to all the other selected nodes at once:

Copying the label color from one node to all the other selected nodes

At this point we have completed the basic shader for the skin; what we have to do now is to add
the textures we painted in both Chapter 10, Creating the Textures, and Chapter 11, Refining the
Textures.

So:
25. Put the mouse pointer into the Node Editor window and add an Image Texture node (Shift + A

| Texture | Image Texture); label it as COL and then use Shift + D to duplicate it; move the
duplicated one down and change its label to SCALES.

As you label the newly added nodes, also assign colors to them to make them more easily
readable inside the Node Editor window, and save these colors as presets as we did at step 20.

26. Click on the Open button of the COL node and browse to the textures folder. There, load
the image U0V0_col.png.

27. Click on the Open button of the SCALES node and browse to the textures folder. There,
load the image U0V0_scales.png; set the Color Space to Non-Color Data.

28. Add a MixRGB node (Shift + A | Color | MixRGB) and label it as Scales_Col; connect the
Color output of the COL node to the Color1 input socket of the Scales_Col node and the
Color output of the SCALES node to its Color2 input socket. Set the Fac to 1.000 and the
Blend Type to Divide.

29. Connect the output of the Scales_Col node to the Color input socket of the Diffuse BSDF
shader node inside the SHADERS frame.

The result so far is visible in the real-time rendered preview to the right:

The rendered result of the two combined image texture nodes

As you can see, the glossy component is strong in this one! We must lessen the effect, to obtain
a more natural look.

30. Add a new MixRGB node (Shift + A | Color | MixRGB) and label it as Col_Spec; set the
Color2 to R 0.474, G 0.642, B 0.683, then also connect the output of the Scales_Col node to
the Color1 input socket of the Col_Spec node.

31. Set the Fac value to 0.150 and the Blend Type to Add, then connect its output to the Color
input sockets of both the Glossy BSDF1 and Glossy BSDF2 nodes:

Varying the textures color output for the glossy component

32. Press Shift + D to duplicate the Col_Spec node and label the duplicate as Col_SSS; set the Fac
value to 1.000 and the Color2 to R 0.439, G 0.216, B 0.141. Connect the Color output of the
Scales_Col node to the Color1 input socket of the Col_SSS node and the output of this latter
node to the Color input socket of the Subsurface Scattering node; increase its Texture Blur to
the maximum value.

33. Shift-select the Col_Spec and the Col_SSS nodes and then also the SHADERS frame, and press
Ctrl + P to parent them:

Varying the textures color output also for the SSS node

The new result looks a lot better:

A better result

34. Add an Attribute node (Shift + A | Input | Attribute) and label it as Attribute_UV1. Connect
its Vector output to the Vector input sockets of the COL and SCALES nodes and in the name
field type UVMap:

Adding the Attribute node to establish the UV coordinates layer to be used

By the way, the glossy component is still a little unnatural.
35. Add a new Image Texture node (Shift + A | Texture | Image Texture) and label it as VCOL.

Click on the Open button, browse to the texture folder and load the image vcol.png.
36. Press Shift + D to duplicate the Attribute node, change the label to Attribute_UV2, and change

the Name field to UVMap_norm. Connect its Vector output to the Vector input of the VCOL
node.

37. Add a Math node (Shift + A | Converter | Math) and a MixRGB node (Shift + A | Color |
MixRGB); connect the Color output of the VCOL node to the first Value input socket of the
Math node; label this one as Spec_soften and set the second Value to 0.007. Connect its Value
output to the Color1 input socket of the MixRGB node, which is now labeled as Mix_Spec.

38. Connect the Color output of the Mix_Spec node to the Roughness input socket of the Glossy
BSDF1 node:

Using the baked Vertex Color image to "soften" the character's skin specularity

The specularity is now a bit more realistic:

And the rendered result of this operation

Anyway, it's still missing the contribution of the bump effect.
39. Add a Bump node (Shift + A | Vector | Bump); connect the output of the SCALES node to the

Height input socket of the Bump node and the Normal output of this latter node to the Normal
input socket of the Diffuse BSDF, Glossy BSDF1, Glossy BSDF2, and Subsurface Scattering
nodes. Set the Strength of the Bump node to 0.500:

Adding the bump pattern to the shaders

Now we start to see something!

The bump effect in the rendered preview

By the way, the bump pattern is too even and, therefore, unrealistic; we must therefore break it
in some way.

40. Add a Noise Texture node (Shift + A | Texture | Noise Texture) and a Texture Coordinate
node (Shift + A | Input | Texture Coordinate). Connect the Object output of the Texture
Coordinate node to the Vector input socket of the Noise Texture node, then set the Scale of the
texture to 50.000.

41. Add a Math node (Shift + A | Converter | Math) and a MixRGB node (Shift + A | Color |
MixRGB). Connect the Color output of the SCALES node to the Color1 input socket of the
MixRGB node, and the Color output of the Noise Texture to the Color2 input socket.

42. Set the MixRGB blend type to Add, the Fac value to 1.000 and label it as Scales_Noise. To see
the effect, connect its Color output to the Height input socket of the Bump node (but this is
going to change very soon, so it's not mandatory at this step):

Adding some noise to the bump pattern part 1

43. Select the Math node and move it on the link connecting the Noise Texture node with the
Scales_Noise node to paste it in between them: set the Operation to Multiply, the second
Value to 1.000, and label it as Multiply_Noise.

44. Press Shift + D to duplicate the Multiply_Noise node, change the label to Multiply_Scales and
the second Value to 4.000; paste it between the SCALES node and the Scales_Noise node.

45. Add an RGB to BW node (Shift + A | Converter | RGB to BW) and paste it between the Noise
Texture node and the Multiply_Noise one:

Adding some noise to the bump pattern part 2

46. Press Shift + D to duplicate the Multiply_Scales node and change the duplicate label to
Multiply_Bump; connect the output of the Multiply_Scales to the first Value input socket of
the Multiply_Bump node and the output of the Scales_Noise node to the second Value input
socket. Connect the output of the Multiply_Bump node to the Height input socket of the Bump
node:

Adding some noise to the bump pattern part 3

47. Add a MixRGB node (Shift + A | Color | MixRGB) and paste it between the VCOL node and
the Spec_soften node; label it as Multiply_Spec, set the Blend Type to Multiply and the Fac
value to 0.850; connect the output of the Multiply_Bump node to the Color2 input socket of
the Multiply_Spec node:

Modulating the specularity with the aid of the bump pattern output

The overall bump effect is almost completed:

The new Rendered bump effect

What is still missing now is the normal map we obtained from the sculpted Gidiosaurus mesh
in Chapter 11, Refining the Textures.

48. Add a new Image Texture node (Shift + A | Texture | Image Texture) and a Normal Map node
(Shift + A | Vector | Normal Map). Label the Image Texture node as NORMALS, then
connect the Vector output of the Attribute_UV2 node to the Vector input socket of the
NORMALS node.

49. Connect the Color output of the NORMALS node to the Color input socket of the Normal
Map node, then click on the Open button on the NORMALS node, browse to the textures
folder and load the image norm.png. Set the Color Space of the NORMALS node to Non-
Color Data and click on the empty slot in the Normal Map node to select the UVMap_norm
coordinates layer.

50. Add a Vector Math node (Shift + A | Converter | Vector Math), label it as Average_Normals
and paste it right after the Bump node; connect the output of the Normal Map node to the
second Value input socket of the Average_Normals node.

51. Set the Operation of the Average_Normals node to Average and connect its Vector output to
the Vector input sockets of the Diffuse BSDF, Glossy BSDF1, Glossy BSDF2, and
Subsurface Scattering nodes.

52. Set the Strength of the Normal Map to 2.000:

Adding the normal map output to the bump pattern

Finally we have completed the first skin material!

The completed Material_skin_U0V0

53. Save the file as Gidiosaurus_skin_Cycles.blend.

How it works…

This material can at first glance appear a bit complex, but actually the design behind it is quite simple as
you can see in the following screenshot, where each component has been visually grouped by colors and
frames (open the provided Gidiosaurus_skin_Cycles_01.blend file to have a better look):

The total skin material network

• From step 1 to step 18 we built the SHADERS part of the material, that is, the combination of
the diffuse with the glossy component and the addition of the subsurface scattering effect.

• Note that the glossy component (the specularity) is obtained by mixing two glossy shaders with
different roughness values; by setting the factor value of the Mix Shader1 node to 0.350, we
give prevalence to the Glossy BSDF1 node effect, which is to the node connected to the first top
Shader input socket.

• Also, we added the subsurface scattering effect by the Add Shader node, and to further tweak
the blending of the effect with the rest of the shader, we added the Mix Shader3 node, to give
prevalence to the output of the Mix Shader2 node (that is the output of the diffuse plus the
glossy components).

• From step 19 to step 24 we saw some not mandatory but useful tips for assigning colors to the
nodes, in order to visually distinguish and/or group them and make the whole material network
more easily readable.

• At step 25 we started to add the textures, first the diffuse color one and then the grayscale scales
image that we used here to add details to the coloration (and later for the bump effect). By
mixing the scales with the diffuse color through the MixRGB node set to a Divide blend type,
we automatically obtained a scales pattern on the skin itself.

• From step 30 to step 33 we tweaked the diffuse color map to also affect the glossy and the
subsurface scattering components, but with different hues.

• Note that at step 34 we used an Attribute node to set the UV coordinates layer to be used for
the mapping of the textures. It would have been unnecessary in this case, with the UVMap
coordinates layer being the first one and therefore the default one. Cycles, in fact, in the case of

image textures, automatically uses any existing UV coordinates layer. But, because later we also
used a different UV coordinates layer, it was better to specify it.

• From step 35 to step 38 we improved the glossiness effect of the skin, by using the output of the
vcol.png image we had previously baked and tweaked through the nodes inside the SPEC
frame.

• From step 39 to step 47 we built the BUMP effect, by using the output of the SCALES image
texture added through a MixRGB node to the output of a procedural Noise Texture. The RGB
to BW node simply converts the colored output of the procedural noise to a grayscale output
(and if you think we could have used the Fac output instead, well, it's not the same thing), and
the Multiply_Scales and Multiply_Noise nodes set the strength of the outputs before the
adding process. Through the Multiply_Bump node we also added the grayscale output of the
combined bump to the glossy component.

• From step 48 to step 52 we also added the effect of the normal map we baked from the sculpted
high resolution Gidiosaurus mesh to the bump pattern. The normal map is averaged, through
the Vector Math node, with the bump output. Because of this averaging, the strength value of
the normal map had to be set to double (2.000) to have full effect.

There's more…

Still focusing on the character's head, there is a material we can obtain from the skin material with some
modification, the material for the wet parts of the character's skin (inner eyelids, tongue, inner nostrils).

Going on from the previously saved file:

1. If you think this is the case, especially if your computer (like mine) isn't very powerful,
temporarily disable the Rendered preview by moving the mouse cursor inside the 3D viewport
and pressing Shift + Z.

2. In the Material window, click on the Material_wet_U0V0 material to select it.
3. Put the mouse pointer inside the Node Editor window, select the default two nodes already

assigned to the material and delete them by pressing the X key.
4. Now, in the Material window, re-select the Material_skin_U0V0; put the mouse in the

Node Editor window, press A twice to select everything, and press Ctrl + C.
5. Re-select the Material_wet_U0V0, put the mouse pointer inside the empty Node Editor

window and press Ctrl + V to paste the copied material nodes.

Now we have copied the nodes of the skin material to the material assigned to the parts that
need to appear wet; it's enough now to tweak this material a bit to modify the bump pattern and
the glossiness:

6. In the Node Editor, zoom to the Noise Texture node inside the BUMP frame; left-click on it to
select it and then press the X key to delete it.

7. Press Shift + A and add a Voronoi Texture node (Shift + A | Texture | Voronoi Texture); left-
click on the node and, by keeping the mouse button pressed, move the node a little bit on the
frame, so it should automatically be parented to it.

8. Connect the Object output of the Texture Coordinate node to the Vector input socket of the
Voronoi Texture node and the Color output of this latter node to the RGB to BW node input
socket; set the Voronoi Scale to 200.000.

9. Add an Invert node (Shift + A | Color | Invert) and paste it between the Voronoi Texture and
the RGB to BW nodes:

The different texture nodes of the "Material_wet_U0V0"

10. Scroll the Node Editor window a bit to the right to find the Multiply_Noise node: change the
label to Multiply_Voronoi and the second Value to 0.025.

11. Find the Scales_Col node and change Blend Type from Divide to Multiply.
12. Now go to the SHADERS frame; change the IOR value of the Fresnel node to 15.000 and

connect its output to the Fac input socket of the Mix Shader1 node; change the Distribution of
both the Glossy BSDF1 and Glossy BSDF2 nodes to Ashikhmin-Shirley and set the
Roughness of the Glossy BSDF2 node to 0.600.

We substituted the Noise Texture node with a Voronoi Texture node to give a kind of organic
look to the surface of the tongue of the creature.

In the following screenshot, we can see the result of the wet material; note that for the occasion
I opened the mouth wide, to make the inside more visible:

The rendered wet material

One more material we are going to create in this section of the recipe is the Material_enamels
for teeth and talons; in this case, we just need mostly the SHADERS frame's nodes with the
single contribution of the color image texture U0V0_col.png, here using the UVMap2
coordinates layer to avoid having to create 5 different materials for the talons alone (originally
distributed in different tiles). By the way, nothing is stopping you from creating several talon
materials, if you prefer.

13. Again, select, copy and paste the skin material to the enamels material slot through the Node
Editor window, as we have already done in steps 3, 4 and 5.

14. This time, just delete the unnecessary nodes, in short keeping only the Attribute node, the COL
node and the SHADERS frame with its parented nodes.

15. Change the UV coordinates layer in the Name slot of the Attribute node to UVMap2 (and the
label to Attribute_UV3). Lower the Roughness value of the Diffuse BSDF node to 0.000.

16. Go to the SHADERS frame; select and delete the Col_Spec and Col_SSS nodes, then connect
the Color output of the COL node also to the Color input socket of the Subsurface Scattering
node.

17. Select and delete the Glossy BSDF1 and the Glossy BSDF2 nodes.
18. Add 2 Anisotropic BSDF shader nodes (Shift + A | Shader | Anisotropic BSDF), a Tangent

node (Shift + A | Input | Tangent) and detach the Add Shader node from the Mix Shader3
node.

19. Label the two Anisotropic BSDF shader nodes as Anisotropic BSDF1 and Anisotropic
BSDF2 and connect them to the two Shader input sockets of the Add Shader node. Connect

the output of the Tangent node to the Tangent input sockets of the two Anisotropic shader
nodes.

20. Set the Tangent of the Tangent node to Z. Set the Anisotropy of both the Anisotropic nodes to
0.500, the Roughness of the Anisotropic BSDF1 node to 0.500 and the Roughness of the
Anisotropic BSDF2 node to 0.200.

21. Connect the Add Shader output to both the second Shader input sockets of the Mix Shader1
and Mix Shader2 nodes.

22. Set the IOR value of the Fresnel node to 1.540 and connect the Fresnel output to the Fac input
sockets of the Mix Shader1, Mix Shader2, and Mix Shader3 nodes.

23. Connect the output of the Diffuse BSDF shader node to the first Shader input socket of the Mix
Shader1 node, then connect the output of the Mix Shader1 node to the first Shader input
socket of the Mix Shader2 node.

24. Connect the output of the Subsurface Scattering node to the second Shader input socket of the
Mix Shader3 node.

25. In the Subsurface Scattering node, change the Scale to 0.020 and the Radius to R 1.000, G
0.400, B 0.100.

The "Material_enamels" network

26. Save the file.

Thanks to the two Anisotropic shaders with their different roughness values, we obtained a nice
specularity effect along the length of the teeth (and therefore also of the talons):

The rendered preview of the teeth (and talons) shader

See also
• Shameless self-promotion—one other cookbook, published by Packt Publishing, explaining the

logic behind Cycles materials and textures and with several material recipes
(https://www.packtpub.com/hardware-and-creative/blender-cycles-materials-and-textures-
cookbook-third-edition)

• The online documentation (http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/
Nodes)

https://www.packtpub.com/hardware-and-creative/blender-cycles-materials-and-textures-cookbook-third-edition
https://www.packtpub.com/hardware-and-creative/blender-cycles-materials-and-textures-cookbook-third-edition
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes

Making a node group of the skin shader to reuse
it
Once we are satisfied with the reptile skin shader created for the character's head, we can copy it to the
other parts of the body, that is to the other material slots, and then apply the necessary modifications.
Those, in this case, just consist of different color and scales image textures.

This means that all the other shader parts can be reused as they are. In this recipe, in fact, we are going
to make a node group of these parts so as to easily re-use the shader for the other materials slots.

Getting ready

Just start Blender and re-open the previously saved Gidiosaurus_skin_Cycles_01.blend file.

How to do it…

Let's start to create our skin node group:

1. In the Material window, select the slot of the Material_skin_U0V0.
2. Put the mouse pointer in the Node Editor window, press the B key and left-click to box-select

all the nodes with their respective frames. Then, press the Shift key and right-click (twice for
each one) to deselect the Attribute_UV1 node, the MAPPING frame, the COL node, the
SCALES node, the TEXTURES frame, and the Material Output node:

The box-selected nodes and the highlighted deselected ones

3. Press Ctrl + G to make a node group of the selected nodes; automatically you are inside the
group in Edit Mode:

Inside the node group in Edit Mode

4. Click on the Group Input node to select it and zoom in on it, then press N to call the
Properties sidepanel. Connect the Color2 output socket to the first Value input socket of the
Multiply_Scales node, replacing the connection coming from the Value output.

5. Go to the Properties sidepanel and in the Interface subpanel, click on the Value item inside the
little Inputs window; then go down to the Name slot and click on the X icon button to delete
the socket from the Group Input node:

Tweaking the node group input socket connections

6. Still in the Name slot in the Interface subpanel, select the Color1 item and rename it
Color_Diff. Select the Color2 item and rename it Color_Scales:

Renaming the node group input sockets

7. Press Tab to exit out of Edit Mode and close the node group; rename it Gidiosaurus_skin and
give it a bright yellow color:

The "Gidiosaurus_skin" node group

8. Now select everything by pressing the A key twice and then press Ctrl + C.
9. In the Material window, select the Material_U1V0, then click on the Use Nodes button in

the Surface subpanel.
10. Put the mouse pointer in the Node Editor window and delete the already selected default nodes

(the Diffuse BSDF connected to the Material Output nodes), then press Ctrl + V to paste all
the copied nodes inside the window.

11. Zoom on the COL and SCALES nodes. Click on the numbered button to the right side of the
texture name to make them single users, then click on the folder icon buttons to browse to the
textures folder and load the proper images according to the material name, that is, the
U1V0_col.png and U1V0_scales.png image textures.

12. Rename the material as Material_skin_U1V0:

Making the copied textures single users and loading the right image textures for the
"Material_skin_U1V0"

13. Repeat step 8 to step 12 for the other remaining 3 material slots and then save the file as
Gidiosaurus_skin_Cycles_02.blend.

The "Material_wet_U0V0" network and the completed Gidiosaurus shading in the rendered
preview

How it works…

Of course, it wasn't mandatory to make a group of the skin shader to reuse it for the other material slots;
we could just have selected, copied and pasted all the nodes and frames as they were at the end of the
previous recipe.

The (quite big) advantage in having a node group instanced in different materials is that if you need to
change something in the internal network, you don't have to repeat the modifications in the node group
of each material. It's enough to do it in Edit Mode in one of the instances, and all the internal
modifications will be reflected in all the instances of the node group used by the other materials.

Building the eyes' shaders in Cycles
The character's eyes are made up of two UV Spheres, the Corneas and the Eyes objects: the bigger
Corneas one enveloping a smaller Eyes sphere, which in turn is made up of three parts: the eyeballs,
the irises, and the pupils.

The Corneas sphere was first painted with a totally black Vertex Color layer, then painted with a white
color only to the vertices corresponding to the front crystalline lens.

The Eyes sphere has three different materials assigned to the three different parts:

The Corneas object in Vertex Paint mode, the Eyes object with its three materials and the Rendered
preview of the textured objects together

Getting ready

Start Blender and open the Gidiosaurus_skin_Cycle_02.blend file; save it as
Gidiosaurus_shaders_Cycles.blend.

1. Enable only the 6th and the 12th scene layer, in order to have visible only the Corneas, the
Eyes and the Lamp objects (actually the Camera is also on the 6th scene layer, but it's hidden
and at the moment we don't need it).

2. Zoom the 3D view onto the Corneas and Eyes objects, and press Shift + Z to start the
Rendered preview.

3. In the Outliner, disable the Restrict view-port visibility button of the Eyes object to hide it.
4. Select the Corneas object and go to the Material window.

How to do it…

So, let's start with the Corneas material, first:

1. In the Material window, click on the New button in the Surface subpanel. Rename the material
as Corneas.

2. In the Material window, switch the Diffuse BSDF shader node with a Mix Shader node (label
it as Mix Shader_1). In the first Shader slot, select a Diffuse BSDF shader node and in the
second one select a Glossy BSDF shader (label it as Glossy BSDF1).

3. Go to the Node Editor window and set the Roughness of the Glossy BSDF1 shader to 0.150,
the Color to pure white and the Distribution to Sharp.

4. Select the Mix Shader_1 node and press Shift + D to duplicate it. Label the duplicate as Mix
Shader_2, then add a Subsurface Scattering node (Shift + A | Shader | Subsurface
Scattering). Connect the output of the Mix Shader_1 node to the first Shader input socket of
the Mix Shader_2 node and the output of the Subsurface Scattering shader node to the second
Shader input socket.

5. Change the Subsurface Scattering falloff from Cubic to Gaussian, set the Scale to 0.001 and
the Radius to R 9.436, G 3.348, B 1.790.

6. Add a Fresnel node (Shift + A | Input | Fresnel) and connect its output to the Fac input socket
of the Mix Shader_2 node; set the IOR to 1.340:

The basic starting "Corneas" shader

7. Add a new Mix Shader node (Shift + A | Shader | Mix Shader), label it as Mix Shader_3 and
paste it between the Mix Shader_2 and the Material Output node.

8. Add a new Mix Shader node (Shift + A | Shader | Mix Shader), label it as Mix Shader_4 and
connect its output to the second Shader input socket of the Mix Shader_3 node.

9. Add a Transparent BSDF shader (Shift + A | Shader | Transparent BSDF) and connect it to
the first Shader input socket of the Mix Shader_4 node.

10. Select and press Shift + D to duplicate the Glossy BSDF1 node; label the duplicate as Glossy
BSDF2 and connect its output to the second Shader input socket of the Mix Shader_4 node:

The "Corneas" shader with the added transparency nodes

11. Add a Layer Weight node (Shift + A | Input | Layer Weight) and a Math node (Shift + A |
Converter | Math); set the Blend factor of the Layer Weight to 0.300 and connect its Facing
output to the first Value input socket of the Math node, then set the second Value to 0.100 and
check the Clamp item.

12. Connect the Math (labeled as Add) output to the Fac input sockets of the Mix Shader_1 and
Mix Shader_4 nodes.

13. Add an Attribute node (Shift + A | Input | Attribute) and a ColorRamp node (Shift + A |
Converter | ColorRamp). In the Name slot of the Attribute node, type Col, then connect its
Color output to the Fac input socket of the ColorRamp node.

14. In the ColorRamp node, set the Interpolation to B-Spline and move the white color stop to
position 0.100. Connect its Color output to the Fac input socket of the Mix Shader_3 node.

The "Corneas" shader with the transparency area located by the Vertex Color layer

15. Add two Image Textures nodes (Shift + A | Texture | Image Texture) and label them
respectively as COL and BUMP.

16. Add an Attribute node (Shift + A | Input | Attribute); in the Name slot type UVMap.001 and
connect its Vector output to the Vector input sockets of the two image texture nodes.

17. Add an RGB node (Shift + A | Input | RGB), a MixRGB node (Shift + A | Input | MixRGB)
and a Hue Saturation Value node (Shift + A | Input | Hue/Saturation).

18. Click on the Open button of the COL node to browse to the textures folder and load the
image eyeball_col.jpg.

19. Connect the Color output of the COL node to the Color2 input socket of the MixRGB node
and the output of the RGB node to the Color1 input socket; set the Blend Type to Burn and the
Fac value to 0.800.

20. Connect the Color output of the MixRGB node to the Color input socket of the Hue
Saturation Value node, and the output of this latter node to the Color input sockets of the
Diffuse BSDF and Subsurface Scattering nodes.

21. Set the RGB node color to R 0.800, G 0.466, B 0.000; set the Saturation value of the Hue
Saturation Value node to 0.900.

22. Click on the Open button of the BUMP node to browse to the textures folder and load the
image eyeball_bump.jpg; set Color Space to Non-Color Data.

23. Add a Bump node (Shift + A | Vector | Bump) and connect the Color output of the BUMP
node to the Height input socket of the Bump node. Connect the Normal output of this latter
node to the Normal input sockets of the Diffuse BSDF, Glossy BSDF1, and Subsurface
Scattering nodes, and set the Strength to 0.050.

24. If you wish, add frames and colors to the different components to make the shader more easily
readable:

The textured "Corneas" material

Now let's quickly see the materials for the Eyes object:

• As you can see in the following screenshot, the Eyeballs material is essentially the same as
we just made for the Corneas except for the transparent part; this material, by the way, is
obsolete because it's hidden behind the Corneas' opaque surface, so can be safely omitted (but I
left it in place in case you want to try the totally transparent Cornea):

The "Eyeballs" material and the completed rendered eye

• The Irises material follows the same scheme; the only differences are in the fact that it uses
different image textures (iris_col.jpg and iris_bump.jpg) and that a contrasted (by a
ColorRamp node) version of the bump image is used as a factor for the mixing of an Emission
shader; note that the color map is also connected to this Emission shader:

The "Irises" material network

• The Pupils are a simple, basic, black diffuse material.

To have a look at these materials, open the Gidiosaurus_shaders_Cycles.blend file and
select the Corneas and Eyes objects in the Outliner.

How it works…

These shaders are quite simple; the more complex one is the shader for the Corneas, essentially because
it's made up of two materials, one with a slight bump effect and one totally smooth, mixed on the ground
of the black and white Vertex Color layer that takes care also of the distribution of the transparent and
opaque materials on the Corneas object itself.

If you are wondering why we didn't use the Eyeball material on the underlying Eyes sphere, leaving
the Corneas object totally transparent, the reason is simple: in Cycles, to have a material transparent but
also reflecting the environment, you need to use a Transparent shader mixed with a Glass or a Glossy
shader node, that inevitably will make whatever material is behind appear darker; sometimes this can
look right, in this case I preferred to use a different approach.

Note

Note that the transparent part in front of the iris of the cornea, to be anatomically correct, should be a
convex, bulging half sphere; instead, we modeled the cornea as a simple spherical sheath around the
eyeball to avoid complications with the open/closed movements of the eyelids.

Building the armor shaders in Cycles
The last thing to do, for this chapter, is to create the shaders for the Armor object, made up of metallic
plates and leather tiers.

Getting ready

Continuing from the previously saved blend file:

1. Enable the 6th and the 13th scene layer and select the Armor object in the Outliner.
2. Put the mouse pointer in the 3D viewport and press the 0 key on the numpad to go into Camera

view; fit the window into the field of view.
3. Go to the Material window and press the + icon button to the right side to add four empty

material slots to the armor. Select the first material slot and click on the New button in the
Surface subpanel, and rename the material Armor_U0V0.

4. Select the second material slot, click on the New button and rename the material as
Armor_U1V0; repeat for the third slot and rename the material as Leather and repeat also
for the fourth slot and rename the material Armor_rivets.

5. Switch the Node Editor window temporarily with a UV/Image Editor window, then press Tab
to go into Edit Mode; go to the UV Maps subpanel under the Object Data window to be sure
you have the UVMap coordinates layer (the first one) as the active one, then enable the Keep
UV and edit mode mesh selection in sync button on the UV/Image Editor toolbar.

6. In the Node Editor window, box-select the UV islands of the U1V0 tile, then in the Material
window, select the Armor_U1V0 material and click on the Assign button.

7. Still in Edit Mode, select all the tiers vertices and then select the Leather material, click on
the Assign button; repeat the operation by selecting all the rivets and assigning them to the
Armor_rivets material.

8. Disable the Keep UV and edit mode mesh selection in sync button on the UV/Image Editor
toolbar, go out of Edit Mode and switch the UV/Image Editor window back to the Node
Editor window.

9. Put the mouse pointer inside the 3D viewport and press Shift + Z to start the Rendered preview.

How to do it…

We are first going to create the shader for the metal plates:

1. In the Material window, select the Armor_U0V0 material slot.
2. Go to the Node Editor window and switch the Diffuse BSDF shader node with a Mix Shader

node; in the first Shader slot, select a Diffuse BSDF shader node and in the second one, select
an Anisotropic BSDF shader.

3. Go to the Node Editor window and set the Roughness of the Diffuse BSDF shader to 0.300
and the Anisotropy of the Anisotropic BSDF shader to 0.300.

4. Add a Fresnel node (Shift + A | Input | Fresnel) and connect its output to the Fac input socket
of the Mix Shader node; set the IOR to 100.000.

5. Add a Tangent node (Shift + A | Input | Tangent) and connect its output to the Tangent input
socket of the Anisotropic BSDF shader node; set the Tangent to Z.

Starting to build the metal shader for the armor

6. Add a Frame (Shift + A | Layout | Frame) and parent the nodes, except the Material Output,
to it, then label it as SHADERS.

7. Add three Image Textures nodes (Shift + A | Texture | Image Texture) and a Voronoi Texture
node (Shift + A | Texture | Voronoi Texture), then add two Attribute nodes (Shift + A | Input |
Attribute) and a Texture Coordinate node (Shift + A | Input | Texture Coordinate).

8. Label the Attribute nodes as Attribute_UV1 and Attribute_UV2. Label the Image Texture
nodes as COL_iron, NORMALS_iron, and VCOL_iron.

9. Connect the Vector output of the Attribute_UV1 node to the Vector input socket of the
COL_iron node. Connect the Vector output of the Attribute_UV2 to the Vector input sockets
of both the VCOL_iron and NORMALS_iron nodes. Connect the Object output of the
Texture Coordinate node to the Vector input socket of the Voronoi Texture node.

10. Click on the Open button of the VCOL_iron node, browse to the textures folder and load
the image vcol2.png. Set the Color Space to Non-Color Data. Connect its Color output to
the Roughness input socket of the Anisotropic BSDF shader node.

11. Click on the Open button of the COL_iron node, browse to the textures folder and load the
image iron_U0V0.png. Connect its Color output to the Color input sockets of the Diffuse
BSDF and Anisotropic BSDF shader nodes.

12. Click on the Open button of the NORMALS_iron node, browse to the textures folder and
load the image norm2.png. Set the Color Space to Non-Color Data.

13. Set the Scale of the Voronoi Texture to 15.000:

Adding the textures to the "Armor_U0V0" material

14. Add a ColorRamp node (Shift + A | Converter | ColorRamp) and a Math node (Shift + A |
Converter | Math). Paste the ColorRamp node right after the VCOL node, and the Math node
right after the ColorRamp.

15. Label the ColorRamp as ColorRamp_Vcol and set the Interpolation to B-Spline, then move
the black color stop to position 0.245 and the white color stop to position 0.755.

16. Label the Math node as Spec_soften and set the second Value to 0.100.
17. Add a MixRGB node (Shift + A | Color | MixRGB) and label it as Difference_Col_iron; set

the Blend Type to Difference and the Fac value to 0.300.
18. Connect the Color output of the COL node to the Color1 input socket and the Color output of

the ColorRamp_Vcol node to the Color2 input socket. Connect the Color output of the
Difference_Col_iron node to the Color input sockets of the Diffuse BSDF and the Anisotropic
BSDF shader nodes, replacing the old connections.

19. Add a Normal Map node (Shift + A | Vector | Normal Map), a Bump node (Shift + A | Vector |
Bump), and a Vector Math node (Shift + A | Converter | Vector Math).

20. Connect the Color output of the NORMALS_iron node to the Color input socket of the
Normal Map node; click on the empty slot (UV Map for tangent space maps) on this latter
node to select the UVMap_norm item.

21. Connect the Normal output of the Normal Map node to the first Vector input socket of the
Vector Math node; label this latter as Average_Normals and set the Operation to Average,
then connect its Vector output to the Normal input sockets of the Diffuse BSDF and
Anisotropic BSDF shader nodes.

22. Add a MixRGB node (Shift + A | Color | MixRGB), label it as Add_Bump, set the Blend Type
to Add and the Fac value to 1.000. Connect the Color output of the COL node to the Color1

input socket of the Add_Bump node also, and the Color output of the Voronoi Texture node to
the Color2 input socket.

23. Connect the Color output of the Add_Bump node to the Height input socket of the Bump
node, and the Normal output of this latter node to the second Vector input socket of the
Average_Normals node. Set the Strength of the Bump node to 1.000.

24. Add two Math nodes (Shift + A | Converter | Math), label them respectively as
Bump_strength1 and Bump_strength2; set the Operation to Multiply for both, then paste the
Bump_strength1 node between the COL_iron and the Add_Bump nodes and set the second
Value to 0.020. Paste the Bump_strength2 node between the Voronoi_Texture and the
Add_Bump nodes, and set the second Value to 0.010.

25. Add frames to highlight the different components:

The completed "Armor_U0V0" material

The first Armor shader is ready! Now it's very easy to obtain the others:
26. Press A twice to select all the nodes, then press Ctrl + C to copy them.
27. In the Material window, select the Armor_U1V0 material slot and in the Node Editor

window, delete the default Diffuse and Material Output nodes; then press Ctrl + V to paste the
nodes copied from the other material.

28. Zoom to the COL node and click on the numbered button to the right side of the texture name
slot to make it single user, then click on the folder icon button to browse to the texture folder
and load the image iron_U1V0.png.

29. Reselect the Armor_U0V0 material slot and repeat the step 26 and 27, this time pasting the
nodes inside the Armor_rivets material slot:

The "Armor_rivets" material and the rendered completed armor

30. Save the file.

How it works…

The construction of the metallic armor plates material follows basically the same scheme we used for
the other materials:

• First the shaders were produced, where the metallic look is mainly due to the Anisotropic
BSDF shader mixed with the diffuse component with a quite high IOR value (metals can often
have values from 20.000 to 200.000; we used a midway value of 100.000).

• The shininess of the metallic surface has been modulated through the output of the
vcol2.png image, a Dirty Vertex Color layer we had previously baked to an image.

• The color of the Armor surface has been modulated as well through a Difference node with the
same vcol2.png image.

• The bump pattern works by first adding the Voronoi and the color map output and then
averaging the result with the normal map output.

There's more…

The last material created for our character is a very simple leather material made mainly from the output
of a Voronoi Texture node, contrasted, inverted, and used as bump pattern:

The simple "Leather" material

This completes the creation of the Gidiosaurus shaders in Cycles:

The completed Gidiosaurus character in Cycles

Of course, reflecting materials, for example, the metallic armor surface or the corneas (but to some
extent also the reptile skin), need something to reflect to show them at their best; we'll see this in the last
chapter of this cookbook.

In the next chapter, which is the penultimate chapter, we'll see the creation of the same materials in
Blender Internal.

Chapter 13. Creating the Materials in Blender
Internal
In this chapter, we will cover the following recipes:

• Building the reptile skin shaders in Blender Internal
• Building the eyes' shaders in Blender Internal
• Building the armor shaders in Blender Internal

Introduction
In this chapter we'll see how to set up the materials for the Gidiosaurus and the Armor in the Blender
Render engine; in fact, although not exactly of the same quality as in Cycles, it is also possible to obtain
quite similar shader results in Blender Internal:

Comparison of the Gidiosaurus character rendered in Cycles (left) and Blender Internal (right)

If you are wondering why we should re-do in the Blender Render engine, which is quite old and no
longer developed and/or supported, the same thing we have already done in Cycles, there are several
possible reasons: for example, no doubt Cycles is superior in quality but, compared with the scanline BI,
its rendering is (and, being a path-tracer, always will be) slower; even with the aid of a render-farm,
rendering times are still a money issue in the production of animations.

The previous screenshot shows, for comparison, only the top parts of two full shot renderings of the
Gidiosaurus character: the Cycles rendering to the left took around 1 hour and 20 minutes (1920 × 1080
resolution CPU rendering with Intel Core 2 Duo T6670 2.20 GHz and 4 GB of RAM, in Ubuntu 12.04
64-bit); the Blender Internal rendering to the right took only 26 minutes.

One other reason is that Cycles' normals baking capabilities are still not as good as in Blender Internal
(at the moment, it bakes only the real geometry, contrary to Blender Internal, which can also bake the
bump output of textures to normal maps), or that it's not as flexible for Non-Photorealistic Rendering
(NPR) as the Blender Render engine.

Just a quick note: normally, materials under the Blender Render engine are created directly in the slots
inside the Material window, often switching to the Texture window and back; in the following
screenshot, you can see the Rendered preview of a generic Red mono material assigned to a UV
Sphere:

A generic "mono" Blender Internal material

But, it's also possible to use node materials in Blender Internal, created and connected inside the Node
Editor window; basically, let's say that two or more materials can be mixed through nodes to obtain
more advanced results. In the following screenshot, for example, the mono Red material is mixed with a
mono Green material through the output of a Voronoi texture connected to the Fac input socket of a
MixRGB node:

Two mono materials mixed in the Node Editor window

This is the way we are going to create the Blender Internal shaders.

Building the reptile skin shaders in Blender
Internal
Because we want to keep the materials we already created for Cycles in the same blend file (and the
reason will be clear in the next chapter), before we start with the creation of the Blender Internal
shaders, we must prepare the file a bit.

Getting ready

The first thing to do is to open the last saved blend file, add Frames to each material in the Node Editor
window, and label them with the material name followed by the suffix _Cycles; this is to later
distinguish them from the material we will build for BI.

Therefore:

1. Start Blender and load the Gidiosaurus_shaders_Cycles.blend file.
2. In the Outliner, select the Gidiosaurus_lowres mesh, go to the Material window and click on

the Material_skin_U0V0 slot; put the mouse pointer inside the Node Editor window and
press Shift + A to add a Frame (Shift + A | Layout | Frame).

3. Press A to select all the nodes (the added Frame, already selected, becomes the active one) and
then press Ctrl + P to parent them to the active Frame.

4. Select only the Frame and press N to call the Properties sidepanel; in the Label slot under the
Name subpanel, type Material_skin_U0V0_Cycles, then go down to the Properties subpanel
and increase the Label Size to 40.

5. Repeat the procedure for all the Cycles' Gidiosaurus_lowres materials, for the Eyes and
Corneas and for the Armor materials.

So, for example, the Material_skin_U0V0, in the Node Editor window, becomes this:

A "framed" Cycles material

Also, the Material_wet_U0V0, becomes this:

Another "framed" Cycles material

Note that the name of the material is the same as before, the only difference is that a Frame
labeled with the _Cycles suffix has been added in the Node Editor window to visually group all
the Cycles' nodes that are a constituent of the shader.

6. Now go to the Scene data block button on the main top header; left-click on it and rename the
Scene label as Cycles:

Renaming the Scene label

7. Click on the + icon button to the right of the datablock name; in the pop-up little New Scene
panel, select the Link Objects item:

Adding a new scene with linked objects

At this point we have created a new scene (automatically labeled as Cycles.001) that is sharing
the same objects of the other (Cycles) scene (be aware of this: the objects in one scene are not a
copy of the others, they are the same objects shared/linked between the two scenes); you can say
which objects are actually linked from one scene to another, by their blue pivot point (for
example, look at the highlighted pivot point of the Gidiosaurus_lowres object in the following
screenshot):

A new scene with linked objects

The advantages of creating new scenes with linked objects are obvious: we can have totally
different rendering engines, or different worlds or lamps, in the different scenes and use the
same objects and meshes data; so, for example, any modification to a linked object in one scene
will automatically be transferred to the other scenes.

Furthermore, avoid duplicating the objects for each scene; this will help to keep a small file size.
8. Rename the scene from Cycles.001 to BI, then move to the Engine to use for rendering button a

bit to the right and switch from Cycles Render to Blender Render.

Switching to the Blender Render engine and the "empty material" preview

Note

Note that the Preview subpanel of the Material window shows an empty material, to point out
that under the current Blender Render engine, the material slot, although filled with the Cycles
material, doesn't have anything to render yet.

9. In the Outliner, select the Lamp (be sure to have enabled both the 11th and the 6th scene
layers); go to the Object Data window, set the energy to 14.000 and the color to R 1.000, G
1.000, B 0.650; under the Shadow subpanel, enable the Buffer Shadow item, Filter Type to
Gauss, Soft = 12.000, Size = 4000, and Samples = 16. Set Clip Start = 9.000 and Clip End =
19.000.

10. Go to the World window and enable the Ambient Occlusion by checking the item in the
subpanel of the same name; leave the Blend Mode to Add and set the Factor to 0.35.

11. Go further down to the Gather subpanel and click on the Approximate button: check the Pixel
Cache item and then check also the Falloff checkbox under the Attenuation item; set the
Strength to 0.900.

12. Enable the Indirect Lighting item just above and set the Factor to 0.65.

These World settings are to obtain a sort of Global Illumination effect in the Blender Render
engine; to learn more, have a look at http://www.blender.org/manual/render/blender_render/
world/index.html.

13. Save the file as Gidiosaurus_shaders_Blender_Internal.blend.

http://www.blender.org/manual/render/blender_render/world/index.html
http://www.blender.org/manual/render/blender_render/world/index.html

How to do it…

Let's start with the first top Gidiosaurus skin material, so:

1. Be sure to have the Gidiosaurus_lowres object selected and, back in the Material window,
click on the Material_skin_U0V0 slot.

2. Put the mouse pointer inside the Node Editor window and press Shift + A (Shift + A | Input |
Material) to add a Material node to the window; then press again Shift + A and add an Output
node (Shift + A | Output | Output):

Adding a first material node in the Node Editor window

3. Connect the Color output of the Material node to the Color input socket of the Output node:

Connecting the material node to the output node

4. Now click on the New button on the Material node to create a new default Blender Internal
material:

Creating a default "mono" material by clicking on the New button in the material node

5. In the Properties sidepanel of the Node Editor window (N key to call it) label the Material
node as COL and assign a color.

If you look now at the Material window, close to the right side of the material datablock (the
name of the material), there is an already enabled and squared button with the symbol of the
nodes.

In our case, that button is already enabled because we are already using material nodes; because
it's enabled, a second material datablock slot has appeared just further down: that's the datablock
slot for any node selected inside the Node Editor window and that is part of a material node.

The purpose of this second datablock slot is to let us know which material is the selected one
and we are therefore going to edit it by tweaking all the values in the subpanels below.

6. Go to the Material window to find the second material name slot: rename the material selected
in the Node Editor window as Material_U0V0_Col; you can do the same thing by clicking
on the name datablock on the COL node interface.

The corresponding datablock slots in the node interface and in the Material window

7. In the Node Editor window, or in the N Properties sidepanel, deselect the Specular item.
8. Go to the top of the Material window and click on the pin icon to the left of the contest; by

doing this only the selected material is shown in the window.
9. Go to the Diffuse sidepanel and click on the Diffuse Shader Model button to select the Oren-

Nayar item; then go down to the Shading subpanel and enable the Cubic Interpolation item:

The Specular item to be disabled in the Node Editor window and the shader's parameters to be
tweaked in the Material window

10. At this point, press Shift + B to draw a box around the character's head in the Camera view and
then zoom to it. If your computer is powerful enough to allow you to work without slowing
down, put the mouse pointer inside the 3D viewport and press Shift + Z to start the Rendered
preview; in any case, you can easily enable or disable the preview every time you need it:

Cropping and starting the rendered preview

11. Click on the Texture window icon at the top right of the main Properties panel, just above the
contest, be sure to have the first top texture slot selected and click on the New button to
automatically load a default Image or Movie texture panel:

Adding a first texture slot to the material

12. Collapse the Preview and the Colors subpanels, which at this moment we don't need, and click
on the double little arrows to the left side of the New/Open buttons in the Image subpanel
(remember that we have already loaded inside the blend file all the image textures we need,
because of the Cycles shaders!): in the pop-up menu, select the U0V0_col.png item:

Selecting the right image texture from the drop-down list

13. Go further down to find the Mapping subpanel: be sure to have the Coordinates set to UV, the
Projection to Flat (default settings) and click on the Map empty slot to select the UVMap
item.

Selecting the right UV coordinates mapping

14. Go even further down to find the Influence subpanel: be sure that the diffuse Color channel is
the one enabled and that the slider is set to 1.000 (again, default settings):

The Influence settings subpanel for the texture

15. Scroll back to the top of the Texture window and click on the Unique datablock ID name slot,
where the generic Texture name is written; rename it as U0V0 (as you can see in the following
screenshot, this is the name that also appears in the textures list window):

Renaming the texture datablock

16. Now click on the empty second slot: again, click on the New button, click on the double arrows
and this time load the image U0V0_scales.png.

17. In the Unique datablock ID name slot, rename it as U0V0_scales_col_add1.

Adding a new texture slot, loading a new image texture and renaming it accordingly

Note

Note that as we load the U0V0_scales.png image in the second texture slot, the Rendered
preview changes to show the grayscale image mapped on the model; this is because, by default,
the Influence of any new added texture is set to the Color channel with a value 1.000 and
Blend Type to Mix.

18. In the Input Color Space slot under the Image subpanel, change the default sRGB to Non-
Color; then, scroll down to the Mapping panel to set the UVMap coordinates item and then go
to the Influence subpanel: leave the Color channel enabled but move the slider to the lower
value of 0.350, then change the Blend Type to Linear Light (for the Blender Internal
materials, the Blend Type works as the layer system of a 2D image editor such as Photoshop or
Gimp); enable the RGB to Intensity item and change the pink color to R 0.130, G 0.051, B
0.030.

Tweaking the Influence settings for the second texture

19. Go up to expand the Colors subpanel: set the Brightness and the Contrast to 0.500, to make
the texture less bright and less contrasted. Go down to the Image Sampling subpanel and set
the Filter Size to 3.00, to blur the image (values beyond 1.00 start to blur the image more and
more):

Modifying the appearance of the second image texture

20. Select the third empty texture slot and repeat the procedure, again loading the
U0V0_scales.png image; in the Unique datablock ID name slot, rename it as
U0V0_scales_col_add2.

21. Scroll down to the Mapping panel to set the UVMap coordinates item and then in the
Influence subpanel, leave the Color channel enabled at value 1.000 but change the Blend Type
to Subtract. Set the Brightness to 0.100 and the Contrast to 1.500. Again, set the Filter Size
to 3.00.

22. Select the fourth texture slot, load again the U0V0_scales.png image, rename it
U0V0_scales_col, set the UVMap coordinates layer, Color = 1.000 and Blend Type =
Divide:

Adding more texture slots with different settings

23. Select the fifth texture slot, load the vcol.png image again, rename it vcol, set the
UVMap_norm coordinates layer, Color = 0.800 and Blend Type = Screen:

Adding the baked Vertex Color image texture as well

At this point we have completed the first component of the skin shader, that is, the diffuse color
component; in the following F12 render you can see the final result:

The completed diffuse color component of the Blender Internal skin material

Note that this F12 render result is quite different from the Rendered real-time preview; this is
probably due to the complexity of using several textures inside a node material system with the
(sadly) bad real-time viewport performances of Blender.

Note

Also note that the only parts of the Gidiosaurus mesh that appear in the rendered image are
actually the parts we assigned a Blender Internal material to; in fact, the teeth and the tongue
are rendered as blank shapes (even working as a mask).

Now, we can carry on with building the second component of the shader, the glossy component.
24. Put the mouse pointer inside the Node Editor window and add a new Material node (Shift + A |

Input | Material); label it as SPEC and then click on the New button to create a new material:
rename it Material_U0V0_Spec.

25. Go to the Material window; in the Diffuse sidepanel, change the shader model to Oren-Nayar,
then change the color to a deep blue R 0.020, G 0.051, B 0.089.

26. Enable the Ramp item: in the slider, switch the positions of the two color stops (that is: white
color stop to position 0.000 and black color stop to position 1.000), then select the white color
stop; put the mouse on the deep blue color slot of the Diffuse subpanel and press Ctrl + C to
copy it; put the mouse pointer on the color slot of the selected color stop and press Ctrl + V to
paste the deep blue color.

27. Click on the Diffuse Ramp Input button at the bottom of the subpanel to select the Normal
item and on the Diffuse Ramp Blend button to the right to select the Multiply item:

The "Material_U0V0_Spec", to be used inside the "Material_skin_U0V0" node material

28. Scroll down to the Specular subpanel: change the color to a light blue R 0.474, G 0.642, B
0.683; set the Intensity to 0.600 and the Hardness to 10.

29. Enable the Ramp item: select the white color stop and change the color to R 0.761, G 1.000, B
0.708, then set the Diffuse Ramp Input button to Normal and the Diffuse Ramp Blend to
Color.

30. Go to the Shading subpanel and enable the Cubic Interpolation item:

Setting the parameters of the specularity component

31. Go to the Textures window; select the top first empty texture slot and click on the New button.
Load the image vcol.png, rename the ID datablock as vcol_light and go to the Colors
subpanel: set the Brightness to 1.150 and the Contrast to 0.850. Go down to the Mapping
subpanel and set the UVMap_norm coordinates layer, then in the Influence subpanel disable
the diffuse Color channel and enable both the Intensity and the Hardness channels under
Specular; set the Blend Type to Value:

The settings for the specularity first texture

32. Go to the second slot and load the image U0V0_scales.png; rename it as
U0V0_scales_hardness, in the Mapping subpanel, set the UVMap coordinates layer, in
the Influence subpanel disable the diffuse Color and enable the Hardness channel under
Specular to 0.125. In the Image Sampling subpanel set the Filter Size to 5.00.

Re-using the "U0V0_scales.png" image texture for the specularity hardness

33. In the third slot load the image Ice_Lake_Ref.hdr, a free high dynamic range image
licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
from the sIBL Archive (http://www.hdrlabs.com/sibl/archive.html); there is a reason we are
now using the hdr image, and it's explained in the How it works… section.

34. Rename the image ID datablock as env_refl_skin and in the Colors subpanel, set the
Brightness to 1.200 and the Contrast to 1.500; go to the Mapping subpanel and set the
Texture Coordinates to Reflection. Down in the Influence subpanel, enable both the Intensity
channel under Diffuse and Specular and set their sliders to 0.500; enable also, the Color
channel under Specular and set the sliders of both the Color channels to 0.500 as well. Set the
Blend Type to Screen, enable the RGB to Intensity item and set the color to the same deep
blue of the diffuse color (R 0.020, G 0.051, B 0.089):

http://www.hdrlabs.com/sibl/archive.html

Using the environment hdr image as reflection map

If you want to see the effect of the single components in the Rendered preview as we build the
shader, just temporarily disconnect the COL node link to the Output node and replace it with
the Color output of the SPEC node (in this case):

Testing the specularity component material in the rendered preview

35. At this point, add a MixRGB node (Shift + A | Color | MixRGB) and move it on the link
connecting the COL node to the Output node, to automatically paste it between them; then
connect the Color output of the SPEC node to the Color2 input socket of the MixRGB node,
set the Blend Type of this latter node to Add and its Fac value to 1.000:

Finally adding the specularity component to the diffuse component

36. Add a RGB Curves node (Shift + A | Color | RGB Curves) and a ColorRamp node (Shift + A |
Converter | ColorRamp); paste the RGB Curves node between the SPEC and the MixRGB
node, then connect the Color output of the SPEC node also to the ColorRamp input socket:

Adding new nodes

37. Press Shift + D to duplicate the MixRGB node, change the Blend Type of the duplicate to
Multiply and paste it between the RGB Curves and the first Add-MixRGB nodes: set the Fac
value to 0.500. Connect the Color output of the ColorRamp node to the Color2 input socket of
the Multiply-MixRGB node.

38. Press Shift + D to duplicate the Multiply-MixRGB node and paste the duplicate between the
first Multiply-MixRGB node and the Add-MixRGB node. Set the Fac value of the last
Multiply-MixRGB node to 0.600 and the Color2 to R 0.347, G 0.462, B 0.386.

39. Go to the RGB Curves node and left-click inside the interface window to add a point; set its
coordinates to X = 0.38636 and Y = 0.36875. Add a second point and set its coordinates to X =
0.64545 and Y = 0.84375.

40. Go to the ColorRamp node and set the Interpolation to B-Spline, then move the black color
stop to position 0.195 and the white color stop to position 0.800:

Tweaking the specularity component through the new nodes

41. Add a Geometry node (Shift + A | Input | Geometry), a Vector Math node (Shift + A |
Converter | Vector Math), a Math node (Shift + A | Converter | Math), and a ColorRamp
node (Shift + A | Converter | ColorRamp).

42. Add a Frame (Shift + A | Layout | Frame), label it as FAKE_FRESNEL and parent the last
four added nodes to it.

43. Set the Operation of the Vector Math node to Dot Product, then connect the View output of
the Geometry node to the first Vector input socket of the Vector Math node, and the Normal
output of the Geometry node to the second Vector input socket of the Vector Math node.

44. Connect the Value output of the Dot Product node to the first Value input socket of the Math
node; set the Operation of this latter node to Multiply and the second Value to 0.100.

45. Connect the output of the Math node to the Fac input socket of the ColorRamp node; set the
Interpolation of this latter node to B-Spline, then move the black color stop to position 0.150
and the white color stop to position 0.000.

46. Connect the Color output of the ColorRamp node to the Fac input socket of the Add-MixRGB
node:

Adding the output of a fake Fresnel as factor for the blending of the two components

Let's do a F12 rendering to see the result so far:

The F12 rendered result so far

47. Now, select the COL material node and press Shift + D to duplicate it. Label the duplicated one
as SSS, then through the Node Editor window, enable the Specular item. Click on the 2 icon
button to the right side of the material name datablock to make it single user and rename the
new copy of the material as Material_U0V0_SSS.

48. Go to the Material window and change the Diffuse Shader Model to Minnaert and the
Diffuse color to R 0.439, G 0.216, B 0.141. Move down to the Specular subpanel and change
the color to the same R 0.439, G 0.216, B 0.141 brownish hue (copy and paste), then set the
Intensity to 0.600 and the Hardness to 12.

49. Go down to the Subsurface Scattering subpanel and enable it by checking the checkbox: set
the IOR value to 3.840, the Scale to 0.001, copy and paste the brownish color also in the
scattering color slot, set the Color slider to 0.000 and the Texture slider to 1.000. Set the RGB
Radius: R 9.436, G 3.348, B 1.790.

50. Go to the Texture window and set to 0.300 the Color channel sliders of the U0V0,
U0V0_scales_col_add2, and U0V0_scales_col texture slots, then set to 0.117 the
Color channel slider of the U0V0_scales_col_add1 texture slot.

51. Select the last vcol texture slot and click on the X icon (Unlink datablock) button to clear it;
click on the double little arrows to the left side of the New button and select the vcol_light
item from the pop-up menu. Set the Mapping to UVMap_norm, and under the Influence
subpanel, the Color of Diffuse to 0.267 and the Blend Type to Screen.

Testing the output of the SSS component material

52. Add a new MixRGB node (Shift + A | Color | MixRGB), paste it between the Add-MixRGB
and the Output node and set the Fac value to 0.250.

53. Press Shift + D to duplicate this Mix-MixRGB node; change the Blend Type of the duplicated
one to Screen, set the Fac value to 1.000 and connect the output of the Add-MixRGB also to
the Color1 input socket of the Screen-MixRGB node; connect the output of the SSS node to
the Color2 input socket of the Screen-MixRGB node.

54. Connect the output of the Screen-MixRGB node to the Color2 input socket of the first Mix-
MixRGB node.

Adding the SSS component to the rest of the shader

55. Add a new Material node (Shift + A | Input | Material) and click on the New button to create a
new material; label the node as Scales_bump and rename the material as
Material_U0V0_Scales_bump.

56. In the Material window set the Diffuse Shader Model to Oren-Nayar and the Specular
Shader Model to Blinn, Intensity = 0.100 and Hardness = 5. In the Shading subpanel enable
the Cubic Interpolation item.

57. Go to the Texture window and in the first slot load the U0V0_scales.png image; rename
the ID datablock as U0V0_scales_bump1. In the Image Sampling subpanel set the Filter
Size to 5.00, the Mapping to UVMap and in the Influence subpanel disable the Color channel
and enable the Normal channel under Geometry: set the slider to 0.100 and go to the bottom to
click on the Bump Method slot and select Best Quality:

The bump material node

58. Go back to the top of the panel and click on the big black arrow to the right of the texture
window; select the Copy Texture Slot Settings item.

59. Select the empty second texture slot and click on New to add a generic texture, then click again
on the black arrow to select the Paste Texture Slot Settings item.

60. In the ID datablock slot, click on the 2 icon button to make it single user and rename it
U0V0_scales_bump2.

61. Go down to the Image Sampling subpanel and set the Filter Size to 1.00, then go down to the
Influence subpanel and set the Normal slider to 0.200.

Copying and pasting a texture slot

62. Press Shift + D to duplicate the node; make the material of the duplicated one single user and
rename it as Material_Clouds_noise, then label the node as Clouds_noise.

63. In the Texture window, delete (unlink) U0V0_scales_bump1 and U0V0_scales_bump2,
and then select the first slot and click on the New button: change the automatic Texture.001
ID datablock name with Clouds_noise, click on the Type button and in the pop-up menu
select the Clouds item.

64. In the Colors subpanel set the Brightness to 0.500 and the Contrast to 1.500, in the Mapping
subpanel set the UVMap_scales coordinates layer, in the Clouds subpanel switch from
Grayscale to Color, set the Size to 0.20, the Depth to 0.3 and the Nabla to 0.05.

65. In the Influence subpanel disable the Color channel and enable the Normal channel under
Geometry: set the slider to 0.250 and go to the bottom to click on the Bump Method slot and
select Best Quality:

The second bump material node

66. Press Shift + D to duplicate the Scales_bump node; make the material of the duplicated one
single user and rename it as Material_Normal_map, then label the node as Normal_map
as well.

67. In the Texture window, delete (unlink) the U0V0_scales_bump1 and
U0V0_scales_bump2; select the first slot and click on the New button: change the
automatic Texture.001 ID datablock name to normal and then load the norm.png image.

68. In the Mapping subpanel set the UVMap_norm coordinates layer, then go to the Image
Sampling subpanel and enable the Normal Map item; go to the Influence subpanel, disable the
Color channel and enable the Normal channel: set the slider to 1.000 (higher values don't have
an effect with normal maps in Blender Internal).

The normal map material node

69. Add a Vector Math node (Shift + A | Converter | Vector Math) and connect the Normal (blue)
output of the Scales_bump node to the first Vector input socket of the Vector Math node, and
the Normal output of the Clouds_noise node to the second Vector input socket.

70. Press Shift + D to duplicate the Vector Math node, set the Operation of the duplicate to
Average and connect the Vector output of the Add-Vector Math node to the first Vector input
socket of the Average-Vector Math node, and the Normal output of the Normal_map node to
the second Vector input socket.

Connecting the outputs of the three bump nodes

71. Connect the Vector output of the Average-Vector Math node to the Normal input sockets of
the COL, SPEC, and SSS material nodes.

72. Add frames everywhere to make things clear but especially to visually group and separate the
nodes of the Blender Internal material from the Cycles ones.

The completed "U0V0_BI" node material

73. Save the file.

How it works…

You have probably noticed that a few of the nodes we can find in the Cycles material system are also
available for the material nodes in Blender Internal; sadly, some are still missing (and probably forever
will be), as, for example, a Fresnel node that, in fact, we had to approximate with a combination of
other different nodes.

Anyway, although not all the same nodes are at our disposal, we had enough of them to try to obtain a
result as close as possible as the result we obtained in the Cycles material (in the previous Chapter 12,
Creating the Materials in Cycles).

Note

One thing you should absolutely keep in mind when loading the textures into the material nodes in
Blender Internal is their order in the texture stack. This is important and must be taken into
consideration according to the result we need, because a texture can totally overwrite the texture in the
above slot (with the default Mix blend type) but can also be added, subtracted, multiplied, divided, and
so on; the textures stack works the same as the layer stack system of a 2D graphic editor (Gimp, for
instance), with the order from the top to the bottom and the different blending options (the Blend Type
items).

Having said that, let's see the steps:

• From step 1 to step 9 we created a basic Blender Internal material node by using both the
Node Editor and the Material window.

• From step 10 to step 23 we assigned the proper textures to the basic material node that becomes,
in this case, the Material_U0V0_Col, the basic diffuse color component of the shader.

These steps have been described in the most detailed way possible because they are the same
steps for all the textures added to the materials; of course, the values and the settings can be
different, but basically:

◦ We add a texture (image or procedural)
◦ We set a mapping orientation
◦ We set the influence value on the selected channel (also more than one at a time)
◦ Because the same texture can be used (with different settings) more than once, we

always rename the Unique datablock ID name to make them easily recognizable in the
pop-up menu list.

• The Filter Size value in the Image Sampling subpanel is really useful for blurring an image
texture: a value of 1.00 is the default sharpness, while a higher value makes the image more and
more blurred.

• From step 24 to step 30 we created the glossy/specular Material_U0V0_Spec node.
• From step 31 to step 34 we added the textures to the Material_U0V0_Spec material. This

material should represent the glossy/specular/mirror component of the shader, that is probably
the most important thing for obtaining a correct visual result; in Cycles the Glossy BSDF
shader node provides the result perfectly, while in Blender Internal, we have two options: one,
by enabling the (slow and imperfect) internal ray-tracing Mirror item, or by faking it. We faked
it by setting an image (the same hdr we'll use in the next chapter in the World both for Cycles
and BI) on the Reflection channel of the shader, hence giving the impression of an environment
(slightly) mirrored by the character's skin.

• At step 35 we added together the outputs of the COL and of the SPEC nodes.
• From step 36 to step 40 we tweaked the output of the SPEC nodes to obtain a more realistic

output/distribution of the glossiness on the mesh's surface, trying to mimic, as much as possible,
the glossy output of the Cycles shader version.

• From step 41 to step 46 we built a fake Fresnel to work as a factor for the blending of the
glossy and the diffuse components; this works by calculating the dot product of the vectors of
the point of view and the mesh's normals. Be aware that it isn't actually working as the real
Fresnel node that you find in Cycles, and that it has several limitations. By varying the second
Value of the Math node and/or the black color stop position of the ColorRamp node, we can
obtain several nice effects in some way visually similar to the real output. If you are wondering
why we don't use the output of a BI material with a Fresnel diffuse shader model, sadly it
doesn't seem to work correctly (actually, it doesn't seem to work at all).

• From step 47 to step 51 we built the SSS material node by duplicating the COL node, making a
new copy of the material and renaming it as Material_U0V0_SSS, then enabling
Subsurface Scattering and modifying the influence values of the textures; the values of the
subsurface scattering (IOR, Scale, RGB Radius), instead, were borrowed from the Cycles
version of the shader.

• From step 52 to step 54 we added the output of the SSS node to the rest of the shader by using a
Blend Type set to Screen plus a Mix one set to a low Fac value; basically, the exact copy of
what we did in Cycles.

• From step 55 to step 71 we created the bump pattern, divided into three different material
nodes to give us more flexibility in adding and averaging them together in a way that is as
similar as possible to Cycles:

The F12 rendered final result in Blender Internal

There's more…

The other missing shaders for the Gidiosaurus skin are solved in exactly the same way we used in the
previous chapter for the other Cycles skin shaders: by selecting the entire BI frame with all the parented
nodes and pressing Ctrl + C to copy them, then selecting the different material slots and pressing Ctrl +
V to paste everything; in Blender Internal, we have to make the single materials inside the nodes single
user one by one and then substitute the textures according to the UDIM tile the material corresponds to
(U1V0_col.png, U1V0_scales.png, U2V0_col.png, and so on).

So, in the end, each material will have two sets of nodes, one for the Cycles shader and one for the
Blender Internal shader, and each one works under the respective render engine; this will be useful, as
we'll see in the next chapter, for the rendering stage.

Two different sets of nodes for the same material

See also
• http://www.blender.org/manual/render/blender_render/materials/index.html
• http://www.blender.org/manual/render/blender_render/textures/index.html

http://www.blender.org/manual/render/blender_render/materials/index.html
http://www.blender.org/manual/render/blender_render/textures/index.html

Building the eyes' shaders in Blender Internal
We'll now see how to make the shaders for the Gidiosaurus's eyes; they are composed of two objects,
the Corneas and the Eyes objects, so let's start with the first one.

Getting ready

Enable the 6th and the 12th scene layers and select the Corneas object; in the Outliner, disable the
Eyes object's visibility in the viewport to hide it, put the mouse pointer inside the Camera view, zoom
to one of the eyeballs and then start the Rendered preview.

How to do it…

Let's start to create the Corneas material:

1. Put the mouse pointer in the Node Editor window and add: a Material node (Shift + A | Input |
Material), a Geometry node (Shift + A | Input | Geometry), a MixRGB node (Shift + A |
Color | MixRGB) and an Output node (Shift + A | Output | Output).

2. Connect the Color output of the Material node to the Color input socket of the Output node,
then click on the New button on the Material node to create a new material and rename it
Cornea_bump.

3. In the Material window, expand the Render Pipeline Options subpanel and enable the
Transparency item; in the Diffuse subpanel set the shader model to Oren-Nayar and the color
to a bright orange = R 0.930, G 0.386, B 0.082. In the Specular subpanel set the shader model
to WardIso and the Slope to 0.070. In the Shading subpanel enable the Cubic Interpolation
item.

4. Go down to expand the Transparency subpanel; set the Fresnel value to 1.380 and the Blend
to 1.700.

5. Go further down to enable the Mirror item in the subpanel with the same name, set the
Reflectivity to 0.200, the Fresnel to 1.380 and the Blend to 1.500.

6. Go to the Texture window and in the first slot load the image eyeball_col.jpg, rename
the ID datablock as eyeball_col and set the UVMap.001 as the coordinates layer; in the
Influence subpanel set the diffuse Color channel to 0.200 and the specular Color channel to
0.200 as well, set the Blend Type to Color.

7. In the second texture slot load the image eyeball_bump.jpg, rename the ID datablock as
Eyeball_bump, set UVMap.001 as the coordinates layer and disable the Color channel to
enable the Normal one at 0.007; set the Bump Method to Best Quality:

The "Corneas" material nodes

8. Paste the MixRGB node between the Material and the Output nodes; then, connect the Vertex
Color output of the Geometry node to the Fac input socket of the MixRGB node. Click on the
last empty field at the bottom of the Geometry node to select the Col item from the pop-up list
(it's the name of the Vertex Color layer that has been created, and mentioned, at the beginning
of the Building the eyes' shaders in Cycles recipe in Chapter 12, Creating the Materials in
Cycles).

The gray color of the Color2 socket of the MixRGB node showing in the rendered preview at the
location established by the Vertex Color layer output used as factor

In the preceding screenshot, the effect of the Vertex Color layer is visible: the two gray dots on
the eyeballs are actually the crystalline lens areas filled, only at the moment, with the gray color
of the empty Color2 input socket of the MixRGB node.

9. Press Shift + D to duplicate the Material node, click on the 2 icon button to the right side of the
name datablock of the duplicated node to make the material single user, rename the new
material, simply, Cornea and, in the Texture window, select the second slot texture,
eyeball_bump, to click on the X icon button and delete it.

10. Connect the Color output of the second Material node to the Color2 input socket of the
MixRGB node.

The completed "Corneas" material

Now, go to the Outliner and enable the Eyes object visibility in the viewport to show it:
11. With the Corneas object still selected, put the mouse pointer on the first Material node in the

Node Editor window and press Ctrl + C to copy it.
12. Select the Eyes object and, in the Material window, select the Eyeballs material slot; put the

mouse pointer in the Node Editor window and press Ctrl + V to paste the material node we
copied before.

13. Click on the 2 icon button to make the material single user and rename it Eyes. Add an Output
node (Shift + A | Output | Output) and connect the Color output of the Eyes material node to
the Color input socket of the Output node.

14. Go to the Material window and disable the Transparency item in the Render Pipeline
Options subpanel; go to the Mirror subpanel and disable it.

15. Enable the Subsurface Scattering subpanel: set the IOR to 1.340, the Scale to 0.001, the
scattering color to the orange R 0.930, G 0.386, B 0.082 and the RGB Radius to the R 9.436, G
3.348, B 1.790 values.

The "Eyeballs" material SSS settings

16. Go to the Texture window; select the eyeball_col texture and set the diffuse Color to
0.855, disable the specular Color channel and set the Blend Type to Linear Light; select the
eyeball_bump texture and set the Normal channel slider to 0.005.

The "Eyeballs" material texture settings

Now let's see the iris:
17. Box-select both the Eyes material node and the connected Output node and press Ctrl + C to

copy them; go to the Material window and select the Irises material slot, then put the mouse
pointer in the Node Editor window and press Ctrl + V to paste them.

18. Make the duplicated node's material single user and rename it Iris; change the Diffuse
subpanel color to R 0.429, G 0.153, B 0.000, then go to the Shading subpanel and set the Emit
value to 0.07. Go to the Subsurface Scattering subpanel and change the scattering color to R
0.220, G 0.033, B 0.032.

19. Go to the Texture window and delete (unlink) the two texture slots. In the first slot, load the
image iris_col.jpg, rename the ID datablock iris_col, and set UVMap.001 as the UV
coordinates layer. In the second slot, load the image iris_bump.jpg, rename as
iris_bump, set UVMap.001 as the UV coordinates layer and in the Influence subpanel
disable the Color channel and enable the specular Intensity and Hardness channels with value
1.000, then enable also the Normal channel with value 1.000. Set the Bump Method to Best
Quality.

20. In the third texture slot, load again the iris_bump.jpg image; rename the ID datablock as
iris_ST. In the Image Sampling subpanel, under Alpha, disable the Use item and enable the
Calculate item. Set the UVMap.001 coordinates layer and in the Influence subpanel disable
the Color channel and enable only the Stencil item at the bottom:

The "Irises" material and the Stencil item

21. In the fourth texture slot, load the iris_col.jpg image, rename the ID datablock as
iris_emit. Set the UVMap.001 coordinates layer and in the Influence subpanel disable the
Color channel and enable the Emit channel at value 1.000.

The "Irises" material emitting (fake) light

Regarding the Pupils material, it's a simple basic material with pure black as Diffuse color
and the Intensity slider under the Specular subpanel set to 0.000 to be totally matte.

22. Save the file.

How it works…

For the Corneas object: we created two copies of the same transparent material, but then we removed
the bump from one of them, because usually a cornea has bumps due to the veins on the eyeball but not
on the crystalline lens, that is smooth; the two materials are mixed, exactly as in the Cycles version,
through the output of the Col Vertex Color layer.

Regarding the Irises material: the iris_ST texture, set as a stencil map, works as a mask for the
following texture to appear through its black areas.

Although it could have been solved by simply leaving a blank material slot, I assigned a black matte
material to the pupils; I preferred to assign a material anyway, to avoid possible issues in the following
stages such as, for example, in the rendering of the character against an alpha backdrop, of the separated
passes and in the compositing.

Note that the Corneas is the only material where I enabled the ray-tracing mirror, which in the
character's skin and in the armor are instead faked, to obtain faster rendering times (the eyes are really a
small surface to be rendered).

Building the armor shaders in Blender Internal
We arrive finally at making the Armor shaders under the Blender Internal engine; we have four
materials, here: the two UDIM plate shaders, the rivets shaders and the leather material for the tiers.

Getting ready

Enable the 6th and the 13th scene layers and select the Armor object; if your computer is powerful
enough, use the Rendered preview while you are working.

How to do it…

Let's start with the first UDIM tile material creation, the main armor plates:

1. Put the mouse pointer in the Node Editor window and add a Material node (Shift + A | Input |
Material), a MixRGB node (Shift + A | Color | MixRGB) and an Output node (Shift + A |
Output | Output). In the N Properties sidepanel, label the Material node as COL.

2. Connect the Color output of the COL node to the Color input socket of the Output node, then
click on the New button on the Material node to create a new material and rename it
Armor_U0V0_col; in the Node Editor window, disable the Specular item.

3. Go to the Material window and find the Diffuse subpanel; change the shader model to Oren-
Nayar, set the color to R 0.817, G 0.879, B 1.000 and the Roughness value to 0.313.

4. Go down to the Specular subpanel: set the shader model to WardIso, the Intensity to 1.000,
the Slope to 0.270, and the color to R 0.381, G 0.527, B 0.497. In the Shading subpanel enable
the Cubic Interpolation item.

Starting the "Armor_U0V0" material in Blender Internal

5. Go to the Texture window and in the first texture slot, load the image iron_U0V0.png;
rename the ID datablock as iron_U0V0 and set the UVMap coordinates layer, then go to the
Influence subpanel and enable the diffuse Intensity channel at value 1.000, leave the Color
channel as it is and change the Blend Type to Multiply:

Adding the first texture image

6. In the second texture slot, load the image vcol2.png, rename the ID datablock as vcol2 and
set the UVMap_norm UV coordinates layer; go to the Colors subpanel, enable the Ramp item
and set the Interpolation to B-Spline, then move the black color stop to position 0.245 and the
white color stop to position 0.755. In the Image Sampling subpanel set the Filter Size to 1.10
and in the Influence subpanel enable the diffuse Intensity channel at value 0.500, the diffuse
Color channel at 0.300, set the Blend Type to Difference and enable the Negative item.

7. In the third texture slot, load the image Ice_Lake_Ref.hdr and rename the ID datablock as
env_refl_armor. Set the Mapping coordinates to Reflection and, in the Image Sampling
subpanel, the Filter Size to 6.00; in the Colors subpanel set the Brightness to 1.800 and the
Contrast to 2.000, then move to the Influence subpanel and set both the diffuse Intensity and
Color channels to 0.600 and the Blend Type to Multiply:

Adding the hdr image as reflection map

8. Go to the Node Editor window and press Shift + D to duplicate the COL node; label the
duplicate as SPEC1, then make the material single user and rename it Armor_U0V0_spec1;
disable the Diffuse item on the node interface and enable back, the Specular one.

9. Go to the Texture window; select the first iron_U0V0 texture slot and go straight to the
Influence subpanel: disable the diffuse Intensity and Color channels and enable the specular
Intensity, Color and Hardness channels at 1.000. Set the Blend Type to Mix.

10. Select the second vcol2 texture slot, disable the diffuse Intensity and Color channels and
enable the specular Intensity channel at 0.300.

11. Select the third env_refl_armor texture slot, disable the diffuse Intensity and Color
channels and enable the specular Intensity and Color channels at 0.500.

12. Press Shift + D to duplicate the SPEC1 node and label the duplicated one as SPEC2: make the
material single user and rename it as Armor_U0V0_spec2. In the Material window go to the
Specular subpanel and set the Slope to the maximum = 0.400.

13. Now, connect the Color output of the SPEC1 material node to the Color1 input socket of the
MixRGB node and the Color output of the SPEC2 node to the Color2 input socket; set the
Blend Type of the MixRGB node to Add and the Fac value to 0.900.

14. Press Shift + D to duplicate the MixRGB node and connect the output of the first MixRGB
node to the Color1 input socket of the duplicated MixRGB node, and the Color output of the
COL node to the Color2 input socket; set the Fac value of the second MixRGB node to 1.000
and connect its output to the Color input socket of the Output node.

Adding the specular component

15. Add a Math node (Shift + A | Converter | Math) and paste it between the two MixRGB nodes;
set the Operation to Multiply and the second Value to 2.000.

Enhancing the specularity

16. Add a Material node (Shift + A | Input | Material) and label it as BUMP; create a new material
and rename it as Armor_U0V0_normals; in the Shading subpanel enable the Cubic
Interpolation item.

17. Go to the Texture window and in the first texture slot, load the image norm2.png, rename the
ID datablock as norm2 and in the Image Sampling subpanel enable the Normal Map item; in
the Mapping subpanel set the UVMap_norm coordinates layer and in the Influence subpanel
disable the Color channel and enable the Normal one at 0.500.

18. In the second texture slot, load the image iron_U0V0.png, mapping to UVMap layer and
Influence to Normal at 0.010; set the Bump Method to Best Quality.

19. Go to the Node Editor window and connect the Normal output of the BUMP node to the
Normal input sockets of the SPEC1, SPEC2, and COL nodes.

Adding the bump pattern

20. Box-select and press Ctrl + C to copy all these nodes, go to the Material window to select the
Armor_U1V0 material slot and, back in the Node Editor window, paste the copied nodes: then
make the materials inside the nodes as single users, rename them accordingly and go to the
Texture window to substitute the iron_U0V0.png image with the iron_U1V0.png image.

21. Copy and paste again, the nodes for the Armor_rivets material slot, but don't substitute the
texture image: instead, simply delete the BUMP node, which wouldn't be of any use in such
small parts.

The completed armor shaders in Blender Internal

22. Save the file.

How it works…

These shaders work, and have been built, exactly the same way as for the Gidiosaurus' skin and eyes;
the only thing worth noting here is the order of the normal map and of the texture used for the bump
pattern: in fact, to work together, in Blender Internal, the normal map must be placed higher in the
texture stack, otherwise it will overwrite the effect of the bump map.

There's more…

The Leather material is a simple basic Oren-Nayar diffuse shader with the usual WardIso specular
shader model, provided with a bump effect obtained through a Voronoi procedural texture with default
values, except for the Size.

Note that the Voronoi texture influences the Color channel with the Multiply blend type and the
Normal channel with a negative low value to obtain an actual bulging out pattern, instead of a concave
one; negative values, in fact, reverse the direction of the bump.

The size of the procedural texture along the three axes is also further tweaked in the Mapping subpanel,
scaling the three axes differently to resemble the dimensions of the Texture Space (basically the mesh
bounding box, than can be made visible through the subpanel of the same name in the Object Data
window), in order to avoid stretching along the mesh.

The "Leather" material in Blender Internal

Note also that in all these Blender Internal materials, simple mono materials (as for example the
Leather BI material shown here earlier) are loaded inside a Material node and then connected to an
Output node in the Node Editor window even if this wouldn't be necessary for the material itself to
work: but, to let the Blender Internal and the Cycles render engines work together (through the
compositor, as we'll see in the next chapter), it is mandatory to have all the shaders as nodes.

Chapter 14. Lighting, Rendering, and a Little Bit
of Compositing
In this chapter, we will cover the following recipes:

• Setting the library and the 3D scene layout
• Setting image based lighting (IBL)
• Setting a three-point lighting rig in Blender Internal
• Rendering an OpenGL playblast of the animation
• Obtaining a noise-free and faster rendering in Cycles
• Compositing the render layers

Introduction
In this last chapter, we are going to see recipes about the more common stages needed to render the
complete final animation: lighting techniques in both the render engines, fast rendering previews,
rendering settings, and the integrated compositing.

But first, let's see the necessary preparation of the 3D scene layout.

Setting the library and the 3D scene layout
In this recipe, we are going to prepare a little both the file to be used as the library and the hero blend
file, which is the file that will output the final rendered animation.

Getting ready

Start Blender and load the Gidiosaurus_shaders_Blender_Internal.blend file:

1. Go to the Object Modifiers window and check that the Armature modifiers are correctly
enabled for all the objects (that is, the Armature modifiers must be enabled both for the
rendering and for the 3D viewport visibility), then save the file.

2. Press Ctrl + N and click on the Reload Start-Up File pop-up panel to confirm a new brand file:
immediately save it as Gidiosaurus_3D_layout.blend.

Tip

Saving the file at this point is necessary to automatically have a relative path for all the assets
we are going to link.

How to do it…

Let's load the assets as links in the file:

1. Select and delete (X key) the default Cube primitive in the middle of the 3D scene, then Shift-
select both the Camera and the Lamp and move them (M key) to the 6th scene layer.

2. Still in the 1st scene layer, click on the File item in the top main header and then navigate to
select the Link item; or else, just press the Ctrl + Alt + O keys shortcut.

In the blend files provided with this cookbook, I moved a copy of the
Gidiosaurus_shaders_Blender_Internal.blend file to the
4886OS_14_blendfiles folder, to simplify the process, but anyway:

3. Browse to the folder where the Gidiosaurus_shaders_Blender_Internal.blend
file is saved; click on it and browse further to click on the Group item/folder, then select the
Gidiosaurus item and click on the top right Link from Library button.

The linked Gidiosaurus character appears at the 3D Cursor position, in our case in the middle
of the scene:

Linking the Gidiosaurus group

4. Zoom to the Gidiosaurus object and press Ctrl + Alt + P to make a proxy; in the pop-up menu
panel that appears, select the proxified rig item, then Shift-enable the 11th scene layer and move
the rig on that scene layer (M key):

Making a proxy of the rig and moving it to the 11th scene layer

5. Click on the Screen datablock button on the top main header to switch from the Default screen
layout to the Animation screen layout:

Switching to the Animation screen layout

6. Click on the Mode button in the Dope Sheet toolbar and switch from the Dope Sheet window
to the Action Editor window:

Switching to the Action Editor window

7. Click on the File item in the top main header and then navigate to select the Link item, or just
press the Ctrl + Alt + O keys shortcut; the screen opens automatically at the last location we
previously browsed to.

8. Click on the two dots above the Gidiosaurus item to navigate backward (to go up one level)
and click on the Action item/folder to select the Gidiosaurus_walkcycle item; then click as
before on the Link from Library button:

Browsing to the Action folder directory

9. Scroll a bit to the left of the Action Editor window's toolbar to reveal the New button; click on
the double arrows to the left side of the New button to select the LF Gidiosaurus_walkcycle
item from the pop-up menu.

Loading the linked action in the Action Editor window

10. Go back to the Default screen and click on the Play Animation button in the Timeline toolbar.

Depending on the power of your system, you will see the animated character start to move,
more or less fluidly, in the 3D viewport; the frame-rate (number of frames per second) played
by Blender in real-time is shown in red at the top left corner of the 3D view-port:

The 3D view-port showing the animation and the frame-rate at the top left corner

It should be around 24 frames per second; in my case, it barely arrives at 0.70 to 0.80... so an
arrangement must be found to show a faster and natural-looking movement.

11. Go to the Scene window and enable the Simplify subpanel: set the Subdivision level to 0.

The Simplify subpanel under the Scene window in the main Properties panel

Without subdivision levels, even on my old laptop the real-time frame-rate is now 24 frames per
second.

12. Go to the Render window and, in the Dimensions subpanel, under Frame Range, set the End
Frame to 40; under Resolution switch the X and Y values, that is X = 1080 px and Y = 1920
px.

13. Go to the Outliner and click on the Display Mode button to switch from All Scenes to Visible
Layers. Then Shift-enable the 6th scene layer and select the Lamp.

14. Go to the Object Data window and, in the Lamp subpanel, change the lamp type from Point to
Spot; set the color to R 1.000, G 1.000, B 0.650 and the Energy to 14.000.

15. Put the mouse pointer in the 3D viewport and press N to call the side Properties panel; go to the
top Transform subpanel and set Location as X = 6.059204, Y = -9.912249, Z = 7.546275 and
Rotation as X = 55.789°, Y = 0°, Z = 30.562°.

16. Back in the Object Data window, go down to the Shadow subpanel and switch from Ray
Shadow to Buffer Shadow; under Filter Type set the Shadow Filter Type to Gauss, the Soft
to 12.000, the Size to 4000 and the Samples to 16. Set the Clip Start value to 9.000 and the
Clip End value to 19.000.

Setting the Lamp

17. Select the Camera and in the Object Data window set the Focal Length under Lens to 60.00;
in the Transform subpanel under the N side Properties panel input these values: Location as X
= 5.095385, Y = -6.777483, Z = 1.021429 and the Rotation as X = 91.168°, Y = 0°, Z =
37.526°. Put the mouse pointer in the 3D viewport and press the 0 numpad key to go in Camera
view:

Setting the Camera

18. Now click on the Scene datablock button on the top main header and rename it BI (Blender
Internal). Click on the + icon button to the right and from the New Scene pop-up menu select
the Link Objects item.

19. Change the BI.001 name of the new scene in Cycles and click on the Engine button to the right
to switch to the Cycles Render engine:

Adding a new scene with linked objects

20. Go to the Outliner and select the Lamp; go to the Object Data window and, in the Nodes
subpanel, click on the Use Nodes button and then set the Strength to 10000.000. Go to the
Lamp subpanel and set the Size to 0.500 and enable the Multiple Importance item.

21. Save the file.

How it works…

A scheme of what we made in this recipe is: we prepared a blend file that links both the character and
the action; this means that neither of them is local to the file and they cannot be directly edited in this
file. Moreover, the character, in its library file, links the textures that are contained in the textures
folder (which is at the same level as the blend files).

The Simplify subpanel in the Scene window allows us to globally modify some of the settings that can
usually slow a workflow, such as the subdivision levels, the number of particles, the quality of ambient
occlusion and subsurface scattering, and the shadows samples; through this panel they can be
temporarily lowered or even disabled to have faster and more responsive previews of the rendering and
the animation. Just remember that the Simplify subpanel also affects the rendering, so you have to
disable it before starting the final rendering task.

See also
• http://www.blender.org/manual/data_system/introduction.html#copying-and-linking-objects-

between-scenes
• http://www.blender.org/manual/data_system/scenes.html

http://www.blender.org/manual/data_system/introduction.html#copying-and-linking-objects-between-scenes
http://www.blender.org/manual/data_system/introduction.html#copying-and-linking-objects-between-scenes
http://www.blender.org/manual/data_system/scenes.html

• http://www.blender.org/manual/data_system/linked_libraries.html

http://www.blender.org/manual/data_system/linked_libraries.html

Setting image based lighting (IBL)
The image based lighting technique is almost essential in computer graphics nowadays; as the name
itself says, it's a technique to light a scene based on the pixel color information of an image, usually an
hdr image (High Dynamic Range image); other image formats can also work, although not so well.

In Blender it's possible to obtain IBL both in BI and in Cycles, although with different modalities.

Getting ready

Start Blender and load the previously saved Gidiosaurus_3D_layout.blend file; save it as
Gidiosaurus_IBL.blend.

How to do it…

We can divide this recipe into two parts: IBL in Cycles and in Blender Internal.

Image based lighting in Cycles

Let's start with the Cycles Render engine:

1. First, split the 3D window vertically into two windows, then change the upper one into a Node
Editor window. In the toolbar, click on the World icon button to the right side of the Object
icon button (selected by default; it's the one enabled for building the objects' shaders). Check the
Use Nodes checkbox (or, click on the Use Nodes button inside the Surface subpanel in the
World window); a Background node connected to a World Output node will appear in the
Node Editor window.

Enabling the World nodes in the Node Editor window

2. Click on the dotted button to the right side of the Color slot in the Surface subpanel under the
World window, to call the pop-up menu and select an Environment Texture node, which is
automatically added and correctly connected to the Color input socket of the Environment
node; then, click on the double arrows to the left side of the Open button (both in the Node
Editor or in the World window) and select the L Ice_Lake_Ref.hdr item.

Adding an Environment node to the World and loading the hdr image

3. In the World window or in the Node Editor window, set the Color Space to Non-Color Data.
4. In order to gain some feedback, start the Rendered preview in the bottom Camera view, then

go back to the Node Editor and add a Texture Coordinate node (Shift + A | Input | Texture
Coordinate) and a Mapping node (Shift + A | Vector | Mapping).

5. Connect the Generated output of the Texture Coordinate node to the Vector input socket of
the Mapping node and the output of this latter node to the Vector input socket of the
Environment Texture node; set the Rotation Z value of the Mapping node to -235.

Rotating the hdr image to match the position of the Lamp

6. Now add a Math node (Shift + A | Converter | Math) and a MixRGB node (Shift + A | Color |
MixRGB); connect the Color output of the Environment Texture node to the first Value input
socket of the Math node, set the Operation of this latter node to Multiply and the second
Value to 10.000.

7. Connect the output of the Multiply-Math node to the Color1 input socket of the MixRGB
node and set the Color2 to pure white; connect the Color output of the MixRGB node to the
Strength input socket of the Background node:

Adding nodes to the World

8. Press Shift + D to duplicate both the Math and the MixRGB nodes: paste the duplicated
MixRGB node between the first MixRGB and the Background nodes; set the Operation of
the duplicated Math node to Add.

9. Add a Light Path node (Shift + A | Input | Light Path); connect its Is Camera Ray output to
the first Value input socket of the duplicated Add-Math node and the Is Glossy Ray output to
the second Value input socket; connect the Value output of the Add-Math node to the Fac
input socket of the second MixRGB node and enable the Clamp item:

The completed IBL World setup for the Cycles render engine

10. Go to the Settings subpanel and enable the Multiple Importance item, then click on the World
datablock to change the name in World_Cycles.

11. Go to the Render window and in the Film subpanel enable the Transparent item.

Renaming the World and some more settings in the main window

12. Save the file.

Image based lighting in Blender Internal

Now let's see the same thing in Blender Internal:

1. Click on the Scene datablock button in the top main header to switch from Cycles to BI.
2. In the World window to the right, click on the 2 icon button to the right side of the World name

datablock to make it single user, then rename it World_BI.
3. Go directly to the Texture window: click on the New button, then click on the double arrows to

the side of the image datablock to select the L Ice_Lake_Refl.hdr item from the pop-up
menu:

Selecting the hdr image in the Blender Internal World

4. Rename the ID name datablock to Ice_Lake_Refl, then go down to the Mapping subpanel and
click on the Coordinates slot to select the Equirectangular item; set the Offset to X = 0.80500
and then go further down to the Influence panel and enable the Horizon item.

First BI World settings

5. Back in the World window, in the World subpanel enable the Real Sky item.
6. Enable the Environment Lighting subpanel and click on the Environment Color button to

select the Sky Texture item.
7. In the Gather subpanel, enable the Approximate method, the Pixel Cache item, the Falloff

item and set the Strength value of this latter item to 0.900.

More BI World settings

8. Go to the Render window and in the Shading subpanel click on the Alpha Mode slot to switch
from the Sky to the Transparent item:

Enabling the transparent background for the rendering

9. Save the file.

How it works…

In Cycles: at steps 6 and 7 we added nodes to increase the source light intensity of the hdr image;
because this also increased the contrast of the image, at steps 8 and 9 we made it less contrasted again
but kept the same light intensity, thanks to the Light Path node. The light rays shoot from the Camera
position and directly hit a surface (Is Camera Ray) or any glossy surface (Is Glossy Ray) and have
value = 1.000, hence corresponding to the Color2 socket of the second MixRGB node, therefore giving
a pure white (1.000) value to the Background node's Strength; any other ray (transmitted, shadows,
reflected, transparent, and so on) has the high contrast Strength values we established at steps 6 and 7.

We used the Mapping node for the sole reason of matching (visually and thanks to the World
Background item enabled in the Display subpanel under the N side Properties panel) the source light
direction of the image with the position of the Lamp in the 3D scene: that's why we rotated the hdr
image to negative 235 degrees on the z (vertical) axis.

In Blender Internal: we can't rotate the image, so instead we offset it on the x axis to (almost perfectly)
match the position it has in Cycles.

The Approximate gathering method is the one developed during the production of the short open movie
Big Buck Bunny (https://peach.blender.org/) to have faster rendering and absence of noise in Ambient
Occlusion, inevitable with the default Raytrace method (that still remains the more accurate, by the
way).

Note that, in both the render engines, we didn't load a brand new Ice_Lake_Ref.hdr image from
the textures folder, but we instead used the linked one coming from the materials of the character, as
indicated by the L in front of the name and by the name itself and all the settings grayed in the image
datablock subpanel.

See also

The free sIBL addon currently, only works with Cycles materials but it can read the .ibl file provided
with the free hdr images at the sIBL Archive (link provided further) and therefore, in one click, it can
create the complete nodes setup to provide image based lighting in Blender.

• The official documentation about the addon (http://wiki.blender.org/index.php/Extensions:2.6/
Py/Scripts/Import-Export/sIBL_GUI)

• An updated and bug-fixed version of the addon (https://raw.github.com/varkenvarken/
blenderaddons/master/sibl.py)

• The sIBL archive (http://www.hdrlabs.com/sibl/archive.html)
• Official documentation about the World in Blender:

◦ http://www.blender.org/manual/render/cycles/world.html
◦ http://www.blender.org/manual/render/blender_render/world/index.html

https://peach.blender.org/
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-Export/sIBL_GUI
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-Export/sIBL_GUI
https://raw.github.com/varkenvarken/blenderaddons/master/sibl.py
https://raw.github.com/varkenvarken/blenderaddons/master/sibl.py
http://www.hdrlabs.com/sibl/archive.html
http://www.blender.org/manual/render/cycles/world.html
http://www.blender.org/manual/render/blender_render/world/index.html

Setting a three-point lighting rig in Blender
Internal
Thanks to the global illumination, a path-tracer like Cycles doesn't necessarily need big lighting setups;
in fact, in the recipes we made, we only used one single Spot lamp in addition to the IBL and the results
have been quite good anyway.

In Blender Internal, instead, a minimum arrangement of lamps must be done to obtain satisfying
results, even with the aid of the World settings we have previously seen.

In this recipe, we are therefore going to see a classic movie three-point lighting rig, an industry standard.
The effect of the main key light is enhanced by the other two lamps: the fill light, to brighten (and
color) the shadow areas on the subject, and the backlight, to create a light rim on the subject edges thus
making it stand out against the background.

Getting ready

Start Blender and load the previously saved Gidiosaurus_IBL.blend file; if necessary, switch to
the Blender Render engine by the Engine to use for rendering button in the top main header.

1. Put the mouse pointer inside the Camera view and press the numpad 7 key to go in Top view,
then press numpad 5 to switch from Perspective to Ortho view.

2. Press Shift + C to put the 3D Cursor at the center of the scene and then go to the Outliner to
select the Gidiosaurus item: press the numpad period (.) key to center and zoom the view on
the selected object:

Centering the top view on the character

3. Press Ctrl + Spacebar to disable the widget and scroll the mouse wheel to zoom backward and
show the Spot lamp, then press the dot (.) key to switch the Pivot Point from Median Point (or
whatever else) to 3D Cursor.

4. Select the Lamp, then go to the Object Data window.
5. Remember to go to the Scene window and disable the Simplify subpanel!
6. Save the file as Gidiosaurus_lighting.blend.

Don't take into consideration the Node Editor window at the top showing the Lamp nodes under
Cycles; the settings to look for are those inside the main Properties panel to the right:

These are the settings you are looking for...

How to do it…

Let's go with the settings of the lights:

1. In the Outliner, rename the Lamp item as Light_key.
2. Press Shift + D to duplicate the Key_light lamp, press R and, while still in Top view, rotate the

duplicated lamp approximately -145 degrees, then go in Side view (numpad 3 key) and rotate it
around 15 degrees: in the Outliner, rename it as Light_back.

3. In the Object Data window, set the color to a light blue = R 0.700, G 0.900, B 1.000 and the
Energy to 5.000:

Positioning the Light_back lamp

4. Go back in Top view (numpad 7 key) and re-select the Light_key lamp, press Shift + D and
rotate the duplicate by 100 degrees; in the Outliner, rename it as Light_fill. Go in Front view
(numpad 1 key) and rotate it around -25 degrees.

5. In the Object Data window, set the color to a lighter blue = R 0.500, G 0.800, B 1.000 and the
Energy to 2.000:

Positioning the Light_fill lamp

6. Go to the Object window and in the Display subpanel enable the Name item for the three
lamps; then, back to the Object Data window and in the Spot Shape subpanel, enable the Show
Cone item for each one:

The three spot lamps showing their cones of influence

7. In the Outliner, disable the 3D viewport visibility of the Light_back and Light_fill lamps by
clicking on the respective eye icon, then go in Side Ortho view and select the Light_key lamp.

8. Go to the Spot Shape subpanel again and lower the Size value from the default 75° to 30° (or
the smallest possible value that still comprehends the whole character):

Lowering the spot lamp size value

9. Repeat steps 7 and 8 for the other two lamps as well, then Shift-select all the three lamps and
move them upward (on the z axis) a bit, just to better center the light cones' centers on the
position of the feet of the character.

10. Save the file.

The final result of the three-point lighting rig

How it works…

A classic three-point lighting rig can in some way compensate for the lack of real global illumination in
Blender Internal, although to obtain really good results, three lamps are usually not enough; in any
case, the lighting rig of this recipe can be used as a base for even more complex setups.

When using more than one lamp in Blender Internal, we should always be sure that the shadows are
enabled for all of them, unless we want particular effects; in fact, a back lamp with disabled shadows
can easily shine through the model and also illuminate parts that shouldn't be in light, giving unrealistic
results.

To calculate the buffered shadows, Spot lamps take into consideration everything inside their cone from
the Clip Start to the Clip End values; this is why we lowered the Size values of the cones as much as
possible.

One other crucial factor that can slow the calculation and the rendering times is, obviously, the size of
these buffers, which we set to 4000 for each one of the three lamps; quite big, but because we set the
cones that large enough to just comprehend the shape of their target object. This means we could use big
shadow buffers, to obtain more details in the shadows if needed.

We do all of this, even though the Gidiosaurus was the only object to be rendered in the scene.

See also
• http://www.blender.org/manual/render/blender_render/lighting/index.html

http://www.blender.org/manual/render/blender_render/lighting/index.html

Rendering an OpenGL playblast of the
animation
Playblast is a term used by a famous commercial package to indicate the preview of the animation in
true speed; although I've heard only very few people using it in relation to Blender, I thought it might be
a good way to indicate the fast OpenGL preview rendering obtained for checking the animated action.

Getting ready

Start Blender and load the Gidiosaurus_lighting.blend file.

1. In the Outliner, select the Light_key lamp item and go to the Object Data window, under the
Spot Shape subpanel, to disable the Show Cone item.

2. Repeat the procedure for the Light_back and Light_fill lamps, then disable their visibility in
the 3D viewport by clicking on the respective eye icon.

3. Disable the visibility in the viewport for the Gidiosaurus_proxy item (the linked and proxified
rig) also and/or disable the 11th scene layer.

4. Save the file as Gidiosaurus_playblast.blend.

How to do it…

Here are the steps to begin with the OpenGL rendering:

1. Put the mouse pointer inside the 3D viewport and press the numpad 0 key to go in Camera
view; press the Z key to go in Solid viewport shading mode, then scroll the mouse wheel to
zoom the Camera view inside the window:

The Camera view in Solid viewport shading mode

2. Go to the Render window and to the Dimensions subpanel; check for the X and Y sizes of the
rendering under Resolution, specified in pixels, and move the Percentage scale for render
resolution slider, usually set to 50%, to 100%.

3. Go down to the Output subpanel and click on the folder icon button to the end of the path slot;
browse to the location you want to save your rendering, then type in the first line of the path to
the folder you want to create at that location, followed by the slash (/) and press Enter.

4. A pop-up will ask you to confirm the creation of the new directory; confirm and then type a
generic frame name in the second line, go to the left side vertical bar to be sure that the bottom
Relative Path item is enabled and finally click on the Accept button at the top left of the
screen.

I used playblast for the folder and plbst for the frame name respectively.

The new directory and the rendered frames name

5. Save the file, then go to the Camera view toolbar and click on the last ciak icon button to the
left to start the OpenGL playblast:

The two buttons to start the OpenGL rendering (for a still to the left, for the animation to the
right)

How it works…

In our example, the OpenGL playblast rendered single .png images with an alpha background because,
as you can see in the Render window visible in the previous screenshot, these are the settings of the
Output subpanel. Be aware that the resolution, the format and the path where the playblast frames are
saved, always depend on the settings in the Render window, the same settings that will be used for the
final real rendering (but of course the resolution of the playblast can be easily and temporarily be made
smaller with the slider of the percentage scale).

There's more…

Once we have rendered all the frames, we can use an external player to see them in sequence (in
Ubuntu, I use the free player DJV Imaging, http://djv.sourceforge.net) or, just quickly build a movie
through the Blender Sequencer:

1. Go to the Screen datablock button on the top main header and click it to switch to the Video
Editing screen:

http://djv.sourceforge.net

Switching to the Video Editing screen layout

2. Put the mouse pointer in the Video Sequence Editor window at the bottom and press Shift + A;
from the pop-up menu select the Image item (Add an image or image sequence to the
sequencer), then browse to the playblast folder location, click on it and once inside, press
the A key to select all the contained frames, then press Enter to confirm. The frames are added
to the Video Sequence Editor window as a single strip and the current frame appears in the
preview window:

Loading the rendered frames in the Video Sequence Editor

3. Go back to the Default screen and to the Render window under the main Properties panel. In
the Output subpanel, where you can change the path to save the movie in a different location
(or also leave it as it is), click on the File Format button to select a Movie format, for example,
AVI JPEG. Choose BW or RGB and the Quality compression ratio (but the default 90% is
usually OK); then go to the Post Processing subpanel and ensure that the Sequencer item is
enabled:

The Output and the Post Processing subpanels inside the Render window

4. Go to the top of the Render window and click on the Animation button; remember that Blender
uses two different buttons to start the rendering of a still image or of an animation, both for the
final rendering and for the 3D viewport toolbar OpenGL preview we have seen in the How to do
it… section.

The rendering starts and the Sequencer processes all the .png images outputted by the playblast,
transforming them into a single compressed .avi movie then saved in the same directory as the frames.

The process is visible in the UV/Image Editor window that replaced the Camera view, indicated in the
toolbar by the Render Result label on the image datablock to the left (because the Image Editor item is
the one selected in the Display slot under the Render subpanel) and by the Sequence label visible in the
Layer slot to the right:

The Render Result window

See also
• http://www.blender.org/manual/render/display.html
• http://www.blender.org/manual/render/output/video.html
• http://www.blender.org/manual/render/output.html

http://www.blender.org/manual/render/display.html
http://www.blender.org/manual/render/output/video.html
http://www.blender.org/manual/render/output.html

Obtaining a noise-free and faster rendering in
Cycles
The Cycles Render engine can be very slow compared to Blender Internal; by the way, some of the
rendering settings can be tweaked to make it work faster; the goal here is to avoid fireflies and noise,
usually due to low samples and a light source that is too bright.

Rendered previews of an example scene, showing a cube on a plane with and without noise and fireflies

Getting ready

Start Blender and load the Gidiosaurus_playblast.blend file.

1. Click on the Scene datablock button in the top main header to switch from BI to Cycles.
2. Go to the Outliner and enable the visibility of the Light_key lamp in the viewport by clicking

on the grayed eye icon.
3. Put the mouse pointer inside the Camera view and press Shift + B to draw a box around the

character's head, then zoom to it.
4. Save the file as Gidiosaurus_render.blend and press Shift + Z to start the Rendered

preview.

How to do it…

If you have a capable graphic card supporting GPU (go to the last See also section for the link to a list of
supported GPU graphic cards for Cycles), the next thing to do is:

1. Call the User Preferences panel (Ctrl + Alt +U) and go to the System tab; on the bottom left
there is the Compute Device item and the slot you can click on to select the device for the
rendering: if you have a graphic card that supports this feature, set the GPU instead of the
default CPU, and to make this permanent, click on the Save User Settings button, or press Ctrl
+ U, and close the panel.

2. Go to the Render window under the main Properties panel and, in the top Render subpanel it
is now possible to select the GPU item as a rendering device, but only if your graphic card
supports CUDA.

This will boost your rendering speed several times, making it possible to significantly increase
the rendering samples in the Sampling subpanel to reduce or even avoid the noise and keep
good rendering times. Using the GPU, it's also possible to increase the size of the X and Y Tiles
in the Performance subpanel (two or three times the default size is 64).

But, not everyone has a GPU graphic card yet, and there are also cases where you have to
mandatorily use the CPU instead (for example, for very big scenes with a lot of geometry that
doesn't fit inside the somewhat limited RAM of a graphic card).

In such cases, there are things you can do to try to obtain faster and better quality render results:
3. Select the Light_key lamp and in the Node Editor window add a Light_Falloff node (Shift + A

| Color | Light Falloff); connect its Linear output to the Strength input socket of the Emission
node, set the Strength to 1000.000 and the Smooth value to 1.000.

4. Click on the color box of the Emission node and change the color to R 0.800, G 0.800, B 0.650.
5. Go to the Render window and in the Sampling subpanel set the Samples to 200 or a higher

value both for Render and Preview, to reduce the noise as much as possible.
6. Set the Clamp Direct and the Clamp Indirect values to 3.00 or 4.00 or even higher (they are

set to 0.00 by default); when possible, it is better to leave the Clamp Direct item at 0.00 or use
values higher then 2.00, otherwise you could get weird effects in the texturing.

7. In the Light Path subpanel, disable both the Reflective Caustics and the Refractive Caustics
items (unless you really need to have caustics in your render) and set the Filter Glossy value to
4.00 – 6.00.

8. In some cases, it won't be possible to totally eliminate the noise or the fireflies; but, because we
are going to render an animation, that is several frames in sequence, at least we can make the
noise less noticeable and more natural looking: go back to the Sampling subpanel and click on
the Seed slot to type #frame. This creates an automated driver that takes the seed value from
the current frame number, in order to have different noise at every frame.

The Light Falloff node for the Lamps, the Seed driver for the noise, the Caustics items and the
Filter Glossy value

See also
• http://www.blender.org/manual/render/cycles/reducing_noise.html
• http://www.blender.org/manual/render/cycles/settings/index.html
• http://www.blender.org/manual/render/cycles/gpu_rendering.html
• http://www.blender.org/manual/render/workflows/animations.html
• http://www.blender.org/manual/render/blender_render/performance.html
• A list of supported GPU graphic cards for Cycles can be found at https://developer.nvidia.com/

cuda-gpus

http://www.blender.org/manual/render/cycles/reducing_noise.html
http://www.blender.org/manual/render/cycles/settings/index.html
http://www.blender.org/manual/render/cycles/gpu_rendering.html
http://www.blender.org/manual/render/workflows/animations.html
http://www.blender.org/manual/render/blender_render/performance.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

Compositing the render layers
We have seen that the rendering in the Cycles Render engine is quite slow but of very good quality,
while the scanline Blender Render engine is faster but with a lower quality.

Thanks to the Blender integrated Compositor and to the render layers, it is possible to mix separated
and different passes of both the renderers, obtaining a compromise between quality and speed, for
example, by over-imposing the glossy pass obtained in Cycles on the diffuse pass obtained in BI, and
so on.

Getting ready

To mix different passes obtained from the two render engines, we must first apply some modification to
the materials of the library file:

1. Start Blender and load the Gidiosaurus_shaders_Blender_Internal.blend file,
which is the file we used as library for the proxified character and the walkcycle action.

2. In the Outliner select the Gidiosaurus_lowres item, be sure to be in the BI scene and go to the
Material window; select the first material slot, that is the Material_skin_U0V0 slot, and in
the Node Editor window select the SPEC material node:

The SPEC node material for Blender Internal

3. Go to the Texture window and click on the Enable/Disable each texture checkbox at the right
side of the env_refl_skin texture slot to disable it:

The disabled "env_refl_skin" texture slot

4. Go back to the Node Editor window and select the COL node (this seems to be important,
because of a bug in the Blender Internal working method with linked material nodes and the
despgraph that doesn't update the materials and, therefore, doesn't render the diffuse color
correctly).

5. Select the second Material_skin_U1V0 slot, go to the Node Editor, select the SPEC
material node, disable the env_refl_skin texture slot, select the COL material node, then
go to the third Material_skin_U2V0 slot, and so on: repeat for all the materials of the
Gidiosaurus and of the Armor objects (for the Armor disable the env_refl_armor slots
on both the SPEC1 and SPEC2 material nodes; Eyes and Corneas have the real ray-tracing
mirror enabled and don't need any textures disabled).

Remember to leave the COL material nodes as the selected ones in the Node Editor window, or
the diffuse color won't show in the rendering.

6. Go to the Object window and, in the Relations subpanel, assign a different Pass Index to the
objects: assign 1 to the Gidiosaurus_lowres object, 2 to the Armor object, 3 to the Eyes, and 4
to the Corneas.

The Pass Index slot

7. Save the file as Gidiosaurus_shaders_library.blend.

Now, because up to this point we have used the
Gidiosaurus_shaders_Blender_Internal.blend file as library source, we must
now substitute the file to be rendered the path to the new library source:

8. Open the Gidiosaurus_render.blend file and go to the Outliner window: click on the
Type of information to display button at the top to switch from Visible Layers to Blender File;
expand the panel to find the //Gidiosaurus_shaders_Blender_Internal.blend item at the
bottom:

The library path in the Outliner

9. Double left-click on the item and rename it as //Gidiosaurus_shaders_library.blend, then
press Enter to confirm and save the file:

The modified library path

10. Press Ctrl + O | Enter to re-load the file: now all the assets should be linked from the new
library file.

11. Save the file as Gidiosaurus_compositing.blend.

How to do it…

At this point we must prepare the passes for the two scenes that will be used later, as elements to be
mixed through a third new compositing scene:

1. Click on the + icon button to the right side of the Scene datablock button in the main top header
and, in the New Scene pop-up menu, select the New item: this creates a new empty scene;
rename it comp.

2. Click on the Screen datablock button to the left and switch to the Compositing screen, then
click again on the Scene datablock button and re-select the newly created comp scene.

3. Click again on the Screen datablock button and go back to the Default screen; go to the Scene
datablock button and select either the BI or the Cycles scene.

4. From now on, it's enough to select the Compositing layout in the Screen datablock button to
switch automatically to the comp scene, and the Default layout to go to the BI or the Cycles
scene (depending on the last one selected).

5. Go to the Default screen and, if not already loaded, load the BI scene; in the main Properties
panel, go to the Render Layers window (the second icon button from the left in the Type of
active data to display and edit windows row).

6. Double click on the RenderLayer name in the first slot at the top of the subpanel to rename it
as BI. Go down to the Passes subpanel, disable the Z pass item and enable Object Index; then
go to the second column and enable the Shadow pass but then also click on the Exclude shadow
pass from combined button to its extreme right side: do the same also for the Emit, the AO and
the Indirect passes.

The Passes setting for the Blender Render scene

7. Click again on the Scene datablock button in the top main header and switch to the Cycles
scene.

8. Double click on the RenderLayer name in the first slot at the top of the subpanel to rename it
as Cycles, then disable the Combined and the Z passes, leave the already enabled Shadow pass
as it is and enable also the Glossy Direct, Indirect and Color passes:

The Passes setting for the Cycles Render scene

9. Now click on the Screen datablock button and switch to the Compositing screen.
10. In the Node Editor window toolbar, go to the Node tree type to display and edit row, click on

the Compositing nodes button (the middle one) and then enable the Use Nodes checkbox:

The Compositing nodes button

Two compositing nodes are automatically added in the Node Editor window: a RenderLayers
node connected to a Composite node.

11. Click on the double arrows to the side of the Scene datablock on the RenderLayers node to
switch from the comp scene to the BI scene, and, if necessary, in the bottom Layer button,
select the name of the respective render layer (that we labeled as BI again; it shouldn't be
necessary to select it, by the way, because it's the only render layer in the scene).

The render layer selector in the RenderLayers node and the output sockets to the Composite
node

12. Press Shift + D to duplicate the RenderLayers node and repeat the procedure in the duplicated
one, this time selecting the Cycles scene datablock and render layer:

The duplicated RenderLayers node

13. Put the mouse pointer inside the Node Editor window and press Shift + A to add a Viewer node
(Shift + A | Output | Viewer); connect the Image output of the BI RenderLayers node also to
the Image input socket of the Viewer node.

14. Move down and switch the 3D View window with another UV/Image Editor window.
15. In the left image editor window, click on the double arrows to the left of the image datablock

(Browse Image to be linked) and from the pop-up menu select the Viewer Node item.
16. In the right image editor window, instead, select the Render Result item.

The Viewer node and the Viewer Node and Render Result windows

17. At this point, press F12 or click on the Render button inside the main Properties panel to start
the rendering.

When the rendering is done, only the BI render is visible in the two bottom editor windows,
because at the moment it's the only RenderLayers node connected to the Viewer and to the
Composite nodes.

18. Connect the Glossy Direct output of the Cycles RenderLayers node to the Image input socket
of the Viewer node to see the single specularity pass in the left UV/Image Editor.

The Glossy Direct pass visualized in the Viewer Node window

In fact, we could also add more than one Viewer node to the Node Editor window and use
them to visualize the different passes of RenderLayers, by connecting each pass output to each
Viewer node; the last selected Viewer node will be the one visualized in the Viewer Node
bottom window.

19. Enable the Auto Render item at the extreme right side on the Node Editor window toolbar, add
a Mix node (Shift + A | Color | Mix) and paste it between the Image output of the BI
RenderLayers node and the Image input socket of the Composite node; change the Blend
Type to Add and then connect the Glossy Direct output of the Cycles RenderLayers node to
its second Image input socket. Set the Fac value to 0.050 and label it as Add_GLOSSY_01.

20. If you want, also connect the output of the Add_GLOSSY_01 node to the Viewer node.

The Glossy pass, rendered in Cycles, added to the Image pass rendered in Blender Internal;
note that now the armor looks too lightened

21. Press Shift + D to duplicate the Add_GLOSSY_01 node, label it as Add_GLOSSY_02 and
paste it between the Add_GLOSSY_01 and the Composite nodes; connect the
Glossy_Indirect output of the Cycles RenderLayers node to the second Image input socket of
the Add_GLOSSY_02 node.

22. Press Shift + D to duplicate the Add_GLOSSY_01 node again, label it as Mul_GLOSSY,
change the Blend Type to Multiply and set the Fac value back to 1.000; connect the output of
the Add_GLOSSY_02 node to its first Image input socket and the Glossy_Direct output of the
Cycles RenderLayers node to its second Image input socket. Connect the output of the
Mul_GLOSSY node to the Composite node.

23. Add an ID Mask node (Shift + A | Converter | ID Mask), set the Index value to 2 and connect
the IndexOB output of the BI RenderLayers node to the ID value input socket, then connect
the Alpha output to the Fac input socket of the Mul_GLOSSY node; enable the Anti-Aliasing
item.

24. For the moment, disconnect the Viewer node.

The IndexOB output used as a mask for the addition of the Glossy pass only on the character's
skin

25. Press Shift + D to duplicate a new Mix node, label it as Mix_GLOSSY and set the Blend Type
to Mix and the Fac value to 0.900; connect the output of the Add_GLOSSY_02 node to the
first Image input socket and the output of the Mul_GLOSSY node to the second Image input
socket.

26. Press Shift + D to duplicate another Mix node, label it as Color_GLOSSY and set the Blend
Type to Color and the Fac to 0.050; connect the output of the Mix_GLOSSY node to the first
Image input socket and the Glossy_color output of the Cycles RenderLayers node to the
second Image input socket:

Adding more compositing nodes to re-build the separately rendered Glossy passes

27. Add a new Mix node (Shift + A | Color | Mix) right after the Color_GLOSSY one, label it as
Mul_AO, set the Blend Type to Multiply and connect the AO output of the BI RenderLayers
node to the second Image input socket; set the Fac to 0.500.

28. Add a new Mix node (Shift + A | Color | Mix), label it as SHADOWS, change the Blend Type
to Multiply and set the Fac value to 1.000; connect the Shadow output of the BI
RenderLayers node to its first Image input socket and the Shadow output of the Cycles
RenderLayers node to the second Image input socket.

29. Press Shift + D to duplicate the Mul_AO node and label it as Mul_SHADOWS; paste it right
behind the Mul_AO node and set the Fac value slider to 1.000.

30. Connect the output of the SHADOWS node to the second Image input socket of the
Mul_SHADOWS node.

31. Add a new Mix node (Shift + A | Color | Mix), label it as Color_SHADOWS and paste it right
behind the SHADOWS node; set the Blend Type to Add, the Fac to 0.500 and enable the
Clamp item: set the color of the second Image socket to R 0.640, G 0.780, B 1.000.

Multiplying and coloring the shadow pass

32. Add a new Mix node (Shift + A | Color | Mix) right behind the Mul_SHADOWS one, label it
as Add_INDIRECT; set the Blend Type to Add, the Fac to 0.300 and connect the Indirect
output of the BI RenderLayers to the second Image input socket.

33. Repeat the previous step but label the node as Add EMIT, set the Fac value to 1.000 and
connect the Emit output of the BI RenderLayers node to the second Image input socket.

34. Add one more Mix node (Shift + A | Color | Mix), label it as Col_EMIT, set the Blend Type to
Multiply and paste it behind the Add_EMIT node; set the color of the second Image socket to
R 1.000, G 0.542, B 0.073.

35. Add a new ID Mask node (Shift + A | Converter | ID Mask), connect the IndexOB output of
the BI RenderLayers node to the ID value socket, set the Index value to 3 and connect its
Alpha output to the Fac input socket of the Col_EMIT node.

Coloring and adding the eyes

36. Connect the output of the Col_EMIT also to the Image input socket of the Viewer node:

The completed compositing network

37. Save the file.

How it works…

In the Getting ready section:

• From step 2 to step 5 we disabled the env_refl_skin and the env_refl_armor texture slots in all
the material nodes of the BI shaders; in fact, because we are going to add the Cycles reflection
on the BI diffuse, we don't need to fake the environment reflection on the character and on the
armor surfaces anymore.

• In step 6 we assigned a different Index Pass number to each one of the objects; this is useful to
later separate the objects in the Compositor for particular effects (in our case we only needed
the armor Index Pass number, but it's a good habit to give index passes to all the objects for any
eventuality).

• At step 7 we saved the file with a new name, and at steps 8 and 9 we changed, in the file to be
rendered, the path to the new library file.

In the How to do it… section:

• From step 1 to step 3 we added a new empty scene, comp, to the blend file, linked to the
Compositing screen layout and to be used for the compositing.

• In fact, in the comp scene, all the compositing nodes are connected together so as to recreate
the best possible rendering look of the Gidiosaurus, using the different passes from the
different BI and Cycles scenes through the render layers.

• From step 4 to step 7 we enabled the required passes in the Render layers windows of both the
BI and Cycles scenes; note that basically we set an almost complete only-diffuse render in
Blender Internal (besides the Indirect, Ambient Occlusion and Emit passes, subtracted from
the total render and separately outputted), while we set the Glossy passes in the Cycles engine.

• From step 8 to step 15 we set up the RenderLayers nodes, the Viewer and the Composite
nodes.

The RenderLayers node outputs the rendering of a particular scene also delivering the enabled
passes for that scene, through the Render Layer setup.

The Compositing node is the mandatory final output node and must always be connected as the
last step of the compositing chain.

The Viewer node, instead, is optional but always used anyway to visualize the different steps of
the compositing itself.

• At step 16 we started the rendering; Blender starts to render the BI and the Cycles scenes using
the settings setup for each scene (and not the settings of the comp scene, which are true only for
the compositing).

• From step 18 to step 34 we mixed the different passes together. Basically, we used the same
approach that we have seen in the creation of the shaders, that is, by decomposing the final
result into the different components; then, we obtained the diffuse from the Blender Internal
engine because it's quite fast for that, and the glossy component from the Cycles render engine
for the same reasons, and then we re-mixed them. The Subsurface Scattering pass is actually

rendered together at the diffuse component in BI and is delivered through the Combined
(Image) pass.

• The Mix_GLOSSY node added at step 24 is to tweak the strength of the multiplied Glossy
Direct pass; we couldn't use the Fac value, in this case, because it was already used by the ID
Mask output to isolate, thanks to the Object Index, the Armor from the rest of the render.

• With the Col_SHADOWS node at step 30 we obtained two goals: first, we set the dark intensity
of the shadows to 0.500 and, second, we gave them a bluish coloration.

• The emission pass for the eyes has been added to the rendering through the same technique used
to multiply the glossy only on the Armor, that is, by an ID Mask node and the Object Index.

See also
• http://www.blender.org/manual/render/blender_render/layers.html
• http://www.blender.org/manual/render/blender_render/passes.html
• http://www.blender.org/manual/render/post_process/layers.html
• http://www.blender.org/manual/composite_nodes/index.html

http://www.blender.org/manual/render/blender_render/layers.html
http://www.blender.org/manual/render/blender_render/passes.html
http://www.blender.org/manual/render/post_process/layers.html
http://www.blender.org/manual/composite_nodes/index.html

Part 3. Module 3
Blender Cycles: Materials and Textures Cookbook - Third Edition

Over 40 practical recipes to create stunning materials and textures using the Cycles rendering
engine with Blender

Chapter 1. Overview of Materials in Cycles
In this chapter, we will cover the following recipes:

• An overview of material nodes in Cycles
• An overview of procedural textures in Cycles
• How to set the World material
• Creating a mesh-light material
• Using volume materials
• Using displacement

Introduction
Cycles' materials work in a totally different way than in Blender Internal.

In Blender Internal, you can build a material by choosing a diffuse and a specular shader from the
Material window, by setting several surface options, and then by assigning textures (both procedurals
and image maps as well) in the provided slots. All of these steps make one complete material. After this,
it's possible to combine two or more of these materials by a network of nodes, thereby obtaining a lot
more flexibility in a shader's creation. However, the single materials themselves are the same as those
set through the Material window—shaders made for a scan-line-rendering engine—and their result is
just an approximation of the simulated absorption-reflection behavior of light on a surface.

In Cycles, the approach is quite different. All the names of the closures describing surface properties
have a Bidirectional Scattering Distribution Function (BSDF), which is a general mathematical
function that describes the way in which light is scattered by a surface in the real world. It's also the
formula that path tracers such as Cycles use to calculate the rendering of an object in a virtual
environment. Basically, light rays are shot from the camera. They bounce on the objects in the scene and
keep on bouncing until they reach a light source or an empty background (which, in Cycles, can emit
light as well). For this reason, a pure path tracer such as Cycles can render in reasonable times an object
set in an open environment. The rendering times increase a lot for closed spaces, for example, furniture
set inside a room, because light rays can bounce on the floor, the ceiling, and the walls many times
before reaching one or more light sources.

In short, the main difference between the two rendering engines is due to the fact that, while in Blender
Internal, the materials use all the traditional shader tricks of a scan-line rendering engine such as the
simulated specular component, the Cycles rendering engine is a path tracer that tries to mimic the real
behavior of a surface as closely as possible as if the surface were real. This is the reason we don't have
an arbitrary Specular factor simulating the reflection point of light on the surface in Cycles, but instead
have a glossy shader that actually mirrors the light source and the surroundings to be mixed with other
components in different ratios. Thus the glossy shader behaves in a more realistic way.

Just for explanatory purposes, in this module, I will refer to the more or less blurred point of light
created by the reflection of the light source on a mirroring glossy surface as specularity.

Be aware that the rendering speed in Cycles depends on the device you use to render your scenes—CPU
or GPU. This means that basically, you can decide to use the power of the CPU (default option) or the
power of the graphic card processor, the GPU.

To set the GPU for the rendering, perform the following steps:

1. Call the Blender User Preferences panel (Ctrl + Alt + U) and go to the System tab, the last tab
to the right of the panel.

2. Under the Compute Device tab to the bottom-left corner of the panel, select the option to be
used for computation. To make this permanent, click on the Save User Settings button or press
Ctrl + U. Now close the Blender User Preferences panel.

3. In the Properties panel to the right of the screen, go to the Render window and, under the
Render tab, it's now possible to configure the GPU of the graphics card instead of the default
CPU (this is possible only if your graphic card supports CUDA, that is, for NVIDIA graphic
cards. OpenCL, which is intended to support rendering on AMD/ATI graphics cards, is still in a
very incomplete and experimental stage, and therefore, not very usable yet).

A GPU-based rendering has the advantage of literally increasing the Cycles' rendering speed several
times, albeit with the disadvantage of a small memory limit, so it's not always possible to render big
complex scenes made up of a lot of geometry. In such cases, it's better to use the CPU instead.

There are other ways to reduce the rendering times and also to reduce or avoid the noise and the fireflies
(white dots) produced in several cases by the glossy, transparent, and light-emitting materials. All of this
doesn't strictly belong to shaders or materials. By the way, you can find more information related to
these topics at the following addresses:

Information on Cycles Render Engine can be found at http://wiki.blender.org/index.php/Doc:2.6/
Manual/Render/Cycles.

More information on Reducing Noise is available on the Cycles wiki page, at http://wiki.blender.org/
index.php/Doc:2.6/Manual/Render/Cycles/Reducing_Noise.

A list of supported graphic cards for Cycles can be found at https://developer.nvidia.com/cuda-gpus.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Reducing_Noise
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Reducing_Noise
https://developer.nvidia.com/cuda-gpus

Material nodes in Cycles
A Cycles material is basically made up of distinct components named shaders. They can be combined
to build even more complex surface or volume shaders.

In this recipe, we'll have a look at the basic, necessary steps required to build a basic surface Cycles
material, to activate the rendered preview in the 3D window, and to finally render a simple scene.

Getting ready

In the description of the following steps, I'll assume that you are using Blender with the default factory
settings. If you aren't, start Blender and just click on the File menu item in the top main header bar to
select Load Factory Settings from the pop-up menu, as shown in the following screenshot:

The default Blender interface and the File pop-up menu with the Load Factory Settings item

Now perform the following steps:

1. In the upper menu bar, switch from Blender Render to Cycles Render (hovering with the
mouse on this button shows the engine to use to render a label).

2. Now split the 3D view into two horizontal rows, and change the upper row to the Node Editor
window by selecting the menu item from the Editor Type button in the left corner of the bottom
bar of the window. The Node Editor window is, in fact, the window we will use to build our
shaders by mixing the nodes (actually, this is not the only way, but we'll see this later).

3. Put the mouse cursor in the 3D view and add a Plane under the Cube (press Shift + A and
navigate to Mesh | Plane). Enter Edit Mode (press Tab), scale it 3.5 times bigger (press S, enter
3.5, and then press Enter) and go out of Edit Mode (press Tab again). Now move the Plane one
Blender unit down (press G, then Z, then enter -1, and finally, press Enter).

4. Go to the little icon (Viewport Shading) showing a sphere in the bottom bar of the 3D view and
click on it. A menu showing different options appears (Bounding Box, Wireframe, Solid,
Texture, Material and Rendered). Select Rendered from the top of the list (or press the Shift +
Z shortcut) and watch your Cube being rendered in real time in the 3D viewport.

5. Now you can rotate and translate the view or the Cube itself, and the view gets updated in real
time (the speed of the update is restricted only by the complexity of the scene and the
computing power of your CPU or graphics card).

Let's learn more by performing the following steps:

1. Select the Lamp item in the Outliner window (by default, it's a Point lamp).
2. Go to the Object data window under the Properties panel on the right-hand side of the screen.
3. Under the Nodes tab, click on Use Nodes to activate a node system for the selected light in the

scene. This node system is made by an Emission shader connected to a Lamp Output node.
4. Go to the Strength item, which is set to 100.000 by default, and start increasing the value. As

the intensity of the Lamp increases, you will see the Cube and the Plane rendered in the
viewport getting brighter, as shown in the following screenshot:

The Viewport Shading menu with the Rendered item and the Lamp Object data window with the
Strength slider

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

How to do it...

We just prepared the scene and took the first look at one of the more appreciated features of Cycles since
its first inclusion in Blender—the real-time-rendered preview (which, by the way, is now also available
in Blender Internal but seems to work faster in Cycles).

Now let's start with the object's materials:

1. Select the Cube to assign the shader to by clicking on the item in the Outliner window or right-
clicking directly on the object in the Rendered viewport (but be aware that in the Rendered
mode, the object selection outline usually around the mesh is not visible because it's obviously
not renderable).

2. Go to the Material window under the Properties panel. The Cube already has a default
material assigned (as you can precisely see under the Surface subpanel within the Material
window). By the way, you need to click on the Use Nodes button under the Surface subpanel to
activate the node system for the material. Instead of this, you can also check the Use Nodes box
in the toolbar of the Node Editor window.

3. As you check the Use Nodes box, the content of the Surface tab changes, showing that a
Diffuse BSDF shader has been assigned to the Cube and that, accordingly, two linked nodes
have appeared inside the Node Editor window. The Diffuse BSDF shader is already connected
to the Surface input socket of a Material Output node.

4. Put the mouse cursor in the Node Editor window, and by scrolling the mouse wheel, zoom in to
the Diffuse BSDF node. Click on the Color rectangle. A color wheel appears, where you can
select a new color to change the shader color by clicking on the wheel itself or by inserting the
RGB values (note that there is also a color sampler and the alpha channel value, although the
latter, in this case, doesn't have any visible effect on the object material's color).

http://www.packtpub.com
http://www.packtpub.com/support

The color wheel of a Diffuse shader node in the Node Editor window and the Rendered 3D
viewport preview

5. The Cube rendered in the 3D preview changes its material's color in real time. You can even
move the cursor in the color wheel and watch the rendered object switching the colors
accordingly. Set the object's color to a greenish color by changing its RGB values to 0.430,
0.800, and 0.499, respectively.

6. Go to the Material window, and under the Surface tab, click on the Surface button, which is
showing the Diffuse BSDF item at the moment. From the pop-up menu that appears, select the
Glossy BSDF shader item. Now the node changes in the Node Editor window, and so does the
Cube's material in the Rendered preview, as shown in the following screenshot:

Real-time preview of the effect of the Glossy shader node and the Surface subpanel under the
Material window

Note that although we just switched a shader node with a different node, the color we set in the former
has been kept in the new one. Actually, this happens for all the values that can be kept from a node to a
different one.

Now, because a material having a 100 percent matte or reflective surface could hardly exist in the real
world, a more accurate basic Cycles material should be made by mixing the Diffuse BSDF and the
Glossy BSDF shaders, blended together by a Mix Shader node, which in turn is connected to the
Material Output node:

1. In the Material window, under the Surface tab, click again on the Surface button, which is
now showing the Glossy BSDF item, and replace it with a Diffuse BSDF shader.

2. Put the mouse pointer on the Node Editor window, and by pressing Shift + A, make a pop-up
menu appear with several items. Move the mouse pointer on the Shader item. It shows one
more pop-up, where all the shader items are collected. Alternatively, press the T key to call the
Node Editor tool shelf, where you can find the same shader items under the different tabs.

3. Select one of these items (in our case, the Glossy BSDF shader node again). The Shader node,
which is already selected, is now added to the Node Editor window, although it is not
connected to anything yet (in fact, it's not visible in the Material window but only in the Node
Editor window).

4. Again press Shift + A in the Node Editor window, and this time, add a Mix Shader node.

5. Press G to move the node to the link connecting the Diffuse BSDF node to the Surface input
socket of the Material Output node (you'll probably need to first adjust the position of the two
nodes to make room between them). The Mix Shader node gets automatically pasted in
between, and the Diffuse node output gets connected to the first Shader input socket, as shown
in the following screenshot:

Mix Shader node pasted between a preexisting nodes connection inside the Node Editor window

6. Click on the green dot output of the Glossy BSDF shader node, and grab the link to the second
input socket of the Mix Shader node. Release the mouse button now and see the nodes being
connected.

7. Because the blending Fac (factor) value of the Mix Shader node is set by default to 0.500, the
two shader components, Diffuse and Glossy, are now showing on the Cube's surface in equal
parts, that is, each component at 50 percent. Click on the Fac slider with the mouse and slide it
to 0.000. The Cube's surface now shows only the Diffuse component because the Diffuse
BSDF shader is connected to the first Shader input socket, which is corresponding to a value of
0.

8. Slide the Fac slider value to 1.000 and the surface now shows only the Glossy BSDF shader
component, which is, in fact, connected to the second Shader input socket corresponding to a
value of 1.

9. Set the Fac value to 0.800 (keep Ctrl pressed while you are sliding the Fac value to constrain
it to 0.100 intervals). The Cube is now reflecting the white Plane on its sides, even though it is
blurred, because we have a material that is reflective at 80 percent and matte at 20 percent (the
white noise you see in the rendered preview is due to the low sampling we are using at the
moment. You will learn more about this later). This is shown in the following screenshot:

The Rendered preview of the effect of the mixed Diffuse and Glossy shader nodes

10. Lastly, select the Plane, go to the Material window, and click on the New button to assign a
diffuse whitish material.

How it works...

In its minimal form, a Cycles material is made by any one of the node shaders connected to the Surface
or the Volume input sockets of the Material Output node. For a new material, the node shader is
Diffuse BSDF by default, with the RGB color set to 0.800 and connected to the Surface socket, and
the result is a matte whitish material (with the Roughness value at 0.000, actually corresponding to a
Lambert shader).

Then the Diffuse BSDF node can be replaced by any other node of the available shader list, for
example, by the Glossy BSDF shader as in the former Cube scene, which produced a totally mirrored
surface material.

As we have seen, the Node Editor window is not the only way to build the materials. In the Properties
panel on the right-hand side of the UI, we have access to the Material window, which is usually divided
as follows:

• The material name, user, and the datablock subpanel.
• The Preview window.
• The Surface subpanel, including only the shader nodes added in a vertically ordered column in

the Node Editor window, and already connected to each other.
• The Volume subpanel, with the similar feature as that of the Surface subpanel.

• The Displacement subpanel.
• The Settings subpanel, where we can set the object color, the alpha intensity, the specularity

color, and the hardness as seen in the viewport in non-rendered mode (Viewport Color, Alpha,
Viewport Specular, and Hardness). It also contains the Pass Index value of the material, a
Multiple Importance Sample checkbox, the Volume sampling methods, the Interpolation, the
Homogeneous item to be activated to accelerate the rendering of volumes, and an option to
disable the rendering of the transparent shadows to accelerate the total rendering.

The Material window not only reflects what we do in the Node Editor window and changes
accordingly (and vice versa), but can also be used to change the values to easily switch the shaders
themselves, and to some extent, to connect them to the other nodes.

The Material and the Node Editor windows are so mutual that there is no prevalence in which window
to use to build a material. Both can be used individually or combined, depending on preferences or
practical utility. In some cases, it can be very handy to switch a shader from the Surface tab under
Material on the right (or a texture from the Texture window as well, but we'll see textures later),
leaving all the settings and the links in the node's network untouched.

There is no question, by the way, that the Material window can become pretty complex and confusing
as a material network grows more and more in complexity, while the graphic appearance of the Node
Editor window shows the same network in a clearer and much more readable way.

There's more...

Looking at the Rendered viewport, you'll notice that the image is now quite noisy and that there are
white dots in certain areas of the image. These are the infamous fireflies, caused mainly by transparent,
luminescent, or glossy surfaces. Actually, they have been introduced in the rendering of our Cube by the
glossy component.

Here is one way to eliminate the fireflies:

1. Go to the Render window under the Properties panel.
2. Uncheck both the Reflective and Refractive Caustics items under the Light Path subpanel.
3. This will immediately eliminate the white noise, but alas! It also eliminates all the caustics

(which we would like to keep in the rendering in most cases).

Therefore, a different approach is as follows:

1. Go to the Render window under the Properties panel. In the Sampling tab, set Samples to
100 for both Preview and Render (they are set to 10 by default).

2. Set the Clamp Direct and Clamp Indirect values to 1.00 (they are set to 0.00 by default).
3. Go to the Light Paths tab, re-enable the Reflective and Refractive Caustics items, and then set

the Filter Glossy value to 1.00.
4. The resulting rendered image, as shown in the following screenshot, is now a lot smoother and

noise-free, and also keeps the reflected caustics on the Plane:

Noise-free Rendered preview and settings under the Render window

5. Save the blend file in an appropriate location on your hard drive with a name such as
start_01.blend.

6. The Samples set to 10 by default are obviously not enough to give a noiseless image, but are
good for a fast preview. We could also let the Preview samples remain at the default value and
increase only the Render value, to have longer rendering times but a clean image only for the
final render (which can be started, as in Blender Internal, by pressing the F12 key).

Using the Clamp value, we can reduce the energy of the light. Internally, Blender converts the image
color space to linear, which is from 0 to 1, and then reconverts it to RGB, which is from 0 to 255, for
the output. A value of 1.00 in linear space means that all the image values are now included inside a
range starting from 0 and arriving to a maximum value of 1, and that values greater than 1 are not
possible, thus avoiding the fireflies problem in most cases. Be aware that Clamp values higher than
1.00 might also lower the general lighting intensity of the scene.

The Filter Glossy value is exactly what the name says, a filter that blurs the glossy reflections on the
surface to reduce noise.

Remember that even with the same samples, the Rendered preview does not always have a total
correspondence to the final render with regards to both noise and the fireflies. This is mainly due to the
fact that the preview-rendered 3D window and the final rendered image usually have very different
sizes, and artifacts visible in the final rendered image may not show in a smaller preview-rendered
window.

See also

As you have seen, the several nodes that can be used to build Cycles shaders have both input and output
sockets to the left and to the right of the node interface, respectively, and the color of these sockets is
actually indicative of their purpose; green sockets are for shaders, yellow sockets are for colors, gray
sockets for values, and blue sockets for vectors.

Each color output socket of one node should be connected with the same color input socket of another
node. By the way, connecting differently colored sockets also works quite often; for example, a yellow
color output can be connected to a gray value input socket and to a blue vector input.

A general overview of all the Cycles nodes can be found at http://wiki.blender.org/index.php/Doc:2.6/
Manual/Render/Cycles/Nodes.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes

Procedural textures in Cycles
In this recipe, we'll see several kinds of textures available in Cycles, and learn how to use them with the
shaders.

Similar to Blender Internal, we can use both procedural textures and image textures in Cycles. However,
the Cycles procedural textures are not exactly the same as in Blender Internal. Some textures are missing
because they have been replaced by an improved version (for example, the Clouds procedural texture
has been replaced by particular settings of the Noise procedural texture), and a few textures are new and
exclusive to Cycles.

Getting ready

We have already seen a simple construction of a basic Cycles material by mixing the diffuse and the
glossy (specular) components of a surface. Now let's take a look at the textures we can use in Cycles to
further refine a material.

Because Cycles has a node-based system for materials, textures are not added in their slot under a tab as
they are in Blender Internal. They get added in the Node Editor window, and are directly connected to
the input socket of the shaders or other kinds of nodes. This gives a lot more flexibility to the material
creation process because a texture can be used to drive several options inside the material network.

Let's see how they work:

1. Starting from the previously saved start_01.blend blend file, where we already set a
simple scene with a Cube on a Plane and a basic material, select the Cube and go to the Object
modifiers window inside the Properties panel to the right of the UI.

2. Assign to the Cube a Subdivision Surface modifier, set the Subdivisions level to 4 for both
View and Render, and check the Optimal Display item.

3. Go to the Tool tab at the left of the 3D window, navigate to Edit | Shading, and set the
subdivided Cube (let's call it Spheroid from now on) to Smooth.

4. Just to make things clearer, click on the color box of the Glossy BSDF shader to change it to a
purple color (RGB set to 0.800, 0.233, and 0.388, respectively). Note that only the glossy
reflection part on the Spheroid is now purple, whereas the rest of the surface, which is the
diffuse component, is still greenish.

5. Save the blend file and name it start_02.blend. The effect visible in the real-time
Rendered preview is as follows:

The Rendered preview of the effect of two differently colored Diffuse and Glossy components on
the Spheroid

How to do it...

Perform the following steps to add a procedural texture to the object:

1. Put the mouse pointer in the Node Editor window and press Shift + A.
2. In the contextual pop-up menu, go to the Texture item, just under Shader, and click on Wave

Texture to add the texture node to the Node Editor window.
3. Grab and connect the yellow Color output socket of the texture to the yellow input socket of the

Diffuse shader, the socket close to the Color rectangle that we formerly set as a greenish color,
as shown in this screenshot:

The Rendered preview of the effect of a Wave texture assigned as color to the diffuse component
of the material

4. In the Wave Texture node, change the Scale value to 8.500, Distortion to 12.000, Detail to
a maximum value of 16.000, and the Detail Scale value to 6.000.

5. Now disconnect the texture color output from the Diffuse node and connect it to the color input
socket of the Glossy shader, as shown in the following screenshot:

The effect of the Wave Texture assigned as color to the Glossy component of the material

6. Disconnect the texture color output from the Glossy shader. Grab and connect the texture node's
Fac output to the Roughness input socket of the Glossy BSDF shader, as shown in this
screenshot:

The effect of the Wave Texture assigned as Roughness factor to the Glossy component of the
material

7. Disconnect the texture color output from the Roughness input socket of the Glossy BSDF
shader. Move the Wave Texture node to the left and add a Bump node (Shift + A and navigate
to Vector | Bump). Connect the Fac output of the Wave Texture node to the Height input node
of the Bump node, and the Normal output of the Bump node to the Normal input socket of
both the Diffuse and the Glossy nodes. Set the Strength to 0.300. Here is a screenshot
showing the effect of the Wave Texture node as bump:

The effect of the Wave Texture Fac output as Bump for both the components of the material

8. Save the file.
9. Delete the Wave Texture node (X key), press Shift + A with the mouse pointer in the Node

Editor window, and add a Checker Texture node.
10. Connect the Fac output of the Checker Texture node to the Fac input socket of the Mix

Shader node and to the Height input socket of the Bump node, as shown in the following
screenshot:

The effect of a Checker Texture used as bump and especially as blending factor to mix the two
components of the material

11. Save the file as start_03.blend.

How it works...

From step 1 to 3, the changes are immediately visible in the Rendered viewport. At the moment, the
Wave Texture node color output is connected to the color input of the Diffuse BSDF shader node, and
the Spheroid looks as if it's painted in a series of black and white bands. Actually, the black and white
bands of the texture node override the green color of the diffuse component of the shader, while keeping
the material's pink glossy component unaltered.

In step 5, we did exactly the opposite. We disconnected the texture output from the Diffuse shader to
connect it to the Glossy shader color input. Now we have the diffuse greenish color back and the pink
has been overridden, while the reflection component is visible only inside the white bands of the wave
texture.

In step 6, in addition to the color output, every texture node also has a Fac (factor) output socket,
outputting gray-scale linear values. When connected to the Roughness input socket of the Glossy
shader, the texture output works as a factor for its reflectivity. The Spheroid keeps its colors and gets the
specular component only in the white areas on the surface (that is, white bands represent total reflection
and black bands represent no reflection).

In step 10, the Checker Texture node's Fac output connected to the Fac input socket of the Mix Shader
node works as a mask, or a stencil, based on the black and white values of the output. The numeric slider
for the mixing factor on the Mix Shader node has disappeared because now we are using the black and
white linear values of the Checker Texture output as a factor to mixing the Diffuse and Glossy
components. Therefore, these components appear on the Spheroid surface according to the black and
white quads of the checker.

Every texture node has several setting options. All of them have in common the Scale value to set the
size of the procedural. The other settings change according to the type of texture.

The Fac output of the texture node can be used to feed the Height input socket of the Bump node
(actually, the Color output also works quite well here). Hence, the Normal output of the Bump node
can be connected to the Normal input sockets of each shader node, giving a per node bump effect. So,
the bump can have an effect only on the diffuse component, or only on the glossy component, or on
both, and so on.

Let's create an example of Wave and Voronoi textures:

1. Re-open the start_02.blend file.
2. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) and a

new Bump node (press Shift + A and navigate to Vector | Bump).
3. Connect the Fac output of the Voronoi Texture node to the Height socket of the new Bump

node, and connect the latter to the Normal input socket of the Glossy BSDF shader node. Set its
Strength value to 0.650 and the Voronoi scale to 6.000.

4. Save the file as start_02bis.blend.

Two different procedural textures, a Wave and a Voronoi, used as bumps for the two components
to have a per shader effect

In this case, we have two different bump types, affecting the diffuse and the glossy components
independently, and building an effect of a layered bump.

There's more...

At this point, you could wonder: "Okay, we just mapped textures on the Spheroid, but what's the
projection mode of these mappings?"

Good question! By default, if the projection mode is not specified and if the object doesn't have any UV
coordinates, the mapping is Generated, which is the equivalent of the Original Coordinates mode
(now renamed Generated as well) in Blender Internal.

But what if you want to specify a mapping method? Then follow these steps:

1. Press Shift + A with the mouse pointer in the Node Editor window again, go to the Input item,
and select the Texture Coordinate item, which is a node with several mapping modes and their
respective output sockets.

2. Try to connect the several outputs to the Vector input (the blue socket on the left-hand side of
the node), which can be found from Checker Texture, to see the texture mapping on the
Spheroid change in real time, as shown in the following screenshot:

The Object output of the Texture Coordinate node connected to the Vector input of the Texture
node

By the way, I'd like to point your attention to the UV coordinates output. Connect the link to the texture's
vector socket, and you will see the mapping on the Spheroid disappear. Why is this so? Because we
haven't assigned any UV coordinates to our Spheroid yet.

Go to the UV Maps tab in the Object data window, under the Properties panel on the right, and click
on the + sign. This just adds a one-to-one Reset UV projection UV layer to the object, which means
that every face of the mesh is covering the whole area of the UV/Image Editor window. Remember that
although the Cube looks like a Spheroid now, this is only due to the effect of the assigned Subdivision
Surface modifier. The UV coordinates work at the lowest level of subdivision, which is still a six-faced
Cube.

A second option is to place the proper seams on the Cube's edges and directly unwrap the object in the
UV/Image Editor window, as demonstrated in the following steps:

1. Press Tab to go to Edit Mode, select the appropriate edges, press Ctrl + E, and in the Edges
pop-up menu, select the Mark Seam item.

2. Now press A to select all the vertices (if deselected), press U, and choose an unwrapping method
from the UV Mapping pop-up menu (Smart UV Project and Cube Projection don't even need
the seams). Then go out of Edit Mode to update the Rendered preview.

The Texture Coordinate node is not mandatory to map an image texture on an unwrapped object; in
such a case, Cycles will automatically use the (first) available UV coordinates to map the image map
anyway.

Often, the only Texture Coordinate node is not enough. What we need now is a way to offset, rotate,
and scale this texture on the surface:

1. First delete the Bump node, then select the Texture Coordinate node, and drag it to the left of
the window as far as suffices to make room for a new node. In the Add menu, go to Vector and
choose Mapping.

2. Grab the Mapping node in the middle of the link that connects the Texture Coordinate node to
the Checker Texture node. It will be automatically pasted between them, as shown in the
following screenshot:

The Mapping node pasted between Texture Coordinate and the Texture nodes

3. Now start playing with the values inside the Mapping node. For example, set the Z Rotation
value to 45°, set the X Scale value to 2.000, and then slide the X Location value, while
seeing, in the Rendered viewport, how the texture changes orientation and dimension and
actually slide along the x axis.

4. Save the blend file as start_04.blend.

The Min and Max buttons on the bottom of the Mapping node are used to clip the extension of the
texture mapping. Check both Min and Max to prevent the texture from being repeated n times on the
surface, and it will be shown only once. A minimum value of 0.000 and a maximum value of 1.000
give a correspondence of one-to-one to the mapped image. You can tweak these values to limit or extend
the clipping. This is useful to map decals, logos, or labels, for example, on an object and avoid
repetition.

See also

In Cycles, it is possible to use normal maps by adding the Normal Map node (by navigating to Add |
Vector | Normal Map) and connecting its output to the Normal input socket of the shader nodes.

To see an example of a Normal Map node used in a Cycles material, go to Chapter 8, Creating Organic
Materials, of this cookbook and look at the bark_seamless material of the Creating trees shaders –
the bark recipe.

Here is a link to the official documentation talking about the Normal Map node:

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More

Setting the World material
In this recipe, we'll see the properties and the settings of the World in Cycles.

The main characteristic of the Cycles World is that it can emit light, so it practically behaves as a light
source. Actually, its effect is the famous Global Illumination effect.

As in Blender Internal, the World is considered as a virtual dome at a large distance from the camera,
never touching the scene's objects. Nothing in the 3D scene can affect the World. Actually, only the
World can emit light on the scene and the objects.

Getting ready
1. Open the start_04.blend file and go to the World window under the Properties panel to

the right of the screen. This is where we see the usual Use Nodes button under the Surface tab.
2. Although no node system for the World window is set by default, the World window already

has a dark, medium gray color slightly lighting the scene. Delete the default Lamp or put it in a
different and disabled layer to see that the Spheroid in the scene is dark but still visible in the
rendered 3D viewport.

3. It's already possible to change this gray color to some other color by clicking on the Color
button right under Use Nodes (the color at the horizon). This brings up the same color wheel
that we saw for the shader colors. Set the color to R 0.179, G 0.152, and B 0.047, and
save the file as start_05.blend.

Note that both the intensity and the general color graduation of the World are driven by this color. To
have more light, just move the Value slider (the vertical slider) to a whiter hue. To give a general color
mood to the scene, pick a color from inside the wheel. This will affect all of the scene's illumination but
will show the effect mainly in the shadows, as shown in the following screenshot:

To the right is the color wheel to set the World's color, inside the World window, under the main
Properties panel

How to do it...

However, to get access to all the options for the World, we have to initialize it as a node system, which is
shown in the following steps:

1. Look at the bottom header of the Node Editor window. On the left-hand side of the material
data block, there are two little icons: a little cube and a little world. The cube icon is used to
create materials, while the world icon is for the World. At the moment, because we were
working on the Spheroid material, the cube icon is the one selected.

2. Click on the little world icon. The material's node disappears, and the Node Editor window is
empty now because we entered the World mode. Check the little Use Nodes box on the right of
the data block to make a default world material appear. Alternatively, go to the World window
under the Properties panel and click on the Use Nodes button under the Surface tab. This is
shown in the following screenshot:

The World button to be switched in the Node Editor toolbar

Just like the materials, the default material for the World is simply made up of two nodes. A
Background node is connected to a World Output node. In the Background node, there are two
setting options: the Color box and the Strength slider. Both of them are quite self-explanatory. Now,
perform the following steps:

1. Go to the World window under the Properties panel, and click on the little square with a dot to
the right side of the Color slot.

2. From the resulting menu, select the Sky Texture node item. This replicates a physical sky
model with two Sky types, an atmospheric Turbidity value slider, a Ground Albedo value
slider, and a Strength slider, as shown in this screenshot:

The Sky Texture node with options connected as Color to the Background node

Note that you can also modify the incoming direction of the light, that is, the location of the sun, by
rotating the sphere icon inside the node interface. This control isn't that much precise, by the way, and
will hopefully improve in the future. The next steps are as follows:

1. Save the file as start_06.blend.
2. Click on the Color button, which is now labeled Sky Texture, under the Surface tab in the

Properties panel, and select the Environment Texture node to replace it, as shown in the
following screenshot:

The pink warning effect of a missing texture in the Environment Texture node of the World
setting

3. Look in the Rendered view. You'll see that the general lighting has changed to a pink color.
This is to show that the World material is now using an image texture to light the scene, but that
there is no texture yet.

4. Click on the Open button in the World window, either under the Properties panel or in the
recently added node inside the Node Editor window. Browse to the textures folder and load
the Barce_Rooftop_C_3k.hdr image (a free, High-dynamic-range (HDR) image
licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License
from the sIBL Archive, at http://www.hdrlabs.com/sibl/archive.html).

5. To appreciate the effect, click on the little eye icon on the side of the Lamp item in the Outliner
to disable its lighting. The Spheroid is now exclusively lit by the HDR image assigned to the
World material. Actually, you can see the image as a background in the Rendered preview. You
can also rotate the viewport and watch the background texture, pinned to the World coordinates,
rotate accordingly in real time.

6. As for the object's materials, the mapping of any texture you are going to use for the World can
be driven by the usual Mapping and Texture Coordinates nodes we have already seen.
Generally, for the World materials, only the Generated coordinates output should be used, and
actually, the Generated coordinates output is used by default if no mapping method is specified.
Add the Mapping and Texture Coordinates nodes and connect them to the Vector input socket
of the Environment Texture node, as shown in the following screenshot:

http://www.hdrlabs.com/sibl/archive.html

The Rendered preview of an HDR image assigned as a background to the World through the
Environment Texture node

7. Save the file as start_07.blend.

Now let's imagine a case in which we want to assign a texture to the World material and use it for the
general lighting of the scene, but we don't want it to show in the background of the render. In other
words, we are using the HDR image to light the Spheroid and the Plane, but we want the two objects
rendered on a uniform blue background; so how do we do it? This is how:

1. One way is to go to the Render window and check the Transparent option under the Film tab.
This will show our Spheroid and Plane rendered in both the 3D viewport and the effective final
rendered image on a transparent background, with a premultiplied alpha channel, as shown in
the following screenshot:

The previous World setting rendered with a transparent background

2. Now we can compose the rendered image with a blue background, both in external image
editing software (such as GIMP, to stay inside FOSS) or directly in the Blender compositor.

A different way to render the two objects on a uniform blue background is to use a Light Path node:

1. If this is the case, deselect the Transparent item checkbox in the Render window to restore the
sky background in the preview and in the rendering.

2. Click on the World Output node in the Node Editor window, press G, and move it to the right.
3. Add a Mix Shader node (press Shift + A and navigate to Shader |Mix Shader) and move it to

the link connecting the Background node to the World Output node, to paste it automatically
between the two nodes.

4. Select the Background node in the Node Editor window. Press Shift + D to duplicate it and
move it down.

5. Connect its output to the second input socket of the Mix Shader node. Click on its Color box to
change the color to R 0.023, G 0.083, and B 0.179.

6. Now, add a Light Path node (press Shift + A and navigate to Input | Light Path).
7. Connect the Is Camera Ray output of the Light Path node to the Fac input socket of the Mix

Shader node, and voilà! The objects in the scene are lit by the HDR image connected to the first
Background node, but they appear in a sky that is colored as set in the Color box of the second
Background node. This is shown in the following screenshot:

The use of the Path Light node as a factor to have a different background than the HDR image
still illuminating the scene

8. Save the file as start_08.blend.

How it works...

To explain this trick better, let's say we just created two different world materials: the first material with
the texture and the second material with a plain blue color (this is not literally true; actually, the material
is just one, containing the nodes of two ideally different worlds).

We mixed these two materials using the Mix Shader node. The upper green socket of the Mix Shader
node is considered equal to a value of 0.000, while the bottom green socket is considered equal to a
value of 1.000. As the name suggests, the Light Path node can set the path for the rays of light that
are shot from the camera, if you remember. Is Camera Ray means that only the rays directly shot from
the camera have a value of 1.000, that is, not the reflected ones, or the transmitted ones, or whatever,
which have a value of 0.000.

Thus, because the textured world is connected to a socket equal to the value of 0.000, we don't see it
directly as a background, but only see its effect on the objects lit from the reflected light or from the
HDR image. The World of the blue sky, which is connected to the input socket of value 1.000 instead,
is seen as a background because the light rays shot from the camera directly hit the sky.

There's more...

Just after the Surface subpanel, in the World window, there is the Ambient Occlusion subpanel.
Ambient occlusion is a lighting method used to emphasize the shapes or the details of a surface, based
on how much a point on that surface is occluded by the nearby surfaces. Ambient occlusion can replace
the Global Illumination effect in some cases, though not the same. For example, to render interiors with
fast and noise-free results, ambient occlusion is a cheap way to get an effect that looks a bit like indirect
lighting.

There is a checkbox to enable Ambient Occlusion, along with the following sliders:

• Factor: This is used for the strength of the ambient occlusion. A value of 1.00 is equivalent to
a white World.

• Distance: This is the distance from a shading point to the trace rays. A shorter distance
emphasizes nearby features, while a longer distance takes into account objects that are further
away.

The Ambient Occlusion feature is only applied to the Diffuse BSDF component of a material. The
Glossy or Transmission BSDF components are not affected. Instead, the transparency of a surface is
taken into account. For example, a half-transparent surface will only half-occlude other surfaces.

Creating a mesh-light material
In this recipe, we will see how to create a mesh-light material to be assigned to any mesh object and
used as a source to light the scene.

Getting ready

Until now, we have used the default Lamp (a Point light) already present in the scene to light the scene.
By enabling the node system for the Lamp, we have seen that it uses a material created by connecting an
Emission node to the Lamp Output node.

The good news is that just because it's a material node, we can assign an Emission shader to a mesh, for
example, to a Plane conveniently located, scaled, and rotated to point to the scene that is the center of
interest. Such a light-emitting mesh is called a mesh-light. Being a mesh, the Emission shader node
output must be connected to the Surface (or the Volume) input socket of a Material Output node
instead of the Lamp Output node.

Light emission coming from a surface and not from a point is a lot more diffused and softer than the
light from a Lamp. A mesh-light can be any mesh of any shape, so it can be used as an object taking part
in the scene and be the real light source of the rendering at the same time, for example, a table lamp, or a
neon sign, or a television screen. As a pure light-emitting Plane, it's usually used as a sort of
photographic diffuser. Two or three strategically placed mesh-lights can realistically simulate a photo
studio situation. To replace the Lamp with a mesh-light, Plane perform the following steps:

1. Call the Blender User Preferences panel (Ctrl + Alt + U), navigate to the Addons tab, and
click on 3D View under Categories on the left. Check the Copy Attributes Menu box to the
right-hand side of the 3D View option, and click on the Save User Settings button in the
bottom-left corner of the panel. Then close the panel.

2. Starting from the start_07.blend file, click on the eye icon of Lamp in the Outliner to
enable its visibility again.

3. Right-click on the Lamp in the 3D view and press Shift + S to bring up the Snap menu. Click
on the Cursor to Selected item.

4. Press Shift + A with the mouse pointer in the 3D view and add a Plane to the scene at the 3D
Cursor's location.

5. Press Shift and select the Lamp. Now you have both the recently added Plane and the Lamp
selected, and the latter is the active object.

6. Press Ctrl + C to open the Copy Attributes menu and select the Copy Rotation item.
7. Rename this Plane as Emitter.
8. Right-click on the Lamp in the 3D view and press X to delete it.
9. Put the mouse pointer on the 3D view and press 0 from the numeric keypad to go to Camera

view.
10. From the Viewport Shading menu in the window's header, select the Rendered mode (or put

the mouse cursor on the Camera view and press Shift + Z):

A Plane set as a mesh-light to replace the Lamp, and the previous HDR image as the
background

11. Save the file as start_09.blend.

How to do it...

Now let's create the emission material and also take a look at the setup for the softness of the projected
shadows:

1. Select the Emitter plane and click on the little cube icon on the header of the Node Editor
window.

2. Click on the New button in the header and rename the material as Emitter.
3. In the Properties panel, go to the Material window, and under the Surface tab, click on the

Surface button to switch the Diffuse BSDF shader with an Emission shader. Leave the default
color unchanged (RGB 0.800) and set the Strength slider to 25.000.

4. Save the file.

The situation so far is as follows:

The mesh-light emission material with increased strength

5. In the 3D view, scale the Emitter plane five times bigger (press S, then enter 5, and press
Enter), and then set the Strength slider to 2.500.

6. Save the file as start_10.blend. Now look at the softer shadow, as shown in the following
screenshot:

Scaling the mesh-light bigger and decreasing the emission strength to have softer shadows

7. Now let's scale the Emitter plane a lot smaller (press S, then type 0.05, and press Enter) and set
the Strength slider to 450.000.

8. Save the file as start_11.blend. Look at the crisper shadow in the Rendered preview, as
shown in this screenshot:

Scaling the mesh-light smaller and increasing the emission strength to have crisper shadows

How it works...

From steps 5 to 7, we saw how a mesh-light can be scaled bigger or smaller to obtain a softer (in the first
case) or a sharper (in the second case) shadow, respectively. The Strength value must be adjusted for the
light intensity to remain consistent, or the mesh-light must be moved closer or more distant from the
scene.

Scaling the mesh-light is basically the same as setting the size value for a Lamp. For Lamps, the softness
of shadows can be set by the Size value to the left of the Cast Shadow option in the Lamp window,
under the Properties panel (by default, the Size value is set to 1.000). At a value of 0.000, the
shadow is at its maximum crispness, or sharpness. If the Size value is increased, the softness of the
shadow increases too.

Unlike the mesh-light, varying the Size value of a Lamp doesn't require us to adjust the Strength value
to keep the same light intensity.

There's more...

In several cases, you might not want the emitters to appear in your rendering. There are node
arrangements to accomplish this (such as using the Light Path node in a way quite similar to the Setting
the World material recipe we have seen before), but the easiest way to do this is as follows:

1. Start with the last saved blend (start_11.blend) and put the mouse cursor on the
orthogonal 3D view to the left of the screen. Press the 3 key to navigate to the Side view. Then
press Shift + Z to go in the Rendered mode to also see the Emitter plane rendered (be warned
that if your computer can't easily render two windows at the same time, you must temporarily
turn off the rendering for the Camera view).

2. With the Emitter plane still selected, navigate to the Object window under the Properties panel.
3. Look at the Ray Visibility tab (usually at the bottom of the Properties panel), where there are

five items: Camera, Diffuse, Glossy, Transmission and Shadows, with the corresponding
checked boxes.

4. Uncheck the Camera item and watch the Emitter plane disappear in the rendered 3D window,
but the scene still lit by it, as shown in the following screenshot:

Disabling the Camera item in the Ray Visibility subpanel to hide the mesh-light Plane from the
rendering

When you disable any one of the items, the corresponding property won't take part in the
rendering. In our case, when the Camera box is unchecked, the mesh-light won't be rendered
but it will still emit light. Be careful that the Emitter plane is not renderable at this moment, but
because all the other items in the tab are still checked, it can be reflected and could cast its own
shadow on other objects.

5. Now reselect the Spheroid (remember that unless you have renamed it, its name in the Outliner
remains as Cube). Next, from the Ray Visibility tab in the Object window under the Properties
panel, uncheck the Camera item.

Now the Spheroid has disappeared, but it's still casting its shadow on the floor Plane, as shown
in this screenshot:

Disabling the Camera item to hide the Spheroid object from the rendering (but keeping the
shadows on the floor)

6. Now check the Camera item again and uncheck the Shadow box. In this case, the Spheroid is
visible again but doesn't cast a shadow, as shown in the following screenshot:

Disabling the Shadow item to have the Spheroid object rendered but without the shadows on the
floor Plane

7. Save the file as start_12.blend. Let's try tweaking this a little.
8. Check the Shadow box for the Spheroid again, and select the floor Plane. Go to the Material

window under the Properties panel, and click on the New button to assign a new material
(Material.001).

9. Still in the Material window under the Properties panel, switch the Diffuse BSDF shader with
a Glossy BSDF shader. The floor Plane is now acting as a perfect mirror, reflecting the
Spheroid and the HDR image we formerly set in the World material.

10. Go back to the Object window and reselect the Spheroid. In the Ray Visibility tab, uncheck the
Glossy item and watch the Spheroid, which is still rendered but not reflected by the mirror floor
Plane, as shown in the following screenshot:

By disabling the Glossy item, we have the Spheroid object not mirrored by the glossy floor
Plane

11. Save the file as start_13.blend.

Of course, the Ray Visibility trick we've just seen is not needed for Lamps because a Lamp cannot be
rendered at all. At the moment, only Point, Spot, Area, and Sun lamps are supported inside Cycles.
Hemi lamps are rendered as Sun lamps.

Both Lamps and mesh-lights can use textures too, for example, project colored lights on the scene, but
only a mesh-light can be unwrapped and UV-mapped with an image map.

One advantage Lamps have over mesh-lights is that they can be made unidirectional easily, that is, apart
from Point lamps, they cast light in only one direction. The following screenshot shows the casting of
light with a Spot Lamp:

A Spot Lamp allows light to point in just one direction

In the preceding screenshot, you can see that only the Plane and the Spheroid in front of the Spot lamp
receive light. With a mesh-light plane replacing the Spot lamp, objects in both the front and the back
(the half-cylindrical Wall and the second Spheroid) receive light.

A mesh-light emitter illuminates the region backward and forward by default

What if we want to light the object in only one direction (Plane and Spheroid in front) with a mesh-
light? Is there a way to make a light-emitting plane emit light only from one side and not the opposite
side? Yes, there is; follow these steps:

1. Open the 01_meshlight.blend file, which has prepared the scene used for the preceding
screenshots, and be sure to enable only the first and the seventh layer.

2. Put the mouse cursor on the left vertical 3D view, and press Shift + Z to navigate in Rendered
view mode.

3. Click on the Emitter item in the Outliner to select it (if not already selected), and put the
mouse pointer in the Node Editor window. Add a Mix Shader node (press Shift + A and
navigate to Shader | Mix Shader) and move it to the link connecting the Emission node to the
Material Output node to paste it in between them.

4. Add a Geometry node (press Shift + A and navigate to Input | Geometry) and connect its
Backfacing output to the Fac input socket of the Mix Shader node.

5. Switch the Emission node output from the first Shader input socket of the Mix Shader node to
the second node, as shown in the following screenshot:

Thanks to the Backfacing output of a Geometry node as Factor, a mesh-light can illuminate in
only one direction

6. Save the file as 01_meshlight_final.blend.

We have already seen that in a Mix Shader node, the first (upper) green Shader input socket is
considered equal to a 0 value, while the second socket is considered equal to a 1 value. So, the
Backfacing output of the Geometry node is telling Cycles to make the mesh-light plane emit light only
in the face-normal direction, and to keep the opposite back-facing side of the plane black and non-
emitting (just like a blank shader).

By switching the Emission node connection to the first Mix Shader input socket, it's obviously possible
to invert the direction of the light emission.

Using volume materials
Very briefly (because there are dedicated recipes in the last chapter of this Cookbook), let's take a look at
how volumetric materials work in Cycles.

Volumetric materials are exactly what they sound like. Instead of the surface of an object, Cycles renders
the inner volume of that object, and this gives space to a lot of interesting possibilities—not only can
elusive materials such as smoke, fire, clouds, or light transmission effects through the medium be
realized, but peculiar shapes can also be obtained from the volume itself by Boolean operations made
through material nodes.

The drawback is that volume materials are slow—a lot slower compared to the surface materials, but
hopefully, this is an issue that will be fixed in some way in the future (be aware that from Version 2.72,
volume materials are available on GPUs too).

Getting ready

Let's start with our usual Spheroid blend file:

1. Open the start_02.blend file and delete the material assigned to the Spheroid.
2. Put the mouse cursor in the 3D view and press Shift + Z to navigate to the Rendered view.
3. Click on the New button to add a new material, and then switch the Diffuse node link from the

Surface input socket to the Volume input socket of the Material Output node.

How to do it...

Now let's go to the volume section of the Material window with the following steps:

1. Go to the Material window under the Properties panel, and click on the Diffuse BSDF labeled
button to the side of the Volume item. In the pop-up menu, select the Volume Scatter node as
shown in this screenshot:

The Rendered preview of a Volume Scatter node assigned to the Spheroid

2. Change the Density value of the Volume Scatter node from 1.000 to 50.000. The Spheroid
looks a lot more solid now, as shown in the following screenshot:

The effect of the Volume Scatter node with increased density

3. Add a Voronoi Texture node (Press Shift + A and navigate to Texture | Voronoi Texture).
Connect the Fac output to the Density input socket of the Volume Scatter node. Set the
Voronoi scale to 3.800.

4. Add a Math node (Press Shift + A and navigate to Converter | Math) and paste it in the link
between the Voronoi Texture and the Volume Scatter nodes. Set Operation to Less Than and
second Value to 0.100.

5. Add a second Math node and paste it right after the first node. Set the Operation to Multiply
and second Value to 50.000. Here is a screenshot of the output of a Voronoi Texture node for
your reference:

The output of a Voronoi Texture node used as Factor for the density of the Volume Scatter node

6. Click on the Color button of the Volume Scatter node. Set the RGB values to 0.800, 0.214,
and 0.043, respectively.

The scattered light is obviously of a hue complementary to the color assigned to the volume

7. Save the file as 01_volumetric.blend.

How it works...

We have seen that when we increase the Density value of the Volume Scatter node, the Spheroid starts
to look more and more solid. So, we used the output of a Voronoi Texture node and clamped it with a
Less Than node to show only the values that are not beyond the 0.100 limit. Then we multiplied the
value by 50.000, thus increasing the density of the Voronoi spheres and making them appear as solid
objects inside the Spheroid volume.

Remember that in this case, we rendered only the inside of the object and not the surface. Anyway, a
combination of Surface and Volume is possible and can give interesting results, as shown in the
following screenshot:

Combining a Glass shader for the surface with a Volume Scatter node for the inside of the mesh

There's more...

Volumes also work in the World. In fact, the World Output node now has a Volume input socket. By
connecting a Volume Scatter or Volume Absorption node to the World Output node, it is possible to
obtain several special effects, for example, fog, mist, atmospheric perspective, atmospheric scattering
effects, and a body of water for an underwater scene. Clearly, it's also possible to fill this environment
volume with textures.

In any case, you won't usually fill the entire World with a volumetric material because the World in
Blender is considered as going to an infinite distance, and this would make the volume calculation too
heavy. It's better to use a scaled Cube, properly placed and filled with the volume material.

To know more about volume materials, go to the last chapter of this Cookbook or to the documentation
on the wiki at http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume

Using displacement
The last input socket of the Material Output node is Displacement. Sadly, it seems that at the moment,
its use is limited.

Getting ready

By enabling Experimental in the Feature Set option under the Render tab in the Render window, it's
possible to have access to an incomplete displacement feature:

1. Open the start_03.blend file, select the Spheroid, and delete its material.
2. Go to the Render window under the Properties panel. In the Render tab, click on the Feature

Set button, labeled with Supported by default, and select Experimental.
3. Go to the Object data window to find a new tab named Displacement, where we can choose

between three options: Bump, True, and Both (the Use Subdivision and Dicing Rate buttons
don't seem to work yet).

Note

Bump will give us the average bump effect, which is the same as connecting the texture output
in the Displacement input of the Material Output node (this is a different way to have an
overall bump effect, and it works without the need to set the Feature Set option to
Experimental).

By setting the method to True, we can have a displacement effect that is not different from the
Displace Modifier output, and the mesh must be subdivided.

Both will use the texture gray-scale values' information for a displacement and the bump effect
together.

4. Select True.

How to do it...
1. Go to the Material window under the Properties panel and click on the New button. In the

Displacement tab, click on the Default button, and in the pop-up menu, select the Image
Texture node.

2. Click on the Open button, browse to the textures folder, and load the quads.png image.
3. Split the bottom 3D window to open a UV/Image Editor window.
4. Press Tab to go to Edit Mode. Then press U with the mouse pointer in the 3D window. In the

UV Mapping menu, select Smart UV Project, then load the quads.png image in the UV/
Image Editor, and press Tab again to go out of Edit Mode. Note that this is the quicker
way to unwrap the Spheroid, which is still a Cube at its lower level of subdivision. If you want,
you can do a better unwrapping by placing seams to unfold it and by selecting a normal
Unwrap option from the pop-up menu.

5. Go to the Object modifiers window and raise the Subdivisions levels for both View and
Render to 6.

6. Add a Math node (press Shift + A and navigate to Converter | Math) and paste it between the
Image Texture node and the Material Output. Set Operation to Multiply, and the second
option, Value, to 2.000 (if you don't see any modification in the rendered preview, it's an
update issue, which can be solved by pressing Tab twice to go in and out of Edit Mode).

7. Add a Glossy node (press Shift + A and navigate to Shader | Glossy BSDF) and a Mix Shader
node (press Shift + A and navigate to Shader | Mix Shader), and connect them to build the
average basic material we already know.

8. Add two MixRGB nodes (press Shift + A and navigate to Color | MixRGB) and connect them
to the color input sockets of the Diffuse and the Glossy nodes.

9. Finally, connect the color output of the Image Texture node to the Color1 input sockets of the
MixRGB nodes, and set colors for the Color2 sockets. Here is a screenshot of a checker image
texture used as displacement for your reference:

A checker image texture used as a color and output for the Rendered displacement of the
Spheroid

Instead of the Smart UV Project option to unwrap the Spheroid, try the default 1:1 UV
Mapping (the Reset item in the menu, which gives the whole image mapped on each face). The
following screenshot shows the checker image texture used with the different unwrap:

The checker image texture used as a color and output for the rendered displacement of a
Spheroid with a different unwrap

10. Save the file as 9931OS_01_displacement.blend.

In any case, this is just for a temporary demonstration; the feature is still incomplete. At the moment, it
seems to work quite well only if the texture is mapped with UV coordinates. This is definitely going to
change in the future.

How it works...

Simply put, the gray-scale values of the texture are multiplied by the value we put in the second slider of
the Math node. For example, if we set a value of 0.500, the intensity of the effect will be the half of
the default value (1.000 x 0.500 = 0.500). With a value of 3.000, the effect would be three times the
default value, and so on. Similar to Blender Internal, the value can also be set as negative, thereby
inverting the direction of the displacement.

Chapter 2. Managing Cycles Materials
In this chapter, we will be covering the following recipes:

• Preparing an ideal Cycles interface for material creation
• Naming materials and textures
• Creating node groups
• Grouping nodes under frames for easier reading
• Linking materials and node groups

Introduction
As with Blender Internal materials, Cycles materials can (and should) be organized to optimize your
workflow.

Material nodes in Cycles can easily grow quite complex, and it's sometimes a good idea to split and
label the different parts of a shader's network, just to make the meaning of the different sections clearer
(even to yourself because maybe at a certain point of your workflow, you will forget how exactly that
120-node material you made a couple of months ago works). Moreover, organized materials can be
easily reused in other files and projects or as parts of bigger and different materials.

Organization of materials is basically done by grouping them or giving them proper names and defined
locations so that they can be easily found in the hard disk.

Preparing an ideal Cycles interface for material
creation
Before starting with the actual organization, it's a good idea to prepare a material creation screen to be
saved in your Blender preferences.

It is possible, in fact, to prepare a basic scene setup that includes the elements and the settings we need
to do the job best.

In any case, just take this recipe with a grain of salt, that is, take it as more of a suggestion or as a
starting point that you can eventually modify to better suit your needs.

Getting ready

Start Blender and in the upper menu (the Engine to use for rendering button), switch to Cycles
Render.

How to do it...

We are now going to customize the Default screen:

1. Split the 3D view into two horizontal rows. To do this, move the mouse cursor onto the lateral
edge of the window. The cursor changes to a double arrow icon. Right-click on the edge, and
from the little pop-up menu that appears, select Split Area (or click in the top-right corner of
the window and move it).

2. Change the upper window to a Node Editor window by selecting the item from the Editor
Type button in the left corner of the bottom bar (or by putting the mouse cursor in the window
and pressing the Shift + F3 keyboard shortcut).

3. Select the default Cube in the scene if it is not selected already, and go to the Object modifier
window under the Properties panel to the right of the screen. Assign a Subdivision Surface
modifier to the Cube, which is now a Spheroid, and set the Subdivisions levels for both View
and Render to 4. Check the Optimal Display item.

4. Set the Spheroid shading mode to Smooth by clicking on the appropriate button under the
Shading subpanel in the Tools tab on the left.

5. Move the Spheroid upward by 2 units on the z axis (press G, then press Z, enter digit 2, and
finally, press Enter).

6. Ensuring that the cursor is still at the center of the scene (if not, press Shift + C to center it),
press Shift + A and navigate to Mesh | Plane to add a Plane.

7. Press Tab to go to Edit Mode and scale the Plane four times bigger (press Tab, then press S,
enter digit 4, and finally, press Enter). Exit Edit Mode.

8. Split the bottom row into two parts, put the mouse cursor in the 3D window on the right, and
press 0 in the numeric keypad of the keyboard to go to the Camera view. Then press T to close
the Tool Shelf panel with the tabs on the left. Scroll the mouse wheel to fit the Camera view
field into the window (or for a finer control, press Ctrl + the middle button of the mouse and
move the mouse).

This screenshot shows where we are now:

The first steps of the Default screen customization for Cycles material creation

9. In the Editor Type button in the left corner of the bottom bar of the left 3D window, select UV/
Image Editor.

10. Select the Spheroid, go to Edit Mode, and scale it to twice the current size (press Tab, then
press S, enter digit 2, and finally, press Enter). Exit Edit Mode.

11. Move the mouse to the Camera view and press Shift + F to enter Walk Navigation mode (a
viewfinder appears to show the center of the camera field). By moving the mouse to pan and by
pressing the W or the S key to go forward or backward, respectively, adjust the Camera view to
fit the Spheroid better. Then press Enter or click to confirm, as shown in the following
screenshot:

Centering the Camera view on the Spheroid

12. Select the Plane. Click on New in the Node Editor toolbar to assign a new material
(Material.001). Rename it Plane and leave all the settings as they are.

13. Select the Spheroid and click on Use Nodes in the Material window under the Properties panel
to the right of the screen or in the Node Editor toolbar.

14. Put the mouse in the Node Editor window and scroll the wheel to zoom to the nodes.
15. Under the Surface subpanel in the Material window, switch the Diffuse BSDF shader with a

Mix Shader node. Then click on the first Shader slot to select a Diffuse BSDF shader and on
the second slot for a Glossy BSDF shader (the two Shader slots I'm referring to are highlighted
in the next screenshot).

16. In the Node Editor window, adjust the position of the nodes to make them more readable, as
shown in this screenshot:

Preparing a basic average material with the Diffuse and the Glossy components

17. Set the Camera view mode to Rendered by clicking on the Viewport Shading button on the
window toolbar and selecting the top item or by pressing Shift + Z with the mouse cursor inside
the 3D view.

18. Go to the Render window under the Properties panel on the right, and under the Sampling
subpanel, set both Clamp Direct and Clamp Indirect to 1.00, and both Render and Preview
to 50 samples.

19. Under the Light Paths subpanel, set Filter Glossy to 1.00.
20. Go to the Outliner window and select the Lamp item. Go to the Object data window under the

Properties panel and click on the Use Nodes button under the Nodes subpanel. Increase the
Strength value to 300.000.

Now the output will look like what is shown in this screenshot:

Setting the Camera view to Rendered and increasing the Lamp strength

21. Go back to the Render window under the Properties panel and set the Percentage scale for
render resolution under Dimensions to 25% to have smaller but faster rendering.

22. Under the Performance subpanel, set Viewport BVH Type to Static BVH and check Use
Spatial Splits, Cache BVH, and Persistent Images (these are probably not really useful for a
simple Spheroid, but they are useful if you want to render a more complex object).

23. Go to the World window and click on the Use Nodes button under the Surface subpanel. Click
on the Color slot, set the RGB values to 0.100, and set the Strength value to 0.100.

24. Set the Factor value for the Ambient Occlusion subpanel to 0.05 but let it remain disabled.
You can enable the Ambient Occlusion subpanel or not, depending on your preferences, but
remember that it adds light to the rendered image. I would say that it's usually better not to have
the Ambient Occlusion subpanel activated by default but enabled only if really needed. In this
case, the very low value can compensate a bit for the darkened background of the World, which
is shown in the following screenshot for your reference:

Preparing the optional Ambient Occlusion setting

Optionally, other things that you can do include scaling the floor Plane bigger. In the Outliner
window, set the mode to Visible Layers and click on the arrow icon to the side of the Plane
item to make it nonselectable. Substitute Lamp, the default Point item, with a different type
(Sun or Spot) or with a mesh-light plane.

25. Go back to the Material window. If you want to save this setting as the user default, press Ctrl
+ U (Save Startup File), or save the file with a meaningful name. Among the files provided
with this module, you will find this file by the name of 9931OS_02_interface.blend.
The 3D view now looks like what is shown in the following screenshot:

The final overall look of the customization

How it works...

We set a very low World global illumination, keeping its color within the gray scale in order not to affect
the color of the material. The floor plane is meant to have light bouncing on the shadowed parts of the
object, and this can eventually be helped by the low Ambient Occlusion subpanel as well.

We prepared the Rendered view port as a Camera view to get better feedback for the final rendered
image, which will show at 25 percent of the established size in the UV/Image Editor window on the
bottom-left side of the screen.

By setting the Clamp values to 1.00, we reduced the fireflies produced by the glossy shader, and by
increasing the render and preview samples to 50, we reduced the noise, at the same time keeping the
rendering times reasonable, even with a not-very-powerful workstation.

The Viewport BVH Type is set to Static BVH, and the Use Spatial Splits, Cache BVH, and
Persistent Images options are useful to reduce the calculation time for the bounding volume hierarchy
of the mesh, which Cycles has to calculate every time it starts rendering. Anyway, these options are
useful only if the mesh doesn't get any internal modification between renderings.

There's more...

From now on, every time we start Blender, the layout and the settings we just saved as default will be
seen first.

But maybe we don't want to have this Cycles material interface every time we start, and we prefer to
have it only as an option to be used if needed. Actually, in the previous steps, we modified the Default
screen, but it's also possible to create new screens while keeping the original screen available. Here is
the way to do this:

1. Start Blender with the factory settings (click on the File menu on the top main header and
navigate to Load Factory Setting) and look at the top of the screen, in the main header on the
side of the Blender Render button. There are two more buttons labeled Default and Scene.

2. By clicking on the Default button, we can set a different interface layout (there are already nine,
each of which is studied for a different task, and their names are perfectly explicative). Clicking
on Scene shows just the current scene.

3. By clicking on the + icon on the side of the Default button, we add a new screen layout named
Default.001. Rename it Materials.

4. Then click on the + icon on the side of the Scene button, and by choosing the Full Copy item,
add a new scene to the Scene.001 file. Rename the file as something like
Cycles_Materials. This new scene is a full copy of the default scene, coexisting but
independent.

At this point, we can start with all the instructions already seen in the How to do it section of this recipe:
switching to Cycles Render, splitting the 3D window, assigning the Subdivision Surface modifier to
the default Cube, and so on.

When done, just click on the screens button, switch back to Default, and then save the user preferences
(Ctrl + U). Now our material creation interface is saved as a screen option in a different scene. Every
time we need to access it, it's enough to select the layout Materials from the screens button.

Naming materials and textures
It is well known that one of the most important things to do when working in every workflow with every
3D package is to give proper and explicative names to all the assets, that is, to the materials and the
textures in our case.

Getting ready

Start Blender, go to the File menu in the top-left corner, and choose Load Factory Setting (this is just to
be sure to start with the default Blender/Cycles settings).

Now, if you are in Blender Internal mode, switch to Cycles Render.

How to do it...

Now let's see the way material and texture naming works in Cycles.

Materials:

Adding and renaming materials in the Material window is done by performing the following steps:

1. Select the default Cube. Go to the Material window in the Properties panel. The default Cube
already has a material assigned. This material has already been named Material by Blender,
as shown in the following screenshot:

The material name datablock under the Material window

2. When you create a new material, for example, by clicking on the + symbol on the side of the
material data block (add a new material) under the Properties panel, Blender automatically
assigns a new name to this material, which is usually something like Material.001,
Material.002, Material.003, and so on.

Having an automatic nomenclature can be handy in most cases, but it can become really confusing as a
scene grows in complexity or if you have to reuse some of the materials in other situations. In such
cases, we'd better rename all our materials with significant names.

To rename a material, it's enough to click with the left mouse button on the material name data block,
type a new name, and then press Enter to confirm. This can be done in both the Properties panel and in
the Material datablock button on the toolbar of the Node Editor window, as shown in the following
screenshot:

Adding and renaming materials in the Material window

Textures:

Things are a little different for textures. In Cycles, textures are no more data blocks but nodes, so every
time we add a Texture node to a material network, it automatically gets named according to the kind of
texture we added. This means that if we add a Voronoi Texture, the texture node is automatically named
Voronoi Texture. What if we want to rename it to avoid confusion among three or four Voronoi
Texture nodes? To rename the texture, perform the following steps:

1. Open the 9931OS_02_interface.blend file.
2. Go to the Node Editor window and press Shift + A to add a Voronoi Texture node to the

material (press Shift + A and navigate to Texture | Voronoi Texture).

On the right side of the Node Editor window, there is a Properties panel with several subpanels
(press the N key if it's not already present). What interests us now is the Node subpanel with its
two slots, Name and Label.

As you can see, the name of the node (Voronoi Texture) is already present in the Name slot. By
clicking on the name, it's possible to change it, but at the moment, this seems useful to identify
the node in the Properties panel.

The Label slot, which is empty by default, can be used to label a node in the Node Editor
window.

3. Press Shift + D to duplicate the Voronoi Texture node. The duplicated node is automatically
named Voronoi Texture.001.

4. Select the first Voronoi Texture node and write Voronoi_Diffuse in the Label slot of the
Properties panel. Connect this node to the Color input socket of the Diffuse BSDF shader
node.

5. Select the duplicated Voronoi Texture node and write Voronoi_Glossy in the Label slot of
the Properties panel. Connect this node to the Color input socket of the Glossy BSDF shader
node, as shown in the following screenshot:

The labeling of the nodes through the Active Node subpanel in the Node Editor Properties side-
panel

There's more...

Even though this is not strictly related to renaming, let's quickly see one more option. Right below the
Node subpanel, there is the Color subpanel. Once enabled, this subpanel permits us to assign a color to
the selected node to further increase the readability in the Node Editor window, as shown in this
screenshot:

Using colors to further label the nodes

Creating node groups
Single nodes (shaders, textures, input, or whatever) can be grouped together, and this is probably one of
the best ways to organize our workflow.

Thanks to node groups, it's easy to store complex materials in ready-to-use libraries. It's possible to
share or reuse them in other files, and they can also be used to build handy shader interfaces for easier
tweaking of material properties.

Getting ready

Start Blender and open the 9931OS_02_interface.blend file.

How to do it...

Let's go to the Node Editor window directly:

1. Now box-select (place the mouse cursor in the Node Editor window, press B, and click and
drag a box to include the nodes you want to select) the Diffuse BSDF and the Glossy BSDF
nodes, as shown in this screenshot:

Box-selecting two nodes

2. Press Ctrl + G on the keyboard. The background of Node Editor changes, showing that now we
are in Edit Mode inside a group. In fact, there are two selected nodes with a Group Input node
and a Group Output node. Also, the Surface subpanel under the Material window has

changed, and in the Node Editor in the Properties panel, a new Interface tab has appeared, as
shown in the following screenshot:

The appearance of the just created and open for editing node group inside the Node Editor
window

3. Because the two shaders were already connected to Mix Shader (which, in this case, we left out
of the group on purpose), both the Diffuse BSDF and the Glossy BSDF outputs are now
connected to two BSDF sockets automatically created on the Group Output node.

4. As for every Edit Mode in Blender, by pressing the Tab key, we go out of Edit Mode, closing
the node group, as shown in this screenshot:

The closed node group

The node group is still showing the two BSDF outputs (actually connected to the input sockets
of the Mix Shader node), the name data block, and the fake user button (F). This last one is the
same as in Blender Internal. It prevents the user count from ever becoming zero, and therefore
prevents the deletion of any non-assigned material. When you save the file and/or close Blender
by assigning the fake user to a non-assigned material, you are sure that it will not be deleted.
This is particularly handy when you are building a material library.

5. Now click on the name data block of the node group and change the default name,
NodeGroup, to something else. I wrote BasicShader.

6. Press Tab and go to Edit Mode again. Click on the only empty socket in the Group Input node
and drag a link to the Color input socket of the Diffuse BSDF node. The empty socket now
connected to the Diffuse BSDF node has changed and is now indicated as Color. Moreover, a
new empty socket has appeared on the Group Input node, as shown in the following
screenshot:

Editing the node group by connecting inner sockets to expose them

7. Repeat the previous step for the new empty input socket and connect it to the Color input socket
of the Glossy BSDF node. Again, a new empty socket has appeared, ready to be connected to
something else.

8. Now look at the Properties panel to the right. The Interface subpanel is reflecting what we are
doing in the Node Editor. In fact, in the little Input window, there are two Color sockets, and
we can double-click to rename them (Color1 and Color2 in our case). To remove a socket,
just click on the name in the Properties panel, and then click on the X icon in the bottom Name
slot, as shown in this screenshot:

Renaming and ordering the new input sockets through the Interface subpanel in the Properties
side-panel

9. Repeat the process to create input sockets for other properties of the Diffuse BSDF and Glossy
BSDF nodes. Then press Tab to exit Edit Mode, which is also shown in the following
screenshot for your reference:

The appearance of the inner connections in the open node group and as exposed input sockets
in the closed node group

Here, we get a simple interface for the BasicShader node group, and as you can see in the
following screenshot, the exposed values can be tweaked. Also, the properties are driven by
textures exactly as in other nodes:

The BasicShader node group put to use

10. Press Tab again to go back to Edit Mode. Move the mouse cursor into the node and press Shift
+ A to add a Mix Shader node to the group (press Shift + A and navigate to Shader | Mix
Shader).

11. Connect the Diffuse BSDF and the Glossy BSDF shaders to the new Mix Shader node and its
output to one of the BSDF sockets. Delete the other node by clicking on the X icon in the
Properties panel. Connect the empty socket of the Group Input node to the Fac input socket of
the Mix Shader node, as shown in this screenshot:

Adding a Mix Shader node inside the node group and one more exposed socket

12. Exit Edit Mode and select the outer Mix Shader node. Press Alt + D (this shortcut removes a
node from a network, leaving the connection untouched) to disconnect it and then delete it, or
simply press Ctrl + X to delete it, leaving the connection untouched. This is shown in the
following screenshot:

The final interface of the BasicShader node group

How it works...

I think you get the picture. Basically, almost any input or output socket of the nodes wrapped inside a
group can be connected to the outside of the node group to be tweaked.

The good thing about a node group is that you can make instances of that node (by pressing Shift + D).
Note that when you modify the inner structure of a node group, the modifications get reflected in all the
group instances, but the outer (exposed) values on the node group interface are local for each instance
and can be individually tweaked.

Every newly created node group is available in both the Add menu (press Shift + A) and in the slots in
the Material window of the Properties panel, under the item Group, to be added on the fly to the
network.

To remove a node group, select it and press Alt + G. This will break the node envelope but keep the
content intact and still connected.

Grouping nodes under frames for easier reading
The shaders we have seen so far are quite simple and easily readable in the Node Editor window, but
for several materials we'll see in this Cookbook, the node connections will be a lot more complex and
confusing. One more aid we can use to improve the readability of these nodes are the frames. We can
use them to visually organize the shaders' network.

Getting ready

Start Blender and open the 9931OS_02_interface.blend file.

How to do it...

Let's see the use of a frame with a simple shader that we already know:

1. Go to the Node Editor window and press Shift + A to add a Frame (press Shift + A and
navigate to Layout | Frame). Move the mouse to place its arrow over the nodes, and notice that
it always appears to be below them, as shown in the following screenshot:

Adding a Frame to the network inside the Node Editor window

2. Move the mouse cursor to a corner of the frame. It turns into a cross, which means that you can
click and drag to resize the corners and the sides of the frame to include the desired nodes as
shown in the following screenshot:

Resizing the Frame to comprise all the nodes

3. Box-select the nodes you want to arrange with the frame (in our case, all of them), then press
Shift, and select the frame (or just press A to deselect the frame and box-select everything so that
the frame is selected again as the active object). Press Ctrl + P to parent them.

Now that the nodes are parented to the frame, we can select and move it, and all the contained
nodes will follow it as a single object.

It's still possible to select the single nodes inside the frames and arrange their individual position
and connections. To add a new node to the network, we will do as usual (press Shift + A | …)
and then parent it to the frame as well.

4. With the frame still selected, go to the Properties panel to the right of the Node Editor window
(Press N if not already present). Just like the case of single nodes, in the Node subpanel, we can
change the Name of the frame, assign a Label name visible in the Node Editor window (I
wrote BasicShader), and also assign a color.

5. In the Properties subpanel right below the Color subpanel, we can change the size of the label
name, which is set to 20 by default, and by unchecking the Shrink item, we can freely resize
the frame bigger, which otherwise encloses the nodes with a fixed boundary (the default
setting), which is shown in the following screenshot for your reference:

The Frame with label and color

Linking materials and node groups
Similar to Blender Internal, Cycles materials can be linked from libraries. Every blend file containing
linkable assets can be a library.

Linking materials is really useful practice. Let's say you have 20 different blend files with objects using
an iron shader, and at a certain point of your workflow, you need to modify this iron material in all
the files. By having this material linked in all the 20 files from a single blend, it is possible to update all
of them at once by modifying just one shader in the library file (as you know, a linked material reflects
the properties of the library material and cannot be edited, differently from an appended material that is
local to the file where it has been imported from the library file).

How to do it...

Start Blender, go to the File menu in the left part of the main header, and select Link, or press Ctrl + Alt
+ O. Then perform the following steps:

1. Browse to the directory where you store your library files. Select the blend file you want to link
the material from; for example, try the provided 9931OS_02_library.blend file.

2. Browse inside the blend structure, where the linkable assets are divided into subdirectories,
shown as folders named Scene, Mesh, Material, NodeTree, Object, and so on. Note
that the various folders appear only if the corresponding asset to be linked actually exists inside
the blend file.

3. Click on the Material subdirectory. Once inside it, select the material you want to link (for
example, Brainy_blue) and press Enter to confirm (or click on the Link/Append from
Library button in the top-right corner), as shown in the following screenshot:

Linking assets through the Blender interface

4. Now click on the Material datablock button on the toolbar of the Node Editor window and
select the name of the linked material—the material labeled with a LF prefix; L is for linked
and F is for fake user.

5. This is because, in the library file, we assigned the fake user to the material by clicking on the F
icon on the side of the material name data block. If not assigned to any fake user, the prefix of
the linked material would have been L0, that is, linked and zero fake users inside the blend file
(for example, Plane is simply assigned to the object and has no fake user).

The name of the material is grayed to show that it is a linked material. On the side of the name,
a new icon has appeared (a little arrow), and the number of users has been updated to 2 (the fake
user and the object we assigned the linked material to).

From now on, every modification we make to the material in the library will be reflected in the linked
material the moment we load the file.

Not only whole materials but also single node groups can be linked. In this case, instead of the
Material subdirectory to link from, choose the NodeTree subdirectory and then select one or more
node groups you want to link.

The data block name of a linked node group is grayed as well. You can modify the exposed values and
colors, and you can also enter Edit Mode, but that's all. You can't modify the connection or the nodes
inside the linked node group. To do this, you have to click on the little arrow icon to the side of the
grayed name to make it local and no longer linked from the library file. This would mean that from now
on, you have a new independent node group, and that editing the node group in the library won't have
any effect on it any more.

There's more...

A very useful add-on to help in node management is the Node Wrangler add-on. It allows for effects
such as quick material visualization, node switching, UV layer assignment, frame assignments, node
arrangements, and so on. To find out more about this add-on, go to http://wiki.blender.org/index.php/
Extensions:2.6/Py/Scripts/Nodes/Node_Wrangler.

To enable it, just call the Blender User Preferences panel (press Ctrl + Alt + U) and click on the Node
tab under the Categories item. Enable the Node Wrangler (aka Node Efficiency Tools) add-on by
clicking on the checkbox to the right. Then click on the Save User Settings button to the bottom-left
corner of the panel.

http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Nodes/Node_Wrangler
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Nodes/Node_Wrangler

Chapter 3. Creating Natural Materials in Cycles
In this chapter, we will cover the following recipes:

• Creating a rock material using image maps
• Creating a rock material using procedural textures
• Creating a sand material using procedural textures
• Creating a simple ground material using procedural textures
• Creating a snow material using procedural textures
• Creating an ice material using procedural textures

Introduction
Replicating nature can be difficult. Natural materials are usually the most difficult to recreate in a
satisfying way using computers, mainly because the chaos of nature is not the best fit for the orderly
logic of an electronic machine.

Too often, we even see cubes that look obviously computer-generated because of the neatness and
regularity of their shapes or surfaces. Actually, in reproducing true to life a natural object (or material as
well), we have to start from the absolute regularity of the computer simulation, and then blemish it step
by step in a controlled way to reach a more natural look.

Creating a rock material using image maps
In this recipe, we will create a realistic rock material that looks like the samples shown in the following
screenshot, using an image map. We'll see a material made with procedurals in the this recipe.

The image-based rock material as it appears in the final rendering

Image maps are particularly useful for several reasons: they already have the necessary color
information of a natural surface ready to be used; they can be easily edited in any image editor to obtain
different kinds of information, for example, high levels for the bump maps; and they are processed faster
than procedurals by the software (procedural textures must be calculated every time). Moreover, they
can nowadays be found easily on the Web for free, in several sizes and resolutions.

For our recipe, we'll use the rockcolor_tileable_low.png image map, which you can find in
the textures folder provided with this cookbook. This is just a low-resolution texture image provided
for the sake of this exercise. Obviously, you can use any other different image with a bigger resolution.
Here is a screenshot of the tileable rock image texture for your reference:

The tileable rock image texture provided with this cookbook

In any case, for any image you are going to use, just remember to make it tileable in your preferred
image editor. In GIMP, this task can be automatically done by a plugin that can be found by navigating
to Filter | Map | Make Tileable.

Getting ready

Start Blender and load the 9931OS_02_interface.blend file, which saw in the previous chapter.
Remember that all the blend files and the textures needed for the exercises of this module can be
downloaded from the support page on the Packt Publishing website.

Now, we'll create a new file named 9931OS_start.blend, and we'll be using it as the starting point
for the most of our recipes. To do so, perform the following steps:

1. Select the Spheroid and (just for the purpose of this exercise) delete it by pressing X.
2. Ensure that the 3D cursor is at the center of the scene (Shift + C), and with the mouse pointer in

the 3D window, press Shift + A to pop up the Add menu. Then add a new Cube primitive (press
Shift + A and navigate to Mesh | Cube).

3. Press Tab to go out of Edit Mode if needed (this depends on whether you are using Blender
with the factory settings or not), and move the cube 2 units up on the z axis.

4. Go to the Outliner and select the Lamp item, in the Object data window under the Properties
panel, switch the Type of Lamp to Sun. Then set the Strength to 2.000 and the color values
to 1.000 for R, 0.872 for G, and 0.737 for B.

5. Reselect the Cube, go to the Material window under the Properties panel, and save the file as
9931OS_start.blend.

How to do it...

Now carry out the following steps to create the rock material:

1. Click on the New button in the Material window under the Properties panel, or in the toolbar
of the Node Editor window.

2. Rename Material.001 as Rock_01 (the numbering is because I assume that you are going
to experiment with several values, especially colors, producing more and different kind of rock
materials) and save the file as 9931OS_03_Rock_imagemap.blend.

3. Put the mouse on the Node Editor window and add an Image Texture node (press Shift + A
and navigate to Texture | Image Texture). Then add a Mapping node (press Shift + A and
navigate to Vector | Mapping), and a Texture Coordinate node (press Shift + A and navigate to
Input | Texture Coordinate).

4. Connect the Generated output socket of the Texture Coordinate node to the Vector input
socket of the Mapping node, and its Vector output to the Vector input of the Image Texture
node. Also connect the Color output of the Image Texture node to the Color input of the
Diffuse BSDF shader node.

5. Set the Viewport Shading mode of the Camera view to Rendered by pressing Shift + Z with
the mouse cursor in the 3D window. The rendered Cube turns pink because there is no image
texture loaded yet, as shown in the following screenshot:

The overall view of Blender's customized Default screen with the rendered preview of the pink
Cube

6. Click on the Open button in the Image Texture node, browse to the textures folder, and
select the rockcolor_tileable_low.png image.

7. As we selected Generated as the mapping mode, the image is mapped flat on the Cube from the
z axis and appears stretched on the sides. Disconnect the Generated output of the Texture
Coordinate node and connect the Object node instead. Then click on the Flat button on the
Image Texture node to select the Box item. The texture looks now correctly mapped on each
face of the Cube, as shown in this screenshot:

The rock image texture loaded in the Image Texture node

8. Go to the Object modifiers window and assign a Subdivision Surface modifier to the Cube.
Set the Subdivisions levels to 4 both for View and Render. Then check the Optimal Display
item.

9. Press Shift + Z to go out of the viewport's Rendered mode. Then press Tab to go to Edit Mode
and scale all the vertices to double (press Tab, then press S, enter the digit 2, and finally, press
Enter). Now, go out of Edit Mode.

10. Press T to make the Tool Shelf panel appear in the Camera view, and click on the Smooth
button under the Tools tab. Press T again.

11. Go to the Mapping node in the Node Editor window and set the Scale values for X, Y, and Z
to 0.250.

12. Although the image map we used is tileable, there are visible seams at the corners of the
subdivided Cube. In the Image Texture node, set Blend factor to 0.200 to soften the seams
(this factor is used to blend the edges of the faces of the Cube that, remember, is still a six-faced
solid at its lower level, though looks like a Spheroid as of now). The output of blurring effect of
the Blend factor is shown in the following screenshot:

The edges seams visible on the surface of the subdivided Cube, and the blurring effect of the
Blend factor

13. Now add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp)
between the Image Texture node and the Diffuse BSDF shader. Set the interpolation to B-
Spline, move the marker of the black color to position (Pos:) 0.495 and the white marker to
position 0.235, as shown in this screenshot:

The ColorRamp node pasted between the Image Texture and the Diffuse BSDF nodes

14. Add a Bump node (press Shift + A and navigate to Vector | Bump). Connect the Color output
of the ColorRamp to the Height input of the Bump node, and the Normal output of the latter
to the Normal input of the Diffuse BSDF shader. Detach the Color link from the Color input of
the Diffuse BSDF node and leave the Bump node's Strength value to 1.000, as shown in the
following screenshot:

The Bump node pasted between the ColorRamp and Diffuse BSDF nodes

15. Add a Mix Shader node and a Glossy BSDF shader, and connect them to be mixed with the
Diffuse BSDF shader. Set the Glossy BSDF node's Roughness value to 0.150 and the Mix
Shader node's Fac value to 0.300. Connect the Normal output of the Bump node to the
Normal input socket of the Glossy BSDF shader, as shown in this screenshot:

Adding the Mix Shader and the Glossy BSDF nodes

16. Add an RGB node (press Shift + A and navigate to Input | RGB) and a MixRGB node (press
Shift + A and navigate to Color | MixRGB). Connect both the Color outputs of the RGB and
Image Texture nodes to the Color1 and Color2 input sockets of the MixRGB node. Connect
the Color output of the MixRGB node to the Color input sockets of the Diffuse BSDF and
Glossy BSDF shaders.

17. Set the Fac value of the MixRGB node to 0.800. Click on the color slider of the RGB node
and set the values to 0.407 for R, 0.323 for G, and 0.293 for B, as shown in the following
screenshot:

Setting the color for the material

18. Add a new MixRGB node (press Shift + A and navigate to Color | MixRGB). Drag it to be
pasted between the first MixRGB node and the Diffuse BSDF shader, and set Blend Type to
Add.

19. Connect the Color output of the second MixRGB node (which we can call the Add-MixRGB
node) to the Color input socket of the Glossy BSDF shader node, and set its Fac value to
1.000.

20. Connect the Color output of the Image Texture node to the Color1 input socket of the Add-
MixRGB node so that the preceding connection coming from the first MixRGB node (which
we can call Mix-MixRGB) switches automatically to the Color2 input socket of the Add-
MixRGB node, as shown in this screenshot:

Adding more variations to the rock color

21. If you wish, model a very quick rock mesh by sculpting or deforming the subdivided Cube in
proportional Edit Mode, and assign to it the Rock_01 material as shown in the following
screenshot:

How it works...

We mapped a colored image of a rock with the Box option available in the Image Texture node
(developed by the Project Mango team for open movie production of Tears of Steel to quickly map
objects without the need to unwrap them), and set the Blend factor to 0.200 to have smooth transitions
at the corners. Although we had a tileable image texture, this has been necessary because we set the
Scale values for the three axes in the Mapping node to 0.250.

First, by connecting the MixRGB node's Color output directly to the Color input of the Diffuse BSDF
shader node, we had a quick visual feedback of the image mapping, and thanks to the ColorRamp node,
we achieved the following goals:

• We converted the colored image to a gray-scale image to be used for the bump.
• By moving the color markers, we remapped the values of the ColorRamp node's position

values to reverse and increase the contrast (we could have obtained the same result by
processing the color map in GIMP, for example, by desaturating it and playing with the curve
tool). In any case, it's possible to visualize the ColorRamp node itself on the object by
temporarily connecting it to the Color input socket of the Diffuse BSDF shader or an Emission
shader node connected to the Material Output node.

This contrasted result has been applied as a bump map to both the Diffuse BSDF and Glossy BSDF
shaders.

Then we mixed a brownish color (the RGB node) with the Color output of the image of the rock, and
the result was added to the Image Texture node's output.

There's more...

We can improve the rocky effect by adding displacement to the geometry. Unlike bump or normal
effects on the mesh surface, which are just optical illusions giving an impression of perturbing the mesh
surface, displacement is an actual deformation of the mesh based on the gray-scale values of a texture.

At least in this case, there is no need for precise correspondence between the already textured surface
and the displacement because it would be barely noticeable. Therefore, we can use object modifiers to
obtain a fast but effective result, by performing the following steps:

1. Starting from the Rock_imagemap.blend file we just created, select the Cube and go to the
Object modifiers window under the Properties panel. In the Subdivision Surface modifier
already assigned, lower the Subdivisions levels for both View and Render to 3.

2. Add a new Subdivision Surface modifier and set the levels to 4.
3. Now add a Displace modifier. Click on the Show textures in texture tab button, the last button

on the right of the Texture slot. This switches to the Texture window, where we can click on
the New button and then change the default Clouds texture to a Voronoi texture node. Set the
Size value to 2.00 and leave the rest of the values unchanged. Go back to the Object
modifiers window and set the modifier's Strength value to 0.800.

4. Add a new Displace modifier. Switch to the Texture window and assign a new Voronoi
Texture node. Change the Size value to 1.20. Back in the modifier, set the Strength value to
0.300.

5. Add one more Displace modifier. This time, we are going to use the default Clouds texture as it
is. Just go to the Object modifiers window and set the Strength value to 0.150, as shown in
this screenshot:

A different rock model, thanks to displacement

Of course, these are just basic values. You can change them and also play with different kinds of
procedural textures to obtain several rock shapes.

Creating a rock material using procedural
textures
In this recipe, we will try to reach a result similar to the rock material we made through image maps in
the previous recipe, but using only procedural textures. The output will look like what is shown in the
following screenshot:

The procedural rock material as it appears in the final rendering

Getting ready

Start Blender and load the 9931OS_start.blend file.

1. Select the Cube, go to the Object modifiers window, and assign a Subdivision Surface
modifier. Set the Subdivisions levels for View and Render to 4. Go back to the Material
window.

2. Press T and in the Tool Shelf, click on the Smooth button under the Shading subpanel. Press T
again to get rid of the Tool Shelf.

3. Press Tab to go to Edit Mode. If necessary, select all the vertices by pressing the A key and
scale everything to double the current size (press S, enter the digit 2, and press Enter). Go out of
Edit Mode.

4. Save the file as 9931OS_start_smoothed.blend. The customized Default screen will
now look as shown in the following screenshot:

The customized Default screen with the subdivided Cube

How to do it...

Now we are going to create the rock material by performing the following steps:

1. Select the Spheroid (the smoothed Cube) and click on New in the Material window under the
Properties panel or in the Node Editor toolbar. Rename the material Rock_proc_01.

2. In the Node Editor window, add a Noise Texture node (press Shift + A and navigate to Texture
| Noise Texture). Then press Shift + D to duplicate it three times. Adjust the four Noise Texture
nodes in a column, and in the Properties panel to the right (press N key if it is not already
present), label them Noise Texture01, Noise Texture02, Noise Texture03, and
Noise Texture04.

3. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the Object
output of the Texture Coordinate node to the blue Vector input of the Mapping node. Then
connect the Mapping node's Vector output to the Vector input sockets of the four texture
nodes. Set the Mapping node's Location values to 0.100 for X and -0.100 for Y and Z, as
shown in the following screenshot:

The first steps to build the bump effect for the rock material

4. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Connect the first two
Noise Texture nodes' Color output to the Color1 and Color2 input of the MixRGB node. Set
Blend Type to Overlay and the Fac value to 1.000.

5. Connect the Overlay-MixRGB node's output to the Color input socket of the Diffuse BSDF
shader node.

6. Put the mouse cursor in the Camera view and press Shift + Z to set it to Rendered mode.
7. Go to the Noise Texture01 node and set Scale to 4.000 and the Distortion value to 1.400.

Then go to the Noise Texture02 node and set Scale to 6.000, Detail to 1.000, and the
Distortion value to 0.700.

8. Press Shift + D to duplicate the MixRGB node, and paste it between the Overlay-MixRGB and
the Diffuse BSDF nodes. Connect the Color output of the Noise Texture03 node to the Color2
input socket and set the Blend Type to Darken. Go to the Noise Texture03 node, and set Scale
to 15.000 and Detail to 3.000.

9. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and paste it
between the Darken-MixRGB and the Diffuse BSDF nodes. Label it ColorRamp01 and set
Interpolation to Ease, the black cursor's position to 0.364, and the white cursor's position to
0.632.

10. Press Shift + D to duplicate the ColorRamp node, and move it close to the Noise Texture04
node. Label the duplicated node ColorRamp02 and set the white cursor's position to 0.340
and the black cursor's position to 0.400.

11. Set the Noise Texture04 node's Scale value to 45.000, Detail value to 0.100, and Distortion
to 1.000, as shown in the following screenshot:

Starting to mix the different procedurals together

12. Connect the Color output of the Noise Texture04 node to the Fac input socket of the
ColorRamp02 node. Then add a MixRGB node (press Shift + A and navigate to Color |
MixRGB) and label it Mix01.

13. Paste the Mix01 node after the ColorRamp01 node. Then connect the Color output of the
ColorRamp02 node to the Color2 input socket of the Mix01 node. Also connect the Fac output
of the Noise Texture01 node to the Fac input socket of the Mix01 node.

14. Add a new MixRGB node (press Shift + A and navigate to Color | MixRGB) and label it
Mix02. Paste it between the ColorRamp02 and the Mix01 nodes.

15. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the Color
output of the Mix01 node to the Height input socket of the Bump node. Connect the Normal
output of the Bump node to the Normal input socket of the Diffuse BSDF shader node. Click
on the Invert item checkbox.

The steps that are detailed after this screenshot will result in the bump effect:

The BUMP frame containing the nodes to build the bump effect

16. Add a Glossy BSDF shader node (press Shift + A and navigate to Shader | Glossy BSDF) and a
Mix Shader node (press Shift + A and navigate to Shader | Mix Shader). Paste the Mix
Shader node between the Diffuse BSDF and the Material Output nodes, and connect the
Glossy BSDF output to the second Shader input socket.

17. Connect the Normal output of the Bump node to the Normal input socket of the Glossy BSDF
shader. Set the Glossy BSDF shader's Roughness to 0.150 and the Fac value of the Mix
Shader node to 0.300.

18. Add an RGB node (press Shift + A and navigate to Input | RGB) and connect it to the Color
input socket of the Diffuse BSDF shader node. Set the color values to 0.407 for R, 0.323 for
G, and 0.293 for B.

19. Add a MixRGB node, label it Mix03, and paste it between the RGB and the Diffuse BSDF
nodes. Connect the Color output of the Darken-MixRGB node to the Color2 input socket of
the Mix03 node.

20. Add a new MixRGB node. Set Blend Type to Add and the Fac value to 0.800. Connect the
Color output of the ColorRamp01 node to the Color1 input socket, and the output of the
Mix03 node to the Color2 input socket of the MixRGB node. Connect the Color output of the
Add-MixRGB node to the Color input socket of the Diffuse BSDF node.

21. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves) and paste it
between the Add-MixRGB and the Diffuse BSDF nodes. Connect its output to the Color input
socket of the Glossy BSDF shader node.

22. Click on the RGB Curves node's little window to create a new point. Set its position values to
0.24545 for X and 0.38125 for Y. Then create another point and set the position values to
0.74545 for X and 0.51875 for Y, as shown in the following screenshot:

Screenshot of the COLOR frame connected to the Diffuse and Glossy shaders

How it works...

Even if this material looks a bit complex at first sight, you must note that we just mixed four procedural
noise textures with different settings and iterations to build the bump effect and create the color pattern
to some extent:

• In the first stage, from steps 2 to 15, we built the bump pattern by mixing the output of the noise
textures (the Overlay, Darken, Mix01, and Mix02 nodes converging to the input socket of the
Bump node) through MixRGB nodes, and in some cases also edited their levels using the
ColorRamp nodes to obtain a more random, natural look (ColorRamp1 and ColorRamp2, all
the nodes inside the BUMP frame).

• In the second stage, from steps 18 to 22, we built the color pattern by mixing a simple color
output with the output of some of the Noise Texture nodes, and then edited the result using an
RGB Curves node (nodes inside the COLOR frame).

• The results of both the bump and the color patterns were then piped into the appropriate sockets
of the nodes inside the SHADER frame, that is, the Diffuse BSDF node was mixed with the
Glossy BSDF node to add specularity (steps 16 and 17). The overall material network in the
Node Editor window is shown in the following screenshot:

The overall vision of the material network

Creating a sand material using procedural
textures
In this recipe, we will create a sand material that looks like what is shown in the following screenshot,
which is good for both close and distant objects:

The sand material as it appears in the final rendering

Getting ready

Start Blender and switch to the Cycles Render engine. Then perform the following steps:

1. Delete the default Cube and add a Plane (press Shift + A and navigate to Mesh | Plane).
2. Press Tab to go to Edit Mode and scale it nine times bigger, with 18 units per side (press S,

enter the digit 9, and press Enter). Go out of Edit Mode.
3. Go to the World window and click on the Use Nodes button under the Surface subpanel in the

Properties panel to the right of the screen. Then click on the little square with a dot on the right
side of the Color slot. Select the Sky Texture item from the pop-up menu. Set the Strength
value to 1.900.

4. Select the Lamp, go to the Object data window, and click on the Use Nodes button. Then
change the Type of Lamp to Sun and set Strength to 3.000. Change the color values to
1.000 for R, 0.935 for G, and 0.810 for B. In orthogonal top view, rotate the Sun lamp by
45°, as shown in the following screenshot:

The scene from the top with the Sun Lamp selected

5. Add a Cube and a UV Sphere to the scene and place them leaning on the Plane.
6. Select the Cube and click on the Smooth button in the Shading subpanel under the Tools tab to

the left of the 3D window (press the T key to make it appear if it is not present).
7. Select the UV Sphere and perform the same actions as given in step 6.
8. Select the Cube, and in the Object modifiers window, add a Bevel modifier. Set Width to

0.1000, Segments to 2, and Profile to 0.15. Assign a Subdivision Surface modifier, set
both the Subdivisions levels to 4, and check the Optimal Display item. Assign a Smooth
modifier and set Factor to 1.000 and Repeat to 15.

9. Select the UV Sphere and assign a Subdivision Surface modifier with Subdivisions levels set
to 2 and the usual Optimal Display item checked.

10. Select the Plane, click on the Smooth button, and then go to Edit Mode and press W. In the
Specials pop-up menu, select the Subdivide item. Press the F6 key to call the Options pop-up
menu (or go to the panel at the bottom of the Tool Shelf tabs) and set Number of Cuts to 10.

11. Go out of Edit Mode, go to the Object modifiers window, and assign a Subdivision Surface
modifier. Switch to the Simple subdivision algorithm and set both Subdivisions to 3. Check the
Optimal Display item.

12. Assign a Displace modifier and then click on the Show texture in texture tab button to the side
of the New button. In the Texture window, click on the New button and switch the default
Clouds texture with the Voronoi texture. Set the Size value to 5.00.

13. Assign a new Displace modifier, click on the Show texture in texture tab button, and load a
Voronoi texture again. Leave the Size value at 0.25.

14. Assign a Smooth modifier and set Factor to 1.000 and the Repeat value to 5.

15. Place the Camera to have a nice angle on the Plane and switch from the 3D view to a Camera
view (by pressing the 0 key on the numeric keypad).

16. Split the 3D window into two horizontal rows and change the upper row to a Node Editor
window. Put the mouse cursor in the 3D view and press Shift + Z to set the Camera view mode
to Rendered.

17. Go to the Render window. Under the Sampling subpanel, set both the Clamp Direct and
Clamp Indirect values to 1.000. Go to the Light Path subpanel and set the Filter Glossy
value to 1.000.

18. Set the Render samples to 25. The Rendered preview is shown in the following screenshot for
your reference:

The prepared scene as it appears in the Rendered preview, with the rendering settings to the
right

How to do it...

We have prepared the scene. Now let's start with the creation of the sand material using the following
steps:

1. Select the Plane and click on the New button in the Material window under the Properties
panel or in the Node Editor toolbar. Rename the material Sand_01.

2. Keeping the Shift key pressed, select the UV Sphere, the Cube, and for last one, the Plane (that
is the active object of the multi-selection) by right-clicking on them. Press Ctrl + L, and in the
Make Links pop-up menu, select the Material item to assign the same material to the other two
objects. The Sand_01 material is now assigned to all three objects.

3. In the Material window under the Properties panel to the right, switch the Diffuse BSDF
shader with a Mix Shader node. In both the Shader slots, assign a Diffuse BSDF shader.

4. In the Node Editor, add an RGB node (press Shift + A and navigate to Input | RGB) and an
RGB Curves node (press Shift + A and navigate to Color | RGB Curves). Connect the output
of the RGB node to the Color input socket of the first Diffuse BSDF shader and to the Color
input socket of the RGB Curves node. Then connect the output of the RGB Curves node to the
Color input socket of the second Diffuse BSDF shader node.

5. Change the color values of the RGB node to 0.500 for R, 0.331 for G, and 0.143 for B.
Click on the RGB Curves node window to create a new point, and set the coordinates to
0.48182 for X and 0.56875 for Y.

6. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture), a Texture
Coordinate node (press Shift + A and navigate to Input | Texture Coordinate), and a Mapping
node (press Shift + A and navigate to Vector | Mapping).

7. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node, and then connect the Vector output to the Vector input of the Noise Texture node.

8. Connect the Fac output of the Noise Texture node to the Fac input of the Mix Shader node.
Increase the Detail value of the texture to 5.000.

9. Press Shift + D to duplicate the Mix Shader node and paste it between the first Mix Shader
node and the Material Output node. Add a Glossy BSDF shader node (press Shift + A and
navigate to Shader | Glossy BSDF), set its Roughness to 0.700, and connect its output to the
second Shader input socket of the second Mix Shader node. Set the Fac value to 0.100.

10. Connect the Color output of the RGB node to the Color input socket of the Glossy BSDF
shader node.

11. Add a Frame (press Shift + A and navigate to Layout | Frame), press Shift and multi-select the
RGB node, the RGB Curves node, the Noise Texture node, the two Diffuse BSDF nodes, the
Glossy BSDF shader, the two Mix Shader nodes, and the Frame, and press Ctrl + P to parent
them. In the Properties panel (press N key in the Node Editor window), label the Frame as
SAND COLOR, as shown in the following screenshot:

The total vision of the SAND COLOR frame and the rendered effect on the objects

12. Add a new Noise Texture node and a Wave Texture node (press Shift + A and navigate to
Texture | ...). Select both and press Shift + D to duplicate them. Label them Wave
Texture01, Wave Texture02, Noise Texture01, and Noise Texture02.

13. Arrange the four texture nodes in a column like this: Wave Texture01, Noise Texture01, Noise
Texture02, and Wave Texture02. Connect the Mapping output to the texture nodes' Vector
input.

14. Set the Scale value of Wave Texture01 to 3.000, Distortion to 25.000, and Detail to
10.000. Set the Detail value of Noise Texture01 to 10.000 and Distortion to 0.500. Set
the Detail value of Noise Texture02 to 10.000 as well. Finally, set the Wave Texture02
node's Scale value to 25.000, Distortion to 15.000, and Detail Scale value to 5.000.

15. Add a MixRGB node (press Shift + A and Color | MixRGB) and label it Mix01. Connect the
Wave Texture01 node's Color output to the Color1 input and the Noise Texture01 node's
Color output to the Color2 input.

16. Select the MixRGB node and press Shift + D to duplicate it. Label it Mix02 and connect the
Color output of the Mix01 node to the Color1 input of the Mix02 node. Then connect the
Wave Texture02 node's Color output to its Color2 input.

17. Connect the Color output of the Noise Texture02 node to the Fac input socket of the Mix02
node. Now the Node Editor window looks like what is shown in the following screenshot:

Building the bump pattern

18. Add a Math node (press Shift + A and navigate to Converter | Math) and label it
Bump_Strength. Change Operation to Multiply and connect the output of the Mix02 node
to the first Value input socket. Set the second Value input socket's value to 1.000 and connect
the node output to the Displacement input socket of the Material Output node, as shown in
this screenshot:

The effect of the total output of the bump nodes connected to the Displacement input of the
Material Output node

19. Add a Hue/Saturation node (press Shift + A and navigate to Color | Hue/Saturation), label it
Hue Saturation Value01, and drag it onto the link connecting the Noise Texture01
node to the Mix01 node to paste it in between. Set Value to 10.000.

20. Press Shift + D to duplicate the Hue/Saturation node, label the duplicate Hue Saturation
Value02, and drag it onto the link connecting the Wave Texture02 node to the Mix02 node.
Set Value to 0.100.

21. Press Shift + D to duplicate it again, name the duplicate Hue Saturation Value03, and
drag it between the Mix02 node and the Bump Strength node. Set Value to 0.350. The
following screenshot shows the effect of adding variation to the bump:

Adding variation to the bump pattern

22. Add a Bright/Contrast node (press Shift + A and navigate to Color | Bright Contrast). Drag it
so that it's pasted between the Noise Texture02 node and the Mix02 factor input. Set the Bright
value to -0.250 and the Contrast value to 1.000.

23. Add a Frame, press Shift (or box-select (press B key) these 11 nodes and then the Frame), and
press Ctrl + P to parent them. Label the Frame SAND BUMP, as shown in the following
screenshot:

The SAND BUMP frame containing all the bump nodes

24. Select the Wave Texture02 node and press Shift + D to duplicate it twice (if the node is still
parented to the SAND BUMP frame after duplication, press Alt + P to unparent it). Label them
Wave Texture03 and Wave Texture04. Then duplicate the Bright/Contrast node twice
and name the duplicates Bright/Contrast02 and Bright/Contrast03.

25. Select one of the MixRGB nodes and press Shift + D to duplicate it. Set Blend Type (and the
label) to Divide and the Factor to 1.000.

26. Connect the Mapping vector output to the Vector input sockets of the two new wave textures.
27. Connect each Color output of the two new wave textures to the respective Color input of the

Bright/Contrast02 nodes. Then connect their color output to the Color1 and Color2 input of
the Divide node.

28. In the Wave Texture03 node, set Scale to 0.500, Distortion to 25.000, Detail to 10.000,
and Detail Scale to 1.000. In the Bright/Contrast02 node, set the Bright value to 0.000 and
the Contrast value to -0.800.

29. In the Wave Texture04 node, set Scale to 1.000, Distortion to 10.000, Detail to 5.000,
and Detail Scale to 1.000. In the respective Bright/Contrast03 node, set the Bright value to
0.000 and the Contrast value to -0.800.

30. Add a Math node (press Shift + A and navigate to Converter | Math). Set Operation to
Multiply, label it Multiply01, and leave the first Value as it is—the same as the Scale value
of the Wave Texture03 node (0.500). Set the second Value to 1.000. Connect the Value
output to the Scale input socket of the Wave Texture03 node.

31. Press Shift + D to duplicate the Math node (label it Multiply02). Move it to the side of the
Wave Texture04 node and set the first Value to be the same as the Scale value of the texture

node (1.000). Set the second Value to 1.000 as well, and connect the Value output to the
Scale input of the Wave Texture04 node.

32. Add a Value node (press Shift + A and navigate to Input | Value). Connect the output to the
second Value input sockets of both the Multiply-Math nodes. Label it Waves_size and set
the input value to 1.000.

33. Add a Frame, parent the last added nodes, and label it BIG WAVES, as shown in the following
screenshot:

A new frame containing a new bump effect to be added to the previous one

34. Duplicate the Bump_Strength node, unparent it from the SAND BUMP node, and set the
Operation to Add. Drag it onto the link between the Bump_Strength node and the Material
Output node, and label it Add_Bump01.

35. Connect the Divide node output of BIG WAVES to the second Value input socket of the
Add_Bump01 node, as shown in this screenshot:

The output of the two bump frames added together

36. Duplicate a Noise Texture node (label it Noise Texture03), a Bright/Contrast node (label
it Bright/Contrast04), and a Math node (label it Grain_Strength). Connect the
Mapping output to the Vector input of the texture node. Then connect the Noise Texture node's
Color output to the Bright/Contrast04 node's Color input and its output to the first Value input
socket of the Grain_Strength node. Set its operation to Multiply and the second Value to
0.250.

37. Set the texture Scale to 200.000, Detail to 1.000, and Distortion to 0.000. Set the Bright/
Contrast04 node's Bright value to 0.000 and Contrast to 0.200.

38. Add a Frame, parent the three nodes to it, and label it GRANULARITY, as shown in the
following screenshot:

One more bump effect frame

39. Duplicate the Add_Bump01 node, and label it Add_Bump02, and paste it between the
Add_Bump01 node and the Material Output node. Connect the Grain_Strength output of the
GRANULARITY frame to the second Value input socket of the Add_Bump02 node.

40. Duplicate the Add_Bump02 node and paste it just before the Material Output node. label it
TOTAL BUMP STRENGTH, set the node Operation to Multiply, and set the second Value
to 0.500, as shown in this screenshot:

The GRANULARITY frame output added to the previous bump ones

So here we are now—the sand shader is complete, and this is how the nodes' network looks in the Node
Editor window:

To obtain the image shown at the beginning of this recipe, we also added a few elements to the scene:

• A new Cube primitive, with a simple diffuse pure white material, added just for reference to
light intensity.

• An Ico Sphere primitive, set as invisible and disabled for the rendering in Outliner. It works as
target Object for a Boolean modifier assigned to the sand Cube and is placed in the stack
between the Subdivision Surface and Smooth modifiers, as shown in the following screenshot:

How it works...

The concept behind the structure of this material is basically the same as that for the procedural rock,
and it can be subdivided into stages as well:

• From step 1 to step 10, we built the color part of the shader, blending two differently colored
Diffuse BSDF nodes on the ground of a Noise Texture factor, and building a basic shader with
the Glossy BSDF component.

• From step 12 to step 22, we built the main bump effect, this time piped directly as whole in the
Displacement input of the Material Output node rather than to the Normal input sockets per
shader.

• From step 24 to step 32, we built a supplementary bump effect, this time to simulate the big
waves you usually see on a desert's sand dunes. This effect was left apart from the main bump to
be easily reduced or eliminated if required. Then we added two Math nodes set to Multiply and
driven by a Value node to automatically set the size of the big sand waves. Actually, this is
more a repeating effect, and the bigger the value, the smaller and closer the waves.

• In steps 36 and 37, we built a last bump effect to add the sand grain if necessary, for example,
for objects very close to the camera. In steps 39 and 40, we summed all the bump effects, to be
driven by the last Math node value.

Every stage has been framed and properly labeled to make it more easily readable in the Node Editor
window.

There's more...

One more thing we can do to improve this material is combine everything into a handy group node, at
the same time leaving the fundamental values to be tweaked exposed on the node group interface. To do
this follow these steps:

1. Put the mouse cursor in the Node Editor window and press the B key. Two horizontal and a
vertical lines appear at the location of the mouse cursor. Click and drag the mouse to encompass
the framed nodes, leaving outside only the Texture Coordinate node, the Mapping node, and
the Material Output nodes. After the mouse button is released, everything you encompassed is
selected.

2. Press Ctrl + G and create the group. Then press N in the Node Editor window to call the
Properties panel on the right side.

The previous sand material network inside a node group

3. Press Tab to go out of Edit Mode. Then click on the little window on the interface to change the
name from NodeGroup to Sand_Group.

The closed node group

As you can see, inside the group, the Group Input node collects all the Vector sockets from which the
various texture nodes take their mapping coordinates, so we now have eight Vector sockets in the outer
interface, all connected to the same Object output of the Mapping node. However, we need only one
Vector input to map all the textures inside the group, so let's perform the following steps:

1. Press Tab to go to Edit Mode again and deselect everything by pressing the A key.
2. Select the first bottom Vector output by clicking on the list of names in the little Inputs window

under the Properties/Interface panel. Delete the corresponding Vector socket from the Group
Input node by clicking on the X icon to the side of the newly appeared Name slot. Then click
on the X icon again, and go on like this to delete all the Vector sockets except the last socket at
the top of the list as shown in the following screenshot:

3. Now press Shift, select the Group Input node and the first texture node, and press F to
automatically connect them.

4. Repeat to connect all the eight texture nodes to the Vector socket of the Group Input node.

Now we need to expose some of the values to modify the material from the interface, so let's perform the
following steps:

1. From the second Value socket of the Bump_Strength node inside the SAND BUMP frame,
click and drag a link to the bottom free socket in the Group Input node. In the Input window
under the Properties panel, double-click on the newly appeared input socket name, Value, and
write Sand_strength.

All the Vector input sockets of the nodes are connected to a single socket on the Group Input
node, and the Bump Strength value is exposed by a new connection

2. Repeat step 1 for the second Value socket of the Waves_Strength and the Grain_Strength
nodes, and rename the respective input as Waves_strength and Granularity.

3. Now click on the Waves_size node inside the BIG WAVES frame and delete it. Click and drag
the second Value socket of the Multiply01 node to the Group Input node, and rename the new
socket Waves_size. Click and drag a link from the second Value socket of the Multiply02
node, and connect it to the Waves_size socket as well.

4. We also need to expose the second Value socket of the TOTAL BUMP STRENGTH frame.
Rename the new socket on the interface as Total strength. This is in fact the value for the
overall bump of the material.

5. After this, we can do the following: expose the color input by deleting the RGB node in the
SAND COLOR frame and connecting the Color input sockets of the Diffuse BSDF, RGB
Curves, and Glossy BSDF shader node's to the Color socket on the Group Input node; expose
the sand's grain size value, connecting the Scale input socket of the Noise Texture03 node to a
Grain_size socket; and finally, by clicking on the arrows in the Properties panel, order the
position of the input sockets on the Group Input node as shown in this screenshot:

The sockets created on the Group Input node and reflected in the Interface subpanel

6. Press Tab to close the group. On the interface, we now have the controls to increase or decrease
the overall bump effect, the sand color and grain, the wave strength, and scale/repetition, as we
can see in the following screenshot:

The final Sand_Group node with all the exposed input on its interface

The group is now available under the Add menu, and its shortcut involves pressing Shift + A and
navigating to Group | Sand_Group. It can be reused for other materials in the same scene and also with
different interface values, or linked/appended from a library in other blend files.

Creating a simple ground material using
procedural textures
In this recipe, we will create a basic, raw ground material as shown in this screenshot:

The ground material as it appears in the final rendering

Getting ready

Start Blender and switch to Cycles Render. Then perform the following steps:

1. Delete the default Cube and add a Plane. Go to Edit Mode and scale it 15 times bigger (30 units
per side; press Tab, then press S, enter the digit 15, and press Enter). Go out of Edit Mode.

2. Go to the Object modifiers window and assign a Subdivision Surface modifier to the Plane.
Switch from Catmull-Clark to Simple, and set the levels of Subdivisions for both View and
Render to 4. Check the Optimal Display item.

3. Assign a second Subdivision Surface modifier. Again, switch to Simple, set the levels of
Subdivisions for both View and Render to 4, and check the Optimal Display item.

4. Assign a Displace modifier. Click on the Show texture in texture tab button to the side of the
New button. In the Texture window, click on the New button, select Voronoi texture, and
increase the Size value to 1.80. Go back to the Object modifiers window and set the
displacement Strength to 0.100.

5. Assign a second Displace modifier and select the default Clouds texture. Set the Size value to
0.75, the Depth value to 5, and the displacement Strength value to 0.150.

6. Assign a third Displace modifier. Again, select the default Clouds texture and increase the Size
value to 4.00 (the slider arrives at a maximum of 2.00, but you can click on the value and
enter higher values) and the Depth value to 4. Then switch Noise from Soft to Hard and click

on the Basis button to change Noise Basis from Blender Original to Voronoi F4. Go to the
Colors subpanel above the Clouds subpanel, and adjust the Brightness value to 0.900 and the
Contrast value to 1.500. Set the displacement strength to 0.500.

7. In the Shading subpanel (which is accessible from the Transform menu), under the Tool Shelf
tabs to the left of the 3D view, click on the Smooth button.

8. Go to the World window and click on the Use Nodes button in the Surface subpanel under the
Properties panel. Then click on the little square with a dot on the right side of the Color slot.
From the menu, select Sky Texture. Set the Strength value to 1.400.

9. Go to the Outliner and select the Lamp item. Go to the Object data window and click on Use
Nodes. Then change Type of Lamp to Sun and set the Strength value to 1.400. Change the
light color values to 1.000 for R, 0.935 for G, and 0.810 for B. In the orthogonal top view
(press the 7 and 5 keys in the numeric keypad), rotate the Sun Lamp by 90°.

10. Place the Camera to have a nice angle on the Plane (you can also use the Lock Camera to
View item in the (press N) Properties side panel), and switch from the 3D view to the Camera
view (by pressing 0 from the numeric keypad).

11. Split the 3D window into two horizontal rows. Change the upper row to a Node Editor window.
12. Go to the Render window, and under the Sampling subpanel, set both the Clamp Direct and

Clamp Indirect values to 1.000. Go to the Light Path subpanel and set the Filter Glossy
value to 1.000.

13. Reselect the Plane and go to the Material window under the Properties panel. Disable the
transformation widget by clicking on the icon in the 3D window toolbar or by pressing Ctrl and
the spacebar, as shown in the following screenshot:

Screenshot in the Solid viewport shading mode of the ground scene

In the final scene, I added three UV Spheres with simple diffuse colors, just for lighting reference.
Obviously, you can skip this step.

How to do it...

Let's now start with the ground material:

1. Put the mouse cursor in the Camera view and press Shift + Z to switch the Viewport Shading
mode to Rendered.

2. Click on the New button in the Material window or in the Node Editor toolbar. Rename the
material Ground_01.

3. In the Node Editor window, add a Texture Coordinate node (press Shift + A and navigate to
Input | Texture Coordinate), a Mapping node (press Shift + A and navigate to Vector |
Mapping), and a Musgrave Texture node (press Shift + A and navigate to Texture | Musgrave
Texture).

4. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node and the Vector output of this node to the Vector input of the Musgrave Texture node.

5. Connect the Color output of the Musgrave Texture node to the Color input of the Diffuse
BSDF shader. In the Properties panel, label the Diffuse BSDF shader as Diffuse01. Set the
Scale value of the Musgrave Texture node to 0.500.

6. Add a Wave Texture node (press Shift + A and navigate to Texture | Wave Texture) and a
MixRGB node (press Shift + A and navigate to Color | MixRGB). Paste the MixRGB node
between the Musgrave Texture node and the Diffuse01 shader node, and connect the Wave
Texture node's color output to the Color2 input socket of the MixRGB node.

7. Set the MixRGB node's Blend Type to Subtract and label it Subtract01. Connect the
Mapping output to the Wave Texture node's Vector input.

8. Set the Wave Texture node's Scale value to 0.200, Distortion to 20.000, Detail to
16.000, and Detail Scale to 5.000.

9. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and drag it
onto the link connecting the Wave Texture node to the Subtract01 node to paste it between
them. Label it ColorRamp01, change the Interpolation mode to B-Spline, and move the
black stop to the 0.230 position (Pos:).

10. Add two Noise Texture nodes (press Shift + A, navigate to Texture | Noise Texture, and then
press Shift + D to duplicate it) and name them Noise Texture01 and Noise
Texture02. Connect the Mapping node to them. Select the Subtract01 node, press Shift + D
to duplicate it twice, and change Blend Type to Divide and Dodge. Connect the Color output of
the Subtract01 node to the Color1 input of the Divide node, and connect the Color output of
the Noise Texture01 node to the Color2 input of the Divide node.

11. Then connect the Color output of the Divide node to the Color1 input of the Dodge node, and
the Color output of the Noise Texture02 node to the Color2 input of the Dodge node.

12. Label the Dodge node Dodge01 and connect its output to the Color input of the Diffuse01
shader. Set the Noise Texture01 scale to 10.000, Detail to 5.000, and Distortion to 0.300.
For Noise Texture02, set Scale to 35.000, Detail to 5.000, and Distortion to 1.000, as
shown in the following screenshot:

The first steps to build the bump effect for the ground material

13. Add two Voronoi Texture nodes (press Shift + A, navigate to Texture | Voronoi Texture, and
rename the nodes Voronoi Texture01 and Voronoi Texture02) and a new MixRGB
node (press Shift + A and navigate to Color | MixRGB). Set the Blend Type to Subtract and
label it Subtract02. Connect the color output of the Voronoi Texture01 node to the Color1
input socket, and the color output of the Voronoi Texture02 node to the Color2 input socket.

14. Set the Subtract02 node's Fac value to 1.000, and then go to the Voronoi Texture01 node.
Set Coloring to Cells and Scale to 18.100. Go to the Voronoi Texture02 node, leave
Coloring as Intensity, and set the Scale value to 18.000.

15. Select the two Voronoi Texture nodes and the Subtract02 node, and press Shift + D to
duplicate them. Label the texture nodes as Voronoi Texture03 and Voronoi
Texture04, and the MixRGB node as Subtract03.

16. Connect the Mapping node output to the Vector input sockets of the four Voronoi Texture
nodes.

17. Change the Coloring of the Voronoi Texture03 node back to Intensity, and set the Scale value
to 18.500. Set the Scale value of Voronoi Texture04 to 6.500.

18. Add a new MixRGB node (press Shift + A and navigate to Color | MixRGB) and change the
Blend Type to Dodge. Label it Dodge02 and set the Fac value to 1.000. Connect the output
of the Subtract02 node to the Color1 input socket and the output of the Subtract03 node to the
Color2 input socket.

19. Add a MixRGB node again (press Shift + A and navigate to Color | MixRGB). Change the
Blend Type to Add and paste it between the Dodge01 node and the Diffuse01 shader node.
Then connect the output of the Dodge02 node to the Color2 input socket.

20. Disconnect the link between the Add output and the Color input socket of the Diffuse01 shader
node, and add a Bump node (press Shift + A and navigate to Vector | Bump). Connect the
output of the Add node to the Height input socket of the Bump node. Then connect the Normal
output of the Bump node to the Normal input socket of the Diffuse01 shader. Set the Add
node's Fac value to 0.280 and the Bump node's Strength value to 0.800.

21. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and label it
ColorRamp02. Paste it between the Dodge02 and the Add nodes. Set Interpolation to B-
Spline and move the black color slider and stop at position 0.330.

22. Add a RGB to BW node (press Shift + A and navigate to Converter | RGB to BW) and paste it
between the Add and the Bump nodes.

The total BUMP network for the ground material

23. Parent the nodes to a Frame (press Shift + A and navigate to Layout | Frame) and label it
BUMP, as shown in the following screenshot:

The BUMP frame

24. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and a second
Diffuse BSDF shader (press Shift + A and navigate to Shader | Diffuse BSDF). Name them
Mix Shader01 and Diffuse02, respectively. Then paste the Mix Shader01 node between
the Diffuse01 and the Material Output nodes, and connect the Diffuse02 node to the second
Shader input socket of the Mix Shader01 node.

25. Once again, add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and
a Diffuse BSDF shader (press Shift + A and navigate to Shader | Diffuse BSDF). Label them
Mix Shader02 and Diffuse03. Then paste the Mix Shader02 node between the Mix
Shader01 node and the Material Output node, and connect the Diffuse03 node to the second
Shader input socket.

26. Connect the Bump node output to the Normal input of the Diffuse02 and Diffuse03 shader
nodes.

27. Change the Diffuse01 color values to 0.593 for R, 0.460 for G, and 0.198 for B; the
Diffuse02 color values to 0.423 for R, 0.234 for G, and 0.092 for B; and the Diffuse03
color values to 0.700 for R, 0.620 for G, and 0.329 for B.

28. Once more, add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and
a Glossy BSDF shader (press Shift + A and navigate to Shader | Glossy BSDF). Label the first
node Mix Shader03 and paste it between the Mix Shader02 and the Material Output
nodes. Connect the Glossy BSDF shader to the second Shader input socket of the Mix
Shader03 node, and set its Roughness value to 0.300 and the color values to 0.593 for R,
0.460 for G, and 0.198 for B, just like the Diffuse01 color.

29. Connect the Bump node output to the Normal input socket of the Glossy BSDF node.

30. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight), connect the
Fresnel output to the Fac input socket of the Mix Shader03 node, and set the Blend value to
0.300.

31. Parent these recently added nodes to a new Frame and label it COLOR.

The COLOR frame

32. Add one more Noise Texture node (press Shift + A and navigate to Texture | Noise Texture)
and a new ColorRamp node (press Shift + A and navigate to Converter | ColorRamp).
Connect the Mapping node output to the Noise Texture node's Vector input (label it Noise
Texture03) and the Fac output of Noise Texture to the Fac input of the ColorRamp node
(label it ColorRamp03).

33. For the last time, add a MixRGB node and set the Blend Type to Difference. Then connect the
Color output of the ColorRamp03 node to the Color1 input socket of the Difference node, and
the Color output of the Difference node to the Fac input socket of the Mix Shader01 node. Set
the Fac value of the Difference node to 0.255.

34. Set the Noise Texture03 node's scale to 1.000 and the Detail value to 5.000. Switch the
ColorRamp03 node's Interpolation to B-Spline, move the 0 value of color stop to position
0.285, move the 1 color stop to position 0.740, and click on the + icon to add a new color
stop. Set its color to black and move it to position 0.320.

35. Connect the output of the Dodge01 node inside the BUMP frame to the Color2 input socket of
the Difference node. Connect the Color output of the ColorRamp02 node inside the BUMP
frame to the Fac input socket of the Mix Shader02 node inside the COLOR frame.

And we're done! Here is a screenshot of what the Blender UI will now look like:

Part of the bump output is connected to the COLOR frame by the three upper nodes and the bottom
ColorRamp node

How it works...

The way this material works is very similar to the sand material of the previous recipe, although a lot
simpler:

• We mixed two slightly different colors using the values of a Noise Texture node as the stencil
factor, then mixed a third, similar color on the ground of the bump output to obtain the whitish,
pebble-like effect you see in the rendered image. We created the ground roughness using an
ensemble of procedural textures mixed in several ways, whose total sum was then connected to
the Normal input sockets of the three Diffuse BSDF nodes and of the Glossy BSDF shader, as
shown in the following screenshot:

The overall vision of the ground material network

Creating a snow material using procedural
textures
In this recipe, we will create a snow material, as shown in the following screenshot, and also fake a
slight and cheap Subsurface Scattering effect:

The snow material as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_Snow_start.blend file.

In this file, there is a prepared scene with a Spheroid (the usual Cube with a four-level Subdivision
Surface modifier), a Suzanne (press Shift + A and navigate to Add | Mesh | Monkey) with a
Subdivision Surface modifier as well, and the famous Stanford bunny (http://en.wikipedia.org/wiki/
Stanford_bunny), leaning on a subdivided, displaced, and smoothed Plane renamed Snow_ground.
Suzanne is Blender's mascot and an alternative to free test models such as the Stanford bunny itself. By
the way, I thought of grouping them in the same scene to have different shapes to test the material.

In the file, there is also a Plane working as mesh-light and a Spot pointing in the opposite direction to try
to enhance the translucency of the snow.

How to do it...

Let's start creating the snow material:

http://en.wikipedia.org/wiki/Stanford_bunny
http://en.wikipedia.org/wiki/Stanford_bunny

1. Go to the World window and click on the New button. Then click on the little square with a dot
on the right side of the Color slot. From the menu, select Sky Texture.

2. Go to the Material window and select the Snow_ground item in the Outliner. Click on the
New button in the Material window under the Properties panel or in the Node Editor toolbar.
Rename the material as Snow_01.

3. Press Shift and select the Spheroid, Suzanne, and the Stanford bunny. Then select the Plane to
have it as the active object. Press Ctrl + L and go to Materials.

4. Put the mouse cursor in the Camera view and press Shift + Z to set the Viewport Shading
mode to Rendered.

5. In the Material window under the Properties panel to the right, under the Surface subpanel,
switch the Diffuse BSDF shader with a Mix Shader node. In the first Shader slot, select a
Diffuse BSDF shader, and in the second slot, select a Glossy BSDF shader.

6. Set the Roughness value of the Glossy BSDF shader to 0.300.
7. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and a Math node (press

Shift + A and navigate to Converter | Math). Set the IOR (short for Index Of Refraction)
value of the Fresnel node to 1.300. Then connect its Fac output to the first Value socket of
the Math node. Set the second Value to 10.000 and the operation mode to Divide. Finally,
connect its Value output to the Fac input socket of the Mix Shader node.

8. Add a Translucent BSDF node (press Shift + A and navigate to Shader | Translucent BSDF).
Set its color values to 0.598 for R, 0.721 for G, and 1.000 for B.

9. Select the Mix Shader node, press Shift + D to duplicate it, and paste it between the first Mix
Shader node and the Material Output node. Connect the Translucent BSDF node's output to
the second input socket. Set the Fac value of the second Mix Shader node to 0.300. Here is a
screenshot of the basic shader for your reference:

The basic shader for the snow material

10. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and press
Shift + D to duplicate it. In the Properties panel of the Node Editor window (press the N key to
make this appear if necessary), label them Noise Texture01 and Noise Texture02.

11. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the Object
output of the Texture Coordinate node to the Vector input of the Mapping node. Then connect
the Vector output of the Mapping node to both the Vector input sockets of the Noise Texture
nodes.

12. Add a Math node (press Shift + A and navigate to Converter | Math) and press Shift + D to
duplicate it three times so that you obtain four Math nodes. Label them Math01, Math02,
Math03, and Math04.

13. Connect the Noise Texture01 node's Fac output (the gray one) to the first Value input of the
Math01 node and set the second Value to 2.000. Set the Operation to Multiply.

14. Connect the Fac output of the Noise Texture02 node to the first Value input of the Math02
node and let its second Value be the default, which is 0.500. Set the Operation to Multiply.

15. Now connect both the output of the two previous Math nodes to the input Value sockets of the
Math03 node. Set the Operation to Add.

16. Connect the output of the Math03 node to the first Value input of the Math04 node. Set its
Operation to Multiply and let the second Value be the default, which is 0.500.

17. Connect the Math04 node output to the Displacement input socket of the Material Output
node.

18. Now go to the Noise Texture02 node and change the Scale value to 15.000. Leave the other
values (also for the Noise Texture01 node) as they are (that is, 5.000 for Scale, 2.000 for
Detail, and 0.000 for Distortion).

19. Go to the Mapping node and set the Scale value to 0.500 for all three axes. Now the Blender
UI will look like what is shown in this screenshot:

The bump pattern

20. Add two Frames, label them SNOW COLOR and SNOW BUMP, and parent the appropriate
nodes to them as shown in the following screenshot:

The overall vision of the snow material network

How it works...

As usual, to understand the creation of this material more easily, we will divide it into two stages: the
first stage for the general color and consistency of the snow, and the second stage to add bumpiness to
the surface. These stages are explained in detail as follows:

• First stage: We just made a basic shader by mixing the Diffuse BSDF and the Glossy BSDF
shaders by the IOR value of the Fresnel node. The Fresnel output value is divided by the
Math-Divide node to obtain a softer transition (try to change the second value from 10.000 to
1.000 to see a totally different effect). Then we also mixed a bluish Translucent shader but
gave predominance to the basic shader by setting the factor value in the second Mix Shader
node to 0.300. The Translucent shader gives the appearance of light seeping through snow
and showing in the shadowed areas of the object, working as a very fast and cheap Subsurface
Scattering effect.

• Second stage: We added two Noise Texture nodes with different scale values to simulate the
bumpiness of soft snow. The first two Multiply-Math nodes set the influence of each noise
separately. These values were merged by the Add-Math node and piped in one more Math
node, set to Multiply as well, to establish the overall weight of the bump effect that, being

directly connected to the Displacement input in the Material Output node, affects all the
shaders in the network.

Creating an ice material using procedural
textures
In this recipe, we will create a semi-transparent ice material that will look like this:

The ice material as it appears in the final rendering

Getting ready

Start Blender, load the 9931OS_start.blend file, and perform the following steps:

1. Delete the UV/Image Editor window by joining it with the 3D view.
2. Select the Plane item, go to Edit Mode, and scale it eight times bigger (press Tab, then press S,

enter the digit 8, and press Enter). Go out of Edit Mode and move the Plane 1 unit upward
(press Tab, then press G, enter the digit 1, press Z, and finally, press Enter).

3. Select the Cube and press N to make the Properties panel visible. Go to the View subpanel and
check the Lock Camera to View item. The borders of the Camera view turn red, which mean
that you can directly use the mouse to move, zoom in, and adjust the position of the Camera
around the selected object (the Cube in this case) to obtain a view similar what is shown in the
right half of this screenshot:

4. Next, uncheck the Lock Camera to View item.
5. Go to the World window and set Color to black.
6. Select Sun Lamp in the Outliner, and in the Object data window, set the Strength value to

3.000, Size to 1.000, and the Color values to 0.900 for R, 0.872 for G, and 0.737 for
B.

7. Select the Cube, go to Edit Mode, and press the W key. In the Specials pop-up menu, select
Subdivide. Press the F6 key, and in the Subdivide pop-up panel under the 3D Cursor position,
set Number of Cuts to 2. Go out of Edit Mode.

8. Go to the Object modifier window and assign a Subdivision Surface modifier to the Cube.
Switch from Catmull-Clark to Simple. Set the Subdivisions levels to 5 for both View and
Render. Check the Optimal Display item.

9. Assign a Displace modifier, and in the Textures window, click on New and select the Voronoi
texture. Set the Size value to 1.20. Back in the Object modifiers window, set the displacement
Strength to 0.050.

10. Assign a new Displace modifier and select Voronoi texture again, but this time, set the Size
value to 0.80. Set the displacement Strength value to 0.075.

11. Assign a third Displace modifier, select the Voronoi texture, and leave the default size (0.25)
as it is. Set the displacement Strength value to 0.020. Here is a screenshot of the displaced
Cube primitive for your reference:

A screenshot in the Solid viewport shading mode of the displaced Cube primitive

12. Switch the Camera's Viewport Shading to the Rendered mode.

How to do it...

After preparing the scene, we are going to create the material:

1. Select the Cube and click on New in the Material window under the Properties panel or in the
Node Editor toolbar. Rename the material Ice_01.

2. In the Material window to the right of the screen, under the Surface subpanel, switch the
Diffuse BSDF shader with a Mix Shader node. In the first Shader slot, select a Glass BSDF
shader, and in the second slot, select a Transparent BSDF shader.

3. Set the Glass BSDF shader's color totally white and the IOR value to 1.309. Set the
Transparent BSDF shader's color values to 0.448 for R, 0.813 for G, and 1.000 for B.

4. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader node. Then set the IOR value to 1.309.

5. Add a Glossy BSDF shader (press Shift + A and navigate to Shader | Glossy BSDF). Set the
color to pure white and the Roughness value to 0.050.

6. Select the Mix Shader node and press Shift + D to duplicate it. Connect the output of the first
Mix Shader node to the first Shader input socket of the duplicated one, and the Glossy
BSDF shader output to the second Shader input socket. Add a Layer Weight node (press Shift
+ A and navigate to Input | Layer Weight) and connect the Facing output to the Fac socket of
the second Mix Shader node.

7. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture). Set
Coloring to Cells and the Scale value to 25.000.

8. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and set
only the Scale value to 25.000.

9. Add a Math node (press Shift + A and navigate to Converter | Math) and set Operation to
Maximum. Connect the Fac output of the Voronoi Texture and Noise Texture nodes to the
first and the second Value input of the Math node.

10. Add a Bump node (press Shift + A and navigate to Vector | Bump). Connect the Maximum-
Math node output to the Height input of the Bump node, and its Normal output to the Normal
input sockets of the Glass BSDF and Glossy BSDF shaders.

11. Set the Strength value of the Bump node to 0.250.
12. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves) and paste it

between the Maximum-Math and the Bump nodes. Set the point in the little window of the
node interface at these coordinates: 0.25455 for X and 0.28125 for Y. Click on the little
window to create a new point and set its coordinates to 0.74091 for X and 0.26250 for Y.

13. Add a Texture Coordinate node (press Shift + A and navigate to Input| Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the Object
output of the Texture Coordinate node to the Vector input of the Mapping node. Then connect
the Vector output of the Mapping node to the Vector input sockets of both the Voronoi
Texture and Noise Texture nodes, as shown in the following screenshot:

The quite simple network of nodes for the ice material

How it works...

This time, we started by mixing a Glass BSDF shader and a Transparent shader node, modulated by a
Fresnel node, and we set the IOR values of both the Fresnel and the Glass BSDF to the refraction
value of ice. We also added a Glossy BSDF shader to provide specularity, mixed by a Layer Weight
node set on Facing (because the more a mesh normal faces the point of view, the more evident the
specular effect is).

Then, using mixed procedural textures, we created the bump effect to perturb the surface of the object
(note that the bump also affects the material's refraction).

See also

Here are some links to lists of IOR values that can be used in mixing the Diffuse BSDF component with
the Glossy BSDF component through a Fresnel node:

• http://blenderartists.org/forum/showthread.php?71202-Material-IOR-Value-reference
• http://blenderartists.org/forum/showthread.php?117271-The-IOR-of-diferent-materials

The following is a computational and scientific search engine that allows you to quickly research the
IOR of a given substance by typing its name:

• http://www.wolframalpha.com/

http://blenderartists.org/forum/showthread.php?71202-Material-IOR-Value-reference
http://blenderartists.org/forum/showthread.php?117271-The-IOR-of-diferent-materials
http://www.wolframalpha.com/

Chapter 4. Creating Man-made Materials in
Cycles
In this chapter, we will cover the following recipes:

• Creating a generic plastic material
• Creating a Bakelite material
• Creating an expanded polystyrene material
• Creating a clear (glassy) polystyrene material
• Creating a rubber material
• Creating an antique bronze material with procedurals
• Creating a multipurpose metal node group
• Creating a rusty metal material with procedurals
• Creating a wood material with procedurals

Introduction
On most occasions, artificial materials are quite easy to recreate in Cycles.

In the previous chapters we discussed the mechanics of building materials through procedural textures
using the Cycles render engine. In this chapter, we'll discuss some artificial materials. Starting with one
or two examples of simple materials, such as plastic, we will progress to more complex materials. We'll
also take a look at the decayed material shaders and treat them as worn or rusty metals.

Note that in Cycles, it's not actually necessary to add the nodes for the texture mapping coordinates to
any shader network. This is because, by default and if not otherwise specified, Cycles automatically uses
the Generated mapping coordinates for procedural textures and any existing UV coordinate layer for
the image textures.

Anyway, I think it's a good habit to add both the Texture Coordinate and the Mapping nodes to all the
materials to permit easy reutilization of the shaders on different objects with different mapping options,
scales, and locations.

Creating a generic plastic material
In this recipe, we will create a generic plastic shader and add slight granularity (optional) to the surface,
as shown in the following screenshot:

The generic plastic material as it appears in the final rendering

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file. This is a prepared scene, with
Suzanne (the monkey head primitive that is Blender's mascot) leaning on a white Plane, a Camera, a
mesh-light emitting slightly yellowish light, and a low-intensity gray World.

Note

We'll use a lot this file as starting point for several of our recipes.

How to do it...

Now we will go straight to creation of the material, so follow these steps:

1. Select Suzanne and click on New in the Material window under the Properties panel or in the
Node Editor toolbar. Rename the material Plastic_Green_Soft.

2. Set the Viewport Shading mode of the Camera view to Rendered by moving the mouse into
the 3D view and pressing Shift + Z.

3. In the Material window under the Properties panel, switch the Diffuse BSDF shader with a
Mix Shader node, and in the first Shader slot, select a Diffuse BSDF shader. In the second
Shader slot, select a Glossy BSDF node.

4. Change the Diffuse BSDF color to bright green (change the values of R to 0.040, G to
0.800, and B to 0.190) and the Glossy BSDF shader's Roughness value to 0.300.

5. Press Shift + D to duplicate the Mix Shader node, and paste it between the first Mix Shader
node and the Material Output node. Set the Fac value to 0.100.

6. Duplicate the Glossy BSDF node and connect its output to the second input socket of the
second Mix Shader node. Set its Roughness value to 0.500, as shown in the following
screenshot:

A screenshot of the entire Blender interface with the basic shader nodes in the Node Editor
window at the top

7. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture), a Texture
Coordinate node (press Shift + A and navigate to Input | Texture Coordinate), and a Mapping
node (press Shift + A and navigate to Vector | Mapping).

8. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node, and the output of this node to the input of the Noise Texture node.

9. Set the Noise Texture node's Scale value to 50.000. Add a Math node (press Shift + A and
navigate to Converter | Math). Connect the Noise Texture node's Fac output to the first Value
input of the Math node. Set the Math node's Operation to Multiply and second Value to
0.050. Connect its Value output to the Displacement input socket of the Material Output
node, as shown in the following screenshot:

The very simple bump effect added to the shader nodes by connecting the output of the Noise
Texture node to the Displacement input socket of the Material Output node

10. Save the file as Plastic_soft.blend.

How it works...

This is one of the simplest materials you can build in Cycles. It consists of a colored Diffuse BSDF
component mixed at 50 percent with a white Glossy BSDF shader and another low Glossy BSDF shader
to make the specular effect more diffused. A tiny Noise Texture node, connected directly to the
Displacement input of the Material Output node, adds a slightly dotted bump effect to the whole
material, as if it is some kind of industrial plastic used for toys.

Creating a Bakelite material
Bakelite is a very common type of plastic and can be found in a lot of different colors and patterns. In
this recipe, we will create the black type (which was once really common), as shown in this screenshot:

The black Bakelite material as it appears in the final rendering

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file again:

1. With the mouse arrow in the Camera view, press the T key. Select the Suzanne mesh. Go to the
Tools tab under the Tool Shelf panel on the left. Select Flat under Shading. Press T again to
close the Tool Shelf panel.

2. Go to the Object modifiers window in the Properties panel. Expand the Subdivision Surface
modifier panel and set the levels both for View and Render to 1.

How to do it...

Now we are going to create the material by performing the following steps:

1. Go to the Material window and click on New (or do this as usual, in the Node Editor toolbar).
Rename the material Plastic_Bakelite_Black.

2. Set the Viewport Shading mode of the Camera view to Rendered.
3. Switch the Diffuse BSDF shader with a Mix Shader node, and in the first Shader slot, select a

Diffuse BSDF shader. In the second Shader slot, select a Glossy BSDF node.
4. Change the Diffuse BSDF color to pure black and the Glossy BSDF shader color to light gray

(RGB to 0.253). Set the Roughness value of the Glossy BSDF shader to 0.100 and the Fac
value of the Mix Shader node to 0.800.

5. Press Shift + D to duplicate the Mix Shader node, and paste it between the Glossy BSDF
shader and the first Mix Shader node.

6. With the mouse arrow in the Node Editor window, press N. Select the first Mix Shader node,
and in the Label slot in the Active Node panel on the right, write Mix Shader1. Select the
second Mix Shader node, and in the Label slot, write Mix Shader2.

7. Add an Anisotropic BSDF shader (press Shift + A and navigate to Shader | Anisotropic
BSDF) and connect its output to the second input socket of the Mix Shader2 node.

8. Set the Mix Shader2 node's Fac value to 0.500. Set the Anisotropic BSDF node's color to
light gray, and set the same color for the Glossy BSDF shader (that is, RGB to 0.253). Set the
Glossy BSDF shader's Roughness value to 0.100 and Rotation to 0.500 as shown in the
following screenshot:

The simple shader network for the basic Bakelite material

9. Save the file as Plastic_Bakelite.blend.

How it works...

Basically, we made the same kind of material as the green plastic material, but this time, we enhanced
the reflectivity (mirror) by lowering the Roughness value. We also added an Anisotropic BSDF
specularity effect with the same roughness and color as those for the Glossy BSDF shader. The
Rotation value of the Anisotropic BSDF shader sets the flow of the highlights on the mesh. The
direction of the specularity rotates as this value increases from 0.000 to 1.000.

Anisotropy is a method of enhancing image quality of textures on surfaces that are far away and steeply
angled with respect to the point of view. An anisotropic surface will change in appearance as it rotates
about its geometric normal.

There's more...

Starting from the black material, let's now try to make a differently processed Bakelite material, as
shown in the following screenshot:

A different type of Bakelite

First, we'll make a node group of the Bakelite material by performing the following steps:

1. Click on the material name and rename it Plastic_Bakelite2. Then save the file as
Plastic_Bakelite2.blend.

2. Select the Diffuse BSDF, Glossy BSDF, Anisotropic BSDF, and two Mix Shader nodes and
press Ctrl + G to make a group.

3. Click and drag the Diffuse BSDF node's Color socket into the empty socket of the Group
Input node. Drag the Fac socket of the Mix Shader2 node, and in the Interface subpanel of the
Properties panel of the Node Editor window, rename it Aniso. This will drive the influence
of the anisotropic shader on the glossy shader. Click and drag the Fac socket of the Mix
Shader1 node to the empty socket of Group Input node. Rename it Spec. This will drive the
amount of final specularity of the shader. Here is a screenshot of the creation of the Bakelite
node group for your reference:

The creation of the Bakelite node group

4. Press Tab to close the group. Rename it Bakelite.

Now we'll add the nodes needed to create the differently colored material that we decided at the
beginning of this section:

1. In the Node Editor window, add the following nodes in linear sequence from left to right: a
Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate), a
Mapping node (press Shift + A and navigate to Vector | Mapping), a Noise Texture node
(press Shift + A and navigate to Texture | Noise Texture), a ColorRamp node (press Shift + A
and navigate to Converter | ColorRamp), and a MixRGB node (press Shift + A and navigate to
Color | MixRGB).

2. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node, and the output of this node to the input of the Noise Texture node. Connect the Color
output of the Noise Texture node to the ColorRamp input socket, and the Color output of the
ColorRamp node to the Color1 input socket of the MixRGB node. Connect the Color output
of the MixRGB node to the Color input of the Bakelite node group.

3. Set the Noise Texture node's Scale to 4.000, Detail to 4.200, and Distortion to 1.700.
4. Set the ColorRamp node's Interpolation to B-Spline. Move the black color marker to position

0.277 and the white color marker to 0.686.
5. Set MixRGB node's Blend Type to Divide (but remember to experiment with the other types as

well) and the Fac value to 0.600. Change the Color2 values of R to 0.799, G to 0.442, and
B to 0.220.

6. In the Bakelite node group interface, set the Spec value to 0.300, as shown in the following
screenshot:

Adding texture details to the Bakelite node group

7. You can also smooth the Suzanne mesh in the Tool Shelf panel (press T) and increase the
Subdivision levels of the Subdivision Surface modifier to 2.

8. Save the file.

Creating an expanded polystyrene material
In this recipe, we will create a classic white expanded polystyrene material, as shown in this screenshot:

The white expanded polystyrene material as it appears in the final rendering

Getting ready...

First, let's prepare the scene:

1. Start Blender and load the 9931OS_Suzanne_start.blend file. Add a Cube primitive to
the scene and place it leaning on the Plane, close to Suzanne. Move it upwards by 1 Blender
unit.

2. With the mouse arrow in the Camera view, press Shift + F to enter Walk Mode (in this mode,
you can press the W key to go forward, press S to go back, move the mouse to decide the
direction, and click or press Enter to confirm). Adjust the Camera position so as to center the
two objects in the frame.

3. Select the Cube object and go to the Object modifiers window. Assign a Boolean modifier.
4. Press Shift + D to duplicate the Cube, and move it a bit upward (press G, then press Z, enter .4,

and press Enter). Reselect the first Cube, and in the Object field of the Boolean modifier panel,
select the second Cube (Cube.001). Set Operation to Difference. Go to Edit Mode and scale
all the vertices a bit larger on the x and y axes (press S, then press Shift + Z, enter 1.200, and
press Enter).

5. Exit Edit Mode and reselect Cube.001. Move it a bit on the x axis (press G, then press X, enter
.4, and press Enter).

6. Go to the Object window and set Maximum Draw Type to Wire. Then go to the Ray
Visibility subpanel (usually at the bottom) and uncheck all the items. This way, Cube.001
becomes visible in the 3D view, but is not yet rendered in the preview.

7. Just to be sure that the second cube is not visible (the previous step should be enough for the
final rendering), go to Outliner and click on the camera icon to the right of the Cube.001 item.

8. Select the first Cube and assign a Bevel modifier. Set the Width value to 0.0200. Move it
higher in the stack of modifiers and place it before the Boolean modifier.

9. Assign a Subdivision Surface modifier and set both the Subdivisions levels to 2. Check the
Optimal Display item and move it higher in the stack. Place it before the Boolean modifier but
after the Bevel modifier.

10. Press T to call the Tool Shelf panel. Set the Cube shading to Smooth.
11. Press Shift, select both Cube and the Cube.001 objects, and rotate them on z axis towards the

Camera (press R, then press Z, enter -40, and then press Enter).
12. Press T to close the Tool Shelf panel. The following screenshot shows the process of building

the box object:

Building the box object by a Boolean modifier

13. Select the Plane object, and in the Material window, switch the Diffuse BSDF shader with a
Mix Shader node. Then, in the Shader slots, select a Diffuse BSDF node and a Glossy BSDF
shader node. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight)
and connect the Facing output to the Fac input socket of the Mix Shader node. Set the color of
the Diffuse BSDF node as follows: R to 0.530, G to 0.800, and B to 0.800.

How to do it...

Now we are going to create the material by performing the following steps:

1. Select Suzanne and click on New in the Material window under the Properties panel or in the
Node Editor toolbar. Rename the material Plastic_expanded_polystyrene.

2. Switch the Diffuse BSDF shader with a Mix Shader node, and in the first Shader slot, select a
Diffuse BSDF shader. In the second Shader slot, select a Glossy BSDF node.

3. Set the Diffuse BSDF shader color and the Glossy shader color to pure white. Set the
Roughness value of the Glossy BSDF shader to 0.600. Add a Fresnel node (press Shift + A
and navigate to Input | Fresnel). Connect its output to the Fac input socket of the Mix Shader
node. Set the IOR value to 1.550.

4. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture), a
Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate), and a
Mapping node (press Shift + A and navigate to Vector | Mapping).

5. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node, and the output of this node to the Vector input of the Voronoi Texture node.

6. Set the Voronoi Texture node's Scale value to 25.000. Add a Bump node (press Shift + A and
navigate to Vector | Bump). Connect the Fac output of the Voronoi Texture node to the Height
input socket of the Bump node, and the output of this node to the Normal input sockets of the
Diffuse BSDF and Glossy BSDF shader nodes.

7. Check the Invert item on the Bump node and set the Strength value to 0.500, as shown in the
following screenshot:

The white expanded polystyrene material network

8. Press Shift and select the Cube object and Suzanne. Then press Ctrl + L, and in the Make
Links pop-up menu, select the Material item to assign the material of the active object to the
other object.

9. Save the file as Plastic_expanded_polystyrene.blend.

How it works...

You have probably noticed that this recipe is simply a variation of the generic plastic shader. We
changed the color to white, and instead of Noise Texture, we used a Voronoi Texture node with a
different scale to add the typical polystyrene pattern. Then, by increasing the Roughness value of the
Glossy BSDF shader, we made the specularity more diffused.

Creating a clear (glassy) polystyrene material
In this recipe, we will create a glassy polystyrene material (which you find on the body of ballpoint
pens), as shown in the following screenshot:

The glassy polystyrene material as it appears in the final rendering

Getting ready...

First, we need the usual preparation:

1. Start Blender and load the 9931OS_Suzanne_start.blend file.
2. Select the Suzanne mesh and press T. In the Tool Shelf panel on the left side, select Flat under

Shading. Press T again to close the Tool Shelf panel.
3. Go to the Object modifiers window in the Properties panel and delete the Subdivision

Surface modifier. Add a Solidify modifier and set the Thickness value to 0.0350. Add a
Bevel modifier and set the Width value to 0.0050. Uncheck the Clamp Overlap item.

How to do it...

Now we are going to create the material by performing the following steps:

1. Go to the Material window and click on New (or as usual, go to the Node Editor toolbar).
Rename the material Plastic_clear_polystyrene.

2. Set the Viewport Shading mode of the Camera view to Rendered.
3. Switch the Diffuse BSDF shader with a Mix Shader node, and in the first Shader slot, select a

Mix Shader node again. In the second Shader slot, select a Glass BSDF node. Set its IOR
value to 1.460. Change the values of R to 0.688, G to 0.758, and B to 0.758.

4. Go to the second Mix Shader node, and in its first Shader slot, select a Transparent BSDF. In
the second Shader slot, select a Glossy BSDF node. Change the Glossy BSDF node color
values for R to 0.688, G to 0.758, and B to 0.758. Change the Roughness value to
0.010.

5. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input sockets of both the Mix Shader nodes. Set the IOR value to 1.460, as shown in the
following screenshot:

The completed network for the glassy polystyrene material

6. Save the file as Plastic_clear_polystyrene.blend.

Creating a rubber material
In this recipe, we will create a generic rubber shader, as shown in this screenshot:

The rubber material as it appears in the final rendering

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file.

How to do it...

Now we are going to create the material by performing the following steps:

1. Click on New in the Material window under the Properties panel or in the Node Editor
toolbar. Rename the material Rubber.

2. With the mouse arrow in the Camera view, press Shift + Z to set it to Rendered mode.
3. Switch the Diffuse BSDF shader with a Mix Shader node, and in the second Shader slot, select

a Glossy BSDF node. In the first Shader slot, select a new Mix Shader node. Set the Glossy
BSDF node's Roughness value to 0.350.

4. Go to the second Mix Shader node, and in the first Shader slot, select a Diffuse BSDF node. In
the second Shader slot, select a Velvet BSDF node. Set the Velvet BSDF shader node's Sigma
value to 0.600.

5. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input of both the Mix Shader nodes. Set the IOR value to 1.519, as shown in the following
screenshot:

The basic shader network

6. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), a Voronoi Texture node,
and a Noise Texture node (press Shift + A and navigate to Texture | Voronoi Texture, do the
same to add Noise Texture node).

7. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node, and the latter's output to the Vector input sockets of the two texture nodes.

8. Set the Voronoi Texture node's Coloring to Cells and the Scale value to 350.000. Set the
Noise Texture node's Scale value to 450.000 and Detail to 5.000.

9. Add two Math nodes (press Shift + A and navigate to Converter | Math). Set the Operation of
the second node to Multiply. Connect the Fac output of the Voronoi Texture node to the first
Value input socket of the Add-Math node. Connect the Fac output of the Noise Texture node
to the second Value input socket of the Add-Math node.

10. Connect the Add-Math node output to the first Value input socket of the Multiply-Math node.
Set second Value to 0.060 and connect the output to the Displacement input socket of the
Material Output node, as shown in the following screenshot:

The slight bump effect added to the network

11. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and move it close to
the Voronoi Texture node. Set the Blend Type to Multiply. Connect the Voronoi Texture
node's Color output to the Color2 input socket of the Multiply-MixRGB node. Then connect
the Color output of this node to the Color input sockets of the Diffuse BSDF, Velvet BSDF,
and Glossy BSDF shaders.

12. Add an RGB node (press Shift + A and navigate to Input | RGB) and connect it to the Color1
input socket of the Multiply-MixRGB node, as shown in this screenshot:

The overall view of the network

13. Save the file as Rubber.blend.

How it works...

We built the shader in steps 1 to 5. We added a slight bump effect in steps 6 to 10. In the last two steps,
we just added the RGB node, a control used to set the color of the material.

Creating an antique bronze material with
procedurals
In this recipe, we will create a bronze shader that looks similar to a ruined, corroded, and antique statue,
as shown in the following screenshot:

The antique bronze material as it appears in the final rendering when assigned to the poor Suzanne
mesh!

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file. Then perform the following
steps:

1. With Suzanne selected, click on the Object Mode button in the Camera view toolbar. Choose
Vertex Paint.

2. Click on the Paint item in the toolbar and select Dirty Vertex Colors, the first option at the top.
Then press T, and in the Option panel at the bottom of the Tool Shelf panel, set Blur Strength
to 0.01 and Dirt Angle to 90. Check the Dirt Only item, as shown in this screenshot:

The Dirty Vertex Colors setting and the effect on the Suzanne mesh

3. Go to the Object data window under the Properties panel. Double-click on the Col item in the
Vertex Colors subpanel and rename it V_col.

4. Return in Object Mode and press T to close the Tool Shelf tabs.
5. Save the file as 9931OS_Suzanne_vcol.blend. We will use this file for other recipes.

How to do it...

Now we are going to create the material by performing the following steps:

1. First, save the file as Bronze_antique.blend.
2. Click on New in the Material window under the Properties panel or in the Node Editor

toolbar. Rename the material Bronze_antique.
3. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and in the

first Shader slot, select a Diffuse BSDF shader. In the second Shader slot, select a Glossy
BSDF node. Set the Diffuse BSDF shader node's Roughness value to 1.000 and the Glossy
BSDF node's Roughness value to 0.300.

4. Now add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight), a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), and a MixRGB
node (press Shift + A and navigate to Color | MixRGB). In the Properties panel of the Node
Editor window (press N to make it appear), label the ColorRamp node as ColorRamp1. Set
its Interpolation mode to B-Spline.

5. Connect the Facing output of the Layer Weight node to the Fac input of the ColorRamp1
node, and its Color output to the Fac input socket of the MixRGB node.

6. Set the Color1 value of the MixRGB node as R to 0.771, G to 1.000, and B to 0.848. Set
the Color2 values as R to 0.222, G to 0.013, and B to 0.000.

7. Add an Invert node (press Shift + A and navigate to Color | Invert). Paste it between the
ColorRamp1 and the MixRGB nodes'.

8. Press Shift + D to duplicate the MixRGB node, and set Blend Type to Burn. Set the Fac value
to 0.090. Connect the Mix-MixRGB node's Color output to the Color1 input socket of the
Burn-MixRGB node.

9. Press Shift + D to duplicate the MixRGB node again. Set the Blend Type to Overlay and the
Fac value to 0.200. Connect its Color output to both the Color input sockets of the Diffuse
BSDF and Glossy BSDF shaders. Now connect the Color output of the Burn-MixRGB node to
the Color1 input socket of the Overlay-MixRGB node, as shown in the following screenshot:

The shader part of the material

10. Add an Attribute node (press Shift + A and navigate to Input | Attribute). Select and press
Shift + D to duplicate the ColorRamp and the Invert nodes. Label them as ColorRamp2 and
Invert2 , respectively, and move them close to the Attribute node.

11. Write the name of the Vertex Color layer, V_col, in the Name slot of the Attribute node. Then
connect its Color output to the Fac input of the ColorRamp2 node. Move the white color stop
to position 0.485.

12. Connect the Color output of the ColorRamp node to the Color input of the Invert2 node, then
connect the Color output of the Invert2 node to the Fac input socket of the Mix Shader node,
as shown in the following screenshot:

The shader modulated by the Dirty Vertex Colors output

13. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), four Noise Texture nodes
(press Shift + A, navigate to Textures | Noise Texture, and press Shift + D to duplicate them),
and a Musgrave Texture node (press Shift + A and navigate to Textures | Musgrave Texture).

14. Label the four Noise Texture nodes as Noise Texture1, Noise Texture2, Noise
Texture3, and Noise Texture4.

15. Connect the Object output of the Texture Coordinate node to the Vector input of the Mapping
node. Connect the Vector output of this node to the Vector input sockets of all the five texture
nodes.

16. For the Noise Texture1 node, set Scale to 1.000 and Detail to 5.800. For the Noise
Texture2 node, set Scale to 30.000 and Detail to 0.300. For the Noise Texture3 node, set
Scale to 18.500 and Detail to 0.300. Finally, for the Noise Texture4 node, set Scale to
65.000 and Detail to 0.300.

17. For the Musgrave Texture node, set Type to Multifractal, Scale to 15.000, Detail to
2.600, Dimension to 0.800, and Lacunarity to 0.400.

18. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set Blend Type to
Difference, and label it as Difference1. Press Shift + D to duplicate it. Label the duplicate
as Difference2.

19. Connect the Color output of the Noise Texture1 node to the Color1 input socket of the
Difference1 node, and set the Fac output of this node to 1.000. Connect the Color output of
the Musgrave Texture node to the Color2 input socket of the Difference1 node.

20. Connect the Color output of the Noise Texture2 node to the Color1 input socket of the
Difference2 node, and the Color output of the Noise Texture3 node to the Color2 input socket
of the Difference1 node.

21. Press Shift + D to duplicate the Difference1 node, and set the Blend Type to Divide. Connect
the Color output of the Difference1 node to the Color1 input socket of the Divide node, and the
Color output of the Difference2 node to the Color2 input socket.

22. Add a Math node (press Shift + A and navigate to Converter | Math). Connect the output of the
Divide node to the first Value input socket, and the Color output of the Noise Texture4 node to
the second Value socket.

23. Press Shift + D to duplicate the Math node, and set the Operation to Multiply. Connect the
Value output of the Add-Math node to the first input socket of the Multiply-Math node. Set
second Value to -0.050.

24. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), paste it
between the Noise Texture1 node and the Difference1 node, and label it as ColorRamp3. Set
Interpolation to Ease. Move the black color stop to the 0.318 position and the white color
stop to the 0.686 position.

25. Connect the output of the Multiply-Math node to the Displacement input socket of the
Material Output node, as shown in the following screenshot:

The bump pattern's nodes

26. Add two new ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp).
Label them as ColorRamp4 and ColorRamp5.

27. Connect the Fac output of the Noise Texture3 node to the ColorRamp4 node. Set the color
black stop to the 0.479 position and the white stop to the 0.493 position.

28. Connect the Color output of the ColorRamp4 node to the ColorRamp5 node's input socket,
and the Color output of this node to the Color2 input sockets of the Burn and Overlay nodes.

29. Click on the + icon on the ColorRamp5 node to add a new color stop in the middle of the color
slider. Set the black stop color (index 0) for R to 0.216, G to 0.027, and B to 0.007; the
middle stop color (index 1) for R to 0.539, G to 0.261, and B to 0.000; and the white color
stop color (index 2) for R to 0.515, G to 0.433, and B to 0.088, as shown in the following
screenshot:

Adding color details to the ground of the bump textures

How it works...

We use the Vertex Color layer set in the Getting ready section as a stencil map to distribute both the
colored Diffuse BSDF and the Glossy BSDF shaders, driven by the Facing option of the Layer Weight
input node.

Most of the bump effect is created by the Noise Texture and Musgrave Texture nodes, which are
mixed and clamped in several ways by the ColorRamp nodes. Here is a screenshot of the entire material
network:

The overall view of the antique bronze material network

As usual, the last Math node, which is set to Multiply, establishes the strength of the bump.

Creating a multipurpose metal node group
All the metal materials you can see in the following screenshot (pewter, gold, silver, chromium, and
aluminum) were obtained from a single shader node group linked and applied to each Suzanne with
different interface settings.

To take a look at the scene, open the 9931OS_04_metals.blend file. In this recipe, we will build
the generic Metal node group shader. You can find it in the 9931OS_04_metal_group.blend file,
as shown in the following screenshot:

Some examples of different metal materials created by the same node group

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file.

How to do it...

Now we are going to create the node group by performing the following steps:

1. Click on New in the Material window under the Properties panel or in the Node Editor
toolbar.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and in the
first Shader slot, select a Glossy BSDF shader. In the second Shader slot, select an
Anisotropic BSDF node.

3. Press Shift + D to duplicate the Mix Shader node, and paste it just after the first Mix Shader
node. Add a Diffuse BSDF shader (press Shift + A and navigate to Shader | Diffuse BSDF) and
connect it to the second Shader input of the second Mix Shader node, as shown in the
following screenshot:

The basic metal shader network

4. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input of the second Mix Shader node.

5. Add a Bright Contrast node (press Shift + A and navigate to Color | Bright Contrast).
Connect its Color output to the Color input sockets of the Glossy BSDF and Anisotropic
BSDF shader nodes.

6. Add a Bump node (press Shift + A and navigate to Vector | Bump). Connect its Normal output
to the Normal input sockets of the Fresnel, Diffuse BSDF, Glossy BSDF, and Anisotropic
BSDF shader nodes.

7. Select all the nodes except the Material Output node, and press Ctrl + G to create a group, as
shown in the following screenshot:

The nodes inside the node group

Now we must expose all the values necessary to tweak the node group for the different types of metal:

1. Click and drag the IOR input socket of the Fresnel node into the empty socket of the Group
Input node.

2. Repeat step 1 with the Color input socket of the Diffuse BSDF shader node. Then drag the
Color socket of the Bright/Contrast node and connect it to the same Color socket on the
Group Input node, as shown in this screenshot:

Creating the exposed sockets

3. Add a Math node (press Shift + A and navigate to Converter | Math). Set Operation to
Subtract and first Value to 1.000. Drag its second Value input socket to the Group Input
node, label the new socket as Coated, and then connect the Value output to the Bright input
socket of the Bright/Contrast node. In the Interface subpanel under the Properties panel, set
the Max value for the Coated socket to 1.200, as shown in the following screenshot:

The setting of the Min and Max values through to the Interface subpanel

4. Drag the Roughness input socket of the Glossy BSDF shader. Then drag the Roughness socket
of the Anisotropic BSDF shader and connect it to the same socket on the Group Input node.

5. Click and drag the Fac socket of the first Mix Shader node into a new, empty socket. Rename it
Aniso_Amount. Click and drag the Anisotropy socket of the Anisotropic BSDF shader node
into a new, empty socket. Repeat this step for the Rotation input socket.

6. Now click and drag the Height socket of the Bump node into a new, empty socket. Rename it
Bump. Repeat this step for the Distance and the Strength sockets, and rename the sockets
Bump_Distance and Bump_Strength, respectively.

7. Also repeat for the Normal socket of the Bump node.
8. Finally, click and drag the Tangent input socket of the Anisotropic BSDF shader.
9. Use the arrows in the top-right corner of the Interface subpanel to order the sockets in the

Group Input node (the same order should be used for the Group Output node), as shown in
the following screenshot:

The final layout of the completed node group in Edit Mode

10. Exit Edit Mode by pressing Tab. Rename the group Metal. Although this is not "strictly
necessary here, you can also click on the F icon on the interface to activate the fake user for the
node group.

11. Save the file as Metal_group.blend.

How it works...

The effect of this node group is mainly based on the IOR value (the refractive index of a material is a
number that describes how light propagates through that material or gets reflected on its surface). This
value can be quite different for each kind of metal. In the node, the exposed IOR value drives the
amount of blending of the Diffuse component with the Mirror component made by the Glossy BSDF
and Anisotropic BSDF shader nodes combined, but that can also be mutually blended accordingly to
the Aniso_Amount value.

The Anisotropy and Rotation values of the Anisotropic BSDF shader are exposed as well. and the
same for the Tangent input if a particular mapping option must be used (for example, a layer of UV
coordinates).

Textures must be connected to the Bump input socket on the Bump node. The Bump_Strength socket
establishes the amount of bump influence. The Bump_Distance socket is a multiplier for the strength of
influence. The Bump node output is piped to all the Normal input of the Fresnel, Diffuse BSDF,
Glossy BSDF, and Anisotropic BSDF nodes to keep a consistent effect among all the components.

Similarly, both the Glossy BSDF and Anisotropic BSDF nodes' Roughness values are driven by a
single-interface input.

Finally, let's discuss the color of the metal. The color that arrives at the Diffuse BSDF shader by passing
through the Bright/Contrast node gets modified by a Coated value larger than 0.000. The result is a
different input for the mirror component. The Subtract-Math node simply inverts the effect of the
numeric input of the Coated socket.

Besides the links provided at the end of the previous chapter, for a list of IORs, you can take a look at
these links:

• http://refractiveindex.info/
• http://www.robinwood.com/Catalog/Technical/Gen3DTuts/Gen3DPages/

RefractionIndexList.html
• http://forums.cgsociety.org/archive/index.php/t-513458.html

Note

Note that for some materials (especially metals), different lists report different IOR values.

http://refractiveindex.info/
http://www.robinwood.com/Catalog/Technical/Gen3DTuts/Gen3DPages/RefractionIndexList.html
http://www.robinwood.com/Catalog/Technical/Gen3DTuts/Gen3DPages/RefractionIndexList.html
http://forums.cgsociety.org/archive/index.php/t-513458.html

Creating a rusty metal material with procedurals
In this recipe, we will create a rusty shader that will be mixed with the metal shader by a stencil factor,
as shown in the following screenshot:

The rusty metal material as it appears in the final rendering

Getting ready...

Start Blender and load the 9931OS_Suzanne_vcol.blend file. Then perform the following steps:

1. Go to the World window. Click on the dotted little box to the right of the Color slot under the
Surface subpanel. In the pop-up menu, select the Environment Texture item.

2. Click on the Open button and browse to the textures folder to load the
Barce_Rooftop_C_3K.hdr image.

3. Set the Strength value to 0.200. Then go back to the Material window.

How to do it...

Now we are going to create the shader by performing the following steps:

1. Click on the File item in the upper main header. Select the Link item. If necessary, browse to
the folder where you stored all the blend files. Select the
9931OS_04_metal_group.blend file. From there, click on the NodeTree entry and then
select the Metal item. Click on the Link/Append from Library button to link the node group.

2. Click on New in the Material window under the Properties panel or in the Node Editor
toolbar. Rename the material Rusty_metal.

3. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and in the
first Shader slot, select a Diffuse BSDF shader. In the second Shader slot, under Group in the
pop-up menu, load the linked Metal node group, as shown in the following screenshot:

The Properties pop-up menu used to select different nodes

4. Add Frame (press Shift + A and navigate to Layout | Frame). Select the Diffuse BSDF shader,
the Metal node group, the Mix Shader node, and then the Frame. Press Ctrl + P to parent
them. In the Properties panel of the Node Editor window (press the N key to make it appear),
label the Frame as SHADERS.

5. In the Metal group, set the IOR value to 1.370. Change the Color values for R to 0.229, G
to 0.307, and B to 0.299. Set the Roughness value to 0.200, Aniso_Amount to 0.200,
and Anisotropy to 0.600.

6. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and two Mapping nodes (press Shift + A and navigate to Vector | Mapping). Connect the
Object output of the Texture Coordinate node to the Vector input of both the Mapping nodes.
Label them as Mapping1 and Mapping2.

7. Now add a Musgrave Texture node (press Shift + A and navigate to Texture | Musgrave
Texture) and label it as Musgrave Texture1. Add a Noise Texture node (press Shift + A
and navigate to Texture | Noise Texture), label it as Noise Texture1, and add a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp). Label this node as
ColorRamp1.

8. Set the Musgrave Texture node's Scale value to 6.000 and Detail to 1.300. Press Shift + D
to duplicate it, and label the duplicate as Musgrave Texture2. Set the Noise Texture
node's Scale value to 7.800, Detail to 8.000, and Distortion to 2.000.

9. Connect the Vector output of the Mapping1 node to the Vector input sockets of the Musgrave
Texture1 and Noise Texture1 nodes. Then connect the Vector output of the Mapping2 node to
the Vector input sockets of the Musgrave Texture2 node. In the Mapping2 node, set the
Location value to 0.100 and Scale to 0.600 for the three axes. Then change the Rotation
value of X to 7 and Y to -5.

10. Connect the Fac output of the Noise Texture node to the Fac input of the ColorRamp1 node.
Set its Interpolation to Ease. Move the black color stop to the 0.321 position and the white
color stop to the 0.600 position.

11. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Set the Fac value to
1.000 and Blend Type to Add. Then connect the color output of the Musgrave Texture1
node to the Color1 input socket and the Color output of the Musgrave Texture2 node to the
Color2 input socket of the Add-MixRGB node.

12. Press Shift + D to duplicate the Add-MixRGB node. Set Blend Type to Divide and the Fac
value to 0.309. Connect the Fac output of the Noise Texture1 node to the Color1 input socket
and the output of the Add-MixRGB node to the Color2 input socket of the Divide-MixRGB
node.

13. Connect the output of the Divide-MixRGB node to the Fac input socket of the ColorRamp1
node. Press Shift + D to duplicate the Divide-MixRGB node, and change the Blend Type to
Multiply. Set the Fac value to 1.000 and connect the output of the ColorRamp1 node to the
Color1 input socket.

14. Add an Attribute node (press Shift + A and navigate to Input | Attribute) and connect its
Color output to the Color2 input socket of the Multiply-MixRGB node. In its Name slot, write
the name of the Vertex Color layer, (Col_vp).

15. Add Frame (press Shift + A and navigate to Layout | Frame). Select the Musgrave Texture
node, the Noise Texture node, the ColorRamp1 node, the three MixRGB nodes, the Attribute
node, and then the Frame. Press Ctrl + P to parent them. Label the frame as STENCIL.

16. Connect the output of the Multiply-MixRGB node under the STENCIL frame to the Fac input
socket of the Mix Shader node under the SHADERS frame, as shown in the following
screenshot:

The first two frames of the material, SHADERS and STENCIL

17. Add two Voronoi Texture nodes (press Shift + A, navigate to Texture | Voronoi Texture, and
label them as Voronoi Texture1 and Voronoi Texture2) and a Wave Texture node
(press Shift + A and navigate to Texture | Wave Texture). In the Voronoi Texture1 node, set
the Coloring to Cells and the Scale value to 20.000. In the Voronoi Texture2 node, set the
Scale value to 19.000. Set the Wave Texture node's Scale value to 1.000.

18. Connect the Vector output of the Mapping1 node to the Vector input sockets of these three new
texture nodes.

19. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend Type to
Difference, and label it as Difference1. Set the Fac value to 1.000. Then connect the
Voronoi Texture1 node's Color output to the Color1 input socket and the second Voronoi
Texture2 node's Color output to the Color2 input socket.

20. Press Shift + D to duplicate the Difference1 node, and label the duplicate as Difference2.
Connect the Color output of the Difference1 node to the Color1 input socket of the
Difference2 node. Then connect the Color output of the Wave Texture node to the Color2
input socket.

21. Add two ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp), label
them as ColorRamp2 and ColorRamp3, and connect the output of the Difference2 node to
their Fac input socket. Set the ColorRamp2 node's Interpolation to Ease and move the black
color stop to the 0.486 position. Set the ColorRamp3 node's Interpolation to B-Spline and
move the black color stop to the 0.304 position.

22. Press Shift + D to duplicate the Difference2 node, and label the duplicate as Difference3.
Place it after the ColorRamp2 node and ColorRamp3 nodes. Connect the ColorRamp2 node's

Color output to the Color1 input socket and the ColorRamp3 node's Color output to the
Color2 input socket of the Difference3 node.

23. Add Frame (press Shift + A and navigate to Layout | Frame). Select these lastly added nodes
and then the Frame. Press Ctrl + P to parent them. Rename the frame RUST_BUMP.

24. Select the SHADERS frame and add a Bump node (press Shift + A and navigate to Vector |
Bump). Connect the Difference3 node's output to the Height input socket of the Bump node.
Connect the Normal output of this node to the Normal input socket of the Diffuse BSDF node
inside the SHADERS frame, as shown in the following screenshot:

The frame for the bump of the rust

25. Select the STENCIL frame and add a MixRGB node (press Shift + A and navigate to Color |
MixRGB) and a Bright/Contrast node (press Shift + A and navigate to Color | Bright
Contrast). Paste the MixRGB node right after the Multiply-MixRGB node. Set Blend Type to
Difference and then connect the output of the Difference3 node inside the RUST_BUMP
frame to the Color2 input socket. Paste the Bright/Contrast node right after this last
Difference node. Set the Bright value to 0.500 and the Contrast value to 1.000, as shown
in the following screenshot:

The RUST_BUMP output added to the stencil to separate the metal surface from the rusty
surface

26. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves), two
ColorRamp nodes (press Shift + A, navigate to Converter | ColorRamp, and label them as
ColorRamp4 and ColorRamp5), a Noise Texture node (press Shift + A, navigate to Texture
| Noise Texture, and label it as Noise Texture2), and a MixRGB node (press Shift + A and
navigate to Color | MixRGB).

27. In the RGB Curves node's interface, click on the diagonal line to add a control point. In the X
and Y slots at the bottom, set the values to 0.50000 and 0.26000, respectively. Click again
to add a new control point, and set X to 0.51000 and Y to 0.75000.

28. Connect the Color output of the RGB Curves node to the Fac input of the ColorRamp5 node.
29. Go to the ColorRamp4 node. Select the black color stop and change the color values of R to

0.991, G to 0.591, and B to 0.084. Select the white color stop and change the color values
of R to 0.105, G to 0.013, and B to 0.010.

30. Click four times on the + icon on the ColorRamp4 node interface to add four new color stops.
Select 4 as the index number and move it to the 0.889 position. Change the color values of R
to 0.930, G to 0.456, and B to 0.105. For index 3, set Pos to 0.754, R to 0.624, G to
0.250, and B to 0.053. For index 2, set Pos to 0.521, R to 0.418, G to 0.159, and B to
0.068. Finally, for index 1, set Pos to 0.286, R to 0.246, G to 0.098, and B to 0.034.

31. With the mouse arrow inside the colorband on the ColorRamp4 node, press Ctrl + C to copy it.
Move the mouse arrow to the colorband of the ColorRamp5 node. Press Ctrl + V to paste the
colors and the stops. Set the ColorRamp5 node's Interpolation to Constant.

32. Connect the Color output of both the ColorRamp4 and ColorRamp5 nodes to the Color1 and
Color2 input sockets of the MixRGB node, respectively. Set the MixRGB node's Blend Type
to Dodge and the Fac value to 1.000.

33. Press Shift + D to duplicate the Dodge-MixRGB node, set the Blend Type to Multiply, and
label it as Multiply2. Lower the Fac value to 0.500. Connect the Dodge-MixRGB node's
output to the Color1 input of the Multiply2 node and the Color output of the Noise Texture2
node to the Color2 input.

34. Set the Noise Texture2 node's Scale value to 16.000, Detail to 2.500, and Distortion to
1.000. Connect the Object output of the Mapping1 node to the Vector input of the Noise
Texture2 node.

35. Add a Hue Saturation Value node (press Shift + A and navigate to Color | Hue Saturation
Value). Place it right after the Multiply2 node. Connect the Multiply2 output to the Color input
socket of the Hue Saturation Value node. Then set the Hue value to 0.465 and the
Saturation value to 1.050.

36. Press Shift + D to duplicate the Multiply2 node, and place the duplicate close to the Noise
Texture2 node. Set the Blend Type to Overlay and the Fac value to 0.250. Connect the Fac
output of the Noise Texture2 node to the Color1 input socket of the Overlay-MixRGB node,
and change Color2 to pure white. Connect the Overlay-MixRGB node's output to the Value
input socket of the Hue Saturation Value node.

37. Add Frame (press Shift + A and navigate to Layout | Frame). Select these recently added
nodes and then the Frame. Press Ctrl + P to parent them. Rename the frame RUST_COLOR.

38. Connect the output of the Hue Saturation Value node inside the RUST_COLOR frame to the
Color input socket of the Diffuse BSDF shader node inside the SHADERS frame. Then
connect the Color output of the Divide node inside the STENCIL frame to the Color input of
the RGB Curves node inside the RUST_COLOR frame, as shown in the following screenshot:

The color of the rusty surface added to the network

39. Save the file as Metal_rusty.blend.

How it works...

From step 2 to step 4, we built the basic shader arrangement. From step 6 to step 15, we made the
STENCIL frame to separate the rust material from the polished metal.

From step 17 to step 23, we built the bump effect for the rust, and from step 26 to step 37, we added the
rust color.

There's more...

We used the Dirty Vertex Colors layer named Col_vp again, this time to give a denser pattern to
certain areas of Suzanne compared to other areas. Remember that a Vertex Colors layer can be modified
and improved by manual vertex painting on the mesh in Vertex Paint mode. We can also use a gray-
scale image map, painted in GIMP or in Blender itself and then UV-mapped on the mesh to obtain more
precise and localized effects.

Creating a wood material with procedurals
In this recipe, we will create a generic wood material—a shader that can be easily adapted to different
situations—as shown in the following screenshot:

The procedural wood material as it appears in the final rendering

Getting ready...

Start Blender and load the 9931OS_Suzanne_start.blend file. Then perform these steps:

1. Go to the World window and click on the button with a dot icon to the right of the Color slot
under the Surface subpanel. In the pop-up menu, select the Environment Texture item.

2. Click on the Open button and browse to the textures folder to load the
Barce_Rooftop_C_3K.hdr image.

3. Set the Strength value to 0.300. Then go back to the Material window.
4. Go to the Camera view and add a Cube primitive to the scene. Place it leaning on the Plane, to

the right of Suzanne. Move it up by 1 Blender unit.
5. With the mouse arrow in the Camera view, press Shift + F to enter Walk Mode. Adjust the

Camera position to center the two objects in the frame.
6. Select the Cube, go to Edit Mode, and scale it to at least twice its current size. Exit Edit Mode,

and using the 3D manipulator widget (which can be enabled in the 3D view toolbar), move the
Cube upwards to stay nicely on the Plane. Press N, and in the Properties panel, select the Lock
Camera to View item. Then adjust the Camera position framing the two objects.

7. Assign a Bevel modifier to the Cube, set Width to 0.0450, and set the Segments value to 4.
8. Press T to call the Tool Shelf panel. Set the Cube shading to Smooth.
9. Select Suzanne and rotate it a bit towards the left on the z axis.

10. Press T to close the Tool Shelf panel.

Setting up the scene

How to do it...

Now we are going to create the material by performing the following steps:

1. Click on New in the Material window under the Properties panel or in the Node Editor
toolbar. Rename the material Wood.

2. Switch the Diffuse BSDF shader with a Mix Shader node, and in the first Shader slot, select a
Diffuse BSDF shader. In the second Shader slot, select a Glossy BSDF node. Set the Glossy
BSDF node's Roughness value to 0.300.

3. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and a MixRGB node
(press Shift + A and navigate to Color | MixRGB). Set the IOR value of the Fresnel node to
2.000. Connect its output to the Color1 input socket of the MixRGB node. Set the MixRGB
node's Blend Type to Multiply, label it as Multiply1, and set the Fac value to 0.900.
Connect the Multiply1 node's output to the Fac input socket of the Mix Shader node.

4. Add Frame (press Shift + A and navigate to Layout | Frame). Select the Diffuse BSDF, Glossy
BSDF, Mix Shader, Multiply1, and Fresnel nodes. Then select the Frame and press Ctrl + P
to parent them. Label the frame as SHADERS.

5. Add one Texture Coordinate node (press Shift + A and navigate to Input | Texture
Coordinate) and three Mapping nodes (press Shift + A; navigate to Vector | Mapping; add the
first node; duplicate the other nodes; and then label them as Mapping1, Mapping2, and
Mapping3). Connect the Object output of the Texture Coordinate node to the Vector input
of the three Mapping nodes.

6. Set the Scale value of the Mapping1 node to 2.000 for all the three axes. Set the Scale value
only for the x axis of the Mapping2 node to 20.000. Then set the Scale value only for the x
axis of the Mapping3 node to 15.000.

7. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and two
Wave Texture nodes (press Shift + A and navigate to Texture | Wave Texture). Label them as
Noise Texture1, Wave Texture1, and Wave Texture2.

8. Set the Scale of the Noise Texture1 node to 6.000 and Detail to 0.000. Connect the
Mapping1 node's output to the Noise Texture node's Vector input socket.

9. Connect the Mapping2 node's output to the Vector input of the Wave Texture1 node. Set the
Wave Texture1 node's Scale value to 0.200 and Distortion to 20.000.

10. Connect the Mapping3 node output to the Wave Texture2 node's Vector input socket. Set
Wave Type to Rings, the Scale value to 0.070, and the Distortion value to 44.000.

11. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Set the Blend Type to
Multiply (label it as Multiply1) and the Fac value to 1.000. Connect the Noise Texture
node's Color output to the Color1 input socket and the Wave Texture1 node's Color output to
the Color2 input socket.

12. Connect the Multiply1 node's output to the Color input of the Diffuse BSDF shader. Press Shift
+ D to duplicate it, change the Blend Type to Add, and paste it between the Multiply1 node
and the Diffuse BSDF shader node. Connect the Wave Texture2 node's Color output to the
Color2 input socket of this Add-MixRGB node (labelled as Add1).

13. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp1, and paste it right after the Noise Texture1 node. Set Interpolation to B-Spline
and move the black color stop to the 0.345 position.

14. Press Shift + D to duplicate the ColorRamp1 node, paste it right after the Wave Texture1 node,
and label it as ColorRamp2. Move the black color stop to the 0.505 position and the white
color stop to the 0.975 position.

15. Press Shift + D to duplicate the ColorRamp2, label it as ColorRamp3, and paste it right after
the Wave Texture2 node. Move the black color stop to the 0.495 position and the white color
stop to the left end of the slider, and set Pos as 0.000, as shown in the following screenshot:

The textures required to draw the wood effect summed and connected to the shader part of the
material

16. Now add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and connect the
Add1 node's Color output to its Fac input socket. Set the Color1 values of R to 1.000, G to
0.500, and B to 0.150. Set the Color2 values of R to 0.694, G to 0.205, and B to 0.027.

17. Press Shift + D to duplicate the MixRGB node. Paste the duplicate right after the original node.
Connect the MixRGB node's output to the Color2 input socket, change Blend Type to
Multiply, and label it as Multiply3.

18. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the three
texture nodes, the three ColorRamp nodes, the four MixRGB nodes, and then the Frame. Press
Ctrl + P to parent them. Label the frame as COLOR, as shown in the following screenshot:

Adding more color to the veining

19. Add a new Noise Texture node (press Shift + A, navigate to Texture | Noise Texture, and label
it as Noise Texture2), a Math node (press Shift + A and navigate to Converter | Math),
and a Bump node (press Shift + A and navigate to Vector | Bump).

20. Connect the Mapping3 node's output to the Vector input socket of the Noise Texture2 node.
Then connect the Color output of this node to the second Value input of the Math node. Set its
Operation to Add, label it as Add2, and connect its output to the Height input socket of the
Bump node.

21. Set the Bump node's Strength value to 0.200. Connect the Normal output of the Bump node
to the Normal input of the Fresnel, Diffuse BSDF, and Glossy BSDF nodes inside the
SHADERS frame. Set the Noise Texture2 node's Scale value to 43.000 and Detail to
16.000.

22. Go to the Add1 node inside the COLOR frame, click on the output node, and drag it so that it is
connected to the first Value input socket of the Add2-Math node.

23. Add a Frame (press Shift + A and navigate to Layout | Frame). Select the three nodes and then
the Frame. Press Ctrl + P to parent them. Label the frame as BUMP, as shown in the following
screenshot:

The bump pattern, based in part on the output of the veining

24. Save the file as Wood.blend.

How it works...

From steps 1 to 4, we built the basic shader using the usual Diffuse BSDF and Glossy BSDF nodes,
mixed by a Fresnel value and multiplied by the values of a medium gray color.

From steps 5 to 18, we built the color of the wood's veins, adding three procedurals to be used as
splitting factors for the two wood colors set in the penultimate MixRGB node. Using the last Multiply3
node, we made the color more saturated (actually, we multiplied the values by themselves).

From steps 19 to 23, we built the bump using a noise grain summed to the veins' values by the
Add2-Math node. We set a low value for the bump's Strength value, but you can use higher values
(together with higher roughness values) to obtain less polished surfaces, which can give you different
kinds of wood in the output.

Chapter 5. Creating Complex Natural Materials
in Cycles
In this chapter, we will cover the following recipes:

• Creating an ocean material using procedural textures
• Creating underwater environment materials
• Creating a snowy mountain landscape with procedurals
• Creating a realistic earth as seen from space

Introduction
In Chapter 3, Creating Natural Materials in Cycles, we saw some of the simpler natural materials that
are possible to build in Cycles, keeping them out of any landscape context to make them more easily
understandable.

Now it's time to deal with more elaborate natural materials. In this chapter, we will examine the way to
mix different basic shaders to mimic the look of complex natural objects and their environments (very
often, these two things fit together neatly).

Creating an ocean material using procedural
textures
In this recipe, we will build an ocean surface material, using the Ocean modifier and procedural textures
to create the foam, and establish a set of nodes to locate it on the higher parts of the waves:

The final look of the ocean material, with three simple and brightly colored objects to be reflected by the
surface

Getting ready

Before we start with creating the shaders, let's prepare the ocean scene:

1. Start Blender and switch to the Cycles rendering engine. Select the default Cube, delete it (press
X), and add a Plane (with the mouse arrow in the 3D window, press Shift + A and navigate to
Mesh | Plane). In Object Mode, scale the plane smaller to 0.300. Don't apply a size.

2. Go to the Object modifiers window and assign an Ocean modifier. Set these values of
Geometry to Generate, Repeat X and Repeat Y to 4, Spatial Size to 20, and Resolution to
12.

3. Press the N key, and in the Transform panel, set these values for the Plane in Location for X as
-6.90000, Y as -7.00000, and Z as 0.00000.

4. Make sure that you are at frame 1, and with the mouse arrow in the modifier's Time slot, press I
to add a key for the animation. Go to frame 25, change the Time value from 1.00 to 2.00,
and press the I key again to set a second key.

5. In the Choose Screen layout button at the top, switch from Default to Animation. In the
Graph Editor window, press T. In the Set Keyframe Interpolation pop-up menu, select the
Linear item under Interpolation. Then press Shift + E, and in the Set Keyframe

Extrapolation pop-up menu, select the Linear Extrapolation item to make the ocean
animation constant and continuous.

6. Go back to the Default screen and rename the Plane as Ocean_surface. Have a look at the
following screenshot:

The Plane with the assigned Ocean modifier, and the settings to the right

7. Place the Camera to have a nice angle on the ocean, and then go to the Camera view (press 0
on the numeric keypad).

8. Add a Cube in the middle of the scene and, if you want, a UV Sphere in the foreground. Place
these so that they float in the air. Their only purpose is to get reflected by the ocean surface
during the shader setup.

9. Go to the World window and click on the Use Nodes button under the Surface subpanel. Then
click on the little square with a dot on the right side of the color slot. From the pop-up menu,
navigate to Texture | Sky Texture.

10. Select the Lamp, go to the Object data window, and click on the Use Nodes button under the
Nodes subpanel. Set a yellowish color for the light (change the value of R to 1.000, G to
0.989, and B to 0.700). Turn it to Sun, set the Size value to 0.010, and set the Strength
value to 2.500.

11. Go to the Render window, and under the Sampling subpanel, set both the Clamp Direct and
Clamp Indirect values to 1.00. Set the samples to 100 for Render and 50 for Preview (you
can obviously change these values according to the power of your machine).

Now, because the shader we are going to build is largely transparent, we need to simulate the
water body as seen from above the surface.

12. Add a new Plane in Edit Mode and scale it 10 times bigger (20 Blender units per side; press
Tab, then press S, enter digit 10, and press Enter). Exit Edit Mode and move the Plane so that it
is centered on the ocean Plane location, then move it 1 unit down on the z axis. You can do it
like this: go to the Top view and move the new Plane of 7 Blender units first along the x axis
and then along the y axis. Then press G, press Z, enter digit -1, and press Enter.

13. In Edit Mode, press W to subdivide it by the Specials menu. Then press T to open the Tool
Shelf panel on the left, and under Number of Cuts in the Operator panel at the bottom, and
select 3.

14. Go to the Vertex Paint mode and paint a very simple gray-scale gradient, changing from black
at the vertices close to the Camera location to a plain white color on the opposite side.

There are five rows of vertices on the Plane (ideally, all the rows are along the global x axis), so
you can paint the first row with RGB value as 0.000, second with RGB value as 0.250, third
with RGB value as 0.500, fourth with RGB value as 0.750, and fifth with RGB value as
1.000 to have a perfect gray-scale gradient.

15. In the Object data window, under the Vertex Colors tab, rename the Vertex Color layer as
Col_emit. Have a look at the following screenshot:

The Ocean_Bottom plane with the painted Vertex Colors layer

16. Exit Vertex Paint mode and rename this second Plane Ocean_bottom.
17. Split the 3D window into two horizontal rows. Change the upper row to a Node Editor window.
18. Assign very simple colored materials to the Cube and the UV Sphere; plain Diffuse BSDF

shaders are enough.

How to do it...

We will be performing this in four parts:

• Creating the water surface and the bottom shaders
• Creating the foam shader
• Creating the stencil material for the location of foam
• Putting everything together

Let's start!

Creating the water surface and the bottom shaders

Let's now create the water surface and the bottom shaders:

1. Select the Ocean_bottom object. Click on the New button in the Material window under the
Properties panel or in the Node Editor toolbar. Rename the new material as Ocean_bottom
as well.

2. Switch the Diffuse BSDF shader with a Mix Shader node. In the first and the second slots, load
two Emission shaders.

3. Add an Attribute node (press Shift + A and navigate to Input | Attribute) and connect the
Color output to the Fac input of the Mix Shader node. In the Name slot of the Attribute node,
write Col_emit, which is the name of the Vertex Color layer.

4. Change the color of the first Emission node for R to 0.178, G to 0.150, and B to 0.085.
Set the Strength value to 1.000.

5. Change the color values of the second Emission node for R to 0.213, G to 0.284, and B to
0.380. Set the Strength value to 2.000.

The Ocean_bottom material is ready. Have look at the following screenshot:

The Ocean_bottom material and the scene visible in the Solid viewport shading mode through
the Camera view

6. Now select Ocean_surface and click on New in the Material window under the Properties
panel or in the Node Editor toolbar. Rename this material as Ocean_surface.

7. Replace the Diffuse BSDF node with a Mix Shader node, and in the first Shader slot, assign a
Transparent BSDF node. In the second slot, assign a Glass BSDF shader. In the Properties
panel of the Node Editor window, label the Mix Shader node as Mix Shader01.

8. Change the Transparent BSDF nodes Color values for R to 0.055, G to 0.124, and B to
0.042 (you can also do this by connecting an RGB node to the Color input socket, as shown
in the example blend file provided). Set the Glass BSDF shader node's Roughness value to
0.900 and the IOR value to 1.333.

9. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight), connect the
Facing output to the Fac input of the Mix Shader01 node, and set the Blend value to 0.050.

10. Select the Mix Shader01 node and press Shift + D to duplicate it. Add a Glossy BSDF shader
(press Shift + A and navigate to Shader | Glossy BSDF) and connect it to the second Shader
input socket of the Mix Shader02 node. Connect the output of the Mix Shader01 node to the
first Shader input socket of the Mix Shader02 node, and the output of this node to the Surface
input of the Material Output node.

11. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel). Connect this to the Fac
input of the Mix Shader02 node. Set the IOR value to 1.333 as shown in the following
screenshot:

The Ocean_surface shader network

12. Now select all the nodes except the Material Output node, and press Ctrl + G to make a group.
Select and delete the Group Input node to the left (press the X key), and drag the Mix
Shader02 node's output to the empty socket of the Group Output node.

13. Press Tab to close the node group, and rename it as Ocean_water.

Creating the foam shader

Let's now create the shader for the foam:

1. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and a
Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) nodes.
Select them and press Shift + D to duplicate them. Label them as Noise Texture01, Noise
Texture02, Voronoi Texture01, and Voronoi Texture02.

2. Add four ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp, then
press Shift + D to duplicate them). Label them as ColorRamp01, ColorRamp02,
ColorRamp03, and ColorRamp04. Place the four texture nodes in a vertical column and
arrange the ColorRamp nodes to their side. Connect the Color output of each texture node to
the Fac input of the respective ColorRamp node.

3. Set Interpolation of the ColorRamp01 node to B-Spline, ColorRamp02 and ColorRamp03
to Ease, and ColorRamp04 to B-Spline again.

4. Go to the ColorRamp01 node. Move the black color stop to position 0.345 and the white
color stop to position 0.633.

5. Go to the ColorRamp02 and ColorRamp03 nodes. Move the black color stop to position
0.159 and the white color stop to position 0.938 for both nodes. Leave the ColorRamp04
color stops as they are.

6. Set the Scale value of the Noise Texture01 node to 500.000, the Noise Texture02 node to
100.000, the Voronoi Texture01 node to 100.000, and the Voronoi Texture02 node to
90.000.

7. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the UV
output of the Texture Coordinate node to the Vector input socket of the Mapping node. Then
connect the Vector output of this node to the Vector input sockets of the four texture nodes.

8. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend Type to
Subtract, and label it as Subtract01. Set the Fac value to 1.000. Connect the Color
outputs of the ColorRamp01 and ColorRamp02 nodes to the Color1 and Color2 input sockets
of the Subtract01 node.

9. Select the Subtract01 node, press Shift + D to duplicate it, and set the Blend Type to Multiply.
Label it as Multiply and connect the Color outputs of the ColorRamp03 and ColorRamp04
nodes to its Color1 and Color2 input sockets.

10. Duplicate a MixRGB node again, set the Blend Type to Difference, and name it Difference
as well. Then connect the Color outputs of the ColorRamp03 and ColorRamp04 nodes to the
Color1 and Color2 input sockets of this Difference node.

11. Duplicate one of the MixRGB nodes one more time. Set the Blend Type to Lighten and label it
as Lighten. Lower the Fac value to 0.500. Connect the Color output of the Multiply node
to the Color1 input of the Lighten node, and the Color output of the Difference node to the
Color2 input socket.

12. Add an Invert node (press Shift + A and navigate to Color | Invert) and move it on the link
connecting the Difference and the Lighten nodes to be automatically pasted in between.

13. Add a new ColorRamp node, label it as ColorRamp05, and connect the Lighten node output
to its Fac input. Then move the black color stop to position 0.298 and the white color stop to
position 0.486.

14. Add a new MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend
Type to Subtract, and label it as Subtract02. Set the Fac value to 1.000. Connect the
ColorRamp05 node's Color output to the Color1 input of Subtract02 node and the output of
the Subtract01 node to the Color2 input socket.

15. Add an RGB to BW node (press Shift + A and navigate to Converter | RGB to BW), a Bump
node (press Shift + A and navigate to Vector | Bump), and a Diffuse BSDF shader (press Shift +
A and navigate to Shader | Diffuse BSDF).

16. Connect the Subtract02 node's output to the RGB to BW node, the output of this node to the
Height input socket of the Bump node, and the Normal output of the Bump node to the
Normal input of the Diffuse BSDF shader. Set the Bump node's Strength value to 1.000 as
shown in the following screenshot:

The network for the foam shader

17. Select all of these nodes and press Ctrl + G. Delete the Group Input node on the left.
18. Drag the BSDF output of the Diffuse BSDF shader onto the right side, to the empty socket of

the Group Output node. Repeat this for the Color output of the Subtract02 node.
19. Press Tab to close the group. Rename it as Foam.

Creating the stencil material for the foam location

What we need now is a way to limit both the amount and the presence of the foam in the upper parts of
the waves:

1. Add Gradient (press Shift + A and navigate to Texture | Gradient Texture) and Voronoi
Texture (press Shift + A and navigate to Texture | Voronoi Texture) texture nodes, select them,
and press Shift + D to duplicate them. Label them as Gradient Texture01, Gradient
Texture02, Voronoi Texture03, and Voronoi Texture04.

2. Set the Gradient Types to Easing for both the nodes, the Scale value of the Voronoi Texture03
node to 250.000, and the Scale value of the Voronoi Texture04 node to 50.000.

3. Add three Mapping nodes (press Shift + A and navigate to Vector | Mapping, then press Shift +
D to duplicate them). Label them as Mapping01, Mapping02, and Mapping03.

4. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Geometry node (press Shift + A and navigate to Input | Geometry).

5. Connect the Normal output of the Geometry node to the Vector input of the Mapping01 node.
Next, connect the Position output of the Geometry node to the Vector input of the Mapping02
node. Then connect the UV output of the Texture Coordinate node to the Vector input of the
Mapping03 node.

6. In the Mapping02 node, change the Location value of X to 0.500 and the Rotation value of
Y to 90°.

7. Connect the output of the Mapping01 to the input of the Gradient Texture01, the output of the
Mapping02 to the input of the Gradient Texture02, and the output of the Mapping03 to both
the Vector inputs of the last two Voronoi Texture nodes.

8. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp06, and connect the Color output of the Voronoi Texture04 node to its Fac input.
Set Interpolation to B-Spline. On the ColorRamp06 node, click on the little + icon to add a
new color stop (medium gray) in the middle of the slider. Change its color to total black and
move it to position 0.068.

9. Add a Math node (press Shift + A and navigate to Converter | Math), set the Operation to
Multiply, and label it as Multiply02. Connect the Color output of the Gradient Texture02
node to the first Value input socket of the Multiply02 node.

10. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend Type to
Difference, and label it as Difference02. Set the Fac value to 1.000. Connect the Color
output of the Gradient Texture01 to the Color1 input socket, and the Value output of the
Multiply02 node to the Color2 input socket of the Difference02 node.

11. Press Shift + D to duplicate the MixRGB node, set the Blend Type to Subtract, and label it as
Subtract03. Connect the ColorRamp06 node's Color output to both the Color2 and to the
Fac input sockets. Then connect the Color output of the Voronoi Texture03 node to the Color1
input socket.

12. Add a new ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it
as ColorRamp07, and connect the output of the Difference02 node to the Fac input. Then
move the white color stop to position 0.344.

13. Duplicate one of the MixRGB nodes, set the Blend Type to Burn, and label it as Burn as well.
Connect the Color output of the ColorRamp07 node to the Color1 input of the Burn node.
Then connect the output of the Subtract03 node to the Color2 input socket of the Burn node as
shown in the following screenshot:

The stencil network

14. Now select all of these nodes, press Ctrl + G, and drag the Burn node output on the right to
connect it to the empty socket of the Group Output node. Press Tab to close the group. Rename
it as Foam_location.

Putting everything together

What is left now is just to connect these three groups to build the final shader:

1. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader). Label it as
Mix Shader03 and connect its output to the Surface input socket of the Material Output
node.

2. Connect the Shader output of the Ocean_water group to the first Shader input of the Mix
Shader03. Then connect the BSDF output of the Foam group to the second Shader input.

3. Add two MixRGB nodes (press Shift + A and navigate to Color | MixRGB). Set the Blend
Type of the first node to Multiply and the Fac value to 0.550. Then label it as Multiply03.
Set the second node Blend Type to Burn and the Fac to 0.200. Then label it as Burn02.

4. Connect the Color output of the Foam_location group to the Color1 input of the Multiply03
node, and the Color output of the Foam group to the two Color2 inputs of both the Multiply03
and Burn02 nodes.

5. Connect the Multiply03 node's output to the Color1 input of the Burn02 node. Connect the
output of the Burn02 node to the Fac input of the Mix Shader03 node as shown in the
following screenshot:

The overall view of the network with the connected node groups

How it works...

This material, which looks quite complex, is actually easily understandable by splitting the entire
process in three stages corresponding to the three group nodes:

• In the first stage, we created the basic ocean water shader by mixing a Glass node with a
Transparent BSDF shader on the ground of the Facing value of the Layer Weight node and
then also with a Glossy BSDF shader driven by the index of refraction of water (the IOR value
of the Fresnel node, which is 1.333 for water at 20°C). In other words, the ocean surface
nicely reflects the environment but for the faces looking towards the Camera (the Facing
factor), it is transparent. Very important is the Bottom_ocean Plane, which is used to mimic the
volume of the water and the underwater perspective and also emitting light to enhance the effect
of the sun bouncing from the ocean surface to any floating object. The result of this first stage is
shown in the following rendering:

Only the water shader rendered

• In the second stage, we created the material for the foam—a simple, white Diffuse BSDF
shader. In fact, the peculiarity of the foam shader is mostly in the frothy bumpiness (and in the
lacy-shaped outline cut by the procedural textures of the Foam_location shader). Have a look at
the rendered foam shader:

Only the foam shader rendered

• In the third stage, this group of nodes establishes the location of the foam that is mainly formed
in the higher parts of waves in the real world, behaving as a gray-scale stencil map. Basically, a
gradient texture is mapped on the Position (vertices) and multiplied for the Normal coordinates
of the ocean mesh that, being created by the Ocean modifier, is constantly changing. So, only as

the waves rise do they show foam at the top. This effect has been lessened and made a bit
random to show some foam scattered around the rest of the surface as well. This works not only
for stills but also in animation.

In the following screenshot, you can see the rendering of the resulting black-and-white mask that we
used as a stencil for foam location (the image obtained by simply connecting the mask output to an
Emission shader node to get a quick rendering and preview):

The only stencil material rendered

See also

The Blender Ocean modifier is able to create its own foam effect, generated as Vertex Colors and baked
to a series of images (frames) saved in a directory. These images are then automatically mapped on the
surface. They can be used as stencil masks instead of the Foam_location group node.

To know more about the Ocean modifier, you can take a look at the wiki documentation at
http://wiki.blender.org/index.php/Doc:2.6/Manual/Modifiers/Simulate/Ocean.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Modifiers/Simulate/Ocean

Creating underwater environment materials
In this recipe, we will create an underwater environment as shown in the following screenshot, looking
especially at a fake caustic effect projected by the water's wavy surface and from an atmospheric
perspective, obtained by a per material dedicated node group:

The underwater environment in the final rendering

Note

Note that this atmospheric perspective effect is actually a fake and it is not obtained by a volume
material. Volumetric shaders will be explained in Chapter 9, Special Materials, of this Cookbook.

Getting ready

Let's start by preparing the scene:

1. Start Blender and switch to the Cycles rendering engine. Select the Cube and go to Edit Mode.
Scale it 21 times bigger (Press A to select all the vertices, then press S, enter digit 21, and finally
press Enter). Then scale it on the z axis of 0.230 (press S, then press Z, enter .23, and press
Enter).

2. Go to the Top view (press 7 on the numeric keypad) and press Ctrl + R to add three edge loops
along the global x axis. Then press Ctrl + R again to add three edge loops along the y global
axis. The Cube is now subdivided into 16 equal parts.

3. Select all the faces, go to the Shading tab under the Tool Shelf panel to the left, and click on the
Flip Direction button to invert the normals (which must look inwards).

4. Exit Edit Mode, switch to the Objects modifiers window, and assign a Subdivision Surface
modifier. Set the type of subdivision to Simple and the Subdivisions to 4 both for the View and
the Render levels.

5. Assign a second Subdivision Surface modifier. Again, set the type of subdivision to Simple but
the Subdivisions to 2 for both the View and the Render levels.

6. Now assign an Ocean modifier. Set the values of Geometry to Displace, Spatial Size to 20,
and Resolution to 12.

7. Go to the Tool Shelf again, and in the Edit subpanel under the Tools tab, click on the Smooth
button below the Shading item.

8. Go to the Object data window and click on the + icon under the UV Maps subpanel to add a
set of UV coordinates. There is no need to unwrap the Cube. Check the Double Sided item in
the Normals subpanel at the top.

9. Make sure you are at frame 1, go to the Object modifiers window, and move the mouse over
the Ocean modifier Time slot. Press the I key to add a key for the animation. Go to frame 25,
change the Time value from 1.00 to 2.00, and press I again to set a second key.

10. In the Choose Screen layout button at the top, switch from Default to Animation. In the
Graph Editor window, press T, and in the Set Keyframe Interpolation pop-up menu, select
the Linear item under Interpolation. Then press Shift + E, and in the Set Keyframe
Extrapolation pop-up menu, select the Linear Extrapolation item to make the ocean
animation constant and continuous.

11. Rename the Cube as Ocean_surface as shown in the following screenshot:

The Cube with the assigned Ocean modifier

12. Move the Camera to a place below the ocean surface Set the Location value of X to
16.80000, Y to -2.64000, and Z to 0.95000. Then set the Rotation value of X to 92°, Y
to 0°, and Z to 90°. Next, go to the Camera view (press 0 on the numeric keypad).

13. Add a Cube, a UV Sphere, and whatever other objects you want to add floating under the ocean
surface. Assign them very simple and colored Diffuse BSDF materials. Add a big Cylinder to

the background, close to the far side of the Ocean_surface object. Immerse half of it in water
(and half will be in the air). Assign a simple Diffuse BSDF material to this item too. Smooth the
Cylinder and the UV Sphere. If you wish, assign a Subdivision Surface modifier to the UV
Sphere.

14. Now add a Plane. Place it at Location values of X as -3.22600, Y as -2.79600, and Z as
-2.24463. Enter Edit Mode and scale it 30 times bigger (press A to select all of the geometry,
then press S, enter 30 and press Enter). Using the Specials menu (press W) divide the Plane five
or six times. Activate the PET (Proportional Editing Tool), randomly select vertices, and
move them up to model the dunes of the ocean bed. Exit Edit Mode, smooth it by the Tools tab
under the Tool Shelf panel, and assign a Subdivision Surface modifier at level 2. Disable the
modifier visibility in the viewport by clicking on the eye icon. Rename it as Ocean_bed.

15. Add a Cube. In Edit Mode, divide it a couple of times (press W, and Subdivide Smooth), in
Proportional Editing mode and by selecting vertices quickly model a big round rock. Replicate
it three or four times by rotating and scaling the copies. Place them in a scattered manner on the
Ocean_bed. Smooth it and assign a Subdivision Surface modifier. Disable the modifier
visibility in the viewport.

16. Go to the World window and click on Use Nodes. Then click on the little square with a dot on
the right side of the color slot. From the menu, select Sky Texture. Click on the Sky Type
button above the little window and switch to the Preetham type.

17. Select the Lamp. In the Object data window, click on the Use Nodes button and set a
yellowish color for the light (set the values for R to 1.000, G to 0.989, and B to 0.700).
Change it to a Sun. Set the Size value to 0.010 and the Strength value to 2.500. Then set the
Rotation values of X to 22°, Y to -7°, and Z to 144°. You might know that for a Sun Lamp,
the location doesn't matter.

18. Go to the Render window. Under the Sampling subpanel, set the Clamp Direct and the Clamp
Indirect values to 1.00. Then set the Samples to 25 for both Preview and Render. Under the
Light Paths subpanel, disable both the Reflective Caustics and Refractive Caustics items.

As an alternative, just open the 9931OS_05_underwater_start.blend file and use the prepared
scene.

How to do it...

First, let's perform the easy steps by appending the materials that are already made so that we can reuse
them:

1. From the 9931OS_03_Rock_procedurals.blend file, append the Rock_proc01
material. Select the Rocks object and assign the newly appended material.

2. From the 9931OS_03_Ground.blend file, append the Ground_01 material. Select the
Ocean_bed object and assign the material.

Now let's move on to the more complex steps:

1. From the 9931OS_05_Ocean.blend file, append the Ocean_surface object, material.
Select the Ocean_surface object and assign the material. Rename it as
Ocean_surface_under.

2. With the Ocean_surface object still selected, enter Edit Mode. Go to the Face selection mode
and select only the upper faces. Then press Ctrl + I to invert the selection. In the Material
window under the Properties panel, click on the + icon on the right (Add a new material slot),
rename the new material as Null, and click on the Assign button. Now the Ocean_surface
object has two different materials: the transparent water surface and the opaque sides and
bottom (a simple white Diffuse BSDF material). Exit Edit Mode.

3. In the Material window, click on the Ocean_surface_under material to select it. In the Node
Editor window, delete the Foam and the Foam_location node groups. Also delete the two
MixRGB nodes. Just leave the Ocean_water node group connected to the second Shader input
socket of the Mix Shader node, which in turn is connected to the Material Output node.

4. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate Vector | Mapping), and an Image Texture node
(press Shift + A and navigate to Texture | Image Texture). Connect the UV output of the
Texture Coordinate node to the Vector input of the Mapping node, and the Vector output of
this node to the Vector input socket of the Image Texture node.

5. In the Image Texture node, load the caustics_tileable_low.png texture and set the
Color Space to Non-Color Data.

6. Add a Diffuse BSDF, a Transparent BSDF, and a Mix Shader node (press Shift + A and
navigate to Shader | Diffuse BSDF, and repeat the same for the other two nodes). Label them as
Diffuse_Caustics, Transparent_Caustics, and Mix Shader_Caustics.

7. Connect the Diffuse_Caustics node's output to the first Shader input socket of the Mix
Shader_Caustics node, and the Transparent_Caustics output to the second Shader input
socket. Then connect the Color output of the Image Texture node to the Color input socket of
the Transparent_Caustics shader node, and the Alpha output of the Image Texture node to
the Fac input of the Mix Shader_Caustics node.

8. Now connect the output of the Mix Shader_Caustics node to the first (and still empty) Shader
input socket of the first Mix Shader node.

9. Add a Light Path node (press Shift + A and navigate to Input | Light Path). Connect the Is
Camera Ray output to the Fac input of the first Mix Shader node. Add Frame (press Shift + A
and navigate to Layout | Frame) and parent these last nodes to it. Then label it as
FAKE_CAUSTICS as shown in the following screenshot:

The FAKE_CAUSTICS frame mixed with the Ocean_Water node group on the ground of the Is
Camera Ray output of the Light Path node

The following screenshot shows where we are so far:

The point where we are so far

What is missing now is the underwater atmospheric perspective effect. There are several ways
to obtain this, for example, by compositing a Mist pass rendered in Blender Internal or by using
a volumetric shader. However, we are going to do this with a simple node group added to every
one of the different materials.

10. Add a Camera Data node (press Shift + A and navigate to Input | Camera Data), a Math node
(press Shift + A and navigate to Converter | Math), an Emission node (press Shift + A and
navigate to Shader | Emission), and a Mix Shader node (press Shift + A and navigate to
Shader | Mix Shader). Label the Mix Shader node as Mix Shader_Fog.

11. Connect the View Z Depth output of the Camera Data node to the first Value input of the
Math node. Set the Math node's Operation to Multiply and the second Value to 0.030.
Check the Clamp option. Connect the Multiply node output to the Fac input socket of the Mix
Shader_Fog node.

12. Connect the Emission output to the second Shader input of the Mix Shader_Fog node. Set the
Color values for R to 0.040, G to 0.117, and B to 0.124.

13. Select all the new nodes and press Ctrl + G to make a group. Click and drag the first Shader
input socket of the Mix Shader_Fog node into the empty socket of the Group Input node on
the left and repeat this step by connecting the Shader output socket on the right. Press Tab to
close the group. Then rename it as Fog_underwater as shown in the following screenshot:

The FOG_UNDERWATER node group in Edit Mode

14. Add and paste the Fog_underwater node (press Shift + A and navigate to Group |
Fog_underwater) just before the Material Output node of every material (in our scene, the
Fog_underwater node will show eight users if the fake user button is selected) as shown in the
following screenshot:

The Fog_underwater node group pasted at the end of the shader

How it works...

First of all, why should we choose a Cube for the ocean surface instead of the simpler Plane?

The reason is very simple: in Cycles, the World emits light, and the only way to avoid this is to set the
color to pitch black (or by a combination of a Light Path node with the World materials, but this is
another story). In our scene, the World is set to a bright blue sky color, and with a Plane, the underwater
objects and the ocean bed would have been lit too much from the sides and the bottom the result look
natural. A Cube, on the other hand, envelops all the underwater elements, limiting the lighting to the Sun
Lamp passing through the surface, and projecting the image textured caustics. This gives a more natural-
looking result.

The image texture we assigned to the water material is used to obtain a textured transparency effect.
Right now, the water surface is actually opaque and transparent according to the black and white values
of the textures, so as to allow the Sun Lamp light to pass through and project the caustics.

Thanks to the Is Camera Ray output of the Light Path node, the caustics image texture is not directly
renderable on the ocean surface, but it nevertheless has some effect on the other materials. Because the
value of Is Camera Ray is 1, the rays starting from the Camera and directly hitting the ocean surface
can render only the clean water material plugged into the second input socket of the Mix Shader node,
while the transmitted caustics (plugged in the first Shader socket = 0) get rendered.

The Fog_underwater node group is simply an emitter material serving as the background (deep green
in this case) and mapped on every underwater material according to the z depth of the Camera (it also
works with the Camera frame, in the viewport). The density of the fog is set by the Multiply node's
second Value. For the ocean body, a value of 0.030 is good enough.

Note

The Camera z axis must not be confused with the global coordinate z axis, which is the vertical blue line
visible in the 3D view. The Camera z axis, on the other hand, is the ideal line connecting the starting
point of view to any visible element in the scene.

Note that we didn't expose the values of the nodes in the Fog_underwater group. This is because in
Edit Mode, we can tweak the internal values of just one node to automatically update all the fog group
instances assigned to the other materials. Besides, we know that the values exposed on the group
interface would overwrite the internal settings and work only for that single node instance.

The final underwater environment rendered from a different point of view

Creating a snowy mountain landscape with
procedurals
In this recipe, we will make a snowy mountain landscape by reusing existing shaders—the
Rock_procedural and the Snow materials. We will improve these materials by grouping them
and exposing the useful values. Then we will create a new group node that will work as a stencil to
depict snow in a more customizable and natural way on the rocks as shown in the following screenshot:

The snowy mountain landscape as it appears in the final rendering

Getting ready

As usual, let's start with the preparation of the scene. In this case, we start with an almost ready blend
file:

1. Start Blender and open the 9931OS_05_RockSnow_start.blend file, where there is a
scene with a placed Camera—a simply modeled Mountain object and a Plane set as Emitter.

2. Select the Mountain object, go to the Object modifiers window, and assign a Subdivision
Surface modifier. Set the levels to 2 for both View and Render.

3. Assign a second Subdivision Surface modifier. Set the levels to 1 for both View and Render.
4. Assign a Displace modifier. Click on the Show texture in texture tab to the extreme right of

the Texture name slot to go to the Textures window. Assign a Voronoi procedural texture. Set
the Size to 1.00. Go back to the Displace modifier and set the Strength to -0.200.

5. Assign a second Displace modifier. In the Texture window, assign a new Voronoi Texture and
set Distance Metric to Manhattan and Size to 0.50. Back in the Displace modifier panel, set
the Strength to -0.050.

6. Assign a third Displace modifier, select a Clouds texture, and set Noise to Hard and the
Displace modifier's Strength to 0.040.

7. Assign a fourth Displace modifier. In the Texture window, assign a Musgrave procedural
texture. Set the Type to Hetero Terrain, Dimension to 0.650, Lacunarity to 2.000,
Octaves to 0.500, Offset to 0.250, Basis to Voronoi F1, and Size to 2.00. Back in the
Displace modifier panel, set the Strength to 0.300.

8. Assign a fifth Displace modifier. In the Texture window, assign a Distorted Noise texture. Set
the Noise Distortion to Voronoi F1, Basis to Improved Perlin, Distortion to 2.000, and Size
to 3.30. Back in the Displace modifier panel, set the Strength to 0.100 as shown in the
following screenshot:

The mountain object obtained using different settings—without and with the several modifiers

9. Now disable the Display modifier in viewport button (the eye icon) of each modifier.
10. Go to the World window and click on the Use Nodes button. Then click on the little square

with a dot on the right side of the Color slot. From the pop-up menu, select Sky Texture. On
the Background node, set the Strength value to 1.200.

11. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and paste it
between the Background and the World Output nodes. Switch the link of the Background
node with the second input socket.

12. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), an Environment Texture
node (press Shift + A and navigate to Texture | Environment Texture), and a new Background
node (press Shift + A and navigate to Shader | Background).

13. Connect the Generated output of the Texture Coordinate node to the Vector input socket of
the Mapping node, and the output of this node to the Vector input socket of the Environment

Texture node. Connect the Color output of this node to the Color input socket of the second
Background node.

14. Connect the output of the second Background node to the first input socket of the Mix Shader
node, and set its Strength to 0.250. Add a Light Path node (press Shift + A and navigate to
Input | Light Path). Connect the Is Camera Ray output to the Fac input socket of the Mix
Shader node.

15. Go to the Environment Texture node and click on the Open button. Browse to the texture
folder and load the WinterForest_Env.hdr image (it's a free, high-dynamic-range image
downloaded from the sIBL Archive at http://www.hdrlabs.com/sibl/archive.html, and licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License).

16. Go to the Mapping node and set the Rotation value of Z to 19° as shown in the following
screenshot:

The World network setting

17. Go to the Render window, and under the Sampling subpanel, set both the Clamp Direct and
Clamp Indirect values to 1.00. Set the Samples to 10 for Preview and 25 for Render. Under
the Light Paths subpanel, disable both the Reflective Caustics and Refractive Caustics items
and set the Filter Glossy to 1.00.

How to do it...

We are going to create the scene and materials by dividing the process into four stages:

• Appending and grouping rock and snow shaders
• Mixing the material groups

http://www.hdrlabs.com/sibl/archive.html

• Creating a stencil shader
• Adding an atmospheric perspective

So, let's start with the first stage.

Appending and grouping the rock and the snow shader

Let's append the required (and previously made) materials, and group them for convenience:

1. From the 9931OS_03_snow.blend file, append the Snow_01 material, and for now, assign
it to the Mountain object.

2. In the Node Editor window, select all the nodes except Texture Coordinates and Material
Output, and press Ctrl + G to group them.

3. Place the SNOW_COLOR frame to the right of the SNOW_BUMP frame. Select the Group
Output node, and in the (press N) Properties panel of the Node Editor window, delete the
Value output.

4. Add a Bump node (press Shift + A and navigate to Vector | Bump). Connect the Value output
of the Math04 node inside the SNOW_BUMP frame to the Height input socket of the Bump
node. Then connect the Normal output of the Bump node to the Normal input sockets of the
Diffuse BSDF, Glossy BSDF, and Translucent BSDF shaders inside the SNOW_COLOR
frame.

5. Click on the Strength socket of the Bump node and drag it into the empty socket on the Group
Input node. Rename the socket (automatically named Strength) as Bump_Strength. Repeat
this step for the Distance socket and rename it as Bump_Distance.

6. Drag the Color input socket of the Diffuse BSDF node into the empty socket of the Group
Input node. Move the new socket to the top of the list and rename it as Snow_Color. Drag the
Color input of the Glossy BSDF shader node and connect it to the same Snow_Color socket.

7. Drag the Color input socket of the Translucent BSDF node into the empty socket of the Group
Input node. Move the new socket upwards, just below the Snow_Color socket, and rename it
as Transl_Color.

8. Move the Vector socket on the Group Input node to the bottom of the list, and close the group.
Rename it as Snow_02 and check the fake user option. Click on the Bump_Strength slider
and type 1.500 as shown in the following screenshot:

Making a node group of the appended snow material

9. From the 9931OS_03_Rock_procedurals.blend file, append the Rock_proc01
material. Go to the Material datablock button on the Node Editor toolbar and assign it to the
Mountain object.

10. In the Node Editor window, select all the nodes except the Texture Coordinates and the
Material Output nodes. Press Ctrl + G to group them. Set the Location values in the Mapping
node to 0.000 for all the three axes.

11. Add a Math node (press Shift + A and navigate to Converter | Math). Set the Operation to
Multiply and the first Value to 1.000. Press Shift + D to duplicate it, and do this three times.
Connect the Value outputs of each of the four Multiply-Math nodes to the Scale input sockets
of the four Noise Texture nodes inside the BUMP frame.

12. Now, in the second Value slot of each Multiply-Math node, set 10.000 for Noise Texture01,
15.000 for Noise Texture02, 37.500 for Noise Texture03, and 112.500 for Noise
Texture04.

13. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture),
switch the Coloring to Cells, and connect its Fac output to the first Value input socket (the
socket with value of 1.000) of each of the four Multiply-Math nodes.

14. Connect the Voronoi Texture node's Vector input socket to the Vector output of the Mapping
node and drag the link from its Scale input socket to the empty socket of the Group Input
node. Rename the new socket as Rock_Scale as shown in the following screenshot:

Adding Math nodes to tweak the exposed scale values of the textures for the procedural rock
material

15. Now go to the COLOR frame and delete the RGB node. Then select the Mix03 node and press
Ctrl + X to delete it, maintaining the connection of the Darken node to the Color2 socket of the
Add node.

16. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), label it as Mix03
again, and paste it between the RGB Curves node and the Diffuse BSDF shader. Set the Blend
Type to Color and connect its output to the Color input socket of the Glossy BSDF shader.

17. Press Shift + D to duplicate the Mix03 node. Label the duplicate as Mix04 and paste it between
the RGB Curves and the Mix03 nodes. Set its Blend Type to Multiply and the Color2 to pure
black. Then select both the Mix03 and Mix04 nodes and parent them to the COLOR frame as
shown in the following screenshot:

Adding color variations to the rock material

18. Click on the Color2 input socket of the Mix03 node. Drag it to the empty socket of the Group
Input node. Move the new socket to the top of the list and rename it as Rock_Color.

19. Repeat the preceding step with the Fac socket of the Mix04 node, and rename the new socket as
Rock_Darkness. Move the Vector socket on the Group Input node to the bottom of the list.

20. Add a new MixRGB node (press Shift + A and navigate to Color | MixRGB) and a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp). Connect the
Color output of the Mix03 node to the Color1 input socket of the new MixRGB node, and the
Color output of Mix01 to the Color2 input socket.

21. Connect the Color output of the new MixRGB node to the Fac input socket of the ColorRamp
node. Then connect the Color output of this node to the empty socket of the Group Output
node. Go to ColorRamp and set the position of the black color stop to 0.500 and the position
of the white color stop to 0.545 as shown in the following screenshot:

Creating a Color output in the node group to be used later to detail the stencil effect

22. Drag the Strength and the Distance sockets of the Bump node to the Group Input node, and
rename them as Bump_Strength and Bump_Distance, respectively. Move the Vector
socket to the bottom. Press Tab to exit Edit Mode.

23. Rename the group as Rock_proc_02, and enable the fake user. Set the Rock_Color values
for R 0.078, G to 0.067, and B to 0.056; the Rock_Scale to 0.600; and the
Rock_Darkness to 0.469 as shown in the following screenshot:

The overall view of the procedural rock node group in Edit Mode

Mixing the material groups

Now we can start to build the real shader by mixing the procedural rock and snow materials:

1. Press Shift + A with the mouse in the Node Editor window and add the Snow_02 group node
(press Shift + A and navigate to Group | Snow_02). Then rename the material as Rock_Snow
in the Node Editor toolbar.

2. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and paste it
between the Rock_proc_02 group node and the Material Output node. Connect the Shader
output of the Snow_02 group node to the second Shader input socket of the Mix Shader node.

3. Connect the Object output of the Texture Coordinate node to the Vector input socket of the
Snow_02 group node as shown in the following screenshot:

Starting to build the snowy rock mountain material

Creating the stencil shader

At this point, both the materials are assigned to the Mountain object, but if you render the preview now,
they will appear on the whole mesh surface as a mixture of rock and snow. We must build a separator to
establish where the surface will show only the rock and where it will show only the snow:

1. Add a Geometry node (press Shift + A and navigate to Input | Geometry), two Mapping nodes
(press Shift + A and navigate to Vector | Mapping), two Gradient Texture nodes (press Shift +
A and navigate to Texture | Gradient Texture), and a ColorRamp node (press Shift + A and
navigate to Converter | ColorRamp).

2. In the Properties panel of the Node Editor, label these four nodes as follows: Mapping01,
Mapping02, Gradient Texture01, Gradient Texture02, and ColorRamp01.
Connect the Normal output of the Geometry node to the Vector input socket of the
Mapping01 node and the Position output to the Mapping02 node. Then connect the
Mapping01 node to the Gradient Texture01 node and the Mapping02 node to the Gradient
Texture02 node.

3. Leave the Gradient Type of the Gradient Texture01 node as Linear and set the Gradient
Type of the Gradient Texture02 to Quadratic. In the Mapping01 node, set the Location value
of X as -0.210 and the Rotation value of Y as 90°. In the Mapping02 node, set only the
Rotation value of Y as 90°.

4. Add three MixRGB nodes (press Shift + A and navigate to Color | MixRGB). Set the Fac of
the first one to 0.000 and label it as Add01. Then connect the Color outputs of both the
Gradient Texture nodes to the Color1 and to the Color2 input sockets.

5. Connect the output of the Add01 node to the Fac input socket of the ColorRamp01 node. Then
set its Interpolation to B-Spline and move the black color stop to 0.600 position. Add a new
color stop, set the color to pure black, and move it to the 0.700 position. Then move the
position of the white color stop to 0.800.

6. Label the other two MixRGB nodes as Burn01 and Burn02. Connect the Color output of the
ColorRamp01 node to the Color1 input socket of the Burn01 node, and the Color output of
this node to the Color1 input of the Burn02 node. Set the Blend Type for both the nodes to
Burn.

7. Add a Frame (press Shift + A and navigate to Layout | Frame) and parent all of these nodes to
it. Label the frame as SLOPE as shown in the following screenshot:

The SLOPE frame

8. Now press Shift + D to duplicate one of the Mapping nodes (press Alt + P to unparent it from
the frame), and move it to under the SLOPE frame. Label it as Mapping03 and change the
Location value of X to -0.600.

9. Add a Noise Texture, a Voronoi Texture, and a Musgrave Texture node (press Shift + A and
navigate to Texture | Noise Texture, repeat the same for all other nodes) and place them in a
column next to the Mapping03 node. Set the Noise Texture node's Scale value to 4.600. Set
the Voronoi Texture node's Coloring to Cell and the Scale to 28.700. Set the Musgrave
Texture node's type to Ridged Multifractal, the Scale to 3.500, Detail to 16.000,
Dimension to 0.900, Lacunarity to 0.600, Offset to 0.500, and Gain to 5.000.

10. Connect the Vector output of the Mapping03 node to the Vector inputs of the three textures.
Then add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend
Type to Burn, and label it as Burn03.

11. Connect the Fac outputs of the Noise Texture and Voronoi Texture nodes to the Color1 and
Color2 input sockets of the Burn03 node. Press Shift + D to duplicate the Burn03 node, label it
as Burn04, and set its Fac value to 1.000. Connect the Color output of the Burn03 node to
the Color1 input socket of the Burn04 node. Then connect the Fac output of the Musgrave
Texture node to its Color2 input socket.

12. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp02, and paste it between the Burn03 and the Burn04 nodes. Set Interpolation to
Ease and move the white color marker to the 0.487 position.

13. Add a Frame (press Shift + A and navigate to Layout | Frame), select all of these nodes and
then the frame, and press Ctrl + P to parent them. Label the frame as DENSITY as shown in the
following screenshot:

The DENSITY frame

14. Box-select the two frames (with all the nodes inside) and press Ctrl + G to create a group. Add a
MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend Type to Soft
Light, and set the Fac value to 1.000. Connect the Color output of the Burn02 node inside
the SLOPE frame to the Color1 input socket. Then connect the Color output of the last
Burn04 node inside the DENSITY frame to the Color2 input socket.

15. Drag the Color output of the Soft Light node into the empty socket of the Group Output node
to create a new Color output on the interface. Then add a new ColorRamp (press Shift + A and
navigate to Converter | ColorRamp), label it as ColorRamp04, and paste it between the Soft
Light and the Group Output nodes. Set Interpolation to Ease, the black color stop to the
0.500 position, and the white color stop to the 0.600 position.

16. Go to the SLOPE frame. Click and drag the Fac socket of the Add01 node to the empty socket
of the Input Group node. Rename the new input as Snow_amount.

17. Go to the DENSITY frame and attach the Vector input of the Mapping03 node to the empty
socket of the Input Group node. Move it up by clicking on the little arrow icon in the
Properties panel, and press Tab to close the group. Rename it as Separator as shown in the
following screenshot:

The outputs of the SLOPE and DENSITY frames added inside the Separator node group

18. Connect the Object output of the Texture Coordinate node to the Vector input socket of the
Separator node group. For the rendering of the image at the beginning of this recipe, I've set
the Snow_amount value to 0.724.

19. Add one more MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend
Type to Add, and connect the Color output of the Separator group node to the Color1 input
socket. Then connect the Color output of the Rock_proc_02 group node to the Color2 input
socket. Set the Fac value to 1.000 and connect the Color output to the Fac input socket of the
Mix Shader node.

Adding the atmospheric perspective

The final step we can do to improve our material is to append the Fog_underwater node group, from
the 9931OS_05_underwater_final.blend file located in Nodetree. Rename this node
Atmos_persp and paste it just before the Material Output node. Then press Tab to open the group
by entering Edit Mode. Set the Multiply node value to 0.010 and the color values of the Emission
shader for R to 0.078, G to 0.133, and B to 0.250 as shown in the following screenshot:

The overall network and the atmospheric perspective node group added at the end of the shader. Note
the Color output of the Rock material added to the output of the Separator to work as stencil or blending

factor.

How it works...

Now let's see how this material actually works, by dividing the creation's process into three parts:

• Firstly, we appended the Snow material and made a group, exposing the required properties and
changing the way the bump works. In other words, we deleted the output to the Displacement
input of the Material Output node and implemented a per shader bump.

This doesn't really make a big difference in the final rendering. Just be aware that a bump piped
in the Displacement socket can react to Ambient Occlusion (which we didn't use in the scene,
by the way), but this is not true with the per shader bump.

• Secondly, we appended the Rock_procedural material and made a group of it as well.
Again, all the necessary values were exposed, and although we kept the material unaltered in
this scene, the group could now be easily reused for different kinds of rock in other projects or
on different objects.

We added a Math node set to Multiply for every texture Scale value that needed to be driven
by one single exposed input. The first Value of the Math node, set to the original scale value,
gets multiplied by the driven second Value, thus increasing or decreasing (for values smaller
than 1.000) the final scale value.

• Thirdly, we built Separator, a node group outputting gray-scale values that are connected to
the Fac input of the Mix Shader node, which works as a stencil map, separating the two
different materials on the mesh surface accordingly to black and white values. The two gradient
textures in the SLOPE frame, mapped on the position and the normals of the mesh and then
blended together by the Burn nodes, make the snow material (the white color value of the
stencil map) appear more on the mesh's faces that have more a horizontal trend than a vertical
one. Thanks to the Add01 node, mixing the gradients driven by the exposed input
Snow_amount and influencing the gradient of the ColorRamp01 node, it's also possible to set
the quantity of snow (the white color in the stencil) on the whole object. The mixed textures in
the DENSITY frame make the separation line between black and white more frayed and
realistic, and so also the Color output of the Separator group that is added to a Color output of
the Rock shader just before being connected to the Fac input of the Mix Shader. Have a look at
the following screenshot:

The only mask and the Rendered versions of three different values of the Snow_amount slider

In the preceding set of screenshots, you can see the different effects of the 0.000, 0.700, and 1.000
values of the Snow_amount slider. The black-and-white mask works as a separator between the rock
and the snow materials.

Creating a realistic Earth as seen from space
In this recipe, we will create a realistic Earth as shown in the following screenshot, using both image
textures from the Web and some procedurals:

The Earth as it appears in the final rendering

Getting ready

The image textures provided with this Cookbook have generally been heavily down-scaled and are good
for demonstration purposes only (in this case, for a very distant Earth render). For better results with this
recipe, replace these low-resolution images with high-resolution versions that you can find at these
addresses:

• http://www.shadedrelief.com/natural3/pages/textures.html
• http://www.shadedrelief.com/natural3/pages/clouds.html
• http://celestia.h-schmidt.net/earth-vt/
• http://www.celestiamotherlode.net/catalog/earth.php

Before you download anything, always take a look at the license of the images provided by any site you
can find to ensure that they are released as freely usable, especially if you are going to use them for
commercial work. All the preceding links should be okay, but on the Internet, things can change quite
quickly, so double-check!

You will need at least five image maps for this recipe: Earth-color, the color of the land or sea in
daylight; Earth-night, the color of the land or sea at night (usually provided with superimposed city
lights); Earth-bump, a gray-scale, high map of the continents; Earth-spec, an outline with the continents
in black and the water masses perfectly white; and Clouds, a gray-scale map of the clouds as shown in
the following screenshot:

http://www.shadedrelief.com/natural3/pages/textures.html
http://www.shadedrelief.com/natural3/pages/clouds.html
http://celestia.h-schmidt.net/earth-vt/
http://www.celestiamotherlode.net/catalog/earth.php

The five image textures

Actually, Cycles can handle very big textures pretty well, even 16 K images (that is, images made by
16.000 pixels for the longest side), so you can use them at the best resolution you can find. Be aware
that the bigger the resolution of the textures, the longer the rendering times, especially if they are used as
bump maps.

Now perform the following steps:

1. Start Blender and switch to the Cycles Render engine.
2. Delete the default Cube and add a UV Sphere (with the mouse arrow in the 3D view, press Shift

+ A and navigate to Mesh | UV Sphere). In the Outliner, rename it as Earth_Surface.
3. With the mouse arrow in the Camera view, press the 1 key on the numeric keypad to go to the

Front view. Then press the 5 key to switch to Orthogonal. Next, press Tab to enter Edit Mode,
followed by A to select all the vertices. Finally, press U. In the UV Mapping pop-up menu,
select Sphere Projection. Then exit Edit Mode.

4. Make sure you place the 3D Cursor at the center of the UV Sphere. Then add an Empty (press
Shift + A and navigate to Empty | Arrows). In the Object data window, set its Size to 2.00
and rename it as Empty_terminator. Go to the Object Constraints window and assign a
Damped Track constraint to the Empty_terminator. In the Target field, select the Sun item
(the Lamp), and in the To field, click on the X button.

5. Reselect the UV Sphere and go to the UV Maps subpanel under the Object data window.
Click on the + icon button to add a new UV coordinates layer. Rename it as
UVMap_terminator.

6. Go to the Object modifiers window and assign a Subdivision Surface modifier first, followed
by a UVProject modifier. For this modifier, in the UV Map field, select the
UVMap_terminator item. In the Object to use as projector transform field, select the
Empty_terminator.

7. Press Shift + D and press Enter to duplicate the Earth_Surface object. In the Transform
subpanel under the Properties panel to the right (press N if this is not activated), set the Scale
value for X, Y, and Z to 1.001. Rename it as Earth_Clouds.

8. Duplicate it again, set the Scale value to 1.002, and rename it as Earth_Atmosphere.
9. Add a new Empty (press Shift + A and navigate to Empty | Plain Axes) and rename it as

Empty_Earth. In the Object data window, set its Size to 2.00. Press Shift and select the
Earth_Surface, Earth_Clouds, Earth_Atmosphere, and the Empty_Earth objects. Press Ctrl
+ P and click on Object to parent the three UV Spheres to Empty_Earth.

10. Select Empty_Earth, and in the Transform panel, set the Rotation values of X to 18.387°,
Y to 0.925°, and Z to -4.122° (you can obviously rotate the Empty_Earth as you wish,
but this helps provide a nice point of view on the specular effect showing on the oceans).

11. Select the Camera, and in the Transform panel, set the Location values of X to -0.64000, Y
to -4.70000, and Z to 0.12000. Then set the Rotation values of X to 89°, Y to 0°, and Z
to -9°. Go to the Object data window and change the Focal Length to 60.000 (millimeters).
Press the 0 key on the numeric keypad to go to the Camera view.

12. Go to the World window and change the background Color to pure black.
13. Select the Lamp and change it to a Sun. Set the Size to 0.050 and the Strength to 10.000.

Set the Color values for R to 1.000, G to 0.902, and B to 0.679. In the Transform panel,
set the Location values of X to 158.00000, Y to -27.00000, and Z to 107.00000. For
Rotation, set X to 1.5°, Y to 56°, and Z to -8° (Sun lamps don't need a location, but in this
case, we need it to establish a target for a later-to-come day/night terminator trick).

14. Go to the Render window. Under the Sampling subpanel, set the Clamp Direct and Clamp
Indirect values to 1.00, the Preview samples to 20, and the Render samples to 50.

15. Go to the Scene window. In the Color Management subpanel, click on the Use Curves item.
Set the Exposure value to 1.000. Then click inside the curve window to add a new point, and
place it at position X as 0.61149 and Y as 0.71250. Then set the value of the B channel for
the White Level between 0.800 and 0.850.

How to do it...

After the creation of the 3D scene and the setting of the lighting, let's go for the materials, starting with
the planet's surface.

The planet surface

In the Outliner (just temporarily), hide the Earth_Clouds and Earth_Atmosphere objects by clicking
on the little eye icons to the right side of the names. This is to see only the Earth_Surface in the
viewport, rendered and updated in real time as we work on the material:

1. Select the Earth_Surface object. Click on the New button in the Material window under the
Properties panel or in the Node Editor toolbar. Rename the material as Surface.

2. In the Material window under the main Properties panel, switch the Diffuse BSDF shader with
a Mix Shader node. In the first Shader slot, load a new Diffuse BSDF shader and set its
Roughness value to 1.000. In the second Shader slot, load a Glossy BSDF node. Then set its
Roughness value to 0.700 and Distribution to Beckmann. Set the Fac value of the Mix
Shader to 0.100.

3. Press N in the Node Editor window to open the Active Node panel. Label the shaders as
Diffuse_Lands and Glossy_Lands and the Mix Shader as Mix Shader_Lands.

4. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
connect its Color output to both the Color input sockets of the Diffuse_Lands and
Glossy_Lands shaders. Click on the Open button on the Image Texture node, browse to your
textures directory, and load the Earth-col_low.png image (or a high-resolution
version, if available). Label the image node as Color_Day.

5. Add a new Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
a Bump node (press Shift + A and navigate to Vector | Bump). Connect the Color output of this
Image Texture node to the Height input socket of the Bump node. Then connect the Normal
output of the Bump node to the Normal input sockets of both the Diffuse_Lands and the
Glossy_Lands nodes.

6. Label the second Image Texture node as Bump. Then click on its Open button and load the
Earth-bump_low.png image. Set the Color Space to Non-Color Data. Label the Bump
node as Bump_Lands and set the Strength value to 0.020.

7. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and paste it between
the Color_Day and the Diffuse_Lands nodes. Set the Blend Type to Color, the Fac value to
0.300, and the Color2 value for R to 0.072, G to 0.127, and B to 0.578.

8. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the two
image texture nodes (Color_Day and Bump), the Color node, Bump_Lands node,
Diffuse_Lands and Glossy_Lands shaders, and then the Frame. Press Ctrl + P to parent them.
Label the Frame as LANDS as shown in the following screenshot:

The LANDS frame

9. Now add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture), a
Bump node (press Shift + A and navigate to Vector | Bump), a Diffuse BSDF shader (press
Shift + A and navigate to Shader | Diffuse BSDF), and a Glossy BSDF shader (press Shift + A
and navigate to Shader | Glossy BSDF).

10. Set the Noise Texture node's Scale value to 1000.000 and connect its Color output to the
Height input socket of the Bump node. Label this node as Bump_Seas, set the Strength value
to 0.015, and connect its Normal output to the Normal input sockets of the new Diffuse
BSDF and Glossy BSDF shaders. Label them as Diffuse_Seas and Glossy_Seas and set
the Glossy BSDF node's Roughness value to 0.150.

11. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the new
nodes and then the Frame. Press Ctrl + P to parent them. Rename the frame as SEAS.

12. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as Mix
Shader_Seas, and place it just under the Mix Shader_Lands node. Set the Fac value to
0.100. Connect the output of the Diffuse_Seas node to the first Shader input, and the output
of the Glossy_Seas node to the second Shader input socket.

13. Press Shift + D to duplicate the Mix Shader_Seas node and paste it between the Mix
Shader_Lands and the Material Output nodes. Label it as Mix Shader_Surface.
Connect the output of the Mix Shader_Seas node to its second Shader input socket.

14. Add a new Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
rename it as Spec/mask. Connect its Color output to the Fac input socket of the Mix
Shader_Surface node. Click on the Open button to load the Earth-spec_low.png image.
Set the Color Space to Non-Color Data.

15. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the Spec/
mask node and then the Frame. Press Ctrl + P to parent them. Rename the frame as
SEPARATOR LANDS/SEAS.

16. Now click on the Color output of the Color_Day image texture inside the LANDS frame, and
drag it so that it is connected to the Color input of the Diffuse_Seas shader node inside the
SEAS frame.

17. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) to the SEAS frame
(just add it and parent it to the frame). Paste it just before the Diffuse_Seas shader. Switch the
Color1 connection to the Color2 input socket. Then set the Color1 values for R to 0.002, G
to 0.002, and B to 0.022.

18. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) to the SEAS
frame and label it as ColorRamp01. Connect the Color output to the Color input of the
Glossy_Seas shader. Set Interpolation to B-Spline. Change the black color stop (index 0) to
pure white and the white color stop values (index 1) for R to 0.072, G to 0.127, and B to
0.578, with Alpha value set to 0.000. Move it to 0.150 position. Click on the + icon button
to add a new color stop. Change its Color values for R to 0.965, G to 0.462, B to 0.223,
and Alpha to 1.000. Move it to 0.075 position.

19. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) to the SEAS
frame. Connect the Facing output to the Fac input socket of the ColorRamp01 node and the
Fac input socket of the MixRGB node. Set the Blend factor to 0.200 as shown in the
following screenshot:

The LANDS and the SEAS frames connected and separated by the simple SEPARATOR LANDS/
SEAS

20. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture), a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), a MixRGB node
(press Shift + A and navigate to Color | MixRGB), and an Emission shader (press Shift + A and
navigate to Shader | Emission). Label the Image Texture node as Color_Night and the
ColorRamp as ColorRamp02.

21. Connect the Color_Night node's Color output to the Fac input socket of the ColorRamp02
node, and the Color output of this node to the Color1 input socket of the MixRGB node. Then
connect the MixRGB node's output to the Color input of the Emission node.

22. In the Color_Night image texture node, load the Earth-night_low.png image. Set the
ColorRamp02 node's Interpolation to B-Spline and move the black color stop to 0.250
position. Then move the white color stop to the 0.495 position. Set the MixRGB node's Blend
Type to Multiply, the Fac value to 0.700 and the Color2 values for R to 1.000, G to
0.257, and B to 0.090. Set the Emission node's Strength value to 1.000.

23. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select these new
nodes and then the Frame. Press Ctrl + P to parent them. Rename the frame as NIGHT. This is
shown in the the following screenshot:

The NIGHT frame

24. Add an Attribute node (press Shift + A and navigate to Input | Attribute), a Gradient Texture
node (press Shift + A and navigate to Texture | Gradient Texture) and a ColorRamp node
(press Shift + A and navigate to Converter | ColorRamp). Connect the Vector output socket of
the Attribute node to the Vector input socket of the Gradient Texture node, and the Color
output of this node to the Fac input socket of the ColorRamp node.

25. In the Name slot of the Attribute node, write UVMap_terminator. Set the ColorRamp
node's Interpolation to B-Spline. Then move the black color stop to 0.500 and the white

color stop to the 0.000 position. Click on the + icon button to add a new color stop. Set its
color to pure black as well.

26. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select these three
nodes and then the frame. Press Ctrl + P to parent them. Rename the frame as TERMINATOR.

27. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as Mix
Shader_Terminator, and paste it just between the Mix Shader_Lands and the Mix
Shader_Surface nodes. Connect the output of the Emission node inside the NIGHT frame to
its second Shader input socket, and the Color output of the ColorRamp inside the
TERMINATOR frame to its Fac input socket as shown in the following screenshot:

The TERMINATOR frame added to the surface material network

The clouds

As second planet material, let's go with the clouds by performing the following steps:

1. Now go to Outliner, unhide the Earth_Clouds sphere, and select it. Click on New in the
Material window under the main Properties panel or in the Node Editor toolbar. Rename the
material as Clouds.

2. In the Material window under the main Properties panel, switch the Diffuse BSDF shader with
a Mix Shader node. Label it as Mix Shader_Clouds, and in the first Shader slot, load a
Transparent BSDF shader. In the second Shader slot, load a new Diffuse BSDF shader. Set
the color of both the shaders to pure white.

3. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture) and a
Bump node (press Shift + A and navigate to Vector | Bump).

4. Label the Image Texture node as Clouds and the Bump node as Bump_Clouds. Connect
the Bump node's output to the Normal input of the Diffuse_Clouds node. Set the Strength
value to 0.020.

5. Click on the Open button of the Clouds image texture node and load the Clouds_low.png
image. Set the Color Space to Non-Color Data.

6. Press Shift + D to duplicate the Clouds image node. Then add a Texture Coordinate node
(press Shift + A and navigate to Input | Texture Coordinate) and a Mapping node (press Shift
+ A and navigate to Vector | Mapping). Connect the UV output of the Texture Coordinate
node to the Mapping node, and the output of this node to the Vector input socket of the
duplicated Clouds image texture node.

7. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and connect the output
of both the two Clouds image texture nodes to the Color1 and Color2 input sockets. Set the
Blend Type to Add and the Fac value to 1.000. Connect the Color output to the Height input
socket of the Bump_Clouds node and to the Fac input socket of the Mix Shader_Clouds node.

8. In the Mapping node, set the Rotation values of X to 32°, Y to 17°, and Z to 5°.
9. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select the nodes

and then the Frame. Then press Ctrl + P to parent them. Rename the frame as CLOUDS. This is
shown in the screenshot:

The CLOUDS material

The atmosphere

The third planet material is the atmosphere layer:

1. In Outliner, unhide the Earth_Atmosphere sphere and select it. Click on New in the Material
window under the main Properties panel or in the Node Editor toolbar. Rename the new
material as Atmosphere.

2. In the Material window on the right, under the main Properties panel, switch the Diffuse
BSDF shader with a Mix Shader node. Label it as Mix Shader_Atmos1, and in the first
Shader slot, load a Transparent BSDF shader (label it Transparent_Atmos1). In the
second Shader slot, load a Diffuse BSDF shader (label it Diffuse_Atmos1).

3. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp). Connect the
Facing output of the Layer Weight node to the Fac input of the ColorRamp (label it
ColorRamp03). Set the ColorRamp03 node's Interpolation to B-Spline, move the black
color stop to the 0.395 position, and set the Alpha value to 0.000. Set the color of the white
color stop (index 1) for R to 0.072, G to 0.127, and B to 0.578.

4. Connect the Color output of the ColorRamp03 node to the Color input socket of the
Diffuse_Atmos1 node, and the Alpha output to the Fac input of the Mix Shader_Atmos1
node. Set the Layer Weight node's blend factor to 0.500.

5. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select these nodes
and then the Frame. Then press Ctrl + P to parent them. Rename the frame as ATMOSPHERE.

6. Add an Attribute node (press Shift + A and navigate to Input | Attribute), a Gradient Texture
node (press Shift + A and navigate to Texture | Gradient Texture), and a ColorRamp node
(press Shift + A and navigate to Converter | ColorRamp). Connect the Vector output socket of
the Attribute node to the Vector input socket of the Gradient Texture node, and then the
Color output of this node to the Fac input socket of the ColorRamp (label it ColorRamp04).

7. In the Name slot of the Attribute node, type UVMap_terminator. Set the ColorRamp04
node's Interpolation to B-Spline. Then move the black color stop to the 0.400 position and
the white color stop to the 0.600 position, but change this stop's color to black as well. Click
on the + icon button to add a new color stop. Set its color to pure black and move it to the
0.450 position. Click on the + icon button again to add a new color stop. Set its color to pure
black and move it to the 0.550 position. Set the Alpha of all the four black color stops to the
0.000. Click once more on the + icon button to add a new color stop. Set its color values for R
to 1.000, G to 0.047, and B to 0.005. Set Alpha value to 0.100 and move it to the
0.500 position.

8. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), a Transparent
BSDF node (press Shift + A and navigate to Shader | Transparent BSDF), and an Emission
node (press Shift + A and navigate to Shader | Emission). Label them as Mix
Shader_Atmos2, Transparent_Atmos2, and Diffuse_Atmos2.

9. Connect the Transparent_Atmos2 node's output to the first Shader input socket of the Mix
Shader_Atmos2 and the Diffuse_Atmos2 output to the second Shader input. Then connect the
Color output of the ColorRamp04 node to the Color input socket of the Diffuse_Atmos2 node
and the Alpha output to the Fac input socket of the Mix Shader_Atmos2 node.

10. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select these nodes
and then the Frame. Then press Ctrl + P to parent them. Rename the frame as
RED_TERMINATOR.

11. Add a final Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as
Mix Shader_Atmos3, and set the Fac value to 0.950. Connect the output of the
RED_TERMINATOR frame to the first Shader input socket and the output of the

ATMOSPHERE frame to the second Shader input socket. Then connect the output of the Mix
Shader_Atmos3 node to the Surface input socket of the Material Output node as shown in
the following screenshot:

The RED_TERMINATOR and the ATMOSPHERE frames

How it works...

The three overlapping UV Spheres technique is quite old, and (at least for what relates to Blender) dates
back to almost 2004—more precisely to the How to make a realistic planet in Blender(2004) tutorial I
wrote at that time for Blender version 2.23/2.30 (http://www.enricovalenza.com/rlpl.html). That tutorial
is now outdated, but the technique and basic concepts still work, even in Cycles. Hence, we get the
planet surface on the smaller of the spheres, a clouds layer on a slightly bigger sphere, and the
enveloping atmospheric Fresnel effect on the biggest sphere.

We divided the material creation process into the three stages, corresponding to the three layers/spheres.
First, we built the more complex of all the three shaders that is the Surface material:

• From step 1 to step 8, we built the shader for the continents—simple image textures connected
as color factors to a Diffuse BSDF and Glossy BSDF shaders. From step 9 to step 13, we made
the basic shader for the oceans.

• In steps 14 and 15, we split the continents component from the oceans using the Earth-spec
map, a black-and-white image working as a stencil for the factor input of the Mix
Shader_Surface node. We also connected the Earth-color map to the SEAS diffuse shader
to bring color back to the oceans.

http://www.enricovalenza.com/rlpl.html

• From step 16 to step 19, we added a ColorRamp node to the SEAS frame, driven by a Facing
fresnel node. This was done to enhance the color of the water's specularity (according to what
NASA's satellite photos often show). A deep blue color was mixed with the color image map by
a MixRGB node. Thanks to the Facing fresnel node, the blue color was mapped on the mesh
faces perpendicular to the point of view, resulting in darker water masses towards the center of
the Earth sphere.

• From step 20 to step 23, we built the night shader. The Earth-night image was clamped
(contrasted) by a ColorRamp node, and the resulting brightness values were multiplied by a
reddish color in the MixRGB node. All of this was then assigned to an Emission shader. The
night side of the Earth surface shows only in the shadow part of the sphere thanks to the
Empty_terminator trick.

• From step 24 to step 27, we built the day/night terminator stencil.
• Then, from step 28 to step 36, we built the Clouds layer on the second sphere. We added more

variety to the single Clouds_low.png image by superimposing and offsetting (the mapping
rotation of) a copy of the same cloud image.

• From step 37 to step 47, we built the Atmosphere layer on the third (bigger) sphere, with the
Fresnel atmospheric effect and the reddish terminator.

As you have probably noticed, we didn't use any Texture Coordinate or Mapping nodes to map the
image maps. This is because the UV Spheres had been unwrapped with Image Texture nodes. The
existing UV coordinate layer was automatically taken into account by Cycles for the mapping.

For the ocean bump, which was obtained by the Noise procedural, the Generated mapping option was
automatically used.

Thanks to the Damped Track constraints, which were targeted to the position of the Sun lamp, we could
use the Empty_terminator object as a UV coordinates projector for the day/night division on the planet
surface and for the red colored transition zone (the red terminator) in the Atmosphere layer.

Chapter 6. Creating More Complex Man-made
Materials
In this chapter, we will cover the following recipes:

• Creating cloth materials with procedurals
• Creating a leather material with procedurals
• Creating a synthetic sponge material with procedurals
• Creating a spaceship hull shader

Introduction
In this chapter, we will see some more complex artificial materials, starting with the relatively simpler
materials. Remember that the procedure is basically the same as that for all the materials we have seen
so far—the generic shader followed by the color pattern or the bump effect (one or more), depending on
the preponderance of the different components.

The only difference is the level of complexity they can reach (for example, look at the Creating a
spaceship hull shade recipe at the end of this chapter).

Creating cloth materials with procedurals
In this recipe, we will create a generic cloth material, as shown in the following screenshot:

The cloth material as it appears in the final rendering

Getting ready

Before we start creating the material, let's set up the scene by performing the following steps:

1. Start Blender and load the 9931OS_cloth_start.blend file. In the scene, there is already
a cloth simulation.

2. Click on the Play animation button in the Timeline toolbar (or press Alt + A) to see the
simulation running and being cached in real time. It consists of a Plane (our fabric) draped on a
UV Sphere leaning on a bigger Plane (the floor).

3. After the simulation has been totally cached (a total of 100 frames), in the Physics window (the
last tab to the right) under the Cloth Cache tab, press the Current Cache to Bake button to
save the simulation. The 100-frame simulation is now cached and saved inside a folder (unless
differently specified), named as a blend file, and stored on your hard drive in the same directory
as the blend file.

From now on, there is no need to perform calculations about the simulation anymore. Blender will read
the simulation data from that cache folder, so it will be possible to quickly scroll through the Timeline
bar and immediately reach any frame inside the cached range.

The cloth simulation scene with the Cloth Cache subpanel to the right

How to do it...

Now we are going to create the material on the fabric Plane, which has been first unwrapped by
assigning a basic UV layer (Object data | UV Maps) and later subdivided by the Specials menu. This is
done before the cloth simulation by performing the following steps:

1. Go to the 100 frame.
2. Make sure you have the fabric Plane selected. Click on New in the Material window under the

main Properties panel or in the Node Editor window. Rename the new material
cloth_generic.

3. In the Material window, switch the Diffuse BSDF node with a Mix Shader node. In the first
Shader slot, select a Diffuse BSDF node, and in the second Shader slot, select a Glossy BSDF
shader node.

4. Set the Diffuse BSDF node's Roughness value to 1.000. Set the Glossy BSDF node's
Roughness value to 0.500. Change the Glossy BSDF node's Color values of R to 0.800, G
to 0.730, and B to 0.369. Set the Fac value of the Mix Shader node to 0.160.

5. Add one Texture Coordinate node (press Shift + A and navigate to Input | Texture
Coordinate) and two Mapping nodes (press Shift + A and navigate to Vector | Mapping). In
the Properties panel (press N) of the Node Editor window, label the two Mapping nodes as
Mapping1 and Mapping2. Then connect the UV output of the Texture Coordinate node to
the Vector input sockets of both the Mapping nodes.

6. Now add two Wave Texture nodes (press Shift + A and navigate to Texture | Wave Texture)
and a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture). Label the

first two nodes as Wave Texture1 and Wave Texture2. Connect the output of the
Mapping1 node to the Vector input sockets of the Wave Texture1 node and the Noise Texture
node. Connect the output of the Mapping2 node to the Vector input of the Wave Texture2
node.

7. Add three Math nodes (press Shift + A and navigate to Converter | Math), one for each texture
node. Set their Operation mode to Multiply and label them as Multiply1, Multiply2 and
Multiply3. Then connect the Fac output of the Wave Texture1 node to the first Value input
socket of the Multiply1 node, the Wave Texture2 node to the Multiply2 node, and the Noise
Texture node to the Multiply3 node. Set the second Value input socket of the Multiply1 and
Multiply2 nodes to 1.000, and leave the Multiply3 node as 0.500.

8. Go to the Mapping2 node and set the Rotation value of Y to 90°. Go to the Wave Texture
nodes, and for both of them, set the Scale value to 100.000, Distortion to 2.000, and Detail
Scale to 2.000. For the Noise Texture node, set the Scale value to 80.000 and the
Distortion value to 5.000.

9. Add a new Math node (press Shift + A and navigate to Converter | Math) and set Operation to
Subtract. Connect the output of the Multiply1 and Multiply2 nodes to the first and the second
Value input sockets, respectively.

10. Press Shift + D to duplicate the last Math node. Set the Operation mode to Add. Connect the
output of the Subtract node to its first Value socket and the output of the Multiply3 node to the
second Value input socket.

11. Press Shift + D to duplicate a Multiply node, label it as Multiply4, and connect the output of
the Add node to the first Value input socket. Set the second Value input socket to 0.050.
Connect the last Multiply node's output to the Displacement input socket of the Material
Output node.

12. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the two
Mapping nodes, the three textures, all the Math nodes, and then the Frame. Press Ctrl + P to
parent them. Label the frame as BUMP, as shown in the following screenshot:

The shader and the network for the fabric bump pattern

13. Add two new Mapping nodes (press Shift + A and navigate to Vector | Mapping). Label them
as Mapping3 and Mapping4. Then add two Wave Texture nodes (press Shift + A and
navigate to Texture | Wave Texture). Label them as Wave Texture3 and Wave
Texture4. As before, connect the UV output of the Texture Coordinate node to both the
Mapping3 and Mapping4 nodes, and the output sockets of the latter to the new Wave Texture
nodes.

14. Go to the Mapping3 node. Set the Rotation value of Z to -45° and the Scale value of Y to
2.000. In the Mapping4 node, set the Rotation value of Z to 45° and the Scale value of X to
2.000. Go to the two Wave Texture nodes to set the Scale value to 10.900 and the Detail
value to 0.000.

15. Add two ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp) and
label them as ColorRamp1 and ColorRamp2. Connect the Fac output of the Wave Texture3
to the Fac input socket of the ColorRamp1 node, and the Fac output of the Wave Texture4
node to the Fac input socket of the ColorRamp2 node.

16. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Connect the Color
output of the two ColorRamp nodes to the Color1 and Color2 input sockets of the MixRGB
node. Set Blend Type to Multiply and the Fac value to 1.000.

17. Connect the Color output of the Multiply-MixRGB node to the Color input socket of the
Diffuse BSDF shader node.

18. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the new
nodes and then the Frame. Press Ctrl + P to parent them. Rename the Frame COLOR, as shown
in the following screenshot:

The COLOR frame

19. At this point, we can change the colors inside the two ColorRamp gradients to obtain colored
patterns. In my example, I set the ColorRamp1 colors ranging from pure white going to a light
blue, and violet for the ColorRamp2 node.

How it works...
• From steps 1 to 3, we just made the basic shader by mixing a rough Diffues BSDF shader

(Roughness to 1.000) with a light glossy shader (the low Fac value of the Mix Shader node
shows a lot more of the diffuse component than the glossy component)

• From steps 4 to 10, we built the bump texture of the fabric by mixing two Wave Texture nodes
in different orientations and by adding a bit of noise

• From steps 11 to 18, we built a simple cross-color pattern

There's more...

A lot of variations can be obtained by setting different values for the bump and using different texture
nodes and combinations for the color pattern, as shown in the following screenshot:

Different color patterns of the cloth material

Tip

All of these examples are included in the 9931OS_06_cloth.blend file provided with this module.

See also

To learn more about Blender cloth simulation, you can take a look at the online Blender documentation
at http://wiki.blender.org/index.php/Doc:2.6/Manual/Physics/Cloth.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Physics/Cloth

Creating a leather material with procedurals
In this recipe, we will create a leather-like material, as shown in the following screenshot:

The leather-like material assigned to Suzanne and three wallet-like, simple objects

Start Blender and load the 9931OS_06_start.blend file, where there is already an unwrapped
Suzanne mesh.

How to do it...

Now we are going to create the material by performing the following steps:

1. Click on New in the Material window under the main Properties panel or in the Node Editor
toolbar. Rename the new material Leather_dark.

2. In the Material window, switch the Diffuse BSDF node with a Mix Shader node (label it as
Mix Shader2). In its first Shader slot, select a Mix Shader node again (label it as Mix
Shader1), and in the second slot, load an Anisotropic BSDF shader node.

3. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input sockets of both the Mix Shader nodes. Set the IOR value to 1.490.

4. Set the Anisotropic BSDF node's color to pure white and the Roughness value to 0.100. Add
a Tangent node (press Shift + A and navigate to Input | Tangent). Connect it to the Tangent
input socket of the Anisotropic BSDF shader, and in its Method to use for the Tangent slot,
select the UV Map item. Optionally, click on the blank slot to the right to select the name of the
UV layer to be used (this is useful if the mesh has two or more UV layers).

5. Add a Diffuse BSDF shader (press Shift + A and navigate to Shader | Diffuse BSDF) and a
Glossy BSDF shader node (press Shift + A and navigate to Shader | Glossy BSDF). Connect
the Diffuse BSDF node to the first Shader input socket of the Mix Shader1 node and the
Glossy BSDF node to the second Shader input socket. Set the Diffuse BSDF node's

Roughness value to 0.800. Set the Glossy BSDF distribution to Beckmann, Color to pure
white, and its Roughness value to 0.300.

6. Add an RGB node (press Shift + A and navigate to Input | RGB) and connect its Color output
to the Color input socket of the Diffuse BSDF node. Change the Color values of R to 0.100,
G to 0.080, and B to 0.058, as shown in the following screenshot:

The shader part of the material

7. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and two Mapping nodes (press Shift + A and navigate to Vector | Mapping). Connect the
Object output of the Texture Coordinate node to the Vector input sockets of both the
Mapping nodes (label them as Mapping1 and Mapping2). Then in the Mapping2 node,
change the Rotation value of Y value to 90°.

8. Add two Voronoi Texture nodes (press Shift + A and navigate to Texture | Voronoi Texture)
and two Wave Texture nodes (press Shift + A and navigate to Texture | Wave Texture). Place
them in a column next to the Mapping nodes in this order from top to bottom: Voronoi
Texture1, Wave Texture1, Voronoi Texture2, and Wave Texture2.

9. Set the Voronoi Texture1 node's Coloring to Cells and the Scale value to 60.000. Go to the
Wave Texture1 node and set the Scale value to 10.000, the Distortion value to 10.000,
Detail to 16.000, and Detail Scale to 0.300. Set the Scale value of the Voronoi Texture2
node to 10.000, and copy and paste the values from the Wave Texture1 node to the Wave
Texture2 node.

10. Now connect the Mapping1 node output to the Vector input sockets of the two Voronoi
Texture nodes and the Wave Texture1 node. Connect the output of the Mapping2 node to the
Vector input socket of the Wave Texture2 node.

11. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Set the Blend Type to
Difference and the Fac value to 1.000. Connect the Color output of the Wave Texture1 node
to the Color2 input socket of the Difference node, and the Color output of the second Voronoi
Texture2 node to its Color1 input socket.

12. Label the Difference node as Difference1. Then press Shift + D to duplicate it. Label the
duplicate as Difference2 and connect the Color output of the Voronoi Texture2 node to its
Color2 input socket. Connect the Color output of the Wave Texture2 node to the Color1 input
socket of the Difference2 node.

13. Press Shift + D to duplicate the Difference node again, change its Blend Type to Multiply and
label it as Multiply1. Connect the output of the Difference1 node to the Color1 input socket
of the Multiply1 node. Then connect the output of the Difference2 node to the Color2 input
socket of the Multiply1 node.

14. Add a Math node (press Shift + A and navigate to Converter | Math), label it as Multiply3,
and connect the output of the Multiply1 node to the first Value input socket. Set the second
Value input socket to 0.100.

15. Press Shift + D to duplicate the Multiply3 node, label it as Multiply2, and connect the Color
output of the Voronoi Texture1 node to the first Value input socket. Set the second Value input
socket to -0.200.

16. Press Shift + D to duplicate the Multiply2 node, label it as Add, and change Operation to Add
as well. Connect the output of the Multiply2 and Multiply3 nodes to the two Value input
sockets.

17. Add two Bump nodes (press Shift + A and navigate to Vector | Bump). Label them as Bump1
and Bump2. Then connect the Bump1 to the Normal input sockets of both the Diffuse BSDF
and Glossy BSDF shader nodes. Connect the Bump2 node to the Normal input of the
Anisotropic BSDF shader. Set the Strength value of the Bump1 node to 0.500 and the
Strength value of the Bump2 node to 0.250. Connect the output of the Add node to the
Height input sockets of both the Bump nodes.

18. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp). Paste it
between the first Difference1 node and the Multiply1 node. Set Interpolation to B-Spline and
move the white color stop to the 0.255 position. Label it as ColorRamp1.

19. Press Shift + D to duplicate the ColorRamp1 node, label it as ColorRamp2, and paste it
between the Difference2 node and the Multiply1 node, as shown in the following screenshot:

The completed network with the added bump pattern

How it works...
• From steps 1 to 6, we built the basic shader for the leather material.
• From steps 7 to 19, we built the bump pattern for the leather. We used two different Bump

nodes with different values for the Diffuse BSDF and Glossy BSDF nodes and for the
Anisotropic BSDF shader, to have slightly different light reflections on the surface.

Note

Note that we used the UV Map layer information of the mesh for the Tangent node to be connected to
the Anisotropic BSDF shader, and the Object mapping node for the bump textures instead.

Actually, we could have used the UV mapping output for the texture nodes too, because the mesh had
already been unwrapped. However, the scale values for all the nodes in that case would have been
double and the flow of the textures on the polygons would have been different (based on the flow of the
unwrapped faces in the UV window).

Creating a synthetic sponge material with
procedurals
In this recipe, we will create a polyurethane sponge material (the type that you usually find in kitchens),
as shown in the following screenshot:

The synthetic sponge material when rendered

Getting ready

Follow these steps to create a synthetic sponge material with procedurals:

1. Start Blender and switch to the Cycles Render engine.
2. Select the default Cube, and in the Transform subpanel to the right of the 3D viewport (under

Dimensions), change the values of X to 0.350, Y to 0.235, and Z to 0.116. Press Ctrl + A
to apply the scale.

3. With the mouse arrow in the 3D viewport, add a Plane to the scene (press Shift + A and navigate
to Mesh | Plane). Exit Edit Mode, and in the Transform subpanel (the Dimensions item), set
the values of X to 20.000 and Y to 20.000. Press Ctrl + A to apply the scale. Move the Plane
down (press G, then press Z, enter -0.05958, and then press Enter) to act as the floor for the
sponge.

4. Select the Lamp item. In the Object data window, click on the Use Nodes button and change
the type to Sun. Set the Size to 0.500, Color to pure white, and the Strength value to 5.000.
In the Transform panel, set the values of Rotation value of X to 15°, Y to 0°, and Z to 76°.

5. Select the Camera item, and in the Object data window under the Lens subpanel, change the
Focal Length value to 60.000. In the Transform subpanel, set the values of the Location
value of X to 0.82385, Y to -0.64613, and Z to 0.39382. Change the Rotation values of
X to 68°, Y to 0°, and Z to 51°.

6. Go to the World window and click on the Use Nodes button under the Surface subpanel. Click
on the little square with a dot on the right side of the color slot, and from the menu, select Sky
Texture. Change Sky Type to Preetham and set the Strength value to 0.100.

7. Go to the Render window, and under the Sampling subpanel, set the Clamp Direct and Clamp
Indirect values to 1.00. Set Samples for Render and Preview to 50.

8. Split the 3D viewport into two rows. Convert the upper row to a Node Editor window. Split the
bottom view into two parts and convert the left part to another 3D viewport. With the mouse
arrow in the left 3D view, press 0 on the numeric keypad to go to the Camera view.

9. Select the Cube, and with the mouse arrow in the Camera view, press Shift + S. Navigate to
Cursor to Selected to place the cursor on the pivot of the Cube (if it's elsewhere). Add Lattice
to the scene (press Shift + A and select Lattice). Press Tab to exit Edit Mode. In the Transform
subpanel, under Scale, set the values of X to 0.396, Y to 0.264, and Z to 0.129. Go to the
Object data window, and in the Lattice subpanel set the U, V, and W values to 3.

10. Reselect the Cube and go to the Object modifiers window. Assign a Subdivision Surface
modifier, switch the type of subdivision algorithm from Catmull-Clark to Simple, and set the
Subdivisions value to 2 for both View and Render.

11. Assign a Bevel modifier and set the Width value to 0.0010. Assign a Lattice modifier, and in
the empty Object field, select the Lattice name. Reselect the Lattice object and press Tab to
enter Edit Mode. Select the Lattice vertices that are indicated in the following screenshot:

The setup for the sponge scene in Solid viewport shading mode

12. Scale the selected vertices on the x and y axes to slightly smaller values (press S, then press Shift
+ Z, enter digit .9, and press Enter). Then scale only the upper vertices to slightly smaller
values, and similarly scale other vertices to obtain a shape similar to a kitchen sponge. Then exit
Edit Mode (press Tab).

13. Reselect the Cube, navigate to Tool Shelf | Tools | Shading, and select Smooth. With the
mouse arrow in the 3D view, press N and T to close the Transform and Tool Shelf panels. Go
to the Material window.

How to do it...

Now let's create the material by performing the following steps:

1. First, select the Plane and click on New in the Material window under the main Properties
panel or in the Node Editor toolbar. In the Material window, switch the Diffuse BSDF node
with a Mix Shader node. In the first Shader slot, select a Diffuse BSDF node, and in the
second Shader slot, select a Glossy BSDF shader node. Set Distribution of the Glossy BSDF
shader to Beckmann, the Fac value of the Mix Shader to 0.400, and the Diffuse BSDF
node's Color to a shade of blue (in my case, R to 0.110, G to 0.147, and B to 0.209).

2. Now select the Cube object and click on Use Nodes in the Material window under the main
Properties panel or in the Node Editor window's toolbar. Rename the new material
sponge_polyurethane.

3. In the Material window, switch the Diffuse BSDF node with a Mix Shader node. In the Label
slot in the Node subpanel under the Properties panel of the Node Editor window (if this is not
present, press the N key to make it appear), label it as Mix Shader1. Go to the Material
window, and in the Mix Shader1 node's first Shader slot, select a Mix Shader node again.
Label it as Mix Shader2. In the second Shader slot, select an Add Shader node.

4. In the first Shader slot of the Mix Shader2 node, select a Diffuse BSDF shader node, and in
the second slot, a Velvet BSDF node. Set the Diffuse BSDF node's Roughness value to 1.000
and the Velvet node's Sigma value to 0.600.

5. Connect the output of the Velvet shader to the first Shader input of the Add Shader node. In its
second Shader input, load a Glossy BSDF shader and set the Roughness value to 0.350.

6. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader1 node. Set the IOR value to 1.496. Add an RGB node (press
Shift + A and navigate to Input | RGB) and connect its output to the Color input sockets of the
Diffuse BSDF, Velvet, and Glossy BSDF shader nodes. Set the RGB node's Color of R to
0.319, G to 1.000, and B to 0.435 (any other color is also fine), as shown in the following
screenshot:

The basic shader component

7. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), two Voronoi Texture
nodes (press Shift + A and navigate to Texture | Voronoi Texture), and two Noise Texture
nodes (press Shift + A and navigate to Texture | Noise Texture). Label the textures as
Voronoi Texture1, Voronoi Texture2, Noise Texture1, and Noise
Texture2.

8. Place the four textures in a row. Then connect the Object output of the Texture Coordinate
node to the Vector input socket of the Mapping node, and the Vector output of this node to the
Vector input sockets of the four texture nodes.

9. Set the Scale value of the Voronoi Texture1 node to 38.000, the Voronoi Texture2 node to
62.300, the Noise Texture1 node to 300.000, and the Noise Texture2 node to 900.000.

10. Add three ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp). Label
them as ColorRamp1, ColorRamp2, and ColorRamp3. Connect the Color output of the
Voronoi Texture1 node to the Fac input socket of the ColorRamp1 node, the Color output of
the Voronoi Texture2 node to the Fac input socket of the ColorRamp2 node, and the Color
output of the Noise Texture1 node to the Fac input socket of the ColorRamp3 node.

11. Add four Math nodes (press Shift + A and navigate to Converter | Math). Set Operation to
Multiply and label them as Multiply1, Multiply2, Multiply3, and Multiply4.
Connect the Color output of the three ColorRamp nodes to the first Value input socket of the
first three Multiply-Math nodes, and the Color output of the Noise Texture2 node to the first
Value input socket of the Multiply4 node. Set the second Value input socket of the Multiply1
and Multiply2 nodes to 1.000, the second Value input socket of the Multiply3 node to
0.100, and the second Value input socket of the Multiply4 node to 0.050.

12. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Connect the output of
the Multiply1 node to the Color1 input socket and the output of the Multiply2 node to the
Color2 input socket. Change Blend Type to Add and the Fac value to 1.000. Label the Add-
MixRGB node as Add1.

13. Press Shift + D to duplicate the Add1 node, and label it as Add2. Connect the output of the
Add1 node to the Color1 input socket. Then connect the output of the Multiply3 node to the
Color2 input socket of the Add2 node.

14. Press Shift + D to duplicate the Add2 node, and label it as Add3. Paste it between the
Multiply3 and Add2 nodes, and connect the output of the Multiply4 node to the Color2 input
socket of the Add3 node.

15. Add a new Math node (press Shift + A and navigate to Converter | Math), set Operation to
Multiply, and label it as Multiply5. Connect the output of the Add2 node to the first Value
input socket of the Multiply5 node, and set the second Value input socket to 1.000.

16. Connect the output of the Multiply5 node to the Displacement input socket of the Material
Output node, as shown in the following screenshot:

The bump pattern

17. Now box-select (press the B key and then click and drag the selection to enclose the objects) the
ColorRamp1, ColorRamp2, Multiply1, Multiply2, Add1, Add2, and Multiply5 nodes. Press
G and move them to the right to make room for new nodes on the left side.

18. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves) and paste it
between the Voronoi Texture1 node and the ColorRamp1 node. Label it as RGB Curves1.
Click on the curve to add a control point, and in the coordinate slots below the node window, set
the X value to 0.26111 and the Y value to 0.50000. Click to add a second control point. Set
X to 0.73889 and Y to 0.51111.

19. Press Shift + D to duplicate the RGB Curves1 node. Paste it between the Voronoi Texture2 and
ColorRamp2 nodes. Label it as RGB Curves2.

20. Go to the ColorRamp1 node and move the white color stop to the 0.240 position. Then go to
the ColorRamp2 node and repeat this step. Next, go to the ColorRamp3 node, move the white
color stop to the 0.550 position, and set Interpolation to Ease, as shown in the following
screenshot:

Tweaking the bump pattern

How it works...
• From steps 2 to 6, we built the basic shader for the sponge material and the color. As you can

see in the Rendered camera view, without the bump pattern, there is a visible artifact in the
more distant side of the mesh. This is due to the Smooth shading we set in step 13 of the
Getting ready section. Setting the shading to Flat again would remove the artifact, but would
also show the blocky faces of the deformed sponge mesh. In this case, because of the bump
pattern and the fact that the mesh is subdivided, this is not a major issue, and both solutions
(smooth but with artifacts or flat but blocky) are fine.

• From steps 7 to 20, we built the sponge bump pattern by mixing Voronoi Texture nodes at
different sizes, with increased contrast due to the ColorRamp nodes. Then we add some noise
to avoid a highly smoothed surface.

Creating a spaceship hull shader
In this recipe, we will create a spaceship hull material. We will add random, tiny light windows based on
the values of procedural textures, and the spaceship's logo as if it were painted in red on the hull, as
shown in the following screenshot:

The final, rendered spaceship hull material assigned to a displaced Torus primitive

Getting ready

To start creating this spaceship hull, we need the spaceship and space first. Follow these steps to build a
quick and easy model and set up the scene:

1. Start Blender and switch to the Cycles Render engine. Select the default Cube and delete it.
2. With the mouse arrow in the 3D view, press Shift + A and add a Torus primitive (press Shift + A

and navigate to Mesh | Torus). In Edit Mode, scale it to at least twice its current size (press A
to select all the vertices, then type S, enter 2, and press Enter).

3. Exit Edit Mode, and in Outliner, select the Lamp object. In the Object data window, change
it to Sun. Then set the Size value to 0.050. Click on the Use Nodes button and set the
Strength value to 10.000. Change the Color value of RGB to 0.800.

4. Go to the World window and click on the Use Nodes button under the Surface subpanel. Click
on the little square with a dot to the right of the Color slot. From the menu, select Sky Texture.
Set the Strength to 0.100.

5. Select the Camera, and in the Transform panel, set the Location values of X to 6.10677, Y
to -0.91141, and Z to -2.16840. Set the Rotation values of X to 112.778°, Y to
-0.003°, and Z to 81.888°.

6. Go to the Render window, and under the Sampling subpanel, set the Samples to 25 for
Preview and 100 for Render. Then set the Clamp Indirect value to 1.00, but let the Clamp

Direct value remain as 0.00. Go to the Film subpanel and check the Transparent item. Then
set the output File Format to RGBA.

7. Under the Light Paths subpanel, disable both the Reflective and Refractive Caustics items.
Set Filter Glossy value to 1.00. Under the Performance subpanel, set the Viewport BVH
Type to Static BVH (this should speed up the rendering a bit, considering the fact that the
model is static and doesn't change shape). Check the Persistent Images and Use Spatial Splits
items.

8. Press N with the mouse arrow in the 3D view to close the Properties panel. Then press T to get
rid of the Tool Shelf panel. Split the 3D view into two rows. Convert the upper row to a Node
Editor window.

9. Split the bottom window into two parts. Convert the left part to a UV/Image Editor window.
Select Torus and press Tab to go to Edit Mode. In the window toolbar, change the selection
mode to Face select. Select only one face on the mesh (whichever you prefer). Press the A key
twice to select all the faces, and keep the first face selected as the active face. Then press the U
key. In the UV Mapping pop-up menu, select the Follow Active Quads item, and then in the
next pop-up menu set Even as Edge Length Mode. Click on the OK button.

10. With the mouse arrow in the UV/Image Editor window, press A to select all the vertices of the
UV islands. Then scale them to one-third of their current size (press S, enter digit .3, and press
Enter). Press Tab to exit Edit Mode, and change UV/Image Editor to 3D View. Convert the
right 3D viewport to a Camera view by pressing the 0 key on the numeric keypad (with the
mouse arrow in the 3D view).

11. Go to the Object modifiers window and assign a Subdivision Surface modifier to Torus. Set
the Subdivisions level to 4 for both View and Render. Set the Camera view mode to
Rendered and go to the Material window.

How to do it...

Now let's start creating the material. The steps to create a basic hull shader are as follows:

1. Click on New in the Material window under the main Properties panel or in the Node Editor
toolbar. Rename the new material spacehull.

2. In the Material window, switch the Diffuse BSDF node with a Mix Shader node. Label it as
Mix Shader1. In the first Shader slot, select a new Mix Shader node (label it as Mix
Shader2), and in the second slot, select an Anisotropic BSDF node.

3. In the first Shader slot of the Mix Shader2 node, select a Diffuse BSDF node, and in the
second slot, select a Glossy BSDF node. Set the Distribution of both the Glossy BSDF and
Anisotropic BSDF nodes to Ashikmin-Shirley.

4. In the Anisotropic BSDF shader node, set the Rotation value to 0.250. In the Diffuse BSDF
node, set the Roughness value to 0.500.

5. Add a new Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and
paste it between the Mix Shader1 and the Material Output nodes. Label it as Mix
Shader_Spec_Amount and connect the output of the Diffuse BSDF node to the first Shader
input socket (so that the link from the Mix Shader2 node automatically switches to the second
socket). Set the Fac value to 0.300.

6. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel). Connect its output to the
Fac input sockets of the Mix Shader1 and Mix Shader2 nodes. Set the IOR value to
100.000.

7. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select all the
nodes except the Material Output node. Then select the Frame and press Ctrl + P to parent all
of them. Label the frame as SHADER, as shown in the following screenshot:

The SHADER frame

The steps to create hull's panels are as follows:
8. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),

a Mapping node (press Shift + A and navigate to Vector | Mapping), two Image Texture nodes
(press Shift + A and navigate to Texture | Image Texture), and one Musgrave Texture node
(press Shift + A and navigate to Texture | Musgrave Texture).

9. Label the textures as Image Texture1_Hull, Image Texture2_Hull, and
Musgrave Texture_Hull. Place them in a column.

10. Press Shift + D to duplicate the Mapping node twice. Label the nodes as Mapping1_Hull,
Mapping2_Hull, and Mapping3_Hull. Place them in a column to the left of the texture
nodes. Connect the UV output of the Texture Coordinate node to the Vector input sockets of
the three Mapping nodes. Connect the Vector output of each of the Mapping nodes to the
Vector input socket of each of the texture nodes.

11. Click on the Open button in the Image Texture1_Hull node to load image
spacehull.png. Then click on the little arrows to the left of the Open button in the Image
Texture2_Hull node to select the same image texture. Go to the Musgrave Texture node and

set the Scale value to 115.500, the Detail value to 4.500, the Dimension value to 0.200,
and the Lacunarity value to 0.600.

12. Go to the Mapping1_Hull node and set the Scale value of X to 2.000, Y to 4.000, and Z to
6.000. Then go to the Mapping2_Hull node and set the Scale value of Y to 2.000 and Z to
3.000. Next, go to the Mapping3_Hull node and set the Scale value of Z to 0.100.

13. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Set Blend Type to
Multiply and the Fac value to 1.000. Label it as Multiply1_Hull. Then connect the
Color output of the Image Texture1_Hull node to the Color1 input socket and the Color
output of the Image Texture2_Hull node to the Color2 input socket.

14. Press Shift + D to duplicate the Multiply1_Hull node, change Blend Type to Overlay, and
label it as Overlay_Hull. Set the Fac value to 0.050. Connect the output of the
Multiply1_Hull node to the Color1 input socket and the Color output of the Musgrave
Texture node to the Color2 input socket.

15. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp_Hull, and connect the output of the Overlay_Hull node to its Fac input socket.
Move the black color stop to the 0.500 position.

16. Add a Bump node (press Shift + A and navigate to Vector | Bump), label it as Bump_Hull,
and connect the output of the Multiply1_Hull node to the Height input socket. Set the Strength
value to 0.400.

17. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the three
Mapping nodes, the two Image Texture nodes, the Musgrave Texture node, the Bump node,
the ColorRamp node, the two MixRGB nodes, and then the Frame. Press Ctrl + P to parent
them. Label the frame as HULL, as shown in the following screenshot:

The HULL frame

18. Connect the Normal output of the Bump_Hull node to the Normal input sockets of the Diffuse
BSDF, Glossy BSDF, and Anisotropic BSDF nodes inside the SHADER frame. Then connect
the output of the Overlay_Hull node to the Color input sockets of the same Diffuse BSDF,
Glossy BSDF, and Anisotropic BSDF nodes. Next, connect the Color output of the
ColorRamp_Hull node to the Roughness input sockets of the Glossy BSDF and Anisotropic
BSDF shader nodes, as shown in this screenshot:

The output of the HULL frame connected to the SHADER frame nodes

The steps to create hull's logo are as follows:
19. Add a new Mapping node (press Shift + A and navigate to Vector | Mapping) and a new Image

Texture node (press Shift + A and navigate to Texture | Image Texture). Label them as
Mapping4_Name and Image Texture3_Name, respectively. Connect the UV output of
the Texture Coordinate node to the Mapping4_Name node, and the output of this node to the
Vector input socket of the Image Texture_Name node.

20. Click on the Open button of the Image Texture node and load the spacehull_name.png
image, an image texture of the ARGUS logo with a transparent background (alpha channel).

21. Go to the HULL frame and add a MixRGB node (press Shift + A and navigate to Color |
MixRGB). Label it as Mix_Hull_Name and paste it between the Overlay_Hull node and the
Diffuse BSDF shader node. Then connect its Color output to the Color input socket of the
Glossy BSDF and Anisotropic BSDF shader nodes.

22. Connect the Color output of the Image Texture_Name node to the Color2 input socket of the
Mix_Hull_Name node. Then connect the Alpha output of the Image Texture_Name node to
the Fac input socket of the Mix_Hull_Name node.

23. Go to the Mapping4_Name node and check both the Min and Max items. Then set the
Location value of X to -3.300 and Y to 1.000. Set the Scale value of Y to 2.500. (These
values depend on the scale and location you want for your logo on the spaceship; just
experiment looking at the real-time-rendered preview.)

24. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the
Mapping4_Name node, the Image Texture3_Name node, and then the Frame. Press Ctrl + P
to parent them. Label the frame as NAME, as shown in the following screenshot:

The ARGUS logo on the hull

The steps to create the windows are as follows:
25. Add a new Mapping node (press Shift + A and navigate to Vector | Mapping) and two Image

Texture nodes (press Shift + A and navigate to Texture | Image Texture). Label them as
Mapping5_Windows, Image Texture4_Windows, and Image
Texture5_Windows. Connect the Texture Coordinate node's UV output and the Mapping
node's output to the Image Texture nodes as usual. Then set the Mapping node's Scale values
to 10.000 for the three axes.

26. Click on the Open button of the Image Texture4_Windows node and load the
spacehull_windows_lights.png image. Then click on the Open button of the Image
Texture5_Windows node and load the spacehull_windows_bump.png image. Set Color
Space for both the image nodes to Non-Color Data.

27. Add two MixRGB nodes (press Shift + A and navigate to Color | MixRGB). Set Blend Type to
Multiply and Fac values to 1.000. for both the nodes Label them as
Multiply2_Windows_Light and Multiply2_Windows_Bump. Connect the output of
the Image Texture4_Windows node to the Color1 input socket of the

Multiply2_Windows_Light node, and the output of the Image Texture5_Windows node to the
Color1 input socket of the Multiply2_Windows_Bump node.

28. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp_Windows, and move the black color stop to the 0.919 position. Connect the
output of the Multiply2_Windows_Light node to its Fac input socket.

29. Add a new Bump node (press Shift + A and navigate to Vector | Bump), label it as
Bump_Windows, and connect the output of the Multiply2_Windows_Bump node to the
Height input socket. Set the Strength value to 50.000.

30. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift and select the
Mapping5_Windows node, the Image Texture4_Windows and Image Texture5_Windows
nodes, the two MixRGB nodes, the ColorRamp_Windows and the Bump_Windows nodes,
and then the Frame. Press Ctrl + P to parent them. Label the frame as WINDOWS, as shown
in the following screenshot:

The WINDOWS frame

31. Add a Vector Math node (press Shift + A and navigate to Converter | Vector Math) and set
Operation to Average. Connect the Normal output of the Bump_Windows node inside the
WINDOWS frame to the first Vector input socket, and the Normal output of the Bump_Hull
node inside the HULL frame to the second Vector input socket. Then connect the Normal
output of the Average Bump_Hull node to the Normal input sockets of the Diffuse BSDF,
Glossy BSDF, and Anisotropic BSDF shader nodes, as shown in this screenshot:

The windows bump visible on the hull

The steps to create the location mask for the windows are as follows:
32. Add one more Mapping node (press Shift + A and navigate to Vector | Mapping) and four

Checker Texture nodes (press Shift + A and navigate to Texture | Checker Texture). Connect
the Texture Coordinate node and the nodes as usual. Then label them as Mapping6_Mask,
Checker Texture1_Mask, Checker Texture2_Mask, Checker
Texture3_Mask, and Checker Texture4_Mask. In all, the four Checker Texture
nodes change Color2 to pure black.

33. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set Blend Type to
Screen and Fac value to 1.000, and label it as Screen_Mask. Connect the Color output of
the Checker Texture1_Mask node to the Color1 input socket of the Screen_Mask node, and
the Color output of the Checker Texture2_Mask node to the Color2 input socket.

34. Press Shift + D to duplicate the MixRGB node, change the duplicate node's Blend Type to Add,
and label it as Add_Mask1. Connect the output of the Screen_Mask node to the Color1 input
socket. Then connect the Color output of the Checker Texture3_Mask node to the Color2
input socket.

35. Press Shift + D to duplicate the Add_Mask1 node, and label the duplicate as Add_Mask2.
Connect the output of the Add_Mask1 node to the Color1 input socket. Then connect the
Color output of the Checker Texture4_Mask node to the Color2 input socket.

36. Add a ColorRamp node and label it as ColorRamp_Mask. Connect the output of the
Add_Mask2 node to its Fac input socket. Then move the black color stop to the 0.100
position and the white color stop to the 0.000 position. Set Alpha of the black color stop to
0.000.

37. Go to the Checker Texture nodes. Set the Scale value for the Checker Texture1_Mask node
to 1.600, the Checker Texture2_Mask node to 8.800, the Checker Texture3_Mask node
to 3.000, and the Checker Texture4_Mask node to 9.700. Go to the Mapping6_Mask node
and set the Scale values to 0.500 for all the three axes.

38. Add a Frame (press Shift + A and navigate to Layout | Frame). Press Shift to select the recently
added nodes and then the Frame. Press Ctrl + P to parent them. Rename the frame as MASK
WINDOWS as shown in the following screenshot:

The MASK WINDOWS frame

The steps to create the final connections are as follows:
39. Connect the Color output of the ColorRamp_Mask node to the Color2 input sockets of both

the Multiply2_Windows_Lights and Multiply2_Windows_Bump nodes, as shown in this
screenshot:

The MASK WINDOWS frame output connected to the WINDOWS frame nodes

40. Go to the SHADER frame and add a Mix Shader node (press Shift + A and navigate to Shader
| Mix Shader). Label it as Mix Shader3 and paste it between the Mix
Shader_Spec_Amount and the Material Output nodes.

41. Connect the Color output of the ColorRamp_Windows node inside the WINDOWS frame to
the Fac input socket of the Mix Shader3 node, as shown in the following screenshot:

The output of the WINDOWS frame connected to the SHADER frames nodes and the result in
the Rendered preview

The steps to create the light emitter for the windows are as follows:
42. Inside the SHADER frame, add an Emission shader node (press Shift + A and navigate to

Shader | Emission), a ColorRamp node (press Shift + A and navigate to Converter |
ColorRamp), and an Object Info node (press Shift + A and navigate to Input | Object Info).
Label the ColorRamp node as ColorRamp_Lights_Colors, change Interpolation to
Constant, and add six more color stops (eight total). Change the color values alternatively of R
to 0.800, G to 0.517, B to 0.122; and R to 0.800, G to 0.198, and B to 0.040 (or any
other color you prefer).

43. Connect the Random output of the Object Info node to the Fac input socket of the
ColorRamp node, and the output of this node to the Color input socket of the Emission node.

44. Connect the Emission node's output to the second Shader input socket of the Mix Shader3
node. Then set Strength to 3.000, as shown in the following screenshot:

The windows on the hull getting illuminated by the ColorRamp_Lights_Colors node and an
Emission node output connected to the SHADER output

How it works...
• From step 1 to step 7, we built the general shader for the metallic hull, which is similar to the

metal node group we saw in Chapter 4, Creating Man-made Materials in Cycles. This was
achieved by mixing Diffuse BSDF and Glossy BSDF shaders with an Anisotropic BSDF node
on a ground with a quite high IOR value (100.000), and through the usual Mix Shader
nodes. We added one more Mix Shader node (Mix Shader_Spec_Amount) to include the
possibility of setting more specularity than anisotropy, and vice versa.

• From step 8 to step 18, we built the HULL frame group by superimposing two differently
scaled versions of the same image. Then they could be used for the color, bump, and specular
components. These components were obtained by contrasting the paneling through a
ColorRamp node and then going straight to the Glossy BSDF shader's roughness and the
Anisotropic BSDF shader, to add a metallic look. The mixture of both Glossy BSDF and
Anisotropic BSDF is made on the ground of a Fresnel node set to 100.000. A very high
value like this is needed because the specularity is then mixed again with the Diffuse BSDF
component to the purpose to obtain a slider to tweak the effect.

• From step 19 to step 24, we added the red hull's logo, ARGUS, using its own alpha channel to
overimpose it on the hull surface's panels..

• From step 25 to step 30, we built the WINDOWS frame group.
• In step 31, we merged (averaged) the bump effect of the windows with the bump effect of the

hull's panels.

• From step 32 to step 38, we made the masking for the windows to give them a random
appearance.

• From step 39 to step 41, we simply connected the various frames' output.
• From step 42 to step 44, we created the light-emitting material for the windows. Note that the

WINDOWS_ MASK frame group provides the masking for the windows' positions. The
WINDOW frame group provides the whiteness values for the windows, the bump, and the last
nodes added to the SHADER frame the light emission based on the output of the previous
frame groups.

There's more...

The appearance of the hull can be improved even further using some displacement to add geometric
details to the spaceship surface, which (at the moment) is a bit too smooth:

1. Go to the Object modifiers window and assign a second Subdivision Surface modifier to
Torus. Set the Subdivisions levels to 2 for both View and Render.

2. Assign a Displace modifier. Then click on the Show texture in texture tab button on the right
side of the Texture slot. In the Textures window, click on the New button. Then replace the
default Clouds texture with an Image or Movie texture.

3. Click on the Open button and load the spacehull_displ.exr texture.
4. Go back to the Object modifiers window and set the displacement's Strength value to 0.200.

In the Texture Coordinates slot, select UV.

This way, the displacement features get mixed with the hull bump panels of the shader, giving a nice
result. The spacehull_displ.exr texture is a 32-bit float displacement map created and stored in
the Blender Internal engine. I modeled the Planes and scaled Cubes a simple greeble panel, then I
baked the displacement on a different and unwrapped Plane, as shown in the following screenshot:

The greeble scene ready for the baking

Tip

If you want to take a look at the baking scene, open the 9931OS_06_greeble.blend file.

Finally, we can try to set the first Subdivision Surface modifier level to 4 and lower the second
Subdivision Surface modifier's level to 1. Then, starting from the top one, apply all the modifiers. You
will inevitably lose the details but will obtain a much lighter mesh—589,824 faces against the initial
2,359,296—and considering the fact that most of the details come from the texturing, the result looks
pretty good (at least from a distance). It also looks good if the shading is set to Flat instead of Smooth.

The Torus spaceship with the applied modifiers

See also
• The displacement technique on the Blender Artists forum, at http://blenderartists.org/forum/

showthread.php?273033-Sculpting-with-UVs-and-displacements.

http://blenderartists.org/forum/showthread.php?273033-Sculpting-with-UVs-and-displacements
http://blenderartists.org/forum/showthread.php?273033-Sculpting-with-UVs-and-displacements

Chapter 7. Subsurface Scattering in Cycles
In this chapter, we will cover the following recipes:

• Using the Subsurface Scattering shader node
• Simulating Subsurface Scattering in Cycles using the Translucent shader
• Simulating Subsurface Scattering in Cycles using the Vertex Color tool
• Simulating Subsurface Scattering in Cycles using the Ray Length output in the Light Path node
• Creating a fake Subsurface Scattering node group

Introduction
Subsurface Scattering is the effect of light not getting directly reflected by a surface but penetrating it
and bouncing internally before getting absorbed or leaving the surface at a nearby point. In short, light is
scattered.

The RGB channels of a surface color can have different scattering values, depending on the material; for
example, for human skin the red component is more scattered (as a rough approximation, you could say
that the values for the three channels are blue = 1, green = 2, and red = 4).

In Cycles, a true Subsurface Scattering node has been introduced in Blender 2.67. Since Version 2.72, it
also works with the GPU (only in the Experimental feature set).

But sadly, it still has the common big Cycles problem—it takes a lot of samples to produce a noise-free
rendering. In short, it's slow.

Besides the true node, there are other ways to simulate Subsurface Scattering in Cycles. All the recipes
in this chapter faking the SSS effect use the Translucent shader node to achieve this effect, and shifting
of colors is simulated by giving a main color to the translucent component. Keep in mind that even if the
scattering effect in the true SSS node could be basically considered a sort of translucency effect, these
tricks are not comparable to the real Subsurface Scattering effect. They are just ways to give the
impression that light is being scattered through a material surface.

Also, depending on the recipe, you'll see that the effects of Subsurface Scattering can be quite different,
and the more suitable method should be used according to the type of material you are going to create.
The differences in these recipes are basically in the way translucency mixing is driven by different types
of input.

Using the Subsurface Scattering shader node
Let's first see how the true Subsurface Scattering node works in Cycles, and an example is given in the
following screenshot:

The Cycles SSS node

Getting ready

To see how the true Subsurface Scattering node works, let's first use it as the only component of the
shader, and later mix it with a basic diffuse-glossy shader.

Let's start by setting the Plane under Suzanne as a light emitter to enhance the backlight effect of the
SSS effect:

1. Start Blender and open the 9931OS_07_start.blend file, where there is an unwrapped
Suzanne mesh leaning on a Plane, with two mesh-light emitters and the Camera as shown in the
following screenshot:

Screenshot of the provided 9931OS_07_start.blend file

2. Go to Outliner and select the Plane object. As you can see in the Node Editor window, it has
an already set material called Plane.

3. Go to the Material window under the main Properties panel, and in the Surface subpanel,
switch the Diffuse BSDF shader with an Emission shader as shown in the following screenshot:

Switching the Diffuse BSDF shader with an Emission shader through the Material window

4. Set the Strength value to 5.000.
5. With the mouse arrow in the viewport, press Shift + Z to go to the Rendered view.

How to do it...

Now let's begin creating the SSS material using the following steps:

1. Select Suzanne and click on the New button in the Surface subpanel under the Material
window in the main Properties panel, or in the Node Editor window.

2. Using only the Material window, replace the Diffuse BSDF shader with a Subsurface
Scattering node as shown in the following screenshot:

The Rendered preview of Suzanne with the SSS node as the material

As you can see, the scattering effect is clearly visible in the Rendered preview, but actually, it's
so strong that all the facial features of poor Suzanne are confused and result in a jelly-like,
muddish material.

By default, the Scale value of the Subsurface Scattering node is set to 1.000, evidently a bit
too high for an object that is supposed to be 2 meters tall (remember that by default, one
Blender unit is supposed to be equal to 1 real world meter).

3. Gradually lower the Scale parameter, either in Node Editor or in the Material window, to
select a value in the range of 0.100 to 0.200. In my case, I arrived at 0.150. Now some of
Suzanne's facial features are clearly discernible, as shown in the following screenshot:

Modifying the SSS node's Scale value

4. Click on the Radius button on the node interface in the Node Editor window (or directly in the
Material window), and change the values of R to 4.000, G to 2.000, and B to 1.000 as
shown in the following screenshot:

Modifying the SSS node's Radius values

5. Lower the Scale value to 0.070; set the Sharpness value to 1.000; and click on the Color
box to set values of R to 1.000, G to 0.500, and B to 0.250.

6. Rename the material SSS_01 and save the file as SSS_material, as shown in the following
screenshot:

Setting a flesh color for the Suzanne SSS

7. Now click on the F icon to the right side of the Material datablock name to enable the fake
user. Then click on the number 2 icon and rename the new material SSS_02. Enable the fake
user for this material as well.

8. Add an Add Shader node (press Shift + A and navigate to Shader | Add Shader) and paste it
between the SSS node and the Material Output node.

9. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), and connect it
to the first Shader input socket of the Add Shader node so that the previous connection coming
from the SSS node automatically switch to the second Shader input socket.

10. Add a Diffuse BSDF node and a Glossy BSDF shader node (press Shift + A and navigate to
Shader | …), and connect them to the first and to the second Shader input sockets of the Mix
Shader node respectively, as shown in the following screenshot:

Adding the SSS node to a Diffuse-Glossy shader

11. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and connect
its Facing output to the Fac input socket of the Mix Shader node. Set the Blend value to
0.800.

12. Add an RGB node (press Shift + A and navigate to Input | RGB) and connect its output to the
Color input sockets of the Diffuse BSDF, Glossy BSDF, and SSS nodes. Set the RGB node's
Color values for R to 1.000, G to 0.500, and B to 0.250 as shown in the following
screenshot:

Setting the same flesh color for all the shader nodes

13. Save the file.

Let's try now a slightly different setting, with two sliders for the mixture of SSS and basic shaders. We
will also give distinct colors to the Diffuse BSDF, Glossy BSDF, and SSS components of the shader to
highlight their distribution on the mesh.

1. First, select the Plane object, and in the Material window, switch the Emission shader with a
Diffuse BSDF shader node.

2. Reselect Suzanne and click on the number 2 button close to the Material datablock name.
Rename the new material SSS_03. Then enable the fake user for this material as well.

3. Delete the RGB node. Then set the Diffuse BSDF shader node's Color values for R to 0.031,
G to 0.800, and B to 0.000 (bright green); and the Glossy BSDF node's Color values for R
to 0.646, G to 0.800, and B to 0.267 (yellow). Set the Glossy BSDF node's Roughness
value to 0.200 and Distribution to Beckmann. Set the Subsurface Scattering shader node's
Color values for R to 0.800, G to 0.086, and B to 0.317 (a vivid pink). Change Falloff
from Cubic to Gaussian.

4. Label the Mix Shader node as Mix Shader1, press Shift + D to duplicate it, and label the
duplicate as Mix Shader2. Paste it between the Add Shader and Material Output nodes.

5. Connect the Mix Shader1 node's output to the first Shader input socket of the Mix Shader2
node so that the connection from the Add Shader automatically switches to the second Shader
input socket.

6. Press Shift + D to duplicate the Mix Shader2 node, label the duplicated node as Mix
Shader3, and paste it between the Mix Shader2 and the Material Output nodes.

7. Connect the output of the Subsurface Scattering node to the second Shader input socket of the
Mix Shader3 node as shown in the following screenshot:

Adding one more Mix Shader node to further tweak the SSS amount

8. Save the file as SSS_material_02.blend.

How it works...

The scattering amount for the three RGB color channels is set in the Radius item on the node interface,
while Scale is to set the dimensions the object would have in the real world. Starting with a default value
of 1.000, the Scale value must usually be proportionally inverse lowered. The bigger the object desired
in the real world, the lower the Scale value in the node. Otherwise, the scattering effect may become too
strong.

The best way to mix the Subsurface Scattering node with the rest of any shader is by using the Add
Shader node. However, with this node, it's not possible to establish the amount of influence of the SSS
on the shader, so a trick must be performed. The Diffuse-Glossy component of the shader is again mixed
with the output of the Add Shader node, through a Mix Shader node.

In the previously explained SSS_03 material, there are two Mix Shader nodes that can be used to
tweak the influence of the effect. By raising their Fac values, it's also possible to switch from total
absence to full scattering effect, as shown in the following compilation of screenshots:

Different effects of different Fac values of the last Mix Shader node

See also
• Refer to http://en.wikipedia.org/wiki/Subsurface_scattering

http://en.wikipedia.org/wiki/Subsurface_scattering

Simulating Subsurface Scattering in Cycles using
the Translucent shader
In this recipe, we will create a fake Subsurface Scattering material using the Translucent BSDF shader
node as shown in the following screenshot:

The rendered result of the fake SSS of this recipe

As someone suggested, this material could actually be quite good to make candles.

Getting ready

Start Blender and open the 9931OS_07_start.blend file:

1. Go to the Render window, and in the Sampling subpanel, click on the Method to sample
lights and materials button to switch from Path Tracing to Branched Path Tracing. Enable
the Square Samples item, and under AA Samples, set the Render value to 8. Finally, click on
the Pattern button to select the Correlated Multi-Jitter item.

2. Save the file as 9931OS_SSS_translucent.blend.

How to do it...

Let's go ahead and create the material using the following steps:

1. Select the Suzanne object and click on the New button in the Node Editor window toolbar, or
in the Material window to the right. Rename the material SSS_translucent.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node. In the first
Shader slot, select a Diffuse BSDF shader again, and in the second slot, select a Glossy BSDF
shader node.

3. Set the Diffuse BSDF shader node's Color values for R to 0.031, G to 0.800, and B to
0.000. Set the Glossy BSDF node's Color values for R to 0.646, G to 0.800, and B to
0.267. Set the Glossy BSDF node's Roughness value to 0.200 and Distribution to
Beckmann.

4. Select the Mix Shader node and go to the Properties side-panel of the Node Editor window (if
not present, move the mouse to the Node Editor window and press the N key to make it
appear). In the Label slot inside the Node subpanel, label the Mix Shader node as Mix
Shader1. Then set its Fac value to 0.200.

5. Add a new Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as
Mix Shader2, and paste it between the Mix Shader1 node and the Material Output node.

6. Add a Translucent BSDF node (press Shift + A and navigate to Shader | Translucent BSDF)
and connect it to the second Shader input socket of the Mix Shader2 node. Set the Color
values of R to 0.800, G to 0.086, and B to 0.317.

7. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), and a Noise Texture node
(press Shift + A and navigate to Texture | Noise Texture).

8. Connect the UV output of the Texture Coordinate node to the Vector input socket of the
Mapping node, and the output of this node to the Vector input socket of the Noise Texture
node. Set the Noise Texture node's Scale value to 20.000.

9. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the Color
output of the Noise Texture node to the Height input socket of the Bump node. Then connect
the Normal output of this node to the Normal input sockets of the Diffuse BSDF, Glossy
BSDF, and Translucent BSDF nodes. Leave the Bump strength at 1.000.

10. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader2 node. Set the IOR value to 8.000 as shown in the following
screenshot:

The overall view of the material network

11. Save the file.

How it works...

This is probably the simpler form of the fake Subsurface Scattering effect you can get in Cycles. It is
obtained by simply blending a translucent effect with a basic Diffuse-Glossy shader. By varying the
amount of the IOR value in the Fresnel node (set quite high as a starting point), it is possible to
establish the amount of translucency on the mesh. We also added a Noise Texture bump effect to the
material, just to make it appear more jelly-like.

Note that we gave almost complementary colors to the Diffuse BSDF and Translucent BSDF shaders
to show the effect more clearly, but colors similar to each other can work better. Also note that the
translucent effect actually follows the direction of the lighting. Try to rotate the Emitter and the
Emitter_back planes around the Suzanne mesh to verify this in real time, through the Rendered view
as shown in the following screenshot:

A preview of the fake SSS material lit from a different angle

Note

Note that for the three components of the shader (Diffuse BSDF, Glossy BSDF, and Translucent
BSDF) we used (and will also use for the following recipes) the same colors of the SSS_03 material.
This was done to make an easier comparison between the effects obtained in the recipes.

Simulating Subsurface Scattering in Cycles using
the Vertex Color tool
In this recipe, we will create a fake Subsurface Scattering material as shown in the following screenshot,
using the Vertex Color tool:

The Rendered result of the vertex color fake SSS material of this recipe

Getting ready

Start Blender and open the 9931OS_07_start.blend file.

1. Go to the Render window, and in the Sampling subpanel, click on the Method to sample
lights and materials button to switch from Path Tracing to Branched Path Tracing. Enable
the Square Samples item, and under AA Samples, set the Render value to 8. Finally, click on
the Pattern button to select the Correlated Multi-Jitter item.

2. Select the Suzanne mesh, click on the Mode button in the Camera view toolbar, and choose
Vertex Paint (or just press the V key). Now Suzanne goes into Vertex Paint mode.

3. Click on the Paint item to the left of the Mode button and select Dirty Vertex Colors. Then
press T, and in the last operation subpanel (Dirty Vertex Color) at the bottom of the Tool Shelf
panel, set Blur Strength to 0.50, Highlight Angle to 90°, and Dirt Angle to 90°. Enable the
Dirt Only item as shown in the following screenshot:

A screenshot of Suzanne in Vertex Paint mode and the Dirty Vertex Color values at the bottom of
the Tool Shelf

The Suzanne mesh inside the 9931OS_07_start.blend file already had a Vertex Color
layer named Col. With the previous procedure, we overwrote it.

4. Go to the Object data window under the main Properties panel to see it in the Vertex Colors
subpanel. Then go back to Object Mode and press T to get rid of the Tool Shelf panel.

5. Save the file as 9931OS_07_SSS_vcol.blend.

How to do it...

After the vertex color preparation, let's go for the material itself by following these steps:

1. Click on the New button in the Node Editor window toolbar or in the Material window under
the main Properties panel. Rename the material SSS_vcol.

2. In the Material window, switch the Diffuse BSDF shader with an Add Shader node. In the
first Shader slot, select a Mix Shader node. In the second Shader slot, select a Translucent
BSDF shader node. In the Properties side panel to the right of the Node Editor window, label
the Mix Shader node as Mix Shader1.

3. Go to the Mix Shader1 node. In the first Shader slot, select a Diffuse BSDF shader node. In
the second Shader slot, select a Glossy BSDF shader node. Set the Glossy BSDF node's
Roughness value to 0.450 and Distribution to Beckmann.

4. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel), connect it to the Fac input
socket of the Mix Shader1 node, and set the IOR value to 3.850.

5. Set the Diffuse BSDF node's Color values for R to 0.031, G to 0.800, and B to 0.000 (the
same bright green as in the Simulating Subsurface Scattering in Cycles using the Translucent
shader recipe); and the Translucent BSDF node's Color values for R to 0.800, G to 0.086,
and B to 0.317 (the same pink as in the Using the Subsurface Scattering shader node recipe).
Set the Glossy BSDF node's Color values for R to 0.646, G to 0.800, and B to 0.267,
again it's the same yellowish color as in the Using the Subsurface Scattering shader node
recipe).

6. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), and a Noise Texture node
(press Shift + A and navigate to Texture | Noise Texture).

7. Connect the UV output of the Texture Coordinate node to the Vector input socket of the
Mapping node, and the output of this node to the Vector input socket of the Noise Texture
node. Set the Noise Texture node's Scale value to 20.000.

8. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the Color
output of the Noise Texture node to the Height input socket of the Bump node. Then connect
the Normal output of this node to the Normal input sockets of the Diffuse BSDF, Glossy
BSDF, and Translucent BSDF nodes.

9. Add a new Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as
Mix Shader2, and paste it between the Add Shader and Material Output nodes. Then
move the connection from the Add Shader node to the second Shader input socket, and
connect the output of the Mix Shader1 node to the first Shader input socket of the Mix
Shader2 node.

10. Add an Attribute node (press Shift + A and navigate to Input | Attribute) and a ColorRamp
node (press Shift + A and navigate to Converter | ColorRamp). In the Name slot of the
Attribute node, write the vertex color layer name, that is, Col. Then connect the Color output
of Attribute node to the Fac input socket of the ColorRamp node. In the ColorRamp node,
move the white color stop to 0.350 position.

11. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves) and connect
the Color output of the ColorRamp node to the Color input socket of this node. Then connect
its Color output to the Fac input socket of the Mix Shader2 node.

12. Inside the RGB Curves node's interface window, move the first curve control point coordinate
values for X to 0.00000 and Y to 0.88125, and the second point coordinate values for X to
1.00000 and Y to 1.00000.

13. Save the file. The overall network will be as shown in the following screenshot:

The overall network; note the Vertex Color output intensified by ColorRamp and RGB Curves
nodes

How it works...

Compared to the former recipe, in this case, we used information about the Vertex Color, enhanced by
the ColorRamp node, to drive the mixing of the translucency with the other components of the shader.
It's clear that the final result is largely due to vertex painting. We obtained this result quickly through the
Dirty Vertex Color tool, but that could also be painted by hands (imagine you're painting a mask for a
skull under the face skin).

Simulating Subsurface Scattering in Cycles using
the Ray Length output in the Light Path node
In this recipe, we will create a fake Subsurface Scattering material using the Ray Length output of the
Light Path node.

The Rendered result of the fake SSS material of this recipe

Getting ready

Start Blender and open the 9931OS_07_start.blend file.

1. Go to the Render window, and in the Sampling subpanel, click on the Method to sample
lights and materials button to switch from Path Tracing to Branched Path Tracing. Enable
the Square Samples item, and under AA Samples, set the Render value to 8. Finally, click on
the Pattern button to select the Correlated Multi-Jitter item.

2. Save the file as 9931OS_07_SSS_raylength.blend.

How to do it...

Let's create the material using the following steps:

1. Select the Suzanne object. Click on the New button in the Node Editor window toolbar or in
the Material window to the right of the screen. Rename the material SSS_raylength.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node. Label it as
Mix Shader1. In its first Shader slot, select a Diffuse BSDF shader. In its second Shader
slot, select a new Mix Shader node. Label this node as Mix Shader2.

3. Go to the Mix Shader2 node. In its first Shader slot, select a new Mix Shader node and label it
as Mix Shader3. In the second Shader slot, select a Glossy BSDF node.

4. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and connect
its Facing output to the Fac input socket of the Mix Shader1 node. Set the Blend value to
0.950.

5. Set the Fac value of the Mix Shader2 node to 0.200 and the Fac value of the Mix Shader3
node to 0.700. Set the Glossy BSDF node's Roughness to 0.100.

6. Connect the Diffuse BSDF node output to the first Shader input socket of the Mix Shader3
node. Add an Add Shader node (press Shift + A and navigate to Shader | Add Shader) and
connect it to the second Shader input socket of the Mix Shader3 node.

7. Go to the Add Shader node, and in the first Shader slot, select the last Mix Shader node.
Label it as Mix Shader4. In the second Shader slot, select a Translucent BSDF shader
node.

8. Connect the output of the Diffuse BSDF node to the first Shader input socket of the Mix
Shader4 node, and the output of the Translucent BSDF node to the second Shader input
socket.

9. Set the Diffuse BSDF shader node's Color values for R to 0.031, G to 0.800, and B to
0.000; the Glossy BSDF shader node's Color values for R to 0.646, G to 0.800, and B to
0.267; and the Translucent BSDF shader node's Color values for R to 0.800, G to 0.086,
and B to 0.317.

10. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) and a
Bump node (press Shift + A and navigate to Vector | Bump). Connect the Color output of the
Voronoi Texture node to the Height input socket of the Bump node and the Normal output of
this node to the Normal input sockets of the Diffuse BSDF, Glossy BSDF, and Translucent
BSDF nodes. Set the Voronoi Texture node's Scale value to 32.600 and the Bump node's
Strength value to 0.100. Then enable the Invert item in the Bump node.

11. Add a Light Path node (press Shift + A and navigate to Input | Light Path) and a Math node
(press Shift + A and navigate to Converter | Math). Set the Math node's Operation to
Multiply. Connect the Ray Length output of the Light Path node to the first Value input
socket of the Math node. Then set the second Value input socket to -8.000.

12. Press Shift + D to duplicate the Math node. Set Operation to Power. Connect the output of the
Multiply math node to the first Value input socket of this node. Set the second Value input
socket to 3.000. Enable the Clamp item.

13. Press Shift + D to duplicate the Power-Math node, set Operation to Add, and connect the
output of the Power node to its first Value input socket. Connect its output to the Fac input
socket of the Mix Shader4 node.

14. Connect the Fac output of the Voronoi Texture node to the second Value input socket of the
Add-Math node.

The completed network of the material

15. Save the file.

How it works...

In this recipe, we used the Ray Length output of the Light Path node to drive the amount of
translucency on the mesh. Ray Length does exactly what its name suggests. It returns the length of a
light ray passing through an object. So basically, it is possible for Cycles to know the thickness of a
mesh. On the thicker parts, the translucency will show less or even for nothing, whereas it will be more
visible on the thinner parts of the mesh.

Note

Note that in the shader network, the Ray Length output was intensified by a set of Math nodes and
added to the Voronoi Texture node's output. Then it was connected to the factor input of the Mix
Shader node to drive the blending of the Diffuse and of the Translucent components.

Creating a fake Subsurface Scattering node
group
In this recipe, we will create a fake Subsurface Scattering node group that can be mixed with other
nodes to add the fake scattering effect to a material. In this screenshot, you can see the effect of the
Subsurface Scattering node alone on the Suzanne mesh:

The rendered result of the fake SSS node group assigned to Suzanne

In the following screenshot, you can see the effect of the node group added to the usual basic shader
material:

Mixed with a Diffuse-Glossy shader

Again, we will use the colors of the previous recipes.

Getting ready

Start Blender and open the 9931OS_07_start.blend file.

1. Go to the Render window, and in the Sampling subpanel, click on the Method to sample
lights and materials button to switch from Path Tracing to Branched Path Tracing. Enable
the Square Samples item and under AA Samples, set the Render value to 8. Finally, click on
the Pattern button to select the Correlated Multi-Jitter option.

2. Save the file as 9931OS_07_SSS_ngroup.blend.

How to do it...

Now let's create the material using the following steps:

1. Click on the New button in the Node Editor window toolbar or in the Material window under
the main Properties panel. In the Node Editor window, delete the Diffuse BSDF shader node.

2. Add a Light Path node (press Shift + A and navigate to Input | Light Path) and a Geometry
node (press Shift + A and navigate to Input | Geometry).

3. Add a Math node (press Shift + A and navigate to Converter | Math). Set Operation to
Multiply and connect the Ray Length output of the Light Path node to the first Value input
socket. Set the second Value input socket to -1.500.

4. Press Shift + D to duplicate the Multiply-Math node, and set Operation to Power. Connect the
Multiply-Math node output to the second Value input socket of the Power node. Set the first
Value to 20.000.

5. Press Shift + D to duplicate the Power node, and set Operation to Add. Connect the Power
node output to the second Value input socket of the Add-Math node, and the Is Camera Ray
output of the Light Path node to the first Value input socket of the Add-Math node.

6. Press Shift + D to duplicate the Add node. Set the Operation to Minimum. Connect the output
of the Add node to the first Value input socket of the Minimum node, and set the second Value
input socket to 1.000.

7. Press Shift + D to duplicate the Power node, and place it after the Minimum node. Connect the
output of the Minimum node to the first Value input socket of the duplicated Power node.

8. Add a Value node (press Shift + A and navigate to Input | Value), label it as Contrast, and
connect its output to the second Value input socket of the last Power-Math node. Set Value to
1.200.

9. Press Shift + D to duplicate any of the Math nodes, set Operation to Subtract, and connect the
Backfacing output of the Geometry node to its second Value input socket. Set the first Value
input socket to 1.000.

10. Press Shift + D to duplicate the Subtract node, set Operation to Add, and paste it between the
first Add and Minimum nodes. Connect the output of the Subtract node to the second Value
input socket of the last Add node.

11. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and connect
the output of the last Power-Math node to its Fac input socket. Add a Translucent BSDF node
(press Shift + A and navigate to Shader | Translucent BSDF) and connect the Color output of
the ColorRamp node to its Color input socket.

12. Set the ColorRamp node's Interpolation to B-Spline. Click on the Add button to add a new
stop with Color values for R as 0.500, G as 0.500, and B as 0.500 at the position of
0.500.

13. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB). Set Blend Type to
Overlay and the Fac value to 1.000. Connect the Color output of the ColorRamp node to the
Color1 input socket. Set Color2 values for R as 0.500, G as 0.054, and B as 0.077.

14. Connect the Color output of the Overlay node to the Color input socket of the Translucent
BSDF node. Connect the output of the Translucent BSDF node to the Surface input socket of
the Material Output node as shown in the following screenshot:

The network to be grouped

15. Now select all the nodes except the Value and Material Output nodes. Press Ctrl + G to create
a Node Group.

16. Rename the exposed input socket to the left of the node group as Contrast, set the value on
the group interface, and then delete the original Value node.

17. Click and drag the Color2 socket of the Overlay node to the empty socket on the Group Input
node, and rename the exposed socket as Subsurface Scattering_color. Then click
and drag the Normal socket of the Translucent BSDF shader node to the empty socket as
shown in the following screenshot:

The network inside the open-for-editing node group

18. Press Tab to close the node group, and rename it SSS_group.

So now, we have made the Subsurface Scattering node group, ready to be mixed with any surface
material.

Let's now create a simple material to mix the node group using the following steps:

1. Add a Mix Shader node, a Diffuse BSDF node, and a Glossy BSDF shader node (press Shift +
A and navigate to Shader | ...). Connect the Diffuse BSDF node output to the first Shader input
socket of the Mix Shader node and the Glossy BSDF shader output to the second Shader input
socket.

2. Connect the Mix Shader output to the Surface input socket of the Material Output node.
3. Set the Color values of the Diffuse BSDF shader node for R to 0.031, G to 0.800, and B to

0.000. Set the Color values of the Glossy BSDF node for R to 0.646, G to 0.800, and B to
0.267.

4. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) and a
Bump node (press Shift + A and navigate to Vector | Bump). Connect the Fac output of the
texture node to the Height input socket of the Bump node, and the Normal output of this node
to the Normal input sockets of the Diffuse BSDF and Glossy BSDF shaders, and also of the
SSS_group node group.

5. Set the Bump node's Strength to 0.150 and enable the Invert item. Set the Voronoi Texture
node's Scale value to 22.500.

6. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader node. Set the IOR value to 3.250.

Now let's simply add the Subsurface Scattering node group:

1. Add an Add Shader node (press Shift + A and navigate to Shader | Add Shader) and paste it
between the Mix Shader node and the Material Output node. Switch the connection from the
first socket to the second socket (this is actually not required in this case because the shaders are
added anyway).

2. Connect the output of the SSS_group node to the first socket of the Add Shader node as
shown in the following screenshot:

The SSS node group added to the diffuse and glossy components of an average shader

How it works...

The key of this material is obviously the Light Path node, with its several kinds of output. In this case,
we are interested in two of them:

• The Ray Length and Is Camera Ray output of the Light Path node are added together. Ray
Length defines the thickness of the mesh, and it's also clamped by the first Multiply node and
the Power node. The Is Camera Ray output gets Cycles to render only those surface points that
are directly hit by light rays emerging from the Camera. When added to each other, the two
types of output produce a stencil effect, gray-scale values distributed according to the thickness
of the mesh.

• Next, the Backfacing output of the Geometry node is added to take into consideration the color
of the back mesh faces. All of this is multiplied by the second Power node for the Contrast
value and further clamped by the ColorRamp node.

• At this point, the result is mixed with the Subsurface Scattering_color output by the Overlay
node, and finally connected to the Color input socket of the Translucent BSDF shader,
resulting in the semi-transparent-looking shader of the first image at the beginning of this
recipe.

Chapter 8. Creating Organic Materials
In this chapter, we will cover the following topics:

• Creating an organic-looking shader with procedurals
• Creating a wasp-like chitin material with procedural textures
• Creating a beetle-like chitin material with procedural textures
• Creating tree shaders – the bark
• Creating tree shaders – the leaves
• Creating a layered human skin material in Cycles
• Creating fur and hair
• Creating a gray alien skin with procedurals

Introduction
Following on from the natural materials we have seen in Chapter 3, Creating Natural Materials in
Cycles, and in Chapter 5, Creating Complex Natural Materials in Cycles, it's now time to take a look at
organic shaders.

Once again, while building the materials, we tried to use only the Cycles procedural textures. In several
cases, this hasn't been the case by the way: on one side, because it hasn't been possible, and on the other
side, because image maps usually work better than procedurals.

In any case, procedurals have often been added to the shader to refine the details or to add a natural-
looking randomness to a pattern that repeats too much.

Creating an organic-looking shader with
procedurals
In this recipe, we will create a sort of organic, disgusting-looking material, as shown in the following
screenshot:

The disgusting organic material as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_08_start.blend file, where there is an already set scene with
an unwrapped Suzanne primitive object leaning on a Plane, an Emitter mesh-light, and a Camera.

Go to the Render window, and in the Sampling subpanel, change Pattern from Sobol to Correlated
Multi-Jitter.

How to do it...

Let's go straight to the material creation by using the following steps:

1. Click on the New button in the Node Editor window toolbar or in the Material window under
the main Properties panel and rename the new material Organic.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and label it
as Mix Shader2. In the first Shader input socket, select a Mix Shader node and label it as
Mix Shader1, and in the second one, select an Add Shader node.

3. Go to the Mix Shader1 node, and in the first Shader input socket, load a Diffuse BSDF node,
and in the second one, load a Glossy BSDF node. Change the Glossy BSDF shader node's
Distribution to Ashikhmin-Shirley, and set the Roughness value to 0.100.

4. Add a Subsurface Scattering node (press Shift + A and navigate to Shader | Subsurface
Scattering). Set the Falloff value to Gaussian, the Scale value to 0.060, and the Radius
values to 4.000, 2.000, and 1.000 (top to bottom).

5. Connect the Mix Shader1 output to the first Shader input socket of the Add Shader node, and
the output of the Subsurface Scattering node to the second Shader input socket of the Add
Shader node.

6. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and connect
its Facing output to the Fac input socket of the Mix Shader2 node. Set the Blend value to
0.100.

7. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect its output to
the Fac input socket of the Mix Shader1 node. Set the IOR value to 5.950 as shown in the
following screenshot:

The basic shader nodes

8. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), and a Voronoi Texture
node (press Shift + A and navigate to Texture | Voronoi Texture). Connect the Object output of
the Texture Coordinate node to the Vector input socket of the Mapping node, and the output
of this to the Vector input of the Voronoi Texture node. Set the Scale value of the Mapping
node to 1.500 for the three axes.

9. Add three ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp) and
label them as ColorRamp1, ColorRamp2, and ColorRamp3. Connect the Color output of
the Voronoi Texture node to the Fac input sockets of the three ColorRamp nodes.

10. In the ColorRamp1 node, set Interpolation to B-Spline, the black color stop to the 0.400
position, and the white color stop to the 0.700 position. In the ColorRamp2 node, set

Interpolation to B-Spline as well. Leave the black color stop at the 0.000 position, and move
the white color stop to the 0.300 position. In the ColorRamp3 node, set Interpolation to
Cardinal, leave the black color stop at the 0.000 position, and move the white color stop to
the 0.805 position.

11. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set Blend Type to
Add and the Fac value to 1.000, and then connect the Color output of the ColorRamp1 node
to the Color1 input socket, and the Color output of the ColorRamp2 node to the Color2 input
socket.

12. Press Shift + D to duplicate the Add node and change Blend Type of the duplicate to Multiply.
Connect the output of the Add node to the Color1 input socket, and the Color output of the
ColorRamp3 node to the Color2 input socket.

13. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the output of
the Multiply node to the Height input socket of the Bump node. Connect the Normal output of
this to the Normal input sockets of the Diffuse BSDF, Glossy BSDF, and Subsurface
Scattering nodes. Enable the Invert option on the Bump node, as shown in the following
screenshot:

The Bump node

14. Now, box-select (press the B key) the Texture Coordinate node and the Mapping nodes, and
move them to the left to make room for new nodes.

15. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and label it as
Vector_deform. Paste it between the Mapping and Voronoi Texture nodes.

16. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture), connect to
its Vector input socket the Mapping node output, and set the Scale value to 7.200. Connect

the Noise Texture node's Color output to the Color2 input socket of the Vector_deform node.
Set the Fac value of the Vector_deform node to 0.080, as shown in the following screenshot:

Deforming the mapping coordinates of the bump textures through a procedural noise

17. Add an RGB node (press Shift + A and navigate to Input | RGB) and a new MixRGB node
(press Shift + A and navigate to Color | MixRGB). Label the MixRGB node

18. as Color_Diffuse.
19. Press Shift + D to duplicate the Color_Diffuse node and label the duplicate as

Color_Glossy.
20. Connect the Color_Diffuse node's output to the Color input socket of the Diffuse BSDF shader

node, and the Color_Glossy node's output to the Color input socket of the Glossy BSDF shader
node.

21. Connect the output of the RGB node to the Color1 input sockets of both the Color_Diffuse and
Color_Glossy nodes. Connect the RGB node also to the Color input socket of the Subsurface
Scattering node.

22. Press Shift + D to duplicate the Color_Diffuse node, set Blend Type of the duplicate to
Multiply, and label it as Multiply_Diffuse; then, paste it between the Color_Diffuse and
Diffuse BSDF shader nodes.

23. Connect the Color output of the ColorRamp2 node to the Color2 input socket of the
Multiply_Diffuse node. Set the Fac value of this to 0.770.

24. Go to the Color_Diffuse node and set the Fac value to 0.830, and change the Color2 value of
R to 0.315, G to 0.500, and B to 0.130.

25. Go to the Color_Glossy node and set the Fac value to 0.770, and change the Color2 values of
R to 0.860, G to 0.611, and B to 0.203.

26. Go to the RGB node and set the Color values for R to 0.900, G to 0.123, and B to 0.395,
as shown in the following screenshot:

Adding the color nodes

27. Save the file as 9931OS_organic.blend.

How it works...
• From step 1 to 7, we built a shader that is very similar to the shaders that we have already seen

for SSS_materials.
• From step 8 to 13, we built the bump pattern by using a single Voronoi Texture node tuned

through three ColorRamp nodes with different settings.
• From step 14 to 16, we added, through the very low value of a MixRGB node, the values of a

Noise Texture node to the vector of the Voronoi Texture node to obtain a less regular pattern.
• From step 17 to 25, we built the color pattern by establishing a base color by the RGB node and

introducing a variation through the MixRGB nodes connected to the Color input sockets of the
shader components. Note that the base pink color set in the RGB node goes straight to the SSS
node. The MixRGB varied greenish color is multiplied by one of the bump outputs and then
goes to the diffuse component of the shader, while the varied yellowish color is for the glossy
component instead.

Creating a wasp-like chitin material with
procedural textures
In this recipe, we will create a material similar to chitin (the characteristic substance of the exoskeletons
of insects) colored with a yellow and black pattern like a wasp, as shown in the following screenshot:

The insect wasp-like material as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_08_start.blend file, where there is an already set scene with
an unwrapped Suzanne primitive object leaning on a Plane, an Emitter mesh-light, and a Camera.

Go to the World window and enable the Ambient Occlusion item with the Factor value 0.10.

How to do it...

Let's start immediately with the material creation using the following steps:

1. Click on the New button in the Node Editor window toolbar or in the Material window under
the main Properties panel to the right, and rename the new material chitin_wasp.

2. Now, in the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and
label it as Mix Shader2. In the first Shader slot, select a new Mix Shader node. In the
second one, select a Glossy BSDF shader node. Label the new Mix Shader node as Mix
Shader1, and the Glossy BSDF node as Glossy BSDF_2.

3. Go to the Mix Shader1 node, and in the first Shader slot, select a Diffuse BSDF shader, and in
the second one, select a new Glossy BSDF shader node. Label the latter as Glossy BSDF_1,

and set its Roughness value to 0.100 and Distribution to Beckmann, and change the Color
value for R to 0.039, G to 0.138, and B to 0.046.

4. Set the Glossy BSDF_2 node's Roughness value to 0.040 and Distribution to Beckmann,
and change its Color values for R to 0.500, G to 0.440, and B to 0.086. Set the Fac value
of the Mix Shader2 node to 0.025.

5. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and connect
its Facing output to the Fac input socket of the Mix Shader1 node. Leave the Blend value as
0.500, as shown in the following screenshot:

The nodes for the base shader

6. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the UV
output of the Texture Coordinate node to the Vector input of the Mapping node. Label the
latter as Mapping1.

7. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) and a
Noise Texture node (press Shift + A and navigate to Texture | Noise Texture). Connect the
Mapping1 node's Vector output to their Vector input sockets. Set the Scale values of both the
texture nodes to 300.000 and then label the Noise Texture node as Noise Texture1.

8. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the Color
output of the Voronoi Texture node to the Height input socket of the Bump node. Connect the
Normal output of this node to the Normal input sockets of the Diffuse BSDF node and both
Glossy BSDF shader nodes. Set the Bump node's Strength value to 0.500.

9. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp1, and paste it between the Voronoi Texture node and the Bump node. Set
Interpolation to Ease and move the white color stop to the 0.059 position.

10. Add a Math node (press Shift + A and navigate to Converter | Math), set Operation to
Multiply, and connect the Fac output of the Noise Texture1 node to the first Value input socket
of the Math node. Set the second Value to 0.100 and connect the Value output to the
Displacement input socket of the Material Output node, as shown in the following screenshot:

Textures connected either as per the shader bump and the total bump to the Displacement input
socket of the Material Output node

11. Add a new Mapping node (press Shift + A and navigate to Vector | Mapping), label it as
Mapping2, and connect the UV output of the Texture Coordinate node to its Vector input
socket. Set the Rotation value for Y to 90° and the Rotation value of Z to 45°. Set the Scale
value for all three axes to 5.000.

12. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and a
ColorRamp node (press Shift + A and navigate to Converter | ColorRamp). Label them as
Noise Texture2 and ColorRamp2.

13. Connect the output of the Mapping2 node to the Vector input socket of the Noise Texture2
node, and the Fac output of this node to the Fac input socket of ColorRamp2. Connect the
output of this node to the Color input socket of the Diffuse BSDF shader node.

14. Go to the Noise Texture2 node and set the Scale and Distortion values to 2.000. Go to the
ColorRamp2 node and set Interpolation to Constant, select the white color stop, and change
the Color values for R to 1.000, G to 0.429, and B to 0.000.

15. Click on the + icon button to add new color stops until you have eight color stops almost evenly
spaced along the slider (that is: color stop 0 at the 0.000 position, 1 at the 0.125 position, 2
at the 0.250 position, then 0.357, 0.491, 0.626, 0.745, and 0.886).

16. Select the last color stop, put the mouse pointer on the color slider, and press Ctrl + C to copy
the yellow color; then, select the color stops numbered 1, 3, and 5, and paste the color (press

Ctrl + V) so as to have a slider subdivided in eight parts, four black and four yellow, as shown in
the following screenshot:

The color pattern connected to the diffuse component

How it works...
• From step 1 to 5, we built the basic shader using two Glossy BSDF shaders with different colors

to mimic a color shifting in the specularity areas.
• From step 6 to 10, we built the chitin bump, assigning the pores to the per-shader bump but a

general noise pattern to the displacement output (which, in this case, still works as a simple
bump).

• From step 11 to 16, we built a simple and random wasp-colored pattern; obviously, this can be
changed and modified as you prefer, and actually should also be used on a more appropriate
model; in this case, it would be better to make use of a painted color texture map to build a more
appropriate and symmetrical color pattern.

Creating a beetle-like chitin material with
procedural textures
In this recipe, we will create a material similar to iridescent chitin (found in some kinds of beetles), as
shown in the following screenshot:

The beetle chitin-like material as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_08_start.blend file, where there is an already set scene with
an unwrapped Suzanne primitive object leaning on a Plane, an Emitter mesh-light, and a Camera.

Go to the World window and enable the Ambient Occlusion option with the Factor value as 0.10.

How to do it...

Let's start immediately with the material creation using the following steps:

1. Click on the New button in the Node Editor window's toolbar or in the Material window under
the main Properties panel to the right, and rename the new material as chitin_beetle.

2. Now, in the Material window, switch the Diffuse BSDF shader with a Mix Shader node and
label it as Mix Shader2. In the first Shader slot, select a new Mix Shader node; in the
second Mix Shader node, select a Glossy BSDF shader node. Label the new Mix Shader node
as Mix Shader1, and the Glossy BSDF one as Glossy BSDF_2.

3. Go to the Mix Shader1 node, and in the first Shader slot, select a Diffuse BSDF shader, and in
the second one, select a new Glossy BSDF shader node; label this node as Glossy BSDF_1

and set its Roughness value to 0.200 and Distribution to Beckmann, and change the Color
values for R to 1.000, G to 0.000, and B to 0.562.

4. Set the Glossy BSDF_2 node's Roughness value to 0.100 and Distribution to Beckmann,
and change its Color values for R to 0.800, G to 0.574, and B to 0.233.

5. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight), label it as
Layer Weight1, and connect its Facing output to the Fac input socket of the Mix Shader2
node. Leave the Blend value at 0.500.

6. Add a second Layer Weight node (press Shift + A and navigate to Input | Layer Weight), label
it as Layer Weight2, and connect its Facing output to the Fac input socket of the Mix
Shader1 node. Leave the Blend value at 0.800, as shown in the following screenshot:

The shader part of the material

7. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and a Mapping node (press Shift + A and navigate to Vector | Mapping). Connect the UV
output of the Texture Coordinate node to the Vector input of the Mapping node.

8. Add a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture) and a
Noise Texture node (press Shift + A and navigate to Texture | Noise Texture); connect the
Mapping output to their Vector input sockets. Set the Scale values of both the texture nodes to
300.000.

9. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the Color
output of the Voronoi Texture node to the Height input socket of the Bump node; connect the
Normal output of this node to the Normal input sockets of Diffuse BSDF and of both the
Glossy BSDF shader nodes. Set the Bump node's Strength value to 0.500.

10. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and paste it
between the Voronoi Texture node and the Bump node. Set Interpolation to Ease and move
the white color stop to the 0.059 position.

11. Add a Math node (press Shift + A and navigate to Converter | Math), set Operation to
Multiply, and label it as Multiply1; connect the Fac output of the Noise Texture node to the
first Value input socket of the Math node. Set the second Value to 0.075 and connect the
Value output to the Displacement input socket of the Material Output node, as shown in the
following screenshot:

The bump is both "per shader" and as "total" bump (as in the previous wasp material recipe)

12. Add a new Layer Weight node (press Shift + A and navigate to Input | Layer Weight), two
Math nodes (press Shift + A and navigate to Converter | Math), and a Hue Saturation Value
node (press Shift + A and navigate to Color | Hue/Saturation); label the new Layer Weight
node as Layer Weight3.

13. Connect the Facing output of the Layer Weight3 node to the first Value input socket of one of
the Math nodes; set its Operation to Multiply and the second Value to 0.700, and label it as
Multiply2.

14. Connect the Multiply2 node's output to the first Value input socket of the second Math node,
and the output of this node to the Hue input socket of the Hue Saturation Value node; connect
the output of this node to the Color input socket of the Diffuse BSDF shader node.

15. Change the Hue Saturation Value node's Color values for R to 0.103, G to 0.500, and B to
0.229, and just for this example, leave the other values as they are, as shown in the following
screenshot:

Adding the final diffuse color

How it works...
• The introductory steps of this shader work almost the same as for the chitin_wasp material,

that is, the basic shader from step 1 to 6 and the chitin bump from step 7 to 11.
• From step 12 to 15, we build the color component coming from the Hue Saturation Value

node, and thanks to the combination of the Layer Weight3 and Math nodes, this appears
mainly in the mesh faces perpendicular to the point of view, sliding in the other spectrum colors
on the facing-away mesh sides, basically behaving as a sort of Fresnel effect. The addition of
the Hue Saturation Value node allows for further color tweaking.

Creating tree shaders – the bark
There are several different ways to make trees in a 3D package: starting from the simpler low-poly
objects, such as the billboards used in video games (simple planes mapped with tree images on a
transparent background), to middle complex objects where a trunk mesh is attached to a foliage mass
made of little alpha textured planes, each one representing a leaf or even a twig, to more complex and
heavy meshes, where every little branch and leaf is actually modeled.

In case you need them, you can find several free tree models in the Blender format and also their
billboard versions at http://yorik.uncreated.net/greenhouse.html.

For this two-part tree shader recipe, we will instead use a model coming from the many environment
assets of the CG short Big Buck Bunny, the second open movie produced by the Blender Foundation. All
the movie assets are free to be downloaded, distributed, and reused even for commercial projects
because the short is licensed under the Creative Commons Attribution 3.0 license (refer to its official
website at http://creativecommons.org/licenses/by/3.0/).

The general shape of the tree and the leaves is pretty toyish. This is because they are elements that have
been drawn to match the toon style of the furry characters, but it's actually perfectly suited for our
demonstration purposes. The final rendered tree from Big Buck Bunny is shown in the following
screenshot for your reference:

The final rendered tree from Big Buck Bunny

http://yorik.uncreated.net/greenhouse.html
http://creativecommons.org/licenses/by/3.0/

The tree model is composed of several parts: on the first layer, there are the tree_trunk, the
tree_branch, and the tree_branches meshes, and on the second layer are the leaves, made by a single
leaf object dupliverted on the tiny faces of the leaves_dupli object. (That is, the leaf_tobeswitched
object is parented to the leaves_dupli object, and then, in the Object window and under the Duplication
subpanel, the Faces duplication method has been selected, the Scale item checked, and the Inherit Scale
value set to 1110.000. This way, the leaf_tobeswitched object is instanced on the leaves_dupli
object's many faces according to their location, rotation, and scale.)

On the 11th layer, there are three leaf objects with three different levels of detail: a simple flat Plane, a
subdivided and curved Plane, and a modeled leaf. Their presence is only to supply the low, middle, and
high resolution mesh data. By selecting the leaf_tobeswitched object and by going to the Object data
window, it is possible to switch between the leaf_generic_low, leaf_generic_mid, and leaf_generic_hi
foliage levels of detail.

In the first part of this two-part recipe, we will create the material for the bark, as shown in the following
screenshot:

The bark material

Getting ready

Start Blender and open the 9931OS_08_tree_start.blend file. For this recipe, deactivate the
second layer, and in Outliner, select the tree_trunk object.

How to do it...

Let's start by creating the bark material using the following steps:

1. Click on the New button in the Node Editor window toolbar or in the Material window, and
rename the material as bark.

2. Still in the Material window, switch the Diffuse BSDF shader with a Mix Shader node, and
label it as Mix Shader_bark1. In the first Shader slot, select a Diffuse BSDF shader node,
and in the second one, select a Glossy BSDF shader node; then, label them as
Diffuse_bark1 and Glossy_bark1. Set the Glossy_bark distribution to Beckmann, the
Roughness value to 0.800, and the Mix Shader_bark1 node's Fac value to 0.200.

3. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Mapping node (press Shift + A and navigate to Vector | Mapping), and an Image Texture
node (press Shift + A and navigate to Texture | Image Texture); label the last two as
Mapping1 and Bark_color1.

4. Connect the UV output of the Texture Coordinate node to the Vector input socket of the
Mapping1 node, and the output of this node to the Vector input socket of the Bark_color1
node. Connect the Color output of the Bark_color1 node to the Color input sockets of both the
Diffuse_bark1 and Glossy_bark1 shader nodes.

5. Click on the Open button of the Bark_color1 node, browse to the textures folder, and load
the bark_color_tile.png image.

6. Press Shift + D to duplicate the Bark_color1 node, label it as Bark_normal1, and connect
the Mapping1 node output to its Vector input socket. Make the image datablock single-user by
clicking on 2, which appears on the right side of the image name. Click on the Open Image
button (the one with the folder icon), browse again to the textures folder, and load the
bark_norm_tile.png image. Set Color Space to Non-Color Data.

7. Add a Normal Map node (press Shift + A and navigate to Vector | Normal Map), label it as
Normal Map1, and connect the Color output of the Bark_normal1 node to the Color input
socket of the Normal Map1 node, and then set the Strength value to 2.000. Click on the UV
Map for tangent space maps button upwards of the Strength one and select UVMap (the
trunk mesh has two different sets of UV coordinates, which we'll see later).

8. Connect the Normal output of the Normal Map1 node to the Normal input sockets of both the
Diffuse_bark1 and the Glossy_bark1 shader nodes, as shown in the following screenshot:

The basic bark material that uses a normal map

9. Now, box-select (press the B key and then draw a rectangle) all the nodes except for the Texture
Coordinate and Material Output nodes and press Shift + D duplicate them. Move them down
and change their labels by substituting the 1 suffix with 2. Connect the UV output of the
Texture Coordinate node to the Vector input socket of the duplicated Mapping2 node, and set
the Scale of this node to 0.350 for all three axes.

10. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader), label it as Mix
Shader_bark3, and paste it right before the Material Output node. Connect the output of
the Mix Shader_bark2 node to the second Shader input socket of the Mix Shader_bark3
node.

11. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture), connect
the UV output of the Texture Coordinate node to the Vector input socket of the Noise Texture
node, and connect the Fac output of this node to the Fac input socket of the Mix Shader_bark3
node.

12. Set the Noise Texture node's Scale value to 15.000, as shown in the following screenshot:

Making the bark material a bit more complex

13. Now, press Shift and select the tree_branch and tree_branches meshes, and as the last one,
reselect the tree_trunk mesh to make it the active object; then, press Ctrl + L. In the Make
Links pop-up menu, select the Materials item to assign the bark material to the other two
meshes.

How it works...
• For this material, we built a simple shader using two tileable image maps, a color one for the

Diffuse and the Glossy components, and a normal map for the bump.
• Then, we duplicated everything and mixed the second material copy with different scale values

to the first one by the factor of a Noise procedural texture, to add variety to the bark pattern and
to avoid that unpleasant repeating effect that often shows up with tileable image textures.

There's more...

At this point, if you look carefully at the Rendered view of the tree trunk, you'll see that sadly, there are
ugly seams where the trunk's main body joins the big low branches as shown in the following
screenshot:

The visible seams at the branches joining

This is due to the fact that the unwrap of the mesh has separated the branches' UV islands from the main
trunk ones. Although the effect can be barely visible, let's say that you absolutely want to avoid this;
that's why we are now going to see a solution for the problem, by using a second set of UV coordinates
and a Vertex Color layer.

This is what we are going to do:

1. Select the trunk mesh and go into the Vertex Paint mode; the mesh turns totally white, because
that is the color assigned to the vertexes by default. Start to paint with pure black on the
vertexes located at the joining of the low branches with the trunk, achieving this result:

The trunk model seen in the Vertex Paint mode

2. As you can see, the joining vertices edge loops are black but are smoothly blending into the
white of the default mesh vertex color. This will be used as a stencil map to blend two different
instances of the same bark material mapped on different UV coordinates. Go to the Object data
window and rename the Vertex Color layer as Join_branches.

3. Switch to Edit Mode and select all the faces including the necessary vertices' edge loops; in the
Object data window, under the UV Maps subpanel, click on the + icon (add UV Map) and
rename the new UV coordinates layer as UVMap2. Place the mouse cursor on the 3D viewport,
press U, and select Unwrap in the UV Mapping pop-up menu, as shown in the following
screenshot:

The trunk model in Edit Mode and the UV islands in the UV/Image Editor window

4. Go out of Edit Mode. Click on the user number to the right of the material data block in the
Node Editor window toolbar and rename the new material as bark_seamless.

Now, by looking at the following screenshot, it is clear what we have to do:

Two identical bark materials mapped on different UV layers and mixed on the ground of the
Vertex Paint output

5. Make a duplicate of the bark material and blend the two shaders (inside the BARK_A and
BARK_B frames respectively) using a Mix Shader node, modulated by the Join_branches
vertex color stencil. Use an Attribute node both for the Vertex Color layer output and to set the
UVMap2 coordinates layer for the copy of the bark material. Now, the output looks similar to
what is shown in the following screenshot:

The final result: no more seams

As you can see in the preceding screenshot, there are no more visible seams; the two differently UV
mapped materials smoothly blend together.

Creating tree shaders – the leaves
In this second tree recipe, we will create the leaves shaders, as shown in the following screenshot:

The leaves as they appear in the final rendering

Getting ready

Carrying on with the blend file of the previous recipe, now, activate (hold Shift while clicking) the 2nd
and the 11th scene layers, and in Outliner, select the leaf_generic_mid object.

How to do it...

Let's proceed with the creation of the leaves shaders:

1. Click on the New button in the Node Editor window toolbar or in the Material window, and
rename the material as leaf_alpha.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node and label it
as Mix Shader Cutout; in the first Shader slot, select a Transparent BSDF shader node, and
in the second one, select a new Mix Shader node, which will be labeled as Mix Shader Add
Translucency.

3. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture), label it
as MASK, and connect its Alpha output to the Fac input socket of the Mix Shader Cutout node.

4. Click on the Open button of the MASK node, browse to the textures folder, and load the
leaf_generic_mask.png image (which actually is a simple black leaf silhouette with a
transparent alpha channel). Set Color Space to Non-Color Data.

5. Add a Diffuse BSDF node (press Shift + A and navigate to Shader | Diffuse BSDF), a Glossy
BSDF node (press Shift + A and navigate to Shader | Glossy BSDF), and a Translucent BSDF
node (press Shift + A and navigate to Shader | Translucent BSDF).

6. Add two new Mix Shader nodes (press Shift + A and navigate to Shader | Mix Shader), and
label them as Mix Shader1 and Mix Shader2.

7. Connect the output of the Diffuse BSDF shader to the first Shader input socket of the Mix
Shader1 node, and the output of the Glossy BSDF shader to the second Shader input socket.
Set the Glossy BSDF node's Distribution to Beckmann, and change the Color values for R to
0.794, G to 0.800, and B to 0.413, and the Roughness value to 0.500.

8. Connect the output of the Mix Shader1 node to the first Shader input socket of the Mix
Shader2 node, and the output of the Translucent node to the second one; connect the output of
the Mix Shader2 node to the second Shader input socket of the Mix Shader Add
Translucency node.

9. Connect the output of the Diffuse BSDF shader node to the first Shader input socket of the Mix
Shader Add Translucency node. Set its Fac value to 0.300 (this value establishes the amount
of translucency in the shader).

10. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture), label it
as TRANSLUCENCY, and connect its Color output to the Fac input socket of the Mix Shader2
node. Click on the Open button, browse to the usual textures folder, and load the
leaf_generic_trans.png image. Set Color Space to Non-Color Data.

11. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel), connect it to the Fac input
socket of the Mix Shader1 node, and set IOR to 1.500.

12. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture), label it
as COLOR, and connect its Color output to the Color input socket of the Diffuse BSDF shader
node and to the Color input socket of the Translucent BSDF node. Click on the Open button,
browse to the textures folder, and load the leaf_generic_col.png image.

13. Add a Hue Saturation Value node (press Shift + A and navigate to Color | Hue/Saturation)
and paste it between the COLOR image texture node and the Translucent BSDF shader node.
Set the Hue value to 0.350 and Value to 2.000.

14. Add a last Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
label it as BUMP; add a Bump node (press Shift + A and navigate to Vector | Bump) and
connect the BUMP image node's Color output to the Height input socket of the Bump node,
and the Normal output socket of this node to the Normal input sockets of the Diffuse BSDF,
Glossy BSDF, and Translucent BSDF shader nodes.

15. Click on the Open button, browse to the textures folder, and load the
leaf_generic_bump.png image. Set Color Space to Non-Color Data and the Bump
node's Strength value to 0.200, as shown in the following screenshot:

The leaf_alpha material network

How it works...
• From step 1 to 11, we built the basic shader of the leaf, using an image that has alpha channel

data to cut out the leaf shape on the Plane and a gray-scale image to drive the translucency
effect.

• From step 12 to 15, we added the color of the leaf, using it also with a hue and intensity
variation for the translucency color, and then we added the bump.

There's more...

Now, assign the same material to both the leaf_generic_low and leaf_generic_hi meshes on
the 11th layer.

The modeled leaf mesh doesn't need the alpha channel, so select the leaf_generic_hi object, and in the
toolbar of the Node Editor window, click on user data number to make it single-user. Rename the
new material as leaf and delete the MASK and Transparent BSDF nodes, and then press Alt + D to
remove the Mix Shader Cutout node from the link and delete it as well.

Remember that the examples in the preceding and following images are made with very stylized models
that come from the Big Buck Bunny short movie; real objects have more subtle details and more random
repeating patterns, but in this case, this just depends on the image textures you are going to use for your
material.

Such a shader is of good use not only for leaves, but also for other kinds of plants; in many cases, it's
enough to give variations to the color.

Creating a layered human skin material in
Cycles
In this recipe, we will create a layered skin material by using the open-content character Sintel.

Sintel is the main character of the third open movie of the same name produced by the Blender
Foundation; the Sintel character and all the other movie assets are licensed under the Creative Commons
Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/). The following screenshot is of
Sintel's face:

Sintel's face in the final rendering

Getting ready

Start Blender and open the 9931OS_08_skin_start.blend file, where there is an already set
scene with the Sintel character standing on a Plane, a Sun lamp, and a Camera.

Except for Sintel's body skin, all the other mesh objects have either gesso-like materials or eyes already
assigned.

How to do it...

Let's start with the layered skin shader creation:

http://creativecommons.org/licenses/by/3.0/

1. Be sure to have the Sintel object selected, and then click on the New button in the Node Editor
window toolbar or in the Material window under the main Properties panel and rename the
material as skin_layered.

2. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node; go to the
Active Node panel to the right of the Node Editor window (if not present, put the mouse in the
Node Editor window and press N to make it appear), and in the Label slot, rename the Mix
Shader as Mix Shader1.

3. In the first Shader slot of this new Mix Shader1 node, select a Diffuse BSDF shader node, and
in the second one, select an Add Shader node; label this node as Add SPEC.

4. Add two Glossy BSDF shader nodes (press Shift + A and navigate to Shader | Glossy BSDF)
and label them as Glossy BSDF_1 and Glossy BSDF_2. Set their Distribution to
Ashikhmin-Shirley, and then connect their output to the first and second Shader input sockets
of the Add SPEC node respectively.

5. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader1 node. Set IOR to 1.450.

6. Press Shift + D to duplicate the Mix Shader1 node, label the duplicate as Mix Shader2, and
paste it between the Mix Shader1 and the Material Output nodes.

7. Press Shift + D to duplicate the Add SPEC node, label the duplicate as Add SSS, and connect
its output to the first Shader input socket of the Mix Shader2 node, so that the connection that
comes from the Mix Shader1 node automatically switches to the second Shader input socket.
Connect the output of the Mix Shader1 node also to the second Shader input socket of the Add
SSS node.

8. Add a Subsurface Scattering node (press Shift + A and navigate to Shader | Subsurface
Scattering) and connect its output to the first Shader input socket of the Add SSS node. Set
Falloff to Gaussian; Scale to 0.050; Radius to 4.000, 2.000, and 1.000; and the Texture
Blur value to 0.100, as shown in the following screenshot:

The basic shader

9. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
label it as EPIDERMIS; connect its Color output to the Color input sockets of the Diffuse
BSDF and Subsurface Scattering nodes and the two Glossy BSDF nodes.

10. Click on the Open button of the EPIDERMIS image texture node, browse to the textures
folder, and load the sintel_skin_diff.png image.

11. Add two ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp) and
label them as ColorRamp_Spec1 and ColorRamp_Spec2. Connect the Color output of
the EPIDERMIS node also to the Fac input socket of both the ColorRamp nodes.

12. Connect the Color output of the ColorRamp_spec1 node to the Roughness input socket of the
Glossy BSDF_1 shader node; set Interpolation to Ease, and move the black color stop to the
0.550 position and the white color stop to the 0.000 position.

13. Connect the Color output of the ColorRamp_spec2 node to the Roughness input socket of the
Glossy BSDF_2 shader node; set Interpolation to B-Spline, and move the white color stop to
the 0.100 position and the white color stop to the 0.000 position, as shown in the following
screenshot:

Sintel's color map is directly connected to the shader nodes but is modulated through
ColorRamp nodes for the roughness of the glossy nodes

14. Add a Hue Saturation Value node (press Shift + A and navigate to Color | Hue/Saturation),
label it as Hue Saturation Value DERMIS, and paste it between the EPIDERMIS and
Subsurface Scattering nodes. Set the Hue value to 0.470, the Saturation value to 1.500,
and Value to 1.200.

15. Add a new Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
a Bump node (press Shift + A and navigate to Vector | Bump); label this Image Texture node
as BUMP, and connect its Color output to the Height input socket of the Bump node, and the
Normal output of this node to the Normal input sockets of the Diffuse BSDF node, of the two
Glossy BSDF nodes, and of the Subsurface Scattering nodes.

16. Click on the Open button of the BUMP image texture node, browse to the textures folder,
and load the sintel_skin_bmp.png image. Set Color Space to Non-Color Data and the
Bump node's Strength value to 0.100, as shown in the following screenshot:

The same color map modified for the SSS node and the bump map connected as per the shader
bump

How it works...

In this recipe, we used a layered approach to build the human skin shader, but what does layered mean
exactly?

It means that the shader tries to simulate the behavior of real human skin in the most effective possible
way. I'm referring to the fact that the human skin is composed of several different overlapping and semi-
transparent layers that reflect and absorb light rays in various ways, giving the reddish coloration to
certain areas due to the famous subsurface scattering effect.

Now, a perfect reproduction of the real human skin model is not necessary; usually, it's enough to use
different image maps for the key components of the shader, each one added on top of the other: the base
color, the dermis blood layer, the specularity map, and the bump map.

In our case, we had at our disposal only two image maps, the sintel_skin_diff.png color one
and the sintel_skin_bmp.png gray-scale map, which we used straight for the bump; we could
have obtained the missing maps with the aid of an image editor (such as, for example, GIMP), but for
the sake of this exercise, to obtain the required missing images, we used the nodes: so, starting from the
EPIDERMIS layer, that is the color map, we obtained via the Hue Saturation Value DERMIS node
the blood-vessel layer that lies beneath the epidermis, as shown in the following screenshot:

The normal color map and the blood-vessel version rendered separately

By the use of the two ColorRamp nodes and the two gray-scale versions for the specularity component,
one sharp specularity map and a softer one are shown in the following screenshot:

The two different glossy maps obtained from the same color map and rendered separately

Then, the sintel_skin_bmp.png map has been connected to the Bump node for the per-shader
bump effect.

Note that because we used the color map to obtain all the others, certain areas of the images are wrong;
for example, the eyebrows, shown in pure white on the specularity maps, should have been removed. In
any case, this doesn't show that much on the final render, and the result is more than acceptable.

Creating fur and hair
Fur, in the world of computer graphics, is considered among the most difficult things to recreate, both
because it's generally quite expensive from a memory management point of view (a single character can
easily have millions of hair strands) and also because it can be quite a task to make a believable shader
that can work under different light conditions.

Blender is not new to fur creation; the exact goal of the open movie Big Buck Bunny was to add tools for
fur creation to the Blender Internal rendering engine, and it did it through a new type of primitive,
strands, which have to be enabled in the Particle panel (the Strand render item); strands are very
instanced on the particle system, but they can be edited, combed, and tweaked in several ways to obtain
the best possible result.

Almost the same concept applies for the Cycles rendering engine; there's no need to enable the Strand
render item anymore, because strands are rendered automatically by Cycles when the Hair item is
selected as Particle Type.

In fact, once the Hair item's Particle Type has been selected, you will find two more subpanels at the
bottom of the Particle window: Cycles Hair Rendering and Cycles Hair Settings. Here is a screenshot
of the teddy bear Suzanne in the Rendered view:

The Rendered teddy bear Suzanne

Getting ready

Start Blender and open the 9931OS_08_hair_start.blend file; in the scene, there is a Suzanne
primitive (Suzanne_teddybear) with a Hair particle system already named teddybear and set (go to
see it in the Particle window) to resemble the fur of a cuddly toy.

The Suzanne_teddybear mesh is already unwrapped and has a Vertex Group named density, used in
the Particle window (the Vertex Groups subpanel) to establish the Density distribution of the fur on the
mesh (in short, to avoid fur on the eyes, the nose, and inside the mouth) as shown in the following
screenshot:

A screenshot of the particle system as it appears in the Solid viewport shading mode and the settings to
the left

How to do it...

We are going to add three different materials to the Suzanne_teddybear object: base_stuff, which is the
basic material for the raw mesh, an eyes material, and the teddybear material for the fur, using the
following steps:

1. Select the Suzanne mesh and click on the New button in the Node Editor window toolbar or in
the Material window to the right; rename the material as base_stuff.

2. Press Tab to go into Edit Mode and select the eyes vertices (put the mouse pointer over the
interested part and press the L key to select all the linked vertices); click on the little + icon to
the right of the Material window (add a new material slot) and add a new material. Click on the
New button and rename the new material eyes, and then click on the Assign button. Press Tab
to go out of Edit Mode.

3. Click again on the little + icon to the right of the Material window (add a new material slot) to
add a third material (not to be assigned to any vertex or face; in fact, we are out of Edit Mode);
click on the New button and rename the new material as teddybear.

4. Go to the Particle window at the top of the Render subpanel, and click on the Material Slot
button (Material slot used to render particles), where at the moment, Default Material is
selected instead of the teddybear material.

5. Go to the Cycles Hair Rendering subpanel to be sure that the Primitive item is set to Curve
Segments, and set Shape to Thick; then, go to Cycles Hair Settings to be sure that the Shape
value is -0.50, the Root value is 1.00, the Tip value is 0.05, the Scaling value is 0.01,
and the Close Tip item is checked.

6. Now, in the Material window, select the base_stuff material; in the Node Editor window, add
a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate), a
Mapping node (press Shift + A and navigate to Vector | Mapping), an Image Texture node
(press Shift + A and navigate to Texture | Image Texture), a Glossy BSDF node, and a Mix
Shader node (press Shift + A and navigate to Shader | Texture Coordinate; repeat similar steps
to add other nodes).

7. Connect the UV output of the Texture Coordinate node to the Vector input socket of the
Mapping node, and the output of this node to the Vector input socket of the Image Texture
node. Paste the Mix Shader between the Diffuse BSDF and the Material Output nodes and
connect the output of the Glossy BSDF shader to the second Shader input socket of the Mix
Shader node.

8. Connect the Color output of the Image Texture node to the Color input socket of the Diffuse
BSDF shader node and of the Glossy BSDF shader node; click on the Open button and browse
to the textures folder to load the teddybear.png image (a simple color map painted
directly in Blender). Set Distribution of the Glossy BSDF node to Ashikhmin-Shirley, the
Roughness value to 0.300, and the Mix Shader node's Fac value to 0.400.

9. Back in the Material window, select the eyes material and switch the Diffuse BSDF shader
with a Mix Shader node; in the first Shader slot, select a Diffuse BSDF shader, and in the
second one, select a Glossy BSDF shader node.

10. Set the Mix Shader node's Fac value to 0.200; change the Diffuse BSDF node's Color values
for R to 0.010, G to 0.003, and B to 0.001; and change the Glossy BSDF node's
Roughness value to 0.100.

In the following screenshot, the teddybear particle system has been hidden by disabling the
viewport's visibility in the Object modifiers window:

The base_stuff material in the Node Editor window and in the Preview

11. In the Material window, select the teddybear material and switch the Diffuse BSDF node with
a Mix Shader node, and label it as Mix Shader1; in the first Shader slot, select another Mix
Shader node, and in the second one, select a Transparent BSDF node.

12. Label the second Mix Shader node as Mix Shader2; then, in the first Shader slot, select a
Diffuse BSDF shader node, and in the second one, select a Glossy BSDF shader node. Set the
Glossy BSDF node's Distribution to Ashikhmin-Shirley, and its Roughness to 0.200.

13. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect it to the Fac
input socket of the Mix Shader2 node; set IOR to 1.580. Add a Hair Info node (press Shift +
A and navigate to Input | Hair Info), and connect the Intercept output to the Fac input socket
of the Mix Shader1 node.

14. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture), and
connect its Color output to the Color input socket of the Diffuse BSDF node; click on the little
arrows to the left of the Open button to select the already loaded teddybear.png image
map.

15. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set Blend Type to
Add and the Fac value to 1.000, and paste it between the Image Texture node and the
Diffuse shader node. Set the Color2 values for R to 0.277, G to 0.179, and B to 0.084
and then connect its output also to the Color input socket of the Glossy BSDF shader node.

16. Optionally, add a Texture Coordinate node (press Shift + A and navigate to Input | Texture
Coordinate) and a Mapping node (press Shift + A and navigate to Vector | Mapping), and
connect the UV output of the Texture Coordinate node to the Vector input socket of the
Mapping node and the output of the latter to the Vector input socket of the Image Texture
node, as shown in the following screenshot:

The teddy bear material network; note the transparency driven by the Intercept output of the
Hair Info node

How it works...

From step 1 to 3, we prepared the three materials to be used; we went into Edit Mode to assign the
second material, eyes, to the eyes vertices of the mesh, and then we went back in Object Mode to add a
third material that doesn't need to be assigned to any face of the mesh because they are only to be used
for hair rendering.

In steps 4 and 5, we made sure that the right particle system settings for the material are to be rendered
as fur.

From step 6 to 8, we built the base_stuff material, a simple basic shader made by the Diffuse and
Glossy components mixed by the Mix Shader node and colored by the UV mapped teddybear image
texture; note that the texture we used in this first material is also used to give the right color to the hair;
it is useful to have it also on the underlying mesh, to cover any hole or missing part in the particle
system.

In steps 9 and 10, we built the eyes shader, which is again a very basic material made of the dark
Diffuse color and the light gray Glossy components simply mixed by the Mix Shader node.

From step 11 to 16, we built the shader to be used by the particle system for the fur, mixing the already
used teddybear.png image map, mapped on the UV coordinates, with a MixRGB node brownish

color outputted to the usual Diffuse/Glossy basic shader; note that the Diffuse/Glossy shader is then
mixed with the Transparent BSDF shader by the Intercept value of the Hair Info node along the
length of each hair strand.

There's more...

The teddybear.png image texture has been used both in the base_stuff and in the teddybear
materials; this is often not necessary, because in Blender, the particle system hairs get the textures from
the surface they are emitted from, so it would have been enough to use the base_stuff material also
for the fur (by selecting it in the Material Slot under the Render subpanel in the Particle window,
because we had more than one material on the Suzanne mesh); we had to make a new and different
material because we wanted to add a MixRGB brownish color to the UV-mapped image and we had to
make the shader fade and become transparent towards the strands' tips.

Note that in the Hair Info node, there is also the Boolean Is Strand output that, similar to the outputs of
the Light Path node (Is Camera Ray, Is Shadow Ray, and so on) can be used alternatively to the
Material button in the Particle window to assign a material value of 0 to the emitter mesh and a
material value of 1 to the fur strands (9931OS_08_hair_isstrand.blend) as shown in the
following screenshot:

The set up for the hair_isstrand material and the rendered result

This also means that obviously we can also use different image textures to obtain fur materials different
from the material of the particle emitter: for example, in the following screenshot, the tiger.png
image texture has been used only for the fur, whereas the base_stuff material still uses the

teddybear.png texture (and, honestly, this is blatantly visible... better to use the same image both
for fur and emitter):

The rendered Suzanne_tiger object

The Suzanne_tiger object also has two different particle systems to create the fur, tigerfur_long and
tigerfur_short, and three Vertex Groups to modulate the fur appearance, density_long, density_short,
and length.

To take a look at the Suzanne_tiger object, open the 9931OS_08_tiger.blend file.

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Hair_Rendering
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More
• http://blenderdiplom.com/en/tutorials/all-tutorials/536-tutorial-fur-with-cycles-and-particle-

hair.html
• http://cgcookie.com/blender/2014/04/24/using-cycles-hair-bsdf-node/

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Hair_Rendering
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More
http://blenderdiplom.com/en/tutorials/all-tutorials/536-tutorial-fur-with-cycles-and-particle-hair.html
http://blenderdiplom.com/en/tutorials/all-tutorials/536-tutorial-fur-with-cycles-and-particle-hair.html
http://cgcookie.com/blender/2014/04/24/using-cycles-hair-bsdf-node/

Creating a gray alien skin material with
procedurals
In this recipe, we will create a gray alien-like skin shader as shown in the following screenshot, using
Cycles procedural textures:

The alien Suzanne as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_08_alienskin_start.blend file, where there is an already
set scene with an unwrapped Suzanne primitive object.

The Suzanne_unwrapped_alien mesh has been modified by a shape key, to morph its monkey features
into the head of a gray alien–like creature; in fact, in the Object data window, under the Shape Keys
subpanel, there are the alien shape keys, with Value of 1.000; sliding the slider towards 0.000
gradually restores the original Suzanne shape.

The Suzanne mesh also has a Vertex Colors layer named Col and is obtained by the Dirty Vertex
Colors tool.

On the second layer, there are two Planes tracked (by a Damped Track constraint, in the Object
Constraints window) to the Camera to stay perpendicular to its point of view; the star_backdrop
object is used to create a simple star backdrop for our alien Suzanne, and the star_backdrop.001 object
is used simply to create something to be reflected by the alien-like Suzanne's eyes.

Press Shift + F1 (or go through the File | Append main menu) to append the SSS_group node from the
9931OS_07_SSS_ngroup.blend file.

How to do it...

Let's start by first setting the background image material using the following steps:

1. Select the star_backdrop Plane and click on the New button in the Node Editor window
toolbar or in the Material window. Rename the material star_backdrop, and in the
Material window, switch the Diffuse BSDF shader with an Emission shader. Set the Strength
to 0.500.

2. Add an Image Texture node (press Shift + A and navigate to Texture | Image Texture) and
connect the Color output to the Color input socket of the Emission node. Click on the Open
button and browse to the textures folder and load the centre-of-milky-
way_tile_low.png image.

3. Add an RGB Curves node (press Shift + A and navigate to Color | RGB Curves) and paste it
between the Image Texture and Emission nodes. Click on the curve window to add a control
point and set these coordinates: X to 0.36667 and Y to 0.12778. Click again to add a
second control point and set these coordinates: X to 0.65556 and Y to 0.81111.

4. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and paste it
between the Emission and Material Output nodes; switch the connection that comes from the
Emission node to the second Shader input socket of the Mix Shader node; leave the first
Shader input socket empty.

5. Add a Light Path node (press Shift + A and navigate to Input | Light Path) and connect the Is
Camera Ray output to the Fac input socket of the Mix Shader node.

6. Go to Outliner and select the star_backdrop.001 object; click on the double arrows icon to the
left side of the data block name (Browse Material to be linked) in the Node Editor toolbar, and
select the star_backdrop material; click on the 2 icon button to make it single-user.

7. In the new star_backdrop.001 material, select the Mix Shader node and press Ctrl + X to
delete it and keep the connection; then, also delete the Light Path node.

8. Go to the Object data window, and in the Ray Visibility subpanel, uncheck all the items except
for the Glossy one.

Now, let's get started with the creation of the alien skin shader (also with a different material for
the eyes).

9. Select the Suzanne_unwrapped_alien object; click on the New button in the Node Editor
window toolbar or in the Material window, and rename the material alienskin.

10. Go into Edit Mode, select the eyes vertices, and click on the + icon on the right of the Material
window to add a second material. Click on the New button and rename the material as
alieneyes; then, click on the Assign button to assign it to the selected vertices. Go out of
Edit Mode.

11. Switch the Diffuse BSDF shader with a Mix Shader node; in the first Shader slot, select a
Diffuse BSDF shader, and in the second one, select a Glossy BSDF shader. Set the Mix Shader
node's Fac value to 0.600 and the Diffuse BSDF node's Color values for R to 0.010, G to
0.006, and B o 0.010; set the Glossy BSDF node's Distribution to Beckmann, change the
Color values for R to 0.345, G to 0.731, and B to 0.800, and change the Roughness value
to 0.100.

12. Select the alienskin material, and in the Material window, switch the Diffuse BSDF shader
with an Add Shader node (label it as Add Shader1); in the first Shader slot, select a Mix
Shader node, and in the second one, load the appended SSS_group node. In this node, set the
Contrast value to 3.000 and change the Color values for R to 0.834, G to 0.263, and B to
0.223.

13. Go to the Mix Shader node, and in the first Shader slot, select a Diffuse BSDF node, and in
the second one, select a new Add Shader node (label it as Add Shader2). Set the Diffuse
BSDF node's Roughness value to 0.800.

14. In both the Shader slots of the Add Shader2 node, select a Glossy BSDF shader node; label
the first one as Glossy BSDF 1 and the second as Glossy BSDF 2; set Distribution of both to
Beckmann, and then set the Roughness value of the first one to 0.600 and that of the second
one to 0.300.

15. Add a Fresnel node (press Shift + A and navigate to Input | Fresnel) and connect its output to
the Fac input socket of the Mix Shader node. Set the IOR value to 1.300, as shown in the
following screenshot:

The basic shader network with the SSS provided by the appended node group

Now that we have set the basic shader for the alien skin, let's set an important component of the
material, that is, the bump, by following these steps:

16. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate)
and two Mapping nodes (press Shift + A and navigate to Vector | Mapping); connect the UV
output of the Texture Coordinate node to the Vector input socket of both the Mapping nodes,
labeled as Mapping1 and Mapping2 respectively.

17. Set the Rotation value of Y of the Mapping1 node to 60°; set the Rotation value of Y of the
Mapping2 node to 20°.

18. Add two Voronoi Texture nodes (press Shift + A and navigate to Texture | Voronoi Texture)
and label them as Voronoi Texture1 and Voronoi Texture2. Connect the Mapping1
node output to both their Vector input sockets. Set the Scale value of the Voronoi Texture1 to
100.000 and the Scale value of the Voronoi Texture2 to 20.000.

19. Add two Wave Texture nodes (press Shift + A and navigate to Texture | Wave Texture) and
label them as Wave Texture1 and Wave Texture2. Connect the Mapping1 node output
to the Vector input socket of the Wave Texture1 node. Set the texture Scale value to 20.000,
Distortion to 10.000, Detail to 16.000, and Detail Scale to 0.300.

20. Connect the Mapping2 node output to the Wave Texture2 node's Vector input socket, and set
all the texture values exactly as in the previously described one.

21. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and label it
as Noise Texture1. Connect the Mapping2 node output to its Vector input socket, and set
the texture Scale value to 120.000 and the Detail value to 7.000.

22. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp1, and connect the Voronoi Texture1 node's Color output to its Fac input socket.
Set Interpolation to Ease and move the white color stop to the 0.126 position.

23. Add a Math node (press Shift + A and navigate to Converter | Math), change Operation to
Multiply, and label it as Multiply1. Connect the Color output of the ColorRamp1 node to
the first Value input socket of the Multiply1 node, and set the second Value to 0.050.

24. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and connect the Color
output of the Voronoi Texture2 node to the Color1 input socket, and the Color output of the
Wave Texture1 node to the Color2 input socket. Set Blend Type to Difference and the Fac
value to 1.000, and then label it as Difference1.

25. Add a second MixRGB node (press Shift + A and navigate to Color | MixRGB) and connect
the Color output of the Voronoi Texture2 node to the Color1 input socket, and the Color
output of the Wave Texture2 node to the Color2 input socket. Again, set the Blend Type to
Difference and the Fac value to 1.000 and label it as Difference2.

26. Add two ColorRamp nodes (press Shift + A and navigate to Converter | ColorRamp), and
label them as ColorRamp2 and ColorRamp3; connect the Difference1 node output to the
Fac input socket of the ColorRamp2 node, and the output of the Difference2 node to the Fac
input socket of the ColorRamp3 node.

27. Set Interpolation to B-Spline for both of them, and for both of them, move the white color stop
to the 0.255 position.

28. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB) and connect the Color
output of the ColorRamp2 node to the Color1 input socket and the Color output of the
ColorRamp3 node to the Color2 input socket. Set the Blend Type to Multiply and the Fac
value to 1.000. Label it as Multiply2.

29. Press Shift + D to duplicate the Multiply1 node and label the duplicate as Multiply3.
Connect the output of the Multiply2 node to the first Value input socket of the Multiply3 node.
Set the second Value to 0.050.

30. Press Shift + D to duplicate the Multiply3 node and label the duplicate as Multiply4.
Connect the Color output of the Noise Texture node to the first Value input socket of the
Multiply4 node, and set the second Value to 0.175.

31. Add a Math node (press Shift + A and navigate to Converter | Math) and label it as Add1.
Connect the output of the Multiply1 node to the first Value input socket and the output of the
Multiply3 node to the second Value input socket.

32. Press Shift + D to duplicate the Add1 node and label the duplicate as Add2; connect the output
of the Add1 node to the first Value input socket and the output of the Multiply4 node to the
second Value input socket.

33. Add a Bump node (press Shift + A and navigate to Vector | Bump) and connect the output of
the Add2 node to the Height input socket of the Bump node; set its Strength value to 4.000
and connect its Normal output to the Normal input sockets of the Diffuse BSDF node, of the
two Glossy BSDF nodes, and of the SSS_group node, as shown in the following screenshot:

The apparently complex bump network to be connected as per the shader bump

We are done with the bump part, so now, let's set the color pattern using the following steps:
34. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as

ColorRamp4, and connect the Color output of the Multiply2 node to its Fac input socket. Set
Interpolation to Ease and move the black color stop to the 0.495 position, and the white color
stop to the 0.000 position.

35. Add a MixRGB node (press Shift + A and navigate to Color | MixRGB), set the Blend Type to
Add, and label it as Add3. Connect the Color output of the ColorRamp4 node to the Fac input
socket and set the Color2 values for R to 0.553, G to 0.599, and B to 0.473.

36. Add a Noise Texture node (press Shift + A and navigate to Texture | Noise Texture) and label it
as Noise Texture2. Connect the Mapping1 node output to its Vector input socket and set
the texture's Scale value to 60.000 and the Detail value to 7.000.

37. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp), label it as
ColorRamp5, and connect the Noise Texture2 color output to its Fac input socket. Set
Interpolation to B-Spline and move the black color stop to the 0.486 position and the white
color stop to the 0.771 position.

38. Press Shift + D to duplicate the Add3 node, label the duplicate as Add4, and connect the Color
output of the ColorRamp5 node to its Fac input socket; connect the output of the Add3 node to
the Color1 input socket and set the Color2 values for R to 0.235, G to 0.198, and B to
0.132.

39. Press Shift + D to duplicate the Add4 node, label the duplicate as Overlay, and change Blend
Type to Overlay as well. Set the Fac value to 1.000 and connect the output of the Add4 node
to the Color1 input socket.

40. Add an Attribute node (press Shift + A and navigate to Input | Attribute) and connect its
Color output to the Color2 input socket of the Overlay node; in the Name field, write Col (the
Vertex Colors layer).

41. Connect the output of the Overlay node to the Color input socket of the Diffuse BSDF shader
node.

42. To make them more easily readable, frame the three groups of nodes, SHADER, BUMP, and
COLOR, as shown in the following screenshot:

The simpler color pattern to be connected only to the Diffuse shader node and the nodes
grouped by frames

43. Save the file as 9931OS_08_alienskin_final.blend.

How it works...
• From step 1 to 8, we built a simple and quick shader for the starry background and for the Plane

in front of the Suzanne_unwrapped_alien mesh to be reflected in the eyes; note that the
background Plane material works as a shadeless material. To see how to set a bright but not
emitting light background, that is, a shader that behaves as the shadeless material you have in
the Blender Internal engine, go to Chapter 9, Special Materials.

• From step 9 to 15, we built the basic shader for the alien Suzanne's skin; the diffuse component
is mixed and modulated by the Fresnel output, with a specular component made by two
summed Glossy BSDF nodes with different roughness values, so as to have a crisper specular
effect on a more diffuse one, and with the additional help of the SSS_group node to simulate a
reddish Subsurface Scattering effect.

• From step 16 to 33, we built the quite complex bump pattern for the skin by mixing the outputs
of three different types of procedural textures with the help of both the Math and MixRGB
nodes, and the variations provided by the ColorRamp nodes.

• Finally, from step 34 to 41, a simple grayish color pattern is modulated through the Dirty
Vertex Colors layer data that comes from the mesh and that uses the first part of the bump
pattern to add variation.

Chapter 9. Special Materials
In this chapter, we will cover the following recipes:

• Using Cycles volume materials
• Creating a cloud volumetric material
• Creating a "fire and smoke" shader
• Creating a shadeless material in Cycles
• Creating a fake immersion effect material
• Creating a fake volume light material

Introduction
In this final chapter, we are going to see some special materials, that is, materials that can be used for
special effects or for situations where very realistic results are not required, for example, creation of
volumetric effects (fire, smoke, mist, volumetric light, and so on) and special materials to obtain peculiar
results (shadeless images, alpha backgrounds, and so on).

Using Cycles volume materials
In all the recipes we have seen so far, Cycles used the Surface input socket and (very rarely) the
Displacement input socket for the bump effects of the Material Output node to make the renderings.
Assigning colors or textures to the surface of an object clearly means that interaction between a ray of
light and an object happens only at the surface level of the object, and until this surface doesn't show
what should be inside, that's OK. The surface attribute is enough for a realistic rendering.

Things get more complex when there is a need to show what's inside an object, for example, water
inside a glass container, smoke and clouds in a thick atmosphere, and so on.

Usually, these are effects that require the use of the volume attribute more than the surface attribute to be
effectively rendered.

So, in the first recipes of this chapter, we are going to see the use of the Volume input socket of the
Material Output node. Rather than covering a specific material, this recipe is more of a "tour" to show
the possibilities related to the Volume shader assigned to a mesh object. Have a look at the following
screenshot:

A glass Suzanne containing some kind of liquid

Getting ready

Start Blender and open the 9931OS_09_start.blend file, with the usual Suzanne object leaning on
a Plane, a mesh-light Emitter, and the Camera.

1. Go to the Render window, and under the Sampling subpanel, set Samples for Preview to 50
and for Render to 100. Switch Pattern from Sobol to Correlated Multy-Jitter.

2. Still in the Render window, go to the Volume Sampling subpanel, and under the
Heterogeneous item, set the Step Size value to 0.25. The default value is 0.10. Increasing
this will make the rendering of volumes less accurate but faster, and lowering it will result in the
opposite.

How to do it...

First, let's see the Volume applied to our usual Suzanne mesh primitive by performing the following
steps:

1. Move the mouse to the Camera view and press Shift + Z to switch the Viewport Shading mode
to Rendered.

2. Make sure that you have the Suzanne_unwrapped object selected, and click on the New button
in the Node Editor toolbar, or in the Material window under the main Properties panel.

3. In the Node Editor window, press Ctrl and click and drag a line onto the link connecting the
Diffuse BSDF shader to the Material Output node to cut it away. Because nothing is
connected to the Material Output node sockets, in the Camera view, the Suzanne object turns
pitch black as shown in the following screenshot:

The Diffuse shader connected and disconnected from the Material Output node

4. Select and delete the Diffuse BSDF shader node. Still in the Node Editor window, add a
Volume Scatter node (press Shift + A and navigate to Shader | Volume Scatter) and connect its
output to the Volume input socket of the Material Output node.

Different effects of the Volume Scatter node obtained by changing density and color

5. Try to increase the Density value to 10.000, either in the node interface in the Node Editor
window, or in the slot under the Volume subpanel in the main Properties panel. Suzanne's
volume looks more solid, as shown in the middle of the preceding screenshot.

6. Change the Density value back to the default 1.000 and change the Color values of the
Volume Scatter node for R to 1.000, G to 0.000, and B to 0.000 (a red color). The
Suzanne object now appears as complementary colored smoke (on the right side of the
preceding screenshot) because light is scattered (note that the shadow on the Plane gets the same
color).

7. Add a Glass BSDF shader (press Shift + A and navigate to Shader | Glass BSDF) and connect
its output to the Surface input socket of the Material Output node. Set the IOR value to
1.440 and the Roughness value to 0.100.

Adding a glassy envelope to the bluish, scattered glassy volume

8. Now you have to temporarily remove the connection of the Glass BSDF shader node to the
Surface input socket of the Material Output node, take back the RGB value and set it to
0.800 for the Color of the Volume Scatter node.

9. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture), and a
Math node (press Shift + A and navigate to Converter | Math).

10. Connect the Object output of the Texture Coordinate node to the Vector input socket of the
Voronoi Texture node, and the Fac output of this node to the first Value input socket of the
Math node. Set the second Value to 10.000, set Operation to Multiply, and connect its
output to the Density input socket of the Volume Scatter node as shown in the following
screenshot:

The Density value of the Volume Scatter node driven by a Voronoi texture output

11. Add a ColorRamp node (press Shift + A and go to | Converter | ColorRamp) and paste it
between the Voronoi Texture and the Math nodes. Move the black color stop to position
0.195 and the white color stop to position 0.100 as shown in the following screenshot:

Enhancing the contrast of the texture output

12. Set the Voronoi Texture node's Scale value to 11.500, and reconnect the Glass BSDF shader
node output to the Surface input socket of the Material Output node. Change the Color values
of the Volume Scatter node for R to 1.000, G to 0.000, and B to 0.000 as shown in the
following screenshot:

The previously cloudy volume covered with a glass surface

13. Rename the material as Bubbles and save the file by naming it
9931OS_09_volume.blend. Have a look at the following screenshot:

The overall network for the combined surface and volume material

So, for the previous material named Bubbles, we used the Volume Scatter node. What about
the Volume Absorption node?

14. In the Node Editor toolbar, enable fake user for the Bubbles material, and click on the X icon
button to delink the datablock. Then click on the New button.

15. Delete the Diffuse BSDF shader node and add a Volume Absorption node (press Shift + A and
navigate to Shader | Volume Absorption). Then connect it to the Volume input socket of the
Material Output node.

16. To make a comparison with the Volume Scatter node, raise the Density value of the Volume
Absorption node to 10.000 and set the Color values for R to 1.000, G to 0.000, and B to
0.000. Have a look at the following screenshot:

Different effects of the Volume Absorption node

17. Add a Texture Coordinate node (press Shift + A and navigate to Input | Texture Coordinate),
a Voronoi Texture node (press Shift + A and navigate to Texture | Voronoi Texture), two Math
nodes (press Shift + A and navigate to Converter | Math), and a Glass BSDF shader (press
Shift + A and navigate to Shader | Glass BSDF).

18. Connect the Object output of the Texture Coordinate node to the Vector input socket of the
Voronoi Texture node, and the Fac output of this node to the first Value input socket of the first
Math node. Set the second Value to 0.100, set Operation to Less Than, and connect its
output to the first Value input socket of the second Math node. Set the second Value to
12.800 and the Operation to Multiply.

19. Connect the output of this Multiply-Math node to the Density input socket of the Volume
Absorption node, and rename the material as algae. Here is a screenshot for your reference:

The density of the Volume Absorption node driven by the Voronoi Texture output

20. Set the Scale value of the Voronoi Texture node to 3.500, change the Color of the Volume
Absorption node for R 0.045, G 0.800, and B 0.113, and connect the output of the Glass
BSDF shader node to the Surface input socket of the Material Output node. Set the IOR value
to 1.440 and the Roughness value to 0.100 as shown in the following screenshot:

Different colors and a glass cover for the absorption volumetric material

21. In the Node Editor toolbar, enable fake user for the algae material, and then click on the 2
icon (Display number of users for this data) to create a duplicate of the material, named
algae.001.

22. Rename the material as emitting_volume and substitute the Volume Absorption node with
an Emission node (press Shift + A and go to | Shader | Emission). Connect the output of the
Multiply-Math node to the Color input socket, and set the Strength value to 0.050.

23. Disable the visibility of the sixth scene layer to hide the Emitter mesh-light, and go to the
Render window. In the Light Paths subpanel, enable both the Reflective Caustics and
Refractive Caustics items. Here is a screenshot for your reference:

Substituting the Volume Absorption node with an Emission node as the volume material

24. Enable fake user for the emitting_volume material and save the file.

How it works...

In this tour recipe, we saw the three shaders used for the volumetric attribute of a material in Cycles, that
is, the Volume Scatter, Volume Absorption, and Emission shaders (we have already seen the
Emission shader the previous chapters, and it is commonly used in Lamps and mesh-lights).

The Volume Scatter and Absorption shaders do exactly what their names say, as we saw in the
examples. If we give them a color other than black, gray, or white, the Volume Scatter shader returns a
complementary hue, while the Volume Absorption shader returns the same hue we set up.

About the Density value, remember that the higher the value, the more particles inside the volume. This
allows for simulation of very light and rarefied vapors or very dense clouds of smoke, where the
material looks almost solid.

There's more...

A Volume can be associated not only with objects but also with the World. This allows for several
effects, for example, mist, or the famous God's rays. They are obtained by simply scattering light in the
air of a Spot lamp.

The setup is really simple and intuitive: a Volume Scatter node connected to the Volume input socket of
the World Output node. Have a look at the following screenshot:

The cone of a Spot lamp visible through the ambient volume material

The Density value of the Volume Scatter node in this case is set very low (0.010) to allow the light of
the Spot lamp to shine through.

Open the 9931OS_09_volume_ambient.blend file to have a look.

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume

Creating a cloud volumetric material
The natural consequence of a volumetric material is (quite obviously) clouds.

A simple way to create clouds in Cycles is by modeling the desired shape and then assigning an
appropriate volumetric material. In the following screenshot, you can see this method applied to the
usual Suzanne mesh:

The volumetric Suzanne cloud as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_09_cloud_start.blend file, where there is the
Suzanne_cloud object with two Emitter mesh-lights and a bright World set with a Sky Texture.

1. Go to the Object modifiers window and raise the Subdivisions level of the Subdivision
Surface modifier from 2 to 3 for both Preview and Render.

2. Assign a new Subdivision Surface modifier. Set the Subdivisions level to 2.
3. Assign a Displace modifier. Click on the Show texture in texture tab button to the right of the

New button to switch to the Texture window.
4. Click on the New button under the Displace item, then click on the Type slot to switch from

Image or Movie to Clouds. Set the Size to 0.35 and the Depth to 3.
5. Go back to the Object modifiers window and click on the Vertex Group slot to select the rest

item. Then set the Strength value to 0.400.

The displaced Suzanne cloud seen in the Solid Viewport Shading mode and the assigned
modifiers in the main properties panel to the right

How to do it...

After creating the cloud shape, let's make a start on the material:

1. Ensure that the Suzanne_cloud object is still selected, and click on the New button in the Node
Editor toolbar or in the Material window under the main Properties panel.

2. In the Node Editor window, select and delete the Diffuse BSDF shader node.
3. Add a Volume Scatter node (press Shift + A and navigate to Shader | Volume Scatter), a

Volume Absorption node (press Shift + A and navigate to Shader | Volume Absorption), and
an Add Shader node (press Shift + A and navigate to Shader | Add Shader).

4. Connect the output of the Volume Absorption node to the first Shader input socket of the Add
Shader node, and the Volume Scatter output to the second Shader input socket. Connect the
output of the Add Shader node to the Volume input socket of the Material Output node.

5. Add a Mix Shader node (press Shift + A and navigate to Shader | Mix Shader) and paste it
between the Add Shader node and the Material Output node. Connect the output of the
Volume Scatter node to the second Shader input socket of the Mix Shader node. Set the Fac
value to 0.700.

6. Add a Value node (press Shift + A and navigate to Input | Value) and an RGB node (press Shift
+ A and navigate to Input | RGB). Connect the Value output to both the Density input sockets
of the Volume Absorption and Volume Scatter nodes. Set the input value to 5.000.

7. Connect the output of the RGB node to the Color input sockets of the Volume Absorption and
Volume Scatter nodes. Set the color values for R to 0.890, G to 0.866, and B to 0.832.

8. Under the Material windows, go to the Settings subpanel and enable the Homogeneous item.
9. Go to the Scene window, and under the Color Management subpanel, enable the Use Curves

item. Then click on the curves window to create a new control point. Set its coordinates as X to
0.67206 and Y to 0.88125. Click again to create a new control point, and set the
coordinates as X to 0.31579 and Y to 0.46875. Have a look at the following screenshot:

The Rendered preview of the Suzanne cloud and the material network in the Node Editor
window

How it works...

Most of the effect of this material is because of the Displace modifier deforming the Suzanne mesh in
order to resemble the shape of a Suzanne cloud. The material itself is simply a combination of the
Volume Scatter and the Volume Absorption shader, first added by the Add Shader node and then with
a Mix Shader node to further control the mixing of the scattering in the whole shader.

The Vertex Group, rest, selected in the Displace modifier slot is simply a group with lower weight
going towards the ears, because they are quite thin, and the displacement we're using can easily cause
bad mesh intersections.

The Rest Vertex Group visible in the Weight Paint mode

In the last step, we enabled curves for the Color Management to obtain a brighter and more contrasted
rendering of the cloud against the sky.

Creating a fire and smoke shader
In this recipe, we are going to see one of the most exciting effects we can obtain in Cycles—a fire and
smoke simulation effect:

The fire and smoke shader as it appears in the final rendering when assigned to the Suzanne mesh

Getting ready

Start Blender and open the 9931OS_09_fire_smoke_start.blend file, where there is the
Suzanne_unwrapped object leaning on a Plane and surrounded by five small Cubes, a Spot lamp, the
Camera, and a medium-intensity World with a Sky Texture.

1. Go to the Render window, and under the Sampling subpanel, set the Preview samples to 50
and the Render samples to 100. Then go to the Dimensions subpanel and set the End Frame
to 80. Under the Light Paths subpanel, enable the Reflective and Refractive Caustics items.

How to do it...

Let's start by creating the smoke simulation by a shortcut:

1. Select the Suzanne_unwrapped object, click on the Object item in the 3D viewport toolbar to
go to Quick effects, and select the Quick Smoke item. Alternatively, press the spacebar, and in
the search window, start typing Quick. Then select the Quick Smoke item from the menu as
shown in the following screenshot:

The Quick Effects menu

2. A Smoke Domain (the selected wire box around the Suzanne object) with a prepared fire/
smoke material (Smoke Domain Material) is automatically set up on the selected object,
and when you press the Play button in the Player Control on the Timeline toolbar, the smoke
simulation starts. Have a look at the following screenshot:

The smoke simulation: in the upper Node Editor window, the material being automatically
created by the Quick Effects tool

3. Go back to frame 1 and scale the Smoke Domain to a larger size on the global z axis such that
its top goes out of the Camera frame boundary. Scale it by 3.000 (press S, enter digit 3.000,
then press Enter). Then move it 5 units upwards.

4. Go to the Physics window, and under the Smoke subpanel, set the Divisions value to 64. Then
go to the Smoke Flames subpanel and set the Speed value to 2.00000, Smoke to 0.50000,
and Vorticity to 1.00000. Restart the Play button to recalculate the cache. Have a look at the
following screenshot:

The smoke simulation inside a bigger domain box

5. As all the 80 frames have been cached, go to the Physics window, and under the Smoke Cache
subpanel, click on the Current Cache to Bake button.

6. Enable the Smoke Adaptive Domain and the Smoke High Resolution subpanels. Leave the
default settings as they are.

7. With the mouse arrow in the Camera view, press Shift + Z to switch to the Rendered viewport
shading mode. Have a look at the following screenshot:

The smoke simulation seen in the Rendered preview

In the Rendered preview (be careful that the smoke is not supported by GPU yet), we can see
the dark grey smoke, but what about the fire?

8. In the Physics window, under the Smoke Cache subpanel, click on the Free All Bakes button.
9. Go to the Outliner to select the Suzanne_unwrapped item. Then go to the Physics window

again. Under the Smoke subpanel, click on the Flow Type slot and switch from Smoke to Fire
+ Smoke. Then click on the Smoke Color slot and change the color values for R to 0.700, G
to 0.317, and B to 0.335. Have a look at the following screenshot:

10. Reselect the Smoke Domain object and click on the Play button to cache the smoke simulation
again, this time with reddish smoke and also the fire. Then click on the Current Cache to Bake
button again.

The new smoke (and fire) simulation

But this is a Cookbook about materials, so let's put aside the smoke simulation settings and
concentrate on the material. To better understand how this works, let's delete the ready-made
material and create a new material from scratch.

11. In the Node Editor toolbar, press Shift and click on the X button to unlink the Smoke Domain
Material. Set the users to zero.

Now, setting the Camera view shading mode to Rendered shows only the Smoke Domain box
as a solid object because no material is assigned to the simulation.

12. Click on the New button in the Node Editor window toolbar. Delete the Diffuse BSDF shader
node and add a Volume Scatter node (press Shift + A and navigate to Shader | Volume
Scatter). Connect it to the Volume input socket of the Material Output node.

13. Add an Attribute node (press Shift + A and navigate to Input | Attribute) and connect its Fac
output to the Density input socket of the Volume Scatter node. In the Name field of the
Attribute node, write density.

14. Add a Math node (Shift + A | Converter | Math), set the Operation to Multiply, and paste it
between the Attribute and the Volume Scatter nodes. Set the second Value to 5.000.

Building the smoke density after deleting the default Quick Effects material

15. Press Shift + D to duplicate the Attribute node, connect the duplicated node's output to the
Color input socket of the Volume Scatter node. In the Name field, write color.

The smoke color

As you can see in the rendered preview, the smoke gets a bluish coloration, with the complementary
color (orange) getting scattered.

1. Add a Volume Absorption node (Shift + A | Shader | Volume Absorption) and an Add
Shader node (Shift + A | Shader | Add Shader). Paste the Add Shader node between the
Volume Scatter and the Material Output nodes. Then connect the Volume Absorption output
to the second Shader input socket of the Add Shader node.

2. Connect the Color output of the Color-Attribute node to the Color input socket of the Volume
Absorption node, and the output of the Multiply node to the Density input socket of the
Volume Absorption node as shown in the following screenshot:

The complete smoke network

3. Parent all of these nodes, except the Material Output node, to a Frame. Label it as SMOKE.
4. Duplicate or add a new Attribute node, and in the Name field, write flame. Add an Emission

shader (press Shift + A and navigate to Shader | Emission) and connect the Fac output to both
the Strength and the Color input sockets of the Emission shader node.

5. Add a ColorRamp (Shift + A | Converter | ColorRamp) and paste it between the Attribute
output and the Color input socket of the Emission node. Set the black color stop values for R to
1.000, G to 0.000, and B to 0.010. Then set the white color stop values for R to 1.000, G
to 0.724, and B to 0.224. Add a new color stop and move it to the 0.290 position. Set the
color values for R to 1.000, G to 0.280, and B to 0.000.

6. Add a Math node and paste it between the Attribute output and the Strength input socket of
the Emission node. Set the Operation to Multiply and the second Value to 5.000.

Starting to build the fire shader

7. Parent these four nodes to a new Frame labeled as FLAME.
8. Add an Add Shader node (press Shift + A and navigate to Shader | Add Shader) and paste it

between the output of the Add Shader inside the SMOKE frame and the Material Output.
Connect the output of the Emission shader inside the FLAME frame to the second Shader
input socket of the last Add Shader node.

Smoke and fire shaders added

9. Rename the material as fire_smoke and save the file as
9931OS_09_fire_smoke_final.blend.

How it works...

Considering that we basically used the default settings for the fire and smoke simulation, the result was
pretty good. To find out more about the different settings and types of smoke, take a look at the links
provided in the See also section of this chapter.

We used the Quick Effects menu to let Blender automatically set up the smoke simulation for us. The
steps usually involved are as follows:

• For the simulation domain, set an object that defines the bounds of the simulation volume. In
our case, it was the Smoke Domain box in the wireframe viewport shading mode. It could be
scaled, moved, or rotated if necessary.

• For the flow, set an object that determines where the smoke will be produced from, that is, the
Suzanne_unwrapped object.

• Assign a material to the smoke. In our case, it was the automatically created Smoke Domain
Material, which we then remade as the fire_smoke material.

• Bake the simulation by computing the cache for the required frames and then clicking on the
Current Cache to Bake button.

• Save the blend file.

The fire_smoke material we set in the Node Editor is made exactly as shown in the previous volume
recipes of this chapter. It consists of all the three shader nodes that can be used for a Volume: the
Volume Scatter, the Volume Absorption and the Emission shaders, driven by the flame, density and
color attributes we wrote in the Name field of the Attribute nodes and coming from the smoke
simulation.

See also
• http://wiki.blender.org/index.php/Doc:2.6/Manual/Physics/Smoke
• https://cgcookie.com/blender/lessons/02-cycles-fire-and-smoke/
• http://www.blendernation.com/2014/04/14/rendering-smoke-and-fire-in-cycles/

http://wiki.blender.org/index.php/Doc:2.6/Manual/Physics/Smoke
https://cgcookie.com/blender/lessons/02-cycles-fire-and-smoke/
http://www.blendernation.com/2014/04/14/rendering-smoke-and-fire-in-cycles/

Creating a shadeless material in Cycles
In this recipe, we will create a shadeless material, which is a material that behaves as self-illuminated
but does not actually emit any light on the nearby objects.

In the following screenshot, we can see the difference between a Plane with a shadeless material and a
Plane with an emitting material:

A shadeless Plane and an emitting Plane in comparison

At the top, the cloudy sky image is perfectly self-illuminated and visible, but it's neither affecting the
Spheres or the Suzannes nor the floor Plane (nevertheless slightly visible because of a low intensity
World).

This is the reason a shadeless material is perfect for backdrop elements mapped on Planes (or more often
on unwrapped half-spheres called domes) to simulate skies, clouds, and even distant trees. It can also
simulate forests and mountains in the background of a scene.

In Blender Internal, obtaining a shadeless material is very simple. Enabling the appropriate item in the
material panel is enough. In Cycles, there are two methods to obtain this effect: one based on the
material and the other based on the Ray Visibility subpanel in the Object window, under the main
Properties panel.

Getting ready

Start Blender and open the 9931OS_09_start.blend file. Then follow these steps:

1. Go to the Render window, and under the Sampling subpanel, set the Samples to 50 for
Preview and 100 for Render.

2. Set the Camera view to the Rendered shading mode by pressing Shift + Z with the mouse
arrow in the viewport.

3. Go to the World window and set the Background strength to 0.200.
4. Go to Outliner and select the Emitter object. In the Node Editor window, set the Strength of

the Emission shader node to 0.100.
5. Select the Plane object, and in the Material window under the main Properties panel to the

right, replace the Diffuse BSDF shader with a Glossy BSDF shader node. Switch the
Distribution of this node from GGX to Beckmann and set the Roughness value to 0.200.

6. Select the Suzanne_unwrapped object and click on the New button in the Node Editor
window toolbar, or in the Material window under the main Properties panel to the right.

7. With the mouse arrow in the bottom-left corner of the 3D window, press the 7 key in the
numeric keypad to switch to the Top Ortho view. Press Shift + D to duplicate the Suzanne
mesh, and move it to the left of the scene. Rotate it to accommodate it close to the original
mesh. Click on the 2 button to the side of the Material datablock in the Node Editor window
toolbar to make it single-user.

8. In the Material window, switch the Diffuse BSDF node with a Mix Shader node. In the first
Shader slot, select a Diffuse BSDF node, and in the second Shader slot, select a Glossy BSDF
shader node. Set the Glossy distribution to Beckmann, the Roughness value to 0.100, and the
Fac value of the Mix Shader node to 0.900. Rename the material as mirror.

9. Press Shift + D to duplicate the mirror Suzanne mesh, and move it to the right of the scene,
close to the original mesh.

The three Suzannes on the floor Plane in the dark

How to do it...

Let's start with the first method, based on the material:

1. Select the original Suzanne_unwrapped mesh, which is in the middle, and click on the New
button in the Node Editor window toolbar. In the Material window, switch the Diffuse BSDF
shader with an Emission shader. Add an Image Texture node (press Shift + A and navigate to
Texture | Image Texture) and connect its Color output to the Color input socket of the
Emission node.

2. In the Rendered Camera view, the original Suzanne mesh is emitting pink light on the scene.
Pink is the default color that Blender uses to tell us that we haven't loaded an image texture yet.

Suzanne emitting light and the texture being missing

3. Click on the Open button of the Image Texture node, browse to the textures folder, and
load the teddybear.png image (which was used in Chapter 8, Creating Organic Materials).

Suzanne with the UV-mapped texture

4. In the Node Editor window, add a Mix Shader node (press Shift + A and navigate to Shader |
Mix Shader) and paste it between the Emission node and the Material Output node.

5. Add a Light Path node (press Shift + A and navigate to Input | Light Path) and connect its Is
Camera Ray output to the Fac input socket of the Mix Shader node. The Suzanne mesh turns
totally black (no material) but still lights the scene based on the teddybear.png image's
values.

6. Switch the connection of the Emission node from the first Shader input socket of the Mix
Shader node to the second Shader input socket.

Inverting the order of the connections in the Mix Shader node

At this point, the shadeless Suzanne is still affecting the surrounding objects. It's reflected as a
black object by the floor and by the mirror Suzannes. In fact, the output of the first empty
input socket of the Mix Shader node is a black color because there is no material at all.

To prevent the shadeless Suzanne from getting reflected, follow these steps:

1. Add a Transparent shader node (press Shift + A and navigate to Shader | Transparent BSDF)
and connect it to the first Shader input socket of the Mix Shader node.

The totally shadeless Suzanne

2. Rename the material as shadeless and save the file as 9931OS_09_shadeless.blend.

How it works...

Thanks to the Is Camera Ray output of the Light Path node, all the light rays from the Camera that
directly hit the Suzanne mesh are rendered with the Emission material brightness (because this material
has a value equal to 1, which is due to its connection to the second Shader socket of the Mix Shader
node). For the other kind of rays (reflected, transmitted, and so on, first socket = 0 value) there is no
emitting material coming from the Suzanne mesh. Actually, there is initially no material at all, and this
gives a black, reflected Suzanne. Following this, to avoid the black reflections, a Transparent BSDF
shader has been connected to the first socket of the Mix Shader node.

There's more...

The second method to obtain a shadeless object is as follows:

1. Starting from the preceding file, select the Suzanne mesh, and in the toolbar of the Node Editor
window, click on the F button on the right side of the material name data block to assign a fake
user (this is to keep the material saved in the blend file even if not assigned to anything). Then
click on the X icon (to unlink the datablock).

2. Now click on the New button to create a new material. In the Material window under the
Properties panel, switch the Diffuse BSDF with an Emission shader node.

3. In the Node Editor window, add an Image Texture node (press Shift + A and navigate to
Texture | Image Texture) and connect its Color output to the Color input socket of the
Emission shader.

4. Click on the Open button on the Image Texture node to load the teddybear.png image
texture.

At this point, we are at the same stage as step 2 of the first method. We have created a light
emission material based on the image texture mapped on the Suzanne mesh.

5. Now go to the Object window under the main Properties panel to the right of the screen. In the
Ray Visibility subpanel (usually the last at the bottom) uncheck the Diffuse, Glossy,
Transmission, Volume Scatter and Shadow items.

The shadeless Suzanne obtained through the Ray Visibility subpanel

So basically, only the Camera item is active now. Simple, quick, and effective!

Creating a fake immersion effect material
In this recipe, we will create a material to give the effect of an object immersed in a substance becoming
more and more opaque as the depth increases, for example, murky water.

The murky water effect as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_09_start.blend file. Then follow these steps:

1. Go to the World window and click on the little dotted square on the right side of the color slot.
From the menu, select Sky Texture. Then set the Strength value to 0.500.

2. Select the Plane, rename it as water, and move the Location value of Z to 1.17000. Then
press Shift + D to duplicate it, rename it as bed, and move the Location value of Z to
-2.00000.

How to do it...

Let's go ahead and create the different materials:

1. Go to the Material window and select the Suzanne_unwrapped mesh. In the Node Editor
window toolbar, click on the New button, and rename the material as (simply) Suzanne. In the
Material window under the main Properties panel, switch the Diffuse BSDF shader with a
Mix Shader node. In the first Shader slot, select a Diffuse BSDF shader node, and in the
second Shader slot, select a Glossy BSDF shader node.

2. Set the Glossy distribution to Beckmann and the Roughness value to 0.100. Then set the Fac
value of the Mix Shader node to 0.600.

3. Select the bed Plane and click on the New button in the Node Editor window toolbar. Rename
the material as bed.

4. In the Material window, switch the Diffuse BSDF shader with an Emission shader node. Set
the Color values for R to 0.800, G to 0.659, and B to 0.264. Then set the Strength value
to 0.100.

5. Select the water Plane and click on the New button in the Node Editor window toolbar.
Rename the material as water.

6. In the Material window, switch the Diffuse BSDF shader with a Mix Shader node. In the first
Shader slot, select a Glass BSDF shader node, and in the second Shader slot, select a
Transparent BSDF node.

7. Set the Glass BSDF node's Roughness value to 0.600 and the IOR to value 1.333. Then set
the Color values for R to 0.185, G to 0.611, and B to 0.800.

8. Add a Light Path node (press Shift + A and navigate to Input | Light Path) and a ColorRamp
node (press Shift + A and navigate to Converter | ColorRamp). Connect the Ray Length
output to the Fac input socket of the ColorRamp and invert the position of the black-and-white
color stops (that is, move the black color stop to the extreme right and the white color stop to the
extreme left of the slider).

9. Connect the ColorRamp output to the Fac input socket of the Mix Shader node.

The murky water material network

How it works...

The effect happening on the water material is due to the Ray Length output, which returns the length
of the light rays passing through an object, thus giving the thickness of that object. In our case, the

distance from the water mesh surface to the far distance (from the Camera point of view, because the
light rays originate from the Camera).

The gradient of the ColorRamp is mapped on the length of this Ray Length output (also clamped and
inverted by the same ColorRamp node), connected to the Fac input socket of the Mix Shader node in
order to work as a stencil map to smoothly blend the amount of the Glass shader with the amount of the
Transparent BSDF shader node.

Thus, the transition from the Transparent shader to the Glass shader returns the impression of a volume
of water becoming murkier as the distance of the object from the surface increases.

Creating a fake volume light material
In this recipe, we will create a material to fake the typical effect of a cone of light visible when passing
through the dust suspended in the air, or falling from the sky on a cloudy day (the so-called God's rays)
different from the real volumetric effect described in the There's more section of the Using Cycles
volume materials recipe. This is a fake—just a mesh and not a real light to be used for the scene.
Therefore, a matching Lamp must be set for the real lighting, as shown in the already made blend file.

The fake volume cone of light as it appears in the final rendering

Getting ready

Start Blender and open the 9931OS_09_volumelight_start.blend file, where there is a scene
set with a ground Plane, a Cube, the volumetric cone mesh (volume_light), a spot mesh object
(spot_mesh), and an effective Spot lamp parented to the volume_light. The Spot lamp cone follows the
shape of the volume_light, and its purpose is to light the Cube leaning on the ground Plane.

The volume light objects also have a brief animation of 98 frames. To see it, move the Time Cursor
inside the Timeline window; to point the cone of light to the Cube, go to frame 81.

How to do it...

Let's go ahead with creating the light cone material:

1. Select the volume_light object and click on the New button in the Node Editor window
toolbar, or in the Material window under the main Properties panel to the right. Rename the
material as volume_light.

2. In the Material window, switch the Diffuse BSDF shader node with a Mix Shader node. Label
it as Mix Shader1.

3. In the first Shader slot of the Mix Shader1 node, select a new Mix Shader node. Label it as
Mix Shader2. In the second Shader slot, select a Transparent BSDF shader node.

4. Go to the Mix Shader2 node, and in the first Shader slot, select a Mix Shader node again (Mix
Shader3). Connect the output of the Transparent BSDF node to the second Shader slot of the
Mix Shader2 node.

5. Go to the Mix Shader3 node, and in the first Shader slot, select one more Mix Shader node
(label it Mix Shader4). Connect the output of the Transparent BSDF node to the second
Shader slot.

6. Go to the Mix Shader4 node, and in the first Shader slot, select one Emission node. Connect
the output of the Transparent BSDF node to the second Shader slot of the Mix Shader4 node.

7. Set the color values of the Emission node for R to 0.769, G to 0.800, and B to 0.592. Then
set the Fac value of Mix Shader4 to 0.800.

8. Add a Layer Weight node (press Shift + A and navigate to Input | Layer Weight) and connect
its Facing output to the Fac input socket of the Mix Shader3 node. Set the Blend value to
0.900.

9. Add a ColorRamp node (press Shift + A and navigate to Converter | ColorRamp) and connect
its color output to the Fac input socket of the Mix Shader2 node. Set the Interpolation to B-
Spline and move the black color stop to position 0. Then move the white color stop to the
extreme left.

10. Add a Value node (press Shift + A and navigate to Input | Value), label it as Intensity, and
connect it to the Fac input socket of the Mix Shader1 node. Set the value to 0.400.

The entire material network

11. Save the file as 9931OS_09_volumelight_final.blend.

How it works...

The effect of light blending with the night is obtained by the various factors of blending of the Mix
Shader nodes that cause the mixing of the Emission shader with the Transparent shader. The purpose
of connecting the Value node to the Fac input of the Mix Shader1 node is to establish the intensity of
the fake volumetric light. A value of 1.000 turns it off completely (be careful not to go beyond
1.000, otherwise the cone mesh will show up as a dark silhouette). On the contrary, values towards
0.000 (or even negative values) make it appear more and more intense.

Be careful with this simulation because being a mesh emitting light, it can produce strange and
unrealistic effects if not carefully planned. Suppose you go to frame 62 and start the rendering. Then you
will see that the volumetric cone mesh is intersecting the Cube even in those areas where a real light
would create shadows.

See also

Since Cycles has been added to Blender, many artists have posted screenshots and tests for almost every
possible kind of material. Especially on the Blender Artists forum, you will find a plethora of data and
will discover different (and often better) ways to create the same materials that you have seen in this
Cookbook.

Now it's up to you to create new, amazing materials and renderings that no one can avoid staring at.
Blend on!

Bibliography
This Learning Path is a blend of content, all packaged up keeping your journey in mind. It includes
content from the following Packt products:

• Blender 3D By Example By Romain Caudron and Pierre-Armand Nicq
• Blender 3D Cookbook By Enrico Valenza
• Blender Cycles: Materials and Textures Cookbook - Third Edition By Enrico Valenza

Index
A

• actions
◦ tweaking, in Graph Editor / Tweaking the actions in Graph Editor, Getting ready, How

to do it…
• add-ons

◦ about / Improving Blender with add-ons
◦ using, in Blender / Improving Blender with add-ons
◦ searching, on hard-disk / Improving Blender with add-ons

• additional UV layers
◦ setting up / Setting up additional UV layers, How to do it…

• advanced materials, Cycles
◦ creating / Creating advanced materials in Cycles
◦ skin material, with Subsurface Scattering node / Skin material with Subsurface

Scattering
◦ skin material, with Subsurface Scattering node / Skin material with Subsurface

Scattering
◦ eye material / Eye material
◦ fur, creating / The fur of the rat

• Alien Character / The Alien Character
• alien character

◦ retopology, creating / Making the retopology of the alien character
• alien character retopology

◦ creating / Making the retopology of the alien character
◦ environment, preparing / Preparing the environment

• alpha / Anatomy of a brush
• Alt key / Using a pen tablet
• ambient occlusion

◦ baking / The baking of an ambient occlusion
◦ about / Understanding the ambient occlusion map, There's more...
◦ colors, multiplying / Understanding the ambient occlusion map
◦ bake, creating / Creation of the bake
◦ displaying, in viewport / Displaying the ambient occlusion in the viewport
◦ enabling / There's more...

• animation
◦ principles / Principles of animation
◦ preparation / Preparation of the animation
◦ OpenGL playblast, rendering of / Rendering an OpenGL playblast of the animation,

Getting ready, How to do it…, How it works…, There's more…
• animation, preparing

◦ short script, writing / Writing a short script
◦ shot, field sizes / Writing a short script
◦ shot, angle shot / Writing a short script
◦ Storyboard, creating / Making a storyboard

◦ final camera placements, searching / Finding the final camera placements and the
timing through a layout

◦ final camera timing, searching / Finding the final camera placements and the timing
through a layout

◦ references / Animation references
◦ organization / Organization

• animation controls
◦ building / Building the animation controls and the Inverse Kinematic, How to do it…

• animation principles
◦ about / Principles of animation
◦ Squash and Stretch / Squash and Stretch
◦ anticipation / Anticipation
◦ staging / Staging
◦ Straight Ahead Action / Straight Ahead Action and Pose to Pose
◦ Pose to Pose / Straight Ahead Action and Pose to Pose
◦ Follow Through / Follow Through and Overlapping Action
◦ Overlapping Action / Follow Through and Overlapping Action
◦ Slow In / Slow In and Slow Out
◦ Slow Out / Slow In and Slow Out
◦ arcs / Arcs
◦ Secondary Action / Secondary Action
◦ timing / Timing
◦ exaggeration / Exaggeration
◦ solid drawing / Solid drawing
◦ appeal / Appeal

• animation process
◦ URL / See also

• animations, rendering
◦ URL / See also

• animation tools, Blender
◦ about / Animation tools in Blender
◦ timeline editor / The timeline
◦ keyframe / What is a keyframe?
◦ Dope Sheet / The Dope Sheet
◦ Graph editor / The Graph editor
◦ Non-Linear Action editor / The Non-Linear Action editor

• anisotropy / How it works...
• Anticipation principle / Anticipation
• appeal principle / Appeal
• Append and Link

◦ URL / How it works…
• arcs principle / Arcs
• Armature

◦ about / Using the Skin modifier's Armature option, Introduction, Introduction, How to
do it…

◦ skinning, to Gidiosaurus mesh / Introduction

◦ parenting, Automatic Weights tool used / Parenting the Armature and Mesh using the
Automatic Weights tool, Getting ready, How to do it…, How it works…, There's
more…

• Armature, character
◦ building, from scratch / Building the character's Armature from scratch, How to do it…
◦ rig, building for secondary parts / Building the rig for the secondary parts
◦ rig, completing / Completing the rig, How it works…
◦ perfecting, as rig for Armor / Perfecting the Armature to also function as a rig for the

Armor, How to do it…, How it works…
◦ building, through Human Meta-Rig tool / Building the character's Armature through the

Human Meta-Rig, Getting ready, How to do it…
◦ generating, by Rigify add-on / Generating the character's Armature by using the Rigify

add-on, How to do it…, How it works…
• Armature modifier

◦ URL / Editing the mesh
• Armature option, Skin modifier

◦ using / Using the Skin modifier's Armature option, Getting ready, How to do it…
• Armor

◦ detailing, Curve used from Mesh tool / Detailing the Armor by using the Curve from
Mesh tool, Getting ready, How to do it…, There's more…

• armor plates
◦ modeling / Modeling the armor plates, How to do it…, How it works…

• armor shaders
◦ building, in Cycles / Building the armor shaders in Cycles, Getting ready, How to do

it…, How it works…, There's more…
◦ building, in Blender Internal / Building the armor shaders in Blender Internal, How to

do it…, How it works…, There's more…
• Armor textures

◦ defining / The Armor textures, How to do it…, There's more…, See also
◦ references / See also

• Array modifier / Adding instantiated objects
• Artistic Anatomy

◦ about / An introduction to artistic anatomy
◦ body, sculpting / Sculpting the body

• atmosphere layer / The atmosphere, How it works...
• atmospheric perspective

◦ adding / Adding the atmospheric perspective, How it works...
• AutoKey option / What is a keyframe?
• Automatic Weights tool

◦ used, for parenting Armature / Parenting the Armature and Mesh using the Automatic
Weights tool, Getting ready, How to do it…, How it works…, There's more…

◦ used, for parenting Mesh / Parenting the Armature and Mesh using the Automatic
Weights tool, Getting ready, How to do it…, How it works…, There's more…

◦ about / Getting ready

B
• B-bones

◦ about / How it works…
• Background Images tool

◦ about / Introduction
◦ templates, setting with / Setting templates with the Background Images tool, How to do

it…
◦ using / Setting templates with the Background Images tool, How to do it…

• Bakelite material
◦ creating / Creating a Bakelite material, How to do it..., How it works..., There's more...
◦ working / How it works...
◦ node group, creating / There's more...

• base mesh
◦ creating, with Skin modifier / Creating a base mesh with the Skin modifier
◦ Matcap, using / Visual preparation
◦ visual preparation / Visual preparation
◦ about / Introduction
◦ building / Introduction
◦ preparing, for sculpting / Preparing the base mesh for sculpting, How to do it…, How it

works…
• base mesh, character

◦ building, with Skin modifier / Building the character's base mesh with the Skin
modifier, Getting ready, How to do it…, How it works…

◦ sculpting / Sculpting the character's base mesh, How to do it…, There's more…
• basic settings, Cycles render engine

◦ about / Understanding the basic settings of Cycles
◦ sampling / The sampling
◦ light path settings / Light path settings
◦ performance settings / Performances

• beetle-like chitin material
◦ creating, with procedural textures / Creating a beetle-like chitin material with

procedural textures, Getting ready, How to do it...
• bevel modifier / Simulate a stack of wooden planks with physics
• Bevel tool

◦ about / An introduction to the Subdivision Surface modifier
• Big Buck Bunny

◦ URL / How it works…
• Blender

◦ working with / What can you do with Blender?
◦ navigation, using / Getting used to the navigation in Blender
◦ improving, with add-ons / Improving Blender with add-ons
◦ URL / Performances, Cycles versus Blender Internal, See also
◦ bone anatomy / An introduction to the rigging process
◦ animation tools / Animation tools in Blender

• Blender Artists forum
◦ URL / See also

• Blender bug tracker
◦ URL / There's more…

• Blender documentation

◦ URL / Creating a leather material with procedurals
• Blender Internal

◦ used, for rendering robot toy / Using Blender Internal to render our Robot Toy
◦ used, for rendering / Doing a quick render with Blender Internal
◦ lights, setting / Setting lights
◦ camera, placing / Placing the camera
◦ environment, setting / Setting the environment (sky and mist)
◦ versus Cycles render engine / Cycles versus Blender Internal
◦ tileable scales image, creating / Making a tileable scales image in Blender Internal,

Getting ready, How to do it…
◦ color maps, painting in / Painting the color maps in Blender Internal, Getting ready,

How to do it…, How it works…
◦ reptile skin shaders, building in / Building the reptile skin shaders in Blender Internal,

Getting ready, How to do it…, How it works…
◦ eyes' shaders, building in / Building the eyes' shaders in Blender Internal, How to do

it…, How it works…
◦ armor shaders, building in / Building the armor shaders in Blender Internal, How to do

it…, How it works…, There's more…
◦ three-point lighting rig, setting in / Setting a three-point lighting rig in Blender Internal,

Getting ready, How to do it…, How it works…
◦ materials, working / Introduction

• Blender Internal shaders
◦ creating / Introduction

• Blender Official Add-ons Catalog
◦ URL / Improving Blender with add-ons

• Blender Render engine
◦ about / Introduction
◦ URL / Getting ready

• Blender units / Working with a scale
• blocking method

◦ about / Blocking the bases of the house
◦ refining / Refining the blocking
◦ instantiated objects, refining / Adding instantiated objects

• blocking objects
◦ reworking / Reworking the blocking objects

• body parts
◦ joining / How to do it…

• body sculpting, Artistic Anatomy
◦ head / The head
◦ torso / The torso
◦ arms / The arms
◦ legs / The legs
◦ belt / The belt

• bones, Armature
◦ URL / Editing the mesh

• Boolean modifier
◦ using / There's more…

• bottom shaders
◦ creating / Creating the water surface and the bottom shaders

• Breakdowns / Straight Ahead Action and Pose to Pose
• Bridge tool

◦ about / How to do it…
• bronze material

◦ creating, with procedurals / Creating an antique bronze material with procedurals,
Getting ready..., How to do it..., How it works...

• brush
◦ anatomy / Anatomy of a brush

• brushes, Texture Paint tool
◦ discovering / Discovering the brushes
◦ TexDraw brush / The TexDraw brush
◦ Smear brush / The Smear brush
◦ Soften brush / The Soften brush
◦ Clone brush / The Clone brush
◦ Fill brush / The Fill brush
◦ Mask brush / The Mask brush

• BSDF
◦ about / Introduction

C
• character

◦ animating / Introduction
◦ linking / Linking the character and making a proxy, Getting ready, How to do it…

• Child Of constraint / Rigging the gun
• Clay brush / The torso
• Clay Strips brush / The head
• Clone brush / The Clone brush

◦ using / There's more…
• cloth materials

◦ creating, with procedurals / Creating cloth materials with procedurals, Getting ready,
How to do it..., How it works..., There's more...

• clouds / The clouds
• cloud volumetric material

◦ creating / Creating a cloud volumetric material, Getting ready, How to do it..., How it
works...

• color balance node
◦ URL / Depth Pass

• color maps
◦ painting, in Blender Internal / Painting the color maps in Blender Internal, Getting

ready, How to do it…, How it works…
◦ painting, in Cycles / Painting the color maps in Cycles, Getting ready, How to do it…

• colors
◦ adding / Adding colors
◦ Texture Paint tool, basics / Basics of the Texture Paint tool
◦ scene, painting / Painting the scene

◦ laying down / Laying down the colors
◦ tiled textures / Tiled textures
◦ roof-tiled texture, painting / Painting the roof-tile texture
◦ hand painted tiled textures types, tips / Quick tips for other kinds of hand-painted tiled

textures
◦ tiled textures, baking / Baking our tiled textures
◦ transparent textures, creating / Creating transparent textures

• color wheel window / The grass texture
• complex man-made materials

◦ cloth materials, creating / Creating cloth materials with procedurals
◦ leather material, creating / Creating a leather material with procedurals
◦ synthetic sponge material, creating / Creating a synthetic sponge material with

procedurals
◦ spaceship hull shader, creating / Creating a spaceship hull shader

• complex natural materials
◦ Cycles / Introduction
◦ ocean material, creating / Creating an ocean material using procedural textures
◦ underwater environment materials, creating / Creating underwater environment

materials
◦ snowy mountain landscape, creating / Creating a snowy mountain landscape with

procedurals
◦ realistic Earth, creating / Creating a realistic Earth as seen from space

• composite nodes
◦ URL / How it works…

• control bones
◦ creating / How to do it…

• Copy Attributes Menu add-ons
◦ about / Getting ready

• Copy Rotation constraint / The arm and the hand
◦ about / How it works…

• cranium/neck section, mesh / How to do it…
• Crease brush / The head
• Cube primitive

◦ about / Getting ready
• curves

◦ used, for modeling tree / Modeling a tree with curves
◦ about / Modeling a tree with curves
◦ URL / There's more…

• custom shapes
◦ about / Custom shapes

• cycles
◦ Normal Maps, applying in Cycles / Making and applying normal maps in Cycles

• Cycles
◦ advanced materials, creating / Creating advanced materials in Cycles
◦ passes / The Raw rendering phase
◦ URL / The Raw rendering phase

◦ color maps, painting in / Painting the color maps in Cycles, Getting ready, How to do
it…

◦ reptile skin shaders, building / How to do it…, How it works…, There's more…
◦ eyes shaders, building / Building the eyes' shaders in Cycles, Getting ready, How to do

it…, How it works…
◦ armor shaders, building / Building the armor shaders in Cycles, Getting ready, How to

do it…, How it works…, There's more…
◦ materials, working / Introduction
◦ material nodes / Material nodes in Cycles, Getting ready, How to do it..., How it

works..., There's more..., Introduction
◦ procedural textures / Procedural textures in Cycles, How to do it..., How it works...,

There's more..., See also
◦ World material, setting / Setting the World material
◦ man-made materials / Introduction
◦ Subsurface Scattering / Introduction
◦ Subsurface Scattering, simulating by Translucent shader / Simulating Subsurface

Scattering in Cycles using the Translucent shader
◦ Subsurface Scattering, simulating by Vertex Color tool / Simulating Subsurface

Scattering in Cycles using the Vertex Color tool, How to do it...
◦ Subsurface Scattering, simulating by Ray Length output / Simulating Subsurface

Scattering in Cycles using the Ray Length output in the Light Path node
◦ layered human skin material, creating in / Creating a layered human skin material in

Cycles, Getting ready, How to do it..., How it works...
◦ volume materials, using / Using Cycles volume materials
◦ shadeless material, creating / Creating a shadeless material in Cycles

• Cycles interface
◦ creating, for material creation screen / Preparing an ideal Cycles interface for material

creation, How to do it..., How it works..., There's more...
• Cycles material

◦ about / Material nodes in Cycles
◦ building / Getting ready, How to do it..., How it works..., There's more...

• Cycles materials and textures
◦ URL / See also

• Cycles nodes
◦ URL / See also

• Cycles render engine
◦ basic settings / Understanding the basic settings of Cycles
◦ realistic grass, creating / Creating realistic grass
◦ textures, backing / Baking textures in Cycles
◦ versus Blender Internal / Cycles versus Blender Internal

• Cycles Render Engine
◦ URL / Introduction

• Cycles Render engine
◦ defining / Image based lighting in Cycles
◦ rendering settings, tweaking / Obtaining a noise-free and faster rendering in Cycles,

Getting ready, How to do it…

D
• 3D Cursor

◦ about / How to do it…
• 3D manipulator widget

◦ enabling / How to do it…, Getting ready
• 3D scene

◦ anatomy / The anatomy of a 3D scene
• 3D scene layout

◦ setting up / Setting the library and the 3D scene layout, How to do it…, How it works…
• 3D workflow

◦ overview / An overview of the 3D workflow
◦ 3D scene, anatomy / The anatomy of a 3D scene

• Damped Track constraint / The head and the eyes
• data system

◦ URL / How it works…
• Depth pass / Depth Pass
• displacement

◦ using / Getting ready, How to do it..., How it works...
• display, Render

◦ references / Obtaining a noise-free and faster rendering in Cycles
• DJV Imaging

◦ URL / There's more…
• Dope Sheet / The Dope Sheet
• drivers

◦ assigning, to shape keys / Assigning drivers to the shape keys, Getting ready, How to do
it…, There's more…

◦ about / How it works…
◦ URL / Setting movement limit constraints

• Dumped Track constraint
◦ about / How it works…

• Duplicate Linked tool / Modeling the buttons, Adding instantiated objects
• Duplicate Object / Modeling the buttons
• Dynamic topology feature

◦ using / Using the Multiresolution modifier and the Dynamic topology feature, How to
do it…, How it works…

• Dynamic topology setting
◦ about / How it works…

• Dyntopo
◦ versus Multires modifier / Dyntopo versus the Multires modifier
◦ first touch / First touch with Dyntopo

E
• edge-loops flow

◦ planning, Grease Pencil tool used / Using the Grease Pencil tool to plan the edge-loops
flow, Getting ready, How to do it…

• edge loop

◦ about / Modeling the head
• edge loops / Creating a base mesh with the Skin modifier
• editor

◦ about / What are editors?
◦ anatomy / The anatomy of an editor
◦ Header / The anatomy of an editor
◦ Split Area / Split, Join, and Detach
◦ detaching / Split, Join, and Detach
◦ Join Area button / Split, Join, and Detach
◦ layout presets / Some useful layout presets

• Empties
◦ preparing / Getting ready

• environment
◦ modeling / Modeling the environment (8 pages)
◦ cliff, modeling / Modeling the cliff
◦ tree with curves, modeling / Modeling a tree with curves
◦ scene, enhancing with barrier / Enhancing the scene with a barrier, rocks, and a cart
◦ scene, enhancing with rocks / Enhancing the scene with a barrier, rocks, and a cart
◦ scene, enhancing with carts / Enhancing the scene with a barrier, rocks, and a cart

• environment preparation, alien character retopology
◦ steps / Preparing the environment
◦ head / The head
◦ polygon pairs / The head
◦ F2 add-on / The head
◦ smooth option / The head
◦ neck / The neck and the torso
◦ torso / The neck and the torso
◦ arms / The arms and the hands
◦ hands / The arms and the hands
◦ legs / The legs

• exaggeration principle / Exaggeration
• expanded polystyrene material

◦ creating / Creating an expanded polystyrene material, Getting ready..., How to do it...,
How it works...

• expressions shape keys
◦ defining / How to do it…

• Extremes / Straight Ahead Action and Pose to Pose
• extrusion tool

◦ about / Modeling the head
• eye, creature

◦ modeling / Modeling the eye, Getting ready, How to do it…, How it works…
◦ building / How to do it…, How it works…

• eyeball rotation
◦ transferring, to eyelids / Transferring the eyeball rotation to the eyelids, Getting ready

• eyes' shaders
◦ building, in Blender Internal / Building the eyes' shaders in Blender Internal, How to do

it…, How it works…

• eyes shaders
◦ building, in Cycles / Building the eyes' shaders in Cycles, Getting ready, How to do

it…, How it works…
• Eyes sphere

◦ eyeballs / Building the eyes' shaders in Cycles
◦ irises / Building the eyes' shaders in Cycles
◦ pupils / Building the eyes' shaders in Cycles

F
• fac input / Creating the materials of the house, the rocks, and the tree
• fake immersion effect material

◦ creating / Creating a fake immersion effect material, How to do it..., How it works...
• fake Subsurface Scattering node group

◦ creating / Creating a fake Subsurface Scattering node group, Getting ready, How to do
it..., How it works...

• fake volume light material
◦ creating / Creating a fake volume light material, Getting ready, How to do it..., How it

works...
• fangs

◦ about / Modeling the armor plates
• Fill brush / The Fill brush
• fire and smoke shader

◦ creating / Creating a fire and smoke shader, Getting ready, How to do it..., How it
works...

• FK (Forward Kinematic) / The leg and the foot
• FK/IK sliders

◦ about / How to do it…
• Flatten/Contrast brush / The legs
• foam shader

◦ creating / Creating the foam shader
• Follow Through principle / Follow Through and Overlapping Action
• fork, robot toy

◦ modeling / Modeling the fork
◦ protections, modeling / Modeling protections for the fork

• frames
◦ nodes, grouping / Grouping nodes under frames for easier reading
◦ using, with simple shader / How to do it...

• Fresnel / Creating the materials of the house, the rocks, and the tree
• Fresnel node

◦ about / How it works…
• fur

◦ creating / Creating fur and hair, Getting ready, How to do it..., How it works..., There's
more...

G
• generic plastic material

◦ creating / Creating a generic plastic material, How to do it...
◦ working / How it works...

• Gidiosaurus
◦ about / How to do it…, Introduction, Building the character's Armature from scratch,

How it works…, Perfecting the Armature to also function as a rig for the Armor
• Gidiosaurus character

◦ defining / Introduction
• Gidiosaurus object / Getting ready
• Gimp

◦ about / Making a tileable scales image in Blender Internal, The Quick Edit tool, How to
do it…

• Gizmo tool / The Edit Mode versus the Object Mode
• glassy polystyrene material

◦ creating / Creating a clear (glassy) polystyrene material, How to do it...
• Global Illumination effect

◦ about / Getting ready
• GPU-based rendering

◦ steps / Introduction
• GPU graphic cards, for Cycles

◦ URL / See also
• GPU rendering

◦ URL / See also
• Grab (G) tool / Modeling the cliff
• Grab brush / The head
• Grab tool / Adding the head primitive
• Graph Editor

◦ actions, tweaking in / Tweaking the actions in Graph Editor, Getting ready, How to do
it…

◦ URL / Using the Non Linear Action Editor to mix different actions
• Graph editor / The Graph editor
• Gray Alien skin material

◦ creating, with procedurals / Creating a gray alien skin material with procedurals,
Getting ready, How to do it..., How it works...

• Grease Pencil tool
◦ about / How it works…, How to do it…
◦ used, for planning edge-loops flow / Using the Grease Pencil tool to plan the edge-loops

flow, Getting ready, How to do it…
◦ URL / There's more…

• ground material
◦ creating, with procedural textures / Creating a simple ground material using procedural

textures, Getting ready, How to do it..., How it works...
• groups

◦ using / Grouping objects
• Gstretch tool

◦ about / How to do it…
• guides

◦ creating / How to do it…

H
• hair

◦ creating / Creating fur and hair, Getting ready, How to do it..., How it works..., There's
more...

• haunted house
◦ blocking / Blocking the house
◦ world scale, working on / Working with a scale
◦ bases, blocking / Blocking the bases of the house
◦ element geometry, working on / Breaking and ageing the elements
◦ stack simulation of wooden planks, adding / Simulate a stack of wooden planks with

physics
◦ stack simulation of wooden planks, creating / Creation of the simulation of a stack of

planks
• Haunted House / The Haunted House
• HDR (High Dynamic Range) image

◦ about / Setting image based lighting (IBL)
• hdr image

◦ about / How to do it…
• head deformation, Gidiosaurus mesh

◦ fixing / How to do it…
• High-dynamic-range (HDR) / How to do it...
• high resolution mesh

◦ more details, sculpting on / Sculpting more details on the high resolution mesh, Getting
ready, How to do it…

• Hooks
◦ using / Using the Laplacian Deform modifier and Hooks, Getting ready, How to do

it…, How it works…
◦ URL / How it works…

• Human Meta-Rig
◦ about / Introduction

• Human Meta-Rig tool
◦ used, for building Armature / Building the character's Armature through the Human

Meta-Rig, Getting ready, How to do it…
◦ about / Building the character's Armature through the Human Meta-Rig
◦ using / Getting ready

I
• IBL

◦ painting / Painting and using an Image Base Lighting
◦ using / Painting and using an Image Base Lighting

• ice material
◦ creating, with procedural textures / Creating an ice material using procedural textures,

Getting ready, How to do it...
• IK constraint / The leg and the foot
• IK solver

◦ about / How to do it…

• image based lighting (IBL)
◦ setting / Setting image based lighting (IBL), Image based lighting in Cycles, Image

based lighting in Blender Internal, How it works…
◦ in Cycles / Image based lighting in Cycles
◦ in Blender Internal / Image based lighting in Blender Internal, How it works…

• Image Empties method
◦ about / Introduction, Setting templates with the Image Empties method
◦ templates, setting with / Setting templates with the Image Empties method, How to do

it…, How it works…
• image maps

◦ used, for creating rock material / Creating a rock material using image maps, Getting
ready, How to do it..., How it works..., There's more...

• images
◦ requisites / Introduction

• Images as Planes add-on
◦ about / Introduction, Setting templates with the Images as Planes add-on
◦ templates, setting with / Setting templates with the Images as Planes add-on, Getting

ready, How to do it…, How it works…
• image texture

◦ Vertex Colors layer, baking to / Adding a dirty Vertex Colors layer and baking it to an
image texture, How to do it…, How it works…

• Index Of Refraction (IOR) / How to do it...
• Inflate/Deflate brush / The head
• inset

◦ about / Modeling the antenna
• Inverse Kinematic

◦ building / Building the animation controls and the Inverse Kinematic, How to do it…
• Inverse Kinematic (IK) / The leg and the foot
• Inverse Kinematics

◦ about / How to do it…
• Inverse Kinematics constraint

◦ about / How it works…, How to do it…
• IORs

◦ references / How it works...
• IOR values

◦ URL / See also

J
• join tool (J) / Modeling the thunderbolts

K
• keyframe / What is a keyframe?
• Key Poses / Straight Ahead Action and Pose to Pose
• knife tool (K) / Modeling the thunderbolts, Modeling the arm
• Knife Topology Tool

◦ about / How to do it…, How it works…

• Knife Topology Tool (K) / Modeling the chest
• Krita

◦ URL / Making a tileable scales image in Blender Internal

L
• Laplacian Deform modifier

◦ using / Using the Laplacian Deform modifier and Hooks, Getting ready, How to do
it…, How it works…

◦ URL / How it works…
• Laplacian modifier

◦ setting up / How to do it…
• lattice

◦ about / Modeling a tree with curves
• Lattice object / How to do it…
• layered human skin material

◦ creating, in Cycles / Creating a layered human skin material in Cycles, Getting ready,
How to do it..., How it works...

• Layered Painting, in Blender 2.72
◦ references / How it works…

• leather material
◦ creating, with procedurals / How to do it...

• Left Mouse Button (LMB) / Split, Join, and Detach
• library

◦ setting up / Setting the library and the 3D scene layout, Getting ready, How to do it…,
How it works…

• light path settings, Cycles render engine
◦ Max and Min Bounces / Light path settings
◦ Filter Glossy / Light path settings
◦ reflective and refractive caustics / Light path settings

• lights
◦ about / Lighting
◦ testing material, creating / Creating a testing material
◦ types / Understanding the different types of light
◦ using, in scenes / Lighting our scene
◦ IBL, painting / Painting and using an Image Base Lighting
◦ IBL, using / Painting and using an Image Base Lighting
◦ settings / How to do it…

• light types
◦ about / Understanding the different types of light
◦ point / Understanding the different types of light
◦ sun / Understanding the different types of light
◦ spot / Understanding the different types of light
◦ hemi / Understanding the different types of light
◦ area / Understanding the different types of light

• Link and Append file structures / Organization
• Linux Ubuntu

◦ about / How to do it…, Getting ready

• Live Unwrap tool / Editing the UV islands
• Locked Track constraint

◦ about / How it works…
• Loft tool

◦ about / How to do it…
• LoopCut tool

◦ about / An introduction to the Subdivision Surface modifier
• LoopTools add-on

◦ about / Getting ready
◦ using / Modeling the armor plates, How to do it…
◦ URL / How it works…
◦ used, for re-topologizing mesh / Using the LoopTools add-on to re-topologize the mesh,

How to do it…
◦ enabling / Getting ready

• low poly mesh / The legs
• low resolution mesh

◦ preparing, for unwrapping / Preparing the low resolution mesh for unwrapping, Getting
ready, How to do it…

M
• man-made materials, Cycles

◦ generic plastic material, creating / Creating a generic plastic material
◦ Bakelite material, creating / Creating a Bakelite material
◦ expanded polystyrene material, creating / Creating an expanded polystyrene material
◦ glassy polystyrene material, creating / Creating a clear (glassy) polystyrene material
◦ rubber material, creating / Creating a rubber material
◦ antique bronze material, creating / Creating an antique bronze material with procedurals
◦ multipurpose metal node group, creating / Creating a multipurpose metal node group
◦ rusty metal material, creating / Creating a rusty metal material with procedurals
◦ wood material, creating / Creating a wood material with procedurals

• mapping method
◦ specifying / There's more...

• mask / The head
• Mask brush / The legs, The Mask brush
• Matcap

◦ using / Visual preparation
• Matcaps

◦ about / How it works…
• material creation screen

◦ Cycles interface, creating for / Preparing an ideal Cycles interface for material creation,
How to do it..., How it works..., There's more...

• material groups
◦ mixing / Mixing the material groups

• materials
◦ creating, with nodes / Creating materials with nodes
◦ of house, creating / Creating the materials of the house, the rocks, and the tree
◦ of rock, creating / Creating the materials of the house, the rocks, and the tree

◦ of tree, creating / Creating the materials of the house, the rocks, and the tree
◦ mask, adding for windows / Adding a mask for the windows
◦ procedural textures, using / Using procedural textures
◦ Normal Maps, creating in Cycles / Making and applying normal maps in Cycles
◦ naming / Naming materials and textures, How to do it..., There's more...
◦ linking / Linking materials and node groups, How to do it...

• materials, Blender Render Engine
◦ URL / Building the eyes' shaders in Blender Internal

• Mesh
◦ parenting, Automatic Weights tool used / Parenting the Armature and Mesh using the

Automatic Weights tool, Getting ready, How to do it…, How it works…, There's
more…

• mesh
◦ editing / Editing the mesh, How to do it…
◦ re-topologizing, Snap tool used / Using the Snap tool to re-topologize the mesh, How to

do it…, How it works…
◦ re-topologizing, Shrinkwrap modifier used / Using the Shrinkwrap modifier to re-

topologize the mesh, How to do it…
◦ re-topologizing, LoopTools add-on used / Using the LoopTools add-on to re-topologize

the mesh, How to do it…
◦ unwrapping / UV unwrapping the mesh, How to do it…
◦ modifying / Modifying the mesh and the UV islands, Getting ready, How to do it…

• mesh-light material
◦ creating / Creating a mesh-light material, Getting ready, How to do it..., How it

works..., There's more...
• Mesh Deform modifier

◦ used, to skin character / Using the Mesh Deform modifier to skin the character, Getting
ready, How to do it…, How it works…

• Mesh to Curve technique
◦ used, for adding details / Using the Mesh to Curve technique to add details, How to do

it…, How it works…
• metric system / Working with a scale
• Middle Mouse Button (MMB) / An introduction to the navigation of the 3D Viewport
• mirror modifier / Modeling the thunderbolts
• mist pass

◦ compositing / Compositing a mist pass
• model

◦ preparing, for using UDIM UV tiles / Preparing the model to use the UDIM UV tiles,
How to do it…, How it works…

• modeling tools, robot toy
◦ using / Using the basic modeling tools
◦ extrusion / Modeling the head

• modifier
◦ about / An introduction to the Subdivision Surface modifier

• morphing
◦ about / Introduction

• movement limit constraints

◦ setting / Setting movement limit constraints, How to do it…
◦ URL / How to do it…

• multipurpose metal node group
◦ creating / Creating a multipurpose metal node group, How to do it..., How it works...

• Multires modifier
◦ about / Dyntopo versus the Multires modifier
◦ first touch / First touch with the Multires modifier

• Multiresolution modifier
◦ using / Using the Multiresolution modifier and the Dynamic topology feature, How to

do it…, How it works…
◦ about / How it works…

• Multiresolution modifier method
◦ defining / How to do it…

• MyPaint
◦ URL / Making a tileable scales image in Blender Internal

N
• N-Gon / Modeling the antenna
• natural materials

◦ about / Introduction
• navigation, Blender

◦ using / Getting used to the navigation in Blender
◦ of 3D Viewport / An introduction to the navigation of the 3D Viewport
◦ editors / What are editors?
◦ preferences, setting up / Setting up your preferences

• navigation preferences
◦ setting / Setting up your preferences
◦ Preferences window / An introduction to the Preferences window
◦ default navigation style, customizing / Customizing the default navigation style
◦ add-ons, using in Blender / Improving Blender with add-ons

• negative frames keys
◦ about / How to do it…

• negative low value
◦ about / There's more…

• NLA Editor
◦ about / How to do it…
◦ used, to mix different actions / Using the Non Linear Action Editor to mix different

actions, How to do it…
◦ URL / How to do it…

• nodal compositing / Introduction to nodal compositing
• Node Group / How to do it...
• node group, of skin shader

◦ creating, for reusing / Making a node group of the skin shader to reuse it, How to do
it…, How it works…

• node groups
◦ creating / Creating node groups, How to do it..., How it works...
◦ linking / Linking materials and node groups, How to do it...

• Node Wrangler add-on
◦ about / There's more...

• noise reduction
◦ URL / See also

• Non-Linear Action editor / The Non-Linear Action editor
• Non-Photorealistic Rendering (NPR)

◦ about / Introduction
• normal / The anatomy of a 3D scene
• normal map

◦ baking / The baking of a normal map
◦ about / What is a normal map?
◦ creating, with bake tools / Making of the bake
◦ displaying, in viewport / Displaying the normal map in the viewport

• Normal Map node
◦ URL / See also

• normals, of sculpted mesh
◦ baking, on low resolution / Baking the normals of the sculpted mesh on the low

resolution one, Getting ready, How to do it…, How it works…, There's more…

O
• ocean material

◦ creating, with procedural textures / Creating an ocean material using procedural
textures, Getting ready, How to do it...

◦ water surface, creating / Creating the water surface and the bottom shaders
◦ bottom shaders, creating / Creating the water surface and the bottom shaders
◦ foam shader, creating / Creating the foam shader
◦ stencil material, creating / Creating the stencil material for the foam location
◦ summarizing / Putting everything together
◦ working / How it works..., See also

• Ocean modifier
◦ URL / See also

• OpenEXR
◦ about / The Raw rendering phase
◦ URL / The Raw rendering phase

• OpenGL playblast
◦ rendering, of animation / Rendering an OpenGL playblast of the animation, Getting

ready, How to do it…, How it works…, There's more…
• OpenGL rendering

◦ starting / How to do it…
• organic-looking shader

◦ creating, with procedurals / Creating an organic-looking shader with procedurals, How
to do it..., How it works...

• origin/pivot / Modeling the fork
• outliner / Modeling the thunderbolts
• Overlapping Action principle / Follow Through and Overlapping Action

P
• Paint Tool

◦ using / Preparing the model to use the UDIM UV tiles
◦ used, for fixing seams / Painting to fix the seams and to modify the baked scales image

maps, Getting ready, How to do it…, How it works…, There's more…
◦ used, for modifying baked scales image maps / Painting to fix the seams and to modify

the baked scales image maps, Getting ready, How to do it…, How it works…, There's
more…

◦ about / How to do it…
• pelvis island

◦ editing / How to do it…
• pen tablet

◦ using / Using a pen tablet
• performance considerations

◦ URL / See also
• performance settings, Cycles render engine

◦ Viewport BVH Type / Performances
◦ Tiles / Performances

• PET
◦ enabling / How to do it…

• PET (Proportional Editing Tool) / Getting ready
• Photoshop

◦ about / Making a tileable scales image in Blender Internal, The Quick Edit tool, How to
do it…

• picture
◦ enhancing, with composing / Enhance a picture with compositing
◦ nodal compositing / Introduction to nodal compositing
◦ Depth pass / Depth Pass
◦ effects, adding / Adding effects
◦ rendering phase, compositing / Compositing rendering phase

• Pinch/Magnify brush / The head
• pin tool / Editing the UV islands
• Pitchipoy human rig

◦ URL / How it works…
• planet surface / The planet surface
• playblast

◦ about / Rendering an OpenGL playblast of the animation
• PlayBlast / Render a quick preview of a shot
• Plugins / Improving Blender with add-ons
• polygonal modeling

◦ scene, preparing for / Preparing the scene for polygonal modeling, Getting ready, How
to do it…, How it works…

• poly modeling / Choosing sculpting over poly modeling
• Pose Mode

◦ about / Getting ready
• Pose to Pose principle / Straight Ahead Action and Pose to Pose

• Preferences window / An introduction to the Preferences window
• procedurals

◦ used, for creating bronze material / Creating an antique bronze material with
procedurals, Getting ready..., How to do it..., How it works...

◦ used, for creating rusty metal material / Creating a rusty metal material with
procedurals, Getting ready..., How to do it..., How it works...

◦ used, for creating wood material / Creating a wood material with procedurals, Getting
ready..., How to do it..., How it works...

◦ used, for creating snowy mountain landscape / Creating a snowy mountain landscape
with procedurals, Getting ready, How to do it...

◦ used, for creating cloth materials / Creating cloth materials with procedurals, Getting
ready, How to do it..., How it works..., See also

◦ used, for creating leather material / How to do it...
◦ used, for creating synthetic sponge material / Creating a synthetic sponge material with

procedurals, Getting ready, How to do it..., How it works...
◦ organic-looking shader, creating with / Creating an organic-looking shader with

procedurals, How to do it..., How it works...
◦ Gray Alien skin material, creating with / Creating a gray alien skin material with

procedurals, Getting ready, How to do it..., How it works...
• procedural textures

◦ in Cycles / Getting ready, How to do it..., How it works..., There's more...
◦ used, for creating rock material / Creating a rock material using procedural textures,

How to do it..., How it works...
◦ used, for creating sand material / Creating a sand material using procedural textures,

Getting ready, How to do it..., How it works..., There's more...
◦ used, for creating ground material / Creating a simple ground material using procedural

textures, Getting ready, How to do it..., How it works...
◦ used, for creating snow material / Creating a snow material using procedural textures,

Getting ready, How to do it..., How it works...
◦ used, for creating ice material / Creating an ice material using procedural textures,

Getting ready, How to do it..., How it works...
◦ used, for creating ocean material / Creating an ocean material using procedural textures,

Getting ready
◦ wasp-like chitin material, creating with / Creating a wasp-like chitin material with

procedural textures, How to do it..., How it works...
◦ beetle-like chitin material, creating with / Creating a beetle-like chitin material with

procedural textures, Getting ready, How to do it...
• projects

◦ about / A brief introduction to the projects
◦ Robot toy / The Robot Toy
◦ Alien Character / The Alien Character
◦ Haunted House / The Haunted House
◦ Rat Cowboy / The Rat Cowboy

• Properties sidepanel / Getting ready
• Proportional Editing / Modeling the chest
• proxy / Organization

◦ making / Linking the character and making a proxy, Getting ready, How to do it…

• proxy object
◦ about / Linking the character and making a proxy
◦ URL / Creating a simple walk cycle for the character by assigning keys to the bones

Q
• Quick Edit tool

◦ about / The Quick Edit tool
◦ defining / The Quick Edit tool, How to do it…, How it works…

R
• Rat Cowboy / The Rat Cowboy

◦ rigging / Rigging the Rat Cowboy
◦ about / Rigging the Rat Cowboy
◦ deforming bones, placing / Placing the deforming bones
◦ Display options / Placing the deforming bones
◦ leg, rigging / The leg and the foot
◦ foot, rigging / The leg and the foot
◦ arm, rigging / The arm and the hand
◦ hand, rigging / The arm and the hand
◦ arm / The arm and the hand
◦ hand / The arm and the hand
◦ hips, rigging / The hips
◦ tail, rigging / The tail
◦ head, rigging / The head and the eyes
◦ eyes, rigging / The head and the eyes
◦ rig, mirroring / Mirroring the rig
◦ gun, rigging / Rigging the gun
◦ holster, rigging / Rigging the holster
◦ root bone, adding / Adding a root bone

• raw rendering phase
◦ about / The Raw rendering phase

• Ray Length output, Light Path node
◦ Subsurface Scattering, simulating / Simulating Subsurface Scattering in Cycles using

the Ray Length output in the Light Path node, How to do it..., How it works...
• re-topologized mesh

◦ concluding / Concluding the re-topologized mesh, How to do it…, There's more…
• re-topology

◦ starting / How to do it…
• realistic grass

◦ creating / Creating realistic grass
◦ grass, generating with particles / Generating the grass with particles
◦ grass shader, creating / Creating the grass shader

• realistic planet
◦ URL / How it works...

• Reducing Noise
◦ URL / Introduction

• render layers
◦ compositing / Compositing the render layers, Getting ready, How to do it…, How it

works…
◦ URL / How it works…

• render passes
◦ URL / How it works…

• render settings
◦ URL / See also

• reptile skin shaders
◦ building, in Cycles / How to do it…, How it works…, There's more…
◦ building, in Blender Internal / Building the reptile skin shaders in Blender Internal,

Getting ready, How to do it…, How it works…
• retopologized mesh / The baking of textures
• retopology

◦ creating / Why make a retopology?
◦ polygons arranging, possibilities / Possibilities of arranging polygons
◦ creating, best practices / Errors to avoid during the creation of retopology
◦ polygon density / Density of polygons
◦ of alien character, creating / Making the retopology of the alien character

• retopology process / Introduction
• Return key / Modeling the antenna
• rig

◦ creating / How to do it…
◦ about / How it works…, Getting ready

• rigging process
◦ about / An introduction to the rigging process
◦ defining / Introduction
◦ URL / Generating the character's Armature by using the Rigify add-on, How it works…

• rigging stage
◦ about / Introduction

• Rigify add-on
◦ about / Introduction

• Robot toy / The Robot Toy
• robot toy

◦ modeling / Let's start the modeling of our robot toy
◦ about / Let's start the modeling of our robot toy
◦ image reference, adding for preparing workflow / Preparing the workflow by adding an

image reference
◦ naming shortcuts / Adding the head primitive
◦ image rHead primitive, adding / Adding the head primitive
◦ Edit Mode, versus Object Mode / The Edit Mode versus the Object Mode
◦ head, modeling / Modeling the head
◦ antenna, modeling / Modeling the antenna
◦ thunderbolts, modeling / Modeling the thunderbolts
◦ eyes, modeling / Modeling the eyes
◦ chest, modeling / Modeling the chest
◦ neck, modeling / Modeling the neck

◦ torso, modeling / Modeling the torso
◦ buttons, modeling / Modeling the buttons
◦ fork, modeling / Modeling the fork, Modeling protections for the fork
◦ main wheel, modeling / Modeling the main wheel
◦ arm, modeling / Modeling the arm
◦ rendering, with Blender Internal / Using Blender Internal to render our Robot Toy

• rock material
◦ creating, with image maps / Creating a rock material using image maps, How to do it...,

How it works..., There's more...
◦ creating, with procedural textures / Creating a rock material using procedural textures,

How to do it..., How it works...
• root bone

◦ about / Adding a root bone
• rubber material

◦ creating / Creating a rubber material, How to do it..., How it works...
• rusty metal material

◦ creating, with procedurals / Creating a rusty metal material with procedurals, How to do
it..., How it works...

S
• sampling, Cycles render engine

◦ Render samples setting / The sampling
◦ Preview samples setting / The sampling

• sand material
◦ creating, with procedural textures / Creating a sand material using procedural textures,

Getting ready, How to do it..., How it works..., There's more...
• scale operator

◦ using / How to do it…
• scaling

◦ about / How to do it…
• scene

◦ organization / Organizing the scene
• scene animation

◦ about / Animating the scene
◦ walk cycle / The walk cycle
◦ actions, mixing / Mixing actions
◦ close shot animation / Animation of a close shot
◦ gunshot / Animation of the gunshot
◦ gunshot animation / Animation of the gunshot
◦ trap animation / Animation of the trap

• scene organization
◦ objects, grouping / Grouping objects
◦ layers, working with / Working with layers

• scenes
◦ URL / How it works…

• scientific search engine
◦ URL / See also

• Scripts / Improving Blender with add-ons
• sculpting

◦ selecting, over poly modeling / Choosing sculpting over poly modeling
◦ pen tablet, using / Using a pen tablet
◦ sculpt mode / The sculpt mode
◦ base mesh, preparing for / Preparing the base mesh for sculpting, How to do it…, How

it works…
• sculpting process

◦ about / Understanding the sculpting process, An introduction to sculpting
• sculpt mode

◦ about / The sculpt mode
◦ viewport, optimizing / Optimizing the viewport
◦ Undo function / The head

• Secondary Action principle / Secondary Action
• shadeless material, Cycles

◦ creating / Creating a shadeless material in Cycles, Getting ready, How to do it..., How it
works...

◦ obtaining / There's more...
• shader

◦ creating, for metal plates / How to do it…
• shader node, Subsurface Scattering

◦ using / Using the Subsurface Scattering shader node, Getting ready, How to do it...,
How it works...

• shaders / Material nodes in Cycles
• shape key

◦ types / How it works…
• shape keys

◦ about / The shape keys
◦ controlling / What is a shape key?
◦ basic shapes, creating / Creating basic shapes
◦ driving / Driving a shape key
◦ creating / Creating shape keys, Getting ready, How to do it…, How it works…
◦ drivers, assigning to / Assigning drivers to the shape keys, Getting ready, How to do

it…, There's more…
• shot

◦ quick previews, rendering / Render a quick preview of a shot
• Shrinkwrap modifier

◦ used, for re-topologizing mesh / Using the Shrinkwrap modifier to re-topologize the
mesh, How to do it…

◦ tweaking / There's more…
• Shrinkwrap modifier technique

◦ setting up / Getting ready
◦ using / How it works…

• sIBL addon
◦ about / See also
◦ URL / See also
◦ references / See also

• sIBL Archive
◦ URL / How to do it…, How to do it..., Getting ready

• sIBL archive
◦ URL / See also

• simple walk cycle, character
◦ creating, by assigning keys to bones / Creating a simple walk cycle for the character by

assigning keys to the bones, Getting ready, How to do it…, There's more…, See also
• skin, Gidiosaurus

◦ defining / Introduction
• Skin modifier

◦ used, for creating base mesh / Creating a base mesh with the Skin modifier
◦ about / Introduction, Introduction
◦ base mesh, building with / Building the character's base mesh with the Skin modifier,

Getting ready, How to do it…, How it works…
◦ using / Building the character's base mesh with the Skin modifier, Getting ready, How

to do it…, How it works…
• skinning

◦ about / Skinning
◦ Weight Paint tools / The Weight Paint tools
◦ weight, manually assigning to vertices / Manually assigning weight to vertices
◦ foot deformation, correcting / Correcting the foot deformation
◦ belt deformation, correcting / Correcting the belt deformation
◦ performing / Introduction

• skinning to shapes
◦ URL / There's more…

• skin node group
◦ creating / How to do it…, How it works…

• Slow In effect / Slow In and Slow Out
• Slow Out effect / Slow In and Slow Out
• Smart UV Project tool

◦ using / Using the Smart UV Project tool, Getting ready, How to do it…
• Smear brush / The Smear brush
• Smooth brush / The head
• Snake Hook brush / The head
• Snap tool

◦ used, for re-topologizing mesh / Using the Snap tool to re-topologize the mesh, How to
do it…, How it works…

• snow material
◦ creating, with procedural textures / Creating a snow material using procedural textures,

Getting ready, How to do it..., How it works...
◦ first stage / How it works...
◦ second stage / How it works...

• snowy mountain landscape
◦ creating, with procedurals / Creating a snowy mountain landscape with procedurals,

Getting ready, How to do it...
◦ rock, appending / Appending and grouping the rock and the snow shader
◦ snow shader, grouping / Appending and grouping the rock and the snow shader

◦ snow shader, appending / Appending and grouping the rock and the snow shader
◦ rock, grouping / Appending and grouping the rock and the snow shader
◦ material groups, mixing / Mixing the material groups
◦ stencil shader, creating / Creating the stencil shader
◦ atmospheric perspective, adding / Adding the atmospheric perspective
◦ working / How it works...

• Soften brush / The Soften brush
• solid drawing principle / Solid drawing
• spaceship hull shader

◦ creating / Creating a spaceship hull shader, Getting ready, How to do it..., How it
works..., There's more...

• space view, from realistic Earth
◦ creating / Creating a realistic Earth as seen from space, Getting ready
◦ reference links / Getting ready
◦ planet surface / The planet surface
◦ clouds / The clouds
◦ atmosphere layer / The atmosphere
◦ Surface material / How it works...

• Squash and Stretch principle / Squash and Stretch
• stack simulation of wooden planks

◦ adding / Simulate a stack of wooden planks with physics
◦ creating / Creation of the simulation of a stack of planks

• staging principle / Staging
• Stanford bunny

◦ URL / Getting ready
• stencil material

◦ creating, for foam location / Creating the stencil material for the foam location
• stencil shader

◦ creating / Creating the stencil shader
• Straight Ahead Action principle / Straight Ahead Action and Pose to Pose
• Stroke option

◦ about / The Stroke option
◦ space method / The Stroke option
◦ curve method / The Stroke option
◦ line method / The Stroke option
◦ anchored method / The Stroke option
◦ airbrush method / The Stroke option
◦ Drag Dots method / The Stroke option
◦ dots method / The Stroke option

• Subdivision Surface modifier
◦ about / An introduction to the Subdivision Surface modifier, How to do it…
◦ head shape, improving / Improving the head shape
◦ work, saving / Improving the head shape

/ How to do it…
• Subsurface Scattering

◦ about / Introduction
◦ shader node, using / Using the Subsurface Scattering shader node

◦ URL / Simulating Subsurface Scattering in Cycles using the Translucent shader
◦ simulating, by Translucent shader / Simulating Subsurface Scattering in Cycles using

the Translucent shader, Getting ready, How to do it..., How it works...
◦ simulating by Vertex Color tool / Simulating Subsurface Scattering in Cycles using the

Vertex Color tool, Getting ready, How to do it...
◦ simulating, with Ray Length output of Light Path node / Simulating Subsurface

Scattering in Cycles using the Ray Length output in the Light Path node, Getting ready,
How to do it..., How it works...

• supported graphic cards, Cycles
◦ URL / Introduction

• synthetic sponge material
◦ creating, with procedurals / Creating a synthetic sponge material with procedurals,

Getting ready, How to do it..., How it works...

T
• templates

◦ setting, with Images as Planes add-on / Setting templates with the Images as Planes
add-on, Getting ready, How to do it…, How it works…

◦ setting, with Image Empties method / Setting templates with the Image Empties
method, How to do it…, How it works…

◦ setting, with Background Images tool / Setting templates with the Background Images
tool, How to do it…

• TexDraw brush / The TexDraw brush
• texture node

◦ viewing, through Viewer / Introduction to nodal compositing
• Texture Paint, Blender

◦ references / There's more…
• Texture Paint tool

◦ about / Basics of the Texture Paint tool
◦ brushes, discovering / Discovering the brushes
◦ Stroke option / The Stroke option
◦ zones of painting, delimiting / Delimiting the zones of painting according to the

geometry
◦ direct painting / Painting directly on the texture

• textures
◦ backing, in Cycles render engine / Baking textures in Cycles
◦ tree, backing / Baking the tree
◦ creating, for Gidiosaurus character / Introduction
◦ naming / Naming materials and textures, How to do it..., There's more...

• textures, Blender Render Engine
◦ URL / Building the eyes' shaders in Blender Internal

• textures, UV’s
◦ baking / The baking of textures
◦ normal map, baking / The baking of a normal map
◦ normal map / What is a normal map?
◦ size, selecting / Making of the bake

• three-point lighting rig

◦ setting, in Blender Internal / Setting a three-point lighting rig in Blender Internal,
Getting ready, How to do it…, How it works…

◦ URL / How it works…
• tileable scales image

◦ creating, in Blender Internal / Making a tileable scales image in Blender Internal,
Getting ready, How to do it…

• tileable scales texture
◦ baking, into UV tiles / Baking the tileable scales texture into the UV tiles, Getting

ready, How to do it…, There's more…
• tiled textures

◦ about / Tiled textures
◦ workspace setting / The settings of our workspace
◦ considerations / Advice for a good tiled texture
◦ baking / Baking our tiled textures
◦ baking, need for / Why bake?
◦ baking, steps / How to do it?

• timeline editor / The timeline
• timing principle / Timing
• tools, re-topology

◦ Gstretch / How to do it…
◦ Loft / How to do it…
◦ Bridge / How to do it…

• Tool Shelf
◦ about / How to do it…

/ How to do it…
• tracking shot / Writing a short script
• Transformation manipulators

◦ about / How to do it…, How to do it…
• Transform locks

◦ defining / How to do it…
• Translucent shader

◦ used, for simulating Subsurface Scattering / Simulating Subsurface Scattering in Cycles
using the Translucent shader, Getting ready, How to do it..., How it works...

• transparent textures
◦ creating / Creating transparent textures

• transparent textures, creating
◦ grass texture / The grass texture
◦ color wheel window / The grass texture
◦ grunge texture / The grunge texture

• trees shaders, barks
◦ creating / Creating tree shaders – the bark, How to do it..., There's more...

• trees shaders, leaves
◦ creating / Creating tree shaders – the leaves, Getting ready, How to do it..., There's

more...

U
• U-Dimension / There's more…

◦ about / Preparing the model to use the UDIM UV tiles
• Ubuntu

◦ about / There's more…
• UDIM UV Mapping / There's more…

◦ about / Preparing the model to use the UDIM UV tiles
• UDIM UV Mapping standard / There's more…
• UDIM UV tiles

◦ used, for preparing model / Preparing the model to use the UDIM UV tiles, How to do
it…, How it works…

• underwater environment materials
◦ creating / Creating underwater environment materials, Getting ready, How to do it...,

How it works...
• UV islands

◦ editing / Editing the UV islands, How to do it…
◦ modifying / Modifying the mesh and the UV islands, Getting ready, How to do it…

• UV Map layout
◦ exporting / Exporting the UV Map layout, How to do it…

• UV Mapping / Introduction
• UVs

◦ unwrapping / Unwrapping UVs
◦ tiling / Tiling UVs
◦ tiling, goal / What is tiling for?
◦ layers / The UV layers
◦ layers options / The UV layers

• UV Sphere placeholders
◦ about / Modeling the eye

• UV Spheres
◦ about / Building the eyes' shaders in Cycles

• UV tiles
◦ tileable scales texture, baking into / Baking the tileable scales texture into the UV tiles,

Getting ready, How to do it…, There's more…
• UV unwrapping process / Understanding UVs

◦ about / Unwrapping UVs
◦ Project From View, using / Using Project From View
◦ remaining house components / Unwrapping the rest of the house
◦ tree, using with Smart UV project / The tree with the Smart UV Project
◦ environment objects, unwrapping / Unwrapping the rest of the environment

• UV’s
◦ unwrapping / Unwrapping UVs
◦ about / Understanding UVs
◦ seam placement / The placement of the seams
◦ island placement / The placement and adjustment of the islands
◦ island adjustment / The placement and adjustment of the islands
◦ textures, baking / The baking of textures

V
• Vertex Colors layer

◦ adding / Adding a dirty Vertex Colors layer and baking it to an image texture, How to
do it…

◦ baking, to image texture / Adding a dirty Vertex Colors layer and baking it to an image
texture, How to do it…

◦ references / How it works…
• Vertex Color tool

◦ used, for simulating Subsurface Scattering / Simulating Subsurface Scattering in Cycles
using the Vertex Color tool, Getting ready, How to do it...

• Vertex Connect Path tool / Modeling the arm
• vertex group

◦ creating / How to do it…
• Vertex Groups

◦ URL / How it works…
• volume materials

◦ using / Using volume materials, How to do it..., How it works..., There's more...
◦ URL / There's more...

• volume materials, Cycles
◦ using / Using Cycles volume materials, How to do it..., How it works..., There's more...

• VSE
◦ used, for editing sequence / Editing the sequence with the VSE
◦ about / Introduction to the Video Sequence Editor
◦ final sequence, editing / Edit and render the final sequence
◦ final sequence, rendering / Edit and render the final sequence

W
• walk cycle tutorial

◦ URL / See also
• wasp-like chitin material

◦ creating, with procedural textures / Creating a wasp-like chitin material with procedural
textures, How to do it..., How it works...

• water surface
◦ creating / Creating the water surface and the bottom shaders

• Weight Groups
◦ assigning, by hand / Assigning Weight Groups by hand, Getting ready, How to do it…,

How it works…
◦ editing, Weight Paint tool used / Editing Weight Groups using the Weight Paint tool,

How to do it…
• Weight Painting stage / An introduction to the rigging process
• Weight Paint mode / How to do it…
• Weight Paint tool

◦ used, for editing Weight Groups / Editing Weight Groups using the Weight Paint tool,
How to do it…

◦ URL / How to do it…
• Weight Paint tools

◦ about / The Weight Paint tools
◦ URL / The Weight Paint tools
◦ skinning, editing / Correcting the foot deformation

• wood material
◦ creating, with procedurals / Creating a wood material with procedurals, Getting ready...,

How to do it...
• World, in Blender

◦ references / See also
• World material

◦ setting / Setting the World material, Getting ready, How to do it..., How it works...

	Blender 3D: Designing Objects
	Table of Contents
	Blender 3D: Designing Objects
	Blender 3D: Designing Objects
	Blender 3D: Designing Objects
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Part 1. Module 1
	Chapter 1. Straight into Blender!
	An overview of the 3D workflow
	The anatomy of a 3D scene
	What can you do with Blender?

	Getting used to the navigation in Blender
	An introduction to the navigation of the 3D Viewport
	What are editors?
	The anatomy of an editor
	Split, Join, and Detach
	Some useful layout presets

	Setting up your preferences
	An introduction to the Preferences window
	Customizing the default navigation style
	Improving Blender with add-ons
	Note
	Note

	A brief introduction to the projects
	The Robot Toy
	The Alien Character
	The Haunted House
	The Rat Cowboy

	Summary
	Chapter 2. Robot Toy – Modeling of an Object
	Let's start the modeling of our robot toy
	Preparing the workflow by adding an image reference
	Adding the head primitive
	Note

	The Edit Mode versus the Object Mode
	Note

	Using the basic modeling tools
	Modeling the head
	Note
	Note

	Modeling the antenna
	Note

	An introduction to the Subdivision Surface modifier
	Note
	Note
	Note
	Improving the head shape
	Note

	Modeling the thunderbolts
	Note
	Note

	Modeling the eyes
	Modeling the chest
	Note

	Modeling the neck
	Modeling the torso
	Modeling the buttons
	Note

	Modeling the fork
	Note
	Modeling protections for the fork

	Modeling the main wheel
	Modeling the arm
	Using Blender Internal to render our Robot Toy

	Summary
	Chapter 3. Alien Character – Base Mesh Creation and Sculpting
	Understanding the sculpting process
	An introduction to sculpting
	Choosing sculpting over poly modeling
	Using a pen tablet
	The sculpt mode
	Optimizing the viewport

	Anatomy of a brush
	Dyntopo versus the Multires modifier
	First touch with the Multires modifier
	First touch with Dyntopo

	Creating a base mesh with the Skin modifier
	Visual preparation

	An introduction to artistic anatomy
	Note
	Sculpting the body
	The head
	Note
	Note
	Note
	Note
	Note
	Note
	Note
	The torso
	Note
	The arms
	The legs
	Note
	Note
	The belt

	Summary
	Chapter 4. Alien Character – Creating a Proper Topology and Transferring the Sculpt Details
	Why make a retopology?
	Possibilities of arranging polygons
	Errors to avoid during the creation of retopology
	Density of polygons

	Making the retopology of the alien character
	Preparing the environment
	The head
	Note
	Note
	Note
	The neck and the torso
	The arms and the hands
	The legs

	Unwrapping UVs
	Understanding UVs
	The placement of the seams
	The placement and adjustment of the islands
	The baking of textures
	The baking of a normal map
	What is a normal map?
	Making of the bake

	Note
	Displaying the normal map in the viewport

	The baking of an ambient occlusion
	Understanding the ambient occlusion map
	Note
	Creation of the bake

	Displaying the ambient occlusion in the viewport

	Summary
	Chapter 5. Haunted House – Modeling of the Scene
	Blocking the house
	Working with a scale

	Blocking the bases of the house
	Refining the blocking
	Adding instantiated objects
	Note
	Note

	Reworking the blocking objects
	Breaking and ageing the elements
	Simulate a stack of wooden planks with physics
	Note

	Creation of the simulation of a stack of planks
	Modeling the environment (8 pages)
	Modeling the cliff
	Note

	Modeling a tree with curves
	Note
	Note

	Enhancing the scene with a barrier, rocks, and a cart

	Organizing the scene
	Grouping objects
	Note

	Working with layers

	Summary
	Chapter 6. Haunted House – Putting Colors on It
	Unwrapping UVs
	Using Project From View
	Unwrapping the rest of the house
	The tree with the Smart UV Project
	Unwrapping the rest of the environment
	Tiling UVs
	What is tiling for?
	The UV layers
	Note

	Adding colors
	Basics of the Texture Paint tool
	Discovering the brushes
	The TexDraw brush
	The Smear brush
	The Soften brush
	The Clone brush
	The Fill brush
	The Mask brush

	The Stroke option
	Delimiting the zones of painting according to the geometry
	Painting directly on the texture

	Painting the scene
	Laying down the colors

	Tiled textures
	The settings of our workspace
	Advice for a good tiled texture

	Painting the roof-tile texture
	Quick tips for other kinds of hand-painted tiled textures
	Baking our tiled textures
	Why bake?
	How to do it?

	Creating transparent textures
	The grass texture
	Note
	The grunge texture

	Doing a quick render with Blender Internal
	Setting lights
	Placing the camera
	Setting the environment (sky and mist)

	Summary
	Chapter 7. Haunted House – Adding Materials and Lights in Cycles
	Understanding the basic settings of Cycles
	The sampling
	Note

	Light path settings
	Performances
	Note

	Lighting
	Creating a testing material
	Understanding the different types of light
	Lighting our scene
	Painting and using an Image Base Lighting

	Creating materials with nodes
	Creating the materials of the house, the rocks, and the tree
	Note
	Note

	Adding a mask for the windows
	Using procedural textures
	Making and applying normal maps in Cycles

	Creating realistic grass
	Generating the grass with particles
	Creating the grass shader

	Baking textures in Cycles
	Cycles versus Blender Internal
	Note

	Baking the tree

	Compositing a mist pass
	Summary
	Chapter 8. Rat Cowboy – Learning To Rig a Character for Animation
	An introduction to the rigging process
	Note

	Rigging the Rat Cowboy
	Placing the deforming bones
	Note
	Note

	The leg and the foot
	Note

	The arm and the hand
	Note

	The hips
	The tail
	The head and the eyes
	Note

	Mirroring the rig
	Rigging the gun
	Note

	Rigging the holster
	Adding a root bone

	Skinning
	The Weight Paint tools
	Note

	Manually assigning weight to vertices
	Correcting the foot deformation
	Note

	Correcting the belt deformation

	Custom shapes
	The shape keys
	What is a shape key?
	Creating basic shapes
	Driving a shape key

	Summary
	Chapter 9. Rat Cowboy – Animate a Full Sequence
	Principles of animation
	Squash and Stretch
	Anticipation
	Staging
	Straight Ahead Action and Pose to Pose
	Follow Through and Overlapping Action
	Slow In and Slow Out
	Arcs
	Secondary Action
	Timing
	Note

	Exaggeration
	Solid drawing
	Appeal

	Animation tools in Blender
	The timeline
	What is a keyframe?
	Note

	The Dope Sheet
	The Graph editor
	Note

	The Non-Linear Action editor

	Preparation of the animation
	Writing a short script
	Making a storyboard
	Finding the final camera placements and the timing through a layout
	Animation references
	Organization
	Note
	Note

	Animating the scene
	The walk cycle
	Mixing actions
	Animation of a close shot
	Animation of the gunshot
	Animation of the trap

	Render a quick preview of a shot
	Summary
	Chapter 10. Rat Cowboy – Rendering, Compositing, and Editing
	Creating advanced materials in Cycles
	Skin material with Subsurface Scattering
	Eye material
	The fur of the rat

	The Raw rendering phase
	Note
	Note

	Enhance a picture with compositing
	Introduction to nodal compositing
	Note

	Depth Pass
	Note

	Adding effects
	Compositing rendering phase

	Editing the sequence with the VSE
	Introduction to the Video Sequence Editor
	Edit and render the final sequence

	Summary
	Part 2. Module 2
	Chapter 1. Modeling the Character's Base Mesh
	Introduction
	Setting templates with the Images as Planes add-on
	Getting ready
	How to do it…
	How it works…

	Setting templates with the Image Empties method
	Getting ready
	How to do it…
	How it works…

	Setting templates with the Background Images tool
	Getting ready
	How to do it…

	Building the character's base mesh with the Skin modifier
	Getting ready
	How to do it…
	How it works…

	Chapter 2. Sculpting the Character's Base Mesh
	Introduction
	Using the Skin modifier's Armature option
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Editing the mesh
	Getting ready
	How to do it…
	How it works…

	Preparing the base mesh for sculpting
	Getting ready
	How to do it…
	How it works…

	Using the Multiresolution modifier and the Dynamic topology feature
	Getting ready
	How to do it…
	How it works…

	Sculpting the character's base mesh
	Getting ready
	How to do it…
	There's more…

	Chapter 3. Polygonal Modeling of the Character's Accessories
	Introduction
	Preparing the scene for polygonal modeling
	Getting ready
	How to do it…
	How it works…

	Modeling the eye
	Getting ready
	How to do it…
	How it works…

	Modeling the armor plates
	Getting ready
	How to do it…
	How it works…
	See also

	Using the Mesh to Curve technique to add details
	How to do it…
	How it works…

	Chapter 4. Re-topology of the High Resolution Sculpted Character's Mesh
	Introduction
	Using the Grease Pencil tool to plan the edge-loops flow
	Getting ready
	How to do it…
	There's more…
	See also

	Using the Snap tool to re-topologize the mesh
	Getting ready
	How to do it…
	How it works…

	Using the Shrinkwrap modifier to re-topologize the mesh
	Getting ready
	How to do it…

	Using the LoopTools add-on to re-topologize the mesh
	Getting ready
	How to do it…

	Concluding the re-topologized mesh
	Getting ready
	How to do it…
	There's more…
	How it works…

	Chapter 5. Unwrapping the Low Resolution Mesh
	Introduction
	Preparing the low resolution mesh for unwrapping
	Getting ready
	How to do it…

	UV unwrapping the mesh
	Getting ready
	How to do it…

	Editing the UV islands
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using the Smart UV Project tool
	Getting ready
	How to do it…

	Modifying the mesh and the UV islands
	Getting ready
	How to do it…

	Setting up additional UV layers
	Getting ready
	How to do it…

	Exporting the UV Map layout
	Getting ready
	How to do it…

	Chapter 6. Rigging the Low Resolution Mesh
	Introduction
	Building the character's Armature from scratch
	Getting ready
	How to do it…
	Building the rig for the secondary parts
	Completing the rig

	How it works…

	Perfecting the Armature to also function as a rig for the Armor
	Getting ready
	How to do it…
	How it works…

	Building the character's Armature through the Human Meta-Rig
	Getting ready
	How to do it…
	How it works…

	Building the animation controls and the Inverse Kinematic
	Note
	Getting ready
	How to do it…
	See also

	Generating the character's Armature by using the Rigify add-on
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 7. Skinning the Low Resolution Mesh
	Introduction
	Parenting the Armature and Mesh using the Automatic Weights tool
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Assigning Weight Groups by hand
	Getting ready
	How to do it…
	How it works…
	See also

	Editing Weight Groups using the Weight Paint tool
	Getting ready
	How to do it…
	See also

	Using the Mesh Deform modifier to skin the character
	Getting ready
	How to do it…
	How it works…
	See also

	Using the Laplacian Deform modifier and Hooks
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 8. Finalizing the Model
	Introduction
	Creating shape keys
	Getting ready
	How to do it…
	Note

	How it works…

	Assigning drivers to the shape keys
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting movement limit constraints
	Getting ready
	How to do it…
	See also

	Transferring the eyeball rotation to the eyelids
	Getting ready
	How to do it…

	Detailing the Armor by using the Curve from Mesh tool
	Getting ready
	How to do it…
	There's more…
	See also

	Chapter 9. Animating the Character
	Introduction
	Linking the character and making a proxy
	Getting ready
	How to do it…
	See also

	Creating a simple walk cycle for the character by assigning keys to the bones
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Tweaking the actions in Graph Editor
	Getting ready
	How to do it…
	See also

	Using the Non Linear Action Editor to mix different actions
	Getting ready
	How to do it…
	See also

	Chapter 10. Creating the Textures
	Introduction
	Making a tileable scales image in Blender Internal
	Getting ready
	Tip

	How to do it…
	How it works…

	Preparing the model to use the UDIM UV tiles
	Getting ready
	How to do it…
	How it works…

	Baking the tileable scales texture into the UV tiles
	Getting ready
	How to do it…
	How it works…
	There's more…

	Painting to fix the seams and to modify the baked scales image maps
	Getting ready
	How to do it…
	Note

	How it works…
	There's more…
	See also

	Painting the color maps in Blender Internal
	Getting ready
	How to do it…
	How it works…
	See also

	Painting the color maps in Cycles
	Getting ready
	How to do it…

	Chapter 11. Refining the Textures
	Introduction
	Sculpting more details on the high resolution mesh
	Getting ready
	How to do it…

	Baking the normals of the sculpted mesh on the low resolution one
	Getting ready
	How to do it…
	How it works…
	There's more…

	The Armor textures
	Getting ready
	How to do it…
	There's more…
	Note

	See also

	Adding a dirty Vertex Colors layer and baking it to an image texture
	Getting ready
	How to do it…
	How it works…
	See also

	The Quick Edit tool
	Getting ready
	How to do it…
	How it works…

	Chapter 12. Creating the Materials in Cycles
	Introduction
	Building the reptile skin shaders in Cycles
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Making a node group of the skin shader to reuse it
	Getting ready
	How to do it…
	How it works…

	Building the eyes' shaders in Cycles
	Getting ready
	How to do it…
	How it works…
	Note

	Building the armor shaders in Cycles
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 13. Creating the Materials in Blender Internal
	Introduction
	Building the reptile skin shaders in Blender Internal
	Getting ready
	Note

	How to do it…
	Note
	Note

	How it works…
	Note

	There's more…
	See also

	Building the eyes' shaders in Blender Internal
	Getting ready
	How to do it…
	How it works…

	Building the armor shaders in Blender Internal
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 14. Lighting, Rendering, and a Little Bit of Compositing
	Introduction
	Setting the library and the 3D scene layout
	Getting ready
	Tip

	How to do it…
	How it works…
	See also

	Setting image based lighting (IBL)
	Getting ready
	How to do it…
	Image based lighting in Cycles
	Image based lighting in Blender Internal

	How it works…
	See also

	Setting a three-point lighting rig in Blender Internal
	Getting ready
	How to do it…
	How it works…
	See also

	Rendering an OpenGL playblast of the animation
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Obtaining a noise-free and faster rendering in Cycles
	Getting ready
	How to do it…
	See also

	Compositing the render layers
	Getting ready
	How to do it…
	How it works…
	See also

	Part 3. Module 3
	Chapter 1. Overview of Materials in Cycles
	Introduction
	Material nodes in Cycles
	Getting ready
	Tip

	How to do it...
	How it works...
	There's more...
	See also

	Procedural textures in Cycles
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting the World material
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a mesh-light material
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using volume materials
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using displacement
	Getting ready
	Note

	How to do it...
	How it works...

	Chapter 2. Managing Cycles Materials
	Introduction
	Preparing an ideal Cycles interface for material creation
	Getting ready
	How to do it...
	How it works...
	There's more...

	Naming materials and textures
	Getting ready
	How to do it...
	There's more...

	Creating node groups
	Getting ready
	How to do it...
	How it works...

	Grouping nodes under frames for easier reading
	Getting ready
	How to do it...

	Linking materials and node groups
	How to do it...
	There's more...

	Chapter 3. Creating Natural Materials in Cycles
	Introduction
	Creating a rock material using image maps
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a rock material using procedural textures
	Getting ready
	How to do it...
	How it works...

	Creating a sand material using procedural textures
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a simple ground material using procedural textures
	Getting ready
	How to do it...
	How it works...

	Creating a snow material using procedural textures
	Getting ready
	How to do it...
	How it works...

	Creating an ice material using procedural textures
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4. Creating Man-made Materials in Cycles
	Introduction
	Creating a generic plastic material
	Getting ready...
	Note

	How to do it...
	How it works...

	Creating a Bakelite material
	Getting ready...
	How to do it...
	How it works...
	There's more...

	Creating an expanded polystyrene material
	Getting ready...
	How to do it...
	How it works...

	Creating a clear (glassy) polystyrene material
	Getting ready...
	How to do it...

	Creating a rubber material
	Getting ready...
	How to do it...
	How it works...

	Creating an antique bronze material with procedurals
	Getting ready...
	How to do it...
	How it works...

	Creating a multipurpose metal node group
	Getting ready...
	How to do it...
	How it works...
	Note

	Creating a rusty metal material with procedurals
	Getting ready...
	How to do it...
	How it works...
	There's more...

	Creating a wood material with procedurals
	Getting ready...
	How to do it...
	How it works...

	Chapter 5. Creating Complex Natural Materials in Cycles
	Introduction
	Creating an ocean material using procedural textures
	Getting ready
	How to do it...
	Creating the water surface and the bottom shaders
	Creating the foam shader
	Creating the stencil material for the foam location
	Putting everything together

	How it works...
	See also

	Creating underwater environment materials
	Note
	Getting ready
	How to do it...
	How it works...
	Note

	Creating a snowy mountain landscape with procedurals
	Getting ready
	How to do it...
	Appending and grouping the rock and the snow shader
	Mixing the material groups
	Creating the stencil shader
	Adding the atmospheric perspective

	How it works...

	Creating a realistic Earth as seen from space
	Getting ready
	How to do it...
	The planet surface
	The clouds
	The atmosphere

	How it works...

	Chapter 6. Creating More Complex Man-made Materials
	Introduction
	Creating cloth materials with procedurals
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tip

	See also

	Creating a leather material with procedurals
	How to do it...
	How it works...
	Note

	Creating a synthetic sponge material with procedurals
	Getting ready
	How to do it...
	How it works...

	Creating a spaceship hull shader
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tip

	See also

	Chapter 7. Subsurface Scattering in Cycles
	Introduction
	Using the Subsurface Scattering shader node
	Getting ready
	How to do it...
	How it works...
	See also

	Simulating Subsurface Scattering in Cycles using the Translucent shader
	Getting ready
	How to do it...
	How it works...
	Note

	Simulating Subsurface Scattering in Cycles using the Vertex Color tool
	Getting ready
	How to do it...
	How it works...

	Simulating Subsurface Scattering in Cycles using the Ray Length output in the Light Path node
	Getting ready
	How to do it...
	How it works...
	Note

	Creating a fake Subsurface Scattering node group
	Getting ready
	How to do it...
	How it works...

	Chapter 8. Creating Organic Materials
	Introduction
	Creating an organic-looking shader with procedurals
	Getting ready
	How to do it...
	How it works...

	Creating a wasp-like chitin material with procedural textures
	Getting ready
	How to do it...
	How it works...

	Creating a beetle-like chitin material with procedural textures
	Getting ready
	How to do it...
	How it works...

	Creating tree shaders – the bark
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating tree shaders – the leaves
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a layered human skin material in Cycles
	Getting ready
	How to do it...
	How it works...

	Creating fur and hair
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a gray alien skin material with procedurals
	Getting ready
	How to do it...
	How it works...

	Chapter 9. Special Materials
	Introduction
	Using Cycles volume materials
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a cloud volumetric material
	Getting ready
	How to do it...
	How it works...

	Creating a fire and smoke shader
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a shadeless material in Cycles
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a fake immersion effect material
	Getting ready
	How to do it...
	How it works...

	Creating a fake volume light material
	Getting ready
	How to do it...
	How it works...
	See also

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

