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“… a long overdue publication; the condition monitoring community, from 
newcomers to experts, will find themselves constantly referring to this book, 
especially to find definitive answers to often debated issues.” 
— Chris Pomfret, Society for Machinery Failure Prevention Technology, Dayton, Ohio, 

USA

“… a good reference book for students, educators, and maintenance engineers who 
would like to use artificial intelligence (AI) techniques for data fusion and decision 
making in condition monitoring and diagnosis.” 
—Zhongxiao Peng, University of New South Wales, Sydney, Australia

“… a detailed and descriptive analysis of the latest thinking on data collection and 
analyses for maintenance task development. … an important addition to the library 
of existing knowledge to support asset managers, academics, and engineering 
students who want to understand the methods and techniques to diagnose the state 
of an asset and develop a new approach to asset management.” 
—David Baglee, University of Sunderland, UK

“… very comprehensive and informative in its coverage of condition monitoring and 
condition-based maintenance for machinery. I’m not aware of any other book on the 
market that has the breadth of coverage of this book.” 
—Peter Sandborn, University of Maryland, College Park, USA

Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring 
and Diagnosis discusses various white- and black-box approaches to fault 
diagnosis in condition monitoring (CM). This indispensable resource

       •    Addresses nearest-neighbor-based, clustering-based, statistical, and 
information theory-based techniques

       •    Considers the merits of each technique as well as the issues associated with 
real-life application

       •    Covers classification methods, from neural networks to Bayesian and support 
vector machines

       •    Proposes fuzzy logic to explain the uncertainties associated with diagnostic 
processes 

       •    Provides data sets, sample signals, and MATLAB® code for algorithm testing

Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring 
and Diagnosis delivers a thorough evaluation of the latest AI tools for CM, describing 
the most common fault diagnosis techniques used and the data acquired when these 
techniques are applied.
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Preface

A serious concern in the industry is the extension of the useful life of critical 
systems by identifying ongoing problems to mitigate potential risks. If main-
tenance is included in risk mitigation, the useful life of these systems can be 
extended, their life-cycle costs reduced, and their availability and reliability 
improved.

In the past, repairs were performed only after a failure was noticed, but 
today, maintenance is done depending on estimations of a machine’s con-
dition. Thus, maintenance technology has shifted from “at-failure” mainte-
nance to “condition-based” maintenance. A combination of diagnosis and 
prognosis technology is used to model the asset degradation process and 
predict its remaining life with the help of machine condition data. Condition-
based maintenance (CBM) facilitates the effective life-cycle management 
system using results from the diagnostics and prognostics data. A well-mod-
eled condition-monitoring (CM) technology guides maintenance personnel 
to perform the necessary support actions at the appropriate time, with lower 
maintenance and life-cycle costs, reduced system downtime, and minimal 
risk of unexpected catastrophic failures. Even though sensor and computer 
technology for obtaining CM data has made considerable progress, prognos-
tics and health management (PHM) technology is relatively recent and still 
quite difficult to implement.

Two words have driven my life: diagnosis and prognosis. This book is 
the result of my reflection on and compilation of techniques used in many 
applications, especially in CM. There are various definitions of diagnosis 
and prognosis, but all definitions recognize diagnosis and prognosis as the 
most critical part of the CBM program. They are a key component of today’s 
maintenance strategies, as it is now generally accepted that identification of 
current failures and the estimation of the remaining useful life (RUL) are 
essential. The process is simple. First, we must diagnose the state of the item, 
component, or system failure; hence, the purpose of this book. After deter-
mining the state of the item, prognosis comes into the picture to predict the 
RUL or remaining “system’s lifetime” before a functional failure occurs, 
given the current machine condition and past operating profile.

Many methods have been used to monitor the condition of machinery. 
Most of these methodologies are model based and data driven. Each has 
its own strengths and weaknesses; consequently, they are often used in 
combination. Approaches range in fidelity from simple historical failure 
rate models to high-fidelity physics-based models. Depending on the type 
of approach, the required information includes the engineering model and 
data, failure history, past operating conditions, current conditions, and so on.
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Model-based diagnosis usually detects, isolates, and identifies faults. The 
damage state of a system is estimated and its future degradation rate is 
predicted, thus determining the RUL of the system. This requires a deep 
knowledge of system functioning, often using an a priori approach. Model-
based methods work well for components or simple subsystems that may 
be described in terms of behavior; in such cases, the derived equations can 
show degradation. However, if the item to be diagnosed is a complex system 
with many subsystems and components, the model must be very complex, 
making the mission impossible. Complexity and knowledge of the whole 
system are tremendous barriers to diagnose aircraft, vehicles, production 
machines, and other assets with many elements.

Therefore, model-based diagnosis is commonly used for diagnosis and 
prognosis even though it seems natural. The model-based approach is often 
called a “white box approach” since it requires in-depth knowledge of an 
asset’s behavior and degradation mechanisms.

Unfortunately, knowledge may be unavailable or computations may be too 
complex to derive accurate models. In this case, diagnosis and prognosis are 
based on observations, the so-called “black-box approach.”

This book discusses the merits of these techniques and the challenges asso-
ciated with their applications in real life. On the one hand, methods based on 
a data-driven approach cannot identify situations that have not previously 
occurred. On the other, with adequate data, they can detect anomalies or 
abnormal behavior in assets that usually indicate an incipient failure.

Data-driven methods are based on simplicity. Usually, all data available 
for a particular machine are collected; features are extracted from the data 
and investigated to determine if they are normal (healthy condition) or are 
symptoms of failure. If the latter is true, the failure must be classified and 
categorized to identify the fault and determine its severity.

Data-driven algorithms obviously rely on large amounts of good-quality 
data. Chapter 1 introduces the topic of maintenance data and notes today’s 
pursuit of the “holy grail” of self-diagnostics. Many balanced scorecards 
and key performance indicator solutions are available in the market, and 
all of them make similar claims—their product will make a manufactur-
ing process run better, faster, more efficiently, and with greater returns. Yet, 
their efficacy is questionable as the necessary information is often scattered 
across disconnected silos of data in each department of an industry, and it 
is difficult to integrate these silos. For example, control system data are real-
time data measured in terms of seconds, whereas maintenance cycle data 
are generally measured in terms of calendar-based maintenance (e.g., days, 
weeks, months, quarters, semiannual, and annual), and financial cycle data 
are measured by fiscal periods.

In summary, maintenance data sources are disparate but they offer rich 
information for diagnosis purposes if they can be correlated. However, the 
large size of the data and the complexity of contextual engines for correlating 
information create barriers.
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Maintenance information is mostly the fusion of management information 
stored in CMMS/EAM (computerized maintenance management system/
engineering asset management) software and CM records. These records 
comprise the readings of the sensors. A CM program can track a variety 
of measurements, including vibration, oil condition, temperature, operating 
and static motor characteristics, pump flow, and pressure output. These mea-
surements are taken by monitoring tools such as ferrographic wear particle 
analysis, proximity probes, triaxial vibration sensors, accelerometers, lasers, 
and multichannel spectrum analyzers.

Chapter 2 describes the most common techniques used and the data 
acquired when these techniques are applied, paying special attention to the 
granularity of such data and the decision process associated with them to 
perform diagnosis. The chapter also describes information collected by auto-
mation systems via a PLC (programmable logic controller) that allows the 
maintainer to contextualize fault detection and identification.

Fault detection is discussed in Chapter 3. After collecting the data with 
different properties from disparate data sources, the maintainer must deter-
mine whether anything strange is happening. A failure will be revealed by 
the abnormal behavior of an asset, but this is only useful if the maintainer 
can detect the anomaly. This does not mean all anomalies mean failures but 
all failures are represented by some form of anomalies. The real challenge is 
that many failures occur infrequently; thus, while detection is difficult, iden-
tification is even more problematic. Events that seldom occur are explained 
by the metaphor of the black swan. In both nature and maintenance, a black 
swan is a highly improbable event with three principal characteristics: it is 
unpredictable; it has a massive impact; and finally, after the fact, we concoct 
an explanation that makes it appear less random and more predictable.

Fortunately, not all events for failure detection are rare and databases of 
past behaviors can be used to detect patterns even in the very early stages of 
fault progression. Chapter 4 describes three types of detection depending on 
the available data: supervised, semisupervised, and unsupervised. The user 
may have data of all possible failures and behaviors; so, supervised learning 
is an option. Or, maybe just healthy data are available due to the age of the 
asset, making semisupervised learning the only affordable option. In the 
worst-case scenario, in unsupervised learning, the asset is already running 
and we know nothing about its condition. During fault detection, failures 
must be classified according to certain characteristics; for example, failure 
may be an individual anomaly or associated with certain boundary condi-
tions or contexts. Chapter 4 classifies failures as individual, collective, and 
contextual.

Once failure is detected, it must be classified. This is possible if the user 
has a closed catalog of failures or combinations of them where data can be 
projected and classified. Chapter 5 describes techniques of classification that 
have been successfully applied to many domains including CM. Some are 
old techniques (neural networks) and others are more recently used with 
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excellent results in the CM field (Bayesian or support vector machines); all 
are very popular but have different pros and cons, depending on the case.

Classification is based on the concept of distance; instances are classified 
according to “failure distance.” Chapter 6 discusses distance and pays spe-
cial attention to outliers. Outliers represent a challenge in failure identifica-
tion; maintainers may find abnormal behavior that is difficult to identify or 
cannot be assimilated to data on known failures. Here, supervised, unsuper-
vised, and semisupervised learning are applicable.

Classification is an option when potential failures have been previously 
identified and no outliers are expected. In fact, if we identify many outli-
ers during classification, this means our catalog of failures is out of date. 
Clustering permits the categorization of failures, namely, the creation of dif-
ferent categories of failures when these categories are not defined a priori 
and the user does not know if there are three, four, or dozens of potential 
failures. Chapter 7 describes these techniques and emphasizes the differ-
ences between classification and categorization. Both are valid and useful 
but they must be used as a function of the available information on the end 
user’s system.

Outliers are a major issue in data analysis. In general, statistical techniques 
such as probability distribution models and stochastic process models are 
used for identification and removal of outliers from the data sets. Chapter 8 
discusses the use of these techniques for two main purposes: first, to identify 
outliers, assuming data sets follow a certain distribution; second, to identify 
outliers and remove them for data cleaning, thus improving the quality of 
the processed data sets.

All techniques aim for fault identification and detection in CM data. These 
may be vibration data or other physical variables previously processed. 
Healthy signals are more chaotic and their entropy is higher than faulty 
signals. In faulty signals, the information contained due to failure reduces 
the chaos dramatically and entropy drops. These methods are described in 
Chapter 9. The chapter adds that techniques used in other domains have 
been proposed for CM to detect faults based on the classic information theo-
ries of Shannon.

Last but not least, we must deal with certainty/uncertainty. Diagnosis is a 
complex process with a high degree of uncertainty. Thus, the decision-mak-
ing process involves a measure of risk. Chapter 10 proposes fuzzy logic to 
explain the uncertainties associated with diagnostic processes.
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1
Massive Field Data Collection: 
Issues and Challenges

Fault diagnosis is as old as the use of machines. With simple machines, man-
ufacturers and users relied on simple protections to ensure safe and reli-
able operation, but with the increasing complexity of tasks and machines, 
improvements were required in fault diagnosis. It is now critical to diagnose 
faults at their inception, as unscheduled machine downtime can upset dead-
lines and cause heavy financial losses. Diagnostic methods to identify faults 
involve many fields of science and technology and include the following: (a) 
electromagnetic field monitoring, search coils, coils wound around motor 
shafts (axial flux-related detection), (b) temperature measurements, (c) infra-
red recognition, (d) radio frequency (RF) emissions monitoring, (e) noise and 
vibration monitoring, (f) chemical analysis, (g) acoustic noise measurements, 
(h) motor current signature analysis, (i) modeling, artificial intelligence (AI), 
and neural network-based techniques (Li, 1994).

1.1 An Introduction to Systems

The word system (from the Greek συστημα) is used in many contexts and 
has thus assumed a variety of meanings. The most common refers to a group 
of parts linked by some kind of interaction. In System Theory, a system’s 
evolution through time affects a certain number of measurable attributes; 
real-life systems include a machine tool, an electric motor, a computer, an 
artificial satellite, or the economy of a nation (Guidorzi, 2003).

A measurable attribute is a characteristic that can be correlated with one 
or more numbers, either an integer, real or complex, or simply a set of sym-
bols. Examples include the rotation of a shaft (a real number), the voltage or 
impedance between two given points of an electric circuit (a real or complex 
number), any color belonging to a set of eight well-defined colors (an element 
of a set of eight symbols; for instance, digits ranging from 1 through 8 or let-
ters from a through h), the position of a push button (a symbol equal to 0 or 1, 
depending on whether it is released or pressed), and so on.

In systems, we are interested, on the one hand, in internal functional 
relationships, and on the other hand, in external relationships with the 
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environment. The former constitute the structure of the system, the latter its 
behavior. Behavior refers to the dependence of responses on stimuli. Structure 
refers to the manner of the arrangement, that is, organization, the mutual cou-
pling between the elements of the system and the behavior of these elements.

A system can be represented as a block and its external relations as connec-
tions with the environment or other systems, as shown by the simple diagram 
in Figure 1.1. When quantities are separated into those produced by the envi-
ronment and those produced by the system, we can distinguish inputs (the 
former) from outputs (the latter). If a system performs this type of separation, 
we call it an oriented or controlled system. If a separation between inputs and 
outputs is not given, we talk about nonoriented or neutral systems (Welden 
and Danny, 1999).

Note: The distinction between causes and effects, in some cases, is any-
thing but immediate. Consider, for instance, the simple electric circuit shown 
in Figure 1.2a, whose variables are v and i. It can be oriented as in Figure 
1.2b, that is, with v as input and i as output; this is the most natural choice 
if the circuit is supplied by a voltage generator. But the same system may be 
supplied by a current generator, in which case i would be the cause and v the 

∑

FIGURE 1.1
Schematic representation of a system. (From Basile, G. and Marro, G., 2002. Controlled and 
Conditioned Invariants in Linear Systems Theory. Italy: University of Bologna.)
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FIGURE 1.2
An electric system with two possible orientations. (a) An electric circuit; (b) voltage generator; 
and (c) current generator.
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effect, and the corresponding oriented block diagram would be as shown in 
Figure 1.2c (Basile and Marro, 2002).

In this case, a restriction is made toward an oriented system (i.e., a rela-
tively closed physical system); see Figure 1.3. For the oriented system shown 
in Figure 1.3, U(t) and Y(t) are the external quantities and X(t) is the internal 
quantity. The input is represented by U(t) and the output by Y(t).

Measuring the attributes of the system introduces the problem of estab-
lishing quantitative relationships, that is, constructing abstract (mathemati-
cal) models.

Since mathematical models are themselves systems, albeit abstract, it is 
customary to denote both the object of the study and its mathematical model 
by the word “system” (Basile and Marro, 2002). System Theory pertains to the 
derivation of mathematical models for systems, their classification, the inves-
tigation of their properties, and their use to solve engineering problems.

1.1.1 Evolution of Mathematical Models

The etymological roots of the word model are in the Latin modus and its 
diminutive modulus; both mean “measure.”

The initial use of modeling in science and technology was in scaled repre-
sentations created by architects to reproduce the shape of a building before 
its construction. Such models are physical systems that roughly approximate 
the aesthetic properties of other physical systems before their realization.

An important advancement occurred with the introduction of models 
which were still small-scale reproductions of physical systems but which 
were used to investigate the behavior of these systems before construction or 
under impossible or overly expensive operating conditions.

The next innovation was reproducing the behavior of a system on another 
system by taking advantage of the physical laws inherent in formally equal 
relations. A typical example is analog computers, structured as flexible elec-
trical networks that when properly interconnected (programmed) reproduce 
the behaviors of other systems (mechanical, hydraulic, economic, etc.) less 
suitable for direct experiments. These models can be defined as analog. To 
avoid any confusion with the common use of this term (i.e., quantities whose 
measurement can be performed with continuity versus digital denotation 
of quantizations), we can refer to these as models based on analogy laws. These 
models offer greater flexibility than the others cited above, where the only 

U(t) Y(t)X(t)

FIGURE 1.3
An oriented system.
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degree of freedom is the scale, especially since the physical nature of the 
model is a matter of choice. However, the use of models based on analogy 
requires us to know the laws describing the system under study. More spe-
cifically, we can only select, construct, or configure a system using analog 
laws if we have comparable initial conditions. The ability to construct a com-
plete mathematical model and use it to determine system behavior is not 
required, however.

The last step in the evolution of models was the development of abstract 
models, that is, mathematical models describing the links established by 
the system between its measurable attributes. Today, the widespread use of 
mathematical models in science and technology reflects the availability of 
abstract tools offered by computers, combined with System Theory, which 
allows their effective use (Guidorzi, 2003).

1.1.2 Models as Approximations of Reality

It has already been noted that the mathematical models limit their descrip-
tion to the quantitative links between their measurable attributes established 
by real systems. These constitute only partial descriptions. The asymptotic 
evolution of science has removed any illusions of achieving exact descrip-
tions of reality (Guidorzi, 2003). Even the so-called laws of nature can, at 
most, be considered models that have not yet been falsified. On the one hand, 
Newton’s law of motion is a good example of the ability of simple model to 
describe a wide range of situations; on the other hand, it is an equally good 
example of the widespread acceptance of a mathematical relation as an abso-
lute description of a phenomenon before its falsification.

Many phenomena are simply too complex to be described in detail by tracta-
ble models and/or are not governed by any definite law of nature (e.g., national 
economies). The construction of mathematical models must, therefore, be 
ruled by criteria of usefulness rather than by (always relative) criteria of truth.

Different models of the same system may be utilized for different purposes 
(prediction, interpretation, simulation, diagnosis, filtering, synthesis, classifi-
cation, etc.). The goal is to optimize the model’s performance in its tasks.

Accordingly, the criteria for selecting and comparing models have both 
practical and philosophical importance. A well-known criterion is the “razor 
of Occam,” from William of Occam (1290–1350): simply stated, among the 
models accounting for the same phenomenon, the simpler must be pre-
ferred. This principle certainly helped the acceptance of the model proposed 
by Copernicus for the solar system; he emphasized that his heliocentric 
model should be considered an exercise to obtain the results of the officially 
accepted Ptolemaic model in a simpler fashion.

Popper (1963) provided a different description of the principle of parsi-
mony. According to him, among the models explaining available observa-
tions, the one explaining as little else as possible (i.e., the most powerful 
unfalsified model) is preferable.
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The principle of parsimony is supported by philosophical (and by common 
sense) and mathematical arguments that when models are deduced from 
uncertain data, the resulting increased complexity leads to corresponding 
increases in the uncertainty of their parameters.

1.1.3 Modeling Classification Based on Purpose

Mathematical models are defined as sets of relationships among the measur-
able attributes of a system; they describe the links established by the system 
among these attributes. This means mathematical models can only describe 
those attributes that can be expressed by numbers, making these models 
approximate descriptions of reality. The approximation performed by mod-
els requires the use of classification; this, in turn, depends on what is being 
modeled (Guidorzi, 2003).

1.1.3.1 Interpretative Models

These models are designed to satisfy scientific curiosity and rationalize 
observed behavior. They can replace large amounts of data with a data-
generating mechanism and thereby extract the essential information from 
complex experiments. The increased understanding of the reality behind 
observed phenomena is the purpose of interpretive models. They do not 
generally have the capability to generate other sets of data, but they should 
“interpret” sets of collected data.

The majority of the physical laws are models of this type. Ptolemy observed 
that it is possible to describe the same observations with different models; in 
other words, interpretation rests on measurable attributes of a phenomenon, 
not necessarily on its actual nature.

Another important observation is the limited range of validity of inter-
pretative models and/or their approximations. For example, by giving a 
simple relation between the force acting on a mass and its acceleration, 
Newton’s law of motion leads to large errors for speeds approaching the 
speed of light.

Nevertheless, models of this kind describing the motion of physical objects 
have been developed by Ptolemy, Copernicus, Kepler, Galileo, Newton, and 
Halley. Interpretative models are used in a large number of disciplines, such 
as econometrics, ecology, life sciences, agriculture, and physics.

1.1.3.2 Predictive Models

Predictive models are used to forecast the future behavior of a system, or 
interpolating available observations into the future. Mathematical models 
see more frequent use than any other kind, with numerous fields of applica-
tion, including population growth, the future state of an ecosystem or a plant, 
weather conditions, and demands for specific products.
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The resulting predictions are frequently used to manipulate the inputs of 
a system to achieve specific objectives, such as positioning a robot arm, or 
determining the desired altitude of an aircraft or a missile, the rate of infla-
tion, or the degree of purity of the output of a distillation apparatus. Other 
less obvious applications of predictive models are speech and image process-
ing to reduce bandwidth requirements for transmission and recording. Note 
that some models are both interpretative and predictive (Guidorzi, 2003).

1.1.3.3 Models for Filtering and State Estimation

As their name suggests, these models are used to extract external variables 
(i.e., output) from otherwise noisy system measurements and/or to estimate 
internal variables (i.e., state) from the external ones.

Applications include receiving and processing radio signals (e.g., teleme-
try, pictures from a spacecraft), transmitting digital data over noisy channels 
(e.g., telephone lines), processing radar signals, analyzing electrocardio-
graphic and electroencephalographic signals, processing geophysical data, 
monitoring industrial plants and natural systems, and studying demography.

1.1.3.4 Models for Diagnosis

Diagnostic models compare the behaviors found in a particular dataset with 
a previously established reference class of behaviors. The goal is to detect 
abnormal conditions. For example, in industry, these models may detect 
a sensor fault that affect production, or in medicine, they may suggest the 
nature of a patient’s disease.

1.1.3.5 Models for Simulation

Simulation models act as substitutions for real systems, with a view to evalu-
ate the latter’s response to certain situations (inputs). Such substitutions or 
simulations may result in financial benefits to a company, as the process will 
highlight the best course of action; equally, it may point to risks and situa-
tions that should be avoided. Examples of simulated systems include pilot 
training, the responses in a national economy to changes in interest rates, 
demographic studies, and nuclear reactor accidents.

The utility of the simulations, of course, depends on the precision of the 
model in reproducing the behavior of the actual system; the etymology of 
simulation (Latin simulare = to pretend) suggests possible ambiguities.

1.1.4 Model Construction

The unavoidable use of approximation in model construction puts modeling 
into a gray area; it is not pure science but must be based on results and meth-
odologies offered by the abstract science of mathematics.
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In addition, as the models described above have limited ability to solve 
specific problems, there is a need to construct special-purpose models.

1.1.4.1 Approaches to Model Building

Keeping in mind these directives, we can isolate two approaches to model 
building based on two types of information for a general system. The types 
are at opposite ends of the system’s spectrum (see Table 1.1 and Figure 1.4) 
(University of Cauca, 2009) and can be stated as follows:

• Knowledge and understanding of the system (white box modeling) 
• Experimental data of inputs and outputs of the system (black box 

modeling)

However, if we represent a model as a box containing the laws of math-
ematics that link the inputs (causes) with the outputs (effects), we can actu-
ally identify three boxes, not just two, as suggested by the above, till labeling 
them by “color”: white, gray, and black.

White box modeling: This model considers the relationship between the 
system components, and is derived directly from first principles. Typical 
examples include mechanical and electrical systems in which physical laws 
(F = ma) can be used to predict an effect, given the cause.

Rather than white, however, the box should likely be termed “transpar-
ent,” as we know the internal structure of the system.

Gray box modeling: Sometimes because the value of a parameter is miss-
ing, the model obtained by invoking first principles is too comprehensive. 
For example, a planet may be subject to the law of gravity, but its mass is 
unknown. In this case, experimental data must be collected; the unknown 
parameters must then be attuned with the outputs predicted by the model to 
match the observed data. As the internal structure of the box is only partially 
known, there are gray zones, hence the term gray box modeling.

TABLE 1.1

Two Main Approaches to Construct a Model

 Knowledge-Based Approach Data-Based Approach

Synonyms Modeling System identification

 Top-down modeling Bottom-up approach

Reasoning Deduction Induction

Does what? Encodes the (inner) structure of 
the system

Encodes the behavior of the system 
(via experimental data)

Problem type Analysis Synthesis
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Black box modeling: When no first principles are available or the internal 
structure of the system is unknown, the only possibility is to collect data 
and use them to determine the links between inputs and outputs (a common 
situation in physiology and economics). Black box modeling is also useful 
for very complex systems, in cases when the white box approach would be 
long and expensive (e.g., modeling the dynamics of an internal combustion 
engine to develop the idle-speed controller).

1.1.4.2 Deducing Models from Other Models: Physical Modeling

A model constructed deductively can generally be considered a unique mod-
eling solution. The top-down approach can and should be used if there is 
enough a priori knowledge and theory to characterize completely the math-
ematical equations. In such a context, model structure becomes important.

To build a physical model, a system is divided into subsystems, which can 
be described by known laws. The model joins these relations into a whole.

This approach requires a general knowledge of the “laws” describing the 
behavior of the system, as well as their structure or design. As physical laws 
are themselves models obtained from either observations or speculations, 
physical modeling constructs a model by combining several simple but well-
established models.

The advantages of physical modeling include the ability to use a priori 
information about the system for model construction, including the physi-
cal meaning of model variables. Unfortunately, physical modeling cannot 
be used on systems whose internal structure is unknown, whose behavior 
does not comply with established laws, or whose complexity may result in an 
unmanageable model with unsuitable parameters (i.e., the parameters would 
not necessarily induce the system behavior that we want to reproduce).

The deductive or top-down approach is always preferable, if, of course, it 
is possible. Because deduction involves one-to-one mapping (a process in 
which no new knowledge is produced), it is a physical principle. In contrast, 
bottom-up modeling involves a one-to-many mapping (a process in which 

Top

A priori information Model

Deductive Inductive

Raw data

Bottom

FIGURE 1.4
The two sources of information for model construction.
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knowledge is induced). This process is especially important in machine 
learning.

1.1.4.3 Inductive Modeling and System Identification Methodology

We must treat the system as a black (or gray) box and attempt to infer or 
induce a model through data analysis of input and output signals, whenever 
deductive modeling is impossible. This treatment of the system is based on 
identification derived through experimentation. The Concise Encyclopaedia of 
Modeling and Simulation defines identification as the following:

[It is] the search for a definition of a model showing the behavior of a pro-
cess evolving under given conditions. It is usually realised by means of 
a set of measurements and by observing the behavior of a system during 
a given time interval. The model obtained by identification must enable 
the evolution of the identified process to be predicted for a given hori-
zon, when the evolution of the inputs and various external influences 
acting on this system during this time interval are known (Atherton and 
Borne, 1992, p. 139).

The bottom-up approach tries to infer structural information from experi-
mental data (i.e., using an experimental frame [EF]). Unfortunately, this 
approach can generate an infinite number of models that satisfy the observed 
input/output (I/O) relations.

Briefly stated, then, there is no simple method of determining the structure 
of a model. Inferring structure from data requires a set of guiding principles 
and quantitative procedures. It is also desirable to have additional assump-
tions or restrictions if we are to select the “optimal” model.

System observations can be obtained actively or passively. In the former 
case, the modeler isolates certain interesting inputs, applies them to the 
system under study, and observes the outputs. In the latter case, the mod-
eler cannot specify inputs and must simply accept whatever I/O data are 
available.

To sum up, identification consists of the selection of a specific model in 
a specified class on the basis of observations performed on the system to 
be described and a selection criterion. The procedure makes no reference to 
either the physical nature of the modeled system or the a priori knowledge of 
the modeler. Only the data speak.

The parameters of models based on identification may lack physical mean-
ing; obviously, this will also be true for the models’ parameters. Nevertheless, 
such models can be both simple and accurate. In the end, we may extract rel-
evant information from complex frameworks.

Physical laws are often obtained from identification procedures; the data 
collected by Galileo in his experiments on falling bodies led him to see that 
a simple model could explain all his experiments and could be considered a 
law (University of Cauca, 2009).
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1.1.5 Modeling and Simulation

A model is a workable substitute for a system. It is sometimes called a real 
system because it can simulate and then solve problems in the original sys-
tem. The following section discusses the basic concepts of modeling and 
simulation. Figure 1.5 shows these concepts, as they were introduced by 
Zeigler (1984).

• Object is an entity in the real world. Depending on the context in 
which it is studied and the aspects of behavior under study, the 
object’s behavior can be highly variable.

• Base model is an abstract, hypothetical representation of an object’s 
properties, especially its behavior. It describes all possible facets of the 
object in all possible contexts. A base model is hypothetical, as we will 
never—in practice—be able to construct/represent a “total” model.

• System is a well-defined object in the real world under specific con-
ditions, considering certain specific aspects of its structure and 
behavior.

• Experimental frame: For systems in the real world, the EF describes 
experimental conditions (context) or aspects within which that sys-
tem and corresponding models will be used. As such, the EF reflects 
the objectives of the experimenter who performs experiments either 
on a real system or, through simulation, on a model.

In its most basic form (see Figure 1.6), an EF has two sets of variables: input 
and output variables. These variables match the system or model terminals. 
An EF also has a generator and a transducer.

Model-based 
a priori

knowledge 
System S

Experiment
observed data 

Model M

Simulation
results

Base modelReal-world
entity

Only study behavior in
experimental context 

Experiment within
context 

Within context

Validation

Simulate = virtual
experiment 

Modeling and
simulation process 

Reality Model

Goals

FIGURE 1.5
Modeling and simulation.
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Generator refers to the input or stimulus acting on a real system or 
model during an experiment; for example, a unit step could be a stimulus. 
Transducer refers to the transformation in a system’s outputs during either 
experimentation or modeling. For example, a transducer may point to the 
values of some of the output variables. [Note: Here output refers to both physi-
cal system outputs and synthetic outputs observed in a model, such as state 
variables or parameters (University of Cauca, 2009).]

As well as I/O variables, a generator and a transducer, an EF may also 
include an acceptor, which compares the features of generator inputs with the 
features of the transduced outputs and determines whether the system (real 
or model) “fits” into this EF and meets the experimenter’s objectives.

• (Lumped) Model accurately describes a system within the context of a 
certain EF. Although seemingly counterintuitive, the term “accurate 
description” requires precise definition.

  More precisely, certain properties of the system’s structure should 
be modeled using an acceptable range of accuracy. [Note: A lumped 
model is not necessarily a lumped parameter model. Given the myr-
iad applications of both modeling and simulation, however, overlap-
ping terminology is perhaps inevitable (Cellier, 1991).]

• Experimentation is the physical act of performing an experiment. As 
an experiment may interfere with system operation (by influenc-
ing its input and parameters), the experimentation environment is 
a system in its own right (and may be modeled by a lumped model). 
Experimentation involves observation and this yields measurements.

• Simulation of a lumped model uses certain formalisms (such as 
Petri net, bond graph, or differential–algebraic equations [DAE]) to 

System
(real or model)

Generator Transducer

Acceptor

Frame input
variables

Frame output
variables

Experimental Frame

FIGURE 1.6
System versus EF.
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produce results in the form of dynamic I/O behavior. Simulation, 
which mimics the real world, can be seen as virtual experimenta-
tion, allowing us to answer questions about (the behavior of) a sys-
tem (Vangheluwe, 2001).

Crucial to the system experiment/model-virtual experiment scheme is 
a homomorphic relationship between model and system: building a model 
of a real system and then simulating its behavior should produce the same 
results as performing a real experiment, followed by observing and codify-
ing the experimental results (see Figure 1.7).

A simulation model is a tool that we can use to achieve a goal (i.e., design, 
analysis, optimization). We must be able to accept with confidence any infer-
ences drawn from modeling and simulation (Birta and Ozmizrak, 1996).

Confidence is guaranteed through verification and validation.

• Verification involves checking the consistency of a simulation with 
the lumped model from which it is derived. The transformation 
from an abstract representation (the conceptual model) to the pro-
gram code (the simulation model) must be accurate, in that the pro-
gram code must reflect the behavior of the conceptual model.

• Validation involves comparing the experimental measurements with 
the simulation results in the context of a particular EF.

A model cannot correspond to a real system if the comparison indicates 
differences. Moreover, even though the measurements and simulation 
results may match well, thereby increasing our confidence, this does not nec-
essarily prove that the model is valid. Popper has introduced the concept of 

Modeling/abstraction

Abstraction

Experiment Virtual experiment

Real system Abstract model

Experiment results Simulation results

FIGURE 1.7
Modeling–simulation morphism.
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falsification (see Magee, 1985) to falsify or disprove a model, while methods 
of validation include conceptual model validation, structural validation, and 
behavioral validation.

• Conceptual validation: The evaluation of the realism of the conceptual 
model with respect to the goals of the study; alternatively, the evalu-
ation of a conceptual model with respect to the system.

• Structural validation: The evaluation of the structure of a simulation 
model with respect to the perceived structure of the system.

• Behavioral validation: The evaluation of the simulation model behavior.

Figure 1.8 provides a general overview of verification and validation.
Note: The correspondence in behavior between a model and a system 

applies within the context of the EF. Thus, when we use models to exchange 
information, we must always match a model with an EF. Moreover, we 
should never develop a model without developing its EF (Vangheluwe, 2001).

1.1.6 Modeling and Simulation Process

To fully understand how an enterprise operates, we must analyze the pro-
cesses of its various activities. What entities are involved? What are the 
causal relationships determining activity order and concurrency? As these 

System

Conceptual
model 

Simulation
model 

Effect

Output

Cause

Input

Structural
validation

Behavioral
validation 

Conceptual
model

validation 

Verification

FIGURE 1.8
Verification and validation activities.
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questions suggest, simulation is part of a larger model-based systems analy-
sis. Figure 1.9 presents a basic view of this type of analysis.

The example of a simple mass–spring experiment can illustrate the pro-
cess. In Figure 1.10, we see a mass sliding without friction over a horizontal 
surface connected via a spring to a wall; the mass is pulled away from the 
rest position and let go.

A number of sources of information, whether explicit in the form of data/
model/knowledge bases or implicit in the mind of user, are used during the 
process:

 1. A priori knowledge: In deductive modeling, we start from general 
principles such as energy, mass, momentum conservation laws, 

Experimental frame definition

Structure characterization

Parameter estimation

Simulation

Validation

Class of parametric model
candidates 

Parametric model

Model with meaningful
parameter values

Simulated measurements

Validated model

Activities

A priori knowledge

Modeler’and
experimenter’s 

Goals

Experiment
observation

(measurement) 

Data

Information sources

FIGURE 1.9
Model-based systems analysis.
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constraints, and we use these to deduce specific information. 
Deduction is used during system design.

   In the example, a priori knowledge is composed of the second 
law of Newton of movement, along with our knowledge about the 
behavior of an ideal spring.

 2. Objectives and intentions: Methods employed, formalisms used, level 
of abstraction, and so on, are all determined by the type of questions 
we want to answer.

   In the example, possible questions are: “What is the spring con-
stant?” “What is a suitable model for the behavior of a spring for 
which we have position measurements?” “Given performance 
 criteria, how is an optimal spring built?” “Taking into account a 
suitable model and initial conditions, can we predict the behavior 
of spring?”

 3. Measurement data: In inductive modeling, we start from data and try 
to extract structure.

   In turn, the resulting model can be used in a deductive fashion. 
Such iterative progression is typical of systems analysis.

Continuing with the example, the noisy measured position of the mass as 
a function of time is plotted in Figure 1.11.

The process begins when we identify an EF. Simply stated, the frame rep-
resents the experimental conditions with which we wish to investigate a sys-
tem. Thus, it expresses our goals and our questions. As noted above, at the 
most basic level, the EF consists of a generator describing possible system 
inputs, a transducer describing outputs, and an acceptor describing the con-
ditions which the system matches.

Rest length (m)

Position × (m)

Wall

Wall

Mass m (kg)Mass m (kg)

Mass m (kg)

FIGURE 1.10
Mass–spring example.
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In our example, the EF could choose to specify that the deviation from 
the rest position should never be greater than the rest length. It could also 
specify the environmental factors, such as room temperature or humidity, if 
those were relevant.

A class of matching models can be identified on the basis of a frame. The 
appropriate model can be selected using a priori knowledge and measure-
ment data. In our example of the spring, a feature of an ideal spring (one 
connected to a frictionless mass) is that the position amplitude will remain 
constant. However, in a spring that is not ideal or in the case of friction, 
the amplitude will decrease over time. If we rely on the measured data, we 
will conclude that this is an ideal spring, and during model calibration, 
we will estimate the optimal parameters to produce a set of measurement 
data.

1.1.7 Simulation Model

From the model, we can build a simulator. Given the contradictory aims of 
modeling (meaningful model representation for understanding and reuse) 
and simulation (accuracy and speed), this process may involve many steps.
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FIGURE 1.11
Measurement data.
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Figure 1.12 shows that by using the model and the identified parameters, 
simulation allows one to mimic a system’s behavior (virtual experimenta-
tion). The resulting simulator can be embedded in optimizers, trainers, or 
tutoring tools.

Even if a model has predictive validity, a question remains: Is it possible to 
reproduce not only the data used to choose the model and parameter identi-
fication, but also to predict new behavior? This question should be asked to 
every user of the simulator.

1.2 System Identification Problem

The term identification was introduced by Zadeh (1956, p. 1) as a generic 
expression for the problem of “determining the I/O relationships of a black 
box by experimental means.” He cites various terminologies that are prev-
alent for the same problem, such as “characterization,” “measurement,” 
“evaluation,” “Gedanken experiments,” and so on, and notes that the term 
“identification” states “the crux of the problem with greater clarity than the 
more standard terms” (Gaines, 1978).

Zadeh (1956) formulates the general identification problem as

 1. A black box, x, whose I/O relationship is not known a priori

 2. The input space of x
 3. A class of models for such black boxes, M, which on the basis of 

a priori information about x is known to contain a model for it. By 
observing the response of x to various inputs, this class can deter-
mine a member of M, which is equivalent to x, in the sense that its 
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FIGURE 1.12
Fitted simulation results.
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responses to all time functions in the input space of x are identical to 
those of x

The identification problem has become an essential area of study in mod-
ern control theory. The major effort in control research has tended to be with 
systems modeled as linear and continuous in their state variables and either 
continuous or uniformly sampled with respect to time. Such work has found 
a wide range of practical applications in plant measurement and to a lesser 
but still significant extent in online adaptive control.

Techniques based on linearity and continuity usually begin to break down 
when applied to nonartificial systems, for example, biological and economic 
modeling, but significant practical use of the linear “describing function” 
has been made, for example, in the inclusion of the pilot in aircraft design. 
However, human motor control is known to be based on discontinuous deci-
sion making leading to discrete corrections, rather than the smooth, linear 
motion of classical servomechanisms. As the extremes of biological systems 
behavior are approached, for example, in animal ethological studies, where 
the data are often purely descriptive with no metrical structure, linear sys-
tems techniques become inapplicable. Here, the times series to be modeled are 
strings of arbitrary symbols, and we have crossed into the domain of automata 
theory and the problems of grammatical inference (Fu and Booth, 1975).

It is interesting to note that Zadeh recognized this spectrum of problems 
in his discussion on system “identification” some 50 years ago, although the 
main part of his paper was concerned with continuous system identification.

1.2.1 Key Features of Identification Problem

Zadeh’s definition given above forms a convenient framework for the general 
problem of identification. It already exhibits two key features of the problem 
(Gaines, 1978):

 1. The class of possible models must be determined in advance. A basic con-
flict lies at the heart of the problem of identification, that is, between 
pure epistemology on the one hand (knowledge is the raw material 
of our experience and is prior to all “metaphysical” speculation about 
being) and ontology on the other (we have a priori reasons to suppose 
the world has a certain nature independent of our knowledge of it).

   In general systems theory, we cannot avoid operating in this 
region of conflict. The ontological approach to many questions is 
very satisfying: we can hypothesize and create structures that are 
adequate, complete, and consistent. Yet invariably, the question will 
arise as to whether this comforting sense of closure is “real.”

 2. Identification is an active process of testing hypotheses. This implies 
interaction with a system—not a passive process of data acquisi-
tion and modeling. Much research neglects the role of action in data 
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acquisition; we are only concerned with the model that best fits the 
data when, very often, the conclusion should be that there is inherent 
ambiguity in the results. No best model is determined, only a class of 
models, selection among which requires further data. Often, specific 
potential exemplars of behaviors may be indicated whose existence, 
or nonexistence, is the key to a separation between possible models.

What Zadeh’s original definition did not attempt to cover are the addi-
tional key features:

 3. Identification is not carried out in the abstract but generally for a purpose. 
The purpose of identification is an essential part of the identification 
problem. For example, we frequently evaluate identification in terms 
of prediction, but in complex systems we rarely need or can achieve 
prediction of all aspects. We often use identification in order to con-
trol, rather than out of pure scientific interest, and many aspects of 
prediction may be irrelevant.

 4. Identification may conflict with other objectives. In terms of the preced-
ing discussion, it is clear that the various requirements of prediction 
may be in conflict. An identification scheme that is optimal for one 
class of prediction may not be suboptimal for another, but may actu-
ally be in conflict with it. However, there are deeper problems when, 
for example, the purpose of identification is control; the simplest 
illustration is the classical “two-armed bandit” problem in which 
the gains of knowledge acquisition must be set against the costs of 
suboptimal control.

 5. The identification problem as stated may have no well-defined solution. The 
requirement for a solution is a model whose responses are “identi-
cal” to those observed. For nondeterministic systems, such identity 
is not meaningful, and since “noise” is significant in most real-world 
systems, practical applications of identification generally have to 
allow for nondeterminism; we may then talk in terms of the degree 
to which the model approximates the observed behavior, but this is 
now an order relation rather than a unique classification.

 6. The identification problem may have a number of possible solutions, the 
choice amongst which is dependent on other factors. Even when the sys-
tem is deterministic, there may be several models whose responses 
are identical to those observed. Generally, all models will not be of 
equal status and there will be a preference ordering among them 
such that if two are of equal validity, one is preferred to the other; it 
is convenient to call this preference ordering one of simplicity, or its 
converse, of complexity.

These six aspects of the identification problem take it out of the realm 
of passive data analysis and point to its rich philosophical foundations, 
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requiring more subtle formulation in system theoretic terms than might be 
expected (Gaines, 1978).

1.2.2 Identification Steps

System identification refers to the problem of building mathematical models 
of dynamic systems based on measurements of I/O. The approaches to iden-
tification as described in the Concise Encyclopaedia of Modeling & Simulation 
are quite general (Atherton and Borne, 1992). They consist of the following 
(Welden and Danny, 1999):

• Collecting I/O system data (data usually recorded by sampling in 
discrete-time sampling)

• Settling on a set of candidate models (or model/type of paradigm)
• Choosing a particular member of the model set as the most repre-

sentative, guided by the information in the data

From a logical standpoint, the identification of a system may be divided 
into the following steps (Guidorzi, 2003):

 1. Experimental design (observing the system): The result of the identifi-
cation process can be no better than a correspondence to the infor-
mation contained in the data. The experimental design covers the 
choice of inputs to be made, presampling filters, sampling rates, 
and so on, to yield the most informative data. Experimental design 
also considers the goal, the data, and the a priori information (see 
Figure 1.13).

   Identification exercises are intended to replace data collection 
with data-generating mechanisms (models). Since this procedure is 
entirely based on the information found in the data, it cannot work 
if the data are faulty. The first step of identification is to collect obser-
vations of the process variables and apply these to the system inputs 
for identification purposes.

 2. Selecting a model set: It is often difficult to justify the choice of a model 
set or model paradigm. A specific model can be selected, on the basis 
of observations, from an assumed family of models. In practice, 
many candidate models are tried out and the process of identifica-
tion becomes the process of evaluating and choosing between them.

   A priori knowledge and intuition or vision must be combined with 
the formal properties of a model and identification methods if we 
are to have good results.

 3. Choosing a selection criterion: The choice of criterion of fit affects the 
method of evaluating the quality of a particular model. Any model, no 
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matter how good it is, can only approximate the behavior of the real 
system, and the intended use of the model will determine the selec-
tion criteria. Many different models can be created from the same data, 
depending on the projected use.

 4. Computing model parameters: Calculating the parameters of a model is 
an optimization problem (selecting the “best” model in the relevant 
class) or a way of “tuning” a model on the data.

 5. Validating the model: Model validation is the process of examining the 
model, assessing its quality and possibly rejecting its use for the pur-
pose in question. In a sense, this can be viewed as the “essential pro-
cess of identification” (Lennart, 1994, p. 5). The estimation phase of 
model parameters is really just a means to provide candidate models 
that can be validated.

Model validation uses the criterion of fit to determine whether a model is 
good enough. Essentially, validation tries to falsify the model using collected 
data that differ from those data used during identification. If the model 
remains unfalsified, it is considered as validated and suitable for use.

These choices can always involve some a priori knowledge of the system, 
such as the choice of the class of models and/or the design of the experi-
ments to collect inputs and outputs.

Chosen model paradigm/
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Identification

Model validation

Model
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System GoodBad

FIGURE 1.13
System identification.
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If the model is not validated, we must reconsider the choices made and 
start the identification process from the beginning, or at the very least, from 
an intermediate step (University of Cauca, 2009).

1.2.3 Identifiability

Once a class of models and a penalty function for the model behavior have 
been selected, identification is reduced, for any set of available data, to an 
optimization problem whose solution consists of selecting the model associ-
ated with the minimal value of the penalty function.

The problem is well-defined if and only if the range of the penalty function 
contains a single absolute minimum; in this case, the considered process is 
identifiable (Guidorzi, 2003).

Identifiability derives from the class of models selected from the penalty 
function and from the data, not from the system to be identified.

1.2.4 Classes of Models for Identification

The essence of classification is grouping equivalence classes according to a 
number of criteria. A classification may help in choosing the most appropri-
ate formalism when modeling a system. This, in turn, may help in the selec-
tion of the most appropriate modeling and simulation tool.

Many different classes of models can be considered. The most relevant, 
from an identification standpoint, are the following (Guidorzi, 2003):

• Oriented and nonoriented
• Static and dynamic
• Causal and noncausal
• Lumped and distributed
• Constant and time varying
• Linear and nonlinear
• Deterministic and stochastic
• Single-input single-output (SISO), multi-input multi-output (MIMO)
• Parametric and nonparametric
• Continuous and discrete time
• Continuous and discrete event

1.2.4.1 Oriented and Nonoriented Models

Once the measurable attributes of a system have been defined, it is usual to 
partition them into two classes, inputs and outputs, or as in econometrics, 
exogenous and endogenous variables. The inputs can often be seen as the 
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action of the surrounding environment on the system and the outputs as 
the system’s reaction. It is also possible to describe the outputs as the vari-
ables explained by the model and the inputs as those left unexplained by the 
model.

In some cases, it can be desirable to avoid any a priori orientation of the 
system and treat all variables in a symmetric way. It is important to note that 
the orientation can be imposed by the external environment instead of by 
the system itself.

1.2.4.2 Static and Dynamic Models

Algebraic or static systems establish an instantaneous link between their 
variables and are described by sets of algebraic equations. Dynamic sys-
tems establish a link between the values assumed by their attributes at 
different times and are described by sets of differential or difference equa-
tions. Algebraic systems can be treated in a comparatively simple way and 
may describe a very limited slice of the real world; system identification is, 
thus, almost implicitly considered as dynamic and refers to dynamic mod-
els. The identification of models for algebraic processes can, however, be 
trickier than the commonly assumed conditions of nonidentifiability would 
suggest.

1.2.4.3 Causal and Noncausal Models

An oriented model is defined as causal when its output at time t is not 
affected by future input values. While all real systems are causal and can be 
properly described by models of this kind, it is also possible, from a math-
ematical standpoint, to introduce noncausal models.

1.2.4.4 Purely Dynamic and Nonpurely Dynamic Models

An oriented dynamic model is defined as purely dynamic when its input at 
time t does not affect its output at t, that is, when the system does not estab-
lish any instantaneous (algebraic) link between its input and output. If this 
condition is not satisfied, the model is defined as nonpurely dynamic. This 
property interacts with other properties and with the planned use of the 
model.

Thus, a nonoriented model is necessarily nonpurely dynamic because a 
purely dynamic model is intrinsically oriented and would even become non-
causal for other orientations.

In contrast, a predictive model must be purely dynamic; considering dis-
crete systems, the output at time t + 1 must be predicted at time t based on 
measurement taken only until that time.
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1.2.4.5 Lumped and Distributed Models

Most aspects of reality are concerned with the phenomena that do not occur 
at a single point in space but in areas or volumes (e.g., heat transmission, elec-
tromagnetic phenomena, energy exchanges, mechanical systems). Such phe-
nomena require distributed models, given by sets of partial differential (or 
difference) equations for dynamic systems. Lumped models, given by sets of 
ordinary differential (difference) equations, refer to simplified schemes that 
assume constant values for the system attributes in some properly defined 
space regions.

1.2.4.6 Constant and Time-Varying Models

Time-varying models can describe systems whose behavior changes over 
time; their parameters are generally functions of time. Time-invariant mod-
els feature sets of constant parameters and can describe constant systems. 
Time-invariant systems can appear time varying if there is a lack of knowl-
edge on some of their inputs.

1.2.4.7 Linear and Nonlinear Models

Linear models describe systems where the superposition principle is valid. 
Most real systems are nonlinear but can be described quite accurately with a 
linear model near a working condition.

1.2.4.8 Deterministic and Stochastic Models

Real systems are always affected by disturbances (noise entering the sys-
tem and/or affecting the measures, unknown inputs, quantization errors, 
etc.). These disturbances or their global effect can be described as noise 
acting on the input, state, and output of the model, which, in this case, is 
stochastic.

Often the global effect of disturbances is modeled as the output of a filter 
driven by white noise; when it is added to the output of the deterministic 
part of the model, the model is decomposed into a deterministic and a sto-
chastic part. Depending on the application, it may be sufficient to identify 
the deterministic part of the model (e.g., diagnosis) or it may be necessary to 
identify both parts (e.g., prediction).

1.2.4.9 SISO and MIMO Models

SISO, multi-input single-output (MISO), and MIMO models are self-
explanatory. While SISO models have limited usefulness (the world is 
multivariable), a multivariable model can be decomposed into a collection 
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of MISO models. An approach of this kind has many conceptual and prac-
tical limits and is frequently followed to avoid the more complex tools 
required by truly multivariable models.

1.2.4.10 Parametric and Nonparametric Models

Some classes of models are given by sets of equations described by a certain 
number of parameters (parametric models), while other models are given 
without assigning parameters; for instance, in a graphical form (e.g., impulse 
or step responses and frequency responses for linear systems).

1.2.4.11 Continuous and Discrete-Time Models

Continuous models describe systems whose measurable attributes evolve 
with continuity in time while discrete models establish quantitative links 
between the values assumed by the variables at discrete (sampling) times. 
While the intrinsic nature of all natural systems and many technological sys-
tems is continuous, the widespread introduction of digital systems requires 
the use of discrete models that can describe continuous systems accurately 
when the variables are properly sampled (see Figure 1.14).

1.2.4.12 Continuous and Discrete-Event Models

Models belong to the discrete-event category when the time base is continu-
ous and a finite number of events occur in a bounded time interval; only at 
those event times does the discrete state of the system change.

1.2.4.13 Free and Nonfree Models

In some instances, the environment does not act on a system, or at least, no 
action can be observed. Systems and models lacking input are called free 
systems and models; their outputs are termed time series.

Arrival Queue Cashier Departure

FIGURE 1.14
A discrete event system: A queuing system.
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1.3 Introduction to the Concept of Diagnostics

1.3.1 Meaning and Impact of Diagnostics

The word diagnostics comes from the medical field and refers to the identifi-
cation of the nature of a health problem and its classification by examination 
and evaluation. Diagnostic criteria are the combination of signs, symptoms, 
and test results to be used in an attempt to define a problem. Diagnosis is the 
result of a diagnostics process (Czichos, 2013). Diagnostics is the examination 
of symptoms and syndromes to determine the nature of faults or failures of 
technical objects (ISO 13372, 2004).

• A symptom is a perception, made by means of human observations 
and measurements, which may indicate the presence of an abnormal 
condition with a certain probability.

• A syndrome is a group of symptoms that collectively indicate or 
characterize an abnormal condition.

The terms “fault” and “failure” are defined as follows (ISO 13372, 2004):

• Fault: The condition of an item that occurs when one of its compo-
nents or assemblies degrades or exhibits abnormal behavior.

• Failure: The termination of the ability of an item to perform a required 
function. (Failure is an event, as distinguished from fault, which is 
a state.)

The failure mode is the phenomenon by which a failure is observed. After 
a failure, the systematic examination of an item to identify the failure mode 
and determine the failure mechanism and its basic cause is called root cause 
failure analysis.

The identification of faults and failures is an important task of technical 
diagnostics. Numerous failure characteristics are defined in international 
standards in various areas of technology and industry. To be detected by 
technical diagnostics, a failure can include the following (Czichos, 2013):

• Termination of the ability of a structure to perform its required func-
tion when one or more of its components is in a defective condition, 
either at a service or ultimate limit state, for example, mechanical 
vibration and shock (ISO 16587).

• Loss of the ability of a building or its parts (i.e., constructed assets) to 
perform a specified function (ISO 15686).

• Premature malfunction or breakdown of a function or a component 
or the whole engine, for example, internal combustion engines (ISO 
2710).
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• Sudden and unexpected ending of the ability of a component or 
equipment to fulfill its function, for example, gas turbines (ISO 3977).

• Actual condition of an item which does not perform its specified 
function under the specified condition, for example, earth-moving 
machinery (ISO 8927).

• An event causing the loss or reduction of nominal serviceability, for 
example, cranes (ISO 11994).

• Loss of structural integrity and/or transmission of fluid through the 
wall of a component or a joint, for example, petroleum and natural 
gas industries (ISO 14692).

• A state at which a component reaches its threshold level or termi-
nates its ability to perform a required function, for example, hydrau-
lic fluid power (ISO/TR 19972).

• Occurrence of bursting, leaking, weeping, or pressure loss, for 
example, plastics piping systems (ISO 7509).

• Any leakage or joint separation, unless otherwise determined, may 
be due to a pipe or fitting defect, for example, ships and marine tech-
nology (ISO 15837).

• Termination of the ability of an item to perform a required function, 
for example, space systems (ISO 14620).

• A system state that results in nonperformance or impaired perfor-
mance as a result of a hardware or software malfunction, for exam-
ple, road vehicles (ISO 17287).

• Insufficient load-bearing capacity or inadequate serviceability of 
a structure or structural element, for example, reliability for struc-
tures (ISO 2394).

These examples from industry and technology show that various faults 
and failures may detrimentally influence technical items. Damage identifica-
tion by technical diagnostics generally considers four basic aspects:

• Existence of damage
• Damage location
• Damage type
• Damage severity

The probability that a technical item will perform its required functions 
without failure for a specified time period (lifetime) when used under speci-
fied conditions is called reliability (Hanselka and Nuffer, 2011). Risk is the 
combination of the probability of an event and its consequence (ISO Guide 
73, 2002). The term “risk” is generally used only when there is at least the pos-
sibility of negative consequences. Safety is freedom from unacceptable risk 
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(ISO Guide 51, 1999). For the selection and application of technical diagnostic 
methods, the character of the item under consideration and the length and 
timescales associated with damage initiation and evolution must be consid-
ered. The length scale of technical items, subject to the application of techni-
cal diagnostics, can range across more than 10 dimensional decades. Today, 
technical diagnostics, conventionally applied to macrotechnology, must also 
consider microtechnology and nanotechnology. Consequently, reliability 
considerations have to be extended to micro–nano reliability.

The following aspects are of general importance to the timescales of the 
occurrence of faults and failures in technical items:

• The fault progression time, indicating the change in severity of a 
fault over time.

• The duration of a failure event; this may be very short (e.g., brittle 
fracture) or may extend over a long period of time (e.g., loading time 
until fatigue failure occurs). A catastrophic failure is a sudden, unex-
pected failure of an item resulting in considerable damage to the 
item and/or its associated components.

• The time-to-failure is the total operating time of an item from the 
instant it is first put in operation until failure, or from the instant of 
restoration until next failure. The detection and collection of infor-
mation and data indicating the state of an item constitute condition 
monitoring (CM).

The application of CM to technical structures and systems allows actions to 
be taken in order to avoid the consequences of failure, before the failure occurs. 
The process of CM consists of the following main phases (Czichos, 2013):

• Detection of problems, that is, deviations from normal conditions
• Diagnosis of the faults and their causes
• Prognosis of future fault progression
• Recommendation of actions

1.3.2 Concepts, Methods, and Techniques of Diagnostics

The basic methods of technical diagnostics are structural health monitoring 
(SHM) and nondestructive evaluation (NDE), in combination with inductive 
and deductive concepts (Vesely, 2002):

• The inductive conceptual approach consists of assuming particular 
failed states for components and then analyzing the effects on the 
system. Inductive approaches start with a possible basic cause and 
go on to analyze the resulting effects. A basic inductive method is 
failure modes and effects analysis (FMEA).
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• The deductive conceptual approach postulates that the system itself 
has failed in a certain way; an attempt is made to determine what 
modes of system or subsystem (component) behaviors contribute to 
this failure. A basic deductive method is the fault tree analysis (FTA).

1.3.2.1 Failure Modes and Effects Analysis

FMEA is a structured procedure to determine equipment and functional 
failures, with each failure mode assessed as to the cause of the failure and 
the effects of the failure on the system. Failure modes are any errors or 
defects in a process, design, or item, and can be potential or actual. The 
technique may be applied to a new system based on analysis or an existing 
system based on historical data. The FMEA method helps in identifying 
potential failure modes based on past experiences with similar products or 
processes.

An FMEA can identify, with reasonable certainty, those component fail-
ures with “noncritical” effects, but the number of possible component failure 
modes that can realistically be considered is limited. The objectives of this 
analysis are to identify single failure modes and to quantify these modes. An 
FMEA table for a component of a system contains the following information 
(Vesely, 2002):

• Component designation
• Failure probability
• Component failure modes
• Percent of total failures attributable to each mode
• Effects on overall system, classified into various categories; the two 

simplest are “critical” and “noncritical.” Effects analysis refers to 
studying the consequences of those failures

1.3.2.2 Fault Tree Analysis

FTA attempts to model and analyze failure processes (Vesely, 2002). As a 
deductive approach, FTA starts with an undesired event, such as the failure 
of an engine, and then determines (deduces) its failure causes using a sys-
tematic, backward-stepping process.

• A fault tree (FT) is constructed as a logical illustration of the events 
and their relationships that are necessary and sufficient to result in the 
undesired event. FTA uses graphical design techniques to construct 
these diagrams. To do so, it looks at all types of events: including 
hardware problems and material failure or malfunction. It also con-
siders combinations of factors contributing to an event. Ultimately, 
failure rates are derived from well-substantiated historical data, 



30 Artificial Intelligence Tools

including mean time between failure of the component, unit, sub-
system, and/or function.

• A success tree (ST) is the logical complement into which an FT 
can be transformed (Vesely, 2002). An ST shows the specific ways 
the undesired event can be prevented from occurring. It provides 
conditions that, if assured, guarantee the undesired event will not 
occur.

1.3.2.3 Structural Health Monitoring

SHM is the process of implementing a damage detection system for engineer-
ing structures (ISIS Canada, 2001). The objective of SHM is to monitor the in 
situ behavior of a structure accurately and efficiently, to assess its performance 
under various service loads, to detect damage or deterioration, and to deter-
mine the health or condition of the structure. SHM observes a system over 
time using periodically sampled dynamic response measurements from a set 
of sensors. It extracts damage-sensitive features from these measurements, 
and performs a statistical analysis to determine current system’s health. The 
SHM system should be able to provide, on demand, reliable information on 
the safety and integrity of a structure. The information can then be incor-
porated into maintenance and management strategies and used to improve 
design guidelines. If it is immediate and sensitive, SHM can allow short-term 
verification of innovative designs, early detection of problems, avoidance of 
catastrophic failures, effective allocation of resources, and reduced service dis-
ruptions and maintenance costs. The physical diagnostic tool of SHM is the 
comprehensive integration of various sensing devices and auxiliary systems, 
including a sensor system, a data acquisition system, a data processing system, 
a communication system, and a damage detection and modeling system.

On the basis of the extensive literature now available on SHM, we can argue 
with some confidence that this field has matured to the point where we now 
have fundamental axioms and general principles. The axioms include the 
following (Worden et al., 2007):

• All materials have inherent flaws or defects; according to materials 
science, the following lattice defects (deviations of an ideal crystal 
structure) can be distinguished: (1) point defects or missing atoms: 
vacancies, interstitial, or substituted atoms; (2) line defects or rows of 
missing atoms: dislocations; (3) area defects: grain boundaries, phase 
boundaries, twins; and (4) volume defects: cavities, precipitates.

• Damage assessment requires comparing the status of two systems.
• Identifying damage and its location can be done in an unsupervised 

learning mode; identifying the type of damage and its severity usu-
ally requires a supervised learning mode.
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• Sensors are unable to measure damage; feature extraction using 
signal processing and statistical classification is required for sensor 
data to be converted into information on damage.

• Unless we use intelligent feature extraction, the more sensitive a 
measurement is to damage, the more sensitive it will be to changing 
conditions, both operational and environmental.

• The required properties of the SHM sensing system rest on the 
length and time scales of damage initiation and its evolution.

• There is a trade-off between an algorithm’s sensitivity to damage 
and its noise rejection capability.

• The output of long-term SHM is periodically updated with informa-
tion on the ability of the structure to perform its intended function 
over time and with information on the degradation resulting from 
an operating environment.

1.3.2.4 Nondestructive Evaluation

NDE is the umbrella term for noninvasive methods of testing, evaluation, 
and characterization based on physical principles of sensing and assess-
ment. NDE is an important method for performance control and CM. In 
engineering systems, flaws, especially cracks in the materials of structural 
systems’ components, can be very detrimental. For this reason, the detection 
of defects and macro/micro/nano root cause analysis are essential elements 
of the quality control of engineering structures and systems and their safe 
and successful use.

The established NDE methods for technical diagnostics include (Erhard, 
2011): radiography, ultrasound, eddy current, magnetic particle, liquid 
penetration, thermography, and visual inspection techniques. With the 
rapid advances in sensors, instrumentation, and robotics, coupled with 
the development of new materials and reduced margins of safety through 
stringent codal specifications, NDE has diversified with a broad spectrum 
of methods and techniques now being used for technical diagnostics in 
plants and structures. Industrial applications of sensors and noninvasive 
NDE methods are as wide-ranging as the technologies themselves and 
include mechanical engineering, aerospace, civil engineering, oil industry, 
electric power industry, and so on. The operation of NDE techniques in 
many industries has now become a standard practice, for example, to sup-
port CM for the proper functioning of the daily use of electricity, gas, or 
liquids in which pressure vessels or pipes are employed and where the cor-
rect operation of components under applied stress plays a big role in safety 
and reliability.

An overview of the concepts, methods, and techniques of technical diag-
nostics is given in Figure 1.15.



32 Artificial Intelligence Tools

1.3.3 Application of Technical Diagnostics

Technical diagnostics can be illustrated by the lifecycle of all man-made 
technical items: from raw materials to engineering materials and via design 
and production to structures and systems, and finally, to deposition or recy-
cling; see Figure 1.16 (Czichos, 2013).

Technical diagnostics can be applied in almost all areas of technology and 
industry to ensure product quality, economical and efficient processes and, 
most importantly, to assure safety and reliability. Indeed, the economical–
technological development of industrialized countries is affected by two 
major trends.

First, new technical products are lighter to increase speed, height, or dis-
tance, that is, to improve the global quality of life. This is achieved with the 
use of highly innovative materials, multimaterial designs, nanostructuring 
materials, and additional concepts for lightweight design. The following 
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FIGURE 1.16
The product cycle of technical items and the potential of technical diagnostics.
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Overview of the concepts, methods, and techniques of technical diagnostics.
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aspects have to be considered in new technical products and their applied 
materials:

 a. Materials are frequently designed for a single application purpose 
and, thus, material behavior and properties cannot be always trans-
ferred to other technical products. Nanostructured materials may be 
subjected to modern production and manufacturing processes that 
could significantly change their properties before the component is 
brought into service, for example, subjecting metallurgically nano-
structured steels to laser hybrid welding in thick-walled pipeline 
sections.

 b. Safety factors are frequently reduced to achieve the application 
goals; the materials in such components might be loaded to capacity.

 c. The character of the loads may change, because materials in modern 
technical components are generally subjected to coupled loading. 
This means different types of loads are acting at the same time in 
the same process zone on a material in a specifically designed com-
ponent. For instance, hip endoprostheses in the human body envi-
ronment are subjected to corrosion fatigue, that is, to the corrosion 
process caused by the hip and leg bones and the dynamic mechani-
cal load introduced by the leg movement acting simultaneously at 
the adjustable shaft. However, conventional threshold values have 
usually been determined for a single type of load.

 d. The interaction and the load transfer capabilities from one material 
type to another in multimaterial-designed components are some-
times not fully understood, due to a lack of practical experience and 
a lack of scientific knowledge. This particularly applies to compo-
nents containing joints between polymeric and metallic materials.

Second, the service lifetime of existing technical products is frequently 
extended over the original intended usage period, for instance, to save 
replacement costs. This is especially important with large-scale products 
belonging to the technical infrastructure, such as power stations, transporta-
tion systems, buildings, and so on, and is often achieved by lifetime elon-
gation assessments, assisted by SHM, risk-based inspection, and preventive 
repair and restoration of critical parts.

The following aspects have to be considered for existing technical prod-
ucts and applied materials:

 a. The material behavior within the later parts of the product life is not 
always completely understood, thereby precluding consistent fore-
casts of further safe use. This is especially concerned with compo-
nents loaded mechanically at high frequencies within the giga-cycle 
range.
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 b. The loads during the elongated service life part might become sig-
nificantly different, in particular, if the service purpose is changed.

 c. Hazardous operations during service affecting the material prop-
erties are frequently not recorded, but can tremendously affect the 
residual loading capacities for lifetime extension.

 d. Any repair can introduce additional loads and material property 
changes that cannot always be foreseen, but can significantly reduce 
the lifetime.

1.3.4 Management of Failure Analysis

While the design of technical products to ensure undisturbed function and 
operation for the whole lifecycle is an important topic in the field of compo-
nent safety, the above-mentioned aspects increase the failure potential.

In the case of a failure event, engineers need reliable concepts and proce-
dures so they can conduct failure analyses and make a fast and precise iden-
tification of the failure origins and the measures required for future failure 
avoidance. However, as outlined in the system approach, failure is defined 
as any disturbance or reduction of the function of a technical system. Thus, 
a failure does not necessarily lead to the breakdown or loss of a technical 
system or even to a technical catastrophe. For these, normally a sequence of 
events is necessary. This is becoming a topic of investigation during failure 
analysis (ISO 13373-1:(E), 2002).

Failure can pertain to one or more components (elements) of a technical sys-
tem, especially in cases of faulty component interactions. Failures can occur 
during different parts of its lifecycle, that is, during production, service, or 
even during repair, replacement, or recycling of the various components.

1.4 Process of Diagnosis

The notion that computer technology can help solve problems has generated 
much interest, even enthusiasm; computers are now used in many fields of 
machine health, including maintenance. The technology continues to expand 
and evolve; in the past decade, a new branch of information technology has 
emerged, e-maintenance or maintenance informatics.

e-Maintenance is a branch of information technology (IT) or computer sci-
ence that deals with information and software technology related to mainte-
nance and machine health. e-Maintenance includes and is related to areas such 
as computers, computer science, IT, maintenance AI, maintenance guidelines, 
maintenance information, maintenance research data, maintenance technolo-
gies, maintenance processes and practices, maintenance terminology, main-
tenance law, and maintenance ethics. Diagnosis is the process of finding or 
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identifying the cause and nature of a machine problem by carefully studying 
the symptoms and signs, evaluating history, and performing examinations. 
A diagnosis is the most important part of maintenance system, and a good 
diagnosis is vital for proper maintenance of decision support systems.

Diagnosis is still largely a manual process. It requires extensive knowl-
edge, good interviewing skills, meticulous examination techniques, very 
high levels of analysis, and synthesizing skills. Unfortunately, all maintain-
ers do not have the same level of expertise and skill; even more experienced 
ones sometimes fail to diagnose a condition correctly. Diagnostic mistakes 
are the major cause of maintenance errors. Therefore, any tool or technology 
with the potential to provide correct and timely maintenance diagnosis is 
worth serious consideration. Computer experts and scientists are now trying 
to develop a computer system that helps in complex diagnosis by eliminat-
ing human errors and misdiagnosis; such systems are called clinical diagno-
sis support systems (Douglas et al., 2005; Houghton and Gray, 2010).

Diagnosis process support systems are recent and important additions in 
determining machine’s health. They guide maintainers in diagnosing condi-
tions correctly and making the correct decisions. The systems analyze and 
process the machine data and make a diagnosis. This could be a multistage 
or a one-step process; the systems may request more data or further labora-
tory examinations based on the input.

Many research organizations and companies have developed clinical 
diagnosis support systems using a number of software and computer tech-
nologies, but the current generation of diagnosis support systems is both 
cumbersome and unsuccessful. Even though some companies claim their 
systems are more than 90% accurate, in our investigation we found this to be 
a gross exaggeration.

There are various reasons for the failure of these systems. First, they are not 
mature enough to use as life-critical systems; second, analysts and develop-
ers do not adequately understand the clinical diagnosis process; and finally, 
although the current systems can mimic human reasoning, the maintainers 
lack faith in them.

The main aim of this book is to study the current diagnosis support sys-
tems and determine a better way to develop reliable diagnosis support sys-
tems, taking the following steps:

 1. Analyze diagnosis support systems.
 2. Investigate current clinical diagnosis support systems and their 

impact on machine health.
 3. Find a better way of developing diagnosis support systems.
 4. Predict the future of diagnosis support systems.

Diagnosis systems are computer-based programs that help a clinician 
diagnose conditions. As they can guide a maintainer for correct diagnosis, 
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they have the potential to reduce the rate of diagnostic errors. As noted 
above, many research organizations and companies have developed clini-
cal diagnosis support systems using various technologies and providing 
various levels of functionality. Even though the systems use different tech-
nologies, however, they all work similarly. Maintainers enter the condition 
finding, and the system processes the input and comes up with a probable 
diagnosis. These diagnostic support systems can also be used as a teaching 
aid for engineering students in their maintenance study. Surprisingly, given 
their range of applicability, most have not gained widespread acceptance in 
maintenance.

It is important to understand the diagnosis and the diagnostic process, as 
well as the human reasoning behind clinical diagnosis, before plunging into 
an in-depth analysis of the relevant support systems.

Simply stated, diagnosis is a process of finding and establishing the char-
acteristics and type of a machine problem based on signs, symptoms, and 
laboratory findings. More formal definitions of diagnosis include:

 1. “The placing of an interpretive, higher level label on a set of raw, 
more primitive observations” (Ball and Berner, 2006, p. 100).

 2. “The process of determining by examination the nature and circum-
stances of a faulty condition” (Ball and Berner, 2006).

Diagnosis is a complex, loosely defined, and multistep process. It estab-
lishes what the problem is, when it started, how it has manifested, and how it 
has affected a machine’s normal function. Diagnosis involves the following 
series of individual steps:

 1. Taking a machine’s history
 2. Performing a physical examination and systemic examination
 3. Analyzing the machine’s data
 4. Performing a differential diagnosis (DD) and provisional diagnosis
 5. Carrying out further examinations, including laboratory examination
 6. Confirming or refuting the diagnosis
 7. Starting maintenance actions

The diagnosis process starts as soon as the maintainer sees the asset. 
He/she immediately makes a general assessment of the machine, based 
on appearance, status, and so on. Next, the maintainer engages with the 
machine, gets the machine’s details, and starts taking the history. To make 
a diagnosis, experienced maintainers recognize symptom patterns. After 
obtaining the history, the maintainer enquires about the other systems of 
the machine; this uncovers symptoms that might have been ignored. After 
taking the history, the maintainer will have a DD in his/her mind. At this 
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point, the maintainer will examine the asset, looking for signs confirming or 
refuting the diagnosis.

After obtaining the details and assembling the relevant information, 
the maintainer should be able to produce a provisional or a confirmatory 
diagnosis.

After completing the general and systemic examination, based on his/her 
diagnosis, if necessary, the maintainer sends the machine to the laboratory 
for examination to confirm or refute the diagnosis and to decide what type of 
therapy can be applied. Laboratory research in the area is becoming increas-
ingly important because of advancements in laboratory investigation tech-
nology (CM & NDT) (Douglas et al., 2005; Houghton and Gray, 2010; Walter 
et al., 2007).

The steps in diagnosis may not be identical in every case. Two maintainers 
may take very different steps; in fact, the same maintainer may approach 
two similar cases differently. As expertise and skill vary among maintainers, 
different maintainers encounter different diagnostic problems even though 
they are diagnosing similar cases. Circumstances such as the availability of a 
laboratory investigation facility in the maintenance center or the emergency 
of the case change the steps of the diagnosis process as well (Ball and Berner, 
2006; Douglas et al., 2005).

Understanding diagnosis processes and patterns is very important in 
developing diagnosis support systems. For example, studying clinicians’ 
information requirements will help us understand variability in clinical 
diagnosis process among clinicians.

For the same machine, depending on the maintainer’s expertise and 
knowledge, different engineers will highlight different diagnostic prob-
lems. Because of the varying knowledge and expertise of the maintainers, 
diagnoses vary depending on the circumstances. Humans also have many 
limitations, such as the number of things they can remember at one time. 
Diagnosis support systems do not have human limitations such as short-
term memory and can help maintainers overcome the problems of manual 
diagnosis processes.

At the same time, diagnosis support systems have their own problems. 
They are developed by different research organizations and companies 
using various algorithms and techniques. Their usage and output are not 
always the same. Like any other information storage, maintenance and con-
dition data are stored in various ways depending on the maintenance cen-
ter. A busy maintenance crew member may write down a few things on a 
paper record, leaving the administrative staff to convert the comments into 
text and save the record in a computer system. In fact, some maintenance 
centers still use paper-based records. There are many maintenance informa-
tion management systems in the market, with a wide range of functionality. 
Some only provide information management, while others have much more 
integrated functionality. If a diagnosis software system is integrated into the 
latter systems and if the machine’s findings are already saved in a medical 
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information management system, the maintainer does not need to retype 
findings to get a diagnosis.

Understanding the human reasoning behind diagnosis is equally impor-
tant. Human diagnostic reasoning is not based on precise logic. In terms of 
diagnosis, 2 + 2 does not always equal 4, leading many doctors to think com-
puters cannot be useful in clinical diagnosis. Diagnostic reasoning involves 
a number of diverse, complex, and related activities, including pattern rec-
ognition, making provisional judgments under given circumstances, com-
piling a patient’s data, solving the problem through trial and error, making 
decisions under uncertainty, performing further research on the basis of 
previous work, and comparing and combining data. Sophisticated skills are 
required in this complex but loosely structured area, including good organi-
zation and in-depth knowledge.

Diagnostic reasoning is based on generic human psychological experi-
ences. It has some similarities with but differs from the game of chess, mete-
orological judgments, crypto-arithmetic patterns, and so on; hence, such 
patterns have been compared to diagnostic reasoning.

The psychological experiments looking at judgments made under uncer-
tainty show the reasoning behind an individual’s imperfect and partially 
logical reasoning skills (Ball and Berner, 2006; Greenes, 2006). In fact, judg-
ment under uncertain data is one of the most important and complex aspects 
of human reasoning in diagnosis. To study the complex clinical diagnosis 
process, research look at patterns of human behavior when they combine 
introspection with diagnostic procedures. Researchers follow the thinking 
process, including all activities from the beginning of the diagnostic process 
to the end and interpret the process in depth, looking at knowledge, skill, 
motive, reasoning, hypothesis, logic, and strategies. However, every main-
tainer’s thinking process and reasoning are likely to be different, so the stud-
ies remain general (Ball and Berner, 2006; Elstein et al., 1978; Kassirer and 
Gorry, 1978).

The main elements of diagnostic reasoning include developing a working 
hypothesis, testing the hypothesis, getting and analyzing additional infor-
mation, and either accepting the hypothesis, rejecting it, or adding a new 
hypothesis based on further analysis.

In medicine, a working hypothesis is first developed during the process 
of information gathering when few facts are known about a patient’s case. 
Because of limited human memory and analytic capacity, fewer than five 
such hypotheses are developed simultaneously; these hypotheses are basi-
cally developed from machine recognition using existing experiences and 
knowledge. Experts are usually better able to apply the knowledge gathered 
than novices, and experts rarely use causal reasoning (Ball and Berner, 2006; 
Elstein et al., 1978; Kassirer and Gorry, 1978).

Pople (1982) has noted the similarities between diagnosis reasoning 
and Simon’s criteria (reasoning for ill-structured problems). According to 
Simon, an ill-structured problem can be divided into well-defined small 
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tasks that are more easily solved than one big ill-defined task. Studies show 
that in medicine, physicians employ hypothetic-deductive methods after 
early hypothesis generation; usually early hypothesis reasoning produces 
results when there is a very high possibility of correct diagnosis. Medical 
researchers Kassirer and Gorry (1978, p. 2) describe it as a “process of case 
building” where the hypotheses are evaluated against data on diseases 
using Bayes’ law, Boolean algebra, or pattern matching (some diagnosis 
support systems have been developed using this principle). Pople (1982) has 
also observed that separating complex differential diagnoses into prob-
lem areas allows engineers to apply very powerful additional reasoning 
heuristics.

Engineers can assume that the DD list is within the problem domain and 
consists of the mutual exclusion hypothesis. They can also assume that if the 
list is extensive, a correct diagnosis is always within it, and anything out of 
that list is incorrect.

Kassirer has recognized three abstract categories of human diagnostic 
reasoning strategies: probabilistic, causal, and deterministic. Bayesian algo-
rithm logic is based on the probabilistic reasoning strategy that computes 
clinical finding statistics using mathematical models and results in optimal 
decisions. Other studies have shown that humans are not very good natural 
statisticians because they solve problems mostly based on judgmental heu-
ristics (Greenes, 2006; Kassirer and Gorry, 1978; Pople, 1982).

Overall, researchers have observed that human reasoning for diagnosis is 
very complex and have suggested a plethora of human diagnosis-reasoning 
models (Reddy, 2009).

1.5 History of Diagnosis

In the 1980s and 1990s, several advanced techniques were integrated into 
existing diagnosis software systems and models, and more mathematical 
rigor was added to the models. However, mathematical approaches have a 
downside: they are dependent on the quality of the data. Therefore, many 
of the new systems were based on fuzzy set theory and Bayesian belief net-
works logic to overcome the limitations of heuristic approaches in the old 
models (Ball and Berner, 2006).

With the advent of artificial neural networks and AI, developers and 
researchers are taking a completely new approach to diagnosis decision 
support systems. Even though a simple neural network may be similar to 
Bayesian probabilities logic, in neural networks, generally, the technology is 
very complex and many data are required to train the network. Use of arti-
ficial data to train the neural network may not be realistic and may affect its 
performance on real machine data.
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Important methodologies and technologies for decision support are infor-
mation retrieval, evaluation of logical conditions, probabilistic and data-
driven classification or prediction, heuristic modeling and expert systems, 
calculations, algorithms, and multistep processes, and associative group-
ings of elements. Figure 1.17 shows the methodologies and technologies for 
diagnosis.

• Information retrieval: Related basic information is sought for decision 
support systems. This is a basic search to retrieve maintenance data 
using keywords. Text search algorithms are also used to search for 
information in the machine’s data (Greenes, 2006).

• Evaluation of logical conditions: This explores widely used logics for 
diagnosis support systems and various logical conditions. Decision 
tables refine and reduce the number of diagnostic possibilities, and 
Venn diagrams present clinical logic. Logical expressions with 
Boolean combinations of terms are used, along with comparison 
operators. Finally, alert reminders and other logical algorithms are 
developed (Greenes, 2006).

• Probabilistic and data-driven classification or prediction: As most deci-
sions are precise, diagnosis support systems need to recognize 
the various types of maintenance data. Key developments are 
Bayes theorem based on a formula or decision theory, for example, 
whether a machine should be maintained or not. Data mining is 
a database technology to find hidden valuable data; an evidence-
based system processes the data based on evidence. Artificial neu-
ral networks and AI are still evolving in the areas of rapid phase, 
belief networks, and meta-analysis (Ball and Berner, 2006; Combi 
et al., 2009; Greenes, 2006).
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FIGURE 1.17
Methodologies and technologies for Collaborative Decision Support System (CDSS). Picture 
by Kaukuntla (author).
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• Heuristic modeling and expert systems: These are used for diagnostic 
and therapeutic reasoning, given the uncertainty in human exper-
tise. A key development is a rule-based systems model based on pre-
defined rules and frame-based logic.

• Algorithms, calculations, and multistep processes: These are used in 
flowchart-based decision logic, interactive user interface control, 
computational process executions, imaging and image processing, 
and signaling. Key developments are workflow modeling and pro-
cess flow, modeling languages, programming guidelines, and proce-
dural and object-oriented concepts (Ball and Berner, 2006; Greenes, 
2006; Taylor, 2006).

• Associative groupings of elements: This is used for structured reports, rela-
tional and structured data, order sets, presentations, business views, 
other specialized data views, and summaries. Key developments are 
business intelligence tools, document construction tools, report gener-
ators, document and report templates, document architectures, mark-
up languages, tools, and ontology languages (Greenes, 2006).

Any successful software development requires many disciplined steps, 
and diagnosis support systems are no exception. Developers must start with 
a clear vision, not merely testing a single algorithm or a new technology. 
They should carefully define the scope and nature of the application and 
understand the manual process to be automated. They must know the limi-
tations, including technical limitations, scope, boundaries, and data limita-
tion, and ensure stakeholders are also aware.

Developers must analyze the requirements to determine the usage and 
scale of a proposed system. Algorithms must be studied in depth to find any 
possible condition in which they might fail. Developers and stakeholders 
must evaluate the automated system carefully outside the machine area; it 
should never be tried on functioning machines prematurely for safety rea-
sons. It can be evaluated in the actual machine context, once its functionality 
is fully established and thoroughly evaluated. The practicality and use of the 
system must be demonstrated by the developers and analysts. They must 
show that it can be adopted by maintainers for productive daily use. No mat-
ter how wonderful the algorithm and technologies are, they are valueless if 
the system is not used by anyone.

Many critical phases impact both the development and the final product. 
These include understanding the diagnosis process, selecting the area, per-
forming system analysis, developing and maintaining a knowledge base, 
developing algorithms and user interfaces, performing tests and quality 
control, testing user acceptance, and training.

Building a clinical diagnosis support system is a complex process; it 
requires good analytical skills, knowledge, and the ability to understand 
and follow a systemic procedure. Various methods, models, and approaches 
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have been defined for software system analysis. In all cases, the functional 
requirements, technical requirements, and the nature of the problem need 
to be analyzed carefully, and a feasibility study has to be conducted. The 
cost-effectiveness must be analyzed and the required time effort should be 
estimated. All the alternative methods of building the system should be con-
sidered, and the knowledge base construction strategies and the data struc-
ture must be analyzed (ACM, 2009).

Every software system requires some kind of data to process or rely on. 
Knowledge base development and maintenance are vital for diagnosis sup-
port systems. Data gathering is crucial, but it depends on the type of appli-
cation to be developed. Generally speaking, knowledge base development 
is not a onetime event; it evolves continuously. The data sources vary from 
machine statistics, to case records, to research data. Converting and encod-
ing the data relevant to the application is also very important. Initial reports 
of new discoveries and inventions must await confirmation before their 
content is added to a database of maintenance knowledge. Knowledge base 
development should reflect the latest scientific knowledge in the terminol-
ogy and mark-up used in diagnosis. The maintenance of such terminology 
and data is crucial, as both may change over time.

The development of the knowledge base must be scientifically reconstruct-
ible, with the ability to add further data from technical literature, statistics, 
and expert opinion. Ideally, the data should be verifiable by experts with a 
user interface. The long-term value and reliability of these systems depend 
on the accuracy, quality, and up-to-date nature of their knowledge base. In 
brief, the long-term success of diagnosis software depends on updating and 
maintaining the knowledge base.

Although CPU speed has increased and computer memory has become 
cheaper, a developer needs to analyze and plan for the use of complex algo-
rithms and the amount of data they process. Analysts and developers need to 
convert theory-based models into practical implementations of specific mod-
els. The development of diagnostic systems involves balancing theory and 
practicality, while maintaining the knowledge database. Developers must 
design a way to store data access methods; broad-based diagnosis systems 
require robust and detailed designs. The resources required to construct and 
maintain a knowledge base are measured in dozens of person-years of com-
plex effort; obviously, a large knowledge base may require more resources.

Even today, human-to-human interaction is more advanced than 
 computer-to-human interaction; therefore, in medicine, physician interac-
tion with a patient is more advanced than patient–computer interaction. 
A maintainer might not be able to express his/her full understanding of a 
machine to a computer system, and many researchers believe computers will 
never replace diagnosticians. However, computers may replace physicians if 
researchers and developers understand the evolution of medical knowledge 
and the immaturity and uncertainty of asset data and knowledge. Designs 
and algorithms must be realistic for the given circumstances.



43Massive Field Data Collection

1.6 Big Data in Maintenance

Manufacturers are hearing increasing technical and professional buzz about 
“Big Data,” with little explanation of what it is. In fact, Big Data refers to the 
vast collection of detailed information and documentation gathered and 
stored as a result of computing processes, which can be processed further to 
provide valuable insights to optimize a process or an operation. For example, 
Facebook collects “likes” so that it can target advertisements to the right users 
(O’Brien, 2014).

According to the cloud computing software developer Asigra, 2.5, a quintil-
lion bytes of data were created daily by business and consumers worldwide 
in 2013. The total amount of stored data is expected to grow by 50 times by 
2020. The data themselves are worthless unless information can be extracted 
from them and used to inform decision making. Therefore, organizations are 
examining ways to decipher data. The goal is to be able to use data to gener-
ate forward-looking insights that can be acted upon to improve the way they 
do business. Over the next decade, data will become as important to manu-
facturing as labor and capital.

In the past, systems left a factory never to be seen or heard from again. 
However, as the price of sensors, cloud computing, broadband, and data stor-
age continues to fall, the ability of manufacturers to communicate directly 
with their equipment in the field is becoming more commonplace.

Beyond the references to “Big Data,” there is increasing discussion and 
conjecture in IT about the “Internet of Things.” Generally, this refers to the 
strategies pursued by capital goods manufacturers to build ecosystems in 
which their finished products host built-in sensors and monitoring soft-
ware that continuously feed operating and performance data to the original 
equipment manufacturer’s (OEM’s) central data warehouse for processing.

Boeing is a good example. Boeing aircrafts are continually transmit-
ting flight data back to Boeing headquarters (HQ) via satellite for analysis. 
Such data could be invaluable in explaining the disappearance of Malaysia 
Airlines MH370 in March 2014.

By collecting data like these, manufacturers can spot potential equipment 
failure in advance by identifying early signs of potential downtime and 
component issues. Issues could be addressed proactively to optimize main-
tenance schedules, reduce warranty repair costs, and improve customer 
satisfaction.

The data can also be used to identify equipment that is behaving differ-
ently from the rest of the fleet, or to determine how certain failure events will 
affect the life expectancy of the asset or its reliability going forward. This 
information can help organizations maintain and optimize their assets for 
improved availability, utilization, and performance.

Big Data can also be used to influence the next generation of products by 
identifying the issues that cause emergency downtime across the product 
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fleet, feeding those insights back into the design process and improving the 
manufacturing process and product quality.

Today, manufacturers are collecting valuable information from their 
capital assets either directly from connected sensors, or indirectly in their 
computer maintenance management systems (CMMS) by recording meter 
readings or logging work orders. The data comprise two types: structured 
data, such as sensor readings, real-time monitoring, failure codes, and parts 
consumption on work orders, and unstructured data such as maintenance 
reports and service logs. These data offer a treasure trove of information that 
can improve the way we manage our assets.

Exactly how can Big Data improve our management of physical assets? 
Organizations can improve asset reliability by using CMMS data to predict 
component and system failure through preventive maintenance (PM), link 
failures that occur close together, and monitor for conditions that require 
further investigation. Asset managers can better plan production runs, 
downtime, and expected maintenance-related costs based on historical data. 
The data can also be used to improve decision making, such as repair versus 
replacement based on the expected life of the asset in its current condition.

It is well documented that when cutting maintenance-related costs, opti-
mizing spare parts inventory can deliver the biggest savings. Maintenance 
managers must strike a balance between reducing maintenance-related costs 
and maintaining equipment availability. CMMS data can be used to help 
predict asset failure, optimize quality and supply-chain processes, and limit 
the number of parts onsite to what will be needed in the near future. By ana-
lyzing the rate of consumption, failure rates, and lead times, parts can be pro-
cured at the right time, mirroring just-in-time manufacturing methodology.

There is no doubt that Big Data will improve how we manage our assets. 
OEMs will use the data to manufacture more reliable systems while CMMS 
data will help maintenance technicians to work smarter. The Internet of 
Things may be a few years off for many organizations, but they can extract 
valuable information from CMMS data even today.

The good news is many organizations are already mining valuable infor-
mation from their CMMS data and making decisions that drive revenue. 
CMMS software has become more intuitive and easier to use, which is criti-
cally important for organizations that need to control maintenance-related 
costs and improve system reliability today.

1.7 Maintenance Data: Different Sources and Disparate Nature

Maintenance teams are responsible for maintaining the operation of a sys-
tem based on observations of users of the system or messages originating 
from test devices built into the equipment to establish an equipment failure 
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diagnostic, identify and locate system equipment failures, and if required, 
replace a failed item of equipment, in part or in full. The gathering of mes-
sages and observations to track down equipment failures is called main-
tenance management. The architecture of complex systems is, in general, 
based on information transfers between electronic equipment linked by a 
communication network. The location of the equipment in the system some-
times complies with strict specifications on dimensions; moreover, the equip-
ment can be difficult to access, from 10 cm to several hundred meters away 
(Horenbeek and Pintelon, 2012).

Various management information systems are able to monitor and record 
messages and observations in connection with industrial processes. These 
systems often are reactive in that they respond to present levels of monitored 
parameters or, at most, respond to present trends to control the generation 
of alarms and the like when a parameter exceeds preset values or threatens 
to do so. A typical process control system monitors sensed parameters to 
ensure they remain within preset limits defined by the programmer of the 
system. Often, the present levels can be displayed graphically to highlight 
trends.

Another form of management information system involves the schedul-
ing of maintenance procedures. By defining a useful life for each article of 
equipment among a number of related or interdependent articles, it is pos-
sible to schedule repair, replacement, or PM operations more efficiently so as 
to minimize downtime. The idea is to plan replacement or repair of equip-
ment articles for as late as practicable before an actual failure, preferably 
using intelligent scheduling procedures to minimize downtime by taking 
maximum advantage of any downtime. The scheduling system prompts or 
warns plant personnel to attend to each of the articles that may need atten-
tion at or soon after the time at which its maintenance becomes critically 
important.

It would be advantageous to provide an integrated system that not only 
monitors various assets of plant equipment, but also accounts for the inter-
dependence of the subsystems, makes decisions or predictions in view of 
stored design criteria, and makes all this information generally available to 
plant personnel. Therefore, the interrelations of the articles or subsystems, 
their design specifications, their history, and their current conditions should 
all be taken into account when assessing operational conditions and mainte-
nance needs, or when evaluating operations on an engineering level.

It is generally advisable for maintenance personnel to collect any available 
data on the subsystems operating in a plant or in an area of the plant to coor-
dinate maintenance and repair activities. In this manner, downtime for work 
on one or more articles or subsystems can be used for simultaneous work 
on others. However, the comprehensive calculation and analysis of relevant 
plant conditions can be lengthy and costly. In a monitoring system where 
information on operational conditions is only immediately available to the 
operators and maintenance technicians, the engineers and managers must 
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collect and analyze much of the same information to plan their own activi-
ties. Each group tends to collect and analyze data in a manner best suited to 
its specific area of concern.

An integrated arrangement is certainly more efficient and useful than 
one in which the various departments operate substantially on independent 
information systems. To accomplish this objective, the maintenance manage-
ment system and the process control system can be integrated with instru-
ment data collection from a variety of sources. These condition parameters 
can be factored together in integrated diagnostics systems with technical 
specifications and historical data for condition-based maintenance (CBM) 
and aging management. However, this integration requires the creation of 
a common taxonomy to select the right information, create links among 
data sources, and extract further knowledge; if this is done, operations and 
maintenance decisions can be made more effectively from a greater base of 
knowledge.

The need for improved asset performance through appropriate diagnosis 
and prognosis is considerable. A barrier has been the lack of a performance 
management solution that includes the widely diverse divisions of main-
tenance, operations, and finance; for example, if each division uses its own 
performance metrics, it is hard to make optimal decisions such as balancing 
reliability objectives against those of asset utilization.

Many people are seeking an ideal combination of self-diagnostics and 
prognosis. As a result, there are numerous versions of balanced scorecards 
and key performance indicator solutions available in the market today. They 
all say the same thing: their product will make a manufacturing process run 
better, faster, more efficiently, and with greater returns, but what they do not 
address, however, is one of the greatest challenges in improving plant asset 
performance. Simply stated, the necessary information is scattered across 
disconnected silos of data in each department; hence, it is difficult to inte-
grate these silos for several fundamental reasons. For example, control sys-
tem data are real-time data measured in seconds, whereas maintenance cycle 
data are generally measured in calendar-based maintenance time (e.g., days, 
weeks, months, quarters, semiannual, and annual), and financial cycle data 
are measured in fiscal periods.

For maintenance information, CMMS and CM are the most popular 
repositories. Although both store information on the deployed technol-
ogy, their use creates isolated information islands. While using a good ver-
sion of either technology can assist a company to reach its defined goals of 
maintenance, the combination of the two (CMMS and CM) in a seamless 
system can have exponentially more positive effects on the performance 
and maintenance of assets that either system could achieve alone. By com-
bining the strengths of a premier CMMS (PM programming, automatic 
work order generation, inventory control of maintenance, and data integ-
rity) with those of a leading-edge CM system (multiple method CM, trend 
monitoring, and expert system diagnosis), work orders could be generated 
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automatically based on information provided by diagnostic and prognos-
tic abilities of CM. A few years ago, linking CMMS and CM technology 
was dismissed as impossible or too expensive, making it difficult to justify 
research. Now, however, the technology in CMMS and CM makes it pos-
sible to achieve this “impossible” link relatively easy and inexpensively too 
(Figure 1.18).

In general, a good CMMS will perform a variety of functions to improve 
maintenance performance and can be considered a central organizational 
tool to achieve world class maintenance (WCM). Among other things, it is 
designed to shift emphasis from reactive maintenance to preventative main-
tenance. For example, it will allow a maintenance professional to set up auto-
matic preventative maintenance work order generation.

A CMMS is able to provide historical information which, in turn, can be 
used to adjust preventative maintenance over time, thus minimizing unnec-
essary maintenance or repairs, while avoiding run-to-failure repairs. In such 
a system, preventative maintenance for a piece of equipment can follow a 
calendar schedule or use meter readings.

A fully featured CMMS includes inventory tracking, workforce manage-
ment, and purchasing. It ensures database integrity to safeguard information. 
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Optimized equipment downtime, lower maintenance costs, and improved 
plant efficiency are only a few of the resulting benefits.

A CM system must alert the maintenance professional to any change 
in performance trends and accurately monitor equipment performance 
in real time. A CM package may be designed to track a wide variety of 
measurements: vibration, oil condition, temperature, operating and static 
motor characteristics, pump flow, and pressure output, to name a few. 
These measurements are taken by special monitoring tools, including 
ferrographic wear particle analysis, proximity probes, triaxial vibration 
sensors, accelerometers, lasers, and multichannel spectrum analyzers. 
Top-notch CM systems can analyze measurements such as vibration and 
diagnose machine faults. This type of expert system analysis postpones 
maintenance procedures until they are absolutely necessary, thereby cre-
ating maximum equipment uptime. Finally, the best systems offer diag-
nostic fault trending, whereby an individual machine fault severity can be 
monitored over time.

CMMS and CM systems are indispensable to any organization seeking to 
improve its maintenance operations. CMMS is a good organizational tool; 
unfortunately, it cannot directly monitor the condition of equipment. In con-
trast, CM is able to monitor condition but cannot organize overall mainte-
nance operations. Obviously, the two technologies should be combined to 
create a seamless system, one that both avoids catastrophic breakdowns and 
eliminates needless repairs.

Maintenance staff generally sense that the use of IT has a dramatic impact 
on machine reliability and maintenance efficiency. Yet few can actually 
explain or demonstrate the benefits of applying information technologies. 
Technology developers continue to deliver increasingly advanced tools, leav-
ing maintenance departments to implement, integrate, and operate these 
systems. When users combine their experience and heuristics to define main-
tenance policies and use CM systems, the resulting maintenance systems are 
a heterogeneous combination of methods and systems; the integrating factor 
is the maintenance staff. The human mind is an organizational information 
system, and the inauguration of any new maintenance program relies on the 
expertise of maintenance personnel. The literature offers many models that 
could be used to support maintenance decisions, but the majority are too 
simple to accurately represent real life. Therefore, they are not widely used 
in industry.

With the increased use of information technology and communication 
(ICT) in organizations and the emergence of intelligent sensors to mea-
sure and monitor the health status of components, the conceptualization 
and implementation of e-maintenance is becoming a reality. Although 
e- maintenance shows great promise, however, the seamless integration of 
ICT into the industrial environment continues to be a challenge. It is essen-
tial to address the needs and constraints of maintenance and the capabilities 
of ICT simultaneously.
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1.8 Required Data for Diagnosis and Prognosis

Maintenance can be considered an information processing system that pro-
duces a vast amount of data. Having data is not synonymous with infor-
mation; rather, data must be processed using analytical tools to extract 
information. In maintenance, IT and AI tools are supporting an unprece-
dented transformation from the industrial age to the information age; the 
existing and emerging technologies are analyzing real-time asset systems 
data to make predictions and determine maintenance capability. Several 
technological advances at various levels have moved toward making CBM 
a reality for industry. The benefits of these technologies have already been 
proven.

The transition to CBM requires collaboration on a large scale and is contin-
gent on the identification and incorporation of new and improved technolo-
gies into existing and future production systems. This will require new tools, 
test equipment, and embedded onboard diagnosis systems. More impor-
tantly, the transition to CBM will require the construction of data-centric, 
platform operating capabilities built on carefully developed and robust algo-
rithms. As a result, maintenance personnel, support analysts, and engineers 
will simultaneously—and in real time—be able to translate conditional data 
and proactively respond to maintenance needs based on the actual condition 
of equipment.

To reiterate the above discussion, two main systems are implemented in 
most maintenance departments today. CMMS is the core of traditional main-
tenance record-keeping practices and can facilitate the use of textual descrip-
tions of faults and actions performed on an asset, while CM systems are able 
to directly monitor the parameters of the active components. To this point, 
however, attempts to link CMMS observed events to CM sensor measure-
ments remain relatively limited in both scope and scalability.

CM systems are able to directly monitor the parameters of asset com-
ponents, but as noted above, the attempts to link observed CMMS events 
to CM sensor measurements remain limited with respect to both scope 
and scalability. A CBM strategy that estimates the optimal time for a ser-
vice visit, based on the present condition of equipment, could be a way 
to increase efficiency and reduce costs over the lifecycle. But predic-
tive maintenance approaches are frequently hampered, first, by the lack 
of knowledge of the features indicating the equipment’s condition, and 
second, by the enormous processing power required to create prediction 
algorithms to forecast the evolution of the selected features, especially 
when large measurements are collected. To avoid these issues, we propose 
data mining.

The development of future maintenance information systems to improve 
automatic CM systems enabled by embedded electronics and software in 
industrial machines is an extremely important research problem. Further, 
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understanding of the requirements and limitations from both maintenance 
AI and IT perspectives is necessary if we are to reach conclusions that are 
relevant to different end users.

1.8.1 Existing Data in the Maintenance Function

Maintenance documentation systems for recording and conveying informa-
tion are an essential operational component of the maintenance manage-
ment process. Maintenance documentation can be defined as any catalog, 
record, drawing, computer file, or manual which contains information that 
may be needed to facilitate the maintenance work. An information system 
of maintenance may be defined as the formal mechanism to store, collect, 
examine, analyze, and report maintenance information (Galar et al., 2012).

How a maintenance documentation system generally functions is shown 
in Figure 1.19. This model has evolved over a number of years through main-
tenance information base for plant units extensive study of both paper-based 
and computerized systems. It illustrates the principal features of both types, 

Maintenance information base for plant units

Maintenance execution

Maintenance
control 

Plant inventory

Plant manuals and
drawings by unit

Plant technical
records by unit

Spare parts list
by unit

Plant history
records
by unit

Life plans record by unit
standard job catalog

operating procedures record by
unit

Trade force 
history

Spare parts
usage history

Cost history

Reliability
and  availability

history

Work order out

Work order in

Allocation

Reporting

Stores system

Work order manager

Scheduled 
maintenance

Condition 
monitoring

Corrective
maintenance

request

FIGURE 1.19
Functional model for maintenance documentation system.
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including those they have in common. The system is composed of the follow-
ing interrelated modules:

 1. Plant inventory
 2. Maintenance information base
 3. Maintenance schedule
 4. CM
 5. Maintenance control

The plant inventory comprises a coded list of the plant units. It offers a way 
into the system. In the plant inventory, asset data are collected in an organized 
and structured way. The major data categories for equipment are the following:

• Classification data, for example, industry, plant, location, and system.
• Equipment attributes, for example, manufacturer’s data and design 

characteristics.
• Operating data, for example, operating mode, operating power, and 

environment.

These data categories apply to all equipment classes, so data specific to an 
equipment class (e.g., number of stages for a compressor) are also needed. 
The classification of equipment into technical, operational, safety related, 
and environmental parameters is the basis for collecting asset data accord-
ing to the nature of devices (safety instrumented systems, productive assets, 
maintenance tools, CM systems, etc.). This information is necessary to deter-
mine whether the data are suitable for various applications.

There are two kinds of maintenance actions:

• Actions to correct an item after it has failed (corrective maintenance 
or CM).

• Actions to prevent an item from failing (PM). A part of this may only 
be checks.

In both cases, the information is recorded to supply the following addi-
tional information:

• The total resources used for maintenance (man–hours, spare parts).
• The full story of an item’s life (all failures and maintenance).
• The total downtime and, by extension, total equipment availability, 

both operational and technical.
• The balance between preventive and corrective maintenance (inspec-

tions, tests) to verify the condition of the equipment and decide if 
any PM is required.
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Figure 1.20 shows the common maintenance actions. To this, we can add 
another maintenance type: maintenance is either deferred or advanced in 
time when an unplanned opportunity becomes available.

Maintenance actions are the result of a specific maintenance program. The 
choice of methodology, that is, the ratio of preventive to corrective mainte-
nance, and so on, is always up to the maintenance manager who uses the 
plant inventory and maintenance information base to construct the model to 
be used. As the name suggests, the maintenance information base is a data-
base of maintenance information, for example, unit life plans, job catalog, 
and so on, for each of the units. These data include:

• Identification data: For example, maintenance record number, related 
failure, and/or equipment record.

• Maintenance data: Parameters characterizing a particular mainte-
nance event, for example, date of maintenance, maintenance cat-
egory, maintenance activity, impact of maintenance, and items 
maintained.

• Maintenance resources: Maintenance man–hours per discipline and 
total utility equipment/resources applied.

• Maintenance times: Active maintenance time and downtime.

A common report should be used for all equipment classes. For some 
equipment classes, minor adaptations may be needed. Table 1.2 shows the 
minimum data needed to meet international standards, maintenance asso-
ciation standards, and CMMS manufacturers’ recommendations.

Recording maintenance actions is crucial for successful knowledge extrac-
tion; therefore, all actions should be recorded. PM records are useful for the 
maintenance engineer, but will be helpful for the maintenance engineer 

Opportunity
maintenance

Maintenance
categories

Preventive
maintenance

Corrective
maintenance

Testing inspection Condition
monitoring

Periodic

Before failure After failure

FIGURE 1.20
Maintenance categorization.
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who wants to record or estimate the availability of equipment and do a life-
time analysis, taking failures into account, as well as maintenance actions 
intended to restore the item to “as-good-as-new” condition. PMs are often 
performed on a higher indenture level (e.g., “package” level); hence, there 
may not be data available that can be related to the items on the lower inden-
ture level. This restriction must be considered when defining, reporting, and 
analyzing PM data.

During the execution of PM actions, impending failures may be discov-
ered and corrected. In this case, the failure(s) is (are) recorded as any other 
failure with the subsequent corrective action done even though it was ini-
tially considered as a PM-type activity. In this case, the failure detection 
method is referred to as the type of PM being done. However, some failures, 
generally minor ones, may be corrected as part of the PM and not recorded. 
The practice may vary between companies and should be addressed by the 
data collector(s) to reveal the type and number of failures included in the PM 
program.

A final option is to record the planned PM program as well. In this case, 
it is possible to additionally record the differences between the planned and 
the actual performed PM (backlog), (EN 15341, 2007). An increasing backlog 
will indicate that control of the conditions of the plant is being jeopardized 
and may, in adverse circumstances, lead to equipment damage, pollution, or 
personnel injury.

For corrective maintenance, failure records are especially relevant to 
knowledge extraction, so failure data must be recorded in way to facilitate 
further computation. A uniform definition of failure and a method of clas-
sifying failures are essential when data from different sources (plants and 
operators) need to be combined in a common maintenance database.

TABLE 1.2

Maintenance Records Meeting International Standards and Recommendations

If user can add hand-
written comments or 

documents, further data 
mining becomes more 

difficult

Accuracy in data feeding 
process is required to 

warrant a proper
maintenance control and 
trustable results in data 

mining

Data relevant for
reliability prediction
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These failure data are characterized as:

• Identification data: For example, failure record number and related 
equipment that has failed.

• Failure data for characterizing a failure: For example, failure date, items 
failed, failure impact, failure mode, failure, cause, and failure detec-
tion method.

The type of failure and resulting maintenance data are normally common 
to all equipment classes, with exceptions where specific data types need to 
be collected. Corrective maintenance events should be recorded to describe 
the corrective action following a failure.

Finally, the combination of plant inventory and maintenance-based infor-
mation leads to the production of a maintenance schedule. This schedule is 
a mixture of available techniques to fulfill stakeholders’ needs and achieve 
company goals. This mixture is usually composed of both scheduled main-
tenance and CM. The maintenance schedule includes the preventive main-
tenance jobs (over a year and longer) listed against each of the units in the 
life plans. The CM schedule includes the CM tasks, for example, vibration 
monitoring, listed against each unit. PM records must contain the complete 
lifetime history of an equipment unit.

The system has to plan and schedule preventive jobs (arising from the 
maintenance schedule), corrective jobs (of all priorities) and, where neces-
sary, modification jobs. The jobs are carried out via hard copy or electronic 
work orders. Information coming back on the work orders (and other doc-
uments) is used to update the planning systems and provide information 
for maintenance control. The maintenance control system uses informa-
tion from a number of sources, including work orders, stores, shift records, 
and so on, to provide reports for cost control, plant reliability control, and 
so on.

A main issue is the integration of these data with the rest of company 
records, such as health and safety, finances, and so on. Up until about 10 
years ago, most CMMS were stand-alone; that is, they had no electronic 
linkage with other company software. The most recent computerized main-
tenance systems are integrated electronically (in the same database) with 
stores, purchasing, invoicing, company costing, and payroll and can have 
electronic links to project management and CM software.

1.8.2 In Search of a Comprehensive Data Format

All mentioned data become a database record, for example, failure events, 
and are identified in the database by a number of attributes. Each attribute 
describes one piece of information, for example, the failure mode. Each 
piece of information should be coded where possible. The advantages of this 
approach versus free text are:
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• Facilitation of queries and analysis of data
• Ease of data input
• Consistency check at input by having predefined code lists
• Minimized database size and shorter response time to queries

The range of predefined codes should be optimized. On the one hand, a 
short range of codes will be too general to be useful. On the other hand, 
a wide range will give a more precise description, but will slow the input 
process and may not be used fully by the data collector. If possible, selected 
codes should be mutually exclusive.

The disadvantage of a predefined list of codes versus free text is that 
some detailed information may be lost. It is recommended that free text be 
included to provide supplementary information. A free-text field with addi-
tional information is also useful for quality control of data. This free-text box 
is extremely risky in further data-mining processes due to difficulties of text 
recognition and interpretation (see Table 1.2). Different employees have dif-
ferent skills to describe failures, events, and actions, and expert systems are 
not good at distinguishing these variations. For all mentioned categories, the 
inclusion of additional free text is recommended to give more information if 
available and deemed relevant, for example, a more detailed verbal descrip-
tion of the occurrence leading to a failure event. This would assist in quality 
checking the information and browsing through single records to extract 
more detailed information. However, users should be aware of the risk in the 
automatic processing of these records.

1.8.3 Database Structure

The data collected should be organized and linked in a database to provide 
easy access for updates, queries, and analysis. Several commercial databases 
are available for use as main building blocks in designing a reliability data-
base. Two relevant aspects of data structure are:

• Logical structure: This requires a logical link between the main data 
categories in the database. The model represents an application-
oriented view of the database. The example in Figure 1.21 shows a 
hierarchical structure, with failure and maintenance records linked 
to the classification/equipment description (inventory). Records 
describing PM are linked to the inventory description in a many-to-
one relation. The same applies for failures, which also have related 
corrective maintenance records linked to each failure. Each record 
(e.g., failure) may consist of several attributes (e.g., failure date and 
failure mode).

• Database architecture: This refers to the design of the database, spe-
cifically how the individual data elements are linked and addressed. 
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Four model categories are available, ranked here in ascending order 
of complexity and versatility:
• Hierarchical model: Data fields within records are related by a 

“family tree-like” relationship. Each level represents a particular 
attribute of data.

• Network model: This is similar to the hierarchical model, but each 
attribute can have more than one parent.

• Relational model: The model is constructed from tables of data ele-
ments, called relations. No access path is defined beforehand; the 
manipulation of data in tabular form is possible. The majority of 
database designs use this concept.

• Object model: Software is considered a collection of objects, each 
with a structure and an interface. The structure is fixed within 
each object, while the interface is the visible part providing the 
link address between the objects. Object modeling enables the 
database design to be flexible, extendable, reusable, and easy to 
maintain. This model is popular in new database concepts.
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1.8.4 CM Data and Automatic Asset Data Collection

CM involves comparing online and offline data with the expected values; 
if necessary, it should be able to generate alerts based on preset operational 
limits. Health assessment determines if the health of the monitored compo-
nent or system has degraded, and conducts fault diagnostics. The primary 
tasks of prognostics involve calculating the future health and estimating the 
remaining useful life (RUL). In reality, however, a reliable and effective CBM 
faces challenges. For one thing, initiating CBM is costly. Often the cost of 
instrumentation can be quite large, especially if the goal is to monitor equip-
ment that is already installed. It is, therefore, important to decide whether 
the equipment is important enough.

Implementing CBM requires setting an information system to meet the 
following basic requirements:

• Collecting and processing a large quantity of information not previ-
ously available, on the condition of each part of a machine.

• Initiating corrective maintenance actions within the lead time (the 
period of time between the off-limits condition and an emergency 
shutdown). There are two possible situations:
• The condition of machine is not yet close to breakdown. In this 

case, the normal procedure through the maintenance planning 
section is followed.

• The condition of machine is already well within the lead time 
(near to breakdown). In this situation, the information must be 
directly passed on to the maintenance supervision for emer-
gency corrective maintenance actions.

To operate the CBM program correctly, the maintenance personnel should 
introduce the following into the system:

• Condition of machine
• Part of machine probably defective
• Probable defect
• Time during which failure must be repaired

By scrutinizing and correlating the diagnosis to actual findings during 
repair work, it will be possible to:

• Control the examiner training
• Improve the correlation between parameters chosen for condition 

measurement and actual defects found
• Obtain severity curves specific to each machine
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Making the potential of CM a reality requires large amounts of data to 
be collected, monitored, filtered, and turned into actionable information. 
The cheaper and more ubiquitous the computerized monitoring hardware 
becomes, the greater the volume of data and the more challenging it becomes 
to manage and interpret. The vast amount of diagnostic data produced by 
today’s smart field devices can be a very important source for accurate docu-
mentation of maintenance activities. But the sheer volume and complexity of 
such information can be daunting and difficult for maintenance personnel to 
manage. What is needed is an effective means of compiling and organizing 
the data for day-to-day use by staff, while preserving and recording signifi-
cant events for future reference.

Data are becoming more and more available. However, in most cases, these 
data may not be used due to their bad quality or improper storage:

• Project managers do not have sufficient time to analyze the comput-
erized data and do not care about proper storage.

• The complexity of the data analysis process is beyond the capabili-
ties of the relatively simple maintenance systems commonly used.

• There is no well-defined automated mechanism to extract, prepro-
cess and analyze the data, and summarize the results; so stored data 
are not reliable.

Maintenance personnel not only cope with large amounts of field- 
generated data, they turn that information to their advantage in a number of 
ways. Real-time condition monitoring (RTCM) systems produce numerous 
warnings, alarms, and reports that can be used by maintenance people for 
many purposes. This allows the most important issues to be identified and 
handled quickly.

The ultimate goal is to fully integrate RTCM data with CMMS to generate 
work orders as needed. This will provide true automation, from the time 
a field device begins to show signs of reduced performance to the time a 
work order is printed in the maintenance department and a technician is 
dispatched to the scene. Figure 1.22 shows the automation of work-order dis-
patching. This level of integration of CMMS and CM is feasible due to today’s 
rapid IT evolution. With the development of open-communication protocols, 
the information accumulated by smart field devices can be captured by asset 
management software. It is no longer necessary for technicians to carry 
handheld communicators or laptops into the plant to evaluate the condition 
of instruments, some of which are quite inaccessible or in hazardous areas, to 
be followed by manually documenting test results and current device status.

Current applications compile databases of every smart instrument used for 
process control, including design parameters, original configuration, main-
tenance history, and current operating condition. With these online tools, 
technicians can obtain up-to-date information on any device and never have 
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to make manual entries back into a system. Every event is recognized and 
recorded, whether initiated by a technician or caused by an external force 
such as an equipment breakdown or power failure. This process produces 
an immediate result for the shop floor level: work orders can be opened and 
closed with the help of devices that collect automatically information and 
send a warning if something wrong happens. Users can refer to recorded 
alerts to identify any devices that have been problematic over time and 
determine what corrective steps may have been taken previously. Automated 
documentation provides a seamless record of events in a given production 
area, including communication failures, device malfunctions, and process 
variables that are out of range. Armed with this information, maintenance 
personnel are better equipped to understand and resolve nagging repetitive 
issues to improve the process. If there is an issue, or if maintenance person-
nel are experiencing a rash of issues, they can go back into the records and 
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get a sense of what has been going on over time, searching by a specific 
device or by location.

Since all records are date and time stamped, users can easily determine 
when and by whom a particular device was changed or tested, including 
“as found/as left” notations. With this information in a database that can-
not be edited, it should never be necessary for technicians to spend time 
searching for historical information on a device. Since events can also be 
recorded manually, users can document unusual occurrences affecting the 
entire plant, such as a lightning strike or power outage, or individual events 
like device inspections. This decision level is extremely useful for techni-
cians to take immediate actions.

A vast amount of available information can produce new knowledge but 
must be properly exploited. Modern CMMS information are stored in large 
relational or tabular databases. This format is appropriate for integrated 
research, as many software tools are available to investigate the tables. As 
historical analysis requires only certain fields, sensitive data can be removed 
or filtered. Despite this filtering process, the database subset will retain a 
full history of a component’s faults and any related maintenance actions, 
thus creating a comprehensive maintenance profile while alleviating secu-
rity concerns.

Importing CM data into a relational database can be challenging. Each 
type of sensor generates different data classes, sampling rates, and num-
bers of compiled indicators. Manufacturers store collected data in unique 
proprietary formats, each of which requires platform-specific importation 
software. However, most CM software allows CM data to be exported from 
the original interface so that it can be expanded and generalized.

Although CMMS and CM data can now coexist within a single database 
where they can be queried and explored, automating the discovery of linked 
events requires additional processing. Data on given maintenance faults are 
textual; sensor data represent an arbitrary data class. Relating them can only 
be done by compiling overlapping metadata (Tianhao et al., 1992). The fields 
generated characterize the location and significance of events, creating a 
quantified set of parameters that can be used to compare the disparate data.

The generation of metadata for CM records depends on the data class. One 
dimensional and dimensionless data classes can be assigned rarity param-
eters using statistical distribution analysis. Higher dimensional data classes 
require neural networks to identify anomalies. Determining rarity is often 
accomplished through simple single variable statistical analysis, while sever-
ity is typically derived from developers’ recommended threshold values. 
More complex domain types require more advanced but well-understood 
analyses such as neural networks that can isolate anomalous points from 
multidimensional data.

It is predicted that through the integration process, more advanced metrics 
and indicators will be discovered to implement previously unexplored rela-
tionships in the data such as multiparameter trending. This new knowledge 
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will help maintenance personnel determine the RUL of a system and sched-
ule operation and maintenance processes accordingly. The information 
affects the replacement of assets, plant shutdowns, overhauls, and so on. It 
constitutes the second decision level displayed in Figure 1.4; strongly related 
to business goals, it is useless for immediate interventions.
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2
Condition Monitoring: Available Techniques

2.1  Role of Condition Monitoring in Condition-Based 
Maintenance and Predictive Maintenance

Currently, to know when a maintenance action is needed, it is necessary to 
monitor (follow) the health status of the machine (its condition) by means of 
different parameters that reflect the health status, for example, the evolution of 
the vibration level over time. This action is called condition monitoring (CM), 
which is the fundamental tool of condition-based maintenance (CBM). By fol-
lowing, numerical or graphically, the evolution of the measured parameters 
over time, the health status of the machine can be detected at any point in time. 
Together with preset alarm levels, it will let us know when it is time to intervene 
on the machine to prevent a failure/problem. Extrapolating historical evolution 
(the trend), numerically or graphically, we can calculate or estimate how long it 
will take until the alarm level is reached. This means this type of maintenance 
has predictive features that make it possible to anticipate the failure with suf-
ficient time to avoid it. This technique is called predictive maintenance (PdM).

In summary, PdM and CBM have the same meaning and are essentially 
the same thing. But it should be clear that CBM is just that, maintenance 
actions based on the condition of the equipment, in contrast to maintenance 
actions based on time or failure, while PdM is based on the equipment’s 
condition history to establish predictions (any CM could be used to develop 
a history or record). In other words, CM is the basic tool used by both CBM 
and PdM to assess the condition of the machine, and detect potential failure 
as soon as the first signs of failure appear. CBM is the maintenance strategy 
and CM is the tool used to achieve it.

2.2 Difference between CM and Nondestructive Testing

Nondestructive testing (NDT) is an umbrella term for a wide range of analy-
sis techniques used in science and industry to evaluate the properties of a 
material, component, or system without causing damage (Mobley, 2001).



64 Artificial Intelligence Tools

In engineering, NDT includes all methods of detecting and evaluating 
flaws in materials. Flaws can include cracks or inclusions in welds and cast-
ings, or variations in structural properties, all of which can affect the ability 
of the material or structure to perform its functions. In such cases, using 
NDT will ensure both safe operation and quality control (including environ-
mental concerns).

NDT can be used for in-service inspections and for CM in an operating 
plant. It can measure components and spacings or physical properties such 
as hardness and internal stress.

The test process itself has no deleterious effects on the material or struc-
ture being tested. In addition, NDT has no clearly defined boundaries; it 
ranges from simple techniques such as visual examination of surfaces, to 
well-established methods of radiography, ultrasonic testing, magnetic par-
ticle crack detection, to new and highly specialized methods such as the 
measurement of Barkhausen noise and positron annihilation. Finally, NDT 
methods can be coupled with automated production processes or with the 
inspection of localized problem areas.

Traditionally, NDT was used to detect material defects (i.e., cracks and 
voids) using x-ray, ultrasonic, or other similar techniques. However, com-
puterized signal processing, data interpretation, and processing play an 
increasingly important role. Certain nondestructive methods, formerly used 
for final product inspection, such as infrared thermography (IT), vibration 
analysis (VA), and acoustic emission (AE), are now being used for check-ups 
during the lifespan of a component or a machine, along with the accompa-
nying diagnostics and prognostics. This latter usage is called CM (BINDT, 
2014).

CM originally used mainly vibration and tribology analysis, but now 
includes a number of nondestructive techniques: thermal imaging, AE, and 
so on. These diagnostic and prognostic elements have increasingly sophis-
ticated signal processing; in addition, they are using trends from repeated 
measurements in time intervals of days and weeks. Smart systems, an even 
newer concept, incorporate measuring elements directly into structures.

In other words, we are seeing a considerable overlap between NDT and 
CM. Both disciplines will benefit from close collaboration.

2.2.1 What Is NDT?

NDT is a test on or an evaluation of any type of test object without the need 
to change or alter that object in any way, to determine the presence or absence 
of conditions or discontinuities that may affect the utility or serviceability 
of that object. NDT can also measure test object characteristics, such as size, 
dimension, configuration, or structure, including alloy content, hardness, 
grain size, and so on. The most basic definition is a test performed on an object 
of any type, size, shape, or material to determine the presence or absence of 
discontinuities, or to evaluate other material characteristics. Nondestructive 
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examination (NDE), nondestructive inspection (NDI), and nondestructive 
evaluation (NDEX) are also terms used to describe this technology. Although 
the technology has been around for years, it remains generally unknown to 
the average person, who takes it for granted that buildings will not collapse, 
planes will not crash, and products will not fail (Marwan, 2004).

Although NDT cannot ensure that failure is not going to occur, it plays an 
important role in reducing the chances of failure. That being said, other vari-
ables, such as inadequate design and improper application of the object, can 
contribute to failure even when NDT is appropriately applied.

Over the past 25 years, NDT technology has experienced significant inno-
vation and growth. It is, in fact, considered to be one of the fastest-growing 
technologies from the standpoint of uniqueness and innovation. Recent 
equipment improvements and modifications, as well as a more complete 
understanding of materials and the use of diverse products and systems, 
have all contributed to creating a technology with widespread use and 
acceptance throughout many industries.

This technology can also affect our daily lives, especially in the area of 
safety, where it has accomplished more than any other technology, including 
medicine. If it were not for the effective use of NDT, it is hard to imagine the 
number of accidents that might occur, not to mention the unplanned power 
outages. NDT is now an integral part of practically all industrial processes 
where product failure can result in accidents or bodily injury. Virtually every 
major industry in existence today depends on it, to some extent or other.

In addition to everyday safety, NDT is a process performed on a daily basis 
by the average individual, who is not aware that it is taking place. For exam-
ple, when a coin is deposited in the slot of a vending machine and the selec-
tion is made, whether for candy or a soft drink, that coin is actually subjected 
to a series of nondestructive tests. It is checked for size, weight, shape, and 
metallurgical properties very quickly, and if it passes all tests satisfactorily, 
the product being purchased will make its way through the dispenser. To 
cite another example, it is common to use sonic energy to determine the loca-
tion of a stud behind a wallboard. These examples, in a very broad sense, 
meet the definition of NDT—an object is evaluated without changing it or 
altering it in any fashion.

Finally, the sense of sight is employed regularly by individuals to evalu-
ate characteristics such as color, shape, movement, and distance, as well as 
for identification purposes (Hellier, 2003). In fact, the human body has been 
described as one of the most unique NDT instruments ever created. Heat can 
be sensed by placing a hand in close proximity to a hot object and, without 
touching it, determining there is a relatively higher temperature present in 
that object. With the sense of smell, a determination can be made that there 
is an unpleasant substance present based simply on the odor. Without vis-
ibly observing an object, it is possible to determine roughness, configura-
tion, size, and shape simply through the sense of touch. The sense of hearing 
allows the analysis of various sounds and noises and, based on this analysis, 
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judgments and decisions relating to the source of those sounds can be made. 
For example, before crossing a street, we may hear a truck approaching. The 
obvious decision is not to step out in front of this large, moving object. But of 
all the human senses, the sense of sight provides us with the most versatile 
and unique NDT approach. When we consider the wide application of the 
sense of sight and the ultimate information that can be determined by mere 
visual observation, it becomes apparent that visual testing (VT) is a widely 
used form of NDT.

NDT, in fact, can be considered an extension of the human senses, often 
through the use of sophisticated electronic instrumentation and other 
unique equipment.

In industry, NDT can do the following:

 1. Examine raw materials before processing
 2. Evaluate materials during processing for process control
 3. Examine finished products
 4. Evaluate products and structures once in service

It is possible to increase the sensitivity and application of the human 
senses when used in conjunction with these instruments and equipment. But 
the misuse or improper application of a nondestructive test can cause cata-
strophic results. If the test is not properly conducted or if the interpretation 
of the results is incorrect, disastrous results can occur. It is essential that the 
proper nondestructive test method and technique be employed by qualified 
personnel to minimize these problems. Conditions for effective NDT will be 
covered later in this chapter.

To summarize, NDT is a valuable technology that can provide useful 
information on the condition of an object if it tests essential elements, follows 
approved procedures, and is conducted by qualified personnel.

2.2.2 Concerns about NDT

Certain misconceptions and misunderstandings should be addressed. One 
widespread misconception is that the use of NDT will ensure, to a degree, 
that a part will not fail or malfunction. This is not necessarily true. Every 
nondestructive test method has limitations. A nondestructive test by itself 
is not a panacea. In most cases, a thorough examination will require a mini-
mum of two methods: one for conditions that would exist internally in the 
part and another method more sensitive to conditions at the surface of the 
part. It is essential that the limitations of each method be known prior to use. 
For example, certain discontinuities may be unfavorably oriented toward 
detection by a specific nondestructive test method. The threshold of detect-
ability is another major variable that must be understood and addressed for 
each method. It is true that there are standards and codes describing the 
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type and size of discontinuities considered acceptable or not acceptable, but 
if the examination method is not capable of capturing these conditions, the 
codes and standards are basically meaningless.

Another misconception involves the nature and characteristics of the part 
or object being examined. It is essential that as much information as possible 
be known and understood as a prerequisite to establishing test techniques. 
Important attributes such as the processes that the part has undergone and 
the intended use of the part, as well as applicable codes and standards, must 
be thoroughly understood as a prerequisite to performing a nondestruc-
tive test. The nature of the discontinuities anticipated for the particular test 
object should also be well known and understood.

At times, the erroneous assumption is made that if a part has been exam-
ined using an NDT method or technique, some magical transformation 
guarantees the part is sound. Codes and standards establish minimum 
requirements and are not a source of assurance that discontinuities will not 
be present. Acceptable and unacceptable discontinuities are identified by 
these standards, but there is no guarantee that all acceptable discontinuities 
will not cause some type of problem after the part is in service. Again, this 
illustrates the need for some type of monitoring or evaluation of the part or 
structure once it is operational.

A final widespread misunderstanding is related to the personnel perform-
ing these examinations. NDT is a “hands-on” technology, but not necessarily 
an easy one to apply. In fact, the most sophisticated equipment and the most 
thoroughly developed techniques and procedures can result in potentially 
unsatisfactory results when applied by an unqualified examiner. A major 
ingredient in the effectiveness of a nondestructive test is the personnel con-
ducting it and their qualifications (Hellier, 2003).

2.2.3 Conditions for Effective NDT

Many variables associated with NDT must be controlled and optimized. 
The following major factors must be considered for an NDT to be effective 
(Hellier, 2003):

 1. The product must be “testable.” There are inherent limitations with 
each nondestructive test method, and it is essential that these limi-
tations be known so the appropriate method is applied based on 
the variables associated with the test object. For example, it would 
be very difficult to provide a meaningful ultrasonic test on a small 
casting with very complex shapes and rough surfaces. In this case, it 
would be much more appropriate to consider radiography. In another 
case, the object may be extremely thick and high in density, making 
radiography impractical. Ultrasonic testing, on the other hand, may 
be very effective. In addition to the test object being “testable,” it must 
also be accessible.
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 2. Approved procedures must be followed. It is essential that all NDEs 
be performed following procedures developed in accordance with 
the applicable requirements or specifications. In addition, it is neces-
sary to qualify or “prove” the procedure to assure it will detect the 
applicable discontinuities or conditions and the part can be exam-
ined in a manner that will satisfy the requirements.

 3. Once the procedure has been qualified, a certified NDT Level III indi-
vidual or other quality assurance person who is suitably qualified to 
properly assess the adequacy of the procedure should approve it.

 4. Equipment must operate properly. All equipment to be used must 
be in good operating condition and properly calibrated. In addi-
tion, control checks should be performed periodically to ensure the 
equipment and accessory items are functioning properly.

 5. Annual calibrations are usually required but a “functional” check is 
necessary as a prerequisite to actual test performance.

 6. Documentation must be complete. It is essential that proper test doc-
umentation be completed at the conclusion of the examination. This 
should address all key elements of the examination, including cali-
bration data, equipment and part description, procedure used, iden-
tification of discontinuities if detected, and so on. In addition, the 
test documentation should be legible. There have been cases where 
the examination was performed properly and yet the documenta-
tion was so difficult to interpret that it cast doubt on the results and 
led to concerns regarding the validity of the entire process.

 7. Personnel must be qualified. Since NDT is a “hands-on” technology 
and depends on the capabilities of the individuals performing the 
examinations, personnel must not only be qualified, but also properly 
certified. Qualification involves formalized planned training, testing, 
and defined experience.

2.2.4 Qualification as a Main Difference

The effectiveness of a nondestructive test primarily depends on the qualifi-
cations of the individuals performing the examinations. Most nondestruc-
tive tests require thorough control of the many variables associated with 
these examinations. The subject of personnel qualification has been an issue 
of much discussion, debate, and controversy over recent decades. There are 
many different positions on what constitutes qualification. The most com-
mon approach is to utilize some form of certification, but there are many 
very different certification programs.

The term “qualification” generally refers to the skills, characteristics, and 
abilities of the individual performing the examinations which are achieved 
through a balanced blend of training and experience. “Certification” is defined 
as some form of documentation or testimony that attests to an individual’s 
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qualification. Therefore, the obvious process involved in the attainment of a 
level of certification necessitates that the individual satisfactorily completes 
certain levels of qualification (training combined with experience) as a pre-
requisite to certification. In fact, a simple way to explain this system would 
be to consider the steps involved in becoming a licensed driver. A candidate 
for a driver’s license must go through a series of practical exercises in learn-
ing how to maneuver and control a motor vehicle and, in time, is required 
to review and understand the various regulations dealing with driving that 
vehicle. Once the regulations are studied and understood, and upon comple-
tion of actual practice driving a vehicle, the individual is then ready to take 
the “certification examination.” Most states and countries require applicants 
to pass both written and vision examinations, as well as to demonstrate their 
ability to operate and maneuver the motor vehicle. Once those examinations 
are completed, the candidate is issued the “certification” in the form of a 
driver’s license. The mere possession of a driver’s license does not guarantee 
there will not be mistakes. It is obvious that there are individuals who carry 
driver’s licenses but are not necessarily qualified to safely drive the vehicles. 
This is quite apparent during “rush-hour” traffic time.

Unfortunately, the same situation occurs in NDT. Since individuals by the 
thousands are certified by their employers, there are major variations within 
a given level of certification among NDT practitioners. Those countries that 
have adopted some form of centralized certification do not experience these 
variations to the same degree as those still using employer certification 
approaches.

One of the earliest references to any form of qualification program 
for NDT personnel appears in the 1945 spring issue of a journal titled 
Industrial Radiography, published by the American Industrial Radium and 
X-Ray Society. The name of this organization was eventually changed to 
the Society for Nondestructive Testing (SNT) and, ultimately, the American 
Society for Nondestructive Testing (ASNT). The original journal, Industrial 
Radiography, is now referred to as Materials Evaluation. An article in that 1945 
issue titled “Qualifications of an Industrial Radiographer” proposed that the 
society establish standards for the “registration” of radiographers by some 
type of examination, leading to a certification program. By the late 1950s, the 
subject of qualification or registration was being discussed more frequently. 
A 1961 issue of the journal, now called Nondestructive Testing, contained an 
article titled “Certification of Industrial Radiographers in Canada.” Then, in 
1963, at the Society for Nondestructive Testing’s national conference, a newly 
formed task group presented a report titled “Recommended Examination 
Procedure” for personnel certification. Finally, in 1967, ASNT published the 
first edition of “Recommended Practice” for the qualification and certifica-
tion of NDT personnel in five methods (applicable NDT methods are used 
as eddy current [ET], liquid penetrant [PT], magnetic particle [MT], radiog-
raphy [RT], ultrasonic [UT], and visual testing [VT]). This first edition, gen-
erally called the 1968 edition of SNT-TC-1A, was a set of recommendations 
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designed to provide guidelines to assist employers in the development of a 
procedure referred to by the document as a “Written Practice.” This Written 
Practice became the key procedure for the qualification and certification of 
NDT personnel.

Today, SNT-TC-1A continues to be used widely in the United States as well 
as in many other countries and, in fact, it is probably the most widely used pro-
gram for NDT personnel certification in the world. Over the years, it has been 
revised, starting in 1975, then again in 1980, 1984, 1988, 1992, 1996, and 2000. 
With this pattern of revisions, it is anticipated that there should be a new revi-
sion every four years. The Canadian program was first made available in 1961.

With the development of a new training and certification standard for CM, 
namely, ISO18436, through the efforts of ISO/TC108/SC5, a new level of har-
monization now exists between the various CM methods. Methods covered 
include VA, AE, lubrication management (LM), and IT. AE and IT are testing 
methods also specified in some NDT standards such as EN473 and ISO9712. 
With the acceptance of ISO18436, the world is now experiencing “growth 
pains” with a good deal of resulting confusion for some trainers and certify-
ing bodies (CBs) issuing certificates of compliance to ISO18436. The issues of 
concern include the following:

 1. Two different ISO committees (TC108 and TC135) work on training 
specification documents for CM and NDT, respectively.

 2. People in the NDT community do not appreciate the differences 
between NDT and CM for the same method.

 3. Companies are unfamiliar with ISO18436 and the 30+ “technical 
foundation” CM standards.

 4. Not all CBs within the European Federation of Non-Destructive 
Testing (EFNDT) will extend their scope to include certification of 
CM under ISO18436 within 2006–2007, leaving implementation of 
the program to a few CBs.

 5. The world obviously recognizes the growth in CM, but a significant 
number of “rogue” trainers are falsely claiming to be accredited 
trainers complying with ISO18436.

 6. Some CBs prefer to stay with EN473, ISO9712, IAEA 628, and ASNT 
for training and certification of AE and IT personnel under an 
NDT umbrella, even though their duties are really CM-based, thus 
increasing the confusion among practitioners.

 7. NDT training bodies see the establishment of CM training bodies 
as detrimental to their business, therefore offering resistance to CM 
scheme development in general.

 8. Confusion exists within the CM industry, which has never had cer-
tification standards, as to who accredits or approves whom and who 
certifies whom.



71Condition Monitoring

These concerns being experienced by people in the CM community with 
the roll-out of ISO18436 are also topics of discussion at ISO/TC108.

With some large multinational companies looking to include ISO18436 into 
company policy in 2006 and many global CM training companies looking to 
supply the demand, the future for CM is bright. Resolving some of these 
issues and improving the relationship with NDT practitioners will ease the 
growth pains.

To begin discussion on these issues, it is pertinent to state that both NDT 
and CM methods have been serving industry, side by side, for many decades. 
The mature NDT methods are adequately specified in standards such as 
EN473 and ISO9712 and guidelines such as SNT-TC-1A. CM methods such 
as VA and LM (which includes tribology and wear debris analysis) are also 
mature methods, but have never been covered by a certification of compe-
tence. In CM, in 1996, the ISO technical committee (ISO/TC108/SC5) began 
work on standards for vibration and shock in machines. The scope of TC108 
has since evolved to include AE, LM, and IT, with the most recent extension 
(December 2005) to include airborne UT, laser stereography (interferometry), 
and motor current analysis. The committee scope has now been extended to 
include monitoring of structures.

2.2.4.1 Commonality between NDT and CM

The commonality of methods between NDT and CM specified by ISO18436 
exist mainly with AE and IT, but there is dissention among practitioners. 
More specifically, there is a genuine equivalence only in AE at level 3, as 
specified in ISO/DIS18436-6 and ISO9712:2005. Of added concern through-
out the CM community is the inclusion of IT and AE into the NDT technical 
reference documents ISO/TR 25107 (Non-Destructive Testing—Guidelines 
for NDT Training Syllabuses), which enhances the similarity of these meth-
ods in NDT and CM. However, the member CBs of CEN/TC138 decided 
in 2005 not to adopt the ISO9712:2005 version, deciding instead to review 
EN473:2000 (Stephen, 2006).

Regardless of the commonality of methods between NDT and CM in areas 
of general theory and basic applications, there is a definite demarcation in 
areas such as CM program design, implementation and management, CM 
standards, and CM applications (in machines, structures, electrical, and 
other applications), which do not exist in NDT training. Any commonality is 
restricted by the differences in scope and applications in different industrial 
applications. That is, CM is primarily predictive in intent, as it applies test 
methods to monitor the condition (or health) of a machine or structure over 
time, generating diagnostic data that yield prognostic (predictive) output 
using CM prognostic standards, providing residual life determination and 
whole life cycle cost analysis of major assets.

NDT applications are restricted to reactive or scheduled testing within 
a defined maintenance or production protocol, normally on materials or 
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components that are not part of a machine. The latter is also an application 
undertaken by a CM practitioner, suggesting that NDT methods are tools (a 
subset) of a CM program.

To harmonize NDT and CM, each CB could establish training modules 
that comply with both CM and NDT requirements, for example, theory 
and basic applications, which all NDT-qualified persons would satisfy. The 
remaining CM-specific modules could be CM-diagnostics/prognostics, 
CM-design/implementation and management, CM-standards and codes, 
and CM-sector-specific machine, structures, or electrical systems applica-
tions. Future development of IT modules may include medical and/or veteri-
nary thermography for monitoring the condition (health) of patients (human 
or animal). That is, for example, a level 2 NDT-qualified AE person could 
have his/her NDT certificate accepted as proof of partly meeting the CM pre-
requisite, and needs only to attend a shortened training program consisting 
of selected CM-specific modules, together with meeting the CM experience 
requirement of testing in a CM environment.

2.3 Oil Analysis

Oil must be sampled and analyzed for various properties and materials to 
monitor wear and contamination in an engine, transmission, or hydraulic 
system. Regular sampling and analysis establishes a baseline of normal 
wear; thus, abnormal wear or contamination is more readily apparent (Bob 
is the Oil Guy, 2014).

Oil that has been inside any moving mechanical apparatus, including 
engines, for any length of time will reflect the exact condition of that appa-
ratus. Over time and with increasing wear, tiny metallic trace particles enter 
the oil and remain in suspension. Many other products of the combustion 
process also become trapped in the circulating oil. In effect, the oil tells the 
machine’s whole history.

The oil will contain particles caused by normal wear and operation, along 
with particles from externally caused contamination. By identifying and 
measuring the impurities, we can determine the rate of wear and highlight 
excessive contamination. At the same time, the oil analysis can suggest ways 
to reduce any accelerated wear or contamination.

Oil analysis (e.g., ferrography, particle counter testing) can be performed on 
different types of oils such as lubrication, hydraulic, or insulation oils. It can 
indicate machine degradation (e.g., wear), oil contamination, improper oil con-
sistency (e.g., incorrect or improper amount of additives), and oil deterioration.

The science of oil analysis falls into four main areas:

 1. Fluid physical properties (viscosity, appearance)
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 2. Fluid chemical properties (TBN, TAN, additives, contamination, 
water percent)

 3. Fluid contamination (ISO cleanliness, ferrography, spectroscopy, 
dissolved gases [transformer])

 4. Machine health (wear metals associated with plant components)

In addition, oil analysis can be divided into a number of different catego-
ries (Randall, 2011):

 1. Chip detectors: Filters and magnetic plugs are designed to retain chips 
and other debris in circulating lubricant systems; these are analyzed 
for quantity, type, shape, size, and so on. Alternatively, suspended 
particles can be detected in flow past a window.

 2. Spectrographic oil analysis procedures (SOAP): Here, the lubricant is 
sampled at regular intervals and subjected to spectrographic chemi-
cal analysis. Detection of trace elements can tell of wear of special 
materials such as alloying elements in special steels, white metal or 
bronze bearings, and so on. Another case applies to oil from engine 
crankcases, where the presence of water leaks can be indicated by a 
growth in NaCl or other chemicals coming from the cooling water. 
Oil analysis includes analysis of wear debris, contaminants and 
additives, and measurement of viscosity and degradation. Simpler 
devices measure total iron content.

 3. Ferrography: This represents microscopic investigation and analy-
sis of debris retained magnetically (hence the name), but which can 
contain nonmagnetic particles caught up with the magnetic ones. 
Quantity, shape, and size of the wear particles are all important fac-
tors in isolating the type and location of failure.

Oil analysis typically tests for a number of different materials to determine 
sources of wear, find dirt, and other contamination. This analysis can even 
check if lubricants are appropriate. To sum up, this analysis can detect the 
following:

 1. Fuel dilution of lubrication oil
 2. Dirt contamination in the oil
 3. Antifreeze in the oil
 4. Excessive bearing wear
 5. Misapplication of lubricants

Of course, wear is to be expected, but abnormal levels of wear in a par-
ticular material can give early warning of a potential problem and perhaps 
prevent a major breakdown. Early detection, in turn, permits corrective 
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action such as repairing an air intake leak before major damage. In fact, the 
advantage of an oil analysis program is the ability to anticipate problems and 
schedule repair work to avoid downtime during a critical time of use. Early 
detection offers the following benefits to an organization:

 1. Repair bills are reduced
 2. Catastrophic failures are reduced
 3. Machinery life is increased
 4. Nonscheduled downtime is decreased

2.3.1 Looking Inside

Oil analysis allows maintainers to predict possible impending failure with-
out taking the equipment apart. Using this method, a maintainer can look 
inside anything—an engine, a transmission, a hydraulic system—without 
taking it apart.

2.3.2 Physical Tests

Oil sample analysis generally tests for the following physical properties 
(Grisso and Melvin, 1995):

 1. Antifreeze forms a gummy substance that may reduce oil flow, leading 
to oxidation, oil thickening, acidity, and, ultimately, engine failure.

 2. Fuel dilution thins oil, lowers lubricating ability, and may drop oil 
pressure causing higher wear.

 3. Oxidation measures gums, varnishes, and oxidation products. The use 
of oil that is too hot or the use of oil for too long a period leaves sludge 
and varnish deposits, thickens the oil, and causes high oxidation.

 4. Total base number indicates the remaining acid-neutralizing capacity 
of the lubricant.

 5. Total solids include ash, carbon, lead salts (gasoline engines), and oil 
oxidation.

 6. Viscosity is measures oil’s resistance to flow. On the one hand, oil 
may thin if it is sheared in multiviscosity oils or diluted with fuel. 
On the other hand, oil may thicken from oxidation when run too 
long or too hot. Oil may also thicken from contamination by anti-
freeze, sugar, and other materials.

2.3.3 Metal Tests

Metals tested for and generally included in oil sample analysis are:



75Condition Monitoring

 1. Aluminum (Al): Used in construction of thrust washers, bearings, 
and pistons. High readings of aluminum in oil can reflect piston 
skirt scuffing, excessive ring groove wear, broken thrust washers, 
and so on.

 2. Boron, magnesium, calcium, barium, phosphorus, and zinc: Generally due 
to lubricating oil additive packages, that is, detergents, dispersants, 
extreme-pressure additives, and so on.

 3. Chromium (Cr): Usually associated with piston rings. High levels of 
chromium are found in oil when dirt enters by way of the air intake 
or broken rings.

 4. Copper (Cu) and tin: Normally from bearings or bushings, and valve 
guides, but oil coolers and some oil additives can also contribute to 
high readings. Copper readings will normally be high at first usage 
of a new engine but will decline over time, that is, in a few hundred 
hours.

 5. Iron (Fe): Is found in many places in the engine: liners, camshafts, 
crankshaft, valve train, timing gears, and so on.

 6. Lead (Pb): Very high lead readings result from use of regular gaso-
line, with bearing wear having some influence as well. Generally 
speaking, however, fuel source (leaded gasoline) and sampling con-
tamination (use of galvanized containers for sampling) are critical in 
lead tests.

 7. Silicon (Si): Dirt or fine sand contamination from a leaking air intake 
system generally cause high readings of silicon. Dirt and sand are an 
abrasive, causing excessive wear. Note: In some oils, silicon is used as 
an antifoam agent.

 8. Sodium (Na): Coolant leaks are generally the source of high sodium 
readings, but an oil additive package can be influential as well.

2.3.4 Oil Analysis Benefits

One of the benefits of oil analysis is that it detects problems in both the fluid 
and the machine. It can also detect some defects earlier than other technolo-
gies. Oil analysis is often referred to as the first line of defense as far as pre-
dictive technologies are concerned (Symphony Teleca, 2013). The oil sample 
reports will define the following items:

 1. The presence of foreign fluids or destructive surface contaminants
 2. The overall physical and chemical condition of the fluid
 3. The presence of machine wear materials, how much and of what 

type and morphology
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Successful use of oil analysis requires that oil sampling, changing, and 
top-up procedures are all well-defined and documented. It is much more 
difficult to apply lubricant analysis to the grease of lubricated machines, but 
grease sampling kits are now available to make the process more reliable.

2.4 Vibration Analysis

One of the many forms of CM utilizes the principles of VA. This system has 
been successfully used for many years to monitor equipment as a whole by 
measuring the vibration of the overall machine or by analyzing the indi-
vidual components.

These vibrations are used to trend machinery and components, track-
ing any changes that may arise. These changes indicate possible problems 
associated with the machinery and that further monitoring is required until 
maintenance can be performed.

Vibration can be defined as the motion of a machine and its components 
from a resting position. External forces act to produce motion or move-
ment inherent to a particular machine, its components, and use. It can be 
measured by specific equipment, for instance, an accelerometer, which con-
verts the vibrating motion to an electrical signal in preparation for analysis. 
This motion takes a sinusoidal waveform, with characteristics of frequency, 
amplitude, wavelength, and phase. When machine vibration is measured, 
several sinusoidal waveforms or motions are usually found; they combine 
to give an overall time waveform. To improve the use of this waveform, a 
Fourier analysis is performed using specialized equipment to convert the 
time waveform to amplitude versus frequency spectrum. This equipment 
is known as a Fourier transform analyzer or a fast Fourier transform (FFT).

 1. x(t)—Continuous-time signal
 2. X( f )—Fourier transform

When X f x t e dtj ft( ) ( ) ,= ∫−∞
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for the line spectrum at frequency ωk = (2π)k/T.
The frequency spectrum identifies the frequency that gives an indication 

of possible components with problems. This frequency forms an essential 
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part of the analysis, in conjunction with the amplitude. The amplitude iden-
tifies the magnitude of the component vibration, giving an indication of its 
condition. It is to be noted that time waveform analysis is also very useful, as 
it identifies discrepancies and energy developed by vibrations.

Tables 2.1 and 2.2 show the strengths and weaknesses of VA compared to 
other methods.

2.4.1 Machine Vibration Causes

Almost all machine vibration is due to one or more of these causes (Vyas, 
2013, GE Measurement & Control, 2013):

 1. Repeating forces
 2. Looseness
 3. Resonance

 1. Repeating forces in machines are mostly due to the rotation of imbal-
anced, misaligned, worn, or improperly driven machine components. 
Examples of these four types of repeating forces are shown below.

   Imbalance machine components contain “heavy spots,” which, when 
rotating, exert a repeating force on the machine. Imbalance is often 
caused by machining errors, nonuniform material density, varia-
tions in bolt sizes, air cavities in cast parts, missing balance weights, 
incorrect balancing, uneven electric motor windings, and broken, 
deformed, corroded or dirty fan blades or dirt that has dropped 
from a fan blade, suddenly creating a big imbalance.

TABLE 2.1

Correlation of Lubricant Wear and Wear Particle Analysis with Vibration and 
Thermography

Technology Correlative Method Indication Usage

Vibration Time sequence Wear particle build-up precedes 
significant vibration increase in 
most instances

Routinely 
(monthly)

Thermal 
analysis

Time coincident Major wear particle production 
(near end of bearing life) occurs 
as the bearings fail

When bearing 
degradation is 
suspected

Advance 
filtration/
debris 
analysis

Time sequence/
coincident

Major bearing damage has 
occurred when significant 
amounts of material appear in 
the lubricating system filters

Routinely with 
each filter 
cleaning or 
change

Source: Data from Wenzel, R., 2011. Condition-Based Maintenance: Tools to Prevent Equipment 
 Failures. [Online] Available at: http://www.machinerylubrication.com/Read/28522/ 
condition-based-maintenance.
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   Misaligned machine components create “bending moments,” which, 
when rotated, exert a repeating force on the machine. Misalignment 
is often caused in inaccurate assembly, uneven floors, thermal expan-
sion, distortions due to fastening torque, and improper mounting of 
couplings.

   Worn machine components exert a repeating force on the machine 
because of the rubbing of uneven worn surfaces. The wear in roller 
bearings, gears, and belts is often due to improper mounting, poor 
lubrication, manufacturing defects, and overloading.

   Improperly driven machine components exert a repeating force on 
the machine because of intermittent power use. Examples include 
pumps receiving air in pulses, internal combustion engines with 

TABLE 2.2

Strengths and Weaknesses of VA Compared with Oil Analysis

Equipment 
Condition

Oil 
Analysis

Vibration 
Analysis Correlation

Oil-lubricated 
antifriction 
bearings

Strength Strength Oil analysis can detect infant failure condition. 
Vibration analysis provides late failure state 
information

Oil-lubricated 
journal/thrust 
bearings

Strength Mixed Wear debris will generate in the oil prior to a rub 
or looseness condition

Imbalance N/A Strength Vibration analysis can detect imbalance. Oil 
analysis will eventually detect the effect of 
increased bearing load

Water in oil Strength N/A Oil analysis can detect water in oil. Vibration 
analysis is unlikely to detect this

Greased 
bearings

Mixed Strength Some labs do not have adequate experience with 
grease analysis. Vibration analysis can detect 
greasing problems

Shaft cracks N/A Strength Vibration analysis is very effective in diagnosing 
a cracked shaft

Gear wear Strength Strength Oil analysis can predict the failure mode. Vibration 
analysis can predict which gear is worn

Alignment N/A Strength Vibration analysis can detect a misalignment 
condition. Oil analysis will eventually see the 
effect of increased load

Lubricant 
condition

Strength N/A Oil analysis can determine inadequate lubrication

Resonance N/A Strength Vibration analysis can detect resonance. Oil 
analysis will eventually see the effect

Root cause Strength Strength Need oil and vibration analysis to work best

Source: Data from Wenzel, R., 2011. Condition-Based Maintenance: Tools to Prevent Equipment 
Failures. [Online] Available at: http://www.machinerylubrication.com/Read/28522/ 
condition-based-maintenance.
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misfiring cylinders, and intermittent brush–commutator contact in 
DC motors.

   One or several of those repeating forces in combination with 
looseness and/or resonance will create even more problems.

 2. Looseness of machine parts causes a machine to vibrate. If parts 
become loose, vibration that is normally of tolerable levels may 
become unrestrained and excessive. Looseness can cause vibration 
in both rotating and nonrotating machinery. Looseness is often due 
to excessive bearing clearances, loose mounting bolts, mismatched 
parts, corrosion, and cracked structure.

 3. Resonance is a state of operation wherein an excitation frequency 
is close to a natural frequency of the machine structure; at this fre-
quency, the damping of the vibration is very low and the result is 
resonance. When resonance occurs, the resulting vibration levels 
can be very high and can cause damage very quickly.

Machines tend to vibrate at certain oscillation rates. The oscillation rate 
at which a machine tends to vibrate is called its natural oscillation rate or 
the resonant frequency (Lindley et al., 2008). The natural oscillation rate of a 
machine is the vibration rate most natural to the machine, that is, the rate at 
which the machine “prefers” to vibrate. A machine left to vibrate freely will 
tend to vibrate at its natural oscillation rate.

A repeating force, close to a natural frequency, causing resonance may be 
small and may originate from the motion of a good machine component. 
Such a mild repeating force is normally not a problem until it begins to 
cause resonance. Resonance, however, should always be avoided as it can 
cause rapid and severe damage. To avoid resonance, we must either change 
the frequency of the repeating force or change the resonant frequency.

Making the structure stiffer makes the resonant frequency higher, while 
increasing the weight makes the resonant frequency lower.

2.4.2 How Is Machine Vibration Described?

To analyze the condition of a machine, we must first accurately describe the 
behavior or symptoms of the machine (Commtest Instruments, 2014a,b).

 1. How can vibration symptoms be described accurately?
 2. How do vibration analysts describe the condition of a machine?

By watching, feeling, and listening to machine vibration, we can some-
times roughly determine the severity of the vibration. We may observe that 
certain kinds of machine vibration appear “rough,” others “noticeable,” and 
yet others “negligible.” We can also touch a vibrating bearing house and feel 
that it is “hot,” or hear that it is “noisy,” and so conclude something is wrong.



80 Artificial Intelligence Tools

Describing machine vibration with these general terms is, however, impre-
cise and depends on the person making the assessment. What appears 
“rough” to one person may appear acceptable to another. Verbal description 
is usually unreliable (Dennis, 1994).

To accurately analyze a vibration problem, it is necessary to describe the 
vibration in a consistent and reliable manner. Vibration analysts rely pri-
marily on numerical descriptions rather than verbal descriptions to analyze 
vibration accurately and to communicate effectively. The three most impor-
tant numerical descriptors of machine vibration are amplitude, frequency, 
and phase.

Amplitude describes the severity of vibration, and frequency describes 
the oscillation rate of vibration (how frequently an object vibrates). Phase 
describes the synchronizing in time compared to a reference. Together, they 
provide a basis for identifying the root cause of vibration.

2.4.2.1 What Is Amplitude?

The amplitude of vibration is the magnitude of vibration.
A machine with large vibration amplitude experiences large, fast, or force-

ful vibratory movements. Normally, the larger the amplitude, the more 
movement or stress is experienced by the machine, and the more prone the 
machine is to damage. A machine with a resonant problem may sometimes 
behave a bit differently than it normally does.

Vibration amplitude is usually an indication of the severity of vibration; 
sudden changes in phase may also be a sign of trouble (Dennis, 1994).

In general, the severity or amplitude of vibration relates to

 1. The size of the vibratory movement (displacement)
 2. The speed of the movement (velocity)
 3. The force associated with the movement (acceleration)

The vibration amplitude can be expressed in displacement, velocity, or 
acceleration, Vd, Vv, and Va, respectively.

If the frequency is F, then Vv = 2*π*F*Vd

 Va = 4*π2*F2*Vd 

In most situations, it is the speed or velocity amplitude of a machine that 
gives the most useful information about the condition of the machine.

Amplitude can be expressed in terms of its peak value, or what is known 
as its root-mean-square value.

The peak velocity amplitude of a vibrating machine is simply the maxi-
mum (peak) vibration speed attained by the machine in a given time period, 
as shown in Figure 2.1.
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In contrast to the peak velocity amplitude, the root-mean-square  velocity 
amplitude of a vibrating machine tells us the vibration energy in the machine. 
The higher the vibration energy, the higher the root-mean-square velocity 
amplitude.

The term “root-mean-square” is often shortened to “rms.” It is useful to 
remember that the rms amplitude is always lower than the peak amplitude.

2.4.2.2 What Is Frequency?

A vibrating machine component oscillates; that is, it goes through repeated 
cycles of movement. Depending on the force causing the vibration, a machine 
component may oscillate rapidly or slowly. The rate at which a machine com-
ponent oscillates is called its oscillation or vibration frequency. The higher 
the vibration frequency, the faster the oscillation.

The frequency of a vibrating component can be determined by counting 
the number of oscillation cycles completed every second. For example, a 
component going through five vibration cycles every second is said to be 
vibrating at a frequency of five cycles per second. As shown in Figure 2.2, 
one cycle of a signal is simply one complete sequence of the shortest pattern 
that characterizes the signal.

The vibration rate or frequency of a machine component is often a useful 
indicator of the root cause of the vibration.

Frequency, as with amplitude, is always expressed with a unit. Commonly 
used frequency units are cycles per second (cps), Hertz (Hz), and cycles per 
minute (cpm). Hertz is a unit equivalent to “cycles per second.” One Hz is 
equal to one cps (one cycle per second) or 60 cpm (60 cycles per minute).

Velocity

0

rms amplitude
Peak amplitude

Peak amplitude is
an indication of

the highest speed
achieved

Root-mean-square or
rms amplitude is an

indication of amount
of vibration energy

FIGURE 2.1
The maximum (peak) vibration speed attained by the machine in a given time period.
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2.4.2.3 What Is Phase?

Phase is all about the relative timing of related events. Here are a few 
examples:

 1. When balancing, we are interested in the timing between the heavy 
spot on the rotor and a reference point on the shaft. We need to deter-
mine where that heavy spot is located, and the amount of weight 
required to counteract the rotational forces.

 2. When we look at fault conditions such as imbalance, misalignment, 
eccentricity, and foundation problems, we are interested in the 
dynamic forces inside the machine and, as a result, the movement of 
one point in relation to another point.

 3. We can use phase to understand the motion of the machine or struc-
ture when we suspect a machine of structural resonance, where the 
whole machine may be swaying from side to side, twisting this way 
and that, or bouncing up and down.

In other words, phase is very helpful when balancing and when trying to 
understand the motion of a machine or structure. But it is also very useful 
when trying to diagnose machine fault conditions. Phase is the position of 
a rotating part at any instant with respect to a fixed point/reference. Phase 
describes the synchronizing in time compared to this reference. It gives us 
the vibration direction. A phase study is a collection of phase measurements 
made on a machine or structure and evaluated to reveal information about 
relative motion between components.

In VA, phase is measured using absolute or relative techniques. Absolute 
phase is measured with one sensor and one tachometer referencing a mark 
on the rotating shaft (Figure 2.3). At each measurement point, the analyzer 
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FIGURE 2.2
One cycle of a signal.



83Condition Monitoring

calculates the time between the tachometer trigger and the next positive 
waveform peak vibration. This time interval is converted to degrees and 
displayed as the absolute phase. Phase can be measured at shaft rotational 
frequency or any whole number multiple of shaft speed (synchronous fre-
quencies). Absolute phase is required for rotor balancing.

Instead of a tachometer to generate a once-per-revolution signal, we can 
use a displacement (proximity) probe, which is aimed at a keyway or set-
screw. Stroboscopes can also be used to collect phase readings. If the strobe 
is tuned to the running speed of the machine (so that the shaft or coupling 
appears to have stopped rotating), the output of the strobe can be connected 
to the tachometer input of the data collector. The data collector will treat the 
signal from the strobe as if it were a normal tachometer input. The strobe 
can also be used to trigger an optical tachometer connected to the input of 
the data collector. To compare phase readings from one time to another, the 
reference has to be the same every time. When FFT is used for analysis, the 
reference signal triggers the start of data collection.

Relative phase is measured on a multichannel vibration analyzer using two 
or more (similar type) vibration sensors (Figure 2.4). The analyzer must be 
able to measure cross-channel phase. One single-axis sensor serves as the 
fixed reference and is placed somewhere on the machine (typically on a bear-
ing housing). Another single-axis or triaxial sensor is moved sequentially to 
all of the other test points. At each test point, the analyzer compares wave-
forms between the fixed and roving sensors. Relative phase is the time dif-
ference between the waveforms at a specific frequency converted to degrees. 
Relative phase does not require a tachometer so phase can be measured at 
any frequency.

Both types of phase measurements are easy to make. Relative phase is the 
most convenient way to measure phase on a machine because the machine 
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FIGURE 2.3
Absolute phase. (Redrawn from Mobius Institute, 2008.)
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does not need to be stopped to install reflective tape on the shaft. Phase can 
be measured at any frequency. Most single-channel vibration analyzers can 
measure absolute phase. Multichannel vibration analyzers normally have 
standard functions for measuring both absolute and relative phase.

2.4.2.4 What Is a Waveform?

The graphical display of electrical signals from a person’s heart (electro-
cardiogram or ECG) is useful for analyzing the heart’s medical condition. 
In a similar way, graphical displays of vibratory motion are useful tools 
for analyzing the nature of vibration. We can often find clues to the cause 
and severity of vibration in the graphical display of vibratory motion. One 
display commonly used by vibration analysts is the waveform, a graphical 
representation of how the vibration level changes with time. Figures 2.5 
and 2.6 show an example of a velocity waveform. A velocity waveform is 
simply a chart showing how the velocity of a vibrating component changes 
with time.

Sometimes we can also use the waveform of the signal to see a repeating 
pattern.

The amount of information a waveform contains depends on its duration 
and resolution. The duration of a waveform is the total time period over 
which information may be obtained from it. In most cases, a few seconds 
are sufficient. The resolution of a waveform is a measure of its level of detail 
and is determined by the number of data points or samples characterizing 
its shape. The more samples there are, the more detailed the waveform is.

Time difference

One cycle = 360

FIGURE 2.4
Relative phase. (Redrawn from Mobius Institute, 2008.)
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2.4.2.5 What Is a Spectrum?

Another kind of display commonly used by vibration analysts is the spec-
trum. This is a graphical display of the frequencies at which a machine com-
ponent is vibrating, together with the amplitudes of the component at these 
frequencies. Figure 2.7 shows a velocity spectrum.

A single machine component can be simultaneously vibrating at more 
than one frequency, because the machine vibration, as opposed to the simple 
oscillatory motion of a pendulum, does not usually consist of a single vibra-
tory motion; rather, many take place simultaneously.

For example, the velocity spectrum of a vibrating bearing usually shows 
the bearing is vibrating at not just one frequency but at various frequencies. 
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Vibration at some frequencies may be due to the movement of bearing ele-
ments, at other frequencies because of the interaction of gear teeth, and at yet 
other frequencies because of electrical problems in the motor.

Because a spectrum shows the frequencies at which vibration occurs, it is a 
very useful analytical tool. By studying the individual frequencies at which 
a machine component vibrates, as well as the amplitudes corresponding to 
those frequencies, we can infer a great deal about the cause of the vibration 
and the condition of the machine.

In contrast, a waveform does not clearly display the individual frequen-
cies at which vibration occurs. Rather, a waveform displays only the overall 
effect. It is, thus, not easy to manually diagnose machine problems using 
waveforms. With the exception of a few specialized cases, spectra (not wave-
forms) are usually the primary tool for analyzing machine vibration.

The information contained by a spectrum depends on the Fmax and reso-
lution of the spectrum. The Fmax of a spectrum is the frequency range over 
which information may be obtained from the spectrum. How high Fmax 
needs to be depends on the operating speed of the machine. The higher the 
operating speed, the higher Fmax must be. The resolution of a spectrum is 
a measure of the level of detail in the spectrum and is determined by the 
number of spectral lines characterizing the shape of the spectrum. The more 
spectral lines, the more detailed the spectrum.

2.4.3 Vibration Sensors–Transducers

The type of sensors and data acquisition techniques employed in a mainte-
nance program are critical factors that can determine its success or failure. 
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Velocity spectrum.
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Accuracy, correct application, and proper installation will determine whether 
the findings of these techniques are valid or not.

Three types of vibration transducers can be used to monitor the mechanical 
condition of plant equipment, each with specific applications and limitations:

 1. Displacement probe (proximity probe)
 2. Velocity transducer
 3. Accelerometer

Figure 2.8 shows the different transducers’ normal limitations. With dif-
ferent kinds of compensation techniques, their use can be extended.

2.4.3.1 Displacement Probe (Proximity Probe)

Displacement probes are normally either capacity or eddy current displace-
ment sensors.

Eddy current displacement sensors use a magnetic field that engulfs the 
end of the probe. As a result, any metallic objects close to the probe will 
affect the sensor output.

Capacitive sensors use the electrical property of “capacitance” to make 
measurements. Capacitance is a property that exists between any two con-
ductive surfaces within some reasonable proximity. Changes in the distance 
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between the surfaces change the capacitance. It is this change of capacitance 
that capacitive sensors use to indicate changes in the position of a target.

Displacement probes are normally used to measure the absolute motion 
of a rotating machine axis with respect to the probe but can also be used to 
measure fixed parts. Therefore, the displacement sensor should be mounted 
on a rigid structure to ensure safe and repeatable data.

Turbines, compressors, and other heavy machines usually have displace-
ment sensors mounted permanently in key measuring positions to supply 
data to the CM program. Two perpendicular proximity probes are often 
used to analyze journal bearing and shaft behavior with the so-called orbit 
analysis. The orbit represents the path of the shaft centerline within the bear-
ing clearance. Two orthogonal probes are required to observe the complete 
motion of the shaft within. The dynamic motion of the shaft can be observed 
in real time by feeding the output of the two orthogonal probes to the X and 
Y of a dual-channel oscilloscope.

The useful frequency range for a displacement probe is normally 1–2000 Hz 
(60–120,000 rpm). The displacement data are usually recorded in mils peak 
to peak (when applied to the normative of an Anglo-Saxon source).

Laser displacement sensors can be used to measure displacement, but they 
are not common in industrial applications for vibration measurement in CM 
(Figure 2.9).

2.4.3.2 Velocity Transducers

The velocity transducer was one of the first vibration transducers to be built. 
It consists of a wire coil and magnet arranged so that if the housing is moved, 
the magnet tends to remain stationary due to its inertia. This can also be 
done the other way around. The relative motion between the magnetic field 

90º

FIGURE 2.9
Displacement probe (proximity probe)—typical arrangement. Two channel measurement of 
the 0 to peak displacement. The S1 and S2 outputs are vector summed to produce a new time 
series called an “orbit,” which is equal to one shaft rotation.
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and the coil induces a current proportional to the velocity of motion. The 
unit thus produces a signal directly proportional to vibration velocity. It is 
self-generating, needs no conditioning electronics to operate, and has a rela-
tively low electrical output impedance, making it fairly insensitive to noise 
induction.

Velocity transducers commonly measure with a response range from 
10 Hz to 2 kHz (Figure 2.10).

2.4.3.3 Accelerometers

Accelerometers can be based on the following technologies:

 1. Piezoelectric
 2. Piezoresistive
 3. Capacitive

Piezoelectric accelerometers are the most widely used. These devices mea-
sure the vibration or acceleration of the motion of a structure. The force caused 
by vibration or a change in motion (acceleration) causes the mass to “squeeze” 
the piezoelectric material, which produces an electrical charge proportional 
to the force exerted upon it. Since the charge is proportional to the force, and 
the mass is a constant, the charge is also proportional to the acceleration.

There are two types of piezoelectric accelerometers (vibration sensors). 
The first is a “high impedance” charge output accelerometer. In this type 
of accelerometer, the piezoelectric crystal produces an electrical charge that 
is connected directly to the measurement instruments. This type of acceler-
ometer is also used in high-temperature applications (>120°C), where low-
impedance models cannot be used.

Spring

MagnetCoil

FIGURE 2.10
Velocity transducer. (Redrawn from Vibration Training Course Book Category II. 2013. 
Vibration school website: http://www.vibrationschool.com.)
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The second type is a low-impedance output accelerometer. It has a charge 
accelerometer as its front end, with a tiny built-in microcircuit and FET tran-
sistor able to convert that charge into a low-impedance voltage that can easily 
interface with standard instrumentation. The piezoelectric crystals are usu-
ally preloaded so that either an increase or decrease in acceleration causes a 
change in the charge they produce.

The output is normally 10–100 mV/G (1G = 9.8 m/s2), and the frequency 
range is from a few hertz (much lower with compensation) up to 20 kHz or 
even higher (Figure 2.11).

2.4.4 Mounting Techniques

PdM programs based on VA need accurate and repeatable data to determine 
the operating conditions of plant machinery. Apart from the transducers, 
three factors affect the quality of the data:

 1. Location of the measurement point
 2. Attachment and orientation of the transducer
 3. Operational data for the machine (rotations per minute [RPM], 

power, etc.)

The location and orientation of the key measurement points of the machine 
are selected to provide the best possible detection of its incipient problems. 
Any deviation of exact point or orientation will affect the accuracy of the 
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FIGURE 2.11
Typical accelerometer.
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obtained data. Therefore, it is important that each measurement for the dura-
tion of the program be performed in exactly in the same place and direction.

The best method to ensure this is to

 1. Drill and tap fixing holes for the transducer
 2. Use cementing studs with fixing holes or quick connectors for the 

transducer
 3. Use cementing studs with flat magnetic surfaces for permanent 

magnets

If we want permanent measuring points on a machine but do not want to 
drill and tap fixed holes, we can opt for cementing studs. These are attached 
to the measuring point with a hard glue, such as epoxy and cyanoacrylate 
types. Soft glues can considerably reduce the usable frequency range of the 
accelerometer. This fixing method gives good results and can be used for 
frequencies up to about 10–15 kHz (Figure 2.12).

A permanent magnet is a simple attachment method. The measuring point 
is a flat magnetic surface. If possible, a cemented stud with a flat magnetic 
surface should be used. This method can be used up to about 2 kHz. The mag-
net’s holding force can usually handle vibration levels up to 1000–2000 m/s2.

A hand-held probe with the accelerometer mounted on top is conve-
nient for a fast survey. However, this can result in gross measuring errors 
because of low overall stiffness, and it may be difficult to get repeatable 
results. A low-pass filter can limit the measuring range at about 1000 Hz 
(Figure 2.13).

If measurements are taken with a three-axis accelerometer (a fast and con-
venient method), the orientation (x,y,z) must remain the same every time.

With single-axis transducers, if there is an angular alignment problem, the 
transducer should be positioned axially; if the underlying problem is loose-
ness the transducer should be positioned vertically; the clearest indications 
of an unbalanced machine is normally given by transducers with a horizon-
tal placement.

FIGURE 2.12
Typical studs and quick connectors for mounting of vibration transducers. (Redrawn from 
Farnell Electronics. http://www.farnell.com.)
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For each measurement, the actual operational condition for the machine 
should be recorded if it varies from time to time.

2.4.5 VA Applications

Vibration monitoring and analysis are the most common tools to prevent 
emerging mechanical problems related to manufacturing equipment in any 
production plant; they are not limited to rotating machines. Until recently, 
machines with low operating speeds were excluded from VA; however, at 
present, VA techniques are used in machines whose nominal speeds are of 
the order of 6 rpm or higher.

Keep in mind that all machines vibrate due to tolerances inherent to each 
of their construction elements and also due to their resonant frequencies 
and changes in operating conditions. In a new machine, these tolerances set 
the basic characteristics of that machine’s vibration, which can be compared 
with future vibrations under similar operating conditions. Similar machines 
working in similar conditions will have similar characteristic vibrations that 
differ from each other mainly by their construction tolerances.

A change in the basic vibration of a machine, assuming it is operating 
under normal conditions, indicates an incipient fault in some of its elements, 
causing a change in the operating conditions of those elements. Different 
types of failures give rise to different types of changes in the characteristic 
vibration of the machine and can, therefore, help determine the source of the 
problem (Figure 2.14).

0.1 10 100 1 k 10 k 100 k1

FIGURE 2.13
Different mounting techniques frequency response.



93Condition Monitoring

2.4.5.1 How Does the Instrument Work?

Before taking a vibration measurement, we must attach a sensor that can 
detect the vibration behavior of the machine being measured. Various types 
of vibration sensors are available, but an accelerometer is normally used as 
it offers advantages over other sensors. An accelerometer produces an elec-
trical signal proportional to the acceleration of the vibrating component to 
which it is attached.

The acceleration of a vibrating component is a measure of how quickly the 
velocity of the component is changing.

The acceleration signal produced by the accelerometer is passed on to the 
instrument that, in turn, converts the signal to a velocity signal. Depending 
on the user’s choice, the signal can be displayed as a velocity waveform or a 
velocity spectrum. A velocity spectrum is derived from a velocity waveform 
by means of a mathematical calculation called the FFT.

Figure 2.15 is a very simplistic explanation of how vibration data are 
acquired.
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FIGURE 2.14
Different types of failures give rise to different types of changes in the characteristic vibration 
of the machine (in this picture the amplitude is in displacement).
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FIGURE 2.15
Acquisition of vibration data.
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2.4.6 Vibration Meters

To distinguish between vibration measurements, a portable device called a 
vibration meter can be used. This is a basic instrument for a PdM program 
based on vibrations. It is a small microprocessor specifically designed to col-
lect, pack, and store vibration data in both the time and frequency domains 
(Figure 2.16).

This unit is used to check the mechanical condition of machines at reg-
ular intervals. As noted above, it includes a microprocessor with memory, 
allowing it to record and store the levels of vibration on all the machines 
selected in the plant. Scheduled messages appear on an LCD screen, guid-
ing the operator to the correct measuring points. Additional information can 
also be entered using the front keypad. Measurements can be done easily 
and quickly; for example, the operator only needs to position the transducer 
against the point to be measured and press the “store” key to register the 
vibration level.

2.4.7 Vibration Analyzer

The function of a vibration analyzer is to determine the condition of critical 
machinery in a plant. When a failure is detected, the vibration meter is not 
able to pinpoint the specific problem or root cause. This is the function of a 
vibration analyzer.

Today, vibration analyzers are hand-held computers which combine in a 
lightweight unit the capabilities of a data collector and a vibration analyzer 
with the ability to not only obtain, store, and deal with collected data in both 
time and frequency domains, but also to simultaneously collect and store 
process variables, such as pressure, flow, or temperature. This capability pro-
vides the analyst with all the data required to detect incipient problems in 
the machine (Figure 2.17).

FIGURE 2.16
Vibration measurement with vibration meter.



95Condition Monitoring

2.4.8 Periodic Monitoring or Online Monitoring

Normally, most of the rotating machines in a plant are condition monitored 
periodically with portable systems as described earlier. For more critical 
and essential assets, online monitoring is an option. The functionality of 
an online system is similar to that of the portable system but the func-
tionalities for trending, alarm setting, phase measurement, and so on are 
normally more advanced and, of course, the measurement can be taken 
around the clock 24/7. The asset pyramid in Figure 2.18 shows the typical 
criticality distribution of rotating assets in any plant. Usually, only the criti-
cal, essential, more expensive, and important assets are considered for online 
monitoring.

Essential

Important

Secondary

Nonessential

Critical
Online

monitoring

Manual monitoring
balance of plant 

Run to failure

FIGURE 2.18
The asset pyramid. (Redrawn from Emerson. 2014. Measurement Types in Machinery Monitoring. 
White Paper. www.assetweb.com.)

FIGURE 2.17
Vibration analyzer (SKF).
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2.5 Motor Circuit Analysis

Most electrically caused faults in electrical motors occur because of shorted 
turns with the windings. However, winding contamination and poor con-
nections may lead to motor failure as well. Winding faults usually start in 
the end-turns of the winding because, at this location, the insulation is weak-
est, yet the stress is the highest. Most of the faults in electric motors are small 
in the beginning, but they accelerate over time and almost always end in a 
motor failure (Penrose, 2004).

Motor circuit analysis (MCA) is a technology that helps us observe the elec-
trical health of a motor by evaluating the electrical properties of the motor 
windings. The purpose of applying MCA is to measure the electromagnetic 
properties of a motor; its condition is determined by seeing it as an electric 
circuit (Figure 2.19). The following are measured with the help of an MCA 
analyzer in each of the three winding phases:

 1. Winding resistance, inductance, and impedance, with high-accuracy 
bridges of the analyzer

 2. Insulation resistance to ground
 3. Phase angle, by applying a low-voltage AC signal
 4. Multiple-frequency current response test (I/F)
 5. Phase imbalance
 6. Relation current/frequency in function of the impedance
 7. State of rotor rods
 8. Uniformity of spark gap

These measurements are all balanced in a healthy motor. If even one is not 
balanced, a fault is likely to occur. For example, unbalanced resistance indi-
cates loose connections and an unbalanced phase angle indicates shorted 
turns within the motor windings.

In the MCA instrument, a software program produces a report indicat-
ing the motor condition. The software program will either indicate a good 
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winding condition or specify the area of concern. MCA is nondestructive 
and takes less than 15 min to show grounded windings, burned windings, 
loose connections, phase-to-phase faults, or conversely, that a motor is per-
fectly healthy. MCA helps the analyst determine the ground insulation con-
dition, phase angle, inductance, simple as well as complex resistance, and 
the condition of the winding of the electric motors. The MCA equipment can 
read the mutual inductance between the rotor and the stator, thereby helping 
the analyst to detect some of the defects in the rotor quickly and safely.

2.5.1 MCA Application

An electric motor has the following five sources of electrical faults (Bethel, 
1998):

 1. Power circuit
 2. Stator windings
 3. Rotor (failure rods)
 4. Air gap
 5. Isolation

The power quality is important as well. First, let us understand what we 
are really talking about when we speak of power quality problems. Voltage 
and current harmonic distortion, voltage spikes, voltage imbalance, and 
power factor are a few of the many concerns we may have when discussing 
power quality. Variable frequency drives (VFDs) and other nonlinear loads 
can significantly increase the distortion levels of voltage and current.

MCA will identify the following faults:

 1. Contaminated winding, grease, dust, or moisture
 2. Short circuit in loops, between turns, or between phases
 3. Phase imbalance, impedance imbalance (increases the motor’s 

energy consumption and reduces its lifetime)
 4. Failure in conductivity in coils
 5. Rotor failure, defective rods, eccentric rotor, or encrustations on the 

core
 6. Insulation failure

The analysis is performed with the energized motor without any harm to 
the technician doing the analysis.

Data can be collected from different points on the power circuit, such as 
the junction box of the motor, circuit breakers, fuses, contactors, or the con-
trol board. At times, it may be necessary to measure at different points to 
find the root cause of the problem (Figure 2.20).
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Once the field data are entered into the computer, special software (condi-
tion calculator) will give a report on the electrical condition of the engine 
(Figure 2.21).

The data will be stored in a database; with these data, it is possible to 
observe variations in the trend of the electrical variables in subsequent mon-
itoring (Vibratec, 2008) (Figure 2.22).

2.6 Thermography

Thermal measurement technology measures the absolute or relative tem-
peratures of key equipment parts or areas being monitored. Abnormal 

FIGURE 2.20
Control board.

FIGURE 2.21
Special software. (From Vibratec, 2008. Análisis de Circuito Eléctrico en Motores. [Online] 
Available at: http://www.vibratec.net/pages/tecnico4_anacircelec.html.)
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temperatures indicate developing problems. Temperature and thermal 
behavior of machine components are important factors in the maintenance 
of plant equipment. For this reason, temperature is frequently measured in 
good plant maintenance.

There are two types of equipment used in this technology, contact and 
noncontact. Contact methods of temperature measurement, using thermom-
eters and thermocouples, are still commonly used for many applications. 
However, noncontact measurement using infrared sensors has become an 
increasingly desirable alternative to conventional methods (Kaplan, 2007).

2.6.1 Contact Temperature Measurement

Contact temperature measurement involves measuring surface or interior 
temperature by sensing conducted heat energy. In the past, mercury or alco-
hol thermometers were used to measure temperature. They consisted of a 
liquid glass bulb reservoir leading to a long narrow tube. As the bulb was 
heated, the fluid expanded and began to fill the tube, with the expansion of 
the liquid proportional to the temperature. A temperature scale was marked 
along the tube, allowing the temperature to be read by an observer.

Bimetallic thermometers operate on the principle of different thermal 
expansions of two metals (Kaplan, 2007). Two metal strips are connected at 
one end by soldering or welding. As the strips are heated, they expand. All 
metals expand at different rates. The expansion difference can be translated 
by a mechanical linkage turning an indicator needle. A temperature scale 
behind the needle allows an observer to read the temperature.

Resistance temperature detectors (also called thermistors) use sensors that 
are electrical conductors. When heated, the conductor’s electrical resistance 
changes. Analysts determine the temperature by measuring the resistance 
and by knowing the resistance-to-temperature relationship.

A thermocouple also operates on electrical principles. Two different pieces 
of metal welded together at one end will produce a voltage proportional to 
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the absolute temperature. The voltage produced is proportional to the heat 
sensed. Thermocouples provide very accurate temperature measurement in 
certain temperature ranges.

2.6.2 Noncontact Thermal Measurement

The four most commonly stated advantages of noncontact thermal infrared 
measurement over contact measurement are that it

 1. Is nonintrusive
 2. Is remote
 3. Is faster than conventional methods
 4. Provides a thermal distribution of the object surface

Any one, or a combination, of the following conditions warrants consider-
ation of a noncontact sensor (Kaplan, 2007):

 1. Target is in motion: When the target to be measured is moving, it is 
usually impractical to have a temperature sensor in contact with its 
surface. Bouncing, rolling, or friction can cause measurement errors 
and a sensor might interfere with the process.

 2. Target is electrically hot: Current-conducting equipment and its com-
ponents present a hazard to personnel and instruments.

 3. Target is fragile: When thin webs or delicate materials are measured, 
a contacting sensor can often damage the product.

 4. Target is very small: The mass of a contacting sensor that is large with 
respect to the target being measured will usually conduct thermal 
energy away from the target surface, thus reducing the temperature 
and producing erroneous results.

 5. Target is remote: If a target is very far away from, or inaccessible to, 
contacting sensors, infrared measurement is the only option.

 6. Target temperature is changing: Infrared sensors are much faster than 
thermocouples. Infrared radiant energy travels from the target to 
the sensor at the speed of light. A rapidly changing temperature can 
be monitored by infrared sensors with a millisecond response or 
faster.

 7. Target is destructive to thermocouples: When the high mortality rate of 
thermocouples due to jarring, burning, or erosion becomes a serious 
factor, an infrared sensor is a more cost-effective alternative.

 8. Multiple measurements are required: When many points on a target 
need to be measured, it is usually more practical to re-aim an infra-
red sensor than it is to reposition a thermocouple or deploy a great 
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number of thermocouples. The fast response of the infrared sensor 
is important.

Some basic concepts of noncontact thermal measurement are:

 1. Electromagnetic spectrum
 2. Infrared energy
 3. Infrared thermography
 4. Infrared image
 5. Emissivity
 6. Blackbody, graybody, and realbody

Each of these is discussed in detail below.

2.6.2.1 Electromagnetic Spectrum

Infrared radiation is a form of electromagnetic radiation that has a longer 
wavelength than visible light. Other types of electromagnetic radiation 
include x-rays, ultraviolet rays, radio waves, and so on.

Electromagnetic radiation is categorized by wavelength or frequency. For 
example, broadcast radio stations are identified by their frequency, usually 
in kilohertz or megahertz.

Figure 2.23 graphically illustrates where the electromagnetic spectrum 
and types of electromagnetic radiation fall within the wavelength ranges 
and the expanded infrared measurement region (Abbott, 2001).
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As they are a form of electromagnetic radiation, infrared detectors or sys-
tems are categorized by their wavelength. The unit of measurement is the 
micrometer, or micron. A system able to detect radiation in the 8–12 μm band 
is usually called longwave. Alternately, one that detects radiation between 
3 and 5 μm is termed shortwave. (A 3–5 μm system can also be classified as 
midband because some systems can detect radiation shorter than 3 μm.) The 
visible part of the electromagnetic spectrum falls between 0.4 and 0.75 μm. 
Different colors can be seen because they can be discriminated by their dif-
ferent wavelengths. For a laser pointer, the wavelength is usually about 
650 nm. If we examine a chart of the electromagnetic spectrum at 650 nm 
(0.65 μm), we can see it is the radiation of red light.

2.6.2.2 Infrared Energy

All objects emit infrared radiation as a function of their temperature 
(Kastberger and Stachl, 2003). That means all objects emit infrared radia-
tion. In fact, infrared energy is generated by the vibration and rotation of 
atoms and molecules. The higher the temperature of an object, the more 
these nuclear particles are in motion and, hence, the more infrared energy 
that is emitted. This is the energy detected by infrared cameras. The cameras 
do not “see” temperatures; they detect thermal radiation. At absolute zero 
(−273.16°C, −459.67°F), material is at its lowest energy state so infrared radia-
tion is almost nonexistent.

Infrared energy is part of the electromagnetic spectrum and behaves simi-
larly to visible light. It travels through space at the speed of light and can be 
reflected, refracted, absorbed, and emitted.

The wavelength of IR energy is about an order of magnitude longer than 
visible light, between 0.7 and 1000 μm. Other common forms of electromag-
netic radiation include radio, ultraviolet, and x-ray.

2.6.2.3 Infrared Thermography

IT is based on measuring the distribution of radiant thermal energy (heat) 
emitted from a target surface and converting this to a surface temperature 
map or thermogram. The thermographer requires an understanding of heat, 
temperature, and the various types of heat transfer as an essential prerequi-
site to undertaking a program of IR thermography (ISO 18434-1:2008, 2008).

IT is the technique of producing an image of invisible infrared light emit-
ted by objects due to their thermal condition. A typical thermography cam-
era resembles a typical camcorder and produces a “live” TV picture of the 
heat radiation. More sophisticated cameras can actually measure the appar-
ent temperature of any object or surface in the image. The cameras can also 
produce color images that make interpretation of thermal patterns easier. An 
image produced by an infrared camera is called a thermogram or sometimes 
a thermograph.
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Used in a variety of commercial applications since the early 1970s, IT has 
become a well-recognized, cost-effective technique for use in energy man-
agement and equipment monitoring and diagnostics. This nonintrusive 
method readily represents thermal patterns and can be used to identify loca-
tions where heating is excessive. This method is also used to evaluate the 
severity of heating problems.

2.6.2.4 Infrared Image

The IR camera captures the radiosity of the target that it is viewing. Radiosity 
is defined as the infrared energy coming from a target modulated by the 
intervening atmosphere (Infrared Training Center, 2014).

Radiosity consists of emitted, reflected, and sometimes transmitted IR 
energy. An opaque target has a transmittance of zero. The colors on an IR 
image vary due to variations in radiosity. The radiosity of an opaque target 
can vary due to the target temperature, target emissivity, and reflected radi-
ant energy variations.

Thermographers see targets exhibiting such contrasts in emissivity behav-
ior every day. It could be an insulated electric cable with a bare metal-bolted 
connection, or a bare metal nameplate on a painted surface, such as an oil-
filled circuit breaker or load tap changer. It could equally well be a piece of 
electrical tape placed by the thermographer on a bus bar to enable an accu-
rate reading (Figure 2.24).

For opaque objects, the emissivity and reflectivity are complementary. 
High emissivity means low reflectivity and vice versa. As Kirchhoff showed, 
in thermal equilibrium, the absorptivity of an object equals its emissivity. 
Combining this with the law of conservation of energy results in an equation 
that quantifies these concepts (Monacelli, 2005):

 ε + ρ + τ

Note: Greek letters for e, r, and t are typically used where
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Imaging using thermographers.
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 1. ε = Emissivity
 2. ρ = Reflectivity
 3. τ = Transmissivity

For opaque targets, τ = 0, and the equation reduces to

 ε + ρ= 1

In simple terms, the above equation indicates that a high emissivity means a 
low reflectivity, and a low reflectivity means a high emissivity. Thermographers 
like the emissivity to be as high as possible. This allows them to obtain the 
most accurate readings because most of the radiosity is due to the radiant 
energy emitted by the target. Modern IR cameras correct for emissivity with 
limited user input; however, the uncertainty in the measurement increases 
with decreasing emissivity. Calculations show the measurement uncertainty 
gets unacceptably high for target emissivities below about 0.5.

2.6.2.4.1 Emissivity

Every target surface above absolute zero radiates energy in the infrared 
spectrum. The hotter the target, the more radiant infrared energy is emit-
ted. Emissivity is a very important characteristic of a target surface and 
must be known in order to make accurate noncontact temperature mea-
surements. The methods for estimating and measuring emissivity are dis-
cussed throughout the industry literature. Therefore, the emissivity setting 
that must be put into the instrument can usually be estimated from avail-
able tables and charts. The proper setting needed to make the instrument 
produce the correct temperature reading can be learned experimentally by 
using samples of the actual target material. This more practical setting value 
is called effective emissivity (Gorgulu and Yilmaz, 1994).

Emissivity tables exist, but establishing the exact emissivity of a target is 
sometimes difficult.

Emissivity has previously been discussed here as a material surface prop-
erty, but it is more than a surface property. Surface properties are continually 
changing, and the shape of an object affects its emissivity. For semitranspar-
ent materials, thickness will affect emissivity. Other factors affecting emis-
sivity include viewing angle, wavelength, and temperature. The wavelength 
dependence of emissivity means different IR cameras can get different val-
ues for the same object. And they would all be correct. It is recommended 
that the emissivity of key targets be measured under conditions in which 
they are likely to be monitored during routine surveys.

In general, dielectrics (electrically nonconducting materials) have relatively 
high emissivities, ranging from about 0.8 to 0.95, which includes painted 
 metals. Unoxidized bare metals have emissivities below about 0.3 and should 
not be measured. Oxidized metals have emissivities ranging from about 0.5 
to 0.9, and are considered a problematic category due to the large range of 
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values. The degree of oxidation is a key ingredient in an object’s emissivity: 
the higher the oxidation, the higher the emissivity.

For opaque objects, if the emissivity and the background (reflected) tem-
perature are known, an IR camera with a temperature measurement feature 
can, in theory, give temperatures accurate to within a few percent. To get the 
temperature, the IR camera must extract just the fraction of the radiosity that 
is due to the energy emitted by the target. Modern IR cameras are capable of 
doing this; however, for emissivities below 0.5, the errors might be unaccept-
ably large. The reflected component is subtracted and the result is scaled by 
the target emissivity. The resulting value can then be compared to a calibra-
tion table and the temperature extracted.

2.6.2.4.2 Blackbody, Graybody, and Realbody

A blackbody is a perfect radiator because it has zero transmittance and zero 
reflectance; according to the emissivity equation, the emissivity of a black-
body is 1. Blackbodies were first defined for visible light radiation. In vis-
ible light, something that does not reflect or transmit anything looks black; 
hence, the name blackbody (Infrared Training Center, 2014). A graybody has 
an emissivity less than 1, and this remains constant over the wavelength. 
A realbody has an emissivity that varies with wavelength.

IR cameras sense infrared radiant energy over a waveband. To obtain the 
temperature, they compare the results explained above with a calibration 
table (Table 2.3) generated using blackbody sources. The implicit assumption 
is that the target is a graybody. Most of the time, this is true or close enough 
to get meaningful results. For highly accurate measurements, the thermogra-
pher should understand the spectral (wavelength) nature of the target.

Max Karl Ernst Ludwig Planck is credited with developing the mathemati-
cal model for blackbody radiation curves. Figure 2.25 shows the magnitude 
of emitted radiation due to an object’s temperature versus the wavelength 
for various temperatures. Note that the sun has a peak wavelength in the 
middle of our visible light spectrum.

Blackbody curves are nested and do not cross each other. This means 
that a blackbody at a higher temperature will emit more radiation at every 
wavelength than one at a lower temperature. As the temperature increases, 
the wavelength span of radiation widens, and the peak of radiation shifts to 
shorter and shorter wavelengths.

The peak of infrared radiation at 300 K is about 10 μm. In addition, an 
object at 300 K emits radiation only down to about 3 μm. Because human 
eyes are not sensitive beyond about 0.75 μm, this cannot be seen; however, if 
the object is warmed up to about 300°C, a faint red glow can begin to be seen.

2.6.3 Infrared Inspection Techniques

This section is divided into two subsections dealing with the common prob-
lems encountered when using IT in a plant or industrial environment, along 
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TABLE 2.3

Correlation of Thermal Analysis with Other Technologies

Technology
Correlation 

Method Indication Usage

Vibration Time 
coincident

Increasing or already high 
vibration at the same time as 
increasing temperature

Suspected bearing or 
coupling problem

Lubrication Time 
sequence

High and/or increasing large wear 
particles

Suspected bearing 
problem

Debris 
analysis

Time 
sequence

Damage has occurred or it is 
occurring

After abnormal 
temperature rise in 
bearing or lubricant 
from the bearing

Leak detection Time 
coincident

Abnormal temperature coincident 
with acoustic signals indicating 
internal leak of a fluid or gas

Suspected leak

Electrical 
circuit testing

Time 
coincident

High resistance in energized circuit 
radiating abnormal heat

Suspected circuit 
problem

Visual 
inspection

Time 
sequence

Signs of overheated parts of 
equipment such as electrical 
insulation on wires or corrosion/
oxidation of normally shiny 
terminal connections

Suspected problem 
not previously 
repaired

0.1
1

101

102Sp
ec

tr
al

 ra
di

an
ce

 em
itt

an
ce

103

104

105

106

107

108

109

Visible Sun

Short
wave

Long
wave

6000 K
4000 K
3000 K
2000 K
1000 K

500 K
300 K
200 K

0.2 0.5 1 2 5 10 20
Wavelength (micrometers)

50 100

FIGURE 2.25
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with their solutions. The first section deals with the inherent mitigating 
effects, emissivity, and reflectivity. The second section explains the methods 
used to get the best possible information out of the imaging systems: foot 
powder, dye check developer, and electricians’ tape.

Mitigating inherent effects: Several factors affect production and the sub-
sequent proper interpretation of a thermal image. These include the target’s 
emissivity, reflectance, distance from the imager, temperature, background 
temperature, ambient temperature, orientation, target size, and transmit-
tance of the intervening atmosphere.

The image, as presented on the imager, is not temperature but radiosity. 
Imagers measure the radiant energy emitted by the target plus the radiant 
energy reflected from and transmitted through the target. The sum of these 
radiant energies is the commonly accepted definition of radiosity.

Certain practical considerations will simplify the following discussion of 
inherent effects. In general, the transmittance (energy transmitted through 
the targets) can be ignored in most, if not all, cases for targets in a power 
plant. Transmittance is an important factor in industries where the tempera-
ture of a thin film of plastic or other infrared semitransparent target is being 
observed. With the exception of absolute temperature measurements being 
required, transmittance through the atmosphere can be ignored as well. The 
major exception is a case where long distances are involved in a humid atmo-
sphere (i.e., hydrogen igniters or spray nozzles in containment).

Shiny objects have surface thermal patterns that are hard to image, but 
several techniques improve the ability to establish a satisfactory image. The 
most common way to obtain a useful thermal image from a shiny or low-
emissivity surface is to add a coating with a higher emissivity. (This is not 
practical and is not recommended for an energized electrical surface.) Three 
common nonpermanent materials have been used to improve emissivity 
(Zayicek, 2002):

 1. Paint
 2. Dye check developer
 3. Electricians’ tape

Paint: Paint can be sprayed on the target to obtain better emissivity. 
Glyptol is especially effective.

Dye check developer: Dye penetrant developer has an estimated emissiv-
ity of 0.97 and may already be formulated to conform to QA require-
ments for sulfur and halogen purity. Given the temperature of the 
target, it might take several minutes for the developer to reach ther-
mal equilibrium, as its propellant cools the target’s surface. The best 
way to use this in an actual survey is to apply it to all targets to be 
surveyed before commencing the actual survey. This will ensure all 
target surfaces will have reached thermal equilibrium.
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Electricians’ tape: Another alternative that improves the surface emissiv-
ity is the use of electricians’ tape (it has an estimated emissivity of 
0.95). This method is easy to use and apply, but can present problems 
if the glue on the tape contains chlorine or other chemicals that can 
attack the target surface.

Other proven inspection techniques that can be used for components dif-
ficult to image include the following:

Mirrored surfaces: A situation commonly encountered in electrical 
switchgear is one where there is little or no room to place the imager, 
and the area of interest is behind another object. One method that 
works well is to use a material with a high reflectivity (low emissiv-
ity), such as an infrared mirror.

Thermal transients: Another useful inspection technique for handling 
targets with low emissivity is to add or subtract heat from a target. 
Most uses of IR are in the steady-state condition. When two materi-
als with different heat capacities are involved, a thermal transient is 
useful. A graphic example, shown in Figure 2.24, deals with a can of 
dye check developer. In the example, a thermal transient is induced 
on the can by spraying it. The endothermic change of state of the 
propellant as it evaporates causes heat to transfer from the inside of 
the can (warmer) to the outside. In the case of the propellant inside, 
the liquid has a higher heat capacity (Cp) than the vapor space above 
it. During the transient, the liquid causes a larger transfer and resul-
tant temperature difference due to conduction on the can’s surface. 
The higher emissivity of the developer on the can’s surface allows it 
to be seen more readily.

This is an extremely useful technique. Where large masses are concerned, 
however, a large amount of heat transfer might be needed for observation. 
This technique can be used to determine relative thicknesses of material and 
locations of voids, delaminations, and internal structures.

When looking for voids in composite materials, a flash lamp can be used 
for a short pulse of energy. Hot air from a compressor can be used for con-
tainment spray ring header nozzle inspections and for locating materials 
near the surface of concrete. It should be noted, however, that heating is not 
always the most effective approach. Cooling is sometimes more effective, 
especially in hot areas; the evaporative cooling effects of water can be very 
useful (Zayicek, 2002).

2.6.4  IT Program

An IT program involves the conduction of periodic inspection surveys of 
critical equipment used in any production plant; for instance, in a plant for 
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production and delivery of electric power. The critical equipment in the 
database will usually exhibit an abnormal thermal pattern at some point 
in time prior to functional or operational failure. An inspection, made with 
an IT camera, can detect these abnormal thermal patterns. Abnormal ther-
mal patterns, observed on a piece of equipment, are referred to as thermal 
anomalies.

A thermography program uses a walk-around survey procedure, able to 
monitor temperatures in remote or noninstrumented areas of the plant. The 
intent is to verify that the surveyed components are operating within their 
designated temperature ranges. A typical thermography program begins 
with a basic approach, easily expandable to cover a variety of components 
as the user gains experience with the equipment and uses the techniques to 
monitor other areas. In addition to rotating machinery and electrical equip-
ment, other applications can include locating condenser air in-leakage, tube 
leaks, roof surveys, and so on. Any system or component for which absolute 
or relative temperature is an indicator of abnormal performance or operating 
condition is a candidate for thermography.

From the periodic walk-around survey, any component seen to be operat-
ing outside normal temperature conditions is recorded with a photograph 
of the thermal image (thermogram) and a conventional photograph. These 
images are attached to a report summary with the location and temperature 
observed, as well as any other comments that might be appropriate.

An IT camera uses infrared sensors to make simultaneous temperature 
measurements of multiple points on the surface of a piece of equipment 
(a  target) without making physical contact with the target. The measure-
ments of the target surface are taken from a distance. IT is not an x-ray tech-
nique and will not make measurements through an object. IT inspections 
must be done while the equipment is in normal operating mode and after a 
period of run-time that is long enough to allow a component to reach normal 
operating temperatures.

IT data are displayed in the form of an image, commonly called a thermo-
gram. Thermal images can be analyzed in real time, or stored electronically 
and analyzed at a later time. The images are analyzed to determine whether 
the thermal pattern is normal or abnormal.

Many plants throughout the world have systems with at least two operat-
ing components performing the same service at the same time. These similar 
service components allow an IR thermographer the advantage of comparing 
the thermal profile of one component to the other (Figure 2.26).

Throughout the industry, this process is called comparative thermogra-
phy. Depending on the nature of the component(s) being observed, compar-
ative thermography can be used to obtain qualitative or quantitative data 
(Zayicek, 2002).

 1. Qualitative—Qualitative data are used when a component does not 
require numerical data to determine the severity of its condition.
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 2. Quantitative—Quantitative data are used when a component 
requires numerical data to determine the severity of its condition.

When there are no similar service components available to perform a com-
parative analysis, recording baseline data is recommended. In this method, 
one or several thermograms are taken of the component being observed. The 
baseline thermogram(s) are then compared to the data taken on subsequent 
surveys, in the same manner that a similar service component would be ana-
lyzed. That is, any changes from the original baseline data will be recorded 
as abnormal.

Recording additional information, such as process data, environmental 
conditions, time, season, location, nameplate data, and so on, can be benefi-
cial when performing an analysis. The type of additional data being collected 
will depend on the specific application. For example, a motor’s thermal pro-
file can fluctuate for many reasons, including load (amps), ambient tempera-
ture, location (inside, outside, shade, sunlight, etc.), type of coolant system, 
duty, casing construction, insulation type, and so on. Any one of these condi-
tions, or a combination of them, can wreak havoc by trying to determine the 
condition of a motor by the external casing temperature. Even similar motors 
from the same manufacturer and with the same model number can have dif-
ferent thermal profiles due to their location. Therefore, recording additional 
data can assist in defining the external motor’s thermal profile.

In CBM/PdM programs, IT is used to periodically inspect major plant 
rotating equipment, such as motors, pumps, and fans. When evaluating the 
operating condition of rotating equipment, IT should be used in conjunc-
tion with other diagnostic technologies, such as VA, lubricating oil analysis, 
motor current testing, and so on.

IT is applied to rotating equipment by comparing the thermal patterns 
of a component to itself over time. It can also be applied by comparing the 
thermal pattern of a component to the thermal pattern of a similar com-
ponent operating under similar conditions. If a component is compared to 
itself over time, it is necessary to take a baseline thermal image of it. This 
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image should be taken when the component is under normal operating 
load, is providing the performance it is expected to provide, and has had 
a long enough run time to reach normal operating temperature. The cir-
cuit current and ambient air temperature, at the time the baseline is taken, 
should be recorded.

IT is an effective tool in detecting problems with equipment used for the 
transmission and distribution of electric power. The equipment featured in 
this section can be found in locations such as power plant transformer yards, 
power plant switchyards, and substation distribution yards. The components 
include, among others, power transformers, high-voltage circuit breakers, 
and circuit disconnects. These components should be periodically inspected 
as part of an IT program.

In addition to IT, other types of diagnostics are used to evaluate the overall 
health of transmission and distribution components. These additional diag-
nostic tests include VA, oil analysis, sonic and ultrasonic evaluation, AEs, 
sound level, and visual inspection. They should all be used in conjunction 
with IT.

In general, there are four primary areas where IT is effective:

 1. Electrical equipment
 2. Rotating equipment
 3. Performance
 4. Switchyard

The primary use of IT in plants is in periodic monitoring aimed at detect-
ing electrical deficiencies, including:

 1. Overloads caused by equipment and cable failures
 2. High electrical resistance due to loose, deteriorated, or corroded 

connections
 3. Hot spots caused by inductive currents

Most mechanical applications can be classified into four areas:

 1. Heating due to friction
 2. Valve leakage or blockage
 3. Insulation integrity
 4. Building conditions that increase energy costs

Three leakage problems that plague plants are condenser tube leaks, con-
denser vacuum leaks, and boiler casing leaks. Utilities use IT to detect con-
denser leaks. As air is drawn into a condenser, the air leaks are indicated by 
cooler areas and are observable.
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Other typical IT program components include:

 1. Rotating equipment, such as pumps, fans, motors, and so on
 2. Load center components, such as motor control center panels, circuit 

breaker compartments, transformers, and connections
 3. Mechanical components, such as steam traps, relief valves,  condensers, 

roofing, insulation, and so on.

A novice IR thermographer generally investigates electrical and rotating 
equipment first. One reason is that IT is the best technology (ultrasound can 
also be used) to identify many electrical deficiencies while energized. Another 
reason is that the majority of critical plant equipment is electrical or rotating.

Infrared data for rotating equipment are beneficial in identifying undesir-
able conditions. Some rotating equipment conditions can be defined using 
infrared alone, such as a motor casing being overheated due to dirty air filters. 
However, unlike electrical deficiencies, many rotating equipment deficiencies 
require support from other technologies to define the condition. For exam-
ple, a hot bearing on a motor can be seen by infrared, but infrared cannot 
determine whether the condition stems from deteriorated oil or a deteriorated 
bearing. Therefore, an oil analysis is required to define the bearing condition.

2.6.5 Applications

Using IT to inspect electrical equipment, under load is probably the most 
popular application of the technology. The availability of this nonintrusive 
tool has enabled electrical maintenance personnel to monitor the condition 
of electrical equipment more effectively than they could previously, mainly 
because an IT inspection can be done without having to come into physi-
cal contact with high-voltage and current-carrying circuits. An inspection of 
stationed electrical equipment will yield information that identifies only the 
components that need to be addressed with maintenance.

This section features examples of thermal anomalies detected on electrical 
equipment, including:

 1. Molded case circuit breakers
 2. AC induction motor
 3. Exciter brush compartment
 4. Generator step-up transformer, fan motor, load tap changer
 5. Feedwater heater

2.6.6 Image Analysis

For IT, problem severity is often categorized using temperature as the main 
criterion. Temperature is quite significant for most electrical system surveys, 
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but it is not the only aspect to consider. The primary benefit of IT is its abil-
ity to locate anomalies. The analysis of severity is a complex process based 
on a number of factors. Most PdM programs evaluate the criticality of the 
equipment, normally based on replacement value and the effect on power 
generation, and assign one or more diagnostic technologies where it makes 
sense to protect the equipment.

Temperature by itself can be misleading. Variables affecting the tempera-
ture reading of an electrical problem include:

 1. Load
 2. Hot spot size-to-camera working distance ratio
 3. Wind speed
 4. Emissivity
 5. Ambient and background temperatures
 6. Solar effects
 7. “Directness” of the reading

The last parameter considers the amount of thermal “insulation” between 
the actual problem spot and what the IR camera “sees.” This is often catego-
rized as a direct reading for bare connections, or connections with thin lay-
ers of insulation, and an indirect reading for heavily insulated components. 
However, good electrical insulation might also be thermal insulation.

All items need separate temperature severity criteria from those of direct 
readings. Even very small changes in temperature can indicate extremely 
dangerous conditions; these changes might not be detectable except under 
ideal inspection conditions.

Information in this section includes:

 1. Reading a thermal image
 2. Analyzing a thermal image
 3. Software

Reading a thermal image: To analyze a thermal image, it is essential to under-
stand how to properly read the image. There are various manufacturers of 
infrared equipment and many different types of systems available for use in 
the field. Each instrument displays its data in slightly different formats, and 
there is a learning curve necessary to become familiar with each one; how-
ever, there are similarities between all infrared instruments. For example, 
they are all designed to yield the same result, which is a thermal pattern of 
a particular target. An analysis of the method of one type of camera should 
give a basic understanding of thermal image analysis.

Analyzing a thermal image: Thermal data are analyzed comparatively. First, 
a reference point has to be identified. When a reference point is identified, 
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the temperature of the reference point is compared to the temperature of 
the component being analyzed. A reference point can be a spot on a piece 
of equipment (e.g., an AC induction motor) that is similar or identical to the 
piece of equipment being analyzed. Because the components are similar, 
the reference component and the component being analyzed should exhibit 
similar thermal patterns.

It is assumed that when using similar service equipment as a reference, the 
amp load, run time, and external environmental conditions are the same for 
the reference component as they are for the component being analyzed. For 
example, if the reference component is loaded at 100 amps, the component 
being analyzed should be loaded at approximately 100 amps. If this is not 
the case, comparisons of the two components will be unreliable. Convective 
cooling and emissivity also result in unreliable ΔTs.

A baseline thermal image of a component could be used as a reference 
point. In this method, baseline data are taken for a component during nor-
mal loading conditions. Ambient air temperature and load are recorded and 
kept with the baseline data. If accurate baseline data of a component are 
available, the analyst can compare subsequent data to them.

Ambient air temperature can serve as a reference temperature, for example, 
for comparisons with electrical connections. Ambient air temperature is the 
air temperature inside the enclosure before or immediately after it is opened.

Whatever reference point is chosen, thermal characteristics of the refer-
ence point are compared to thermal characteristics of the component being 
analyzed. Then an assessment is made.

Software: Manufacturers of thermal imaging scanners produce software 
packages that digitize thermal images and convert them into black and white 
or color displays on video monitors.

These packages incorporate complex algorithms and image-processing 
features that can be categorized into four groups:

 1. Quantitative thermal measurements of targets
 2. Detailed processing and image diagnostics
 3. Image recording, storage, and recovery
 4. Image comparison

With thermal imaging software, scanning systems can provide a user with 
the true radiance or temperature value of any point, or all points, on the tar-
get surface. To provide true radiance values, the system calibration constants 
are fed into the computer on initial setup. A system of prompts assures the 
operator that changes in aperture settings, target distance, interchangeable 
lenses, and so on are fed into the keyboard each time a change in instrument 
operating conditions occurs. The operator must also insert an emissivity 
value. Some systems allow users to assign different emissivities to different 
areas on the target surface.
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In operation, a color scale is provided along one edge of the display, with 
the temperature shown corresponding to each color or gray level. The opera-
tor can place one or more spots or crosshairs on the image, with the tempera-
ture value of the corresponding pixels appearing at the appropriate point on 
the display.

Other software components enable imaging systems to analyze each pixel 
of the thermal image and to present information in a wide variety of qualita-
tive and quantitative forms for the convenience of the user. Operators can 
call for a profile display, draw areas on the display, and have those areas 
subjected to detailed analysis. Although manufacturers usually provide a 
standard (default) color scale, operators can create their own scales, in almost 
limitless variety.

By using zoom features, operators can closely examine small areas. By 
using three-dimensional features, they can generate isometric thermal con-
tour maps of the target to facilitate recognition of thermal anomalies.

Thermal imaging software enables users to index, record, and retrieve 
images and data. Commercial thermal imaging systems can be equipped 
with any of a variety of digital (or analog) media storage devices, allowing 
stored images to be viewed on demand or transferred to a personal com-
puter or other device for long-term storage.

The image comparison feature makes it possible to automatically compare 
images taken at different times. Operators can display two images side-by-
side or in sequence; they can subtract one image or area from another and 
display a pixel-by-pixel difference thermogram. As a result, thermographers 
can archive thermal images of acceptable components, assemblies, and 
mechanisms as baselines and use them as models of comparison to subse-
quently produced images.

Quantitative thermal measurements of targets: This represents the tem-
perature value of any point (or all points) on the target surface. For true radi-
ance measurements, the system throughput attenuation must be taken into 
consideration, as well as losses through the measurement medium (atmo-
sphere, in most cases).

For true temperature measurement, the target effective emissivity must be 
considered. To provide true radiance values, the system calibration constants 
are fed into the computer on initial setup. A system of prompts assures the 
operator that changes in aperture settings, target distance, interchangeable 
lenses, and so on are fed into the keyboard each time a change in operating 
conditions occurs. For true temperature values, it is necessary for an effective 
emissivity value to be inserted by the operator. The temperature readings 
that are then displayed assume the entire target surface effective emissivity 
is equal to this inserted value. An emissivity value less than 0.5 can result in 
unacceptable temperature measurement errors.

In operation, a color scale (or monochrome gray scale) is provided along 
one edge of the display with a temperature shown corresponding to each 
color or gray level. The operator can place one or more spots or crosshairs on 
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the image, and the temperature value of that pixel will appear in an appro-
priate location on the display. Some systems allow the assignment of several 
different effective emissivities to different areas of the target, as selected by 
the operator, with the resulting temperature correction.

Detailed processing and image diagnostics: Detailed processing and image 
diagnostics is a phrase describing the capability of the computer to analyze 
each pixel of the thermal image and present information in a wide variety 
of qualitative and quantitative forms for the convenience of the user. The 
current trend by manufacturers is to offer more and more on-board image 
analysis capabilities. For extensive image storage and analysis, the images 
are more often downloaded from the cards to computers with large storage 
capacities and memory. The extensive image and data analysis software is 
resident on the computer hard drive.

Image comparison: Image comparison is a very significant capability because 
it allows the automatic comparison of images taken at different times. The 
computer allows the operator to display two images, side-by-side or in 
sequence, to subtract one image from another or one area from another, and 
to display a pixel-by-pixel difference thermogram. This provides the capabil-
ity of archiving thermal images of acceptable components, assemblies, and 
mechanisms, and using them as models for comparison to items produced 
subsequently. Subtractive routines produce differential images illustrating 
the deviation of each pixel (picture element) from its corresponding model. 
Image averaging allows the computer to accumulate several scan frames and 
display the average of these frames. Comparison (subtraction) of images can 
be derived from two real-time images, two stored images, or a real-time and 
a stored image.

Recording, hard copy, and storage of images and data: Thermal image recording 
and storage has evolved dramatically from Polaroid® instant photos of the 
display screen, to magnetic storage and archiving of images and data (such 
as labels, dates, conditions of measurement, and instrument settings), to the 
instant digital image storage capabilities incorporated into most of today’s 
thermal imagers. Hundreds of images can be recorded in the field and stored 
on removable, reusable memory cards. Thermal images are saved in any one 
of several digital image formats such as .bmp, .tif, and .jpeg for archiving and 
future analysis (Zayicek, 2002).

2.6.7 Severity Criteria

Ranking an anomaly by its severity is a goal of any diagnostic technology 
and can be accomplished with mature PdM teams where everyone has 
agreed to specific criteria and procedures. In other cases, it is extremely dif-
ficult. For the latter, bringing in other diagnostics is often helpful.

Severity criteria should address the direct/indirect temperature measure-
ment issue to be effective. Some utilities have separate criteria for overhead 
and underground electrical distribution facilities.
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Any published severity criterion that does not address direct/indirect 
issues should be revised. Industry experience indicates that a 5°C rise in a 
system’s temperature often indicates a critical problem. Similar temperature 
increases in the aforementioned indirect targets can also be critical in nature. 
Research is needed in this area to specify severity criteria for the various 
types of indirect targets, especially as the failure of these devices can be 
extremely costly in both dollars and human life.

Attempts to correct for severity during load changes with simple equa-
tions have resulted in incorrect results. Perch-Nielsen, S. L., Bättig, M. B., and 
Imboden, D. (2008). Exploring the link between climate change and migration. 
Climatic Change, 91(3–4), 375–393 and Lyon Jr, B. R., Orlove, G. L., and Peters, 
D. L. (2000, March). Relationship between current load and temperature for 
quasi-steady state and transient conditions. In AeroSense 2000 (pp. 62–70). 
International Society for Optics and Photonics have shown that temperature 
increase does not follow the simple square-of-load change rule that is widely 
disseminated. Similarly, for wind effects, it has been shown that the wind 
speed correction factors historically used by thermographers are suspect.

These variables are even more crucial for indirect targets. Small tempera-
ture increases that indicate problems can be significantly influenced by other 
factors, such as wind and solar insolation, because they are small.

All of these variables can appear daunting to the PdM team responsible 
for establishing severity criteria. But it is possible to write reasonable sever-
ity guidelines with caveats for the variables, letting the thermographer have 
some leeway in implementing the criteria. It is strongly recommended that 
written severity criteria be established with temperature increase as one of 
the key parameters. It is also suggested that direct criteria be differentiated 
from indirect criteria.

Severity criteria have two possible forms; they can be

 1. Organized into general categories that identify temperature levels, 
or zones, versus levels of criticality

 2. Applied to specific machines or components, or to like groups of 
machines or components. In either case, the levels are established 
based on a working knowledge of component operation, predicted 
failure modes, previous inspection histories of the component, and 
input of cognizant system engineers or maintenance personnel. 
Because the severity criteria for each machine or component group 
can be unique, each organization should set up a program that best 
applies to its equipment and operation.

Severity criteria can be established on individual machines or components, 
based on a number of factors, including:

 1. Temperature increase versus historical data establishing rate of dete-
rioration and time to failure
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 2. Criticality of the machine or component to the overall process
 3. Collateral damage to other materials or equipment if a failure should 

result
 4. Safety of personnel

Applications could include temperature increases in critical machines, 
mechanical components, bearing temperature increases, electrical supply 
or connection rises, fluid leakage losses, or the number of tubes clogged in 
fluid-type heat transfer equipment.

REPEATIt is important to note that these are severity guidelines. They do 
not imply strict adherence. The analyst has to take the temperature increase 
into consideration, as well as other influencing factors such as operational 
load, environmental factors, and the importance of the component to pro-
duction or operation. A judgment is then made by the analyst as to what 
level of severity should be assigned. Temperature increase is only used as 
a benchmark reference. The user must also understand that these severity 
guidelines pertain to electrical connections.

When evaluating equipment other than electrical connections, severity 
classifications should be based on a working knowledge of component oper-
ation, predicted failure modes, operational load, environmental factors, the 
importance of the component to production or operation, and the experience 
and interpretations of the analyst. The interpretations are made in light of 
the function of the component being analyzed on a case-by-case basis. In 
these cases, comparisons to similar service equipment and baseline data are 
heavily relied upon.

2.7 Acoustic Technology: Sonic and Ultrasonic Monitoring

AE is defined as the science that deals with the generation, transmission, 
reception, and effects of sound. The sound referred to is the detectable struc-
tural or airborne sound that can manifest itself as a signal on mechanical 
objects, the pressure waves associated with leaking vapors or gases, or the 
humming of electrical equipment. Acoustic technology considers frequen-
cies as low as 2 Hz and as high as the mega-Hertz range (Bauernfeind, 2001). 
Through a process of filtering, frequency bandpassing, and sensor selection, 
the potential uses for acoustic testing to diagnose equipment condition and 
operability are virtually unlimited (Figure 2.27).

Acoustic work can be performed in either the noncontact or contact mode. 
In either case, it involves the analysis of wave shapes and signal patterns, 
and the intensity of the signals that can indicate severity (Madanhire et al., 
2013). Because acoustic monitors can filter background noise, they are more 
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sensitive to small leaks than the human ear and can detect low-level abnor-
mal noises earlier than conventional techniques. They can also be used to 
identify the exact location of an anomaly.

Acoustic systems can be simple portable devices that can detect anomalies, 
either structural or airborne. They provide a digital indication of the sound 
intensity level and can locate the source of the sound. If it is necessary to 
know the wave shape and the frequency content of the signal, then a more 
sophisticated portable waveform analyzer type is needed. When it is neces-
sary to monitor critical equipment on a continuous basis, the sensors are 
permanently attached to the equipment and the signals are transmitted to 
an online acoustic monitoring system.

Because of its broad frequency spectrum, acoustics are further delineated 
into two ranges, the sonic range and the ultrasonic range, and their applica-
tions are as follows (International Atomic Energy Agency, 2007):

 1. Sonic range (0 Hz–20 kHz): The sonic range includes all frequencies 
in the hearing range of humans and all frequencies used in mechan-
ical VA and low-frequency leak detection (2 Hz–20 kHz)

 2. Ultrasonic range (20 kHz–1 MHz): Ultrasonic frequencies are used 
in cavitation detection, AE, high-frequency leak detection, and 
corona and partial discharge detection.

Each of these frequency ranges makes use of contact and noncontact trans-
ducers, such as microphones, accelerometers, and high-frequency resonant 
transducers.

The rest of the section is divided into acoustic leak detection and acoustic 
crack detection.

FIGURE 2.27
Low-frequency waves pass the borders as transparent frontiers.
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2.7.1 Acoustic Leak Detection

When applying acoustics for CM and fault detection, it is advisable to select 
the anticipated frequency band and filter out all other unwanted background 
noises.

The following provides some guidance for selecting the sonic bands:

 1. 100 Hz to 20 kHz—General fault detection
 2. 1.0 Hz to 20 Hz—Leak detection that eliminates low-frequency 

background noises
 3. 3.0 Hz to 20 kHz—Leak detection that eliminates additional back-

ground noise

A tube leak acoustic trace that is typical of any leak is shown in Figure 
2.28. Note that the filtered leak signal amplitude can be significantly higher 
than that of the noise level, and can, therefore, be readily detectable with 
acoustics. The ordinate scale in Figure 2.28 is in volts RMS, but these units 
are directly related to gravity acceleration units (g) (IAEA, 2007).

The following intensities are provided for guidance:

 1. Less than 0.1 V = small or no leak
 2. Greater than 0.1 V but less than 0.3 V = medium leak (schedule 

repair)
 3. Greater than 0.3 V = large leak (immediate repair needed)

Acoustic monitoring devices have been applied in several different areas, 
including leak detection for feed water heaters, valve internals, valve exter-
nals, and boiler tubes. Feedwater heater tube leaks are commonly detected 

Alarm threshold Leak noise increasing

Volts RMS

Alarm
No SB

FIGURE 2.28
Acoustic leak trace.
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by changes in heater water level, flow rate, or water chemistry (Figure 2.29). 
Because of the large total fluid volume, all methods require large leaks for 
the change to be noticeable, and it might be hours or days before the leak is 
discovered. Such a delay in the detection of the tube leak can reduce plant 
efficiency through thermal efficiency losses. If the leak remains undetected, 
even for a short period of time, impingement of the escaping feedwater can 
damage adjacent tubes, further increasing repair time and expense.

Determining which heater among many is leaking can be difficult. Not 
only is there a delay in detecting the leak but, in some cases, the wrong feed-
water is taken off-line, adding to an already inefficient situation. When a 
feedwater leak is detected early, it is possible that the leaking heater can be 
taken off-line for repair while the others remain in service. This avoids a 
complete shutdown and minimizes performance efficiency degradation.

In a feedwater leak detection system, sensors are mounted at various loca-
tions on the heaters. When a hole develops in a heater tube, the fluid flow-
ing through the orifice generates acoustic pressure waves. These waves are 
detected by the sensors and converted to electrical signals.

Leaks are annunciated by alarm lights and contacts for remote alarm indi-
cation. An analog output from the signal processing unit is available to pro-
vide an indication of the acoustic level on any auxiliary peripheral device, 
such as a data analysis computer, control room recorder, or distributed con-
trol system. The system can provide trending, alarm, and graphics capabili-
ties that are used by the technician to predict feedwater heater tube failure.

In a boiler tube leak detection system, steam escaping through a hole in a 
boiler tube generates a broadband noise that peaks in the range of 1–5 kHz. 
High-temperature sensors, mounted onto waveguides that couple the acous-
tic pressure waves in the boiler to the sensor, are installed in locations of the 
boiler with a history of failures.

Acoustic pressure waves generated in the boiler from a tube leak are 
detected by the sensors and converted to an electrical signal. The signal 
from the sensors near the leak increases proportionately with the size of the 
leak. The increase in signal level is monitored on a trend plot until the level 
exceeds a preset alarm point. The relative magnitude of the various sensor 
readings allows approximation of the leak location.

FIGURE 2.29
Acoustic monitoring in several areas.
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Acoustic detection of valve leaks can be performed with either perma-
nently installed or portable devices (Table 2.4).

Fluid flow through the valve will provide a signature of acoustic activity. 
When the valve is closed, the acoustic level should drop to zero, taking back-
ground noise levels into account. This indicates the valve has sealed and no 
leak is present. Should a leak be detected, the valve is scheduled for mainte-
nance action (Figure 2.30).

Acoustic leak detection applications include:

 1. Feedwater heater tube leaks
 2. Valve internal leaks in liquid systems
 3. External leaks in the valves and fittings of high-pressure air systems
 4. Boiler tube leaks

TABLE 2.4

Correlation of Leak Detection with Other Technologies

Technology
Correlation 

Method Indication When Used

Thermal 
analysis

Time 
coincident

Abnormal temperature 
coincident with acoustic 
signals indicating internal 
leak of fluid or gas

On condition of suspected leak 
especially in systems with 
many potential leak points

Nonintrusive 
flow

Time 
coincident

Flow downstream of shut 
valve, giving acoustic 
indication of internal 
leakage

On condition of suspected leak 
and with many choices of 
valves to open for repair

Visual 
inspection

Time 
sequence

Visual indication of valve 
disks or seal damage 
sufficient to cause internal 
leakage

Use for confirmation before 
valve disassembly. Use after 
removal for correlation 
between acoustic signal and 
visually observed degree of 
leak-causing damage

Figure 2 pressure leak

Areas

Figure 3 vacuum leak

FIGURE 2.30
Pressure and vacuum leaks.
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Another effective option for leak detection using AE is the additional use 
of tone generator as an emitter inside the device to be tested. This is done to 
transmit signals and produce the AE in the undesired holes in ultrasound 
waves detectable by an external device. In summary, the tone generator 
feeds the system and forces it to produce AE suitable to be detected by the 
external device.

2.7.2 AE Crack Detection

AE is defined as the transient elastic waves generated by the rapid release 
of energy. The sound results from a crack developing in solid material. As 
this extremely small, low-level sound propagates through the material, it can 
be picked up by highly sensitive piezoelectric or strain gauge sensors. The 
advantage of AE is that very early crack growth can be detected, well before 
a highly stressed component might fail (IAEA, 2007).

AE technology is intended to provide analysts with an early indication of 
the onset of degraded strength in metal components, such as pressure ves-
sels. By trending the AE event occurrence, analysts can track and project the 
progression of grain structure breakdown. With this information, a plant 
can remove the metal component from service before total loss of function 
occurs (Figure 2.31).

AE technology has been successively used on the following equipment:

 1. Reactor vessels and related piping
 2. Control rod housings
 3. Main steam lines

FIGURE 2.31
AE methods.
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 4. Transformers
 5. Fossil high-energy piping (Figure 2.32)

Microgranular material, such as steel, when put under tension or compres-
sion beyond its yield point, breaks and tears along grain boundaries (inter-
granular cracking). This can happen in pressure vessels, structural supports, 
and high-energy piping. AE monitors for microcracks in heavy metal com-
ponents and, specifically, for the growth of cracks. The breakdown in a plant 
component’s metal crystalline structures can lead to equipment failure in 
extreme cases.

AE sensors have been very effective when applied to reactor vessels and 
related piping for the early determination of developing cracks. In these 
applications, the sensors are monitored continuously during all levels of 
plant operations. Other applications include monitoring the integrity of con-
trol rod housings and main steam lines.

AE monitors use many acoustic pickup transducers to detect the energy 
bursts caused by intergranular cracking and other sources. The equipment 
sends these signals to a computer console for signal conditioning, measuring, 
and comparison of arrival time. Arrival time comparison locates the signal 
source.

Different AE equipment versions present the data in several ways. Most 
show the acoustic events per second, cumulative total events over time, 
change in count rate, or some combination of these three. With this informa-
tion, analysts can trend the data.

AE sensing techniques can be particularly useful to monitor in-service power 
transformers (Table 2.5). A major concern of transformer failure is the partial 
discharge associated with the degradation of insulation inside the transformer. 
This insulation breakdown causes electrical arcing, which deteriorates the oil 
insulation factor and, if continued, produces highly explosive gases.

Each partial discharge propagates to the tank wall. These stress waves 
are similar in character to stress waves propagated in solids during crack 

FIGURE 2.32
Electric inspections like crown effect or arc discharge not visible using thermography.
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formation, and they generate AE signals that contain an appreciable amount 
of energy (in the 150 kHz frequency range). These signals can readily be dif-
ferentiated from other signals emanating from the transformer.

By taking into account the intensity of the AE signal, the approximate loca-
tion of the emitting source, and the estimated level of the activity involved, it 
is often possible to estimate the severity of the problem and make a reason-
able assessment of its cause.

Detecting AEs from partial discharge events in transformers is valid, and 
instrumentation is available for this detection; however, AEs from trans-
formers have been detected even in the absence of partial discharge. It has 
been shown that these signals are produced as a result of the inception of 
bubbles.

The operating transformers can generate AEs for a variety of reasons. 
These can be categorized into heating sources, electrical sources, and back-
ground noises.

Partial discharge inside a transformer produces AEs. Other sources that 
can produce AEs prior to the actual occurrence of partial discharge in the 
transformer include:

 1. Localized heating in oil or paper, which can sometimes produce AEs
 2. Paper tracking or carbonization, which produces AE signals
 3. Energy released during hydrogen gas evolution by partial discharge 

from either heating or implosion
 4. Cavitation, which occurs when nitrogen is released from a solution 

and generates AEs

TABLE 2.5

Correlation of AE with Other Technologies

Technology
Correlation 

Method Indication Usage

Ultrasonic 
imaging

Time 
sequence

Cracking in heavy 
metal weld joints

In conjunction with code 
requirements for periodic (10-year) 
inspection, or after a rise in AE 
events in a specific region indicates 
cracks might be developing

Dynamic 
radiography

Time 
sequence

Cracking in heavy 
metal weld joints

In conjunction with code 
requirements for periodic (10-year) 
inspection, or after a rise in AE 
events in a specific region indicates 
cracks might be developing

Stress/strain 
measurement

Time 
coincident

High levels on strain 
gauges or 
distortion indicated 
by other methods

When monitoring for pressure vessel 
or heavy-section weld deterioration 
during hydro testing or some other 
high-stress event
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These mechanisms produce AE that is directly related to a breakdown in 
the transformer. Some other mechanisms which will generate AE activity 
not directly related to a problem in the unit are (Figure 2.33):

 1. Environmental sources, due to the impact of rain, snow, ice, or dust 
against the transformer

 2. Areas or pockets of turbulent oil flow within the unit
 3. During pump flow with colder oil (note: these observed AEs may be 

caused by static discharge and are not associated with gassing)
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FIGURE 2.33
Problems not detected as hot spots with thermography in transformers may be detected using 
ultrasonic emission.
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 4. Oil pyrolysis (chemical change as a result of heat) and core winding 
irregularities

Data filtering techniques allow separation of the relevant and nonrelevant 
AE data. There are several different filtering schemes, depending on the situ-
ation. In addition, the use of the newer digital signal processing techniques 
has improved the accuracy and speed of analysis. Testing transformers in 
situ can produce a large amount of data if the transformer is acoustically 
active, but the speed and accuracy of data analysis are critical.

Several different sources of AE can be detected within a transformer. They 
can be classified as either burst emissions or continuous emissions. Figure 
2.34 shows some samples of these emissions.
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FIGURE 2.34
Continuous (left) and burst (right) emission waveforms from transformers.
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2.8  Performance Monitoring Using Automation Data, 
Process Data, and Other Information Sources

Process control systems are used in the oil and gas industry, pulp and paper 
industry, or other process industries. These systems host or serve as an 
operator workstation for one or more process control and instrumentation 
devices, such as valve positioners, switches, transmitters, and sensors (e.g., 
temperature, pressure, and flow rate sensors), whose functions include open-
ing or closing valves and measuring process parameters (Galar et al., 2012).

The information from the field devices and the controller is made available 
for one or more applications run by an operator workstation. This allows an 
operator to view the actual status of the process, change the operation of the 
process, and so on. A common process control system has many process con-
trol devices and instrumentation, such as valves, transmitters, sensors, con-
nected to one or more process controllers which, in turn, run the software 
controlling the devices.

Many other supporting devices are related to the process operation; these 
include, for example, power supply equipment, power generation and distri-
bution of energy, and rotating equipment, as found in a typical plant. This 
additional equipment does not necessarily create or use process variables 
and, in many instances, is not controlled by or even attached to a process 
controller. Nevertheless this type of equipment is necessary for a process to 
work correctly. In the past, process controllers were not necessarily aware of 
these other devices, and simply assumed they worked properly when pro-
cess control was performed. Figure 2.35 shows a fan monitored by two accel-
erometers in such a way that the information generated by vibration can 
close the loop and couple the device into the control system.

Two accelerometers
 direct connection to CM block

Contact relays for 
local protection (trip)

4–20 mA output
toward PLC/SCADA

Electrical box

Sensor input

24 V

FIGURE 2.35
Monitoring of a fan and its integration to the control loop.



129Condition Monitoring

Many plants have other associated software systems that execute applica-
tions related to business functions (enterprise resource planning [ERP]) or 
maintenance functions (CMMS). In fact, many processing plants, especially 
those with smart field devices, use equipment monitoring applications to aid, 
monitor, and maintain the devices within the plant, regardless of whether 
they are process control, instrumentation, or other types of devices.

The integration of maintenance information, management, and monitor-
ing is essential to close the loop of the process; accordingly, CMMS sys-
tems have evolved. For example, enterprise asset management (EAM) is 
a more sophisticated software than CMMS. It allows normal communica-
tion and data storage related to field devices to monitor the operational 
status of field devices. In some cases, the EAM application can be utilized 
to communicate with devices to modify parameters within the device, or 
to make the device execute applications on itself such as self-calibration or 
self-diagnostic routines, and, thus, obtain information about the status or 
health of the device.

This information can be stored and used by a maintenance person who 
monitors and maintains the devices. In the same manner, there are other 
types of applications used to monitor other types of devices, such as power 
generation equipment, rotating equipment, and supply devices. These other 
applications are occasionally available to the maintenance personnel and 
can monitor and maintain the devices within a processing plant. In many 
instances, outside service organizations offer services related to monitoring 
process and equipment. In these instances, external service organizations 
obtain the data required and run applications to analyze the data, but are 
limited in providing results and recommendations to the process plant staff. 
At the same time, however, the plant personnel have little or no ability to 
view the raw data measured or to utilize the analyzed data in any other way 
(Figure 2.36). Thus, in a typical plant, functions associated with the activities 
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+
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FIGURE 2.36
Typical process of outsourcing in CM.
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of process control, equipment and device maintenance, monitoring activi-
ties, and business activities such as performance monitoring processes, are 
separated, both in the location in which they are carried out and the staff 
who usually perform these activities. Of course, the people involved in these 
functions often use different tools, for example, various applications run-
ning on different computers to perform different functions. Moreover, these 
various tools often collect or use other types of data and, thus, are configured 
differently. However, there should be cooperation among departments in an 
enterprise and between experts in their respective knowledge domains if the 
maintenance policy is to succeed.

Process control operators are primarily responsible for ensuring the qual-
ity and continuity of the process, supervising the daily operation of the pro-
cess; they also affect the process, usually by setting and changing set points 
in the process, tuning loops of the process, scheduling process operations, 
and so on. They use the tools available to diagnose and correct problems 
within a process control system, and they receive variable operation infor-
mation through one or more process controllers, including alarms generated 
in the process.

Maintenance personnel are primarily responsible for ensuring the effi-
cient operation of the actual equipment in the process, along with the repair 
and replacement of malfunctioning equipment, and the use of tools such as 
maintenance interfaces maintenance, the EAM application discussed above, 
as well as many other diagnostic tools that provide information about the 
operating status of the various devices. In addition, they are responsible for 
scheduling maintenance activities that may require off parts or points of the 
plant.

Many new types of devices and process equipment, usually called intel-
ligent field devices, include screening and diagnostic tools that automatically 
detect problems and report these problems to a maintenance person through 
a standard maintenance interface. For example, EAM software reports the 
device status and diagnostic information to the maintenance person and 
provides communication and other tools that allow him/her to know what 
is occurring in the device and access the information provided by it.

Although maintenance interfaces and maintenance staff are a huge part of 
the data network, they are located apart from process control operators, as 
shown in Figure 2.37. This is not always the case; in some plants, process con-
trol operators can perform the duties of maintenance people, or vice versa, 
or other people responsible for these functions can use the same interface.

The general lack of connectivity seriously affects the performance of main-
tenance functions. Many applications with different functions in a plant, 
such as process control operations, maintenance operations, and business 
operations, are not integrated and, therefore, do not share data or informa-
tion. Some activities, such as monitoring equipment or operational testing of 
devices to determine if the plant is working in an optimal manner, and so on, 
are performed by external consultants or service companies. As noted above, 
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these companies measure the data needed, perform an analysis, and supply 
only the results of the analysis to the plant staff. In these instances, as also 
mentioned, the data are normally collected and stored in a unique manner 
and are rarely made available to the plant personnel for other reasons.

Furthermore, even if all applications are within a single plant, because 
different staff use different applications and analysis tools, if these are nor-
mally located at different hardware locations within the plant, there is usu-
ally little or no information flow from a functional area of a plant to other 
areas, even when this information may be useful to other functions within 
the plant.

For example, a tool, such as a CM data analysis, can be used by a mainte-
nance person to detect a malfunction. This tool can detect a problem, and alert 
the maintenance personnel that the device needs to be calibrated, repaired, 
or replaced. Nevertheless, the process control operator (either a human or 
software) does not have access to this information, although the device mal-
function may be causing a problem that is affecting a loop or some other 
component being monitored by the process control operation. Similarly, the 
business person is not aware of this fact, even though the device may be a 
critical factor in plant optimization. Because the process control expert is not 

Remote
analysis stations

Download and
analysis station

Remote connection

Machine with
vibration
sensors

Machine with
vibration
sensors

Machine with
vibration
sensors

Machine with
vibration
sensors

Mobile
devices

Mobile devices
Ethernet

Workshops On field actions

CMMS CMMS
serverInternet

Monitoring
system

Monitoring
system

Monitoring
system

Monitoring
system

Monitoring
system

CM database
storage system

FIGURE 2.37
Typical architecture of maintenance information system.



132 Artificial Intelligence Tools

aware of a problem with the device, ultimately causing poor performance 
of a loop or the drive in the process control system and because he/she has 
assumed this computer is running smoothly, he/she may misdiagnose the 
problem detected within the loop or may try to apply a tool, such as a tuner 
loop, that will not correct the problem. Similarly, a business person can make 
an erroneous business decision to operate the plant in a manner that will 
not achieve the desired business effects (such as profit maximization) simply 
because the device does not work properly and he/she does not know.

Given the plethora of data analysis tools and other tools for the detection 
and diagnosis of process control, either in the plant or through external com-
pany services or consultants, there is a wealth of information on the health 
and performance of the devices available to the maintenance person that 
could be helpful to the process operator and business person. Similarly, there 
is a wealth of information available to the process operator on the current 
operating status of process control loops and other routines that may be use-
ful to the maintenance person. In addition, information is generated by or 
used in the course of performing the business functions of the company, 
and this could be useful for the maintenance staff or the process control 
operator in optimizing process operation. Nevertheless, in the past, because 
these functions were separated, the information generated or collected in 
one functional area was not used, or not used well, in other functional areas, 
leading to a suboptimal use of assets within a plant.

2.8.1 Data Fusion: A Requirement in the Maintenance of Processes

A process control system consists of a system of collection and distribution 
of data from different sources, each of which can use its own unique way to 
acquire or generate data in the first place. The system of collection and dis-
tribution of data makes the stored data available to other applications for use 
in any manner desired. This way, applications can use the data from many 
different data sources to provide a better overview of information on the cur-
rent operating status of a plant, to make better and more complete diagnostic 
or financial decisions about the plant, and so on.

Combined applications can provide or use data from collection systems 
previously disparate, such as process control monitoring systems, CM and 
performance models of processes, to arrive at a better overview of the state 
of a plant’s process control, to facilitate the diagnosis of any problems and 
to recommend or take actions in production planning and maintenance, as 
seen in Figure 2.38. For example, information or data may be collected by 
maintenance functions related to health, variability, performance, or use of 
a device, loop, unit, and so on. This information can be sent and displayed 
to a process operator or maintenance personnel to inform those persons of a 
current or future problem. This same information can be used by a process 
operator to correct a current problem within a loop; for example, taking into 
account and correcting a device that is working suboptimally. Diagnostic 
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applications may generate information about devices using nonprocess 
variables, such as measurement, control, or rates, thereby determining, for 
example, the health of a device. Or team performance can be determined 
from models calculating key performance variables, such as the efficiency 
and cost of production.

A process control expert can use these measurement, control, and device 
rates with process variables to optimize the operation. Process variable data, 
and variable data of nonprocesses can be combined, for example, to generate 
models of processes.

Similarly, the detection of a problem in a device, such as one that requires 
the shutdown of process, can cause business software to automatically order 
replacement parts or alert the relevant business person that the selected stra-
tegic actions will not produce the desired results. The change of strategy 
control within the process control function may allow business software to 
automatically order new or different raw materials.

Of course, there are many other types of applications for which merged 
data relating to the process control, equipment monitoring, and performance 
monitoring data can be helpful, as these provide different and more com-
plete information about the status of activity in all areas of a process control 
plant (Hall and Llinas, 1997).

Figure 2.34 shows a typical process control plant integrated into a num-
ber of businesses and other information systems, and interconnected with 
control and maintenance systems in one or more communication networks. 
Operator interfaces can store and run the tools available for process controls, 
including, for example optimizing control, diagnosticians, neural networks, 
and tuners.
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Maintenance systems, such as computers running the CMMS/EAM appli-
cation or any other device or equipment control and communication applica-
tions can be connected to the process control systems or to individual devices 
for monitoring and maintenance activities. For example, a maintenance team 
can be connected to the controllers and/or devices through the desired com-
munication lines or networks (including wireless networks and hand-held 
devices) to communicate and, in some cases, reconfigure or perform other 
maintenance activities on the devices. Similarly, maintenance applications, 
such as the implementation of EAM/ CMMS, can be installed and run by 
one or more of the user interfaces associated with the processing control sys-
tem to perform maintenance functions, including data collection related to 
the state of device operation.

Some plants include assets, such as motors, turbines, and so on, which 
are connected to a maintenance computer through a permanent or tempo-
rary communication link (i.e., a wireless communication system or a hand-
held device connected to the equipment to take readings and then removed). 
The maintenance computer can store and run applications for diagnostic 
and known monitoring applications to monitor, diagnose, and optimize the 
operating state of the assets. A plant’s maintenance staff generally uses the 
applications to maintain and oversee the performance of rotating equip-
ment, determine problems with it, and decide when it should be repaired 
or replaced. In some instances, systems for the generation and distribution 
of energy may use external consultants or services to use the data to detect 
equipment problems, poor performance, or other issues. In these cases, 
the computers running the analyses cannot be connected with the rest of 
the system through any communication line; they can only be connected 
temporarily.

In the past, process control, energy generation, and maintenance sys-
tems were not attached to each other in a manner allowing them to share 
data generated or collected by any of these systems in a useful manner. As 
a result each of the different functions, such as the process control func-
tions, energy generation functions, and rotating equipment functions, have 
operated under the assumption that other equipment in the plant may be 
affected by, or have an effect on, that particular function which is operating 
perfectly (this is seldom the case). Because the functions are so different and 
the equipment and personnel used to supervise these functions are differ-
ent, there has been little or no meaningful data sharing between the various 
plant systems.

To solve this problem, we propose a data collection and distribution sys-
tem, henceforth referred to as the asset cloud (see Section 2.8.3). This system 
acquires data from the disparate sources, formatting these data to a com-
mon data format or structure and then providing them, as needed, to any 
set of applications which are run by a computer system or dispersed among 
workstations throughout the process control network. The proposed applica-
tion is able to integrate the use of data from previously separate sources to 



135Condition Monitoring

provide better measurement, monitoring, control, and understanding of all 
plant systems.

2.8.2 XML: Protocol for Understanding Each Other

2.8.2.1 Common Standards for Maintenance Information Exchange

The complexity of connectivity between applications is enormous, as con-
trol systems, maintenance management, CM, and enterprise applications 
are all involved in the management of complex, asset-intensive opera-
tions. Unfortunately, standards for information exchange have evolved 
independently in each area. OLE for Process Control (OPC) has become 
a popular standard for sharing information between control systems and 
associated manufacturing applications, as has the Machinery Information 
Management Open Systems Alliance (MIMOSA) OSA-EAI standard for 
sharing CM and asset health information with maintenance, operations, 
and enterprise systems. Meanwhile, the Instrumentation, Systems & 
Automation Society ISA-95 standard for integrating enterprise and produc-
tion management systems is being adopted by a wide range of the relevant 
suppliers and users. All address an important issue and each has made 
significant progress.

OpenO&M recognizes that combining standards provides a good way to 
address many asset management challenges. Accordingly, it is being devel-
oped by a joint working group of professionals and is based on MIMOSA, 
OPC, and ISA-95 standards. Simply stated, it seeks to enable optimal asset 
performance through collaborative decision making across operating and 
maintenance organizations. While the standards used to develop OpenO&M 
originate in process manufacturing, the joint working group is also address-
ing the needs of the broader asset management community, including facili-
ties and fleets in both public and private sectors.

OpenO&M is concerned with the integration of information among four 
areas: asset status assessment, CM, specialized sensors, and recent analysis 
tools. At this point, CBM and condition-based operations (CBO) strategies, 
that is, the performance of maintenance actions based on information col-
lected by CM, are realizable. CBM and CBO attempt to avoid unnecessary 
maintenance tasks by taking action only when a physical asset shows evi-
dence of abnormal behavior. In many organizations, however, this informa-
tion is used by local technicians who maintain the equipment and is not yet 
accessible to other personnel.

Integration of asset CM information with control systems and operations 
(OPS), EAM, and other decision support systems (DSS) is imperative today, 
and this is where OpenO&M can play a key role. OpenO&M exploits the 
benefits of MIMOSA’s common Asset Registry model to eliminate asset iden-
tification issues across multivendor systems and across organizational solu-
tions. Integrating this with the standard models of OPC creates a recognized 
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interface that includes automation and control systems and all supporting 
solutions; it often includes EAM as well.

2.8.3 XML: Protocol to Destroy Communication Barriers

To pick up on the final point above, working within the context of ISA-95 
ensures that derived information can be used by higher-level enterprise 
applications such as ERP or EAM. This emerging standard is specifically 
focused on providing value to end users by creating plug-and-play capa-
bilities for faster implementation by allowing them to select the best solu-
tion from complying suppliers. Implicit in OpenO&M is an extensible, open 
architecture based on extensible markup language (XML) and service-ori-
ented interfaces, one that leverages leading-edge technology and supports 
practical interoperability and compliance.

XML may now be the most popular protocol for the communication exchange 
of maintenance information. While HTML is focused on document format, 
XML is focused on information content and relationships. A class of software 
solutions is evolving, which enables tighter coupling of distributed applications 
and hides some of the inherent complexities of distributed software systems. 
The general term for these software solutions is middleware. Fundamentally, 
middleware allows application programs to communicate with remote applica-
tion programs as if the two were located on the same computer.

The process to transfer information between disparate sources in the XML 
environment is as follows. An XML wrapper wraps data from each of the 
computers involved in asset data exchange and sends them to an XML data 
server. Because XML is a descriptive language, the server can process any 
type of data. At the server, the data are encapsulated and mapped to a new 
XML wrapper, if necessary. Put otherwise, data are mapped from one XML 
schema to one or more other schemas created for each receiving application.

Essentially, XML is a model for describing the structure of information. 
For example, XML schemas can be used to test document validity; this is 
especially important when web-based applications are receiving and send-
ing information to and from many sources.

When we are mapping the process model to an XML schema, we must 
establish rules, as there are many ways to accomplish the same output data 
structure, and we need a certain degree of regularity to simplify the data 
conversion. Once these rules are devised, creating the schemas is relatively 
straightforward. Figure 2.39 shows XML schema syntax.

XML can model all existing data (e.g., assets, events, failures, alarms). The 
most difficult data layer to represent is also the most critical; this is the layer 
containing information on sensory inputs and outputs, whether a single 
scalar value or an array of complex data points. Sensory data are especially 
relevant in CM and process control; they may be as simple as a single value 
or as complex as several synchronous sampled waveforms. The standards 
suggest a number of data formats that may represent sensory information.
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With XML, each data originator can wrap its own data using a schema 
understood or convenient for that particular device or application, and each 
receiving application can receive the data in a schema it recognizes and/
or understands. The XML server may be configured to map one schema to 
another depending on the data source and destination(s); it also may perform 
data processing functions or other functions based on data receipt. The rules 
for mapping and processing functions are set up and stored in the server 
before a series of data integration applications begins. This allows data to be 
sent from any one application to one or more other applications.

2.8.4 Example of Asset Data Integration Using XML

Web-based technologies are widely accepted for eMaintenance purposes.

<?xml version="1.0" encoding=""?>
<!--XML Schema for da data-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified">
<xsd:element name="entryPoint" type="EntryPoint"/>

<xsd:complexType name="EntryPoint">
<xsd:sequence>

<xsd:element name="entryPtType" type="EntryPtTypeEnum" minOccurs="1" 
maxOccurs="1"/>
<xsd:element name="dataPage" type="xsd:anyURI" minOccurs="1" 
maxOccurs="1"/>
<xsd:element name="outPortSet" type="OutPortSet" minOccurs="1" 
maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="EntryPtTypeEnum">

<xsd:simpleContent>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="DA"/>
<xsd:enumeration value="DM"/>
<xsd:enumeration value="CM"/>
<xsd:enumeration value="HA"/>
<xsd:enumeration value="PA"/>

</xsd:restriction>
</xsd:simpleContent>

</xsd:complexType>
</xsd:schema>

FIGURE 2.39
XML schema of transformed and transferred data.
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For data from different data sources to be collected and used in a single 
system, a configuration database or another integrated configuration system, 
such as XML, is required. An explorer-type display or hierarchy should also 
be provided to allow the data to be manipulated, organized, and ultimately 
used by other applications.

Figure 2.40 shows an architectural overview of such a system, in this 
example, a process control system. Generally, the system can include a 
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maintenance management system, a product inventory control system, a 
production scheduling system, along with other systems connected by LAN, 
internet, and so on. In this case, XML is used as a transaction server; the 
server sends XML-wrapped data to the web services.

The web services include a series of web service listeners; they listen for 
or subscribe to certain data from other data sources and supply these data 
to the various subscribing applications. The web listening services may be 
part of the data collection and distribution system; their functions include 
listening for and redistributing alarms and events data, processing CM data, 
and equipment CM data. Interfaces convert the data to a standard format or 
protocol, such as Fieldbus or ML6, as required.

The web services are in contact with and receive data from other external 
data sources via web servers, including, for example, vibration monitoring, 
real-time optimization, expert system analysis, PdM, and loop monitoring 
data sources, and so on.

Finally, a configuration database stores and organizes the data from the 
process control runtime system; this includes data from remote sources, such 
as external web servers.

2.8.4.1 Cloud Computing in Asset Management: Natural Data Repository

2.8.4.1.1 Introduction to Asset Cloud

Cloud computing, the next stage in internet evolution, provides the means 
through which everything from computing power to computing infrastruc-
ture, applications, business processes, and personal collaboration can be 
delivered as a service wherever and whenever we may want it. The cloud 
comprises a set of hardware, networks, storage, services, and interfaces 
that allow computing to be delivered as a service. Cloud services include 
the delivery of software, infrastructure, and storage over internet (either as 
separate components or a complete platform) based on user demand. Cloud 
computing, in all of its forms, is transforming the computing landscape. It 
will change the way technology is deployed and how we think about the 
economics of computing. Cloud computing is more than a service sitting 
in some remote data center. It is a set of approaches that can help organiza-
tions quickly and effectively add and subtract resources in almost real time. 
Unlike other approaches, the cloud is as much about the business model as 
it is about technology. Companies clearly understand technology is at the 
heart of how they operate their businesses. Business executives have long 
been frustrated with the complexities of getting their computing needs met 
quickly and cost effectively.

In the case of asset management, the cloud may solve the problem of dis-
persed data in many different repositories. The end user (maintenance or 
operators) does not need to understand the underlying technology. The data 
collection and distribution applications may be dispersed throughout the 
network, with data being collected at various locations. The collected data 
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can be converted to a common format at these locations and sent to one or 
more central databases for distribution. These distributed databases consti-
tute the asset cloud.

Thus, generally speaking, we need to establish routines to collect data from 
disparate sources and then provide these data to the cloud in a common or 
consistent format. The applications within the cloud may use the collected 
data and other information generated by the process control systems, the 
maintenance systems, and the business and process modeling systems, as 
well as the information generated by data analysis tools executed in each of 
these systems. However, the cloud may use any other desired type of expert 
system, including, for example, any type of data mining system.

It may also include other applications that integrate data from various func-
tional systems for other purposes, such as user information, diagnostics, or 
for taking actions within a plant, such as process control actions, equipment 
replacement, or repair actions, altering the type or amount of product based 
on financial factors, process performance factors, and so on.

2.8.4.2 Services Provided by the Asset Cloud

In a sense, the cloud operates as a data and information clearing house in a 
processing plant; it coordinates the distribution of data or information from 
one area, that is, maintenance, to other areas, that is, the process control or 
business areas. The cloud may use the collected data to generate new infor-
mation or data; these data can then be distributed to other computer systems 
associated with different functions in the plant. Finally, the cloud may exe-
cute other applications (or oversee their execution) to use the collected data 
to generate new types of data to be used within the process control plant.

A cloud-associated application may also diagnose conditions or problems 
within a process control plant based on data from two or more process con-
trol monitoring applications, process performance monitoring applications, 
or equipment monitoring applications. The applications may respond to a 
diagnosed or detected problem in the plant or may recommend actions to 
be taken by a user, that is, an operator, maintenance technician, or business 
executive responsible for the overall plant operation.

The cloud either includes or executes index generating software that col-
lects or creates indexes associated with devices (process control and instru-
mentation, power generation, rotating equipment, units, areas etc.) or process 
control entities (loops etc.) within the plant. These indexes can be used to 
optimize process control or to provide business managers with more com-
plete or understandable information about the operation.

The asset cloud must provide maintenance data (e.g., device status infor-
mation) and business data (e.g., data associated with scheduled orders, etc.) 
to a control expert associated with the process control system to facilitate 
such activities as optimizing control. The control experts may also incorpo-
rate and use data related to the status of devices or other hardware within 
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the process control plant. In addition, they may generate performance data 
using process performance models of the decision making. In the past, soft-
ware control experts could only use process variable data and some limited 
device status data to make recommendations to the process operator.

With the cloud’s ability to collect communication data, especially device 
status information and data analysis tools, the control expert can incorporate 
device status information, including health, performance, utilization, and 
variability information, into its decision making. In addition, the asset cloud 
can provide information on the state of the devices and the operation of the 
control activities within the plant to the business systems; a work order appli-
cation or program can automatically generate work orders based on prob-
lems detected in the plant, or an order for parts based on work performed.

Figure 2.41 is a simplified block diagram of data flow and communication 
associated with or used by the asset cloud. The diagram includes the data 
collection and distribution system, which receives data from many sources. 
A process control data source may include traditional process control activi-
ties and applications, such as process control and monitoring applications, 
process control diagnostic applications, process control alarming applica-
tions, and so on. Any or all of these can send data to the cloud (Figure 2.41).

Equipment or process health data sources also send information to 
the cloud. These include traditional equipment monitoring applications, 
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equipment diagnostic applications, equipment alarming applications, abnor-
mal situation analysis applications, environmental monitoring applications, 
and so on. In other words, the source may send data generated by any of a 
number of diagnostic applications or traditional equipment monitoring.

A performance monitoring data source is another source of data. These 
include performance monitoring applications such as process models used 
to monitor or model process operation, process or equipment health, and so 
on. Data may also be acquired by or generated by any type of performance 
monitoring equipment or application.

Finally, a financial or production planning data source may be connected 
to the cloud. These applications perform financial or cost analysis functions 
within the process control system, including deciding how to run the plant 
to maximize profits, how to avoid environmental fines, what or how much of 
a product to make, and so on. Field devices, such as smart field devices, may 
provide further data; this includes any data measured or generated by these 
field devices, such as alarms, alerts, measurement data, calibration data, and 
so on.

2.8.4.3 Asset Cloud as a Decision Support System

The data collection and distribution system cloud collect data from the vari-
ous data sources in a common format and/or convert the received data to 
a common format for storage and later use by the other elements, devices, 
or applications in the process control system. Once received and converted, 
data are stored in a database; they must be both accessible and available to 
applications or users within the asset cloud. Applications related to process 
control, alarms, device maintenance, fault diagnostics, PdM, financial plan-
ning, optimization, and so on can use, combine, and integrate the data from 
one or more of the many data sources, thus allowing them to operate better 
than in the past when data were both disparate and inaccessible.

Figure 2.42 provides a detailed diagram of data flow in a process control 
plant. At the left side of the diagram, data associated with the process plant 
are collected through various functional areas or data sources:

 1. Control data are collected by typical process control devices: field 
devices, input/output devices, hand-held or remote transmitters, or 
any other devices, that is, communicatively connected to process 
controllers.

 2. Equipment monitoring data associated with traditional equipment 
monitoring activities are collected by sensors, devices, transmitters, 
and so on. Process performance data are collected by the same or 
other devices.

 3. Financial data are collected by other applications as part of the per-
formance monitoring data.
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 4. Collected data from applications or sources outside the traditional 
process control network, for example, applications owned and oper-
ated by service organizations or vendors.

These data may be collected automatically or manually, as many diverse 
sources can compose equipment monitoring. Accordingly, data collectors 
include the following: hand-held collection devices, a laboratory’s chemi-
cal and physical measurements, fixed or temporary online devices, which 
periodically (e.g., RF) telemeter data from remote process and equipment 
measurement devices, online device inputs or remote multiplexers, and/or 
concentrators or other data collection devices.

The process control data, equipment monitoring data, and process per-
formance data can be reconciled, verified, validated, and/or formatted by 
data collection and reconciliation applications. Note: these may be part of 
the cloud. These applications run within the data collection device or within 
any other device; this includes central data historians, process controllers, 
equipment monitoring applications, and the like, which receive or process 
this data.

After being reconciled or, in some cases, not reconciled at all, the collected 
data may be provided to applications associated with the various functional 
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areas of the process control system. One or more diagnostic applications 
may use the collected data to perform process control diagnostics, includ-
ing applications that help an operator pinpoint problems within process 
control loops, instruments, actuators, and so on. The diagnostic applications 
can include expert diagnostic engines as well. Note: The process diagnostic 
applications can take the form of any typical or standard process diagnostic 
application and are not limited to those mentioned here.

The outputs of these diagnostic applications can take any form. They may 
indicate faulty or poorly performing loops, functions blocks, areas, and units 
within the process control system or they may indicate where the loops need 
to be tuned.

The equipment monitoring functional block will receive the reconciled 
equipment condition data version. This block can include equipment or CM 
applications; these may, for example, accept or generate alarms indicating 
problems with equipment, detect poorly performing or faulty equipment, 
or detect other equipment problems or conditions of interest to a mainte-
nance person. Well-known equipment monitoring applications include utili-
ties adapted to the different types of equipment within a plant. Equipment 
diagnostic applications can be used to detect and diagnose equipment prob-
lems based on measured raw data on the equipment. Examples of equipment 
diagnostic applications include vibration sensor applications, rotating equip-
ment applications, power measurement applications, and so on.

Of course, there are many types of equipment CM and diagnostic appli-
cations that produce data associated with the state or operating condition 
of equipment within a process control plant. In addition, a historian may 
store raw data detected by equipment monitoring devices, store data gener-
ated by the equipment CM and diagnostic applications, and provide data to 
those applications as needed. Finally, equipment models may be provided 
and used by the equipment CM and diagnostic applications in any manner 
deemed appropriate.

2.8.4.3.1 Context as a Result of Fused Data: The Future

In the past, process monitoring, equipment monitoring, and performance 
monitoring were performed independently. Each attempted to “optimize” 
its own functional area, ignoring the effect its actions might have on the 
other functional areas. As a result, a low-priority equipment problem caus-
ing a larger problem in the failure to achieve a desired process control per-
formance level may not have been corrected because it was not considered 
important in the context of equipment maintenance. With the asset cloud 
providing data, however, end users have access to a broader view of the plant 
based on two or more of three possible data sources: equipment monitor-
ing data, process performance data, and process control monitoring data. 
Similarly, diagnostics performed for the plant can now consider data associ-
ated with process operation and equipment operation, providing a better 
overall diagnostic analysis.
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Simply stated, the collected data (process control data, process monitor-
ing data, equipment monitoring data) can be provided to different people, 
collected and used in different formats, and used by completely different 
applications for different purposes. As a result, some of these data may 
be measured or developed by service organizations that use proprietary 
applications incompatible with the rest of the process control system. By the 
same token, if data are collected by or generated by financial applications 
typically used in a process control environment, they may not be in a for-
mat or protocol recognizable or useable by process control or alarm applica-
tions. A maintenance person and the equipment monitoring and diagnostic 
applications he/she typically uses may not have access to data collected by 
or generated by any of the process control applications, process models, or 
financial applications; they may not be constructed in such a fashion so as 
to be able to use them either. Finally, the process control operator and the 
process control monitoring and diagnostic applications used by him/her do 
not usually have access to data collected by or generated by the equipment 
monitoring applications and performance modeling or financial applica-
tions; again, they may not be constructed to use them, in any event.

The asset cloud overcomes the problem of restricted or no access to data 
from various external sources. It collects data and converts those data, if 
needed, into a common format or protocol that can be accessed and used by 
applications. The integration of the various types of functional data prom-
ises improved personnel safety, higher process and equipment uptime, 
avoidance of catastrophic process and/or equipment failures, greater operat-
ing availability (uptime) and plant productivity, higher product throughput 
stemming from higher availability, and the ability to safely and securely run 
faster and closer to design and manufacturing warranty limits. There will 
also be a higher throughput because of the ability to operate the process 
at the environmental limits, and improved quality with the elimination or 
minimization of equipment-related process and product variations.
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3
Challenges of Condition Monitoring 
Using AI Techniques

3.1 Anomaly Detection

The anomaly detection task is to recognize the presence of an unusual (and 
potentially hazardous) state within the behaviors or activities of a system, 
with respect to some model of “normal” behavior that may be either hard 
coded or learned from observation. We focus here on learning models of nor-
malcy at the user behavioral level. An anomaly detection agent faces many 
learning problems including learning from streams of temporal data, learn-
ing from instances of a single class, and adapting to a dynamically chang-
ing concept. In addition, the domain is complicated by considerations of the 
trusted insider problem (recognizing the difference between innocuous and 
malicious behavior changes on the part of a trusted user) and the hostile 
training problem (avoiding learning the behavioral patterns of a hostile user 
who is attempting to deceive the agent).

We propose an architecture for a learning anomaly detection agent based 
on a hierarchical model of user behaviors. The leaf level of the hierarchy mod-
els the temporal structure of user observations, while higher levels express 
interrelations between descendant structures. We describe approaches to the 
fabrication of such models, employing instance-based learning models and 
hidden Markov models (HMMs) as the fundamental behavioral modeling 
units. Approaches to the trusted insider and hostile training problems are 
described in terms of the hierarchical behavior model (Lane, 1998).

In this chapter, we will discuss the goals of the anomaly detection domain, 
related background work, and the issues raised by the proposed research. 
Although we make an effort to divide the issues into those that are most 
closely related to learning and those most closely related to security, we note 
the nature of the domain is such that it can be difficult to completely separate 
the two.

Before examining the anomaly detection problem in detail, we discuss the 
overall performance goals of an adaptive anomaly detection system. When 
examining machine-learning algorithms for anomaly detection, we must 
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keep in mind several practical requirements imposed by the domain and 
the intended use. Specifically, the purpose of any system is to enhance the 
users’ ability to accomplish their desired tasks. In the context of anomaly 
detection, this enhancement increases the individual’s confidence in the 
privacy and confidentiality of personal systems. From a global perspective, 
strong anomaly detection systems increase confidence in authenticity (the 
belief that actions originating with a particular account are actually associ-
ated with the owner of that account) and increase assurance that shared sys-
tem resources and data are being used properly (Lane, 1998). In this section, 
we review personal versus global definitions of “anomaly” requirements for 
system accuracy, and space and time resource issues.

Anomaly detection refers to finding patterns in data that do not conform 
to expected behavior. Such nonconforming patterns may be called anoma-
lies, outliers, discordant observations, exceptions, aberrations, surprises, 
peculiarities, or contaminants in different application domains. Anomalies 
and outliers are two most commonly used terms in the context of anomaly 
detection and are sometimes used interchangeably. Anomaly detection is 
used in a wide variety of applications, including credit card fraud detection, 
insurance or health care, intrusion detection for cyber security, fault detec-
tion in safety-critical systems, and military surveillance of enemy activities. 
Anomaly detection is important because anomalies in data translate into sig-
nificant (often critical) actionable information in many application domains; 
for example, a machine’s anomalous behavior (Chandola et al., 2009).

Th detection of outliers or anomalies in data has been studied by statis-
tics researchers since the nineteenth century. Over time, other research com-
munities have also developed anomaly detection techniques. Many of these 
techniques have been developed for specific domains, but others are more 
generic.

This chapter provides a structured, comprehensive overview of the 
research on anomaly detection to explain the many different research direc-
tions and show how techniques developed in one area can be applied in 
other domains.

3.1.1 What Are Anomalies?

Data patterns that do not conform to a well-defined notion of normal behavior 
are anomalies. Figure 3.1 uses a simple two-dimensional data set to illustrate 
anomalies. In the figure, the data have two normal regions, N1 and N2; most 
observations lie in these two regions. Points sufficiently far away from the two 
regions are anomalies, for example, points O1 and O2, and points in region 
O3. Anomalies are induced in data for a variety of reasons, such as malicious 
activity, including credit card fraud, cyber intrusion, terrorist activity, or a sys-
tem breakdown. However, all these reasons have a common characteristic that 
an analyst finds interesting: they are all related to real life. In fact, “interesting-
ness” or reallife relevance is a key feature of anomaly detection.
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Noise removal and accommodation are related to anomaly detection as 
they deal with unwanted noise in the data. Noise is not of interest to the ana-
lyst; it hinders data analysis, so it must be removed before data are analyzed. 
Noise accommodation refers to immunizing models against anomalous 
observations or noise. Novelty detection, also related to anomaly detection, 
finds previously unobserved (emergent, novel) patterns in the data, for exam-
ple, a new topic of discussion appearing in a news group. Unlike anomalies, 
however novel patterns are typically incorporated into the normal model 
after being detected.

Note: because the problems and solutions mentioned above often appear 
in anomaly detection and vice versa, they are discussed in this chapter 
(Chandola et al., 2009).

3.1.2 Challenges

In an abstract sense, an anomaly is a pattern that does not conform to 
expected (i.e., normal) behavior. Therefore, a straightforward anomaly 
detection approach will define normal behavior; any observations that do 
not belong to this normal region are anomalies. It is not always so simple, 
however (Chandola et al., 2009):

• It is difficult to find a normal region that encompasses every pos-
sible normal behavior. Moreover, the borders between normal and 
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FIGURE 3.1
A simple example of anomalies in a two-dimensional data set. (Redrawn from Chandola, V. 
et al., 2009. Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.)
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anomalous behavior may be blurred: an anomalous observation 
close to the border can actually be normal, and vice versa.

• When anomalies result from malicious actions, the instigators of 
these actions often adapt themselves to make the anomalous obser-
vations appear normal; obviously, this complicates the task of defin-
ing normal behavior.

• Given the tendency of normal behavior to evolve, a current defini-
tion of normal behavior might not be accurate in the future.

• The precise notion of an anomaly differs in different application 
domains. In the condition monitoring domain, for example, a slight 
deviation from normal (e.g., fluctuations in bearing temperature) might 
be an anomaly, while a similar deviation in the stock market domain 
(e.g., fluctuations in the value of a stock) might be acceptable. In other 
words, applying techniques across domains is not likely to work.

• The availability of labeled data to train and/or validate the models 
used by anomaly detection techniques is generally problematic.

• The data frequently contain noise that resembles the anomalies; it is 
hard to distinguish and remove this noise.

Given these challenges, it is not easy to solve the anomaly detection 
problem, at least in its most general form. In fact, most anomaly detection 
techniques solve a specific formulation of the problem induced by fac-
tors including the nature of the data, availability of labeled data, type of 
anomalies to be detected, and so on. These factors are often determined by 
the nature of the application domain where anomalies must be detected. 
Researchers regularly adopt concepts from a range of disciplines, including 
statistics, machine learning, data mining, information theory, and spectral 
theory, and apply them to their specific problem formulations.

Figure 3.2 shows the key components of anomaly detection techniques.

3.1.2.1 Different Aspects of an Anomaly Detection Problem

As mentioned above, a specific formulation of the anomaly detection prob-
lem is determined by such factors as the nature of the input data, the avail-
ability (or unavailability) of labels, and the constraints and requirements of 
the application domain. Given the diversity, we obviously need a broad spec-
trum of anomaly detection techniques (Chandola et al., 2009).

3.1.2.1.1 Nature of Input Data

Input data are usually a collection of data instances (also called object, record, 
point, vector, pattern, event, case, sample, observation, entity). Each data 
instance has a set of attributes (also called variable, characteristic, feature, 
field, dimension). The attributes can be binary, categorical, or continuous. 
A data instance might have one attribute (univariate) or multiple attributes 
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(multivariate). In the case of the latter, all attributes might be the same type 
or a mixture of types.

The applicability of an anomaly detection technique depends on the nature 
of the attributes. If we are using statistical techniques, our choice of models 
will depend on whether we have continuous or categorical data. Similarly, 
if we are using nearest-neighbor-based techniques, the nature of attributes 
would determine which distance measure we select. Instead of the actual 
data, the pairwise distance between instances may be provided as a distance 
(or similarity) matrix. Techniques requiring original data instances are not 
applicable in such cases, including numerous statistical and classification-
based techniques.

The categories of input data can also be based on the relationship of data 
instances. Most anomaly detection techniques deal with record data (or 
point data), with no relationship assumed among data instances.

Data instances that can be related to each other include sequence data, 
spatial data, and graph data. In sequence data, the instances are ordered lin-
early, as in time-series data, genome sequences, protein sequences. In spatial 
data, each instance is related to neighboring instances, as in vehicular traffic 
data, ecological data. If spatial data have a temporal (sequential) component, 
we call them spatiotemporal data, as in climate data. In graph data, data 
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FIGURE 3.2
Key components associated with an anomaly detection technique. (Redrawn from Chandola, 
V. et al., 2009. Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.)
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instances are represented as vertices on a graph and connected to other ver-
tices by edges. In certain situations, such relationships among data instances 
become relevant for anomaly detection (Chandola et al., 2009).

3.2 Types of Anomaly

The nature of the anomaly is an important aspect of an anomaly detection 
technique. Anomalies can be classified into three categories: point, collective, 
and contextual anomalies (Chandola et al., 2009).

3.2.1 Point Anomalies

If an individual data instance can be considered anomalous to the rest of the 
data, it is called a point anomaly. This is the simplest type; the majority of 
research on anomaly detection focuses on it.

In Figure 3.1, points O1 and O2 and points in region O3 lie outside the 
boundary of the normal regions; they are point anomalies because they dif-
fer from normal data points. Consider credit card fraud detection as a case 
in point. Let the data set correspond to a person’s credit card transactions. 
For simplicity, assume the data are defined using a single feature, namely, 
amount spent. A transaction for which the amount spent is much higher 
than the normal range of expenditure is a point anomaly.

3.2.2 Contextual Anomalies

If a data instance is anomalous in a specific context (but not otherwise), we call 
it a contextual anomaly (also a conditional anomaly). The context is induced 
by the data set’s structure and must be specified in problem formulation. Each 
data instance is defined using two sets of attributes: contextual and behavioral.

 1. Contextual attributes are used to determine the context (or neigh-
borhood) for that instance. In spatial data sets, for example, the 
contextual attributes of a location are its longitude and latitude. 
Meanwhile, in time-series data, time is a contextual attribute that 
determines the position of an instance in the whole sequence.

 2. Behavioral attributes define the noncontextual characteristics of an 
instance. In a spatial data set describing the average rainfall of the 
entire world, for example, the amount of rainfall at any one location 
is a behavioral attribute.

An instance of data could be a contextual anomaly in a given context but 
considered normal in another (in terms of behavioral attributes). In contex-
tual anomaly detection, this property is key.
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Contextual anomalies are often explored in time-series and spatial data. 
Figure 3.3 gives one such example for a temperature–time series, showing 
monthly temperatures for an area over the past few years.

A temperature of 35°F might be normal in winter (time t1) in that par-
ticular place, but in summer (time t2), it would be an anomaly. Selecting a 
contextual anomaly detection technique is based on the meaningfulness of 
the contextual anomalies in the target application domain. Another factor 
to consider is the availability of contextual attributes. When defining a con-
text is straightforward, applying a contextual anomaly detection technique 
makes sense. When it is difficult, such techniques are hard to apply.

3.2.3 Collective Anomalies

If a collection of related data instances is anomalous to the entire data set, 
we call this a collective anomaly. While, the individual data instances may 
not be anomalies, their occurrence together as a collection is anomalous. 
In Figure  3.4, an illustration of a human electrocardiogram output, the 
highlighted region denotes an anomaly; the same low value exists for an 
abnormally long time (corresponding in this instance to an atrial premature 
contraction). By itself, however, the low value is not an anomaly.

Collective anomalies have been explored in sequence data, graph data, 
and spatial data. While point anomalies can occur in any data set, collec-
tive anomalies can occur only in sets where data instances are related. The 
appearance of contextual anomalies, meanwhile, depends on the availabil-
ity of context attributes in the data. Note: a point anomaly or a collective 
anomaly can be transformed into a contextual anomaly detection problem 
by incorporating the context information (Chandola et al., 2009).
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FIGURE 3.3
Contextual anomaly t2 in a temperature–time series. The temperature at time t1 is same as at 
time t2 but occurs in a different context and is not considered as an anomaly. (Redrawn from 
Chandola, V. et al., 2009. Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.)
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3.2.4 Data Labels

The labels for a data instance indicate if it is normal or anomalous. Obtaining 
labeled data that are both accurate and representative of all types of behav-
iors may be extremely expensive, as labeling is often done manually by a 
human expert, thus requiring a great deal of effort. By and large, deriving a 
labeled set of anomalous data instances covering all possible types of anom-
alous behavior is more difficult than getting labels for normal behavior. 
Added to this, anomalous behavior is often dynamic; new types of anoma-
lies might arise, for example, for which there are no labeled training data. In 
air traffic safety, for example, anomalous instances may include catastrophic 
events and, thus, be extremely rare.

Depending on the availability of labels, anomaly detection techniques 
operate in one of three modes: supervised, semisupervised, or unsupervised 
anomaly detection (Chandola et al., 2009).

3.2.4.1 Supervised Anomaly Detection

The supervised mode assumes the availability of a training data set with 
labeled instances for normal and anomaly classes. A typical approach 
is building a predictive model for normal versus anomaly classes. In this 
approach, any unseen data instance is compared against the model to 
determine its class. Supervised anomaly detection has two problems. First, 
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FIGURE 3.4
Collective anomaly (atrial premature contraction in a human electrocardiogram output). 
(Redrawn from Chandola, V. et al., 2009. Anomaly detection: A survey. ACM Computing Surveys 
(CSUR), 41(3), 15.)
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there are fewer anomalous instances than normal instances in the training 
data, creating imbalanced class distributions. Issues arising from this are 
addressed in the literature on data mining and machine-learning. Second, 
deriving accurate and representative labels for the anomaly class is generally 
challenging. A number of techniques propose injecting artificial anomalies 
into a normal data set to obtain a labeled training data set.

Otherwise, supervised anomaly detection is similar to building predictive 
models, and we will, therefore, not continue the discussion.

3.2.4.2 Semisupervised Anomaly Detection

Techniques using a semisupervised mode assume training data only need 
labeled instances for the normal class, making them more widely applicable 
than supervised techniques. In spacecraft fault detection, for example, an 
anomaly would signify an accident, and this is difficult to model. Typically, 
such techniques build a model for the class of normal behavior and use the 
model to identify anomalies in the data.

A limited set of anomaly detection techniques assumes the availability of 
only anomaly instances for training. These are seldom used because it is dif-
ficult to obtain a training data set covering all possible anomalous behaviors 
in the data (Chandola et al., 2009).

3.2.4.3 Unsupervised Anomaly Detection

Techniques using the unsupervised mode do not require training data, 
making them widely applicable. These techniques implicitly assume normal 
instances occur far more frequently than anomalies in the test data. If this 
assumption turns out to be false, they have a high false alarm rate.

We can adapt many semisupervised techniques to operate in an unsuper-
vised mode if we use a sample of the unlabeled data set as training data. 
This assumes the test data contain few anomalies; it also assumes the model 
learned during training is robust to these anomalies (Chandola et al., 2009).

3.2.5 Anomaly Detection Output

Any anomaly detection technique must consider how anomalies are 
reported. The outputs of anomaly detection techniques are usually either 
scores or labels (Chandola et al., 2009).

3.2.5.1 Scores

Scoring techniques assign an anomaly score to each instance in the test 
data; the score depends on the extent to which that instance is considered an 
anomaly. Thus, the output is a ranked list of anomalies. An analyst may opt 
to analyze the top few anomalies or to make use of a cut-o® threshold.
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3.2.5.2 Labels

Labeling techniques assign a label (normal or anomalous) to each test 
instance.

The scoring-based anomaly detection techniques discussed above per-
mit an analyst to use a domain-specific threshold to select the most rele-
vant anomalies. In contrast, techniques providing binary labels to the test 
instances do not directly permit him/her to make such a choice. However, 
this can be indirectly controlled by the parameter choices of each technique.

3.2.6 Industrial Damage Detection

Industrial units suffer damage from continuous use and normal wear and 
tear; early detection is crucial to prevent escalation and further losses. Data 
in this domain are usually called sensor data because they are recorded by 
various types of sensors and collected for analysis. Anomaly detection tech-
niques are widely applied to these data to detect industrial damage.

Industrial damage detection can be subdivided into a domain dealing 
with defects in mechanical components, such as motors, engines, and so on, 
and one dealing with defects in physical structures. The former is also called 
system health management.

3.2.6.1 Fault Detection in Mechanical Units

As the name suggests, anomaly detection techniques in mechanical units 
monitor the performance of industrial components, including motors, 
turbines, oil flow in pipelines, and other mechanical components; they 
detect possible defects caused by anticipated wear and tear or unforeseen 
circumstances.

Such anomalies appear as an observation in a specific context (contextual 
anomalies) or as a sequence of anomalous observations (collective anoma-
lies). For the most part, normal data (i.e., in components without defects) are 
readily available, and semisupervised techniques are applicable. As preven-
tative measures must be taken as soon as possible, these anomalies are gen-
erally detected online (Chandola et al., 2009).

3.2.6.2 Structural Defect Detection

Structural defect and damage detection techniques detect structural anoma-
lies, such as cracks in beams or strains in airframes. These data have a tem-
poral aspect and may also have spatial correlations. The anomaly detection 
techniques are like novelty detection or change point detection techniques 
in that they detect changes in data collected from a structure. Normal data 
and the models learned from those data tend to be static over time (Chandola 
et al., 2009).
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3.2.6.3 Image Processing

Anomaly detection techniques for images are interested in changes in an 
image over time (motion detection) or in regions appearing abnormal on a 
static image (thermography in maintenance).

These anomalies are caused by motion, by the insertion of a foreign object, 
or by instrumentation errors. Data have both spatial and temporal attributes. 
Each data point has some continuous characteristics such as color, lightness, 
texture, and so on. The interesting anomalies are either anomalous points or 
regions in the images (point and contextual anomalies, respectively).

A major challenge is the large size of the input, for example, video data. 
Online anomaly detection techniques are required for these types of data 
(Chandola et al., 2009).

3.2.6.4  Anomaly Detection in Text Data, WOs, and 
Other Maintenance Documents

In these domains, anomaly detection techniques detect novel topics, events, 
or news stories in a collection of documents or news articles, and so on. The 
anomalies are caused when new events or anomalous topics are introduced. 
Data are typically high dimensional and extremely sparse; they also have a 
temporal aspect, as documents are collected over time. Handling the large 
variations in documents belonging to one category or topic presents a chal-
lenge in this domain.

3.2.6.5 Sensor Networks

Sensor networks have lately become an important topic of research due to 
the large number of sensors deployed in equipment for health assessment. 
The interest tends to take a data-analysis perspective, as the data have some 
unique characteristics. Anomalies in data collected from a sensor network 
can mean one or more sensors are faulty, or sensors are detecting events 
(e.g., intrusions) that are interesting for analysts. Thus, anomaly detection 
can capture sensor fault detection or intrusion detection or both.

A single sensor network may consist of sensors collecting different types 
of data, including binary, discrete, continuous, audio, video, and so on. Data 
are generated in a streaming mode. The environment in which the various 
sensors are deployed and the communication channel frequently induce 
both noise and missing values in the data.

Anomaly detection in sensor networks poses unique challenges. For 
one thing, the techniques must operate online. For another, because of 
severe resource constraints, they must be lightweight. Moreover, data are 
collected in a distributed manner, thus requiring the use of a distributed 
data-mining approach to their analysis. Finally, the presence of noise in 
the data collected from the sensor requires the detection technique to 
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distinguish between interesting anomalies and unwanted noise/missing 
values (Chandola et al., 2009).

3.3 Rare Class Mining

Rare class classification is the data-mining task aimed at building a model 
to correctly classify both majority and minority classes. Classifying these is 
difficult because the rare class is very small, but many researchers have tried 
to solve this problem (Chomboon et al., 2013).

Rare class mining is found in many real-world data-mining applications, 
including network intrusion detection, video surveillance (Medioni 2001), oil 
spills detection in satellite radar images, diagnoses of rare medical conditions, 
text categorization, and so on. In all these applications, samples from one class 
are extremely rare, but the number of samples from other classes is suffi-
ciently large. Problematically, the correct detection of the rare samples is 
significantly more important than the correct classification of the majority 
samples (Han et al., 2009).

The network intrusion detection domain receives hundreds of thousands 
of access requests every day. Among these, the number of malicious connec-
tions is generally very small compared to the number of normal connections. 
However, building a model that can detect attacks is crucial; the system must 
be able to respond promptly to any network intrusions. Samples from a rare 
class are sometimes called rare events or rare objects. Because the rarely 
occurring samples are usually overwhelmed by the majority class samples, 
they are much harder to identify. This represents a major problem.

First, traditional machine-learning algorithms try to achieve the lowest 
overall misclassification rate, creating an inherent bias in favor of the major-
ity classes because the rare class has a smaller impact on accuracy. Second, 
if noisy data resemble the rare objects, they may be difficult to distinguish. 
Given these issues, the rare class mining problem is attracting considerable 
attention from the research community.

The following sections note various issues associated with rare class min-
ing and give a systematic review of techniques proposed to mine rare events. 
Note: the domain of rare class mining is not clearly defined in the literature, 
and is often combined with the imbalanced dataset problem.

3.3.1 Why Rare Cases Are Problematic

Rare cases can be problematic for data-mining systems for many reasons. 
A basic problem is the lack of data, as rare cases generally cover only a few 
training examples (i.e., absolute rarity). The lack of data makes the detection 
of rare cases extremely difficult. Then, even if we manage to detect the rare 



161Challenges of Condition Monitoring Using AI Techniques

case, generalization will cause problems as it is hard to identify regularities 
from only a few data points. Consider the classification task shown in Figure 
3.6, which focuses on the rare case, P3, from Figure 3.5b. Figure 3.6a repro-
duces the region from Figure 3.5b surrounding P3. Figure 3.6b shows what 
happens when the training data are augmented with only positive examples 
while Figure 3.6c shows the result of adding examples from the underlying 
distribution (Weiss, 2005).

Figures 3.6a and b show the learned decision boundaries using dashed 
lines. The learned boundary of Figure 3.6a is far away from the “true” bound-
ary and excludes a substantial part of P3. Figure 3.6b’s inclusion of additional 
positive examples addresses the problem of absolute rarity and allows all of 
P3 to be covered/learned, even though some examples not belonging to P3 
will be erroneously assigned a positive label. By including additional posi-
tive and negative examples, Figure 3.6c corrects this last problem (note: the 
learned decision boundary almost overlaps the true boundary and is therefore 
not shown). As Figures 3.6b and c demonstrate, the problem of absolute rarity 
can be addressed by providing additional data. In practice, however, it is not 
always possible to obtain additional training data. See Figures 3.5 and 3.6.
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Another problem associated with mining rare cases is reflected in the 
aphorism: “it’s like finding a needle in a haystack.” The difficulty is not so 
much trying to find a small object or even the fact of having only one needle. 
Rather, the needle is hidden by the hay. If we extend this analogy to data 
mining, we see that rare cases may be obscured by common cases (relative 
rarity). This is especially problematic when data-mining algorithms use 
greedy search heuristics that examine one variable at a time; as rare cases 
may depend on the conjunction of many conditions, looking at any single 
condition in isolation may provide little guidance. As an example of relative 
rarity, consider the association rule mining problem described earlier, where 
we want to detect the association between a mop and a broom. Since this 
association rarely occurs, it can only be found if the minimum support (min-
sup) threshold (number of times the association is found in the data) is set 
very low. However, setting the threshold this low will cause a combinatorial 
explosion, as frequently occurring items will be associated with one another 
in an enormous number of ways, and most will be random and/or meaning-
less (Liu et al., 1999).

The metrics used in data mining and to evaluate the results of data min-
ing can make it difficult to mine rare cases as well. Because a common case 
covers more examples than a rare case, classification accuracy will cause 
classifier induction programs to focus attention on common cases, not on 
rare cases. Rare cases may be totally ignored as a consequence. Or consider 
how decision trees are induced. Most are grown in a top-down manner; test 
conditions are repeatedly evaluated and the best one selected. The metrics 
(e.g., information gain) used to select the best test usually opt for those likely 
to result in a balanced tree; however, these tests yield high purity for a rela-
tively small subset of the data but low purity for the rest (Riddle et al., 1994). 
Rare cases correspond to high-purity branches covering a few examples, 
making them likely to be excluded from the decision tree. Finally, consider 
association rule mining; in this case, rules that do not cover at least minsup 
examples will never be considered.

A data-mining system’s bias is critical to its performance. Its extra, evi-
dentiary bias allows it to generalize from specific examples. Unfortunately, 
the bias in most data-mining systems has an impact on their ability to mine 
rare cases. Many data-mining systems, especially those used to induce clas-
sifiers, have a maximum-generality bias (Holte et al., 1989). Therefore, when 
a disjunct covering some set of training examples is formed, only the most 
general set of conditions satisfying these examples are chosen. In contrast, a 
maximum specificity bias would add all possible, shared conditions. While 
the maximum-generality bias works well for common cases/large disjuncts, 
it does not work well for rare cases/small disjuncts, creating the problem 
with small disjuncts described previously.

Noisy data may make it difficult to mine rare cases, as well. Given a suf-
ficiently high background noise level, a learner may not be able to distin-
guish between the true exceptions (i.e., rare cases) and the noise-induced 
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exceptions (Weiss, 1995). Consider the rare case, P3, shown in Figure 3.5b. 
Since P3 contains so few training examples, if attribute noise causes even 
a few negative examples to appear, this will prevent P3 from being learned 
correctly. Common cases like P1 are not nearly as susceptible to noise, but 
little can be done to minimize the impact of noise on rare cases. Pruning and 
other overfitting avoidance techniques as along with inductive biases that foster 
generalization can minimize the impact of noise, but because these methods 
have a tendency to remove both the rare and the “noise-generated” cases, 
they do so at the expense of the former.

3.3.2 Methods for Rare Class Problems

3.3.2.1 Evaluation Metrics

Evaluation metric is used to evaluate the performance of a classifier, and 
in many algorithms, it guides the learning process. Although accuracy is a 
widely used evaluation metric, it is not a good option for the rare class min-
ing issue because of its strong bias against that class. Consider a classifica-
tion problem where the rare class accounts for only 0.1% of the training set. 
A classifier that predicts every sample as the majority class can still achieve 
an apparently satisfactory overall accuracy of 99.9%. But it has no signifi-
cance for the rare class mining application as the classifier has learned noth-
ing about the rare class. In other words, overall accuracy is not a meaningful 
metric for rare class mining. Precision and Recall are the two preferred 
metrics. Usually, the rare class is denoted as containing positive samples. 
Following this denotation, Precision is the percentage of true positive sam-
ples among all samples identified as positive, and Recall is the percentage of 
the correctly predicted true positive samples. Precision measures exactness, 
while Recall measures completeness; both are directly related to the objec-
tive of the rare class mining problem (Han et al., 2009).

Since Recall and Precision are conflicting metrics, an acceptable trade-off 
is often sought, depending on the application. Two popular metrics seeking 
to balance Recall and Precision are Geometric Mean of Recall and Precision 
(GMPR) (Joshi, 2002) and F-measure. GMPR is defined as the square root of 
the product of Precision and Recall, while F-measure, a metric widely used 
in the information retrieval community, is defined as
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where β measures the importance of Precision against Recall. The metrics 
achieve high values only if the values of both Precision and Recall are high.

Other proposed metrics include sum of recalls, geometric mean of recalls, 
information score, and so on.
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3.3.2.2 Sampling-Based Methods

Sampling is a common data preprocessing technique. It purposely manipu-
lates the distribution of samples so the rare class is well represented in the 
training set. Sampling was originally used to handle the class imbalance 
problem, but more recent studies discuss the relevance of sampling for rare 
class mining (Seiffert et al., 2007).

3.3.2.2.1 Sampling Methods

The basic sampling methods are undersampling and oversampling. On the 
one hand, undersampling randomly discards majority class samples; on the 
other hand, oversampling randomly duplicates minority class samples to 
modify the class distributions. Although these methods alleviate the rare 
class problem, they introduce some new issues. In random undersampling, 
some possibly helpful majority samples may be left out, leading to infor-
mation loss and creating a less-than optimal model. Meanwhile, in random 
oversampling, the size of the training set is significantly increased, thus 
increasing the computational complexity. Finally, since oversampling makes 
exact copies of rare class samples and adds no new information to the data-
set, the overfitting problem may result.

The basic versions of sampling do not work well in practice, but using heu-
ristic sampling methods may help. The idea is to eliminate special samples of 
the majority class and retain all rare class samples. The noisy, redundant, or 
borderline samples close to the boundary separating the positive and nega-
tive regions are discarded, and the concept of Tomek links is introduced into 
the algorithm to recognize them.

Two undersampling methods are EasyEnsemble and BalanceCascade. First, 
we create multiple subsets from the majority class. Next we use AdaBoost to 
train a classifier based on each subset and the rare class dataset. Finally, we 
combine the outputs of these classifiers. EasyEnsemble replaces samples from 
the majority class and BalanceCascade discards samples correctly classified 
by previous classifiers before subsequent sampling. Empirical results sug-
gest BalanceCascade is more efficient on a highly skewed dataset; each new 
sample is generated in the direction of some or all of the nearest neighbors. 
We also know that synthetic minority oversampling technique (SMOTE) can 
improve the accuracy of classifiers in many rare class problems, and the com-
bination of SMOTE and undersampling performs better than simply under-
sampling (Han et al., 2009).

3.3.2.2.1.1 Sampling Rate While conducting a sampling, we may have a 
problem determining the proper sampling rate, and this directly affects the 
class distribution ratio. It is intuitive, given an imbalanced dataset prob-
lem, that a balanced distribution is likely to yield the best or approximately 
best performance, but studies show that the frequently used “even distri-
bution” is not optimal for rare events. A ratio of 2:1 or even 3:1 in favor of 
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the majority class may result in superior classification performance (Han 
et al., 2009).

3.3.2.3 Cost-Sensitive Learning

Cost-sensitive learning is widely used in data mining. This technique assigns 
different levels of a misclassification penalty to each class and has been 
incorporated into classification algorithms by considering the cost informa-
tion and trying to optimize the overall cost during learning. It has recently 
been applied to the rare class problem; a higher cost is given to the misclas-
sification of rare objects than to the majority class. A cost/benefit-sensitive 
algorithm called the statistical online cost-sensitive classification (STOCS) 
proposes to classify rare events in online data. Results show STOCS out-
performs many well-known cost-insensitive online algorithms. In practice, 
however, it may be difficult to set the cost information. Although a false-neg-
ative prediction is known to be more risky than a false-positive prediction, 
how to make a quantitative analysis between these two risks may require 
prior knowledge and/or the involvement of domain experts. It may be wise 
to vary the cost ratio until a satisfactory objective function value is obtained 
(Han et al., 2009).

3.3.2.4 Algorithms for Rare Class Mining

This section reviews machine-learning algorithms that are either proposed 
or modified for the rare class mining problem.

3.3.2.4.1 Boosting Algorithms

Boosting, a powerful sequential ensemble-learning algorithm, can improve 
the performance of weak base learners. A series of basic classifiers are built 
based on the weighted distributions of the training set. At the end of each 
iteration, the weight of each training sample is adaptively changed based on 
the training error of the present classifier. Thus, later classifiers are forced to 
emphasize those learning samples misclassified by former classifiers.

We can consider Boosting to be a generalized sampling method, as it changes 
the distribution of the original dataset. Since Boosting focuses on difficult-to-
classify samples, it is a good idea to use it to detect the rare class. That being 
said, because the standard Boosting algorithm treats the two kinds of errors 
(false positive and false negative) equally, the majority class may continue to 
dominate the training set even after successive Boosting iterations.

To solve this problem, RareBoost updates the weights of positive and nega-
tive samples differently: it permits the algorithm to put equal focus on Recall 
and Precision. AdaCost, a variant of AdaBoost, adopts the cost-sensitive 
technique, imposing different costs for the two types of errors to update the 
distribution of the training set and, thus, reduce the cumulative misclassifi-
cation cost.
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These various algorithms all seek to adaptively alter the distribution of 
the original dataset so classifiers can focus on the samples that are diffi-
cult to classify, but there are, of course, differences RareBoost and AdaCost 
apply a modified weight-updating mechanism to change the distribution; 
SMOTEBoost generates synthetic samples for the rare class. The standard 
Boosting focuses on all misclassified samples equally in its weight-updating 
mechanism; RareBoost treats false-positive samples and false-negative sam-
ples differently; AdaCost updates the weights differently for all four types of 
classification outputs.

By analyzing the key components of Boosting, namely, the accuracy met-
ric, the ensemble-voting process, the weight-updating mechanism, and 
the base learner, researchers find that for the rare class mining problem, 
Boosting’s performance critically depends on the abilities of its base learner 
(Han et al., 2009).

3.3.2.4.1.1 Rule-Based Algorithms Traditional rule-induction techniques 
often fail to perform well in rare class classification. Therefore, some modi-
fied algorithms have been proposed. Existing sequential covering tech-
niques may not detect the rare class; they try to achieve high Recall and 
highPrecision rates simultaneously, and, as a result, they may encoun-
ter two problems: splintered false positives and small disjuncts caused 
by sparse target samples. A two-phase rule-induction approach PNrule 
may solve these problems. The first phase finds rules with high support 
and reasonable accuracy; these may contain both positive and negative 
samples. The second phase develops rules able to remove the false-posi-
tive samples to increase accuracy. PNrule is, therefore, especially suitable 
for rare class mining. Emerging patterns (EPs) are new types of patterns, 
referring to itemsets whose supports in one class are significantly higher 
than in others and can capture significant multiattribute contrasts between 
classes. Emerging pattern rare-class is an EP-based rare class classification 
approach which seeks to increase the discriminating power of EPs in three 
stages: generate new undiscovered rare class EPs, prune low-support EPs, 
and increase the supports for rare class EPs. Division for mining EPs is 
another novel approach to mining EPs; it divides the majority class into 
subsets so that the unseen rare class EPs can be discovered. It also defines 
a strength function to evaluate the rare class EPs and, thus, minimize the 
effect of noisy EPs (Han et al., 2009).

3.3.2.5 Obtaining Additional Training Data

Obtaining additional training data can directly address the problems 
encountered in rare case mining. If we obtain additional training data from 
the original distribution, most will be associated with the common cases, but 
because some will be associated with the rare cases, this approach may help 
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with the problem of “absolute rarity.” Unfortunately, this approach does not 
address the problem of relative rarity, as the same proportion of the train-
ing data will continue to cover common cases. Only by selectively obtain-
ing additional training data for the rare cases can we address relative rarity 
(note: this sampling scheme would also be able to handle absolute rarity). We 
can only identify rare cases for artificial domains, so this approach gener-
ally cannot be implemented and has not been used in practice. If we assume 
small disjuncts are manifestations of rare cases in the learned classifier, this 
approach can possibly be approximated by preferentially sampling exam-
ples that fall into the small disjuncts of some initial classifier. This approach 
needs more research (Weiss, 2005).

3.3.2.6 Employing Nongreedy Search Techniques

Most data-mining algorithms are greedy in that they make locally optimal 
decisions regardless of what may be best globally. This ensures the data-
mining algorithms are tractable, but because rare cases depend on the con-
junction of numerous conditions and any single condition in isolation is 
likely to provide little guidance, such greedy methods are often ineffective 
for rare cases. One approach to rare cases is to use more powerful, global, 
search methods. As they operate on a population of candidate solutions, not 
a single solution, genetic algorithms fit this description and cope well with 
attribute interactions. Therefore, they are increasingly used for data min-
ing. Some systems can be adapted to use genetic algorithms to handle rare 
cases, including more conventional learning methods. For example, Brute, a 
rule-learning algorithm, performs exhaustive depth-bounded searches for 
accurate conjunctive rules. It seeks to find accurate rules, even if they cover 
relatively few training examples. Although Brute performs well compared to 
other algorithms, the lengths of the rules must be limited to make the algo-
rithm tractable. One of Brute’s advantages is its ability to locate “nuggets” of 
information that other algorithms may not be able to find. Associated rule-
mining systems usually employ exhaustive search algorithms, but while 
these algorithms are theoretically able to find rare associations, they become 
intractable if the minimum level of support, or minsup, is set small enough 
to find rare associations. In other words, such algorithms are heuristically 
inadequate if we are looking for rare associations and suffer from the rare 
item problem discussed above. Modifying the standard Apriori algorithm so 
that it can handle multiple minimum levels of support may be a solution. In 
this approach, a user specifies a different minimum support for each item, 
based on the item’s frequency in the distribution. This means the minimum 
support for an association rule is the lowest minsup value among all items 
in the rule. Empirical results suggest such enhancements allow the modified 
algorithm to find meaningful associations involving rare items, without pro-
ducing meaningless rules involving common items (Weiss, 2005).
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3.4 Chance Discovery

Chance discovery is the discovery of chance, not by chance. Here, “chance” 
is defined as an event or a situation with a significant impact on human 
decision making (note: “chance” can also mean a suitable time or occasion 
to do something [Oxford Advanced Learner’s Dictionary]), if the situation or 
event occurring at a certain time is more significant than the time itself, 
and a decision to do something precedes the action of doing it (Ohsawa, 
2002). In other words, here, chance is a new event or situation that can be 
conceived either as an opportunity or a risk. The word “discovery” also has 
some ambiguity. In the process of discovering a law ruling nature, we some-
times “learn” frequent patterns through observation. This restricted use 
of “discovery” to mean “learning” is established in the machine-learning 
community of artificial intelligence; yet the general meaning of discovery 
is to explain events that have never been explained in explicit theories or 
hypotheses.

Chance discovery is defined as the awareness of a chance and the explana-
tion of its significance, especially if the chance is rare and its significance is 
unnoticed. By understanding explicitly what actions can be taken to turn an 
opportunity into a benefit, we can promote the desirable effects of opportu-
nities, while explicit preventive measures will become discovered risks.

An essential aspect of chance is that it can be a seed of significant future 
change. Our discovery of a new opportunity may lead to an unusual benefit, 
because it is not known yet by anyone including our business rivals, who 
are accustomed to frequent past opportunities. The discovery of a new haz-
ard risk is indispensable to minimize damage, because existing solutions 
that have worked for frequent past hazards may not work. Chance discovery 
aims at solving problems by noticing (becoming aware of) and explaining 
(Ohsawa, 2000), such diverse things as the following:

• Promoting new products to increase sales and consumption
• Explaining side effect risks of a new drug
• Noting signs of future earthquakes
• Using the World Wide Web (WWW) to attract attention promote 

products, and so on

3.4.1 Prediction Methods for Rare Events

Statistical studies make it clear that we need many samples to predict an 
event that occurs at a low frequency (i.e., a rare event). Recently, attention in 
statistics has turned to extremals (rare substances of variables) as rare events 
can lead, for example, to extreme events, such as severe economic depres-
sion or remarkable prosperity. Studies of extremals can explain the static 
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distributions of rare events (e.g., expected maximal values of known vari-
ables) but cannot explain the effects of hidden causes of rare events.

In data mining, the prediction of rare events is attracting considerable 
interest. Methods of learning a high-accuracy rule with a complex condi-
tion (i.e., long, even though optimized to be short) and a rare event B in the 
conclusion have been proposed. A rule can provide not only the prediction 
but also the explanation of a rare event. However, these methods cannot 
discover chances. Even exceptional rules cannot determine the risk of a big 
earthquake at an active fault from the data of past earthquakes. A rule is 
ignored if its support or confidence (the probability of the co-occurrence of A 
and B, and the same co-occurrence under the occurrence of A, respectively) 
is extremely small. In this example, the previous earthquakes at the active 
fault are too rare. Exceptional rules may suggest appropriate treatments and 
diagnoses for certain medical conditions, including considerably rare cases, 
but will not clarify the value of medical decisions in real situations based on 
these rules. And in business, the usefulness of a piece of knowledge varies 
with who uses it, depending on the applicability of the details to the user’s 
situation, rather than confidence or support values.

Complex knowledge can also be acquired to predict a fixed rare event, 
such as a breakdown in the signal transmission on a certain line, by means 
of an extended genetic algorithm. However, this method does not select the 
significant rare events to predict nor does it explain the meaning of the rare 
event for human decisions (Ohsawa, 2000).

3.4.2 Chance Discoveries and Data Mining

Chance discovery started with data-mining methods for detecting signifi-
cant changes, for example, from the WWW. At the same time, methods were 
developed to help users become aware of their own unnoticed interests by 
visualizing a cluster of words occurring on the WWW near to their current 
query, or words relevant to each other in their search history. By looking at 
the clusters and the relationships between clusters, users can discover topics 
that are significant to them. At this point, they may decide to enter new que-
ries based on the awareness of their own hitherto unnoticed interests. The 
human awareness of unnoticed significant topics was, thus, introduced as a 
chance discovery tool.

In the area of marketing, the most basic application of data mining has 
been to segment buyers by feature values, for example, age, income, job, edu-
cation, buying history, and so on. If a segment of buyers is found to buy items 
the vendor wants to sell, new buyers of this segment are seen as potential 
loyal customers. This method has successfully carried out customer evalua-
tions for credit cards and found suitable advertising targets. If we regard a 
sightseeing spot as a market to sell sights to visitors, segmenting customers 
can be an effective approach to promoting somewhere to go. In social filter-
ing, a place a touring user has not yet visited will be recommended, if the 
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place has been visited by other people with a history of visiting similar places 
to those where the current user often visits. The system entertains tourists 
seeking new places to go, but users cannot tell why the recommended places 
are attractive to them.

In another example, the sales data of a bookstore can be used to make 
recommendations of new books for customers. The method searches a book 
at the intersection of multiple basic interests (i.e., already established in a 
buyer’s mind). For example, when a buyer has a history of buying books 
on Star Trek as well as books on “cooking,” a book titled Star Trek Cook Book 
can be recommended. This example particularly satisfies the buyer, because 
the new book links two separate interests—a comfortable coherence in the 
user’s mind. This realizes a personal chance discovery in its ability to choose 
a rare but attractive book and to explain why the book is attractive to the 
buyer. In marketing, generally, a qualitative understanding of “in what con-
text people like to buy what” should be achieved before determining the 
quantitative understanding of “how many and when.” A chance discovery 
marketing tool should help investigate underlying desires and behaviors of 
buyers (Ohsawa, 2000).

3.5 Novelty Detection

The detection of novel events in any scheme of signal classification is an 
important ability. Since we cannot train a system of machine learning on all 
possible object classes whose data are in the system, it is important to be able 
to differentiate between known and unknown objects. The detection of nov-
elty is an extremely challenging task, but several models of novelty detection 
perform well on different data. There is no single best model for the detection 
of novelty; success not only depends on the type of method used but also on 
the statistical properties of the data processed. To act as a detector instead of 
a classifier, several applications require a classifier; that is, the requirement 
is to detect whether an input is part of the data that the classifier was trained 
on or is, in fact, unknown. In applications such as fault detection, radar target 
detection and hand-written digit recognition, Internet and e-commerce, sta-
tistical process control, and several others, this technique is useful.

There is increased interest in novelty detection, and a number of research 
articles have appeared on autonomous systems based on adaptive machine 
learning. Yet only a few surveys are forthcoming, largely because the sys-
tems of high integrity cannot use traditional classification: either the abnor-
malities are very rare or there are no data describing the conditions of fault. 
By modeling normal data and using a distance measure and a threshold 
for determining abnormality, the technique for the detection of novelty can 
solve this problem.
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Novelty detection has recently been used in a number of other applica-
tions, especially in image analysis and signal processing (e.g., biometrics). 
In applications like these, with multiple classes, the problem becomes more 
complicated, with noisy features, high dimensionality, and, quite often, not 
enough sample. The methods of novelty detection have tried to find solu-
tions for these real-world problems.

In what follows, we review some of the current methods of novelty detec-
tion using statistical methods. Several important issues related to the detec-
tion of novelty can be summarized according to the following principles 
(Markou and Singh, 2003):

 1. Robustness and trade-off: Novelty detection must be capable of 
robust performance while minimizing the exclusion of known sam-
ples. This trade-off should be, to a limited extent, predictable and 
under experimental control.

 2. Uniform data scaling: To assist novelty detection, all the test and 
training data after normalization should be within the same range.

 3. Parameter minimization: A novelty detection method should mini-
mize the number of parameters set by the user.

 4. Generalization: The system should be able to generalize without 
confusing generalized information with novel information.

 5. Independence: A novelty detection method should be independent 
of the number of features and available classes and should perform 
reasonably well in the context of an imbalanced dataset, low number 
of samples, and noise.

 6. Adaptability: A system recognizing novel samples during the test 
should be able to use the information for retraining.

 7. Computational complexity: A number of novelty detection applica-
tions are available online; therefore, the computational complexity of 
a novelty detection mechanism should be as minimal as possible.

3.5.1 Outlier Detection

The problem of statistical outlier detection is closely related to novelty detec-
tion. Although there is no precise definition of an outlier, most authors agree 
outliers are observations inconsistent with, or lying a long way from, the 
rest of the data. Outlier detection aims to handle rogue observations in a set 
of data, as these observations can have an enormous effect on data analy-
sis (such data points are called influential observations) (Marsland, 2002). 
Unfortunately, it is not possible to find an outlier in multivariate data by 
examining variables one at a time.

The importance of outlier detection to statistical methods can be seen 
in Figure 3.3. As shown, an outlying datapoint can completely change 
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the least-squares regression line of the data. Statistical methods generally 
ignore unrepresentative data rather than explicitly recognizing these points. 
Techniques that manage to avoid the problems of outliers are called robust 
statistics. There are also sets of tests to determine whether predictions from 
particular distributions are affected by outliers. The appearance of some out-
liers in two dimensions is shown in Figure 3.4. The next subsections describe 
statistical techniques used to detect and deal with outlying datapoints.

3.5.1.1 Outlier Diagnostics

For outlier diagnosis, the residual of a point is ri = yi − ∧yi, that is, the differ-
ence between the actual point (yi) and the prediction of a point (∧yi). The 
linear model of statistical regression for data X is

 y = xθ + e (3.2)

where θ is the vector of (unknown) parameters, with e being the vector of 
errors. We can define the hat matrix, H (so-called because Hy = ∧y) as

 H = X (XTX)−1XT (3.3)

Then

 cov(∧y) = σ2H, and cov(∧y) = σ2(1 − H) (3.4)

where r is the vector of residuals and σ2 is the variance. Each element hij of 
H can be interpreted as the effect exerted by the jth observation on ∧yi, and 
hii = ∂y∧i/∂yi, the effect an observation has on its own prediction. The average 
of this is p/n, where p i

n= ∑ =1  hi, and, in general, points are considered to be 
outliers if hii > 2p/n.

Interestingly, H is the pseudoinverse if (XT X)−1 exists. This means the hat 
matrix method is related to the Kohonen and Oja approach, which, in turn, 
can be considered an implementation of the hat matrix.

The residuals can be scaled by the values along the diagonal of the hat 
matrix, as shown in the three following methods:
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Another method is the Mahalanobis distance of each point
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where Σ is the covariance matrix and μ is the mean. The Mahalanobis dis-
tance is a useful measure of the similarity between two sets of values. See 
Figures 3.3 and 3.4 (Marsland, 2002).

3.5.1.2 Recognizing Changes in the Generating Distribution

Given n-independent random variables from a common, but unknown, dis-
tribution μ, does a new input X belong to the support of μ?

To answer this question, we need to consider the following. The support, 
or the kernel, of a set is a binary-valued function; it is positive in areas of 
the input space where there are data and negative elsewhere. The standard 
approach to the problem of outlier detection is to take independent measure-
ments of new distributions, assuming them to have a common probability 
measure ν, and to test whether μ′ = ν, where μ′ is the probability measure of μ, 
in other words, to see if the support of ν ∈ S, where S is the support of μ. How, 
then, do we estimate the support S from the independent samples X1,…Xn?

The obvious approach is to estimate Sn as
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where A(x, a) is a closed sphere centered on x with radius a, and ρn is a num-
ber depending only on n. The probability of making an error on datapoint X, 
given the data to this point, is

 L P X S X X sn n= =( | , .. ) ( )ε υ1 ……  (3.10)

The detection procedure is considered consistent if Ln → 0 in probability 
and strongly consistent if Ln → 0 with probability 1 (Marsland, 2002).

3.5.1.3 Extreme Value Theory

The extreme value theory (EVT) is used to detect outliers in data by inves-
tigating the distributions of data with abnormally high or low values in the 
tails of the distribution generating the data. In this case, let Zm = {z1, z2,…, 
zM} be a set of m independent and identically distributed random variables 
ziεR drawn from some arbitrary distribution D. In addition, let xm = max(Zm). 
When observing other samples, the probability of observing an extremum 
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x ≥ xm may then be given by the cumulative distribution function (Marsland, 
2002)
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where γ ∈ R is the shape parameter. With the limit as γ → 0, this leads to a 
Gumbel distribution

 p x x ym m m m( | , ) exp exp( )≤ = − −{ }μ σ  (3.12)

where μm and σm depend on the number of observations m, and ym is the 
reduced variate. This gives
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3.5.1.4 Principal Component Analysis

Principal component analysis (PCA) is a standard statistical technique for 
extracting the structure from a dataset. Essentially PCA performs an orthog-
onal basis transformation of the coordinate system where data are described, 
thus reducing the number of features required for effective data representa-
tion. PCA can also be used to detect outliers that are, at least in some sense, 
orthogonal to the general data distribution. By looking at the first few prin-
cipal components, we can find any datapoints that inflate the variances and 
covariances to a large extent. But by looking at the last few principal compo-
nents, we can see features not readily apparent with respect to the original 
variables (i.e., outliers). A number of test statistics have been suggested to 
find these points, including a measure of the sum of squares of the values of 
the last few principal components and a version weighted by the variance in 
each principal component (Marsland, 2002).

3.5.2 Novelty Detection using Supervised Neural Networks

A main use of artificial neural networks is classification by clustering data 
into two or more classes. Neural networks can be trained in two ways: in 
supervised learning, each training input vector is paired with a target vec-
tor, or desired output; in unsupervised learning, the network self-organizes 
to extract patterns from the data with no target information. This section 
concentrates on supervised neural networks, such as the perceptron, related 
multilayer perceptron, and the radial basis function (RBF) network. Basically 
speaking, these networks adapt the connection weights between layers of 
neurons to approximate a mapping function and model the training data. 
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In the trained network, every input produces an output. In classification, 
this usually becomes an identifier for the best-matching class, but there is no 
guarantee that the best-matching class is a good match, only that it is a better 
match than the other classes for the set of training data used. Here, novelty 
detection is useful. It can recognize inputs not covered by the training data, 
inputs the classifier cannot reliably categorize (Marsland, 2002).

3.5.2.1 Kernel Density Estimation

Even if a network is well trained, its predictions could be poor if the dataset 
used to train the network is not representative of the whole set of potential 
inputs. There are two possible reasons:

• Only a few examples of an important class
• Incomplete classification set

There may, for example, be a strong relationship between the reliability 
of the output of the network and the degree of novelty in the input data, 
which evaluated the sum-of-squares error function of the network. This can 
be expressed as
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where p(x, tj) is the joint probability density function for the data, j = 1,…,m 
are the output units, w represents the weights, x is network input, tj is the 
associated target for unit j, and yj is the actual output of unit j.

The conditional averages of the target data in Equation 3.14 are given by

 

t x t p t x dt

t x t p t x dt

j j j j

j j j j

| ( | )

| ( | )

≡

≡

∫
∫2 2

 

(3.15)

Only the first of the two parts of Equation 3.14 is a function of the weights 
w; if the network is sufficiently flexible (i.e., it has enough hidden units), the 
minimum error E is gained when
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which is the regression of the target vector conditioned on the input. The first 
term of Equation 3.14 is weighted by density p(x); hence, the approximation is 
most accurate where p(x) is large (i.e., data are dense).

Although we know little about the density p(x), we can generate an esti-
mate ∧p(x) from the training data and use it to get a quantitative measure 
of the degree of novelty for each new input vector. We could use this to put 
error bars on the outputs or to reject data where the estimate ∧p(x) < ρ for 
some threshold ρ, thereby generating a new class of “novel” data. The distri-
bution of novel data is generally unknown, but if we estimate it as constant 
over a large region of the input space and zero outside this region, we can 
normalize the density function, as shown in Figure 3.5 (Marsland, 2002).

3.5.2.2 Extending the Training Set

We can extend the training set so the neural network can be trained to 
recognize data from regions not included in the original set (Figure 3.7). 
Suppose the training set for some problem spans the region R is Rn. Then, 
(Marsland, 2002)

 

p x
p x p

p x R

P x R p x p

( | )
( | ) ( )

( | )
( | ) ( | ) (

class1
class class

class

=

=

1 1

1 cclass class class1 2 2) ( | ) ( ).

( | )
( | ) ( )

( | ) ( )

+

=
+

p x p

p R x
p x R p R

p x R p R pp x R p R
p R x

( | ) ( )
( | )

ʹ ʹ
= − ʹ1

 

(3.17)

p(x|C1)P(C1)

p(x|C2)P(C2)

R2R1R2

FIGURE 3.7
Novelty detection in the Bayesian formalism. The training data are used to estimate p(x|C1) 
P(C1) using ∧p(x), with novel data (class C2) having a distribution that is assumed constant 
over some large region. Vectors that are in the regions labeled R2 are considered to be novel. 
(Redrawn from Marsland, S., 2002. Neural Computing Surveys, 3, 1–39.)
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where R′ is the missing class, separate from R. At this point, we can generate 
data in R0; we generate data and remove any data instances that are in R.

To consider the problem of density estimation, minimum mutual informa-
tion can be used to factorize a joint probability distribution. If a Gaussian 
upper bound is put on the distribution, it can be used to estimate the density 
of the probability functions. Instead of the output density, the instability of a 
set of simple classifiers is measured. In this method, a number of classifiers 
are trained on bootstrap samples of the same size as the original training 
set. The output of all the classifiers is considered for new data. If the data are 
novel, the variation in responses from the different classifiers will be large. 
This approach can be applied to three different types of networks: a Parzen 
window estimator, a mixture of Gaussians, and a nearest neighbor method 
(Marsland, 2002).

3.5.3 Other Models of Novelty Detection

3.5.3.1 Hidden Markov Models

An HMM consists of a number of states, each with an associated probability 
distribution, along with the probability of moving between pairs of states 
(transition probabilities) each time instance. The actual state at any time is 
not visible to an observer (hence the name); instead, the observer can see an 
outcome or observation generated according to the probability distribution 
of the present state. A picture of an HMM is shown in Figure 3.8. HMMs 
are extremely useful in a number of different applications, especially speech 
processing (Marsland, 2002) (Figure 3.8).

State 1

State 2

State 3

X(t)X(t – 1) X(t + 1) X(t + 2)

(t)(t – 1) (t + 1) (t + 2)

Observable

Hidden

FIGURE 3.8
An example of an HMM. (Redrawn from Smyth, 1994. Hidden Markov models for fault detec-
tion in dynamic systems. Pattern Recognition, 27(1), 149–64.)
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The standard HMM is not a useful technique for novelty detection because 
it has a predetermined number of states. Research into the problem of fault 
detection in dynamic systems using HMMs has addressed this issue. The 
faults that can occur need to be identified in advance and states generated for 
each model. The model assumes faults do not happen simultaneously, as this 
would cause problems with fault recognition. The technique is related to the 
density estimation method, but as the inputs are sequences, a modification 
allows extra states to be added while the HMM is being used. The model is 
expressed as follows. Let w{1,…,m} be the event that the true system is in one 
of the states w1,…, wm, and p(w{1,…,m}|y) be the posterior probability that 
data are from a known state, given observation y. Then

 p wi y pd wi y w m p w m y i m( ) ( , { , . }) ( { , . } ),| | |= ≤ ≤1 1 1… …  (3.18)

where pd(⋅) is the posterior probability of being in state i, generated from 
some discriminative model. The second part can be calculated using Bayes’ 
rule and the fact that

 p w y p w m ym( ) ( { , , } )+ = −1 1 1| |……  (3.19)

The probability of getting a novel state, for example, a machine fault, can 
be estimated from the mean time between failures.

3.5.3.2 Support Vector Machines

A support vector machine (SVM) is a statistical machine-learning tech-
nique; it performs linear learning by mapping data into a high-dimensional 
feature space. SVM selects the optimal hyperplane maximizing the mini-
mum distance to the training points closest to the hyperplane. This is done 
in some high-dimensional feature space into which the input vectors are 
mapped using the kernel, a nonlinear mapping. The aim is to model the 
“support” of a data distribution, that is, a binary-valued function that is 
positive in those parts of the input space where the data lie, and negative 
otherwise. This means SVM can then detect inputs not in the training set, 
that is, novel inputs. This generates a decision function (Marsland, 2002) 
expressed as
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where K is the kernel function (see Equation 3.20), Φ(⋅) is the mapping into the 
feature space, b is the bias, z is the test point, xi is an element of the training 
set, and w is the vector
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A hyperspherical boundary with minimal volume is put around the dataset 
by minimizing an error function containing the volume of the sphere using 
Lagrangian multipliers L (note: R is the radius of the hypersphere) shown as
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with α αi i
i

≥ =∑0 1,

An object z is considered normal if it lies within the boundary of the 
sphere, that is,
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The boundary can be made more flexible by replacing the inner products in 
the above equations by kernel functions K(x, y). Using slack variables allows 
certain datapoints to be excluded from the hypersphere, so the task becomes 
minimizing the volume of the hypersphere and the number of datapoints 
outside it, that is,
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3.5.3.3 Time to Convergence

One novelty detection method is based on an integrate-and-fire neuronal 
model. Generally, a training set of patterns known not to be novel are used to 
train the network and test patterns are evaluated for this training set. For this 
technique, it is the time the network takes to converge when an input is pre-
sented that suggests whether an input pattern is novel. The network architec-
ture comprises a simple model of layer IV of the cortex. A two-dimensional 
sheet of excitatory and inhibitory neurons with recurrent connections is 
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positioned according to a pseudorandom distribution. Neurons have local 
connections in a square neighborhood, and training takes the form of 
Hebbian learning. The state of each neuron is expressed as (Marsland, 2002)
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where H(⋅) is the Heaviside function, H(x) = 1 for x > 0 and H(x) = 0 otherwise, 
and Ui(t) is the control potential
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for connection strength Cij, input si and variable-firing frequency function 
fi. The network is applied to 7 × 5 images of numerical digits, together with 
noisy versions of the digits, as in Kohonen and Oja’s novelty filter. For this 
task, it performs better than a back-propagation network.

3.6 Exception Mining

Patterns hidden in databases fall into three categories as follows:

• Strong patterns: Regularities for numerous objects
• Weak patterns: Reliable exceptions representing a relatively small 

number of objects
• Random patterns: Random and unreliable exceptions
• Weak “reliable-pattern” exceptions: Infrequent with high confidence

3.6.1 Confidence-Based Interestingness

When no other information is given, an event with lower-occurring prob-
ability gives more information than an event with higher probability. From 
information theory, we know that the number of bits required to describe the 
occurrence is defined as (Terano et al., 2000)

 I = −log2P

where P = the probability that the event will occur. Similarly, for a given rule 
AB → X, with confidence Pr(X|AB), we will require −log2(Pr(X|AB)) and −log2 

(Pr(¬X|AB)) number of bits to describe the events X and ¬X, given AB. Thus, 
the total number of bits required to describe the rule AB → X is
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 I X AB X AB X AB X ABC
AB0

2 2= − + −( ( | )log ( | )) ( ( | )log ( | ))Pr Pr Pr Pr  (3.27)

where IAB0C = number of bits required to describe AB → X when no other 
knowledge has been applied. However, the difference in the number of bits to 
describe the rule AB → X in terms of A → X and B → X can cause a surprise. 
The bigger the difference in describing the rule AB → X, the more interest-
ing it is. Therefore, to estimate the relative interestingness in terms of A → X 
and B → X, we need to know the number of bits required to describe event 
X when the probability of that event occurring given A and B, is Pr(X|A) and 
Pr(X|B), respectively.

Since the rule AB → X describes the event X in terms of A and B, to describe 
a similar event X, in terms of A and B using the rule A → X and B → X, we 
need −log2Pr(X|A) and −log2Pr(X|B) number of bits. Now, in rule AB → X, 
the probability of event X occurring is Pr(X|AB).

Therefore, the expected number of bits required to describe all X events 
in rule AB → X, in terms of A and B using the two rules is −Pr(X|AB) 
(log2Pr(X|A) + log2Pr(X|B)). Similarly, for the event ¬X in rule AB → X, Pr(¬X| 
AB)(log2Pr(¬X|A) + log2Pr(¬X|B)) number of bits will be required.

Thus, the total number of bits required to describe the events X and ¬X in 
the rule AB → X by the rules A → X and B → X is
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where IAB1 C = number of bits required when AB → X is described by A → X 
and B → X. Thus, the relative surprise, or relative interestingness, that comes 
from the difference between two descriptions for the given rule AB → X is
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where RIAB C = the relative surprise or interestingness of the rule, considering 
the confidence in and knowledge about other rules. The interestingness of a 
rule that we have formulated in terms of confidence gives the exact impres-
sion of relative entropy. Here, the entropy of a rule is calculated relative to 
the other rules and is a measure of distance between two distributions. In 
statistics, this occurs as an expected logarithm of the likelihood ratio. The 
relative entropy D(p(x)||q(x)) is a measure of the inefficiency of assuming the 
distribution is q(x), when the true distribution is p(x). The relative entropy, or 
Kullback–Leibler distance, between two probability functions is defined as
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In estimating the interestingness of the rule AB − X with true confidence 
Pr(X|AB), we approximate its confidence from the rules A → X and B → X.

3.6.2 Support-Based Interestingness

By stating that the support of a rule AB → X, we mean the frequency of the 
rule’s consequent evaluation is A by AB, relative to the whole data-set. When 
we know the support of the two common sense rules A → X and B → X, we 
know the relative frequency of the consequent X and ¬X evaluated by A, and 
B, respectively. A similar relative entropy measure can be applied to estimate 
the surprise from the support. Now, for the newly discovered rule AB → X, 
the true distributions of the consequent X and ¬X evaluated by A and B 
are Pr(ABX) and Pr(AB ¬ X), respectively. From the knowledge of one of our 
common sense rules, A → X, for which the relative frequencies of X and ¬X 
are Pr(AX) and Pr(A ¬ X), respectively, we can find the distance between 
two distributions of consequence using relative entropy.

The relative entropy of AB → X, relative to the rule A → X in terms of their 
support is, thus (Hussain et al., 2000),
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Hence, the total interestingness of rule AB → X relative to A → X and 
B → X is

 RI RI RTc
AB

s
AB= +  (3.32)

This includes support, confidence, and consideration of other rules in the 
estimation of the relative surprisingness.

3.6.3 Comparison with Exception-Mining Model

Patterns in a database can be divided into strong, weak, and random patterns. 
Strong patterns can be helpful for applications. As we have argued, weak pat-
terns can also be very useful to applications, but most current data-mining tech-
niques cannot effectively support weak pattern mining or “exception” mining 
as it is known. An algorithm for finding weak patterns uses reliable exceptions 
from databases and is written as the Exception Mining Model (EMM) model. 
Negative association rules are an important kind of weak pattern.

In the EMM model, the interestingness of an exceptional rule AB → X 
is measured by dependence on the composition of knowledge of the rules 
A → X and B → X. The EMM model’s search for interesting exceptional rules 
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based on the χ-squared test, and requires eight probabilities, namely, supp(X), 
supp(Y), supp(¬X), supp(¬Y), supp(X ∪ Y), supp(X ∪ ¬Y), supp(¬X ∪ Y), and 
supp(¬X ∪ ¬Y), to construct the contingency table for the itemset X ∪ Y and 
to determine whether itemset X ∪ Y is the minimal dependent itemset using 
the χ-squared test.

For the PR model, we focus only on mining negative association rules of inter-
est. The interestingness of a negative rule between itemsets X and Y is measured 
by four conditions as defined in Section 3.4. We need only five Probabilities, 
namely, supp(X), supp(Y), supp(X ∪ Y), supp(¬X), and supp(¬X ∪ Y), to deter-
mine whether X → Y or X → ¬Y can be extracted as rules.

Note that the EMM model also generates negative association rules in data-
bases, all of which are of interest. This often requires three steps: (1) testing 
confidence-based interestingness, (2) testing support-based interestingness, 
and (3) searching exceptional rules. However, if we wish to discover nega-
tive association rules by using the EMM model, it is not clear how we can 
identify which of X → ¬Y, ¬X → Y, Y → ¬X, and ¬Y → X can be extracted, 
using the same facts as in the Chi-Squared test (CST) model. Therefore, it is 
clear that the PR model is better than the EMM model for finding negative 
association rules of interest (Zhang and Zhang, 2002).

3.6.4 Digging Out the Exceptions

Since exceptions are weak in terms of support, we must dig deeper into the 
data with lower support threshold to bring them out, but applying a lower 
support threshold for mining exceptions is not a cost-effective solution.

Moreover, a large number of rules will be generated and not all will be 
exceptions. In fact, we are going to mine those exceptions where the rules 
extracted as common sense will be used to alleviate the problem of deal-
ing with a lower support threshold. In other words, we are searching for 
reliable exceptions starting from the common sense rules. To satisfy all the 
constraints defined in Table 3.1, we find exception AB → X from two com-
mon sense rules A → X and B → X (common sense infers B → X to be the 
reference for its obvious low support or/and low confidence). By doing this, 
we can estimate the amount of surprise the exception rule brings from the 
knowledge of the extracted rules.

TABLE 3.1

Rule Structure for Exceptions

A → X Common sense rule (strong pattern) (high support, high confidence)

A, B → ¬X Exception rule (weak pattern) (low support, high confidence)

B → ¬X Reference rule (low support and/or low confidence)

Source: Data from Terano, T., Liu, H., and Chen, A. L., 2000. Knowledge discovery and 
data mining. Current issues and new applications. In: Lecture Notes in Artificial 
Intelligence; Subseries of Lecture Notes in Computer Science. u.o.: Springer.
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From Figure 3.9, we can visualize how exceptions are mined by going 
deeper into the data. The threshold CS support is the minimum support to 
mine the common sense rules from the data and the EX support to assure the 
reliability of the exception rules. The following algorithm describes the way 
we mine interesting rules (Terano et al., 2000):

begin
LI = ϕ //list containing large item set
LC = ϕ //list containing common sense rules
LR = ϕ //list containing reference rules for a common sense
LE = ϕ //list containing candidate exception rules
LI ← GenerateLargeItemSet() //running apriori [1]
LC ← GenerateAllCommonSenseSet(LI)
for each CSi from LC do
 A ← GetAntecedent(CSi)
 LR ← GetReferences(CSi,LC)
 for each RRj from LR do
 B ← GetAntecedent(RRj)
 if (A ∪ B) is not in LI
 insert(A ∪ B ∪ ¬Consequent(CSi),LE)
 end for
end for
LE ← GenerateExceptions(LE) //Database scan once
EstimateInterestingness(LC,LE) //Output interesting rules
end. // according to the degree of 

surprise

FIGURE 3.9
The principle of outlier detection. Empty squares are outliers to the dataset composed of the 
black squares. The circle surrounding the datapoints demonstrates a potential threshold, beyond 
which points are outliers. (Redrawn from Marsland, S., 2002. Neural Computing Surveys, 3, 1–39.)
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The function GetReferences(CSi, LC) returns all the candidate reference 
rules for CSt, from LC. The reference rules are those common sense rules 
in LC with consequences similar to CSi. Once we have inserted all the can-
didate exception rules into LE, we scan the database once to obtain the 
support and confidence of each candidate exceptions. We output those 
rules that satisfy the thresholds using Generate Exceptions (LE). Estimate 
Interestingness (LC, LE) estimates the relative interestingness (Hussain 
et al., 2000) (Figure 3.10).

3.7 Noise Removal

The existing outlier detection techniques can be exploited to handle data 
with extremely high levels of noise. The objective is to improve data analy-
sis by removing objects that may distort the analysis. By definition, the 
number of outliers in data is small, and outlier detection techniques tradi-
tionally remove only a small fraction of them. But if the amount of noise in 
the data is large from a data collection or data-analysis point of view, we 
will need data-cleaning techniques that remove large amounts of noise. 
In this case, we should turn to those outlier detection techniques that 
assign each object an outlier score characterizing the degree to which it is 
an outlier, as they can remove any specified percentage of noise. We sort 
the objects according to their “outlier score” and eliminate those with the 
highest outlier scores until we have eliminated the desired percentage of 
objects. In this section, we discuss three ways to do this, distance-based, 
density-based, and clustering-based methods, but any outlier detection 

Common sense

Exceptions

Noise

Rule base

Strong exception Strong exception

CS support

EX support

FIGURE 3.10
Rules in the data. (Redrawn from Hussain, F. et al. 2000. Exception Rule Mining with a Relative 
Interestingness Measure, Heidelberg, Berlin: Springer, pp. 86–97.)
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technique that assigns a continuous outlier score to each object is viable 
(Xiong et al., 2006).

3.7.1 Distance-Based Outlier Detection Methods for Noise Removal

A simple way to detect outliers uses the distance measure, whereby an 
object in data set D is a distance-based outlier if at least a fraction α of the 
objects in D is at a distance greater than r. While this definition of an out-
lier is simple and easy to understand, we can have a problem if a data set 
has regions of varying density. More specifically, this approach is based 
on a criterion determined by the global parameters r and α; it cannot 
account for the fact that some objects are in regions of high density, while 
others are in low-density regions. Algorithm 3.1 expresses the pseudo-
code of our distance-based noise removal algorithm. For each object in the 
dataset, we record the number of objects lying within a distance r from it. 
According to the distance criteria, noise consists of those objects with the 
least number of neighbors within a specified radius. Therefore, all objects 
are sorted in ascending order according to the number of neighbors they 
have. The first ε% is declared noise and is removed from the data set. The 
complexity of this algorithm is O(n2), because nearest-neighbor sets must 
be constructed for each data object. Note: the cosine similarity measure 
is used instead of a distance measure, but this changes nothing essential 
(Xiong et al., 2006).

3.7.2 Density-Based Outlier Detection Method for Noise Removal

Another category of outlier detection methods identifies outliers in data sets 
with varying densities. One influential approach relies on the local outlier 
factor (LOF) of each object. This is based on the local density of an object’s 
neighborhood, with an object’s neighborhood defined by the MinPts near-
est neighbors of the object. MinPts is a parameter specifying the minimum 
number of objects (points) in a neighborhood. Outliers, then, are objects with 
a high LOF. The use of the number of neighbors, rather than a specific dis-
tance or similarity, gives the approach its ability to handle data sets with 
varying densities.

Algorithm 3.2 shows the pseudocode of our implementation. As expressed 
by the algorithm, essentially, every object in a data set is considered an out-
lier to some extent, and this extent is measured using the LOF. The first part 
of Algorithm 3.2 computes this factor for each object. This algorithm has a 
computational complexity of O(n2), but can be reduced to O(nlog(n)) for low-
dimensional data if we use efficient multidimensional access methods, such 
as the R* tree. As the LOF computation must be iterated over many values of 
MinPts, the associated constant in the complexity may be quite large (Xiong 
et al., 2006).
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Since we use the cosine measure instead of a distance measure, the point 
with the lowest LOF value is determined to be the most unusual (noisy) point 
in the data set. To eliminate the required amount of noise from the data, all 
objects are sorted in ascending order based on their LOF values, and the first 
ε% is declared noise. Note: the sorting order differs from the case where dis-
tance measures are used to calculate LOF values.

While the LOF method does not suffer from problems of varying density, 
we may have a problem selecting parameters, such as MinPts. Indeed, since 
the LOF of each point may vary with the value of the MinPts parameter, 
it may be wise to calculate the LOF of each point for a range of values of 
MinPts and select one according to some criterion. To test this notion, we ran 
the LOF calculation algorithm for a range of values of MinPts, depending on 
the size of the data set.

For large data sets, this range was wide, for example, from 10 to 100, while 
smaller data sets had a smaller range, for example, from 5 to 25. In our work, 
the LOF of each point was determined to be the maximum of all LOF values 
calculated over this range. This approach, and the fact that the points with 
the least LOF are the most prominent outliers, suggests a point is labeled a 
local outlier only if it is a notable outlier for many values of MinPts (Xiong 
et al., 2006).

3.7.3 Cluster-Based Outlier Detection Methods for Noise Removal

As noted above, clustering algorithms can find outliers as a by-product 
of the clustering process. All objects in such clusters are treated as noise. 

Data: Transaction set T, noise fraction ε. radius r
Result: Set of noise objects N, Set of non-noise objects p

for i = 1 to ntrans do
T[i].NumWithinDist ← 0;
 for i = 1 to ntrans do
  if ((j ≠ i)&&(CosineSimilarity(T[i],T[j] ≥ r) then
   T[i].NumWithinDist ++ ;
  end
 end
end
Tsorted ← Sort(T, NumWithinDist,ascending);
nnoise ← ε*ntrans;
N ← Tsorted [1...nnoise];
P ← Tsorted [nnoise + 1...ntrans];
return N,P;

ALGORITHM 3.1
A distance-based noise removal algorithm.
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This method is sensitive to the choice of clustering algorithms, however, 
and has trouble determining which clusters should be classified as outli-
ers. Another approach assumes that once data are clustered, noise objects 
are the farthest objects from their corresponding cluster centroids. Here, 
we consider a clustering-based data cleaner (CCleaner) based on this 
approach. Algorithm 3.3 shows the pseudocode of its implementation. Data 
are clustered using a k-means algorithm available in the CLUTO clustering 
package; then, the cosine similarity (distance) of each object from its cor-
responding cluster centroid is recorded. The top ε% objects obtained after 
sorting all objects in ascending (descending) order according to this simi-
larity (distance) are the noise objects. The algorithm’s overall complexity is 
the same as a k-means followed by a linear scan of the data, or O(kn), where 
k represents the number of clusters and n is the number of points (Xiong 
et al., 2006).

CCleaner and other clustering-based approaches must consider how to 
select the number of clusters. If there is only one cluster, the cluster-based 
approach is very similar to the distance-based approach described earlier. 
If every object is a separate cluster, however, the cluster-based approach 
degenerates to randomly selecting objects as outliers. As our experimental 
results described in Section 3.6 show, CCleaner performs well only when the 
number of clusters is close to the “actual” number of clusters (classes) in the 
data set. Unfortunately, this limitation severely restricts the usefulness of 
this method (Xiong et al., 2006).

Data: Transaction set T, noise fraction ε. Cluster label set C for T
Result: Set of noise points N, Set of non-noise points P

for i=1 to num_clusters do
 cluster_center[i][1...nitems]← avg(T[1...ntrans],i);
end

for i=1 to ntrans do
  T[i].ClusterCenterSimiliarity ← 

CosineSimilarity(T[i],cluster_center [T[i]]);
end

Tsorted ← Sort(T,ClusterCenterSimiliarity,ascending);
nnoise ← ε*ntrans;
N ← Tsorted [1...nnoise];
P ← Tsorted [nnoise + 1...ntrans];
return N,P;

ALGORITHM 3.2
A noise removal algorithm based on the LOF.
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3.8 The Black Swan

A Black Swan event is an event in human history that is both unprecedented 
and unexpected. However, after evaluating the surrounding context, domain 
experts (and, in some cases, laypersons) can usually conclude: “it was bound 

Data: Transaction set T, noise fraction ε. MinPtsLB, MinPtsUB, MinPtsStep
Result: Set of noise points N, Set of non-noise points P

for n = MinPtsLB; n ≤ MinPtsUB; n += MinPtsStep do
 MinPts ← n;
 for i = 1 to ntrans do
  InterSimilarity [1...ntrans] ← 0;
  for j = 1 to ntrans do
   InterSimilarity[j] ← CosineSimilarity(T[i],T[j]);
 end
 InterSimilarity[i] ← 0;
  UpdateKDistNeighbors(T[i], InterSimilarity)/*UpdateKD 

istNEighors finds the k nearest neighbors for 
transaction T[i] using the similarity vector 
InterSimilarity*/;

 end

 for i = 1 to ntrans do
  CalculateLRD (T[i])/*CalculateLRD calculates the 

local reachaility density (lrd) for transaction 
T[i] using its k nearest neighbor and their lrd 
values*/;

 end

 for i = 1 to ntrans do
  latestLOF ← CalculateLOF (T[i])/*LatestLOF computes 

the local outlier factor for T[i] using its lrd 
value and those of its k nearest neighbors, for 
the current value of MinPts*/;

 end
end

Tsorted ← Sort(T,lof,ascending); nnoise ← ε*ntrans;
N ← Tsorted [1...nnoise];
P ← Tsorted [nnoise + 1...ntrans];
return N,P;

ALGORITHM 3.3
A cluster-based noise removal algorithm.
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to happen.” Even though some parameters may differ (such as the event’s 
time, location, or specific type), it is likely that similar incidents have had 
similar effects in the past.

The term “Black Swan” originates from the (western) belief that all swans 
are white because these were the only ones officially documented. However, 
in 1697, Dutch explorer Willem de Vlamingh discovered black swans in 
Australia. This was an unexpected event in (scientific) history and pro-
foundly changed zoology. After the black swan was discovered, its existence 
seemed obvious, just as other animals with varying colors were known also 
to exist. In retrospect, then, the surrounding context (i.e., observations about 
other animals) seemed to imply the existence of the black swan, that is, the 
Black Swan assumption, and empirical evidence validated it. Detecting and 
analyzing Black Swan events helps us to gain a better understanding of why 
certain developments recur throughout history and what effects they have.

The Black Swan application aids users in finding Black Swan events 
throughout modern history. For this purpose, the application identifies out-
liers in statistical data and associates them with historic events. An outlier 
is a point in a statistic that does not “fit” into the overall trend, for example, 
an inflection point on a curve. The rules used to join events to outliers are 
automatically determined by using data-mining techniques, and the results 
can be explored using a web interface (Hasso Plattner Institut, u.d.).

3.8.1 Combining Statistics and Events

Throughout history, there have always been Black Swan events. These are 
defined as singular occurrences with high impact that were entirely unex-
pected, but in retrospect appear to be the logical consequence of certain 
preconditions. Examples include World War I and the burst of the dot-com 
bubble. The term originates in Vlamingh’s discovery in 1697, discussed in 
the previous section. Until then, people had widely used the Black Swan to 
refer to impossibilities, as it was a common (western) belief that only white 
swans existed. With the discovery of black swans, the definition of the term 
changed radically.

In its combination of statistical data and information on events, the Black 
Swan is a tool helping domain experts (e.g., historians or econometricians) 
to identify important events throughout history. The goals of Black Swan 
analysis are first, to automatically detect outliers in global statistics and con-
nect them with suitable events and second, to find patterns in the ways event 
types and statistical developments influence one another (Lorey et al., 2011).

To accomplish these goals, it is necessary to process statistical data, in 
which large deviations from expected statistical developments may suggest 
Black Swan events. Recently, a great deal of useful statistical data has been 
made available by governments and other organizations. Internet resources 
and databases also contain information on historical events which could be 
Black Swan events. See Figure 3.11.



191Challenges of Condition Monitoring Using AI Techniques

3.8.2 Data

For our prototype, we must first create a database containing statistical and 
event data (Figure 3.12). To do so, we extract and merge information from a 
number of different internet sources (detailed in the next section). Events are 
characterized by a date, location, title, and event category. Instead of using 
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FIGURE 3.11
Why outlier detection is important in statistics. The five points represent the data; the line is 
the least-squares regression line. In the right-hand graph, point 1 has been misread. (Redrawn 
from Marsland, S., 2002. Neural Computing Surveys, 3, 1–39.)
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a single date, we could chose to describe an event by selecting a time period 
with a start and end date. The event category provides a hierarchical tax-
onomy applicable to numerous and widely diverse types of events: natural 
disasters, political events, military conflicts, and so on.

A statistical data point is characterized by its numerical value and the 
type, location, and year of the statistic. For instance, one value might char-
acterize the annual average income in the United Kingdom for 1969 using 
United States Dollar (USD). As discussed previously, statistical data outliers 
are extrema that deviate from a graph’s underlying tendency. For statistical 
data, we turn to international organizations, such as the World Bank and the 
International Monetary Fund (IMF), but with the help of data provided by 
other projects, such as Gapminder or Correlates of War for event data, we also 
exploit DBpedia, EMDat, National Oceanic and Atmospheric Administration 
(NOAA), Correlates of War, Freebase, and the British Broadcasting Corporation 
(BBC) historical time line. While EMDat and NOAA are mostly limited to 
natural disasters, such as droughts or earthquakes, the BBC timeline pages 
provide a chronology of key events (mostly political) in a country’s history. 
Not surprisingly, Correlates of War provides information on wars, while the 
DBpedia and Freebase data sets have structured data from user-generated 
content. With the help of the statistical outliers and event data, we can auto-
matically detect patterns between these classes. The specific aim here is to 
decrease the number of events possibly causing an outlier in a statistic and to 
decrease the probable causes of an event (Lorey et al., 2011).

3.8.3 Extraction

The first step in our workflow to extract events and statistical data from our 
online sources. This process can be subdivided into parsing, schema match-
ing, and data cleaning.

3.8.3.1 Parsing

First, we retrieve and parse event data from the sources noted in the previous 
section. We use a number of flexible parsers able to handle structured (e.g., 
CSV, HTML/XML, resource description framework [RDF]) and unstructured 
formats (i.e., plain text). Depending on the source, parsing is preceded by a 
preprocessing step which removes irrelevant parts of source data (e.g., HTML 
documents’ header/footer). Our flexible design allows the existing parsers to 
be easily adapted to different formats and to be integrated with new parsers. 
We use Apache Tika to parse structured sources (e.g., HTML documents) and 
extract relevant text and the Jena Framework to load and query RDF data.

In this way, we can extract more than 43,000 distinct events from our 
sources. About half come from collections about natural disasters (most 
notably EMDat and NOAA). Our statistics include approximately 400 spe-
cie indicators (e.g., gross domestic product [GDP] or literacy rate) collected 
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annually for about 200 countries and up to 200 years. While not all statisti-
cal data are available for all countries for such a long period, our final data 
include about 1,250,000 individual statistical values (Lorey et al., 2011).

3.8.3.2 Schema Matching

Next we map the parsed data from their source schema onto the unified 
event and statistics schemata. Because of the variety of data structures across 
sources, we configured the details for this mapping process manually for 
each source, using the following normalization steps for schema matching 
(Lorey et al., 2011):

• Attribute deduplication: Semistructured sources, as for example, 
DBpedia, may contain multiple attributes with essentially the same 
meaning. We merge these into a single attribute where applicable.

• Categorical classification of events and statistics into predefined 
hierarchical category structures: If a source already has taxonomy, 
we can perform classification using a static mapping between the 
existing classification and ours. Or we can take a machine-learning 
approach, a classification method particularly useful for unstruc-
tured sources (text classification).

• Geospatial classification of events and statistics using the GeoNames 
database and web service: In geospatial classification, multiple loca-
tions are permitted for events. In this step, we also generate titles for 
events if sources have not done so. Finally, generation is dynamic 
based on the values of other attributes (e.g., category, location).

• Date normalization: We map date and time values of the various 
data formats onto a unified schema.

• Value normalization: Here, we normalize statistical values to account 
for different value ranges and units. We also remove prognostic val-
ues, as our sole concern is analyzing the actual historical data.

Before we store an entity in the database, we perform a number of checks 
to ensure it is both valid and useful. For example, at the very least, events 
require a title, year, location, and category to be useful for rule mining. By 
the same token, we ignore missing or nonnumerical values in statistical time 
series data: they could cause the data-analysis algorithms to produce incor-
rect results or even no results at all.

3.8.3.3 Data Cleaning

The same event or similar events can most likely be found in several data 
sets. The following steps allow us to identify and then fuse about 2500 dupli-
cate events.
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First, we adapt the sorted neighborhood algorithm so that a window con-
tains all events occurring during a period of five consecutive years: we only 
compare the events happening within this time frame. To find a duplicate, 
we compare all attribute values using a variety of similarity measures and 
weights. Note: the titles and locations have the highest impact in this case. The 
weight of the start date is increased for natural disasters, as a date is typically 
easier to pinpoint for such occurrences than, for example, political events.

Using a modified Monge Elkan distance metric that divides the similar-
ity sum of the most similar words by the number of words from the shorter 
title, we can compare titles. We use the Porter Stemmer algorithm to stem all 
words. We eliminate stop words, and we define the similarity of two words 
as their Jaro Winkler distance.

These duplicates must now be clustered. We first considered clustering 
by deriving the transitive closure of individual duplicate candidates but 
rejected this when we found it to be both computationally expensive and 
likely to result in low-Precision values. Accordingly, we use the nearest 
neighbor technique for clustering. We use varying thresholds for different 
groups. Finally, for a cleaner event, we fuse each individual event cluster by 
fusing all its contained attributes. We select an appropriate title and start 
date using the source deemed to be most reliable, and we apply an end date 
if one is available. For the most part, the values of other attributes can be 
concatenated (Lorey et al., 2011).

3.8.4 Detection of Outliers

To identify interesting aspects in the statistical data, we look for outliers in 
the values, using a number of different methods to do so. For example, we 
can use linear regression to describe the relationship between a scalar vari-
able (time, in our case) and a dependent variable, corresponding to a specific 
quantitative indicator (e.g., GDP in USD or the literacy rate in percent). We 
define an outlier as a point on the graph that differs noticeably from the 
estimated linear model; in other words, it has a large residual. To find the lin-
ear approximation of a curve, we draw on three algorithms: MM-estimation, 
least squares, and least median squares. For the latter method, the linear 
model is defined by points not regarded as outliers for this model.

Linear regression is only applicable to specific data sets, so we add two 
variants of nonparametric regression analyses: the Loess function and a gen-
eralized additive model (GAM).

To analyze the properties of the graph itself, we implement an algorithm 
that defines all extrema of a graph as its outliers. A more elaborate approach 
is to analyze the slope of the graph and define outliers as those points where 
the absolute change of the slope is above a certain threshold.

The final approach is an algorithm that defines a “global statistic” by calcu-
lating the mean of all country-specific statistics and analyzing the relation-
ship of each statistic to the global statistic.
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Each method has advantages and disadvantages and may be suitable only 
for specific data sets, for example, indicators expected to increase linearly 
over time. While the application’s “default” setting should provide a good 
starting point, domain experts may opt for a more appropriate analysis of 
underlying data by selecting the corresponding algorithm in the web inter-
face (Lorey et al., 2011).

3.8.5 Association Rule Mining

We want to detect interesting patterns of event–outlier combinations, such 
as: “in case of a major natural disaster, the annual GDP of a country declines.” 
Here, we explain how to find these patterns using association rule mining.

3.8.5.1 Data Preparation

A rule consists of a premise X and a consequence Y, along with metrics 
describing the rule’s quality, including support, confidence, and conviction. 
Support is a measure of the frequency of attribute combinations in the data 
set, while confidence tells us how often the consequence follows from a given 
premise, defined as
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Finally, conviction measures how strongly a rule holds when compared 
to purely random effects between the premise and consequence, defined as
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Association rule mining seeks to find dependencies between variables 
in a single-large database. Therefore, the first step in data preparation is to 
extract such a data set using the relational model. Since we are interested 
in the correlation between events and outliers, we join statistical outliers 
with events happening in a particular year and location (country) to form 
the basis for the data set. When we are finished, the data set contains infor-
mation on the event category, the statistic category, the tendency of an out-
lier, and the statistical trend leading up to the outlier. For example, in one 
country in our data set, a change in government led to a local extremum in 
a previously ascending consumer price index in 383 cases with a conviction 
value of approx. 2.09. This means a change in government typically yielded 
a decline in the consumer price index.

The tendency of an outlier tells us whether it is a maximum or minimum 
compared to the expected statistical trend. The statistical trend in the years 



196 Artificial Intelligence Tools

leading up to an outlier can help us identify Black Swans for which the sta-
tistical development is relevant to the event, instead of considering only the 
outlier. An example is the widespread increase of weapons production pre-
ceding WW I (Lorey et al., 2011).

3.8.5.2 Rule Generation

In our association rule mining, we use the open-source machine-learning 
software WEKA11 and employ the Apriori algorithm.

One challenge in rule mining generally is selecting the attributes we expect 
to find. In our problem, we decide every rule must contain at least the event 
category and the statistical category or indicator. Other attributes, such as 
outlier tendency or historical trend, may be permitted but are not required.

As our base data set for rule generation contains about 1.1 million com-
binations (by joining events, statistics, and outliers for each year), we want 
each determined rule to meet a minimum support of approximately 0.01% by 
considering only those implications with at least 100 occurrences.

Further, as the Apriori algorithm builds all combinations of item subsets, 
some generated rules do not comprise a useful rule that we can visualize, 
including rules without an event or statistic attribute and events with an 
unknown event class. We therefore prune the resulting set by removing all 
such rules. Each rule returns the conviction value for a given combination of 
an event and outlier; this value indicates the degree to which a rule applies to 
the given combination. The more rules that match the combination and the 
higher the conviction, the more likely the event for the given outlier (Lorey 
et al., 2011). In this way, we can determine the most fitting event(s) for an outlier.
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4
Input and Output Data

The main function of machine learning is to design and develop algorithms 
that allow systems using empirical data, experience, and training to evolve 
and adapt to changes in their environment, that is, to changes in the state 
of the monitored assets. An important part in the investigation of machine 
learning is to automatically induce models, such as rules and patterns 
from the training data being analyzed. Figure 4.1 shows a combination of 
machine-learning techniques and approaches from different areas, includ-
ing probability and statistics, psychology, information theory, and artificial 
intelligence.

An important part of any fault detection technique is the nature of the 
input data, where the input is usually a collection of data instances (also 
called an object, record, point, vector, pattern, case shows, watching, or 
entity) (Tan et al., 2005). Each data instance may be defined by a set of attri-
butes (also called a variable, feature, function, field, or dimension). Attributes 
can be various types such as binary, categorical, or continuous. Each instance 
of data can be one of two types: it either has a single attribute (univariate) 
or multiple attributes (multivariate). For multivariate data entities, attributes 
may be all the same type of data or a mixture of different types (Chandola 
et al., 2007). The nature of the attributes determines the applicability of fault 
detection techniques. For example, statistical techniques include various 
statistical models for continuous and categorical data. Similarly, a distance 
measure is determined by the attributes of the data point’s closest technical-
based neighbor. In some cases, instead of the real data, the distance between 
pairwise cases may be provided as a distance or similarity matrix. In such 
cases, techniques requiring the consultation of original data are not appli-
cable, for example, many statistical techniques based on classification. The 
input data can also be classified on the basis of the relationship between the 
various data instances (Tan et al., 2005).

Most of the existing techniques for detecting failures are responsible 
for recording data or data points, in which no relationship between data 
instances is assumed. In spatial data, each data instance is related to its 
neighboring instances, for example, data from vehicle traffic and ecological 
data. When data have a spatial (sequential) time component they are called 
spatio-temporal data, for example, climate data. When a graph format is used, 
data instances are represented as vertices and connected to other vertices by 
edges. Later in the chapter, we will discuss situations in which these kinds 
of relationships between data instances become relevant for fault detection.
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The nature of data, as mentioned in previous chapters, is a major issue 
in condition monitoring. In addition, data collection must be contextually 
adaptive due to the changing environment; and algorithms for fault detec-
tion must be equally adaptive. To cite one example (Al-Karaki et al., 2004), 
wireless sensor network (WSN) applications operate in very challenging 
conditions in the field of condition monitoring and health management; they 
must constantly accommodate environmental changes, hardware degrada-
tion, and inaccurate sensor readings. To maintain operational correctness, a 
WSN application must frequently learn and adapt to changes in its running 
environment. Machine learning has been used in such cases.

Machine-learning algorithms can be classified into supervised and unsu-
pervised learning, depending on whether instances of training data are 
labeled or not. In supervised learning, the student is provided with teaching-
identified instances where both the input and the correct output are given. 
Unsupervised learning is the opposite of supervised learning since the cor-
rect output is not provided with the entry. Instead, the training program is 
based on other sources of feedback to determine whether the learning is 
done properly. There is a third class of machine-learning techniques called 
semisupervised learning, which uses a combination of both labeled and 
unlabeled data for training. Figure 4.2 shows the relationship between these 
three types of machine learning.

Control theory Probability
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statistics

Artificial
intelligence

Information
theory

Philosophy

Psychology

Neurobiology

Machine
learning

Computational
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theory

FIGURE 4.1
Machine learning.
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In this chapter, we examine machine-learning algorithms in sensor net-
works from the perspective of the types of applications used. We provide 
more examples of the three types of machine learning and discuss their 
use in a number of sensor network applications. The machine-learning 
algorithms most commonly used include Clustering, Bayesian probabilistic 
models, Markov models, and decision trees. We also discuss the challenges, 
advantages, and disadvantages of the various machine-learning algorithms. 
Figure 4.3 shows the machine-learning algorithms introduced in this chapter.

Unlabeled
data 

Supervised
learning 

Unsupervised
learning 

Semisupervised
learning

Labeled
data

FIGURE 4.2
Classes of machine-learning algorithms.
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4.1 Supervised Failure Detection

In supervised learning, the student can be provided with labeled data entry. 
These data have a sequence of pairs of input/output yi> <xi, where xi is an 
entry and yi is the output associated with it. The main idea for the student 
in supervised learning is to learn the assignment of inputs to outputs. 
Therefore, the program is expected to identify function f that accounts for 
pairs of inputs/outputs seen so far: f(xi) = yi for all i.

This function f(xi) can be called a classifier if the output is discrete and a 
regression function if the output is continuous. The distinction into function 
 classifier/regression is to correctly predict the results of inputs that have not 
been seen before, for example, when the inputs are the redundancies of sen-
sors and outputs are the activities causing them.

The execution of a supervised learning algorithm can be divided into five 
main steps (Figure 4.4). (Hu and Hao, 2013):

Step 1: Determine which training data are needed and collect those 
data. In this case we have to ask two questions. First, what data are 
needed? Second, what amount of data are needed? Designers must 
make a decision and decide which training data best represent real 
life scenarios for a specific application. They also have to determine 
the amount of training data to be collected. The more data we have, 
the better we can train the learning algorithm, data collection train-
ing, and provide correct labels. However, this is usually both expen-
sive and laborious. Therefore, an application designer always strives 
to find an algorithm large enough to provide sufficient training data, 
but small enough to avoid unnecessary costs associated with data 
collection and labeling.

Collect the training data set

Determine the feature representation of the input

Choose a learning algorithm

Train the algorithm

Evaluate the algorithm’s accuracy using a test data set

Step 1

Step 2

Step 3

Step 4

Step 5

FIGURE 4.4
Stages of supervised machine learning.
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Step 2: Identify the set of features, also called the feature vector, to repre-
sent the input. Each feature in the feature set represents a characteristic 
of the object, as well as events that are classified. There is a balance 
between the size of the feature vector and the classification accuracy 
of machine-learning algorithm. An array of many features can signifi-
cantly increase the complexity of classification; however, the use of a 
vector of small features, which does not possess a sufficient description 
of the objects/events, may cause poor classification accuracy. Therefore, 
the feature vector must be large enough to represent the important fea-
tures of object/event and small enough to avoid excessive complexity.

Step 3: Select a proper-learning algorithm. Certain factors must be 
considered when choosing a learning algorithm for a given task, 
including the content and size of the training dataset, the noise in 
the system, the accuracy of labeling, heterogeneity, and redundancy 
of the input data. Similarly, we must assess the needs and character-
istics of the sensor network application itself. For example, for a rec-
ognition application activity, the duration of the sensor use plays a 
significant role in determining the activity being executed. Therefore, 
to achieve a high accuracy of activity recognition, machine-learning 
algorithms that can explicitly model state time are preferred.

  Frequently used supervised machine-learning algorithms include 
support vector machines (SVMs), naive Bayes classifiers, decision 
trees, hidden Markov models (HMMs), conditional random field 
(CRF), and k-nearest neighbors (k-NN) algorithms. Likewise, a num-
ber of approaches have been used to improve the performance of the 
selected classifiers, such as bagging, boosting, or using a set of classi-
fiers. Each algorithm has its advantages and disadvantages, making 
it suitable for some types of applications, but unsuitable for others.

Step 4: Train the learning algorithm using data collected. In this step, 
the algorithm treats the function that best fits the training instances 
of input/output.

Step 5: Evaluate the accuracy of the algorithm. The algorithm is tested 
with a data test set, that is, data that differ from the training data, to 
determine its accuracy.

Various supervised learning algorithms have been implemented and 
tested experimentally in a variety of sensor network applications. The most 
frequently used algorithms, WSN applications, are described in the remain-
der of this section.

4.1.1 Decision Trees

Decision trees are often characterized by a fast execution time, ease of inter-
pretation of the rules, and scalability for large multidimensional data sets 
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(Cabena et al., 1998; Han, 2005). The main function of decision tree learning 
is the elaboration of a model that predicts the value of the output variable 
based on the input variables in the feature vector. Each node corresponds to 
a variable feature vector. Each node has edges for each of the possible values 
(or range of values) of the input variable associated with the node. Each leaf 
in the decision tree represents a possible value for the output variable. The 
output variable can be calculated by following a path from the root upwards 
and is guided by the values of the input variables.

Figure 4.5 shows a decision tree for a sample application activity detection 
sensor network in a kitchen. In this scenario, it is assumed there are only 
two events of interest in the kitchen: cooking and getting a drink. The deci-
sion tree sensor node is used to differentiate between these two activities. 
For example, if there is movement in the kitchen and the stove is being used, 
the algorithm determines that the residents are cooking. However, if there is 
movement in the kitchen, the stove is not used, and someone opens the cup-
board, the algorithm defines the activity as getting a drink. This is a simple 
example that illustrates how decision trees can be applied to sensor network 
applications. Actually, the decision trees learned from real applications are 
much more complex.

The C4.5 algorithm is currently known as top-down, a greedy search 
algorithm decision tree construction (Quinlan, 1993). The algorithm uses 
metric entropy and information gained to induce a decision tree. A deci-
sion tree is used for recognizing activity in the Place Lab project at MIT 
(Logan et  al., 2007). Researchers monitored a home equipped with more 
than 900 sensors, including wire rod turns, current and water flow inputs, 
object detectors, people on the move, and radio-frequency identification 
(RFID) tags. Data from 43 typical household activities were collected. C4.5 
was one of the classifiers used in its recognition approach.

Kitchen motion
sensor active

No

No kitchen activity
Stove use

Yes

Yes

Cooking

No

Cups cupboard use

Yes

Getting a drink Unrecognized kitchen activity

No

FIGURE 4.5
Sample decision tree for an activity detection application.
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C4.5 has also been used for target recognition in wireless underwater sur-
veillance sensor systems (Cayirci et al., 2006). Each node in the network is 
equipped with multiple types of microsensors, including acoustic materials, 
magnetic radiation, and mechanical sensors. The readings from these sen-
sors are used by the recognition algorithm decision trees to classify subma-
rines, small delivery vehicles, mines, and divers.

In another instance, C4.5 was used as part of an algorithm to automatically 
recognize physical activities and their intensities (Tapia et al., 2007). More specifi-
cally, the algorithm monitored the readings of triaxial wireless accelerom-
eters and wireless heart rate monitors and its efficacy was evaluated using 
datasets of 10 physical activities collected from 21 people.

4.1.2 Bayesian Network Classifiers

According to Hu and Hao (2013), Bayesian probability interprets the con-
cept of probability as a degree of belief. A Bayesian classifier has the func-
tion of analyzing the feature vector describing a particular input instance 
and assigns the instance to the most likely class. This classifier is based on 
applying Bayes’ theorem to evaluate the probability of particular events. 
Bayes’ theorem gives the relationship between pre and postbeliefs of two 
events.

Assume P(A) is the initial prior belief in A, and P(A|B) is the posterior belief 
in A, after B has been found, that is, the conditional probability of A, given 
B. In a similar fashion, P(B) is the initial belief before in A, and P(B|a) is the 
posterior belief of B, given A. Supposing P(B) ≠ 0, Bayes’ theorem states
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The Bayesian network is a probabilistic model that represents a set of ran-
dom variables and conditional dependencies through a direct acyclic graph 
(DAG). For example, a Bayesian network often represents the probabilistic 
relationships between the activities and the sensor readings. If set sensor 
readings are given, the Bayesian network can also be used to assess the like-
lihood of performing various activities.

Bayesian networks have a number of advantages. For example, a network 
of Bayes refers only to nodes that are probabilistically related by a causal 
dependency. This may lead to a huge savings in computing because there 
is no need to store all possible configurations of the states; we only need to 
store combinations of states relating to the sets of nodes between parents and 
children. Similarly, we can say that Bayes networks are also very adaptable, 
as they can start small, with limited knowledge about the domain, and grow 
as they acquire new knowledge.

Bayesian networks have been applied to a variety of sensor fusion prob-
lems where they must integrate data from various sources to build a complete 
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picture of the current situation. In addition, they have been used to monitor 
and alert applications where the application must recognize whether certain 
events have occurred and decide whether to send a warning or notification. 
Finally, Bayesian networks have been applied to a number of activity rec-
ognition applications and numerous implementations have evaluated them 
using single source and multiple residents.

Bayesian networks are either static or dynamic, depending on whether 
groups are able to model the temporal aspects of events/activities of interest. 
In what follows, we present examples of these two classes: static naïve Bayes 
classifiers and dynamic naïve Bayes classifiers.

4.1.2.1 Static Bayesian Network Classifiers

A common representative of static Bayesian networks is the static naïve 
Bayes classifier. Learning Bayesian classifiers can be significantly reduced 
by making the naïve assumption that the characteristics describing a class 
are independent. The classifier usually assumes that the presence or absence 
of a class characteristic is not related to the presence or absence of any other 
features in the feature vector. The naive Bayesian classifier is one of the most 
practical learning methods and has been widely used in many sensor net-
work applications, including activity recognition in nursing homes (Van 
Kasteren and Kröse, 2007), recognizing the PlaceLab activity in the project at 
MIT (Logan et al., 2007), outlier detection (Janakiram et al., 2006), and body 
sensor networks (Maurer et al., 2006).

Figure 4.6 shows a naïve Bayesian model used for the recognition of an 
activity. In this scenario, the activity at time t, activity, is independent of any 
previous activities. It is also assumed that the sensor data Rt depend only on 
the activity.

Naïve Bayes classifiers have the following advantages:

• Can be trained efficiently.
• Are well suited for categorical features.

Rt
NRt

2Rt
1 . . . 

Activityt

FIGURE 4.6
Static Bayesian network.
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• Have performed well in complex real-world situations despite their 
naïve design and the independence assumptions and can work with 
more than 1000 features.

• Are good for combining multiple models and can be used in an iter-
ative way.

Naïve Bayes classifiers have a disadvantage in that if the conditional inde-
pendence is not true, that is, if there is a dependency between the features 
of the examined classes, then it is not a good model. In addition, naïve Bayes 
classifiers assume all corresponding attributes in a classification decision, 
which represent these observables. Despite these drawbacks, studies have 
shown that naïve Bayes classifiers are very accurate classifiers in a number 
of problem domains. Simple naïve Bayes networks have even been shown 
to be comparable to more complex algorithms such as decision trees (Tapia 
et al., 2004).

4.1.2.2 Dynamic Bayesian Network Classifiers

Another disadvantage of static Bayesian networks is that they cannot model 
the temporal aspect of sensor network events. However, dynamic Bayesian net-
works are capable of representing a sequence of variables when the sequence 
is a continuous reading from a sensor node. Therefore, dynamic Bayesian net-
works, although they are more complex to implement, can become more suit-
able for modeling events and activities in sensor network applications.

Figure 4.7 shows a dynamic naïve Bayesian model, where with the varying 
activity t, only one activity is directly influenced by the previous variable 
activity t. These models assume an event may cause another event in the 
future, but not vice versa. Therefore, directed arcs between events/activities 
must flow forward in time and cycles are not allowed.

4.1.3 Markov Models

A process is considered to be Markov if it exhibits the Markov property—
lack of memory. That is, the conditional probability distribution of future 

Rt
1 Rt

N. . . 

Activityt

Rt+1 . . . 

Activityt+1

Rt
2 Rt+1 Rt+1

N21

FIGURE 4.7
A naive dynamic Bayesian network.
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states of the process depend only on the present state and not on events pre-
ceding it. Two types of Markov models are the HMM and the hidden semi-
Markov model (HSMM).

4.1.3.1 Hidden Markov Model

The HMM can be considered a simple dynamic Bayesian network. When 
an HMM is used, the system is assumed to be a Markov process with unob-
served states (hidden). Although the hidden state is sequenced, the output is 
dependent on the state that is visible. Therefore, in each time step, there is a 
hidden variable and an observable output variable. In sensor network appli-
cations, the hidden variable could be the event or activity being performed, 
and the observable output variable could be the vector of sensor readings.

Figure 4.8 shows an HMM where the states of the system are hidden, but 
the output variables X are visible. Two assumptions define the dependency 
model, as represented by the directional arrows in Figure 4.9:

 1. Markov assumption: The hidden variable at time t, that is, Yt, 
depends only on the previous variable Yt hidden—1 (Rabiner, 1989).

Yt–1 Yt+1Yt

Xt–1 Xt+1Xt

. . .. . .

FIGURE 4.8
HMM example.

Xs1

Y1 Y2

Xs1+d1 Xs2 Xs2+d2

. . .. . .

d1

s1

d2

s2

FIGURE 4.9
Hidden semi-Markov model.
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 2. The observable output variable at time t, that is, Xt depends only on 
the hidden variable Yt.

With these assumptions, we can specify an HMM using three probability 
distributions:

 1. The initial state distribution: The distribution in the initial states of 
p(Y1).

 2. Distribution of transition distribution p(Yt|Yt + 1), which represents 
the probability of moving from one state to another.

 3. Distribution note: the distribution p(Xt|Yt), which indicates the prob-
ability of the hidden state Xt Yt generating observation.

Learning the parameters of these distributions corresponds to maximizing 
the joint probability distribution p(X, Y) sequences paired with observations 
and labels in the training data. The ability to model the joint probability dis-
tribution p(X, Y) makes a generative model.

HMMs have been widely used in many sensor network applications. 
Most of the previous work on activity recognition HMM was used to rec-
ognize activities from sensor data (Patterson et al., 2005; Van Kasteren et al., 
2008; Wilson and Atkenson, 2005). An HMM was also used in the Smart 
Thermostat (Lu et al., 2010) project. This technology detected occupancy and 
sleep patterns in a home and used these patterns to automatically operate 
home heating, ventilation, and cooling (HVAC). The authors used an HMM 
to estimate the probability of being at home in each of three states: unem-
ployed, employed with active residents, and residents occupied with sleep-
ing. HMMs were also used in an application of biometric identification in 
the homes of several residents (Srinivasan et al., 2010). In this project, height 
sensors were mounted above the doors in a house and an HMM was used to 
identify the location of each resident.

A weakness of conventional HMMs is their lack of flexibility in the length 
of modeling the state. With HMMs, there is a constant probability of change 
of state, and this limits the ability of modeling. For example, the activity of 
preparing dinner normally extends at least for several minutes. To prepare 
dinner in less than a couple of minutes is not very common. The geometric 
distribution used by HMMs to represent the duration cannot be used to rep-
resent the distribution of events where shorter durations are less possible.

4.1.3.2 Hidden Semi-Markov Models

HSMM differs from an HMM in that HSMMs explicitly model the duration 
of hidden states. Therefore, the probability of a change in the hidden state 
depends on the amount of time elapsed since entry into the current state.

The recognition accuracy of an HSMM has been compared to that of an 
HMM (Van Kasteren et al., 2010). This example involved an evaluation of the 
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recognition performance of the models using two fully annotated real-world 
databases consisting of several weeks of data. The first set of data was stored 
in a three-room apartment with one resident and the second data set was 
from a six-room house with one resident. When the results were analyzed, 
they showed that HSMM consistently outperformed HMM. This indicates 
that modeling the exact duration is important in applications for recogniz-
ing real-world activity, as it can result in significantly better performance. In 
many cases, the use of the duration of the classification process is especially 
helpful in scenarios where sensor data do not provide enough information to 
distinguish between activities.

4.1.4 Conditional Random Fields

CRFs are often considered an alternative to HMMs. The IRC is a method of 
statistical modeling that, given a sequence of particular observation, is a kind 
of probabilistic graphical model indirectly defining a single log-linear dis-
tribution of label sequences. This is used to encode the known relationships 
between observations and interpretations that are constantly being built.

CRFs are often considered an alternative to HMMs. The IRC is a statistical 
modeling method which is a type of probabilistic graphical model indirectly 
defining a single log-linear distribution of label sequences given a sequence 
of particular observation. CRFs are used to encode the known relationships 
between observations and interpretations that are consistently built.

The CRF model that most closely resembles an HMM is the linear chain 
CRF. As shown in Figure 4.10, the straight-chain model CRF is very similar 
to the HMM (Figure 4.8). The model still contains hidden and corresponding 
observable variables at each time step, but unlike the HMM, the CRF model 
is not directed. This means two connected nodes are no longer a conditional 
distribution. Moreover, we can talk about the potential between two con-
nected nodes. Compared with HMM, the two conditional probabilities—the 
probability of observation p(xt|Yt) and transition probabilities p(yt|Yt 1)—have 
been replaced by the corresponding potential. The essential difference lies in 
the way to learn the model parameters. In the case of HMM, the parameters 
are learned by maximizing the joint probability distribution P(X, Y). CRFs 

Yt–1 Yt+1Yt

Xt–1 Xt+1Xt

. . .. . .

FIGURE 4.10
A linear-chain CRF model.
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are discriminative models; their parameters are learned by maximizing the 
conditional probability distribution p(Y|X), a member of the family of expo-
nential distributions (Sutton and McCailum, 2006).

CRF models have been used for the recognition of activity in homes using 
video streams, where primitive actions, such as the “go-from -A -to- B” are 
recognized using a configuration of the room in question (Truyen et  al., 
2005). The results of these experiments show CRF performs much better than 
the generated HMMs even though a large portion of the labels are missing 
data. CRF has also been used for the modeling of concurrent activities and 
interleaving (Hu et  al., 2008). These authors conducted experiments using 
one of the data sets at PlaceLab MIT (Logan et al., 2007), PLA1, comprising 
4 h of sensor data.

Kasteren Van et al. used four different data sets, two sets of data from the 
bathroom and two from the kitchen, to compare the performance of HMM 
to CRF (Van Kasteren et al., 2010). Experiments showed that when applied 
to the activity recognition tasks, CRF models achieved higher accuracy than 
the HMM models. The authors applied the results to the flexibility of dis-
criminant models such as CRF, to address violations of the model assump-
tions and found the higher accuracy achieved by models of CRF has a price:

 1. Discriminative models take much longer to train than their genera-
tive counterparts.

 2. Discriminative models are prone to overfitting. Overfitting occurs 
when a random noise pattern takes the place of the underlying rela-
tionship. The model is able to maximize performance on the train-
ing data; however, its effectiveness is not determined by how well it 
performs on training data, but by its generalizability and how well it 
performs on unseen data.

4.1.4.1 Semi-Markov CRF

Like HMMs, CRFs also have a semi-Markov variant: in this case, semi- 
Markov conditional random fields (SMCRF). A sample SMCRF model 
appears in Figure 4.11. The SMCRF inherits the following features from 
semi-Markov models and CRFs:

 1. It explicitly models the duration of states (like HSMM).
 2. Each hidden state is characterized by a start position and duration 

(like HSMM).
 3. The model’s graph is undirected (like CRF).

Hierarchical SMCRFs have been tested in an activity recognition applica-
tion using a small laboratory dataset from the domain of video surveillance 
(Truyen et al., 2008). In this test, the task was to recognize indoor trajectories 
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and activities of a person using the noise extracted from a video. The data 
had 90 sequences, each corresponding to one of three possible activities: pre-
paring a short meal, preparing a normal meal, and having a snack. Results 
showed the hierarchical SMCRF outperformed both a conventional CRF 
and a dynamic CRF. Then, when SMCRFs were used for activity recognition 
by Van Kasteren et al. (Van Kasteren et al., 2010), the results indicated that 
contrary to the big improvements seen when using HSMMs over HMMs, 
SMCRFs only slightly outperformed CRFs. That being said, CRFs may be 
more robust in dealing with violations of modeling assumptions. Therefore, 
allowing them to explicitly model duration distributions might not yield the 
same significant benefits as using HSMM.

4.1.5 Support Vector Machines

SVM is a nonlinear probabilistic classifier binary organization, where the pre-
dicted output of an SVM is one of two classes. When there is a training set of 
instances, each is marked as belonging to one of two classes; one possible type 
of output is the SVM algorithm, which constructs a model N-dimensional 
hyperplane for future cases. As Figure 4.12 shows, an SVM model repre-
sents input instances as points in space, mapped so that separate instances 
of classes are clearly divided. New examples are assigned in the same space; 
and based on which side of the gap they fall on, their class is predicted. Put 
otherwise, the objective of SVM analysis is to find a line separating cases on 
the basis of class. As there is an infinite number of possible lines, finding the 
optimal line represents an essential challenge of using SVM models.

4.1.6 k-NN Algorithms

The k-NN algorithm is the easiest of all the machine-learning algorithms 
and is very accurate in many scenarios. The training examples are vectors 
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FIGURE 4.11
A semi-Markov CRF.
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in a multidimensional space of features, each having a class label. The train-
ing phase of the algorithm simply comprises storing the feature vectors and 
labels of class training samples. A new instance is divided by a majority vote 
of its neighbors and is ultimately assigned to the class found to be most com-
mon among its k-NN.

Figure 4.13 provides an example of a k-closest classification algorithm. The 
question mark represents the test sample and should be classified as either a 
star or a triangle. If k = 3, the sample is assigned to the class of triangles, as we 
have 2 and 1 star triangles in the inner circle. If k = 7, the test sample is assigned 
to the class of stars, as we have 4 stars and 3 triangles in the outer circle.

The best choice of k depends on the data, but k must be a positive integer 
and is generally small. If k = 1, the new instance is assigned to the class of 
its nearest neighbor. On the one hand, higher values of k reduce the effect of 
noise on the classification; on the other hand, they make boundaries between 
classes less distinct. Good k can be selected using a number of different heu-
ristic techniques, for example, cross-validation. Although the k-NN is quite 
accurate, the time required to classify a sample may be higher because the 
algorithm must compute the distance (or similarity) of the instance to all 

Misclassified
instances

Margin

FIGURE 4.12
Two-dimensional SVM model.

?

FIGURE 4.13
Example of k-nearest algorithm classification.
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cases in the training set. In short, the classification time k-NN is proportional 
to the number of features and the number of training instances.

4.2 Semisupervised Failure Detection

Supervised learning algorithms use both semilabeled and unlabeled data for 
training. Labeled data are typically a small percentage of the training data. 
The function of semisupervised learning is to: (1) understand how combining 
labeled and unlabeled data may change the learning behavior, and (2) design 
algorithms to take advantage of this combination. Semisupervised learning is 
a very promising approach, as we can use readily available unlabeled data to 
improve supervised learning tasks when labeled data are scarce or expensive.

There are many different semisupervised learning algorithms. The follow-
ing section explains some of the most common.

4.2.1 Expectation–Maximization with Generative Mixture Models

Expectation-maximization (EM) is an iterative method to find maximum 
likelihood estimates of parameters in statistical models that depend on unob-
served latent variables (Dempster et al., 1977). Each iteration of the algorithm 
consists of Hope Step (E-step); this also has a maximization step (M-step). 
EM with a mixture of generative models is suitable for applications where 
the classes specified by the application data produced are tightly grouped.

4.2.2 Self-Training

Self-education can refer to a variety of schemes for using unlabeled data. For 
example, Ng and Cardie (2003) considered bagging and implementing self-
training by majority voting. In their method, a group of classifiers is trained 
on instances of labeled data, and used to classify the unlabeled examples 
independently. Examples for which all classifiers are assigned the same label 
are added to the labeled training set and the classifier is retrained. The pro-
cess continues until a stop condition is met.

A single classifier can also be self-taught. In this case, the classifier is 
trained on all the labeled data and then applied to the unmarked pattern. 
Only those cases that meet selection criteria are added to the labeled set and 
used for recycling.

4.2.3 Cotraining

Cotraining requires two or more views of the data, that is, disjoint sets of 
 features that provide additional information about different instances 
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(Blum and Mitchell, 1998; Blum and Chawla, 2001). It is best if the two sets of 
features for each instance are conditionally independent. Moreover, each set 
of features should be able to accurately assign each instance in the respective 
class. The first step in cotraining is the use of all tagged data and training a 
separate classifier for each view. Then, the most accurate predictions of each 
classifier can be used in unlabeled data to build additional labeled training 
instances. Cotraining is an appropriate algorithm to use if the characteristics 
of the data set are naturally divided into two sets.

4.2.4 Transductive SVMs

Both transductive SVMs and extended SVMs can be used as partially labeled 
data for semisupervised learning (Gammerman et  al., 1998) following the 
principles of supervised transduction. In inductive learning, the algorithm 
is trained on instances of specific training, but the goal is to learn the general 
rules, which are then applied to the test cases. By contrast, the transductive 
learning reasons from specific cases of training for specific test cases.

4.2.5 Graph-Based Methods

These are algorithms that use graph structure obtained by capturing pair-
wise similarities between the labeled and the unlabeled (Zhu, 2007) cases.

These algorithms define a graph structure where nodes are labeled, while 
the unmarked pattern and the edges, which can be weighted, represent the 
similarity of the connected nodes.

In sensor networks, semisupervised learning has been used to determine 
the location of moving objects. Pan et al. (2007) took a learning approach to 
semisupervised probabilistic models by reducing the calibration effort and 
increasing the tracking accuracy of the system. Their method is based on 
semisupervised CRF; the learned model, which contains a small number of 
training data, is improved with the addition of abundant unlabeled data. For 
better efficiency, it uses a generalized EM algorithm coupled with domain 
constraints. Yang et al. (2010) created a learning algorithm using a semimo-
nitored collector to estimate the locations of mobile nodes in a WSN. Their 
learning algorithm calculates a subspace mapping function between the sig-
nal space and the physical space using a small amount of labeled data and a 
large amount of unlabeled data.

Finally, Wang et  al. (2007) developed a learning algorithm based on 
semisupervised SVM. When this algorithm is applied to target classifica-
tions, experimental results show it can accurately classify targets in sensor 
networks.

Likewise semisupervised learning has also been applied to the detec-
tion and recognition of elements that are commonly displaced (Bulling and 
Roggen, 2011). For example, Xie et al. proposed a dual-sensor network cam-
era that can be used as an auxiliary memory tool (Xie et al., 2008). The color 
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characteristic of each new object is extracted and a semiclustering algorithm 
is used to classify the monitored object. The method provides the user with 
the option of reviewing the results of the classification algorithm and tag-
ging the mislabeled images, thus providing real-time feedback for the sys-
tem to filter the data model.

4.3 Unsupervised Failure Detection

It is difficult to collect labeled resources or to achieve accurate labeling. For 
example, obtaining training data sufficient for the recognition of the activ-
ity in a home may require several weeks of data collection and labeling. 
Moreover, labeling is difficult not only for remote and inaccessible areas but 
also for home and commercial building deployment. For any of these deploy-
ments, someone has to tag the data. In the instance of a house, the labeling 
can be done by the residents themselves. Although residents should have a 
record of what they are doing and when, previous experience shows these 
records are often incomplete and inaccurate. An alternative solution is to 
install cameras throughout the house and control the activities of residents. 
However, this approach is considered to be privacy invasive and, therefore, 
is not suitable.

In unsupervised learning, the learner is provided with input data that 
have not been tagged. The role of the student is to find the patterns inherent 
in the data and then apply these patterns to determine the correct value for 
new instances of data output. The assumption is that there is a structure to 
the input space, so that certain patterns occur more frequently than others. 
Overall, the learning wants to see what happens and what does not work. In 
statistics, this is known as density estimation.

In short, unsupervised learning algorithms are very useful for applica-
tions of sensor networks for a number of reasons:

• Data collection requires resources and time.
• Labeling is difficult to achieve accurately.
• As the applications of sensor networks are usually deployed in 

unpredictable and changing environments, applications must evolve 
and learn without guidance, using unlabeled patterns.

A variety of algorithms for unsupervised learning have been used in appli-
cations of sensor networks, including clustering algorithms such as k-means 
and mixture models, self-organizing maps (SOM), and the theory of adap-
tive resonance (ART). In the remainder of this section, some commonly used 
unsupervised learning algorithms are described.
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4.3.1 Clustering

Clustering (or cluster analysis) is a form of unsupervised learning, often 
used in pattern recognition tasks and activity sensing applications. A clus-
tering algorithm partitions the input case into a fixed number of subsets, 
called clusters, so that the instances in the same group are similar to each 
other with respect to a set of metrics (Hu and Hao, 2013).

Cluster analysis itself is not a given algorithm, but the general task to 
be solved. The grouping is done by algorithms, which differ significantly 
in their notion of what constitutes a cluster and how to find it efficiently. 
Choosing appropriate clustering algorithms and parameter settings, includ-
ing the distance function, the threshold density, or the number of expected 
groups, depends on the dataset and the intended use of the results.

Figure 4.14 is a pictorial representation of a clustering algorithm. A cluster-
ing algorithm divides the set of input data instances into groups, called clus-
ters. As the figure shows, the instances in the same group are more similar 
to each other than they are to instances in other clusters.

The idea of a cluster varies between algorithms, and the properties of the 
clusters found by different algorithms vary significantly. Typical cluster 
models include the following:

• Connectivity models: Hierarchical clustering, which builds mod-
els based on distance connectivity, is an example of a connectivity 
model.

• Centroid models: A representative is the k-means algorithm where 
each cluster is represented by a single mean vector.

FIGURE 4.14
A clustering algorithm.
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• Distribution models: In this case, clusters are modeled using statistics 
distributions.

• Density models: An example is density-based spatial clustering for 
applications with noise (DBSCAN) where clusters are identified as 
areas with a higher density than nonclusters.

• Group models: These clustering algorithms are not able to provide a 
refined model for results; they only generate the group information.

Of these, the two most commonly used in sensor network applications are 
k-means clustering and DBSCAN clustering.

4.3.1.1 k-Means Clustering

The function of k-means clustering is to separate the cases of entry into k 
groups, so that each instance belongs to the cluster with the nearest mean. 
When the problem is NP-hard, the common approach is to locate only 
approximate solutions. A number of efficient heuristic algorithms can rap-
idly converge to a local optimum, for example, the Lloyd algorithm (Lloyd, 
1982). The algorithms find only local optima, which often run multiple times 
with different random initializations.

The k-means algorithm is simple and rapidly converges when the number 
of dimensions of the data is small, but k-means clustering also has certain 
drawbacks. First, k should be described in advance. Second, the algorithms 
prefer groups of similar sizes. This often leads to improperly reducing the 
boundaries between the groups; this is not surprising; as it is a model center 
of gravity, a k-means algorithm is optimized for the center of the cluster, not 
the cluster boundaries.

Figure 4.15 is an example of grouping where k = 2 and k-means is unable 
to precisely define the boundaries observed between the two groups. There 
are two sets of density in the figure: one is much larger and contains circles 
and the other is smaller and consists of triangles. Since k-means is optimized 
for the center cluster and tends to produce groups with similar sizes, it incor-
rectly splits the data instances in a green and a red cluster. These two groups, 
however, do not overlap with the original density of input data clusters.

4.3.1.2 DBSCAN Clustering

DBSCAN is a spatial clustering algorithm based on grouping the most popu-
lar density. In density-based clustering, the clusters are defined as areas of 
greater density than the rest of the data set. DBSCAN requires two param-
eters (Ester et  al., 1996): threshold distance (Eps-neighborhood of a point) 
and the minimum number of points required to form a cluster (MinPts). 
DBSCAN is based on the points connected within a certain distance of each 
other, that is, in the same Eps-neighborhood. However, for a cluster, DBSCAN 
requires that each point in the cluster has at least MinPts number of points 
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in the Eps-neighborhood. Figure 4.16 is an example of an observed DBSCAN 
grouping. The data set is the same as in Figure 4.15. The data are grouped 
correctly, but a clustering algorithm based on the density has been applied.

One advantage of DBSCAN is that, unlike many other clustering algorithms, 
it can form groups of any arbitrary shape. Moreover, its complexity is quite low 
and it essentially finds the same groups in each run. Therefore, in contrast to 
the k-means clustering, DBSCAN can be executed only once instead of mul-
tiple times. The main drawback is that a drop in DBSCAN has significantly 

FIGURE 4.15
k-Means clustering incorrectly cutting borders between density-based clusters.

FIGURE 4.16
Density-based clustering with DBSCAN.
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enough density to detect cluster boundaries. If cluster densities continuously 
decrease, DBSCAN can produce clusters whose borders look arbitrary.

In the applications of sensor networks, DBSCAN has been used as part of 
the FATS attack on security to identify the function of each room, includ-
ing the bathroom, kitchen, or bedroom (Srinivasan et  al., 2008). DBSCAN 
generates temporal activity groups, each of which forms a temporary block 
that is continuous with a relatively high shot density sensor. Experiments 
show DBSCAN works well because it stops and calculates the outliers’ high- 
density clusters automatically. However, k-means clustering performs much 
better when identifying which sensors are in the same room. This is espe-
cially the case when all devices are highly correlated temporally, and there is 
no significant density drop in the boundary of clusters.

Apiletti et  al. (2011) applied DBSCAN to detecting sensor correlation with 
data from a sensor network used in university labs. They found DBSCAN 
can identify different numbers of clusters based on the day of the week being 
analyzed. As a result, it can construct more accurate models for sensor use 
patterns in labs. Finally, DBSCAN can detect noisy sensors.

4.3.2 Self-Organizing Map

SOMs provide a way to represent multidimensional data spaces of much 
lower dimension, that is, typically one or two dimensions. A technique for 
data compression is vector quantization, the process of reducing the dimen-
sionality of the feature vectors. SOM generates a map which is a represen-
tation of this function tablet space; a valuable feature of these maps is that 
information is stored so that the topological relationships are maintained 
within the set training.

SOM also contains components called nodes. Each node is associated with 
a position in the map space with a vector of weights; the size of this vec-
tor is the same as the input data instances. The nodes are regularly spaced 
on the map, typically having a rectangular or a hexagonal grid. A typical 
example of SOM is a color map (Figure 4.17). Each color is represented by a 

FIGURE 4.17
SOM representation for colors.
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three-dimensional vector containing the values for red, green, and blue. The 
SOM colors represent two-dimensional space.

Placing an input data instance onto the map requires the following steps:

 1. Initializing the node weights on the map.
 2. Choosing an input training instance.
 3. Finding the node with the closest vector to that of the input instance 

(termed the best matching unit [BMU]).
 4. Calculating the radius of BMU’s neighborhood. This value is fre-

quently set to the radius of the whole map, but it decreases at each 
time step. Any node within this radius is considered inside BMU’s 
neighborhood.

 5. Assigning the values from the vector of the input instance and adjust-
ing the weights of the nodes close to BMU toward the input vector; 
the closer a neighbor node is to BMU, the more its weight is altered.

4.3.3 Adaptive Resonance Theory

Existing learning algorithms tend to be stable (preserving previously 
learned information) or plastic (adapting to new input instances indefinitely). 
Typically, stable algorithms cannot easily learn new information, while 
plastic ones forget the old information they have learned. This is called the 
 stability–plasticity dilemma (Carpenter and Grossberg, 1987).

The adaptive resonance theory (ART) architectures attempt to provide a 
solution to the stability–plasticity dilemma. This group of different neural 
architectures addresses the problem of how a learning system can maintain 
its previously learned knowledge while maintaining the ability to learn new 
patterns. A model of ART has the ability to distinguish familiar and unfa-
miliar events, and expected and unexpected events.

When we want to process familiar and unfamiliar events, the ART sys-
tem contains two functionally complementary subsystems that allow us to 
perform this process: subsystems of attention and guidance. Family events 
are processed within subsystem attention; the objective of this subsystem 
is to constantly establish increasingly accurate internal representations 
and responses to family events. By itself, however, there is a drawback. The 
attention subsystem cannot simultaneously maintain stable representations 
of familiar categories and create new categories for family events. This is 
where help is needed from the guidance subsystem; it is used to restart the 
subsystem attention when a familiar event occurs. The orientation subsys-
tem is essential to express that either a novel pattern is familiar and well rep-
resented by an existing code or an unknown code that requires recognition 
and a new recognition code.

Figure 4.18 shows the system architecture. The care system is classified 
into two successive stages, F1 and F2; these activation patterns encode the 
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short-term memory (STM). The input pattern is received in F1, and in F2, 
classification is performed. From top-to-bottom and from bottom-to-top, and 
the roads in between, the two stages of adaptation contain the long-term 
memory (LTM) traces. The guidance subsystem calculates the similarity 
between the vector input instance and the pattern produced by the fields in 
the attentional subsystem. As long as both are similar, that is, if the subsys-
tem of attention has been able to recognize the input instance, the orientation 
subsystem does not interfere. However, if the two patterns are significantly 
different, the orientation subsystem resets the output of the recognition 
layer. The effect of the replacement is to force the system attention back to 
zero, thus making the system find a better match.

A disadvantage of some of the ART architectures is that the model results 
depend largely on the order in which the training instances are processed. 
The effect can be reduced to some extent when there is a slower rate of learn-
ing where the differential and degree of training in an entry depends on the 
time of the entry that is available. Even with the slow formation, however, 
the order of formation still affects the system, regardless of the size of the 
input data set.

4.3.4 Other Unsupervised Machine-Learning Algorithms

A wide variety of unsupervised learning algorithms, in addition to k-means 
clustering, for example, DBSCAN, SOM, and ART, have been used in WSN 
applications. The Smarthouse project uses a system of sensors to monitor the 
activities of a person in the household (Barger et al., 2005). The project objec-
tive is to recognize and detect different patterns of behavior. The authors 
use mixture models to develop a probabilistic model of behavior patterns. 

F1: Comparison field

F2: Recognition field

LTMLTM
STM activity pattern

STM activity pattern

Input pattern

Attentional
subsystem

Orienting
subsystem

STM
reset

FIGURE 4.18
Architecture of an ART system.
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The mixture model approach groups the observations into different types 
of events.

A number of project activity recognition algorithms have been developed 
from unsupervised learning models extracted from texts or the Web. One 
project used methods of an unsupervised learning guide to identify activi-
ties using RFID tags placed on objects (Philipose et al., 2003). This method is 
based on data mining techniques to extract activity patterns of the Web in an 
unsupervised way. For this project, the authors derived the term structure 
for about 15,000 activities at home.

An unsupervised approach based on the detection and analysis of the 
sequence of objects being used by residents has been described by Wu et al. 
(2007).

The method of recognizing activity is based on an RFID object correlated 
with video streams and the information obtained from how-to websites like 
about.com. Because the approach uses video streams, it provides high-grain 
recognition activity. For example, we can differentiate between tea and cof-
fee. However, as mentioned above, collecting video data from household 
activities is difficult due to privacy concerns.

4.4 Individual Failures

A point of failure is when an instance can be considered as individually 
anomalous from the rest of the data. This is the simplest type of problem and 
is the focus of most research in anomaly detection. For example, in Figure 4.1, 
the points O1 and O2, and the points in the region of O3, are located outside 
the boundaries of normal regions, resulting in point anomalies, as they are 
different from the normal data points. As an example in real life, consider 
the detection of credit card fraud, wherein the data set corresponds to the 
credit card transactions of an individual. For the sake of simplicity, assume 
that the data are defined by a single feature: amount spent. A transaction 
for which the amount spent is very high compared with the normal range 
of costs for that person will be a point of failure. Either a point anomaly or a 
collective anomaly can be transformed to the contextual anomaly.

The most popular techniques for individual fault detection are classifica-
tion, nearest-neighbor, clustering and anomaly-based techniques.

4.4.1 Classification-Based Techniques

These techniques work in two phases. During the first phase, learning, a 
prediction model (classificator) is built using the available labeled data. The 
classificator can distinguish between normal and anomalous data. During 
the second phase, testing, the tested data are classified into normal or 
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anomalous classes. The learning phase can divide the normal data into sev-
eral sets. When this occurs, it is called a multiclass technique. When only one 
normal class exists, it is a one-class technique. One group of classification 
techniques uses a classification algorithm based on neural networks. Such 
techniques can be used with either multiclass or one-class data. Other tech-
niques use algorithms based on Bayesian networks, SVMs, or rule-based sys-
tems. The testing phase is generally very fast, because a predictive model has 
been built and instances are only compared to the model. These techniques 
also use algorithms that can distinguish between instances belonging to dif-
ferent normal classes. A disadvantage is that the techniques need labeled 
training data to build the predictive model.

4.4.2 Nearest Neighbor–Based Techniques

These techniques are based on the prediction that normal data instances form 
neighborhoods, while anomalous data instances do not. They compute dis-
tances to the nearest neighbors or use a relative density as the anomaly score. 
One group of techniques uses the distance to the k-nearest neighbors as the 
anomalous score. A second group computes the relative density in a hyper-
sphere with the radius d. The advantage of these techniques is that they can 
work in the unsupervised mode, but if the semisupervised mode is used, the 
number of false anomaly detections is smaller (Pokrajac et  al., 2007). Their 
computational complexity is relatively high, because the distance is computed 
between each pair of data instances. In addition, the rate of false anomaly detec-
tion is high if a normal neighborhood consists of only a few data instances.

4.4.3 Cluster-Based Techniques

These techniques are very similar to nearest neighbor techniques. The prob-
lem of detecting anomalies that form clusters can be transformed to the 
problem of nearest neighbor-based techniques; however, clustering-based 
techniques evaluate each instance with respect to the cluster it belongs to. 
There are three types of clustering-based techniques. The first assumes nor-
mal instances form clusters (Figure 4.19). These techniques apply known 
clustering-based algorithms and determine whether any data belong to the 
cluster. A disadvantage is that they are optimized to find clusters not anoma-
lies. The second type assumes the normal data instances lie close enough to a 
closest cluster centroid (Figure 4.20). Such techniques are not applicable if the 
anomalies form clusters. Therefore, the third type of clustering technique 
assumes normal instances form large dense clusters, while anomalies form 
small sparse clusters (Figure 4.21). The first two types work in two phases: in 
the first phase, a clustering algorithm clusters data and in the second phase, 
it computes a distance as an anomalous score. Clustering-based techniques 
can work in the unsupervised mode, because clustering algorithms do not 
need labeled data.
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FIGURE 4.21
Contextual anomaly T2 in a temperature time-series.
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Once a model is built, the testing phase is quick, because it only compares 
tested instances to the model. A disadvantage is the high-computational com-
plexity; furthermore, these algorithms are not optimized to find anomalies.

4.4.4 Anomaly Detection Techniques Based on Statistical Approach

The statistical methods of anomaly detection are based on the following 
assumption (Anscombe and Guttman, 1960): an anomaly is an observation 
suspected of being either partially or wholly irrelevant because it is not gener-
ated by a model assumed to be stochastic. Thus, normal data instances occur 
in high probability regions of the stochastic model, and anomalies occur in 
low probability regions. The statistical methods fit the statistical model to the 
normal data and then determine if a tested data instance belongs to y or x, as 
shown in Figure 4.21.

If a technique assumes the knowledge of the distribution, it is parametric 
(Eskin, 2000); otherwise, it is nonparametric (Desforges et al., 1998).

Nonparametric methods assume the model is determined from the given 
data. The most commonly used techniques are the kernel function-based 
and the histogram-based techniques. The former techniques use the Parzen 
windows estimation (Parzen, 1962). The latter are the simplest and are widely 
used in intrusion detection systems. The first step in using these techniques 
is to build a histogram based on different values taken from the training data. 
In the second step, a tested data instance is checked to determine whether it 
falls into one of the histogram bins.

Parametric methods assume data are generated by a parametric distribu-
tion and a probability density; they can be divided according to type of dis-
tribution (Kopka et al., 2010):

• Gaussian model based
• Regression model based
• Mixture of parametric distribution based

An advantage of statistical methods is their widespread use. If a good 
model is designed, the methods are very effective. They can also be used in 
the unsupervised mode with a lack of training data. The histogram-based 
techniques are not suitable for detecting the contextual anomalies, however, 
because they cannot record an interaction between the data instances. In 
addition, choosing the proper test method is nontrivial.

4.4.5 Other Detection Techniques

The aforementioned techniques are the most widely used. Some remaining 
methods use information theory techniques based on relative entropy or 
the Kolmogorov complexity. These techniques can operate in the unsuper-
vised mode and do not need a statistical assumption about data. A final type, 
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spectral anomaly detection techniques, tries to find an approximation of the 
data and determine the subspaces in which the anomalous instances can be 
easily identified. These techniques have high computational complexity.

4.5 Contextual Failures

A data instance is anomalous in a specific context; otherwise it is called a 
contextual anomaly (also called conditional anomaly) (Song et al., 2007). The 
notion of context is induced by the structure data set and must be specified 
as part of the problem formulation each data instance is defined by, using the 
following two sets of attributes:

Contextual features: Contextual attributes are applied to determine the con-
text (or neighborhood) for an instance. For example, spatial data sets, the lon-
gitude and latitude of a location are contextual attributes. In time-series data, 
time is a contextual attribute that determines the position of the instance in 
the entire sequence.

Behavioral attributes: Behavioral attributes specify noncontextual features 
of an instance. For example, in a group of spatial data describing the aver-
age rainfall around the world, the amount of rain anywhere is an attribute 
of behavior. Anomalous behavior is determined using the values of the attri-
butes of behavior within a given context. An example of data could be a con-
textual anomaly in a given context, but an instance of similar data (in terms 
of behavioral attributes) could be considered normal in a different context. 
Therefore, this property is key to the identification of contextual attributes 
and behavior in the detection technique of contextual anomalies. Contextual 
anomalies have been discussed most frequently in the data time series 
(Salvador et al., 2004; Weigend et al., 1995) and in spatial data (Kou and Lu, 
2006; Shekhar et al., 2001). Figure 4.3 shows a time series of temperature with 
monthly temperatures of an area in recent years. It has to take into account 
the temperature at time t1 is the same as at time t2, but occurs in a different 
context and, therefore, is not considered a failure. A variety of anomaly detec-
tion techniques handle contextual anomalies (Figure 4.22). For these, the data 
must have a context attribute group in order to define a context, and a set of 
performance attributes for abnormalities in context. Song et al. (2007) used 
the terms of environmental attributes and indicators, and these are analogous 
to our terminology. Some attributes of the relevant data are discussed below.

 1. Spatial data: The data may have attributes defining the spatial loca-
tion of a particular data point and, therefore, a spatial neighborhood.

   A number of techniques for detecting anomalies is based on con-
text (Kou et  al., 2006; Lu et  al., 2003; Shekhar et  al., 2001; Sun and 
Chawla, 2004).
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 2. Data based on graph: The edges that connect the data nodes (instances) 
define the neighborhood for each node. Techniques for detecting 
contextual anomalies have been applied to graph-based data (Sun 
et al., 2005).

 3. Sequential data: When data are sequential, the contextual attribute of 
a data instance is its position in the sequence. Time-series data have 
been explored extensively in the category of contextual anomaly detec-
tion (Abraham and Box, 1979; Abraham and Chuang, 1989; Bianco 
et al., 2001; Fox, 1972; Galeano et al., 2006; Rousseeuw and Leroy, 1987; 
Salvador et al., 2004; Tsay et al., 2000; Zeevi et al., 1997). Another form 
of sequence data developed for anomaly detection techniques is event 
data, in which each event has a timestamp (e.g., call data of the oper-
ating system or database of the Web) (Ilgun et al., 1995; Smyth, 1994; 
Vilalta and Ma, 2002; Weiss and Hirsh, 1998). The difference between 
the data time series and sequence of events is that for the latter, the 
time between arrivals of consecutive events is uneven.

 4. Profile: Often data may not have an explicit spatial or sequential 
structure, but still can be segmented or grouped into parts using a 
set of contextual attributes. These attributes are typically used for 
profiling and to group users in activity monitoring systems, such as 
mobile phone fraud detection (Fawcett and Provost, 1999), CRM data-
bases (He et al., 2004), and detection of credit card fraud (Bolton and 
Hand, 2001). Users are analyzed within their group of anomalies.

Compared to the literature on the point anomalies detection techniques, 
research on detecting contextual anomalies remains limited. In general, 
these techniques can be classified into two categories. The first category of 
techniques reduces the contextual detection problem to a problem of point-
of-failure anomaly detection; the second category uses the model to detect 
anomalies.

(a) (b) (c)

FIGURE 4.22
2-D Data sets. Normal instances are shown as circles and anomalies are shown as squares. 
(a) Data set 1; (b) Data set 2; (c) Data set 3.
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Moreover, to find and identify faults in contextual techniques requires 
large and powerful computer data resources. In many cases, dividing the 
data into contexts is not a simple task. This is especially true for the data 
and time-series data of the sequence of events. In such cases, the time-series 
modeling and sequence-extending modeling techniques for detecting anom-
alies in the data context are used.

A generic technique in this category can be described as follows. When 
a model is learned from the training data, the expected behavior in a given 
context can be predicted. If the expected behavior is significantly different 
from the observed behavior, a fault is declared. A simple example of this 
technique is generic regression in which contextual attributes can be used 
to predict the behavior attribute by fitting a regression line to the data. The 
following models were developed for the detection of contextual anomalies: 
time-series data, multiple regression techniques for time-series modeling 
and robust regression (Rousseeuw and Leroy, 1987) based, autoregressive 
models (Fox, 1972), the auto-regressive moving averages (ARMA) models 
(Abraham and Box, 1979; Abraham and Chuang, 1989; Galeano et al., 2006; 
Zeevi et al., 1997) and auto-regressive integrated moving averages (ARIMA) 
models (Bianco et al., 2001; Tsay et al., 2000). Regression-based techniques 
have been extended to detect abnormalities in a contextual set of sequences 
of coevolution by modeling the regression and the correlation between the 
sequences (Yi et al., 2000).

One of the first works in anomaly detection time series was proposed 
by Fox (1972) who modeled time series as a stationary autoregressive pro-
cess. In this process, a comparison is made between any observation test 
for the abnormal and the covariance matrix of the autoregressive process. 
If the observation is not in the modeling error for the process, we can say 
it is an anomaly. This technique was extended by Ma and Perkins (2003) in 
their Support Vector Regression to estimate regression parameters and use 
the learned model to detect novelties in the data. Their technique adopts 
a divide and conquer approach. The sequence is divided into two parts, 
and the Kolmogorov complexity is calculated for each event containing the 
anomaly. The sequence is divided recursively until we are left with one event 
that started the anomaly in the sequence.

4.5.1 Computational Complexity

The computational complexity of the training phase detection techniques 
based on contextual anomalies reduction depends on the reduction tech-
nique, just as the detection technique uses point of failure in each context. 
While segmentation techniques partition to have a rapid reduction stage, 
using clustering techniques or a mixture of the estimation models is slower. 
The anomaly detection techniques are usually used to accelerate the second 
step, as the reduction simplifies the problem of anomaly detection. The test-
ing phase is relatively expensive, because with each test case, the context 
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is determined and an anomaly or label score is assigned using a detection 
technique point of failure. The computational complexity is typically higher 
when the structure uses the data of the training phase anomaly detection 
techniques. An advantage of these techniques is the testing phase is rela-
tively fast, as each instance is compared to a model and assigned a score of 
abnormality or an abnormality label.

The main advantage of the techniques of contextual anomaly detection is 
that they allow a natural definition of a problem in many real-world applica-
tions where data instances are often similar in context. Having a global view 
of the data, they can detect abnormalities that could not be detected by the 
techniques of detection of point anomalies.

However, contextual anomaly detection techniques are applicable only 
when a context can be defined and when detecting contextual anomalies with 
data instances that have contextual and behavioral attributes (Figure 4.22). 
The context between data can be defined using sequences, spaces, graphs, 
or profiles. Profiling is typically used to detect credit card frauds. A behav-
ioral profile is built for each credit card holder (each holder denotes a separate 
context). Using the credit card abroad can be labeled the anomalous or the 
normal instance; this depends on the context, that is, the card owner. The 
problem of contextual anomaly detection can be transformed to the problem 
of point anomaly detection. In this case, it is necessary to identify the context 
and compute an anomaly score. Other methods utilize data structure and 
take a regression or divide-and-conquer approach. The advantage of these 
techniques is that they can identify an anomaly which would be undetectable 
using the techniques described in the previous section (Chandola et al., 2007).

4.6 Collective Failures

A collective failure occurs when a collection of related data instances is 
anomalous with respect to the entire data set. Individual instances of data 
in a group may not be abnormal themselves, but their appearance together 
as a collection is anomalous. Figure 4.4 shows an output of a human elec-
trocardiogram (Goldberger et al., 2000). The highlighted region indicates a 
problem, because there is the same low value for an abnormally long time 
(corresponding to a premature atrial contraction). Note: Low value by itself 
is not an anomaly.

As another illustrative example, consider a sequence of actions in a com-
puter . . . http–web, buffer–overflow, http–web, web–http, smtp–mail, ftp, 
http–web, ssh, smtp–mail, web–http, ssh, buffer–overflow, ftp, http–web, 
ftp, smtp–mail, http–web . . . The highlighted sequence of events (buffer– 
overflow, ssh, ftp) correspond to a typical web-based remote machine fol-
lowed by a copy of data from the host computer to a remote destination via 
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FTP attack. Note: This collection event is an anomaly, but individual events 
are not anomalies when they occur elsewhere in the sequence.

Collective anomalies can occur only in cases (Forrest et al., 1999) when 
the data sets in data instances are related, while point anomalies can occur 
in any data set (Figure 4.23). In contrast, the occurrence of an abnormalities 
context depends on the availability of the data context attributes. Moreover, 
a point defect or anomaly collective is contextual with respect to failure if the 
context is analyzed. Therefore, a problem of an anomaly detection point or 
a collective anomaly detection problem can change and become a problem 
of contextual anomaly detection by incorporating context information. The 
techniques used to detect anomalies are very different from the point and 
detection techniques; contextual anomalies require detailed discussion and 
are not covered in this book. For a brief review of the research, the reader 
may consult Chandola et al. (2007).

Figure 4.24 shows different types of anomalies in a continuous sequence of 
real value. A series of aberrations is shown in black; these are located in the 
center of each series and correspond to a specific type of anomaly. The appro-
priate contexts for these anomalies are dark gray, while light gray elements 
are part of the context. The top panel contains a point defect—an abnormal 
point with respect to all other points of the series. The second panel contains 
a fault point—an abnormal point with respect to its context (in this case, a 
few leading and trailing points), but not necessarily a whole number. The 
third panel has a collective anomaly—a subsequence anomalous to the rest 
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FIGURE 4.23
Collective anomaly corresponding to an atrial premature contraction in a human electrocar-
diogram output.
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of the time series. The room contains a contextual collective anomaly—an 
anomalous subsequence with respect to context.

Collective anomaly detection in condition monitoring typically works 
with asset records. The data can have anomalies for several reasons, includ-
ing abnormal condition, instrumentation errors, or recording errors. Several 
techniques have focused on detecting fault outbreaks in a specific area 
(Wong et al., 2003). In any event, anomaly detection is a critical problem in 
this domain and requires a high degree of accuracy. The data typically con-
sist of records with several different types of features, such as age, pressure, 
vibration, temperature, and so on. The data may have both a temporal and 
a spatial aspect as well. Most anomaly detection techniques in this domain 
aim at detecting anomalous records (point anomalies). Typically, the labeled 
data are from healthy machines; hence, most techniques use a semisuper-
vised approach. Time-series data, such as vibrations or acoustic emissions, 
represent another form of data handled by anomaly detection techniques.

Collective anomaly detection techniques have been used to find anomalies 
in such data (Lin et al., 2005). In this case, the most challenging aspect of the 
anomaly detection problem is the cost: classifying an anomaly as normal 
can be costly. Industrial units suffer damage due to continuous usage and 
normal wear and tear; this type of damage must be detected early to prevent 
damage escalation and losses. Data in this domain are usually termed sensor 
data, simply because they are recorded using sensors.

Anomaly detection techniques have been extensively used to detect dam-
age. Industrial damage detection can be subclassified into a domain deal-
ing with defects in mechanical components, including motors, engines, and 
so on (also called system health management), and a domain dealing with 
defects in physical structures; see Table 4.1.

Point anomaly

Contextual point anomaly

Collective anomaly

Contextual collective anomaly

FIGURE 4.24
Different types of anomalies in a real-valued continuous sequence.
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4.6.1 Fault Detection in Mechanical Units

Anomaly detection techniques are used in mechanical units to monitor the 
performance of industrial products, such as engines, turbines, oil flow in 
pipes, or other mechanical components; they are also used for defects that 
may occur in circumstances due to wear or unforeseen incidents. The data 
in this field usually have a temporal aspect; time-series analysis is also 
used in some techniques (Basu and Meckesheimer, 2007, Keogh, et al., 2002, 
2006). Abnormalities usually occur mainly because of an observation in a 
specific context (contextual anomalies) or an abnormal sequence of observa-
tions (collective anomalies). Normally, data on normal components without 
defects are readily available and semisupervised techniques are applica-
ble. Abnormalities should be detected on an online form, as these require 
preventive measures before failure occurs. Some techniques for detecting 
anomalies in this domain are listed in Table 4.2.

TABLE 4.1

Anomaly Detection Techniques Used for Structural Damage Detection

Technique Used Section References

Statistical profit 
using histograms

Section 7.2.1 Manson et al. (2000, 2001), Manson (2002)

Parametric statistical 
modeling

Section 7.1 Ruotolo and Surace (1997)

Mixture of models Section 7.1.3 Hickinbotham and Austin (2000), Hollier and 
Austin (2002)

Neural networks Section 4.1 Brotherton and Johnson (2001), Brotherton et al. (1998), 
Nairac et al. (1999, 1997), Surace and Worden (1998), 
Surace et al. (1997), Sohn et al. (2001), Worden (1997)

TABLE 4.2

Anomaly Detection Techniques Used for Fault Detection

Technique Used Section References

Parametric statistical 
modeling

Section 7.1 Guttormsson et al. (1999), Keogh et al. (2002, 2004, 2006)

Nonparametric 
statistical modeling

Section 7.2.2 Desforges et al. (1998)

Neural networks Section 4.1 Bishop (1994), Campbell and Bennett (2001), Diaz and 
Hollmen (2002), Harries (1993), Jakubek and Strasser 
(2002), King et al. (2002) Li et al. (2002), Petsche et al. 
(1996), Streifel et al. (1996), Whitehead and Hoyt (1995)

Spectral Section 9 Parr et al. (1996), Fujimaki et al. (2005)
Rule-based systems Section 4.4 Yairi et al. (2001)
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4.6.2 Structural Defect Detection

Structural defect detection techniques are used to find defects and struc-
tural damage abnormalities, for example, cracks in beams or tensions in air-
frames. The collected data have a temporal aspect, and anomaly detection 
techniques are similar to the techniques of detecting change point detection, 
as they try to detect the change in the data collected from a structure. The 
normal data and, therefore, the learned patterns are typically static in time. 
Some techniques used for detecting anomalies in this domain are listed in 
Tables 4.3 and 4.4.
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5
Two-Stage Response Surface Approaches 
to Modeling Drug Interaction

5.1 Classification-Based Techniques

Classification is defined as the act of forming into a class or classes; distribu-
tion into groups as classes, orders, families, and so forth, in accordance with 
some common relations or affinities Thus, a classifier is, “a theme which cre-
ates classifications” (Michie et al., 1994, p. 1).

Many popular research areas include automatic categorization of patterns, 
for example, Machine learning methods for classification and learning from 
data that includes classified instances known as training sets. They try to 
develop models that, given a set of attributed values, will predict a class 
for classification. In supervised learning problem, we are given a sample of 
input–output data also known as training samples. Here, the task is to find a 
deterministic function that maps any input to an output. Current classifica-
tion techniques include; neural networks (NNs), classification trees, variants 
of naive Bayes, k-nearest neighbors, classification through association rules, 
logistic regression, function decomposition, and support vector machines. 
The performance of a classification method is task dependent. The use of 
a classifier depends on the application and its efforts to solve an exclusive 
categorization problem (Michie et al., 1994).

Classification is a statistical method used to construct predicative models 
that distinguish and classify new data points. For example, to distinguish 
between junk emails and necessary emails, existing emails can be catego-
rized as spam, and real emails thus creating a total N that can be used for 
training to make email spam free. We refer to the training data as: X = {x1, 
x2,…, xN}.

Now, from our training data, detecting spam emails depends on features 
selected. Features can be continuous or discrete depending on the context, 
that is, if m features are measured, it will consist of each email that contains 
an m × 1 row vector xi, for i ∈ {1,…, N} of data, this is denoted by Rm as the fea-
ture space. The training data is an N × m matrix, where entry xij characterizes 
the j-th feature of the i-th email. Hence, using training data X, classification 
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will create a decision function, D(x); a function that precedes a new data 
point and predicts its population (Kim et al., 2010).

The aim of classification is to create a rule whereby a new observation 
can be classified into an existing class. There are two distinct types of clas-
sification, it can refer to a set of observations for the purpose of establish-
ing presence of classes or it can mean clusters in data and division of data 
into classes. The former is known as unsupervised learning (or clustering), 
and the latter, supervised learning. In statistics, supervised learning may be 
referred as discrimination, or creating classification rule from appropriately 
classified data (Michie et al., 1994).

In statistics, properties of observations are termed explanatory variables 
(or independent variables, regressors, etc.), and predicted classes are out-
come, or likely values of a dependent variable.

The existence of appropriately classified data presupposes that someone (a 
supervisor in a work situation) is able to classify without error (Michie et al., 
1994). If this is so, why is approximation necessary? In fact, there are many 
reasons for establishing a classification procedure, such as:

 1. Mechanical classification procedures may be far faster, for example, 
postal code reading machines may be able to categorize majority of 
letters, leaving hard cases to human readers.

 2. These procedures are unbiased. For example, a mail order firm may 
have to make a decision on permitting credit, based on the informa-
tion provided in the application form whereas human operators may 
have a biased opinion.

 3. They are useful in the medical field, for example, they can review 
external symptoms to make an exact diagnosis and possibly avoid 
surgery.

 4. They can be used in forecasting, as in meteorology or stock-exchange 
transactions or investments, and loan decisions.

The probable classifier should be concerned with the following issues:

Accuracy: Some errors are more crucial than others; therefore, it is nec-
essary to control error rate for some classes.

Speed: The speed of a classifier can be a major issue depending on the 
task at hand.

Comprehensibility: It is important that human operators trust the system. 
An often-quoted example is the Three-Mile Island nuclear power plant 
case, where the programmed devices recommended a shutdown, but 
this recommendation was not processed by the human operators; 
they did not trust the system. The Chernobyl disaster was similar. 

Time to Learn: In a dynamic environment, in particular, it may be 
essential to learn a classification rule rapidly, or make changes to 
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the existingrule in time. “Rapidly,” implies establishing a rule with 
fewer samples.

At one extreme, the naive 1-nearest neighbor rule, training set is searched 
for the “nearest” datum whose class is then assumed for new cases. This 
rule is quick to learn but is very slow in practice. At another extreme, some 
cases need a faster method or require verification for using another method 
(Michie et al., 1994).

The nature of classes and their definitions are important concerns. The 
cases described below are common, but only the first is considered a clas-
sification; in practice, datasets combine these types:

 1. Classes resemble labels for different populations: membership of 
various populations is not important. For example, animals and 
humans constitute separate classes or populations, and it is known 
with certainty whether a being is an animal or a human. Membership 
in a class or population may be assigned by an independent author-
ity, such as a supervisor, as the distribution into a class is determined 
independently of any specific attributes or variables.

 2. The class attribute is essentially a result of knowledge prediction, and 
statistically speaking, class is a random variable. A typical example 
is prediction of interest rates. Will interest rates rise (class = 1) or not 
(class = 0)?

 3. Classes are predefined by a divider of a sample space, that is, attri-
butes. Since attributes are a class function, an industrial item may be 
classed as faulty if some attributes are outside programmed limits. A 
rule classifies data based on the attributes. The trick is to create a rule 
that impersonates the actual rule. Many credit datasets are of this sort.

There are two main stages of work in classification. The “classical” stage 
focuses on derivatives of work on linear discrimination while the “modern” 
stage exploits flexible models, by joint distribution of features of each class to 
create a classification rule (Michie et al., 1994).

Statistical approaches are categorized as an explicit probability model that 
affords a probability of presence in each class rather than a classification. 
It is assumed that the techniques will be used by statisticians, and, hence, 
some human factor intervention is expected in terms of variable selection 
and transformation. There are three main strands of research: statistical, 
machine learning, and NN common objectives. They have all originated 
procedures that are able to (Michie et al., 1994):

• Be equal or not greater than a human decision-maker’s performance, 
but have benefit of consistency up to adjustable extent

• Manage a wide range of problems, and given sufficient data
• Be broad thinking with established success
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In machine learning and statistics, classification is a problem of recogniz-
ing a set of categories in a new observation, based on source of a training 
set of data, comprising observations of membership categories. The discrete 
observations are examined and placed into a set of quantifiable properties as 
various explanatory variables, features, and so on. These various properties 
may be categorical, ordinal, integer-valued, or real-valued. Some algorithms 
concentrate on discrete data and need real-valued or integer-valued data dis-
cretized into groups.

An algorithm that carries out classification in a concrete implementation is 
known as a classifier. “Classifier” occasionally refers to mathematical func-
tion formulated by a classification algorithm that maps the input data into a 
category.

In machine learning, observations are regularly recognized as instances, 
explanatory variables are called features, and probable categories to be pre-
dicted are classes. Some classification methods do not include a statistical model.

To improve classification performance, first selection and then forward 
feature-selection methods can be employed. Principal component analysis is 
used to lessen dimensionality of features while taking advantage of classifica-
tion accuracy (Tato et al., 2002).

The accuracy of a training set is different than that of an accuracy of hid-
den data (test set). In machine-learning applications, the training set may be 
fitted with out flaws, but may not perform well on a test set. The important 
challenge is to accurately classifying hidden data. It is generally assumed 
that class memberships can overcome this issue. The procedure is, first, a 
considerable amount (training set) of a given data is used to train a proce-
dure. This rule is then tested on the residual data (test set) and the results are 
associated with the known classifications. The correct proportion in a test set 
is an unbiased evaluation of accuracy of the rule, if random sampled data are 
used for a training set (Michie et al., 1994).

5.1.1 Neural Network–Based Approaches

NNs have varied sources, ranging from imitating a human brain replicating 
human skills such as speech and language, to practical commercial, scien-
tific, and engineering disciplines of pattern recognition, modeling, and pre-
diction. The hunt for new technology is a strong motivating force in many 
areas of research.

NNs are made up of layers of interconnected nodes, each node compris-
ing a nonlinear function of its input. The input to a node may originate from 
other nodes or straight from an input data. Certain nodes are also recog-
nized in output of a network. The complete network signifies a very intricate 
set of interdependencies, which may integrate any degree of nonlinearity 
modeled across all functions.

In the simplest networks, output from one node is provided from another 
node so that “messages” are broadcast by means of layers of interconnecting 
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nodes. More complex actions may be modeled by networks in which last 
output nodes are connected with earlier nodes; this gives a system features 
of an extremely nonlinear system.

NNs, to a degree reflects, conduct of neuron networks in a brain. NN meth-
ods use the complex statistical techniques of machine-learning to emulate 
human intelligence at “unconscious” level, and supplementing these with 
learned concepts apparent to the operator (Michie et al., 1994).

Linear discriminants were introduced by Fisher in 1936, as a statistical 
procedure for classification. Here, the space of attributes can be divided with 
a set of hyperplanes by a linear arrangement of the variables of an attribute. 
An analogous model for logical processing was proposed by McCulloch and 
Pitts in 1943, as bearing resemblance to neurons in a human brain. These 
researchers demonstrated that the model could be used to build any finite 
logical expression. The McCulloch–Pitts neuron (see Figure 5.1) contains a 
weighted sum of its inputs, monitored by a nonlinear function called the em 
activation function. Officially:
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FIGURE 5.1
McCulloch and Pitts neuron. (From McCulloch, W. and Pitts, W., 1943. A logical calculation of 
the ideas in nervous activity forms. Bulletin of Methematical Biophysics, 7, pp. 127–147.)
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otherwise, Other neural models are used very broadly; for example, Section 
5.1.1.3 discusses the radial basis function in detail. Networks neurons for 
arbitrary logical expressions, with the capacity to learn by strengthening 
behavior, were derived later. This is established in Hebb’s The Organisation of 
Behaviour (Hebb, 1949). It was recognized that functionality of NNs depended 
on strength of networks between neurons. Hebb’s learning rule advises that 
if network links an essential method to a specified input, the weights should 
be adjusted to increase probability of a similar reaction to analogous inputs 
in future. Equally, if a network reacts uncomfortably to input, weights should 
be adjusted to lessen probability of a similar reaction (Michie et al., 1994).

There is a difference in pattern recognition between supervised learning 
and unsupervised learning. In supervised learning, training data measure-
ments of surroundings are conveyed by labels representing class of event 
characterized by measurements as an anticipated reaction to measure-
ments. Supervised learning networks, including Perceptron and Multilayer 
Perceptron (MLP), Cascade Correlation learning architecture, and radial 
basis function networks, are discussed later in the chapter.

Unsupervised learning refers to circumstances when measurements are 
not conveyed by class labels. Some networks can model structure samples in 
measurement, and also attribute space either in terms of a probability den-
sity function or by demonstrating data in relationships of cluster centers and 
widths. These include Gaussian mixture models and Kohonen networks.

Once a model is developed, a classifier can be used in two ways. First, is 
to decide which class of pattern in training data, that is, each node or neu-
ron in model, reacts most powerfully, most often. Unseen data can then be 
classified, class label of neuron determines patterns. The Kohonen network 
or mixture model can be applied as first layer of a radial basis function net-
work, with a succeeding layer of weights used to compute a set of class prob-
abilities. Weights in this layer are designed using a linear one-shot learning 
algorithm providing radial basis functions. The first layer of a radial basis 
function network can be adjusted by selecting a subset of training data 
points as centers (Michie et al., 1994).

5.1.1.1 Introduction to NNs

An artificial neural network (ANN) is an information processing standard 
based on biological nervous system. The term artificial is used to distinguish 
these networks from biological neural systems, but it is unstated within com-
putational environment, thus, they can also be considered NNs (Tato et al., 
2002).

The most important aspect of an ANN is original construction of informa-
tion processing. An ANN comprises many highly interrelated processing ele-
ments (neurons) employed in harmony to resolve precise problems. An input 
is accessible to some of its input units; this input vector is spread across whole 
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network. Fundamentally, these inputs are functions. Since, input and output 
can involve various units or mechanisms, they are constructed as vectors.

ANN’s real power is its capability to learn. Although, the function is vari-
able, but it can be changed dynamically. ANNs learn by examples and an 
ANN is arranged for a particular application, for example, in pattern recog-
nition or data classification, through a learning process. Learning in biologi-
cal systems comprises alterations to synaptic networks that occur among the 
neurons.

ANNs are arrangement of a multiprocessor computer system, with the fol-
lowing elements:

• Simple processing elements (neurons or nodes)
• A high degree of interconnection (links between nodes)
• Simple scalar communications
• Adaptive interaction among elements

The basic processing element, artificial neuron, or node (Figure 5.2), is 
based on biological neuron model with numerous inputs and one output. 
Each input comes through a connection that has an asset (or weight); these 
weights resemble synaptic effectiveness in a biological neuron. Each neuron 
has a sole threshold value. Weighted sum of inputs is formed, and thresh-
old subtracted, to comprise activation of neuron. Then, activation signal tra-
verses through an activation function to generate the output of a neuron, as 
shown in Figure 5.3. The activation function, but it can be altered and even 
self-programmed for improved enactment in a definite assignment.

An artificial neuron has a training mode and, a use (testing) mode. In a train-
ing mode, a neuron can be trained to fire (or not) for specific input configura-
tions. In a use mode, when a trained input pattern is perceived upon input, the 
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Artificial neuron model. (From Tato, R. et al., 2002. Classifiers. In: Emotion Recognition in Speech 
Signal. Sony.)
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corresponding output converts into current output. If the input configuration 
does not appear on a trained list of input configurations, the firing rule is used 
to decide whether to fire or not. Depending on their function in the net, we 
can differentiate three types of units, portrayed in Figure 5.4. The units with 
activations are problematic input for the net and are called input units; the 
output units characterize the output of the net output units. The remaining 
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Types of units within an ANN. (From Tato, R. et al., 2002. Classifiers. In: Emotion Recognition in 
Speech Signal. Sony.)
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units are called hidden units, because they are not noticeable from outside. An 
ANN necessity is to have both input and output units, with no hidden units 
(single-layer), found in one or numerous layers (multilayer). By relating these 
basic units and linking them, several network configurations can be created.

An ANN is categorized by its:

• Architecture, or its pattern of networks between the neurons
• Learning algorithm, or its method of defining weights on connections
• Activation function governing its output; common activation func-

tions are step, ramp, sigmoid, and Gaussian.

There are two categories of ANNs, regardless of the number of layers 
(single-layer or multilayer),

 1. Feed-forward networks permit signals to traverse one way, only, from 
input to output. There is no feedback (loops); that is, the output 
of any layer does not disturb that layer. Feed-forward ANNs lean 
toward direct networks that relate inputs with outputs. They are 
widely applied in pattern recognition. This type is also known as 
bottom–up or top–down (Figure 5.5).

 2. Feedback networks can have signals traversing in both directions by 
presenting loops in the network. Feedback networks can become 
very intricate. They are dynamic; their “state” varies, uninterrupted, 
until they touch an equilibrium point. They continue to be at this 
point until input fluctuates and a new equilibrium requirement is 
initiated. Feedback architectures are also mentioned as interactive 
or recurrent to denote single-layer feedback connections.

5.1.2 Supervised Networks for Classification

Nominally supervised learning has data, i, encompassing an attribute vec-
tor Xi and a target vector Yi. It processes Xi, with a network to generate an 
output yi, with the same form as the target vector Yi.

The parameters of the network w are changed to improve connection 
between outputs and targets by diminishing the sum-squared error

 
E i i

i

= −∑1
2

2
( ) ,y Y

 
(5.2)

It might appear as a percentage misclassification error measure in clas-
sification problems, but the total squared error has accommodating smooth-
ness and differentiability properties. The total squared error has been used 
in the StatLog trials for training, whereas percentage misclassification in the 
trained networks has been used for assessment (Michie et al., 1994).
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5.1.2.1 Perceptrons and Multilayer Perceptrons

The activation of the McCulloch–Pitts neuron takes the form:
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(5.3)

where the activation function, fj can be any nonlinear function. The nodes 
have been separated into an input layer I and an output layer O. The thresh-
old level or bias of Equation 5.1 is involved in the sum, with an assumption of 
an additional constituent in the vector X whose value is fixed at 1.

Rosenblatt studied competences of clusters of neurons in a single layer, a 
structure called perceptron. Rosenblatt proposed the Perceptron Learning 
Rule for learning appropriate weights for classification complications. When 
f is a difficult threshold function, Equation 5.3 defines a nonlinear func-
tion, transversely a hyperplane in attribute space; with a threshold activation 
function, on one side of the hyperplane the neuron output is 1 and on the 
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FIGURE 5.5
MLP employing feed forward fully connected topology. (From Tato, R. et al., 2002. Classifiers. 
In: Emotion Recognition in Speech Signal. Sony.)
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other, it is 0. When united in a perceptron structure, neurons can divide, 
the attribute space into areas. This practice is the foundation of aptitude of 
perceptron networks to accomplish classification.

Citing the problem as the simplest specimen Minsky and Papert stated 
that numerous physical domain problems do not take this simple frame-
work. Here, it is essential to separate two convex regions, composing them 
into a single class. They also showed this was not probable with a percep-
tron network but could be done with a two-layer perceptron structure. Even 
though the Perceptron Learning Rule (also called the Delta Rule) cannot be 
used universally to calculate weights for this structure, yet, resulting MLP is 
extensively used today.

A rule which permits MLP for learning was proposed in 1985. The gen-
eralized Delta rule (Section 5.1.4.2) defines a notion of back propagation of 
error derivatives, from side to side of a network, and qualifies a large class 
of models with dissimilar joining structures for training. This research trig-
gered academic curiosity about NNs; later, it became of considerable interest 
to industry as well (Figure 5.6).

5.1.2.2 MLP Structure and Functionality

Figure 5.7 shows the arrangement of a standard two-layer perceptron: The 
inputs form the input nodes of the network, and the outputs are the output 
nodes. The middle layer of nodes is labeled as the hidden layer; it cannot be 

Input nodes

Hidden nodes

Output nodes

y(O): Output vector

Weights w(TH)

(linear or nonlinear)

Weights w(H1)

(usually nonlinear)

x: Input vector

y(H)

FIGURE 5.6
MLP structure. (From Michie, D., Spiegelhalter, D. and Taylor, C., 1994. Machine Learning, Neural 
and Statistical Classification. [Online] Available at: http://www1.maths.leeds.ac.uk/~charles/
statlog/whole.pdf.)
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seen by either the inputs or outputs and its size is variable. A hidden layer 
is usually used to make a blockage, requiring the network to make a simple 
model of a system producing the data with facility to oversimplify earlier 
unseen configurations.

The process is quantified by
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This stipulates how the input pattern vector x is charted into the output 
pattern vector y(0), via the hidden pattern vector y(H), in a fashion parameter-
ized by the two layers of weights and w(HI) and w(TH). The univariate func-
tions f(⋅) is set to,
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+ −

1
1  

(5.6)

which differs smoothly from 0 at −∞ to 1 at ∞, as a threshold function would 
do. If the number of hidden layer nodes is less than the amount of degrees of 
freedom characteristic in a training data, the activations of hidden nodes are 
inclined to arrange an orthogonal set of variables, either linear or nonlinear 

Linear output weights

Nonlinear receptive fields in attribute space

FIGURE 5.7
Radial basis function network. (From Michie, D., Spiegelhalter, D. and Taylor, C., 1994. Machine 
learning, neural and statistical classification. [Online] Available at: http://www1.maths.leeds.ac. 
uk/~charles/statlog/whole.pdf.)
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arrangements of the attribute variables, of which the duration is, as big a 
subspace of the problem, as conceivable. With a slight additional restraint 
on a network, these internal variables form a linear or nonlinear principal 
constituent depiction of an attribute space. If statistics have noise, it is not 
an intrinsic part of the producing structure. The main constituent network 
changes as a strainer of a lower-variance noise signal on a condition that 
signals to noise ratio, of the data, is adequately high. This property gives 
MLPs capacity to oversimplify formerly unnoticed patterns, by modeling 
only significant fundamental structure of the creating system. The hidden 
nodes can be viewed as sensors of intangible features of the attribute space 
(Michie et al., 1994).

5.1.2.2.1 Universal Approximators and Universal Computers

In general, inMLPs of the two-layer types indicated in Equations 5.4 and 5.5, 
the output-layer node values y are functions of the input-layer node values X 
(and the weights w). The two-layer MLP can estimate a random variable as if 
there is no boundary to hidden nodes. In this context, the MLP is an approxi-
mate common function. This proposition does not suggest that added intri-
cate MLP architectures are worthless; it can be more efficient to use different 
numbers of layers for dissimilar problems. There is a lack of rigorous ide-
ologies based on a select architecture, but various experimental principles 
have been developed. These include symmetry principles and constructive 
algorithms (Michie et al., 1994).

MLP is a feedforward network of the output vector y and a function of the 
input vector X and particular parameters w, therefore:

 y F x w= ( ),;  (5.7)

for some vector function F given in detail by Equations 5.11 and 5.12, in the 
two-layer case. Similarly it is possible to describe a recurrent network by 
feeding outputs back to inputs. The common arrangement of a recurrent 
perceptron is:
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This can be transcribed as,

 y y w( ) ( )t F t+ =1 ( ; ), (5.9)

This is a discrete-time model. Continuous-time models administered by a 
differential equation of analogous structure can also be considered.

Recurrent networks use logic that assumes an unbound quantity of nodes, 
they can imitate any design that can be finished on a Universal Turing 
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machine. This outcome is easily demonstrated for hard-threshold recurrent 
perceptrons in one-node network, that performs not–AND. Or one that func-
tions as a FLIP–FLOP. These elements are all that is needed to construct a 
computer (Michie et al., 1994).

5.1.2.2.2 Training MLPs by Nonlinear Regression

In NN terminology, training is an application of appropriate network bounds 
(its weights) to given data. The training data comprises a set of examples of 
equivalent inputs and anticipated outputs, or “targets.” In this case, let the 
i-th specimen be given by input Xji for input element j, and target Yji for target 
element j. A least-squares fit is attained by result of the parameters which 
lessen degree of error (Michie et al., 1994).

Thus,

 
E ji ji

ji

= −∑∑1
2

2
( ) ,y Y
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where yji is the output value found by replacing the inputs Xji for xj, in 
Equations 5.4 and 5.5; if the fitting is impeccable, E = 0, otherwise E > 0.

5.1.2.2.3 Probabilistic Interpretation of MLP Outputs

If there is one-to-many relationship among inputs and targets in a training 
data, no plotting of the formula 5.7 can be achieved effortlessly. If a prob-
ability density P(Y|X) designates a data; Equation 5.10 is accomplished by 
mapping X as an average target, such that,
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(5.11)

Classification problems are denoted using 1-out-of-n output coding. One 
output node is assigned for each class, and the target vector Yi. For example, 
i is all 0s except for a 1 on the node demonstrating the accurate class. In this 
case, the value calculated by the j-th target node can be understood as a prob-
ability that the input pattern is appropriate to class j and, cooperatively, the 
outputs prompt P(Y|X). This affords helpful information and also provides a 
principle with which NN models can be pooled with supplementary proba-
bilistic models.

The probabilistic explanation of output nodes indicate a common error 
measure for classification problems. If the value yji output by the j-th target 
node specified the ith training input Xi, is P(Yji = 1), and 1 − yji is P(Yji = 0), 
then the probability of a complete assortment of training outputs Y is,
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In general, this is the exponential of a cross-entropy,
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(5.13)

So, the cross-entropy can be applied as an error measure for an alternative 
of a sum of squares 5.10.

The probabilistic explanation of MLP outputs in classification problems 
should be prepared with extreme care. It only spreads over a network if 
trained to its minimum error, and then only if the training data precisely 
characterizes original probability density P(Y|X). The second condition 
is challenging, if X belongs to a continuous space or a large discrete set, 
because, theoretically, a huge or unbounded volume of data is essential. This 
problem is correlated to overtraining and generalizing concerns.

Aimed at theoretical details, cross-entropy is another fitting error mea-
sure used in classification problems, most recommend using it with slight 
modifications. The sum of squares was mostly used in the StatLog NN trials 
(Michie et al., 1994).

5.1.2.2.4 Minimization Methods

NN models are trained by altering their weight matrix factors, w, to decrease 
an error measure, such as, in Equation 5.10. In ordinary circumstances, a net-
work outputs are linear in weights, creating quadratic Equation 5.10. Then, 
the minimal error can be calculated by solving a linear system of equations. 
This special case is further discussed in Section 5.1.2.3, within the frame-
work of radial basis function networks. In a standard, nonlinear case, mini-
mization is done using a particular type of gradient descent, thus generating 
a local minimum, w from which any miniscule variation creates E, but not 
inevitably the global minimum of E(w) (Michie et al., 1994).

5.1.2.2.5 First-Order Gradient-Based Methods

The gradient ∇E(w) of E(w) is the vector field of derivatives of E such that:
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A linear approximation of E(w) g in the miniscule neighborhood of a ran-
dom weight matrix w0 is specified by,

 E E E( ) ( ) ( ) * ( ),w w w w w= + ∇ −0 0 0

 (5.14)

At any point w of a constraint space (weight space) of a network, vector 
∇E points in course of the strongest surge of E; that is of all the minuscule 
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variations δw (of a given magnitude) which we could make to, w, a change 
in the course of ∇E surges, E the greatest. Therefore, a modification of w in 
the course of −∇E is responsible for the maximum potential reduction in E. A 
straightforward approach in gradient descent is to calculate the gradient and 
alter the weights in the opposite direction.

A concern is that the theorem on maximal descent relates only to minus-
cule modifications. The gradient deviates as well as the error; therefore, the 
best direction for (minuscule) descent deviations is when w is attuned. The 
pure gradient descent algorithm needs a small step size parameter η selected 
for a η∇E to be minuscule as attaining descent is difficult, otherwise as large 
as possible in terms of speed. The weights are continually modified by,

 w w w← − η∇E( ),  (5.15a)

until the error E fails to descend.
The trial and error is an aspect used for major step, size η, that works. With 

large step sizes, a gradient has a tendency to vary with each step. A common 
experimental approach is using an average of the gradient vector to deter-
mine a systematic inclination. This is possible by adding a momentum term 
to Equation 5.15b, connecting a parameter α ≤ 1, so that:

 w w w w← − η∇ + αE( ) ,δ old  (5.15b)

where αδ wold denotes the furthermost current weight modification.
These methods seem straightforward, but their presentation is contingent 

on the parameters η and α. Various principles give an impression of being 
suitable for dissimilar complications, however, not for the same stages of 
training in a particular problem. This situation is relevant to an overabun-
dance of heuristics for adaptive, adjustable, and step size algorithms (Michie 
et al., 1994).

5.1.2.2.6 Second-Order Methods

Basically, in first-order gradient-centered methods, the linear approxima-
tion Equation 5.14 disregards the curvature of E(w). This can be equalized by 
applying Equation 5.14 to the quadratic approximation,

 E E E E( ) ( ) ( ) * ( )w w w w w w w= + ∇ δ + δ ∇∇ δ0 0 0

where ∇∇E is the matrix with constituents (d2E/dwidwj), called the inverse 
Hessian (or the Hessian, contingent on pacts), and δw = w − w0. The change 
δw = (1/2)H∇E, where H−1 = ∇∇E, carries w to a fixed point of this quadratic 
form. This may be a minimum, maximum, or saddle point. If it is minimum, 
then a step in that direction appears to be a good idea, if not, then a posi-
tive or negative step in a conjugate gradient’s direction, H∇E, is preferable. 
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Hence, a class of algorithms has been established connecting a conjugate 
gradient.

A record number of these algorithms need explicit calculation or assess-
ment of the Hessian H. Number of components of H are roughly half the 
square of number of constituents of w in huge grids with numerous weights; 
such algorithms are directed toward unreasonable computer memory 
requests. But, one algorithm usually called, the conjugate gradient algorithm 
or the memoryless conjugate gradient algorithm. This algorithm gives an 
approximation of conjugate direction without signifying H directly.

In general, a conjugate gradient algorithm uses an array of linesearches, one-
dimensional searches for a minimum of E(w), beginning with the further-
most current estimate of minimum, and ending at minimum in direction 
of the current estimate of the conjugate gradient. Linesearch algorithms are 
relatively easy since the subject of direction selection condenses to a binary 
choice. The linesearch in an inner loop of a conjugate gradient algorithm is 
very efficient. Therefore, a linesearch is characteristically used to find com-
plex components of conjugate gradient applications. Numerical round-off 
problems are additional uses of linesearch applications; as the conjugate gra-
dient is approximately orthogonal to a gradient, creating a variation of E(w) 
laterally, with an exclusive minor conjugate gradient.

The updated rule for a conjugate gradient direction is

 s w s← −∇ + αE( ) ,old  (5.16)

where
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Note: This is a Polak–Ribiere variant; there are others.
Rather complicated evidence suggests, if E is quadratic in w, s is adjusted to 

the gradient, and the linesearches are achieved precisely, then s meets on the 
conjugate gradient and E meets on its minimum, after as many repetitions of 
Equation 5.16 as there are constituents of w. Much broader functions can also 
be attained using linesearches. It is essential to expand Equation 5.17 with a 
rule to reset s to −∇E, whenever s develops too orthogonally to a gradient for 
growth to continue.

The conjugate gradient algorithm has numerous parameters that regulate 
the particulars of a linesearch, and others which describe precisely when to 
reset s to −∇E. But, with dissimilar step sizes and momentum parameters 
of weaker methods, the enactments of the conjugate gradient method are 
more or less oblivious to its parameters; if they are set inside rational arrays. 
All algorithms are susceptible to methods of choosing early weights (Michie 
et al., 1994).
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5.1.2.2.7 Gradient Calculations in MLPs

It remains debatable whether, in the case of an MLP, NN model calculation of 
the gradient ∇E(w) will generate an error quantity such as shown in Equation 
5.10. The calculation is prearranged as a back transmission of error. For a 
network with a single layer of hidden nodes, this calculation transmits node 
output values y, that advance from an input to output layers for each train-
ing example, and then transmitting magnitudes δ connected to the output 
errors at the rear, with a linearized form of a grid. Products of δs and ys, then, 
contribute to the gradient. In the case of a network with an input layer (I), a 
single hidden layer (H), and an output or target layer (T), the calculation is:
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The index i is summed over training examples, while js and ks refer to 
nodes:
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5.1.2.2.8 Online versus Batch

The error E in Equation 5.10 and the gradient ∇E in Equations 5.18 and 5.19 
comprise a summation of examples, projected by arbitrarily choosing a sub-
section of examples to be added together. In extreme, use of a sole example 
influence for every gradient estimate, is called a stochastic gradient method. 
If an analogous policy is used devoid of random choice, but with data 
engaged in the directive it originates, the technique is an online one. If a sum 
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above all training data is executed for a gradient calculation, the technique 
is of a batch variety.

Several online and stochastic gradient methods have benefit of speed, if an 
estimate is functional. These are preferable for problems with huge volumes 
of training data. However, such approximations cannot be used in the conju-
gate gradient method, because it is constructed on procedures and theorems; 
whereby E is a given function of w, which can be assessed accurately, allow-
ing for judgments at neighboring points. Thus, the stochastic gradient and 
online methods are more likely to be used with simple step-size and momen-
tum methods. Some research has looked at finding a negotiation method 
(Møller, 1993).

5.1.2.3 Radial Basis Function Networks

The radial basis function network consists of a layer of components without 
linear or nonlinear functions of the attributes, trailed by a layer of weighted 
networks to nodes whose outputs have the same arrangement as target vec-
tors. It has an arrangement much like an MLP with one hidden layer, except 
each node of a hidden layer calculates a random function of inputs, and 
transfer function of each output node is the insignificant identity function. 
In its place of “synaptic strengths” hidden layer has parameters suitable for 
any functions used, for example, Gaussian widths and positions. In certain 
circumstances, this network has a number of advantages over an MLP, even 
if the two models are same, computationally.

These advantages include a linear training rule which evades problems 
related to local minima; for example, it is able to determine better, the accu-
racy of the probabilistic elucidation of the outputs discussed in Section 5.1.2.2.

Figure 5.8 indicates the construction of a radial basis function. The non-
linearities include a location in attribute space with the function situated in 
the center, and a nonlinear function of the distance of an input point from 
that center by any function at all. Common selections comprise a Gaussian 
response function, exp(−x2) and inverse multiquadrics ([ ]) ( / )z c2 2 1 2+ − , and 
nonlocal functions, such as, thin plate splines (z2 log z) and multiquadrics 
([ ])( / )z c2 2 1 2+ . Though, it appears counterintuitive to attempt and produce an 
interpolating function using nonlocalized functions, but, these are known 
to have well-interpolating properties in region occupied by a training data.

The radial basis function network method, includes increase or pre-
processing of input vectors into a high-dimensional space. This works in 
achieving a theorem (Cover, 1965) that infers that, a classification problem in 
a high-dimensional space is more likely to be linearly independent than one 
in a low-dimensional space (Michie et al., 1994).

5.1.2.3.1 Training: Choosing Centers and Nonlinearities

Many approaches can be used to select centers for a radial basis function 
network. It is imperative that dissemination of centers in attribute space be 



262 Artificial Intelligence Tools

alike and in same region as training data. The training data is assumed to be 
illustrative of the problem.

A primary technique for selecting centers is to consider points on a square 
grid that cover region of an attribute space, enclosed by training data. There 
might be predictable in improved performance, if centers were sampled at 
random from training data, because extra densely populated regions of an 
attribute space probably have a greater resolution model than sparser regions. 
In this situation, it is important that at least one sample from each class is 
used as a pattern center. When center locations are elected for radial basis 
function networks with localized nonlinear functions for Gaussian receptive 
fields, it is necessary to compute appropriate variances for those functions. 
This ensures large regions of space do not occur among centers; where no 
centers react to patterns, and conversely, no two centers react almost identi-
cally to patterns. This problem mainly occurs in large dimensional attribute 
spaces.

Several other methods use a “principled” clustering technique to spot cen-
ters, such as a Gaussian mixture model or a Kohonen network. These models 
are considered as unsupervised learning (Michie et al., 1994).

5.1.2.3.2 Training: Optimizing Weights

As explained in Section 5.1.2.2, radial basis function networks are trained by 
resolving a linear system. There is a similar problem in normal linear regres-
sion; the only difference being that input to a linear system is an output of a 
hidden layer of a network, not the attribute variables. To illustrate: let yki

H( )  be 

X

FIGURE 5.8
k-Means clustering: The center is moved to the mean position of the patterns within each patch. 
(From Michie, D., Spiegelhalter, D. and Taylor, C., 1994. Machine Learning, Neural and Statistical 
Classification. [Online] Available at: http://www1.maths.leeds.ac.uk/~charles/statlog/whole.
pdf.)
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the output of the k-th radial basis function in the i-th example. The output of 
each target node j is calculated using the weights wjk as:

 
y w yji jk ki

H

k

= ∑ * ,( )

 
(5.20)

Let the anticipated output, for example, i on target node j be Yji. The error 
measure (Equation 5.10) occupied is written out as:
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which has its minimum where the derivative,
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vanishes. Let R be the correlation matrix of the radial basis function outputs,

 
R y yjk ki

H
ji
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(5.23)

The weight matrix w*, which minimizes E, lies where the gradient van-
ishes so that:

 
w Rjk* 1= −∑∑ Y yji ri

H
rk

ir

* * ( ) ,( )

 
(5.24)

Thus, the problem is solved by inverting the square H × H matrix R, where 
H is the number of radial basis functions.

The matrix inversion can be calculated by standard methods, namely, LU 
decomposition, if R is neither singular nor nearly so. If two radial basis func-
tion centers are adjacent to each other, it will result in a singular matrix, 
and this is a certainty, if number of training samples is, not as great as H. 
There is no applied method to confirm a nonsingular correlation matrix. 
Hence, the best choice is, an additional, computationally expensive, singular 
value decomposition method. Such methods deliver an approximate inverse 
by diagonalizing a matrix, and inverting only eigenvalues that exceed zero 
by a parameter-specified margin, and converting back to the initial coordi-
nates. This creates an optimal minimum-norm approximation to an inverse 
in least-mean-squares.
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Let n be the number of training examples, and let the H × H linear system 
be given by the derivatives of E Equation 5.22; these are rooted in the error 
formula Equation 5.21 as shown by

 
w y Yjk ki

H
ji

k

* ,( ) =∑
 

(5.25)

Unless n = H, this is a rectangular system. Broadly speaking, a precise 
solution is not required, but an optimal solution in a least-squares sense is 
provided by pseudo-inverse y(H)+ of y(H), the matrix with elements yji

H( ) :

 w Yy* = +( ) ,H

 (5.26)

The identity Y Y Y Y+ += � �( ) , where ~ denotes a transposed matrix, can be 
applied to Equation 5.26 to show that pseudo-inverse method gives the same 
result as Equation 5.24:

 w Y y y y* = +� �( ) ( ) ( )( * ) ,H H H

 (5.27)

The ability to invert or pseudo-invert a matrix, reliant on a whole data-
set, denotes this as a batch method. An online variant is, known as Kalman 
Filtering (Scalero and Tepedelenlioglu, 1992). A countenance occurs for the 
inverse correlation R−1 is, if another example is supplementary to the sum 
(Equation 5.23) and does not require inverse to be computed.

5.1.2.4 Improving the Generalization of Feed-Forward Networks

5.1.2.4.1 Constructive Algorithms and Pruning

Recently, efforts have been made to improve the perceptron and MLP train-
ing algorithms by altering architecture of networks while training continues. 
These techniques include pruning useless nodes or weights, and construct-
ing algorithms with extra nodes as necessary. The benefits include smaller 
networks, faster training times on serial computers, increased simplification 
capability, andresulting resistance to noise. In addition, it is much easier 
to understand what a trained network is undertaking. As mentioned pre-
viously, a minimalist network uses its hidden layer to model as much of a 
problem as possible in partial number of degrees of freedom existing in its 
hidden layer. We can compare this with other pattern classifying techniques, 
such as, decision trees and expert systems.

For a network to have good simplification capability, it must be able to cal-
culate a suitable number of hidden nodes. If nodes are too rare, the network 
may not learn at all. While excessively hidden nodes lead to over learning of 
individual samples in the beginning, that results in a close optimal model of 
data distributions comprising training data.
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Later methods eliminate some problems, and are appropriate for sta-
tistical classification problems. They often build a single hidden layer 
and include stopping conditions that permit them to find solutions for 
statistical problems. Cascade correlation is an example of such a network 
algorithm.

Pruning has been carried out on networks in three ways. The first is a 
heuristic approach grounded on recognition of nodes or weights that con-
tribute to mapping. After these have been determined, additional training 
results in an improved network. An alternative technique is to contain terms 
in an error function, so that, weights tend to zero under certain circum-
stances. Zero weights can then be detached without degrading a network 
performance. Finally, if sensitivity of a global network error to removal of a 
weight or node is defined, it is possible to detach those weights or nodes to 
which global error is least sensitive. The sensitivity measure is not restricted 
to training, and includes only a minor amount of spare computational effort 
(Michie et al., 1994).

5.1.2.4.2 Cascade Correlation: A Constructive Feed-Forward Network

Cascade correlation is a way to construct a feed-forward network as train-
ing continues in a supervised mode (Fahlman and Lebiere, 1990). Instead 
of fine-tuning weights in a fixed architecture, it uses a small network, and 
supplements new hidden nodes one by one, thus creating a multilayer 
structure. Once a hidden node has been added to a network; its input-
side weights are stationary and it develops a perpetual feature-detector 
in a network, obtainable for output or for making other, more complex 
feature detectors in later layers. Cascade correlation can compromise con-
densed training time, and it automatically concludes size and topology of 
networks.

Cascade correlation combines two ideas: first, cascade architecture, where 
hidden nodes are added one at a time by using outputs of all other input 
nodes, and the second, maximizing correlation between a new unit’s output 
and residual classification error of parent network.

Nodes added into net may be of any kind. Examples include, linear nodes 
that might be trained using linear algorithms, threshold nodes such as sin-
gle perceptrons; possibly using simple learning rules such as the Delta rule 
or the Pocket Algorithm, or nonlinear nodes such as sigmoid or Gaussian 
functions, requiring Delta rules or new progressive algorithms such as 
Fahlman’s Quickprop (Fahlman, 1988). Standard MLP sigmoids were used 
in the StatLog trials.

At every stage of training, each node from a group of candidate nodes is 
trained on residual error of a main network. Those nodes that have output 
of the highest correlation with error of parent nodes are chosen. The error 
function minimized in this scheme is S—summation of output units of 
the degree of correlation (or the covariance) between V, a candidate unit’s 
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value, and Ei,o, residual error detected at output unit o, for example, i. S is 
defined by:

 

S V V E Ei i o o

io

= − −∑∑ ( )( ),

 

(5.28)

where the quantities V  and Eo  are the values of V and Eo averaged over all 
patterns. In order to maximize S, partial derivative of the error is considered 
with respect to each of the weights coming into the node, wj. Thus:
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where, σo is the sign of a correlation between a candidate’s value and the 
‘output O, fi

’ is the derivative for pattern i of the candidate unit’s activation 
function, with respect to the sum of its inputs, and Ij,i is the input the candi-
date unit obtains for pattern i.

The partial derivatives are used to achieve gradient ascent that will maxi-
mize S. When S no longer recovers in training for any of candidate nodes, 
the best contender is added to a network, and others are abandoned (Michie 
et al., 1994).

In a sample problem, connecting classification of data points and creat-
ing two interlocked spirals, cascade correlation is described as 10–100 times 
faster than conservative back-propagation of error derivatives in a fixed 
architecture network. Empirical tests on a range of actual problems have 
found that it speeds up one to two orders of scale with minimal degradation 
of classification accuracy. These outcomes were only attained after numer-
ous experiments in order to define suitable values for various parameters 
which essentially are set in a cascade correlation application. Cascade cor-
relation can also be applied in computers with partial precision and in recur-
rent networks (Hoehfeld and Fahlman, 1992).

5.1.3 Unsupervised Learning

Recently, increased attention has been paid to unsupervised learning. It 
has the advantage of being able to determine the structure of a data with-
out requiring class information and can disclose unpredictable features or 
those unknown beforehand. This can include segregation of data previously 
assumed to be a single uniform cluster into a number of lesser clusters; each 
with distinct recognizable properties. The clusters create a model of a data in 
terms of cluster; centers, sizes, and shapes. These can often be defined using 
less information, and with fewer parameters than previously required for 
training datasets. This has clear benefits for storing, coding, and transmitting 
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stochastically generated data. If their distribution in attribute space is identi-
fied, corresponding data can be extracted from a model as required.

Unsupervised learning methods, such as Boltzmann machines, are com-
putationally very expensive. However, Iterative clustering algorithms such 
as Kohonen networks, k-means clustering, and Gaussian mixture models 
compromise similar modeling with abridged training time. As class labels 
are not used in models, freedom from this constraint, along with cautious 
initialization of models using any previous information accessible about a 
data, can yield very rapid and effective models. These models, known as vec-
tor quantizers, can be used as nonlinear part of supervised learning models. 
In this case, a linear part is added and trained far enough to link the map-
ping derived from activating various pieces of a model to likely classes of 
events engendering a data (Michie et al., 1994).

5.1.3.1 k-Means Clustering Algorithm

The principle of clustering involves a depiction of a set of data to be initi-
ated in a model of distribution of samples in an attribute space. The k-means 
algorithm (Krishnaiah and Kanal, 1982), as a model with a fixed number 
of cluster centers attains this swiftly and efficiently flagged by the user in 
advance. The cluster centers are selected from a data; each center forms code 
vector for that section (patch) of input space, where whole points are nearer 
to center than any other place. This division of space into patches is known 
as a Voronoi tessellation. Since the preliminary distribution of centers may 
not yield a decent model of the probability distribution function (PDF) of an 
input space, a series of repetitions, where each cluster center is stimulated 
to mean location of all training patterns in its tessellation region is required 
(Michie et al., 1994).

The generalized variant of the k-means algorithm is the Gaussian mixture 
model, or Adaptive k-means clustering. In this arrangement, Voronoi tessel-
lations substitute changes from one center’s field to another by allocating a 
variance to each center, thereby outlining a Gaussian kernel at each center. 
These kernels are brought together by a set of mixing weights to approxi-
mate PDF of an input data; an algorithm iteratively calculates a set of mix-
ing weights and variances for centers. While the number of centers for these 
algorithms is fixed in advance, in more general implementations, certain 
methods seem to permit new centers to be auxiliary as training proceeds 
(Wynne-Jones, 1993).

5.1.3.2 Kohonen Networks and Learning Vector Quantizers

Kohonen’s network algorithm (Kohonen, 1984) also results in a Voronoi tes-
sellation of input space into patches with conforming code vectors. It has an 
extra feature whereby centers are organized in a low dimensional structure 
with nearby points, in a topological structure (i.e., map of points are close in 
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an attribute space). It is assumed that structures of this type occur in nature, 
for example, in retinotopic maps and in mapping an ear to an auditory cor-
tex, from retina to visual cortex or optic tectum.

In training, winning node of a network is the nearest node in input space 
to an agreed-upon training pattern. This indicates a good distribution of a 
network topology in a nonlinear sub-space of a training data.

Vector quantizers that preserve topographic relations between centers are 
beneficial in communications, especially when noise added to coded vec-
tors cause some corruption. The topographic mapping confirms that a minor 
alteration in code vector is decoded as a minor alteration in attribute space 
and, thus, a minor alteration at output. Though, it is basically an unsuper-
vised learning algorithm, learning vector quantizer can be used as a super-
vised vector quantizer, where network nodes have class labels. The Kohonen 
Learning Rule is used when winning node signifies the same class as a fresh 
training pattern. Change in class between winning node and a training 
pattern causes a node to move away from a training pattern by the same 
distance. Learning vector quantizers perform extremely well in readings of 
statistical and speech data (Kohonen et al., 1988).

5.1.3.3 RAMnets

The use of neurally inspired classification algorithms is still common. The 
n-tuple recognition method devised by Bledsoe and Browning (1959) and 
Bledsoe (1961) laid the foundation for the subsequent development of Wisard. 
The patterns to be classified are bit strings of a given length. Several (say 
N) sets of n bit locations are nominated arbitrarily. These are the n-tuples. 
The constraint of a pattern to an n-tuple can be observed as an n-bit number 
which establishes a “feature” of a pattern. A pattern is classified as fitting the 
class if it has features in common with at least one pattern in a training data.

To be precise, class assigned to unclassified pattern u is
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where Cc is the set of training patterns in class c, Θ(x) = 0 for Θ ≤ 0, Θ(x) = 1 
for Θ > 0, δi,j is Kronecker delta (δi,j = 1 if i = j and 0 otherwise) and αi(u) is the 
i-th feature of pattern u:
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where, ui is the i-th bit of u and ηi(j) is the j-th bit of the i-th n-tuple.
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With C classes to discriminate, the system can be realized as a set of N 
C RAMS, in which the memory content mci α at address α of the i-th RAM 
allocated to class c is
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Thus, mciα is set if any pattern of Cc has feature α and is unset.
Recognition is accomplished by totaling set bits in RAMS of each class for 

the specified features of an unclassified pattern.
RAMnets can be trained faster than MLPs or radial basis function net-

works by order of magnitude, but delivers analogous results (Michie et al., 
1994).

5.2 SVM-Based Approaches

SVM was first used in 1992 by Boser, Guyon, and Vapnik in COLT-92. SVM 
is a classification and regression prediction tool that uses machine learning 
theory to maximize predictive accuracy while avoiding overfit to the data, 
automatically (Jakkula, 2011). SVMs are a set of connected supervised learn-
ing methods used for classification and regression. In other words, SVMs 
might be defined as systems using hypothesis space of linear functions in a 
high-dimensional feature space. It is trained with a learning algorithm from 
optimization theory that implements a learning bias resulting from a statis-
tical learning theory. SVM was originally used by neural information pro-
cessing systems (NIPS) but is now an essential aspect of machine learning 
research everywhere in the world. SVMs commonly use pixel maps as input; 
their accuracy is similar to sophisticated NNs with explained features in a 
hand-writing recognition task (Moore, 2003). They are also used for numer-
ous applications, particularly pattern classification and regression-centered 
applications, such as, hand writing analysis, face analysis, and so forth.

After its original formulation, SVM quickly gained acceptance because of 
many promising features, such as, improving empirical performance and 
so on. It uses the structural risk minimization (SRM) principle, shown to be 
better than the empirical risk minimization (ERM) principle used by con-
ventional NNs. SRM minimizes an upper bound on predictable risk, where 
ERM minimizes an error in a training data. It is this difference that gives 
SVM better ability to generalize, the objective of statistical learning. SVMs 
were established to resolve classification problem, but lately they have been 
extended to solve regression problems (Vapnik et al., 1997).
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5.2.1 Statistical Learning Theory

Statistical learning theory provides a framework for learning problem of 
gaining knowledge and making predictions and decisions from a set of 
data. In simple terms, it allows selection of a hyperplane space while care-
fully signifying the essential function in a target space (Evgeniou et  al., 
2000).

In statistical learning theory, problem of supervised learning is expressed 
as follows: we assume a set of training data {(x1,y1)…(xl,yl)} in an Rn × R sam-
pled rendering to unidentified probability distribution P(x,y), and loss func-
tion V(y,f(x)) that measures the error, for a given x, with f(x) “predicted” in 
place of the actual value y. The problem requires finding a function f that 
minimizes anticipation of an error on new data; that is, outcome is a function 
f that minimizes expected error: ≡V y f P y( , ( )) ( , ) dx x x dy .

In statistical modeling, we would select a model from hypothesis space, 
which borders on essential function in a target space. More on statistical 
learning theory can be found in (Bousquet et al., 2004).

5.2.1.1 Learning and Generalization

Machine-learning algorithms were initially intended to learn representa-
tions of simple functions. Hence, the objective of learning was to output a 
hypothesis that executed precise classification of a training data, and early 
learning algorithms were intended to find an accurate fit to data. The abil-
ity of a hypothesis to acceptably classify data not in training set is known 
as its generalization. SVM does not over-generalize, whereas NNs may 
effortlessly over-generalize. For information on trade-offs with complexity, 
see Figure 5.9. Note: the illustration is prepared from class notes (Jakkula, 
2011).

5.2.1.2 Introduction to SVM: Why SVM?

Employing NNs for both supervised and unsupervised learning shows 
good results. MLPs use feed forward and recurrent networks. MLP prop-
erties comprise collective approximation of continuous nonlinear functions 
and embrace learning with input–output patterns. MLPs also contain radi-
cal network architectures with multiple inputs and outputs (Skapura, 1996). 
Figure 5.10 is a simple visualization of NNs.

Some NNs have numerous local minima; having numerous neurons might 
constitute an additional task, affecting optimality of that NN. Note that even 
if NN solutions are inclined to converge, outcome may not be a unique solu-
tion. When we plot the data, as shown in Figure 5.11, and attempt to classify 
it, we see several hyperplanes that can classify it. But which is better?

As the above diagram shows, there are many linear classifiers (hyper-
planes) that isolate data. But, only one of these classifiers achieves maximum 
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separation. If we use a hyperplane to classify, it might end up nearer to 
one  set of datasets than others and we do not need this to occur. Thus, 
a maximum margin classifier or hyperplane is a special solution; Figure 
5.12 gives the maximum margin classifier example that solves the problem 
(Jakkula, 2011).
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FIGURE 5.9
Number of epochs versus complexity. (From Cristianini, N. and Shawe-Taylor, J., 2000. An 
Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge 
University Press; Burges, C., 1998. A tutorial on support vector machines for pattern recogni-
tion. In: Data Mining and Knowledge Discovery. Boston: Burges C.)
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FIGURE 5.10
(a) Simple NN, (b) MLP. (From Skapura, D. M., 1996. Building Neural Networks. Addison-Wesley 
Professional. New York: ACM Press; Mitchell, T., 1997. Machine Learning. Boston, MA: McGraw-
Hill Computer Science Series.)
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The maximum margin is expressed as:
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Figure 5.12 shows the maximum linear classifier with the maximum rank. 
This situation is an example of a simple linear SVM classifier. An interesting 
question is, why maximum margin? Empirical performance is the answer. 

α 

x yest

There are several fits possible to the
available data and biggest challenge is

which one to be selected

f (x, w, b,) = sign(w.x – b)

FIGURE 5.11
Many hyperplanes can classify data, but which one is best? SVM is required. (From Moore, A., 
2003. Andrew W. Moore’s Home Page. [Online] Available at: http://www.cs.cmu.edu/~awm.)
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touching support vectors
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�is is called
linear SVM

Support vectors are datapoints
that will push margin againstMaximum margin

f (x, w, b,) = sign(w.x – b)

FIGURE 5.12
Illustration of Linear SVM. (From Moore, A., 2003. Andrew W. Moore’s Home Page. [Online] 
Available at: http://www.cs.cmu.edu/~awm.)
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In addition, even if we have made a small error in position of a boundary, 
this error has little chance of causing a misclassification. Another benefit is, 
evasion of local minima and enhanced classification. The goals of SVM are 
to separate data with a hyperplane and spread them to nonlinear boundar-
ies using the kernel trick. The objective to calculate SVM is to appropriately 
classify all data. The mathematical calculations are:

 a. If Yi = +1; wxi + b ≥ 1
 b. If Yi = −1; wxi + b ≤ 1
 c. For all i; yi (wi + b) ≥ 1

In this equation x is a vector point and w is weight and also a vector. To 
separate the data [a] should always be greater than zero. Among all pos-
sible hyperplanes, SVM picks the one where distance of the hyperplane is 
as great as possible. If training data is good, every test vector is positioned 
in radius r from training vector. Now, the special hyperplane is placed at 
the farthest possible point from the data. The hyperplane that maximizes the 
margin also intersects the lines in the middle of the closest points on the 
convex body of the two datasets. Thus, we have [a], [b], and [c] (Jakkula, 
2011) (Figure 5.13).

wx + b = 0

wx + b = 1 wx + b = –1

FIGURE 5.13
Representation of hyperplanes. (From Cristianini, N. and Shawe-Taylor, J., 2000. An Introduction 
to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University 
Press.)



274 Artificial Intelligence Tools

The distance of the closest point on the hyperplane can be found by maxi-
mizing x, as x is on the hyperplane. We have a similar development for fur-
ther side points. Therefore, resolving and subtracting the two distances, 
we get the summed distance from the separating hyperplane to the closest 
points. Maximum margin = M = 2/||w||.

Now, maximizing the margin is the same as minimizing. We have a qua-
dratic optimization problem and we have to solve for w and b. To resolve this, 
it is essential to optimize the quadratic function with linear constraints. The 
solution involves building a dual problem, using a Langlier’s multiplier αi. 
We need to find w and b such that Φ (w) = 1/2|w′||w| is minimized and for 
all {(xi,yi)}: yi (w*xi + b) ≥ 1.

This gives us w = Σαi*xi; b = yk  − w*xk for any xk such that αk ≠ 0.
The classifying function will have the resulting form:
f(x) = Σαiyixi*x + b (Figure 5.14).

5.2.2 SVM Representation

A superficial depiction of the QP formulation for SVM classification is shown 
in this section. SV classification:
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FIGURE 5.14
Representation of support vectors. (From Moore, A., 2003. Andrew W. Moore’s Home Page. 
[Online] Available at: http://www.cs.cmu.edu/~awm.)



275Two-Stage Response Surface Approaches to Modeling Drug Interaction

SVM classification, dual formulation:
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Variables ξi are called slack variables, and they measure the error made at 
point (xi,yi). Training SVM is interesting when number of training points is 
large.

5.2.2.1 Soft Margin Classifier

In an actual domain problem, it is not possible to get a precise and distinct 
line isolating data surrounded by space. We may have a rounded decision 
boundary. We could also have a hyperplane which might separates data pre-
cisely, but this may not be necessary if data have noise in them. It is better 
for smooth boundary to discount a few data points than be curved or go in 
loops near outliers. This is not figured in the same way; in this case, we have 
slack variables. Now we have yi(w′x + b) ≥ 1 − sk. This permits a point to be a 
small distance sk on wrong side of a hyperplane. We might end up having 
huge slack variables which permit any line to separate data; in such situa-
tions, we use the Lagrangian variable:

 minL 1= ∑λ + + − +α∑1
2 w w w x b s sk k k k kʹ ʹ— ( ( ) )y

where plummeting α lets more data lie on the wrong side of the hyperplane 
where they would be preserved as outliers which give a smoother decision 
boundary (Lewis, 2004).

5.2.3 Kernel Trick

The section begins by defining kernel and feature space,

5.2.3.1 Kernel

If data are linear, a separating hyperplane may be used to divide them; It 
is frequently the case. that data are not linear and datasets are inseparable. 
Kernels are used to map input nonlinearly to a high-dimensional space. The 
new charting is linearly separable [1]. A simple illustration of this situation is 
presented in Figure 5.15.

This mapping is defined by the kernel: K(x,y) = Φ(x) ⋅ Φ(y)
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Feature space: It possible to define a similar measure on basis of a dot prod-
uct by transforming data into feature space. The pattern recognition may be 
easy if feature space is chosen properly [1] (Figure 5.16):

 x x K x x x x1 2 1 2 1 2⋅ ← = ⋅( , ) ( ) ( )Φ Φ

Note, the legend is not described as these are sample plots to understand 
the concepts.

Now getting back to the kernel trick, we see that when w, b is found, the 
problem is resolved for a linear situation in which data are separated by 
a hyperplane. The kernel trick allows SVMs to form nonlinear boundar-
ies. Steps of the kernel trick are given below (Lewis, 2004; Schölkopf et al., 
1999):
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FIGURE 5.16
Feature space representation. (From Mitchell, T., 1997. Machine Learning. Boston, MA: McGraw-
Hill Computer Science Series.)
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FIGURE 5.15
Why use kernels? (From Cristianini, N. and Shawe-Taylor, J., 2000. An Introduction to Support 
Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press; Mitchell, 
T., 1997. Machine Learning. Boston, MA: McGraw-Hill Computer science series; McCulloch, D., 
2005. An Investigation into Novelty Detection.)
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 a. The algorithm is expressed using solitary inner products of data 
sets; This is also called a dual problem.

 b. Original data are approved through nonlinear maps to arrange dif-
ferent data with respect to new dimensions by tallying a specific 
pair-wise product of original data dimension for each data vector.

 c. Somewhat more than an inner product for these new, larger vectors 
is to store data in tables and later do a table lookup; we can charac-
terize a dot product of data after doing nonlinear mapping on them. 
This function is the kernel function. More on kernel functions fol-
lows in the next section.

5.2.3.2 Kernal Trick: Dual Problem

First, we change a problem with optimization to dual form in which we try 
to eradicate w, and a, Lagrangian now is only a function of λi. To resolve the 
issue, we should maximize the LD with respect to λi. The dual form abridges 
optimization; the major accomplishment is dot product attained (Jakkula, 
2011).

5.2.3.3 Kernal Trick: Inner Product Summarization

The dot product of nonlinear mapped data can be costly, but the kernel trick 
performs a suitable function resembling the dot product of certain nonlin-
ear mapping. A particular kernel is chosen by trial and error on the test set; 
selecting the right kernel centered on the problem or application improves 
SVM’s performance (Jakkula, 2011).

5.2.3.4 Kernel Functions

The idea of using the kernel function is to allow processes to be achieved 
in an input space rather than in possibly high-dimensional feature space. 
Hence, inner product should not be estimated in feature space. We need the 
function to achieve mapping of attributes of input space to feature space. 
The kernel function plays a pivotal role in SVM and its performance. It is 
constructed by replicating Kernel Hilbert Spaces (Jakkula, 2011), as follows:

 K x x x x( , ) ( ), ( ) ,ʹ ʹ= φ φ

If K is a symmetric positive definite function, that contains Mercer’s 
conditions,

 
K x x a x x am m m

m

m( , ) ( ) ( ), ,ʹ ʹ= φ φ ≥
∞

∑ 0
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K x x g x g x dxdx g L( , ) ( ) ( ) ,ʹ ʹ ʹ∫∫ > ∈0 2

and the kernel represents a genuine inner product in feature space. The 
training set is not linearly separable in an input spacebut is linearly sepa-
rable in feature space named “the kernel trick.”

Various kernel functions are listed below. More descriptions on kernel 
functions can be found in literature. The following are mined from several 
studies:

 1. Polynomial: A polynomial mapping is a popular method for nonlin-
ear modeling. The second kernel is desirable as it avoids problems of 
hessian becoming zero.

 K x x x x d( , ) , ,ʹ ʹ=

 
K x x x x

d
( , ) , ,ʹ ʹ= +( )1

 2. Gaussian radial basis function: Radial basis functions are done most 
frequently with a Gaussian form:
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 3. Exponential radial basis function: A radial basis function creates a 
piecewise linear solution that can be attractive when discontinuities 
are acceptable:
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 4. MLP: The long-established MLP, with a single hidden layer, also has 
a valid kernel representation:

 
K x x x x e( , ) tanh ,ʹ ʹ= ρ +( )

There are numerous additional kernel methods including Fourier, splines, 
B-splines, additive kernels, and tensor products (see Cristianini and Shawe-
Taylor, 2000).
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5.2.3.5 Controlling Complexity in SVM: Trade-Offs

SVM is used to estimate any training data and generalize enhancements 
of specified datasets. Complexity of the kernel affects performance of new 
datasets. SVM supports parameters for monitoring complexity; above all, 
SVM does not tell us how to set these parameters. We should be able to fix 
these parameters by cross-validation on given datasets. The diagram given 
in Figure 5.17 is a better illustration (Jakkula, 2011).

5.2.4 SVM for Classification

SVM is a useful method for data classification. While NNs are easier to use 
than SVMs, they occasionally have unacceptable consequences. A classifi-
cation task contains training and testing data with specific data instances. 
Every one of the instances in training set covers one target value and many 
attributes. The goal of SVM is to produce a model that predicts target value 
of data instances in a testing set, but only attributes.

Classification in SVM is an example of supervised learning. Recognized 
labels designate whether a system is performing in a factual way or not. This 
information points to an anticipated response authenticating accuracy of 
the system, or is used to assist system to perform correctly. A step in SVM 
classification includes identification. which is closely associated with known 
classes and termed as a feature selection or feature extraction. Feature selec-
tion and SVM classification are used when prediction of unfamiliar samples 
is not essential. They can be used to recognize key sets in procedures that 
differentiate classes.
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FIGURE 5.17
How to control complexity. (From Moore, A., 2003. Andrew W. Moore’s Home Page. [Online] 
Available at: http://www.cs.cmu.edu/~awm.)
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SVM has been established for pattern classification problems. The applica-
tion of support vector approach to a specific practical problem encompasses: 
determining a number of questions centered on problem definition, and 
strategy intertwined with it. One of the major challenges is selecting a fit-
ting kernel for a specified application. Generally, Gaussian or polynomial 
kernel is a default choice , but if this does not work or if inputs are discrete 
structures, more intricate kernels are needed. Through a feature space, ker-
nel delivers description language used by a machine for inspecting data. 
The main constituents of the system are in place, once choice of kernel and 
optimization condition has been decide.

The job of text categorization is classification of normal text documents 
into a fixed quantity of predefined categories that are centered on their con-
tent. Since a document can be allocated to more than one category, this is 
not a multilass classification problem, but a series of binary classification 
problems, one for every category. One of the regular demonstrations of text 
for resolution of information recovery delivers a feature mapping for con-
structing a Mercer kernel. In some ways kernel integrates a similarity mea-
sure between instances; It is advised to follow specific application domain 
experts, who have already identified effective actions, chiefly in areas,such 
as, information retrieval and generative models.

Traditional classification methods are not applicable when working in a 
straight line because of high dimensionality of data, but SVMs can handle 
high dimensional representations. An analogous approach to techniques 
designated for text categorization can also be used for image classification. 
In such cases, linear hard-margin machines are often able to oversimplify. 
The first real-world job on which SVMs were used was hand-written charac-
ter recognition. In addition, multiclass SVMs have been established on these 
data. It is fascinating not only to compare SVMs with other classifiers, but 
also to compare different SVMs; They turn out to have similar performance, 
that is, recording their support vectors, independent of the selected kernel. 
SVM can accomplish most things as well as these systems without any of 
prior knowledge (Jakkula, 2011).

5.2.5 Strength and Weakness of SVM

The greatest strength of SVM is that, unlike NNs training is comparatively 
easy with no local optimal. It balances with high-dimensional data compara-
tively well and balance between classifier complexity and error can be well 
ordered. The weakness is its inability to perform a decent kernel function 
(Burges, 1998; Cristianini and Shawe-Taylor, 2000; Jakkula, 2011; Moore, 2003).

SVM is one of the best methodology for data modeling. They use general-
ization regulator as a technique to control dimensionality. Kernel mapping 
delivers a collective base for most working model architectures, and support-
ing assessments, to be executed. In classification problems, generalization 
control is achieved by maximizing margin that matches the minimization of 
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weight vector in an acknowledged framework. The solution is attained as a 
set of support vectors that can be scarce. The minimization of weight vector 
can be used as a measure in regression problems, with a revised loss func-
tion. Current research is investigating a modus operandi for cherry-picking 
the kernel function and, developing kernels with invariance and further 
capacity control . To conclude, new guidelines are cited in novel SVM-related 
learning originations recommended by Vapnik (2006).

5.3 Bayesian Networks–Based Approaches

Bayesian decision theory is a vital statistical approach to pattern classifica-
tion problem. This approach is built on enumerating quid pro quo between 
various classification decisions by means of probability, and costs of such 
decisions. It assumes decision problem is understood in probabilistic posi-
tions and all pertinent probability values are known.

Let us pretend to design a classifier for two kinds of fish: catfish and batfish. 
Suppose an observer watching the fish being caught by a fisherman finds it 
hard to predict the kind that will arrive next because of random sequence of 
types of fish appearance. Decision-theory vocabulary says that as each fish 
arrives, its nature has only two possibilities: the fish is either a catfish or a 
batfish. Let ω denote the state of nature, with ω = ω1 for catfish and ω = ω2 for 
batfish. Because the state of nature is random, we consider ω to be a variable 
that must be designated probabilistically.

If the hook catches as much catfish as batfish, the next fish is equally likely 
to be catfish or batfish. It is presumed that there is a certain a priori prob-
ability (or simply prior) P(ω1) that the next fish is catfish or that it is batfish. 
If we assume there are no new types of pertinent fish, then P(ω1) and P(ω2) 
are equal to one. These probabilities imitate our prior information about how 
likely we are going to get a catfish or batfish before looking at the fish; it 
might, for example, rest on fishing period of a year or selection of a fishing 
area (Duda et al., 2001).

Let us suppose for a moment, that we are obliged to make a decision about 
the kind of fish that will appear next without being allowed to see it. For now, 
we must assume that any misclassification carries same cost or consequence, 
and that only information we are allowed to use is the value of the prior 
probabilities. If a decision must be made with so little information, it seems 
logical to use the following decision rule: decide ω1 if P(ω1) > P(ω2); otherwise 
decide ω2.

This seem logical for reviewing just one fish, but, using this rule recur-
rently to review numerous fish, may seem a little strange. Because, we would 
make a similar verdict, continually, even though we know that both types of 
fish will be caught eventually. How well it works is contingent on values of 
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prior probabilities. If P(ω1) is much greater than P(ω2), our conclusion will be 
right most of the time, that is, in favor of ω1. If P(ω1) = P(ω2), we have only a 
50–50 chance of being correct. In general, probability of an error is smaller of 
P(ω1) and P(ω2) :and under this condition, no other decision rule can yield a 
higher probability of being right.

In more complex conditions, we cannot with so little information. 
Extending the example above, we might use a nimbleness measurement x 
to advance a classifier. Different fish will produce different lightness, and 
senses, Let’s consider this inconsistency in probabilistic terms; we consider 
x to be a continuous random variable whose distribution is to be determined 
by the state of nature, expressed as p(x/ω1). This is a class-conditional prob-
ability density function. The probability density function p(x|ω1) should be 
written as pX(x/ω1) to specify that we are talking about a specific density 
function for a random variable X. This more intricate subscripted represen-
tation makes it clear that pX(⋅) and pY(⋅) symbolize two different functions, a 
point (dot) hidden when in writing p(x) and p(y). Since this possible misper-
ception seldom arises in an exercise, we have chosen to implement easier 
symbolization.

This is the probability density function p(x/ω1) for x given that the state of 
nature is ω1. Then the difference between p(x/ω1) and p(x/ω2) describes the 
difference in nimbleness between populations of catfish and batfish (Figure 
5.10). Now, assume the prior probabilities P(ωj) and the conditional densities 
p(x/ωj) are identified together. Further suppose that we measure nimbleness 
of a fish and learn that its value is x. How does this measurement affect our 
assertiveness about factual state of nature—that is, the class of the fish?

The (joint) probability density of an outcome of a pattern that is in category 
ωj with feature value x can be written in two ways: p(ωj,x) = P(ωj/x)p(x) = p(x/
ωj)*P(ωj). Reorganizing these, helps us to answer our question and produces 
Bayes’ formula:
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Bayes’ formula can be expressed as
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Bayes’ formula demonstrates that by perceiving value of x we can adapt 
prior probability P(ωj) to a posteriori probability (or posterior) probability 
P(ωj/x); the probability of the state of nature being ωj, given that feature 
value x has been measured. This is called p(x/ωj), in the likelihood of ωj with 
respect to x. Note that the product of the likelihood and the prior probability 
is most significant in influencing the posterior probability; the evidence fac-
tor, p(x), can be observed as simply a scale factor that assures the posterior 
probabilities summation to one, as all good probabilities must. The varia-
tion of P(ωj/x) with x is illustrated in Figure 5.18 for the case P(ω1) = 2/3 and 
P(ω2) = 1/3.

If there is a reflection x, where P(ω/x) is greater than P(ω2/x), the resolution 
is likely to be that the true state of nature is ω1. Similarly, if P(ω2/x) is greater 
than P(ω1/x), the probable choice is ω2. To justify this procedure, the prob-
ability of error is planned whenever we have to make a judgment. On every 
occasion that we perceive a particular x,
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Clearly, for a given x we can minimize the probability of an error by deter-
mining ω1 if P(ω1/x) > P(ω2/x) and ω2 (Figure 5.19). Surely, we may never have 
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FIGURE 5.18
Hypothetical class-conditional probability density functions show the probability density of 
measuring a particular feature value x if the pattern is in category ωi. If x represents the length 
of a fish, the two curves might describe the difference in length of populations of two types 
of fish. Density functions are normalized, and thus the area under each curve is 1.0. (From 
Duda, R. O., Hart, P. E. and Stork, G. D., 2001. Pattern Classification. 2nd edition. Canada: John 
Wiley & Sons.)
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identical value of x twice. Will this rule diminish average probability of 
error? Yes, since average probability of an error is specified by
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and if, for every x we ensure P(error|x) is as small as possible, then the inte-
gral must be as low as possible. Thus, we have vindicated the following 
Bayes’ decision rule for minimizing the probability of error:

 Decide if P / P / otherwise decide 1 1 2 2ω ω > ω( ) ( ); ,x x ω  (5.38)

and under this rule Equation 5.43 becomes
P(error) = min [P(ω1/x), P(ω2/x)].

 P P x P x( ) min ( ), ( ) ,error / /= ω ω[ ]1 2  (5.39)

This procedure of decision law stresses on the role of posterior probabili-
ties. By using Equation 5.40, this can, as an alternative, prompt the standing 
rule of conditional and prior evidence probabilities. First, a reminder that the 
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FIGURE 5.19
Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2) = 1/3 for the class-con-
ditional probability densities shown in Figure 5.18. Thus, in this case, given that a pattern is 
measured to have feature value x = 14, the probability in category ω2 is roughly 0.08, and in 
ω1 is 0.92. At every x, the posteriors sum to 1.0. (From Duda, R. O., Hart, P. E. and Stork, G. D., 
2001. Pattern Classification. 2nd edition. Canada: John Wiley & Sons.)
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indication, p(x), in Equation 5.40 is insignificant for constructing a verdict; It 
is essentially just a scale factor that states how often it will actually measure 
a pattern with feature value x. Its presence in Equation 5.33 ensures that 
P(ω1/x) + P(ω2/x) = 1. We can derive corresponding decision rule by remov-
ing this scale factor:

 Decide   if / / otherwise decide 1ω ω > ω ωp x P p x P( ) * ( ) ( )* ( ),ω1 1 2 2 ωω2.  (5.40)

Some additional insights can be obtained by considering a few special 
cases. If for some xs p(x/ω1) = p(x/ω2), then that specific reflection provides 
no evidence about nature; in this case, conclusion centers entirely on prior 
probabilities. On the other hand, if P(ω1) = P(ω2), the states of nature are likely 
similar; in this case, the decision is founded completely on the possibilities 
p(x/ωj). In a broad sense, both these factors are significant in constructing a 
decision and the Bayes decision rule uses them to create the minimum prob-
ability of error (Duda et al., 2001).

5.3.1 Bayesian Decision Theory—Continuous Features

Simply stated, the above concepts offer following four features:

• Permit the use of more than one feature
• Allow more than two states of nature
• Agree to actions, other than merely determining the state of nature
• Introduce a loss function more general than the probability of error.

Permitting the use of more than one feature merely necessitates substi-
tuting the scalar x by the feature vector x, where x is in a d-dimensional 
Euclidean space Rd, called the feature space. Allowing more than two states 
of nature provides a good generalization for a slight notational overhead. 
Agreeing to actions other than classification mainly precludes the possibility 
of rejection; if not too costly, this could be a convenient choice. The loss func-
tion states accurately, cost of each action, and is used to change a probability 
into a decision. Cost functions give us circumstances in which some types of 
classification errors are more expensive than others, though, frequently, we 
consider a situation, where all errors are overpriced.

Let ω1, …, ωc be the finite set of c states of nature (“categories”) and 
α1, …, αa be the finite set of a probable actions. The loss function λ(αi/ωj) 
designates the loss sustained for taking action αi when the state of nature is 
ωj. Let the feature vector x be a d-component vector-valued random variable, 
and let p(x/ωj) be the state conditional probability density function for x—the 
probability density function for x conditioned on ωj being the accurate state 
of nature. As before, P(ωj) defines the prior probability that nature is in state 
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ωj. Then, the posterior probability P(ωj/x) can be calculated from p(x/ωj) by 
Bayes’ formula:
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Supposing that a specific x is pragmatic and it takes action αi. If the true 
state of nature is ωj, by characterization it will incur the loss λ(αi/ωj). Since 
P(ωj/x) is the probability that the true state of nature is ωj, the predictable cost 
linked with taking action αi is
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In decision-theory vocabulary, a predictable cost is called a risk, and R(αi/x) 
is called the conditional risk. On every occasion with a specific reflection x, 
the predictable cost can be minimized by choosing an action that reduces the 
conditional risk. Bayes decision procedure essentially offers optimal perfor-
mance to determine global risk.

The difficulty is to find a decision rule for P(ωj) that minimizes global risk. 
A broad decision rule is a function α(x) that expresses which action to take 
for every probable reflection. More specifically, for every x, the decision func-
tion α(x) assumes one of the “a” values, α1,…,αa. The overall risk R is the 
predictable cost connected to a particular decision rule. Since R(αi/x) is the 
conditional risk accompanying action αi, and since the decision rule postu-
lates the action, the global risk is given by,
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where, dx denotes a d-space volume element, and integral spreads over whole 
feature space. Clearly, if α(x) is chosen so that R(αi(x)) is as small as possible 
for every x, then global risk will be minimized. This validates the expression, 
“to minimize the global risk, calculate the conditional risk” of the Bayes deci-
sion rule:

 

R x P xi i j

j

c

j( / ) ( / ) ( / ),α = λ α ω ω
=
∑

1

*

 
(5.45)



287Two-Stage Response Surface Approaches to Modeling Drug Interaction

for i = 1, …, a and choose the action αi for which R(αi/x) is minimum. The 
subsequent minimum global risk is called the Bayes risk, denoted by R*. It is 
the best determination of global risk (Duda et al., 2001).

5.3.1.1 Two-Category Classification

In a singular instance of two-category classification problems, action 
α1 expresses determination that the true state of nature is ω1, and action 
α2 expresses it as, ω2. For notational ease, let λij = λ(αi/ωj) be the loss suffered 
for determining ωi when the true state of nature is ωj. If we writ the condi-
tional risk assumed by Equation 5.51, we get
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There are multiple methods of articulating minimum-risk decision rule, 
each with its own benefits. The central rule is to choose ω1 if R(α1/x) < R(α2/x). 
In terms of the posterior probabilities, ω1 is certain if,

 ( ) * ( ) ( ) * ( ),λ − λ ω > λ − λ ω21 11 1 12 22 2P x P x/ /  (5.47)

In general, loss suffered for creating an error is bigger than that of loss 
suffered for being right, and both factors λ21 − λ11 and λ12 − λ22 are positive. 
Thus, in an exercise, resolution is mostly affected by other probable state of 
nature, even if we balance posterior probabilities against loss differences. By 
employing Bayes’ formula, we can substitute posterior probabilities for prior 
probabilities and conditional densities.

We get ω1 if,

 ( ) * ( ) * ( ) ( ) * ( ) * ( ),λ − λ ω ω > λ − λ ω ω21 11 1 1 12 22 2 2p x P p x P/ /  (5.48)

and ω2 otherwise.
Another margin, which follows sensible assumption that,
λ21 > λ11, is to decide on ω1 if
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This form of decision rule emphasizes x-dependence of probability den-
sities. It can consider p(x/ωj) a function of ωj (i.e., likelihood function), and 
then form likelihood ratio p(x/ω1)/p(x|ω2). Thus, Bayes decision rule can be 
understood as calling for ω1 if likelihood ratio exceeds a threshold value that 
is independent of the observation x (Duda et al., 2001).
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5.3.2 Minimum-Error-Rate Classification

In classification problems, each state of nature is usually accompanied with 
one of c classes, and action αi is usually construed as decision tha true state 
of nature is ωi. If action αi is taken and true state of nature is ωj, then con-
clusion is correct, if i = j, and an error, if i ≠ j. If errors are to be avoided, it 
is best to find a decision rule that minimizes probability of error, that is, 
error rate.

This results in so-called symmetrical or zero-one loss function,
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This loss function allocates no loss to a correct decision, and allocates a 
unit loss to any error; thus, errors are expensive. Risk equivalent to this loss 
function is average probability of error, and, conditional risk is
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and P(ωi/x) is conditional probability that action αi is correct. Bayes decision 
rule to minimize risk requires selecting action that minimizes conditional 
risk. Thus, to minimize average probability of error, we should choose i that 
maximizes posterior probability P(ωi/x). In other words, for minimum error 
rate,

 Decide if / /x for allω ω > ω ≠i i jP x P j i( ) ( ) .  (5.52)

This is an equivalent rule to Equation 5.40.
Figure 5.11 shows some class-conditional probability densities and poste-

rior probabilities, Figure 5.12 shows likelihood ratio p(x/ω1)/p(x/ω2) for iden-
tical instance. In a broad spectrum, this ratio can range between zero and 
infinity. Threshold value θa is noticeable from same prior probabilities, but 
with zero-one loss function. Notice that this indicates same judgment bound-
aries as in Figure 5.11. If there are faults in classifying ω1 patterns as ω2 more 
than converse (i.e., λ21 > λ12), then Equation 5.55 obviously tips towards θb. 
Note that, as shown in Figure 5.20, range of x values for which we classify a 
pattern as ω1 lessens (Duda et al.,2001).
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5.3.3 Bayesian Classifiers

A Bayesian classifier is constructed on the idea that character of a (natural) 
class is to forecast values of features for associates of that class. Instances 
are congregated in classes since they have shared values for features. Such 
classes are frequently termed natural kinds. In this section, target feature 
recognizes a discrete class as binary.

The notion behind a Bayesian classifier is that if an agent recognizes a class, 
it can forecast values of the other features. If it does not recognize a class, 
Bayes’ rule can be used to calculate (some) feature values of the specified 
class. In a Bayesian classifier, learning agent constructs a probabilistic model 
of features and uses that model to predict classification of a new example.

A dormant variable is a probabilistic variable that is not detected. A 
Bayesian classifier is a probabilistic model where classification is a latent vari-
able that is probabilistically connected to detected variables. Classification 
then becomes an implication in probabilistic model.

A simple example is a naive Bayesian classifier used when input features 
are conditionally independent of each other, particularly classification. 
Independence of a naive Bayesian classifier is indicated in a confidence net-
work where features are nodes, target variable (classification) has no par-
ents, and classification is only parent of each input feature. This confidence 
network involves probability distributions P(Y) for target feature Y and 
P(Xi/Y) for each input feature Xi. For each example, prediction can be calcu-
lated by conditioning detected values for input features and by questioning 
classification.

x

P(x|ω 1)
P(x|ω 2)

R2 R2R1 R1

θa

θb

FIGURE 5.20
If the likelihood ratio p(x/ω1)/p(x/ω2) for the distributions shown in Figure 5.18 employs a zero-
one or classification loss, the decision boundaries are determined by the threshold θa. If the loss 
function penalizes miscategorizing ω2 as ω1 patterns more than the converse (i.e., λ12 > λ21), the 
larger threshold θb, is obtained; hence, R1 becomes smaller. (From Duda, R. O., Hart, P. E. and 
Stork, G. D., 2001. Pattern Classification. 2nd edition. Canada: John Wiley & Sons.)
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Following is an example with inputs X1 = v1,…, Xk = vk, Bayes’ rule is used 
in the following to calculate posterior probability distribution of the exam-
ple’s classification, Y:
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where denominator is a normalizing constant to make sure probabilities 
sum to 1. The denominator does not rest on class and, for that reason, it is not 
desirable to conclude prospective class (Figure 5.21).

5.3.4 Bayesian Estimation

The Bayesian estimation or Bayesian learning approach works on pattern 
classification problems. Granted, answers we acquire using this method will 
generally be indistinguishable from those acquired by maximum likelihood. 
However, there is a theoretical difference, in maximum likelihood methods 
true parameter vector is expressed as θ, whereas in Bayesian learning we 
consider θ a random variable, and training data permit us to change a distri-
bution on this variable into a posterior probability density (Duda et al., 2001).

5.3.4.1 Class-Conditional Densities

Calculation of the posterior probabilities P(ωi/x) lies at the heart of Bayesian 
classification. Bayes’ formula lets us determine these probabilities from prior 
probabilities P(ωi) and the class-conditional densities p(x/ωi). But what hap-
pens when these quantities are unidentified? Simply stated, we must calculate 
P(ωi/x) by means of all information at our disposal. Part of this information 
might be prior knowledge, such as knowledge of functional arrangements 

User action

Author

Where read �read

Length

FIGURE 5.21
Belief network corresponding to a naive Bayesian classifier.
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for unidentified densities and ranges for values of unidentified parameters. 
Portions of this information might exist in a set of training samples.

If we again let D mean set of samples, we can highlight role of samples 
by saying that the goal is to determine the posterior probabilities P(ωi/x, D). 
From these probabilities we can acquire Bayes classifier.

Given the sample D, Bayes’ formula then becomes,
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This equation can use information provided by training samples to help 
determine both class-conditional densities and a priori probabilities.

From this point on, we will assume true values of a priori probabili-
ties are identified or attainable from a trivial calculation; thus, we specify 
P(ωi) = P(ω/D).

Moreover, since we are discussing supervised instance, we can distinguish 
training samples by class into c subsets D1, …, Dc, with samples in Di belong-
ing to ωi. As mentioned, when addressing maximum likelihood methods, in 
most cases, samples in Di have no impact on p(x/ωj, D) if i ≠ j. This has two 
resulting penalties; First, it permits working with each class using only sam-
ples in Di to define p(x|ωi, D), used in combination with supposition that prior 
probabilities are recognized. This combines with Equation 5.59 to create,
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Second, since each class can be picked autonomously, it can distribute 
unnecessary class differences and shorten symbolization. In essence, we have 
c isolated problems of next form if we use a set D of samples, drawn indepen-
dently of stable but unidentified probability distribution p(x), to decide p(x/D). 
This is the central problem of Bayesian learning (Duda et al., 2001).

5.4  Liquid State Machines and Other 
Reservoir Computing Methods

Liquid state machines (LSMs) represent a new direction in machine learning. 
They explain time-series problems in an entirely different way from most 
recurrent neural network (RNN) systems and avoid the difficulties RNNs 
regularly have learning them. LSMs use a vibrant reservoir or liquid (LM) to 
grip time-series data, as shown in Figure 5.14 (Kok, 2007).
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After a definite time-period, state of liquid xM(t) is read out to be used as 
input for a readout network fM (e.g., an FNN). This readout network learns to 
map states of liquid to target outputs. This means there is no necessity to train 
weights of RNN, which decreases calculation time along with complexity of 
learning time-series data. A liquid can be characterized in different forms. 
For example, it can be a real liquid, where waves can be understood as short-
term memory. But a spiking neural network (SNN) can add more supplemen-
tary data than a real liquid. For that reason, in principle, a real liquid can have 
information in three spatial dimensions. But, a SNN can have distant addi-
tional neurons greater than three, thus being able to store more information.

LSMs are a good tool for classification problems. In classification problems, 
the LSM should not distinguish between same inputs and classify them. 
A sample of this is, classifying composer of music. The musical piece is input 
for a liquid, and readout network should classify which composer wrote 
musical piece. For classification, the readout network wants to distinguish 
dissimilar states from the liquid. Assuming there are sufficient units in the 
liquid, it can generate diverse patterns for each time-series pattern.

LSMs have a separation property (SP) and an approximation property (AP). 
SP addresses ability to distinguish between two different input sequences. 
This is significant, as readout network needs to be capable of isolating two 
input patterns to have a good presentation. If two patterns appear identical, 
even if they should not, readout network cannot distinguish between them 
and, thus, cannot state which pattern belongs to which class. AP concerns 
ability of readout network to differentiate two dissimilar patterns and con-
vert states of liquid into certain target output.
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6
Nearest Neighbor–Based Techniques

The nearest-neighbor (NN) problem is important in many areas of computer 
science, spanning pattern recognition, searching multimedia data, vec-
tor compression, computational statistics, data mining, and so on, and has 
been given a number of names, for example, the post office problem, the best 
match problem, and so on.

Large amounts of data are available for many of these applications, includ-
ing some described here (Shakhnarovich et  al., 2006), thus making NN 
approaches appealing. At the same time, the wealth of data increases the 
computational complexity of an NN search. Algorithms must be designed 
for these searches, not to mention the various related classification, regres-
sion, and retrieval tasks, which must be efficient even if the number of points 
or the dimensionality of the data expand. This research area finds itself on 
the boundary of several disciplines, including computational geometry, 
algorithmic theory, and various application fields such as machine learning.

Below, we define the exact and approximate NN search problems, and 
briefly survey a number of popular data structures and algorithms devel-
oped for these problems. We also discuss the relationship between the NN 
search and machine learning. Finally, we summarize the contents of the 
chapters that follow.

Maintenance engineering must deal with poorly defined problems that can-
not be defined by any mathematical theory developed to date. Traditionally, 
engineers design ad hoc strategies based on a body of heuristics collected over 
years of research, but today there are more systematic ways to solve difficult 
real-world problems (e.g., machines performing handwriting recognition). If 
we can extract behavioral measures (or examples) from a problem, with the 
help of a learning machine, we can build a model or a device that, under 
certain conditions, will reflect the problem’s computational structure. A sta-
tistical model is typically inferred from these data, one able to deal with the 
inherent uncertainty or imprecise nature of the examples. A set of adjustable 
parameters is estimated in the learning phase using a set of examples (the 
training set), but the learning machine may not be able to handle all possible 
parameters. A good estimation of parameters will lead to good generaliza-
tions (e.g., correct responses to unseen examples). Therefore, we must make a 
trade-off between capacity and the information about the problem available 
in the training set. Note: This problem can be formulated as a bias–variance 
trade-off or a balance between the approximation and the estimation error of 
the learning machine, but all formulations are similar qualitatively.
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Recent work in machine learning addresses the problem of increasing 
 generalization through capacity control, as for example, ensemble learning. 
The idea behind ensemble learning is combining an uncorrelated collection 
of learning systems (or predictors) trained in the same task. Typically, the 
combination is done through the use of the techniques of finding the major-
ity in classification or averaging in regression. These techniques generally 
control capacity and are able to stabilize the solution by reducing depen-
dence on the training set and using the relevant optimization algorithms.

Large margin classifiers can also be used to control capacity. In classifica-
tion problems, the learning machine must assign input patterns to one of 
the predefined categories. These systems are usually designed to minimize 
the number of misclassifications in the training set, but researchers have 
recently found that to ensure a small generalization error, the validity of the 
classifications must also be considered. At the same time, classifiers must 
be designed to have a large margin distribution for the training samples; 
in other words, we must be confident that the training samples are being 
assigned to the correct class A large margin distribution stabilizes the solu-
tion and helps to control capacity. Support vector-learning machines (SVMs) 
and boosting classifiers are examples of large margin classifiers.

Other recent work considers scaling up the learning algorithms to cope 
with difficult high-dimensional real-world problems with large databases. 
Recent developments include modular and hierarchical networks, along with 
other types of cooperative learning machines. Many existing approaches use 
gradient-based learning as the unifying principle for training the whole sys-
tem globally; they then back propagate errors through their complex archi-
tectures to compute updated equations for global training algorithms.

This chapter considers learning-pattern recognition in the light of cur-
rent developments in machine learning. In pattern recognition, a num-
ber of machines group complex input data (or patterns) into categories 
(or classes) with the help of a (supervised) learning device that uses a set 
of labeled patterns. The core of a pattern recognizer generally includes a 
feature extractor and a classifier. The former reduces the input by mea-
suring certain invariant “features” or “properties.” Note: This reduces the 
complexity of the original problem and the design of the classifier, thus, 
making feature extraction a mechanism to control the capacity of the rec-
ognizer. Once the features are measured, the classifier uses them to assign 
the input pattern to a class.

In the past, the feature extractor was often done manually, as it is usually 
specific to the problem, but the current trend is to use learning devices able to 
automatically extract features and to rely less on manual feature extraction. 
Note: While unsupervised-learning algorithms are commonly used to build 
feature extractors from training data, their use can lead to losing important 
discriminatory information because they do not consider class labels.

A powerful alternative is to integrate the feature extractor into the clas-
sifier and globally train both systems to alleviate separate and uncoupled 
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training. This novel method, termed oriented principal component  analysis 
(OPCA), performs a global gradient-based training of a feature extrac-
tor using several lineal combinations of input variables and any classifier 
whose architecture allows the back propagation of an error signal (e.g., feed-
forward networks).

Among the many classification methods, NN is one of the most famous in 
machine learning. These methods are well-recognized in many fields, such 
as statistics, machine learning, and pattern recognition, because in spite of 
their simplicity, these so-called lazy learning or memory-based methods 
turn out to be powerful nonparametric classification systems for real-world 
problems. When an input pattern is presented to them, these classifiers 
compute the k-closest prototypes (using a distance metric specified by the 
user). At this point, the classifier assigns the class label using a majority vote 
among the labels of the k-nearest prototypes. For example, if k = 1, the clas-
sifier simply assigns the label of the nearest prototype to the input pattern. 
The parameters of these classifiers, as determined in the learning phase, are 
often the set of prototypes and (sometimes) the distance metric (e.g., in the 
context of NN classifiers, OPCA becomes a problem of learning the distance 
metric.) Storing the whole training database as the set of prototypes is per-
haps the most direct way to compute prototypes, but storage and compu-
tational requirements and the belief that simpler solutions achieve better 
generalization (Occam’s razor) suggest, rather, the use of more condensed 
sets (Shakhnarovich et al., 2006).

6.1 Concept of Neighborhood

Machine-learning systems often do not have enough training examples of 
a task to develop an accurate hypothesis. For example, an organization may 
have records on only 100 machines with a particular type of problem, and 
this may not be enough to formulate a hypothesis about that problem. One 
way to overcome a lack of training examples is to use knowledge acquired 
during the learning of previous related tasks. If we have learned a model to 
identify machines with high vibration, for example, we can use its knowl-
edge to identify assets with an imbalance or misalignment. The process 
requires transferring the previously acquired knowledge (high vibration) to 
a new but related learning task (diagnosis). Due to “neighboring” symptoms 
and/or features extracted from condition indicators and collected by users, 
the concept can be applied to assets (Su, 2005).

Some work has been done on the fundamental theory of knowledge trans-
fer and a method of selective knowledge transfer in the context of k-nearest 
neighbors (k-NNs) has been proposed (Silver, 2000; Caruana, 1993; Thrun, 
1995). But these methods use the similarity between the distance metric 
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(a structural measure) for each task, without considering the functional rela-
tionship between the tasks’ output values.

Other previous work has explored methods of determining to what extent 
two behaviors are functionally related; these methods include linear coef-
ficient of correlation, coefficient of determination, and Hammer distance 
(Silver, 2000). All methods measure functional relatedness at the task level: 
thus, the relationship between behaviors is based on all target values. Yet 
it may be useful to measure the relationship at the classification level. For 
example, if the output value of a previously learned behavior T1 is the same 
as that of the new behavior T0 for a particular class value, this relationship 
should not be dismissed out of hand. The two tasks are similar at some 
subregion of the input attribute space, and the transfer could be useful.

Few researchers have considered knowledge transfer in the context of the 
k-NN algorithm; all methods propose a transfer based on structural mea-
sures at the task level. In this chapter, we develop a functional measure 
of relatedness at the classification level and use it for knowledge transfer 
between k-NN tasks.

6.2 Distance-Based Methods

The best way to describe distance-based methods is to use related outlier 
definitions. There are currently three outstanding definitions associated 
with distance-based techniques. Distance-based outlier detection tech-
niques, in general, exploit distances of data points to their corresponding 
neighborhood to flag outliers. The distance, also called outlier score, can be 
computed using only one neighbor or k-NNs. It can simply be used to count 
the total number of r-neighbors, that is, the number of data points within 
distance r, of each data point. Normally, distance-based techniques do not 
assume any specific distribution of the data. However, they suffer expensive 
computational costs when searching the nearest neighborhood. This limita-
tion has recently motivated researchers to develop more efficient techniques 
with lower time complexity. These have excellent applicability for large and 
multidimensional data sets.

In the first distance-based detection technique, outliers comprise points 
from which there are fewer than P other points within distance r. To detect 
such outliers, researchers have introduced a nested loop and a cell-based 
algorithm; here, the nested-loop algorithm has time complexity O(N2) 
and, hence, is usually not suitable for applications on large data sets. 
Meanwhile, a cell-based algorithm has time complexity linear with N, but 
is exponential with the number of dimensions, or dim. In practice, this 
can only work efficiently when dim ≤ 4, making it inapplicable to high-
dimensional data sets.
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In the second distance-based detection technique, instead of counting the 
r-neighborhood of a data point, only the data point’s distance to its kth NN 
is taken into account. This definition of an outlier is not intuitive enough 
since information of other neighbors is simply ignored when computing the 
outlier score.

Currently, three algorithms are proposed: nested loop with O(N2) time 
complexity, index-based, and partition-based algorithms. The general idea 
of an index-based algorithm is that by maintaining a list of top n outli-
ers, we can prune data points whose outlier score computed so far is less 
than the minimum score in the list. Usually, this idea can be used in tech-
niques where an outlier score computed so far is always an upper bound 
true score. An index-based algorithm is illustrated in Algorithm 1. Note: In 
this algorithm, OutHeap is the top n outlier based on the defined outlier 
score while Min(OutHeap) returns the minimum outlier score of the heap. 
NN (p; k) contains the set of k-NNs of a data point p. PointHeap is a data 
structure for maintaining the set of data points utilized in the iterations of 
k-NNs computation. For each data point, OutScore is its outlier score com-
puted so far. The computation process of a data point terminates whenever 
its OutScore falls below the Min(OutHeap), causing the time complexity to 
be reduced.

Partition-based algorithm goes even further in pruning the searching 
space. The underlying data set is first grouped into clusters. Each cluster is 
assessed as to whether it contains some candidate outliers, or else it will be 
eliminated. With the remaining clusters, index-based or nested-loop algo-
rithm can be used to detect outliers, while the outlier definition only consid-
ers the distance from a data point to its k-th NN as the outlier score. The 
increase in the number of distances used for computing the outlier score 
does not lead to any increase in time complexity, since the number of NNs 
that must be found for each data point in each definition is still the same, 
which is k.

Briefly stated, the notion of outliers is better and more intuitive. As men-
tioned, distance-based techniques usually involve computing points’ neigh-
bors, which is very time consuming. Accordingly, more recent techniques 
in distance-based outliers aim to introduce algorithms with less time com-
plexity. Among the methods for reducing the computational cost, pruning 
outlier-searching space and computation reduction dominate. Computation-
reduction techniques usually try to limit the number of detected outliers (e.g., 
top n outliers), and use data structures similar to those used in Ramaswamy’s 
index-based algorithm. More specifically, a list of top n outliers found and 
the minimum outlier score found so far are employed to reduce the com-
putational cost, but their proposed technique, ORCA, depends on certain 
assumptions, such as (a) the data are in random order and (b) the data points’ 
values are independent. The analysis also depends on the cutoff threshold 
c, which is identical to Min(OutHeap). As can be observed in Algorithm 1, 
Min(OutHeap) usually starts at 0. However, domain knowledge or a training 
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phase can help to achieve a better pruning value. In particular, by training 
a subset of the original data set, an initial cutoff threshold can be obtained. 
The training phase continues if the obtained threshold at the first attempt is 
not as expected. During the testing phase, the final training set is placed at 
the top of the data set so that the cutoff threshold calculated during the train-
ing phase can be retrieved quickly; hence, the pruning occurs at the very first 
stage of the detecting process.

Domain knowledge can also help in choosing a suitable value for 
Min(OutHeap). The linear time complexity presented can only be obtained 
if the cutoff threshold c converges to O(pN) quickly, but that only happens 
when the data set contains many outliers, making its asymptotic time com-
plexity O(N. lgN). Instead of finding the exact NNs for each data point, this 
algorithm searches for the approximate ones. The approximate NNs of a 
data point p are k points within distance c from p. A clustering algorithm 
is employed (e.g., k-means clustering) to partition points into bins such that 
points close to each other in space are likely to be assigned to the same bin. 
Data point p’s approximate NNs are searched in p’s bin and the consecutive 
bins. For all normal points, the searching time is linear with respect to the 
size of data set, that is, O(N). However, we need to perform a full scan on the 
entire data set for each outlier; and that searching strategy leads to a reduc-
tion in execution time. A detection technique using the Hilbert space-filling 
curve has been proposed to map a multidimensional space to the interval 
I = [0; 1] to reduce the computational cost for finding k-NNs. This is done in 
two steps. First, map the data set DS to D = [0; 1] dim, where dim is the num-
ber of dimensions of DS. Second, use the Hilbert space-filling curve to map 
D to I. Two data points that are close in I will be close in D, but the reverse 
is not always true. Searching for a data point p’s NNs becomes searching 
for p’s approximate NNs in I by assessing p’s predecessors and successors 
in I. The proposed technique consists of two phases. During the first phase, 
the approximate outliers (based on approximate outlier score) are extracted 
from the data set using the mentioned mapping. The approximate score is 
always an upper bound true score. In the second phase, true outliers are 
extracted from the set of approximate ones. The time complexity of the first 
phase is reported to be O(dim2. N. k), where k is the number of NNs taken 
into account. The second phase has time complexity to be O (N′. N. dim), 
where N′ is the number of candidate outliers left after the end of the first 
phase (Vu, 2010).

6.2.1 Cell-Based Methods

Because of the computationally expensive distance function, the naive 
approach is unfeasible. Hence, two pruning techniques are proposed in this 
section. These techniques are used to detect distance-based outliers without 
the need of an actual distance function (Salman and Kitagawa, 2013).
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6.2.1.1 Cell-Based Pruning

The cell-based pruning technique is proposed to quickly identify and prune 
cells containing only inliers. Similarly, it can detect cells containing outliers 
such as the cell-based approach of Knorr. Since the cell-based approach by 
Knorr deals with only deterministic data, it considers two cell layers that 
lie within certain distances from a target cell for its pruning. However, the 
objects are infinitely uncertain; hence, all the cell layers in the Grid need to 
be considered for pruning of the target cell.

6.2.1.1.1 Grid Structure

To identify distance-based outliers using the cell-based technique, each 
object Oi ∈ GDB is mapped to a k-dimensional space that is partitioned 
into cells of length l. Let Cx,y be any cell in the Grid G, where positive inte-
gers x and y denote the cell indices. The layers (L1,…,Ln) of Cx,y ∈ G are the 
neighboring cells of Cx,y as shown in Figure 6.1, and are defined as follows:

 L1(Cx,y) = {Cu,υ|u = x ± 1, υ = y ± 1, Cx,y ≠ Cu,υ}

 L2(Cx,y) = {Cu,υ|u = x ± 2, υ = y ± 2, Cu,υ ≠ L1(Cx,y), Cx,y ≠ Cu,υ}

L3(Cx,y),…,Ln(Cx,y) are defined in a similar way. The considerable maximum 
number of layers depends on the position of the target cell in the Grid. A cell 
Cx,y in G can have the maximum number of layers if it exists at the corner of 
the Grid and the minimum number of layers if it exists at the center of the 

Cx,y

L1

L2

Ln

...

FIGURE 6.1
Cell layers. (Redrawn from Shaikh, A. S. and Kitagawa, H., 2013. Efficient distance-based out-
lier detection on uncertain datasets of Gaussian distribution. World Wide Web 1–28.)
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Grid. Let n denote the maximum number of layers; then the minimum num-
ber of layers is given by [n/2].

6.2.1.1.2 Cell Bounds

Like the cell-based approach by Knorr, the goal of the proposed cell-based 
technique is to identify and prune cells guaranteed to contain only inliers or 
outliers. A cell Cx,y can be pruned as an “outlier cell” if the expected number 
of D-neighbors for any object in Cx,y is less than or equal to the threshold θ. 
Similarly, a cell can be pruned as an “inlier cell” if the expected number of 
D-neighbors for any object in cell Cx,y is greater than θ. Hence, bounds on 
the expected number of D-neighbors of Cx,y ∈ are defined so as to prune 
them. The upper and lower bounds bind the possible expected number of 
D-neighbors without expensive object-wise distance computation.

Upper bound: The upper bound of a cell Cx,y, U B(Cx,y), binds the maximum 
expected number of D-neighbors in Grid G for any object in cell Cx,y. Since the 
Gaussian distribution is infinite, two objects in the same cell may reside at the 
same coordinate. Hence, the maximum expected number of D-neighbors in Cx,y 
for any object in cell Cx,y itself is equal to the number of objects in Cx,y denoted 
by N(Cx,y). Similarly, the maximum expected number of D-neighbors in cells in 
layer Lm(Cx,y) (1 ≤ m ≤ n) for any object in Cx,y can be obtained as follows:
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n
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where N(Lm(Cx,y)) denotes the number of objects in layer Lm(Cx,y). Figure 6.2 
shows how the α = (m − 1) values are obtained for the upper bounds. Hence, 
UB(Cx,y) of Cx,y ∈G is derived as follows:
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Lower bound: The lower bound of a cell Cx,y, LB(Cx,y), binds the minimum 
expected number of D-neighbors in the Grid for any object in cell Cx,y. When 
two objects in the same cell reside at opposite corners, the probability that they 
are D-neighbors takes the minimum value. Hence, the minimum expected 
number of D-neighbors in Cx,y for any object in cell Cx,y itself is equivalent to 
1 1   + −( ) ∗N D( ) ( . , ),Cx y P lr 2 . Similarly, the minimum expected number of 
D-neighbors in cells in layer Lm (Cx,y) (1 ≤ m ≤ n) for any object in Cx,y can be 
obtained as follows:
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Figure 6.2 shows how the α = (m + 1) 2l  values are obtained for the lower 
bounds. Hence, LB(Cx,y) of Cx,y ∈ is derived as follows:

 
LB C N C P l D N L C P m lx y x y r m x y

m

n
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DD)

Look-up table: The bounds discussed above are required by each Cx,y ∈ G 
for pruning. Each bound computation requires evaluation of the costly dis-
tance function Pr(α, D) and the object counts of the respective cell Cx,y and 
its layers Lm(Cx,y). The number of distance function computations for the 
bounds calculation can be reduced by precomputing Pr(α, D) values for Cx,y 
bounds. Since the Pr(α, D) values are decided only by the α-values and are 
independent of the locations of Cx,y, Pr(α, D) values need to be computed 
only for α = m √2l (1 ≤ m ≤ n + 1) and α = ml (0 ≤ m ≤ n − 1). The precomputed 
values are stored in a look-up table to be used by the cell-based pruning 
technique.

6.2.1.1.3 Cell Pruning

Having defined bounds and the look-up table, a cell Cx,y ∈ G can be 
pruned as an inlier cell or identified as an outlier cell as follows. If LB(Cx,y) 
is greater than θ, Cx,y cannot contain outliers. Hence, it can be pruned as 
an inlier cell.

Alternatively, if UB(Cx,y) is less than or equal to θ, Cx,y is identified as an 
outlier cell. Lines 1–12 in Algorithm 1 show the cell-based pruning technique 
(Salman and Kitagawa, 2013).

Ln

L1

Cx,y
......

Lower bound
Min distance between

Cx,y and Ln

Lower bound
Max distance between

Cx,y and Ln

FIGURE 6.2
Cell and layers bounds. (Redrawn from Shaikh, A. S. and Kitagawa, H., 2013. Efficient distance-
based outlier detection on uncertain datasets of Gaussian distribution. World Wide Web 1–28.)
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Algorithm 6.1 Cell-based outlier detection

Input: GDB, D, p, l
Output: Set of distance-based outliers O
 1:  Create cell grid G depending upon dataset GDB values and cell length l;
 2: Initialize Countk of each cell Ck ∈ G;
 3:  Map each object o in GDB to an appropriate Ck, and increment Countk 

by 1;
 4: θ ← |GDB|(l − p), O = {}; (θ correspond to the threshold)
  /*Bounds computation*/
 5:  Compute Pr(α, D) values for the computation of bounds as discussed 

in Section 4.1.2;
  /*Pruning cells using bounds*/ 
 6: for each non-empty Ck in G do
 7:  if LB(Ck) > θ then
 8:    Ck is an inlier cell, mark Ck green. GOTO Next Ck;
 9:  else if U B(Ck) ≤ θ then
10:    Ck is an outlier cell, add objects of Ck to o, mark Ck black. GOTO 

Next Ck;
11: end if
12: end for
  /*Object-wise pruning*/
13: O = O ∪ ObjectWisePruning(G, D, θ);
  /*Unpruned objects processing*/
14: for each object oi in non-empty, uncoloured Ck ∈ G do
15:   if oi is uncoloured then compute ENoi (expected number of 

D-neighbours of oi) using objects in Ck and higher layers of Ck ∈ G;
16:  if ENoi ≤ θ then oi is outlier. Add oi to o;
17: end for
18: return o;

6.2.2 Index-Based Methods

Let N be the number of objects in dataset T, and let F be the underlying dis-
tance function that gives the distance between any pair of objects in T.

For an object 0, the D-neighborhood of 0 contains the set of objects Q ε T 
that are within distance D of 0 (i.e., {Q ε T] F(O,Q) ≤ D}). The fraction p is the 
minimum fraction of objects in T that must be outside the D-neighborhood 
of an outlier. For simplicity of discussion, let M be the maximum number of 
objects within the D-neighborhood of an outlier; that is, M = N(1 – P).

From the formulation above, it is obvious that, given p and D, the prob-
lem of finding all DB(p, D)-outliers can be solved by answering a NN or 
range query centered at each object 0. More specifically, based on a standard 
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multidimensional indexing structure, we execute a range search with 
radius D for each object 0. As soon as (M + 1) neighbors are found in the 
D-neighborhood, the search stops, and 0 is declared a nonoutlier; otherwise, 
0 is an outlier. Analyses of multidimensional indexing schemes reveal that 
for variants of R-trees and K-d trees, the lower bound complexity for a range 
search is R(N1−1/k), where k is the number of dimensions or attributes and N 
is the number of data objects. As k increases, a range search quickly reduces 
to O(N), giving, at best, a constant time improvement reflecting sequential 
search. Thus, the above procedure for finding all DB(p, D)-outliers has a 
worst-case complexity of O(kN2). Two points are worth noting:

• Compared to the depth-based approaches, which have a lower bound 
complexity of Ω(N[k/2]), DB-outliers scale much better with dimen-
sionality. The framework of DB-outliers is applicable and computa-
tionally feasible for datasets with many attributes, that is, k ≥ 5.

  This is a significant improvement on the current state of the art, 
where existing methods can only realistically deal with two attributes.

• The above analysis only considers search time. When it comes to 
using an index-based algorithm, most often, for the kinds of datamin-
ing applications under consideration, it is a very strong assumption 
that the right index exists.

6.2.3 Reverse NN Approach

The most popular variant of NN query is reverse nearest neighbor (RNN), 
a query that focuses on the inverse relation among points. An RNN query 
variant of an NN query is RNN, a query that focuses on the inverse relation 
among points. An RNN query q is to find all the objects for which q is their 
NN. It is formally defined below.

Definition 6.1

Given a set of objects P and a query object q, an RNN query finds a set of 
objects RNN such that for any object p ε P and r ε RNN, dist (r, q) ≤ dist (r, p) 
(Muhammad, 2007).

The RNN set of a query q may either be empty or have one or more ele-
ments. Korn and Muthukrishnan (2000) have defined RNN queries and sug-
gested numerous applications. A two-dimensional RNN query, for example, 
may ask for the set of customers most likely to be affected by the opening of 
a new store so they may be informed about the opening. Alternatively, the 
query can be used to identify the location likely to maximize the number 
of potential customers. In a related example, an RNN query may be asked 
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to find other stores affected by the opening of a new store at some specific 
location. Note: The first example has two different sets (customers and stores) 
involved in the query whereas the second example has only one (stores) 
(Korn and Muthukrishnan, 2000) defining two variants of RNN queries. A 
bichromatic query (the first example) seeks find RNNs when the underlying 
data set comprises two different types of objects. In contrast, a monochro-
matic RNN query (the second example) is asked to find RNNs when the data 
set has only one type.

The problem of RNNs has been extensively studied in the past few years. 
Korn and Muthukrishnan (2000) answer the RNN query by precalculating 
a circle of each object p such that the NN of p lies on the perimeter of the 
circle, as shown in Figure 6.3. The minimum bounding rectangles (MBRs) 
of all these circles are indexed by an R-tree called RNN-tree. The problem 
of an RNN query is reduced to a point location query on the RNN-tree 
that returns all the circles containing q. For example, the circle of a and e 
contains q; so both are the RNNs of q. The intermediate nodes contain the 
MBRs of underlying points, along with the maximum distance from every 
point in the subtree to its NN. The problem with the above-mentioned 
techniques is that they rely on precomputation and cannot deal with effi-
cient updates. To alleviate this problem, many suggest using density-based 
methods.

6.3 Density-Based Methods

Density-based methods (local outlier factor [LOF], local correlation integral 
[LOCI]), in general, assign to each data point a factor describing the rela-
tive density of that data point’s neighborhood. Similar to the distance-based 

q

a

g

f

e

c d

b

FIGURE 6.3
The objects a and e are the RNNs of q.
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approach, density-based detection also involves the computation of data 
point NNs. However, the measurement of a data point p to its NNs is then 
compared to its neighbors’ same measurement. The purpose of doing so is 
to overcome different effects of dense and sparse clusters on points’ neigh-
borhood in detecting outliers, but this comes with a trade-off, as the com-
putational cost becomes even more expensive than that of distance-based 
techniques. In spite of this, once again, because of their applicability for large 
and high-dimensional data, such kinds of methods still attract considerable 
attention from the research community (Vu, 2010).

There is a popular example that is often used to highlight the advantage 
of the density-based approach (Figure 6.4). Assume the distance from every 
object p3 in C1 to its NN is greater than the distance from p2 to its NN in C2. 
If it is a distance-based definition, there will be no values of P and r such that 
p2 will be an outlier while every object in C1 is not.

The outlier score used, called LOF, is a measure of difference in neighbor-
hood density of a point p and with the same measurement as other points in 
its local neighborhood, LOF is able to capture local outliers. For data points 
that belong to a cluster, the LOFs are approximately equal to 1, while for 
each outlier, the corresponding value should be much higher. All the com-
putations of LOF depend on MinPts, which is used to compute the neigh-
borhood density for each data point. The choice of MinPts, however, is not 
simple.

6.3.1 Local Outlier Factor

Between formal definitions, we have the following LOF:

C1

C2

o1

o2

FIGURE 6.4
Example showing the case of distance-based outlier definitions. (Redrawn from Vu, N. H., 
2010. Outlier Detection Based on Neighborhood Proximity. Singapore: Nanyang Technological 
University.)



308 Artificial Intelligence Tools

Definition 6.2

k-Distance of p: The k-distance of p, denoted as k-distance (p) is defined as the 
distance d(p; o) between p and o such that

• For at least k data points 0′ ε DS\p, it holds that d(p; 0′) ≤ d(p; o)
• For at most (k–1) data points 0′ ε DS\p, it holds that d(p; 0′) < d(p; o)

Figure 6.5 shows an example of such a definition.

Definition 6.3

k-Distance of p’s neighborhood: The k-distance of p’s neighborhood contains 
every object whose distance from p is not greater than the k-distance, and is 
denoted as (Wen et al., 2001)

 Nk(p) = {q ε DS\p\D(p, q) ≤ k-distance(p)}

These objects q are called the k-NNs of p. Whenever no confusion arises, 
we simplify our notation to use Nk(p) as a shorthand for Nk-distance(p)(p). Note: 
In Definition 6.2, the k-distance(p) is well-defined for any positive integer 
k, although the object o may not be unique. In this case, the cardinality of 
Nk(p) is greater than k. For example, suppose there is (i) one object with dis-
tance 1 unit from p; (ii) two objects with distance 2 units from p; and (iii) 
three objects with distance 3 units from p. Then, 2-distance(p) is identical to 
3-distance(p), and there are three objects of 4-distance(p) from p. Thus, the 
cardinality of N4(p) can be greater than 4, in this case 6.

Reach-distk( p1,o) = k-distance(o)

Reach-distk(p2,o)

o

FIGURE 6.5
Reach-dist(p1,o) and reach-dist(p2,o), for k = 4.
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Definition 6.4

Reachability distance of p w.r.t. o: The reachability distance of data point p 
with respect to o is defined as (Ankerst et al., 1999)

 Reach-distk (p, o) = max{k-distance(o),d(p, o)} 

Figure 6.5 illustrates the idea of reachability distance with k = 4. Intuitively, 
if object p is far away from o (e.g., p2 in Figure 6.5), then the reachability dis-
tance between the two is simply their actual distance. However, if they are 
“sufficiently” close (e.g., p1 in Figure 6.5),the actual distance is replaced by 
the k-distance of o. The reason is that in doing so, the statistical fluctuations 
of d(p, o) for all ps close to o can be significantly reduced. The strength of this 
smoothing effect can be controlled by the parameter k. The higher the value 
of k, the more similar the reachability distances for objects within the same 
neighborhood.

So far, we have defined k-distance(p) and reach-distk(p) for any positive 
integer k. But for the purpose of defining outliers, we focus on a specific 
instantiation of k that links us back to density-based clustering. In a typi-
cal density-based clustering algorithm, two parameters define the notion of 
density: (i) a parameter MinPts specifying a minimum number of objects; (ii) 
a parameter specifying a volume. These two parameters determine a den-
sity threshold for the clustering algorithms. That is, objects or regions are 
connected if their neighborhood densities exceed the given density thresh-
old. To detect density-based outliers, however, it is necessary to compare the 
densities of different sets of objects, which means we must determine the 
density of sets of objects dynamically. Therefore, we keep MinPts as the only 
parameter and use the values reach-distMinPts(p, o), for o Î NMinPts(p), as a 
measure of the volume to determine the density in the neighborhood of an 
object p (Breunig et al., 2000).

Definition 6.5

Local reachability density of p: The local reachability density of a data point 
p is the inverse of the average reachability distance from the k-NNs of p (Wen 
et al., 2001) and is shown as
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Intuitively, the local reachability density of an object p is the inverse of the 
average reachability distance based on the MinPts-NNs of p. Note: The local 
density can be ¥ if all the reachability distances in the summation are 0. This 
may occur for an object p if there are at least MinPts objects, different from p, 
but sharing the same spatial coordinates; that is, if there are at least MinPts 
duplicates of p in the data set. For simplicity, we will not handle this case 
explicitly but simply assume there are no duplicates. (To deal with duplicates, 
we can base our notion of neighborhood on a k-distinct distance, defined 
analogously to k-distance in Definition 6.2, with the additional requirement 
that there must be at least k objects with different spatial coordinates.)

6.3.1.1 Properties of Local Outliers

In this section, we conduct a detailed analysis of the properties of LOF. The 
goal is to show that our definition of LOF captures the spirit of local outli-
ers, and has many desirable properties. Specifically, we show that for most 
objects p in a cluster, the LOF of p is approximately equal to 1. As for other 
objects, including those outside a cluster, we provide a general theorem 
giving a lower and upper bound on the LOF. Furthermore, we analyze the 
tightness of our bounds and show that the bounds are tight for important 
classes of objects. However, for other classes of objects, the bounds may not 
be as tight. For the latter, we give another theorem specifying better bounds 
(Breunig et al., 2000).

• LOF for objects deep in a cluster.

Below, we show that for most objects in C1, the LOF is approximately 1, 
indicating that they cannot be labeled as outlying.

Lemma 6.1

Let C be a collection of objects. Let reach-dist-min denote the minimum 
reachability distance of objects in C; that is, reach-dist-min = min {reach-dist 
(p, q) |p, q ε C}.

Similarly, let reach-dist-max denote the maximum reachability distance of 
objects in C.

Let ε be defined as (reach-dist-max/reach-dist-min–1). Then, for all objects 
pεC, such that:

 i. All the MinPts-NNs q of p are in C
 ii. All the MinPts-NNs o of q are also in C

Therefore, it holds that 1/(1 + ε) ≤ LOF(p) ≤ (1 + ε).
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Proof (Sketch)

For all MinPts-NNs q of p, reach-dist(p, q) ≥ reach-dist-min. Then, the local 
reachability density of p, as per Definition 6.5, is ≤1/reach-dist-min.

However, reach-dist(p, q) ≤ reach-dist-max. Thus, the local reachability 
density of p is ≥1/reach-dist-max.

Let q be a MinPts-NN of p. By an argument identical to the one for p above, 
the local reachability density of q is also between 1/reach-dist-max and
1/reach-dist-min. Thus, we have reach-dist-min/reach-dist-max ≤ LOF(p) ≤
reach-dist-max/reach-dist-min and can establish 1/(1 + ε) ≤ LOF(p) ≤ (1 + ε).

The interpretation of Lemma 6.1 is as follows. Intuitively, C corresponds to 
a “cluster.” Let us consider the objects p that are “deep” inside the cluster; this 
means all the MinPts-NNs q of p are in C, and, in turn, all the MinPts-NNs 
of q are also in C. For such deep objects p, the LOF of p is bounded. If C is a 
“tight” cluster, the e value in Lemma 6.1 can be quite small, forcing the LOF 
of p to be quite close to 1. To return to the example in Figure 6.4, we can apply 
Lemma 6.1 to conclude that the

LOFs of most objects in cluster C1 are close to 1.

• A general upper and lower bound on LOF.

Lemma 6.1 above shows a basic property of LOF, namely that for objects 
deep inside a cluster, the LOFs are close to 1, and should not be labeled as 
local outliers. A few immediate questions come to mind. What about those 
objects near the periphery of the cluster? And what about those objects out-
side the cluster, such as o2 in Figure 6.4? Can we get an upper and lower 
bound on the LOF of these objects?

Theorem 6.1 below shows a general upper and lower bound on LOF (p) for 
any object. As such, Theorem 6.1 generalizes Lemma 6.1 along two dimen-
sions. First, it applies to any object p, and is not restricted to objects deep 
inside a cluster. Second, even for objects deep inside a cluster, the bound 
given by Theorem 6.1 can be tighter than the bound given by Lemma 6.1, 
implying that the epsilon defined in Lemma 6.1 can be made closer to zero 
because in Lemma 6.1, the values of reach-dist-min and reach-dist-max 
are obtained based on a larger set of reachability distances. In contrast, in 
Theorem 6.1, this minimum and maximum are based on just the MinPts-
nearest neighborhoods of the objects under consideration giving rise to 
tighter bounds.

Before we present Theorem 6.1, we define the following terms. For any 
object p, let directmin(p) denote the minimum reachability distance between 
p and a MinPts-NN of p, that is,

 directmin(p) = min{reach − dist(p,q)|q ε NMinPts(p)}
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Similarly, let directmax(p) denote the corresponding maximum, that is,

 directmax(p) = max{reach − dist(p,q)|q ε NMinPts(p)}

To generalize these definitions to the MinPts-NN q of p, let indirectmin(p) 
denote the minimum reachability distance between q and a MinPts-NN of 
q; that is,

 indirectmin(p) = min{reach − dist(q,o)|q ε NMinpts(p) and o ε NMinpts(q)}

Similarly, let indirectmax(p) denote the corresponding maximum. In the 
sequel, we refer to p’s MinPts-nearest neighborhood as p’s direct neighbor-
hood, and refer to q’s MinPts-NNs as p’s indirect neighbors, whenever q is 
a MinPts-NN of p. Figure 6.6 gives a simple example to illustrate these defi-
nitions. In this example, object p lies some distance away from a cluster of 
objects C. For ease of understanding, let MinPts = 3. The directmin(p) value 
is marked as dmin in the figure; the directmax(p) value is marked as dmax. 
Since p is relatively far away from C, the 3-distance of every object q in C is 
much smaller than the actual distance between p and q. Thus, from Defini-
tion 6.4, the reachability distance of p with respect to q is given by the actual 
distance between p and q. Now, among the three-NNs of p, we, in turn, find 
their minimum and maximum reachability distances to their three-NNs. In 
the figure, the indirectmin(p) and indirectmax(p) values are marked as imin and 
imax, respectively.

Theorem 6.1

Let p be an object from the database D, and 1 ≤ MinPts ≤ |D|. Then, it is the 
case that

MinPts = 3

p

C

dmin = 4* imax
⇒ LOFminPts(p) ≥ 4

dmin = 6* imin

dmin

dmax
imin

imax

⇒ LOFminPts(p) ≤ 6

FIGURE 6.6
An example illustrating the general upper and lower bound on LOF with MinPts = 3.
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To illustrate the theorem using the example in Figure 6.7, suppose dmin is 
4 times that of imax, and dmax is 6 times that of imin. Then, by Theorem 6.1, the 
LOF of p is between 4 and 6. It should also be clear from Theorem 6.1 that 
LOF(p) has an easy-to-understand interpretation: it is simply a function of 
the reachability distances in p’s direct neighborhood relative to those in p’s 
indirect neighborhood. The figure below gives an example of Theorem 6.1 
(Ankerst et al., 1999).

• The tightness of the bounds.

As discussed before, Theorem 6.1 is a general result with the specified 
upper and lower bounds for LOF applicable to any object p. An immedi-
ate question comes to mind. How good or tight are these bounds? In other 
words, if we use LOFmax to denote the upper bound directmax/indirectmin, 
and use LOFmin to denote the lower bound directmin/indirectmax, how large 
is the spread or difference between LOFmax and LOFmin? In the following, 
we study this issue. A key part of the following analysis is to show that the 
spread LOFmax – LOFmin is dependent on the ratio of direct/indirect. It turns 
out that the spread is small under some conditions, but not so small under 
other conditions.

Given directmin(p) and directmax(p) as defined above, we use direct(p) to 
denote the mean value of directmin(p) and directmax(p). Similarly, we use 
indirect(p) to denote the mean value of indirectmin(p) and indirectmax(p). 
In the sequel, whenever no confusion arises, we drop the parameter p, for 
example, direct as a shorthand of direct(p).

To summarize, if the fluctuation of the average reachability distances in 
the direct and indirect neighborhoods is small (i.e., pct is low) Figure 6.8, 
Theorem 6.1 estimates the LOF very well, as the minimum and maximum 

Minpts = 6

p

d2min

i2max

C2

d1min

C1

i1max

FIGURE 6.7
Relative span for LOF depending on the percentage of fluctuation for d and w.
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LOF bounds are close to each other. There are two important instances when 
this is true (Breunig et al., 2000):

 1. The percentage pct is very low for an object p, if the fluctuation of the 
reachability distances is rather homogeneous, that is, if the MinPts-
NNs of p belong to the same cluster. In this case, the values directmin, 
directmax, indirectmin, and indirectmax are almost identical, resulting 
in LOF being close to 1. This is consistent with the result established 
in Lemma 6.1.

 2. The argument above can be generalized to an object p that is not 
located deep inside a cluster, but whose MinPts-NNs all belong to 
the same cluster (as depicted in Figure 6.7). In this case, even though 
LOF may not be close to 1, the bounds on LOF as predicted by 
Theorem 6.1 are tight.

 3. Bounds for objects whose direct neighborhoods overlap multiple 
clusters.

To this point, we have analyzed the tightness of the bounds given in 
Theorem 6.1, and provided two conditions under which the bounds are tight. 
An immediate question that comes to mind is under what condition are the 
bounds not tight? On the basis of Figure 6.8, if the MinPts-NNs of an object p 
belong to different clusters having different densities, the value for pct may 
be very large. Then, based on Figure 6.8, the spread between LOFmax and 
LOFmin value can be large. In this case, the bounds given in Theorem 6.1 do 
not work well.

Theorem 6.2 intends to give better bounds on the LOF of object p when p’s 
MinPts-nearest neighborhood overlaps with more than one cluster. The intui-
tive meaning of Theorem 6.2 is that when we partition the MinPts-NNs of p 
into several groups, each group proportionally contributes to the LOF of p.
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FIGURE 6.8
Illustration of Theorem 6.2.
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An example is MinPts = 6. In this case, three of object p’s six-NNs come from 
cluster C1, and the other three come from cluster C2. Then, as shown in Figure 
6.7, according to Theorem 6.2, LOFmin is given by (0.5 * d1min + 0.5 * d2min)/
(0.5/i1max + 0.5/i2max), where d1min and d2min give the minimum reachability 
distances between p and the six-NNs of p in C1 and C2, respectively, and i1max 
and i2max give the maximum reachability distances between q and q’s six-
NNs, where q is the six-NN of p from C1 and C2, respectively. For simplicity, 
Figure 6.8 does not show the case for the upper bound LOFmax.

Theorem 6.2

Let p be an object from the database D, 1 ≤ MinPts ≤ |D|, and C1, C2,…,Cn 
be a partition of NMinPts(p), that is, NMinPts(p) = C1 ∪ C2… ∪ Cn ∪ {p} with 
Ci ∪ Cj = Ø, Ci = Ø for 1 ≤ ij ≤ n, i ≠ j.

Furthermore, let ξi = |Ci|/|NMinPts(p)| be the percentage of objects in p’s 
neighborhood, which are also in Ci. Let the notions direct imin(p), direct 
imax(p), indirect imin(p), and direct imax(p) be defined analogously to directmin(p), 
directmax(p), indirectmin(p), and indirectmax(p) but restricted to the set Ci (e.g., 
direct imin(p), denoting the minimum reachability distance between p and a 
MinPts-NN of p in the set Ci). Then, it holds that (a)
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Theorem 6.2 generalizes Theorem 6.1, taking into consideration the ratios 
of the MinPts-NNs coming from multiple clusters. As such, the following cor-
ollary can be formulated. Corollary 1: If the number of partitions in Theorem 
6.2 is 1, then LOFmin and LOFmax given in Theorem 6.2 are exactly the same 
corresponding bounds as those given in Theorem 6.1.

6.3.1.2 Connectivity Outlier Factor

We can compute the connectivity-based outlier factor (COF) at data record p 
with respect to its k-neighborhood with (Pokrajac et al., 2008)
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COF is computed as the ratio of the average chaining distance from data 
record p to Nk(p) and the averaged average chaining distances at the record’s 
neighborhood.

Applying static COF outlier detection algorithms to data streams would be 
extremely computationally inefficient, thus making incremental outlier tech-
niques essential. The static COF algorithm can be applied to data streams 
in an “iterated” way by reapplying it every time a new data record pc is 
inserted into the data set. However, each time a new record is inserted, the 
algorithm recomputes COF values for all the data records from the data set. 
Given the time complexity of the COF algorithm of O(Nlogn) (for moderate 
data record dimensions), where n is the current number of data records in 
the data set, after the insertion of N records, the total time complexity for the 
“iterated” approach is
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Alternatively, we could perform static COF periodically after inserting par-
ticular data blocks, but this “periodic” method cannot identify the exact time 
when an outlier appears in the database; nor can it detect outliers that will 
later be classified as normal records, because the data set is not stationary.

Our proposed incremental COF algorithm will provide the same results 
detecting outliers as the “iterated” COF described above. All existing records 
in the database retain the same COF values as the “iterated” COF algorithm. 
Because the proposed algorithm has time complexity O(N ⋅ logN), it clearly 
outperforms the static “iterated” COF approach. After the N data records are 
all inserted into the data set, the result of the incremental COF algorithm on 
these N data records is independent of the order of insertion and equivalent 
to the static COF that is performed after all data records are inserted.

6.3.1.2.1 Methodology

We have two aims in our design of an incremental COF algorithm. First, we 
want the result of the incremental algorithm to be equivalent to the result of 
the “iterated” static algorithm every time a new record is inserted into a data 
set. Nor should there be a difference between the application of incremental 
COF and static COF when all data records up to a certain time are available. 
Second, the asymptotic time complexity of an incremental COF algorithm 
must be comparable to the static COF algorithm. To have a feasible incre-
mental algorithm, at any moment in time, the insertion/deletion of the data 
record must result in small (and preferably limited) numbers of updates of 
the algorithm parameters. To be clear, the number of updates per insertion/
deletion must be independent of the current number of records in the data 
set, or the time complexity of the incremental COF algorithm will be Ω(N2) 
(note: N is the size of the final dataset). In this section, we suggest ways to 
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insert and delete records for the incremental COF algorithm and discuss the 
time complexities of each.

• Incremental COF algorithm.

Our proposed incremental COF algorithm computes the COF value for 
each data record that is inserted into the data set and immediately deter-
mines whether it is an outlier. COF values for the existing data records are 
also updated if needed (Pokrajac et al., 2008).

• Insertion.

The following two tasks are performed: (a) insertion of a new record into 
the database and computation of its ac-dist and COF; (b) maintenance, if the ac-
dist and COF values require updating for the records already in the database.

For example, consider the insertion of a new record p into a database of 
two-dimensional records; ac-dist may change for a certain record q if the set 
of its k-NNs Nk(q) changes due to the insertion of p. Put otherwise, ac-dist(q) 
can change if a data record q is among the reverse k-NN of p. Since p is among 
k-NNs of q (see Figure 6.9), the ac-dist(q) should be updated. Note: The set of 
records where ac-dist needs to be updated after the insertion of p is denoted 
by Supdate_ac_dist(p) in the rest of the chapter. Now, denote the set of records 
where COF should be updated as Supdate_COF(p). Therefore, COF(o) for an exist-
ing record o needs to be updated if: (a) ac-dist(o) is updated; (b) the insertion 
of p changes the neighborhood of o (in other words, p is among k-NNs of o); 
and (c) ac-dist is updated for some of k-NNs of o.

Since ac-dist(o) is updated only if o is among RNNs of p, conditions (a) 
and (b) above imply that Supdate_ac_dist(p) ⊂ Supdate_COF(p). Condition (c) indicates 
COF must be updated for all RNNs of points from the set Supdate_ac_dist(p). 
In Figure 6.9, for example, COF will be updated on data record r, since its 

p1 = p2 = …. pk

k = 2

q

Supdate_ac_COF

Supdate_ac_dist

Nk(q)

(a) (b)

FIGURE 6.9
(a) Illustration of updates for COF insertion and (b) degenerate case of the incremental COF 
algorithm.
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k-NN contains a record from Supdate_ac_dist(p). As in the LOF approach, we 
define k-th-NN of a record p as a record q from the data set S, such that for 
at least k records o′ ∈ S-{p}, it holds that d(p, o′) ≤ d(p, q), and for at most k – 1 
records o′ ∈ S-{p}, it holds that d(p, o′) < d(p, q). In this case, d(p, q) denotes the 
Euclidean distance between data records p and q, and k-NNs (Nk(p)) include 
all data records r ∈ S-{p} such that d(p, r) ≤ d(p, q). We also define k reverse 
nearest neighbors of p (called kRNN (p)) as all data records q for which p is 
among their k-NNs. For a given data record p, Nk(p) and kRNN(p) may be, 
respectively, retrieved by executing NN and RNN (a.k.a. inverse) queries on 
a data set S. The general framework for the insertion of new data record for 
the COF algorithm is given in Figure 6.10a (Pokrajac et al., 2008).

• Deletion.

In data stream applications, it is frequently necessary to delete irrelevant 
data records because of obsolescence or changes in regime. Figure 6.10b 
shows the general framework for deleting a block of data records Sd from 
data set S. Note that it is very similar to the insertion scheme. At the start of 
the process, the record that must be deleted from the set is marked accord-
ingly. Of course, the removal of a record p may affect the k-RNN of the other 
records. Because of the update of ac-dist, the COF value must be updated. In 
addition to data records where ac-dist values change, this update includes 
RNNs. At the end of the procedure, the data record can be deleted from the 
database (Pokrajac et al., 2008).

Two technical comments are relevant at this point. First, in the algorithms 
shown above, Supdate_ac_dist (p) denotes the set where ac-dist should be recom-
puted, not where the ac-dist will actually change. Yet our experimental evi-
dence suggests ac-dist will always change for all points from Supdate_ac_dist (p). 

FIGURE 6.10
The pseudo code for (a) insertion and (b) deletion of incremental COF algorithm.
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Second, should the reverse k-NN of points from Supdate_ac_dist be computed with 
or without considering the deleted record p? In our view, the data record p 
can be deleted from a database before Supdate_COF is computed. We justify this 
as follows: let r be an existing data record such that r ∉ Supdate_ac_dist(p). Then, 
p ∉ Nk(r). Now assume r ∈ Supdate_COF(p). Then, there is an o ∈ Supdate_ac_dist(p) 
such that o ∈ Nk(r). Since p ∉ Nk(r), the deletion of p will not affect the neigh-
borhood of r and Supdate_COF can safely be determined after p is deleted.

The static COF algorithm does not cover a degenerate case where the 
denominator in Equation 6.1 equals to zero, but this scenario is possible, as 
a database of dynamic data could contain identical records (corresponding 
to different time instants). For example, consider k identical records p1,…,pk 
and record q such that records p1,…,pk + 1 are k-NNs of q and q is among k-NNs 
of each of the records p1,…,pk+1 (see Figure 6.1). In this case, clearly ac-distNk(pi)

Upi(pi) = 0, i = 1,…,k + 1 and ac-distNk(qi)Uqi(q) > 0.
COF(pi) will involve division by 0 and therefore be undefined. But COF 

is defined as the ratio of ac-dist at the data record and the average ac-dist at 
its neighborhood. If the ac-dist at the record equals the average ac-dist, COF 
should be equal to 1. Therefore, for data records where the numerator and 
denominator of Equation 6.1 are both zeros, as for example, data records pi, 
we stipulate COF(pi) ≡ 1. But when only the denominator of Equation 6.1 is 
equal to 0, as in record q, the neighborhood of the record will have an infi-
nitely larger density than the record itself will have. Accordingly, for these 
data records, we stipulate COF(q) ≡ ∞ (note: We assign COF(q) a large number, 
in practice).

6.4 Multigranularity Deviation Factor

In this section, we introduce the multigranularity deviation factor (MDEF), 
which satisfies the properties listed above. Let the r-neighborhood of an 
object pi be the set of objects within distance r of pi.

Intuitively, the MDEF at radius r for a point pi equals the relative devia-
tion of its local neighborhood density from the average local neighborhood 
density in its specific r-neighborhood. Thus, an object whose neighborhood 
density matches the average local neighborhood density will have an MDEF 
of 0. In contrast, outliers will have MDEFs far from 0.

To be more precise, we define the following terms. Let n(pi, αr) be the num-
ber of objects in the αr-neighborhood of pi. Let n̂(pi, r, α) be the average, over 
all objects p in the r-neighborhood of pi, of n(p, αr) (see Figure 6.11). The use 
of two radii serves to decouple the neighbor size radius r from the radius r 
over which we are averaging. We denote the function n̂(pi,α, r) over all r as 
the LOCI.
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Definition 6.6

MDEF: For any pi, r, we define the MDEF at radius (or scale) r as (Papadimitriou 
et al., 2003).
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Note: The r-neighborhood for an object pi always contains pi. This implies n̂
(pi, α, r) > 0 and the above quantity is always defined. For faster computation 
of MDEF, we will sometimes estimate both n(pi, αr) and n̂(pi, r, α). This leads 
to the following definition.

Definition 6.7

Counting and sampling neighborhood: The counting neighborhood (or 
αr-neighborhood) is the neighborhood of radius αr, over which each n(p, αr) 
is estimated. The sampling neighborhood (or r-neighborhood) is the neigh-
borhood of radius r, over which we collect samples of n(p, αr) to estimate n̂(pi, 
r, α) (Papadimitriou et al., 2003).

In Figure 6.11, for example, the large circle bounds the sampling neighbor-
hood for pi, while the smaller circles bound counting neighborhoods for vari-
ous p. The main outlier detection scheme we propose relies on the standard 
deviation of the r-neighbor count over the sampling neighborhood of pi. We 
thus define the following quantity:
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FIGURE 6.11
Definitions for n and n̂—for instance, n(pi, r) = 4, n(pr, _r) = 1, n(p1, _r) = 6 and n̂ (pi, r, _) = (1 + 
6 + 5 + 1)/4 = 3.25.
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Advantages of our definitions: Among several alternatives for an outlier score 
(such as max(n̂/n, n/n̂), to give one example), our choice allows us to use prob-
abilistic arguments for flagging outliers. This is a very important point.

The above definitions and concepts make minimal assumptions. The only 
general requirement is that a distance be defined. Arbitrary distance functions 
are allowed, and these may incorporate domain-specific, expert knowledge, if 
desired. Furthermore, the standard-deviation scheme assumes pairwise dis-
tances at a sufficiently small scale are drawn from a single distribution, which 
is reasonable. For the fast-approximation algorithms, we make the following 
additional assumptions (the exact algorithms do not depend on these):

• Objects belong to a k-dimensional vector space, that is, 
pi = ( , , ..., ).p p pi i i

k1 2   This assumption holds in most situations. 
However, if the objects belong to an arbitrary metric space, it is pos-
sible to embed them into a vector space. There are several techniques 
for this using the L1 norm on the embedding vector space (Ankerst 
et al., 1999).

• We use the L1 norm, defined as � �p p m ki j− ∞ ≡ ≤ ≤max1  | |.p pi
m

j
m−  

This is not a restrictive hypothesis, since it is well known that, in prac-
tice, there are no clear advantages of one particular norm over another.

Finally, see Figure 6.11.

6.5  Use of Neural Network Based in Semisupervised 
and Unsupervised Learning

6.5.1 Semisupervised Learning with Neural Networks

It is possible to apply the principles of graph-based semisupervised learning 
to neural networks to provide more efficient ways to exploit a higher number 
of either labeled or unlabeled pixels. Because neural networks can be trained 
by the stochastic gradient descent (SGD), they can easily scale to millions 
of samples, something unfeasible with SVM-based methods. This obviously 
increases the attraction of neural networks for large-scale remote-sensing 
problems, such as those encountered in semisupervised image classification 
(Ratle et al., 2010).

Following the semisupervised regularization framework, we propose to 
minimize the following function:
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where the edge weights Wij define pairwise similarity relationships between 
unlabeled examples.

Note: This problem, like the transductive or Laplacian support vector 
machines (TSVMs) objective, is nonconvex in the nonlinear case. It cannot 
be solved by a simple optimization scheme; even linear models such as ker-
nel machines cannot solve it. However, we propose to minimize this func-
tion in the primal by SGD, and use a multilayer perceptron for solving the 
nonlinear case.

The general scheme of semisupervised neural networks goes as follows. 
Essentially, the algorithm is given both labeled and unlabeled samples. For 
each iteration, it takes gradient steps to optimize the loss function of errors 
(labeled information), V, and the regularizer (unlabeled information), L. 
Note: Both supervised and unsupervised neural networks use this approach. 
Because it allows the weighting of V and L in the same neural net, the model 
offers a general learning framework for classification problems.

The implementation of the proposed algorithm is to define a loss func-
tion for both labeled and unlabeled samples, a neural network topology, an 
optimization algorithm, and balancing constraints. We analyze these issues 
in more detail in the following subsections. For the most part, in this frame-
work, neighbors are defined according to a k-NNs algorithm.

• The loss function for supervised classification.

We use the hinge loss function in Equation 6.4 for V, as do SVM, LapSVM, 
or TSVM. Traditionally, neural networks use a squared loss function that 
is appropriate for Gaussian-noise distributions. When this assumption does 
not hold, using the hinge loss function may be more appropriate. In fact, for 
the classification setting, the use of entropic or hinge loss functions may be 
more suitable (Vapnik, 1998).

• The loss function for unsupervised classification.

LapSVM implements a functional version of Laplacian Eigenmaps. Instead 
of learning a one-to-one mapping between the input and the embedding 
space, it learns a function (an SVM) preserving neighborhood relations. But 
optimizing the Laplacian Eigenmaps loss term Wij || f(xi) − f(xj)||2 can be dif-
ficult, especially as we must enforce the following constraints: fτDf = I and f 
τD1 = 0. These ensure the new features have zero mean and unit variance. 
Because these constraints make the optimization difficult, we seek a loss 
function that will permit unconstrained optimization. Accordingly,
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where Wij = 1 if i and j are deemed similar and 0 otherwise; m is a mar-
gin implemented in this loss in a neural network and is termed “DrLIM” 
(dimensionality reduction by learning an invariant mapping). DrLIM per-
mits similar examples to be mapped closely, with dissimilar ones separated 
by at least the distance m, thereby preventing the embedding from collaps-
ing and making the use of constraints unnecessary, where the LapSVM 
approach is generalized to networks of several layers. When we adapt this 
type of objective function directly to the task of classifying the unlabeled 
data (Karlen et al., 2008), we get an approach interestingly related to TSVM. 
Rather than performing an optimization over the coordinates of the sam-
ples in the embedding, we propose the direct optimization of the labels of 
unlabeled data by directly encoding into the algorithm that neighbors with 
Wij > 0 should have the same class assignment. To this end, we can optimize 
a general objective function such as
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where
W is a pairwise similarity matrix defined a priori, as previously shown.
V(⋅) is the hinge loss function. For the multiclass case, we can sum over 

the classes Ω, so that V ( , ( ), )x f x y  1= ∑ =c
Ω  max(0, 1 − y(c)f(x)), where 

y(c) = 1 if y = c and −1 otherwise.

η(+) and –η(−) are learning rates. The classifier should be trained to classify 
xi and xj in the same class if Wij = 1, with learning rate η(+), and also trained 
to push them in different classes if Wij = 0, with learning rate –η(−).

Intuitively, Equation 6.4 assigns a pair of neighbors to the cluster with the 
most confident label from the pair. Examples xj that are not neighbors of xi, 
in other words, when Wij = 0, are encouraged to fall into different clusters. 
Figure 6.12 illustrates this principle.

Note: If only the L cost is used (Equation 6.4), the method only works 
with unlabeled samples, thereby performing unsupervised learning. 
We can do this by setting M arbitrarily large. As a result, the proposed 
method constitutes a generalization of both supervised and unsupervised 
approaches. The NCutEmb approach provides algorithms for the binary 
and the multiclass case in an unsupervised setting. In the binary case, 
Equation 6.4 describes the minimized loss using a neural network f(x) with 
one output y ∈ {±1} and trained online via SGD. For the multiclass case, 
two algorithmical variants are provided, NCutEmbmax and NCutEmball; 
these; these differ in the way the “winning” class is chosen. They are also 
evaluated in this chapter. NCutEmbmax is very similar to the binary case: 
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we push neighbors toward the most confident label. With NCutEmball, 
we push toward all clusters simultaneously, with one learning rate η per 
class. Each learning rate is weighted by the outputs of the neural network 
(Ratle et al., 2008).

• Neural network architecture.

We propose using a multilayer neural network model, whose neuron j in 
layer l + 1 yields
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where wi.j
l  are the weights connecting neuron i in layer l − 1 to neuron j 

in layer l, wl
bj are the bias term of neuron j in layer l (we fix it to +1), and 

g is a nonlinear activation function (we use the hyperbolical tangent). As 
in the LapSVM case, we denote the model’s output (prediction) for the 
sample xi as f(xi), and the vector of all predictions as f = [ f(x1),…, f(xl + u)]τ. 
For the multiclass case, the network has an output node for each class, but 
all outputs share the same hidden neurons, as is often the case in neural 
networks.

The advantages of neural networks for semisupervised learning include 
the following:

• Kernel methods, by way of contrast are computationally demanding 
as the number of samples increases.

• In neural networks, regularization can be easily controlled by limit-
ing the number of hidden neurons in the network.
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FIGURE 6.12
Unsupervised learning using NCutEmb. A hyperplane that separates neighbors is pushed to 
classify them in the same class ((a) the classifier cuts through an edge of the graph and is 
pushed upward), while the hyperplane that classifies nonneighbors in the same class is modi-
fied to separate them ((b) the hyperplane is pushed to separate the unconnected points).
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• The model is readily applicable to new pixels that become available.
• It is easy to encode prior knowledge using the neural network’s 

architecture.
• Neural networks permit stochastic gradient optimization.

To clarify the final point, gradient descent works by moving toward the 
minimum of the loss function by taking a step proportional to the negative 
of the loss function’s gradient. This technique, commonly called batch gradi-
ent descent, generally requires computing the average value of the gradient 
over the whole data set. This can be costly when working with a very large 
number of pixels. To avoid this problem, we propose training using SGD 
(Bottou and LeCun, 2005). Unlike batch gradient descent, SGD processes one 
example at a time, requiring fewer calculations and often yielding better 
generalization properties, as it finds an approximate minimum rather than 
an exact one. With SGD, parameters wij are updated using

 W w lt t+ = − ∇1 η

where wt is the weight vector at training epoch t, and l refers to any dif-
ferentiable loss function. If we train with SGD, we can handle very large 
databases, as every update involves one (or a pair) of examples, and grows 
linearly in time with the size of the data set. In addition, the algorithm will 
converge for low-enough values of η.

6.5.2 Unsupervised Learning with Neural Networks

The artificial neural networks with unsupervised learning (or self- 
supervised) do not require any external element to adjust the weight of the 
communication links to their neurons. They do not receive the information 
from the environment that indicates if the generated output, in response to 
a determined input, is correct or incorrect: hence the general understanding 
that unsupervised artificial neural networks are capable of self-organization 
(Masters, 1993).

The main problem in the unsupervised classification is to how divide the 
space where the objects are (space of characteristics) into groups or catego-
ries. Intuitively, closeness criteria are used for this: in other words, an object 
belongs to a group if it is similar to the elements that integrate that group.

When there is no supervisor, the network must determine for itself the 
characteristics, regularities, correlations, or categories of input data. There 
are many different interpretations of the output of the unsupervised net-
works, depending on their structure and the learning algorithm used. In 
some cases, the output represents a degree of familiarity with or similarity 
between the signal being introduced into the network and the information 



326 Artificial Intelligence Tools

gathered to that point. Under other circumstances, information can be 
grouped (clustered) to generate a category structure, but in this case, the 
network detects the categories from the correlations between the presented 
information. In such a situation, the output of the network codifies the input 
data, keeping the relevant information. Finally, some networks with unsu-
pervised learning can map characteristics (i.e., feature mapping), generating 
a geometric disposition in the output neurons that represents a topographic 
map of the characteristics of the input data. This gives the network similar 
information that will always affect output neurons close to each other, that 
is, in the same mapping zone.

In general, there only two kinds of unsupervised learning (Eduardo, 2009):

• Hebbian learning
• Competitive learning

6.5.2.1 Hebbian Learning

Hebbian learning applies to a group of neurons strongly attached by a com-
plex structure. Efficiency is identified by the intensity or the magnitude of a 
connection, that is, the weight. Thus, Hebbian learning basically consists of 
the adjustment of the weights of the communication links according to the 
correlation of the values of activation (outputs) of two connected neurons; 
when the two neurons are activated at the same time, the weight is rein-
forced through the following expression:

 Δw t y t x tki k i( ) * ( ) * ( )=η  (6.5)

where η is a positive constant-denominated learning rate, yk is the state of 
activation of the kth computational neuron in observation, and xi corresponds 
to the state of activation of the ith node of the preceding layer. This expres-
sion is Hebbian, because if the two units are activated (positive), the connec-
tion is reinforced. But if one unit is activated and the other is not (negative), 
the value of the connection weakens. A basic rule of unsupervised learn-
ing is that the weight is modified as a function of the states (outputs) of the 
obtained nodes without asking if these states of activation will be attained 
or not.

A Hebbian process is characterized by four key properties:

 1. It is time dependant: The communication link occurs when the two 
computational neurons are activated.

 2. It is local: For the effect described by Hebb to take place, the nodes 
must be continuous in the space, but the modification only has a 
local effect.
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 3. It is interactive: Modification occurs only when both units are acti-
vated. However, it is not possible to predict the activation.

 4. It is correlated. Given the co-occurrence of the activations to be pro-
duced in very short periods of time, the effect described by Hebb 
is also termed a compound synapse. For one of the computational 
neurons to be activated, however, the activation must be related to 
the activation of one or many previous nodes. This is why it is called 
a correlated synapse.

A disadvantage of the first point (time dependency) is that the exponential 
growth leads to a weight saturation. To avoid this, Kohonen proposes the 
incorporation of a term to modulate growing, thereby obtaining the follow-
ing expression:

 Δw t y t x t y t w tki k i k ki( ) * ( ) * ( ) * ( ) * ( )= −η α

Another version of the learning rule is the so-called Hebbian differentail 
which uses the correlation of the derivative of the functions of the computa-
tional neurons.

6.5.2.2 Competitive Learning

In networks with competitive and cooperative learning, neurons compete 
and cooperate with other neurons. In Hebbian learning, many output nodes 
can be activated simultaneously, but in competitive learning, only one out-
put node can be activated at a time. In other words, competitive learning 
tries to find a winner to take over all units, or to find a winner in a group of 
nodes, for example, a node that introduces information. The rest of the nodes 
are forced to take minimum-value answer keys.

Competition occurs in all layers of the network. It appears in neighboring 
nodes (of the same layer) as recurrent connections of excitation or inhibition. 
If the learning is cooperative, these connections with the neighbors will be 
of excitation.

Since we are not talking about supervised learning, the objective of com-
petitive learning is to group the data that are introduced into the network. 
Similar neurons are organized into the same category and activate the same 
exit neuron. The network creates groups by detecting correlations between 
the input data. Consequently, the individual units of the network learn to 
specialize in a set of similar elements, and for that reason, they become 
detectors of characteristics.

The simplest artificial neural network using a competitive learning rule 
is formed by a totally connected input and exit layer; the exit nodes also 
include lateral connections. The connections between layers can be ones of 
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excitation, for example, with the lateral connections between nodes of the 
exit layer inhibiting. In this type of network, each neuron in the exit layer 
is assigned a gross weight, the sum of all the weights of its connections. 
Learning affects only the connections with the winning neuron, however. 
Therefore, it redistributes its gross weight between its various connections, 
removing a portion of the weights of all connections that feature the win-
ning neuron and distributing this amount between all the connections com-
ing from active units. Therefore, if j is the winning node, the variation of the 
weight between unit i and j is null if neuron j does not receive excitation from 
neuron i. In other words, it does not win in the presence of a stimulus on 
the part of i, and it will be modified (i.e., it will be reinforced) if it is excited 
by this neuron i. In the end, each unit in the winning exit has discovered a 
group.

References

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J., 1999. OPTICS: Ordering 
Points to Identify the Clustering Structure. Philadelphia, PA: ACM.

Bottou, L. and LeCun, Y., 2005. On-line learning for very large datasets. Journal of 
Applied Stochastic Models in Business and Industry, 21(2), 137–151.

Breunig, M., Kriegel, H.-P., Raymond, T. N., and Sander, J., 2000. LOF: Identifying 
Density-Based Local Outliers. Dallas, Texas, USA: ACM Press, pp. 93–104.

Caruana, R. A., 1993. Multitask connectionist learning. In: Proceedings of the 1993 
Connectionist Models Summer School. Carnegie Mellon University.

Eduardo, G. A., 2009. Artificial Neural Networks. [Online] Available at: http://edugi.
uni-muenster.de/eduGI.LA2/downloads/02/ArtificialNeuralNetworks 
240506.pdf.

Karlen, M., Weston, J., Erken, A., and Collobert, R., 2008. Large scale manifold trans-
duction. In: Proceedings of the 25th International Conference on Machine Learning. 
Helsinki, Finland: ACM, pp. 448–455.

Korn, F. and Muthukrishnan, S., 2000. Influence Sets Based on Reverse Nearest Neighbor 
Queries. New York: ACM, pp. 201–212.

Masters, T., 1993. Practical Neural Networks Receipes in C++. London: Academic Press.
Muhammad, A. C., 2007. Reverse Nearest Neighbor Queries. [Online] Available at: 

http://users.monash.edu.au/~aamirc/thesis/node22.html.
Papadimitriou, S., Kitagawa, H., Gibbons, P., and Faloutsos, C., 2003. LOCI: Fast 

Outlier Detection Using the Local Correlation Integral. Pittsburgh, PA, USA: 
Carnegie Mellon University, pp. 315–326.

Pokrajac, D., Reljin, N., Pejcic, N., and Lazarevic, A., 2008. Incremental Connectivity-
Based Outlier Factor Algorithm. London, UK: British Computer Society, 
pp. 211–223.

Ratle, F., Camps-Valls, G., and Weston, J., 2010. Semi-supervised neural networks for 
efficient hyperspectral image classification. IEEE Transactions on Geoscience and 
Remote Sensing, 48(5), 2271–2282.



329Nearest Neighbor–Based Techniques

Ratle, F., Weston, J., and Miller, M., 2008. Large-scale clustering through  functional 
embedding. In: Machine Learning and Knowledge Discovery in Databases. 
Heidelberg, Berlin: Springer, pp. 266–281.

Shaikh, A. S. and Kitagawa, H., 2013. Efficient distance-based outlier detection on 
uncertain datasets of Gaussian distribution. World Wide Web 1–28.

Shakhnarovich, G., Darrell, T., and Indyk, P., 2006. Nearest-Neighbor Methods in 
Learning and Vision: Theory and Practice. Cambridge, MA, USA: The MIT Press.

Silver, D. L., 2000. Selective Transfer of Neural Network Task Knowledge. London: Faculty 
of Graduate Studies, University of Western Ontario.

Su, Y., 2005. Selective Knowledge Transfer from K-Nearest Neighbour Tasks Using Functional 
Similarity at the Classification Level. Nova Scotia, Canada: Acadia University.

Thrun, S., 1995. Lifelong Learning: A Case Study (No. CMU-CS-95-208). Pittsburgh, PA: 
Carnegie-Mellon University.

Vapnik, V., 1998. Statistical Learning Theory. New York: John Wiley and Sons.
Vu, N. H., 2010. Outlier Detection Based on Neighborhood Proximity. Singapore: Nanyang 

Technological University.
Wen, J., Anthony, K. H. T., and Han, J., 2001. Mining Top-n Local Outliers in Large 

Databases. San Francisco, California, USA: ACM Press, pp. 293–298.





331

7
Cluster-Based Techniques

Our world is filled with data. Every day, whether we realize it or not, we 
measure and observe data. Data can be as mundane as a grocery list or more 
complex, a description of the characteristics of a living species or a natural 
phenomenon, a summary of the results of a scientific experiment, or a record 
of the events in the life cycle of a mechanical system. Data provide a basis for 
understanding all kinds of objects and phenomena, allowing us to analyze 
them and make decisions about them. Grouping data into categories or clus-
ters based on certain similar properties is one of the most important analytic 
activities, and is the topic of this chapter.

Grouping or classifying data is a basic human activity (Anderberg, 1973; 
Everitt, 2001), indispensable to human development (Xu and Wunsch, 2009). 
When faced with a new object or a new phenomenon, people look for fea-
tures that are found in other, better-known objects or phenomena; in effect, 
they compare the new object to another, looking for both similarities and dif-
ferences. When people are presented with a new object in nature, for exam-
ple, they will classify that object into one of three groups: animal, plant, or 
mineral. If it can be classified as an animal, it can be further classified into 
kingdom, phylum, class, order, family, genus, and species, working from 
general categories to specific ones. Thus, we have animals named tigers, 
lions, wolves, dogs, horses, sheep, cats, mice, and so on, and within those 
categories, we would have the names of specific types of sheep, horses, cats, 
and so on. Naming and classifying are essentially synonymous, according 
to Everitt (2001). With such classification information at hand, we can infer 
the properties of a specific object based on the category to which it belongs. 
For instance, when we see a seal lying on the ground, we know it is a good 
swimmer without seeing it swim.

This need for classification is endemic in all activities of our lives. Especially 
when dealing with the malfunction of a system, human beings need to iden-
tify the kind of failure before fixing it so they can schedule the proper reme-
dial actions and avoid possible disasters. Clearly, getting a proper diagnosis 
depends on the quality of available data and what we know about the sys-
tem. When this knowledge covers all possible types of failure in the system, 
we can take a model-based approach, but this is not always the case.

The diagnosis of a complex process, in the absence of precise knowl-
edge and without a mathematical model, can be developed from measures 
recorded during previous normal and abnormal situations. These data 
can be mined and used to define the operational states through training 
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mechanisms and expertise. For example, classification techniques allow us 
to establish a model of a system’s states (behavioral model) by extracting its 
attributes (raw or statistical characteristics, including average and standard 
deviation, as well as qualitative information) related to a particular behav-
ior without this behavior being represented by a set of analytical relations. 
Changes in these characteristics enable the detection of abnormal operations 
(Claudia Isazaa, 2008; Sylviane, 2007).

Among the many classification techniques, those using fuzzy logic have 
advantages when we want to express the degree of an observation’s (data) 
membership in several classes, as this can model knowledge uncertainty and 
imprecision. In general, these methods work well if their initial parameters 
are carefully selected. Several different approaches have been proposed for 
the selection of data (Anon, 2001; Claudia Isazaa, 2008; Wang, 2005).

7.1 Categorization versus Classification

At this point, it is relevant to mention two key words, well-known to con-
dition monitoring experts: classification and categorization. Novices often 
think they are synonyms, but they are not at all. When we talk about clas-
sification, we are basically talking about the projection of collected data into 
a closed catalog of known failures or states of malfunction. In this scenario, 
we simply decide what category the failure belongs to.

In categorization, however, things are entirely different. The maintainer 
collects data but the states of malfunction are unknown; therefore, these 
data are automatically grouped in a finite number of states not known a 
 priori. These data can be updated and refreshed during a process of ongoing 
categorization.

Process monitoring uses the classification method as well. Here, the current 
classification and its association with a previously determined functional 
state of the process must be determined at each sample time. There are two 
phases: training and recognition. In training, the objective is to find the pro-
cess behavior characteristics, as these will allow us to differentiate the pro-
cess states (each associated with a class). The initial algorithm parameters are 
selected by a process expert who validates the obtained behavioral model. In 
recognition, the operator recognizes and identifies the current process state. 
More specifically, at each sampling time, a vector collects the accessible infor-
mation (raw data or pretreated data: filtered, FFT, etc.) provided for monitor-
ing; the class recognition procedure tells the operator the current functional 
state of the process. To optimize the procedure, we propose including in the 
training phase a step to automatically validate and adjust the clusters. The 
proposed approach automatically improves a nonoptimal initial partition 
in terms of compactness and class separation, thus facilitating the ability 
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to discriminate between classes, that is, between operation modes (Claudia 
Isazaa, 2008).

7.2 Complex Data in Maintenance: Challenges or Problems?

Modern maintenance storage and condition monitoring technology makes 
the accumulation of data increasingly easy. However, it is not just a matter 
of data size; complexity is also an issue. Data in maintenance departments, 
as described in previous chapters, comprise many different data sets: con-
dition indicators (online and off-line); original equipment manufacturers’ 
(OEMs) data with images, documents, and so on; work orders reported by 
maintainers; operator expertise; and so on. The combination of maintenance 
information sources creates a complex scenario where faults may happen in 
a number of different contexts. Today, failure diagnosis must identify faulty 
states in many contexts and conditions, something traditional approaches 
are unable to tackle.

Given the dramatic and unprecedented growth in data, our prediction and 
data analysis tools must be continually updated to handle the volume. Data 
mining extracts information from large databases, but for data mining to 
work well, the storage structure must be considered. A recently developed 
mining technique for large databases is Association Rule Mining; more tra-
ditional techniques from statistics and machine learning, such as classifica-
tion and clustering, have also been adapted and used. Classification is used 
to predict a data point’s membership in one of a finite number of classes on 
the basis of a certain attribute. The attribute indicating class membership is 
the class label attribute. Clustering is used to identify classes in data without 
a predefined class label. This chapter looks at techniques of both classifica-
tion and clustering (Denton, 2003).

7.3 Introduction

Three major techniques in machine learning are clustering, classifica-
tion, and feature reduction, all widely used in condition monitoring. 
Classification and clustering are also broadly known as unsupervised and 
supervised learning. In supervised learning, the object is to learn predeter-
mined class assignments from other data attributes. For example, given a set 
of condition monitoring data for samples with known faults, a supervised 
learning algorithm might learn to classify fault states based on patterns of 
condition. In unsupervised learning, there are no predetermined classes, or 
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class assignments are ignored. Cluster analysis is the process by which data 
objects are grouped together based on some relationship defined between 
objects. In both classification and clustering, an explicit or implicit model is 
created from the data to help predict future data instances or understand the 
physical process behind the data. Creating these models can be a very inten-
sive task, for example, training a neural network (NN). Feature reduction 
or selection reduces the data attributes used to create a data model, thereby 
reducing analysis time and creating simpler and (sometimes) more accurate 
models.

Which is better, unsupervised or supervised algorithms? The debate is 
ongoing in condition monitoring. Academia likes supervised ones as these 
data sets are clean and have good quality. However, the ugly truth is data 
sets are seldom complete or clean. In fact, we cannot really train an expert 
system to handle all potential malfunctions, especially when we add in the 
various combinations. Accordingly, the use of unsupervised algorithms, 
even if not yet mature, seems to have promise if academicians want to trans-
fer knowledge about clustering to industry (Denton, 2003).

7.3.1 What Is Clustering?

The main idea of cluster analysis is very simple (Bacher, 1996, p. 1–4): “Find 
K clusters (or a classification that consists of K clusters) so that the objects of 
one cluster are similar to each other whereas objects of different clusters are 
dissimilar.”

Clustering can be a problem in unsupervised learning, as the goal is to find 
a structure in a set of unlabeled data (Matteucci, 2003). However, clustering 
is a tremendously powerful technique for identifying an unknown num-
ber of faulty states, including different combinations of failure modes that 
eventually may happen, as well as those that remain unknown to the user 
a priori.

A broad definition of clustering is “the process of organizing objects into 
groups whose members are similar in some way.” Thus, a cluster is a collec-
tion of “similar” items that are very different from objects belonging to other 
clusters. A simple graphic example appears in Figure 7.1 (Matteucci, 2003).

In the figure, we can easily identify four clusters of data, with distance 
being used as the similarity criterion: two or more objects belong to the same 
group if they are close according to a certain distance (i.e., geometric dis-
tance). This is known as distance-based clustering.

Conceptual clustering is another type of clustering: two or more objects 
belong to the same cluster if they share a common concept. In other words, 
objects are grouped, not based on simple similarity measures, but on how 
well they fit the descriptive concepts. In maintenance, the technique can be 
used to identify faulty states: a variable represents a fault only when the 
environment or operation displays certain aspects; otherwise, a fault is not 
occurring.
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7.3.2 Goal of Clustering

The goal of clustering is to determine the intrinsic grouping in a set of unla-
beled data. But how do we decide what constitutes good clustering? How do 
we decide when a failure is not a failure or is a different kind of failure? There 
is no absolute “best” criterion that will be independent of the final clustering. 
In other words, the users must supply their own criterion, one that will adapt 
the clustering results to their specific needs. For example, we may want to 
find “natural clusters” and describe their unknown properties (“natural” types 
of data); alternatively, we may be looking for representatives of homogeneous 
groups (reduction of data), or groupings of useful and suitable data (“useful” 
classes of data), or even unusual data objects (outlier detection) (Matteucci, 2003).

This Information Technology (IT) vocabulary may sound strange to main-
tainers, but it suits their purposes. When we look for natural clusters, for 
example, we may be interested in identifying the original failure modes 
rather than the different combinations present in the system. After identifi-
cation, we may want to know the commonalities of things, findings, or states 
clustered in the same group as such knowledge may be helpful in decision 
making. Finally, identifying abnormal behavior is always relevant in finding 
NFF (no fault found) situations or isolating infrequent failure modes that do 
not follow normal clustering techniques due to their low frequency or inten-
sity (Matteucci, 2003).

7.3.3 Clustering as an Unsupervised Classification

Classification systems are either supervised or unsupervised; in other words, 
they may assign new data objects to one of a finite number of discrete super-
vised or unsupervised categories (Bishop, 1995; Cherkassky and Mulier, 
1998; Duda et al., 2001; Xu and Wunsch, 2009).

In supervised classification, the mapping from a set of input data vectors, 
denoted as x ∈ Rd, where d is the input space dimensionality, to a finite 

 

FIGURE 7.1
Example of four clusters.
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set of discrete class labels, represented as y ∈ 1,. . ., where C is the total 
number of class types, is modeled in terms of some mathematical function 
y = y(x,w), where w is a vector of adjustable parameters. The parameters’ 
values are determined (optimized) by an inductive learning algorithm (an 
inducer), whose goal is to minimize an empirical risk functional (related to 
an inductive principle) on a finite dataset of input–outputs (xi, yi), i = 1,. . ., 
N, where N is the finite cardinality of the available representative data-
set (Bishop, 1995; Cherkassky and Mulier, 1998; Kohavi, 1995). An induced 
classifier is generated when the inducer reaches convergence or terminates 
(Kohavi, 1995).

Supervised classification is only possible when deep knowledge of the sys-
tem is available or the system has been observed over a long period. In both 
situations, the maintainer may have information about all faulty states (or 
at least the most frequent) with certain characteristics that allow their fast 
identification from within the collected data. That is why classification with 
supervised diagnosis is more pattern recognition than anything else.

In unsupervised classification, also called clustering or exploratory data 
analysis, no labeled data are available (Everitt, 2001; Jain and Dubes, 1988). 
The goal of clustering is to separate a finite, unlabeled data set into a finite 
and discrete set of “natural” hidden data structures, not to provide an accu-
rate characterization of unobserved samples generated from the same prob-
ability distribution (Baraldi and Alpaydin, 2002; Cherkassky and Mulier, 
1998). This can put the task of clustering outside the framework of unsuper-
vised predictive learning problems, such as vector quantization (Cherkassky 
and Mulier, 1998), probability density function estimation (Bishop, 1995; 
Fritzke, 1997), and entropy maximization (Fritzke, 1997). Note: Clustering dif-
fers from multidimensional scaling (perceptual maps), in that the latter seeks 
to depict all evaluated objects in such a way as to minimize topographical 
distortion while using as few dimensions as possible. Also note: Many (pre-
dictive) vector quantizers are used for (nonpredictive) clustering analysis in 
practice (Cherkassky and Mulier, 1998).

It is clear from the above discussion that a direct reason for unsupervised 
clustering is the need to explore the unknown nature of data that are inte-
grated with little or no prior information. For example, consider the diagno-
sis of failure and maintenance actions. For a particular type of failure, there 
may be several unknown subtypes with a similar morphological appearance 
that respond differently to the same maintenance actions. In this context, 
cluster analysis with contextual data that measure the activities of assets in 
certain scenarios is a promising method to uncover the subtypes and thereby 
determine the corresponding maintenance actions for real scenarios. The 
process of labeling data samples can become expensive and time consum-
ing, making clustering a good option, as it can save both money and time. 
Finally, cluster analysis provides a compressed representation of the data 
and is useful in large-scale data analysis. Aldenderfer and Blashfield (1984) 
summarize the goals of cluster analysis:
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 1. Developing a classification
 2. Investigating useful conceptual schemes for grouping entities
 3. Generating hypotheses through data exploration
 4. Testing hypotheses or determining if a dataset contains types 

defined in other procedures

Nonpredictive clustering is a subjective process in nature that precludes 
the necessity to pass absolute judgments (Baraldi and Alpaydin, 2002; Jain 
et al., 1999). Backer and Jain (1981, p. 4, 129) say, “In cluster analysis a group 
of objects is split up into a number of more or less homogeneous subgroups 
on the basis of an often subjectively chosen measure of similarity (i.e., chosen 
subjectively based on its ability to create ‘interesting’ clusters), such that the 
similarity between objects within a subgroup is larger than the similarity 
between objects belonging to different subgroups.” 

In fact, a different clustering criterion or clustering algorithm, even for the 
same algorithm but with different parameters, may cause completely differ-
ent clustering results. For instance, human beings may be classified based on 
a wide variety of factors: ethnicity, region, age, gender, socioeconomic status, 
education, job, hobbies/interests, weight/height, favorite food, fashion sense, 
and so on.

Many different clusters can be created in any situation, depending on the 
criteria used for clustering. In our work-related scenario, the proper selec-
tion of variables sensitive to certain operating conditions will obviously per-
form better clustering, thus more clearly identifying faults and preventing 
confusion.

Depending on the clustering criterion, an individual may be assigned to 
a number of very different groups. There is no “best” criterion. Each has an 
appropriate use corresponding to a particular occasion, although some crite-
ria have broader application than others. A coarse partition divides regions 
into four major clusters, while a finer one uses nine clusters. Whether we 
adopt a coarse or fine scheme depends on the requirement of the specific 
problem. Hence, we cannot say which clustering results are better, in general.

Classification rests on a set of multivariate data containing a set of cases; 
each case has multiple attributes/variables. Set up in chart form, each attri-
bute/variable has an associated column, and each case is represented as a 
row. The totality constitutes the set of cases. Attributes can be of any kind: 
ordinal, nominal, continuous, and so on, but in cluster analysis, none of these 
attributes is used as a variable of classification. Rather, the goal is to derive 
a rule that puts all cases in groups or clusters. We can then define a nominal 
classification variable and assign a distinct label to each cluster.

Obviously, we do not know the final classification variable before we do 
the clustering, as our goal is to define this variable. Thus, clustering is a 
method of unsupervised classification; before we do the clustering we do 
not know the classes of any of the cases. We do not have the class values to 
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guide (or “supervise”) the training of our algorithm to obtain the rules of 
classification.

Note: One or more of the attributes of the case set can be nominal classifi-
cation variables, but they are treated as nominal variables, not as variables 
of classification in clustering analysis. Also note: The term “unsupervised” 
occasionally causes confusion. We use the term as defined above.

Some computer procedures are completely automated and require no con-
trolling input (or supervision) from the user. They can, therefore, be termed 
“unsupervised.” Other procedures are not completely automatic and require 
some input from the user at various points and are called “supervised.” Since 
such “supervision” requires human controlling input, we term this supervi-
sion “h-supervised” (alternatively, h-unsupervised). Hence, if a clustering 
algorithm (an unsupervised classification process) requires human interven-
tion, we might say we are doing an “h-supervised unsupervised classification.”

h-Supervised unsupervised classification is very popular in condition moni-
toring since the maintainer can add variables to the clustering to speed up the 
process and contextualize the results, thus obtaining a meaningful outcome. 
In the operator’s dynamic introduction of environmental variables, operating 
conditions, or experience from work orders, clustering for diagnosis becomes 
an h-supervised unsupervised classification. However, in this process, the 
interface between the user and the need to be understood to achieve good 
results is as important as the performance of the algorithm itself.

7.3.3.1 Distance Metrics

To perform a diagnosis, users collect several different signals and extract cer-
tain features from them (time and frequency domain). These n-dimensional 
features can be displayed in an n-dimensional space where health conditions 
can be compared. The simplest representation is a plane with two features 
on the x- and y-axis. If we have two cases, that is, C1 and C2, with continuous 
variables x and y, taking values (x1, y1) and (x2, y2), respectively, we can graph 
the cases in x−y space as in Figure 7.2.

Using the Pythagorean Theorem, we may write

 d x x y y12 2 1
2

2 1
2= − + −( ) ( )

representing the Euclidean distance between the two cases, that is, “in the 
x–y state space.” When we define the formula for the distance between two 
cases, we frequently say we have defined a “distance metric.” This obvious 
distance may represent the difference between healthy and unhealthy condi-
tions or different failure modes. This is a key factor in the clustering process: 
the longer the distance the distance between, the more different the condi-
tions between them (Rennols, 2002).
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If the two cases are characterized by p continuous variables (say, x1, x2,. . .
xi,. . .xp) rather than two (i.e., x, y) [Note: x → x1, so x(case 2) → x1(case 2) ≡ x1(2); 
similarly, y2 → x2(2)], we may generalize the Euclidean distance to
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This can be generalized further to the Minkowski metric
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where |x| denotes the absolute value of x (i.e., the size, without the sign).
If m = 2, we have the Euclidean metric. If m = 1, we have what is called the 

“city-block” metric, sometimes known as the “Manhattan” metric; it is the 
sum of the distances along each axis (variable) between the two cases.

7.3.3.2 Standardization

If the values of the variables are in different units, some variables will likely 
have large values and vary greatly between units; hence, the “distance” 
between cases (health conditions in the transformed space) can be large. 
Other variables may be small in value or vary little between cases, in which 
case, the difference in the variable between cases will be small. The distance 
metrics considered above are dependent on the choice of units for the vari-
ables involved. The metric will be dominated by those with high variability, 
but this can be avoided by standardizing the variables.

y

x

d12

C1(x1,y1)

C2(x2,y2)

FIGURE 7.2
Euclidean distance.
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If x sxand 2 are the mean and variance of the x-variables over all cases in the 
case set, then z x x s z x x sx i i i xi= − = −/ /or  is the standardized x-value 
for the case. Hence, the Minkowski metric for standardized variables will be
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The standardization prepares the process for proper visualization and 
tracking of the condition. As mentioned, the n-dimensional space requires 
a similar range of values to have similar values in all dimensions and be 
meaningful for both users and algorithms. In addition, the selection of the 
variables of this n-dimensional space is key to identifying the most sensi-
tive variables in terms of degradation. An incorrect selection may produce 
dimensions where the variables do not change at all, making the segregation 
and identification of the health condition impossible.

7.3.3.3 Similarity Measures

A measure of the similarity (or closeness) between two cases takes its high-
est value when the cases have identical values of all variables (i.e., when the 
cases in the multivariable space are coincident). The measure of similarity 
(s12) should decrease monotonically as the case variable increases, that is, 
as the distance increases between cases. This means any monotonically 
decreasing function of distance is a possible measure of similarity. If we 
want the similarity measure to have a value of 1 when cases are coincident, 
we could consider the following:
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or similar expressions with d12 (distance) replaced by (d12)2.
Note: All measures defined above are suitable for continuous variables.

7.3.4 Clustering Algorithms

Clustering analysis can identify clusters embedded in data, where a cluster 
is a collection of “similar” data objects. Similarity is expressed by distance 
functions, as specified by users or experts. A good clustering method pro-
duces high-quality clusters, with low intercluster similarity and high intra-
cluster similarity.

For example, we may cluster the centrifugal pumps in a plant according 
to vibration, rotation speed, flow meter reading, temperature, manufacturer, 
and so on.
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As has been noted, unlike classification, clustering and unsupervised 
learning do not rely on predefined classes or class-labeled training examples. 
Clustering is a way of learning by observation, not by examples. Conceptual 
clustering groups objects to form a class, described by a concept. This dif-
fers from conventional clustering, which measures similarity by geometric 
distance. Conceptual clustering has two functions: (1) discovering the appro-
priate classes and (2) forming descriptions for each class, as in classification. 
The guideline of striving for high intraclass and low interclass similarity still 
applies.

This conceptual clustering is especially relevant in maintenance where 
condition indicators extracted from physical variables are small pieces of 
available information that must be fused with experience, OEM information, 
work orders, and so on. Numerical variables may be fused with additional 
information, creating both metadata and a class that can be clustered. This 
differs from traditional condition monitoring where only numerical distance 
is considered.

The contextual approach requires processing many databases which 
“speak” different languages to create the classes to be clustered. Data 
mining research has been focused on high-quality and scalable cluster-
ing methods for large databases and multidimensional data warehouses 
like the ones generated today by maintenance departments and asset 
managers.

An example of clustering is what most people perform when they group 
their clothes at the laundry: permanent press, whites, and colors. These 
clusters have important common attributes in the way they behave when 
washed.

Clustering is straightforward but often difficult because it can be dynamic.
The typical requirements of clustering in data mining are:

 1. Highly scalable clustering algorithms are needed in large data sets 
to prevent biased results.

 2. Many algorithms are designed to cluster interval-based (numerical) 
data, but applications may require clustering of other types of data, 
such as binary, categorical (nominal), and ordinal data, or a mixture 
of data types.

 3. Clusters can take any shape; algorithms should be able to detect 
clusters with arbitrary shapes.

 4. Clustering results can be sensitive to input parameters, so the mini-
mum requirements must be met.

 5. Some clustering algorithms are sensitive to missing, unknown, out-
lier, or erroneous data, leading to clusters of poor quality; therefore, 
they must be able to deal with noise.

 6. Clustering must be insensitive to the order of input data; some clus-
tering algorithms are sensitive to order.
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 7. High dimensionality must be achieved. It is challenging to cluster 
data objects in high-dimensional space, especially as such data can 
be very sparse and highly skewed.

 8. Applications may need to perform clustering under various kinds of 
constraints. It may be challenging to find groups of data with good 
clustering behavior under specified constraints.

 9. Clustering needs to be tied into specific semantic interpretations 
and applications. It is important to study how an application goal 
may influence the selection of clustering methods.

There are many clustering techniques, organized into the following catego-
ries: partitioning, hierarchical, density-based, grid-based, and model-based 
methods. Clustering can also be used for outlier detection. In the following 
sections, we consider three popular and easy-to-deploy methods; nearest-
neighbor methods, hierarchical methods, and mixed model methods.

7.3.4.1 Nearest-Neighbor Methods

At first glance, the people in a given neighborhood seem to have similar 
incomes. The nearest-neighbor prediction algorithm (or the k-means method) 
works in much the same way except that nearness in a database may consist 
of a variety of factors. It performs quite well for our present needs because 
many of the algorithms are robust with respect to dirty and missing data.

The nearest-neighbor prediction algorithm, simply stated, is as follows: 
“Objects that are ‘near’ each other will also have similar prediction values. 
Thus, if you know the prediction value of one of the objects, you can predict 
it from its nearest neighbours” (Berson et al., 2008, p. 9). 

The k-means method seems suitable for diagnosis since similar behavior 
will generate similar data and, therefore, clustering will work.

Mathematically, it is very simple and can be expressed as follows: the mul-
tidimensional mean of a set of cases is the point (centroid) with coordinates 
( , , , ..., )x x x xp1 2 3 , called the mean point of a set of cases (Figure 7.3).

Determining the k-means algorithm follows this procedure:

 1. Decide on the value of k.
 2. Start with k arbitrary centers; these may be chosen randomly, or as 

the centroids of arbitrary starting partitions of the case set.
 3. Consider each case in sequence, and find the center to which the case 

is closest. Assign the case to that cluster. Recalculate the center of the 
new and old clusters as the centroids of the points in the cluster.

 4. Repeat until the clusters are stable.
 5. Repeat for different initial centers. Choose the best clustering, in 

terms of minimum within cluster sum of squares.
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7.3.4.2 Hierarchical Clustering Methods

As the name suggests, a hierarchical method hierarchically decomposes 
the given set of data objects. A hierarchical method can be classified as 
either agglomerative or divisive, based on the formation of the hierarchical 
decomposition (Figure 7.4). The agglomerative approach, or the bottom-up 
approach, starts with each object constituting a separate cluster. In succes-
sive iterations IT continues to merge the objects until eventually there is one 
cluster, or a termination condition holds. The divisive or top-down approach 
moves in the opposite direction.

Once a step (merge or split) is done, it can never be undone. This rigidity is 
useful as its lack of choices leads to smaller computation costs. Yet erroneous 
decisions cannot be corrected. To improve the quality of hierarchical cluster-
ing, we need to: (1) carefully analyze object “linkages” at each hierarchical 
partitioning; (2) integrate hierarchical agglomeration with iterative reloca-
tion by using a hierarchical agglomerative algorithm and refining the result 
with iterative relocation (Han and Kamber 2001).

Figure 7.5 shows agglomerative and divisive methods.

Centroid

FIGURE 7.3
Centroid of two clusters. (From Anon., 2008. Clustering and Classification Methods for Biologists. 
[Online] Available at: http://www.alanfielding.co.uk/multivar/ca_alg.htm.)

FIGURE 7.4
Hierarchical clustering methods.
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7.3.4.2.1 Agglomerative

In this method, find the two cases that are closest and form them into a 
cluster. Continue agglomerating cases and clusters on the same basis (single 
nearest neighbor; single linkage method) until one cluster is obtained.

Single linkage clustering can lead to chaining. This can be avoided by 
defining the “working distance” between two cases at any iterative stage 
to be the distance between the most distant members of the two clusters to 
which they belong. This is called the complete linkage method.

A cluster, once initiated by bringing together two cases, may be repre-
sented by its centroid. Clusters can be merged based on the distance between 
their centroids, creating an agglomerative k-means method (Al-Akwaa, 2012).

7.3.4.2.2 Divisive

In this method, start with the whole case set. Divide the set into two subsets 
in some optimal way. Then subdivide each subset, again optimally.

7.3.4.3 Mixed Models

Consider one continuous variable, x, say, to start with. A normal distribu-
tion over the x-variable is given by the following formula for the probability 
density function:

 
f x e

x
( , )

( )
|μ σ =

πσ

−
σ

−μ
2

2

1

21

2

2
2

This is a model with two parameters, the distribution mean μ, and the 
distribution variance σ2.

A mixed model of k normal distributions would be given by
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FIGURE 7.5
Agglomerative and divisive methods.
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where the proportions, pi, are often called weights. The value of k might be 
taken to indicate the underlying number of groups, or clusters. Such mod-
els can be generalized to many dimensions/variables, and the parameters 
estimated by the use of maximum likelihood methods, implementing the 
E–M algorithm. However, if correlation/covariance parameters are included 
in the general mixed model, the number of parameters increases rapidly 
with the number of variables involved. In general, if we are working in an 
n-dimensional variable space, there will be n(n + 3)/2 parameters for each 
centroid.

7.4 Categorization: Semisupervised and Unsupervised

Clustering involves grouping data points together according to some mea-
sure of similarity. One goal of clustering is to extract trends and information 
from raw data sets. An alternative goal is to develop a compact representa-
tion of a data set by creating a set of models representing it (Buddemeier 
et al., 2002).

As noted previously, there are two general types of clustering: supervised 
and unsupervised. Supervised clustering uses a set of sample data to classify 
the rest of the data set. This can be considered classification, and the task is to 
learn to assign instances to predefined classes (Keller and Crocker, 2003). For 
example, consider a set of colored balls (all colors) that we want to classify 
into three groups: red, green, and blue. A logical way to do this is to pick out 
one example of each class—a red ball, a green ball, and a blue ball—and set 
each next to a bucket. Then we go through the remaining balls, compare each 
ball to the three examples, and put each ball in the bucket whose example it 
best matches.

This example of supervised clustering is illustrative because it shows 
two potential problems. First, the result will depend on the balls selected 
as examples. If we select a red, an orange, and a blue ball, it may be dif-
ficult to classify a green ball. Second, unless we are careful about selecting 
examples, we may select ones that do not represent the distribution of data. 
For example, we might select red, green, and blue balls, only to discover that 
most of the colored balls are cyan, purple, and magenta (located between the 
other three primary colors). It is extremely important to select representative 
samples in supervised clustering.

Unsupervised clustering tries to discover the natural groupings inside a 
data set with no input from a trainer. The main input for a typical unsuper-
vised clustering algorithm is the number of classes it should find. In the case 
of the colored balls, this would be like dumping the balls into an automatic 
sorting machine and telling it to create three piles. The goal of unsuper-
vised clustering is to create three piles where the balls within each pile are 
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very similar, but the piles are different. Here, no predefined classification is 
required. The task is to learn a classification from the data.

One of the most important characteristics of any supervised or unsuper-
vised clustering process is how to measure the similarity of two data points. 
Clustering algorithms divide a data set into natural groups (clusters). Instances 
in the same cluster are similar to each other, as they share certain properties.

Clustering algorithms can be one of the following (Keller and Crocker, 
2003):

 1. Hierarchical: These include techniques where the input data are 
not partitioned into the desired number of classes in a single step. 
Instead, a series of successive fusions of data are performed until the 
final number of clusters is obtained (Center for the New Engineer, 
1995).

 2. Nonhierarchical or iterative: These include techniques where a desired 
number of clusters is assumed at the start. Instances are reassigned 
to clusters to improve them.

 3. Hard and soft: Hard clustering assigns each instance to exactly one 
cluster. Soft clustering assigns each instance a probability of belong-
ing to a cluster.

 4. Disjunctive: Instances can be part of more than one cluster. Figure 7.6 
shows an illustration of the properties of clustering.

7.4.1 Unsupervised Clustering

Unsupervised clustering tries to discover the natural groupings inside a data 
set without any input from a trainer. A typical unsupervised clustering algo-
rithm needs the number of classes it should find as input. Unsupervised data 
clustering (Buddemeier et al., 2002; Keller and Crocker, 2003) is an intelligent 
tool for delving into unknown and unexplored data, one that brings out the 
hidden patterns and associations between variables in a multivariate data 
set. Although mostly used in large databases, the unsupervised clustering 
method has enjoyed success in a variety of industries. From finding patterns 
in customers’ buying habits, to fraud detection, to discovering clusters in 
genetic microarray data, these data exploration models have proved benefi-
cial when dealing with data without a priori information.

Attracted by the success of the models in a number of different fields, 
researchers are attempting to use them as a tool for fault diagnosis in 
machine health. One of the current limitations in machine health monitor-
ing is dealing with novel data and determining whether data can be labeled 
using existing trained classifiers or if new ones must be created.

Supervised fault classification algorithms, such as NNs, decision trees, and 
support vector machines (SVM) work efficiently for trained signatures only 
and generate erroneous results when encountering novel data not found in 
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the domain of trained data. To correctly classify new data, models are often 
generalized (as opposed to fine-tuned). On the one hand, generalizing these 
supervised models to accommodate new data may have a bigger impact by 
increasing the classification error and, thus, reducing the overall perfor-
mance of the model. On the other hand, fine-tuning the models to reduce 
error may lead to overfitting, restricting model performance (Rennols, 2002). 
To alleviate this rigidity in the trained classifier models and allow room to 
accommodate novel data, we turn to unsupervised clustering.

One of the simplest and most commonly used unsupervised clustering 
algorithms is the k-means algorithm:

 1. Specify k, the number of clusters
 2. Choose k points randomly as cluster centers
 3. Assign each instance to its closest cluster center using Euclidian 

distance
 4. Calculate the median (mean) for each cluster, and use it as its new 

cluster center
 5. Reassign all instances to the closest cluster center
 6. Iterate until the cluster centers no longer change Figure 7.7 explains 

the concept of k-means clustering.
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FIGURE 7.6
Properties of clustering. (a) Hard, nonhierarchical, (b) nonhierarchical, disjunctive, (c) soft, 
nonhierarchical, k disjunctive, (d) hierarchical, disjunctive. (From Pallavi, 2003. Clustering. 
[Online] Available at: ftp://www.ece.lsu.edu/pub/aravena/ee7000FDI/Presentations/
Clustering-Pallavi/CLUSTERING_report.doc.)
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7.4.2 Supervised Clustering Algorithms

In supervised clustering based on known health states, we have prior knowl-
edge that the incoming data should be clustered in either faulty or nonfaulty 
classes. This is based on the premise that when a signal changes due to the 
occurrence of a fault, something in the signal is altered. These changes may 
be detected by using a filter bank and creating indicators. The indicators 
obtained are segregated using the clustering technique. Clustering is carried 
out in two phases, training and classification.

In the training phase for the supervised clustering case, the representa-
tives of the predefined clusters are formed from the example data—indicator 
matrices are created after processing the simulated signal. The representa-
tives of the clusters are called “signatures.” In the classification phase, the 
distance of the indicators to the signatures is calculated and the indicators 
are grouped in the cluster with the closest signature.

There are two common techniques for signature creation. In the first tech-
nique, for the training phase, the signatures for faulty and nonfaulty cases 
are the mean vectors of the indicator vectors obtained for each window. The 
mean of prefault indicators is the signature for the nonfaulty class and the 
mean of postfault indicators is the signature for the faulty class. In the clas-
sification phase, to analyze the performance of this clustering technique, 
the same prefault and postfault indicators are classified into either faulty or 
nonfaulty classes, depending on their vector distance to the above predeter-
mined signatures. The indicator is classified in the group with the minimum 
distance between the indicator and the group’s signature. In the second clus-
tering technique, clustering is based on principal component analysis (PCA) 
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FIGURE 7.7
K-means algorithm. (From Bradley, P. and Fayyad, U. M., 1998. 15th International Conference on 
Machine Learning. San Francisco: Morgan Kaufmann, pp. 91–99.)
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and the vector subspace signature concept. Here, the signatures are vector 
subspaces instead of the mean used in the previous case.

Four types of supervised clustering algorithms are vector quantization, 
fuzzy clustering, artificial neural net (ANN), and fuzzy–neural algorithms. 
Although fuzzy and neural nets initially go through unsupervised cluster-
ing to determine the cluster centers, only the supervised clustering algo-
rithms are discussed here.

7.4.2.1 Vector Quantization

Shanon’s source coding theory, used for the transmission and encoding of 
data, is the origin of this algorithm. In the algorithm, as shown in Figure 7.8, 
a vector quantizer maps k-dimensional vectors in the vector space Rk into a 
finite set of vectors Y = {yi: i = 1, 2,. . ., N} (Qasem, 2009).

Each vector, yi, is called a code vector or a code word, and the set of all the 
code words is called a code book. Associated with each code word, yi, is a 
nearest-neighbor region called Voronoi region, defined by
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As an example, we take vectors in the two-dimensional case. Figure 7.9 
shows some vectors in space.

Associated with each cluster of vectors is a representative code word (clus-
ter center or cluster representative obtained by k-means algorithm or similar 
algorithms). Each code word resides in its own Voronoi region. These regions 
are separated by imaginary lines in Figure 7.1 for illustration.
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representation
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Waveform Feature vectors Symbols

FIGURE 7.8
Vector quantization representation.
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The representative code word (cluster center) is the closest in Euclidean 
distance from the input vector (instances). The Euclidean distance is 
defined by
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where xj is the jth component of the input vector, and yij is the jth component 
of the code word yi. The problem is that we transmit only the cluster index, 
not the entire data for each sample.

7.4.2.2 Fuzzy Supervised Clustering

Fuzzy logic first became popular in the field of automatic control, but was 
rapidly adapted to fields where no math expressions define the existing con-
text or the rules of the process. Maintenance is one such field, where things 
are not black and white, and decisions are sometimes subjective due to the 
multiple factors to be considered. Fuzzy logic requires no analytical model 
of the system and offers the chance to combine heuristic knowledge with 
any available model knowledge (Dalton, 1999). Fuzzy logic can also deal with 
vague or imprecise data, relevant in maintenance where the amount of data 
is not an issue, but where quality of data and contextual engines to give 
meaning to data are often missing. In the field of fault diagnosis, fuzzy logic 
has been used successfully in many applications, both as a means of residual 
generation and to aid in the decision-making process of residual evaluation.
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FIGURE 7.9
Code words in two-dimensional space. Input vectors are marked with an x, code words are 
marked with red circles, and the Voronoi regions are separated by boundary lines. (From 
Qasem, M., 2009. Vector Quantization. [Online] Available at: http://www.mqasem.net/vector 
quantization/vq.html.)
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The idea behind fuzzy clustering is basically that of pattern recognition. 
Training data are used off-line to determine relevant cluster centers for each 
of the faults of interest. Online, the degree to which the current data belong 
to each of the predefined clusters is determined, resulting in a degree of 
membership to each of the predetermined faults. This method is useful 
in cases where there are many residuals, or when no expert knowledge of 
the system is available. Fuzzy clustering is different from fuzzy reasoning, 
which is also used in residual analysis. Fuzzy reasoning mainly consists of 
IF-THEN reasoning based on the sign of the residual. The following is an 
example of fuzzy reasoning:

 1. IF residual 1 is positive and residual 2 is negative, THEN fault 1 is 
present.

 2. IF residual 1 is zero and residual 2 is zero, THEN the system is fault 
free.

 3. And so on.

Clustering is the allocation of data points to a certain number of classes. 
Each class is represented by a cluster center, or prototype, which can be 
considered as the point that best represents the data points in the clus-
ter. The idea behind fuzzy clustering is that each data point belongs to 
all classes with a certain degree of membership. The degree to which a 
data point belongs to a certain class depends on the distance to all cluster 
centers. For fault diagnosis, each class could correspond to a particular 
fault. The general principle is shown for three inputs and three clusters in 
Figure 7.10.

The fuzzy clustering fault isolation procedure consists of the following 
two steps:

 1. Off-line phase: This is a learning phase that consists of the determina-
tion of the characteristics (i.e., cluster centers) of the classes. A learn-
ing data set is necessary for the off-line phase, and it must contain 
residuals for all known faults. For more details on origin of the idea 
of fuzzy clustering, refer to Bezdsek (1991).

 2. Online phase: This phase calculates the membership degree of the 
current residuals to each of the known classes. In this way, each 
data point does not belong to just one cluster, but its membership 
is distributed among all clusters according to the varying degree of 
resemblance of its features to those cluster centers (Marsili-Libelli, 
1998).

It is important that the training data contain all faults of interest; other-
wise, they cannot be isolated online—though unknown faults can some-
times be detected.
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The fuzzy membership matrix and the cluster centers are computed by 
minimizing the following partition formula:
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where C denotes the number of clusters, N the number of data points, ui,k 
the fuzzy membership of the kth point to the ith cluster, dk,i the Euclidean 
distance between the data point and the cluster center, and m ∈ (1,∞) a fuzzy 
weighting factor which defines the degree of fuzziness of the results. The 
data class becomes fuzzier and less discriminating with increasing m. In 
general, m = 2 is chosen (note: this value of m does not produce an optimal 
solution for all problems).

The constraint in Equation 7.1 implies each point must distribute its entire 
membership among all the clusters. The cluster centers (centroids or prototypes) 
are defined as the fuzzy-weighted center of gravity of the data x, such that
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FIGURE 7.10
Fuzzy clustering concept showing cluster centers and the membership grade of a data point. 
(From Pallavi, 2003. Clustering. [Online] Available at: ftp://www.ece.lsu.edu/pub/aravena/
ee7000FDI/Presentations/Clustering-Pallavi/CLUSTERING_report.doc.)
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Since ui,k affects the computation of the cluster center vi, the data points 
with high membership will influence the prototype location more than 
points with low membership. For the fuzzy C-means algorithm, distance dk,i 
is defined as follows:

 ( ),d x vk i k i
2 2
= −  (7.3)

The cluster centers vi represent the typical values of that cluster, whereas 
the ui,k component of the membership matrix denotes the extent to which the 
data point xk is similar to its prototype. The minimization of the partition 
function (1) will give the following expression for membership:
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Equation 7.4 is determined in an iterative way since the distance dk,i 
depends on membership ui,k.

The procedure to calculate the fuzzy C-means algorithm is as follows:

 1. Choose the number of classes C, 2 ≤ C < n.

 2. Choose m, 1 ≤ m < ∞.
 3. Initialize U(0).
 4. Calculate the cluster centers vi using Equation 7.2.
 5. Calculate new partition matrix U(1) using Equation 7.4.
 6. Compare U(j) and U(j + 1).
 7. If the variation of the membership degree uk,i, calculated with an 

appropriate norm, is smaller than a given threshold, stop the algo-
rithm; otherwise go back to step 2.

 8. The determination of the cluster centers is now complete.

Online, the U matrix is calculated for each data point. The elements of the 
U matrix give the degree to which the current data correspond to each of the 
fault classes.

Fuzzy reasoning and fuzzy clustering are chosen according to the system 
and availability of expert knowledge of the system. If expert knowledge of 
the system is available, fuzzy reasoning can be used; otherwise it is better to 
use the fuzzy clustering method.

7.4.2.3 ANN Clustering

The most basic components of NNs are modeled after the structure of the 
brain, and the most basic element of the human brain is a specific type of cell 
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which gives us with the ability to remember, think, and apply previous expe-
riences to all our actions. These cells are known as neurons; each neuron 
can connect with up to 200,000 other neurons. The power of the brain comes 
from the numbers of these basic components and the multiple connections 
between them.

All natural neurons have four components: dendrites, soma, axons, and 
synapses. Essentially, a biological neuron receives inputs from other sources, 
combines them in some way, performs a generally nonlinear operation on 
the result, and outputs the final result. A simplified biological neuron and its 
four components appear in Figure 7.11 (Rahman et al., 2011).

ANN clustering is a system loosely modeled on the human brain (Klerfors, 
1998). It attempts to simulate the brain’s multiple layers of simple processing 
elements or neurons using specialized hardware or sophisticated software.

The basic units of NNs, the artificial neurons, simulate the four basic func-
tions of natural neurons. Artificial neurons are much simpler than biologi-
cal neurons; Figure 7.12 shows the basics of an artificial neuron (Rahman 
et al., 2011). Each neuron is linked to certain of its neighbors with varying 
coefficients of connectivity that represent the strengths of these connections. 
Learning is accomplished by adjusting these strengths to cause the overall 
network to output appropriate results.

Hebb has postulated a principle for a learning process (Hebb, 1949) at the 
cellular level: if Neuron A is stimulated repeatedly by Neuron B at times 
when Neuron A is active, Neuron A will become more sensitive to stimuli 

Dendrites: Accept inputs

Soma: Process the inputs

Axon: Turn the processed inputs to
outputs

Synapses: �e electrochemical
contact between neurons

Four parts of a typical nerve cell

FIGURE 7.11
Four main parts of human nerve cells on which artificial neurons are designed. (From Klerfors, 
D., 1998. Artificial Neural Networks. [Online] Available at: http://osp.mans.edu.eg/rehan/ann/
Artificial%20Neural%20Networks.htm.)
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from Neuron B; this is the correlation principle (Carl, 2008). It implicitly 
involves adjusting the strengths of the synaptic inputs, leading to the incor-
poration of adjustable synaptic weights on the input lines to excite or inhibit 
incoming signals.

An input vector x = (x1. . .xN), a column matrix vector, is linearly combined 
with the weight vector w = (w1. . .wN) via the inner (dot) product to form the 
sum

 
s w xn n

n

N
T= =

=
∑

1

w x

If the sum s is greater than the given threshold b, the output y is 1; other-
wise, it is 0. The function that gives the output value is called the activation 
function. Figure 7.13 shows some activation functions.

Activation functions as in (a) and (b) give binary outputs (0 or 1/+1 or −1), 
whereas the functions in (c) and (d) give nonbinary outputs (output value var-
ies between 0 and 1/+1 and −1). The functions are unipolar if the output range 
is between 0 and 1; they are bipolar if the output range is from +1 through −1.

The basic artificial neuron unit shown in Figure 7.12 is called a perceptron, 
and the architecture for a network consisting of a layer of M perceptrons is 
shown in Figure 7.14. An input feature vector x = (x1. . .xN) is inputted into the 
network via the set of N branching nodes. The lines fan out at the branch-
ing nodes so that each perceptron receives an input from each component 
of x. At each neuron, the lines fan in from all of the input (branching) nodes. 
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Output path

Y = 0, s ≤ τ
Y = 1, s > τ
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Inputs Weights

Structure of artificial neuron

FIGURE 7.12
Structure of an artificial neuron with Hebbian learning ability (weights are adjustable). (From 
Klerfors, D., 1998. Artificial Neural Networks. [Online] Available at: http://osp.mans.edu.eg/
rehan/ann/Artificial%20Neural%20Networks.htm.)
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Each incoming line is weighted with a synaptic coefficient (weight param-
eter) from the set {wnm}, where wnm weights the line from the nth component 
xn coming into the mth perceptron.

Because of their simplicity and ease of use, NNs have been widely used in 
academia to show the capabilities of artificial intelligence in the clustering of 
fault data. However, they have many limitations in diagnosis; practitioners 
must be aware that certain techniques may be unstable in certain conditions.

The main weakness of NNs is their need for data, especially good quality 
data; their lack of robustness with wrong data sets or missing data leads to 
incorrect diagnostics.

7.4.2.4 Integration of Fuzzy Systems and NNs

NNs process numerical information and exhibit learning capability. Fuzzy 
systems can process linguistic information and represent, say, expert 

y
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1

0

(a) y

ab = 0

1
(b)

–1

y

ab

1

(c)

a

1

(d)
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b = 0

FIGURE 7.13
Some common activation functions. Activation functions as in (a) and (b) give binary out-
put (0 or 1/+1 or −1) whereas the functions in (c) and (d) give non-binary output (output 
value varies anywhere between 0 and 1/+1 and −1). (From Pallavi, 2003. Clustering. [Online] 
Available at: ftp://www.ece.lsu.edu/pub/aravena/ee7000FDI/Presentations/Clustering-
Pallavi/CLUSTERING_report.doc.)
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knowledge using fuzzy rules. The fusion of these two technologies is the 
current research trend. The aim is to create machines with more intelligent 
behavior (Nguyen, 1994).

The following are some reasons for considering both fuzzy systems and 
NNs:

 1. The knowledge base of a fuzzy system consists of a collection of “if... 
then...” rules in which linguistic labels are modeled by membership 
functions. NNs can be used to produce membership functions when 
available data are numerical.

 2. We can take advantage of the learning capability of NNs to adjust 
membership functions, say, in control strategies, to enhance control 
precision.

 3. NNs can be used to provide learning methods for fuzzy inference 
procedures.

 4. In the opposite direction, we can use fuzzy reasoning architecture to 
construct new NNs.

 5. We can also fuzzify the NN architecture to enlarge the domain of 
applications.

 6. The fusion of NNs and fuzzy systems is based on the fact that NNs 
can learn expert knowledge (through numerical data) and fuzzy sys-
tems can represent expert knowledge (through the representation of 
in–out relationships by fuzzy reasoning).

sM     T

s2     T

s1     T

N inputs M perceptrons M outputs

y1 = T(s1)

y2 = T(s2)

yM = T(sM)

x1

x2

xN

A network of one layer of perceptrons

FIGURE 7.14
One layer of perceptron network with N inputs and M perceptrons. (From Pallavi, 
2003. Clustering. [Online] Available at: ftp://www.ece.lsu.edu/pub/aravena/ee7000FDI/
Presentations/Clustering-Pallavi/CLUSTERING_report.doc.)
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The literature mentions two combinations:

 1. Neural–fuzzy system: In this type of system, the learning ability of 
NNs is utilized to capitalize on the key components of a general 
fuzzy logic inference system. NNs are used to realize fuzzy mem-
bership functions.

 2. Fuzzy–NN system: These models incorporate fuzzy principles into 
a NN to create a more flexible and robust system. The NNs model 
algorithm can be fuzzified with fuzzy neurons, fuzzified neural 
models, and NNs with fuzzy training.

These developments represent recent progress in this field, but a number 
of integrated systems and algorithms remain in the proposal stage. For a 
more detailed explanation of combinations and proposals, refer to Lin and 
George Lee (1996).

7.5 Issues Using Cluster Analysis

Accompanying the developments in computer technology is a dramatic 
increase in the number of numerical classification techniques and their 
applications. Various names have been applied to these methods by the dis-
ciplines using them, including numerical taxonomy (biology), Q-analysis 
(psychology), and unsupervised pattern recognition (AI), but the most com-
mon generic term is cluster analysis. Cluster analysis has been used to solve 
specific classification problems in psychiatry, medicine, social services, mar-
ket research, education, and archaeology (Kural, 1999).

As mentioned above, classification is central to our understanding of any 
phenomenon: “All the real knowledge which we possess depends on meth-
ods by which we distinguish the similar from dissimilar. The greater num-
ber of natural distinctions this method comprehends, the clearer becomes 
our idea of things. The more numerous the objects which employ our atten-
tion, the more difficult it becomes to form such a method and the more nec-
essary” (Linnaeus, 1737, p. 1).

In summary, a clustering algorithm should have the following characteris-
tics if it is to be useful for maintainers:

 1. Scalability
 2. Ability to deal with different types of attributes
 3. Ability to find clusters with arbitrary shapes
 4. Minimum requirements of domain knowledge to determine the 

input parameters
 5. Ability to handle noise and/or outliers
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 6. Insensitivity to input record order
 7. High dimensionality
 8. Good interpretability and usability

Unfortunately, even when classification might facilitate understanding, 
the process of measuring the similarities between the objects and identify-
ing the classes based on these similaritiescan be difficult. Many numerical 
techniques have been created to assist in classification, “in an effort to rid 
taxonomy of its traditionally subjective nature and to provide objective and 
stable classifications” (Everitt, 1993, p. 20). Most have originated in the natu-
ral sciences, such as biology and zoology.

Even with these techniques, using cluster analysis is not straightforward. 
At every stage of analysis, investigators must make decisions based on their 
data and their purpose. This may even apply to the definitions of terms such 
as cluster, group, and class. Accordingly, Bonner (1964) suggests the meaning 
should reflect the value judgment of the user.

The decisions to be made by an investigator during cluster analysis center 
on the representation of the objects, measures of association, the method to 
be used, and the representation of the clusters. For example, Cormack (1971) 
and Gordon (1981) define clusters as having such properties as internal cohe-
sion and external isolation. Unfortunately, most of these decisions often lack 
a sound theoretical basis. Everitt (1993, p. 256) elaborates:

It is generally impossible a priori to anticipate what combination of vari-
ables, similarity measures and clustering techniques are likely to lead to 
interesting and informative classifications. Consequently the analysis pro-
ceeds through several stages with the researcher intervening if necessary 
to alter variables, choose a different similarity measure, concentrate on a 
particular subset of individuals etc. The final, extremely important stage, 
concerns the evaluation of the clustering solution(s) obtained. Are the 
clusters real or merely artefacts of the algorithms? Do other solutions exist 
which are better? Can the clusters be given a convincing interpretation? 

Generally speaking, to ensure both the understanding of the data and the 
validity of the analysis, some graphical representation of the data should 
be designed before the application of any method. As Jain and Dubes (1988, 
p. 3) say: “Cluster analysis is a tool for exploring data and should be supple-
mented by techniques for visualising data.”

Although there are several methods for such visualization (see Everitt, 
1993), a common option is PCA. This transforms the original variables into 
a new set of independent variables; each accounts for decreasing portions of 
variance of the original variables and provides a two-dimensional view of 
the data. Another option, Andrew’s plots, uses a trigonometric function to 
create a similar transformation by plotting multivariate data over the range 
−π and π (Kural, 1999).
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In the next stage, we must decide whether the raw data or data derived 
from them should be used as input for the cluster analysis. This decision 
depends on both the clustering technique and the type of raw data. Some 
reduction in the number of variables is often called for to make the clus-
tering procedure feasible. Indeed, the interface of the clustering algorithm 
and the operator has systematically been ignored because academics expect 
to remove humans from the scene and make diagnosis and prognosis in a 
fully automated way. This is obviously not possible with present technology, 
especially in the maintenance field, due to the heterogeneity of the data, dif-
ferent data sources, and the need of human expertise as a context to create 
meaningful links between disparate information that cannot be connected 
using any current techniques.

7.5.1 Clustering Methods and Their Issues

There are many different clustering methods; these are not necessarily 
mutually exclusive, nor can they be neatly categorized into a few groups. 
Hierarchical methods are the broadest family to be categorized as a single 
group. Other categories are optimization methods, clumping methods (cre-
ating overlapping clusters), density search techniques, and mixed models.

No clustering method can be judged “best” in all circumstances. Certain 
methods will be better for particular types of data. In many applications, 
it may be reasonable to apply a number of clustering methods. If all meth-
ods produce very similar solutions, the investigator may be more confi-
dent that the results merit further investigation. Widely different solutions 
might be taken as evidence of a lack of a clear-cut cluster structure (Kural, 
1999).

Therefore, the selection of a clustering technique should consider existing 
problems in the targeted field, available data, and quality of data, including 
the operators who may participate in the clustering.

There are a number of problems with clustering common to all fields and 
faced by all practitioners selecting a clustering technology. These include the 
following:

 1. Current techniques do not address all requirements appropriately 
(and concurrently).

 2. Many dimensions and many data items can cause problems if there 
are time constraints.

 3. Effectiveness depends on definition of “distance” (for distance-based 
clustering).

 4. Distance measures may not be obvious, thus requiring definition; 
this can be a problem in multidimensional spaces.

 5. Results of the clustering algorithm are often arbitrary and may be 
interpreted in a number of ways.
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A noncomprehensive outline of commonly used methods with their 
strengths and weaknesses is provided in the next subsections.

7.5.1.1 Hierarchical Methods

Hierarchical clustering, the most commonly used method, consists of a series 
of partitions that may run from a single cluster containing all individuals 
to n clusters, with each cluster containing a single individual. Hierarchical 
classifications are often represented by a two-dimensional diagram, called a 
dendrogram; this diagram shows the fusions or divisions occurring at each 
successive analytic stage.

For the most part, hierarchical clustering techniques are either agglom-
erative methods fusing individuals in successive steps; or divisive methods 
successively separating a group of n individuals into finer classes. As the 
investigator must decide at what point to stop dividing or fusing, the use of 
the techniques clearly requires the user to have a great deal of expert knowl-
edge and a well-designed interface to carry on or stop the fusion/division 
(Kural, 1999).

A drawback is the possibility of influence from a priori expectations. 
Unfortunately, this happens frequently in maintenance; before starting the 
diagnosis process, the maintainer may be so confident about the diagnosis 
that the whole process is affected. Preconceptions alter the outcome, because 
once two objects are divided, they cannot be fused again and vice versa.

These methods impose a hierarchical structure on data; researchers, there-
fore, must consider whether this is merited or if it introduces unacceptable 
distortions of the original relationships of the individuals (Everitt, 1993).

Some commonly used agglomerative methods are outlined below, along 
with their strengths and weaknesses. As divisive methods are far less pop-
ular than agglomerative methods, they are not detailed here (Kural, 1999). 
Note: Studies comparing the performances of various hierarchical methods 
find performance varies according to input data types (Cunningham and 
Ogilvie, 1972; Milligan, 1980).

7.5.1.2 Single Link Clustering (Nearest-Neighbor Technique)

Single link clustering is one of the simplest agglomerative clustering tech-
niques (Figure 7.15). Many consider it the archetypal clustering technique, as 
most other techniques are inspired by it. In this method, distance between 
groups is defined as that between the closest pair of individuals from differ-
ent groups (Kural, 1999).

The method is deemed the best hierarchical method as far as theoreti-
cal soundness is concerned (Jardine and Sibson, 1971). The single linkage 
method can be applied efficiently to large data sets (Rohlf, 1973; Sibson, 1973). 
The hierarchy is progressively updated as new similarities become available, 
regardless of the order in which they are calculated; nor is there a need to 
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store an interdocument similarity matrix (Willet, 1988). Its invariance under 
monotonic transformations of the proximity matrix (Krzanowski, et  al., 
1995) is another plus, as it is susceptible to scaling and combining different 
variables.

That being said, in many applications, single linkage is the least successful 
method to produce useful cluster solutions. Notably, its tendency to cluster 
individuals linked by a series of individuals (chaining effect) leads to the cre-
ation of loosely bound clusters with little internal cohesion (El-Hamdouchi 
and Willett, 1989). This results in gray areas in diagnosis; if identification of 
the failure is unclear, maintenance decisions will be equally loose. While 
this is undesirable for many applications, it is not unreasonable however for 
subjects like taxonomy and its examination of evolutionary chain mecha-
nisms (Krzanowski, 1988).

Another limitation is the method’s inability to provide an immediate defi-
nition of the cluster center or representative (Murtagh, 1983).

Finally, in cluster-based retrieval (CBR), this method performs poorly, pro-
ducing a small number of large, well-defined document clusters (Voorhees, 
1985). Experiments by Griffiths et al. (1986) on document clustering reveal 
that complete linkage, group average, and Ward’s method yield far superior 
results to the single linkage method (Kural, 1999).

7.5.1.3 Complete Linkage Clustering (Furthest-Neighbor Clustering)

Complete linkage clustering is the opposite of single linkage clustering in 
the sense that the distance between groups is now defined as the distance 
between the most distant pair of individuals from different groups (Figure 
7.16). The definition of cluster membership is much stricter than single link-
age, and the large straggly clusters are replaced by large numbers of small, 
tightly bound clusters (El-Hamdouchi and Willett, 1989) of equal diameter 
(Krzanowski, 1988). In theoretical graph terms, this method corresponds 
to the identification of maximally complete subgraphs at some threshold 

Nearest-
neighbor
(single linkage)

FIGURE 7.15
Nearest-neighbor single linkage for two clusters.
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similarity (Willet, 1988). This is especially relevant in diagnosis where a 
tightly bound cluster may identify single failures and combinations of fail-
ure modes, preparing the user for a diagnostic where both existing failures 
and degree of severity can be outputs of a system in which clusters are very 
well defined (Kural, 1999).

According to Willet (1988), complete linkage is an effective method for 
clustering, despite being the method that requires the greatest computa-
tional resources.

A disadvantage is that this method is sensitive to observational errors.

7.5.1.4 Group Average Clustering

Here, the distance between two clusters is defined as the average of the dis-
tances between all pairs of individuals composed of one individual from 
each group (Figure 7.17). It represents a midpoint between the two extreme 
types of linkage methods, that is, single linkage and complete linkage. The 
method is known to minimize the distortion imposed on the interobject sim-
ilarity matrix when a hierarchic classification is generated (El-Hamdouchi 
and Willett, 1989).

Furthest-
neighbor
(complete
linkage)

FIGURE 7.16
Furthest-neighbor complete linkage for two clusters.

Average
(only shown
for two cases)

FIGURE 7.17
Average for two clusters.
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Group average had the best overall performance in a comparative study 
involving seven hierarchical clustering methods (Cunningham and Ogilvie, 
1972). But another study reports that the performance of this technique is 
affected by outliers (Milligan, 1980).

7.5.1.5 Centroid Clustering

Unlike the above three methods that operate directly on the proximity 
matrix and do not need access to the original variable values of the individu-
als, centroid clustering requires original data (Figure 7.18).

With this method, once groups are formed, they are represented by the 
mean values for each variable, in other words, the mean vector. Moreover, 
the intergroup distance is now defined in terms of the distance between two 
mean vectors. Although the use of a mean generally implies variables on an 
interval scale, the centroid clustering method is often used for other types 
of variables.

If the two groups to be fused have very different sizes, the centroid of the 
new group will be close to the centroid of the larger group and may remain 
within that group. If we assume the groups to be fused are of equal size, we 
can avoid this problem, as the apparent position of the new group will be 
somewhere between them (Kural, 1999).

Another disadvantage is that the method is biased toward finding “spheri-
cal” clusters.

7.5.1.6 Median Clustering

Although somewhat like centroid clustering, median clustering attempts to 
make the process independent of group size by assuming the groups to be 
fused are of equal size; as discussed above for centroid clustering, the appar-
ent position of the new group will always be between the two groups to be 
fused.

Centroid

FIGURE 7.18
Centroid for two clusters.
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Lance and Williams (1967) suggest this method is unsuitable for such 
measures as correlation coefficients, where geometrical interpretation is not 
possible. Finally, like the single link clustering method, median clustering 
suffers from the chaining effect (Kural, 1999).

7.5.1.7 Ward’s Method

Ward (1963) has proposed a clustering procedure to form partitions in a 
manner that minimizes the loss associated with each grouping and to quan-
tify that loss in a readily interpretable form. At each step in the analysis, 
the union of every possible pair of clusters is considered and the two clus-
ters whose fusion results in the minimum increase in “information loss” are 
combined. Information loss is defined by Ward in terms of an error sum-of 
squares criterion, or ESS (Kural, 1999).

Ward’s method is biased toward finding “spherical,” tightly bound clus-
ters (El-Hamdouchi and Willett, 1989) and does not cope well with unequal 
sample sizes (Kuiper and Fisher, 1975). Moreover, it is only defined explicitly 
when the Euclidian distance is used to calculate inter-document similarities; 
using an association coefficient (e.g., the Dice’s coefficient) will not yield an 
exact Ward classification (Willet, 1988).

That being said, in their CBR experiments with small document collec-
tions, Griffiths et al. (1986) find this method gives better results than single 
linkage, complete linkage, and group average methods.

7.5.1.8 Optimization Methods

Optimization methods numerically partition the individuals of specific 
groups, by minimizing or maximizing certain numerical criteria, not neces-
sarily classifying data hierarchically. Essentially, an index, f(n, g), the value 
of which indicates the “quality” of this particular clustering, is associated 
with each partition of n individuals into the required number of groups g. 
Associating a number with each partition allows their comparison.

Optimization methods have some limitations. Blashfield (1976) finds the 
result of optimization can be radically affected by the choice of the starting 
partition, although we can reasonably expect convergence if data are well-
structured. In addition, these methods may impose a “spherical” structure 
on clusters even if the “natural” data clusters have different shapes. Finally, 
selecting the number of groups is a major issue; here, several methods 
have been suggested to aid users (Beale, 1969; Calinski and Harabasz, 1974; 
Marriott, 1971).

7.5.1.9 Mixed Models

Mixed models attempt to provide a way to derive inferences from sample to 
population. The most common approach is mixed distributions.
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The mixed approach provides a better statistical basis than other methods 
and requires no decisions about what particular similarity or distance mea-
sure is appropriate for a data set. Nevertheless, mixed models have their own 
set of assumptions, such as normality and conditional independence, which 
may not be realistic in all applications (Kural, 1999).

7.5.1.10 Density Search Clustering Techniques

These techniques search for high-density regions in the data, with each such 
region taken to signify a different group. Although some density search clus-
tering techniques originate in single link clustering, they attempt to over-
come chaining as shown in Figure 7.19 (Kural, 1999).

7.5.1.11 Taxmap Method

The taxmap method detects clusters by comparing relative distances between 
points; it searches for continuous, relatively densely populated regions of the 
space, surrounded by continuous relatively empty spaces. Although the ini-
tial formation of clusters emulates the single linkage model, criteria are set 
to determine when to stop additions to the clusters.

7.5.1.12 Mode Analysis

Mode analysis is another derivative of single linkage clustering. It searches for 
natural subgroupings of the data by seeking disjoint density surfaces on the 
sample distribution. The search considers a sphere of a radius, R, surrounding 
each point and counts the number of points falling in the sphere. Individuals 
are labeled dense or nondense based on whether their spheres contain more or 
fewer points than the value of a linkage parameter, K; this parameter is preset 
at a value dependent on the number of individuals in the data set.

Unfortunately, mode analysis cannot simultaneously identify large and 
small clusters (Kural, 1999).
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FIGURE 7.19
Types of density reachable techniques. (a) Directly density reachable, (b) density reachable, (c) 
density connected.
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7.5.1.13 Clumping Techniques

Clumping techniques allow overlapping clusters. They often begin with the 
calculation of a similarity matrix, followed by the division of the data into 
two groups by minimizing the so-called cohesion function.

Minimizing algorithms perform successive reallocations of single individ-
uals from an initially randomly chosen cluster center. Many divisions can be 
created by iterating from different starting points. In each case, members of 
the smaller group are noted; they constitute a class to be set aside for further 
examination (Kural, 1999).

7.5.2 Limitations of Associating Distances

As mentioned, all clustering methods must measure the association between 
objects in some fashion, for example, with similarity, dissimilarity, and dis-
tance measures.

However, when we look at the existing techniques, it is clear that distance 
and similarity are relative and dependent on many things, including avail-
able data, expertise from users, and so on.

Maintenance practitioners seek similarity and dissimilarity indicators to 
get an accurate diagnosis for maintenance actions. A similarity coefficient 
indicates the strength of the relationship between two objects, given the val-
ues of a set of p variables common to both. Most similarity measures are 
nonnegative and are scaled to have an upper limit of unity, although some 
are correlational so that the coefficient varies between −1 and 1.

Dissimilarity measures complement the similarity measures. There are 
also several dissimilarity coefficients representing a kind of “distance” func-
tion. These generally satisfy the following conditions (Kural, 1999):
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The fourth condition is triangle inequality, a theorem from Euclidian 
geometry, stating that the sum of the lengths of two sides of a triangle is 
always greater than the length of the third side.

The following is an example of the dissimilarity coefficient satisfying the 
above four conditions:
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It is simply related to Dice’s coefficient by
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and it is monotone to Jaccard’s coefficient subtracted from 1.
Some argue differences in output among different measures are insignifi-

cant, if these are appropriately normalized. Lerman (1970) finds many of the 
frequently used measures are monotone with respect to each other. Sneath 
and Sokal (1973) agree with Lerman (1970) and suggest the simplest type of 
coefficient that seems appropriate should be used. Yet some experimental 
results reveal coefficients may affect the outcome (Kirriemuir and Willett, 
1975).

Because it organizes multivariate data into subgroups or clusters, clus-
tering may assist investigators in determining the characteristics of any 
structure or pattern. Applying the methods in practice, however, requires 
considerable care to avoid overinterpreting the resulting solutions. 
Questions of cluster validity require considerable attention, although such 
questions are seldom straightforward and “full of traps for the unwary” 
(Dubes and Jain, 1979, p. 4).

Personal intuition and insight often dominate interpretations of the 
results of a clustering algorithm. Problematically, clustering algorithms 
generate clusters even when applied to random data; it is clearly necessary 
to avoid elaborate interpretation of the derived solutions in such cases. This 
is a major risk of clustering done by maintainers who can influence the pro-
cess and whose conclusions mirror their expectations and strong aprioristic 
beliefs.

7.6 Text Clustering and Categorization

Analysis of data can reveal interesting and often important structures or 
trends in the data that reflect a natural phenomenon. Discovering regulari-
ties in data can be used to gain insight, interpret certain phenomena, and 
ultimately make appropriate decisions in various situations. Finding inher-
ent but invisible regularities in data is the main subject of research in data 
mining, machine learning, and pattern recognition.

Data clustering is a data mining technique that enables the abstraction of 
large amounts of data by forming meaningful groups or categories of objects, 
formally known as clusters, such that objects in the same cluster are simi-
lar to each other, and those in different clusters are dissimilar. A cluster of 
objects indicates a level of similarity between objects; when we can consider 
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them to be in the same category, our reasoning about them is considerably 
simplified.

These objects can be simple values, as shown earlier. There are also 
instances when the values (condition indicators) are fused with expert knowl-
edge, events, manufacturer data, and so on, in order to define a situation not 
just with a numerical value but also with a set of circumstances, thereby 
allowing the user to identify what is happening in a much more accurate 
way. Simply stated, there are many variables providing more information.

For this purpose, disparate data sources, including text sources in the form 
of work orders, reports, and OEM data must be considered. Text categoriza-
tion is defined as the process of assigning predefined class labels to new 
text documents based on what the classifier learns from the training set of 
documents.

Text clustering approaches can be classified according to various inde-
pendent dimensions. For instance, different starting points, methodologies, 
algorithmic points of view, clustering criteria, and output representations 
usually lead to different taxonomies of clustering algorithms. Properties of 
clustering algorithms can be described as follows:

 1. Nonhierarchical methods:
 a. k-means and extensions (spherical k-means, kernel k-means, and 

bisecting k-means)
 b. Buckshot
 c. Leader–follower algorithm
 d. Self-organizing map (SOM)
 2. Hierarchical methods:
 a. Agglomerative
 b. Divisive
 3. Generative algorithms:
 a. Gaussian model
 b. Expectation maximization
 c. Von Mises–Fisher
 d. Model-based k-means
 4. Spectral clustering:
 a. Divide and merge
 b. Fuzzy coclustering
 5. Density-based clustering:
 a. A cluster is composed of well-connected dense regions. Density-

based spatial clustering of applications with noise (DBSCAN) is a 
typical density-based clustering algorithm; it works by expanding 
clusters to their dense neighborhood (Ester et al., 1996).
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 6. Phase-based models:
 a. Suffix tree clustering
 b. Document index graph

Major categorization techniques are K nearest-neighbor (KNN), SVM, 
naïve Bayesian (NB), naïve Bayesian multinomial (MNB), decision tree, hid-
den Markov model (HMM), maximum entropy, and NN. The following 
modules are generally used in any clustering technique:

 1. Preprocessing and feature extraction
 2. Dimensionality reduction (e.g., PCA, nonnegative matrix factoriza-

tion, soft spectral coclustering, and lingo)
 3. Similarity measures
 4. Clustering algorithm
 5. Evaluation using internal and external validity measures

To perform text categorization, a set of modules must be applied. Table 7.1 
shows the best-known text categorization algorithms alongside the required 
modules.

7.6.1 Applications and Performance

Clustering is used in a wide range of applications, such as marketing, biol-
ogy, psychology, astronomy, image processing, and text mining.

Document clustering techniques are widely used in

 1. Information retrieval
 a. Improve precision and recall
 b. Organize results
 c. Online search engines: clusty.com and iboogie.com

TABLE 7.1

Text Categorization Components

Modules SVM KNN MNB

Feature extraction (stemming 
and stop word removal)

Yes Yes Yes

Feature selection Yes Yes Yes
Document representation Yes Yes Yes
Learning Yes Yes Yes
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 2. Organizing documents
 a. Find nearest documents to a specific document
 b. Automatically generate hierarchical clusters of documents
 c. Browse a collection of documents, corpus exploration
 3. Indexing and linking

Text categorization techniques are used in many applications, including:

 1. Filtering email
 2. Mail routing
 3. Spam filtering
 4. News monitoring
 5. Sorting through digitized paper archives
 6. Automated indexing of scientific articles
 7. Classifying news stories
 8. Searching for interesting information on the internet
 9. Classifying business names by industry
 10. Classifying movie reviews as favorable, unfavorable, and neutral
 11. Classifying websites of companies by Standard Industrial Classification 

(SIC) code
 12. Providing packages for clustering and categorization

Dependency between technologies

 1. Clustering and feature selection (e.g., use of frequent item sets and 
closed frequent item sets)

 2. Clustering and social network analysis
 3. Clustering and image processing
 4. Clustering and outlier detection
 5. Clustering and gene expression analysis
 6. Clustering and semantic-based techniques

Table 7.2 compares clustering techniques.

7.7 Contextual Clustering

Words are a basic form of data in social science research, largely because 
of their use as the most common medium of social exchange. For many 
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purposes, insight into meanings can be obtained by examining profiles 
of ideas and contextual information contained in text. The social science 
research problem of systematically coding textual data (i.e., making quanti-
tative distinctions between texts varying in the pattern of emphasis on sets 
of ideas and in the context or social perspective from which these ideas are 
studied) can be addressed by using scores to describe comparative patterns 
of meaning in textual data, to generate traditional statistical analyses with 
other nontextual variables, and to organize and focus further qualitative 
analysis (McTavish and Pirro, 1990).

By “text,” we are referring to a transcript of naturally occurring verbal 
material. These are widely diverse and include conversations, written docu-
ments (i.e., diaries, organization reports, books), written or taped responses 
to open-ended questions, media recordings, and verbal descriptions of 
observations. Ultimately, a transcript will comprise a computerized file of 
conventional words and sentences for one or more cases.

Given the inherent diversity and the many possibilities, we need meth-
odologies to directly, systematically, and efficiently handle textual data. 
Trained coders have traditionally been used, but serious validity, reli-
ability, and practical problems are often the result. Although computer 
approaches have available since the 1960s and permit more systematic 
and reliable coding of themes and meanings, they still are not widely 
used in social science research. We agree with Markoff and Weitman 
(1975), when they say content analysis must be integrated with traditional 
methodology. Brifely stated, our approach extends computer content 
analysis, so that it becomes a useful complement to traditional social sci-
ence methodology.

TABLE 7.2

Comparison of Clustering Techniques

Technique
Dis(similarity) 

Matrix
Number of 
Clustering Sensitive to Outliers

Shape of 
Clusters

Nonhierarchical 
methods

No Known Yes Spherical-shaped 
clusters

Hierarchical 
methods

Yes Known Not as nonhierarchical 
approaches

Elongated-
shaped clusters

Generative 
algorithms

No Known Yes Spherical-shaped 
clusters

Spectral 
clustering

No Known No Arbitrary-
shaped clusters

Density-based 
clustering

Yes Unknown No Arbitrary-
shaped clusters

Phase-based 
models

Yes Known No Arbitrary-
shaped clusters



373Cluster-Based Techniques

7.7.1 Overview of Contextual Content Analysis

Contextual content analysis, implemented in the Minnesota Contextual 
Content Analysis (MCCA) computer program, builds on computer content 
analysis methodology in a number of ways.3

First, in the social sciences, all words in one or more texts can be divided 
into many idea categories (including the category “not elsewhere classified”), 
based on a conceptual “dictionary.” A dictionary groups words (or word 
meanings) into categories considered to express (singly or in patterns) ideas 
of interest to an investigator. Several conceptual dictionaries have been used 
in computer-based content analysis; the organization of each follows a differ-
ent theoretical perspective.4

The MCAA contextual–conceptual dictionary is oriented toward fre-
quently used words whose meanings can be organized in a number of 
mutually exclusive categories of general social science interest (Pierce and 
Knudsen, 1986). Words with multiple meanings are disambiguated in a text, 
and relative emphasis on each category is normed with respect to a standard 
(i.e., the expected emphasis, accounting for expected variability in use over a 
number of social contexts), a process described later. The resulting vector of 
normed scores (“emphasis” scores or E-scores) allows investigators to exam-
ine over and underemphasis relative to the norm of expected usage. Broader 
concepts and themes can be identified from scores for sets of related catego-
ries. Finally, investigators can make quantitative distinctions between texts 
by looking at the overall profile of emphasis on idea categories.

Second, MCCA picks up the last point and incorporates the hypothesis 
that social contexts (groups, institutions, organizational cultures, or other 
socially defined situations) can be identified by the overall profile of relative 
emphasis on idea categories used in their respective communications. The 
idea emphasis profile contains valuable information that helps researchers 
distinguish and characterize social contexts.

Four general “marker” contexts can be used to aid in interpreting con-
textual information in these profiles: “traditional,” “practical,” “emotional,” 
“analytic.” Each is an experimental, empirically derived profile of relative 
emphasis on each idea category. In addition, each characterizes the per-
spective typical of a general social or institutional context. As a set, the four 
markers act as dimensions to define a social context space. MCCA computes 
these contextual scores (or C-scores). Texts can be scored and differenti-
ated on these four dimensions. For example, a more “traditional” concern 
for breach of norms and appropriate sanctions in a religious discussion can 
be distinguished from a more “practical” concern for failure to successfully 
achieve goals and consequences in a business discussion. Even similar ideas 
may be discussed in quite different ways in different social contexts; these 
scores may be important parameters of social contexts.

Third, MCCA links the strengths of qualitative and quantitative social 
science research. An investigator can examine transcribed conversational 
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interviews on a topic for a large representative sample of cases, for exam-
ple, while quantitative scores can guide comparative, qualitative analysis of 
social meanings in textual data, thereby adding qualitative depth to quanti-
tative analyses.

Fourth, because computerized content analysis eliminates problems of 
coder reliability, measurement and validity issues are much less salient.

In short, the approach has much to offer systematic analyses. For example, 
norming provides a basis for examining topical emphasis (including distinc-
tive omissions) in a text, formerly a problematic task in coding open-ended 
response data. More specifically, through the use of normed, idea-emphasis 
scores (E-scores) and scores emphasizing the four marker contexts (C-scores), 
any naturally occurring textual material can be “coded” to reflect meanings 
of interest to an investigator. In addition, the set of C-scores and E-scores 
for each text can be combined for traditional quantitative, statistical analysis 
with independent and dependent variables measured in other ways. This 
type of “contextual content analysis” differs from more traditional hand and 
computer content analytic approaches. Most notably, it provides social sci-
ence research with a broad framework for characterizing social meanings in 
text and a practical, systematic means for scoring textual data.

The following sections elaborate on the MCCA and provide illustrations of 
its use (McTavish and Pirro, 1990).

7.7.2 Meanings in Text

As in any research, the meaning attributed to a text depends on the research-
er’s theory. There is no general answer to the question of what a textual pas-
sage “really” means. Nor is there usually a research interest in capturing 
“all” meanings in a text. Rather, the specific research problem and the inves-
tigator’s personal use of theory will specify the relevant meanings in the 
appropriate text.

Markoff and Weitman (1975) distinguish between a situation where sub-
jects want to share meanings and one where subjects intend to manipulate 
the investigator’s understanding. From our point of view, manipulative 
intentions by subjects do not invalidate an analysis of what is said. It does 
suggest, however, that explanatory theories should also include the possi-
bility of intentional manipulation. Similarly, subcultural and individualistic 
uses of words should be entertained in explanatory research uses of text 
(McTavish and Pirro, 1990).

7.7.3 Measuring Context

By “context,” we are referring to a shared meaning or social definition of a 
situation of interaction. The context will explain the underlying orientation 
of any subsequent actions.5 Context operates on many levels. Broad social 
contexts may be all encompassing, such as the meaning of being human or 
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a member of a culture, a subculture, or a nation. We find shared contexts 
on certain aspects of life, such as work, family, or leisure.6 Briefly stated, the 
meaning of social context plays an important role in a number of explana-
tory perspectives in social science.7

Other types of analysis can rest on context. Typically, in content analysis, 
context information is assumed or determined intuitively (e.g., “we are in a 
work context, so we will look at meanings of job satisfaction, not religious 
satisfaction”) or uses information outside the actual communication (e.g., 
the speaker’s status or the conditions under which the text was prepared) 
(Krippendorff, 1980). Unfortunately, the description or characterization of a 
communication can be confused with the explanatory problem of determin-
ing its causes and consequences. To avoid this, we could focus on measure-
ment, for example, coding descriptive information about ideas and context 
expressed in a text and using some of these codes in explanatory analysis, in 
addition to independently measured variables.

Words typically indicate the context, but other signs and symbols may do 
the same thing. For example, someone may say, “Tell me about your work.” 
By framing the request in this fashion, the speaker has established the limits 
and direction of the conversation through his/her choice of one context (an 
economic or work context) and relative exclusion of others (e.g., religion, fam-
ily, and leisure).

Context is indicated by the range of vocabulary used in a social encoun-
ter or in discussions of a topic (i.e., the number of unique words and the 
total number of words used). More frequently used words carry important 
information that allows us to distinguish between general social contexts. In 
other words, out of all possible words and constructions, a specific subset is 
chosen because of its ability to encode that particular communication.8

Middle-range words carry interesting contextual information. These 
words are generally known and used, and they appear in different social 
contexts. Yet their relative use varies widely across social contexts. On the 
one hand, they include the general classes of nouns, verbs, adjectives, and 
adverbs that allow description and evaluation across settings. On the other 
hand, they also include the pronouns, adverbs, and adjectives that specify 
and structure a situation. Note: MCCA pays particular attention to middle 
range and more widely used words.

Contextual information is also found in the preference for certain words 
or word groups over others, evidenced, for example, in probability distribu-
tion patterns across idea/word categories. Individuals use ideas/words in 
distinctive, patterned ways, reflective of their role and location in a social 
system, along with their individual socialization and other individual fac-
tors. Subcultures display overall patterns in the use of conceptual categories, 
as do specific social settings or contexts. Individuals learn certain patterns, 
and their speech shows changes in patterns in different social settings (e.g., 
as they move from church to job to recreation). Such usage patterns typify 
and distinguish institutionalized social settings (Cleveland and Pirro, 1974; 
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Namenwirth, 1968). Finally, we can find contextual information in the con-
nectedness or co-occurrence of ideas.

The social meaning of a situation is important, as it provides the start-
ing point for individual social interaction. In other words, if we know the 
social context, we can anticipate general kinds of activity and the appropri-
ate behavior for that activity. Importantly, social context can be measured 
empirically with the content analysis framework, providing the basis for a 
more precise evaluation of the meaning of social contexts and a better com-
parison of communication across contexts. To this end, MCCA attempts to 
systematically code contextual information from textual data.

7.7.4 Issues of Validity and Reliability

Concerns about the validity and reliability of contextual content analysis 
are best addressed in specific research situations, like other measurement 
techniques (e.g., Likert scaling) whose concepts and their measures require 
examination. A number of authors have looked at questions of reliability and 
validity in content analysis (Andren, 1981; Holsti, 1969; Krippendorff, 1980; 
Weber, 1983).

Computers handle some important aspects of reliability in content analy-
sis. Computer content analysis procedures process a given text file reliably, in 
accordance with instructions in a specific program. This allows investigators 
to realistically consider the inclusion of verbatim text in systematic research 
on larger or more representative samples and contrasting varieties of sub-
stantive topics.

A larger question is the reliability involved in the production of text (e.g., 
will two conversations with the same person on the same topic yield the 
same patterns, controlling for pretesting and other change factors?). Another 
interesting area of inquiry involves sampling pattern variability, given a 
certain number of respondents, documents, words, topics, and so on, which 
may require some reconceptualization before applying traditional sampling 
theory. In some instances, for example, we should consider the overtime 
branching pattern developed in a conversation on a topic or acknowledge 
that in some conversations, different respondents independently articulate 
the same, widely shared, aspect of culture. At any rate, stability in patterns 
is often reached with relatively few words (500–1000 on a topic) or modest 
respondent samples.

It is not usually appropriate to generalize validity findings to a whole 
measurement approach, but in this case, we can identify certain typical 
strengths and weaknesses. Few social science theories provide a deductive 
link with word patterns and constructs, so investigators using content analy-
sis turn to the assumptions about shared meanings central to other mea-
surement approaches (e.g., survey questionnaires). The assumption of wide 
areas of consensus on word meanings appears justified (illustrated by the 
usefulness of a standard dictionary) in many research situations. There is 



377Cluster-Based Techniques

also widespread reliance on face (content) validity assessment of measures, 
emerging from informed judgment, a priori knowledge, intuitive plausibility 
tests, and so on.

Can we make a general conclusion as to the validity of content analytic 
measures, including those computed by MCCA? Our experience suggests 
direct links between content analysis measures and certain theoretical con-
cepts. For one thing, content analysis allows us to operate directly on the 
expressed meanings and emphases of subjects; we do not need subjects to 
translate their experiences into structured statements closer to our research 
needs, thus preserving respondents’ emphases and nuances. In addition, the 
data are more likely to be gathered as a part of the normal process of human 
communication rather than as “encoded” or “prestructured” conversation.

Various research projects have offered myriad opportunities for predictive 
validity checks. For example, a study comparing the open-ended conversa-
tions of husbands and wives about their relationship resulted in accurate 
classifications of couples in behavioral terms (seeking divorce, seeking out-
side help, coping). These could be compared with the independent judgments 
of clinicians having access to the couples (McDonald and Weidetke, 1979).

Admittedly, it is helpful to include traditional measures of key concepts in 
content analytic studies and separately measured predictors. Adding “cri-
terion text” profiles to an analysis also aids in validity assessment. If the 
criterion text represents a relatively pure instance of a theoretical construct 
or position on a theoretical continuum, an analysis of its distance from other 
texts can assist analysis and validity assessment. Additionally, when alter-
native information can identify relevant criteria to predict, predictive and 
posterior studies are useful.

Finally, we can frequently identify expected relationships to examine in 
content analysis. During the analytic process, a series of relatively low level 
expectations can be generated and tested along the line of “if this is an accu-
rate interpretation, then we would also expect that to be true. . .” The result 
is a series of small construct validity tests or “triangulations,” which shed 
significant light on questions of validity (McTavish and Pirro, 1990).

Computer-based, contextual/conceptual content analysis augments tradi-
tional measurement approaches and provides a way to integrate the relative 
strengths of qualitative and quantitative research. It suggests realistic pos-
sibilities for the reliable and systematic analysis of a broad range of social sci-
ence data, including historic documents, cross-cultural materials, interview 
transcripts, verbal processes, open-ended responses, and so on.

We hasten to add, however, that further theoretical and quantitative work 
is required on linkages between conceptual definitions of key social science 
variables and patterns of word usage, including comparative word patterns 
across cultures, societies, institutions, organizations, and historic time. That 
said, work to date suggests an ability to more directly deal with expressions 
of social meanings in a rigorous analytic framework is indeed possible and 
will prove fruitful in future social science investigations.
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8
Statistical Techniques

8.1 Use of Stochastic Distributions to Detect Outliers

A stochastic process is a mathematical concept used to characterize a 
sequence of random variables (stochastic) that evolve according to another 
variable, usually time. Each random variable has its own probability distri-
bution function and the variables can either be correlated or not. Each vari-
able or set of variables subject to influences or random effects is a stochastic 
process. Any time a process (deterministic or essentially probabilistic) is ana-
lyzable in terms of probability, it deserves to be called a stochastic process.

The stochastic process is currently used to detect outliers (Bakar et  al., 
2006) or atypical observations. Some outliers are the result of recording or 
measurement errors and should be corrected (if possible) or deleted from 
the data.

An outlier may be defined as a data point that is very different from the 
rest of the data based on some measure. That point, on occasion, contains 
useful information about the abnormal behavior of the system described 
by the data (Aggarwal and Yu, 2005). From the point of view of a cluster-
ing algorithm, outliers are objects not in the data set groups and are often 
called noise (Breunig et al, 2000). At the same time, they may carry impor-
tant information. Detected outliers are candidates for aberrant data that may 
otherwise lead to model misspecification, biased parameter estimation, and 
incorrect results. It is, therefore, important to identify them before modeling 
and analysis (Davies and Gather, 1993).

At present, some studies have been done on the detection of outliers for 
large data sets (Aggarwal and Yu, 2005). Many data-mining algorithms have 
as their function the minimization of the influence of outliers or their total 
elimination, but this could result in the loss of important hidden informa-
tion; for example, what is noise to one person could be a signal to another 
(Knorr et al., 2000). In other words, the outliers themselves may be of particu-
lar interest, such as fraud detection, where outliers may indicate fraudulent 
activity (Han and Kamber, 2001).
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8.1.1 Taxonomy of Outlier Detection Methods

Outlier detection methods include parametric (statistical) and nonparamet-
ric methods that are model free. Parametric methods include the statistical 
approach, control chart technique (CCT), and deviation-based approach. 
Nonparametric methods include the linear regression technique (LRT), data-
mining methods, also called distance-based methods, and the Manhattan 
distance technique (MDT).

The statistical approach is appropriate for one-dimensional samples. The 
analysis is applied to the control chart and LRTs.

A distance-based approach, such as the MDT, can counter the main limita-
tions of the statistical approach (Williams 2002).

Outlier detection methods include univariate and multivariate methods.

8.1.2 Univariate Statistical Methods

Many methods of detecting outlier univariates are based on the assump-
tion of an underlying known distribution of the data, namely that the data 
are independent and identically distributed (iid). Equally, many discordance 
tests for detecting univariate outliers assume certain distribution parameters 
and certain outliers are expected. Needless to say, in real-world data-mining 
applications, these assumptions are often violated.

A central assumption in statistical-based methods for outlier detection is a 
generating model that allows a small number of observations to be randomly 
sampled from distributions G1,…,Gk, differing from the target distribution 
F, often taken to be a normal distribution N(μ, σ2). The outlier identification 
problem is then translated into the problem of identifying those observations 
lying in the so-called outlier region. This leads to the following definition.

For any confidence coefficient α, 0 < α < 1, the α-outlier region of the 
N(μ, σ2) distribution is defined by

 
out α μ σ μ α

σ, , : /
2

1 2( ) = − >{ }−x x z
 

(8.1)

where zq is the q quintile of the N(0,1). A number x is an α-outlier with respect 
to F if x ∈ out(α, μ, σ2). However, the normal distribution has been used as the 
target distribution. Therefore, this definition can be easily extended to any 
unimodal symmetric distribution with positive density function, including 
the multivariate case.

Note: The outlier definition cannot identify which observations are con-
taminated, that is, those resulting from distributions G1,…,Gk; rather, it indi-
cates those observations that lie in the outlier region.

8.1.2.1 Single Step versus Sequential Procedures

Davies and Gather (1993) make an important distinction between single 
step and sequential procedures for outlier detection. Single-step procedures 
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identify all outliers at once as opposed to successive elimination or addition 
of data. In the sequential procedures, at each step, one observation is tested 
as an outlier. Following Equation 8.1, a common rule for finding the outlier 
region in a single-step identifier is given by

 
out α μ σ μ α σn n n n n nx x g n, , : ,2( ) = − > ( ){ }� � � �

 
(8.2)

where n is the size of the sample; �̂n and �σn are the estimated mean and stan-
dard deviation of the target distribution based on the sample, respectively; 
αn denotes the confidence coefficient following the correction for multiple 
comparison tests; and g(n, αn) defines the limits (critical number of standard 
deviations) of the outlier regions.

Traditionally, � �μ σn n,  are estimated, respectively, by the sample mean, xn , 
and the sample standard deviation, Sn. Since these estimates are highly 
affected by the presence of outliers, they are often replaced by more robust 
procedures. The multiple-comparison correction is used when several sta-
tistical tests are performed simultaneously. That is, while an α-value may be 
appropriate to decide whether a single observation is located in the region 
of outliers (i.e., a single comparison), this is not the case for a set of several 
multiple comparisons. To avoid false positives, the α-value needs to be low-
ered to account for the number of performed comparisons. Bonferroni’s cor-
rection, a simple and conservative approach, sets the α-value for the whole 
set of n comparisons equal to α, by taking the α-value for each comparison 
equal to α/n? Another correction uses αn = 1 − (1 − α)1/n. Note: The traditional 
Bonferroni’s method is “quasi-optimal” when the observations are indepen-
dent, and this is unrealistic in most cases. The critical value g(n, αn) is often 
specified by numerical procedures, such as Monte Carlo simulations, for dif-
ferent sample sizes (Maimon and Rokach, 2010).

8.1.2.2 Inward and Outward Procedures

Sequential identifiers can be further classified into inward and outward pro-
cedures. In inward testing, or forward selection methods, at each step of the 
procedure, the “most extreme observation,” that is, the one with the largest 
measure of outlyingness, is tested for being an outlier. If it is declared an 
outlier, it is deleted from the data set and the procedure is repeated. If it is 
declared a nonoutlying observation, the procedure terminates.

In outward-testing procedures, the sample of observations is first reduced 
to a smaller sample (e.g., by a factor of 2), with the removed observations 
placed in a reservoir. The statistics are calculated based on the reduced 
sample and the observations in the reservoir are tested in reverse order to 
determine whether they are outliers. If an observation is declared an atypi-
cal case, it is removed from the reservoir. If an observation is declared a 
nonoutlying observation, it is removed from the reservoir and added to the 
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reduced sample; the statistics are recalculated and the process is repeated 
with a new observation. The outward-testing procedure is terminated when 
no more observations are left in the reservoir.

The classification into inward and outward procedures also applies to 
multivariate outlier detection methods (Ben-Gal, 2005).

8.1.2.3 Univariate Robust Measures

Traditionally, the sample mean and the sample variance give a good estima-
tion of data location and data shape if they are not contaminated by outliers. 
When the database is contaminated, these parameters may deviate and sig-
nificantly affect the outlier detection performance.

Hampel (1971, 1974) introduced the concept of the breakdown point as a 
measure for the robustness of an estimator against outliers. The breakdown 
point is defined as the smallest percentage of outliers that can cause an esti-
mator to take arbitrary large values. Thus, the larger the breakdown point of 
an estimator, the more robust it is. For example, the sample mean has a break-
down point of 1/n since a single large observation can make the sample mean 
and variance cross any bound. Accordingly, Hampel suggested the median 
and the median absolute deviation (MAD) are robust estimates of the location 
and the spread. The Hampel identifier is often very effective in practical cases.

Other early work addressing the problem of robust estimators was by 
Tukey (1977) who introduced the Boxplot as a graphical display on which 
outliers can be indicated. The Boxplot has been used in many cases, and is 
based on the distribution quadrants. The first and third quadrants, Q1 and 
Q3, are used to obtain the robust measures for the mean, �μn Q Q= +( ) ,1 3 /2  
and the standard deviation, ˆ .σn Q Q= −3 1

Another solution to obtain robust measures is to replace the mean with the 
median and compute the standard deviation based on (1 – α) percent of the 
data points where, typically, α = 5%.

Liu proposed an outlier-resistant data filter–cleaner (Liu et al., 2004), based 
on the earlier work of Martin and Thomson (1982). The proposed data  filter–
cleaner includes an online outlier-resistant estimate of the process model 
and combines it with a modified Kalman filter to detect and “clean” outli-
ers. The method does not require a priori knowledge of the process model. 
It detects and replaces outliers online while preserving all other informa-
tion in the data. The authors demonstrated that the proposed filter–cleaner 
is efficient in outlier detection and data cleaning for autocorrelated and even 
nonstationary process data.

8.1.2.4 Statistical Process Control

The field of statistical process control (SPC) draws on univariate outlier detec-
tion methods. It considers the case where the univariable stream of measures 
represents a stochastic process, and the detection of the outlier is required 
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online. SPC methods have been applied for over 50 years and extensively 
studied in the statistics literature.

Ben-Gal categorizes SPC methods by two major criteria: (i) methods for 
independent data versus methods for dependent data; and (ii) methods that 
are model specific versus methods that are model generic (Ben-Gal et  al., 
2003). Model-specific methods require a priori assumptions on the character-
istics of the process, usually defined by an underlying analytical distribution 
or a closed-form expression. Model-generic methods attempt to estimate the 
underlying model with minimum a priori assumptions.

Traditional SPC methods, such as Shewhart, cumulative sum (CUSUM), 
and exponential weighted moving average (EWMA), are model specific for 
independent data. These methods are applied widely in industry, although 
the independence assumptions are frequently violated in practice.

The majority of model-specific methods for dependent data are based on 
time series and often follow this format: find a time-series model that best cap-
tures the autocorrelation process, use this model to filter the data, and apply 
traditional SPC schemes to the stream of residuals. In particular, the ARIMA 
(autoregressive integrated moving average) family of models is widely imple-
mented to estimate and filter process autocorrelation. Under certain assump-
tions, the residuals of the ARIMA model are independent and approximately 
normally distributed; traditional SPC can, therefore, be applied. Furthermore, 
ARIMA models, especially the simple ones such as autoregressive (AR), can 
effectively describe a wide variety of industry processes.

8.1.3 Multivariate Outlier Detection

In many cases, multivariable observations cannot be identified as outliers, 
as each variable is considered independently. Outlier detection is only pos-
sible when multivariate analysis is performed, and the interactions among 
different variables are compared within the class of data. A simple example 
appears in Figure 8.1. The figure shows data points with two measures on a 

y

x

FIGURE 8.1
Two-dimensional space with one outlying observation (lower left corner).
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two-dimensional space. The bottom left observation is clearly a multivariate 
outlier and not a univariate one. When considering each measure separately 
with respect to the spread of values along the x and y axes, we see they fall 
close to the center of the univariate distributions. Thus, the test for outliers 
must take into account the relationships between the two variables which, in 
this case, appear abnormal.

Data sets with multiple outliers or clusters of outliers are subject to mask-
ing and swamping effects. Although not mathematically rigorous, the fol-
lowing definitions give an intuitive understanding of these effects:

Masking effect: One outlier masks a second outlier if the second out-
lier can be considered an outlier only by itself, not in the presence 
of the first outlier. Therefore, after suppressing the first outlier, the 
second instance arises as an outlier. Masking occurs when a clus-
ter of peripheral observations skews the mean and the covariance 
estimates toward it, and the resulting distance of the outlying point 
from the mean is small.

Swamping effect: One outlier swamps a second observation when the 
latter can be considered an outlier only in the presence of the first 
one. In other words, after the deletion of the first outlier, the second 
observation becomes a nonoutlying observation. Swamping occurs 
when a group of outlying instances skews the mean and the covari-
ance estimates toward it and away from other nonoutlying instances, 
and the resulting distance from these instances to the mean is large, 
making them look like outliers.

8.1.3.1 Statistical Methods for Multivariate Outlier Detection

Multivariate outlier detection procedures can be divided into two broad cat-
egories: statistical methods that are based on estimated distribution param-
eters and data-mining-related methods that are typically parameter free.

Statistical methods for detecting multivariate outliers often indicate these 
observations are located relatively far from the center of the data distribu-
tion. Several distance measures can be applied to perform this task.

The shape and size of multivariate data are quantified by the covariance 
matrix. A well-known distance measure that takes into account the covari-
ance matrix is the Mahalanobis distance, a familiar criterion that depends on 
estimated parameters of the multivariate distribution. Given n observations 
from a p-dimensional dataset (often n–p), let us denote the sample mean vec-
tor by xn and the sample covariance matrix by Vn, where
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The Mahalanobis distance for each multivariate data point i, i = 1,…, n, is 
denoted by Mi and given by
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Those observations with a large Mahalanobis distance are indicated as out-
liers. Masking and swamping effects play an important role in the adequacy 
of the Mahalanobis distance as a criterion for outlier detection. On the one 
hand, masking effects might decrease the Mahalanobis distance of an out-
lier. This might happen, for example, when a small cluster of outliers attracts 
xn and inflates Vn in its direction. On the other hand, swamping effects might 
increase the Mahalanobis distance of nonoutlying observations, for example, 
when a small cluster of outliers attracts xn and inflates Vn away from the pat-
tern of the majority of the observations (Ben-Gal, 2005).

8.1.3.2 Multivariate Robust Measures

As in one-dimensional procedures, the distribution mean (measuring the 
location) and the variance–covariance (measuring the shape) are the two most 
commonly used statistics for data analysis in the presence of outliers. The 
use of robust estimates of the multidimensional distribution parameters can 
often improve the performance of the detection procedures in the presence 
of outliers. Hadi (1992) addressed this problem and proposed replacing the 
mean vector by a vector of variable medians and computing the covariance 
matrix for the subset of those observations with the smallest Mahalanobis 
distance. Caussinus and Roiz (1990) proposed a robust estimate for the covari-
ance matrix, based on weighted observations according to their distance from 
the center. The authors also suggested a method for a low-dimensional pro-
jection of the dataset using generalized principle component analysis (GPCA) 
to reveal those dimensions displaying outliers. Other robust estimators of the 
location (centroid) and the shape (covariance matrix) include the minimum 
covariance determinant (MCD) and the minimum volume ellipsoid (MVE).

8.1.3.3 Preprocessing Procedures

Various paradigms have been suggested to improve the efficiency of dif-
ferent data-analysis tasks including outlier detection. One possibility is 
reducing the size of the data set by assigning the variables to several rep-
resentative groups. Another option is eliminating some variables from the 
analyses using methods of data reduction such as principal components and 
factor analysis. Another way to improve the accuracy and the computational 
tractability of multiple outlier detection methods is the use of biased sam-
pling (Kollios et al., 2003).
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8.2 Issues Related to Data Set Size

In the past, small data fit the conceptual structure of classical statistics. Small 
always referred to the sample size, not the number of variables, even though 
these were kept to a handful. Depending on the method employed, small was 
seldom fewer than 5, sometimes between 5 and 20, frequently between 30 and 
50, and 50 and 100, and rarely between 100 and 200 individuals. In contrast to 
today’s big data, small data are a tabular display of rows (observations or indi-
viduals) and columns (variables or features) that fits on a few sheets of paper.

In addition to the compact area they occupy, small data are neat and tidy. 
They are “clean,” in that they contain no unexpected values, except for those 
due to primal data entry error. They do not include the statistical outliers 
and influential points, or the exploratory data analysis (EDA) far-flung and 
outside points.

They are in the “ready-to-run” condition required by classical statistical 
methods.

There are two sides to big data. First, classical statistics considers big as 
simply not being small. Theoretically, big is the sample size after which 
asymptotic properties of the method “kick in” for valid results. Second, con-
temporary statistics considers big in terms of lifting observations and learn-
ing from the variables. Although it depends on who is analyzing the data, 
a sample size >50,000 individuals can be considered “big.” Thus, calculating 
the average income from a database of 2 million individuals requires heavy-
duty lifting (number crunching). In terms of learning or uncovering the 
structure among the variables, big can be considered 50 variables or more. 
Regardless of which side the data analyst is on, EDA scales up for both rows 
and columns of the data table.

The data size discussion raises the following question: how large should a 
sample be? Simply stated, sample size can be anywhere from folds of 10,000 
up to 100,000.

It has been observed that the less experienced and less well-trained statis-
tician/data analyst uses sample sizes that are unnecessarily large. Analyses 
have been performed on models built from samples that are too large by 
factors ranging from 20 through 50. Although the PC can perform the heavy 
calculations, the extra time and cost of getting the larger data out of the data 
warehouse and then processing them and thinking about them are almost 
never justified. Of course, the only way a data analyst learns that extra big 
data are a waste of resources is by performing small versus big data com-
parisons (Ratner, 2004).

8.2.1 Data Size Characteristics

There are three distinguishable characteristics of data size: condition, loca-
tion, and population.
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Condition refers to the state of readiness of the data for analysis. Data that 
require minimal time and cost to clean before reliable analysis can be per-
formed are well conditioned; data that involve a substantial amount of time 
and cost are ill conditioned. Small data are typically clean and thus well- 
conditioned. Big data are an outgrowth of today’s digital environment, with 
data flowing continuously from all directions at an unprecedented speed 
and volume. These data almost always require cleaning; they are considered 
“dirty” mainly because of the merging of multiple sources. The merging pro-
cess is inherently a time-intensive process, as multiple passes of the sources 
must be made to get a sense of how the combined sources fit together. Because 
of the iterative nature of the process, the logic of matching individual records 
across sources is at first “fuzzy,” then fine-tuned to soundness; at that point, 
unexplainable, seemingly random, nonsensical values result. Thus, big data 
are ill conditioned.

Location refers to where the data reside. Unlike the rectangular sheet for 
small data, big data reside in relational databases consisting of a set of data 
tables. The link among the data tables can be hierarchical (rank or level depen-
dent) and/or sequential (time or event dependent). The merging of multiple 
data sources, each consisting of many rows and columns, produces data of 
even greater number of rows and columns, clearly suggesting bigness.

Population refers to a group of individuals with qualities or characteristics 
in common. Small data ideally represent a random sample of a known popu-
lation; we do not expect to encounter changes in the composition of such 
data in the foreseeable future. The data are collected to answer a specific 
problem, permitting straightforward answers from a given problem-specific 
method. In contrast, big data often represent multiple, nonrandom samples 
of unknown populations, shifting in composition in the short term. Big data 
are “secondary” in nature; that is, they are not collected for an intended pur-
pose. They are available from a plethora of marketing information for use on 
any post hoc query, and may not yield a straightforward solution.

It is interesting to note that Tukey never talked specifically about big data. 
However, he did predict that the cost of computing, both in time and dollars, 
would be cheap, which arguably suggests he knew big data were coming. 
The cost of today’s PC proves him right (Ratner, 2004).

8.2.2 Small and Big Data

A valuable characteristic of “big” data is that they contain more patterns and 
interesting anomalies than “small” data. Thus, organizations can gain greater 
value by mining large data volumes than small ones. But big data involve 
more complex data, have greater processing and data storage requirements, 
and call for intensified filtering and analysis. Thus, while users can detect 
the patterns in small data sets using simple statistical methods, ad hoc query 
and analysis tools, or by simply eyeballing the data, they need sophisticated 
techniques to mine big data (Eckerson, 2011). Researchers are increasingly 
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preoccupied with the question of how to analyze large amounts of data that 
cannot be analyzed using traditional tools.

The goal of small data is to organize information to make it understandable 
and actionable. The analysis and processing of these simpler data directly 
affect a business; for one thing, business opportunities are identified more 
efficiently as the data are in daily use. By focusing only on small data, a 
company obtains actionable information but loses the possibilities inherent 
in research on a large scale.

Simply stated:

• Small data focus on converting more actionable data into knowl-
edge; big data permit large-scale research.

• Big data analyze and predict behavior patterns; small data are more 
qualitative.

8.2.3 Big Data

The scale, distribution, diversity, and/or timeliness of big data require the use 
of new technical architectures and analytics to enable insights into new sources 
of business value (EMC, 2012; Eckerson, 2011). Big data require the following:

• New data architectures, analytic sandboxes.
• New tools.
• New analytical methods.
• Integration of multiple skills into the new role of the data scientist.

There are multiple characteristics of big data, but four stand out as defin-
ing characteristics:

• Huge volume of data (for instance, tools that can manage billions of 
rows and millions of columns).

• Speed or velocity of new data creation.
• Variety of data created (structured, semistructured, and 

unstructured).
• Complexity of data types and structures, with an increasing volume 

of unstructured data (80%–90% of the data in existence are unstruc-
tured); part of the Digital Shadow or “Data Exhaust.”

Because of the above, big data, due to their size or level of structure, cannot 
be efficiently analyzed using only traditional databases or methods. Think of 
these characteristics as “V3 + C.”

There are many examples of the emerging opportunities in big data. Here 
are a few:

• Netflix suggesting your next movie rental.
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• Dynamic monitoring of embedded sensors in bridges to detect real-
time stresses and longer-term erosion.

• Retailers analyzing digital video streams to optimize product and 
display layouts and promotional spaces on a store-by-store basis.

Of course, such opportunities require new tools/technologies to store and 
manage the data in order to realize a business benefit. Big data necessitate 
new architectures supported by new tools, processes, and procedures that 
enable organizations to create, manipulate, and manage very large data sets 
and the storage environments that house them (Figure 8.2).

Big data can come in multiple forms, from highly structured financial data, 
to text files, to multimedia files, and genetic mappings. The high volume 
of the data is a consistent characteristic of big data. As a corollary to this, 
because of the complexity of the data themselves, the preferred approach for 
processing big data is in parallel computing environments and massively 
parallel processing (MPP), which enable simultaneous, parallel ingestion 
and data loading and analysis. As shown in Figure 8.3, most big data are 
unstructured or semistructured, thus requiring different techniques and 
tools for processing and analysis.

Big data is a relative term. For some organizations, terabytes of data may 
be unmanageable; other organizations may find that petabytes of data are 
overwhelming. If you cannot process your data with your existing capabili-
ties, you have a big data problem.

The most prominent feature of big data is their structure. The graphic in 
Figure 8.3 portrays different types of data structures, with 80%–90% of the 
future data growth coming from nonstructured data types (semi, quasi, and 
unstructured).

Although the image shows four separate types of data, in reality, these can 
be mixed together at times. For instance, we may have a classic relational 

1. Data volume
    > 44x increase from 2010 to 2020 (1.2–35.2 ZB)

Big data size: �e volume of data
continues to explode

�e digital universe 2009–20202. Processing complexity
    > Changing data structures
    > Use cases warranting additional transformations and
analytical techniques

3. Data structure
    > Greater variety of data structures to mine and analyze

If you can’t handle your data with your existing
capabilities, you have a big data problem

2009
0.8 ZB

2009
1.2 ZB

2020
35.2 ZB

FIGURE 8.2
Key characteristics of big data. (From EMC Corporation, 2012. Big Data Overview. http://
uk.emc.com/collateral/campaign/global/forum2012/ireland/big-data-overview-big-data-
transforms-business-cvr.pdf)
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database management system (RDBMS) storing call logs for a software sup-
port call center. In this case, we may have typical structured data, such as 
date/time stamps, machine types, problem type, and operating system, 
probably entered by the support desk person from a pull-down menu graph-
ical user interface (GUI).

Additionally, we will likely have unstructured or semistructured data, 
such as free form call log information, taken from an e-mail ticket or an 
actual phone call description of a technical problem and the solution. The 
most salient information is often hidden.

Another possibility is voice logs or audio transcripts of the actual call asso-
ciated with the structured data. Until recently, most analysts would analyze 
the most common and highly structured data in the call log history RDBMS, 
since the mining of textual information is labor intensive and not easily auto-
mated (Figure 8.4).

People tend to both love and hate spreadsheets. With their introduction, 
business users were able to create simple logic on data structured in rows 
and columns and create their own analyses of business problems. Users 
do not need intensive training as a database administrator to create spread 
sheets; hence, business users can set these up quickly and independently of 
IT groups. Two main benefits of spreadsheets are

• They are easy to share
• End users have control over the logic involved

However, the proliferation of spreadsheets (data islands) caused organi-
zations to struggle with “many versions of the truth,” it was impossible to 
determine if they had the right version of a spreadsheet with the most cur-
rent data and logic in it. Moreover, if a user lost a laptop or it became cor-
rupted, this was the end of the data and their logic. Many organizations still 

Data growth is increasingly unstructured

Data containing a defined data type, format, and structure
Example: Transaction data and OLAPStructured

Semistructured

"Quasi"-structured

Unstructured

Data that have no inherent structure and
are usually stored as different types of files
Example: Text documents, PDFs,
images, and video

Textual data files with  erratic data formats, can be
formatted with effort, tools, and time
Example: Web clickstream data that may contain
some inconsistencies in data values and formats

Textual data files with a discernable pattern, enabling parsing
Example: XML data files that are self-describing and defined
by an xml schema

FIGURE 8.3
Unstructured data: fueling big data analytics. (From EMC Corporation, 2012. Big Data Overview.)
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face this challenge (Excel is used on millions of PCs worldwide), creating the 
need to centralize data (EMC Corporation, 2012).

8.3 Parametric Techniques

Statistical parametric methods either assume a known underlying distri-
bution of the observations or, at least, are based on statistical estimates of 
unknown distribution parameters. These methods flag as outliers those 
observations deviating from the model’s assumptions. They are often unsuit-
able for high-dimensional data sets or for arbitrary data sets without prior 
knowledge of the underlying data distribution (Maimon and Rokach, 2010).

8.3.1 Statistical Approach

The statistical approach to outlier detection assumes a distribution or prob-
ability model for the given data set and identifies outliers from the model 
using a discordancy test (Han and Kamber, 2001). A statistical approach has 
five phases:

 1. Data collection: Data are assumed to be part of a working hypothesis.
 2. Compute average value/compute linear regression equation: The aver-

age value is computed to determine the centerline for the CCT. 
Otherwise, linear regression equation is calculated to determine the 
linear regression line.

Data Islands
“spreadmarts”

Isolated data marts

Data warehouses

Centralized data containers
in a purpose-built space

Analytic sandbox

Data assets gathered from
multiple sources and

technologies for analysis

•  Spreadsheets and
     low-volume DBs for
     recordkeeping
•  Analyst dependent on
     data experts

•  Supports BI and reporting, but
     restricts robust analyses
•  Analyst dependent on IT and
     DBAs for data access and
     schema changes
•  Analysts must spend
     significant time to get extracts
     from multiple sources

•  Enables high-performance
      analytics using in DB
      processing

•  Reduces costs associated with
      data replication into “shadow”
      files ystems

•  “Analyst-owned” rather than
      “DBA owned”

Data repositories: An analyst’s perspective

FIGURE 8.4
Data repositories: an analyst’s perspective. (From EMC Corporation, 2012. Big Data Overview.)
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 3. Compute upper and lower control limits (LCLs)/compute upper and lower 
bound value: The upper control limit (UCL) and LCL for the control 
graph technique are based on a particular formula (see Equations 8.6 
through 8.9 in Section 8.3.2); the upper and lower bound for the LRT 
are based on 95% of the linear regression equation (line).

 4. Data testing: Actual data, the centerline, UCL, and LCL are plotted 
on the control graph, and actual data, the linear regression line, and 
the upper and lower bound are plotted on a linear regression graph. 
Outlier data can be identified from these graphs. Data plotted out-
side the UCLs and LCLs/bounds are detected as outlier data.

 5. Analysis and comparison of output: The output from data testing is 
used to compare and analyze these techniques. The purpose is to 
determine the best technique for detecting outlier data based on 
the statistical approach. Each data object in the data set is compared 
to the working hypothesis and is either accepted in the working 
hypothesis or rejected as discordant and placed into an alternative 
hypothesis (outliers) (Abu et al., 2006).

8.3.2 Control Chart Technique

CCT is generally used to determine whether a process is statistically con-
trolled. The main goal of a control chart is to detect any unwanted changes 
in the process. Such changes will be signaled by abnormal (outlier) points on 
the graph. The control chart has three basic components:

 1. A centerline, usually the mathematical average of all the samples 
plotted.

 2. UCLs and LCLs that define the constraints of common cause 
variations.

 3. Performance data plotted over time.

To calculate the mean of the data points in order to determinate the center-
line of a control chart, the formula is
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where
X = mean/average value
Xi = every data value
(Xi…Xn), n = total number of data
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Now, calculate the UCL and LCL by

 UCL calculated( ) = +X Z xσ  (8.6)

 LCL calculated( ) = −X Z xσ  (8.7)
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In a three-sigma system, Z is equal to 3. Three-sigma control limits bal-
ance the risk of error because for normally distributed data, data points will 
fall inside three-sigma limits 99.7% of the time when a process is in control. 
This makes witch hunts infrequent, while still making it likely that unusual 
causes of variation will be detected.

Finally, plot the data on the chart; those data not within UCL and LCL 
are detected as outlier data. Figure 8.5 shows a control chart with one data 
point outside the UCL. This is an example of outlier data (Abu et al., 2006) 
(Figure 8.6).

8.3.3 Deviation-Based Approach

Given a set of data points (local group or global set), outliers are points that 
do not fit the general characteristics of that set; that is, the variance of the 
set is minimized when the outliers are removed. Outliers are the outermost 
points of the data set. In other words, an element disturbing a series of simi-
lar data is considered an exception.

In the deviation-based approach, the model is given a smoothing factor 
SF(I) that computes for each I ⊆ DB how much the variance of DB is decreased 
when I is removed from DB. With equal decreases in variance, a smaller 
exception set is better. Outliers are the elements of the exception set E ⊆ DB 
for which the following holds:

 SF(E) ≥ SF(I) for all I ⊆ DB

The deviation-based approach resembles classical statistical approaches 
(k = 1 distributions) but is independent of the chosen kind of distribution. 
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FIGURE 8.6
Control chart with outlier data. (From Abu, B. Z. et al. 2006. A Comparative Study for Outlier 
Detection Techniques in Data Mining. Member IEEE.)
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FIGURE 8.5
Statistical approach to outlier detection.
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In addition, heuristics such as random sampling or the best first search can 
be applied. Originally designed as a global method, it is applicable to any 
data type (depends on the definition of SF) and its output is labeling.

8.4 Nonparametric Techniques

Data-mining methods, also called distance-based methods, are nonparamet-
ric outlier detection methods. These methods are usually based on local dis-
tance measures and are capable of handling large databases. Another class of 
outlier detection methods is based on clustering techniques, where a cluster 
of small groups are considered clustered outliers. A related class of methods 
uses spatial detection techniques. These search for extreme examples or local 
instabilities with respect to neighboring values; however, these observations 
may not be significantly different from the entire population.

8.4.1 Linear Regression Technique

Statistical concepts used in data mining include point estimation, Bayes the-
orem, and regression. We use LRT in our analysis because it is appropriate 
to evaluate the strength of a relationship between two variables. In general, 
regression is the problem of estimating a conditional expected value, and 
“linear” refers to the assumption of a linear relationship between y (response 
variable) and x (predictor variable). Thus, in statistics, linear regression is a 
method of estimating the linear relationship between the input and output 
data (Montgomery, 2012). The common formula for a linear relationship used 
in this model is (Han and Kamber, 2001)

 Y = α+ βx (8.10)

where the variance of Y is assumed to be constant, and α and β are regres-
sion coefficients specifying the Y-intercept and slope of the line, respectively.

Given s samples or data points of the form (x1, y1), (x2, y2)…, (xs, ys), then α 
and β can be estimated with the following equations:
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 α β= +y x  (8.12)

where x is the average of x1, x2, …, xs, and y is the average of y1, y2,…, ys. The 
coefficients α and β often provide good approximations of otherwise compli-
cated regression equations (Abu et al., 2006).
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8.4.2 Manhattan Distance Technique

Distances can be based on a single dimension or multiple dimensions. It is 
up to the researcher to select the right method for his/her specific applica-
tion. For our outlier detection analysis, we use MDT because the data are in 
a single dimension. The general formula for MDT is

 
d t t t ti j ih jh

h

k
( , ) ( )= −

=∑ 1  
(8.13)

where ti = <ti1,…, tik> and tj = <tj1,…, tjk> are tuples in a database (Abu et al., 
2006).

8.4.3 Data-Mining Methods for Outlier Detection

Data mining involves exploring and analyzing large amounts of data to find 
patterns in those data. The techniques come from the fields of statistics and 
artificial intelligence (AI), with a bit of database management thrown into 
the mix. Generally, the goal of data mining is either classification or pre-
diction. In classification, the idea is to sort data into groups. For example, a 
marketer might be interested in the characteristics of those who responded 
versus those who did not respond to a promotion. These are two classes. In 
prediction, the idea is to predict the value of a continuous (i.e., nondiscrete) 
variable. For example, a marketer might be interested in predicting those 
who will respond to a promotion.

Typical algorithms used in data mining include the following (Hurwitz 
et al., 2013):

• Classification trees: A popular data-mining technique used to classify 
a dependent categorical variable based on measurements of one or 
more predictor variables. The result is a tree with nodes and links 
between the nodes that can be read to form if-then rules.

• Logistic regression: A statistical technique that is a variant of stan-
dard regression but extends the concept to deal with classification. It 
produces a formula predicting the probability of the occurrence as a 
function of the independent variables.

• Neural networks: A software algorithm modeled after the parallel 
architecture of animal brains. The network consists of input nodes, 
hidden layers, and output nodes. Each unit is assigned a weight. 
Data are given to the input node, and by a system of trial and error, 
the algorithm adjusts the weights until it meets a certain stopping 
criterion. Some people have likened this to a black-box (you do not 
necessarily know what is going on inside) approach.

• Clustering techniques such as k-nearest neighbors: A technique that iden-
tifies groups with similar records. The k-nearest-neighbor technique 
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calculates the distances between the record and the points in the 
historical (training) data. It then assigns this record to the class of its 
nearest neighbor in a data set.

For an example of a classification tree, consider the situation where a tele-
phone company wants to determine which residential customers are likely 
to disconnect their service. The company has the following information: how 
long customers have had the service, how much they spend on the service, 
whether they have had problems with the service, whether they have the best 
calling plan for their needs, where they live, how old they are, whether they 
have other services bundled together with their calling plan, competitive 
information about other carriers’ plans, and most importantly, whether they 
still have the service or have disconnected it. Of course, the company can 
find many more variables, if it wishes, but the last is the outcome variable; 
the software will use it to classify the customers into one of two groups—
perhaps calling them stayers and flight risks.

The data set is broken into training data and a test data set. The train-
ing data consist of observations (called attributes) and an outcome variable 
(binary in the case of a classification model), in this case, the stayers or the 
flight risks. The algorithm is run over the training data and comes up with a 
tree shape that can be read like a series of rules. For example, if the custom-
ers have been with the company for more than 10 years and they are over 55 
years old, they are likely to remain loyal customers.

These rules are then run over the test data set to determine how good this 
model is on “new data.” Accuracy measures are provided for the model. For 
example, a popular technique is the confusion matrix, a table that provides 
information on how many cases were correctly or incorrectly classified. If 
the model looks good, it can be deployed on other data, as they are available 
(i.e., using it to predict new cases of flight risk). On the basis of the model, 
the company might decide, for example, to send out special offers to those 
customers whom it thinks are flight risks (Hurwitz et al., 2013).

8.4.3.1 Methods to Manage Large Databases from High-Dimensional Spaces

Data-mining-related methods are often nonparametric, not assuming an 
underlying generating model for the data. These methods are designed 
to manage large databases from high-dimensional spaces. The category 
includes distance-based methods, clustering methods, and spatial methods.

8.4.3.1.1 Distance-Based Methods

An inconvenience of the statistical approach is that it requires knowledge 
about the parameters of the data set, such as the data distribution. In many 
cases, this may not be known (Han and Kamber, 2001), but a distance-based 
approach solves the problem. The criterion for obtaining outliers using this 
method is having two parameters, parameter (p) and distance (d), which can 
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be derived in advance using knowledge about the data or changed during 
the iterations to choose the most representative outliers.

A distance-based approach has nine phases:

 1. Collect data: As discussed in Section 8.3.1.
 2. Compute distances between data (d1): The distance between data is com-

puted for every single data point.
 3. Identify maximum distance value of data (d2): The maximum distance 

value is identified to find a range for threshold distance value (d3).
 4. Determine threshold distance value (d3): This value is based on the max-

imum distance value (d2), but threshold distance value (d3) should be 
smaller than (d2). Otherwise, comparisons cannot be made.

 5. Compare d3 and d1 (p): In this phase, parameter value (p) is determined 
by comparing d3 and d1 where p is equal to d1 ≥ d3.

 6. Determine threshold value (t): Threshold value (t) is assigned to indi-
cate the research space.

 7. Compare t and p: Threshold value is compared to the result of phase 5.
 8. Data testing: Outlier data are identified.
 9. Output: The output from data testing is used for comparison and 

analysis.

An observation is defined as an outlier based on distance, as long as a 
fraction β of the observations in the data set are farther than r from it. This 
definition is based on a single, global criterion determined by the param-
eters r and β. It frequently has problems, however, such as the determina-
tion of r or the lack of a classification for outliers. The time complexity 
of the algorithm is O(pn2), where p is the number of features and n is the 
sample size. Therefore, it is not a recommended for use with large data-
bases. There can also be problems when the data set has both dense and 
sparse regions.

Alternatively, the following definition is suggested: given two integers υ 
and l(υ, l), outliers are determined to be the top l-sorted observations with 
the greatest distance to their υth nearest neighbor. One shortcoming of 
this definition is that it only considers the distance to the υth neighbor and 
ignores information on closer observations. Another alternative is to define 
outliers as those observations with a large average distance to the υth nearest 
neighbors. The drawback in this case is that it takes longer to be calculated 
(Abu et al., 2006).

8.4.3.1.2 Clustering Methods

Clustering-based methods consider a small cluster, including a single obser-
vation, as clustered outliers. Examples include partitioning around medoids 
(PAM), a fractal dimension-based method, and clustering large applications 
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(CLARAs). A modified version of the latter for spatial outliers is called clus-
tering large applications based on randomized search (CLARANS). Since 
their main objective is clustering, these methods are not always optimal 
for outlier detection. In most cases, the outlier detection criteria are implicit 
and cannot easily be inferred from the clustering procedures (Raymond and 
Han, 1994).

8.4.3.1.2.1 Clustering Algorithms Based on Partitioning
Partioning around Medoids: In the past 30 years, cluster analysis has been used 
in many areas, including medicine (classification of diseases), chemistry 
(group of compounds), social sciences (classification of statistical results), 
and so on. The main objective in all cases is to identify structures or groups 
present in the data. Because there is no general definition of a cluster, we 
have developed algorithms for finding various types of clusters: spherical, 
linear, drawn out, and so on.

Out of the myriad possibilities, we have selected the k-medoid method 
for our algorithm because it is very robust to the existence of outliers (i.e., 
data points that are far from the other data points). In addition, the clus-
ters found by k-medoid methods do not depend on the order in which the 
objects are examined. They are also invariant with respect to translations 
and orthogonal transformations of data points. Last but not least, experi-
ments have shown that the k-medoid methods described below can handle 
large amounts of data efficiently.

PAM was developed by Kaufman and Housseeuw (1990). To find k clus-
ters, PAM determines a representative object for each cluster. This represen-
tative object, called a medoid, is meant to be the most centrally located object 
within the cluster. Once the medoids have been selected, each nonselected 
object is grouped with the medoid to which it is the most similar. More pre-
cisely, if Oj is a nonselected object, and Oi is a (selected) medoid, Oj belongs to 
the cluster represented by Oi, if d(Oj, Oe) = minOe d(Oj, Oe), where the notation 
minOe denotes the minimum over all medoids Oe, and the notation d(Oa, Ob) 
denotes the dissimilarity or distance between objects Oa, and Ob. All dissimi-
larity values are given as inputs to PAM. Finally, the quality of a clustering 
(i.e., the combined quality of the chosen medoids) is measured by the average 
dissimilarity between an object and the medoid of its cluster.

To find the k-medoids, PAM begins with an arbitrary selection of k objects. 
Then in each step, a swap between a selected object Oi and a nonselected 
object Oh is made, as long as such a swap will result in an improvement of 
the quality of the clustering. To calculate the effect of such a swap between 
Oi and Oh, PAM computes costs Cjih for all nonselected objects Oj. Depending 
on which of the following cases Oj is in, Cjih is defined by one of the equations 
below.

First case: Suppose Oj currently belongs to the cluster represented by Oi. 
Furthermore, let Oj be more similar to Oj,2 than Oh; that is, d(Oj, Oh) ≥ d(Oj, 
Oj,2), where Oj,2 is the second most similar medoid to Oj. Thus, if Oi is replaced 
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by Oh as a medoid, Oj would belong to the cluster represented by Oj,2. Hence, 
the cost of the swap as far as Oj is concerned is

 Cjih = d(Oj, Oj,2) − d(Oj, Oi) (8.14)

This equation always gives a nonnegative Cjih, indicating a nonnegative 
cost incurred in replacing Oi with Oh.

Second case: Oj currently belongs to the cluster represented by Oi. But this 
time, Oj is less similar to Oj,2 than Oh; that is d(Oj, Oh) < d(Oj, Oj,2). So if Oi is 
replaced by Oh, Oj will belong to the cluster represented by Oh. Therefore, the 
cost for Oj is given by

 Cjih = d(Oj, Oh) − d(Oj, Oi) (8.15)

Unlike Equation 8.14, here Cjih can be positive or negative, depending on 
whether Oj, is more similar to Oi or to Oh.

Third case: Assume Oj actually belongs to a cluster not represented by Oi. 
Let Oj,2 be the representative object of that group. Additionally, let Oj be more 
similar to Oj,2 than Oh. Then even if Oi is replaced by Oh, Oj will stay in the 
cluster represented by Oj,2, making the cost

 Cjih = 0 (8.16)

Fourth case: Oj currently belongs to the cluster represented by Oj,2. But Oj is 
less similar to Oj,2 than Oh. In this case, replacing Oi with Oh will cause Oj to 
skip to the group of Oh from that of Oj,2. Therefore, the cost is

 Cjih = d(Oj, Oh) − d(Oj, Oj,2) (8.17)

and is always negative.
The combination of the four previous cases, the total cost of replacing Oi 

with Oh is given by

 

TC Cih jih

j

= ∑
 

(8.18)

The PAM algorithm is formulated as follows:

 1. Select k-representative objects arbitrarily.
 2. Compute TCih, for all pairs of objects Oi, Oh where Oi is currently 

selected, and Oh is not.
 3. Select the pair Oi, Oh that corresponds to minOi, Oh TCih. If the mini-

mum TCih is negative, replace Oi with Oh, and go back to Step (2).
 4. Otherwise, for each nonselected object, find the most similar repre-

sentative object.
 5. Halt.
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Experimental results show PAM works satisfactorily for small data sets 
(e.g., 100 objects in five clusters), but it is not efficient in dealing with medium 
and large data sets. This is not surprising. In Steps (2) and (3), there are alto-
gether k(n − k) pairs of Oi, Oh. For each pair, computing TCih requires the 
examination of (n − k) nonselected objects. Thus, Steps (2) and (3) combined 
produce O(k(n − k)2). And this is the complexity of only one iteration. It is 
obvious that PAM is too costly for large values of n and k. This motivated the 
development of CLARA (Ratner, 2004).

Clustering Large Applications: Designed by Kaufman and Rousseeuw (1990) 
to handle large data sets, CLARA relies on sampling. CLARA takes a sample 
data set, but instead of finding representative objects for the entire data set, 
it applies PAM to the sample and finds its medoids. If the sample is taken 
in a sufficiently random manner, the medoids of the sample will approxi-
mate medoids across the data set. For better approximations, CLARA elicits 
multiple samples and offers the best clustering as the output. For accuracy, 
we base the quality of a clustering on the average dissimilarity of all objects 
in the entire data set, not merely the objects in the samples. Experiments 
reported in Kaufman and Rousseeuw (1990) indicate that five samples of size 
40 + 2k give satisfactory results.

The CLARA algorithm is formulated as follows:

 1. For i = 1 − 5, repeat the following steps.
 2. Remove a sample of 40 + 2k random objects from the entire data set 

and use the PAM algorithm to find k-medoids of the sample.
 3. For each object Oj in the whole data set, determine which of the 

k-medoids is the most similar to Oj.
 4. Calculate the average dissimilarity of the clustering obtained in the 

previous step. If this value is less than the current minimum, use it 
as the current minimum and retain the k-medoids found in Step (2) 
as the best set of medoids obtained so far.

 5. Return to Step (1) to start the next iteration.

Supplementing PAM, CLARA works well for large data sets (e.g., 1000 
objects in 10 clusters). As mentioned in Section 8.4.3.1.2.1, each iteration of 
PAM is O(k(n − k)2). However, for CLARA, by applying PAM only to the 
samples, each iteration is O(k(40 + k)2 + k(n − k)). This explains why CLARA 
is more efficient than PAM for large values of n (Raymond and Han, 1994).

8.4.3.1.3 Spatial Methods

Spatial methods are closely related to clustering methods. A spatial outlier 
is a spatially referenced object whose nonspatial attribute values are signifi-
cantly different from the values of its neighborhood. The methods of spatial 
statistics can be generally classified into two subcategories: quantitative and 
graphic approaches. Quantitative methods distinguish spatial outliers from the 
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remainder of data; two representative approaches are the scatterplot and the 
Moran scatterplot. Graphic methods are based on visualization of spatial data 
to highlight spatial outliers; examples are variogram clouds and pocket plots.

Some suggest using a multidimensional scaling (MDS) that represents the 
similarities between objects spatially, as on a map. MDS seeks to find the best 
configuration of the observations in a low-dimensional space. As indicated 
above, CLARANS is a clustering method for spatial data mining based on a 
randomized search. Two spatial data-mining algorithms that use CLARANS 
have been suggested. First, Shekhar and Lu introduced a method for detect-
ing spatial outliers in a graph data set (Shekhar et al., 2002). The method is 
based on the distribution property of the difference between an attribute 
value and the average attribute value of its neighbors. Then, Lu proposed a 
set of spatial outlier detection algorithms to minimize the false detection of 
spatial outliers when the neighborhood contains true spatial outliers (Abu 
et al., 2006).

8.4.3.1.3.1 Spatial Data The distinction between spatial and nonspatial data 
can easily become the subject of extensive discussion. In general, observations 
for which absolute location and/or relative positioning (spatial arrangement) 
are taken into account can be considered spatial data. These data can be subdi-
vided into two major categories representing discrete and continuous phenom-
ena. On the basis of the former classification, also called the entity view, spatial 
phenomena are described using zero-dimensional objects such as points, one-
dimensional objects such as lines, or two-dimensional objects such as areas. If 
space is described using continuous phenomena, as in the case of temperature 
or topography, this is called the field view. In practice, the latter is usually mea-
sured based on sampling discrete entities such as locations in space.

The entity view allows spatial objects to have attributes. Spatial analysis is 
typically aimed at the spatial arrangement of the observed units, but can also 
take into account attribute information. An analysis conducted only on the 
basis of the attributes of the observed units ignoring the spatial relationships 
is not considered spatial data analysis (Pfeiffer, 1996).

Spatial Data Analysis: The methods used in spatial data analysis can be 
broadly categorized as those concerned with visualizing data, with explor-
atory data analysis, and with developing statistical models. During most 
analyses, a combination of techniques is used, with the data first being dis-
played visually, followed by exploration of possible patterns and possibly 
modeling.

Data Visualization: One of the first steps in any data analysis should be an 
inspection of the data. Visual displays of information using plots or maps 
provide the basis for generating hypotheses and, if required, help assess the 
fit or predictive ability of models. Recently, interactive computer packages 
have been developed to allow dynamic displays of the data. Geographic 
information systems can be used to produce maps; these allow the explora-
tion of spatial patterns in an interactive manner.
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Exploratory Data Analysis: Data exploration is aimed at developing hypoth-
eses and makes extensive use of graphical views of the data on maps or scat-
ter plots. Exploratory data analysis makes few assumptions about the data 
and should be robust to extreme data values. Simple analytical models can 
also be used in this analysis phase.

8.4.3.1.3.2 A Clustering Algorithm Based on Randomized Search This section 
presents the clustering algorithm CLARANS, describes the details of the 
algorithm, and explains its use in spatial data mining (Pfeiffer, 1996).

Motivation of CLARANS: A Graph AbstractionGiven n objects, the process 
described above of finding k-medoids can be viewed abstractly as search-
ing through a graph. On this graph, denoted by Gn,k, a node is represented 
by a set of k objects (Om1,…,Omk), intuitively indicating that Om1,…,Omk are 
the selected medoids. The set of nodes on the graph is the set{(Om1,…,Omk) | 
where Om1,…,Omk are objects in the data set}.

Two nodes are neighbors (i.e., connected by an arc) if their sets differ by only 
one object. More formally, two nodes S1 = (Om1,…,Omk) and S2 =  (Ow1,…,Owk) 
are neighbors if and only if the cardinality of the intersection of S1 and S2 is 
k − 1; that is, |S1 ∩ S2| = k – 1.

We can clearly see that each node has k(n – k) neighbors. Since a node rep-
resents a collection of k-medoids, each node belongs to a cluster. Therefore, 
each node can be assigned a cost which is defined as the total dissimilarity 
between each object and the medoid of its cluster. If objects Oi, and Oh are 
the differences between neighbors S1 and S2 (i.e., Oi, Oh ∉ S1 ∩ S2, but Oi ∈ S1 
and Oh ∈ S2), respectively, the cost differential between the two neighbors is 
given by TCih as defined in Equation 8.18.

By now, it is obvious that PAM can be viewed as a search for a minimum 
on the graph Gn,k. At each step, all neighbors of the current node are exam-
ined. The current node is replaced by the neighbor with the greatest decrease 
in costs, and the search continues until a minimum is obtained. For large 
values of n and k (such as n = 1000 and k = 10), examining all k(n − k) neigh-
bors of a node is time consuming. This accounts for the inefficiency of PAM 
for large data sets.

CLARA tries to examine fewer neighbors and restricts the search to sub-
graphs that are much smaller than the original graph Gn,k. However, the sub-
graphs examined are entirely defined by the objects in the samples. Let Sa 
be the set of objects in a sample. The subgraph GSa,k consists of all nodes 
that are subsets (of cardinalities k) of Sa. Even though CLARA thoroughly 
examines GSa,k via PAM, the search is fully confined within GSa,k. If M is the 
minimum node in the original graph Gn,k, and if M is not included in GSa,k, 
M will never be found in the search of GSa,k, regardless of how thorough the 
search is. To atone for this deficiency, many, many samples must be collected 
and processed.

Like CLARA, the CLARANS algorithm does not check every neighbor 
of a node. But unlike CLARA, it does not restrict its search to a particular 
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subgraph. In fact, it searches the original graph Gn,k. One key difference 
between CLARANS and PAM is that the former only checks a sample of the 
neighbors of a node. But unlike CLARA, each sample is extracted dynami-
cally in the sense that no nodes corresponding to particular objects are elim-
inated outright. In other words, while CLARA takes a sample of nodes at the 
beginning of a search, CLARANS takes a sample of neighbors in each step of 
a search. This has the benefit of not confining a search to a localized area. As 
will be seen below, a CLARANS search gives higher-quality clustering than 
CLARA and fewer searches are required.

Clustering Large Applications Based on Randomized Search: The CLARANS 
algorithm (Raymond and Han, 1994) is formulated as follows:

 1. Input parameters numlocal and maxneighbor. Initialize i to 1, and 
mincost to a large number.

 2. Set the current node to an arbitrary node in Gn,k.
 3. Set j to 1.
 4. Consider an aleatory neighbor S of the current node, and based on 

Equation 8.18, calculate the cost differential of the two nodes.
 5. If S has a lower cost, set the current node to S and proceed to Step (3).
 6. Otherwise, increment j by 1. If j ≤ maxneighbor, go to Step (4).
 7. Otherwise, when j > maxneighbor, compare the cost of the current 

node with mincost. If the former is less, set mincost to the cost of the 
current node, and set bestnode to the current node.

 8. Increment i by 1. If i > numlocal, output bestnode and halt.
 9. Otherwise, go to Step (2).

Steps (3) through (6) search for nodes with progressively lower costs. If the 
current node has already been compared with the maximum number of the 
neighbors of the node (specified by maxneighbor) and continues to be lowest 
cost, it is declared a “local” minimum. Then in Step (7), the cost of this local 
minimum is compared to the lowest cost obtained to this point. The lower 
of the costs is stored in mincost. The process is repeated to find other local 
minima until numlocal has been found.

As indicated above, CLARANS has two parameters: the maximum num-
ber of neighbors examined (maxneighbor), and the number of local minima 
obtained (numlocal). This means that the higher the value of maxneighbor, 
the closer CLARANS is to PAM, and the longer each search for a local min-
ima becomes. But the quality of such a local minima is higher and fewer 
minima need to be obtained (Raymond and Han, 1994).

8.4.3.1.3.3 Spatial Data Mining Based on Clustering Algorithms
Spatial Dominant Approach: SD(CLARANS) There are many approaches 
to spatial data mining. The kind considered here assumes that a spatial 
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database consists of both spatial and nonspatial attributes, with the latter 
stored in relations. Our general approach uses clustering algorithms to deal 
with the spatial attributes and employs other learning tools to take care of 
the nonspatial counterparts.

DBLEARN is the tool for mining nonspatial attributes. As inputs, it takes 
relational data, generalization hierarchies for attributes, and a learning query 
specifying the focus of the mining task to be carried out. From a learning 
request, DBLEARN first extracts a set of relevant tuples via structured query 
language (SQL) queries. Then based on the generalization hierarchies of the 
attributes, it iteratively generalizes the tuples.

For example, suppose the tuples corresponding to a given learning query 
have the major attribute ethnic group. Also assume the generalization hier-
archy for ethnic group has Indians and Chinese generalized to Asians. In 
this case, a generalization operation on the attribute ethnic group causes all 
tuples of the form (m, Indian) and (m, Chinese) to be merged into the tuple (m, 
Asians). This fusion has the effect of reducing the number of remaining (gen-
eralized) tuples. Each tuple has a system-defined count that keeps track of the 
number of original tuples (stored in the relational database) as represented by 
the current (generalized) tuple. This attribute enables DBLEARN to output 
such statistical statements as 8% of all students specializing in sociology are 
Asians. A generalization hierarchy may have multiple levels (e.g., Asians fur-
ther generalized to non-Canadians), and a learning query may require more 
than one generalization operation before the final number of generalized 
tuples drops below a certain threshold. Finally, such declarations as 90% of all 
arts students are Canadians may be returned as results of the learning query.

Having explained what DBLEARN does, the next issue to address is how to 
extend DBLEARN to deal with spatial attributes. In what follows, we present 
two ways to combine clustering algorithms with DBLEARN. The algorithm 
shown below, called SD(CLARANS), combines CLARANS and DBLEARN 
in a spatially dominant manner. That is, spatial clustering is performed first, 
followed by nonspatial generalization of every cluster.

The SD algorithm (CLARANS) is formulated as follows:

 1. Given a learning request, find the initial set of relevant tuples using 
the appropriate SQL queries.

 2. Apply CLARANS to the spatial attributes and find the most natural 
number knat of clusters.

 3. For each of the knat clusters obtained above,
 a. Collect the nonspatial components of the tuples included in the 

current cluster
 b. Apply DBLEARN to this collection of nonspatial components.

Note that algorithms SD(PAM) and SD(CLARA) can also be obtained, but 
CLARANS is more efficient than either.
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Determining knat for CLARANS: Step (2) of algorithm SD(CLARANS) tries 
to find knat clusters, where knat is the most natural number of clusters for the 
given data set. However, recall that CLARANS and all partitioning algo-
rithms require the number of k clusters to be given as input. Thus, an imme-
diate question is whether SD(CLARANS) knows beforehand what knat is and 
can simply pass the value of knat to CLARANS. Unfortunately, the answer is 
no. In fact, determining knat is one of the most difficult problems in cluster 
analysis, for which no unique solution exists.

SD(CLARANS) adopts the heuristics of computing the silhouette coeffi-
cients, first developed by Kaufman and Rousseeuw (1990). For space con-
siderations, we do not include the formulas for computing silhouettes but 
concentrate on how silhouettes are used in the algorithms. Intuitively, the 
silhouette of an object Oj, a dimensionless quantity between −1 and 1, indi-
cates how much Oj really belongs to the cluster in which Oj is classified. The 
closer the value is to 1, the greater the degree of membership. The silhouette 
width of a cluster is the average silhouette of all objects in the cluster. After 
extensive experimentation, Kaufman and Rousseeuw (1990) proposed the 
following interpretation of the silhouette width of a cluster (Table 8.1).

For a given number k ≥ 2 of clusters, the silhouette coefficient for k is the 
average silhouette width of the k clusters. Note that the silhouette coefficient 
does not necessarily decrease monotonically as k increases. If the value k is 
too small, some distinct clusters are incorrectly grouped together, leading 
to a small silhouette width. When k is very large, some natural clusters may 
be artificially split, again leading to a small silhouette width. Thus, the most 
natural k is the one whose silhouette coefficient is the highest. However, our 
experiments on spatial data mining indicate that simply using the highest 
silhouette coefficient does not necessarily yield intuitive results. For exam-
ple, some clusters may not have reasonable structures, that is, widths ≤0.5. 
Thus, we suggest using the following heuristics to determine the value knat 
for SD(CLARANS):

 1. Find the value k with the highest silhouette coefficient.
 2. If all k clusters have silhouette widths ≥0.51, knat = k, and halt.
 3. Otherwise, remove the objects in those clusters whose silhouette 

widths are below 0.5, provided the total number of objects removed 

TABLE 8.1

Silhouette Width versus Interpretation

Silhouette/Width Interpretation

0.71–1 Strong cluster
0.51–0.7 Reasonable cluster
0.26–0.5 Weak or artificial cluster
≤0.25 No cluster found
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so far is less than a threshold (e.g., 25% of the total number of objects). 
The objects removed are considered outliers or noise. Go back to 
Step (1) for the new data set without the outliers.

 4. If in Step (3), the number of outliers to be removed exceeds the 
threshold, simply set knat = 1, indicating, in effect, that no clustering 
is reasonable (Raymond and Han, 1994).

8.4.3.2 Data-Mining Tasks

In general, data-mining tasks can be classified as descriptive data mining or 
predictive data mining. The first describes the data set in a concise manner and 
provides some interesting general properties; the second constructs one or a 
set of models, making inferences about the available set of data, and attempt-
ing to predict the behavior of new data sets.

A data-mining system may accomplish one or more of the following dat-
amining tasks:

 1. Class description: Class description provides a concise and succinct 
summary of a collection of data and distinguishes them from other 
data. The summarization of a collection of data is called “class char-
acterization,” the comparison of two or more collections of data is 
called “class comparison” or “discrimination.” Class description 
should cover properties of data dispersion, such as variance, quar-
tiles, and so on. For example, class description can be used to com-
pare European and Asian sales of a company, identifying important 
factors that discriminate the two classes and presenting a summa-
rized overview.

 2. Association: Association can be defined as the discovery of rela-
tionships or correlations among a set of items. This is frequently 
expressed in the rule that shows the attribute-value conditions 
occurring frequently in a given set of data. An association rule in the 
form of X → Y can be interpreted as “database tuples that satisfy X 
are likely to satisfy Y.” Association analysis is widely used in trans-
action data analysis for direct marketing, catalog design, and other 
business decision-making processes. Substantial research has been 
performed recently on association analysis and efficient algorithms 
have been proposed, including the level wise a priori search, mining 
multiple-level, multidimensional associations, mining associations 
for numerical, categorical, and interval data, metapattern directed or 
constraint-based mining, and mining correlations.

   Classification: Classification studies a group of training data (i.e., a 
group of objects whose class label is known) and constructs a model 
for each class, based on the features in the data. A decision tree, or 
a set of classification rules, is generated that can be used to under-
stand each class better in the database and to classify future data. 
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For example, diseases can be classified based on the symptoms of 
patients. Classification methods have been developed in the fields of 
machine learning, statistics, databases, neural networks, and rough 
sets. They have been applied to customer segmentation, business 
modeling, and credit analysis.

 3. Prediction: This mining function predicts the possible values of cer-
tain missing data, or the value distribution of certain attributes in a 
set of objects. It involves finding the set of attributes relevant to the 
attribute of interest (e.g., by statistical analysis) and predicting the 
value distribution based on the set of data similar to the selected 
objects. For example, an employee’s potential salary can be predicted 
based on the salary distribution of similar employees in the com-
pany. To date, regression analysis, generalized linear model, correla-
tion analysis, and decision trees have been useful tools in quality 
prediction. Genetic algorithms and neural network models have 
also enjoyed popular use.

   Clustering: Clustering analysis identifies groups embedded in 
the data, where a cluster can be defined as a group of data objects 
that are “similar” to each other. Similarity can be expressed by dis-
tance functions, as specified by users or experts. A good clustering 
method produces high-quality clusters to ensure that the inter-
cluster similarity is low and the intracluster similarity is high. For 
example, we could cluster houses according to house category, floor 
area, and geographical location. To date, data-mining research has 
concentrated on high quality and scalable clustering methods for 
large databases and multidimensional data warehouses.

 4. Time-series analysis: Time-series analysis considers large sets of time-
series data to determine their regularity and interesting character-
istics. This includes searching for similar sequences and mining 
sequential patterns, periodicities, trends, and deviations. For exam-
ple, we might predict the trend of the stock values for a company 
based on its stock history, business situation, competitors’ perfor-
mance, and the current market.

Other data-mining tasks include outlier analysis, and so on (Ratner, 2004).
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9
Information Theory–Based Techniques

9.1 Introduction

The word “information” comes from the Latin “informare” meaning “give 
form to.” In this Aristotelian concept of substance, form informs matter, 
while matter materializes form, thereby becoming a substance (Dodig-
Crnkovic, 2006). The various concepts of information comprise a complex 
body of knowledge able to accommodate many different views, as Maijuan 
puts it, “Inconsistencies and paradoxes in the conceptualization of informa-
tion can be found through numerous fields of natural, social and computer 
science” (Marijuan, 2003, p. 214).

The corresponding question “What is information?” is the topic of much 
discussion, so much so that a special issue of the Journal of Logic, Language 
and Information (Volume 12, No 4, 2003) was dedicated to precisely this topic. 
There is also a handbook available for consultation: see A Handbook on the 
Philosophy of Information (Van and Adriaans, 2006).

For their part, Capurro and Hjørland (2003) say information is a construc-
tive tool whose theory dependence is a typical interdisciplinary concept. To 
substantiate their view, they note contributions to the theory of information 
from physicists, biologists, systems theorists, philosophers, and documental-
ists (library and information science) during the past 25 years.

Capurro et al. (1999) posit the possibility of a unified theory of informa-
tion (UTI), suggesting that UTI is an expression of a metaphysical quest for a 
unifying principle, a quest also found in energy and matter.

For those who take a reductionist unification approach, reality is an infor-
mation-processing phenomenon: “We would then say: whatever exists can 
be digitalized. Being is computation” (Capurro et  al., 1999, p. 214). A net-
worked structure of various information concepts that retain their specific 
fields of application is a possible alternative to UTI.

9.1.1 Informational Universe—Pan-Informationalism

The present informatization of society is the result of an increasingly ubiq-
uitous use of computers as information and communication technology. In 
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fact, as Baeyer (2003) notes, information is rapidly replacing matter/energy 
as the primary constitutive principle of the universe. So much so that it will 
become the unifying framework for describing and predicting reality in the 
twenty-first century.

At a fundamental level, information characterizes the world, as we gain all 
our knowledge through information. Yet we are only beginning to under-
stand what information means (Benthem, 2005). This chapter defines some 
basic concepts of information used in computing (Dodig-Crnkovic, 2005).

9.1.2  Information as a Structure: 
Data–Information–Knowledge–Wisdom–Weaving

In Stonier’s definition (1997), raw data (also source or atomic data) have not 
been processed for a given use. We might also call these data “unprocessed” 
in an operational sense, in that no effort has been made to interpret or under-
stand the data before use. They are recorded as “facts of the world,” either 
given/chosen, the result of an observation or measurement process, or the 
output of a previous data generating process (especially in the case of com-
puter data). Although we have already been widely referring to the word 
data, it is worth noting at this point that “data” is the plural of Latin “datum,” 
“something given,” or “atomic facts.” Information is the end product of data 
processing, and knowledge is the end product of information processing. 
Just as raw data are used as input and processed to get information, informa-
tion too itself becomes the input for a process resulting in knowledge.

Data are a series of disconnected facts and observations that may be con-
verted to information by organizing them in some manner: analyzing, cross-
referring, selecting, sorting, summarizing, and so on. Patterns of information, 
in turn, can be converted into a coherent body of knowledge. Knowledge 
comprises an organized body of information, such information patterns, and 
this forms the basis of the kinds of insights and judgments we call wisdom.

Stonier provides the following useful analogy: “Consider spinning fleece 
into yarn, and then weaving yarn into cloth. The fleece can be considered 
analogous to data, the yarn to information and the cloth to knowledge. 
Cutting and sewing the cloth into a useful garment is analogous to creat-
ing insight and judgment (wisdom). This analogy emphasizes two important 
points: (1) going from fleece to garment involves, at each step, an input of 
work, and (2) at each step, this input of work leads to an increase in organiza-
tion, thereby producing a hierarchy of organization” (Stonier, 1997).

Put another way, the work added at each subsequent organizational level 
represents the input of new information at lower levels (Dodig-Crnkovic, 
2006).

9.1.3 Different Schools of Information

Stonier takes a structuralist point of view, but there are many other schools 
of information. Thus, information is variously defined by different theorists 
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(Holgate, 2002). The following is a brief list of the many possible schools of 
thought, along with their definitions of information:

• The communication school (or quotidian school, documentalism) 
defines information as communicated knowledge, or any “notifying 
matter” (Machlup, 1983), “telling something or to the something that 
is being told.”

• Documentalists (library and information science) define informa-
tion as evidentiary documentation that must be managed (Michael 
Buckland’s information-as-thing) or as a searching behavior whereby 
an individual navigates a textual universe using information storage 
and retrieval tools.

• The Batesonian school sees information as the pattern or “forma-
tion” (formative interaction) taken by data in the “difference that 
makes a difference” (Bateson, 1972).

• Information dialectics sees information as linked to patterned orga-
nization and the reduction of uncertainty (an organizing principle 
in nature, Collier’s “symmetry breaking” [1996]). The informatory 
dialectic pits presence against absence, potential, and expression 
(Javorszky, 2003).

• The logic school posits information can be inferred from data, 
knowledge, and so on (Leyton’s process grammar of inferred shapes, 
Floridi’s information logic, Popper’s logical positivism), with the 
data/information/knowledge pyramid as the underlying model. 
It says how meaningful, contextualized data (information) become 
knowledge or wisdom is unresolved.

• The Hermeneutic school has various influences: Rafael Capurro’s 
diachronic form of information (molding); Descartes’ “forms of 
thought which inform the spirit”; the quantum school (Weizsacker, 
Lyre); information defined as a “double image” (Wittgenstein’s 
duck/rabbit), that is, simultaneously form and relationship. To this, 
Capurro (2002) adds the following: “Information as a second order 
category (not as quality of things but a quality ascribed to relation-
ships between things) in the sense of ‘selection’ that takes place 
when systems interact and choose from what is being offered.”

• The Heraclitian school sees information as a process: a “continuous pres-
ent” (Matsuno), an “information flow” (Dretske), situational semantics 
(Barwise, Perry, Israel), a process philosophy (A.N. Whitehead), or as a 
“dynamic process of formation” (Hofkirchner/Fleissner).

Within this school, Pedro Marijuan regards information as a self- 
regulating entity moving “in formation.” In this definition, he is adopting 
Michael Conrad’s sense of a “vertical information flow” circulating through 
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molecules–cells–organisms–niches and linking the computational with the 
biological such that: “The living entity is capable of continuously keeping 
itself in balance, always in formation, by appropriately communicating with 
its environment and adequately combining the creation of new structures 
with the trimming down of obsolete, unwanted parts” (Marijuan, 2003, p. 216).

• The semiotic school adherents say information represents data/sign/
structure in an environmental context for an interpreting system; 
such theorists come from cybersemiotics (Søren Brier), physico-chem-
ical semiosis (Edwina Taborsky), infological systems (Mark Burgin).

As an example of the semiotic way of thinking, Mahler (1996, p. 72) comments: 
“Information can only be defined within the scenario; it is not just out there.” 
To this, Norbert Frenzl adds: “Signs are differences of input and they need to 
be ‘interpreted’ by the receiver to be information FOR the receiving system. If 
the organization pattern, the logic of its structural organization, enables the 
open system to react to the incoming signs (to actualize its own inner structural 
information), we can say that the system processes the signs to information.”

• The stimulus school sees information as stimulus/trigger/ignition 
(Karpatschoff), for example, in a neural net activation in cognitive 
neurology.

Karpatschof (2000) argues: “It is a relational concept that includes the 
source, the signal, the release mechanism and the reaction as its relatants.”

• Adherents of the mechanicists school believe computation and AI 
can fill the void left by the postmodern deconstruction of human 
reason (Katherine Hayles posthumanism, AI, robotic cognition).

For example, Hayles comments: “Located within the dialectic of pattern/
randomness and grounded in embodied actuality rather than disembodied 
information, the posthuman offers resources for rethinking the articulation 
of humans with intelligent machines”.

• Skeptic school thinkers include Rifkin, Bogdan, Miller, Spang-
Hanssen, and Maturana.

Capurro and Hjørland (2003, p. 18) give the following definition: “These 
concepts of information are defined in various theories such as physics, ther-
modynamics, communication theory, cybernetics, statistical information 
theory, psychology, inductive logic and so on. There seems to be no unique 
idea of information upon which these various concepts converge and hence 
no proprietary theory of information.” Humberto Maturana (the Vienna 
school) reveals a similar skepticism when he says “information” lies outside 
the closed system that is autopoiesis. However, cybersemiotics (Søren Brier 
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adopting Charles Pierce’s sign theory) attempts to rescue “information” by 
expressing it as a possibility of “openness.”

• The phenomenological school considers information to lie in situ-
ated action/interaction/experience (Niklas Luhmann [Husserl]). 
As part of this school, we can include Merleau-Ponty’s “lived expe-
rience” and the “horizon of numerous perspectival views” (von 
Bertalanffy’s perspectivism, Brenda Dervin’s structural multiper-
spectivity) (see also Dodig-Crnkovic, 2005).

9.1.4 Theories of Information

A brief review of several characteristic theories of information will likely be 
helpful at this point (following Collier).

9.1.4.1 Syntactic Theories of Information

In syntactic approaches, information content is determined by the structure 
of language; it has nothing to do with the meaning of messages.

9.1.4.1.1 Statistical Shannon’s Communications Theory

Shannon’s theory of communications suggests the probability of transmit-
ting messages with a specified accuracy in the presence of noise, including 
transmission failure, distortion, and so on. A statistical interpretation of 
information assumes an ensemble of possible states, each having a definite 
probability. Information can be expressed as the sum of the base 2 log of the 
inverse of the probability of each weighted by the probability of the state
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an expression similar to that for entropy in Boltzmann’s statistical 
thermodynamics.

9.1.4.1.2 Wiener’s Cybernetics Information

The cybernetics theory of information was formulated by Norbert Wiener, 
based on the amount of information, entropy, feedback, and background 
noise as essential in the characterization of the human brain. Wiener (1948, 
p. 18) says:

The notion of the amount of information attaches itself very natu-
rally to a classical notion in statistical mechanics: that of entropy. Just 
as the amount of information in a system is a measure of its degree of 
organization, so the entropy of a system is a measure of its degree of 
disorganization.
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Wiener (1948, p. 76) goes on to define information as an integral, or an area 
of probability measurements: “The quantity that we here define as amount 
of information is the negative of the quantity usually defined as entropy in 
similar situations.”

He also considers information to contain a structure that has a meaning: “It 
will be seen that the processes which lose information are, as we should expect, 
closely analogous to the processes which gain entropy” Wiener (1948, p. 78). 

For Wiener, then, information is closely related to communication and con-
trol. For system theorists who build on his concept, information is something 
used by a mechanism or organism to steer a system toward a predefined 
goal. The actual performance is compared to the goal; signals are sent back 
to the sender if the performance deviates from it (feedback). The idea of feed-
back has become a powerful control mechanism.

9.1.4.1.3 Complementarity of Wiener and Shannon Definitions

Clearly, we can make an important difference between Shannon and Wiener. 
While Wiener sees information as negative entropy, that is, a “structured 
piece of the world,” Shannon’s information is the opposite, positive entropy.

The difference might be explained by the fact that Shannon’s information 
describes the phenomenon of information transfer, or information commu-
nication, whereas Wiener’s information is a structure, pattern, or order in a 
medium (biological organism, human brain), literally Marshall McLuhan’s 
“The Medium is the Message.” Focusing on a structure, negative entropy 
measures the degree of order.

During the process of communication via message transmission, the back-
ground settings represent the originally structured state, while message 
transmitted through the channel causes “disorder” in the background struc-
ture. To explain, we can use the analogy of a figure-background question: 
either the figure may be defined by black dots on the white background, or 
white dots on the background while the rest of the points are black.

9.1.4.2 Algorithmic Information Theory (Kolmogorov, Chaitin)

The algorithmic information theory was developed by Kolmogorov, 
Solomonoff, and Chaitin. There are now several formulations of Kolmogorov 
complexity or algorithmic information. Algorithmic information theory 
combines the ideas of program-size complexity with recursive function the-
ory. The complexity of an object is measured by the size in bits of the smallest 
program for computing it.

Kolmogorov suggested program-size complexity explicates the concept of 
information content of a string of symbols, an interpretation later adoped by 
Chaitin. The intuitive idea behind this theory is that the more difficult an 
object is to specify or describe, the more complex it is. We define the complex-
ity of a binary string s as the size of the minimal program that, when given 
to a Turing machine T, prints s and halts. To formalize Kolmogorov–Chaitin 
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complexity, we have to specify exactly the types of programs. Fortunately, 
it does not really matter: we could take a particular notation for Turing 
machines, or LISP programs, or Pascal programs, and so on.

9.1.4.3 Fisher Information

Statistician R.A. Fisher defined a measure of information in a sample as the 
value of a parameter in the population, provided the first moment exists.

Put otherwise, Fisher information is defined as the amount of informa-
tion an observable random variable X has about an unobservable parameter 
θ upon which the probability distribution of X depends. Since the score’s 
expectation is zero, the variance also represents the second moment of the 
score. Thus, the Fisher information can be written as
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where f is the probability density function of random variable X, and, thus, 
0 ≤ < ∞I ( ) .θ  In other words, Fisher information is the expectation of the square 
of the score. If a random variable carries high Fisher information, the abso-
lute value of the score is frequently high.

Frieden (2014) states a certain amount of Fisher information, the physi-
cal information, is always lost during the observation of a physical effect. 
Accordingly, Frieden expands the physical information (note: usually this 
information is minimized) by varying the system probability amplitudes, 
that is, the principle of extreme physical information (EPI), thereby deriv-
ing differential equations and probability density functions describing the 
physics of the source effect. Note: Frieden’s coauthors use Fisher’s informa-
tion theory to derive a number of contemporary physical theories, laws of 
biology, chemistry, economics, and so on.

9.1.5 Semantic Theories of Information

Shannon (1948, p. 3) is clear “Semantic aspects of communication are irrel-
evant to the engineering problem.” His approach, while often seen as a 
mathematical theory of information, is widely considered to describe the 
semantic information content of a message. As Bar-Hillel (1980, p. 97) says, 
however, “It is psychologically almost impossible not to make the shift from 
the one sense of information, that is, information = signal sequence, to the 
other sense, information = what is expressed by the signal sequence.” 

The semantic theory of information theorizes the information content of 
messages, or in other words, what they express. Initiated by Carnap and Bar-
Hillel, the theory has been developed and generalized by Hintikka. Proponents 
of the semantic approach see information as the content of a representation.
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Fifty years ago, Carnap and Bar-Hillel (1964) used inductive logic to define 
the information content of a statement in a given language in terms of those 
states it rules out. The more possibilities (possible states of affairs) a sentence 
rules out, the more informative it is; in other words, information represents 
the elimination of uncertainty. The information content of a statement is, 
thus, language related, with evidence taking the form of observation state-
ments (Carnap’s “state descriptions,” Hintikka’s “constituents”) containing 
information through the class of state descriptions ruled out by the evidence. 
Underlying this definition is the assumption that observation statements can 
be unambiguously related to experience.

Carnap and Bar-Hillel (1964) also suggested two possible measures of 
information. The first measure of the information contained in a statement 
S is the content measure, cont(S), defined as the complement of the a priori 
probability of the state of affairs expressed by S, expressed as

 cont(S) = 1 − prob(S)

Content measure is not additive, and violates certain natural intuitions of 
conditional information.

The second measure, the information measure, inf(S) in bits, is given by

 inf(S)= log2(1/(1 − cont(S))) = −log2prob(S)

Again, prob(S) is the probability of the state of affairs expressed by S, not the 
probability of S in some communication channel. Bar-Hillel suggests cont(S) 
measures the substantive information content of sentence S, while inf(S) mea-
sures the surprise value, or the unexpectedness, of sentence H. Although 
inf(S) may satisfy additivity and conditionalization, it has the following prop-
erty. If some evidence E is negatively relevant to a statement S, it holds that the 
information measure of S conditional on E will be greater than the absolute 
information measure of S. However, this violates common intuition whereby 
the information of S, given E, must be less than or equal to the absolute infor-
mation of S, leading Floridi (2004) to label it the Bar-Hillel semantic paradox.

A more serious problem is the linguistic relativity of information and the 
logical empiricist program supporting it, such as the theory-ladenness of 
observation (Collier, 1990).

For some recent semantic theories (i.e., Barwise and Perry, 1980; Devlin, 
1991), refer to Collier, http://www.nu.ac.za/undphil/collier/information/
information.html.

9.1.5.1 Dretske’s Information

In Knowledge and the Flow of Information, Dretske (1981) develops a the-
ory of epistemology and philosophy of mind based on Shannon’s math-
ematical theory of communication. Information is an objective commodity 
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built on the dependency relations between distinct events, knowledge is 
 information-caused belief, and perception is the delivery of this belief in ana-
log form (experience) for conceptual use by cognitive mechanisms. In Dretske’s 
theory, meaning (i.e., belief content) plays an information-carrying role.

9.1.5.2 Situated Information

In their theory of situation semantics, Barwise and Perry (1980) say situated 
information, or information specific to a particular situation, is analogous 
to situated knowledge. Some methods of generating information, including 
trial and error, or learning from experience, create highly situational infor-
mation. Barwise and Parry define a situation as a projection of the external 
environment onto the agent’s senses via some sense medium, making a situ-
ation an agent-centered notion.

The authors comment: “Reality consists of situations—individuals hav-
ing properties and standing in relations at various spatiotemporal locations” 
(Barwise and Perry, 1980, p. 17). In this view, individuals, properties, rela-
tions, and locations constitute uniformities across various situations. In turn, 
living organisms adjust to various uniformities, depending on their biologi-
cal needs. Meanings are seen as a kind of uniformity: for example, in the 
meaning of a simple declarative sentence there is a certain uniformity in the 
relationship between the utterance situation in which the sentence is pro-
duced and the situation it describes. For Barwise and Perry (1980, p. 670), this 
is “the relation theory of meaning.”

Situation semantics relocates meaning in the world (i.e., the environment) 
instead of in the human brain: “We believe linguistic meaning should be 
seen within [a] general picture of a world teeming with meaning, a world 
full of information for organisms appropriately attuned to that meaning” 
(Barwise and Perry, 1980, p. 16). Such thinkers go beyond the dichotomy 
between natural and nonnatural meaning, simply seeing linguistic meaning 
as an especially complex set of regularities of information flow. Instead of 
being located in an abstract world of sense, meaning is found in the flow of 
information between situations; at the same time, however, these situations 
are abstractions.

9.1.5.3 Leyton’s Information

Michael Leyton defines information as identical to shape, applied concept 
especially applicable to natural information. Leyton (1992, p. 19) says: “We 
should note that there is a possibility that a third term information is equiva-
lent to those other two. Certainly, in statistical information theory, the term 
information is defined as variety, and that makes the term similar to the term 
asymmetry which we are defining as distinguishability.”

Variety in a set of data is also measured by algorithmic information theory. 
Thus, in Leyton’s view, that particular ingredient in the present from which 
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we extract the past is information in the abstract sense of statistical or algo-
rithmic information theory. “Therefore,” Leyton, concludes, “we might be 
able to regard the terms shape and information as identical terms. That is, 
we might be able to regard the mathematical study of shape as a general, and 
more thorough, information theory than has been attempted in the current 
approaches to the study of information measurement” (Leyton, 1992, p. 28).

9.1.6  What Is the Difference That Makes a Difference? 
Syntactic versus Semantic Information

Haugeland (1989, p. 115) famously said “If you take care of the syntax, the 
semantics will take care of itself.” Another commonly cited definition of 
information in the same category is “the difference that makes the difference” 
(Bateson, 1973, p. 318). When it comes to making a difference, the most funda-
mental decisions are whether a sensory input is identical to its background or 
different, whether it is one object or several objects, whether a set of objects is 
a collection of separated individual things (here, we recognize the differences 
between objects in the collection) or groups that share properties (here, we 
recognize the similarities between objects in the collection). In other words, 
the two elementary processes are differentiation and integration.

On the one hand, a system might be described by its “state;” on the other 
hand, we might describe that state and call the description “data.” In any sys-
tem of states, then, “information” represents the difference between any two 
states, and a collection of such differences permits us to consider “patterns 
of information.” In these definitions, “state,” “information,” or “patterns” do 
not require complex interpretation; a mechanical interpretation is sufficient. 
“Recognition” (as opposed to “comparison”) involves complex transforma-
tions in organisms.

Within the syntactic–semantic distinction, theories of information can be 
grouped as:

• Syntactic information theories (Chaitin–Kolmogorov, Shannon–
Weaver, Wiener, Fisher) are quantitative, mathematical, and “objec-
tive.” The semantics is tacit, and syntax is explicated.

• Semantic information theories (Bar-Hillel, 1980; Barwise and Perry, 
1980; Dretske, 1981; Devlin, 1991) consider someone’s interpretation 
of information; the syntax is tacit, and the semantics is explicated.

The dichotomy between semantic and syntax corresponds to the dichotomy 
of form/content. Semantic information on the individual level is subjective.

If semantic information is to become “objective,” it must be intersubjec-
tively negotiated through communication. Different communities of people 
exchanging the same information may have different uses (views). The same 
phenomenon may have different meanings for individuals or for groups. 
“Information” is a typical example.
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An interesting feature of the concept of information is that it describes an 
entity common to many domains of human inquiry, making it a bridge over 
the gaps between various fields. Although scientific and scholarly fields have 
all formed views of information, a core of common intuitions relates them, as 
in Wittgenstein’s family resemblance.

9.1.7  No Information without Representation! Correspondence 
Models versus Interactive Representation

Landauer (1996, p. 188) tells us: “Information is not a disembodied abstract 
entity; it is always tied to a physical representation. It is represented by 
engraving on a stone tablet, a spin, a charge, a hole in a punched card, a 
mark on paper, or some other equivalent. This ties the handling of informa-
tion to all the possibilities and restrictions of our real physical world, its laws 
of physics, and its storehouse of available parts.”

Throughout the tradition of Western thought, information has been under-
stood in conjunction with representation. In correspondence theory, the 
mind is identical with the consciousness that is carrying out passive input 
processing.

Figure 9.1 shows an informational correspondence model, with a symbolic 
process of information transmission via several steps of physical transforma-
tions. Step three illustrates information in the brain. As this “correspondence 
scheme” does not need to imply any special kind of transformation, or any 
type of encoded information, step three may stand for an emergent result of 
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FIGURE 9.1
Informational correspondence model: A symbolic process of information transmission via sev-
eral steps of physical transformations. Step 3 symbolizes information in the brain.
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a dynamic process in the brain. The transformations are usually supposed to 
be causally related (Dodig-Crnkovic, 2005).

There are several versions of the correspondence (encoding–decoding) 
models of representation:

• Models of isomorphic correspondence relationships, that is, the 
physical symbol system hypothesis (Newell and Simon, 1972)

• Models of trained correspondences with activation vectors, that is, 
connectionist models (Rumelhart, McClelland)

• Models of transduced or causal or nomological relationships, that is, 
physical or logical (Fodor)

• Models of function and representation as function (Godfrey-Smith, 
Millikan).

A traditional point of view says information is caused by some external 
past event. However, explaining what exactly produced the representation 
in the animal or machine is problematic.

Bickhard and Terveen (1995, pp. 129–130) provide an explanation: “Some 
state or event in a brain or machine that is in informational correspon-
dence with something in the world must in addition have content about 
what that correspondence is with in order to function as a representation 
for that system—in order to be a representation for that system. Any such 
correspondence, for example, with this desk, will also be in correspondence 
(informational, and causal) with the activities of the retina, with the light 
processes, with the quantum processes in the surface of the desk, with the 
desk last week, with the manufacture of the desk, with the pumping of the 
oil out of which the desk was manufactured, with the growth and decay 
of the plants that yielded the oil, with the fusion processes in the sun that 
stimulated that growth, and so on all the way to the beginning of time, not to 
mention all the unbounded branches of such informational correspondences. 
Which one of these relationships is supposed to be the representational one? 
There are attempts to answer this question too, but, again, none that work.”

Intentionality is important to the formation of representations. The infor-
mational content of the world is infinite, with each object becoming a part 
of an all-encompassing network of causation and physical interaction. The 
agent extracts (registers) some specific information from the world because it 
acts in the world, pursuing a number of goals, the most basic being survival; 
in this way, an agent actively chooses which information is of interest.

Over the past century, pragmatic theory has developed as an alternative 
to the correspondence model of representation (Joas, Rosenthal, Bickhard). 
Pragmatism sees interaction as the most appropriate framework for under-
standing mind, including representation.

The interactive model of representation and standard correspondence 
approaches differ in several important ways. Interactive explanation is future 
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oriented, as the agent is concerned with anticipated future possibilities of 
 interaction. Actions are oriented internally to the system, thus optimizing their 
internal outcome. In the interactive case, the environmentprimarily represents 
resources for the agent. That being said, correspondence with the environment 
is basic to interactive systems as well. Ultimately, although they are attractive, 
connectionist models are not sufficient to completely account for representa-
tion; see http://www.lehigh.edu/~interact/isi2001/isi2001.html.

To reiterate, representation emerges in the anticipatory interactive pro-
cesses of both natural and artificial agents who are pursuing their goals 
while communicating with the environment.

Goertzel (1994) suggests every mind is a superposition of a structurally 
associative memory (heterarchical network) and a multilevel control hierar-
chy (perceptual-motor hierarchical network) of processes. In this dual-aspect 
framework, the former corresponds to information structure, while the latter 
corresponds to a computational process network.

Goertzel’s hypothesis supports an interactivist view of representation. More 
specifically, “The ‘complex function’ involved in the definition of intelligence 
may be anything from finding a mate to getting something to eat to build-
ing a transistor or browsing through a library. When executing any of these 
tasks, a person has a certain goal, and wants to know what set of actions to take 
in order to achieve it. There are many different possible sets of actions—each 
one, call it X, has certain effectiveness at achieving the goal. This effectiveness 
depends on the environment E, thus yielding an ‘effectiveness function’ f(X, E). 
Given an environment E, the person wants to find X that maximizes f—that is 
maximally effective at achieving the goal. But in reality, one is never given com-
plete information about the environment E, either at present or in the future (or 
in the past, for that matter). So there are two interrelated problems: one must 
estimate E, and then find the optimal X based on this estimate” (Goertzel, 1994).

Interactive models are becoming prominent in contemporary artificial 
intelligence (AI), cognition, cognitive robotics, consciousness, language 
and interface design, a development paralleling the new interactive com-
puting paradigms and approaches to logic (dialogic logic, game-theoretic 
approaches to logic).

9.2 Information Contained in Maintenance Data

Traditional condition monitoring (CM) is based on decisions on the evolution 
of certain features. These features are statistical parameters of a signal that 
show information embedded into the signal, but are not visible at a glance. 
This technique combines both time domain and frequency domain features 
to compose a featured space, specifically, a hyperspace suitable to monitor 
the degradation of the machine or identify faulty states.
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However, these features, though effective and efficient, often lack 
 knowledge of the surrounding environment of the sensor and the context of 
the events. This chapter discusses the feature selection and extraction pro-
cess in terms of information transformation to a featured space and shows 
how the trend is evolving for more accurate diagnostics and prognostics.

9.2.1 Feature Selection

9.2.1.1 Need for Feature Reduction

Many factors affect the success of machine learning on a given task. The rep-
resentation and quality of the example data is first and foremost. Today, the 
need to process large databases is becoming increasingly common. Full text 
database learners typically deal with tens of thousands of features; vision 
systems, spoken word, and character recognition problems all require hun-
dreds of classes and may have thousands of input features. The majority of 
real-world classification problems require supervised learning, as the under-
lying class probabilities and class-conditional probabilities are frequently 
unknown, and each instance is associated with a class label. Because relevant 
features are often unknown a priori in real-world situations, candidate fea-
tures may be introduced, as theoretically, having more features should result 
in more power to discrimiate (Tato et al., 2002). However, practical experience 
with machine learning algorithms has shown that this is not always the case; 
current machine learning toolkits are insufficiently equipped to deal with 
contemporary data sets, and many algorithms cannot deal with complexity. 
Furthermore, when faced with many noisy features, some algorithms take 
an inordinately long time to converge, or never converge at all. And even if 
they do converge, conventional algorithms will tend to construct poor clas-
sifiers (Kononenko, 1994).

Many features introduced during the training of a classifier are partially 
or completely irrelevant/redundant to the target concept; an irrelevant fea-
ture does not affect the target concept in any way, while a redundant feature 
adds nothing new. In many applications, a data set is so large that learn-
ing might not work very well unless these unwanted features are removed. 
Recent research shows common machine learning algorithms are adversely 
affected by irrelevant and redundant training information. The simple 
nearest-neighbor algorithm is sensitive to irrelevant attributes; its sample 
complexity (number of training examples needed to reach a given accuracy 
level) grows exponentially with the number of irrelevant attributes (Aha 
et al., 1991; Langley and Sage, 1994a,b, 1997). Sample complexity for decision 
tree algorithms can grow exponentially on some concepts (such as parity) 
as well. The naive Bayes classifier can be adversely affected by redundant 
attributes due to its assumption that attributes are independent given the 
class (Langley and Sage, 1994a,b, 1997). Decision tree algorithms such as C4.5 
(Quinlan, 1986, 1993) can sometimes over-fit training data, resulting in large 
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trees. In many cases, removing irrelevant and redundant information can 
result in C4.5 producing smaller trees (Kohavi and John, 1996). Neural net-
works are supposed to cope with irrelevant and redundant features when 
the amount of training data is enough to compensate for this drawback; oth-
erwise, they are also affected by the amount of irrelevant information.

Reducing the number of irrelevant/redundant features drastically reduces 
the running time of a learning algorithm and yields a more general concept. 
This yields better insight into the underlying concept of a real-world classi-
fication problem. Feature selection methods try to pick up a subset of features 
relevant to the target concept.

9.2.1.2 Feature Selection Process

The problem introduced in the previous section can be alleviated by prepro-
cessing the data set to remove noisy and low-information-bearing attributes. 
Kira and Rendell define feature selection as the following: “Feature selection 
is the problem of choosing a small subset of features that ideally is necessary 
and sufficient to describe the target concept.” As the terms “necessary” and 
“sufficient” imply, feature selection attempts to select the minimally sized 
subset of features according to certain criteria.

Ideally, feature selection methods search through the subsets of features 
to find the best one among 2N candidate subsets according to some evalua-
tion function. This procedure is an exhaustive one, as it tries to find only the 
best one. It may even be too costly and/or prohibitive in a practical sense for 
a medium-sized feature set. Other methods use heuristic or random search 
methods to reduce computational complexity even though they may com-
promise performance (Tato et al., 2002).

Feature selection should accomplish the following:

 1. Classification accuracy will not significantly decrease
 2. Class distribution, given only values for the selected features, will 

be as close as possible to the original class distribution, given all 
features.

9.2.1.2.1 General Criteria for a Feature Selection Method

Feature selection needs a criterion for stopping to prevent an exhaustive 
search.

A typical feature selection method has four steps:

 1. Starting point: Choosing a point in the feature subset space from which 
to start a search can affect the subsequent direction of the search. 
We can begin with no features and successively add attributes; this 
type of search is said to proceed forward through the search space. 
Or we can start with all features and successively remove them; 
this search proceeds backwards through the search space. Another 
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possibility is to start somewhere in the  middle and move outwards 
from that point.

 2. Search organization: An exhaustive search of the feature subspace is 
generally prohibitive; with N initial features, there are 2N possible 
subsets. Heuristic search strategies are more feasible than exhaus-
tive ones and yield good results, but do not guarantee finding the 
optimal subset.

 3. Evaluation strategy: The method of evaluating feature subsets is the 
biggest differentiating factor among feature selection algorithms for 
machine learning. One model, the filter (Kohavi, 1995; Kohavi and 
John, 1996), operates independently of any learning algorithm; it fil-
ters undesirable features from the data before the start of learning. 
This type of algorithm uses heuristics based on general characteris-
tics of the data to evaluate the value of feature subsets. Other theo-
rists argue that the bias of a particular induction algorithm should 
be considered when selecting features. One example, the wrapper 
(Kohavi, 1995; Kohavi and John, 1996), uses an induction algorithm 
and a statistical re-sampling technique such as cross-validation to 
determine the accuracy of feature subsets.

 4. Stopping criterion: A feature selector must decide when to stop search-
ing through feature subsets. Depending on the evaluation strategy, 
a feature selector might stop adding or removing features when no 
alternative improves on a current feature subset. Or the algorithm 
might continue to revise the feature subset as long as the merit does 
not degrade. Another option is to continue generating feature sub-
sets until the opposite end of the search space is reached and then 
select the best.

Many learning algorithms can be seen as making a (biased) estimate of 
the probability of the class label, given a certain set of features. This is a 
complex, high-dimensional distribution. Unfortunately, induction often 
involves limited data, making the estimation of numerous probabilistic 
parameters difficult. Many algorithms use Occam’s Razor (Gamberger and 
Lavrac, 1997) bias to build a simple model that achieves an acceptable level 
of performance on the training data but does not over-fit them. This bias 
may lead an algorithm to prefer a small number of predictive attributes 
over a large number of features that are fully predictive of the class label if 
used in the proper combination. With too much irrelevant and redundant 
information or with noisy and unreliable data, learning during the training 
phase is more difficult.

Feature subset selection involves identifying and removing as much irrel-
evant and redundant information as possible to reduce the dimensionality 
of the data and allow learning algorithms to operate faster and more effec-
tively. At times, future classification can be made more accurate; at other 



431Information Theory–Based Techniques

times, we get a more compact, easily interpreted representation of the target 
concept.

9.2.1.3 Feature Selection Methods Overview

Feature subset selection has long been a research area in statistics and pat-
tern recognition (Devijver and Kittler, 1982; Miller, 1990). It is not surprising 
that feature selection is as much of an issue for machine learning as it is for 
pattern recognition, as both fields share the common task of classification. 
In pattern recognition, feature selection can have an impact on the econom-
ics of data acquisition and on the accuracy and complexity of the classifier 
(Devijver and Kittler, 1982). This is also true of machine learning, which has 
the added concern of distilling useful knowledge from data. Fortunately, fea-
ture selection has been shown to improve the comprehensibility of extracted 
knowledge (Kohavi and John, 1996).

There is an enormous number of feature selection methods. A study by 
Dash and Liu (1997) presents 32 different methods grouped according to 
the types of generation and evaluation function used. If the original feature 
set contains N number of features, the total number of competing candi-
date subsets to be generated is 2N. This is a huge number even for medium-
sized N. Generation procedures are approaches to solving this problem; these 
include: complete, in which all the subsets are evaluated; heuristic, where sub-
sets are generated by adding/removing attributes (incremental/decremen-
tal); and random, in which a certain number of randomly generated subsets 
are evaluated.

The aim of an evaluation function is to measure the discriminating ability 
of a feature or a subset to distinguish the class labels. There are two com-
mon approaches: a wrapper uses the intended learning algorithm itself to 
evaluate the usefulness of features, while a filter evaluates features accord-
ing to heuristics based on general characteristics of the data. The wrap-
per approach is generally considered to produce better feature subsets, 
but runs much more slowly than a filter (Hall and Smith, 1999). Dash and 
Liu (1997) divide evaluation functions into five categories: distance, which 
evaluates differences between class conditional probabilities; information, 
based on the information of a feature; dependence, based on correlation 
measurements; consistency, where an acceptable inconsistency rate is set 
by the user; and classifier error rate, which uses the classifier as an evalua-
tion function. Only the last evaluation function, classifier error rate, can be 
counted as a wrapper.

Table 9.1 sums up the classification of methods in Dash and Liu (1997). 
The blank boxes in the table signify that no method exists for these combi-
nations. Since in-depth analysis of each of the feature selection techniques 
is not our present purpose, references for further information are given in 
the table. Hall and Smith (1999) present an approach to feature selection, 
correlation-based feature selection (CFS), using a correlation-based heuristic 
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to evaluate the worth of features. We have not used this method here but 
have extracted various ideas about feature selection, that is, using correlation 
measurements between features and between features and output classes. 
Consequently, a brief overview of this method of feature selection appears in 
the following section.

9.2.1.4 Correlation-Based Feature Selection

A CFS algorithm relies on a heuristic for evaluating the worth or merit of a 
subset of features. This heuristic takes into account the usefulness of indi-
vidual features for predicting the class label, along with the level of inter-
correlation among them. The hypothesis on which the heuristic is based 
can be stated as “Good feature subsets contain features highly correlated 
with (predictive of) the class, yet uncorrelated with (not predictive of) each 
other” (Hall and Smith, 1999, p. 236). Similarly, Gennari et  al. (1989, p. 51) 
state: “Features are relevant if their values vary systematically with category 
membership.” Briefly stated, then, a feature is only useful if it is correlated 
with or predictive of the class; otherwise it is irrelevant.

Empirical evidence provided in the literature on feature selection sug-
gests that along with irrelevant features, redundant information should 
also be eliminated (Kohavi, 1995; Kohavi and John, 1996; Langley and Sage, 
1994a,b, 1997). A feature is considered redundant if one or more other fea-
ture is highly correlated with it. The above definitions for relevance and 

TABLE 9.1

Different Feature Selection Methods as Stated by M. Dash and H. Liu

Generation Heuristic Complete Random

Evaluation
Distance Relief [Kir92], Relief-F 

[Kon94], Segen [Seg84]
Branch & Bound 
[Nar77], BFF 
[XuL88], 
Bobrowski [Bob88]

Information DTM [Car93], Koller & 
Sahami [Kol96]

MDLM [She90]

Dependency POE1ACC [Muc71], 
PRESET [Mod93]

Consistency Focus [Alm92], 
Schlimmer [Sch93], 
MIFES-1 [Oli92]

LVF [Liu96]

Classifier 
error rate

SBS, SFS [Dev82], SBS-SLASH 
[Car94], PQSS, BDS [Doa92], 
Schemata search [Moo94], 
RC [Dom96], Queiros & 
Gelsema [Que84]

Ichino & Sklansky 
[Ichi84] [Ichi84b]

LVW [Liu96b], GA 
[Vaf94], SA, RGSS 
[Doa92], 
RMHC-PF1 [Ska94]

Source: From Dash, M. and Liu, H., 1997. Intelligent Data Analysis, 1(3), 131–156.
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redundancy suggest the best features for a given classification are highly 
correlated with one of the classes and have an insignificant correlation with 
the rest of the features in the set.*

If the correlation between each component and the outside variable is 
known, and the intercorrelation between each pair of components is given, 
the correlation between a composite consisting of the summed components 
and the outside variable can be predicted as per Ghiselli (1964), Hogarth 
(1977), and Zajonic (1962) as

 

r
kr

k k k r
zc

zi

ii

=
+ − −( )1

 

(9.1)

where
rzc = correlation between the summed components and the outside variable
k = number of components (features)
rzi  = average of the correlations between the components and the outside 

variable
rii = average intercorrelation between components.

Equation 9.1 represents Pearson’s correlation coefficient, where all vari-
ables have been standardized. The numerator can be thought of as indicat-
ing how predictive of the class a group of features is; the denominator shows 
the extent of redundancy among them. Thus, Equation 9.1 indicates the cor-
relation between a composite and an outside variable is a function of the 
number of component variables in the composite and the magnitude of the 
intercorrelations among them, together with the magnitude of the correla-
tions between the components and the outside variable. The following con-
clusions can be extracted from Equation 9.1:

• When there is a higher correlation between the components and the 
outside variable, the correlation between the composite and the out-
side variable is correspondingly higher.

• As the number of components in the composite increases, the corre-
lation between the composite and the outside variable also increases.

• The lower the intercorrelation among the components, the higher 
the correlation between the composite and the outside variable.

Theoretically, when the number of components in the composite increases, 
the correlation between the composite and the outside variable also increases. 
However, it is unlikely that a group of components highly correlated with 

* Subset of features selected for evaluation.
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the outside variable will, at the same time, have low correlations with each 
other (Ghiselli, 1964). Furthermore, Hogarth (1977) notes that when the inclu-
sion of an additional component is considered, low intercorrelation with the 
already selected components may well predominate over high correlation 
with the outside variable.

9.2.2 Feature Extraction

9.2.2.1 Features from Time Domain

The measurement used for failure diagnosis is called a feature. This type of 
measurement is crucial to failure diagnosis. The existing failure diagnosis of 
rolling element machines focuses on the frequency domain, for example, using 
Fourier transform, or time–frequency domain such as wavelet transform. In 
the early stage of failure development, damage is not significant; therefore, the 
defect signal is not significant, but is mixed into the noise signal. The periodic-
ity of the signal is not significant either. Therefore, spectral analysis may not 
be effective. Yet the periodicity is significant; thus, using the feature from the 
time domain is necessary, as the normal and defect signals differ in their sta-
tistical characteristics in the time domain. Using time domain features accom-
panied by other domain features can improve diagnosis accuracy.

Some features of state-of-the-art uses of the time domain are listed in 
Table 9.2. Among these, kurtosis is an important feature used in rolling ele-
ment machines. Kurtosis defines the peakedness of the amplitude in the 

TABLE 9.2

State-of-the-Art Time Domain Features

Feature Definition Feature Definition

1 Peak 
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signal. When the amplitude follows a normal distribution, the kurtosis 
value is a fixed value, 3. Beta parameters are the shape and scale parameters 
in the beta distribution when assuming the amplitude of signal follows beta 
distribution (Fuqing et al., u.d.). Beta distribution is a flexible distribution 
and most signals can fit it. As the parameters in the beta distribution for 
normal signal and defect signal differ, these parameters have been used to 
diagnose failure. However, Heng and Nor (1998) argue that the beta offers 
no significant advantage over kurtosis and the crest factor for rolling ele-
ment bearings.

The features kurtosis, crest factor, and impulse factor are all nondimen-
sional features and are independent of the magnitude of the signal power.

However, RMS, peak value, standard deviation, and normal negative 
likelihood (NNL) value depend on the power of the signal. Some nuisance 
factors, such as poor quality or location, can also influence the power of a 
sensor’s signal. The advantage of the nondimensional features is that they 
can be immune from such nuisance factors. Nevertheless, RMS is an impor-
tant feature in signal processing; it measures the power of the signal and 
can be used to normalize the signal. Some features are derived from RMS. 
Other available features include beta-kurtosis (Wang et  al., 2001), Weibull 
negative likelihood value (Abbasion et al., 2007; Sreejith et al., 2008), kurtosis 
ratio (Vass et al., 2008), and so on.

9.2.2.1.1 Normal Negative Likelihood

NNL is used by some researchers as a feature to diagnose failure (Sreejith 
et al., 2008). In NNL, the amplitudes of the signal are assumed to follow nor-
mal distribution. The parameters u and σ are estimated using the maximum 
likelihood estimator method. This research proves the NNL is equivalent to 
another computationally cheaper feature.

Let the amplitudes of the signal be denoted by a series x1, xi,…, xn dis-
cretely. When parameters u and σ are known, the negative likelihood func-
tion of this series is
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The maximum likelihood estimator of u and σ is
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Substituting Formula 9.3 into Formula 9.2 and simplifying it, we obtain the 
following equation:
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Thus, the negative likelihood can be rewritten as
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Evidently, the NNL is essentially equivalent to ln σ.
Obviously, ln σ is not a nondimensional feature. By normalizing it with the 

energy of the signal, one new feature can be derived as

 
NNNL

RMS
= ln

σ

 
(9.6)

The above feature is called the normalized normal negative likelihood 
value (NNNL) (Sreejith et al., 2008).

9.2.2.1.2 Mean Variance Ratio

The distribution of amplitude differs from the normal and defect signal. The 
density function of a normal signal without defect is dominated by some 
noise signals. The peakedness of the signal, thus, tends to be a peak. The 
distribution of a defect signal has wider amplitude, so the variance is bigger 
than normal. The left figure in Figure 9.2 indicates a normal signal of a bear-
ing; the other figure shows a defect signal. It is evident that the defect signal 

0–0.5–1 0.5 1 0–0.5–1 0.5 1
0

2000

4000

6000

8000

10,000

0

2000

4000

6000

8000

10,000Normal signal Defect signal

FIGURE 9.2
Normal and defect signal. (From Fuqing, Y., Kumar, U., and Galar, D., u.d. Reliability Engineering 
and System Safety.)
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differs from the normal signal and has a wider variance. Therefore, the mean 
and variance ratio (MVR) could be a feature used to discriminate them. The 
definition of MVR is
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Obviously, MVR is also a nondimensional feature independent of sig-
nal power. MVR implies the degree of scatter for the distribution of signal 
amplitude.

9.2.2.1.3 Symbolized Sequence Shannon Entropy

All features described in Table 9.1 are statistical features (Fuqing et al., u.d.), 
as they consider statistical characteristics of the amplitude distribution. 
However, they all ignore the information on the spacious patterns of the 
amplitude. For example, when there is a defect in a rolling element machine, 
the amplitude tends to be periodic. This periodicity cannot be reflected in 
the statistical features. Figure 9.3 shows a simple example to verify this argu-
ment. This figure is composed of 100 samples. The amplitude of each sample 
is composed of {1, 2, 3, 4}, where each has equal possibility. The upper and 
lower figures in Figure 9.3 are plots of the same samples, but have different 
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FIGURE 9.3
Periodic signal and random signal. (From Fuqing, Y., Kumar, U., and Galar, D., u.d. Reliability 
Engineering and System Safety.)
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space distribution. In the upper periodic signal, the amplitude is distributed 
deterministically with a sequence of 1234, 1234,… iteratively. In the random 
signal, the amplitude is distributed randomly.

From Figure 9.3, it is evident that the two signals are different. But their 
statistical feature values listed in Table 9.1 are the same; that is, the statistical 
features are not able to discriminate them.

Shannon entropy can measure the uncertainty of a random process. A roll-
ing element machine without failure tends to have a more random signal, 
while the machine with failure usually tends to have a more deterministic 
signal; that is, their Shannon entropy will be different. To extract the period-
icity in the signal, we propose a feature called symbolized Shannon entropy 
(SSE). In this feature, we first symbolize the signal and then use the Shannon 
entropy. SSE has been used to detect weak signals (Finney et al., 1998; Tang 
et al., 1995). The procedure of calculating SSE is as follows.

Discretize the signal and predefine a threshold. The amplitude below the 
threshold is coded as 0 and the amplitude above the threshold is coded as 1.

Thus, the signal is discretized into a binary sequence, denoted by

 b1, b2, b3, … .bi, …

Now segment the binary signal with equal length L. For example, segment 
the binary sequence 110010010 into 110, 010, 010 with length L = 3. Calculate 
the decimal value of each segment; “6,” “2,” “2” in this example.

Calculate the probability of each segment. The probability is considered 
the frequency of each segment. For “6” in this example, the probability is 1/3 
and for “2” it is 2/3.

Next calculate the entropy using the following Shannon entropy formula:

 
H = − ∑1

log
log

N
p pi i

i  
(9.8)

where N is the total number of observed events and pi is the probability of 
this event.

In a periodic signal, some sequences will occur frequently, and the Shannon 
entropy is, thus, lower. Shannon entropy values vary with the signal and can 
be used as a feature to measure the characteristics of a signal. For a random 
signal, the Shannon entropy value is 1. For a deterministic signal, the entropy 
is between 0 and 1 (Finney et al., 1998). Applying the above procedure to the 
example given in Figure 9.4, the SSE of the periodic signal is 0 and the random 
signal is 0.905. These two signals can be significantly discriminated.

9.2.2.2 Performance of Features by Simulation

This section discusses simulating signals to test features, similar to Heng 
and Nor (1998). The feature values are shown in Table 9.2 for various signals. 



439Information Theory–Based Techniques

As the table shows, the values differ for different signals. In other words, the 
features can discriminate the signals.

As Table 9.3 shows, for deterministic signals, such as square, sin, and trian-
gle, the entropy is small. For random signals, such as Gaussian random and 
uniform random, the entropy values are above 0.9. For the singular signal, 
two white Gaussian noise N(0,0.1) and N(0,1) are added to the determinist 
and the random signals, respectively. With this addition, all the time domain 
features differ, implying they are sensitive to noise.
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FIGURE 9.4
Simulated signals. (From Fuqing, Y., Kumar, U., and Galar, D., u.d. Reliability Engineering and 
System Safety. Submitted.)

TABLE 9.3

State-of-the Art Time Domain Features

Signals Kurtosis
Crest 
Factor NNNL MVR Entropy Shape Clear

Square 1.0866 0.059 3.02 20.42 0.12 1.00 0.06
Triangle 1.8 0.87 0.69 1.73 0.19 1.15 1.12
N(0,1) 3.91 2.08 0.50 1.32 0.90 1.25 3.07
U(0,1) 1.79 0.86 0.70 1.74 0.91 1.15 1.12
Sin 1.93 0.71 0.83 2.07 0.26 1.11 0.86
Sin + N(0,0.1) 1.97 0.95 0.81 2.02 0.46 1.11 1.17

Sin + N(0,1) 3.33 1.78 0.52 1.35 0.90 1.24 2.60



440 Artificial Intelligence Tools

As with time domain features, some researchers try to extract information 
from the frequency domain, dividing the bandwidth of the signal into sev-
eral subbands and filtering the targeted signal. Once this signal is chopped 
out of different signals (i.e., time domain transformed into the inverse of 
the outputs of bank filters), new time domain features can be extracted. For 
this reason, the frequency domain can contribute numerous time domain 
features from the various subbands of a signal where some failures can be 
more visible than others.

However, as noted earlier, this information transformation tries to find 
hidden aspects of the signal, but does not merge the information contained 
in that signal with the surrounding environment to eventually provide new 
information and segregate the signals (note: with a different environment 
these may have totally different meanings) (Fuqing et al., u.d.).

9.2.3 Contextual Information

Today’s advanced networks and the widespread use of mobile devices, such as 
PDAs and smartphones, make the computing paradigm more distributed and 
pervasive. In this environment, users expect to get useful services and infor-
mation via their mobile devices. However, because the number of services and 
the amount of information have also been increasing rapidly, it is difficult and 
time consuming for users to search for proper services or information.

A context-aware system actively and autonomously adapts and provides 
the most appropriate services or information to users, using people’s contex-
tual information and requiring little interaction. As this is a key driver for 
solving the problems presented above, there has been much research on the 
topic since the early 1990s.

In this section of the chapter, we survey the existing research on context 
awareness, especially focusing on context-aware systems and frameworks 
(Lee et al., 2011).

9.2.3.1 General Process in Context-Aware Systems

Context-aware systems are usually complicated systems, responsible for 
many jobs, such as representation, management, reasoning, and analysis of 
context information. They provide their functionalities through the collabo-
ration of many different components in a system.

There are various types of different context-aware systems; thus, it is hard 
to generalize a context-aware system process; however, generally, a context-
aware system follows four steps.

The first step is acquiring context information from sensors. Sensors con-
vert real-world context information into computable context data. By using 
physical and virtual sensors, the system can acquire various types of context-
aware information. After acquiring context information, the system stores 
acquired context data in its repository. When storing context data, the kind of 
data model used to represent context information is very important. Context 
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models are diverse, and each has its own characteristics. To easily use the 
stored context data, the system controls the abstraction level of these data by 
interpreting or aggregating them. Finally, the system utilizes the abstracted 
context data for context-aware applications.

In the following subsections, we explain how a general context-aware sys-
tem processes each step and discuss related issues. Figure 9.5 shows a gen-
eral process in a context-aware system.

9.2.3.2 Acquiring Context Information

Because of the diversity of the types of context information, context informa-
tion can be acquired in many ways. Physical sensors are hardware devices 
that convert physical analog properties into computable digital data, and can 
be used for acquiring context information. Depending on the type of con-
text information, many different physical sensors can be used. For example, 
to attain location information, the global positioning system (GPS), active 
badge system, and IR sensors are appropriate. Microphones can be used to 
get audio context, and cameras can be used to acquire visual context. In addi-
tion, motion sensors or pressure sensors can be applied in context-aware sys-
tems for various purposes.

However, using physical sensors is not the only way to acquire context 
information. A context-aware application can recommend a music playlist 
based on a user’s preference or give the local weather conditions in in the 
user’s current location. In this situation, the user’s preference can be acquired 
by analyzing his/her music play history, and the weather conditions of the 
current location can be attained by querying a web service provided by a 
forecasting site. Although these contexts can be acquired without using 
physical sensors, we need software modules that perform as virtual sensors. 
Virtual sensors acquire context information by analyzing various data or 
querying external sources. Explicitly provided context information by users 
can also be used in a context-aware system.

Acquiring context
information

Storing context
information

Controlling
abstraction level of

context information

Utilizing context
information for sevices

for applications

Physics sensors Other source
(virtual sensors)

Context
aggregation

Context
interpretation

Context models Context as
triggering
condition

Context as
additional

information

FIGURE 9.5
A general process in context-aware systems. (From Lee, S.-K., 2011. A Survey of Context-Aware 
System—The Past, Present, and Future. [Online] Available at: ids.snu.ac.kr/w/images/d/d7/
Survey(draft).doc.)
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9.2.3.3 Storing Context Information

Most context systems store acquired context data in their repository; in fact, 
context models are closely related to context storing. Many factors, such as 
expressiveness, flexibility, generality, and the computational cost of process-
ing context-aware data, depend on what kind of context model is used in the 
system (Lee et al., 2011). See Figure 9.6 for an example.

Context information can be represented in many ways from very simple 
data models such as key-value models to complex ontological models. Schilit 
et al. (1994) and Salber et al. (1999) used a key-value model to express context 
information. This model can be easily adopted for context-aware systems, 
but it is limited in its ability to represent complex structures of context infor-
mation. McCarthy and Buvac (1997) introduced a logic-based context model 
that represents context information using facts and rules. This model has 
high mathematical formality and support for inferences. Structured con-
text data models include the markup scheme context model, object-oriented 
context mode, or context extension of Unified Modeling Language (UML), 
object-relational mapping (ORM).

Recently, the ontological context model has been widely used. Many con-
text-aware systems, such as SOCAM, CoBrA, CoCA, have adopted ontology 
as their context data model. The ontological context model has high expres-
sion power and formality at the same time, and it is a suitable data model for 
representing the relationships among context information and entities (Lee 
et al., 2011).

9.2.3.4 Controlling the Context Abstraction Level

A context-aware system is responsible for controlling the abstraction level of 
context information and performs context abstraction in two ways— context 
aggregation and context interpretation. Context aggregation means the sys-
tem aggregates many low-level signals (raw data) into a manageable amount 
of high-level information. For example, a context-aware system  converts 

Context Model Examples
Hydrogen

Logic-Based Model
Object-Oriented Model

McCarthy’s Approach
Key-Value Model Schilit’s Approach, Context Toolkit

Mark-up Scheme Model CC/PP, UAProf, CSCP, GPM
Ontology Model SOCAM, CoBra, CASS, CoCA
Graphical Model Context Extension of ORM, Vector 

Space Model

FIGURE 9.6
Context models. (From Lee, S.-K., 2011. A Survey of Context-Aware System—The Past, Present, and 
Future. [Online] Available at: ids.snu.ac.kr/w/images/d/d7/Survey(draft).doc.)
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thousands of temperature signals into several keywords (e.g., “hot,” “cold,” 
“moderate,” “cool,” and “warm”) by context aggregation. Context interpre-
tation is a method of interpreting context information and adding seman-
tics. For example, a context-aware system can interpret a GPS signal into a 
street name.

It is hard for context-aware systems to directly use the raw data pro-
vided by sensors. Accordingly, context-aware systems translate sensed 
signals into meaningful data so they can understand and use context data 
more easily. Additionally, context-aware systems can reduce the number 
of context data and achieve better performance by controlling the level of 
context abstraction. If the context abstraction is separated from a context-
aware application, the context-aware application does not have to know 
the details of sen-sors but still can use the sensed context data collected 
by the sensors.

9.2.3.5 Using Context Information

Utilizing acquired and abstracted context information as useful informa-
tion for services or applications is the last step of the general context-aware 
system process. Context-aware systems use context information for two 
 purposes—as a triggering condition or as additional information.

A context-aware system can use context information as an action trigger-
ing condition when it wants to trigger actions and the current context satis-
fies a specific situation.

To enhance the quality of the service or application, context information 
can be used as additional information. For example, assume a user sends 
queries to an information server; the user’s current context information can 
be used as additional information to obtain better results in the queries. 
These two purposes of context information usage can be combined.

We can use context information for many types of context-aware applica-
tions. Several examples of context-aware application categories are presented 
below (Lee, 2011).

9.2.3.6 Design Considerations of Context-Aware Systems

When designing context-aware systems, we need to consider a number of 
aspects. These systems can be implemented many ways and can have dif-
ferent structures, depending on the development focus of the system. In this 
section, we discuss some design considerations, not mentioned in previous 
sections, including architecture style, handling dynamicity, privacy protec-
tion, and performance and scalability.

9.2.3.6.1 Architecture Style

A context-aware system’s representative architecture can be categorized into 
three styles: stand-alone, distributed, and centralized architecture. Figure 9.7 
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shows a simplified diagram of the architecture of each category. The charac-
teristics, advantages, and disadvantages of each are explained below.

Stand-alone architecture: This basic architecture directly accesses sensors 
and does not consider context sharing of devices. It can be relatively 
easily implemented but has limitations in that it cannot process 
device collaboration. This architecture is appropriate for small, sim-
ple applications or domain-specific applications.

Distributed architecture: This architecture can store context information 
in many separate devices, with no additional central server. Each 
device is independent of other devices; thus, a context-aware system 
can ignore failure or bottleneck problems and still continue context-
aware operations. Each device manages its own context information 
and shares context information with other devices by communicat-
ing with them; thus, an ad hoc communication protocol is required. 
However, it is hard for a device to know the overall situation of every 
device when using ad hoc communication protocols. Mobile devices 
usually lack resources and computation power, so a distributed 
architecture has limitations dealing with computationally intensive 
applications.

Centralized architecture (context server) sensors and devices: These are con-
nected to a centralized context server with adequate resource and 
computational power; context information is stored in a centralized 
server. If a device needs to get another device’s context information, 
the device queries the centralized server. In this architecture, all 
communication is performed by querying the context server, so the 
communication protocol can be relatively simpler than for distrib-
uted architecture. By using a computationally powerful device as a 
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Context-aware systems architecture styles. (From Lee, S.-K., 2011. A Survey of Context-Aware 
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centralized server, many applications requiring high resources and 
cost can be performed. A disadvantage of this approach is that it is 
extremely problematic if the centralized server fails or a bottleneck 
problem occurs.

9.2.3.7 Handling Dynamicity

Handling dynamicity is an important consideration if a context-aware sys-
tem is expected to process sophisticated context-aware applications. Entities 
(people, devices, sensors, etc.) varying from simple sensors and resource-
poor mobile devices, to central servers with high performance requirements, 
may want to process context-aware applications. At the same time, connec-
tions and disconnections of the devices may occur dynamically. A context-
aware system should be able to deal with heterogeneous entities and provide 
support for resource discovery (Lee, 2011).

9.2.3.8 Privacy Protection

Supporting privacy protection is another consideration for context-aware 
systems. Context-aware systems autonomously gather information from the 
users; some users may feel uncomfortable in that the system can use or open 
their information without notice. Thus, a context-aware system should allow 
users to express their privacy needs. Such systems should protect a user’s 
context information from illegal access and guarantee anonymity.

9.2.3.9 Performance and Scalability

In most cases, operations for context-aware applications should be processed 
in real time, and a sophisticated context-aware system requires reasoning 
and inference functionalities, which necessitate high computational costs 
and resources. Performance and scalability of a context-aware system is 
important if the system is to instantly respond to the current context of users. 
The communication protocol must also perform adequately with acceptable 
scalability.

9.2.4  Context as Complex Information Content in Maintenance: 
An Example of Health Assessment for Machine Tools

In the context of maintenance activities, maintainers rely on machine infor-
mation, including their past breakdowns, repair methods and guidelines, 
as well as new research in the area. They get access to information and 
knowledge by using information systems (nondestructive testing [NDT] or 
CM), local databases, e-resources, or traditional print media. Basically, it can 
be assumed that the amount of available information affects the quality of 
maintenance decision making.
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Machine health information retrieval is the application of information 
retrieval concepts and techniques to the operation and maintenance domain. 
Contextual information retrieval is a subarea of information retrieval that 
incorporates context features in the search process to facilitate improvement. 
Both areas have been gaining interest in the research community, especially 
as they may be able to perform more accurate prognostics based on specific 
scenarios and real circumstances.

This chapter will show the effects of the interaction of context features 
on machine tools’ health information. This interaction context and health 
assessment is bidirectional in the sense that health information-seeking 
behavior can also be used to predict context features that can be used 
without disturbing the operational environment or disrupting production 
(Johansson et al., 2014).

The extraction of multiple features from multiple sensors, already deployed 
in this type of machinery, may constitute snapshots of the current health 
of certain machine components. The mutation status of these snapshots 
has been proposed as a prognostic marker in machine tools’ problems. But 
only the spindle fingerprint mutation has been validated independently as 
a prognostic for overall survival and survival after relapse; the prognostic 
value of these mutations can be investigated in various contexts defined by 
stratifications of the machine population. At this point, the prognostic value 
of the rest of the components’ mutation is still being investigated.

CM activities include obtaining data from sensors coming from the 
machine; the analysis of these data helps to measure and understand the 
machine tool performances. This approach allows computing some indica-
tors at the local level to monitor the local health of a machine (Figure 9.8).

Classical machine tool monitoring techniques are related to acoustic and 
vibrations techniques (Abele et  al., 2010). However, the various CM meth-
ods, such as vibration or acoustic monitoring, usually require expensive sen-
sors (Alzaga et al., 2014). One way to achieve a proactive CM approach, with 
nonintrusive monitoring techniques, affordable in terms of both cost and 
effectiveness, is to use the current analysis to assess the health status of the 
machine, with special focus on the critical components: the spindle and the 
linear axis. Recent research has been directed toward electrical monitoring 
of the motor with emphasis on inspecting the stator current of the motor 
(Alzaga et al., 2014; Benbouzid, 2000; Kliman and Stein, 1992). This should 
reveal the relationship between electrical signals and the wear of the spindle 
and the linear axis. Based on the signature analysis results, the health index 
of these components could be computed and associated with different degra-
dation modes of the components (e.g., gears that are missing teeth).

Context can be created by assessing the evolution of operating conditions 
to understand both the usage of the machine and the effect of the environ-
ment. The characterization of operational conditions helps us to understand 
the relationship between the health status and the usage of the machine 
(machine working for a long period with high loads, or high speed, etc.). 
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This, in turn, yields a better understanding of the impact of operating condi-
tions on the evolution of the degradation modes (Medina-Oliva et al., 2013).

9.2.4.1 Fingerprint Data Use for Current Signature Analysis

Fingerprint data are collected in a standardized way every day/week/
month. This means the machine is running a special fingerprint program 
during the data collection where feed, speed, rpm, and so on are changed 
but no production is performed. There is also a possibility of using stan-
dard sequences in ordinary production programs such as tool changing for 
part of the fingerprint collection. The data are collected with a sampling fre-
quency of many kilohertz.

Typical data collected and synchronized in time are

• Vibration data
• Motor power data for spindle and linear axis (current signal and 

motor current signature analysis)
• rpm and speed data for spindle and linear axis and axis position.

The data are analyzed in both time and frequency domains (Galar et al., 
2012) and a number of features (Table 9.4) are calculated for each signal. In 
the frequency domain, the vibration level on known frequencies, such as 
gear mesh frequencies, bearing frequencies, rotational speed, and so on and 
their harmonics is followed.

Linear axis

Tool magazine

Feed motors
linear guides

Pneumatic system

Compressor

Auxiliary system
Computer and

display
Lightning

Fan

Coolant system

Motor coolant pump
Lubrication system

Motor oil pump

Linear cylinders
Rotary cylinders

Spindle
Gear box
Bearings
Belt drive

Worm driver
Chip conveyor

FIGURE 9.8
Machine tool (source Siemens). (From Johansson, C.-A., 2014. The Importance of Operation Context 
for Proper Remaining Useful Life Estimation.)
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For faults/problems in the gear train, such as bearing and gear problems, 
the most sensitive features are chosen through testing in a test bench where 
different types of faults can be simulated and by testing faulty components 
sent in by the customer for repair.

A machine fingerprint is the electrical signature of that machine in a spe-
cific time domain. Fingerprint raw data are processed and the relevant signal 
features are extracted. These relevant features are used to compare the fin-
gerprints through time to assess the machine health. To compute the health 
index of the machine, it is necessary to correlate any load and speed varia-
tion with current and voltage variations to reflect loads, stresses, and wear of 
components. But to do this, we must identify the healthy electrical signature 
of the machine, called the reference fingerprint, along with the degraded 
ones associated with the various failure modes (Figure 9.9).

In an industrial environment, it is necessary perform experiments on 
test benches to determine the potential correlation between electrical sig-
nals and wear, stresses, and load on the machine. Such test benches include 
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the gearbox test bench, spindle test bench, and linear guides test bench, as 
explained in Alzaga et al. (2014).

A GPS test bench has been extensively used in experiments. This test bench 
is particularly convenient because of its flexibility. Different sets of sensors can 
be placed in different positions, and multiple combinations of speeds and loads 
can be established. Faults such as missing teeth, chipped teeth, eccentricity, 
and different degrees of surface degradation can be deliberately created in the 
gears. When test parameters are selected to emulate the working conditions of 
electromechanical actuators and machine tools, we can perform constant speed 
and transient tests. In the transient tests, fast speed changes are performed to 
produce acceleration, to investigate the concomitant changes produced in the 
signal. The analysis can be done in both the time domain and the frequency 
domain and, complementarily, using the wavelet decomposition. The results 
allow us to discern the various types of gear defects, thus allowing us to detect 
the fault conditions and assess the health state of the gearbox.

Once the fingerprint experimental phase is completed in the test benches, 
and the main signals, features, and the relationship with failure modes are 
established, the implementation can continue with an operational milling 
machine using external hardware.

With the data obtained from the fingerprint test, various features are com-
puted, such as the mean, median, variance, and so on, for time domain and 
frequency analysis, as well as the health index. These results are then sent to 
the remote level. This way, different types of degradations can be detected 
early, including gear degradations (e.g., missing teeth and chipped teeth).

In a study by Chandran et  al. (2012), the processed data were from the 
channel U of the drive motor. Two types of analysis were performed: one 
for the raw signal, in the time domain, and another for the time–frequency 
domain of the wavelet decomposition signal. In the case of the raw signal 
analysis, the researchers obtained 14 descriptors from the signal: rms, aver-
age, peak value, crest factor, skewness, kurtosis, median, minimum, maxi-
mum, deviation, variance, clearance factor, impulse factor, and shape factor 

Load motor
Reduction
gear box

Monitored
gear box Drive motor

FIGURE 9.9
Test bench for gear train. (From Johansson, C.-A., 2014. The Importance of Operation Context for 
Proper Remaining Useful Life Estimation.)
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(Chandran et  al., 2012). They were obtained from each repetition, and the 
median of all of the results was calculated.

Time–frequency domain analysis has also been performed (Peng and Chu, 
2004; Cusido et al., 2008), with several levels being studied. At each level, the 
14 descriptors noted above were achieved. Another descriptor has also been 
calculated; this descriptor represents the difference between one level and 
the next (Subasi, 2007).

9.2.4.1.1 Time Domain Analysis

After analyzing the several descriptors, we conclude that not all provide use-
ful information. Out of the 14 descriptors, only half give results that are good 
enough to differentiate the good-condition gears from the gears with faults. 
The useful descriptors are average, deviation, maximum, median, peak 
value, root mean square, and variance.

9.2.4.1.2 Time–Frequency Domain Analysis

The results of the one-way analysis test reveals that the best levels for the 
decomposition are levels 1, 4, and 15. The most interesting variables for level 
1 are crest factor, peak value, shape value, and variance. For level 4, they are 
average, skewness, and ratio. For level 15 decomposition, the best variables 
are the clearance factor, median, ratio, and variance.

The fingerprint represents the condition/status of the machine and the 
change in condition represents the degradation of the machine/component. 
The operational data represent the way the machine has been used between 
the fingerprints. By using data mining knowledge extraction techniques, we 
can find the correlation between operational data and changes in the  fin-
gerprint. This information may be used in prediction models for remaining 
useful life (RUL).

9.2.4.1.3  Operational Data for Inferring the Use of the Machine and for 
Contextualizing the Component/Machine Performances

Operational data are collected with a sampling frequency between 1 and 
100 Hz via interfacing with the computer numerical control (CNC) controller 
of the machine tool. In the case of the Power-OM project, the GEM OA hard-
ware from Artis are used for data collection (Figure 9.10).

Typical data collected are:

• Spindle power and rpm
• Motor power and position for linear axis
• Difference between commanded and actual position
• Temperatures
• Program number
• Tool number
• Alarms (sampled from the CNC or taken from the log file).
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The operational data describe the way the machine has been used between 
fingerprints.

As a starting value, estimation can be based on the history of the machine 
tool such as:

• Age of the component/machine tool
• Designed life time for the component/machine tool
• Type of production/use (8 h/24 h/7 days, heavy, medium, low)
• Maintenance history
• Experience from similar machines in the fleet

Over time, the estimation is increasingly based on results from fingerprint 
and operational data.

The change of the value of different features between two fingerprints 
indicates the degradation of the component and depends on the previous 
condition and the way the machine has been used.

This means that the future condition, the feature value Fn, is a function of 
previous condition value Fn−1 and the subsequent operational data.

 Fn = f(Fn−1, Operational data) (9.9)

Modern data mining algorithms can be used to extract knowledge from 
the fingerprint and operational data and find the correlation between the 
change in condition and the way the machine tool is used. The result is 
used to estimate the RUL for this machine/component and its uncertainty. 
An overview of different techniques for RUL estimation can be seen in 
Butler (2012).

The prediction of remaining useful life in engineering systems is affected 
by several sources of uncertainty, and it is important to correctly interpret 
this uncertainty to facilitate meaningful decision making. Thus, the uncer-
tainty of the RUL depends on uncertainty in collected data and feature 
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FIGURE 9.10
Local data collection unit. (From Johansson, C.-A., 2014. The Importance of Operation Context for 
Proper Remaining Useful Life Estimation.)
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calculations, in prediction algorithms, in future operating conditions, and in 
threshold settings (Sankararaman and Goebel, 2013).

The probability distribution of the RUL can sometimes be extremely 
skewed; this can vary with the distance to “end of life.”

By the classification of operational data into groups, for instance, based on 
power and speed, the user can make predictions for each group. In addition, 
if the program number is classified into the same groups, the user can esti-
mate the RUL depending on what products/program number he/she plans 
to run (i.e., different scenarios) (Figure 9.11).

9.2.4.1.4 Need for e-Maintenance as a Context Manager Tool

In e-Maintenance, a remote server will receive data from different machines 
in different sites (the fleet), aggregate them, and make them semantically 
comparable, while considering their different contexts: technical differ-
ences (the machines are not exactly the same), operational conditions, his-
torical failures, and so on. e-Maintenance solutions provide a mechanism 
that allows organizations to transfer data to make decisions from a system 
perspective. Such decisions are based on understanding data relationships 
and patterns. Materialized as a set of interoperable, independent, and loosely 
coupled information services, a framework with this type of inherent infra-
structure (i.e., e-Maintenance Cloud—eMC) can provide fleet-wide, continu-
ous, coordinated service support and service delivery functions for operation 
and maintenance. The e-Maintenance platform is collaborative, integrating 
engineering, proactive maintenance, decision making, and expertise tools. 
The foundation of the platform is Services-Oriented Architecture (SOA) and 
Enterprise Service Bus: a software and systems architectural principles, based 
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on web services, to bring together a set of enterprise applications through an 
XML-based engine.

The e-Maintenance platform supports the infrastructure in a true SOA 
way, through services and data exchanges via web services between mod-
ules (Figure 9.12). This flexible infrastructure makes it possible for different 
partners to develop modules in different development environments.

An organization using e-Maintenance can:

 1. Collect and store data from the local level, that is, the machines com-
posing the fleet

 2. Manage and store knowledge using a knowledge-based system
 3. Share data from the units composing the fleet
 4. Achieve large data analysis from stored, offline data from the fleet
 5. Facilitate access, communication, user-friendly interpretation, and 

decision through remote services by means of web browser visu-
alization to support fleet-wide services by providing the corre-
sponding information. Information from different machines can be 
uploaded and analyzed in the platform.
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9.3 Entropy and Relative Entropy Estimation

Entropy can be seen as the amount of disorder within a system. For example, 
a deck of cards just out of a box has low entropy. It is not zero because there is 
still potential energy in it, even when the cards are in order. As we shuffle the 
deck, we increase its entropy. Eventually, we reach a point where the deck 
is maximally disorganized; at this point, the deck has reached its maximum 
entropy (Leslie, 2011).

Entropy is a cornerstone of physics with consequences in many aspects 
of physics. It was first recognized as a phenomenon by German physicist 
Rudolf Clausius. His Clausius equation eventually became the second law of 
thermal dynamics. In physics, thermal dynamics is the study of how energy, 
work, heat, and so on interact with physical systems. In thermal dynamics, 
entropy is the potential amount of energy available to be converted into work 
that a system can do and how much of that energy will be dissipated by 
heat. This description only applies when describing a closed system that is in 
equilibrium; we will discuss other applications of entropy later.

The second law of thermal dynamics describes the propensity of heat to 
naturally flow from hot to cold items. In the Clausius equation, we see this 
law and entropy defined at their most basic level. The Clausius equation 
illustrates how the change in entropy can be represented by heat in Joules 
divided by the absolute temperature in Kelvin. This gives the change in 
entropy as a function of heat over temperature; however, for this to be true, 
heat must be transferred at a fixed temperature. If heat is added to the sys-
tem, the entropy of the system increases, and if the heat is taken, the entropy 
decreases in equal measure (Walker, 2009) (Figure 9.13).

FIGURE 9.13
This diagram shows what a reversible system might look like, as it would operate the same no 
matter the direction in which it runs. (From Ducker, C., 2009. Force, Work & Energy with the Ropes 
and Pulleys. [Online] Available at: http://www.cdrucker.com/files/labsphys/forceworkenergy.
html.)
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Entropy in this situation is a state function: entropy as a variable is only 
dependent on the current status of the system, not on any other factor. The 
change in entropy can, thus, be determined even if the system is irreversible, 
as long as we know the starting and final states of the process. Calculating 
this change in entropy can be done by using a reversible process to connect 
the two states.

To satisfy the parameters of retaining entropy within a system, that system 
must be reversible, but no real system can be perfectly reversible. The process 
of moving heat from one part of a system to another will always bleed some 
portion of that heat; in other words, it will not retain its current entropy level. 
In a real engine, heat converted to work is less efficient at being converted 
when the heat is transferred from a hot reservoir than from a cold reser-
voir. We can determine, then, that the heat waste in an irreversible engine 
is greater than that of a reversible engine. Entropy change in an irreversible 
engine should always be positive. Consequently, the running of an irrevers-
ible process should increase entropy, as in the failure progression, deteriora-
tion, and degradation.

There are a couple of important things to note here, if we follow these 
points to their conclusion. In the universe as a whole, entropy should always 
be increasing as irreversible processes occur, in other words, all the time. The 
total entropy in the universe does not change from reversible processes, but 
all real processes are irreversible; otherwise, we would be able to have per-
petual motion machines. This means the universe is always creating entropy, 
giving us one direction of motion, or what is often called the arrow of time.

This is the only theory we have which gives us a sense of the importance 
of the one directionality of time in the universe. All other thermal dynamic 
processes are, in theory, reversible; it does not matter which direction we run 
time—the equations and the theory work out the same. This is strange and 
baffling because in common day experience, it is obvious that processes do 
not run in reverse.

For example, without entropy, we could drop an egg on the floor; after it 
smashes, we could throw it back into the air and expect all of the broken 
pieces to come back together again—resulting in a whole egg. Of course, we 
cannot do this because of the one directionality, or arrow, of time. But what 
is it about the egg smashing into the ground that makes it impossible to put 
the egg back together again? Simply stated, it is the entropy created in the 
process of the energy of the falling egg being converted into work as it hits 
the floor. This creates complexity and disorder greater than what the egg 
had before it fell. In short, the entropy cannot be easily undone (Smoli, 2007).

It is important to disambiguate entropy from energy. It is appealing to 
think of entropy as energy, but it is not. Entropy in the universe is always 
increasing, while energy is constant and eternal. Energy cannot be created 
or undone, and this is a fundamental principle of the universe. We may want 
to represent entropy like energy by considering the original and final value 
of a system to be equal. This is usually not the case though; it is only true for 
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entropy when a system is reversible, and this cannot actually happen. It is 
only useful to think of a reversible system as a tool.

Nevertheless, it is possible for the entropy of a system to decrease as long 
as entropy is increased by a larger margin in another part of the system. This 
may make it seem as if some processes can decrease entropy. For example, 
in the analogy of a deck of cards, it is possible by random chance that part 
of the deck will become ordered again. If we shuffle the deck enough times, 
this is actually inevitable. So does that not suggest the entropy in the deck of 
cards has decreased? Well, actually it has, but the deck of cards is only a part 
of a larger system. The entropy in the hands of the person shuffling the deck 
would have increased from the process of doing the work of shuffling. This 
means the overall net entropy of the system has increased, even though it has 
been lowered in the deck of cards (Vedral, 2012) (Figure 9.14).

Another way to think of this concept is to compare it to putting a tray of 
water in a freezer. The water in the tray will eventually freeze, creating ice. 
This makes it seem as if the entropy has decreased because heat has been 
removed from the water to make ice, and we established in the Clausius 
equation that entropy decreases when heat is removed from an object. To 
freeze the ice, however, the freezer does work to draw out the heat in the 
water. If we measure the amount of heat the freezer releases into its sur-
rounding environment, we will find it is greater than the amount of heat 
taken from the water. In reality, then, the overall entropy of the system has 
increased (Figure 9.15).

There are many ways to describe entropy. Entropy can be thought of as 
the amount of disorder in the universe, for example. If we think about the 
Clausius equation in terms of disorder, we see that a high-temperature reser-
voir separated from a low-temperature reservoir is a very orderly state. All of 
the low-energy molecules are grouped together, as are all of the high-energy 
molecules. Entropy, then, is the disordering of this system by dispersing the 
heat between the two extremes (Figure 9.16).

FIGURE 9.14
Cards being shuffled.
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This leads to a new conclusion: if increasing entropy in a system is the 
same as randomizing the state of order in that system, entropy must be equal 
to the decrease of order in the system. Another way of looking at the second 
law of thermal dynamics now is that with time, the universe is continually 
decreasing in order.

In this chapter, entropy generally refers to information theory. These kinds 
of entropy are sometimes given other names, such as Shannon entropy, 
named for the theorist who developed information theory. This is not infor-
mation in the traditional sense, though; it is information in the mathematical 
understanding of the word.

FIGURE 9.15
Ice cubes.

FIGURE 9.16
This diagram illustrates how two objects placed next to each other with heat variation are 
organized and why entropy will tend to want to bring them to equilibrium through random 
motions. (From Heylighen, F., 2003. Entropy Increase: The Box With Two Compartments. [Online] 
Available at: http://pespmc1.vub.ac.be/ENTROBOX.html.)
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Information theory is a branch of applied mathematics originally formu-
lated to help understand the limits of processing data through compression 
or communicating it over distances. It has since been found to relate to many 
fields, including physics. In physics, entropy is represented by the amount of 
uncertainty we have about a random variable. For example, if we have a coin 
and flip it, we will have an equal probability of heads or tails, so the entropy 
will equal one. But if we flip the coin a second time, the resulting toss has a 
higher probability because we now know the result of the first toss, thereby 
changing the entropy to be lower. Clearly, entropy has many very different 
applications (Figure 9.17).

Over time, the universe increases its amount of entropy, but with this, 
it extinguishes its own ability to do work because in a reversible process, 
entropy is in equilibrium. A reversible system is maximally efficient and 
can always do the same amount of work. In an irreversible process, excess 
entropy is always created and exhausted, decreasing the amount of work 
that can be sustained within the system using the same amount of energy. 
This means if energy is eternal and cannot be created, eventually entropy 
will bleed out all available energy in the universe until there is no available 
energy left to do work. This is an alarming thought.

This energy is lost forever because to lower the entropy in one part of the 
universe, we must increase it somewhere else in greater measure, using even 
more energy. If there is no more available energy, then there is no energy that 
can be converted to try to retrieve some of the already lost energy. Because of 
this relationship, entropy is sometimes thought as a quality of energy. When 
energy is lost because of entropy, we call it the degradation of that energy. 
Energy degradation is an ongoing process in the cosmos.

Today, we can look up at the night sky and see a universe full of diversity 
and complexity. The universe is so inconceivably old that it is hard to think 
of it as anything but eternal. But if we have an arrow of time and a direc-
tionality defined by the amount of entropy, we must be able to rewind the 
cosmic clock back to a time with no entropy in the universe—a beginning. 

FIGURE 9.17
Flipping a coin.
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What would this time and place look like? Physics calls this the Big Bang; a 
time when the universe was maximally organized into a single point con-
taining all the energy of the universe, the same amount of energy that exists 
today.

9.3.1 Entropy Estimation

Entropy measures provide important tools to indicate variety in distributions 
at particular moments in time (e.g., presence of failures) or to analyze evo-
lutionary processes over time (e.g., technical change). Importantly, entropy 
statistics are suitable to decomposition analysis, which renders the measure 
preferable to such alternatives as the Herfindahl index. There are several 
applications of entropy in industrial organization and innovation studies. 
The chapter contains two sections, one on statistics and one on applications. 
In the first section, we discuss, in this order (Frenken, 2013)

• Introduction to the entropy concept and information theory
• Entropy decomposition theorem
• Prior and posterior probabilities
• Multidimensional extensions

The second section discusses the following applications of entropy 
statistics:

• Concentration in industry
• Corporate diversity
• Regional industrial diversity
• Income inequality
• Organization theory

9.3.2 Entropy Statistics

The concept of entropy originated with Boltzmann (1877) and was later 
given a probabilistic interpretation in information theory by Shannon (1948). 
In the 1960s, Theil (1967) applied information theory to economics, and pub-
lished the results in Economics and Information Theory (1967) and Statistical 
Decomposition Analysis (Theil, 1972).

9.3.2.1 Entropy Formula

The formula for entropy expresses the expected information content or 
uncertainty of a probability distribution. Let Ei stand for an event, for exam-
ple, the adoption of a technology (i), and pi be the probability of event Ei to 
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occur. Assume n events E1,…, En with probabilities p1,…, pn adding up to 1. 
Since the occurrence of events with smaller probability yields more informa-
tion (because they are less expected), a measure of information h should be a 
decreasing function of pi. Shannon’s (1948) proposed logarithmic function to 
express information h(pi) is written as
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which decreases from infinity to 0 for pi ranging from 0 to 1. This means 
the lower the probability of an event to occur, the higher the amount of 
information of a message stating that the event has occurred. Information is 
expressed in bits, using 2 as a base of the logarithm; others express informa-
tion in “nits” using a natural logarithm.

From n number of information values h(pi), the expected information con-
tent of a probability distribution, or entropy, can be derived by weighing the 
information values h(pi) by their respective probabilities, expressed as
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where H stands for entropy in bits.
We customarily say (Theil, 1972, p. 5)
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and this accords with the limit value of the left-hand term for pi approaching 
zero (Theil, 1972, p. 5).

When the entropy value H is nonnegative, and the minimum possible 
entropy value is zero, an event has the unit probability:
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If all states are equally probable, that is, (pi = (1/n)), the entropy value is 
maximum:
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Thus, the maximum entropy increases with n, but decreasingly so.* Note: 
for the proof, see Theil (1972, pp. 8–10).

Entropy may be understood as a measure of uncertainty. The greater the 
uncertainty before a message arrives that an event occurred, the larger the 
amount of information conveyed by the arriving message, on average. Theil 
(1972, p. 7) says, in this aspect, the entropy concept is similar to the variance 
of a random variable whose values are real numbers, except that entropy 
applies to qualitative, not quantitative values and, as such, depends exclu-
sively on the probabilities of possible events.

When a message is received that prior probabilities pi are transformed in 
posterior probabilities qi, we get the following (Theil, 1972, p. 59):
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which equals zero when the posterior probabilities equal the prior probabili-
ties (i.e., no information) and is positive otherwise.

9.3.2.2 Entropy Decomposition Theorem

A powerful and attractive property of entropy statistics is how it han-
dles problems of aggregation and disaggregation (Theil, 1972, pp. 20–22; 
Zadjenweber, 1972) because of the additivity of the entropy formula.

Let Ei stand for an event, and let there be n events E1,…, En with probabili-
ties p1,…, pn. Assume all events can be aggregated into a smaller number of 
sets of events S1,…, SG in such a way that each event exclusively falls under 
one set Sg, where g = 1,…, G. The probability of an event falling under Sg is 
obtained by summation
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The entropy at the level of sets of events is
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* In physics, maximum entropy characterizes distributions of randomly moving particles with 
equal probability of being present in any state (like a perfect gas). When behavior is nonran-
dom, for example, if particles move toward already crowded regions, the resulting distribution 
is skewed, and entropy is lower than its maximum value (Prigogine and Stengers, 1984). In biol-
ogy, meanwhile, maximum entropy refers to a population of genotypes in which the frequency 
of all possible genotypes is equal. In this case, minimum entropy reflects one genotype’s total 
dominance (that is, resulting when selection is instantaneous [cf. Fisher, 1930, pp. 39–40]).
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where H0 is called the between-group entropy. The entropy decomposition 
theorem specifies the relationship between the between-group entropy H0 
at the level of sets and the entropy H at the level of events as defined in 
Equation 9.11. Now, we can write entropy H as
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The first right-hand term in the last line is H0. Hence,
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The probability pi/Pg, i ∈ Sg is the conditional probability of Ei given the 
knowledge that one of the events falling under Sg is bound to occur. Hg thus 
stands for the entropy within the set Sg and the term ∑PgHg in Equation 9.18 
is the average within-group entropy. Therefore, entropy equals the between-
group entropy plus the average within-group entropy. Two properties of this 
relationship follow (Theil, 1972, p. 22):

H ≥ H0 because both Pg and Hg are nonnegative. This means after 
grouping, there cannot be more entropy (uncertainty) than there 
was before grouping.

H = H0 if and only if the term ∑PgHg = 0 and ∑PgHg = 0 if and only if 
Hg = 0 for each set Sg. This means entropy equals between-group 
entropy if and only if the grouping is such that there is at most one 
event with nonzero probability.
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In informational terms, the decomposition theorem has the following 
interpretation. Consider the first signal arrives that one of the sets of events 
occurred. Its expected information content is H0. Now consider the subse-
quent message arrives saying that one of the events falling under this set 
has occurred. Its expected information content is Hg. The total information 
content becomes H0 + ∑PgHg.

9.3.2.3 Multidimensional Extensions

Consider a pair of events (Xi, Yj) and the probability of co-occurrence of both 
events. The probabilities of the two marginal contributions are
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Now, the marginal entropy values are given by
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and two-dimensional entropy is expressed as
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The conditional entropy value measures the amount of uncertainty in one 
dimension (e.g., X); this remains even when we know event Yj has occurred, 
and is given by (Theil, 1972, pp. 116–117)
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The average conditional entropy is derived as the weighted average of con-
ditional entropies and is expressed as

 

H X p H X p
p
p

Y j Y

j

n

ij
j

ijj

n

i

m

j( ) ( ).
.= =

⎛

⎝⎜
⎞

⎠⎟
= ==
∑ ∑∑   log2

1 11  
(9.27)

 

H Y p H Y p
p
p

X i X

i

m

ij
i

ijj

n

i

m

i( ) ( ).
.= =

⎛

⎝⎜
⎞

⎠⎟
= ==
∑ ∑∑  log2

1 11  
(9.28)

To sum up, the average conditional entropy is never greater than the 
unconditional entropy, that is, HX(Y) ≤ H(Y) and HY(X) ≤ H(X), and the 
average conditional entropy and the unconditional entropy are equal 
if and only if the two events are stochastically independent (Theil, 1972, 
pp. 118–119).

The expected mutual information is a measure of dependence between 
two dimensions, that is, to what extent events tend to co-occur in particular 
combinations. In this respect, it is comparable with the product–moment cor-
relation coefficient in the way entropy is comparable to the variance. Mutual 
information is given by
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sometimes also denoted by M(X,Y) or T(X,Y). It can be shown that J(X,Y) ≥ 0 
and J(X,Y) = H(Y) − HX(Y) and J(X,Y) = H(X) − HY(X) (Theil, 1972, pp. 125–131).

It can be further derived that the multidimensional entropy equals the sum 
of marginal entropies minus the mutual information (Theil, 1972, p. 126):

 H(X, Y) = H(X) + H(Y) − J(X, Y) (9.30)

The interpretation is that when mutual information is absent, marginal dis-
tributions are independent, and their entropies add up to the total entropy. 
When mutual information is positive, marginal distributions are dependent 
as some combinations occur relatively more often than other combinations, 
and marginal entropies exceed total entropy by an amount equal to the 
mutual information (Frenken, 2013).
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9.3.3 Applications

Applications of entropy statistics were developed in the late 1960s and the 
1970s. Today, tools of entropy statistics are applied in empirical research in 
industrial organization, regional science, economics of innovation, econom-
ics of inequality, and organization theory (Frenken, 2013).

9.4 Detection of Alterations in Information Content

In our technological era, communication plays a major role in everyday life. 
Methods of communication are changing and developing at an accelerating 
pace. We have moved from more primitive forms of communication, such 
as the smoke signals of Native Americans, to handwritten letters, to today’s 
SMS, MMS, and emails (Ercan, 2006).

Communication became faster and easier after the invention of radio, 
TV, and other mass-media devices. In this book, we mostly consider the 
exchange of information stored in computers, an exchange based on infor-
mation theory.

Information theory dates back to the seminal work of Claude Elwood 
Shannon in 1948. It enables the storage of information in computers and their 
transfer in a faster and easier manner than previously. The theory is mostly 
based on mathematics but includes fundamental concepts of source coding 
and channel coding. But before dealing with those topics, we need to under-
stand some basics concepts of physics on which the mathematical model of 
the theory is constructed. Let us begin by considering what information is 
and whether it is physical.

9.4.1 What Is the Information Content of an Object?

Say we are holding an object, cards, geometric shapes, or a complex mol-
ecule. We ask the following question: what is the information content of this 
object? To answer this question, we introduce another party, say a friend, 
who shares some background knowledge (e.g., the same language or other 
sets of prior agreements that make communication possible), but who does 
not know the state of the object. We define the information content of the 
object as the size of the set of instructions that our friend requires to be able 
to reconstruct the object or its state (Plenio and Vitelli, 2001) (Figure 9.18).

An example of a decision tree is shown on the right side of Figure 9.18. 
Two binary choices have to be made to identify the shape (triangle or 
square) and the orientation (horizontal or rotated). In sending with equal 
probability one of the four objects, we transmit 2 bits of information (Plenio 
and Vitelli, 2001).
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The information content of an object can easily be obtained by counting 
the number of binary choices. In classical information theory, a variable that 
can assume only the values 0 or 1 is called a bit. Instructions to make a binary 
choice can be given by transmitting 1 to suggest one of the alternatives and 0 
for the other. To sum up, we say that n bits of information can be encoded in 
a system when instructions in the form of n binary choices need to be trans-
mitted to identify or recreate the state of the system (Plenio and Vitelli, 2001).

9.4.1.1 Is Information Physical?

In digital computers, the voltage between the plates in a capacitor represents 
a bit of information: a charged capacitor denotes a bit value of 1, whereas an 
uncharged capacitor shows a bit value of 0. One bit of information can also be 
encoded using two different polarizations of light or two different electronic 
states of an atom (Steane, 1998).

For example, let us consider the analysis of a 1-GB hard disk drive. At the 
core of this device is a metal disk coated with a film of magnetic material. 
Like any macroscopic object, the disk has many degrees of freedom. Of these, 
a tiny fraction, about 8 * 109 (corresponding to 1 GB), represent information-
bearing degrees of freedom that can be read or modified. The information-
bearing degrees of freedom are collective variables, as many electrons in a 
specific region on the disk can be magnetized. Reading (writing) is done by a 
head riding over the disk’s surface measuring (changing) the magnetization. 
The information-bearing degrees of freedom contribute to the algorithmic 
entropy in the same fashion as all other degrees of freedom (Machta, 1999).

Information is stored by encoding it in the physical systems. The laws 
of classical mechanics, electrodynamics, or quantum mechanics indicate 

Triangle/square

Horizontal/rotated Horizontal/rotated

FIGURE 9.18
Information content of an object. (From Plenio, M. and Vitelli, V., 2001. Contemporary Physics, 
42(1), 25–60.)
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the properties of these systems and limit our capabilities for information 
 processing. These rather obvious-looking statements, however, have signifi-
cant implications for our understanding of the concept of information, as they 
emphasize that the theory of information is not purely a mathematical con-
cept, but the properties of its basic units are dictated by the laws of physics.

9.4.1.2 Shannon and the Complexity of the Data

Shannon’s definition of information can also be thought of as complexity. 
Intuitively, we think a system is more complex when there are more num-
bers of possible configurations. A mechanical system with two parts where 
each part can be adjusted to six different settings will have 36 different con-
figurations. A biological system such as a cell with an enormous number of 
parts (organelles, molecules) will have an exponentially larger amount of 
configurations.

Let us take a simple system of a two-sided coin. The outcome of flipping 
an unbiased coin is either a head or a tail. There are two possible configura-
tions of this system. On the other hand, if we toss a coin where both sides are 
heads, we will always get head as the outcome. There is only one configura-
tion of this two-headed coin system. Tossing this two-headed coin will tell 
us nothing new because we know it will always be heads.

The information content of a system is quantified by the complexity or 
entropy of the system. The more entropic a system is, the more possibilities 
there are for the outcome. More possibilities for the outcome make a message 
more significant and contain more information. Conversely, a less entropic 
system where there are fewer variations and fewer possibilities makes the 
message less significant and contain less information.

It is important to note that information as defined by Shannon is inde-
pendent of the meaning or interpretation of the message. Two pieces of data 
describing complete disparate ideas can have the same quantity of informa-
tion content (Kao, 2012).

9.4.2 Entropy as a Measure of Information Integrity

An issue that arose in the first explorations of multiclustering is that the cut-
plot gives less-than-detailed information about the size of clusters forming 
as the cut-value is increased. The entropy plot was developed to address 
this limitation. In brief, the entropy-plot replaces integer-valued jumps that 
appear each time a cluster is divided with a real-valued jump that reflects 
the information present in the cluster division. The entropy-plot is based on 
the information-theoretic entropy of the distribution of cluster sizes. Entropy 
is a standard method of measuring the information present in a probabil-
ity distribution. In order to compute the entropy of a set of cluster sizes, 
the sizes are normalized by dividing by the total number of points. This 
gives a probability distribution that measures the empirical probability Pi of 
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a point belonging to a given cluster. The entropy used in the entropy-plot is 
the entropy of this distribution, given by Equation 9.10 as

 
E p pi i

i
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Entropy is a measure of information content, so the entropy-plot displays 
how the information in the cluster structure changes as new clusters form. A 
simple example of the value of entropy comes from recording many experi-
ments in which a coin is flipped. In this case, the coin has probability p of 
heads and probability 1 − p of tails. In this situation, simplify Equation 9.10 to 
Equation 9.11. Note that the maximum information content for a coin is 1 bit 
and this occurs for a fair coin, one with a 50/50 chance of producing a head 
or tail. This type of coin corresponds, in an information-theoretic sense, to 
dividing a cluster in half and can be expressed as

 E = −(plog(p) + (1 − p)log(1 − p))

Entropy measures the information content of a coin with probability p of 
heads in the following sense. A fair coin, flipped many times, will generate 
a random string without bias or pattern. One bit of information is needed 
to report a flip of this fair coin and compression of the pattern of results 
produced by this coin is negligible. A coin with a high probability of heads 
will generate a string that is mostly heads. This string has low-information 
content and so is easy to compress. In an information-theoretic sense, the 
flips of the biased coin contain far less information than those of the fair 
coin. Likewise, even division of a large cluster is a more informative event 
than uneven division. It is worth making the notion of information content 
precise. The entropy of the coin, given in Equation 9.11, measures the number 
of bits required to store the outcomes of flipping the coin (so long as we are 
storing many flips of the coin). If a coin with probability p of heads is flipped 
many times, Equation 9.11 gives a close estimate of how much a long string 
of flips can be compressed (Figure 9.19).

We return now to the entropy-plot. If, as we change the cut-value, a clus-
ter divides in half, this creates the maximum number of new relationships 
between data points and, hence, the greatest possible increase in information 
present in the cluster structure of the data. If, on the other hand, a single 
point splits off of a cluster, this represents the smallest possible change in 
the information present in the cluster structure. Using the entropy-plot per-
mits the user to see the relative importance of different cluster divisions, 
which actually looked the same in the original cut-plot. As a convenience 
to the user, we make the process of using the entropy-plot automatic in one 
simple way by declining to report tiny clusters. Such clusters are often arti-
factual and unimportant, cluttering the output with insignificant informa-
tion (BioMed Central, 2009).
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9.5  Advantages of Information Theory 
as an Unsupervised System

Information theory plays an important role in the study of learning systems. 
Just as information theory deals with quantifying information regardless of 
its physical medium of transmission, learning theory deals with understand-
ing systems that learn irrespective of whether they are biological or artificial.

Learning systems can be broadly categorized by the amount of informa-
tion they receive from the environment in their supervision signal. In unsu-
pervised learning, the goal of the system is to learn from sensory data with 
no supervision. This can be achieved by casting the unsupervised learning 
problem as one of discovering a code for the system’s sensory data; this code 
should be as efficient as possible. Thus, the family of concepts—entropy, 
Kolmogorov complexity, and the general notion of description length—can 
be used to formalize unsupervised learning problems.

We know from the source coding theorem that the most efficient code for 
a data source uses −log2 p(x) bits per symbol x. Therefore, discovering the 
optimal coding scheme for a set of sensory data is equivalent to the problem 
of learning what the true probability distribution p(x) of the data is. If at some 
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FIGURE 9.19
Entropy of a coin as a function of the coin’s bias. (From BioMed Central, 2009. Supplementary 
Material. [Online] Available at: http://www.biomedcentral.com/content/supplementary/1471-
2105-10-260-s1.doc_[Använd 2014].)
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stage we have an estimate q(x) of this distribution, we can use this estimate 
instead of the true probabilities to code the data. However, we incur a loss 
in efficiency measured by the relative entropy between the two probability 
distributions p and q
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also known as the Kullback–Leibler divergence. This measure is the ineffi-
ciency in bits of coding messages with respect to a probability distribution q 
instead of the true probability distribution p, and is zero if and only if p = q. 
Many unsupervised learning systems can be designed from the principle of 
minimizing this relative entropy (Ghahramani, 2006).

9.5.1 Information and Learning Process

Learning is a broad topic in AI. What does it mean for a machine to learn? 
Machines do not understand programs, data, or knowledge; we simply pro-
gram them to process data and apply knowledge. For a machine to learn, 
this does not imply the machine is physically learning something new or 
different. Rather, through the learning algorithm(s), it is refining its problem-
solving ability (its program and/or its stored knowledge) so that it is more 
capable of solving that particular class of problem in the future.
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10
Uncertainty Management

10.1 Classical Logic and Fuzzy Logic

In our daily lives, we can usually give reasons for the things we do. Moreover, 
when we want others to do something, we give them reasons.

This may be considered using logic.
Every day, we have options, from what to wear, to what to eat, to what bus 

to take to work, and so on. We must choose between options and decide what 
is best for us, based on the situation. Here logic, or reasoning, defines what is 
the best among all our possible options.

Other people may try to convince to think a certain way by giving us rea-
sons. Logic allows us to distinguish between valid and invalid arguments. 
From several premises offered to us, we ultimately reach a single conclusion. 
To reach the conclusion, we must accept one of the premises using logic, a 
process that may be intuitive.

10.1.1 Classical Logic

Classical logic is the simplest of all major logics. In classical logic, we can 
only find two truth values for any proposition or statement (Khaliq and 
Ahmad, 2010). These are:

 1. True (1, yes)
 2. False (0, no)

A proposition can be true or false but it cannot be both simultaneously.
For example,
“The sun rises in the east” is a true statement and has truth value 1. 

Normally, we use 1s and 0s in mathematical classical logic and true and false 
in propositional classical logic (Restall, 2006).
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10.1.1.1 Basic Operations on Classical Truth Values

Operations in propositional classical logic can be described in terms of tables 
of 0s and 1s and are called truth tables. Truth tables for classical logic are 
based on the following basic operations:

 1. ¬p = 1–p

 2. p∨q = max(p, q)
 3. p∧q = min(p, q)
 4. p → q = min{1, 1–p + q}

where p and q are two propositions. Their truthfulness is used as inputs in 
Table 10.1.

10.1.1.2 Example of Basic Classical Logical Operations

The following are four fuzzy operations that are significant for the example 
presented in this book:

p = “We are sitting in a restaurant.”
q = “We are drinking tea.”

Now, according to the above operations and truth table, we have

 1. ¬p = “We are not sitting in a restaurant.”
  ¬q = “We are not drinking tea.”
 2. p∨q = “We are sitting in a restaurant or we are drinking tea.”
  This means the compound statement is true when one of p and q is 

true or both p and q are true.
 3. p∧q = “We are sitting in a restaurant and we are drinking tea.”
  This means the compound statement is true only when both p and q 

are true.
 4. p → q = “If we are sitting in a restaurant, then we are drinking tea.”

TABLE 10.1

Truth Table

p q ¬p p∧q p∨q p → q

0 0 1 0 0 1
0 1 1 1 0 1
1 0 0 1 0 0
1 1 0 1 1 1

Source: Data from Khaliq, A. and Ahmad, A., 2010. Fuzzy Logic and Approximate 
Reasoning, Master’s Thesis, Blekinge Institute of Technology, Karlskrona.
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This means the compound statement will be incorrect when the true state-
ment implies the wrong one. We can also say p is a sufficient condition for q, 
or alternatively, q is a necessary condition for p.

The implication should clarify a relationship between the premise and the 
conclusion, as for example, the following: if I fall into the lake, then I will 
get wet. We also use implication in theorems, as for example: if ABC is the 
correct triangle with the right angle at B, then AC2 = AB2 + BC2 (Khaliq and 
Ahmad, 2010).

10.1.2 Fuzzy Logic

During the past few years, the use of fuzzy logic has been introduced widely 
in the area of control systems. It has received major acceptance in Japan, and 
the Japanese are moving from a theoretical point of view into technological 
realization. Today, we can find a huge variety of products that use fuzzy 
logic-based control systems or simple fuzzy logic controllers.

The key reason for the success of fuzzy logic controllers is their ability to 
cope with knowledge presented in a linguistic form. For the control engi-
neers, knowledge has traditionally been represented by conventional math-
ematical frameworks in their designs.

But fuzzy logic controllers can add experience, intuition, and heuristics 
into a system instead of relying on mathematical models, making them more 
effective in applications where the existing models are poorly defined and 
not reliable enough (Cristea et al., 2002).

10.1.2.1 Historical Review

The term “fuzzy” was first applied to logic in 1965 by Professor Lofti 
Zadeh, Chair of University of California, Berkeley’s Electrical Engineering 
Department. He used the term to describe multivalued sets in the seminal 
paper, “Fuzzy Sets” (Zadeh, 1965). The work in his paper is derived from mul-
tivalued logic, a concept that emerged in the 1920s to deal with Heisenberg’s 
Uncertainty Principle in quantum mechanics. Multivalued logic was further 
developed by distinguished logicians such as Jan Lukasiewicz, Bertrand 
Russell, and Max Black. At the time, multivalence was usually described by 
the term “vagueness.”

Zadeh applied Lukasiewicz’s multivalued logic to set theory and cre-
ated what he called fuzzy sets—sets whose elements belong to it in dif-
ferent degrees (Zadeh, 1973). The fuzzy principle says that “everything is 
a matter of degree.” Conventional logic is bivalence (TRUE or FALSE, 1 or 
0), but fuzzy logic is multivalence (from 0 through 1). It represents a shift 
from conventional mathematics to philosophy and language. At the start, 
fuzzy logic was a theoretical concept with little practical application. Zadeh 
was mainly involved in computer simulations of mathematical ideas. In the 
1970s, Professor Edrahim Mamdani of Queen Mary College, London, built 
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the first fuzzy system, a steam-engine controller, and he later designed the 
first fuzzy  traffic lights. His work led to an extensive development of fuzzy 
control applications and products (Cristea et al., 2002).

10.1.2.2 Fuzzy Sets and Fuzzy Logic

Classical set theory was formulated by German mathematician Georg Cantor 
(1845–1918). The theory defines a universe of discourse, U, as a collection of 
objects with the same characteristics. A classical set is a collection of some of 
those elements; moreover, the classical set’s member elements belong to the 
set 100%. Those elements in the universe of discourse which are nonmember 
elements of the set are, in fact, not related to the set at all. Therefore, we can 
draw a definitive boundary for the set, as shown in Figure 10.1.

A classical set may be denoted by A = {x ∈ U|P(x)} where the elements of 
A have the property P, and U is the universe of discourse. The characteristic 
function μA(x):U → {0, 1} is defined as 0 if x is not an element of A and as 1 if x 
is an element of A. Here, U contains two elements: 1 and 0. Hence, an element 
x, in the universe of discourse is either a member of set A or not a member of 
set A. Membership has a certain ambiguity, however. For example, consider 
a set ADULT, which contains elements classified by the variable AGE. An 
element with AGE = 5 would not be a member of the set whereas an element 
with AGE = 45 would be. That is all very well and good, but where can a 
sharp and discrete line be drawn to separate members from nonmembers? 
Will we pick AGE = 18? If we do this, then elements with AGE = 17.9 are not 
members of the set ADULT but those with AGE = 18.1 are. Obviously the 
system cannot realistically model the definition of an adult human. This 
kind of simple problem embodies the notion behind Zadeh’s Principle of 
Incompatibility (Cristea et al., 2002).

10.1.3 Fuzzy Set Concept

The difference between crisp, or classical, and fuzzy sets can be established 
by introducing a membership function.

U U

b b

a a

c

(a) (b)

c

FIGURE 10.1
(a) Classical/crisp set boundary; and (b) fuzzy set boundary.
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Let us begin with a finite set X = {x1, x2,…, xn} that will be considered the 
universal set in the following explanation. The subset A of X consisting of 
the single element x1 can be described by the n-dimensional membership 
vector Z(A) = (1, 0, 0,…, 0), where a convention has been adopted whereby 
a 1 at the ith position indicates xi belongs to A. The set B, composed of the 
elements x1 and xn, is described by the vector Z(B) = (1, 0, 0,…, 1). Any other 
crisp (i.e., classical) subset of X can be represented in the same way by an 
n-dimensional binary vector. Will this change if we lift the restriction on 
binary vectors? In that case, we can define the fuzzy set C with the following 
vector description.

In classical set theory, such a set cannot be defined. An element either does 
or does not belong to a subset. In the theory of fuzzy sets, we make a general-
ization and then accept descriptions of this type. In our example, the element 
x1 belongs to the set C only to a certain extent. The degree of membership is 
expressed by a real number in the interval [0, 1], here 0.5. This interpretation 
of the degree of membership is much like the meaning we assign to state-
ments such as “person x1 is an adult.” It is obviously not possible to define 
an exact age representing the absolute threshold to enter adulthood. The act 
of becoming mature is more likely to be interpreted as a continuous process 
where the membership of a person in the set of adults goes slowly from 0 
through 1.

Other examples of such diffuse statements abound. For example, the con-
cepts “old” and “young” or “fast” and “slow” are imprecise but easy to inter-
pret in a given context. In some applications, such as expert systems, it is 
necessary to introduce formal methods capable of dealing with such impre-
cise expressions to permit a computer using rigid Boolean logic to process 
them. This is where the theory of fuzzy sets and fuzzy logic comes in. Figure 
10.2 shows three examples of a membership function in the interval 0–70 
years. These three define the degree of membership of any given age in one 
of the three sets: young, adult, and old age. In this example, if a person is 20 
years old, his/her degree of membership in the set of young persons is 1.0, 
in the set of adults 0.35, and in the set of old persons 0.0. If a person is 50 
years old, the degrees of membership are 0.0, 1.0, and 0.3 in the respective 
sets (Rojas, 1996).

Definition 10.1

Let X be a classical universal set. A real function μA: X → [0, 1] is termed the 
membership function of A. It defines the fuzzy set A of X. This is the set of 
all pairs (x, μA(x)) with x ∈ X.

A fuzzy set is completely determined by its membership function. Note: 
The above definition covers the case where X is not a finite set.
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The set supporting a fuzzy set A is the set of all elements x of X for which 
(x, μA(x)) ∈ A and μA(x) > 0 holds. A fuzzy set A with the finite set of support 
{a1, a2,…, am} can be described as

 A a a am m= + + +μ μ μ1 1 2 2/ / /�

where μi = μA(ai) for i = 1,…, m. Note: The symbols “/” and “ + “ are used only 
as syntactical constructors.

Crisp sets are a special case of fuzzy sets, as the range of the function is 
restricted to the values 0 and 1. But operations defined over crisp sets, such 
as union or intersection, can be generalized to cover fuzzy sets.

Assume X = {x1, x2, x3}. In the classical subsets A = {x1, x2} and B = {x2, x3}, the 
union of A and B is computed by taking for each element xi, the maximum of 
its membership in both sets

 A B x x x∪ = + +1 1 11 2 3/ / /

The fuzzy union of two fuzzy sets can be computed in the same way. 
Accordingly, the union of the two fuzzy sets is

 C D x x x∪ = + +0 7 0 6 0 81 2 3. . ./ / /

The fuzzy intersection of two sets A and B can be defined in a similar 
way, but instead of taking the maximum, we can compute the minimum of 
the membership of each element xi to A and B. The maximum or minimum 
of the membership values represent only one pair of possible definitions of 
union and intersection operations for fuzzy sets. As we go on to show, there 
are alternative definitions (Rojas, 1996).
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FIGURE 10.2
Membership functions for the concepts young, mature, and old. (Redrawn from Rojas, R., 1996. 
Neural Networks: A Systematic Introduction. Berlin, Heidelberg: Springer-Verlag.)
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10.1.3.1 Fuzzy Logic

Logical connectives are also defined for fuzzy logic operations. They are 
closely related to Zadeh’s definitions of fuzzy set operations. The following 
are four fuzzy operations that are significant for the second example pre-
sented here. R denotes the relation between the fuzzy sets A and B.

Negation: μA(x) = 1 – μA (x)
Disjunction: R: A OR B μR(x) = max[μA(x), μB(x)]
Conjunction: R: A AND B μR(x) = min[μA(x), μB(x)]
Implication: R: (x = A) → (y = B) IF x is A THEN y is B

Fuzzy implication is an important connective in fuzzy control systems 
because the control strategies are embodied by sets of IF-THEN rules. There 
are various techniques involving fuzzy implication. These relationships are 
mostly derived from multivalued logic theory. The following are some of the 
common techniques of fuzzy implication found in the literature:

Zadeh’s classical implication: μR(x, y) = max{min[μA(x), μB(y)], 1–μA(x)}
Mamdani’s implication: μR(x, y) = min [μA(x), μB(y)]

Note that Mamdani’s implication is equivalent to Zadeh’s classical implica-
tion when μA(x) ≥ 0.5 and μB(y) ≥ 0.5.

 
Godel s implication

otherwise
’ :

( ) ( )
( )

1 μ μ
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A B
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Lukasiewicz’ implication: μR(x, y) = min{1, [1–μA(x) + μB(y)]}

10.1.3.2 Control with Fuzzy Logic

A fuzzy controller is a regulating system whose modus operandi is specified 
with fuzzy rules, but it generally uses a small set of rules. The measurements 
are processed in their fuzzified form, fuzzy inferences are computed, and 
the result is defuzzified, that is, it is transformed back into a specific number 
(Cristea et al., 2002).

10.1.3.3 Fuzzy Controllers

The example of the electrical heater will be explained in this section. We 
must first determine the domain of variable definitions used in the problem. 
Assume the room temperature is a number between 0°C and 40°C. The con-
troller can vary the electrical power consumed between 0 and 100 (in some 
suitable units), whereby 50 is the normal standby value.
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Figure 10.3 shows the membership functions for the temperature cat-
egories “cold,” “normal,” and “warm” and the control categories “reduce,” 
“maintain,” and “heat.”

A temperature of 12°C corresponds to the fuzzy number T = cold/0.5 + nor-
mal/0.3 + warm/0.0, values leading to the previously computed inference 
action = heat/0.5 + maintain/0.3 + reduce/0.0. The controller must now 
transform these fuzzy inference results into a definite value. In the first step, 
the controller calculates the surfaces of the membership triangles below the 
inferred degree of membership. The action “heat,” which is valid to 50%, 
appears as the lighter surface in Figure 10.4. The darker region represents 
“maintain,” valid to 30%. The centroid of the two shaded regions is some-
where around 70, so this value for the power consumption value is selected 
by the controller to heat the room.

Of course, we can formulate more complex rules using more than two vari-
ables, but in all instances, we must evaluate all rules simultaneously (Rojas, 
1996).

(a)

(b)
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FIGURE 10.3
Membership functions for temperature (a) and electric current (b) categories in cold, normal, 
and warm conditions. (Redrawn from Rojas, R., 1996. Neural Networks: A Systematic Introduction. 
Berlin, Heidelberg: Springer-Verlag.)
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10.1.4 Fuzzy Networks

We can represent fuzzy systems as networks with the computing imple-
menting fuzzy operators. Figure 10.5 depicts a network with four hidden 
units. Each receives the inputs x1, x2, and x3, with each of these correspond-
ing to the fuzzy categorization of a specific number. The fuzzy operators are 
evaluated in parallel in the hidden layer of the network, with the latter cor-
responding to the set of inference rules. The defuzzifier, the final part of the 
network, transforms the fuzzy inferences into a specific control variable. To 
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FIGURE 10.4
Centroid computation. (Redrawn from Rojas, R., 1996. Neural Networks: A Systematic Introduction. 
Berlin, Heidelberg: Springer-Verlag.)
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FIGURE 10.5
Example of a fuzzy network. (Redrawn from Rojas, R., 1996. Neural Networks: A Systematic 
Introduction. Berlin, Heidelberg: Springer-Verlag.)
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assign importance, each fuzzy inference rule is weighted by the numbers α1, 
α2, and α3 as in weighted centroid computations.

Obviously, if we implement more complex rules, we will have networks 
with several layers, but fuzzy systems do not usually have deep networks. 
As every fuzzy inference step reduces the precision of the conclusion, build-
ing a long inference chain may not advisable.

Fuzzy operators cannot be computed exactly by sigmoidal units, but a 
relatively good approximation is possible for some. For example, a fuzzy 
inference chain using the bounded sum or bounded difference can be 
approximated by a neural network.

Standard units can be used to approximate the defuzzifier operator in the 
last layer. If the membership functions are triangles, their surface grows qua-
dratically with the height. A quadratic function of this form can be approxi-
mated in the relevant interval using sigmoids, using a learning algorithm to 
help set the parameters of the approximation (Rojas, 1996).

10.1.4.1 Function Approximation with Fuzzy Methods

A fuzzy controller is simply a system to rapidly compute an approximation 
of a coarsely defined control surface; an example is shown in Figure 10.6. 

Control parameter

Z0

Categories for x

FIGURE 10.6
Approximation of a control surface. (Redrawn from Rojas, R., 1996. Neural Networks: A Systematic 
Introduction. Berlin, Heidelberg: Springer-Verlag.)
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The fuzzy controller computes a control variable according to the values of 
the variables x and y, with both variables transformed into fuzzy categories. 
Assume each variable is transformed into a combination of three categories, 
with nine different combinations of the categories for x and y. The value of 
the control variable is defined for each of these nine combinations, thus fix-
ing nine points of the control surface.

Arbitrary values of x and y belong to the nine combined categories to dif-
ferent degrees. Therefore, for arbitrary combinations of x and y, an inter-
polation of the known function values of the control variable is required. 
The computation is done by a fuzzy controller according to the degree of 
membership of (x, y) in each combined category. The various shadings of 
the quadratic regions in the xy plane in Figure 10.6 represent the member-
ship of the input in the category for which the control variable assumes the 
value z0. Other values correspond to the lighter-shaded regions and receive 
a value for the control variable interpolating the neighboring z-values. The 
control surface can be defined using points; if the control function is smooth, 
we will obtain a good approximation to other values with simple interpola-
tion. A reduced number of given points corresponds to a reduced number of 
inference rules in the fuzzy controller. The economic use of rules constitutes 
a main advantage of such an approach. The definition of inference rules is 
straightforward with fuzzy formalism, as the interpolation mechanism is 
taken as given. However, the approach only works when the control function 
has an adequate degree of smoothness (Rojas, 1996).

10.2 Using Fuzzy Logic to Solve Diagnosis Problems

We are seeing an increasing demand for safer and more reliable man-made 
dynamical systems. This demand is extending into the processes of indus-
trial plants using servo-actuated flow control valves.

To avoid expensive damage or low efficiency and productivity, we must 
detect and isolate a malfunction quickly. A fault diagnosis and isolation 
(FDI) system includes the capacity of detecting, isolating, and identifying 
faults. Some research has involved analytical approaches based on quantita-
tive models. The main aim is to get different signals when there are incon-
sistencies between a normal and faulty system operation. These signals are 
usually generated by an analytical approach using observers, parameter esti-
mation, or parity equations, and are the residual signals. Using either quali-
tative or quantitative modeling, however, we can achieve an early detection 
and isolation of abrupt and incipient faults.

The most common method of fault detection is process-variable monitor-
ing and model-based methods (usually more complex). Simple faults can be 
detected with single measurements. For example, an appropriate threshold 
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check can be defined fairly simply in systems with low complexity, but in 
industrial systems, it is not so easy, and we need more sophisticated solu-
tions to get a reliable indicator. A model-based approach is more suitable for 
the former, whereas process modeling is more suitable in the latter. We must 
take this into consideration especially if we are dealing with a nonlinear 
process.

The idea for model-based fault detection is to compare different signals of 
one model with the real measurements taken within the process. From this, 
we can derive residuals (fault indicators) giving locations and the time of the 
fault. Having a precise mathematical relationship between the model and 
the process allows the detection of sudden faults quickly and reliably.

Today, there are numerous methods for model estimation. The most 
popular are analytical, for example, the Kalman filter and the Luenberger 
observer, among others (Chen and Patton, 1999; Patton, et.al., 1999). The per-
formance of the resulting FDI systems will depend on creating precise and 
accurate analytical models, something that is especially important if we are 
talking about dynamically nonlinear and uncertain systems, which com-
prise the majority. Using a model-based FDI approach, we can make a pre-
cise mathematical model of a plant. We can apply complicated quantitative 
model-based approaches in real systems, as no unmodeled dynamics can 
affect the FDI performance. We can design robust algorithms in which the 
disturbances are reduced and the faults maximized.

Many approaches have been developed, including the unknown input 
observers and eigenstructure assignment observers, as well as frequency-
domain techniques for robust FDI filters, such as the minimization of mul-
tiobjective functions, although they have little success in nonlinear cases. 
Recently, other methods such as neural networks, expert systems, fuzzy sys-
tems, and neuro-fuzzy systems have been used with relative success (Calado 
et al., 2001).

Fuzzy techniques are widely accepted due to their fast and robust imple-
mentation, capacity to embed knowledge, performance in reproducing non-
linear mappings, and ability to generalize. This has captured the attention 
of FDI researchers who are now investigating it as a powerful modeling and 
decision-making tool, along with neural networks and other more traditional 
techniques such as nonlinear and robust observers, parity space methods 
and hypothesis-testing theory.

To help solve the problem of precision in modeling, we can use abstract 
models based on qualitative approaches. Alternatively, we can use fuzzy 
logic rules to either assist or replace a model in diagnosis. Using fuzzy logic, 
we can describe “if-then” relations, making it extremely advantageous in 
describing system behavior. In the past few years, several research groups 
have focused on developing residuals using either parameter estimation 
or observers in fuzzy FDI systems, thereby allocating decision making to a 
fuzzy logic inference engine. When symbolic knowledge is combined with 
quantitative information, the false alarm rate goes down.



487Uncertainty Management

As noted above, the key advantage to using fuzzy logic techniques is that 
the operator can describe the system behavior or the fault symptom relation-
ship using simple if-then rules. If we introduce fuzzy observers and plant 
measurements, we will derive symptoms. The goal is to predict the system 
outputs from the available process inputs and outputs. The residual is a 
weighted difference between the predicted and the actual outputs. Simply 
stated, fuzzy observers compare normal and faulty operations, allowing the 
detection and isolation of faults (Mendonça et al., 2003).

10.2.1 Architecture for Fault Detection and Diagnosis

The FDI system provides a simple architecture to detect, isolate, and identify 
faults. It is based on fuzzy observers (models) identified directly from data. 
This model-based technique uses a fuzzy model for the relevant process, 
running in normal operation, and one observer (model) for each of the faults 
to be detected. Suppose a process is running, and there are n possible faults. 
The fault detection and isolation system proposed for these n faults is shown 
in Figure 10.7. The multidimensional input, u, of the system enters both the 
process model and the observer model in normal operation. The vector of 
residuals ε can be defined as

 ε = −y ŷ

where y is the output of the system and ŷ is the output of the model dur-
ing normal operation. When any component of ε is larger than a certain 
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FIGURE 10.7
Fault detection and identification scheme. (Redrawn from Mendonça, L. F., Sá da Costa, J. M. G. 
and Sousa, J. M., 2003. Fault Detection and Diagnosis Using Fuzzy Models. pp. 1–6.)
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threshold δ, faults are detected by the system. In this case, n observer models, 
one for each fault, are activated, and n vectors of residuals computed. Each 
residual i, with i = 1,…, n is computed as

 εF Fy y1 1= − ˆ

where ŷFi is the output of the observer for the fault i. Residuals εF1,…, εFn 
are evaluated, and the detected faults are the outputs of the FDI system. In 
this chapter, all models, that is, the observer models for normal operation as 
well as the observers for the n faults, are fuzzy models; they reproduce the 
dynamic behavior of the process for each condition considered. This tech-
nique can identify models extracted from real data (Mendonça et al., 2003).

10.2.2 A Fuzzy Filter for Residual Evaluation

In practice, analytical models often exist for only parts of the plant, with 
no analytical connections between the models; therefore, analytical model-
based methods fail to serve as useful fault diagnosis concepts for the whole 
plant. However, there is always some qualitative or heuristic knowledge of 
the connections between the existing analytical submodels that may not be 
very detailed, but can be expressed linguistically. Such knowledge can be 
expressed using fuzzy rules, thus describing the normal and faulty behavior 
of the system in a fuzzy manner.

This means we can use quantitative model-based techniques for the sub-
models, and qualitative and heuristic knowledge of the connections can be 
used for the fault symptom generation of the complete system.

The advantages of using such a combined quantitative/knowledge-based 
approach can be summarized as follows (Jain and Martin, 1998):

 1. It is not necessary to build an analytical model of the complete pro-
cess. It is sufficient to have analytical models of the subparts.

 2. The connections between the submodels can be described by quali-
tative or heuristic knowledge. This is often easier because some 
qualitative or heuristic description of the plant or the interconnec-
tions between the submodels is normally known.

 3. The mathematical effort, compared to using a model of the complete 
plant, is significantly reduced.

 4. The causes and effects of the faults can be transferred more easily 
into the fault diagnosis concept.

10.2.2.1 Structure of the Fuzzy Filter

Fuzzy residual evaluation is a process that transforms quantitative knowl-
edge (residuals) into qualitative knowledge (fault indications). Residuals 
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generated by analytical submodels represent the inputs of a fuzzy filter that 
consists of the three basic components:

 1. Fuzzifiation
 2. Inference
 3. Presentation of the fault indication

As a first step, a knowledge base has to be built that includes the definition 
of the faults of interest, the measurable residuals (symptoms), the relation-
ship between the residuals and the faults in terms of IF/THEN rules, and the 
representation of the residuals in terms of fuzzy sets, for example, “normal” 
and “not normal.”

The process of fuzzification includes the proper choice of the membership 
functions for the fuzzy sets. This is defined as the assignment of a suitable 
number of fuzzy sets to each residual component ri with

 r r r ri n={ }1, ..... , .....

but not for the fault symptoms fi. This procedure can be mathematically 
described for the residuals as

 r r a r a r ri i i in→ → [ ]1 2 0 1..... ,

where rij describes the jth fuzzy set of the ith residual and a describes the 
fuzzy composition operator. This part is very important because the coupling 
or decoupling of the faults will be significantly influenced by this procedure.

The task of the FDI system is now to determine, from the given rule base, 
indication signals for the faults with the aid of an inference mechanism. The 
inference can be appropriately carried out by using so-called fuzzy condi-
tional statements

 IF effect AND IF effect THEN cause( ) ( ) ( )= = =r r fm11 12 …

where fm denotes the mth fault of the system. The result of this fuzzy infer-
ence is a fault indication signal determined from a corresponding combina-
tion of residuals as characterized by the rules. Note that this fault indication 
signal is still in a fuzzified format. Therefore, the signal is called a fuzzy 
fault indication signal (FFIS). The final task of the proposed FDI concept is 
the proper presentation of the fault situation to the operator who has to make 
the final decision about the appropriate fault handling. Typical of the fault 
detection problem is that the output consists of a number of fault indication 
signals, one for each fault, where these signals can take only the values 1 or 0 
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(yes or no). For a fuzzy representation, this means it is not necessary to have 
a number of fuzzy sets to represent the output, as in control. Rather, each 
FFIS is, by its nature, a singleton whose amplitude characterizes the degree 
of membership in only one preassigned fuzzy set “faultm.” This degree is 
characterized by the FFIS, that is, the signal obtained as a result of the infer-
ence. Specific to this approach is that it refrains from defuzzification and rep-
resents the fault indication signal for each fault to the operator in the fuzzy 
format, that is, in terms of the FFIS, which represents the desired degree of 
membership in the set “faultm.”

There are some advantages to this procedure in terms of computational 
expenditure. There is no need to represent the output using a number of 
fuzzy sets. All available information about the appearance of a fault can be 
incorporated into the definition of the fuzzy sets of the inputs. We can also 
dispense with the defuzzification of the signals obtained after the inference 
has been performed. To be more specific, instead of using the standard for-
mat of the statement

 THEN fault big=

where big is defined as one of a number of fuzzy sets characterizing the out-
put, we can use the following format:

 THEN fault fault= 1

where “fault1” is the only existing fuzzy set of fault f1. This applies in a sim-
ilar way to all faults under consideration. Note that the fuzzy set “faulti” 
has a degree of membership that is identical to the aggregated output of 
the evaluated residuals. As a result, one of the key issues of the fuzzy infer-
ence approach is that the representation of the result of the residual evalu-
ation concept is different from the conventional concepts in that it directly 
provides the human operator with the FFIS, leaving him or her to decide 
whether or not a fault has occurred. This combination of a human expert 
with a fuzzy FDI toolbox allows us to avoid false alarms, because the fault 
situation can be assessed on the basis of a fuzzy characterization of the fault 
situation, together with human expertise and experience. The key issue of 
this kind of residual evaluation approach is the design of the fuzzy filter. To 
simplify this design problem, in the following section we present an algo-
rithm that provides systematic support by efficiently reducing the degrees of 
freedom in the design process (Jain and Martin, 1998).

10.2.3 Identification by Fuzzy Clustering

There are two steps involved in solving the nonlinear identification problem: 
structure identification and parameter estimation.
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10.2.3.1 Structure Identification

In structure identification, the designer must first choose the order of the 
model and its significant state variables x. This step is extremely important 
in identifying fuzzy observers for FDI, because the smaller the vector x, the 
faster the model. Note: Fuzzy observers for FDI must be simple but accu-
rate, detecting faults as quickly possible. To identify the model, we construct 
regression matrix X and output vector y using the available data:

 X x x y y yT
N

T
N= =[ , ..... ], [ , ....., ]1 1

where N ≫ n is the number of samples used for identification. The objective 
is to construct the unknown nonlinear function y = f(x), where f is the Takagi-
Sugeno (TS) model (Mendonça et al., 2003).

10.2.3.2 Parameter Estimation

Parameter estimation determines the number of rules, K, the antecedent 
fuzzy sets, Aij, and the consequent parameters, ai, bi, using fuzzy clustering 
in the product space of X × Y. Hence, the data set Z to be clustered is com-
posed from X and Y as

 Z X YT = [ ],

Given Z and an estimated number of clusters K, we can apply the 
Gustafson–Kessel fuzzy-clustering algorithm to compute the fuzzy partition 
matrix U. This describes the system in terms of its local characteristic behav-
ior in regions of the data identified by the clustering algorithm, wherein 
each cluster defines a rule. Unlike the popular fuzzy c-means algorithm, the 
Gustafson–Kessel algorithm uses an adaptive distance measure, allowing 
it to find hyperellipsoid regions in the data that can be efficiently approxi-
mated by the hyperplanes described by the consequents in the TS model. 
The fuzzy sets in the antecedent of the rules are obtained from partition 
matrix U, whose ikth element μik ∈ [0, 1] represents the membership degree 
of data object zk in cluster i. One-dimensional fuzzy sets Aij are obtained 
from the multidimensional fuzzy sets defined pointwise in the ith row of the 
partition matrix by projections onto the space of the input variables xj

 μ μAij jk j
N

ikx n( ) ( )= +proj 1

where proj is the pointwise projection operator (Kruse et al., 1994). The point-
wise-defined fuzzy sets Aij are approximated by suitable parametric func-
tions to compute μAij(xj) for any value of xj. After clustering, the consequent 
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parameters for each rule are obtained as a weighted ordinary least-square 
[1] estimate. Let θT = [aT; b], let X denote the matrix [X; 1], and let W denote 
a diagonal matrix in R N × N having the degree of activation, βi(xk), as its 
kth diagonal element as defined as β μi A x i kj

n
ij j= ==Π 1 1 2( ), , , ,… . Assuming 

the columns of Xe are linearly independent and βi(xk) > 0 for 1 ≤ k ≤ N, the 
weighted least-squares solution of y = Xeθ + ε becomes

 θi e
T

i e e
T

iX W X X W y= −[ ] 1

Rule bases constructed from clusters are often unnecessarily redundant 
because the rules defined in the multidimensional premise overlap in one or 
more dimension (Mendonça et al., 2003).

10.3 Defuzzification

Defuzzification means fuzzy-to-crisp conversions. The fuzzy results gener-
ated cannot be used as such in applications; hence, it is necessary to convert 
the fuzzy quantities into crisp quantities for further processing. This can be 
achieved by using a defuzzification process. Defuzzification has the abil-
ity to reduce a fuzzy to a crisp single-valued quantity or set, or convert it 
into a form in which the fuzzy quantity is present. Defuzzification can also 
be called the “rounding off” method, as it reduces the collection of mem-
bership function values into a single-sealer quantity. In what follows, we 
will discuss several methods of obtaining defuzzified values (Sivanandam 
et al., 2007).

10.3.1 Lambda Cuts for Fuzzy Sets

Consider a fuzzy set A~; then, the λ-cut set can be denoted by Aλ, where λ 
ranges between 0 and 1 (0 ≤ λ≤ 1). The set Aλ is will be a crisp set. This crisp 
set is called the λ-cut set of the fuzzy set A~, where

 A x xAλ μ λ= ≥{ }/ ( )

That is, the value of λ-cut set is x, when the membership value corre-
sponding to x is greater than or equal to the specified λ. This λ-cut set can 
also be called an α-cut set. The λ-cut set Aλ does not have a title underscore 
because it is derived from the parent fuzzy set A~. Since the λ ranges in the 
interval [0, 1], the fuzzy set A~ can be transformed into an infinite number 
of λ-cut sets.



493Uncertainty Management

Properties of λ-cut sets:
Λ-cut sets have four main properties:

 1. ( )A B A B∪ = ∪λ λ λ

 2. ( )A B A B∩ = ∩λ λ λ

 3. ( )A Aλ λ≠  except for a value of λ = 0.5
 4. For any λ ≤ α, where α varies between 0 and 1, Aα⊆Aλ,

where the value of A0 will be the universe defined.
As indicated by the properties, the standard set of operations on fuzzy sets 

is similar to the standard set of operations on λ-cut sets (Sivanandam et al., 
2007).

10.3.2 Lambda Cuts for Fuzzy Relations

The λ-cut procedure for relations is similar to that used for the λ-cut sets. 
Consider a fuzzy relation R~, in which some of the relational matrix rep-
resents a fuzzy set. A fuzzy relation can be converted into a crisp relation 
depending on the λ-cut relation to the fuzzy relation (Sivanandam et  al., 
2007)

 R x y R x yλ μ λ= ≥{ }, ( , )/

Properties of λ-cut relations:
 λ-cut relations satisfy some properties similar to those of λ-cut sets

 1. ( )R S R S∪ = ∪λ λ λ

 2. ( )R S R S∩ = ∩λ λ λ

 3. ( )R Rλ λ≠

 4. For λ ≤ α, where α is between 0 and 1, Rα⊆Rλ.

10.3.3 Defuzzification Methods

Basically, defuzzification maps the output of fuzzy sets defined over an out-
put universe of discourse to crisp outputs. It is employed because in many 
practical applications, a crisp output is required. A defuzzification strategy 
is aimed at producing the nonfuzzy output that best represents the possibil-
ity distribution of an inferred fuzzy output. Currently, the commonly used 
strategies are as follows (Jain and Martin, 1998).

10.3.3.1 Max Criterion Method

The max criterion method produces the point at which the possibility distri-
bution of the fuzzy output reaches a maximum value.
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10.3.3.2 Mean of Maximum Method

The mean of maximum generates an output that represents the mean value 
of all local inferred fuzzy outputs whose membership functions reach the 
maximum. In the case of a discrete universe, the inferred fuzzy output may 
be expressed as
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where wj is the support value at which the membership function reaches the 
maximum value 1/4z(wj) and l is the number of such support values.

10.3.3.3 Center of Area Method

The center of area generates the center of gravity of the possibility distri-
bution of the inferred fuzzy output. In the case of a discrete universe, this 
method yields
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where n is the number of quantization levels of the output (Jain and Martin, 
1998).

10.4  Need for Complex Relations in 
Contextual Decision Making

As the key objective of applied fuzzy systems is to transfer ambiguity into 
value, the main application effort is the effective translation of the vague 
information from the natural language of the experts into the precise and 
highly interpretable language of fuzzy sets and rules. Experts play a key role 
in this process even in the case of data-driven fuzzy systems where the rules 
are automatically discovered by the clustering algorithms, as they must be 
interpreted and blessed by the experts (Kordon, 2010).
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10.4.1 When Do We Need Fuzzy Systems?

Fuzzy systems are useful for the following reasons:

• Vague knowledge can be included in the solution.
• Interpretation is as important as performance and with fuzzy sys-

tems, the solution is interpretable in the form of linguistic rules; that 
is, we can learn about our data/problem.

• The solution is easy to implement, use, and understand.

10.4.2 Applying Expert-Based Fuzzy Systems

There is no fixed order for the design of a fuzzy system, but an attempt to 
define an application sequence for classical expert-based systems is given in 
Figure 10.8.
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FIGURE 10.8
Application sequence for classical expert-based systems. (Redrawn from Kordon, A. K., 2010. 
Applying Computational Intelligence: How to Create Value. Berlin, Heidelberg: Springer-Verlag.)
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Probably 80% of the application’s success depends on the efficiency and 
quality of knowledge acquisition. This is the process of extracting useful 
information from the experts, data sets, known documents, and common 
sense reasoning, and then applied to a specific objective. It includes inter-
viewing the experts and defining key features of the fuzzy system, such 
as identifying input and output variables, separating crisp and fuzzy vari-
ables, formulating the protorules using the defined variables, ranking the 
rules according to their importance, identifying operational constraints, and 
defining expected performance.

As a result of knowledge acquisition, the structure of the fuzzy system 
is defined by its functional and operational characteristics, key inputs and 
outputs, and performance metric.

The next phase of the application sequence is applying the defined structure 
into a specific software tool, such as the Fuzzy Logic toolbox in MATLAB. 
The development process includes designing the membership functions, 
defining the rules, and creating the corresponding defuzzification methods. 
The aggregated model is simulated and validated with independent data 
in several iterations until the defined performance is achieved, mostly by 
tuning the membership functions. A run-time version of the model can be 
applied in a separate software environment such as Excel (Kordon, 2010).

10.4.3 Applying Data-Based Fuzzy Systems

If the success of expert-based fuzzy systems depends mostly on the quality 
of knowledge acquisition, the success of data-based fuzzy systems is heavily 
dependent on the quality of the available data.

The defined structure at the beginning of the application mostly includes 
data-related issues for the selection of process inputs and outputs from 
which we expect to find potential rules. Data collection is the critical part 
in the whole process and could be a significant obstacle if the data have a 
very narrow range and the process behavior cannot be represented ade-
quately. The possibility of appropriate fuzzy rule discovery is very low in 
this case.

The data-processing part of the process includes the discovery of proto-
clusters from the data and defining the corresponding rules. The most inter-
esting step of the design is the decision about the size of the granule of the 
protoclusters. In principle, the broader the cluster space, the more generic the 
defined rule. However, some important nonlinear behaviors of the process 
could be lost. It is therefore recommended that the proper size of the fuzzy 
clusters be decided by domain experts.

The final result of the development process is a fuzzy system model based 
on the generalized rules. Notably, there is no difference in the run-time 
application of either approach (Kordon, 2010).
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10.5 Bayesian Analysis versus Classical Statistical Analysis

Bayesian and classical methods are similar in some respects, and both 
have specific advantages and disadvantages. When the sample size is large, 
Bayesian inference often provides results for parametric models that are very 
similar to the results produced by frequentist methods. Some advantages of 
using Bayesian analysis include the following (SAS/STAT, 2009):

• It provides a natural and principled way to combine prior informa-
tion with data, within a solid decision-theoretical framework. We 
can incorporate past information about a parameter and formulate 
a prior distribution for future analysis. When new observations 
become available, the previous posterior distribution can be used 
as a prior one. All inferences logically follow from Bayes’ theorem.

• It provides inferences that are conditional on the data and are exact, 
without relying on asymptotic approximation. Small sample infer-
ence proceeds in the same manner as if we have a large sample. 
Bayesian analysis can also estimate any functions of parameters 
directly, without using the “plug-in” method (a way to estimate 
functionals by plugging the estimated parameters into them).

• It obeys the likelihood principle. If two distinct sampling designs 
yield proportional likelihood functions, then all inferences about 
them should be identical. Classical inference does not generally obey 
the likelihood principle.

• It provides interpretable answers, such as “the true parameter has a 
probability of 0.95 of falling in a 95% credible interval.”

• It provides a convenient setting for a wide range of models, such 
as hierarchical models or missing data problems. The use of Monte 
Carlo Markov chain (MCMC), along with other numerical methods, 
makes computations possible for virtually all parametric models.

There are also disadvantages to using Bayesian analysis:

• It does not tell you how to select a prior, and there is no correct way 
to do so. Bayesian inferences require skills to translate subjective 
prior beliefs into mathematically formulated priors. If we do not pro-
ceed with caution, we can generate misleading results.

• It can produce posterior distributions that are heavily influenced by 
the priors. From a practical point of view, it might sometimes be dif-
ficult to convince subject-matter experts who do not agree with the 
validity of the chosen prior.
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• It often comes with a high computational cost, especially in models 
with a large number of parameters. In addition, simulations provide 
slightly different answers unless the same random seed is used. 
Note that slight variations in simulation results do not contradict the 
early claim that Bayesian inferences are exact. The posterior distri-
bution of a parameter is exact, given the likelihood function and the 
priors, while simulation-based estimates of posterior quantities can 
vary due to the random number generator used in the procedures.
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