
Table of Contents

 Overview
 Azure and IoT
 What is IoT Suite?
 What are the preconfigured solutions?

 Get Started
 Get started with the preconfigured solutions
 Permissions on azureiotsuite.com
 Predictive maintenance solution overview
 Connected factory solution overview
 Remote monitoring solution walkthrough
 Predictive maintenance solution walkthrough
 Connected factory solution walkthrough
 Connect your Raspberry Pi

 Use C
 Use Node.js

 Connect your Intel NUC gateway
 Simulated data
 Use real sensor

 How To
 Connect a simulated device

 C on Windows
 C on Linux
 Node.js

 Connect your mbed device
 Connect a Logic App to the remote monitoring solution
 Customize a preconfigured solution
 Use dynamic telemetry with the remote monitoring solution
 Create a custom rule in the remote monitoring solution
 Device information in the remote monitoring solution

 Deploy a gateway for connected factory
 Customize connected factory

 Reference
 Security architecture
 Security best practices
 Secure your IoT deployment
 Security from the ground up

 Related
 Stream Analytics
 Event Hubs
 IoT Hub
 Machine Learning

 Resources
 FAQ
 IoT Suite learning path

https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/machine-learning/
https://azure.microsoft.com/documentation/learning-paths/iot-suite/

Azure and Internet of Things
4/24/2017 • 5 min to read • Edit Online

IoT solution architecture

Welcome to Microsoft Azure and the Internet of Things (IoT). This article introduces an IoT solution architecture
that describes the common characteristics of an IoT solution you might deploy using Azure services. IoT solutions
require secure, bidirectional communication between devices, possibly numbering in the millions, and a solution
back end. For example, a solution back end might use automated, predictive analytics to uncover insights from
your device-to-cloud event stream.

Azure IoT Hub is a key building block when you implement this IoT solution architecture using Azure services. IoT
Suite provides complete, end-to-end, implementations of this architecture for specific IoT scenarios. For example:

The remote monitoring solution enables you to monitor the status of devices such as vending machines.
The predictive maintenance solution helps you to anticipate maintenance needs of devices such as pumps in
remote pumping stations and to avoid unscheduled downtime.

The following diagram shows a typical IoT solution architecture. The diagram does not include the names of any
specific Azure services, but describes the key elements in a generic IoT solution architecture. In this architecture,
IoT devices collect data that they send to a cloud gateway. The cloud gateway makes the data available for
processing by other back-end services from where data is delivered to other line-of-business applications or to
human operators through a dashboard or other presentation device.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-what-is-azure-iot.md

NOTE

Device connectivity

Data processing and analytics

Presentation and business connectivity

For an in-depth discussion of IoT architecture, see the Microsoft Azure IoT Reference Architecture.

In this IoT solution architecture, devices send telemetry, such as sensor readings from a pumping station, to a
cloud endpoint for storage and processing. In a predictive maintenance scenario, the solution back end might use
the stream of sensor data to determine when a specific pump requires maintenance. Devices can also receive and
respond to cloud-to-device messages by reading messages from a cloud endpoint. For example, in the predictive
maintenance scenario the solution back end might send messages to other pumps in the pumping station to begin
rerouting flows just before maintenance is due to start. This procedure would make sure the maintenance
engineer could get started as soon as she arrives.

One of the biggest challenges facing IoT projects is how to reliably and securely connect devices to the solution
back end. IoT devices have different characteristics as compared to other clients such as browsers and mobile
apps. IoT devices:

Are often embedded systems with no human operator.
Can be deployed in remote locations, where physical access is expensive.
May only be reachable through the solution back end. There is no other way to interact with the device.
May have limited power and processing resources.
May have intermittent, slow, or expensive network connectivity.
May need to use proprietary, custom, or industry-specific application protocols.
Can be created using a large set of popular hardware and software platforms.

In addition to the requirements above, any IoT solution must also deliver scale, security, and reliability. The
resulting set of connectivity requirements is hard and time-consuming to implement using traditional
technologies such as web containers and messaging brokers. Azure IoT Hub and the Azure IoT device SDKs make it
easier to implement solutions that meet these requirements.

A device can communicate directly with a cloud gateway endpoint, or if the device cannot use any of the
communications protocols that the cloud gateway supports, it can connect through an intermediate gateway. For
example, the Azure IoT protocol gateway can perform protocol translation if devices cannot use any of the
protocols that IoT Hub supports.

In the cloud, an IoT solution back end is where most of the data processing occurs, such as filtering and
aggregating telemetry and routing it to other services. The IoT solution back end:

Receives telemetry at scale from your devices and determines how to process and store that data.
May enable you to send commands from the cloud to specific device.
Provides device registration capabilities that enable you to provision devices and to control which devices are
permitted to connect to your infrastructure.
Enables you to track the state of your devices and monitor their activities.

In the predictive maintenance scenario, the solution back end stores historical telemetry data. The solution back
end can use this data to use to identify patterns that indicate maintenance is due on a specific pump.

IoT solutions can include automatic feedback loops. For example, an analytics module in the solution back end can
identify from telemetry that the temperature of a specific device is above normal operating levels. The solution can
then send a command to the device, instructing it to take corrective action.

The presentation and business connectivity layer allows end users to interact with the IoT solution and the devices.

http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-protocol-gateway

Azure IoT Suite

Next steps

It enables users to view and analyze the data collected from their devices. These views can take the form of
dashboards or BI reports that can display both historical data or near real-time data. For example, an operator can
check on the status of particular pumping station and see any alerts raised by the system. This layer also allows
integration of the IoT solution back end with existing line-of-business applications to tie into enterprise business
processes or workflows. For example, the predictive maintenance solution can integrate with a scheduling system
that books an engineer to visit a pumping station when the solution identifies a pump in need of maintenance.

The Microsoft Azure IoT Suite is an enterprise-grade solution that enables you to get started quickly through a set
of extensible preconfigured solutions. These solutions address common IoT scenarios, such as remote monitoring,
predictive maintenance, and connected factory. These solutions are implementations of the IoT solution
architecture outlined in this article.

The preconfigured solutions are complete, working, end-to-end solutions that include:

Simulated devices to get you started.
Preconfigured Azure services such as Azure IoT Hub, Azure Event Hubs, Azure Stream Analytics, Azure Machine
Learning, and Azure storage.
Solution-specific management consoles.

The preconfigured solutions contain proven, production-ready code that you can customize and extend to
implement your own specific IoT scenarios.

You may also be interested in the Azure IoT Hub service that many of the preconfigured solutions use. Azure IoT
Hub provides the secure and reliable bi-directional communications between devices and the cloud used in the
preconfigured solution architecture.

Explore these resources to continue learning about IoT Suite and the preconfigured solutions:

What is Azure IoT Suite?

https://azure.microsoft.com/documentation/services/iot-hub/
https://azure.microsoft.com/documentation/services/event-hubs/
https://azure.microsoft.com/documentation/services/stream-analytics/
https://azure.microsoft.com/documentation/services/machine-learning/
https://azure.microsoft.com/documentation/services/storage/
https://azure.microsoft.com/documentation/services/iot-hub/
https://azure.microsoft.com/documentation/services/iot-hub/

What are the Azure IoT Suite preconfigured solutions?

Overview of Azure IoT Suite
5/10/2017 • 2 min to read • Edit Online

Azure IoT services in Azure IoT Suite

The Azure internet of things (IoT) services offer a broad range of capabilities. These enterprise grade services
enable you to:

Collect data from devices
Analyze data streams in-motion
Store and query large data sets
Visualize both real-time and historical data
Integrate with back-office systems
Manage your devices

To deliver these capabilities, Azure IoT Suite packages together multiple Azure services with custom extensions as
preconfigured solutions. These preconfigured solutions are base implementations of common IoT solution patterns
that help to reduce the time you take to deliver your IoT solutions. Using the IoT software development kits, you
can customize and extend these solutions to meet your own requirements. You can also use these solutions as
examples or templates when you are developing new IoT solutions.

The following video provides an introduction to Azure IoT Suite:

The preconfigured solutions typically use the following services:

Core to Azure IoT Suite is the Azure IoT Hub service. This service provides the device-to-cloud and cloud-to-
device messaging capabilities and acts as the gateway to the cloud and the other key IoT Suite services. The
service enables you to receive messages from your devices at scale, and send commands to your devices. The
service also enables you to manage your devices. For example, you can configure, reboot, or perform a factory
reset on one or more devices connected to the hub.
Azure Stream Analytics provides in-motion data analysis. IoT Suite uses this service to process incoming
telemetry, perform aggregation, and detect events. The preconfigured solutions also use stream analytics to
process informational messages that contain data such as metadata or command responses from devices. The
solutions use Stream Analytics to process the messages from your devices and deliver those messages to other
services.
Azure Storage and Azure Cosmos DB provide the data storage capabilities. The preconfigured solutions use
blob storage to store telemetry and to make it available for analysis. The solutions use Cosmos DB to store
device metadata and enable the device management capabilities of the solutions.
Azure Web Apps and Microsoft Power BI provide the data visualization capabilities. The flexibility of Power BI
enables you to quickly build your own interactive dashboards that use IoT Suite data.

For an overview of the architecture of a typical IoT solution, see Microsoft Azure and the Internet of Things (IoT).

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-overview.md
https://azure.microsoft.com/documentation/articles/iot-hub-sdks-summary/
https://azure.microsoft.com/documentation/services/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview
https://azure.microsoft.com/documentation/services/stream-analytics/
https://azure.microsoft.com/documentation/services/storage/
https://azure.microsoft.com/documentation/services/documentdb/
https://azure.microsoft.com/documentation/services/app-service/web/
https://powerbi.microsoft.com/

Preconfigured solutions

Next steps

IoT Suite includes preconfigured solutions that enable you to quickly get started with and to explore the common
IoT scenarios, such as Remote monitoring, Predictive maintenance, and Connected factory. You can deploy these
solutions to your Azure subscription and then run a complete, end-to-end IoT scenario.

Now that you have an overview of what IoT Suite can do and what are its main components, you can learn more
about the preconfigured solutions in IoT Suite. For more information, see What are the Azure IoT preconfigured
solutions?

What are the Azure IoT Suite preconfigured
solutions?
5/10/2017 • 7 min to read • Edit Online

NOTE

SOLUTION
DATA
INGESTION

DEVICE
IDENTITY

DEVICE
MANAGEMENT

COMMAND
AND CONTROL

RULES AND
ACTIONS

PREDICTIVE
ANALYTICS

Remote
monitoring

Yes Yes Yes Yes Yes -

Predictive
maintenance

Yes Yes - Yes Yes Yes

Connected
factory

Yes Yes Yes Yes Yes -

Remote Monitoring preconfigured solution overview

The Azure IoT Suite preconfigured solutions are implementations of common IoT solution patterns that you can
deploy to Azure using your subscription. You can use the preconfigured solutions:

As a starting point for your own IoT solutions.
To learn about common patterns in IoT solution design and development.

Each preconfigured solution is a complete, end-to-end implementation that uses simulated devices to generate
telemetry.

In addition to deploying and running the solutions in Azure, you can download the complete source code and
then customize and extend the solution to meet your specific IoT requirements.

To deploy one of the preconfigured solutions, visit Microsoft Azure IoT Suite. The article Get started with the IoT
preconfigured solutions provides more information about how to deploy and run one of the solutions.

The following table shows how the solutions map to specific IoT features:

Data ingestion: Ingress of data at scale to the cloud.
Device identity: Manage unique device identities and control device access to the solution.
Device management: Manage device metadata and perform operations such as device reboots and firmware
upgrades.
Command and control: Send messages to a device from the cloud to cause the device to take an action.
Rules and actions: The solution back end uses rules to act on specific device-to-cloud data.
Predictive analytics: The solution back end analyzes device-to-cloud data to predict when specific actions
should take place. For example, analyzing aircraft engine telemetry to determine when engine maintenance is
due.

We have chosen to discuss the remote monitoring preconfigured solution in this article because it illustrates
many common design elements that the other solutions share.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-what-are-preconfigured-solutions.md
https://www.azureiotsuite.com/

Devices

The following diagram illustrates the key elements of the remote monitoring solution. The following sections
provide more information about these elements.

When you deploy the remote monitoring preconfigured solution, four simulated devices are pre-provisioned in
the solution that simulate a cooling device. These simulated devices have a built-in temperature and humidity
model that emits telemetry. These simulated devices are included to:

Illustrate the end-to-end flow of data through the solution.
Provide a convenient source of telemetry.
Provide a target for methods or commands if you are a back-end developer using the solution as a starting
point for a custom implementation.

The simulated devices in the solution can respond to the following cloud-to-device communications:

Methods (direct methods): A two-way communication method where a connected device is expected to
respond immediately.
Commands (cloud-to-device messages): A one-way communication method where a device retrieves the
command from a durable queue.

For a comparison of these different approaches, see Cloud-to-device communications guidance.

When a device first connects to IoT Hub in the preconfigured solution, it sends a device information message to
the hub that enumerates the methods the device can respond to. In the remote monitoring preconfigured
solution, simulated devices support these methods:

Initiate Firmware Update: this method initiates an asynchronous task on the device to perform a firmware
update. The asynchronous task uses reported properties to deliver status updates to the solution dashboard.
Reboot: this method causes the simulated device to reboot.
FactoryReset: this method triggers a factory reset on the simulated device.

When a device first connects to IoT Hub in the preconfigured solution, it sends a device information message to
the hub that enumerates the commands the device can respond to. In the remote monitoring preconfigured
solution, simulated devices support these commands:

Ping Device: The device responds to this command with an acknowledgement. This command is useful for
checking that the device is still active and listening.
Start Telemetry: Instructs the device to start sending telemetry.
Stop Telemetry: Instructs the device to stop sending telemetry.
Change Set Point Temperature: Controls the simulated temperature telemetry values the device sends. This
command is useful for testing back-end logic.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-direct-methods
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-c2d-guidance

IoT Hub

Azure Stream Analytics

Event processor

Diagnostic Telemetry: Controls if the device should send the external temperature as telemetry.
Change Device State: Sets the device state metadata property that the device reports. This command is useful
for testing back-end logic.

You can add more simulated devices to the solution that emit the same telemetry and respond to the same
methods and commands.

In addition to responding to commands and methods, the solution uses device twins. Devices use device twins to
report property values to the solution back end. The solution dashboard uses device twins to set to new desired
property values on devices. For example, during the firmware update process the simulated device reports the
status of the update using reported properties.

In this preconfigured solution, the IoT Hub instance corresponds to the Cloud Gateway in a typical IoT solution
architecture.

An IoT hub receives telemetry from the devices at a single endpoint. An IoT hub also maintains device-specific
endpoints where each device can retrieve the commands that are sent to it.

The IoT hub makes the received telemetry available through the service-side telemetry read endpoint.

The device management capability of IoT Hub enables you to manage your device properties from the solution
portal and schedule jobs that perform operations such as:

Rebooting devices
Changing device states
Firmware updates

The preconfigured solution uses three Azure Stream Analytics (ASA) jobs to filter the telemetry stream from the
devices:

DeviceInfo job - outputs data to an Event hub that routes device registration-specific messages to the solution
device registry (an Azure Cosmos DB database). This message is sent when a device first connects or in
response to a Change device state command.
Telemetry job - sends all raw telemetry to Azure blob storage for cold storage and calculates telemetry
aggregations that display in the solution dashboard.
Rules job - filters the telemetry stream for values that exceed any rule thresholds and outputs the data to an
Event hub. When a rule fires, the solution portal dashboard view displays this event as a new row in the alarm
history table. These rules can also trigger an action based on the settings defined on the Rules and Actions
views in the solution portal.

In this preconfigured solution, the ASA jobs form part of to the IoT solution back end in a typical IoT solution
architecture.

In this preconfigured solution, the event processor forms part of the IoT solution back end in a typical IoT
solution architecture.

The DeviceInfo and Rules ASA jobs send their output to Event hubs for delivery to other back-end services. The
solution uses an EventProcessorHost instance, running in a WebJob, to read the messages from these Event hubs.
The EventProcessorHost uses:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://azure.microsoft.com/documentation/services/stream-analytics/
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-programming-guide
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-create-web-jobs

Device identity registry, device twin, and Cosmos DB

Solution portal

The DeviceInfo data to update the device data in the Cosmos DB database.
The Rules data to invoke the Logic app and update the alerts display in the solution portal.

Every IoT hub includes a device identity registry that stores device keys. IoT Hub uses this information
authenticate devices - a device must be registered and have a valid key before it can connect to the hub.

A device twin is a JSON document managed by the IoT Hub. A device twin for a device contains:

Reported properties sent by the device to the hub. You can view these properties in the solution portal.
Desired properties that you want to send to the device. You can set these properties in the solution portal.
Tags that exist only in the device twin and not on the device. You can use these tags to filter lists of devices in
the solution portal.

This solution uses device twins to manage device metadata. The solution also uses a Cosmos DB database to store
additional solution-specific device data such as the commands supported by each device and the command
history.

The solution must also keep the information in the device identity registry synchronized with the contents of the
Cosmos DB database. The EventProcessorHost uses the data from DeviceInfo stream analytics job to manage
the synchronization.

The solution portal is a web-based UI that is deployed to the cloud as part of the preconfigured solution. It
enables you to:

View telemetry and alarm history in a dashboard.
Provision new devices.
Manage and monitor devices.
Send commands to specific devices.
Invoke methods on specific devices.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins

Next steps

Manage rules and actions.
Schedule jobs to run on one or more devices.

In this preconfigured solution, the solution portal forms part of the IoT solution back end and part of the
Processing and business connectivity in the typical IoT solution architecture.

For more information about IoT solution architectures, see Microsoft Azure IoT services: Reference Architecture.

Now you know what a preconfigured solution is, you can get started by deploying the remote monitoring
preconfigured solution: Get started with the preconfigured solutions.

http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf

Tutorial: Get started with the preconfigured solutions
3/6/2017 • 14 min to read • Edit Online

Introduction

NOTE

Provision the solution

Azure IoT Suite preconfigured solutions combine multiple Azure IoT services to deliver end-to-end solutions that
implement common IoT business scenarios. The remote monitoring preconfigured solution connects to and
monitors your devices. You can use the solution to analyze the stream of data from your devices and to improve
business outcomes by making processes respond automatically to that stream of data.

This tutorial shows you how to provision the remote monitoring preconfigured solution. It also walks you through
the basic features of the preconfigured solution. You can access many of these features from the solution
dashboard that deploys as part of the preconfigured solution:

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-getstarted-preconfigured-solutions.md
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com

Wait for the provisioning process to complete

NOTE

Scenario overview

View the solution dashboard

3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User
Voice.

When you deploy the remote monitoring preconfigured solution, it is prepopulated with resources that enable
you to step through a common remote monitoring scenario. In this scenario, several devices connected to the
solution are reporting unexpected temperature values. The following sections show you how to:

Identify the devices sending unexpected temperature values.
Configure these devices to send more detailed telemetry.
Fix the problem by updating the firmware on these devices.
Verify that your action has resolved the issue.

A key feature of this scenario is that you can perform all these actions remotely from the solution dashboard. You
do not need physical access to the devices.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and configure rules.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

The dashboard displays the following information:

A map that displays the location of each device connected to the solution. When you first run the solution,
there are 25 simulated devices. The simulated devices are implemented as Azure WebJobs, and the solution
uses the Bing Maps API to plot information on the map. See the FAQ to learn how to make the map dynamic.
A Telemetry History panel that plots humidity and temperature telemetry from a selected device in near real

 View alarms

NOTE

View devices

time and displays aggregate data such as maximum, minimum, and average humidity.
An Alarm History panel that shows recent alarm events when a telemetry value has exceeded a threshold. You
can define your own alarms in addition to the examples created by the preconfigured solution.
A Jobs panel that displays information about scheduled jobs. You can schedule your own jobs on
Management jobs page.

The alarm history panel shows you that five devices are reporting higher than expected telemetry values.

These alarms are generated by a rule that is included in the preconfigured solution. This rule generates an alert when the
temperature value sent by a device exceeds 60. You can define your own rules and actions by choosing Rules and Actions in
the left-hand menu.

The devices list shows all the registered devices in the solution. From the device list you can view and edit device
metadata, add or remove devices, and invoke methods on devices. You can filter and sort the list of devices in the
device list. You can also customize the columns shown in the device list.

1. Choose Devices to show the device list for this solution.

2. The device list initially shows 25 simulated devices created by the provisioning process. You can add
additional simulated and physical devices to the solution.

3. To view the details of a device, choose a device in the device list.

The Device Details panel contains six sections:

A collection of links that enable you to customize the device icon, disable the device, add a rule, invoke a

Filter the device list

Update desired properties

method, or send a command. For a comparison of commands (device-to-cloud messages) and methods (direct
methods), see Cloud-to-device communications guidance.
The Device Twin - Tags section enables you to edit tag values for the device. You can display tag values in the
device list and use tag values to filter the device list.
The Device Twin - Desired Properties section enables you to set property values to be sent to the device.
The Device Twin - Reported Properties section shows property values sent from the device.
The Device Properties section shows information from the identity registry such as the device id and
authentication keys.
The Recent Jobs section shows information about any jobs that have recently targeted this device.

You can use a filter to display only those devices that are sending unexpected temperature values. The remote
monitoring preconfigured solution includes the Unhealthy devices filter to show devices with a mean
temperature value greater than 60. You can also create your own filters.

1. Choose Open saved filter to display a list of available filters. Then choose Unhealthy devices to apply
the filter:

2. The device list now shows only devices with a mean temperature value greater than 60.

You have now identified a set of devices that may need remediation. However, you decide that the data frequency
of 15 seconds is not sufficient for a clear diagnosis of the issue. Changing the telemetry frequency to five seconds
to provide you with more data points to better diagnose the issue. You can push this configuration change to your
remote devices from the solution portal. You can make the change once, evaluate the impact, and then act on the
results.

Follow these steps to run a job that changes the TelemetryInterval desired property for the affected devices.
When the devices receive the new TelemetryInterval property value, they change their configuration to send

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-c2d-guidance

NOTE

Invoke methods

telemetry every five seconds instead of every 15 seconds:

1. While you are showing the list of unhealthy devices in the device list, choose Job Scheduler, then Edit
Device Twin.

2. Call the job Change telemetry interval.

3. Change the value of the Desired Property name desired.Config.TelemetryInterval to five seconds.

4. Choose Schedule.

5. You can monitor the progress of the job on the Management Jobs page in the portal.

If you want to change a desired property value for an individual device, use the Desired Properties section in the Device
Details panel instead of running a job.

This job sets the value of the TelemetryInterval desired property in the device twin for all the devices selected by
the filter. The devices retrieve this value from the device twin and update their behavior. When a device retrieves
and processes a desired property from a device twin, it sets the corresponding reported value property.

While the job runs, you notice in the list of unhealthy devices that all these devices have old (less than version 1.6)

firmware versions.

This firmware version may be the root cause of the unexpected temperature values because you know that other
healthy devices were recently updated to version 2.0. You can use the built-in Old firmware devices filter to
identify any devices with old firmware versions. From the portal, you can then remotely update all the devices still
running old firmware versions:

1. Choose Open saved filter to display a list of available filters. Then choose Old firmware devices to apply
the filter:

2. The device list now shows only devices with old firmware versions. This list includes the five devices
identified by the Unhealthy devices filter and three additional devices:

3. Choose Job Scheduler, then Invoke Method.

4. Set Job Name to Firmware update to version 2.0.

5. Choose InitiateFirmwareUpdate as the Method.

6. Set the FwPackageUri parameter to

NOTE

https://iotrmassets.blob.core.windows.net/firmwares/FW20.bin.

7. Choose Schedule. The default is for the job to run now.

If you want to invoke a method on an individual device, choose Methods in the Device Details panel instead of running a
job.

This job invokes the InitiateFirmwareUpdate direct method on all the devices selected by the filter. Devices
respond immediately to IoT Hub and then initiate the firmware update process asynchronously. The devices
provide status information about the firmware update process through reported property values, as shown in the
following screenshots. Choose the Refresh icon to update the information in the device and job lists:

https://iotrmassets.blob.core.windows.net/firmwares/FW20.bin

NOTE

Scenario review

In a production environment, you can schedule jobs to run during a designated maintenance window.

In this scenario, you identified a potential issue with some of your remote devices using the alarm history on the
dashboard and a filter. You then used the filter and a job to remotely configure the devices to provide more

Other features

Customize columns

Customize the device icon

information to help diagnose the issue. Finally, you used a filter and a job to schedule maintenance on the affected
devices. If you return to the dashboard, you can check that there are no longer any alarms coming from devices in
your solution. You can use a filter to verify that the firmware is up-to-date on all the devices in your solution and
that there are no more unhealthy devices:

The following sections describe some additional features of the remote monitoring preconfigured solution that
are not described as part of the previous scenario.

You can customize the information shown in the device list by choosing Column editor. You can add and remove
columns that display reported property and tag values. You can also reorder and rename columns:

You can customize the device icon displayed in the device list from the Device Details panel as follows:

1. Choose the pencil icon to open the Edit image panel for a device:

NOTE

Add a device

2. Either upload a new image or use one of the existing images and then choose Save:

3. The image you selected now displays in the Icon column for the device.

The image is stored in blob storage. A tag in the device twin contains a link to the image in blob storage.

When you deploy the preconfigured solution, you automatically provision 25 sample devices that you can see in
the device list. These devices are simulated devices running in an Azure WebJob. Simulated devices make it easy

for you to experiment with the preconfigured solution without the need to deploy real, physical devices. If you do
want to connect a real device to the solution, see the Connect your device to the remote monitoring preconfigured
solution tutorial.

The following steps show you how to add a simulated device to the solution:

1. Navigate back to the device list.

2. To add a device, choose + Add A Device in the bottom left corner.

3. Choose Add New on the Simulated Device tile.

In addition to creating a new simulated device, you can also add a physical device if you choose to create a
Custom Device. To learn more about connecting physical devices to the solution, see Connect your device
to the IoT Suite remote monitoring preconfigured solution.

4. Select Let me define my own Device ID, and enter a unique device ID name such as mydevice_01.

5. Choose Create.

6. In step 3 of Add a simulated device, choose Done to return to the device list.

7. You can view your device Running in the device list.

8. You can also view the simulated telemetry from your new device on the dashboard:

Disable and delete a device

Add a rule

You can disable a device, and after it is disabled you can remove it:

There are no rules for the new device you just added. In this section, you add a rule that triggers an alarm when
the temperature reported by the new device exceeds 47 degrees. Before you start, notice that the telemetry history
for the new device on the dashboard shows the device temperature never exceeds 45 degrees.

1. Navigate back to the device list.

2. To add a rule for the device, select your new device in the Devices List, and then choose Add rule.

3. Create a rule that uses Temperature as the data field and uses AlarmTemp as the output when the
temperature exceeds 47 degrees:

4. To save your changes, choose Save and View Rules.

5. Choose Commands in the device details pane for the new device.

6. Select ChangeSetPointTemp from the command list and set SetPointTemp to 45. Then choose Send
Command:

7. Navigate back to the dashboard. After a short time, you will see a new entry in the Alarm History pane
when the temperature reported by your new device exceeds the 47-degree threshold:

8. You can review and edit all your rules on the Rules page of the dashboard:

NOTE

Manage filters

9. You can review and edit all the actions that can be taken in response to a rule on the Actions page of the
dashboard:

It is possible to define actions that can send an email message or SMS in response to a rule or integrate with a line-of-
business system through a Logic App. For more information, see the Connect Logic App to your Azure IoT Suite Remote
Monitoring preconfigured solution.

In the device list, you can create, save, and reload filters to display a customized list of devices connected to your
hub. To create a filter:

1. Choose the edit filter icon above the list of devices:

https://azure.microsoft.com/documentation/services/app-service/logic/

2. In the Filter editor, add the fields, operators, and values to filter the device list. You can add multiple
clauses to refine your filter. Choose Filter to apply the filter:

3. In this example, the list is filtered by manufacturer and model number:

4. To save your filter with a custom name, choose the Save as icon:

NOTE

Commands

5. To reapply a filter you saved previously, choose the Open saved filter icon:

You can create filters based on device id, device state, desired properties, reported properties, and tags. You add
your own custom tags to a device in the Tags section of the Device Details panel, or run a job to update tags on
multiple devices.

In the Filter editor, you can use the Advanced view to edit the query text directly.

From the Device Details panel, you can send commands to the device. When a device first starts, it sends
information about the commands it supports to the solution. For a discussion of the differences between
commands and methods, see Azure IoT Hub cloud-to-device options.

1. Choose Commands in the Device Details panel for the selected device:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-c2d-guidance

Behind the scenes

2. Select PingDevice from the command list.

3. Choose Send Command.

4. You can see the status of the command in the command history.

The solution tracks the status of each command it sends. Initially the result is Pending. When the device reports
that it has executed the command, the result is set to Success.

When you deploy a preconfigured solution, the deployment process creates multiple resources in the Azure
subscription you selected. You can view these resources in the Azure portal. The deployment process creates a
resource group with a name based on the name you choose for your preconfigured solution:

http://portal.azure.com/

NOTE

Next Steps

You can view the settings of each resource by selecting it in the list of resources in the resource group.

You can also view the source code for the preconfigured solution. The remote monitoring preconfigured solution
source code is in the azure-iot-remote-monitoring GitHub repository:

The DeviceAdministration folder contains the source code for the dashboard.
The Simulator folder contains the source code for the simulated device.
The EventProcessor folder contains the source code for the back-end process that handles the incoming
telemetry.

When you are done, you can delete the preconfigured solution from your Azure subscription on the
azureiotsuite.com site. This site enables you to easily delete all the resources that were provisioned when you
created the preconfigured solution.

To ensure that you delete everything related to the preconfigured solution, delete it on the azureiotsuite.com site and do
not delete the resource group in the portal.

Now that you’ve deployed a working preconfigured solution, you can continue getting started with IoT Suite by
reading the following articles:

Remote monitoring preconfigured solution walkthrough

https://github.com/Azure/azure-iot-remote-monitoring
https://www.azureiotsuite.com
https://www.azureiotsuite.com

Connect your device to the remote monitoring preconfigured solution
Permissions on the azureiotsuite.com site

Permissions on the azureiotsuite.com site
2/9/2017 • 6 min to read • Edit Online

What happens when you sign in

AAD roles

The first time you sign in at azureiotsuite.com, the site determines the permission levels you have based on the
currently selected Azure Active Directory (AAD) tenant and Azure subscription.

1. First, to populate the list of tenants seen next to your username, the site finds out from Azure which AAD
tenants you belong to. Currently, the site can only obtain user tokens for one tenant at a time. Therefore,
when you switch tenants using the dropdown in the top right corner, the site logs you in to that tenant to
obtain the tokens for that tenant.

2. Next, the site finds out from Azure which subscriptions you have associated with the selected tenant. You see
the available subscriptions when you create a new preconfigured solution.

3. Finally, the site retrieves all the resources in the subscriptions and resource groups tagged as preconfigured
solutions and populates the tiles on the home page.

The following sections describe the roles that control access to the preconfigured solutions.

The AAD roles control the ability provision preconfigured solutions and manage users in a preconfigured
solution.

You can find more information about administrator roles in AAD in Assigning administrator roles in Azure AD.
The current article focuses on the Global Administrator and the Domain User/Member roles as used by the
preconfigured solutions.

Global Administrator: There can be many global administrators per AAD tenant. When you create an AAD
tenant, you are by default the global administrator of that tenant. The global administrator can provision a
preconfigured solution and is assigned an ADMINISTRATOR role for the application inside their AAD tenant.
However, if another user in the same AAD tenant creates an application, the default role the global administrator
is granted is IMPLICIT READ ONLY. Global administrators can assign roles for applications using the Azure
classic portal.

Domain User/Member: There can be many domain users/members per AAD tenant. A domain user can
provision a preconfigured solution through the azureiotsuite.com site. The default role they are granted for the
application they provision is ADMINISTRATOR. They can create an application using the build.cmd script in the
azure-iot-remote-monitoring or azure-iot-predictive-maintenance repository. However, the default role they are
granted is IMPLICIT READONLY, as they do not have permission to assign roles. If another user in the AAD
tenant creates an application, they are assigned the IMPLICIT READONLY role by default for that application.
They cannot assign roles for applications; therefore they cannot add users or roles for users for an application
even if they provisioned it.

Guest User/Guest: There can be many guest users/guests per AAD tenant. Guest users have a limited set of
rights in the AAD tenant. As a result, guest users cannot provision a preconfigured solution in the AAD tenant.

For more information, see the following resources:

Create or Edit users in Azure AD
Assign App roles in AAD

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-permissions.md
https://www.azureiotsuite.com/
https://azure.microsoft.com/documentation/articles/active-directory-assign-admin-roles/
https://manage.windowsazure.com/
https://www.azureiotsuite.com/
https://github.com/Azure/azure-iot-remote-monitoring
https://github.com/Azure/azure-iot-predictive-maintenance
https://azure.microsoft.com/documentation/articles/active-directory-create-users/
https://azure.microsoft.com/documentation/articles/active-directory-application-manifest/

Azure subscription administrator roles

Application roles

Changing application roles for a user

FAQ
I'm a service administrator and I'd like to change the directory mapping between my subscription and a
specific AAD tenant. How do I complete this task?

I'm a domain user/member on the AAD tenant and I've created a preconfigured solution. How do I get
assigned a role for my application?

The Azure admin roles control the ability to map an Azure subscription to an AD tenant.

You can find out more about the Azure Co-Administrator, Service Administrator, and Account Administrator
roles in the article How to add or change Azure Co-Administrator, Service Administrator and Account
Administrator.

The application roles control access to devices in your preconfigured solution.

There are two defined and one implicit role defined in the application that is created when you provision a
preconfigured solution.

ADMINISTRATOR: Has full control to add, manage, and remove devices
READ ONLY: Can view devices
IMPLICIT READ ONLY: This role is the same as Read Only, but is granted to all users of your AAD tenant.
This role was created for convenience during development. You can remove this role by modifying the
RolePermissions.cs source file.

You can use the following procedure to make a user in your Active Directory an administrator of your
preconfigured solution.

You must be an AAD global administrator to change roles for a user:

1. Go to the Azure classic portal.
2. Select Active Directory.
3. Click the name of your AAD tenant (the directory you chose on azureiotsuite.com when you provisioned your

solution).
4. Click Applications.
5. Click the name of the application that matches your preconfigured solution name. If you don't see your

application in the list, switch the Show dropdown to Applications my company owns and click the check
mark.

6. Click Users.
7. Select the user you want to switch roles.
8. Click Assign and select the role (such as Admin) you'd like to assign to the user, click the check mark.

1. Go to the Azure classic portal, click Settings in the list of services on the left-hand side.
2. Select the subscription you'd like to change the directory mapping to.
3. Click Edit Directory.
4. Select the Directory you would like to use in the dropdown. Click the forward arrow.
5. Confirm the directory mapping and affected co-administrators. Note that if you are moving from another

directory, all the co-administrators from the original directory are removed.

Ask a global administrator to assign you as a global administrator on the AAD tenant to get permissions to
assign roles to users yourself, or ask a global administrator to assign you a role. If you'd like to change the AAD

https://azure.microsoft.com/documentation/articles/billing-add-change-azure-subscription-administrator/
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/DeviceAdministration/Web/Security/RolePermissions.cs
https://manage.windowsazure.com/
https://manage.windowsazure.com/

How do I switch the AAD tenant my remote monitoring preconfigured solution and application are assigned
to?

I want to change a Service Administrator or Co-Administrator when logged in with an organisational account

Why am I seeing this error? "Your account does not have the proper permissions to create a solution. Please
check with your account administrator or try with a different account."

tenant your preconfigured solution has been deployed to, see the next question.

You can run a cloud deployment from https://github.com/Azure/azure-iot-remote-monitoring and redeploy
with a newly created AAD tenant. Since you are by default a global administrator when you create an AAD
tenant, you have permissions to add users and assign roles to those users.

1. Create an AAD directory in the Azure classic portal.
2. Go to https://github.com/Azure/azure-iot-remote-monitoring.
3. Run build.cmd cloud [debug | release] {name of previously deployed remote monitoring solution} (For

example, build.cmd cloud debug myRMSolution)
4. When prompted, set the tenantid to be your newly created tenant instead of your previous tenant.

See the support article Changing Service Administrator and Co-Administrator when logged in with an
organisational account.

Look at the following diagram for guidance:

https://github.com/Azure/azure-iot-remote-monitoring
https://manage.windowsazure.com/
https://github.com/Azure/azure-iot-remote-monitoring
https://azure.microsoft.com/support/changing-service-admin-and-co-admin/

NOTE
If you continue to see the error after validating you are a global administrator on the AAD tenant and a co-administrator
on the subscription, have your account administrator remove the user and reassign necessary permissions in this order.
First, add the user as a global administrator and then add user as a co-administrator on the Azure subscription. If issues
persist, contact Help & Support.

Why am I seeing this error when I have an Azure subscription? An Azure subscription is required to create
pre-configured solutions. You can create a free trial account in just a couple of minutes.

https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade

Next steps

If you're certain you have an Azure subscription, validate the tenant mapping for your subscription and ensure
the correct tenant is selected in the dropdown. If you’ve validated the desired tenant is correct, follow the
preceeding diagram and validate the mapping of your subscription and this AAD tenant.

To continue learning about IoT Suite, see how you can customize a preconfigured solution.

Predictive maintenance preconfigured solution
overview
4/25/2017 • 6 min to read • Edit Online

The Scenario

NOTE

The predictive maintenance preconfigured solution is one of the Microsoft Azure IoT Suite preconfigured
solutions. This solution integrates real-time device telemetry collection with a predictive model created using
Azure Machine Learning.

With Azure IoT Suite, an enterprise can quickly and easily connect to and monitor assets, and analyze data in real
time. The predictive maintenance preconfigured solution takes that data and uses rich dashboards and
visualizations to provide you with new intelligence that can drive efficiencies and enhance revenue streams.

Fabrikam is a regional airline that focuses on great customer experience at competitive prices. One cause of flight
delays is maintenance issues and aircraft engine maintenance is particularly challenging. Engine failure during
flight must be avoided at all costs, so Fabrikam inspects its engines regularly and adheres to a scheduled
maintenance program. However, aircraft engines don’t always wear the same. Some unnecessary maintenance is
performed on engines. More importantly, issues arise which can ground an aircraft until maintenance is
performed. These issues cause costly delays, especially if an aircraft is at a location where the right technicians or
spare parts are not available.

The engines of Fabrikam’s aircraft are instrumented with sensors that monitor engine conditions during flight.
Fabrikam uses the predictive maintenance preconfigured solution to collect the sensor data collected during the
flight. After accumulating years of engine operational and failure data, Fabrikam’s data scientists have modeled a
way to predict the Remaining Useful Life (RUL) of an aircraft engine. What they have identified is a correlation
between the data from four of the engine sensors with the engine wear that leads to eventual failure. While
Fabrikam continues to perform regular inspections to ensure safety, it can now use the models to compute the
RUL for each engine after every flight. The model uses the telemetry collected from the engines during the flight.
Fabrikam can now predict future points of failure and plan for maintenance and repair in advance.

The solution model uses actual engine wear data.

By predicting the point when maintenance is required, Fabrikam can optimize its operations to reduce costs.
Maintenance coordinators work with schedulers:

To plan maintenance to coincide with an aircraft stopping at a particular location.
To ensure there is sufficient time for the aircraft to be out of service without causing schedule disruption.
To schedule technicians to ensure that aircraft are serviced efficiently without wait time.

Inventory control managers receive maintenance plans, so they can optimize their ordering process and spare
parts inventory. All these factors enable Fabrikam to minimize aircraft ground time and to reduce operating costs
while ensuring the safety of passengers and crew.

To understand how Azure IoT Suite provides the capabilities customers need to realize the potential of predictive
maintenance, review this infographic.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-predictive-overview.md
https://azure.microsoft.com/services/machine-learning/
https://www.microsoft.com/server-cloud/predictivemaintenance/Index.html

How the predictive maintenance solution is built

Get started with predictive maintenance

NOTE

Wait for the provisioning process to complete

NOTE

View the solution

Predictive Maintenance Dashboard

The solution uses an existing Azure Machine Learning model available as a template to show these capabilities
working from device telemetry collected through IoT Suite services. Microsoft has built a regression model of an
aircraft engine based on publically available data , and step-by-step guidance on how to use the model.[1]

The Azure IoT predictive maintenance preconfigured solution uses the regression model created from this
template. The model is deployed into your Azure subscription and exposed through an automatically generated
API. The solution includes a subset of the testing data representing 4 (of 100 total) engines and the 4 (of 21 total)
sensor data streams. This data is sufficient to provide an accurate result from the trained model.

[1] A. Saxena and K. Goebel (2008). "Turbofan Engine Degradation Simulation Data Set", NASA Ames Prognostics
Data Repository (http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/), NASA Ames Research Center,
Moffett Field, CA

This tutorial shows you how to provision the predictive maintenance solution. It also walks you through the basic
features of the predictive maintenance solution. You can access many of these features through the solution
dashboard that deploys along with the preconfigured solution.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select the Predictive maintenance tile.
3. Enter a Solution name for your predictive maintenance preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane. From this pane, you can launch the

solution dashboard and access the Machine Learning workspace.

If you encounter issues deploying the preconfigured solution, review Permissions on the azureiotsuite.com site and the FAQ.
If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

This section guides you through the solution UI.

This page in the web application uses PowerBI JavaScript controls (see the PowerBI-visuals repository) to visualize:

http://gallery.cortanaanalytics.com/Collection/Predictive-Maintenance-Template-3
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://www.github.com/Microsoft/PowerBI-visuals

Observing the behavior of the cloud solution

The output data from the Stream Analytics jobs in blob storage.
The RUL and cycle count per aircraft engine.

In the Azure portal, navigate to the resource group with the solution name you chose to view your provisioned
resources.

When you provision the preconfigured solution, you receive an email with a link to the Machine Learning
workspace. You can also navigate to the Machine Learning workspace from the tile on the azureiotsuite.com page
for your provisioned solution when the solution is in the Ready state.

In the solution portal, you can see that the sample is provisioned with four simulated devices to represent two

https://www.azureiotsuite.com

aircraft with two engines per aircraft, each with four sensors. When you first navigate to the solution portal, the
simulation is stopped.

Click Start simulation to begin the simulation in which you see the sensor history, RUL, Cycles, and RUL history
populate the dashboard.

When RUL is less than 160 (an arbitrary threshold chosen for demonstration purposes), the solution portal
displays a warning symbol next to the RUL display and highlights the aircraft engine in yellow. Notice how the RUL
values have a general downward trend overall, but tend to bounce up and down. This behavior results from the
varying cycle lengths and the model accuracy.

Next steps

The full simulation takes around 35 minutes to complete 148 cycles. The 160 RUL threshold is met for the first
time at around 5 minutes and both engines hit the threshold at around 8 minutes.

The simulation runs through the complete dataset for 148 cycles and settles on final RUL and cycle values.

You can stop the simulation at any point, but clicking Start Simulation replays the simulation from the start of
the dataset.

To learn more about how Azure IoT enables predictive maintenance scenarios, read Capture value from the
Internet of Things.

Take a walkthrough of the predictive maintenance preconfigured solution.

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Frequently asked questions for IoT Suite
IoT security from the ground up

http://download.microsoft.com/download/0/7/D/07D394CE-185D-4B96-AC3C-9B61179F7080/Capture_value_from_the_Internet of Things_with_Predictive_Maintenance.PDF

Get started with the connected factory preconfigured
solution
4/24/2017 • 12 min to read • Edit Online

Introduction

NOTE

Provision the solution

While you wait for the provisioning process to complete

Azure IoT Suite preconfigured solutions combine multiple Azure IoT services to deliver end-to-end solutions that
implement common IoT business scenarios. The connected factory preconfigured solution connects to and
monitors your industrial devices. You can use the solution to analyze the stream of data from your devices and to
drive operational productivity and profitability.

This tutorial shows you how to provision the connected factory preconfigured solution. It also walks you through
the basic features of the preconfigured solution. You can access many of these features from the solution
dashboard that deploys as part of the preconfigured solution:

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

1. Log on to azureiotsuite.com using your Azure account credentials, and click "+" to create a solution.
2. Click Select on the Connected factory tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Subscription and Region you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connected-factory-overview.md
http://azure.microsoft.com/pricing/free-trial/

NOTE

Scenario overview

View the solution dashboard

4. Click the tile to see the details of your solution in the right-hand pane.

If you encounter issues deploying the preconfigured solution, review Permissions on the azureiotsuite.com site and the FAQ.
If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

When you deploy the connected factory preconfigured solution, it is prepopulated with resources that enable you
to step through a common industrial scenario. In this scenario, several factories connected to the solution report
the data values required to compute overall equipment efficiency (OEE) and key performance indicators (KPIs). The
following sections show you how to:

Monitor factory, production lines, station OEE, and KPI values
Analyze the telemetry data generated from these devices using Azure Time Series Insights
Act on alerts to fix issues

A key feature of this scenario is that you can perform all these actions remotely from the solution dashboard. You
do not need physical access to the devices.

The solution dashboard enables you to manage the deployed solution. It is a hierarchical representation of a global
factory configuration. For example, you can view OEE and KPIs, publish new nodes for telemetry and action alerts.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your connected factory solution portal in a new tab.

http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot

View factories

2. By default, the solution portal shows the dashboard. Use the menu on the left-hand side of the page to
navigate to other areas of the portal.

The dashboard displays the following information:

A Factory list panel that shows the status, location, and current production configuration in the solution. When
you first run the solution, there are a number of simulated devices. The production line simulation is composed
of three real OPC UA servers per production line that perform simulated tasks and share data.
A map that displays the location of each device connected to the solution. The solution can use the Bing Maps
API to plot information on the map. If your subscription is enabled for Bing Maps Enterprise API, then this
feature is used automatically. If not, see the FAQ to learn how to make the map dynamic.
An Alerts panel that displays alerts generated when a telemetry or OEE/KPI value exceeds a specific threshold.
An Overall Equipment Efficiency panel that shows the OEE values for the whole enterprise, or the
factory/production line/station you are viewing. This value is aggregated from the station view to the enterprise
level. The OEE figure and its constituent elements can be further analyzed.
Key Performance Indicators panel that displays the number of units produced and energy used by the whole
enterprise or the factory/production line/station you are viewing. These values are aggregated from a station
view to the enterprise level.

The Factories panel shows you the geographical location of all the factories in the solution, their status, and current
production configuration. From the locations list, you can navigate to the other levels in the solution hierarchy. The
rows in the list are hyperlinks that link details of the production lines at that location. It is then possible to drill into
the production line details and down to the station level view. You can also apply a filter to the list.

View map

View alerts

1. The Factory panel shows the factory list for this solution.

2. The factory list initially shows six factories created by the provisioning process. You can add additional
simulated and physical devices to the solution.

3. To view the details of a factory, click the row in the factory list.

4. To view the details of a production line, click the row in the list.

5. To view the published OPC UA nodes of a station on the production line, click the row in the list.

6. To view details on a specific node in the station, click the row in the list. This action launches the context
panel with Time Series Insights visualizations. Click these graphs to do further analysis in the Time Series
Insights explorer environment.

If your subscription has access to the Bing Maps API, the Factories map shows you the geographical location and
status of all the factories in the solution. Click the locations displayed on the map to drill into the location details.

The Alert history panel shows you the alerts that are being generated due to a reported value or a calculated
OEE/KPI value exceeding its configured threshold. This panel displays alerts at each level of the hierarchy, from the
station level view to the global view. The alerts contain a description of the alert, date, time, location, and number

NOTE

View overall equipment efficiency

of occurrences. You can gain insights in to the data that caused the alert using the Time Series Insights data. The
Time Series Insights data is visualized in the alerts where applicable. If you are an Administrator, you can take
default actions on the alerts such as:

Close the alert.
Acknowledge the alert.

Optionally, you can take more complex actions. For example, for the Pressure OPC UA Node of the Assembly you
could:

Load a web page in a new browser window to show supporting information.
Call an OPC UA method on the device to mitigate the alert cause.
Suppress the availability of the default actions.

These alerts are generated by rules that are specified in a configuration file in the preconfigured solution. These rules can
generate alerts when the OEE or KPI figures or OPC UA Node values are exceeding their configured threshold.

1. The Alerts panel shows the alerts generated in this solution.

2. To view the details of an alert, click the alert in the alerts panel.

3. To further analyze the alert data, click the graph in the alert panel to open the Time Series Insights explorer
environment.

4. To address the alert, several actions are available in the alert panel. Choose the appropriate option for you
and click the execute action command button.

OEE rates the efficiency of the manufacturing process using a key production-related operational parameters. OEE
is an industry standard measure calculated by multiplying the availability rate, performance rate, and quality rate:
OEE = availability x performance x quality.

1. To view OEE for any level in the hierarchy, navigate to the specific view you require. The OEE for that view
displays in the panel along with each of the elements that make up the OEE percentage.

2. To further analyze the OEE for any level in the hierarchy data, click either the OEE percentage, availability
percentage, performance percentage, or quality percentage. A context panel appears with Time Series
Insights powered visualizations that shows data from the last hour, last 24 hours, and last 7 days.

3. To further analyze the alert data, click the graph in the alert panel. This action opens the Time Series Insights
explorer environment.

View Key Performance Indicators

Scenario review

Other features

The solution provides two key performance indicators, units per hour and energy used in kWh.

1. To view units per hour or energy used for any level in the hierarchy, navigate to the specific view you
require. The units per hour and energy used display in the panel.

2. To further analyze units per hour or energy used for any level in the hierarchy data, click either the units
produced or the energy used gauge in the Key Performance Indicators panel. A context panel appears
with Time Series Insights powered visualizations enabling you to view data from the last hour, the last 24
hours, and last 7 days.

In this scenario, you monitored your factories OEE and KPIs values, in the dashboard. You then used Time Series
Insights to provide more information to help drill further into the telemetry data for OEE and KPIs to help with
detecting anomalies. You also used the alert panel to view issues with your factories and you used the actions
available to you to resolve the alert.

The following sections describe some additional features of the connected factory preconfigured solution that are
not described as part of the previous scenario.

Apply filters

NOTE

1. Click the chevron to display a list of available filters in either the factory locations panel or the alerts panel.

2. The filters panel is displayed for you.

3. Choose the filter that you require, it is also possible to type free text into the filter fields if you require.

4. The filter is then applied for you. The filter state is also shown in the dashboard via a funnel that displays in
the factories and alerts tables.

An active filter does not affect the displayed OEE and KPI values, it only filters the list contents.

5. To clear a filter, click the funnel and click filter in the filter context panel. The text All is displayed in the
factories and alerts tables.

Browse an OPC UA server
When you deploy the preconfigured solution, you automatically provision simulated OPC UA servers that you can
browse via the solution browser. These servers are simulated OPC UA servers. Simulated servers make it easy for
you to experiment with the preconfigured solution without the need to deploy real, physical servers. If you do want
to connect a real OPC UA server to the solution, see the Connect your OPC UA device to the connected factory
preconfigured solution tutorial.

1. Click the factory icon in the dashboard navigation bar.

2. Choose one of the servers from the preconfigured list. This list shows the servers that are deployed for you
in the preconfigured solution.

3. Click Connect, a security dialog displays. For the simulation, it is safe to click Proceed

4. Click any of the nodes in the server tree to expand it. Nodes that are publishing telemetry have a tick mark
beside them.

Publish a node

5. Right-click an item to read, write, publish, or call that node. The actions available to you depend on your
permissions and the attributes of the node. The read option to displays a context panel showing the value of
the specific node. The write option displays a context panel where you can enter a new value. The call option
displays a node where you can enter the parameters for the call.

When you browse a simulated OPC UA server, you can also choose to publish new nodes. You can analyze the
telemetry from these nodes in the solution. These simulated OPC UA servers make it easy for you to experiment
with the preconfigured solution without the need to deploy real, physical devices.

1. Browse to a node in the OPC UA server browser tree that you wish to publish.

2. Right-click the node.

3. Choose Publish.

4. A context panel appears which tells you that the publish has succeeded. The node appears in the station
level view with a check mark beside it.

Command and control
The connected factory allows you command and control your industry devices directly from the cloud. You can use
this feature to respond to alerts generated by the device. For example, you could send a command to the device
from the cloud. You can find the available commands in the StationCommands node in the OPC UA servers
browser tree. In this scenario, you are opening a pressure release valve on the assembly station of a production
line in Munich. To use the command and control functionality, you must be in the Administrator role for the
preconfigured solution deployment.

1. Browse to the StationCommands node in the OPC UA server browser tree.

2. Choose the command that you wish use.

3. Right-click the node.

4. Choose Call.

5. A context panel appears informing you which method you are about to call and any parameter details is
applicable.

Behind the scenes

6. Choose Call.

7. The context panel is updated to inform you that the method call succeeded. You can verify the call
succeeded by reading the value of the pressure node that updated as a result of the call.

When you deploy a preconfigured solution, the deployment process creates multiple resources in the Azure
subscription you selected. You can view these resources in the Azure portal. The deployment process creates a
resource group with a name based on the name you choose for your preconfigured solution:

http://portal.azure.com/

NOTE

Next Steps

You can view the settings of each resource by selecting it in the list of resources in the resource group.

You can also view the source code for the preconfigured solution. The connected factory preconfigured solution
source code is in the azure-iot-connected-factory GitHub repository:

When you are done, you can delete the preconfigured solution from your Azure subscription on the
azureiotsuite.com site. This site enables you to easily delete all the resources that were provisioned when you
created the preconfigured solution.

To ensure that you delete everything related to the preconfigured solution, delete it on the azureiotsuite.com site. Do not
delete the resource group in the portal.

Now that you’ve deployed a working preconfigured solution, you can continue getting started with IoT Suite by
reading the following articles:

Connected factory preconfigured solution walkthrough
Connect your device to the Connected factory preconfigured solution
Permissions on the azureiotsuite.com site

https://github.com/Azure/azure-iot-connected-factory
https://www.azureiotsuite.com
https://www.azureiotsuite.com

Remote monitoring preconfigured solution
walkthrough
5/10/2017 • 9 min to read • Edit Online

Introduction

Logical architecture

Simulated devices

The IoT Suite remote monitoring preconfigured solution is an implementation of an end-to-end monitoring
solution for multiple machines running in remote locations. The solution combines key Azure services to provide
a generic implementation of the business scenario. You can use the solution as a starting point for your own
implementation and customize it to meet your own specific business requirements.

This article walks you through some of the key elements of the remote monitoring solution to enable you to
understand how it works. This knowledge helps you to:

Troubleshoot issues in the solution.
Plan how to customize to the solution to meet your own specific requirements.
Design your own IoT solution that uses Azure services.

The following diagram outlines the logical components of the preconfigured solution:

In the preconfigured solution, the simulated device represents a cooling device (such as a building air conditioner
or facility air handling unit). When you deploy the preconfigured solution, you also automatically provision four
simulated devices that run in an Azure WebJob. The simulated devices make it easy for you to explore the
behavior of the solution without the need to deploy any physical devices. To deploy a real physical device, see the

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-remote-monitoring-sample-walkthrough.md
https://azure.microsoft.com/documentation/articles/websites-webjobs-resources/

Device-to-cloud messages

MESSAGE DESCRIPTION

Startup When the device starts, it sends a device-info message
containing information about itself to the back end. This data
includes the device id and a list of the commands and
methods the device supports.

Presence A device periodically sends a presence message to report
whether the device can sense the presence of a sensor.

Telemetry A device periodically sends a telemetry message that reports
simulated values for the temperature and humidity collected
from the device's simulated sensors.

NOTE

Properties and device twins

PROPERTY PURPOSE

Config.TelemetryInterval Frequency (seconds) the device sends telemetry

Config.TemperatureMeanValue Specifies the mean value for the simulated temperature
telemetry

Device.DeviceID Id that is either provided or assigned when a device is created
in the solution

Device.DeviceState State reported by the device

Device.CreatedTime Time the device was created in the solution

Device.StartupTime Time the device was started

Device.LastDesiredPropertyChange The version number of the last desired property change

Device.Location.Latitude Latitude location of the device

Device.Location.Longitude Longitude location of the device

System.Manufacturer Device manufacturer

System.ModelNumber Model number of the device

Connect your device to the remote monitoring preconfigured solution tutorial.

Each simulated device can send the following message types to IoT Hub:

The solution stores the list of commands supported by the device in a Cosmos DB database and not in the device twin.

The simulated devices send the following device properties to the twin in the IoT hub as reported properties. The
device sends reported properties at startup and in response to a Change Device State command or method.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins

System.SerialNumber Serial number of the device

System.FirmwareVersion Current version of firmware on the device

System.Platform Platform architecture of the device

System.Processor Processor running the device

System.InstalledRAM Amount of RAM installed on the device

PROPERTY PURPOSE

NOTE

Methods

METHOD DESCRIPTION

InitiateFirmwareUpdate Instructs the device to perform a firmware update

Reboot Instructs the device to reboot

FactoryReset Instructs the device to perform a factory reset

Commands

The simulator seeds these properties in simulated devices with sample values. Each time the simulator initializes a
simulated device, the device reports the pre-defined metadata to IoT Hub as reported properties. Reported
properties can only be updated by the device. To change a reported property, you set a desired property in
solution portal. It is the responsibility of the device to:

1. Periodically retrieve desired properties from the IoT hub.
2. Update its configuration with the desired property value.
3. Send the new value back to the hub as a reported property.

From the solution dashboard, you can use desired properties to set properties on a device by using the device
twin. Typically, a device reads a desired property value from the hub to update its internal state and report the
change back as a reported property.

The simulated device code only uses the Desired.Config.TemperatureMeanValue and
Desired.Config.TelemetryInterval desired properties to update the reported properties sent back to IoT Hub. All other
desired property change requests are ignored in the simulated device.

The simulated devices can handle the following methods (direct methods) invoked from the solution portal
through the IoT hub:

Some methods use reported properties to report on progress. For example, the InitiateFirmwareUpdate
method simulates running the update asynchronously on the device. The method returns immediately on the
device, while the asynchronous task continues to send status updates back to the solution dashboard using
reported properties.

The simulated devices can handle the following commands (cloud-to-device messages) sent from the solution
portal through the IoT hub:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-direct-methods

COMMAND DESCRIPTION

PingDevice Sends a ping to the device to check it is alive

StartTelemetry Starts the device sending telemetry

StopTelemetry Stops the device from sending telemetry

ChangeSetPointTemp Changes the set point value around which the random data is
generated

DiagnosticTelemetry Triggers the device simulator to send an additional telemetry
value (externalTemp)

ChangeDeviceState Changes an extended state property for the device and sends
the device info message from the device

NOTE

IoT Hub

Azure Stream Analytics

SELECT * FROM DeviceDataStream Partition By PartitionId WHERE ObjectType = 'DeviceInfo'

For a comparison of these commands (cloud-to-device messages) and methods (direct methods), see Cloud-to-device
communications guidance.

The IoT hub ingests data sent from the devices into the cloud and makes it available to the Azure Stream Analytics
(ASA) jobs. Each stream ASA job uses a separate IoT Hub consumer group to read the stream of messages from
your devices.

The IoT hub in the solution also:

Maintains an identity registry that stores the ids and authentication keys of all the devices permitted to connect
to the portal. You can enable and disable devices through the identity registry.
Sends commands to your devices on behalf of the solution portal.
Invokes methods on your devices on behalf of the solution portal.
Maintains device twins for all registered devices. A device twin stores the property values reported by a device.
A device twin also stores desired properties, set in the solution portal, for the device to retrieve when it next
connects.
Schedules jobs to set properties for multiple devices or invoke methods on multiple devices.

In the remote monitoring solution, Azure Stream Analytics (ASA) dispatches device messages received by the IoT
hub to other back-end components for processing or storage. Different ASA jobs perform specific functions based
on the content of the messages.

Job 1: Device Info filters device information messages from the incoming message stream and sends them to an
Event Hub endpoint. A device sends device information messages at startup and in response to a
SendDeviceInfo command. This job uses the following query definition to identify device-info messages:

This job sends its output to an Event Hub for further processing.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-c2d-guidance
https://azure.microsoft.com/documentation/services/iot-hub/
https://azure.microsoft.com/documentation/services/stream-analytics/

WITH AlarmsData AS
(
SELECT
 Stream.IoTHub.ConnectionDeviceId AS DeviceId,
 'Temperature' as ReadingType,
 Stream.Temperature as Reading,
 Ref.Temperature as Threshold,
 Ref.TemperatureRuleOutput as RuleOutput,
 Stream.EventEnqueuedUtcTime AS [Time]
FROM IoTTelemetryStream Stream
JOIN DeviceRulesBlob Ref ON Stream.IoTHub.ConnectionDeviceId = Ref.DeviceID
WHERE
 Ref.Temperature IS NOT null AND Stream.Temperature > Ref.Temperature

UNION ALL

SELECT
 Stream.IoTHub.ConnectionDeviceId AS DeviceId,
 'Humidity' as ReadingType,
 Stream.Humidity as Reading,
 Ref.Humidity as Threshold,
 Ref.HumidityRuleOutput as RuleOutput,
 Stream.EventEnqueuedUtcTime AS [Time]
FROM IoTTelemetryStream Stream
JOIN DeviceRulesBlob Ref ON Stream.IoTHub.ConnectionDeviceId = Ref.DeviceID
WHERE
 Ref.Humidity IS NOT null AND Stream.Humidity > Ref.Humidity
)

SELECT *
INTO DeviceRulesMonitoring
FROM AlarmsData

SELECT *
INTO DeviceRulesHub
FROM AlarmsData

Job 2: Rules evaluates incoming temperature and humidity telemetry values against per-device thresholds.
Threshold values are set in the rules editor available in the solution portal. Each device/value pair is stored by
timestamp in a blob which Stream Analytics reads in as Reference Data. The job compares any non-empty value
against the set threshold for the device. If it exceeds the '>' condition, the job outputs an alarm event that
indicates that the threshold is exceeded and provides the device, value, and timestamp values. This job uses the
following query definition to identify telemetry messages that should trigger an alarm:

The job sends its output to an Event Hub for further processing and saves details of each alert to blob storage
from where the solution portal can read the alert information.

Job 3: Telemetry operates on the incoming device telemetry stream in two ways. The first sends all telemetry
messages from the devices to persistent blob storage for long-term storage. The second computes average,
minimum, and maximum humidity values over a five-minute sliding window and sends this data to blob storage.
The solution portal reads the telemetry data from blob storage to populate the charts. This job uses the following
query definition:

WITH
 [StreamData]
AS (
 SELECT
 *
 FROM [IoTHubStream]
 WHERE
 [ObjectType] IS NULL -- Filter out device info and command responses
)

SELECT
 IoTHub.ConnectionDeviceId AS DeviceId,
 Temperature,
 Humidity,
 ExternalTemperature,
 EventProcessedUtcTime,
 PartitionId,
 EventEnqueuedUtcTime,
 *
INTO
 [Telemetry]
FROM
 [StreamData]

SELECT
 IoTHub.ConnectionDeviceId AS DeviceId,
 AVG (Humidity) AS [AverageHumidity],
 MIN(Humidity) AS [MinimumHumidity],
 MAX(Humidity) AS [MaxHumidity],
 5.0 AS TimeframeMinutes
INTO
 [TelemetrySummary]
FROM [StreamData]
WHERE
 [Humidity] IS NOT NULL
GROUP BY
 IoTHub.ConnectionDeviceId,
 SlidingWindow (mi, 5)

Event Hubs

Azure storage

WebJobs

Cosmos DB

The device info and rules ASA jobs output their data to Event Hubs to reliably forward on to the Event
Processor running in the WebJob.

The solution uses Azure blob storage to persist all the raw and summarized telemetry data from the devices in the
solution. The portal reads the telemetry data from blob storage to populate the charts. To display alerts, the
solution portal reads the data from blob storage that records when telemetry values exceeded the configured
threshold values. The solution also uses blob storage to record the threshold values you set in the solution portal.

In addition to hosting the device simulators, the WebJobs in the solution also host the Event Processor running
in an Azure WebJob that handles command responses. It uses command response messages to update the device
command history (stored in the Cosmos DB database).

The solution uses a Cosmos DB database to store information about the devices connected to the solution. This

Solution portal

Dashboard

Device list

Next steps

information includes the history of commands sent to devices from the solution portal and of methods invoked
from the solution portal.

The solution portal is a web app deployed as part of the preconfigured solution. The key pages in the solution
portal are the dashboard and the device list.

This page in the web app uses PowerBI javascript controls (See PowerBI-visuals repo) to visualize the telemetry
data from the devices. The solution uses the ASA telemetry job to write the telemetry data to blob storage.

From this page in the solution portal you can:

Provision a new device. This action sets the unique device id and generates the authentication key. It writes
information about the device to both the IoT Hub identity registry and the solution-specific Cosmos DB
database.
Manage device properties. This action includes viewing existing properties and updating with new properties.
Send commands to a device.
View the command history for a device.
Enable and disable devices.

The following TechNet blog posts provide more detail about the remote monitoring preconfigured solution:

IoT Suite - Under The Hood - Remote Monitoring
IoT Suite - Remote Monitoring - Adding Live and Simulated Devices

You can continue getting started with IoT Suite by reading the following articles:

Connect your device to the remote monitoring preconfigured solution
Permissions on the azureiotsuite.com site

https://www.github.com/Microsoft/PowerBI-visuals
http://social.technet.microsoft.com/wiki/contents/articles/32941.iot-suite-under-the-hood-remote-monitoring.aspx
http://social.technet.microsoft.com/wiki/contents/articles/32975.iot-suite-remote-monitoring-adding-live-and-simulated-devices.aspx

Predictive maintenance preconfigured solution
walkthrough
4/25/2017 • 3 min to read • Edit Online

Introduction

Logical architecture

The IoT Suite predictive maintenance preconfigured solution is an end-to-end solution for a business scenario that
predicts the point at which a failure is likely to occur. You can use this preconfigured solution proactively for
activities such as optimizing maintenance. The solution combines key Azure IoT Suite services, such as IoT Hub,
Stream analytics, and an Azure Machine Learning workspace. This workspace contains a model, based on a public
sample data set, to predict the Remaining Useful Life (RUL) of an aircraft engine. The solution fully implements the
IoT business scenario as a starting point for you to plan and implement a solution that meets your own specific
business requirements.

The following diagram outlines the logical components of the preconfigured solution:

The blue items are Azure services that are provisioned in the region you select when you provision the
preconfigured solution. The list of regions where you can deploy the preconfigured solution displays on the
provisioning page.

The green item is a simulated device that represents an aircraft engine. You can learn more about these simulated
devices in the following section.

The gray items represent components that implement device management capabilities. The current release of the
predictive maintenance preconfigured solution does not provision these resources. To learn more about device

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-predictive-walkthrough.md
https://azure.microsoft.com/services/machine-learning/
https://www.azureiotsuite.com/

Simulated devices

COMMAND DESCRIPTION

StartTelemetry Controls the state of the simulation.
Starts the device sending telemetry

StopTelemetry Controls the state of the simulation.
Stops the device sending telemetry

Azure Stream Analytics job

Event processor

Machine Learning

Next steps

management, refer to the remote monitoring pre-configured solution.

In the preconfigured solution, a simulated device represents an aircraft engine. The solution is provisioned with two
engines that map to a single aircraft. Each engine emits four types of telemetry: Sensor 9, Sensor 11, Sensor 14,
and Sensor 15 provide the data necessary for the Machine Learning model to calculate the RUL for the engine.
Each simulated device sends the following telemetry messages to IoT Hub:

Cycle count. A cycle represents a completed flight with a duration between two and ten hours. During the flight,
telemetry data is captured every half hour.

Telemetry. There are four sensors that represent engine attributes. The sensors are generically labeled Sensor 9,
Sensor 11, Sensor 14, and Sensor 15. These four sensors represent telemetry sufficient to obtain useful results
from the RUL model. The model used in the preconfigured solution is created from a public data set that includes
real engine sensor data. For more information on how the model was created from the original data set, see the
Cortana Intelligence Gallery Predictive Maintenance Template.

The simulated devices can handle the following commands sent from the IoT hub in the solution:

IoT Hub provides device command acknowledgment.

Job: Telemetry operates on the incoming device telemetry stream using two statements. The first selects all
telemetry from the devices and sends this data to blob storage from where it is visualized in the web app. The
second statement computes average sensor values over a two-minute sliding window and sends this data through
the Event hub to an event processor.

The event processor host runs in an Azure Web Job. The event processor takes the average sensor values for a
completed cycle. It then passes those values to an API that exposes trained model to calculate the RUL for an
engine. The API is exposed by a Machine Learning workspace that is provisioned as part of the solution.

The Machine Learning component uses a model derived from data collected from real aircraft engines. You can
navigate to the Machine Learning workspace from the tile on the azureiotsuite.com page for your provisioned
solution when the solution is in the Ready state.

Now you've seen the key components of the predictive maintenance preconfigured solution, you may want to
customize it. See Guidance on customizing preconfigured solutions.

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

http://gallery.cortanaintelligence.com/Collection/Predictive-Maintenance-Template-3
https://www.azureiotsuite.com/

Frequently asked questions for IoT Suite
IoT security from the ground up

Connected factory preconfigured solution
walkthrough
5/11/2017 • 4 min to read • Edit Online

Logical architecture

The IoT Suite connected factory preconfigured solution is an implementation of an end-to-end industrial solution
that:

Connects to both simulated industrial devices running OPC UA servers in simulated factory production lines,
and real OPC UA server devices.
Shows operational KPIs and OEE of those devices and production lines.
Demonstrates how a cloud-based application could be used to interact with OPC UA server systems.
Enables you to connect your own OPC UA server devices.
Enables you to browse and modify the OPC UA server data.
Integrates with the Azure Time Series Insights (TSI) service to provide customized views of the data from your
OPC UA servers.

You can use the solution as a starting point for your own implementation and customize it to meet your own
specific business requirements.

This article walks you through some of the key elements of the connected factory solution to enable you to
understand how it works. This knowledge helps you to:

Troubleshoot issues in the solution.
Plan how to customize to the solution to meet your own specific requirements.
Design your own IoT solution that uses Azure services.

The following diagram outlines the logical components of the preconfigured solution:

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connected-factory-sample-walkthrough.md

Simulation

Simulated production line

Simulated manufacturing execution system

The simulated stations and the simulated manufacturing execution systems (MES) make up a factory production
line. The simulated devices and the OPC Publisher Module are based on the OPC UA .NET Standard published by
the OPC Foundation.

The OPC Proxy and OPC Publisher are implemented as modules based on the Azure IoT Edge. Each simulated
production line has a designated gateway attached.

All simulation components run in Docker containers hosted in an Azure Linux VM. The simulation is configured to
run eight simulated production lines by default.

A production line manufactures parts. It is composed of different stations: an assembly station, a test station, and a
packaging station.

The simulation runs and updates the data that is exposed through the OPC UA nodes. All simulated production line
stations are orchestrated by the MES through OPC UA.

The MES monitors each station in the production line through OPC UA to detect station status changes. It calls OPC
UA methods to control the stations and passes a product from one station to the next until it is complete.

https://github.com/OPCFoundation/UA-.NETStandardLibrary
https://github.com/azure/azure-iot-gateway-sdk

Gateway OPC publisher module

Gateway OPC proxy module

Azure Time Series Insights

IoT Hub

OPC Publisher Module connects to the station OPC UA servers and subscribes to the OPC nodes to be published.
The module converts the node data into JSON format, encrypts it, and sends it to IoT Hub as OPC UA Pub/Sub
messages.

The OPC Publisher module only requires an outbound https port (443) and can work with existing enterprise
infrastructure.

The Gateway OPC UA Proxy Module tunnels binary OPC UA command and control messages and only requires an
outbound https port (443). It can work with existing enterprise infrastructure, including Web Proxies.

It uses IoT Hub Device methods to transfer packetized TCP/IP data at the application layer and thus ensures
endpoint trust, data encryption, and integrity using SSL/TLS.

The OPC UA binary protocol relayed through the proxy itself uses UA authentication and encryption.

The Gateway OPC Publisher Module subscribes to OPC UA server nodes to detect change in the data values. If a
data change is detected in one of the nodes, this module then sends messages to Azure IoT Hub.

IoT Hub provides an event source to Azure TSI. TSI stores data for 30 days based on timestamps attached to the
messages. This data includes:

OPC UA ApplicationUri
OPC UA NodeId
Value of the node
Source timestamp
OPC UA DisplayName

Currently, TSI does not allow customers to customize how long they wish to keep the data for.

TSI queries against node data using a SearchSpan (Time.From, Time.To) and aggregates by OPC UA ApplicationUri
or OPC UA NodeId or OPC UA DisplayName.

To retrieve the data for the OEE and KPI gauges, and the time series charts, data is aggregated by count of events,
Sum, Avg, Min, and Max.

The time series are built using a different process. OEE and KPIs are calculated from station base data and bubbled
up for the topology (production lines, factories, enterprise) in the application.

Additionally, time series for OEE and KPI topology is calculated in the app, whenever a displayed timespan is ready.
For example, the day view is updated every full hour.

The time series view of node data comes directly from TSI using an aggregation for timespan.

The IoT hub receives data sent from the OPC Publisher Module into the cloud and makes it available to the Azure
TSI service.

The IoT Hub in the solution also:

Maintains an identity registry that stores the IDs for all OPC Publisher Module and all OPC Proxy Modules.
Is used as transport channel for bidirectional communication of the OPC Proxy Module.

https://azure.microsoft.com/documentation/services/iot-hub/

Azure Storage

Web app

Next steps

The solution uses Azure blob storage as disk storage for the VM and to store deployment data.

The web app deployed as part of the preconfigured solution comprises of an integrated OPC UA client, alerts
processing and telemetry visualization.

You can continue getting started with IoT Suite by reading the following articles:

Permissions on the azureiotsuite.com site

Connect your Microsoft Azure IoT Raspberry Pi 3
Starter Kit to the remote monitoring solution
5/4/2017 • 1 min to read • Edit Online

The tutorials
TUTORIAL NOTES LANGUAGES

Simulated telemetry (Basic) Simulates sensor data. Uses a
standalone Raspberry Pi.

C, Node.js

Real sensor (Intermediate) Uses data from a BME280 sensor
connected to your Raspberry Pi.

C, Node.js

Implement firmware update (Advanced) Uses data from a BME280 sensor
connected to your Raspberry Pi. Enables
remote firmware updates on your
Raspberry Pi.

C, Node.js

Next steps

The tutorials in this section help you learn how to connect a Raspberry Pi 3 device to the remote monitoring
solution. Choose the tutorial appropriate to your preferred programming language and the whether you have the
sensor hardware available to use with your Raspberry Pi.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-get-started.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and send simulated telemetry
using C
5/3/2017 • 8 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Raspberry Pi 3 to simulate temperature and humidity data to send to the
cloud. The tutorial uses:

Raspbian OS, the C programming language, and the Microsoft Azure IoT SDK for C to implement a sample
device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send simulated telemetry
that you can view on the solution dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-c-get-started-simulator.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured solution
at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily recreate it.
For more information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT
Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using

NOTE

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Download and configure the sample

Clone the repositories

Update the device connection string

NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating
system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot the
Raspberry Pi from this card and choose to install the Raspbian OS.

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

You can now download and configure the remote monitoring client application on your Raspberry Pi.

If you haven't already done so, clone the required repositories by running the following commands in a terminal
on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-c-raspberrypi-getstartedkit.git

Open the sample source file in the nano editor using the following command:

https://www.raspberrypi.org/learning/software-guide/quickstart/
https://azure.microsoft.com/develop/iot/starter-kits/
https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

static const char* deviceId = "[Device Id]";
static const char* connectionString = "HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device
Id];SharedAccessKey=[Device Key]";

Build the sample

View the telemetry

nano ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/simulator/remote_monitoring/remote_monitoring.c

Locate the following lines:

Replace the placeholder values with the device and IoT Hub information you created and saved at the start of this
tutorial. Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

Install the prerequisite packages for the Microsoft Azure IoT Device SDK for C by running the following commands
in a terminal on the Raspberry Pi:

sudo apt-get update

sudo apt-get install g++ make cmake git libcurl4-openssl-dev libssl-dev uuid-dev

You can now build the updated sample solution on the Raspberry Pi:

chmod +x ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/simulator/build.sh

~/iot-remote-monitoring-c-raspberrypi-getstartedkit/simulator/build.sh

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo ~/cmake/remote_monitoring/remote_monitoring

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Act on the device

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

From the solution dashboard, you can invoke methods on your Raspberry Pi. When the Raspberry Pi connects to
the remote monitoring solution, it sends information about the methods it supports.

In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

WARNING

Next steps

On the Invoke Method page, choose LightBlink in the Method dropdown.

Choose InvokeMethod. The simulator prints a message in the console on the Raspberry Pi. The app on the
Raspberry Pi sends an acknowledgment back to the solution dashboard:

You can switch the LED on and off using the ChangeLightStatus method with a LightStatusValue set to 1
for on or 0 for off.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and send telemetry from a real
sensor using C
5/3/2017 • 9 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to develop a temperature
and humidity reader that can communicate with the cloud. The tutorial uses:

Raspbian OS, the C programming language, and the Microsoft Azure IoT SDK for C to implement a sample
device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device and sensors to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send telemetry that you can
view on the solution dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-c-get-started-basic.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

BME280 sensor
Breadboard
Jumper wires
Resistors
LEDs

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured solution
at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily recreate it.
For more information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT
Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using

NOTE

Set up the hardware

RASPBERRY PI BREADBOARD COLOR

GND (Pin 14) LED -ve pin (18A) Purple

GPCLK0 (Pin 7) Resistor (25A) Orange

NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating
system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot the
Raspberry Pi from this card and choose to install the Raspbian OS.

This tutorial uses the BME280 sensor included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to generate
telemetry data. It uses an LED to indicate when the Raspberry Pi processes a method invocation from the solution
dashboard.

The components on the bread board are:

Red LED
220-Ohm resistor (red, red, brown)
BME280 sensor

The following diagram shows how to connect your hardware:

The following table summarizes the connections from the Raspberry Pi to the components on the breadboard:

https://www.raspberrypi.org/learning/software-guide/quickstart/
https://azure.microsoft.com/develop/iot/starter-kits/
https://azure.microsoft.com/develop/iot/starter-kits/

SPI_CE0 (Pin 24) CS (39A) Blue

SPI_SCLK (Pin 23) SCK (36A) Yellow

SPI_MISO (Pin 21) SDO (37A) White

SPI_MOSI (Pin 19) SDI (38A) Green

GND (Pin 6) GND (35A) Black

3.3 V (Pin 1) 3Vo (34A) Red

RASPBERRY PI BREADBOARD COLOR

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Enable SPI

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

Before you can run the sample application, you must enable the Serial Peripheral Interface (SPI) bus on the
Raspberry Pi. The Raspberry Pi communicates with the BME280 sensor device over the SPI bus. Use the following
command to edit the configuration file:

sudo nano /boot/config.txt

Find the line:

https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

#dtparam=spi=on

Download and configure the sample

Clone the repositories

Update the device connection string

static const char* deviceId = "[Device Id]";
static const char* connectionString = "HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device
Id];SharedAccessKey=[Device Key]";

Build the sample

To uncomment the line, delete the # at the start.
Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).
To enable SPI, reboot the Raspberry Pi. Rebooting disconnects the terminal, you need to sign in again when
the Raspberry Pi restarts:

sudo reboot

You can now download and configure the remote monitoring client application on your Raspberry Pi.

If you haven't already done so, clone the required repositories by running the following commands in a terminal
on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-c-raspberrypi-getstartedkit.git

git clone --recursive https://github.com/WiringPi/WiringPi.git

Open the sample source file in the nano editor using the following command:

nano ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/basic/remote_monitoring/remote_monitoring.c

Locate the following lines:

Replace the placeholder values with the device and IoT Hub information you created and saved at the start of this
tutorial. Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

Install the prerequisite packages for the Microsoft Azure IoT Device SDK for C by running the following commands
in a terminal on the Raspberry Pi:

sudo apt-get update

sudo apt-get install g++ make cmake git libcurl4-openssl-dev libssl-dev uuid-dev

You can now build the updated sample solution on the Raspberry Pi:

chmod +x ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/basic/build.sh

~/iot-remote-monitoring-c-raspberrypi-getstartedkit/basic/build.sh

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo ~/cmake/remote_monitoring/remote_monitoring

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

View the telemetry

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

Act on the device
From the solution dashboard, you can invoke methods on your Raspberry Pi. When the Raspberry Pi connects to
the remote monitoring solution, it sends information about the methods it supports.

In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

On the Invoke Method page, choose LightBlink in the Method dropdown.

Choose InvokeMethod. The LED connected to the Raspberry Pi flashes several times. The app on the
Raspberry Pi sends an acknowledgment back to the solution dashboard:

WARNING

Next steps

You can switch the LED on and off using the ChangeLightStatus method with a LightStatusValue set to 1
for on or 0 for off.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and enable remote firmware
updates using C
5/3/2017 • 10 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to:

Develop a temperature and humidity reader that can communicate with the cloud.
Enable and perform a remote firmware update to update the client application on the Raspberry Pi.

The tutorial uses:

Raspbian OS, the C programming language, and the Microsoft Azure IoT SDK for C to implement a sample
device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device and sensors to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send telemetry that you can
view on the solution dashboard.
Use the sample device code to update the client application.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-c-get-started-advanced.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable
BME280 sensor
Breadboard
Jumper wires
Resistors
LEDs

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured
solution at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily
recreate it. For more information about reducing consumption while the remote monitoring solution runs, see Configuring
Azure IoT Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using

NOTE

Set up the hardware

RASPBERRY PI BREADBOARD COLOR

GND (Pin 14) LED -ve pin (18A) Purple

GPCLK0 (Pin 7) Resistor (25A) Orange

NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating
system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot the
Raspberry Pi from this card and choose to install the Raspbian OS.

This tutorial uses the BME280 sensor included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to generate
telemetry data. It uses an LED to indicate when the Raspberry Pi processes a method invocation from the solution
dashboard.

The components on the bread board are:

Red LED
220-Ohm resistor (red, red, brown)
BME280 sensor

The following diagram shows how to connect your hardware:

The following table summarizes the connections from the Raspberry Pi to the components on the breadboard:

https://www.raspberrypi.org/learning/software-guide/quickstart/
https://azure.microsoft.com/develop/iot/starter-kits/
https://azure.microsoft.com/develop/iot/starter-kits/

SPI_CE0 (Pin 24) CS (39A) Blue

SPI_SCLK (Pin 23) SCK (36A) Yellow

SPI_MISO (Pin 21) SDO (37A) White

SPI_MOSI (Pin 19) SDI (38A) Green

GND (Pin 6) GND (35A) Black

3.3 V (Pin 1) 3Vo (34A) Red

RASPBERRY PI BREADBOARD COLOR

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Enable SPI

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

Before you can run the sample application, you must enable the Serial Peripheral Interface (SPI) bus on the
Raspberry Pi. The Raspberry Pi communicates with the BME280 sensor device over the SPI bus. Use the following
command to edit the configuration file:

sudo nano /boot/config.txt

Find the line:

https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

#dtparam=spi=on

Download and configure the sample

Clone the repositories

Update the device connection string

yourdeviceid
HostName=youriothubname.azure-devices.net;DeviceId=yourdeviceid;SharedAccessKey=yourdevicekey

Build the sample

To uncomment the line, delete the # at the start.
Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).
To enable SPI, reboot the Raspberry Pi. Rebooting disconnects the terminal, you need to sign in again when
the Raspberry Pi restarts:

sudo reboot

You can now download and configure the remote monitoring client application on your Raspberry Pi.

If you haven't done so already, clone the required repositories by running the following commands on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-c-raspberrypi-getstartedkit.git

Open the sample configuration file in the nano editor using the following command:

nano ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/advanced/config/deviceinfo

Replace the placeholder values with the device ID and IoT Hub information you created and saved at the start of
this tutorial.

When you are done, the contents of the deviceinfo file should look like the following example:

Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

If you have not already done so, install the prerequisite packages for the Microsoft Azure IoT Device SDK for C by
running the following commands in a terminal on the Raspberry Pi:

sudo apt-get update

sudo apt-get install g++ make cmake git libcurl4-openssl-dev libssl-dev uuid-dev

You can now build the sample solution on the Raspberry Pi:

chmod +x ~/iot-remote-monitoring-c-raspberrypi-getstartedkit/advanced/1.0/build.sh

~/iot-remote-monitoring-c-raspberrypi-getstartedkit/advanced/1.0/build.sh

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo ~/cmake/remote_monitoring/remote_monitoring

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

View the telemetry

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

Initiate the firmware update
The firmware update process downloads and installs an updated version of the device client application on the
Raspberry Pi. For more information about the firmware update process, see the description of the firmware
update pattern in Overview of device management with IoT Hub.

You initiate the firmware update process by invoking a method on the device. This method is asynchronous, and
returns as soon as the update process begins. The device uses reported properties to notify the solution about the
progress of the update.

You invoke methods on your Raspberry Pi from the solution dashboard. When the Raspberry Pi first connects to
the remote monitoring solution, it sends information about the methods it supports.

1. In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

Observe the firmware update process

2. On the Invoke Method page, choose InitiateFirmwareUpdate in the Method dropdown.

3. In the FWPackageURI field, enter https://github.com/Azure-Samples/iot-remote-monitoring-c-
raspberrypi-getstartedkit/raw/master/advanced/2.0/package/remote_monitoring.zip. This archive
file contains the implementation of version 2.0 of the firmware.

4. Choose InvokeMethod. The app on the Raspberry Pi sends an acknowledgment back to the solution
dashboard. It then starts the firmware update process by downloading the new version of the firmware:

You can observe the firmware update process as it runs on the device and by viewing the reported properties in
the solution dashboard:

1. You can view the progress in of the update process on the Raspberry Pi:

https://github.com/Azure-Samples/iot-remote-monitoring-c-raspberrypi-getstartedkit/raw/master/advanced/2.0/package/remote_monitoring.zip

NOTE
The remote monitoring app restarts silently when the update completes. Use the command ps -ef to verify it is
running. If you want to terminate the process, use the kill command with the process id.

2. You can view the status of the firmware update, as reported by the device, in the solution portal. The
following screenshot shows the status and duration of each stage of the update process, and the new
firmware version:

If you navigate back to the dashboard, you can verify the device is still sending telemetry following the
firmware update.

WARNING

Next steps

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and send simulated telemetry
using Node.js
5/3/2017 • 8 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Raspberry Pi 3 to simulate temperature and humidity data to send to the
cloud. The tutorial uses:

Raspbian OS, the Node.js programming language, and the Microsoft Azure IoT SDK for Node.js to implement a
sample device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send simulated telemetry
that you can view on the solution dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-node-get-started-simulator.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User
Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured
solution at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily
recreate it. For more information about reducing consumption while the remote monitoring solution runs, see Configuring
Azure IoT Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using
NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating

https://www.raspberrypi.org/learning/software-guide/quickstart/

NOTE

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Download and configure the sample

Install Node.js

system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot
the Raspberry Pi from this card and choose to install the Raspbian OS.

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

You can now download and configure the remote monitoring client application on your Raspberry Pi.

If you haven't done so already, install Node.js on your Raspberry Pi. The IoT SDK for Node.js requires version
0.11.5 of Node.js or later. The following steps show you how to install Node.js v6.10.2 on your Raspberry Pi:

1. Use the following command to update your Raspberry Pi:

sudo apt-get update

2. Use the following command to download the Node.js binaries to your Raspberry Pi:

wget https://nodejs.org/dist/v6.10.2/node-v6.10.2-linux-armv7l.tar.gz

3. Use the following command to install the binaries:

https://azure.microsoft.com/develop/iot/starter-kits/
https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

Clone the repositories

Update the device connection string

var connectionString = 'HostName=[Your IoT hub name].azure-devices.net;DeviceId=[Your device
id];SharedAccessKey=[Your device key]';

Run the sample

sudo tar -C /usr/local --strip-components 1 -xzf node-v6.10.2-linux-armv7l.tar.gz

4. Use the following command to verify you have installed Node.js v6.10.2 successfully:

node --version

If you haven't already done so, clone the required repositories by running the following commands in a terminal
on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-node-raspberrypi-getstartedkit.git

Open the sample source file in the nano editor using the following command:

nano ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/simulator/remote_monitoring.js

Find the line:

Replace the placeholder values with the device and IoT Hub information you created and saved at the start of this
tutorial. Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

Run the following commands to install the prerequisite packages for the sample:

cd ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/simulator

npm install

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo node ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/simulator/remote_monitoring.js

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

View the telemetry

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

Act on the device
From the solution dashboard, you can invoke methods on your Raspberry Pi. When the Raspberry Pi connects to
the remote monitoring solution, it sends information about the methods it supports.

In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

On the Invoke Method page, choose LightBlink in the Method dropdown.

Choose InvokeMethod. The simulator prints a message in the console on the Raspberry Pi. The app on the
Raspberry Pi sends an acknowledgment back to the solution dashboard:

WARNING

Next steps

You can switch the LED on and off using the ChangeLightStatus method with a LightStatusValue set to
1 for on or 0 for off.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and send telemetry from a real
sensor using Node.js
5/3/2017 • 9 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to develop a temperature
and humidity reader that can communicate with the cloud. The tutorial uses:

Raspbian OS, the Node.js programming language, and the Microsoft Azure IoT SDK for Node.js to implement a
sample device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device and sensors to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send telemetry that you can
view on the solution dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-node-get-started-basic.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

BME280 sensor
Breadboard
Jumper wires
Resistors
LEDs

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User
Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured
solution at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily
recreate it. For more information about reducing consumption while the remote monitoring solution runs, see Configuring
Azure IoT Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using
NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating

https://www.raspberrypi.org/learning/software-guide/quickstart/

NOTE

Set up the hardware

RASPBERRY PI BREADBOARD COLOR

GND (Pin 14) LED -ve pin (18A) Purple

GPCLK0 (Pin 7) Resistor (25A) Orange

SPI_CE0 (Pin 24) CS (39A) Blue

system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot
the Raspberry Pi from this card and choose to install the Raspbian OS.

This tutorial uses the BME280 sensor included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to generate
telemetry data. It uses an LED to indicate when the Raspberry Pi processes a method invocation from the solution
dashboard.

The components on the bread board are:

Red LED
220-Ohm resistor (red, red, brown)
BME280 sensor

The following diagram shows how to connect your hardware:

The following table summarizes the connections from the Raspberry Pi to the components on the breadboard:

https://azure.microsoft.com/develop/iot/starter-kits/
https://azure.microsoft.com/develop/iot/starter-kits/

SPI_SCLK (Pin 23) SCK (36A) Yellow

SPI_MISO (Pin 21) SDO (37A) White

SPI_MOSI (Pin 19) SDI (38A) Green

GND (Pin 6) GND (35A) Black

3.3 V (Pin 1) 3Vo (34A) Red

RASPBERRY PI BREADBOARD COLOR

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Enable SPI

#dtparam=spi=on

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

Before you can run the sample application, you must enable the Serial Peripheral Interface (SPI) bus on the
Raspberry Pi. The Raspberry Pi communicates with the BME280 sensor device over the SPI bus. Use the following
command to edit the configuration file:

sudo nano /boot/config.txt

Find the line:

https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

Download and configure the sample

Install Node.js

Clone the repositories

Update the device connection string

var connectionString = 'HostName=[Your IoT hub name].azure-devices.net;DeviceId=[Your device
id];SharedAccessKey=[Your device key]';

Run the sample

To uncomment the line, delete the # at the start.
Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).
To enable SPI, reboot the Raspberry Pi. Rebooting disconnects the terminal, you need to sign in again when
the Raspberry Pi restarts:

sudo reboot

You can now download and configure the remote monitoring client application on your Raspberry Pi.

Install Node.js on your Raspberry Pi. The IoT SDK for Node.js requires version 0.11.5 of Node.js or later. The
following steps show you how to install Node.js v6.10.2 on your Raspberry Pi:

1. Use the following command to update your Raspberry Pi:

sudo apt-get update

2. Use the following command to download the Node.js binaries to your Raspberry Pi:

wget https://nodejs.org/dist/v6.10.2/node-v6.10.2-linux-armv7l.tar.gz

3. Use the following command to install the binaries:

sudo tar -C /usr/local --strip-components 1 -xzf node-v6.10.2-linux-armv7l.tar.gz

4. Use the following command to verify you have installed Node.js v6.10.2 successfully:

node --version

If you haven't already done so, clone the required repositories by running the following commands on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-node-raspberrypi-
getstartedkit.git

Open the sample source file in the nano editor using the following command:

nano ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/basic/remote_monitoring.js

Find the line:

Replace the placeholder values with the device and IoT Hub information you created and saved at the start of this
tutorial. Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

Run the following commands to install the prerequisite packages for the sample:

cd ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/basic

npm install

View the telemetry

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo node ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/basic/remote_monitoring.js

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

Act on the device
From the solution dashboard, you can invoke methods on your Raspberry Pi. When the Raspberry Pi connects to
the remote monitoring solution, it sends information about the methods it supports.

In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

On the Invoke Method page, choose LightBlink in the Method dropdown.

Choose InvokeMethod. The LED connected to the Raspberry Pi flashes several times. The app on the
Raspberry Pi sends an acknowledgment back to the solution dashboard:

WARNING

Next steps

You can switch the LED on and off using the ChangeLightStatus method with a LightStatusValue set to
1 for on or 0 for off.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Raspberry Pi 3 to the remote
monitoring solution and enable remote firmware
updates using Node.js
5/3/2017 • 11 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

This tutorial shows you how to use the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to:

Develop a temperature and humidity reader that can communicate with the cloud.
Enable and perform a remote firmware update to update the client application on the Raspberry Pi.

The tutorial uses:

Raspbian OS, the Node.js programming language, and the Microsoft Azure IoT SDK for Node.js to implement a
sample device.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your device and sensors to communicate with your computer and the remote monitoring solution.
Update the sample device code to connect to the remote monitoring solution, and send telemetry that you can
view on the solution dashboard.
Use the sample device code to update the client application.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the
Raspberry Pi.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility. For more information, see SSH
Using Linux or Mac OS.

A desktop computer to enable you to connect remotely to the command line on the Raspberry Pi.

Microsoft IoT Starter Kit for Raspberry Pi 3 or equivalent components. This tutorial uses the following items from
the kit:

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-raspberry-pi-kit-node-get-started-advanced.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://azure.microsoft.com/develop/iot/starter-kits/

Provision the solution

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

Raspberry Pi 3
MicroSD Card (with NOOBS)
A USB Mini cable
An Ethernet cable
BME280 sensor
Breadboard
Jumper wires
Resistors
LEDs

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User
Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured
solution at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily
recreate it. For more information about reducing consumption while the remote monitoring solution runs, see Configuring
Azure IoT Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. You can navigate to other areas of the solution portal
using the menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

If you haven't already done so, add a custom device to your remote monitoring solution. Complete the following
steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as rasppi, click Check ID to verify you
haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Raspberry Pi
Install Raspbian

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then
click Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

If this is the first time you are using your Raspberry Pi, you need to install the Raspbian operating system using
NOOBS on the SD card included in the kit. The Raspberry Pi Software Guide describes how to install an operating

https://www.raspberrypi.org/learning/software-guide/quickstart/

NOTE

Set up the hardware

RASPBERRY PI BREADBOARD COLOR

GND (Pin 14) LED -ve pin (18A) Purple

GPCLK0 (Pin 7) Resistor (25A) Orange

SPI_CE0 (Pin 24) CS (39A) Blue

system on your Raspberry Pi. This tutorial assumes you have installed the Raspbian operating system on your
Raspberry Pi.

The SD card included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 already has NOOBS installed. You can boot
the Raspberry Pi from this card and choose to install the Raspbian OS.

This tutorial uses the BME280 sensor included in the Microsoft Azure IoT Starter Kit for Raspberry Pi 3 to generate
telemetry data. It uses an LED to indicate when the Raspberry Pi processes a method invocation from the solution
dashboard.

The components on the bread board are:

Red LED
220-Ohm resistor (red, red, brown)
BME280 sensor

The following diagram shows how to connect your hardware:

The following table summarizes the connections from the Raspberry Pi to the components on the breadboard:

https://azure.microsoft.com/develop/iot/starter-kits/
https://azure.microsoft.com/develop/iot/starter-kits/

SPI_SCLK (Pin 23) SCK (36A) Yellow

SPI_MISO (Pin 21) SDO (37A) White

SPI_MOSI (Pin 19) SDI (38A) Green

GND (Pin 6) GND (35A) Black

3.3 V (Pin 1) 3Vo (34A) Red

RASPBERRY PI BREADBOARD COLOR

Sign in and access the terminal

Use a terminal Window in the GUI

Sign in with SSH

Optional: Share a folder on your Raspberry Pi

Enable SPI

#dtparam=spi=on

To complete the hardware setup, you need to:

Connect your Raspberry Pi to the power supply included in the kit.
Connect your Raspberry Pi to your network using the Ethernet cable included in your kit. Alternatively, you can
set up Wireless Connectivity for your Raspberry Pi.

You have now completed the hardware setup of your Raspberry Pi.

You have two options to access a terminal environment on your Raspberry Pi:

If you have a keyboard and monitor connected to your Raspberry Pi, you can use the Raspbian GUI to
access a terminal window.

Access the command line on your Raspberry Pi using SSH from your desktop machine.

The default credentials for Raspbian are username pi and password raspberry. In the task bar in the GUI, you can
launch the Terminal utility using the icon that looks like a monitor.

You can use SSH for command-line access to your Raspberry Pi. The article SSH (Secure Shell) describes how to
configure SSH on your Raspberry Pi, and how to connect from Windows or Linux & Mac OS.

Sign in with username pi and password raspberry.

Optionally, you may want to share a folder on your Raspberry Pi with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Raspberry Pi instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Raspberry Pi. Alternatively, use the built-in SFTP
server with an SFTP client on your desktop.

Before you can run the sample application, you must enable the Serial Peripheral Interface (SPI) bus on the
Raspberry Pi. The Raspberry Pi communicates with the BME280 sensor device over the SPI bus. Use the following
command to edit the configuration file:

sudo nano /boot/config.txt

Find the line:

https://www.raspberrypi.org/documentation/configuration/wireless/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.raspberrypi.org/documentation/remote-access/

Download and configure the sample

Install Node.js

Clone the repositories

Update the device connection string

yourdeviceid
HostName=youriothubname.azure-devices.net;DeviceId=yourdeviceid;SharedAccessKey=yourdevicekey

Run the sample

To uncomment the line, delete the # at the start.
Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).
To enable SPI, reboot the Raspberry Pi. Rebooting disconnects the terminal, you need to sign in again when
the Raspberry Pi restarts:

sudo reboot

You can now download and configure the remote monitoring client application on your Raspberry Pi.

If you haven't done so already, install Node.js on your Raspberry Pi. The IoT SDK for Node.js requires version
0.11.5 of Node.js or later. The following steps show you how to install Node.js v6.10.2 on your Raspberry Pi:

1. Use the following command to update your Raspberry Pi:

sudo apt-get update

2. Use the following command to download the Node.js binaries to your Raspberry Pi:

wget https://nodejs.org/dist/v6.10.2/node-v6.10.2-linux-armv7l.tar.gz

3. Use the following command to install the binaries:

sudo tar -C /usr/local --strip-components 1 -xzf node-v6.10.2-linux-armv7l.tar.gz

4. Use the following command to verify you have installed Node.js v6.10.2 successfully:

node --version

If you haven't done so already, clone the required repositories by running the following commands on your Pi:

cd ~

git clone --recursive https://github.com/Azure-Samples/iot-remote-monitoring-node-raspberrypi-
getstartedkit.git

Open the sample configuration file in the nano editor using the following command:

nano ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/advanced/config/deviceinfo

Replace the placeholder values with the device id and IoT Hub information you created and saved at the start of
this tutorial.

When you are done, the contents of the deviceinfo file should look like the following example:

Save your changes (Ctrl-O, Enter) and exit the editor (Ctrl-X).

Run the following commands to install the prerequisite packages for the sample:

cd ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/advance/1.0

View the telemetry

npm install

You can now run the sample program on the Raspberry Pi. Enter the command:

sudo node ~/iot-remote-monitoring-node-raspberrypi-getstartedkit/advanced/1.0/remote_monitoring.js

The following sample output is an example of the output you see at the command prompt on the Raspberry Pi:

Press Ctrl-C to exit the program at any time.

The Raspberry Pi is now sending telemetry to the remote monitoring solution. You can view the telemetry on the
solution dashboard. You can also send messages to your Raspberry Pi from the solution dashboard.

Navigate to the solution dashboard.
Select your device in the Device to View dropdown.
The telemetry from the Raspberry Pi displays on the dashboard.

Initiate the firmware update
The firmware update process downloads and installs an updated version of the device client application on the
Raspberry Pi. For more information about the firmware update process, see the description of the firmware
update pattern in Overview of device management with IoT Hub.

You initiate the firmware update process by invoking a method on the device. This method is asynchronous, and
returns as soon as the update process begins. The device uses reported properties to notify the solution about the
progress of the update.

You invoke methods on your Raspberry Pi from the solution dashboard. When the Raspberry Pi first connects to
the remote monitoring solution, it sends information about the methods it supports.

1. In the solution dashboard, click Devices to visit the Devices page. Select your Raspberry Pi in the Device
List. Then choose Methods:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

Observe the firmware update process

2. On the Invoke Method page, choose InitiateFirmwareUpdate in the Method dropdown.

3. In the FWPackageURI field, enter https://raw.githubusercontent.com/IoTChinaTeam/iot-remote-
monitoring-node-raspberrypi-getstartedkit/master/advanced/2.0/raspberry.js. This file contains
the implementation of version 2.0 of the firmware.

4. Choose InvokeMethod. The app on the Raspberry Pi sends an acknowledgment back to the solution
dashboard. It then starts the firmware update process by downloading the new version of the firmware:

You can observe the firmware update process as it runs on the device and by viewing the reported properties in
the solution dashboard:

1. You can view the progress in of the update process on the Raspberry Pi:

https://raw.githubusercontent.com/IoTChinaTeam/iot-remote-monitoring-node-raspberrypi-getstartedkit/master/advanced/2.0/raspberry.js

NOTE
The remote monitoring app restarts silently when the update completes. Use the command ps -ef to verify it is
running. If you want to terminate the process, use the kill command with the process id.

2. You can view the status of the firmware update, as reported by the device, in the solution portal. The
following screenshot shows the status and duration of each stage of the update process, and the new
firmware version:

If you navigate back to the dashboard, you can verify the device is still sending telemetry following the

WARNING

Next steps

firmware update.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Azure IoT gateway to the remote
monitoring preconfigured solution and send
simulated telemetry
5/10/2017 • 8 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

Provision the solution

This tutorial shows you how to use the Azure IoT Edge to simulate temperature and humidity data to send to the
remote monitoring preconfigured solution. The tutorial uses:

The Azure IoT Edge to implement a sample gateway.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your Intel NUC gateway device to communicate with your computer and the remote monitoring solution.
Configure the gateway to send simulated telemetry that you can view on the solution dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the Intel
NUC.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility.

A desktop computer to enable you to connect remotely to the command line on the Intel NUC.

IoT Commercial Gateway Kit. This tutorial uses the following items from the kit:

Intel® NUC Kit DE3815TYKE with 4G Memory and Bluetooth expansion card
Power adaptor

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-gateway-kit-get-started-simulator.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://azure.microsoft.com/develop/iot/starter-kits/
https://www.azureiotsuite.com

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured solution
at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily recreate it.
For more information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT
Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. Navigate to other areas of the solution portal using the
menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as device01, click Check ID to verify
you haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Intel NUC

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now receive
telemetry from your device and invoke methods on the device.

Repeat the previous steps to add a second device using a Device ID such as device02. The sample sends data from
two simulated devices in the gateway to the remote monitoring solution.

To complete the hardware setup, you need to:

Connect your Intel NUC to the power supply included in the kit.

Sign in and access the terminal

Sign in with SSH

Optional: Share a folder on your Intel NUC

Build the gateway

Install the gateway

Connect your Intel NUC to your network using an Ethernet cable.

You have now completed the hardware setup of your Intel NUC gateway device.

You have two options to access a terminal environment on your Intel NUC:

If you have a keyboard and monitor connected to your Intel NUC, you can access the shell directly. The
default credentials are username root and password root.

Access the shell on your Intel NUC using SSH from your desktop machine.

To sign in with SSH, you need the IP address of your Intel NUC. If you have a keyboard and monitor connected to
your Intel NUC, use the ifconfig command to find the IP address. Alternatively, connect to your router to list the
addresses of devices on your network.

Sign in with username root and password root.

Optionally, you may want to share a folder on your Intel NUC with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Intel NUC instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Intel NUC. Alternatively, use the SFTP server on
the Intel NUC with an SFTP client on your desktop machine.

This tutorial uses custom gateway modules to communicate with the remote monitoring preconfigured solution.
Therefore, you need to build the modules from custom source code. The following sections describe how to install
the gateway and build the custom gateway module.

The following steps describe how to install the pre-compiled gateway software on the Intel NUC:

smart channel --add IoT_Cloud type=rpm-md name="IoT_Cloud" baseurl=http://iotdk.intel.com/repos/iot-
cloud/wrlinux7/rcpl13/ -y
smart channel --add WR_Repo type=rpm-md baseurl=https://distro.windriver.com/release/idp-3-
xt/public_feeds/WR-IDP-3-XT-Intel-Baytrail-public-repo/RCPL13/corei7_64/

smart update

smart config --set rpm-check-signatures=false
smart install packagegroup-cloud-azure -y

1. Configure the required smart package repositories by running the following commands on the Intel NUC:

Enter y when the command prompts you to Include this channel?.

2. Update the smart package manager by running the following command:

3. Install the Azure IoT Edge package by running the following command:

4. Verify the installation by running the "Hello world" sample. This sample writes a hello world message to the
log.txT file every five seconds. The following commands run the "Hello world" sample:

https://code.visualstudio.com/
http://www.sublimetext.com/

Troubleshooting

Build the custom gateway module

cd ~
git clone https://github.com/Azure-Samples/iot-remote-monitoring-c-intel-nuc-gateway-getting-started.git

cd ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/simulator
chmod u+x build.sh
sed -i -e 's/\r$//' build.sh
./build.sh

Configure and run the gateway

TIP

vi ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/simulator/remote_monitoring.json

cd /usr/share/azureiotgatewaysdk/samples/hello_world/
./hello_world hello_world.json

cat log.txt | more

Ignore any invalid argument messages when you stop the sample.

Use the following command to view the contents of the log file:

If you receive the error "No package provides util-linux-dev", try rebooting the Intel NUC.

You can now build the custom gateway module that enables the gateway to send messages to the remote
monitoring solution. For more information about configuring a gateway and gateway modules, see Azure IoT Edge
concepts.

Download the source code for the custom modules from GitHub using the following commands:

Build the custom module using the following commands:

The build script places the libsimulator.so custom module in the build folder.

You can now configure the gateway to send simulated telemetry to your remote monitoring dashboard. For more
information about configuring a gateway and gateway modules, see Azure IoT Edge concepts.

In this tutorial, you use the standard vi text editor on the Intel NUC. If you have not used vi before, you should
complete an introductory tutorial, such as Unix - The vi Editor Tutorial to familiarize yourself with this editor. Alternatively,
you can install the more user-friendly nano editor using the command smart install nano -y .

Open the sample configuration file in the vi editor using the following command:

Locate the following lines in the configuration for the IoTHub module:

https://docs.microsoft.com/azure/iot-hub/iot-hub-linux-gateway-sdk-get-started
https://docs.microsoft.com/azure/iot-hub/iot-hub-linux-gateway-sdk-get-started
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
https://www.nano-editor.org/

"args": {
 "IoTHubName": "<<Azure IoT Hub Name>>",
 "IoTHubSuffix": "<<Azure IoT Hub Suffix>>",
 "Transport": "http"
}

args": [
 {
 "macAddress": "AA:BB:CC:DD:EE:FF",
 "deviceId": "<<Azure IoT Hub Device ID>>",
 "deviceKey": "<<Azure IoT Hub Device Key>>>"
 },
 {
 "macAddress": "AA:BB:CC:DD:EE:FF",
 "deviceId": "<<Azure IoT Hub Device ID>>",
 "deviceKey": "<<Azure IoT Hub Device Key>>"
 }
]

cd ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/simulator
/usr/share/azureiotgatewaysdk/samples/simulated_device_cloud_upload/simulated_device_cloud_upload
remote_monitoring.json

Replace the placeholder values with the IoT Hub information you created and saved at the start of this tutorial. The
value for IoTHubName looks like yourrmsolution37e08, and the value for IoTSuffix is typically azure-
devices.net.

Locate the following lines in the configuration for the mapping module:

Replace the deviceID and deviceKey placeholders with the IDs and keys for the two devices you created in the
remote monitoring solution previously.

Save your changes.

You can now run the gateway using the following commands:

The gateway starts on the Intel NUC and sends simulated telemetry to the remote monitoring solution:

View the telemetry

WARNING

Next steps

Press Ctrl-C to exit the program at any time.

The gateway is now sending simulated telemetry to the remote monitoring solution. You can view the telemetry on
the solution dashboard.

Navigate to the solution dashboard.
Select one of the two devices you configured in the gateway in the Device to View dropdown.
The telemetry from the gateway devices displays on the dashboard.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your Azure IoT gateway to the remote
monitoring preconfigured solution and send
telemetry from a SensorTag
5/10/2017 • 10 min to read • Edit Online

Overview

Prerequisites

NOTE

Required software

Required hardware

Provision the solution

This tutorial shows you how to use Azure IoT Edge to send temperature and humidity data from SensorTag device
to the remote monitoring preconfigured solution. The SensorTag connects to the Intel NUC gateway using
Bluetooth. The tutorial uses:

The Azure IoT Edge to implement a sample gateway.
The IoT Suite remote monitoring preconfigured solution as the cloud-based back end.

In this tutorial, you complete the following steps:

Deploy an instance of the remote monitoring preconfigured solution to your Azure subscription. This step
automatically deploys and configures multiple Azure services.
Set up your Intel NUC gateway device to communicate with your computer and the remote monitoring
solution.
Set up your Intel NUC gateway to receive telemetry from a SensorTag device and send it to the remote
monitoring dashboard.

To complete this tutorial, you need an active Azure subscription.

If you don’t have an account, you can create a free trial account in just a couple of minutes. For details, see Azure Free Trial.

You need SSH client on your desktop machine to enable you to remotely access the command line on the Intel
NUC.

Windows does not include an SSH client. We recommend using PuTTY.
Most Linux distributions and Mac OS include the command-line SSH utility.

A desktop computer to enable you to connect remotely to the command line on the Intel NUC.

IoT Commercial Gateway Kit. This tutorial uses the following items from the kit:

Intel® NUC Kit DE3815TYKE with 4G Memory and Bluetooth expansion card
Power adaptor

Texas Instruments BLE SensorTag. This tutorial retrieves telemetry data over Bluetooth from the SensorTag device.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-gateway-kit-get-started-sensortag.md
http://azure.microsoft.com/pricing/free-trial/
http://www.putty.org/
https://azure.microsoft.com/develop/iot/starter-kits/
http://www.ti.com/ww/en/wireless_connectivity/sensortag/

Wait for the provisioning process to complete

NOTE

WARNING

View the solution dashboard

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

The remote monitoring solution provisions a set of Azure services in your Azure subscription. The deployment reflects a real
enterprise architecture. To avoid unnecessary Azure consumption charges, delete your instance of the preconfigured solution
at azureiotsuite.com when you have finished with it. If you need the preconfigured solution again, you can easily recreate it.
For more information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT
Suite preconfigured solutions for demo purposes.

The solution dashboard enables you to manage the deployed solution. For example, you can view telemetry, add
devices, and invoke methods.

1. When the provisioning is complete and the tile for your preconfigured solution indicates Ready, choose
Launch to open your remote monitoring solution portal in a new tab.

https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md

Add a device

2. By default, the solution portal shows the dashboard. Navigate to other areas of the solution portal using the
menu on the left-hand side of the page.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as device01, click Check ID to verify
you haven't already used the name in your solution, and then click Create to provision the device.

Prepare your Intel NUC

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client
application on the Raspberry Pi needs these values to connect to the remote monitoring solution. Then click
Done.

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click
Enable Device. The status of your device is now Running. The remote monitoring solution can now
receive telemetry from your device and invoke methods on the device.

To complete the hardware setup, you need to:

Connect your Intel NUC to the power supply included in the kit.
Connect your Intel NUC to your network using an Ethernet cable.

You have now completed the hardware setup of your Intel NUC gateway device.

Sign in and access the terminal

Sign in with SSH

Optional: Share a folder on your Intel NUC

Configure Bluetooth connectivity

Find the MAC address of the SensorTag

You have two options to access a terminal environment on your Intel NUC:

If you have a keyboard and monitor connected to your Intel NUC, you can access the shell directly. The
default credentials are username root and password root.

Access the shell on your Intel NUC using SSH from your desktop machine.

To sign in with SSH, you need the IP address of your Intel NUC. If you have a keyboard and monitor connected to
your Intel NUC, use the ifconfig command to find the IP address. Alternatively, connect to your router to list the
addresses of devices on your network.

Sign in with username root and password root.

Optionally, you may want to share a folder on your Intel NUC with your desktop environment. Sharing a folder
enables you to use your preferred desktop text editor (such as Visual Studio Code or Sublime Text) to edit files on
your Intel NUC instead of using nano or vi .

To share a folder with Windows, configure a Samba server on the Intel NUC. Alternatively, use the SFTP server on
the Intel NUC with an SFTP client on your desktop machine.

Configure Bluetooth on the Intel NUC to enable the SensorTag device to connect and send telemetry.

sudo rfkill unblock bluetooth

sudo systemctl start bluetooth
bluetoothctl

power on

scan on

1. In the shell on the Intel NUC, run the following command to unblock the Bluetooth service:

2. Run the following commands to start the Bluetooth service on the Intel NUC and enter the Bluetooth shell:

3. Run the following command to power on the Bluetooth controller:

When the controller is on, you see a message Changing power on succeeded.

4. Run the following command to scan for nearby Bluetooth devices:

5. Press the power button on the SensorTag to make it discoverable. The green LED flashes.

6. When you see a message in the shell that the controller has discovered the SensorTag, make a note of the
MAC address of the device. The MAC address looks like A0:E6:F8:B5:F6:00. You need the MAC address later
in the tutorial when you configure the gateway.

7. Run the following command to turn off Bluetooth scanning:

https://code.visualstudio.com/
http://www.sublimetext.com/

Build the gateway

Install the gateway

scan off

connect <SensorTag MAC address>

disconnect
exit

8. Run the following command to verify that you can connect to the SensorTag device:

If you connect successfully, the shell shows the message Connection successful and prints information
about the SensorTag device. If you cannot connect, check the SensorTag is still powered on.

9. You can now disconnect from the SensorTag and exit the Bluetooth shell by running the following
commands:

This tutorial uses custom gateway modules to communicate with the remote monitoring preconfigured solution.
Therefore, you need to build the modules from custom source code. The following sections describe how to install
the gateway and build the custom gateway module.

The following steps describe how to install the pre-compiled gateway software on the Intel NUC:

smart channel --add IoT_Cloud type=rpm-md name="IoT_Cloud" baseurl=http://iotdk.intel.com/repos/iot-
cloud/wrlinux7/rcpl13/ -y
smart channel --add WR_Repo type=rpm-md baseurl=https://distro.windriver.com/release/idp-3-
xt/public_feeds/WR-IDP-3-XT-Intel-Baytrail-public-repo/RCPL13/corei7_64/

smart update

smart config --set rpm-check-signatures=false
smart install packagegroup-cloud-azure -y

cd /usr/share/azureiotgatewaysdk/samples/hello_world/
./hello_world hello_world.json

1. Configure the required smart package repositories by running the following commands on the Intel NUC:

Enter y when the command prompts you to Include this channel?.

2. Update the smart package manager by running the following command:

3. Install the Azure IoT Edge package by running the following command:

4. Verify the installation by running the "Hello world" sample. This sample writes a hello world message to the
log.txT file every five seconds. The following commands run the "Hello world" sample:

Ignore any invalid argument messages when you stop the sample.

Use the following command to view the contents of the log file:

Troubleshooting

Build the custom gateway module

cd ~
git clone https://github.com/Azure-Samples/iot-remote-monitoring-c-intel-nuc-gateway-getting-started.git

cd ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/basic
chmod u+x build.sh
sed -i -e 's/\r$//' build.sh
./build.sh

Configure and run the gateway

TIP

vi ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/basic/remote_monitoring.json

"args": {
 "IoTHubName": "<<Azure IoT Hub Name>>",
 "IoTHubSuffix": "<<Azure IoT Hub Suffix>>",
 "Transport": "http"
}

cat log.txt | more

If you receive the error "No package provides util-linux-dev", try rebooting the Intel NUC.

You can now build the custom gateway module that enables the gateway to send messages to the remote
monitoring solution. For more information about configuring a gateway and gateway modules, see Azure IoT Edge
concepts.

Download the source code for the custom modules from GitHub using the following commands:

Build the custom module using the following commands:

The build script places the libsensor2remotemonitoring.so custom module in the build folder.

You can now configure the gateway to send telemetry from your SensorTag device to your remote monitoring
dashboard. For more information about configuring a gateway and gateway modules, see Azure IoT Edge concepts.

In this tutorial, you use the standard vi text editor on the Intel NUC. If you have not used vi before, you should
complete an introductory tutorial, such as Unix - The vi Editor Tutorial to familiarize yourself with this editor. Alternatively,
you can install the more user-friendly nano editor using the command smart install nano -y .

Open the sample configuration file in the vi editor using the following command:

Locate the following lines in the configuration for the IoTHub module:

Replace the placeholder values with the IoT Hub information you created and saved at the start of this tutorial. The
value for IoTHubName looks like yourrmsolution37e08, and the value for IoTSuffix is typically azure-
devices.net.

https://docs.microsoft.com/azure/iot-hub/iot-hub-linux-gateway-sdk-get-started
https://docs.microsoft.com/azure/iot-hub/iot-hub-linux-gateway-sdk-get-started
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
https://www.nano-editor.org/

args": [
 {
 "macAddress": "<<AA:BB:CC:DD:EE:FF>>",
 "deviceId": "<<Azure IoT Hub Device ID>>",
 "deviceKey": "<<Azure IoT Hub Device Key>>>"
 }
]

"args": {
 "controller_index": 0,
 "device_mac_address": "<<AA:BB:CC:DD:EE:FF>>",
 ...
}

cd ~/iot-remote-monitoring-c-intel-nuc-gateway-getting-started/basic
/usr/share/azureiotgatewaysdk/samples/ble_gateway/ble_gateway remote_monitoring.json

View the telemetry

Locate the following lines in the configuration for the mapping module:

Replace the macAddress placeholder with the MAC address of your SensorTag you noted previously. Replace the
deviceID and deviceKey placeholders with the IDs and keys for the two devices you created in the remote
monitoring solution previously.

Locate the following lines in the configuration for the SensorTag module:

Replace the device_mac_address placeholder with the MAC address of your SensorTag you noted previously.

Save your changes.

You can now run the gateway using the following commands:

The gateway starts on the Intel NUC and sends telemetry from the SensorTag to the remote monitoring solution:

Press Ctrl-C to exit the program at any time.

WARNING

Next steps

The gateway is now sending telemetry from the SensorTag device to the remote monitoring solution. You can view
the telemetry on the solution dashboard. You can also send commands to your SensorTag device through the
gateway from the solution dashboard.

Navigate to the solution dashboard.
Select the device you configured in the gateway that represents the SensorTag in the Device to View
dropdown.
The telemetry from the SensorTag device displays on the dashboard.

If you leave the remote monitoring solution running in your Azure account, you are billed for the time it runs. For more
information about reducing consumption while the remote monitoring solution runs, see Configuring Azure IoT Suite
preconfigured solutions for demo purposes. Delete the preconfigured solution from your Azure account when you have
finished using it.

Visit the Azure IoT Dev Center for more samples and documentation on Azure IoT.

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/configure-preconfigured-demo.md
https://azure.microsoft.com/develop/iot/

Connect your device to the remote monitoring
preconfigured solution (Windows)
3/9/2017 • 11 min to read • Edit Online

Scenario overview

Before you start

Provision your remote monitoring preconfigured solution

WARNING

In this scenario, you create a device that sends the following telemetry to the remote monitoring preconfigured
solution:

External temperature
Internal temperature
Humidity

For simplicity, the code on the device generates sample values, but we encourage you to extend the sample by
connecting real sensors to your device and sending real telemetry.

The device is also able to respond to methods invoked from the solution dashboard and desired property values
set in the solution dashboard.

To complete this tutorial, you need an active Azure account. If you don't have an account, you can create a free
trial account in just a couple of minutes. For details, see Azure Free Trial.

Before you write any code for your device, you must provision your remote monitoring preconfigured solution
and provision a new custom device in that solution.

The device you create in this tutorial sends data to an instance of the remote monitoring preconfigured solution.
If you haven't already provisioned the remote monitoring preconfigured solution in your Azure account, use the
following steps:

1. On the https://www.azureiotsuite.com/ page, click + to create a solution.
2. Click Select on the Remote monitoring panel to create your solution.
3. On the Create Remote monitoring solution page, enter a Solution name of your choice, select the

Region you want to deploy to, and select the Azure subscription to want to use. Then click Create solution.
4. Wait until the provisioning process completes.

The preconfigured solutions use billable Azure services. Be sure to remove the preconfigured solution from your
subscription when you are done with it to avoid any unnecessary charges. You can completely remove a preconfigured
solution from your subscription by visiting the https://www.azureiotsuite.com/ page.

When the provisioning process for the remote monitoring solution finishes, click Launch to open the solution
dashboard in your browser.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connecting-devices.md
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com/
https://www.azureiotsuite.com/

Provision your device in the remote monitoring solution

NOTE
If you have already provisioned a device in your solution, you can skip this step. You need to know the device credentials
when you create the client application.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as mydevice, click Check ID to verify
that name isn't already in use, and then click Create to provision the device.

Create a C sample solution on Windows

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click Enable
Device. The status of your device is now Running. The remote monitoring solution can now receive
telemetry from your device and invoke methods on the device.

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client application
needs these values to connect to the remote monitoring solution. Then click Done.

The following steps show you how to create a client application that communicates with the remote monitoring
preconfigured solution. This application is written in C and built and run on Windows.

Create a starter project in Visual Studio 2015 or Visual Studio 2017 and add the IoT Hub device client NuGet
packages:

1. In Visual Studio, create a C console application using the Visual C++ Win32 Console Application template.
Name the project RMDevice.

2. On the Application Settings page in the Win32 Application Wizard, ensure that Console application is
selected, and uncheck Precompiled header and Security Development Lifecycle (SDL) checks.

3. In Solution Explorer, delete the files stdafx.h, targetver.h, and stdafx.cpp.

Specify the behavior of the IoT device

4. In Solution Explorer, rename the file RMDevice.cpp to RMDevice.c.

6. In Solution Explorer, right-click on the RMDevice project and then click Properties to open the project's
Property Pages dialog box. For details, see Setting Visual C++ Project Properties.

7. Click the Linker folder, then click the Input property page.
8. Add crypt32.lib to the Additional Dependencies property. Click OK and then OK again to save the project

property values.

5. In Solution Explorer, right-click on the RMDevice project and then click Manage NuGet packages.
Click Browse, then search for and install the following NuGet packages:

Microsoft.Azure.IoTHub.Serializer
Microsoft.Azure.IoTHub.IoTHubClient
Microsoft.Azure.IoTHub.MqttTransport

Add the Parson JSON library to the RMDevice project and add the required #include statements:

git clone https://github.com/kgabis/parson.git

#include "iothubtransportmqtt.h"
#include "schemalib.h"
#include "iothub_client.h"
#include "serializer_devicetwin.h"
#include "schemaserializer.h"
#include "azure_c_shared_utility/threadapi.h"
#include "azure_c_shared_utility/platform.h"
#include "parson.h"

NOTE

1. In a suitable folder on your computer, clone the Parson GitHub repository using the following command:

2. Copy the parson.h and parson.c files from the local copy of the Parson repository to your RMDevice
project folder.

3. In Visual Studio, right-click the RMDevice project, click Add, and then click Existing Item.

4. In the Add Existing Item dialog, select the parson.h and parson.c files in the RMDevice project folder.
Then click Add to add these two files to your project.

5. In Visual Studio, open the RMDevice.c file. Replace the existing #include statements with the following
code:

Now you can verify that your project has the correct dependencies set up by building it.

The IoT Hub serializer client library uses a model to specify the format of the messages the device exchanges with
IoT Hub.

1. Add the following variable declarations after the #include statements. Replace the placeholder values
[Device Id] and [Device Key] with values you noted for your device in the remote monitoring solution
dashboard. Use the IoT Hub Hostname from the solution dashboard to replace [IoTHub Name]. For
example, if your IoT Hub Hostname is contoso.azure-devices.net, replace [IoTHub Name] with contoso:

https://msdn.microsoft.com/library/669zx6zc.aspx

static const char* deviceId = "[Device Id]";
static const char* connectionString = "HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device
Id];SharedAccessKey=[Device Key]";

2. Add the following code to define the model that enables the device to communicate with IoT Hub. This
model specifies that the device:

Can send temperature, external temperature, humidity, and a device id as telemetry.
Can send metadata about the device to IoT Hub. The device sends basic metadata in a DeviceInfo
object at startup.
Can send reported properties, to the device twin in IoT Hub. These reported properties are grouped into
configuration, device, and system properties.
Can receive and act on desired properties set in the device twin in IoT Hub.
Can respond to the Reboot and InitiateFirmwareUpdate direct methods invoked through the
solution portal. The device sends information about the direct methods it supports using reported
properties.

// Define the Model
BEGIN_NAMESPACE(Contoso);

/* Reported properties */
DECLARE_STRUCT(SystemProperties,
 ascii_char_ptr, Manufacturer,
 ascii_char_ptr, FirmwareVersion,
 ascii_char_ptr, InstalledRAM,
 ascii_char_ptr, ModelNumber,
 ascii_char_ptr, Platform,
 ascii_char_ptr, Processor,
 ascii_char_ptr, SerialNumber
);

DECLARE_STRUCT(LocationProperties,
 double, Latitude,
 double, Longitude
);

DECLARE_STRUCT(ReportedDeviceProperties,
 ascii_char_ptr, DeviceState,
 LocationProperties, Location
);

DECLARE_MODEL(ConfigProperties,
 WITH_REPORTED_PROPERTY(double, TemperatureMeanValue),
 WITH_REPORTED_PROPERTY(uint8_t, TelemetryInterval)
);

/* Part of DeviceInfo */
DECLARE_STRUCT(DeviceProperties,
 ascii_char_ptr, DeviceID,
 _Bool, HubEnabledState
);

DECLARE_DEVICETWIN_MODEL(Thermostat,
 /* Telemetry (temperature, external temperature and humidity) */
 WITH_DATA(double, Temperature),
 WITH_DATA(double, ExternalTemperature),
 WITH_DATA(double, Humidity),
 WITH_DATA(ascii_char_ptr, DeviceId),

 /* DeviceInfo */
 WITH_DATA(ascii_char_ptr, ObjectType),
 WITH_DATA(_Bool, IsSimulatedDevice),
 WITH_DATA(ascii_char_ptr, Version),
 WITH_DATA(DeviceProperties, DeviceProperties),

 /* Device twin properties */
 WITH_REPORTED_PROPERTY(ReportedDeviceProperties, Device),
 WITH_REPORTED_PROPERTY(ConfigProperties, Config),
 WITH_REPORTED_PROPERTY(SystemProperties, System),

 WITH_DESIRED_PROPERTY(double, TemperatureMeanValue, onDesiredTemperatureMeanValue),
 WITH_DESIRED_PROPERTY(uint8_t, TelemetryInterval, onDesiredTelemetryInterval),

 /* Direct methods implemented by the device */
 WITH_METHOD(Reboot),
 WITH_METHOD(InitiateFirmwareUpdate, ascii_char_ptr, FwPackageURI),

 /* Register direct methods with solution portal */
 WITH_REPORTED_PROPERTY(ascii_char_ptr_no_quotes, SupportedMethods)
);

END_NAMESPACE(Contoso);

Implement the behavior of the device
Now add code that implements the behavior defined in the model.

void onDesiredTemperatureMeanValue(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TemperatureMeanValue = %f\r\n", thermostat->TemperatureMeanValue);

}

void onDesiredTelemetryInterval(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TelemetryInterval = %d\r\n", thermostat->TelemetryInterval);
}

/* Handlers for direct methods */
METHODRETURN_HANDLE Reboot(Thermostat* thermostat)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Rebooting\"");
 printf("Received reboot request\r\n");
 return result;
}

METHODRETURN_HANDLE InitiateFirmwareUpdate(Thermostat* thermostat, ascii_char_ptr FwPackageURI)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Initiating Firmware Update\"");
 printf("Recieved firmware update request. Use package at: %s\r\n", FwPackageURI);
 return result;
}

1. Add the following functions that handle the desired properties set in the solution dashboard. These desired
properties are defined in the model:

2. Add the following functions that handle the direct methods invoked through the IoT hub. These direct
methods are defined in the model:

3. Add the following function that sends a message to the preconfigured solution:

/* Send data to IoT Hub */
static void sendMessage(IOTHUB_CLIENT_HANDLE iotHubClientHandle, const unsigned char* buffer, size_t
size)
{
 IOTHUB_MESSAGE_HANDLE messageHandle = IoTHubMessage_CreateFromByteArray(buffer, size);
 if (messageHandle == NULL)
 {
 printf("unable to create a new IoTHubMessage\r\n");
 }
 else
 {
 if (IoTHubClient_SendEventAsync(iotHubClientHandle, messageHandle, NULL, NULL) !=
IOTHUB_CLIENT_OK)
 {
 printf("failed to hand over the message to IoTHubClient");
 }
 else
 {
 printf("IoTHubClient accepted the message for delivery\r\n");
 }

 IoTHubMessage_Destroy(messageHandle);
 }
 free((void*)buffer);
}

/* Callback after sending reported properties */
void deviceTwinCallback(int status_code, void* userContextCallback)
{
 (void)(userContextCallback);
 printf("IoTHub: reported properties delivered with status_code = %u\n", status_code);
}

4. Add the following callback handler that runs when the device has sent new reported property values to the
preconfigured solution:

5. Add the following function to connect your device to the preconfigured solution in the cloud, and
exchange data. This function performs the following steps:

Initializes the platform.
Registers the Contoso namespace with the serialization library.
Initializes the client with the device connection string.
Create an instance of the Thermostat model.
Creates and sends reported property values.
Sends a DeviceInfo object.
Creates a loop to send telemetry every second.

void remote_monitoring_run(void)
{
 if (platform_init() != 0)
 {
 printf("Failed to initialize the platform.\n");
 }
 else
 {
 if (SERIALIZER_REGISTER_NAMESPACE(Contoso) == NULL)
 {
 printf("Unable to SERIALIZER_REGISTER_NAMESPACE\n");
 }
 else

Deinitializes all resources.

 else
 {
 IOTHUB_CLIENT_HANDLE iotHubClientHandle =
IoTHubClient_CreateFromConnectionString(connectionString, MQTT_Protocol);
 if (iotHubClientHandle == NULL)
 {
 printf("Failure in IoTHubClient_CreateFromConnectionString\n");
 }
 else
 {
#ifdef MBED_BUILD_TIMESTAMP
 // For mbed add the certificate information
 if (IoTHubClient_SetOption(iotHubClientHandle, "TrustedCerts", certificates) !=
IOTHUB_CLIENT_OK)
 {
 printf("Failed to set option \"TrustedCerts\"\n");
 }
#endif // MBED_BUILD_TIMESTAMP
 Thermostat* thermostat = IoTHubDeviceTwin_CreateThermostat(iotHubClientHandle);
 if (thermostat == NULL)
 {
 printf("Failure in IoTHubDeviceTwin_CreateThermostat\n");
 }
 else
 {
 /* Set values for reported properties */
 thermostat->Config.TemperatureMeanValue = 55.5;
 thermostat->Config.TelemetryInterval = 3;
 thermostat->Device.DeviceState = "normal";
 thermostat->Device.Location.Latitude = 47.642877;
 thermostat->Device.Location.Longitude = -122.125497;
 thermostat->System.Manufacturer = "Contoso Inc.";
 thermostat->System.FirmwareVersion = "2.22";
 thermostat->System.InstalledRAM = "8 MB";
 thermostat->System.ModelNumber = "DB-14";
 thermostat->System.Platform = "Plat 9.75";
 thermostat->System.Processor = "i3-7";
 thermostat->System.SerialNumber = "SER21";
 /* Specify the signatures of the supported direct methods */
 thermostat->SupportedMethods = "{\"Reboot\": \"Reboot the device\",
\"InitiateFirmwareUpdate--FwPackageURI-string\": \"Updates device Firmware. Use parameter
FwPackageURI to specifiy the URI of the firmware file\"}";

 /* Send reported properties to IoT Hub */
 if (IoTHubDeviceTwin_SendReportedStateThermostat(thermostat, deviceTwinCallback,
NULL) != IOTHUB_CLIENT_OK)
 {
 printf("Failed sending serialized reported state\n");
 }
 else
 {
 printf("Send DeviceInfo object to IoT Hub at startup\n");

 thermostat->ObjectType = "DeviceInfo";
 thermostat->IsSimulatedDevice = 0;
 thermostat->Version = "1.0";
 thermostat->DeviceProperties.HubEnabledState = 1;
 thermostat->DeviceProperties.DeviceID = (char*)deviceId;

 unsigned char* buffer;
 size_t bufferSize;

 if (SERIALIZE(&buffer, &bufferSize, thermostat->ObjectType, thermostat->Version,
thermostat->IsSimulatedDevice, thermostat->DeviceProperties) != CODEFIRST_OK)
 {
 (void)printf("Failed serializing DeviceInfo\n");
 }
 else
 {

Build and run the sample

 sendMessage(iotHubClientHandle, buffer, bufferSize);
 }

 /* Send telemetry */
 thermostat->Temperature = 50;
 thermostat->ExternalTemperature = 55;
 thermostat->Humidity = 50;
 thermostat->DeviceId = (char*)deviceId;

 while (1)
 {
 unsigned char*buffer;
 size_t bufferSize;

 (void)printf("Sending sensor value Temperature = %f, Humidity = %f\n",
thermostat->Temperature, thermostat->Humidity);

 if (SERIALIZE(&buffer, &bufferSize, thermostat->DeviceId, thermostat-
>Temperature, thermostat->Humidity, thermostat->ExternalTemperature) != CODEFIRST_OK)
 {
 (void)printf("Failed sending sensor value\r\n");
 }
 else
 {
 sendMessage(iotHubClientHandle, buffer, bufferSize);
 }

 ThreadAPI_Sleep(1000);
 }

 IoTHubDeviceTwin_DestroyThermostat(thermostat);
 }
 }
 IoTHubClient_Destroy(iotHubClientHandle);
 }
 serializer_deinit();
 }
 }
 platform_deinit();
}

{"DeviceId":"mydevice01", "Temperature":50, "Humidity":50, "ExternalTemperature":55}

For reference, here is a sample Telemetry message sent to the preconfigured solution:

Add code to invoke the remote_monitoring_run function and then build and run the device application.

int main()
{
 remote_monitoring_run();
 return 0;
}

1. Replace the main function with following code to invoke the remote_monitoring_run function:

2. Click Build and then Build Solution to build the device application.

3. In Solution Explorer, right-click the RMDevice project, click Debug, and then click Start new instance
to run the sample. The console displays messages as the application sends sample telemetry to the
preconfigured solution, receives desired property values set in the solution dashboard, and responds to

View device telemetry in the dashboard

methods invoked from the solution dashboard.

The dashboard in the remote monitoring solution enables you to view the telemetry your devices send to IoT
Hub.

1. In your browser, return to the remote monitoring solution dashboard, click Devices in the left-hand panel to
navigate to the Devices list.

2. In the Devices list, you should see that the status of your device is Running. If not, click Enable Device
in the Device Details panel.

3. Click Dashboard to return to the dashboard, select your device in the Device to View drop-down to view
its telemetry. The telemetry from the sample application is 50 units for internal temperature, 55 units for
external temperature, and 50 units for humidity.

Invoke a method on your device
The dashboard in the remote monitoring solution enables you to invoke methods on your devices through IoT
Hub. For example, in the remote monitoring solution you can invoke a method to simulate rebooting a device.

1. In the remote monitoring solution dashboard, click Devices in the left-hand panel to navigate to the Devices
list.

2. Click Device ID for your device in the Devices list.
3. In the Device details panel, click Methods.

4. In the Method drop-down, select InitiateFirmwareUpdate, and then in FWPACKAGEURI enter a
dummy URL. Click Invoke Method to call the method on the device.

5. You see a message in the console running your device code when the device handles the method. The
results of the method are added to the history in the solution portal:

Next steps
The article Customizing preconfigured solutions describes some ways you can extend this sample. Possible
extensions include using real sensors and implementing additional commands.

You can learn more about the permissions on the azureiotsuite.com site.

Connect your device to the remote monitoring
preconfigured solution (Linux)
4/25/2017 • 11 min to read • Edit Online

Scenario overview

Before you start

Provision your remote monitoring preconfigured solution

WARNING

In this scenario, you create a device that sends the following telemetry to the remote monitoring preconfigured
solution:

External temperature
Internal temperature
Humidity

For simplicity, the code on the device generates sample values, but we encourage you to extend the sample by
connecting real sensors to your device and sending real telemetry.

The device is also able to respond to methods invoked from the solution dashboard and desired property values
set in the solution dashboard.

To complete this tutorial, you need an active Azure account. If you don't have an account, you can create a free trial
account in just a couple of minutes. For details, see Azure Free Trial.

Before you write any code for your device, you must provision your remote monitoring preconfigured solution
and provision a new custom device in that solution.

The device you create in this tutorial sends data to an instance of the remote monitoring preconfigured solution. If
you haven't already provisioned the remote monitoring preconfigured solution in your Azure account, use the
following steps:

1. On the https://www.azureiotsuite.com/ page, click + to create a solution.
2. Click Select on the Remote monitoring panel to create your solution.
3. On the Create Remote monitoring solution page, enter a Solution name of your choice, select the Region

you want to deploy to, and select the Azure subscription to want to use. Then click Create solution.
4. Wait until the provisioning process completes.

The preconfigured solutions use billable Azure services. Be sure to remove the preconfigured solution from your subscription
when you are done with it to avoid any unnecessary charges. You can completely remove a preconfigured solution from
your subscription by visiting the https://www.azureiotsuite.com/ page.

When the provisioning process for the remote monitoring solution finishes, click Launch to open the solution
dashboard in your browser.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connecting-devices-linux.md
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com/
https://www.azureiotsuite.com/

Provision your device in the remote monitoring solution

NOTE
If you have already provisioned a device in your solution, you can skip this step. You need to know the device credentials
when you create the client application.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as mydevice, click Check ID to verify
that name isn't already in use, and then click Create to provision the device.

Build and run a sample C client Linux

sudo apt-get install cmake gcc g++

Install the client libraries on your device

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click Enable
Device. The status of your device is now Running. The remote monitoring solution can now receive telemetry
from your device and invoke methods on the device.

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client application
needs these values to connect to the remote monitoring solution. Then click Done.

The following steps show you how to create a client application that communicates with the remote monitoring
preconfigured solution. This application is written in C and built and run on Ubuntu Linux.

To complete these steps, you need a device running Ubuntu version 15.04 or 15.10. Before proceeding, install the
prerequisite packages on your Ubuntu device using the following command:

Install the Parson JSON parser

git clone https://github.com/kgabis/parson.git

Prepare your project

#include "iothubtransportmqtt.h"
#include "schemalib.h"
#include "iothub_client.h"
#include "serializer_devicetwin.h"
#include "schemaserializer.h"
#include "azure_c_shared_utility/threadapi.h"
#include "azure_c_shared_utility/platform.h"
#include "parson.h"

Specify the behavior of the IoT device

The Azure IoT Hub client libraries are available as a package you can install on your Ubuntu device using the apt-
get command. Complete the following steps to install the package that contains the IoT Hub client library and
header files on your Ubuntu computer:

sudo add-apt-repository ppa:aziotsdklinux/ppa-azureiot
sudo apt-get update

sudo apt-get install -y azure-iot-sdk-c-dev

1. In a shell, add the AzureIoT repository to your computer:

2. Install the azure-iot-sdk-c-dev package

The IoT Hub client libraries use the Parson JSON parser to parse message payloads. In a suitable folder on your
computer, clone the Parson GitHub repository using the following command:

On your Ubuntu machine, create a folder called remote_monitoring. In the remote_monitoring folder:

Create the four files main.c, remote_monitoring.c, remote_monitoring.h, and CMakeLists.txt.
Create folder called parson.

Copy the files parson.c and parson.h from your local copy of the Parson repository into the
remote_monitoring/parson folder.

In a text editor, open the remote_monitoring.c file. Add the following #include statements:

The IoT Hub serializer client library uses a model to specify the format of the messages the device exchanges with
IoT Hub.

1. Add the following variable declarations after the #include statements. Replace the placeholder values
[Device Id] and [Device Key] with values you noted for your device in the remote monitoring solution
dashboard. Use the IoT Hub Hostname from the solution dashboard to replace [IoTHub Name]. For example,
if your IoT Hub Hostname is contoso.azure-devices.net, replace [IoTHub Name] with contoso:

static const char* deviceId = "[Device Id]";
static const char* connectionString = "HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device
Id];SharedAccessKey=[Device Key]";

2. Add the following code to define the model that enables the device to communicate with IoT Hub. This
model specifies that the device:

Can send temperature, external temperature, humidity, and a device id as telemetry.
Can send metadata about the device to IoT Hub. The device sends basic metadata in a DeviceInfo object
at startup.
Can send reported properties, to the device twin in IoT Hub. These reported properties are grouped into
configuration, device, and system properties.
Can receive and act on desired properties set in the device twin in IoT Hub.
Can respond to the Reboot and InitiateFirmwareUpdate direct methods invoked through the
solution portal. The device sends information about the direct methods it supports using reported
properties.

// Define the Model
BEGIN_NAMESPACE(Contoso);

/* Reported properties */
DECLARE_STRUCT(SystemProperties,
 ascii_char_ptr, Manufacturer,
 ascii_char_ptr, FirmwareVersion,
 ascii_char_ptr, InstalledRAM,
 ascii_char_ptr, ModelNumber,
 ascii_char_ptr, Platform,
 ascii_char_ptr, Processor,
 ascii_char_ptr, SerialNumber
);

DECLARE_STRUCT(LocationProperties,
 double, Latitude,
 double, Longitude
);

DECLARE_STRUCT(ReportedDeviceProperties,
 ascii_char_ptr, DeviceState,
 LocationProperties, Location
);

DECLARE_MODEL(ConfigProperties,
 WITH_REPORTED_PROPERTY(double, TemperatureMeanValue),
 WITH_REPORTED_PROPERTY(uint8_t, TelemetryInterval)
);

/* Part of DeviceInfo */
DECLARE_STRUCT(DeviceProperties,
 ascii_char_ptr, DeviceID,
 _Bool, HubEnabledState
);

DECLARE_DEVICETWIN_MODEL(Thermostat,
 /* Telemetry (temperature, external temperature and humidity) */
 WITH_DATA(double, Temperature),
 WITH_DATA(double, ExternalTemperature),
 WITH_DATA(double, Humidity),
 WITH_DATA(ascii_char_ptr, DeviceId),

 /* DeviceInfo */
 WITH_DATA(ascii_char_ptr, ObjectType),
 WITH_DATA(_Bool, IsSimulatedDevice),
 WITH_DATA(ascii_char_ptr, Version),
 WITH_DATA(DeviceProperties, DeviceProperties),

 /* Device twin properties */
 WITH_REPORTED_PROPERTY(ReportedDeviceProperties, Device),
 WITH_REPORTED_PROPERTY(ConfigProperties, Config),
 WITH_REPORTED_PROPERTY(SystemProperties, System),

 WITH_DESIRED_PROPERTY(double, TemperatureMeanValue, onDesiredTemperatureMeanValue),
 WITH_DESIRED_PROPERTY(uint8_t, TelemetryInterval, onDesiredTelemetryInterval),

 /* Direct methods implemented by the device */
 WITH_METHOD(Reboot),
 WITH_METHOD(InitiateFirmwareUpdate, ascii_char_ptr, FwPackageURI),

 /* Register direct methods with solution portal */
 WITH_REPORTED_PROPERTY(ascii_char_ptr_no_quotes, SupportedMethods)
);

END_NAMESPACE(Contoso);

Implement the behavior of the device
Now add code that implements the behavior defined in the model.

void onDesiredTemperatureMeanValue(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TemperatureMeanValue = %f\r\n", thermostat->TemperatureMeanValue);

}

void onDesiredTelemetryInterval(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TelemetryInterval = %d\r\n", thermostat->TelemetryInterval);
}

/* Handlers for direct methods */
METHODRETURN_HANDLE Reboot(Thermostat* thermostat)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Rebooting\"");
 printf("Received reboot request\r\n");
 return result;
}

METHODRETURN_HANDLE InitiateFirmwareUpdate(Thermostat* thermostat, ascii_char_ptr FwPackageURI)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Initiating Firmware Update\"");
 printf("Recieved firmware update request. Use package at: %s\r\n", FwPackageURI);
 return result;
}

1. Add the following functions that handle the desired properties set in the solution dashboard. These desired
properties are defined in the model:

2. Add the following functions that handle the direct methods invoked through the IoT hub. These direct
methods are defined in the model:

3. Add the following function that sends a message to the preconfigured solution:

/* Send data to IoT Hub */
static void sendMessage(IOTHUB_CLIENT_HANDLE iotHubClientHandle, const unsigned char* buffer, size_t
size)
{
 IOTHUB_MESSAGE_HANDLE messageHandle = IoTHubMessage_CreateFromByteArray(buffer, size);
 if (messageHandle == NULL)
 {
 printf("unable to create a new IoTHubMessage\r\n");
 }
 else
 {
 if (IoTHubClient_SendEventAsync(iotHubClientHandle, messageHandle, NULL, NULL) != IOTHUB_CLIENT_OK)
 {
 printf("failed to hand over the message to IoTHubClient");
 }
 else
 {
 printf("IoTHubClient accepted the message for delivery\r\n");
 }

 IoTHubMessage_Destroy(messageHandle);
 }
 free((void*)buffer);
}

/* Callback after sending reported properties */
void deviceTwinCallback(int status_code, void* userContextCallback)
{
 (void)(userContextCallback);
 printf("IoTHub: reported properties delivered with status_code = %u\n", status_code);
}

4. Add the following callback handler that runs when the device has sent new reported property values to the
preconfigured solution:

5. Add the following function to connect your device to the preconfigured solution in the cloud, and exchange
data. This function performs the following steps:

Initializes the platform.
Registers the Contoso namespace with the serialization library.
Initializes the client with the device connection string.
Create an instance of the Thermostat model.
Creates and sends reported property values.
Sends a DeviceInfo object.
Creates a loop to send telemetry every second.

void remote_monitoring_run(void)
{
 if (platform_init() != 0)
 {
 printf("Failed to initialize the platform.\n");
 }
 else
 {
 if (SERIALIZER_REGISTER_NAMESPACE(Contoso) == NULL)
 {
 printf("Unable to SERIALIZER_REGISTER_NAMESPACE\n");
 }
 else
 {

Deinitializes all resources.

 {
 IOTHUB_CLIENT_HANDLE iotHubClientHandle =
IoTHubClient_CreateFromConnectionString(connectionString, MQTT_Protocol);
 if (iotHubClientHandle == NULL)
 {
 printf("Failure in IoTHubClient_CreateFromConnectionString\n");
 }
 else
 {
#ifdef MBED_BUILD_TIMESTAMP
 // For mbed add the certificate information
 if (IoTHubClient_SetOption(iotHubClientHandle, "TrustedCerts", certificates) !=
IOTHUB_CLIENT_OK)
 {
 printf("Failed to set option \"TrustedCerts\"\n");
 }
#endif // MBED_BUILD_TIMESTAMP
 Thermostat* thermostat = IoTHubDeviceTwin_CreateThermostat(iotHubClientHandle);
 if (thermostat == NULL)
 {
 printf("Failure in IoTHubDeviceTwin_CreateThermostat\n");
 }
 else
 {
 /* Set values for reported properties */
 thermostat->Config.TemperatureMeanValue = 55.5;
 thermostat->Config.TelemetryInterval = 3;
 thermostat->Device.DeviceState = "normal";
 thermostat->Device.Location.Latitude = 47.642877;
 thermostat->Device.Location.Longitude = -122.125497;
 thermostat->System.Manufacturer = "Contoso Inc.";
 thermostat->System.FirmwareVersion = "2.22";
 thermostat->System.InstalledRAM = "8 MB";
 thermostat->System.ModelNumber = "DB-14";
 thermostat->System.Platform = "Plat 9.75";
 thermostat->System.Processor = "i3-7";
 thermostat->System.SerialNumber = "SER21";
 /* Specify the signatures of the supported direct methods */
 thermostat->SupportedMethods = "{\"Reboot\": \"Reboot the device\",
\"InitiateFirmwareUpdate--FwPackageURI-string\": \"Updates device Firmware. Use parameter
FwPackageURI to specifiy the URI of the firmware file\"}";

 /* Send reported properties to IoT Hub */
 if (IoTHubDeviceTwin_SendReportedStateThermostat(thermostat, deviceTwinCallback, NULL)
!= IOTHUB_CLIENT_OK)
 {
 printf("Failed sending serialized reported state\n");
 }
 else
 {
 printf("Send DeviceInfo object to IoT Hub at startup\n");

 thermostat->ObjectType = "DeviceInfo";
 thermostat->IsSimulatedDevice = 0;
 thermostat->Version = "1.0";
 thermostat->DeviceProperties.HubEnabledState = 1;
 thermostat->DeviceProperties.DeviceID = (char*)deviceId;

 unsigned char* buffer;
 size_t bufferSize;

 if (SERIALIZE(&buffer, &bufferSize, thermostat->ObjectType, thermostat->Version,
thermostat->IsSimulatedDevice, thermostat->DeviceProperties) != CODEFIRST_OK)
 {
 (void)printf("Failed serializing DeviceInfo\n");
 }
 else
 {
 sendMessage(iotHubClientHandle, buffer, bufferSize);

Call the remote_monitoring_run function

void remote_monitoring_run(void);

#include "remote_monitoring.h"

int main(void)
{
 remote_monitoring_run();

 return 0;
}

 }

 /* Send telemetry */
 thermostat->Temperature = 50;
 thermostat->ExternalTemperature = 55;
 thermostat->Humidity = 50;
 thermostat->DeviceId = (char*)deviceId;

 while (1)
 {
 unsigned char*buffer;
 size_t bufferSize;

 (void)printf("Sending sensor value Temperature = %f, Humidity = %f\n", thermostat-
>Temperature, thermostat->Humidity);

 if (SERIALIZE(&buffer, &bufferSize, thermostat->DeviceId, thermostat->Temperature,
thermostat->Humidity, thermostat->ExternalTemperature) != CODEFIRST_OK)
 {
 (void)printf("Failed sending sensor value\r\n");
 }
 else
 {
 sendMessage(iotHubClientHandle, buffer, bufferSize);
 }

 ThreadAPI_Sleep(1000);
 }

 IoTHubDeviceTwin_DestroyThermostat(thermostat);
 }
 }
 IoTHubClient_Destroy(iotHubClientHandle);
 }
 serializer_deinit();
 }
 }
 platform_deinit();
}

{"DeviceId":"mydevice01", "Temperature":50, "Humidity":50, "ExternalTemperature":55}

For reference, here is a sample Telemetry message sent to the preconfigured solution:

In a text editor, open the remote_monitoring.h file. Add the following code:

In a text editor, open the main.c file. Add the following code:

Build and run the application
The following steps describe how to use CMake to build your client application.

macro(compileAsC99)
 if (CMAKE_VERSION VERSION_LESS "3.1")
 if (CMAKE_C_COMPILER_ID STREQUAL "GNU")
 set (CMAKE_C_FLAGS "--std=c99 ${CMAKE_C_FLAGS}")
 set (CMAKE_CXX_FLAGS "--std=c++11 ${CMAKE_CXX_FLAGS}")
 endif()
 else()
 set (CMAKE_C_STANDARD 99)
 set (CMAKE_CXX_STANDARD 11)
 endif()
endmacro(compileAsC99)

cmake_minimum_required(VERSION 2.8.11)
compileAsC99()

set(AZUREIOT_INC_FOLDER ".." "../parson" "/usr/include/azureiot" "/usr/include/azureiot/inc")

include_directories(${AZUREIOT_INC_FOLDER})

set(sample_application_c_files
 ./parson/parson.c
 ./remote_monitoring.c
 ./main.c
)

set(sample_application_h_files
 ./parson/parson.h
 ./remote_monitoring.h
)

add_executable(sample_app ${sample_application_c_files} ${sample_application_h
_files})

target_link_libraries(sample_app
 serializer
 iothub_client
 iothub_client_mqtt_transport
 aziotsharedutil
 umqtt
 pthread
 curl
 ssl
 crypto
 m
)

mkdir cmake
cd cmake
cmake ../
make

1. In a text editor, open the CMakeLists.txt file in the remote_monitoring folder.

2. Add the following instructions to define how to build your client application:

3. In the remote_monitoring folder, create a folder to store the make files that CMake generates and then
run the cmake and make commands as follows:

4. Run the client application and send telemetry to IoT Hub:

View device telemetry in the dashboard

./sample_app

The dashboard in the remote monitoring solution enables you to view the telemetry your devices send to IoT Hub.

1. In your browser, return to the remote monitoring solution dashboard, click Devices in the left-hand panel to
navigate to the Devices list.

2. In the Devices list, you should see that the status of your device is Running. If not, click Enable Device in
the Device Details panel.

3. Click Dashboard to return to the dashboard, select your device in the Device to View drop-down to view
its telemetry. The telemetry from the sample application is 50 units for internal temperature, 55 units for
external temperature, and 50 units for humidity.

Invoke a method on your device
The dashboard in the remote monitoring solution enables you to invoke methods on your devices through IoT
Hub. For example, in the remote monitoring solution you can invoke a method to simulate rebooting a device.

1. In the remote monitoring solution dashboard, click Devices in the left-hand panel to navigate to the Devices
list.

2. Click Device ID for your device in the Devices list.
3. In the Device details panel, click Methods.

4. In the Method drop-down, select InitiateFirmwareUpdate, and then in FWPACKAGEURI enter a dummy
URL. Click Invoke Method to call the method on the device.

5. You see a message in the console running your device code when the device handles the method. The
results of the method are added to the history in the solution portal:

Next steps
The article Customizing preconfigured solutions describes some ways you can extend this sample. Possible
extensions include using real sensors and implementing additional commands.

You can learn more about the permissions on the azureiotsuite.com site.

Connect your device to the remote monitoring
preconfigured solution (Node.js)
4/10/2017 • 7 min to read • Edit Online

Scenario overview

Before you start

Provision your remote monitoring preconfigured solution

WARNING

In this scenario, you create a device that sends the following telemetry to the remote monitoring preconfigured
solution:

External temperature
Internal temperature
Humidity

For simplicity, the code on the device generates sample values, but we encourage you to extend the sample by
connecting real sensors to your device and sending real telemetry.

The device is also able to respond to methods invoked from the solution dashboard and desired property values
set in the solution dashboard.

To complete this tutorial, you need an active Azure account. If you don't have an account, you can create a free trial
account in just a couple of minutes. For details, see Azure Free Trial.

Before you write any code for your device, you must provision your remote monitoring preconfigured solution
and provision a new custom device in that solution.

The device you create in this tutorial sends data to an instance of the remote monitoring preconfigured solution. If
you haven't already provisioned the remote monitoring preconfigured solution in your Azure account, use the
following steps:

1. On the https://www.azureiotsuite.com/ page, click + to create a solution.
2. Click Select on the Remote monitoring panel to create your solution.
3. On the Create Remote monitoring solution page, enter a Solution name of your choice, select the Region

you want to deploy to, and select the Azure subscription to want to use. Then click Create solution.
4. Wait until the provisioning process completes.

The preconfigured solutions use billable Azure services. Be sure to remove the preconfigured solution from your subscription
when you are done with it to avoid any unnecessary charges. You can completely remove a preconfigured solution from
your subscription by visiting the https://www.azureiotsuite.com/ page.

When the provisioning process for the remote monitoring solution finishes, click Launch to open the solution
dashboard in your browser.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connecting-devices-node.md
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com/
https://www.azureiotsuite.com/

Provision your device in the remote monitoring solution

NOTE
If you have already provisioned a device in your solution, you can skip this step. You need to know the device credentials
when you create the client application.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as mydevice, click Check ID to verify
that name isn't already in use, and then click Create to provision the device.

Create a node.js sample solution

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click Enable
Device. The status of your device is now Running. The remote monitoring solution can now receive telemetry
from your device and invoke methods on the device.

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client application
needs these values to connect to the remote monitoring solution. Then click Done.

Ensure that Node.js version 0.11.5 or later is installed on your development machine. You can run node --version

at the command line to check the version.

npm init
npm install azure-iot-device azure-iot-device-mqtt --save

1. Create a folder called RemoteMonitoring on your development machine. Navigate to this folder in your
command-line environment.

2. Run the following commands to download and install the packages you need to complete the sample app:

'use strict';

var Protocol = require('azure-iot-device-mqtt').Mqtt;
var Client = require('azure-iot-device').Client;
var ConnectionString = require('azure-iot-device').ConnectionString;
var Message = require('azure-iot-device').Message;

var connectionString = 'HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device Id];SharedAccessKey=
[Device Key]';
var deviceId = ConnectionString.parse(connectionString).DeviceId;

var temperature = 50;
var humidity = 50;
var externalTemperature = 55;

function printErrorFor(op) {
 return function printError(err) {
 if (err) console.log(op + ' error: ' + err.toString());
 };
}

function generateRandomIncrement() {
 return ((Math.random() * 2) - 1);
}

var deviceMetaData = {
 'ObjectType': 'DeviceInfo',
 'IsSimulatedDevice': 0,
 'Version': '1.0',
 'DeviceProperties': {
 'DeviceID': deviceId,
 'HubEnabledState': 1
 }
};

3. In the RemoteMonitoring folder, create a file called remote_monitoring.js. Open this file in a text editor.

4. In the remote_monitoring.js file, add the following require statements:

5. Add the following variable declarations after the require statements. Replace the placeholder values
[Device Id] and [Device Key] with values you noted for your device in the remote monitoring solution
dashboard. Use the IoT Hub Hostname from the solution dashboard to replace [IoTHub Name]. For
example, if your IoT Hub Hostname is contoso.azure-devices.net, replace [IoTHub Name] with contoso:

6. Add the following variables to define some base telemetry data:

7. Add the following helper function to print operation results:

8. Add the following helper function to use to randomize the telemetry values:

9. Add the following definition for the DeviceInfo object the device sends on startup:

10. Add the following definition for the device twin reported values. This definition includes descriptions of the
direct methods the device supports:

var reportedProperties = {
 "Device": {
 "DeviceState": "normal",
 "Location": {
 "Latitude": 47.642877,
 "Longitude": -122.125497
 }
 },
 "Config": {
 "TemperatureMeanValue": 56.7,
 "TelemetryInterval": 45
 },
 "System": {
 "Manufacturer": "Contoso Inc.",
 "FirmwareVersion": "2.22",
 "InstalledRAM": "8 MB",
 "ModelNumber": "DB-14",
 "Platform": "Plat 9.75",
 "Processor": "i3-9",
 "SerialNumber": "SER99"
 },
 "Location": {
 "Latitude": 47.642877,
 "Longitude": -122.125497
 },
 "SupportedMethods": {
 "Reboot": "Reboot the device",
 "InitiateFirmwareUpdate--FwPackageURI-string": "Updates device Firmware. Use parameter
FwPackageURI to specifiy the URI of the firmware file"
 },
}

function onReboot(request, response) {
 // Implement actual logic here.
 console.log('Simulated reboot...');

 // Complete the response
 response.send(200, "Rebooting device", function(err) {
 if(!!err) {
 console.error('An error ocurred when sending a method response:\n' + err.toString());
 } else {
 console.log('Response to method \'' + request.methodName + '\' sent successfully.');
 }
 });
}

11. Add the following function to handle the Reboot direct method call:

12. Add the following function to handle the InitiateFirmwareUpdate direct method call. This direct method
uses a parameter to specify the location of the firmware image to download, and initiates the firmware
update on the device asynchronously:

function onInitiateFirmwareUpdate(request, response) {
 console.log('Simulated firmware update initiated, using: ' + request.payload.FwPackageURI);

 // Complete the response
 response.send(200, "Firmware update initiated", function(err) {
 if(!!err) {
 console.error('An error ocurred when sending a method response:\n' + err.toString());
 } else {
 console.log('Response to method \'' + request.methodName + '\' sent successfully.');
 }
 });

 // Add logic here to perform the firmware update asynchronously
}

var client = Client.fromConnectionString(connectionString, Protocol);

13. Add the following code to create a client instance:

14. Add the following code to:

Open the connection.
Send the DeviceInfo object.
Set up a handler for desired properties.
Send reported properties.
Register handlers for the direct methods.
Start sending telemetry.

node remote_monitoring.js

client.open(function (err) {
 if (err) {
 printErrorFor('open')(err);
 } else {
 console.log('Sending device metadata:\n' + JSON.stringify(deviceMetaData));
 client.sendEvent(new Message(JSON.stringify(deviceMetaData)), printErrorFor('send
metadata'));

 // Create device twin
 client.getTwin(function(err, twin) {
 if (err) {
 console.error('Could not get device twin');
 } else {
 console.log('Device twin created');

 twin.on('properties.desired', function(delta) {
 console.log('Received new desired properties:');
 console.log(JSON.stringify(delta));
 });

 // Send reported properties
 twin.properties.reported.update(reportedProperties, function(err) {
 if (err) throw err;
 console.log('twin state reported');
 });

 // Register handlers for direct methods
 client.onDeviceMethod('Reboot', onReboot);
 client.onDeviceMethod('InitiateFirmwareUpdate', onInitiateFirmwareUpdate);
 }
 });

 // Start sending telemetry
 var sendInterval = setInterval(function () {
 temperature += generateRandomIncrement();
 externalTemperature += generateRandomIncrement();
 humidity += generateRandomIncrement();

 var data = JSON.stringify({
 'DeviceID': deviceId,
 'Temperature': temperature,
 'Humidity': humidity,
 'ExternalTemperature': externalTemperature
 });

 console.log('Sending device event data:\n' + data);
 client.sendEvent(new Message(data), printErrorFor('send event'));
 }, 5000);

 client.on('error', function (err) {
 printErrorFor('client')(err);
 if (sendInterval) clearInterval(sendInterval);
 client.close(printErrorFor('client.close'));
 });
 }
});

15. Save the changes to the remote_monitoring.js file.

16. Run the following command at a command prompt to launch the sample application:

View device telemetry in the dashboard

Invoke a method on your device

The dashboard in the remote monitoring solution enables you to view the telemetry your devices send to IoT Hub.

1. In your browser, return to the remote monitoring solution dashboard, click Devices in the left-hand panel to
navigate to the Devices list.

2. In the Devices list, you should see that the status of your device is Running. If not, click Enable Device in
the Device Details panel.

3. Click Dashboard to return to the dashboard, select your device in the Device to View drop-down to view
its telemetry. The telemetry from the sample application is 50 units for internal temperature, 55 units for
external temperature, and 50 units for humidity.

The dashboard in the remote monitoring solution enables you to invoke methods on your devices through IoT
Hub. For example, in the remote monitoring solution you can invoke a method to simulate rebooting a device.

1. In the remote monitoring solution dashboard, click Devices in the left-hand panel to navigate to the Devices
list.

2. Click Device ID for your device in the Devices list.
3. In the Device details panel, click Methods.

4. In the Method drop-down, select InitiateFirmwareUpdate, and then in FWPACKAGEURI enter a dummy
URL. Click Invoke Method to call the method on the device.

5. You see a message in the console running your device code when the device handles the method. The
results of the method are added to the history in the solution portal:

Next steps
The article Customizing preconfigured solutions describes some ways you can extend this sample. Possible
extensions include using real sensors and implementing additional commands.

You can learn more about the permissions on the azureiotsuite.com site.

Connect your device to the remote monitoring
preconfigured solution (mbed)
2/27/2017 • 12 min to read • Edit Online

Scenario overview

Before you start

Provision your remote monitoring preconfigured solution

WARNING

In this scenario, you create a device that sends the following telemetry to the remote monitoring preconfigured
solution:

External temperature
Internal temperature
Humidity

For simplicity, the code on the device generates sample values, but we encourage you to extend the sample by
connecting real sensors to your device and sending real telemetry.

The device is also able to respond to methods invoked from the solution dashboard and desired property values
set in the solution dashboard.

To complete this tutorial, you need an active Azure account. If you don't have an account, you can create a free trial
account in just a couple of minutes. For details, see Azure Free Trial.

Before you write any code for your device, you must provision your remote monitoring preconfigured solution
and provision a new custom device in that solution.

The device you create in this tutorial sends data to an instance of the remote monitoring preconfigured solution. If
you haven't already provisioned the remote monitoring preconfigured solution in your Azure account, use the
following steps:

1. On the https://www.azureiotsuite.com/ page, click + to create a solution.
2. Click Select on the Remote monitoring panel to create your solution.
3. On the Create Remote monitoring solution page, enter a Solution name of your choice, select the Region

you want to deploy to, and select the Azure subscription to want to use. Then click Create solution.
4. Wait until the provisioning process completes.

The preconfigured solutions use billable Azure services. Be sure to remove the preconfigured solution from your subscription
when you are done with it to avoid any unnecessary charges. You can completely remove a preconfigured solution from
your subscription by visiting the https://www.azureiotsuite.com/ page.

When the provisioning process for the remote monitoring solution finishes, click Launch to open the solution
dashboard in your browser.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connecting-devices-mbed.md
http://azure.microsoft.com/pricing/free-trial/
https://www.azureiotsuite.com/
https://www.azureiotsuite.com/

Provision your device in the remote monitoring solution

NOTE
If you have already provisioned a device in your solution, you can skip this step. You need to know the device credentials
when you create the client application.

For a device to connect to the preconfigured solution, it must identify itself to IoT Hub using valid credentials. You
can retrieve the device credentials from the solution dashboard. You include the device credentials in your client
application later in this tutorial.

To add a device to your remote monitoring solution, complete the following steps in the solution dashboard:

1. In the lower left-hand corner of the dashboard, click Add a device.

2. In the Custom Device panel, click Add new.

3. Choose Let me define my own Device ID. Enter a Device ID such as mydevice, click Check ID to verify
that name isn't already in use, and then click Create to provision the device.

Build and run the C sample solution

Connect the mbed device to your network and desktop machine

5. Select your device in the device list in the solution dashboard. Then, in the Device Details panel, click Enable
Device. The status of your device is now Running. The remote monitoring solution can now receive telemetry
from your device and invoke methods on the device.

4. Make a note the device credentials (Device ID, IoT Hub Hostname, and Device Key). Your client application
needs these values to connect to the remote monitoring solution. Then click Done.

The following instructions describe the steps for connecting an mbed-enabled Freescale FRDM-K64F device to the
remote monitoring solution.

1. Connect the mbed device to your network using an Ethernet cable. This step is necessary because the
sample application requires internet access.

2. See Getting Started with mbed to connect your mbed device to your desktop PC.

3. If your desktop PC is running Windows, see PC Configuration to configure serial port access to your mbed
device.

https://developer.mbed.org/platforms/FRDM-K64F/
https://developer.mbed.org/platforms/FRDM-K64F/#getting-started-with-mbed
https://developer.mbed.org/platforms/FRDM-K64F/#pc-configuration

Create an mbed project and import the sample code
Follow these steps to add some sample code to an mbed project. You import the remote monitoring starter project
and then change the project to use the MQTT protocol instead of the AMQP protocol. Currently, you need to use
the MQTT protocol to use the device management features of IoT Hub.

1. In your web browser, go to the mbed.org developer site. If you haven't signed up, you see an option to
create an account (it's free). Otherwise, log in with your account credentials. Then click Compiler in the
upper right-hand corner of the page. This action brings you to the Workspace interface.

2. Make sure the hardware platform you're using appears in the upper right-hand corner of the window, or
click the icon in the right-hand corner to select your hardware platform.

3. Click Import on the main menu. Then click Click here to import from URL.

4. In the pop-up window, enter the link for the sample code
https://developer.mbed.org/users/AzureIoTClient/code/remote_monitoring/ then click Import.

5. You can see in the mbed compiler window that importing this project also imports various libraries. Some
are provided and maintained by the Azure IoT team (azureiot_common, iothub_client,
iothub_amqp_transport, azure_uamqp), while others are third-party libraries available in the mbed libraries
catalog.

https://developer.mbed.org/
https://developer.mbed.org/users/AzureIoTClient/code/remote_monitoring/
https://developer.mbed.org/users/AzureIoTClient/code/azureiot_common/
https://developer.mbed.org/users/AzureIoTClient/code/iothub_client/
https://developer.mbed.org/users/AzureIoTClient/code/iothub_amqp_transport/
https://developer.mbed.org/users/AzureIoTClient/code/azure_uamqp/

6. In the Program Workspace, right-click the iothub_amqp_transport library, click Delete, and then click
OK to confirm.

7. In the Program Workspace, right-click the azure_amqp_c library, click Delete, and then click OK to
confirm.

8. Right-click the remote_monitoring project in the Program Workspace, select Import Library, then
select From URL.

9. In the pop-up window, enter the link for the MQTT transport library
https://developer.mbed.org/users/AzureIoTClient/code/iothub_mqtt_transport/ then click Import.

Specify the behavior of the IoT device

#include "iothubtransportmqtt.h"
#include "schemalib.h"
#include "iothub_client.h"
#include "serializer_devicetwin.h"
#include "schemaserializer.h"
#include "azure_c_shared_utility/threadapi.h"
#include "azure_c_shared_utility/platform.h"
#include "parson.h"

#ifdef MBED_BUILD_TIMESTAMP
#include "certs.h"
#endif // MBED_BUILD_TIMESTAMP

13. Delete all the remaining code in the remote_monitoring\remote_monitoring.c file.

10. Repeat the previous step to add the MQTT library from
https://developer.mbed.org/users/AzureIoTClient/code/azure_umqtt_c/.

11. Your workspace now looks like the following:

12. Open the remote_monitoring\remote_monitoring.c file and replace the existing #include statements with
the following code:

The IoT Hub serializer client library uses a model to specify the format of the messages the device exchanges with
IoT Hub.

static const char* deviceId = "[Device Id]";
static const char* connectionString = "HostName=[IoTHub Name].azure-devices.net;DeviceId=[Device
Id];SharedAccessKey=[Device Key]";

1. Add the following variable declarations after the #include statements. Replace the placeholder values
[Device Id] and [Device Key] with values you noted for your device in the remote monitoring solution
dashboard. Use the IoT Hub Hostname from the solution dashboard to replace [IoTHub Name]. For
example, if your IoT Hub Hostname is contoso.azure-devices.net, replace [IoTHub Name] with contoso:

2. Add the following code to define the model that enables the device to communicate with IoT Hub. This
model specifies that the device:

Can send temperature, external temperature, humidity, and a device id as telemetry.
Can send metadata about the device to IoT Hub. The device sends basic metadata in a DeviceInfo object
at startup.
Can send reported properties, to the device twin in IoT Hub. These reported properties are grouped into
configuration, device, and system properties.
Can receive and act on desired properties set in the device twin in IoT Hub.
Can respond to the Reboot and InitiateFirmwareUpdate direct methods invoked through the
solution portal. The device sends information about the direct methods it supports using reported
properties.

// Define the Model
BEGIN_NAMESPACE(Contoso);

/* Reported properties */
DECLARE_STRUCT(SystemProperties,
 ascii_char_ptr, Manufacturer,
 ascii_char_ptr, FirmwareVersion,
 ascii_char_ptr, InstalledRAM,
 ascii_char_ptr, ModelNumber,
 ascii_char_ptr, Platform,
 ascii_char_ptr, Processor,
 ascii_char_ptr, SerialNumber
);

DECLARE_STRUCT(LocationProperties,
 double, Latitude,
 double, Longitude
);

DECLARE_STRUCT(ReportedDeviceProperties,
 ascii_char_ptr, DeviceState,
 LocationProperties, Location
);

DECLARE_MODEL(ConfigProperties,
 WITH_REPORTED_PROPERTY(double, TemperatureMeanValue),
 WITH_REPORTED_PROPERTY(uint8_t, TelemetryInterval)
);

/* Part of DeviceInfo */
DECLARE_STRUCT(DeviceProperties,
 ascii_char_ptr, DeviceID,
 _Bool, HubEnabledState
);

DECLARE_DEVICETWIN_MODEL(Thermostat,
 /* Telemetry (temperature, external temperature and humidity) */
 WITH_DATA(double, Temperature),
 WITH_DATA(double, ExternalTemperature),
 WITH_DATA(double, Humidity),
 WITH_DATA(ascii_char_ptr, DeviceId),

 /* DeviceInfo */
 WITH_DATA(ascii_char_ptr, ObjectType),
 WITH_DATA(_Bool, IsSimulatedDevice),
 WITH_DATA(ascii_char_ptr, Version),
 WITH_DATA(DeviceProperties, DeviceProperties),

 /* Device twin properties */
 WITH_REPORTED_PROPERTY(ReportedDeviceProperties, Device),
 WITH_REPORTED_PROPERTY(ConfigProperties, Config),
 WITH_REPORTED_PROPERTY(SystemProperties, System),

 WITH_DESIRED_PROPERTY(double, TemperatureMeanValue, onDesiredTemperatureMeanValue),
 WITH_DESIRED_PROPERTY(uint8_t, TelemetryInterval, onDesiredTelemetryInterval),

 /* Direct methods implemented by the device */
 WITH_METHOD(Reboot),
 WITH_METHOD(InitiateFirmwareUpdate, ascii_char_ptr, FwPackageURI),

 /* Register direct methods with solution portal */
 WITH_REPORTED_PROPERTY(ascii_char_ptr_no_quotes, SupportedMethods)
);

END_NAMESPACE(Contoso);

Implement the behavior of the device
Now add code that implements the behavior defined in the model.

void onDesiredTemperatureMeanValue(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TemperatureMeanValue = %f\r\n", thermostat->TemperatureMeanValue);

}

void onDesiredTelemetryInterval(void* argument)
{
 /* By convention 'argument' is of the type of the MODEL */
 Thermostat* thermostat = argument;
 printf("Received a new desired_TelemetryInterval = %d\r\n", thermostat->TelemetryInterval);
}

/* Handlers for direct methods */
METHODRETURN_HANDLE Reboot(Thermostat* thermostat)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Rebooting\"");
 printf("Received reboot request\r\n");
 return result;
}

METHODRETURN_HANDLE InitiateFirmwareUpdate(Thermostat* thermostat, ascii_char_ptr FwPackageURI)
{
 (void)(thermostat);

 METHODRETURN_HANDLE result = MethodReturn_Create(201, "\"Initiating Firmware Update\"");
 printf("Recieved firmware update request. Use package at: %s\r\n", FwPackageURI);
 return result;
}

1. Add the following functions that handle the desired properties set in the solution dashboard. These desired
properties are defined in the model:

2. Add the following functions that handle the direct methods invoked through the IoT hub. These direct
methods are defined in the model:

3. Add the following function that sends a message to the preconfigured solution:

/* Send data to IoT Hub */
static void sendMessage(IOTHUB_CLIENT_HANDLE iotHubClientHandle, const unsigned char* buffer, size_t
size)
{
 IOTHUB_MESSAGE_HANDLE messageHandle = IoTHubMessage_CreateFromByteArray(buffer, size);
 if (messageHandle == NULL)
 {
 printf("unable to create a new IoTHubMessage\r\n");
 }
 else
 {
 if (IoTHubClient_SendEventAsync(iotHubClientHandle, messageHandle, NULL, NULL) != IOTHUB_CLIENT_OK)
 {
 printf("failed to hand over the message to IoTHubClient");
 }
 else
 {
 printf("IoTHubClient accepted the message for delivery\r\n");
 }

 IoTHubMessage_Destroy(messageHandle);
 }
 free((void*)buffer);
}

/* Callback after sending reported properties */
void deviceTwinCallback(int status_code, void* userContextCallback)
{
 (void)(userContextCallback);
 printf("IoTHub: reported properties delivered with status_code = %u\n", status_code);
}

4. Add the following callback handler that runs when the device has sent new reported property values to the
preconfigured solution:

5. Add the following function to connect your device to the preconfigured solution in the cloud, and exchange
data. This function performs the following steps:

Initializes the platform.
Registers the Contoso namespace with the serialization library.
Initializes the client with the device connection string.
Create an instance of the Thermostat model.
Creates and sends reported property values.
Sends a DeviceInfo object.
Creates a loop to send telemetry every second.

void remote_monitoring_run(void)
{
 if (platform_init() != 0)
 {
 printf("Failed to initialize the platform.\n");
 }
 else
 {
 if (SERIALIZER_REGISTER_NAMESPACE(Contoso) == NULL)
 {
 printf("Unable to SERIALIZER_REGISTER_NAMESPACE\n");
 }
 else
 {

Deinitializes all resources.

 {
 IOTHUB_CLIENT_HANDLE iotHubClientHandle =
IoTHubClient_CreateFromConnectionString(connectionString, MQTT_Protocol);
 if (iotHubClientHandle == NULL)
 {
 printf("Failure in IoTHubClient_CreateFromConnectionString\n");
 }
 else
 {
#ifdef MBED_BUILD_TIMESTAMP
 // For mbed add the certificate information
 if (IoTHubClient_SetOption(iotHubClientHandle, "TrustedCerts", certificates) !=
IOTHUB_CLIENT_OK)
 {
 printf("Failed to set option \"TrustedCerts\"\n");
 }
#endif // MBED_BUILD_TIMESTAMP
 Thermostat* thermostat = IoTHubDeviceTwin_CreateThermostat(iotHubClientHandle);
 if (thermostat == NULL)
 {
 printf("Failure in IoTHubDeviceTwin_CreateThermostat\n");
 }
 else
 {
 /* Set values for reported properties */
 thermostat->Config.TemperatureMeanValue = 55.5;
 thermostat->Config.TelemetryInterval = 3;
 thermostat->Device.DeviceState = "normal";
 thermostat->Device.Location.Latitude = 47.642877;
 thermostat->Device.Location.Longitude = -122.125497;
 thermostat->System.Manufacturer = "Contoso Inc.";
 thermostat->System.FirmwareVersion = "2.22";
 thermostat->System.InstalledRAM = "8 MB";
 thermostat->System.ModelNumber = "DB-14";
 thermostat->System.Platform = "Plat 9.75";
 thermostat->System.Processor = "i3-7";
 thermostat->System.SerialNumber = "SER21";
 /* Specify the signatures of the supported direct methods */
 thermostat->SupportedMethods = "{\"Reboot\": \"Reboot the device\",
\"InitiateFirmwareUpdate--FwPackageURI-string\": \"Updates device Firmware. Use parameter
FwPackageURI to specifiy the URI of the firmware file\"}";

 /* Send reported properties to IoT Hub */
 if (IoTHubDeviceTwin_SendReportedStateThermostat(thermostat, deviceTwinCallback, NULL)
!= IOTHUB_CLIENT_OK)
 {
 printf("Failed sending serialized reported state\n");
 }
 else
 {
 printf("Send DeviceInfo object to IoT Hub at startup\n");

 thermostat->ObjectType = "DeviceInfo";
 thermostat->IsSimulatedDevice = 0;
 thermostat->Version = "1.0";
 thermostat->DeviceProperties.HubEnabledState = 1;
 thermostat->DeviceProperties.DeviceID = (char*)deviceId;

 unsigned char* buffer;
 size_t bufferSize;

 if (SERIALIZE(&buffer, &bufferSize, thermostat->ObjectType, thermostat->Version,
thermostat->IsSimulatedDevice, thermostat->DeviceProperties) != CODEFIRST_OK)
 {
 (void)printf("Failed serializing DeviceInfo\n");
 }
 else
 {
 sendMessage(iotHubClientHandle, buffer, bufferSize);

Build and run the sample

 }

 /* Send telemetry */
 thermostat->Temperature = 50;
 thermostat->ExternalTemperature = 55;
 thermostat->Humidity = 50;
 thermostat->DeviceId = (char*)deviceId;

 while (1)
 {
 unsigned char*buffer;
 size_t bufferSize;

 (void)printf("Sending sensor value Temperature = %f, Humidity = %f\n", thermostat-
>Temperature, thermostat->Humidity);

 if (SERIALIZE(&buffer, &bufferSize, thermostat->DeviceId, thermostat->Temperature,
thermostat->Humidity, thermostat->ExternalTemperature) != CODEFIRST_OK)
 {
 (void)printf("Failed sending sensor value\r\n");
 }
 else
 {
 sendMessage(iotHubClientHandle, buffer, bufferSize);
 }

 ThreadAPI_Sleep(1000);
 }

 IoTHubDeviceTwin_DestroyThermostat(thermostat);
 }
 }
 IoTHubClient_Destroy(iotHubClientHandle);
 }
 serializer_deinit();
 }
 }
 platform_deinit();
}

{"DeviceId":"mydevice01", "Temperature":50, "Humidity":50, "ExternalTemperature":55}

For reference, here is a sample Telemetry message sent to the preconfigured solution:

Add code to invoke the remote_monitoring_run function and then build and run the device application.

int main()
{
 remote_monitoring_run();
 return 0;
}

1. Add a main function with following code at the end of the remote_monitoring.c file to invoke the
remote_monitoring_run function:

2. Click Compile to build the program. You can safely ignore any warnings, but if the build generates errors,
fix them before proceeding.

3. If the build is successful, the mbed compiler website generates a .bin file with the name of your project and
downloads it to your local machine. Copy the .bin file to the device. Saving the .bin file to the device causes

View device telemetry in the dashboard

the device to restart and run the program contained in the .bin file. You can manually restart the program at
any time by pressing the reset button on the mbed device.

4. Connect to the device using an SSH client application, such as PuTTY. You can determine the serial port your
device uses by checking Windows Device Manager.

5. In PuTTY, click the Serial connection type. The device typically connects at 9600 baud, so enter 9600 in the
Speed box. Then click Open.

6. The program starts executing. You may have to reset the board (press CTRL+Break or press the board's
reset button) if the program does not start automatically when you connect.

The dashboard in the remote monitoring solution enables you to view the telemetry your devices send to IoT Hub.

1. In your browser, return to the remote monitoring solution dashboard, click Devices in the left-hand panel to
navigate to the Devices list.

2. In the Devices list, you should see that the status of your device is Running. If not, click Enable Device in
the Device Details panel.

3. Click Dashboard to return to the dashboard, select your device in the Device to View drop-down to view
its telemetry. The telemetry from the sample application is 50 units for internal temperature, 55 units for

Invoke a method on your device

external temperature, and 50 units for humidity.

The dashboard in the remote monitoring solution enables you to invoke methods on your devices through IoT
Hub. For example, in the remote monitoring solution you can invoke a method to simulate rebooting a device.

1. In the remote monitoring solution dashboard, click Devices in the left-hand panel to navigate to the Devices
list.

2. Click Device ID for your device in the Devices list.
3. In the Device details panel, click Methods.

4. In the Method drop-down, select InitiateFirmwareUpdate, and then in FWPACKAGEURI enter a dummy
URL. Click Invoke Method to call the method on the device.

Next steps

5. You see a message in the console running your device code when the device handles the method. The
results of the method are added to the history in the solution portal:

The article Customizing preconfigured solutions describes some ways you can extend this sample. Possible
extensions include using real sensors and implementing additional commands.

You can learn more about the permissions on the azureiotsuite.com site.

Tutorial: Connect Logic App to your Azure IoT Suite
Remote Monitoring preconfigured solution
3/9/2017 • 5 min to read • Edit Online

The Microsoft Azure IoT Suite remote monitoring preconfigured solution is a great way to get started quickly with
an end-to-end feature set that exemplifies an IoT solution. This tutorial walks you through how to add Logic App to
your Microsoft Azure IoT Suite remote monitoring preconfigured solution. These steps demonstrate how you can
take your IoT solution even further by connecting it to a business process.

If you’re looking for a walkthrough on how to provision a remote monitoring preconfigured solution, see Tutorial:
Get started with the IoT preconfigured solutions.

Before you start this tutorial, you should:

Provision the remote monitoring preconfigured solution in your Azure subscription.
Create a SendGrid account to enable you to send an email that triggers your business process. You can sign up
for a free trial account at SendGrid by clicking Try for Free. After you have registered for your free trial account,
you need to create an API key in SendGrid that grants permissions to send mail. You need this API key later in
the tutorial.

To complete this tutorial, you need Visual Studio 2015 or Visual Studio 2017 to modify the actions in the
preconfigured solution back end.

Assuming you’ve already provisioned your remote monitoring preconfigured solution, navigate to the resource
group for that solution in the Azure portal. The resource group has the same name as the solution name you chose
when you provisioned your remote monitoring solution. In the resource group, you can see all the provisioned
Azure resources for your solution except for the Azure Active Directory application that you can find in the Azure
Classic Portal. The following screenshot shows an example Resource group blade for a remote monitoring
preconfigured solution:

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-logic-apps-tutorial.md
https://azure.microsoft.com/documentation/suites/iot-suite/
https://sendgrid.com/
https://sendgrid.com/docs/User_Guide/Settings/api_keys.html
https://portal.azure.com

Set up the Logic App

To begin, set up the logic app to use with the preconfigured solution.

1. Click Add at the top of your resource group blade in the Azure portal.
2. Search for Logic App, select it and then click Create.
3. Fill out the Name and use the same Subscription and Resource group that you used when you

provisioned your remote monitoring solution. Click Create.

4. When your deployment completes, you can see the Logic App is listed as a resource in your resource group.
5. Click the Logic App to navigate to the Logic App blade, select the Blank Logic App template to open the

Logic Apps Designer.

6. Select Request. This action specifies that an incoming HTTP request with a specific JSON formatted payload
acts as a trigger.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "/",
 "properties": {
 "DeviceId": {
 "id": "DeviceId",
 "type": "string"
 },
 "measuredValue": {
 "id": "measuredValue",
 "type": "integer"
 },
 "measurementName": {
 "id": "measurementName",
 "type": "string"
 }
 },
 "required": [
 "DeviceId",
 "measurementName",
 "measuredValue"
],
 "type": "object"
}

NOTE

7. Paste the following code into the Request Body JSON Schema:

You can copy the URL for the HTTP post after you save the logic app, but first you must add an action.

8. Click + New step under your manual trigger. Then click Add an action.

9. Search for SendGrid - Send email and click it.

10. Enter a name for the connection, such as SendGridConnection, enter the SendGrid API Key you created
when you set up your SendGrid account, and click Create.

11. Add email addresses you own to both the From and To fields. Add Remote monitoring alert [DeviceId]
to the Subject field. In the Email Body field, add Device [DeviceId] has reported [measurementName]
with value [measuredValue]. You can add [DeviceId], [measurementName], and [measuredValue]
by clicking in the You can insert data from previous steps section.

NOTE

Set up the EventProcessor Web Job

12. Click Save in the top menu.
13. Click the Request trigger and copy the Http Post to this URL value. You need this URL later in this tutorial.

Logic Apps enable you to run many different types of action including actions in Office 365.

In this section, you connect your preconfigured solution to the Logic App you created. To complete this task, you
add the URL to trigger the Logic App to the action that fires when a device sensor value exceeds a threshold.

git clone https://github.com/Azure/azure-iot-remote-monitoring.git

2. In Visual Studio, open the RemoteMonitoring.sln from the local copy of the repository.
3. Open the ActionRepository.cs file in the Infrastructure\Repository folder.

1. Use your git client to clone the latest version of the azure-iot-remote-monitoring github repository. For
example:

4. Update the actionIds dictionary with the Http Post to this URL you noted from your Logic App as follows:

https://docs.microsoft.com/en-us/azure/connectors/apis-list
https://github.com/Azure/azure-iot-remote-monitoring

Deploy from the command line

See your Logic App in action

NOTE

private Dictionary<string,string> actionIds = new Dictionary<string, string>()
{
 { "Send Message", "<Http Post to this URL>" },
 { "Raise Alarm", "<Http Post to this URL>" }
};

5. Save the changes in solution and exit Visual Studio.

In this section, you deploy your updated version of the remote monitoring solution to replace the version currently
running in Azure.

1. Following the dev set-up instructions to set up your environment for deployment.
2. To deploy locally, follow the local deployment instructions.
3. To deploy to the cloud and update your existing cloud deployment, follow the cloud deployment

instructions. Use the name of your original deployment as the deployment name. For example if the original
deployment was called demologicapp, use the following command:

build.cmd cloud release demologicapp

When the build script runs, be sure to use the same Azure account, subscription, region, and Active
Directory instance you used when you provisioned the solution.

The remote monitoring preconfigured solution has two rules set up by default when you provision a solution. Both
rules are on the SampleDevice001 device:

Temperature > 38.00
Humidity > 48.00

The temperature rule triggers the Raise Alarm action and the Humidity rule triggers the SendMessage action.
Assuming you used the same URL for both actions the ActionRepository class, your logic app triggers for either
rule. Both rules use SendGrid to send an email to the To address with details of the alert.

The Logic App continues to trigger every time the threshold is met. To avoid unnecessary emails, you can either disable the
rules in your solution portal or disable the Logic App in the Azure portal.

In addition to receiving emails, you can also see when the Logic App runs in the portal:

https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/dev-setup.md
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/local-deployment.md
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/cloud-deployment.md
https://portal.azure.com

Next steps
Now that you've used a Logic App to connect the preconfigured solution to a business process, you can learn more
about the options for customizing the preconfigured solutions:

Use dynamic telemetry with the remote monitoring preconfigured solution
Device information metadata in the remote monitoring preconfigured solution

Customize a preconfigured solution
2/27/2017 • 8 min to read • Edit Online

Find the source code

Change the preconfigured rules

NOTE

Add your own rules

The preconfigured solutions provided with the Azure IoT Suite demonstrate the services within the suite working
together to deliver an end-to-end solution. From this starting point, there are various places in which you can
extend and customize the solution for specific scenarios. The following sections describe these common
customization points.

The source code for the preconfigured solutions is available on GitHub in the following repositories:

Remote Monitoring: https://www.github.com/Azure/azure-iot-remote-monitoring
Predictive Maintenance: https://github.com/Azure/azure-iot-predictive-maintenance

The source code for the preconfigured solutions is provided to demonstrate the patterns and practices used to
implement the end-to-end functionality of an IoT solution using Azure IoT Suite. You can find more information
about how to build and deploy the solutions in the GitHub repositories.

The remote monitoring solution includes three Azure Stream Analytics jobs to handle device information,
telemetry, and rules logic in the solution.

The three stream analytics jobs and their syntax are described in depth in the Remote monitoring preconfigured
solution walkthrough.

You can edit these jobs directly to alter the logic, or add logic specific to your scenario. You can find the Stream
Analytics jobs as follows:

1. Go to Azure portal.
2. Navigate to the resource group with the same name as your IoT solution.
3. Select the Azure Stream Analytics job you'd like to modify.
4. Stop the job by selecting Stop in the set of commands.

6. Start the job

5. Edit the inputs, query, and outputs.

A simple modification is to change the query for the Rules job to use a "<" instead of a ">". The solution
portal still shows ">" when you edit a rule, but notice how the behavior is flipped due to the change in the
underlying job.

The remote monitoring dashboard depends on specific data, so altering the jobs can cause the dashboard to fail.

In addition to changing the preconfigured Azure Stream Analytics jobs, you can use the Azure portal to add new
jobs or add new queries to existing jobs.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-guidance-on-customizing-preconfigured-solutions.md
https://github.com/Azure/azure-iot-remote-monitoring
https://github.com/Azure/azure-iot-predictive-maintenance
https://azure.microsoft.com/services/stream-analytics/
https://portal.azure.com

Customize devices

Create your own simulated device

Available locations for simulated devices

Add a desired property update handler to the simulator

protected async Task OnSetPointTempUpdate(object value)
{
 var telemetry = _telemetryController as ITelemetryWithSetPointTemperature;
 telemetry.SetPointTemperature = Convert.ToDouble(value);

 await SetReportedPropertyAsync(SetPointTempPropertyName, telemetry.SetPointTemperature);
}

_desiredPropertyUpdateHandlers.Add(SetPointTempPropertyName, OnSetPointTempUpdate);

Add support for a new method to the simulator

One of the most common extension activities is working with devices specific to your scenario. There are several
methods for working with devices. These methods include altering a simulated device to match your scenario, or
using the IoT Device SDK to connect your physical device to the solution.

For a step-by-step guide to adding devices, see the Iot Suite Connecting Devices article and the remote
monitoring C SDK Sample. This sample is designed to work with the remote monitoring preconfigured solution.

Included in the remote monitoring solution source code, is a .NET simulator. This simulator is the one
provisioned as part of the solution and you can alter it to send different metadata, telemetry, and respond to
different commands and methods.

The preconfigured simulator in the remote monitoring preconfigured solution simulates a cooler device that
emits temperature and humidity telemetry. You can modify the simulator in the Simulator.WebJob project when
you've forked the GitHub repository.

The default set of locations is in Seattle/Redmond, Washington, United States of America. You can change these
locations in SampleDeviceFactory.cs.

You can set a value for a desired property for a device in the solution portal. It is the responsibility of the device
to handle the property change request when the device retrieves the desired property value. To add support for a
property value change through a desired property, you need to add a handler to the simulator.

The simulator contains handlers for the SetPointTemp and TelemetryInterval properties that you can update
by setting desired values in the solution portal.

The following example shows the handler for the SetPointTemp desired property in the CoolerDevice class:

This method updates the telemetry point temperature and then reports the change back to IoT Hub by setting a
reported property.

You can add your own handlers for your own properties by following the pattern in the preceding example.

You must also bind the desired property to the handler as shown in the following example from the
CoolerDevice constructor:

Note that SetPointTempPropertyName is a constant defined as "Config.SetPointTemp".

You can customize the simulator to add support for a new method (direct method). There are two key steps
required:

The simulator must notify the IoT hub in the preconfigured solution with details of the method.

https://azure.microsoft.com/documentation/articles/iot-hub-sdks-summary/
https://github.com/Azure/azure-iot-sdk-c/tree/master/serializer/samples/remote_monitoring
https://github.com/Azure/azure-iot-remote-monitoring
https://github.com/Azure/azure-iot-remote-monitoring/tree/master/Simulator/Simulator.WebJob
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Common/Factory/SampleDeviceFactory.cs#L40
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-direct-methods

"SupportedMethods": {
 "<method signature>": "<method description>",
 "<method signature>": "<method description>"
}

InitiateFirmwareUpate--FwPackageURI-string: "description of method"

NOTE

device.Commands.Add(new Command(
 "InitiateFirmwareUpdate",
 DeliveryType.Method,
 "Updates device Firmware. Use parameter 'FwPackageUri' to specifiy the URI of the firmware file, e.g.
https://iotrmassets.blob.core.windows.net/firmwares/FW20.bin",
 new[] { new Parameter("FwPackageUri", "string") }
));

The simulator must include code to handle the method call when you invoke it from the Device details panel
in the solution explorer or through a job.

The remote monitoring preconfigured solution uses reported properties to send details of supported methods to
IoT hub. The solution back end maintains a list of all the methods supported by each device along with a history
of method invocations. You can view this information about devices and invoke methods in the solution portal.

To notify the IoT hub that a device supports a method, the device must add details of the method to the
SupportedMethods node in the reported properties:

The method signature has the following format:
<method name>--<parameter #0 name>-<parameter #1 type>-...-<parameter #n name>-<parameter #n type> . For

example, to specify the InitiateFirmwareUpdate method expects a string parameter named FwPackageURI,
use the following method signature:

For a list of supported parameter types, see the CommandTypes class in the Infrastructure project.

To delete a method, set the method signature to null in the reported properties.

The solution back end only updates information about supported methods when it receives a device information message
from the device.

The following code sample from the SampleDeviceFactory class in the Common project shows how to add a
method to the list of SupportedMethods in the reported properties sent by the device:

This code snippet adds details of the InitiateFirmwareUpdate method including text to display in the solution
portal and details of the required method parameters.

The simulator sends reported properties, including the list of supported methods, to IoT Hub when the simulator
starts.

Add a handler to the simulator code for each method it supports. You can see the existing handlers in the
CoolerDevice class in the Simulator.WebJob project. The following example shows the handler for
InitiateFirmwareUpdate method:

public async Task<MethodResponse> OnInitiateFirmwareUpdate(MethodRequest methodRequest, object userContext)
{
 if (_deviceManagementTask != null && !_deviceManagementTask.IsCompleted)
 {
 return await Task.FromResult(BuildMethodRespose(new
 {
 Message = "Device is busy"
 }, 409));
 }

 try
 {
 var operation = new FirmwareUpdate(methodRequest);
 _deviceManagementTask = operation.Run(Transport).ContinueWith(async task =>
 {
 // after firmware completed, we reset telemetry
 var telemetry = _telemetryController as ITelemetryWithTemperatureMeanValue;
 if (telemetry != null)
 {
 telemetry.TemperatureMeanValue = 34.5;
 }

 await UpdateReportedTemperatureMeanValue();
 });

 return await Task.FromResult(BuildMethodRespose(new
 {
 Message = "FirmwareUpdate accepted",
 Uri = operation.Uri
 }));
 }
 catch (Exception ex)
 {
 return await Task.FromResult(BuildMethodRespose(new
 {
 Message = ex.Message
 }, 400));
 }
}

Build and use your own (physical) device

Method handler names must start with On followed by the name of the method. The methodRequest
parameter contains any parameters passed with the method invocation from the solution back end. The return
value must be of type Task<MethodResponse>. The BuildMethodResponse utility method helps you create
the return value.

Inside the method handler, you could:

Start an asynchronous task.
Retrieve desired properties from the device twin in IoT Hub.
Update a single reported property using the SetReportedPropertyAsync method in the CoolerDevice class.
Update multiple reported properties by creating a TwinCollection instance and calling the
Transport.UpdateReportedPropertiesAsync method.

The preceding firmware update example performs the following steps:

Checks the device is able to accept the firmware update request.
Asynchronously initiates the firmware update operation and resets the telemetry when the operation is
complete.
Immediately returns the "FirmwareUpdate accepted" message to indicate the request was accepted by the
device.

Modify dashboard limits
Number of devices displayed in dashboard dropdown

Number of pins to display in Bing Map control

Time period of telemetry graph

Manually set up application roles

The Azure IoT SDKs provide libraries for connecting numerous device types (languages and operating systems)
into IoT solutions.

The default is 200. You can change this number in DashboardController.cs.

The default is 200. You can change this number in TelemetryApiController.cs.

The default is 10 minutes. You can change this value in TelmetryApiController.cs.

The following procedure describes how to add Admin and ReadOnly application roles to a preconfigured
solution. Note that preconfigured solutions provisioned from the azureiotsuite.com site already include the
Admin and ReadOnly roles.

Members of the ReadOnly role can see the dashboard and the device list, but are not allowed to add devices,
change device attributes, or send commands. Members of the Admin role have full access to all the functionality
in the solution.

1. Go to the Azure classic portal.
2. Select Active Directory.
3. Click the name of the AAD tenant you used when you provisioned your solution.
4. Click Applications.
5. Click the name of the application that matches your preconfigured solution name. If you don't see your

application in the list, select Applications my company owns in the Show dropdown and click the check
mark.

6. At the bottom of the page, click Manage Manifest and then Download Manifest.
7. This procedure downloads a .json file to your local machine. Open this file for editing in a text editor of your

choice.

"appRoles" : [],

8. On the third line of the .json file, you can see:

Replace this line with the following code:

https://github.com/Azure/azure-iot-sdks
https://github.com/Azure/azure-iot-remote-monitoring/blob/3fd43b8a9f7e0f2774d73f3569439063705cebe4/DeviceAdministration/Web/Controllers/DashboardController.cs#L27
https://github.com/Azure/azure-iot-remote-monitoring/blob/3fd43b8a9f7e0f2774d73f3569439063705cebe4/DeviceAdministration/Web/WebApiControllers/TelemetryApiController.cs#L27
https://github.com/Azure/azure-iot-remote-monitoring/blob/e7003339f73e21d3930f71ceba1e74fb5c0d9ea0/DeviceAdministration/Web/WebApiControllers/TelemetryApiController.cs#L25
https://manage.windowsazure.com

Feedback

Next steps

"appRoles": [
{
"allowedMemberTypes": [
"User"
],
"description": "Administrator access to the application",
"displayName": "Admin",
"id": "a400a00b-f67c-42b7-ba9a-f73d8c67e433",
"isEnabled": true,
"value": "Admin"
},
{
"allowedMemberTypes": [
"User"
],
"description": "Read only access to device information",
"displayName": "Read Only",
"id": "e5bbd0f5-128e-4362-9dd1-8f253c6082d7",
"isEnabled": true,
"value": "ReadOnly"
}],

9. Save the updated .json file (you can overwrite the existing file).
10. In the Azure classic portal, at the bottom of the page, select Manage Manifest then Upload Manifest to

upload the .json file you saved in the previous step.
11. You have now added the Admin and ReadOnly roles to your application.
12. To assign one of these roles to a user in your directory, see Permissions on the azureiotsuite.com site.

Do you have a customization you'd like to see covered in this document? Add feature suggestions to User Voice,
or comment on this article.

To learn more about the options for customizing the preconfigured solutions, see:

Connect Logic App to your Azure IoT Suite Remote Monitoring preconfigured solution
Use dynamic telemetry with the remote monitoring preconfigured solution
Device information metadata in the remote monitoring preconfigured solution

https://feedback.azure.com/forums/321918-azure-iot

Use dynamic telemetry with the remote monitoring
preconfigured solution
2/9/2017 • 6 min to read • Edit Online

Introduction

Provision the solution

Wait for the provisioning process to complete

NOTE

Configure the Node.js simulated device

Dynamic telemetry enables you to visualize any telemetry sent to the remote monitoring preconfigured solution.
The simulated devices that deploy with the preconfigured solution send temperature and humidity telemetry,
which you can visualize on the dashboard. If you customize existing simulated devices, create new simulated
devices, or connect physical devices to the preconfigured solution you can send other telemetry values such as the
external temperature, RPM, or windspeed. You can then visualize this additional telemetry on the dashboard.

This tutorial uses a simple Node.js simulated device that you can easily modify to experiment with dynamic
telemetry.

To complete this tutorial, you’ll need:

An active Azure subscription. If you don’t have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial.
Node.js version 0.12.x or later.

You can complete this tutorial on any operating system, such as Windows or Linux, where you can install Node.js.

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

1. On the remote monitoring dashboard, click + Add a device and then add a custom device. Make a note of the

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-dynamic-telemetry.md
http://azure.microsoft.com/pricing/free-trial/
http://nodejs.org
https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot

Observe dynamic telemetry in action

IoT Hub hostname, device id, and device key. You need them later in this tutorial when you prepare the
remote_monitoring.js device client application.

2. Ensure that Node.js version 0.12.x or later is installed on your development machine. Run node --version at a
command prompt or in a shell to check the version. For information about using a package manager to install
Node.js on Linux, see Installing Node.js via package manager.

3. When you have installed Node.js, clone the latest version of the azure-iot-sdk-node repository to your
development machine. Always use the master branch for the latest version of the libraries and samples.

var connectionString = "[IoT Hub device connection string]";

HostName={your IoT Hub hostname};DeviceId={your device id};SharedAccessKey={your device key}

var connectionString = "HostName=contoso.azure-devices.net;DeviceId=mydevice;SharedAccessKey=2s ... =="

npm install
node remote_monitoring.js

4. From your local copy of the azure-iot-sdk-node repository, copy the following two files from the
node/device/samples folder to an empty folder on your development machine:

packages.json
remote_monitoring.js

5. Open the remote_monitoring.js file and look for the following variable definition:

6. Replace [IoT Hub device connection string] with your device connection string. Use the values for your
IoT Hub hostname, device id, and device key that you made a note of in step 1. A device connection string
has the following format:

If your IoT Hub hostname is contoso and your device id is mydevice, your connection string looks like the
following snippet:

7. Save the file. Run the following commands in a shell or command prompt in the folder that contains these
files to install the necessary packages and then run the sample application:

The dashboard shows the temperature and humidity telemetry from the existing simulated devices:

https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-node

If you select the Node.js simulated device you ran in the previous section, you see temperature, humidity, and
external temperature telemetry:

Add a telemetry type

The remote monitoring solution automatically detects the additional external temperature telemetry type and adds
it to the chart on the dashboard.

The next step is to replace the telemetry generated by the Node.js simulated device with a new set of values:

1. Stop the Node.js simulated device by typing Ctrl+C in your command prompt or shell.
2. In the remote_monitoring.js file, you can see the base data values for the existing temperature, humidity,

// Sensors data
var temperature = 50;
var humidity = 50;
var externalTemperature = 55;
var rpm = 200;

temperature += generateRandomIncrement();
externalTemperature += generateRandomIncrement();
humidity += generateRandomIncrement();
rpm += generateRandomIncrement();

var data = JSON.stringify({
 'DeviceID': deviceId,
 'Temperature': temperature,
 'Humidity': humidity,
 'ExternalTemperature': externalTemperature,
 'RPM': rpm
});

node remote_monitoring.js

6. Observe the new RPM telemetry type that displays on the chart in the dashboard:

and external temperature telemetry. Add a base data value for rpm as follows:

3. The Node.js simulated device uses the generateRandomIncrement function in the remote_monitoring.js
file to add a random increment to the base data values. Randomize the rpm value by adding a line of code
after the existing randomizations as follows:

4. Add the new rpm value to the JSON payload the device sends to IoT Hub:

5. Run the Node.js simulated device using the following command:

NOTE

Customize the dashboard display

You may need to disable and then enable the Node.js device on the Devices page in the dashboard to see the change
immediately.

'Commands': [{
 'Name': 'SetTemperature',
 'Parameters': [{
 'Name': 'Temperature',
 'Type': 'double'
 }]
},
{
 'Name': 'SetHumidity',
 'Parameters': [{
 'Name': 'Humidity',
 'Type': 'double'
 }]
}],
'Telemetry': [{
 'Name': 'Temperature',
 'Type': 'double'
},
{
 'Name': 'Humidity',
 'Type': 'double'
},
{
 'Name': 'ExternalTemperature',
 'Type': 'double'
}]

NOTE

'Telemetry': [
{
 'Name': 'Temperature',
 'Type': 'double',
 'DisplayName': 'Temperature (C*)'
},
{
 'Name': 'Humidity',
 'Type': 'double',
 'DisplayName': 'Humidity (relative)'
},
{
 'Name': 'ExternalTemperature',
 'Type': 'double',
 'DisplayName': 'Outdoor Temperature (C*)'
}
]

The Device-Info message can include metadata about the telemetry the device can send to IoT Hub. This
metadata can specify the telemetry types the device sends. Modify the deviceMetaData value in the
remote_monitoring.js file to include a Telemetry definition following the Commands definition. The following
code snippet shows the Commands definition (be sure to add a , after the Commands definition):

The remote monitoring solution uses a case-insensitive match to compare the metadata definition with data in the telemetry
stream.

Adding a Telemetry definition as shown in the preceding code snippet does not change the behavior of the
dashboard. However, the metadata can also include a DisplayName attribute to customize the display in the
dashboard. Update the Telemetry metadata definition as shown in the following snippet:

The following screenshot shows how this change modifies the chart legend on the dashboard:

NOTE

Filter the telemetry types

You may need to disable and then enable the Node.js device on the Devices page in the dashboard to see the change
immediately.

By default, the chart on the dashboard shows every data series in the telemetry stream. You can use the Device-

'Telemetry': [
{
 'Name': 'Temperature',
 'Type': 'double',
 'DisplayName': 'Temperature (C*)'
},
{
 'Name': 'Humidity',
 'Type': 'double',
 'DisplayName': 'Humidity (relative)'
},
//{
// 'Name': 'ExternalTemperature',
// 'Type': 'double',
// 'DisplayName': 'Outdoor Temperature (C*)'
//}
]

Info metadata to suppress the display of specific telemetry types on the chart.

To make the chart show only Temperature and Humidity telemetry, omit ExternalTemperature from the Device-
Info Telemetry metadata as follows:

The Outdoor Temperature no longer displays on the chart:

NOTE

This change only affects the chart display. The ExternalTemperature data values are still stored and made
available for any backend processing.

You may need to disable and then enable the Node.js device on the Devices page in the dashboard to see the change
immediately.

Handle errors

Next steps

For a data stream to display on the chart, its Type in the Device-Info metadata must match the data type of the
telemetry values. For example, if the metadata specifies that the Type of humidity data is int and a double is
found in the telemetry stream then the humidity telemetry does not display on the chart. However, the Humidity
values are still stored and made available for any backend processing.

Now that you've seen how to use dynamic telemetry, you can learn more about how the preconfigured solutions
use device information: Device information metadata in the remote monitoring preconfigured solution.

Create a custom rule in the remote monitoring
preconfigured solution
3/9/2017 • 8 min to read • Edit Online

Introduction

Provision the solution

Wait for the provisioning process to complete

NOTE

Configure the Node.js simulated device

In the preconfigured solutions, you can configure rules that trigger when a telemetry value for a device reaches a
specific threshold. Use dynamic telemetry with the remote monitoring preconfigured solution describes how you
can add custom telemetry values, such as ExternalTemperature to your solution. This article shows you how to
create custom rule for dynamic telemetry types in your solution.

This tutorial uses a simple Node.js simulated device to generate dynamic telemetry to send to the preconfigured
solution back end. You then add custom rules in the RemoteMonitoring Visual Studio solution and deploy this
customized back end to your Azure subscription.

To complete this tutorial, you need:

An active Azure subscription. If you don’t have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial.
Node.js version 0.12.x or later to create a simulated device.
Visual Studio 2015 or Visual Studio 2017 to modify the preconfigured solution back end with your new rules.

If you haven't already provisioned the remote monitoring preconfigured solution in your account:

1. Log on to azureiotsuite.com using your Azure account credentials, and click + to create a solution.
2. Click Select on the Remote monitoring tile.
3. Enter a Solution name for your remote monitoring preconfigured solution.
4. Select the Region and Subscription you want to use to provision the solution.
5. Click Create Solution to begin the provisioning process. This process typically takes several minutes to run.

1. Click the tile for your solution with Provisioning status.
2. Notice the Provisioning states as Azure services are deployed in your Azure subscription.
3. Once provisioning completes, the status changes to Ready.
4. Click the tile to see the details of your solution in the right-hand pane.

If you are encountering issues deploying the pre-configured solution, review Permissions on the azureiotsuite.com site and
the FAQ. If the issues persist, create a service ticket on the portal.

Are there details you'd expect to see that aren't listed for your solution? Give us feature suggestions on User Voice.

Make a note of the solution name you chose for your deployment. You need this solution name later in this tutorial.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-custom-rule.md
http://azure.microsoft.com/pricing/free-trial/
http://nodejs.org
https://www.azureiotsuite.com
http://portal.azure.com/
https://feedback.azure.com/forums/321918-azure-iot

Observe dynamic telemetry in action

1. On the remote monitoring dashboard, click + Add a device and then add a custom device. Make a note of the
IoT Hub hostname, device id, and device key. You need them later in this tutorial when you prepare the
remote_monitoring.js device client application.

2. Ensure that Node.js version 0.12.x or later is installed on your development machine. Run node --version at a
command prompt or in a shell to check the version. For information about using a package manager to install
Node.js on Linux, see Installing Node.js via package manager.

3. When you have installed Node.js, clone the latest version of the azure-iot-sdk-node repository to your
development machine. Always use the master branch for the latest version of the libraries and samples.

var connectionString = "[IoT Hub device connection string]";

HostName={your IoT Hub hostname};DeviceId={your device id};SharedAccessKey={your device key}

var connectionString = "HostName=contoso.azure-devices.net;DeviceId=mydevice;SharedAccessKey=2s ... =="

npm install
node remote_monitoring.js

4. From your local copy of the azure-iot-sdk-node repository, copy the following two files from the
node/device/samples folder to an empty folder on your development machine:

packages.json
remote_monitoring.js

5. Open the remote_monitoring.js file and look for the following variable definition:

6. Replace [IoT Hub device connection string] with your device connection string. Use the values for your
IoT Hub hostname, device id, and device key that you made a note of in step 1. A device connection string
has the following format:

If your IoT Hub hostname is contoso and your device id is mydevice, your connection string looks like the
following snippet:

7. Save the file. Run the following commands in a shell or command prompt in the folder that contains these
files to install the necessary packages and then run the sample application:

The dashboard shows the temperature and humidity telemetry from the existing simulated devices:

https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-node

If you select the Node.js simulated device you ran in the previous section, you see temperature, humidity, and
external temperature telemetry:

Rule storage locations

The remote monitoring solution automatically detects the additional external temperature telemetry type and adds
it to the chart on the dashboard.

You can stop the Node.js console app when you have verified that it is sending ExternalTemperature telemetry to
the preconfigured solution. Keep the console window open because you run this Node.js console app again after
you add the custom rule to the solution.

Update the RemoteMonitoring Visual Studio solution

Information about rules is persisted in two locations:

DeviceRulesNormalizedTable table – This table stores a normalized reference to the rules defined by the
solution portal. When the solution portal displays device rules, it queries this table for the rule definitions.
DeviceRules blob – This blob stores all the rules defined for all registered devices and is defined as a reference
input to the Azure Stream Analytics jobs.

When you update an existing rule or define a new rule in the solution portal, both the table and blob are updated to
reflect the changes. The rule definition displayed in the portal comes from the table store, and the rule definition
referenced by the Stream Analytics jobs comes from the blob.

The following steps show you how to modify the RemoteMonitoring Visual Studio solution to include a new rule
that uses the ExternalTemperature telemetry sent from the simulated device:

git clone https://github.com/Azure/azure-iot-remote-monitoring.git

public double? Temperature { get; set; }
public double? Humidity { get; set; }
public double? ExternalTemperature { get; set; }

public string TemperatureRuleOutput { get; set; }
public string HumidityRuleOutput { get; set; }
public string ExternalTemperatureRuleOutput { get; set; }

public static string ExternalTemperature
{
 get { return "ExternalTemperature"; }
}

private static List<string> _availableDataFields = new List<string>
{
 Temperature, Humidity, ExternalTemperature
};

1. If you have not already done so, clone the azure-iot-remote-monitoring repository to a suitable location
on your local machine using the following Git command:

2. In Visual Studio, open the RemoteMonitoring.sln file from your local copy of the azure-iot-remote-
monitoring repository.

3. Open the file Infrastructure\Models\DeviceRuleBlobEntity.cs and add an ExternalTemperature property as
follows:

4. In the same file, add an ExternalTemperatureRuleOutput property as follows:

5. Open the file Infrastructure\Models\DeviceRuleDataFields.cs and add the following ExternalTemperature
property after the existing Humidity property:

6. In the same file, update the _availableDataFields method to include ExternalTemperature as follows:

7. Open the file Infrastructure\Repository\DeviceRulesRepository.cs and modify the
BuildBlobEntityListFromTableRows method as follows:

Rebuild and redeploy the solution.

Update the Stream Analytics job

else if (rule.DataField == DeviceRuleDataFields.Humidity)
{
 entity.Humidity = rule.Threshold;
 entity.HumidityRuleOutput = rule.RuleOutput;
}
else if (rule.DataField == DeviceRuleDataFields.ExternalTemperature)
{
 entity.ExternalTemperature = rule.Threshold;
 entity.ExternalTemperatureRuleOutput = rule.RuleOutput;
}

You can now deploy the updated solution to your Azure subscription.

build.cmd cloud release {deployment name}

1. Open an elevated command prompt and navigate to the root of your local copy of the azure-iot-remote-
monitoring repository.

2. To deploy your updated solution, run the following command substituting {deployment name} with the
name of your preconfigured solution deployment that you noted previously:

When the deployment is complete, you can update the Stream Analytics job to use the new rule definitions.

1. In the Azure portal, navigate to the resource group that contains your preconfigured solution resources. This
resource group has the same name you specified for the solution during the deployment.

2. Navigate to the {deployment name}-Rules Stream Analytics job.

3. Click Stop to stop the Stream Analytics job from running. (You must wait for the streaming job to stop
before you can edit the query).

4. Click Query. Edit the query to include the SELECT statement for ExternalTemperature. The following
sample shows the complete query with the new SELECT statement:

Add your new rule in the dashboard

WITH AlarmsData AS
(
SELECT
 Stream.IoTHub.ConnectionDeviceId AS DeviceId,
 'Temperature' as ReadingType,
 Stream.Temperature as Reading,
 Ref.Temperature as Threshold,
 Ref.TemperatureRuleOutput as RuleOutput,
 Stream.EventEnqueuedUtcTime AS [Time]
FROM IoTTelemetryStream Stream
JOIN DeviceRulesBlob Ref ON Stream.IoTHub.ConnectionDeviceId = Ref.DeviceID
WHERE
 Ref.Temperature IS NOT null AND Stream.Temperature > Ref.Temperature

UNION ALL

SELECT
 Stream.IoTHub.ConnectionDeviceId AS DeviceId,
 'Humidity' as ReadingType,
 Stream.Humidity as Reading,
 Ref.Humidity as Threshold,
 Ref.HumidityRuleOutput as RuleOutput,
 Stream.EventEnqueuedUtcTime AS [Time]
FROM IoTTelemetryStream Stream
JOIN DeviceRulesBlob Ref ON Stream.IoTHub.ConnectionDeviceId = Ref.DeviceID
WHERE
 Ref.Humidity IS NOT null AND Stream.Humidity > Ref.Humidity

UNION ALL

SELECT
 Stream.IoTHub.ConnectionDeviceId AS DeviceId,
 'ExternalTemperature' as ReadingType,
 Stream.ExternalTemperature as Reading,
 Ref.ExternalTemperature as Threshold,
 Ref.ExternalTemperatureRuleOutput as RuleOutput,
 Stream.EventEnqueuedUtcTime AS [Time]
FROM IoTTelemetryStream Stream
JOIN DeviceRulesBlob Ref ON Stream.IoTHub.ConnectionDeviceId = Ref.DeviceID
WHERE
 Ref.ExternalTemperature IS NOT null AND Stream.ExternalTemperature > Ref.ExternalTemperature
)

SELECT *
INTO DeviceRulesMonitoring
FROM AlarmsData

SELECT *
INTO DeviceRulesHub
FROM AlarmsData

5. Click Save to change the updated rule query.

6. Click Start to start the Stream Analytics job running again.

You can now add the ExternalTemperature rule to a device in the solution dashboard.

1. Navigate to the solution portal.

2. Navigate to the Devices panel.

3. Locate the custom device you created that sends ExternalTemperature telemetry and on the Device
Details panel, click Add Rule.

Additional information

Next steps

4. Select ExternalTemperature in Data Field.

5. Set Threshold to 56. Then click Save and view rules.

6. Return to the dashboard to view the alarm history.

7. In the console window you left open, start the Node.js console app to begin sending ExternalTemperature
telemetry data.

8. Notice that the Alarm History table shows new alarms when the new rule is triggered.

Changing the operator > is more complex and goes beyond the steps outlined in this tutorial. While you can
change the Stream Analytics job to use whatever operator you like, reflecting that operator in the solution portal is
a more complex task.

Now that you've seen how to create custom rules, you can learn more about the preconfigured solutions:

Connect Logic App to your Azure IoT Suite Remote Monitoring preconfigured solution
Device information metadata in the remote monitoring preconfigured solution.

Device information metadata in the remote
monitoring preconfigured solution
5/10/2017 • 5 min to read • Edit Online

Context

LOCATION INFORMATION STORED IMPLEMENTATION

Identity registry Device id, authentication keys, enabled
state

Built in to IoT Hub

Device twins Metadata: reported properties, desired
properties, tags

Built in to IoT Hub

Cosmos DB Command and method history Custom for solution

NOTE

Device metadata

The Azure IoT Suite remote monitoring preconfigured solution demonstrates an approach for managing device
metadata. This article outlines the approach this solution takes to enable you to understand:

What device metadata the solution stores.
How the solution manages the device metadata.

The remote monitoring preconfigured solution uses Azure IoT Hub to enable your devices to send data to the
cloud. The solution stores information about devices in three different locations:

IoT Hub includes a device identity registry to manage access to an IoT hub and uses device twins to manage device
metadata. There is also a remote monitoring solution-specific device registry that stores command and method
history. The remote monitoring solution uses a Cosmos DB database to implement a custom store for command
and method history.

The remote monitoring preconfigured solution keeps the device identity registry in sync with the information in the Cosmos
DB database. Both use the same device id to uniquely identify each device connected to your IoT hub.

IoT Hub maintains a device twin for each simulated and physical device connected to a remote monitoring
solution. The solution uses device twins to manage the metadata associated with devices. A device twin is a JSON
document maintained by IoT Hub, and the solution uses the IoT Hub API to interact with device twins.

A device twin stores three types of metadata:

Reported properties are sent to an IoT hub by a device. In the remote monitoring solution, simulated devices
send reported properties at start-up and in response to Change device state commands and methods. You
can view reported properties in the Device list and Device details in the solution portal. Reported properties
are read only.
Desired properties are retrieved from the IoT hub by devices. It is the responsibility of the device to make any
necessary configuration change on the device. It is also the responsibility of the device to report the change

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-remote-monitoring-device-info.md
https://azure.microsoft.com/documentation/services/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://azure.microsoft.com/documentation/services/documentdb/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins

NOTE

{
 "DeviceProperties": {
 "DeviceID": "deviceid1",
 "HubEnabledState": null,
 "CreatedTime": "2016-04-25T23:54:01.313802Z",
 "DeviceState": "normal",
 "UpdatedTime": null
 },
 "SystemProperties": {
 "ICCID": null
 },
 "Commands": [],
 "CommandHistory": [],
 "IsSimulatedDevice": false,
 "id": "fe81a81c-bcbc-4970-81f4-7f12f2d8bda8"
}

NOTE

Lifecycle

View and edit device information in the solution portal

back to the hub as a reported property. You can set a desired property value through the solution portal.
Tags only exist in the device twin and are never synchronized with a device. You can set tag values in the
solution portal and use them when you filter the list of devices. The solution also uses a tag to identify the icon
to display for a device in the solution portal.

Example reported properties from the simulated devices include manufacturer, model number, latitude, and
longitude. Simulated devices also return the list of supported methods as a reported property.

The simulated device code only uses the Desired.Config.TemperatureMeanValue and
Desired.Config.TelemetryInterval desired properties to update the reported properties sent back to IoT Hub. All other
desired property change requests are ignored.

A device information metadata JSON document stored in the device registry Cosmos DB database has the
following structure:

Device information can also include metadata to describe the telemetry the device sends to IoT Hub. The remote monitoring
solution uses this telemetry metadata to customize how the dashboard displays dynamic telemetry.

When you first create a device in the solution portal, the solution creates an entry in the Cosmos DB database to
store command and method history. At this point, the solution also creates an entry for the device in the device
identity registry, which generates the keys the device uses to authenticate with IoT Hub. It also creates a device
twin.

When a device first connects to the solution, it sends reported properties and a device information message. The
reported property values are automatically saved in the device twin. The reported properties include the device
manufacturer, model number, serial number, and a list of supported methods. The device information message
includes the list of the commands the device supports including information about any command parameters.
When the solution receives this message, it updates the device information in the Cosmos DB database.

The device list in the solution portal displays the following device properties as columns by default: Status,
DeviceId, Manufacturer, Model Number, Serial Number, Firmware, Platform, Processor, and Installed

RAM. You can customize the columns by clicking Column editor. The device properties Latitude and Longitude
drive the location in the Bing Map on the dashboard.

In the Device Details pane in the solution portal, you can edit desired properties and tags (reported properties
are read only).

You can use the solution portal to remove a device from your solution. When you remove a device, the solution
removes the device entry from identity registry and then deletes the device twin. The solution also removes
information related to the device from the Cosmos DB database. Before you can remove a device, you must
disable it.

Device information message processing

NOTE

Next steps

Device information messages sent by a device are distinct from telemetry messages. Device information messages
include the commands a device can respond to, and any command history. IoT Hub itself has no knowledge of the
metadata contained in a device information message and processes the message in the same way it processes any
device-to-cloud message. In the remote monitoring solution, an Azure Stream Analytics (ASA) job reads the
messages from IoT Hub. The DeviceInfo stream analytics job filters for messages that contain "ObjectType":
"DeviceInfo" and forwards them to the EventProcessorHost host instance that runs in a web job. Logic in the
EventProcessorHost instance uses the device id to find the Cosmos DB record for the specific device and update
the record.

A device information message is a standard device-to-cloud message. The solution distinguishes between device information
messages and telemetry messages by using ASA queries.

Now you've finished learning how you can customize the preconfigured solutions, you can explore some of the
other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
Frequently asked questions for IoT Suite
IoT security from the ground up

https://azure.microsoft.com/documentation/services/stream-analytics/

Deploy a gateway on Windows or Linux for the
connected factory preconfigured solution
5/5/2017 • 7 min to read • Edit Online

Windows deployment

NOTE

Install Docker

Configure the gateway

The steps in this article show you how to deploy a gateway using Docker on either Windows or Linux. The gateway
enables connectivity to the connected factory preconfigured solution.

If you don't yet have a gateway device, Microsoft recommends you buy a commercial gateway from one of our partners.
Visit the Azure IoT device catalog for a list of gateway devices compatible with the connected factory solution. Follow the
instructions that come with the device to set up the gateway. Alternatively, use the following instructions to manually set up
one of your existing gateways.

Install Docker for Windows on your Windows-based gateway device. During Windows Docker setup, select a drive
on your host machine to share with Docker. The following screenshot shows sharing the D drive on your Windows
system:

Then create a folder called docker in the root of the shared drive. You can also perform this step after installing
docker from the Settings menu.

1. You need the iothubowner connection string of your Azure IoT Suite connected factory deployment to
complete the gateway deployment. In the Azure portal, navigate to your IoT Hub in the resource group

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connected-factory-gateway-deployment.md
https://catalog.azureiotsuite.com/?q=opc
https://www.docker.com/docker-windows
http://portal.azure.com/

Run the gateway

created when you deployed the connected factory solution. Click Shared access policies to access the
iothubowner connection string:

Copy the Connection string--primary key value.

2. Configure the gateway for your IoT Hub by running the two gateway modules once from a command
prompt with:

docker run -it --rm -h <ApplicationName> -v
//D/docker:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/CertificateStores -v
//D/docker:/root/.dotnet/corefx/cryptography/x509stores microsoft/iot-gateway-opc-ua:1.0.0
<ApplicationName> "<IoTHubOwnerConnectionString>"

docker run -it --rm -v //D/docker:/mapped microsoft/iot-gateway-opc-ua-proxy:0.1.3 -i -c "
<IoTHubOwnerConnectionString>" -D /mapped/cs.db

<ApplicationName> is the name of the OPC UA application the gateway creates in the format
publisher.<your fully qualified domain name>. For example, publisher.microsoft.com.
<IoTHubOwnerConnectionString> is the iothubowner connection string you copied in the
previous step. This connection string is only used in this step and you don’t need it again.

The mapped D:\docker folder (the -v argument) is used later to persist the two X.509 certificates
used by the gateway modules.

1. Restart the gateway using the following commands:

docker run -it --rm -h <ApplicationName> --expose 62222 -p 62222:62222 -v
//D/docker:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/Logs -v
//D/docker:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/CertificateStores -v
//D/docker:/shared -v //D/docker:/root/.dotnet/corefx/cryptography/x509stores -e
_GW_PNFP="/shared/publishednodes.JSON" microsoft/iot-gateway-opc-ua:1.0.0 <ApplicationName>

docker run -it --rm -v //D/docker:/mapped microsoft/iot-gateway-opc-ua-proxy:0.1.3 -D /mapped/cs.db

2. For security reasons, the two X.509 certificates persisted in the D:\docker folder contain the private key.
Access to this folder must be limited to the credentials (typically Administrators) used to run the Docker
container. Right-click the D:\docker folder, choose Properties, then Security, and then Edit. Give
Administrators full control and remove everyone else:

Add your OPC UA servers

3. Verify network connectivity. Try to ping your gateway. From a command prompt, enter the command
ping publisher.<your fully qualified domain name> . If the destination is unreachable, add the IP address

and name of your gateway to your hosts file on your gateway. The hosts file is located in the
"Windows\System32\drivers\etc" folder.

4. Next, try to connect to the publisher using a local OPC UA client running on the gateway. The OPC UA
endpoint URL is opc.tcp://publisher.<your fully qualified domain name>:62222 . If you don't have an OPC
UA client, you can download an open-source OPC UA client.

5. When you have successfully completed these local tests, browse to the Connect your own OPC UA Server
page in the connected factory solution portal. Enter the publisher endpoint URL (
tcp://publisher.<your fully qualified domain name>:62222) and click Connect. You get a certificate

warning, then click Proceed. Next you get an error that the publisher doesn’t trust the UA Web Client. To
resolve this error, copy the UA Web Client certificate from the "D:\docker\Rejected Certificates\certs"
folder to the "D:\docker\UA Applications\certs" folder on the gateway. You do not need to restart of the
gateway. Repeat this step. You can now connect to the gateway from the cloud, and you are ready to add
OPC UA servers to the solution.

1. Browse to the Connect your own OPC UA Server page in the connected factory solution portal. Follow
the same steps as in the preceding section to establish trust between the connected factory portal and the
OPC UA server. This step establishes a mutual trust of the certificates from the connected factory portal and
the OPC UA server and creates a connection.

2. Browse the OPC UA nodes tree of your OPC UA server, right-click the OPC nodes, and select publish. For
publishing to work this way, the OPC UA server and the publisher must be on the same network. In other
words, if the fully qualified domain name of the publisher is publisher.mydomain.com then the fully

https://github.com/OPCFoundation/UA-.NETStandardLibrary/tree/master/SampleApplications/Samples/Client.Net4

Linux deployment

NOTE

Configure the gateway

qualified domain name of the OPC UA server must be, for example, myopcuaserver.mydomain.com. If
your setup is different, you can manually add nodes to the publishesnodes.json file found in the D:\docker
folder. The publishesnodes.json is automatically generated on first successful publish of an OPC node.

3. Telemetry now flows from the gateway device. You can view the telemetry in the Factory Locations view
of the connected factory portal under New Factory.

If you don't yet have a gateway device, Microsoft recommends you buy a commercial gateway from one of our partners.
Visit the Azure IoT device catalog for a list of gateway devices compatible with the connected factory solution. Follow the
instructions that come with the device to set up the gateway. Alternatively, use the following instructions to manually set up
one of your existing gateways.

Install Docker on your Linux gateway device.

1. You need the iothubowner connection string of your Azure IoT Suite connected factory deployment to
complete the gateway deployment. In the Azure portal, navigate to your IoT Hub in the resource group
created when you deployed the connected factory solution. Click Shared access policies to access the
iothubowner connection string:

Copy the Connection string--primary key value.

2. Configure the gateway for your IoT Hub by running the two gateway modules once from a shell with:

sudo docker run -it --rm -h <ApplicationName> -v
/shared:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/ -v
/shared:/root/.dotnet/corefx/cryptography/x509stores microsoft/iot-gateway-opc-ua:1.0.0
<ApplicationName> "<IoTHubOwnerConnectionString>"

sudo docker run --rm -it -v /shared:/mapped microsoft/iot-gateway-opc-ua-proxy:0.1.3 -i -c "
<IoTHubOwnerConnectionString>" -D /mapped/cs.db

<ApplicationName> is the name of the OPC UA application the gateway creates in the format
publisher.<your fully qualified domain name>. For example, publisher.microsoft.com.

https://catalog.azureiotsuite.com/?q=opc
https://www.docker.com/community-edition#/download
http://portal.azure.com/

Run the gateway

Add your OPC UA servers

Next steps

<IoTHubOwnerConnectionString> is the iothubowner connection string you copied in the
previous step. This connection string is only used in this step and you don’t need it again.

The mapped /shared folder (the -v argument) is used later to persist the two X.509 certificates used
by the gateway modules.

1. Restart the gateway using the following commands:

sudo docker run -it -h <ApplicationName> --expose 62222 -p 62222:62222 –-rm -v
/shared:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/Logs -v
/shared:/build/src/GatewayApp.NetCore/bin/Debug/netcoreapp1.0/publish/CertificateStores -v
/shared:/shared -v /shared:/root/.dotnet/corefx/cryptography/x509stores -e
_GW_PNFP="/shared/publishednodes.JSON" microsoft/iot-gateway-opc-ua:1.0.0 <ApplicationName>

sudo docker run -it -v /shared:/mapped microsoft/iot-gateway-opc-ua-proxy:0.1.3 -D /mapped/cs.db

2. For security reasons, the two X.509 certificates persisted in the /shared folder contain the private key.
Access to this folder must be limited to the credentials used to run the Docker container. To set the
permissions for root only, use the chmod shell command on the folder.

3. Verify network connectivity. Try to ping your gateway. From a shell, enter the command
ping publisher.<your fully qualified domain name> . If the destination is unreachable, add the IP address

and name of your gateway to your hosts file on your gateway. The hosts file is located in /etc.

4. Next, try to connect to the publisher using a local OPC UA client running on the gateway. The OPC UA
endpoint URL is opc.tcp://publisher.<your fully qualified domain name>:62222 . If you don't have an OPC
UA client, you can download an open-source OPC UA client.

5. When you have successfully completed these local tests, browse to the Connect your own OPC UA Server
page in the connected factory solution portal. Enter the publisher endpoint URL (
tcp://publisher.<your fully qualified domain name>:62222) and click Connect. You get a certificate

warning, then click Proceed. Next you get an error that the publisher doesn’t trust the UA Web Client. To
resolve this error, copy the UA Web Client certificate from the "/shared/Rejected Certificates/certs" folder
to the "/shared/UA Applications/certs" folder on the gateway. You do not need to restart of the gateway.
Repeat this step. You can now connect to the gateway from the cloud, and you are ready to add OPC UA
servers to the solution.

1. Browse to the Connect your own OPC UA Server page in the connected factory solution portal. Follow
the same steps as in the preceding section to establish trust between the connected factory portal and the
OPC UA server. This step establishes a mutual trust of the certificates from the connected factory portal and
the OPC UA server and creates a connection.

2. Browse the OPC UA nodes tree of your OPC UA server, right-click the OPC nodes, and select publish. For
publishing to work this way, the OPC UA server and the publisher must be on the same network. In other
words, if the fully qualified domain name of the publisher is publisher.mydomain.com then the fully
qualified domain name of the OPC UA server must be, for example, myopcuaserver.mydomain.com. If
your setup is different, you can manually add nodes to the publishesnodes.json file found in the /shared
folder. The publishesnodes.json is automatically generated on first successful publish of an OPC node.

3. Telemetry now flows from the gateway device. You can view the telemetry in the Factory Locations view
of the connected factory portal under New Factory.

To learn more about the architecture of the connected factory preconfigured solution, see Connected factory
preconfigured solution walkthrough.

https://github.com/OPCFoundation/UA-.NETStandardLibrary/tree/master/SampleApplications/Samples/Client.Net4

Customize how the connected factory solution
displays data from your OPC UA servers
5/10/2017 • 5 min to read • Edit Online

Introduction
The connected factory solution aggregates and displays data from the OPC UA servers connected to the solution.
You can browse and send commands to the OPC UA servers in your solution.

Examples of aggregated data in the solution include the Overall Equipment Efficiency (OEE) and Key Performance
Indicators (KPIs) that you can view in the dashboard at the factory, line, and station levels. The following screenshot
shows the OEE and KPI values for the Assembly station, on Production line 1, in the Munich factory:

The solution enables you to view detailed information from specific data items from the OPC UA servers, called
stations. The following screenshot shows plots of the number of manufactured items from a specific station:

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-connected-factory-customize.md

Data sources

If you click one of the graphs, you can explore the data further using Time Series Insights (TSI):

This article describes:

How the data is made available to the various views in the solution.
How you can customize the way the solution displays the data.

The connected factory solution displays data from the OPC UA servers connected to the solution. The default
installation includes several OPC UA servers running a factory simulation. You can add your own OPC UA servers
that connect through a gateway to your solution.

You can browse the data items that a connected OPC UA server can send to your solution in the dashboard:

NOTE

1. Navigate to the Select an OPC UA server view:

2. Select a server and click Connect. Click Proceed when the security warning appears.

This warning only appears once for each server and establishes a trust relationship between the solution dashboard
and the server.

3. You can now browse the data items that the server can send to the solution. Items that are being sent to the
solution have a green check mark:

4. If you are an Administrator in the solution, you can choose to publish a data item to make it available in the
connected factory solution. As an Administrator, you can also change the value of data items and call
methods in the OPC UA server.

Map the data

"Guid": "73B534AE-7C7E-4877-B826-F1C0EA339F65",
"Name": "Munich",
"Description": "Braking system",
"Location": {
 "City": "Munich",
 "Country": "Germany",
 "Latitude": 48.13641,
 "Longitude": 11.57754
},
"Image": "munich.jpg"

The connected factory solution maps and aggregates the published data items from the OPC UA server to the
various views in the solution. The connected factory solution deploys to your Azure account when you provision the
solution. A JSON file in the Visual Studio connected factory solution stores this mapping information. You can view
and modify this JSON configuration file in the connected factory Visual Studio solution and redeploy it.

You can use the configuration file to:

Edit the existing simulated factories, production lines, and stations.
Map data from real OPC UA servers that you connect to the solution.

To clone a copy of the connected factory Visual Studio solution, use the following git command:

git clone https://github.com/Azure/azure-iot-connected-factory.git

The file ContosoTopologyDescription.json defines the mapping from the OPC UA server data items to the views
in the connected factory solution dashboard. You can find this configuration file in the Contoso\Topology folder
in the WebApp project in the Visual Studio solution.

The content of the JSON file is organized as a hierarchy of factory, production line, and station nodes. This hierarchy
defines the navigation hierarchy in the connected factory dashboard. Values at each node of the hierarchy
determine the information displayed in the dashboard. For example, the JSON file contains the following values for
the Munich factory:

The name, description, and location appear on this view in the dashboard:

OpcUri

Simulation

Kpi1 and Kpi2

Each factory, production line, and station has an image property. You can find these JPEG files in the Content\img
folder in the WebApp project. These image files display in the connected factory dashboard.

Each station includes several detailed properties that define the mapping from the OPC UA data items. These
properties are described in the following sections:

The OpcUri value is the OPC UA Application URI that uniquely identifies the OPC UA server. For example, the
OpcUri value for the assembly station on production line 1 in Munich looks like this:
urn:scada2194:ua:munich:productionline0:assemblystation.

You can view the URIs of the connected OPC UA servers in the solution dashboard:

The information in the Simulation node is specific to the OPC UA simulation that runs in the OPC UA servers that
are provisioned by default. It is not used for a real OPC UA server.

These nodes describe how data from the station contributes to the two KPI values in the dashboard. In a default
deployment, these KPI values are units per hour and kWh per hour. The solution calculates KPI vales at the level of a
station and aggregates them at the production line and factory levels.

Each KPI has a minimum, maximum, and target value. Each KPI value can also define alert actions for the connected
factory solution to perform. The following snippet shows the KPI definitions for the assembly station on production
line 1 in Munich:

"Kpi1": {
 "Minimum": 150,
 "Target": 300,
 "Maximum": 600
},
"Kpi2": {
 "Minimum": 50,
 "Target": 100,
 "Maximum": 200,
 "MinimumAlertActions": [
 {
 "Type": "None"
 }
]
}

OpcNodes

VALUE DESCRIPTION

Relevance The KPI and OEE values this data contributes to.

OpCode How the data is aggregated.

The following screenshot shows the KPI data in the dashboard.

The OpcNodes nodes identify the published data items from the OPC UA server and specify how to process that
data.

The NodeId value identifies the specific OPC UA NodeID from the OPC UA server. The first node in the assembly
station for production line 1 in Munich has a value ns=2;i=385. A NodeId value specifies the data item to read
from the OPC UA server, and the SymbolicName provides a user-friendly name to use in the dashboard for that
data.

Other values associated with each node are summarized in the following table:

Units The units to use in the dashboard.

Visible Whether to display this value in the dashboard. Some values
are used in calculations but not displayed.

Maximum The maximum value that triggers an alert in the dashboard.

MaximumAlertActions An action to take in response to an alert. For example, send a
command to a station.

ConstValue A constant value used in a calculation.

VALUE DESCRIPTION

Deploy the changes

Next Steps

When you have finished making changes to the ContosoTopologyDescription.json file, you must redeploy the
connected factory solution to your Azure account.

The azure-iot-connected-factory repository includes a build.ps1 PowerShell script you can use to rebuild and
deploy the solution.

Learn more about the connected factory preconfigured solution by reading the following articles:

Connected factory preconfigured solution walkthrough
Connect your device to the Connected factory preconfigured solution
Permissions on the azureiotsuite.com site
FAQ

Internet of Things security architecture
3/1/2017 • 24 min to read • Edit Online

Security starts with a threat model

When to threat model

What to threat model

Who threat models

When designing a system, it is important to understand the potential threats to that system, and add appropriate
defenses accordingly, as the system is designed and architected. It is particularly important to design the product
from the start with security in mind because understanding how an attacker might be able to compromise a
system helps make sure appropriate mitigations are in place from the beginning.

Microsoft has long used threat models for its products and has made the company’s threat modeling process
publically available. The company experience demonstrates that the modelling has unexpected benefits beyond the
immediate understanding of what threats are the most concerning. For example, it also creates an avenue for an
open discussion with others outside the development team, which can lead to new ideas and improvements in the
product.

The objective of threat modeling is to understand how an attacker might be able to compromise a system and then
make sure appropriate mitigations are in place. Threat modeling forces the design team to consider mitigations as
the system is designed rather than after a system is deployed. This fact is critically important, because retrofitting
security defenses to a myriad of devices in the field is infeasible, error prone and will leave customers at risk.

Many development teams do an excellent job capturing the functional requirements for the system that benefit
customers. However, identifying non-obvious ways that someone might misuse the system is more challenging.
Threat modeling can help development teams understand what an attacker might do and why. Threat modeling is
a structured process that creates a discussion about the security design decisions in the system, as well as changes
to the design that are made along the way that impact security. While a threat model is simply a document, this
documentation also represents an ideal way to ensure continuity of knowledge, retention of lessons learned, and
help new team onboard rapidly. Finally, an outcome of threat modeling is to enable you to consider other aspects
of security, such as what security commitments you wish to provide to your customers. These commitments in
conjunction with threat modeling will inform and drive testing of your Internet of Things (IoT) solution.

Threat modeling offers the greatest value if it is incorporated into the design phase. When you are designing, you
have the greatest flexibility to make changes to eliminate threats. Eliminating threats by design is the desired
outcome. It is much easier than adding mitigations, testing them, and ensuring they remain current and moreover,
such elimination is not always possible. It becomes harder to eliminate threats as a product becomes more mature,
and in turn will ultimately require more work and a lot harder tradeoffs than threat modeling early on in the
development.

You should thread model the solution as a whole and also focus in the following areas:

The security and privacy features
The features whose failures are security relevant
The features that touch a trust boundary

Threat modeling is a process like any other. It is a good idea to treat the threat model document like any other
component of the solution and validate it. Many development teams do an excellent job capturing the functional
requirements for the system that benefit customers. However, identifying non-obvious ways that someone might

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-security-architecture.md
http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

How to threat model

The process steps

Threats

Security in IoT

misuse the system is more challenging. Threat modeling can help development teams understand what an attacker
might do and why.

The threat modeling process is composed of four steps; the steps are:

Model the application
Enumerate Threats
Mitigate threats
Validate the mitigations

Three rules of thumb to keep in mind when building a threat model:

1. Create a diagram out of reference architecture.
2. Start breadth-first. Get an overview, and understand the system as a whole, before deep-diving. This helps

ensure that you deep-dive in the right places.
3. Drive the process, don’t let the process drive you. If you find an issue in the modeling phase and want to explore

it, go for it! Don’t feel you need to follow these steps slavishly.

The four core elements of a threat model are:

Processes (web services, Win32 services, *nix daemons, etc. Note that some complex entities (for example field
gateways and sensors) can be abstracted as a process when a technical drill down in these areas is not possible.
Data stores (anywhere data is stored, such as a configuration file or database)
Data flow (where data moves between other elements in the application)
External Entities (anything that interacts with the system, but is not under the control of the application,
examples include users and satellite feeds)

All elements in the architectural diagram are subject to various threats; we will use the STRIDE mnemonic. Read
Threat Modeling Again, STRIDE to know more about the STRIDE elements.

Different elements of the application diagram are subject to certain STRIDE threats:

Processes are subject to STRIDE
Data flows are subject to TID
Data stores are subject to TID, and sometimes R, if the data stores are log files.
External entities are subject to SRD

Connected special-purpose devices have a significant number of potential interaction surface areas and interaction
patterns, all of which must be considered to provide a framework for securing digital access to those devices. The
term “digital access” is used here to distinguish from any operations that are carried out through direct device
interaction where access security is provided through physical access control. For example, putting the device into a
room with a lock on the door. While physical access cannot be denied using software and hardware, measures can
be taken to prevent physical access from leading to system interference.

As we explore the interaction patterns, we will look at “device control” and “device data” with the same level of
attention. “Device control” can be classified as any information that is provided to a device by any party with the
goal of changing or influencing its behavior towards its state or the state of its environment. “Device data” can be
classified as any information that a device emits to any other party about its state and the observed state of its
environment.

In order to optimize security best practices, it is recommended that a typical IoT architecture be divided into several

https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/

The Device Zone

The Field Gateway Zone

component/zones as part of the threat modeling exercise. These zones are described fully throughout this section
and include:

Device,
Field Gateway,
Cloud gateways, and
Services.

Zones are broad way to segment a solution; each zone often has its own data and authentication and authorization
requirements. Zones can also be used to isolation damage and restrict the impact of low trust zones on higher trust
zones.

Each zone is separated by a Trust Boundary, which is noted as the dotted red line in the diagram below. It
represents a transition of data/information from one source to another. During this transition, the data/information
could be subject to Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privilege (STRIDE).

The components depicted within each boundary are also subjected to STRIDE, enabling a full 360 threat modeling
view of the solution. The sections below elaborate on each of the components and specific security concerns and
solutions that should be put into place.

The sections that follows will discuss standard components typically found in these zones.

The device environment is the immediate physical space around the device where physical access and/or “local
network” peer-to-peer digital access to the device is feasible. A “local network” is assumed to be a network that is
distinct and insulated from – but potentially bridged to – the public Internet, and includes any short-range wireless
radio technology that permits peer-to-peer communication of devices. It does not include any network
virtualization technology creating the illusion of such a local network and it does also not include public operator
networks that require any two devices to communicate across public network space if they were to enter a peer-to-
peer communication relationship.

Field gateway is a device/appliance or some general-purpose server computer software that acts as
communication enabler and, potentially, as a device control system and device data processing hub. The field
gateway zone includes the field gateway itself and all devices that are attached to it. As the name implies, field
gateways act outside dedicated data processing facilities, are usually location bound, are potentially subject to
physical intrusion, and will have limited operational redundancy. All to say that a field gateway is commonly a thing
one can touch and sabotage while knowing what its function is.

The cloud gateway zone

The services zone

Information-devices vs. special-purpose devices

A field gateway is different from a mere traffic router in that it has had an active role in managing access and
information flow, meaning it is an application addressed entity and network connection or session terminal. An
NAT device or firewall, in contrast, do not qualify as field gateways since they are not explicit connection or session
terminals, but rather a route (or block) connections or sessions made through them. The field gateway has two
distinct surface areas. One faces the devices that are attached to it and represents the inside of the zone, and the
other faces all external parties and is the edge of the zone.

Cloud gateway is a system that enables remote communication from and to devices or field gateways from several
different sites across public network space, typically towards a cloud-based control and data analysis system, a
federation of such systems. In some cases, a cloud gateway may immediately facilitate access to special-purpose
devices from terminals such as tablets or phones. In the context discussed here, “cloud” is meant to refer to a
dedicated data processing system that is not bound to the same site as the attached devices or field gateways. Also
in a Cloud Zone, operational measures prevent targeted physical access and is not necessarily exposed to a “public
cloud” infrastructure.

A cloud gateway may potentially be mapped into a network virtualization overlay to insulate the cloud gateway
and all of its attached devices or field gateways from any other network traffic. The cloud gateway itself is neither a
device control system nor a processing or storage facility for device data; those facilities interface with the cloud
gateway. The cloud gateway zone includes the cloud gateway itself along with all field gateways and devices
directly or indirectly attached to it. The edge of the zone is a distinct surface area where all external parties
communicate through.

A “service” is defined for this context as any software component or module that is interfacing with devices
through a field- or cloud gateway for data collection and analysis, as well as for command and control. Services are
mediators. They act under their identity towards gateways and other subsystems, store and analyze data,
autonomously issue commands to devices based on data insights or schedules and expose information and control
capabilities to authorized end-users.

PCs, phones, and tablets are primarily interactive information devices. Phones and tablets are explicitly optimized
around maximizing battery lifetime. They preferably turn off partially when not immediately interacting with a
person, or when not providing services like playing music or guiding their owner to a particular location. From a
systems perspective, these information technology devices are mainly acting as proxies towards people. They are
“people actuators” suggesting actions and “people sensors” collecting input.

Special-purpose devices, from simple temperature sensors to complex factory production lines with thousands of
components inside them, are different. These devices are much more scoped in purpose and even if they provide
some user interface, they are largely scoped to interfacing with or be integrated into assets in the physical world.
They measure and report environmental circumstances, turn valves, control servos, sound alarms, switch lights,
and do many other tasks. They help to do work for which an information device is either too generic, too expensive,
too big, or too brittle. The concrete purpose immediately dictates their technical design as well the available
monetary budget for their production and scheduled lifetime operation. The combination of these two key factors
constrains the available operational energy budget, physical footprint, and thus available storage, compute, and
security capabilities.

If something “goes wrong” with automated or remote controllable devices, for example, physical defects or control
logic defects to willful unauthorized intrusion and manipulation. The production lots may be destroyed, buildings
may be looted or burned down, and people may be injured or even die. This is, of course, a whole different class of
damage than someone maxing out a stolen credit card's limit. The security bar for devices that make things move,
and also for sensor data that eventually results in commands that cause things to move, must be higher than in any
e-commerce or banking scenario.

Device control and device data interactions

Threat modeling the Azure IoT reference architecture

Connected special-purpose devices have a significant number of potential interaction surface areas and interaction
patterns, all of which must be considered to provide a framework for securing digital access to those devices. The
term “digital access” is used here to distinguish from any operations that are carried out through direct device
interaction where access security is provided through physical access control. For example, putting the device into a
room with a lock on the door. While physical access cannot be denied using software and hardware, measures can
be taken to prevent physical access from leading to system interference.

As we explore the interaction patterns, we will look at “device control” and “device data” with the same level of
attention while threat modeling. “Device control” can be classified as any information that is provided to a device
by any party with the goal of changing or influencing its behavior towards its state or the state of its environment.
“Device data” can be classified as any information that a device emits to any other party about its state and the
observed state of its environment.

Microsoft uses the framework outlined above to do threat modelling for Azure IoT. In the section below we
therefore use the concrete example of Azure IoT Reference Architecture to demonstrate how to think about threat
modelling for IoT and how to address the threats identified. In our case we identified four main areas of focus:

Devices and Data Sources,
Data Transport,
Device and Event Processing, and
Presentation

The diagram below provides a simplified view of Microsoft’s IoT Architecture using a Data Flow Diagram model
that is used by the Microsoft Threat Modeling Tool:

Device and data sources/data transport

Processes

It is important to note that the architecture separates the device and gateway capabilities. This allows the user to
leverage gateway devices that are more secure: they are capable of communicating with the cloud gateway using
secure protocols, which typically requires greater processing overhead that a native device - such as a thermostat -
could provide on its own. In the Azure services zone, we assume that the Cloud Gateway is represented by the
Azure IoT Hub service.

This section explores the architecture outlined above through the lens of threat modeling and gives an overview of
how we are addressing some of the inherent concerns. We will focus on the core elements of a threat model:

Processes (those under our control and external items)
Communication (also called data flows)
Storage (also called data stores)

In each of the categories outlined in the Azure IoT architecture, we try to mitigate a number of different threats
across the different stages data/information exists in: process, communication, and storage. Below we give an
overview of the most common ones for the “process” category, followed by an overview of how these could be
best mitigated:

Spoofing (S): An attacker may extract cryptographic key material from a device, either at the software or hardware
level, and subsequently access the system with a different physical or virtual device under the identity of the device
the key material has been taken from. A good illustration is remote controls that can turn any TV and that are
popular prankster tools.

Denial of Service (D): A device can be rendered incapable of functioning or communicating by interfering with
radio frequencies or cutting wires. For example, a surveillance camera that had its power or network connection
intentionally knocked out will not report data, at all.

Tampering (T): An attacker may partially or wholly replace the software running on the device, potentially
allowing the replaced software to leverage the genuine identity of the device if the key material or the
cryptographic facilities holding key materials were available to the illicit program. For example, an attacker may
leverage extracted key material to intercept and suppress data from the device on the communication path and
replace it with false data that is authenticated with the stolen key material.

Information Disclosure (I): If the device is running manipulated software, such manipulated software could
potentially leak data to unauthorized parties. For example, an attacker may leverage extracted key material to inject
itself into the communication path between the device and a controller or field gateway or cloud gateway to siphon
off information.

Elevation of Privilege (E): A device that does specific function can be forced to do something else. For example, a
valve that is programmed to open half way can be tricked to open all the way.

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Device S Assigning identity to
the device and
authenticating the
device

Replacing device or
part of the device
with some other
device. How do we
know we are talking
to the right device?

Authenticating the
device, using
Transport Layer
Security (TLS) or
IPSec. Infrastructure
should support using
pre-shared key (PSK)
on those devices that
cannot handle full
asymmetric
cryptography.
Leverage Azure AD,
OAuth

TRID Apply tamperproof
mechanisms to the
device for example by
making it very hard to
impossible to extract
keys and other
cryptographic
material from the
device.

The risk is if someone
is tampering the
device (physical
interference). How are
we sure, that device
has not tampered
with.

The most effective
mitigation is a trusted
platform module
(TPM) capability that
allows storing keys in
special on-chip
circuitry from which
the keys cannot be
read, but can only be
used for
cryptographic
operations that use
the key but never
disclose the key.
Memory encryption
of the device. Key
management for the
device. Signing the
code.

E Having access control
of the device.
Authorization scheme.

If the device allows for
individual actions to
be performed based
on commands from
an outside source, or
even compromised
sensors, it will allow
the attack to perform
operations not
otherwise accessible.

Having authorization
scheme for the device

Field Gateway S Authenticating the
Field gateway to
Cloud Gateway (cert
based, PSK, Claim
based,..)

If someone can spoof
Field Gateway, then it
can present itself as
any device.

TLS RSA/PSK, IPSec,
RFC 4279. All the
same key storage and
attestation concerns
of devices in general –
best case is use TPM.
6LowPAN extension
for IPSec to support
Wireless Sensor
Networks (WSN).

http://www.rfc-editor.org/in-notes/internet-drafts/draft-ietf-ace-oauth-authz-01.txt
https://tools.ietf.org/html/rfc4279

TRID Protect the Field
Gateway against
tampering (TPM?)

Spoofing attacks that
trick the cloud
gateway thinking it is
talking to field
gateway could result
in information
disclosure and data
tampering

Memory encryption,
TPM’s, authentication.

E Access control
mechanism for Field
Gateway

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Here are some examples of threats in this category:

Spoofing: An attacker may extract cryptographic key material from a device, either at the software or hardware
level, and subsequently access the system with a different physical or virtual device under the identity of the device
the key material has been taken from.

Denial of Service: A device can be rendered incapable of functioning or communicating by interfering with radio
frequencies or cutting wires. For example, a surveillance camera that had its power or network connection
intentionally knocked out will not report data, at all.

Tampering: An attacker may partially or wholly replace the software running on the device, potentially allowing
the replaced software to leverage the genuine identity of the device if the key material or the cryptographic
facilities holding key materials were available to the illicit program.

Tampering: A surveillance camera that’s showing a visible-spectrum picture of an empty hallway could be aimed
at a photograph of such a hallway. A smoke or fire sensor could be reporting someone holding a lighter under it. In
either case, the device may be technically fully trustworthy towards the system, but it will report manipulated
information.

Tampering: An attacker may leverage extracted key material to intercept and suppress data from the device on the
communication path and replace it with false data that is authenticated with the stolen key material.

Tampering: An attacker may partially or completely replace the software running on the device, potentially
allowing the replaced software to leverage the genuine identity of the device if the key material or the
cryptographic facilities holding key materials were available to the illicit program.

Information Disclosure: If the device is running manipulated software, such manipulated software could
potentially leak data to unauthorized parties.

Information Disclosure: An attacker may leverage extracted key material to inject itself into the communication
path between the device and a controller or field gateway or cloud gateway to siphon off information.

Denial of Service: The device can be turned off or turned into a mode where communication is not possible
(which is intentional in many industrial machines).

Tampering: The device can be reconfigured to operate in a state unknown to the control system (outside of known
calibration parameters) and thus provide data that can be misinterpreted

Elevation of Privilege: A device that does specific function can be forced to do something else. For example, a
valve that is programmed to open half way can be tricked to open all the way.

Denial of Service: The device can be turned into a state where communication is not possible.

Tampering: The device can be reconfigured to operate in a state unknown to the control system (outside of known

Communication

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Device IoT Hub TID (D)TLS (PSK/RSA) to
encrypt the traffic

Eavesdropping or
interfering the
communication
between the device
and the gateway

Security on the
protocol level. With
custom protocols, we
need to figure out
how to protect them.
In most cases, the
communication takes
place from the device
to the IoT Hub (device
initiates the
connection).

Device Device TID (D)TLS (PSK/RSA) to
encrypt the traffic.

Reading data in
transit between
devices. Tampering
with the data.
Overloading the
device with new
connections

Security on the
protocol level
(MQTT/AMQP/HTTP/
CoAP. With custom
protocols, we need to
figure out how to
protect them. The
mitigation for the DoS
threat is to peer
devices through a
cloud or field gateway
and have them only
act as clients towards
the network. The
peering may result in
a direct connection
between the peers
after having been
brokered by the
gateway

External Entity Device TID Strong pairing of the
external entity to the
device

Eavesdropping the
connection to the
device. Interfering the
communication with
the device

Securely pairing the
external entity to the
device NFC/Bluetooth
LE. Controlling the
operational panel of
the device (Physical)

Field Gateway Cloud
Gateway

TID TLS (PSK/RSA) to
encrypt the traffic.

Eavesdropping or
interfering the
communication
between the device
and the gateway

Security on the
protocol level
(MQTT/AMQP/HTTP/
CoAP). With custom
protocols, we need to
figure out how to
protect them.

calibration parameters) and thus provide data that can be misinterpreted.

Spoofing/Tampering/Repudiation: If not secured (which is rarely the case with consumer remote controls) an
attacker can manipulate the state of a device anonymously. A good illustration is remote controls that can turn any
TV and that are popular prankster tools.

Threats around communication path between devices, devices and field gateways and device and cloud gateway.
The table below has some guidance around open sockets on the device/VPN:

Device Cloud
Gateway

TID TLS (PSK/RSA) to
encrypt the traffic.

Eavesdropping or
interfering the
communication
between the device
and the gateway

Security on the
protocol level
(MQTT/AMQP/HTTP/
CoAP). With custom
protocols, we need to
figure out how to
protect them.

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Storage

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Device storage TRID Storage encryption,
signing the logs

Reading data from
the storage (PII data),
tampering with
telemetry data.
Tampering with
queued or cached
command control
data. Tampering with
configuration or
firmware update
packages while
cached or queued
locally can lead to OS
and/or system
components being
compromised

Encryption, message
authentication code
(MAC) or digital
signature. Where
possible, strong
access control
through resource
access control lists
(ACLs) or permissions.

Device OS image TRID Tampering with OS
/replacing the OS
components

Read-only OS
partition, signed OS
image, Encryption

Here are some examples of threats in this category:

Denial of Service: Constrained devices are generally under DoS threat when they actively listen for inbound
connections or unsolicited datagrams on a network, because an attacker can open many connections in parallel
and not service them or service them very slowly, or the device can be flooded with unsolicited traffic. In both
cases, the device can effectively be rendered inoperable on the network.

Spoofing, Information Disclosure: Constrained devices and special-purpose devices often have one-for-all
security facilities like password or PIN protection, or they wholly rely on trusting the network, meaning they will
grant access to information when a device is on the same network, and that network is often only protected by a
shared key. That means that when the shared secret to device or network is disclosed, it is possible to control the
device or observe data emitted from the device.

Spoofing: an attacker may intercept or partially override the broadcast and spoof the originator (man in the
middle)

Tampering: an attacker may intercept or partially override the broadcast and send false information

Information Disclosure: an attacker may eavesdrop on a broadcast and obtain information without authorization
Denial of Service: an attacker may jam the broadcast signal and deny information distribution

Every device and field gateway has some form of storage (temporary for queuing the data, operating system (OS)
image storage).

Field Gateway storage
(queuing the data)

TRID Storage encryption,
signing the logs

Reading data from
the storage (PII data),
tampering with
telemetry data,
tampering with
queued or cached
command control
data. Tampering with
configuration or
firmware update
packages (destined
for devices or field
gateway) while cached
or queued locally can
lead to OS and/or
system components
being compromised

BitLocker

Field Gateway OS
image

TRID Tampering with OS
/replacing the OS
components

Read-only OS
partition, signed OS
image, Encryption

COMPONENT THREAT MITIGATION RISK IMPLEMENTATION

Device and event processing/cloud gateway zone

Services zone

Additional resources

A cloud gateway is system that enables remote communication from and to devices or field gateways from several
different sites across public network space, typically towards a cloud-based control and data analysis system, a
federation of such systems. In some cases, a cloud gateway may immediately facilitate access to special-purpose
devices from terminals such as tablets or phones. In the context discussed here, “cloud” is meant to refer to a
dedicated data processing system that is not bound to the same site as the attached devices or field gateways, and
where operational measures prevent targeted physical access but is not necessarily to a “public cloud”
infrastructure. A cloud gateway may potentially be mapped into a network virtualization overlay to insulate the
cloud gateway and all of its attached devices or field gateways from any other network traffic. The cloud gateway
itself is neither a device control system nor a processing or storage facility for device data; those facilities interface
with the cloud gateway. The cloud gateway zone includes the cloud gateway itself along with all field gateways and
devices directly or indirectly attached to it.

Cloud gateway is mostly custom built piece of software running as a service with exposed endpoints to which field
gateway and devices connect. As such it must be designed with security in mind. Please follow SDL process for
designing and building this service.

A control system (or controller) is a software solution that interfaces with a device, or a field gateway, or cloud
gateway for the purpose of controlling one or multiple devices and/or to collect and/or store and/or analyze device
data for presentation, or subsequent control purposes. Control systems are the only entities in the scope of this
discussion that may immediately facilitate interaction with people. The exception are intermediate physical control
surfaces on devices, like a switch that allows a person to turn the device off or change other properties, and for
which there is no functional equivalent that can be accessed digitally.

Intermediate physical control surfaces are those where any sort of governing logic constrains the function of the
physical control surface such that an equivalent function can be initiated remotely or input conflicts with remote
input can be avoided – such intermediated control surfaces are conceptually attached to a local control system that
leverages the same underlying functionality as any other remote control system that the device may be attached to
in parallel. Top threats to the cloud computing can be read at Cloud Security Alliance (CSA) page.

http://www.microsoft.com/sdl
https://cloudsecurityalliance.org/research/top-threats/

See also

Refer to the following articles for additional information:

SDL Threat Modeling Tool
Microsoft Azure IoT reference architecture

To learn more about securing your IoT solution, see Secure your IoT deployment.

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
Frequently asked questions for IoT Suite

You can read about IoT Hub security in Control access to IoT Hub in the IoT Hub developer guide.

https://www.microsoft.com/sdl/adopt/threatmodeling.aspx
https://azure.microsoft.com/updates/microsoft-azure-iot-reference-architecture-available/
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-predictive-overview
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-faq
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

Internet of Things security best practices
3/1/2017 • 6 min to read • Edit Online

Secure an IoT infrastructure

IoT hardware manufacturer/integrator

To secure an Internet of Things (IoT) infrastructure requires a rigorous security-in-depth strategy. This strategy
requires you to secure data in the cloud, protect data integrity while in transit over the public internet, and securely
provision devices. Each layer builds greater security assurance in the overall infrastructure.

This security-in-depth strategy can be developed and executed with active participation of various players involved
with the manufacturing, development, and deployment of IoT devices and infrastructure. Following is a high-level
description of these players.

IoT hardware manufacturer/integrator: Typically, these are the manufacturers of IoT hardware being
deployed, integrators assembling hardware from various manufacturers, or suppliers providing hardware for an
IoT deployment manufactured or integrated by other suppliers.
IoT solution developer: The development of an IoT solution is typically done by a solution developer. This
developer may part of an in-house team or a system integrator (SI) specializing in this activity. The IoT solution
developer can develop various components of the IoT solution from scratch, integrate various off-the-shelf or
open-source components, or adopt preconfigured solutions with minor adaptation.
IoT solution deployer: After an IoT solution is developed, it needs to be deployed in the field. This involves
deployment of hardware, interconnection of devices, and deployment of solutions in hardware devices or the
cloud.
IoT solution operator: After the IoT solution is deployed, it requires long-term operations, monitoring,
upgrades, and maintenance. This can be done by an in-house team that comprises information technology
specialists, hardware operations and maintenance teams, and domain specialists who monitor the correct
behavior of overall IoT infrastructure.

The sections that follow provide best practices for each of these players to help develop, deploy, and operate a
secure IoT infrastructure.

The following are the best practices for IoT hardware manufacturers and hardware integrators.

Scope hardware to minimum requirements: The hardware design should include the minimum features
required for operation of the hardware, and nothing more. An example is to include USB ports only if necessary
for the operation of the device. These additional features open the device for unwanted attack vectors that
should be avoided.
Make hardware tamper proof: Build in mechanisms to detect physical tampering, such as opening of the
device cover or removing a part of the device. These tamper signals may be part of the data stream uploaded to
the cloud, which could alert operators of these events.
Build around secure hardware: If COGS permits, build security features such as secure and encrypted storage,
or boot functionality based on Trusted Platform Module (TPM). These features make devices more secure and
help protect the overall IoT infrastructure.
Make upgrades secure: Firmware upgrades during the lifetime of the device are inevitable. Building devices
with secure paths for upgrades and cryptographic assurance of firmware versions will allow the device to be
secure during and after upgrades.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-security-best-practices.md

IoT solution developer

IoT solution deployer

IoT solution operator

The following are the best practices for IoT solution developers:

Follow secure software development methodology: Development of secure software requires ground-up
thinking about security, from the inception of the project all the way to its implementation, testing, and
deployment. The choices of platforms, languages, and tools are all influenced with this methodology. The
Microsoft Security Development Lifecycle provides a step-by-step approach to building secure software.
Choose open-source software with care: Open-source software provides an opportunity to quickly develop
solutions. When you're choosing open-source software, consider the activity level of the community for each
open-source component. An active community ensures that software is supported and that issues are
discovered and addressed. Alternatively, an obscure and inactive open-source software might not be supported
and issues will probably not be discovered.
Integrate with care: Many software security flaws exist at the boundary of libraries and APIs. Functionality that
may not be required for the current deployment might still be available via an API layer. To ensure overall
security, make sure to check all interfaces of components being integrated for security flaws.

The following are best practices for IoT solution deployers:

Deploy hardware securely: IoT deployments may require hardware to be deployed in unsecure locations, such
as in public spaces or unsupervised locales. In such situations, ensure that hardware deployment is tamper-
proof to the maximum extent. If USB or other ports are available on the hardware, ensure that they are covered
securely. Many attack vectors can use these as entry points.
Keep authentication keys safe: During deployment, each device requires device IDs and associated
authentication keys generated by the cloud service. Keep these keys physically safe even after the deployment.
Any compromised key can be used by a malicious device to masquerade as an existing device.

The following are the best practices for IoT solution operators:

Keep the system up to date: Ensure that device operating systems and all device drivers are upgraded to the
latest versions. If you turn on automatic updates in Windows 10 (IoT or other SKUs), Microsoft keeps it up to
date, providing a secure operating system for IoT devices. Keeping other operating systems (such as Linux) up to
date helps ensure that they are also protected against malicious attacks.
Protect against malicious activity: If the operating system permits, install the latest antivirus and
antimalware capabilities on each device operating system. This can help mitigate most external threats. You can
protect most modern operating systems against threats by taking appropriate steps.
Audit frequently: Auditing IoT infrastructure for security-related issues is key when responding to security
incidents. Most operating systems provide built-in event logging that should be reviewed frequently to make
sure no security breach has occurred. Audit information can be sent as a separate telemetry stream to the cloud
service where it can be analyzed.
Physically protect the IoT infrastructure: The worst security attacks against IoT infrastructure are launched
using physical access to devices. One important safety practice is to protect against malicious use of USB ports
and other physical access. One key to uncovering breaches that might have occurred is logging of physical
access, such as USB port use. Again, Windows 10 (IoT and other SKUs) enables detailed logging of these events.
Protect cloud credentials: Cloud authentication credentials used for configuring and operating an IoT
deployment are possibly the easiest way to gain access and compromise an IoT system. Protect the credentials
by changing the password frequently, and refrain from using these credentials on public machines.

Capabilities of different IoT devices vary. Some devices might be computers running common desktop operating

See also

systems, and some devices might be running very light-weight operating systems. The security best practices
described previously might be applicable to these devices in varying degrees. If provided, additional security and
deployment best practices from the manufacturers of these devices should be followed.

Some legacy and constrained devices might not have been designed specifically for IoT deployment. These devices
might lack the capability to encrypt data, connect with the Internet, or provide advanced auditing. In these cases, a
modern and secure field gateway can aggregate data from legacy devices and provide the security required for
connecting these devices over the Internet. Field gateways can provide secure authentication, negotiation of
encrypted sessions, receipt of commands from the cloud, and many other security features.

To learn more about securing your IoT solution, see:

IoT security architecture
Secure your IoT deployment

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
Frequently asked questions for Azure IoT Suite

You can read about IoT Hub security in Control access to IoT Hub in the IoT Hub developer guide.

https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-predictive-overview
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-faq
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

Secure your IoT deployment
5/10/2017 • 7 min to read • Edit Online

Secure device provisioning and authentication

IoT Hub security tokens

This article provides the next level of detail for securing the Azure IoT-based Internet of Things (IoT) infrastructure.
It links to implementation level details for configuring and deploying each component. It also provides
comparisons and choices between various competing methods.

Securing the Azure IoT deployment can be divided into the following three security areas:

Device Security: Securing the IoT device while it is deployed in the wild.
Connection Security: Ensuring all data transmitted between the IoT device and IoT Hub is confidential and
tamper-proof.
Cloud Security: Providing a means to secure data while it moves through, and is stored in the cloud.

The Azure IoT Suite secures IoT devices by the following two methods:

By providing a unique identity key (security tokens) for each device, which can be used by the device to
communicate with the IoT Hub.
By using an on-device X.509 certificate and private key as a means to authenticate the device to the IoT Hub.
This authentication method ensures that the private key on the device is not known outside the device at any
time, providing a higher level of security.

The security token method provides authentication for each call made by the device to IoT Hub by associating the
symmetric key to each call. X.509-based authentication allows authentication of an IoT device at the physical layer
as part of the TLS connection establishment. The security-token-based method can be used without the X.509
authentication which is a less secure pattern. The choice between the two methods is primarily dictated by how
secure the device authentication needs to be, and availability of secure storage on the device (to store the private
key securely).

IoT Hub uses security tokens to authenticate devices and services to avoid sending keys on the network.
Additionally, security tokens are limited in time validity and scope. Azure IoT SDKs automatically generate tokens

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-security-deployment.md
http://www.itu.int/rec/T-REC-X.509-201210-I/en

X.509 certificate-based device authentication

Root certificate on device

Securing the connection

without requiring any special configuration. Some scenarios, however, require the user to generate and use
security tokens directly. These include the direct use of the MQTT, AMQP, or HTTP surfaces, or the implementation
of the token service pattern.

More details on the structure of the security token and its usage can be found in the following articles:

Security token structure
Using SAS tokens as a device

Each IoT Hub has an identity registry that can be used to create per-device resources in the service, such as a
queue that contains in-flight cloud-to-device messages, and to allow access to the device-facing endpoints. The IoT
Hub identity registry provides secure storage of device identities and security keys for a solution. Individual or
groups of device identities can be added to an allow list, or a block list, enabling complete control over device
access. The following articles provide more details on the structure of the identity registry and supported
operations.

IoT Hub supports protocols such as MQTT, AMQP, and HTTP. Each of these protocols use security tokens from the
IoT device to IoT Hub differently:

AMQP: SASL PLAIN and AMQP Claims-based security ({policyName}@sas.root.{iothubName} in the case of IoT
hub-level tokens; {deviceId} in case of device-scoped tokens).
MQTT: CONNECT packet uses {deviceId} as the {ClientId}, {IoThubhostname}/{deviceId} in the Username field
and a SAS token in the Password field.
HTTP: Valid token is in the authorization request header.

IoT Hub identity registry can be used to configure per-device security credentials and access control. However, if an
IoT solution already has a significant investment in a custom device identity registry and/or authentication scheme,
it can be integrated into an existing infrastructure with IoT Hub by creating a token service.

The use of a device-based X.509 certificate and its associated private and public key pair allows additional
authentication at the physical layer. The private key is stored securely in the device and is not discoverable outside
the device. The X.509 certificate contains information about the device, such as device ID, and other organizational
details. A signature of the certificate is generated by using the private key.

High-level device provisioning flow:

Associate an identifier to a physical device – device identity and/or X.509 certificate associated to the device
during device manufacturing or commissioning.
Create a corresponding identity entry in IoT Hub – device identity and associated device information in the IoT
Hub identity registry.
Securely store X.509 certificate thumbprint in IoT Hub identity registry.

While establishing a secure TLS connection with IoT Hub, the IoT device authenticates IoT Hub using a root
certificate which is part of the device SDK. For the C client SDK the certificate is located under the folder "\c\certs"
under the root of the repo. Though these root certificates are long-lived, they still may expire or be revoked. If
there is no way of updating the certificate on the device, the device may not be able to subsequently connect to the
IoT Hub (or any other cloud service). Having a means to update the root certificate once the IoT device is deployed
will effectively mitigate this risk.

Internet connection between the IoT device and IoT Hub is secured using the Transport Layer Security (TLS)
standard. Azure IoT supports TLS 1.2, TLS 1.1 and TLS 1.0, in this order. Support for TLS 1.0 is provided for

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://tools.ietf.org/html/rfc5246

CIPHER SUITE LENGTH

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028)
ECDH secp384r1 (eq. 7680 bits RSA) FS

256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027)
ECDH secp256r1 (eq. 3072 bits RSA) FS

128

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) ECDH
secp384r1 (eq. 7680 bits RSA) FS

256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) ECDH
secp256r1 (eq. 3072 bits RSA) FS

128

TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d) 256

TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c) 128

TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d) 256

TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c) 128

TLS_RSA_WITH_AES_256_CBC_SHA (0x35) 256

TLS_RSA_WITH_AES_128_CBC_SHA (0x2f) 128

TLS_RSA_WITH_3DES_EDE_CBC_SHA (0xa) 112

Securing the cloud

backward compatibility only. It is recommended to use TLS 1.2 since it provides the most security.

Azure IoT Suite supports the following Cipher Suites, in this order.

Azure IoT Hub allows definition of access control policies for each security key. It uses the following set of
permissions to grant access to each of IoT Hub's endpoints. Permissions limit the access to an IoT Hub based on
functionality.

RegistryRead. Grants read access to the identity registry. For more information, see identity registry.
RegistryReadWrite. Grants read and write access to the identity registry. For more information, see identity
registry.
ServiceConnect. Grants access to cloud service-facing communication and monitoring endpoints. For
example, it grants permission to back-end cloud services to receive device-to-cloud messages, send cloud-to-
device messages, and retrieve the corresponding delivery acknowledgments.
DeviceConnect. Grants access to device-facing endpoints. For example, it grants permission to send device-to-
cloud messages and receive cloud-to-device messages. This permission is used by devices.

There are two ways to obtain DeviceConnect permissions with IoT Hub with security tokens: using a device
identity key, or a shared access key. Moreover, it is important to note that all functionality accessible from devices
is exposed by design on endpoints with prefix /devices/{deviceId} .

Service components can only generate security tokens using shared access policies granting the appropriate
permissions.

Azure IoT Hub and other services which may be part of the solution allow management of users using the Azure

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

Conclusion

See also

Active Directory.

Data ingested by Azure IoT Hub can be consumed by a variety of services such as Azure Stream Analytics and
Azure blob storage. These services allow management access. Read more about these services and available
options below:

Azure Cosmos DB: A scalable, fully-indexed database service for semi-structured data that manages metadata
for the devices you provision, such as attributes, configuration, and security properties. Cosmos DB offers high-
performance and high-throughput processing, schema-agnostic indexing of data, and a rich SQL query
interface.
Azure Stream Analytics: Real-time stream processing in the cloud that enables you to rapidly develop and
deploy a low-cost analytics solution to uncover real-time insights from devices, sensors, infrastructure, and
applications. The data from this fully-managed service can scale to any volume while still achieving high
throughput, low latency, and resiliency.
Azure App Services: A cloud platform to build powerful web and mobile apps that connect to data anywhere; in
the cloud or on-premises. Build engaging mobile apps for iOS, Android, and Windows. Integrate with your
Software as a Service (SaaS) and enterprise applications with out-of-the-box connectivity to dozens of cloud-
based services and enterprise applications. Code in your favorite language and IDE (.NET, Node.js, PHP, Python,
or Java) to build web apps and APIs faster than ever.
Logic Apps: The Logic Apps feature of Azure App Service helps integrate your IoT solution to your existing line-
of-business systems and automate workflow processes. Logic Apps enables developers to design workflows
that start from a trigger and then execute a series of steps—rules and actions that use powerful connectors to
integrate with your business processes. Logic Apps offers out-of-the-box connectivity to a vast ecosystem of
SaaS, cloud-based, and on-premises applications.
Azure blob storage: Reliable, economical cloud storage for the data that your devices send to the cloud.

This article provides overview of implementation level details for designing and deploying an IoT infrastructure
using Azure IoT. Configuring each component to be secure is key in securing the overall IoT infrastructure. The
design choices available in Azure IoT provide some level of flexibility and choice; however, each choice may have
security implications. It is recommended that each of these choices be evaluated through a risk/cost assessment.

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
Frequently asked questions for IoT Suite

You can read about IoT Hub security in Control access to IoT Hub in the IoT Hub developer guide.

https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/stream-analytics/
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/app-service/logic/
https://azure.microsoft.com/services/storage/
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-predictive-overview
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-faq
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

Internet of Things security from the ground up
5/10/2017 • 12 min to read • Edit Online

Introduction

Secure infrastructure from the ground up

The Internet of Things (IoT) poses unique security, privacy, and compliance challenges to businesses worldwide.
Unlike traditional cyber technology where these issues revolve around software and how it is implemented, IoT
concerns what happens when the cyber and the physical worlds converge. Protecting IoT solutions requires
ensuring secure provisioning of devices, secure connectivity between these devices and the cloud, and secure data
protection in the cloud during processing and storage. Working against such functionality, however, are resource-
constrained devices, geographic distribution of deployments, and a large number of devices within a solution.

This article explores how the Microsoft Azure IoT Suite provides a secure and private Internet of Things cloud
solution. The Azure IoT Suite delivers a complete end-to-end solution, with security built into every stage from the
ground up. At Microsoft, developing secure software is part of the software engineering practice, rooted in our
decades long experience of developing secure software. To ensure this, Security Development Lifecycle (SDL) is the
foundational development methodology, coupled with a host of infrastructure-level security services such as
Operational Security Assurance (OSA) and the Microsoft Digital Crimes Unit, Microsoft Security Response Center,
and Microsoft Malware Protection Center.

The Azure IoT Suite offers unique features which make provisioning, connecting to, and storing data from IoT
devices easy and transparent and, most of all, secure. In this paper we examine the Azure IoT Suite security
features and deployment strategies to ensure security, privacy, and compliance challenges are addressed.

The Internet of Things (IoT) is the wave of the future, offering businesses immediate and real-world opportunities
to reduce costs, increase revenue, and transform their business. Many businesses, however, are hesitant to deploy
IoT in their organizations due to concerns about security, privacy, and compliance. A major point of concern comes
from the uniqueness of the IoT infrastructure, which merges the cyber and physical worlds together, compounding
individual risks inherent in these two worlds. Security of IoT pertains to ensuring the integrity of code running on
devices, providing device and user authentication, defining clear ownership of devices (as well as data generated
by those devices), and being resilient to cyber and physical attacks.

Then, there’s the issue of privacy. Companies want transparency concerning data collection, as in what’s being
collected and why, who can see it, who controls access, and so on. Finally, there are general safety issues of the
equipment along with the people operating them, and issues of maintaining industry standards of compliance.

Given the security, privacy, transparency, and compliance concerns, choosing the right IoT solution provider
remains a challenge. Stitching together individual pieces of IoT software and services provided by a variety of
vendors introduces gaps in security, privacy, transparency, and compliance which may be hard to detect, let alone
fix. The choice of the right IoT software and service provider is based on finding providers which have extensive
experience running services which span across verticals and geographies, but are also able to scale in a secure and
transparent fashion. Similarly, it helps for the selected provider to have decades of experience with developing
secure software running on billions of machines worldwide, and have the ability to appreciate the threat landscape
posed by this new world of the Internet of Things.

The Microsoft Cloud infrastructure supports more than one billion customers in 127 countries. Drawing on our
decades-long experience building enterprise software and running some of the largest online services in the
world, we provide higher levels of enhanced security, privacy, compliance, and threat mitigation practices than
most customers could achieve on their own.

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/securing-iot-ground-up.md
https://www.microsoft.com/enterprise/microsoftcloud/default.aspx#fbid=WzBsRQi6aGk

Microsoft Azure - secure IoT infrastructure for your business

Secure device provisioning and authentication

Our Security Development Lifecycle (SDL) provides a mandatory company-wide development process that
embeds security requirements into the entire software lifecycle. To help ensure that operational activities follow
the same level of security practices, we use rigorous security guidelines laid out in our Operational Security
Assurance (OSA) process. We also work with third-party audit firms for ongoing verification that we meet our
compliance obligations, and we engage in broad security efforts through the creation of centers of excellence,
including the Microsoft Digital Crimes Unit, Microsoft Security Response Center, and Microsoft Malware Protection
Center.

Microsoft Azure offers a complete cloud solution, one that combines a constantly growing collection of integrated
cloud services—analytics, machine learning, storage, security, networking, and web—with an industry-leading
commitment to the protection and privacy of your data. Our assume breach strategy uses a dedicated “red team”
of software security experts who simulate attacks, testing the ability of Azure to detect, protect against emerging
threats, and recover from breaches. Our global incident response team works around the clock to mitigate the
effects of attacks and malicious activity. The team follows established procedures for incident management,
communication, and recovery, and uses discoverable and predictable interfaces with internal and external partners.

Our systems provide continuous intrusion detection and prevention, service attack prevention, regular penetration
testing, and forensic tools that help identify and mitigate threats. Multi-factor authentication provides an extra
layer of security for end users to access the network. And for the application and the host provider, we offer access
control, monitoring, anti-malware, vulnerability scanning, patches, and configuration management.

The Microsoft Azure IoT Suite takes advantage of the security and privacy built into the Azure platform along with
our SDL and OSA processes for secure development and operation of all Microsoft software. These procedures
provide infrastructure protection, network protection, and identity and management features fundamental to the
security of any solution.

The Azure IoT Hub within the IoT Suite offers a fully-managed service that enables reliable and secure bi-
directional communication between IoT devices and Azure services such as Azure Machine Learning and Azure
Stream Analytics by using per-device security credentials and access control.

To best communicate security and privacy features built into the Azure IoT Suite, we’ve broken down the suite into
the three primary security areas.

The Azure IoT Suite secures devices while they are out in the field by providing a unique identity key for each
device, which can be used by the IoT infrastructure to communicate with the device while it is in operation. The
process is quick and easy to setup. The generated key with a user-selected device ID forms the basis of a token

https://www.microsoft.com/sdl/
https://azure.microsoft.com/blog/red-teaming-using-cutting-edge-threat-simulation-to-harden-the-microsoft-enterprise-cloud/
https://www.microsoft.com/TrustCenter/Security/DesignOpSecurity
https://docs.microsoft.com/en-us/azure/multi-factor-authentication/multi-factor-authentication
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-what-is-machine-learning
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction

Secure connectivity

used in all communication between the device and the Azure IoT Hub.

Device IDs can be associated with a device during manufacturing (i.e. flashed in a hardware trust module) or can
use an existing fixed identity as a proxy (for example CPU serial numbers). Since changing this identifying
information in the device is not simple, it is important to introduce logical device IDs in case the underlying device
hardware changes but the logical device remains the same. In some cases, the association of a device identity can
happen at device deployment time (i.e. an authenticated field engineer physically configures a new device while
communicating with the solution backend). The Azure IoT Hub identity registry provides secure storage of device
identities and security keys for a solution. Individual or groups of device identities can be added to an allow list, or
a block list, enabling complete control over device access.

Azure IoT Hub access control policies in the cloud enable activation and disabling any device identity, providing a
way to disassociate a device from an IoT deployment when required. This association and disassociation of devices
is based on each device identity.

Additional device security features include the following:

Devices do not accept unsolicited network connections. They establish all connections and routes in an
outbound-only fashion. For a device to receive a command from the backend, the device must initiate a
connection to check for any pending commands to process. Once a connection between the device and IoT Hub
is securely established, messaging from the cloud to the device and device to the cloud can be sent
transparently.
Devices only connect to or establish routes to well-known services with which they are peered, such as an
Azure IoT Hub.
System-level authorization and authentication use per-device identities, making access credentials and
permissions near-instantly revocable.

Durability of messaging is an important feature of any IoT solution. The need to durably deliver commands and/or
receive data from devices is underlined by the fact that IoT devices are connected over the Internet, or other similar
networks which can be unreliable. Azure IoT Hub offers durability of messaging between cloud and devices
through a system of acknowledgments in response to messages. Additional durability for messaging is achieved
by caching messages in the IoT Hub for up to seven days for telemetry and two days for commands.

Efficiency is important to ensure conservation of resources and operation in a resource-constrained environment.
HTTPS (HTTP Secure), the industry-standard secure version of the popular http protocol, is supported by Azure IoT
Hub, enabling efficient communication. Advanced Message Queuing Protocol (AMQP) and Message Queuing
Telemetry Transport (MQTT), supported by Azure IoT Hub, are designed not only for efficiency in terms of resource
use but also reliable message delivery.

Scalability requires the ability to securely interoperate with a wide range of devices. Azure IoT hub enables secure
connection to both IP-enabled and non-IP-enabled devices. IP-enabled devices are able to directly connect and
communicate with the IoT Hub over a secure connection. Non-IP-enabled devices are resource-constrained and
connect only over short distance communication protocols, such as Zwave, ZigBee, and Bluetooth. A field gateway
is used to aggregate these devices and performs protocol translation to enable secure bi-directional
communication with the cloud.

Additional connection security features include the following:

The communication path between devices and Azure IoT Hub, or between gateways and Azure IoT Hub, is
secured using industry-standard Transport Layer Security (TLS) with Azure IoT Hub authenticated using X.509
protocol.
In order to protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection
to the device. The device initiates all connections.
Azure IoT Hub durably stores messages for devices and waits for the device to connect. These commands are

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide

Secure processing and storage in the cloud

Conclusion

Additional information

stored for two days, enabling devices connecting sporadically, due to power or connectivity concerns, to receive
these commands. Azure IoT Hub maintains a per-device queue for each device.

From encrypted communications to processing data in the cloud, the Azure IoT Suite helps keep data secure. It
provides flexibility to implement additional encryption and management of security keys. Using Azure Active
Directory (AAD) for user authentication and authorization, Azure IoT Suite can provide a policy-based
authorization model for data in the cloud, enabling easy access management that can be audited and reviewed.
This model also enables near-instant revocation of access to data in the cloud, and of devices connected to the
Azure IoT Suite.

Once data is in the cloud, it can be processed and stored in any user-defined workflow. Access to each part of the
data is controlled with Azure Active Directory, depending on the storage service used.

All keys used by the IoT infrastructure are stored in the cloud in secure storage, with the ability to roll over in case
keys need to be re-provisioned. Data can be stored in Azure Cosmos DB or in SQL databases, enabling definition
of the level of security desired. Additionally, Azure provides a way to monitor and audit all access to your data to
alert you of any intrusion or unauthorized access.

The Internet of Things starts with your things—the things that matter most to businesses. IoT can deliver amazing
value to a business by reducing costs, increasing revenue, and transforming business. Success of this
transformation largely depends on choosing the right IoT software and service provider. That means finding a
provider that not only catalyzes this transformation by understanding business needs and requirements, but also
provides services and software built with security, privacy, transparency, and compliance as major design
considerations. Microsoft has extensive experience with developing and deploying secure software and services
and continues to be a leader in this new age of Internet of Things.

The Microsoft Azure IoT Suite builds in security measures by design, enabling secure monitoring of assets to
improve efficiencies, drive operational performance to enable innovation, and employ advanced data analytics to
transform businesses. With its layered approach towards security, multiple security features, and design patterns,
Azure IoT Suite helps deploy an infrastructure which can be trusted to transform any business.

Each Azure IoT Suite pre-configured solution creates instances of Azure services, such as the following:

Azure IoT Hub: Your gateway that connects the cloud to “things”. You can scale to millions of connections per
hub and process massive volumes of data with per-device authentication support helping you secure your
solution.
Azure Cosmos DB: A scalable, fully-indexed database service for semi-structured data that manages metadata
for the devices you provision, such as attributes, configuration, and security properties. Cosmos DB offers high-
performance and high-throughput processing, schema-agnostic indexing of data, and a rich SQL query
interface.
Azure Stream Analytics: Real-time stream processing in the cloud that enables you to rapidly develop and
deploy a low-cost analytics solution to uncover real-time insights from devices, sensors, infrastructure, and
applications. The data from this fully-managed service can scale to any volume while still achieving high
throughput, low latency, and resiliency.
Azure App Services: A cloud platform to build powerful web and mobile apps that connect to data anywhere;
in the cloud or on-premises. Build engaging mobile apps for iOS, Android, and Windows. Integrate with your
Software as a Service (SaaS) and enterprise applications with out-of-the-box connectivity to dozens of cloud-
based services and enterprise applications. Code in your favorite language and IDE—.NET, Node.js, PHP,
Python, or Java—to build web apps and APIs faster than ever.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-faq
https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/stream-analytics/
https://azure.microsoft.com/services/app-service/

Next steps

Logic Apps: The Logic Apps feature of Azure App Service helps integrate your IoT solution to your existing line
of business systems and automate workflow processes. Logic Apps enables developers to design workflows
that starts from a trigger and then execute a series of steps—rules and actions that use powerful connectors to
integrate with your business processes. Logic Apps offers out-of-the-box connectivity to a vast ecosystem of
SaaS, cloud-based, and on-premises applications.
Azure blob storage: Reliable, economical cloud storage for the data that your devices send to the cloud.

To learn more about securing your IoT solution, see:

IoT Security Best Practices
IoT Security Architecture
Secure your IoT deployment

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
Frequently asked questions for IoT Suite

You can read about IoT Hub security in Control access to IoT Hub in the IoT Hub developer guide.

https://azure.microsoft.com/services/app-service/logic/
https://azure.microsoft.com/services/storage/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

Frequently asked questions for IoT Suite
5/10/2017 • 4 min to read • Edit Online

Where can I find the source code for the preconfigured solutions?

How do I update to the latest version of the remote monitoring preconfigured solution that uses the IoT
Hub device management features?

How can I add support for a new device method to the remote monitoring preconfigured solution?

The simulated device is ignoring my desired property changes, why?

My device does not appear in the list of devices in the solution dashboard, why?

What's the difference between deleting a resource group in the Azure portal and clicking delete on a
preconfigured solution in azureiotsuite.com?

How many IoT Hub instances can I provision in a subscription?

How many Azure Cosmos DB instances can I provision in a subscription?

How many Free Bing Maps APIs can I provision in a subscription?

The source code is stored in the following GitHub repositories:

Remote Monitoring preconfigured solution
Predictive maintenance preconfigured solution

If you deploy a preconfigured solution from the https://www.azureiotsuite.com/ site, it always deploys a
new instance of the latest version of the solution.
If you deploy a preconfigured solution using the command line, you can update an existing deployment
with new code. See Cloud deployment in the GitHub repository.

See the section Add support for a new method to the simulator in the Customize a preconfigured solution
article.

In the remote monitoring preconfigured solution, the simulated device code only uses the
Desired.Config.TemperatureMeanValue and Desired.Config.TelemetryInterval desired properties to
update the reported properties. All other desired property change requests are ignored.

The list of devices in the solution dashboard uses a query to return the list of devices. Currently, a query
cannot return more than 10K devices. Try making the search criteria for your query more restrictive.

If you delete the preconfigured solution in azureiotsuite.com, you delete all the resources that were
provisioned when you created the preconfigured solution. If you added additional resources to the
resource group, these resources are also deleted.
If you delete the resource group in the Azure portal, you only delete the resources in that resource group.
You also need to delete the Azure Active Directory application associated with the preconfigured solution
in the Azure classic portal.

By default you can provision 10 IoT hubs per subscription. You can create an Azure support ticket to raise this
limit. As a result, since every preconfigured solution provisions a new IoT Hub, you can only provision up to
10 preconfigured solutions in a given subscription.

Fifty. You can create an Azure support ticket to raise this limit, but by default, you can only provision 50
Cosmos DB instances per subscription.

Two. You can create only two Internal Transactions Level 1 Bing Maps for Enterprise plans in an Azure
subscription. The remote monitoring solution is provisioned by default with the Internal Transactions Level 1
plan. As a result, you can only provision up to two remote monitoring solutions in a subscription with no

https://github.com/Microsoft/azure-docs/blob/master/articles/iot-suite/iot-suite-faq.md
https://github.com/Azure/azure-iot-remote-monitoring
https://github.com/Azure/azure-iot-predictive-maintenance
https://www.azureiotsuite.com/
https://github.com/Azure/azure-iot-remote-monitoring/blob/master/Docs/cloud-deployment.md
https://github.com/Azure/azure-iot-remote-monitoring
https://www.azureiotsuite.com/
https://portal.azure.com
https://manage.windowsazure.com
https://azure.microsoft.com/documentation/articles/azure-subscription-service-limits/#iot-hub-limits
https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade

I have a remote monitoring solution deployment with a static map, how do I add an interactive Bing map?

Can I create a preconfigured solution if I have Microsoft Azure for DreamSpark?

Can I create a preconfigured solution if I have Cloud Solution Provider (CSP) subscription?

How do I delete an AAD tenant?

Next steps

modifications.

2. Pull down the latest code from the Azure-IoT-Remote-Monitoring.
3. Run a local or cloud deployment following the command-line deployment guidance in the /docs/ folder in

the repository.
4. After you've run a local or cloud deployment, look in your root folder for the *.user.config file created

during deployment. Open this file in a text editor.

1. Get your Bing Maps API for Enterprise QueryKey from Azure portal:

a. Navigate to the Resource Group where your Bing Maps API for Enterprise is in the Azure portal.
b. Click All Settings, then Key Management.

NOTE

c. You can see two keys: MasterKey and QueryKey. Copy the value for QueryKey.

Don't have a Bing Maps API for Enterprise account? Create one in the Azure portal by clicking + New,
searching for Bing Maps API for Enterprise and follow prompts to create.

5. Change the following line to include the value you copied from your QueryKey:

<setting name="MapApiQueryKey" value="" />

Currently, you cannot create a preconfigured solution with a Microsoft Azure for DreamSpark account.
However, you can create a free trial account for Azure in just a couple of minutes that enables you create a
preconfigured solution.

Currently, you cannot create a preconfigured solution with a Cloud Solution Provider (CSP) subscription.
However, you can create a free trial account for Azure in just a couple of minutes that enables you create a
preconfigured solution.

See Eric Golpe's blog post Walkthrough of Deleting an Azure AD Tenant.

You can also explore some of the other features and capabilities of the IoT Suite preconfigured solutions:

Predictive maintenance preconfigured solution overview
IoT security from the ground up

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://github.com/Azure/azure-iot-remote-monitoring
https://www.dreamspark.com/Product/Product.aspx?productid=99
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
http://blogs.msdn.com/b/ericgolpe/archive/2015/04/30/walkthrough-of-deleting-an-azure-ad-tenant.aspx

	Cover Page
	Overview
	Azure and IoT
	What is IoT Suite?
	What are the preconfigured solutions?

	Get Started
	Get started with the preconfigured solutions
	Permissions on azureiotsuite.com
	Predictive maintenance solution overview
	Connected factory solution overview
	Remote monitoring solution walkthrough
	Predictive maintenance solution walkthrough
	Connected factory solution walkthrough
	Connect your Raspberry Pi
	Use C
	Simulated data
	Use real sensors
	Implement firmware update

	Use Node.js
	Simulated data
	Use real sensors
	Implement firmware update

	Connect your Intel NUC gateway
	Simulated data
	Use real sensor

	How To
	Connect a simulated device
	C on Windows
	C on Linux
	Node.js

	Connect your mbed device
	Connect a Logic App to the remote monitoring solution
	Customize a preconfigured solution
	Use dynamic telemetry with the remote monitoring solution
	Create a custom rule in the remote monitoring solution
	Device information in the remote monitoring solution
	Deploy a gateway for connected factory
	Customize connected factory

	Reference
	Security architecture
	Security best practices
	Secure your IoT deployment
	Security from the ground up

	Related
	Stream Analytics
	Event Hubs
	IoT Hub
	Machine Learning

	Resources
	FAQ
	IoT Suite learning path

